Measuring the charge density of a tapered optical fiber using trapped microparticles.
Kamitani, Kazuhiko; Muranaka, Takuya; Takashima, Hideaki; Fujiwara, Masazumi; Tanaka, Utako; Takeuchi, Shigeki; Urabe, Shinji
2016-03-07
We report the measurements of charge density of tapered optical fibers using charged particles confined in a linear Paul trap at ambient pressure. A tapered optical fiber is placed across the trap axis at a right angle, and polystyrene microparticles are trapped along the trap axis. The distance between the equilibrium position of a positively charged particle and the tapered fiber is used to estimate the amount of charge per unit length of the fiber without knowing the amount of charge of the trapped particle. The charge per unit length of a tapered fiber with a diameter of 1.6 μm was measured to be 2-1+3×10 -11 C/m.
Polymeric and Molecular Materials for Advanced Organic Electronics
2011-07-25
printable variants. All have excellent dielectric and insulating properties, a remarkable ability to minimize trapped charge between thin film transistor... trapped charge density, and hence the corresponding OTFT device performance. Under this program we first discovered that OTFT performance is...deep, high- density charge traps must be overcome for efficient FET operation, it has been postulated that in most OFETs, shallow lower-density (~10
Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states
NASA Astrophysics Data System (ADS)
Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun
2016-05-01
Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.
Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states.
Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun
2016-05-27
Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djara, V.; Cherkaoui, K.; Negara, M. A.
2015-11-28
An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g}more » measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.« less
NASA Astrophysics Data System (ADS)
Mukherjee, A. K.; Kavala, A. K.
2014-04-01
Shallow traps play a significant role in influencing charge dynamics through organic molecular thin films, such as pentacene. Sandwich cells of pentacene capped by gold electrodes are an excellent specimen to study the nature of underlying charge dynamics. In this paper, self-consistent numerical simulation of I-V characteristics is performed at various temperatures. The results have revealed negative value of Poole Frenkel coefficient. The location of trap energy level is found to be located at 0.24 eV above the highest occupied molecular orbit (HOMO) level of pentacene. Other physical parameters related to trap levels, such as density of states due to traps and effective carrier density due to traps, have also been estimated in this study.
Park, Rebecca Sejung; Shulaker, Max Marcel; Hills, Gage; Suriyasena Liyanage, Luckshitha; Lee, Seunghyun; Tang, Alvin; Mitra, Subhasish; Wong, H-S Philip
2016-04-26
We present a measurement technique, which we call the Pulsed Time-Domain Measurement, for characterizing hysteresis in carbon nanotube field-effect transistors, and demonstrate its applicability for a broad range of 1D and 2D nanomaterials beyond carbon nanotubes. The Pulsed Time-Domain Measurement enables the quantification (density, energy level, and spatial distribution) of charged traps responsible for hysteresis. A physics-based model of the charge trapping process for a carbon nanotube field-effect transistor is presented and experimentally validated using the Pulsed Time-Domain Measurement. Leveraging this model, we discover a source of traps (surface traps) unique to devices with low-dimensional channels such as carbon nanotubes and nanowires (beyond interface traps which exist in today's silicon field-effect transistors). The different charge trapping mechanisms for interface traps and surface traps are studied based on their temperature dependencies. Through these advances, we are able to quantify the interface trap density for carbon nanotube field-effect transistors (∼3 × 10(13) cm(-2) eV(-1) near midgap), and compare this against a range of previously studied dielectric/semiconductor interfaces.
Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress
NASA Astrophysics Data System (ADS)
Boukhari, Hamed; Rogti, Fatiha
2016-10-01
The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical-mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.
NASA Astrophysics Data System (ADS)
Bisoyi, Sibani; Rödel, Reinhold; Zschieschang, Ute; Kang, Myeong Jin; Takimiya, Kazuo; Klauk, Hagen; Tiwari, Shree Prakash
2016-02-01
A systematic and comprehensive study on the charge-carrier injection and trapping behavior was performed using displacement current measurements in long-channel capacitors based on four promising small-molecule organic semiconductors (pentacene, DNTT, C10-DNTT and DPh-DNTT). In thin-film transistors, these semiconductors showed charge-carrier mobilities ranging from 1.0 to 7.8 cm2 V-1 s-1. The number of charges injected into and extracted from the semiconductor and the density of charges trapped in the device during each measurement were calculated from the displacement current characteristics and it was found that the density of trapped charges is very similar in all devices and of the order 1012 cm-2, despite the fact that the four semiconductors show significantly different charge-carrier mobilities. The choice of the contact metal (Au, Ag, Cu, Pd) was also found to have no significant effect on the trapping behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning, E-mail: nl4g12@soton.ac.uk; He, Miao; Alghamdi, Hisham
2015-08-14
Trapping parameters can be considered as one of the important attributes to describe polymeric materials. In the present paper, a more accurate charge dynamics model has been developed, which takes account of charge dynamics in both volts-on and off stage into simulation. By fitting with measured charge data with the highest R-square value, trapping parameters together with injection barrier of both normal and aged low-density polyethylene samples were estimated using the improved model. The results show that, after long-term ageing process, the injection barriers of both electrons and holes is lowered, overall trap depth is shallower, and trap density becomesmore » much greater. Additionally, the changes in parameters for electrons are more sensitive than those of holes after ageing.« less
Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements
NASA Astrophysics Data System (ADS)
Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny
2018-04-01
Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.
NASA Astrophysics Data System (ADS)
Choi, Wookjin; Miyakai, Tomoyo; Sakurai, Tsuneaki; Saeki, Akinori; Yokoyama, Masaaki; Seki, Shu
2014-07-01
The density of traps at semiconductor-insulator interfaces was successfully estimated using microwave dielectric loss spectroscopy with model thin-film organic field-effect transistors. The non-contact, non-destructive analysis technique is referred to as field-induced time-resolved microwave conductivity (FI-TRMC) at interfaces. Kinetic traces of FI-TRMC transients clearly distinguished the mobile charge carriers at the interfaces from the immobile charges trapped at defects, allowing both the mobility of charge carriers and the number density of trap sites to be determined at the semiconductor-insulator interfaces. The number density of defects at the interface between evaporated pentacene on a poly(methylmethacrylate) insulating layer was determined to be 1012 cm-2, and the hole mobility was up to 6.5 cm2 V-1 s-1 after filling the defects with trapped carriers. The FI-TRMC at interfaces technique has the potential to provide rapid screening for the assessment of interfacial electronic states in a variety of semiconductor devices.
Trapped charge densities in Al{sub 2}O{sub 3}-based silicon surface passivation layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Paul M., E-mail: Paul.Jordan@namlab.com; Simon, Daniel K.; Dirnstorfer, Ingo
2016-06-07
In Al{sub 2}O{sub 3}-based passivation layers, the formation of fixed charges and trap sites can be strongly influenced by small modifications in the stack layout. Fixed and trapped charge densities are characterized with capacitance voltage profiling and trap spectroscopy by charge injection and sensing, respectively. Al{sub 2}O{sub 3} layers are grown by atomic layer deposition with very thin (∼1 nm) SiO{sub 2} or HfO{sub 2} interlayers or interface layers. In SiO{sub 2}/Al{sub 2}O{sub 3} and HfO{sub 2}/Al{sub 2}O{sub 3} stacks, both fixed charges and trap sites are reduced by at least a factor of 5 compared with the value measured inmore » pure Al{sub 2}O{sub 3}. In Al{sub 2}O{sub 3}/SiO{sub 2}/Al{sub 2}O{sub 3} or Al{sub 2}O{sub 3}/HfO{sub 2}/Al{sub 2}O{sub 3} stacks, very high total charge densities of up to 9 × 10{sup 12} cm{sup −2} are achieved. These charge densities are described as functions of electrical stress voltage, time, and the Al{sub 2}O{sub 3} layer thickness between silicon and the HfO{sub 2} or the SiO{sub 2} interlayer. Despite the strong variation of trap sites, all stacks reach very good effective carrier lifetimes of up to 8 and 20 ms on p- and n-type silicon substrates, respectively. Controlling the trap sites in Al{sub 2}O{sub 3} layers opens the possibility to engineer the field-effect passivation in the solar cells.« less
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun
2018-06-01
The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most significant suppression impact on surface charge accumulation.
Lee, Sunwoo; Park, Junghyuck; Park, In-Sung; Ahn, Jinho
2014-07-01
We investigate the dependence of charge carrier mobility by trap states at various interface regions through channel engineering. Prior to evaluation of interface trap density, the electrical performance in pentaene field effect transistors (FET) with high-k gate oxide are also investigated depending on four channel engineering. As a channel engineering, gas treatment, coatings of thin polymer layer, and chemical surface modification using small molecules were carried out. After channel engineering, the performance of device as well as interface trap density calculated by conductance method are remarkably improved. It is found that the reduced interface trap density is closely related to decreasing the sub-threshold swing and improving the mobility. Particularly, we also found that performance of device such as mobility, subthreshold swing, and interface trap density after gas same is comparable to those of OTS.
Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids.
Boehme, Simon C; Azpiroz, Jon Mikel; Aulin, Yaroslav V; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Infante, Ivan; Houtepen, Arjan J
2015-05-13
Charge trapping is an ubiquitous process in colloidal quantum-dot solids and a major limitation to the efficiency of quantum dot based devices such as solar cells, LEDs, and thermoelectrics. Although empirical approaches led to a reduction of trapping and thereby efficiency enhancements, the exact chemical nature of the trapping mechanism remains largely unidentified. In this study, we determine the density of trap states in CdTe quantum-dot solids both experimentally, using a combination of electrochemical control of the Fermi level with ultrafast transient absorption and time-resolved photoluminescence spectroscopy, and theoretically, via density functional theory calculations. We find a high density of very efficient electron traps centered ∼0.42 eV above the valence band. Electrochemical filling of these traps increases the electron lifetime and the photoluminescence quantum yield by more than an order of magnitude. The trapping rate constant for holes is an order of magnitude lower that for electrons. These observations can be explained by Auger-mediated electron trapping. From density functional theory calculations we infer that the traps are formed by dicoordinated Te atoms at the quantum dot surface. The combination of our unique experimental determination of the density of trap states with the theoretical modeling of the quantum dot surface allows us to identify the trapping mechanism and chemical reaction at play during charge trapping in these quantum dots.
Goh, Youngin; Ahn, Jaehan; Lee, Jeong Rak; Park, Wan Woo; Ko Park, Sang-Hee; Jeon, Sanghun
2017-10-25
Amorphous oxide semiconductor-based thin film transistors (TFTs) have been considered as excellent switching elements for driving active-matrix organic light-emitting diodes (AMOLED) owing to their high mobility and process compatibility. However, oxide semiconductors have inherent defects, causing fast transient charge trapping and device instability. For the next-generation displays such as flexible, wearable, or transparent displays, an active semiconductor layer with ultrahigh mobility and high reliability at low deposition temperature is required. Therefore, we introduced high density plasma microwave-assisted (MWA) sputtering method as a promising deposition tool for the formation of high density and high-performance oxide semiconductor films. In this paper, we present the effect of the MWA sputtering method on the defects and fast charge trapping in In-Sn-Zn-O (ITZO) TFTs using various AC device characterization methodologies including fast I-V, pulsed I-V, transient current, low frequency noise, and discharge current analysis. Using these methods, we were able to analyze the charge trapping mechanism and intrinsic electrical characteristics, and extract the subgap density of the states of oxide TFTs quantitatively. In comparison to conventional sputtered ITZO, high density plasma MWA-sputtered ITZO exhibits outstanding electrical performance, negligible charge trapping characteristics and low subgap density of states. High-density plasma MWA sputtering method has high deposition rate even at low working pressure and control the ion bombardment energy, resulting in forming low defect generation in ITZO and presenting high performance ITZO TFT. We expect the proposed high density plasma sputtering method to be applicable to a wide range of oxide semiconductor device applications.
NASA Astrophysics Data System (ADS)
Hur, Ji-Hyun; Park, Junghak; Kim, Deok-kee; Jeon, Sanghun
2017-04-01
We propose a model that describes the operation characteristics of a two-dimensional electron gas (2DEG) in a monolayer transition-metal dichalcogenide thin-film transistor (TFT) having trapped charges near the channel interface. We calculate the drift mobility of the carriers scattered by charged defects located in the channel or near the channel interfaces. The calculated drift mobility is a function of the 2DEG areal density of interface traps. Finally, we calculate the model transfer (ID-VG S ) and output (ID-VS D ) characteristics and verify them by comparing with the experimental results performed with monolayer MoS2 TFTs. We find the modeled results to be excellently consistent with the experiments. This proposed model can be utilized for measuring the interface-trapped charge and trap site densities from the measured transfer curves directly, avoiding more complicated and expensive measurement methods.
25th anniversary article: charge transport and recombination in polymer light-emitting diodes.
Kuik, Martijn; Wetzelaer, Gert-Jan A H; Nicolai, Herman T; Craciun, N Irina; De Leeuw, Dago M; Blom, Paul W M
2014-01-01
This article reviews the basic physical processes of charge transport and recombination in organic semiconductors. As a workhorse, LEDs based on a single layer of poly(p-phenylene vinylene) (PPV) derivatives are used. The hole transport in these PPV derivatives is governed by trap-free space-charge-limited conduction, with the mobility depending on the electric field and charge-carrier density. These dependencies are generally described in the framework of hopping transport in a Gaussian density of states distribution. The electron transport on the other hand is orders of magnitude lower than the hole transport. The reason is that electron transport is hindered by the presence of a universal electron trap, located at 3.6 eV below vacuum with a typical density of ca. 3 × 10¹⁷ cm⁻³. The trapped electrons recombine with free holes via a non-radiative trap-assisted recombination process, which is a competing loss process with respect to the emissive bimolecular Langevin recombination. The trap-assisted recombination in disordered organic semiconductors is governed by the diffusion of the free carrier (hole) towards the trapped carrier (electron), similar to the Langevin recombination of free carriers where both carriers are mobile. As a result, with the charge-carrier mobilities and amount of trapping centers known from charge-transport measurements, the radiative recombination as well as loss processes in disordered organic semiconductors can be fully predicted. Evidently, future work should focus on the identification and removing of electron traps. This will not only eliminate the non-radiative trap-assisted recombination, but, in addition, will shift the recombination zone towards the center of the device, leading to an efficiency improvement of more than a factor of two in single-layer polymer LEDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Wookjin; Miyakai, Tomoyo; Sakurai, Tsuneaki
The density of traps at semiconductor–insulator interfaces was successfully estimated using microwave dielectric loss spectroscopy with model thin-film organic field-effect transistors. The non-contact, non-destructive analysis technique is referred to as field-induced time-resolved microwave conductivity (FI-TRMC) at interfaces. Kinetic traces of FI-TRMC transients clearly distinguished the mobile charge carriers at the interfaces from the immobile charges trapped at defects, allowing both the mobility of charge carriers and the number density of trap sites to be determined at the semiconductor-insulator interfaces. The number density of defects at the interface between evaporated pentacene on a poly(methylmethacrylate) insulating layer was determined to be 10{supmore » 12 }cm{sup −2}, and the hole mobility was up to 6.5 cm{sup 2} V{sup −1} s{sup −1} after filling the defects with trapped carriers. The FI-TRMC at interfaces technique has the potential to provide rapid screening for the assessment of interfacial electronic states in a variety of semiconductor devices.« less
Effect of Thermospheric Neutral Density upon Inner Trapped-belt Proton Flux
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.
2007-01-01
We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.
NASA Astrophysics Data System (ADS)
Lee, Kin Kiong; Wang, Danna; Shinobu, Onoda; Ohshima, Takeshi
2018-04-01
Radiation-induced charge trapping and interface traps in n-channel ZnO thin film transistors are characterised as a function of total dose and irradiation bias following exposure to gamma-rays. Devices were irradiated up to ∼60 kGy(SiO?) and the electrical characteristic exhibits two distinct regimes. In the first regime, up to a total dose of 40 kGy(SiO?), the threshold voltage increases positively. However, in the second regime with irradiation greater than 40 kGy(SiO?), the threshold voltage moves in the opposite direction. This reversal of threshold voltage is attributed to the influence of the radiation-induced interface and oxide- charge, in which both have opposite polarity, on the electrical performance of the transistors. In the first regime, the generation of the oxide- charge is initially greater than the density of interface traps and caused a positive shift. In the second regime, when the total doses were greater than 40 kGy(SiO?), the radiation-induced interface traps are greater than the density of oxide- charge and caused the threshold voltage to switch direction. Further, the generated interface traps contributed to the degradation of the effective channel mobility, whereas the density of traps at the grain-boundaries did not increase significantly upon irradiation. Isothermal annealing of the devices at 363 K results in a reduction in the trap density and an improvement of the effective channel mobility to ∼90% of its pre-irradiation value.
NASA Astrophysics Data System (ADS)
Rogti, F.
2015-12-01
Space-charge behavior at dielectric interfaces in multilayer low-density polyethylene (LDPE) and fluorinated ethylene propylene (FEP) subjected to a direct-current (DC) field has been investigated as a function of temperature using the pulsed electroacoustic technique. A sandwich structure constituted by two nonidentical LDPE/FEP dielectric films was used to study the charging propensity of electrode/dielectric and dielectric/dielectric interfaces. The time dependence of the space-charge distribution was subsequently recorded at four temperatures, 20°C, 25°C, 40°C, and 60°C, under field (polarization) and short-circuit (depolarization) conditions. The experimental results demonstrate that temperature plays a significant role in the space-charge dynamics at the dielectric interface. It affects the charge injection, increases the charge mobility and electrical conductivity, and increases the density of shallow traps and trap filling. It is found that traps formed during polarization at high temperature do not remain stable after complete discharge of the multidielectric structure and when poled at low temperatures.
Surface electroluminescence phenomena correlated with trapping parameters of insulating polymers
NASA Astrophysics Data System (ADS)
Zhang, Guan-Jun; Yang, Kai; Dong, Ming; Zhao, Wen-Bin; Yan, Zhang
2007-12-01
Electroluminescence (EL) phenomena are closely linked to the space charge and degradation in insulating polymers, and dominated by the luminescence and trap centers. EL emission has been promising in defining the onset of electrical aging and in the investigation of dissipation mechanisms. Generally, polymeric degradation reveals the increment of the density of luminescence and trap centers, so a fundamental study is proposed to correlate the EL emission of insulating polymers and their trapping parameters. A sensitive photon counting system is constructed to detect the weak EL. The time- and phase-resolved EL characteristics from different polymers (LDPE, PP and PTFE) are investigated with a planar electrode configuration under stepped ac voltage in vacuum. In succession, each sample is charged with exposing to multi-needle corona discharge, and then its surface potential decay is continuously recorded at a constant temperature. Based on the isothermal relaxation current theory, the energy level and density of both electron and hole trap distribution in the surface layer of each polymer is obtained. It is preliminarily concluded that EL phenomena are strongly affected by the trap properties, and for different polymers, its EL intensity is in direct contrast to its surface trap density, and this can be qualitatively explained by the trapping and detrapping sequence of charge carriers in trap centers with different energy level.
NASA Astrophysics Data System (ADS)
Kim, Youngjun; Ko, Hyungduk; Park, Byoungnam
2018-04-01
Nanocrystal (NC) size and ligand dependent dynamic trap formation of lead sulfide (PbS) NCs in contact with an organic semiconductor were investigated using a pentacene/PbS field effect transistor (FET). We used a bilayer pentacene/PbS FET to extract information of the surface traps of PbS NCs at the pentacene/PbS interface through the field effect-induced charge carrier density measurement in the threshold and subthreshold regions. PbS size and ligand dependent trap properties were elucidated by the time domain and threshold voltage measurements in which threshold voltage shift occurs by carrier charging and discharging in the trap states of PbS NCs. The observed threshold voltage shift is interpreted in context of electron trapping through dynamic trap formation associated with PbS NCs. To the best of our knowledge, this is the first demonstration of the presence of interfacial dynamic trap density of PbS NC in contact with an organic semiconductor (pentacene). We found that the dynamic trap density of the PbS NC is size dependent and the carrier residence time in the specific trap sites is more sensitive to NC size variation than to NC ligand exchange. The probing method presented in the study offers a means to investigate the interfacial surface traps at the organic-inorganic hetero-junction, otherwise understanding of the buried surface traps at the functional interface would be elusive.
TiO2 nanoparticle induced space charge decay in thermal aged transformer oil
NASA Astrophysics Data System (ADS)
Lv, Yuzhen; Du, Yuefan; Li, Chengrong; Qi, Bo; Zhong, Yuxiang; Chen, Mutian
2013-04-01
TiO2 nanoparticle with good dispersibility and stability in transformer oil was prepared and used to modify insulating property of aged oil. It was found that space charge decay rate in the modified aged oil can be significantly enhanced to 1.57 times of that in the aged oil at first 8 s after polarization voltage was removed. The results of trap characteristics reveal that the modification of nanoparticle can not only greatly lower the shallow trap energy level in the aged oil but also increase the trap density, resulting in improved charge transportation via trapping and de-trapping process in shallower traps.
Pentacene Schottky diodes studied by impedance spectroscopy: Doping properties and trap response
NASA Astrophysics Data System (ADS)
Pahner, Paul; Kleemann, Hans; Burtone, Lorenzo; Tietze, Max L.; Fischer, Janine; Leo, Karl; Lüssem, Björn
2013-11-01
We study doping properties and charge carrier trap distributions in pentacene Schottky diodes doped by the fluorinated fullerene derivate C60F36 and 2,2'-(perdiylidene)dimalononitrile (F6-TCNNQ) upon small signal excitation. We show that the charge carrier depletion zones present in these Schottky diodes are tunable by the applied bias and temperature. Mott-Schottky evaluations yield reduced doping efficiencies and dopant activation energies between 19 and 54 meV. In the low-frequency regime, we resolve additional capacitive contributions from inherent charge carrier traps. A Gaussian distributed trap center 0.6 eV above the hole transport level with a density in the range of 1016 cm-3 depending on the material purity is found to be an intrinsic feature of the pentacene matrix. Upon doping, the deep Gaussian trap center saturates in density and broad exponentially tailing trap distributions arise. Subsequent ultraviolet photoelectron spectroscopy measurements are conducted to inspect for energetic broadening due to doping.
Novel Flexible Plastic-Based Solar Cells
2009-11-30
the high mobility of charge carriers in pentacene probably due to conducting domains provided by it. 2. Multi-Exciton Generation (MEG) in Devices...with simulating the model including recombination rate, trap density and trapped charge induced electric field. £ < £ O 0.2 0.3 0.4...to charge extraction and transport in hybrid nanoparticle:polymer photovoltaic devices. In particular, we demonstrated (i) enhancement of charge
Impacts of oxidants in atomic layer deposition method on Al2O3/GaN interface properties
NASA Astrophysics Data System (ADS)
Taoka, Noriyuki; Kubo, Toshiharu; Yamada, Toshikazu; Egawa, Takashi; Shimizu, Mitsuaki
2018-01-01
The electrical interface properties of GaN metal-oxide-semiconductor (MOS) capacitors with an Al2O3 gate insulator formed by atomic layer deposition method using three kinds of oxidants were investigated by the capacitance-voltage technique, Terman method, and conductance method. We found that O3 and the alternate supply of H2O and O3 (AS-HO) are effective for reducing the interface trap density (D it) at the energy range of 0.15 to 0.30 eV taking from the conduction band minimum. On the other hand, we found that surface potential fluctuation (σs) induced by interface charges for the AS-HO oxidant is much larger than that for a Si MOS capacitor with a SiO2 layer formed by chemical vapor deposition despite the small D it values for the AS-HO oxidant compared with the Si MOS capacitor. This means that the total charged center density including the fixed charge density, charged slow trap density, and charged interface trap density for the GaN MOS capacitor is higher than that for the Si MOS capacitor. Therefore, σs has to be reduced to improve the performances and reliability of GaN devices with the Al2O3/GaN interfaces.
Effect of 30 MeV Li3+ ion and 8 MeV electron irradiation on N-channel MOSFETs
NASA Astrophysics Data System (ADS)
Prakash, A. P. G.; Ganesh, K. C. P.; Nagesha, Y. N.; Umakanth, D.; Arora, S. K.; Siddappa, K.
The effect of 30 MeV Li3+ ion and 8 MeV electron irradiation on the threshold voltage (V-TH), the voltage shift due to interface trapped charge (DeltaV(Nit)), the voltage shift due to oxide trapped charge (DeltaV(Not)), the density of interface trapped charge (DeltaN(it)), the density of oxide trapped charge (DeltaN(ot) ) and the drain saturation current (I-D Sat) were studied as a function of fluence. Considerable increase in DeltaN(it) and DeltaN(ot) , and decrease in V-TH and I-D Sat were observed in both types of irradiation. The observed difference in the properties of Li3+ ion and electron irradiated MOSFETs are interpreted on the basis of energy loss process associated with the type of radiation. The study showed that the 30 MeV Li3+ ion irradiation produce more damage when compared to the 8 MeV electron irradiation because of the higher electronic energy loss value. High temperature annealing studies showed that trapped charge generated during ion and electron irradiation was annealed out at 500 degreesC.
Electrostatic particle trap for ion beam sputter deposition
Vernon, Stephen P.; Burkhart, Scott C.
2002-01-01
A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.
NASA Astrophysics Data System (ADS)
Zhang, Zhen-Yu; Wang, Hai-Yu; Zhang, Yan-Xia; Hao, Ya-Wei; Sun, Chun; Zhang, Yu; Gao, Bing-Rong; Chen, Qi-Dai; Sun, Hong-Bo
2016-06-01
Hybrid metal halide perovskites have been paid enormous attentions in photophysics research, whose excellent performances were attributed to their intriguing charge carriers proprieties. However, it still remains far from satisfaction in the comprehensive understanding of perovskite charge-transport properities, especially about trap-assisted recombination process. In this Letter, through time-resolved transient absorption (TA) and photoluminescence (PL) measurements, we provided a relative comprehensive investigation on the charge carriers recombination dynamics of CH3NH3PbBr3 (MAPbBr3) perovskite films and quantum dots (QDs), especially about trap-assisted recombination. It was found that the integral recombination mode of MAPbBr3 films was highly sensitive to the density distribution of generated charge carriers and trap states. Additional, Trap effects would be gradually weakened with elevated carrier densities. Furthermore, the trap-assisted recombination can be removed from MAPbBr3 QDs through its own surface passivation mechanism and this specialty may render the QDs as a new material in illuminating research. This work provides deeper physical insights into the dynamics processes of MAPbBr3 materials and paves a way toward more light-harvesting applications in future.
Multi-layered nanocomposite dielectrics for high density organic memory devices
NASA Astrophysics Data System (ADS)
Kang, Moonyeong; Chung, Kyungwha; Baeg, Kang-Jun; Kim, Dong Ha; Kim, Choongik
2015-01-01
We fabricated organic memory devices with metal-pentacene-insulator-silicon structure which contain double dielectric layers comprising 3D pattern of Au nanoparticles (Au NPs) and block copolymer (PS-b-P2VP). The role of Au NPs is to charge/discharge carriers upon applied voltage, while block copolymer helps to form highly ordered Au NP patterns in the dielectric layer. Double-layered nanocomposite dielectrics enhanced the charge trap density (i.e., trapped charge per unit area) by Au NPs, resulting in increase of the memory window (ΔVth).
Abnormal Multiple Charge Memory States in Exfoliated Few-Layer WSe2 Transistors.
Chen, Mikai; Wang, Yifan; Shepherd, Nathan; Huard, Chad; Zhou, Jiantao; Guo, L J; Lu, Wei; Liang, Xiaogan
2017-01-24
To construct reliable nanoelectronic devices based on emerging 2D layered semiconductors, we need to understand the charge-trapping processes in such devices. Additionally, the identified charge-trapping schemes in such layered materials could be further exploited to make multibit (or highly desirable analog-tunable) memory devices. Here, we present a study on the abnormal charge-trapping or memory characteristics of few-layer WSe 2 transistors. This work shows that multiple charge-trapping states with large extrema spacing, long retention time, and analog tunability can be excited in the transistors made from mechanically exfoliated few-layer WSe 2 flakes, whereas they cannot be generated in widely studied few-layer MoS 2 transistors. Such charge-trapping characteristics of WSe 2 transistors are attributed to the exfoliation-induced interlayer deformation on the cleaved surfaces of few-layer WSe 2 flakes, which can spontaneously form ambipolar charge-trapping sites. Our additional results from surface characterization, charge-retention characterization at different temperatures, and density functional theory computation strongly support this explanation. Furthermore, our research also demonstrates that the charge-trapping states excited in multiple transistors can be calibrated into consistent multibit data storage levels. This work advances the understanding of the charge memory mechanisms in layered semiconductors, and the observed charge-trapping states could be further studied for enabling ultralow-cost multibit analog memory devices.
Characterisation of retention properties of charge-trapping memory cells at low temperatures
NASA Astrophysics Data System (ADS)
Yurchuk, E.; Bollmann, J.; Mikolajick, T.
2009-09-01
The density of states of deep level centers in silicon oxynitride layer of SONOS memory cells are calculated from temperature dependent retention measurement. The dominating charge loss mechanisms are direct trap-to-band tunneling (TB) and thermally stimulated emission (TE). Retention measurements at low temperatures (80 - 300K) will be dominated by TE from more "shallow" traps with energies below 1eV and by TB. Taking into account both independent and rival processes the density of states could be calculated self consisting. The results are in excellent agreement with elsewhere published data.
Characterization of Defects in Scaled Mis Dielectrics with Variable Frequency Charge Pumping
NASA Astrophysics Data System (ADS)
Paulsen, Ronald Eugene
1995-01-01
Historically, the interface trap has been extensively investigated to determine the effects on device performance. Recently, much attention has been paid to trapping in near-interface oxide traps. Performance of high precision analog circuitry is affected by charge trapping in near-interface oxide traps which produces hysteresis, charge redistribution errors, and dielectric relaxation effects. In addition, the performance of low power digital circuitry, with reduced noise margins, may be drastically affected by the threshold voltage shifts associated with charge trapping in near -interface oxide traps. Since near-interface oxide traps may substantially alter the performance of devices, complete characterization of these defects is necessary. In this dissertation a new characterization technique, variable frequency charge pumping, is introduced which allows charge trapped at the interface to be distinguished from the charge trapped within the oxide. The new experimental technique is an extension of the charge pumping technique to low frequencies such that tunneling may occur from interface traps to near-interface oxide traps. A generalized charge pumping model, based on Shockley-Read-Hall statistics and trap-to-trap tunneling theory, has been developed which allows a more complete characterization of near-interface oxide traps. A pair of coupled differential equations governing the rate of change of occupied interface and near-interface oxide traps have been developed. Due to the experimental conditions in the charge pumping technique the equations may be decoupled, leading to an equation governing the rate of change of occupied interface traps and an equation governing the rate of change of occcupied near-interface oxide traps. Solving the interface trap equation and applying non-steady state charge dynamics leads to an interface trap component of the charge pumping current. In addition, solution to the near-interface oxide trap equation leads to an additional oxide trap component to the charge pumping current. Numerical simulations have been performed to support the analytical development of the generalized charge pumping model. By varying the frequency of the applied charge pumping waveform and monitoring the charge recombined per cycle, the contributions from interface traps may be separated from the contributions of the near-interface oxide traps. The generalized charge pumping model allows characterization of the density and spatial distribution of near-interface oxide traps from this variable frequency charge pumping technique. Characterization of interface and near-interface oxide trap generation has been performed on devices exposed to ionizing radiation, hot electron injection, and high -field/Fowler-Nordheim stressing. Finally, using SONOS nonvolatile memory devices, a framework has been established for experimentally determining not only the spatial distribution of near-interface oxide traps, but also the energetic distribution. An experimental approach, based on tri-level charge pumping, is discussed which allows the energetic distribution of near-interface oxide traps to be determined.
Charge carrier trapping and acoustic phonon modes in single CdTe nanowires.
Lo, Shun Shang; Major, Todd A; Petchsang, Nattasamon; Huang, Libai; Kuno, Masaru K; Hartland, Gregory V
2012-06-26
Semiconductor nanostructures produced by wet chemical synthesis are extremely heterogeneous, which makes single particle techniques a useful way to interrogate their properties. In this paper the ultrafast dynamics of single CdTe nanowires are studied by transient absorption microscopy. The wires have lengths of several micrometers and lateral dimensions on the order of 30 nm. The transient absorption traces show very fast decays, which are assigned to charge carrier trapping into surface defects. The time constants vary for different wires due to differences in the energetics and/or density of surface trap sites. Measurements performed at the band edge compared to the near-IR give slightly different time constants, implying that the dynamics for electron and hole trapping are different. The rate of charge carrier trapping was observed to slow down at high carrier densities, which was attributed to trap-state filling. Modulations due to the fundamental and first overtone of the acoustic breathing mode were also observed in the transient absorption traces. The quality factors for these modes were similar to those measured for metal nanostructures, and indicate a complex interaction with the environment.
Hydration of excess electrons trapped in charge pockets on molecular surfaces
NASA Astrophysics Data System (ADS)
Jalbout, Abraham F.; Del Castillo, R.; Adamowicz, Ludwik
2007-01-01
In this work we strive to design a novel electron trap located on a molecular surface. The process of electron trapping involves hydration of the trapped electron. Previous calculations on surface electron trapping revealed that clusters of OH groups can form stable hydrogen-bonded networks on one side of a hydrocarbon surface (i.e. cyclohexane sheets), while the hydrogen atoms on the opposite side of the surface form pockets of positive charge that can attract extra negative charge. The excess electron density on such surfaces can be further stabilized by interactions with water molecules. Our calculations show that these anionic systems are stable with respect to vertical electron detachment (VDE).
The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells
Philippa, Bronson; Stolterfoht, Martin; Burn, Paul L.; Juška, Gytis; Meredith, Paul; White, Ronald D.; Pivrikas, Almantas
2014-01-01
A typical signature of charge extraction in disordered organic systems is dispersive transport, which implies a distribution of charge carrier mobilities that negatively impact on device performance. Dispersive transport has been commonly understood to originate from a time-dependent mobility of hot charge carriers that reduces as excess energy is lost during relaxation in the density of states. In contrast, we show via photon energy, electric field and film thickness independence of carrier mobilities that the dispersive photocurrent in organic solar cells originates not from the loss of excess energy during hot carrier thermalization, but rather from the loss of carrier density to trap states during transport. Our results emphasize that further efforts should be directed to minimizing the density of trap states, rather than controlling energetic relaxation of hot carriers within the density of states. PMID:25047086
NASA Astrophysics Data System (ADS)
Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan
2013-12-01
Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.
MIS capacitor studies on silicon carbide single crystals
NASA Technical Reports Server (NTRS)
Kopanski, J. J.
1990-01-01
Cubic SIC metal-insulator-semiconductor (MIS) capacitors with thermally grown or chemical-vapor-deposited (CVD) insulators were characterized by capacitance-voltage (C-V), conductance-voltage (G-V), and current-voltage (I-V) measurements. The purpose of these measurements was to determine the four charge densities commonly present in an MIS capacitor (oxide fixed charge, N(f); interface trap level density, D(it); oxide trapped charge, N(ot); and mobile ionic charge, N(m)) and to determine the stability of the device properties with electric-field stress and temperature. The section headings in the report include the following: Capacitance-voltage and conductance-voltage measurements; Current-voltage measurements; Deep-level transient spectroscopy; and Conclusions (Electrical characteristics of SiC MIS capacitors).
Effect of current density on electron beam induced charging in MgO
NASA Astrophysics Data System (ADS)
Boughariou, Aicha; Hachicha, Olfa; Kallel, Ali; Blaise, Guy
2005-11-01
It is well known that the presence of space charge in an insulator is correlated with an electric breakdown. Many studies have been carried out on the experimental characterization of space charges. In this paper, we outline the dependence on the current density of the charge-trapping phenomenon in magnesium oxide. Our study was performed with a dedicated scanning electron microscope (SEM) on the electrical property evolution of surface of magnesium oxide (1 0 0) (MgO) single crystal, during a 1.1, 5 and 30 keV electron irradiation. The types of charges trapped on the irradiated areas and the charging kinetics are determined by measuring the total secondary electron emission (SEE) σ during the injection process by means of two complementary detectors. At low energies 1.1 and 5 keV, two different kinds of self-regulated regime (σ = 1) were observed as a function of current density. At 30 keV energy, the electron emission appears to be stimulated by the current density, due to the Poole-Frenkel effect.
Charge Trapping in Interface Doped MNOS Structures.
1981-07-01
Current density 55 0 JN Current density in nitride at gate 55 k Boltzmann’s constant: 1.38 x 10-23 joule /0K 85 m Effective mass of carrier 89 xi MIS...Trap Barrier Lowering by Applied Field: Poole-Frenkel Effect 90 vi Figure 3- 2: Thermally Stimulated Current System 92 Figure 3- 3: TSC Curves from a...Tungsten Atomic Concentration vs Effective Thickness 175 ix List of Tables Table 1-1: Trap Energy Levels and Spatial Densities 31 Table 2-1: Device
Charge transport in electrically doped amorphous organic semiconductors.
Yoo, Seung-Jun; Kim, Jang-Joo
2015-06-01
This article reviews recent progress on charge generation by doping and its influence on the carrier mobility in organic semiconductors (OSs). The doping induced charge generation efficiency is generally low in OSs which was explained by the integer charge transfer model and the hybrid charge transfer model. The ionized dopants formed by charge transfer between hosts and dopants can act as Coulomb traps for mobile charges, and the presence of Coulomb traps in OSs broadens the density of states (DOS) in doped organic films. The Coulomb traps strongly reduce the carrier hopping rate and thereby change the carrier mobility, which was confirmed by experiments in recent years. In order to fully understand the doping mechanism in OSs, further quantitative and systematic analyses of charge transport characteristics must be accomplished. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thickness dependent charge transport in ferroelectric BaTiO3 heterojunctions
NASA Astrophysics Data System (ADS)
Singh, Pooja; Rout, P. K.; Singh, Manju; Rakshit, R. K.; Dogra, Anjana
2015-09-01
We have investigated the effect of ferroelectric barium titanate (BaTiO3) film thickness on the charge transport mechanism in pulsed laser deposited epitaxial metal-ferroelectric semiconductor junctions. The current (I)-voltage (V) measurements across the junctions comprising of 20-500 nm thick BaTiO3 and conducting bottom electrode (Nb: SrTiO3 substrate or La2/3Ca1/3MnO3 buffer layer) demonstrate the space charge limited conduction. Further analysis indicates a reduction in the ratio of free to trapped carriers with increasing thickness in spite of decreasing trap density. Such behaviour arises the deepening of the shallow trap levels (<0.65 eV) below conduction band with increasing thickness. Moreover, the observed hysteresis in I-V curves implies a bipolar resistive switching behaviour, which can be explained in terms of charge trapping and de-trapping process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Ravinder; Malik, Hitendra K.; Singh, Khushvant
2012-01-15
Main concerns of the present article are to investigate the effects of dust charging and trapped electrons on the solitary structures evolved in an inhomogeneous magnetized plasma. Such a plasma is found to support two types of waves, namely, fast wave and slow wave. Slow wave propagates in the plasma only when the wave propagation angle {theta} satisfies the condition {theta}{>=}tan{sup -1}{l_brace}({radical}((1+2{sigma})-[(n{sub dlh}({gamma}{sub 1}-1))/(1+n{sub dlh}{gamma}{sub 1})])-v{sub 0}/u{sub 0}){r_brace}, where v{sub 0}(u{sub 0}) is the z- (x-) component of ion drift velocity, {sigma} = T{sub i}/T{sub eff}, n{sub dlh} = n{sub d0}/(n{sub el0} + n{sub eh0}), and {gamma}{sub 1}=-(1/{Phi}{sub i0})[(1-{Phi}{sub i0}/1+{sigma}(1-{Phi}{submore » i0}))] together with T{sub i} as ion temperature, n{sub el0}(n{sub eh0}) as the density of trapped (isothermal) electrons, {Phi}{sub i0} as the dust grain (density n{sub d0}) surface potential relative to zero plasma potential, and T{sub eff}=(n{sub elo}+n{sub eho})T{sub el}T{sub eh}/(n{sub elo}T{sub eh}+n{sub eho}T{sub el}), where T{sub el}(T{sub eh}) is the temperature of trapped (isothermal) electrons. Both the waves evolve in the form of density hill type structures in the plasma, confirming that these solitary structures are compressive in nature. These structures are found to attain higher amplitude when the charge on the dust grains is fluctuated (in comparison with the case of fixed charge) and also when the dust grains and trapped electrons are more in number; the same is the case with higher temperature of ions and electrons. Slow solitary structures show weak dependence on the dust concentration. Both types of structures are found to become narrower under the application of stronger magnetic field. With regard to the charging of dust grains, it is observed that the charge gets reduced for the higher trapped electron density and temperature of ions and electrons, and dust charging shows weak dependence on the ion temperature.« less
Effect of traps on the charge transport in semiconducting polymer PCDTBT
NASA Astrophysics Data System (ADS)
Khan, Mohd Taukeer; Agrawal, Vikash; Almohammedi, Abdullah; Gupta, Vinay
2018-07-01
Organic semiconductors (OSCs) are nowadays called upon as promising candidates for next generation electronics devices. Due to disorder structure of these materials, a high density of traps are present in their energy band gap which affect the performance of these devices. In the present manuscript, we have investigated the role of traps on charge transport in PCDTBT thin film by measuring the temperature dependent J(V) characteristics in hole only device configuration. The obtained results were analyzed by space charge limited (SCL) conduction model. It has been found that the room temperature J(V) characteristics follow Mott-Gurney square law for trap-free SCL conduction. But below 278 K, the current increases according to trap-filling SCL law with traps distributed exponentially in the band gap of semiconductor. Furthermore, after reaching a crossover voltage of VC ∽ 12 V, all the traps filled by injected carriers and the trap-filling SCL current switch to trap-free SCL current. The hole mobility of trap-free SCL current is about one order higher as compared trap-filling SCL current and remains constant with temperature.
Designing New Materials for Converting Solar Energy to Fuels via Quantum Mechanics
2014-07-11
dopants can also be exploited to increase charge carrier concentration without creating traps and hence improve the conductivity of these materials...e.g., Mn(II) in hematite for hole transport, Y(III) in MnO:ZnO for electron transport). • We discovered that dopants derived from covalent oxides...e.g., Si from silica, as a dopant in hematite) can also be used to increase charge carrier density without creating traps. Charge carriers stay
Trap-assisted and Langevin-type recombination in organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Wetzelaer, G. A. H.; Kuik, M.; Nicolai, H. T.; Blom, P. W. M.
2011-04-01
Trapping of charges is known to play an important role in the charge transport of organic semiconductors, but the role of traps in the recombination process has not been addressed. Here we show that the ideality factor of the current of organic light-emitting diodes (OLEDs) in the diffusion-dominated regime has a temperature-independent value of 2, which reveals that nonradiative trap-assisted recombination dominates the current. In contrast, the ideality factor of the light output approaches unity, demonstrating that luminance is governed by recombination of the bimolecular Langevin type. This apparent contradiction can be resolved by measuring the current and luminance ideality factor for a white-emitting polymer, where both free and trapped charge carriers recombine radiatively. With increasing bias voltage, Langevin recombination becomes dominant over trap-assisted recombination due to its stronger dependence on carrier density, leading to an enhancement in OLED efficiency.
Trap Modulated Charge Carrier Transport in Polyethylene/Graphene Nanocomposites.
Li, Zhonglei; Du, Boxue; Han, Chenlei; Xu, Hang
2017-06-21
The role of trap characteristics in modulating charge transport properties is attracting much attentions in electrical and electronic engineering, which has an important effect on the electrical properties of dielectrics. This paper focuses on the electrical properties of Low-density Polyethylene (LDPE)/graphene nanocomposites (NCs), as well as the corresponding trap level characteristics. The dc conductivity, breakdown strength and space charge behaviors of NCs with the filler content of 0 wt%, 0.005 wt%, 0.01 wt%, 0.1 wt% and 0.5 wt% are studied, and their trap level distributions are characterized by isothermal discharge current (IDC) tests. The experimental results show that the 0.005 wt% LDPE/graphene NCs have a lower dc conductivity, a higher breakdown strength and a much smaller amount of space charge accumulation than the neat LDPE. It is indicated that the graphene addition with a filler content of 0.005 wt% introduces large quantities of deep carrier traps that reduce charge carrier mobility and result in the homocharge accumulation near the electrodes. The deep trap modulated charge carrier transport attributes to reduce the dc conductivity, suppress the injection of space charges into polymer bulks and enhance the breakdown strength, which is of great significance in improving electrical properties of polymer dielectrics.
NASA Astrophysics Data System (ADS)
Häusermann, Roger; Chauvin, Sophie; Facchetti, Antonio; Chen, Zhihua; Takeya, Jun; Batlogg, Bertram
2018-04-01
The number of trap states in the band gap of organic semiconductors directly influences the charge transport as well as the threshold and turn-on voltage. Direct charge transport measurements have been used until now to probe the trap states rather close to the transport level, whereas their number in the middle of the band gap has been elusive. In this study, we use PDIF-CN2, a well known n-type semiconductor, together with vanadium pentoxide electrodes to build ambipolar field-effect transistors. Employing three different methods, we study the density of trap states in the band gap of the semiconductor. These methods give consistent results, and no pool of defect states was found. Additionally, we show first evidence that the number of trap states close to the transport level is correlated with the number of traps in the middle of the band-gap, meaning that a high number of trap states close to the transport level also implies a high number of trap states in the middle of the band gap. This points to a common origin of the trap states over a wide energy range.
Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle
2017-09-25
One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.
NASA Technical Reports Server (NTRS)
Gregory, D. A.; Stocks, C. D.
1983-01-01
Improved version of Faraday cup increases accuracy of measurements of flux density of charged particles incident along axis through collection aperture. Geometry of cone-and-sensing cup combination assures most particles are trapped.
Park, Byoungnam; Whitham, Kevin; Bian, Kaifu; Lim, Yee-Fun; Hanrath, Tobias
2014-12-21
We used a bilayer field effect transistor (FET) consisting of a thin PbS nanocrystals (NCs) film interfaced with vacuum-deposited pentacene to probe trap states in NCs. We interpret the observed threshold voltage shift in context of charge carrier trapping by PbS NCs and relate the magnitude of the threshold voltage shift to the number of trapped carriers. We explored a series of NC surface ligands to modify the interface between PbS NCs and pentacene and demonstrate the impact of interface chemistry on charge carrier density and the FET mobility in a pentacene FET.
Grain Boundary Induced Bias Instability in Soluble Acene-Based Thin-Film Transistors
Nguyen, Ky V.; Payne, Marcia M.; Anthony, John E.; Lee, Jung Hun; Song, Eunjoo; Kang, Boseok; Cho, Kilwon; Lee, Wi Hyoung
2016-01-01
Since the grain boundaries (GBs) within the semiconductor layer of organic field-effect transistors (OFETs) have a strong influence on device performance, a substantial number of studies have been devoted to controlling the crystallization characteristics of organic semiconductors. We studied the intrinsic effects of GBs within 5,11-bis(triethylsilylethynyl) anthradithiophene (TES-ADT) thin films on the electrical properties of OFETs. The GB density was easily changed by controlling nulceation event in TES-ADT thin films. When the mixing time was increased, the number of aggregates in as-spun TES-ADT thin films were increased and subsequent exposure of the films to 1,2-dichloroethane vapor led to a significant increase in the number of nuleation sites, thereby increasing the GB density of TES-ADT spherulites. The density of GBs strongly influences the angular spread and crystallographic orientation of TES-ADT spherulites. Accordingly, the FETs with higher GB densities showed much poorer electrical characteristics than devices with lower GB density. Especially, GBs provide charge trapping sites which are responsible for bias-stress driven electrical instability. Dielectric surface treatment with a polystyrene brush layer clarified the GB-induced charge trapping by reducing charge trapping at the semiconductor-dielectric interface. Our study provides an understanding on GB induced bias instability for the development of high performance OFETs. PMID:27615358
Grain Boundary Induced Bias Instability in Soluble Acene-Based Thin-Film Transistors.
Nguyen, Ky V; Payne, Marcia M; Anthony, John E; Lee, Jung Hun; Song, Eunjoo; Kang, Boseok; Cho, Kilwon; Lee, Wi Hyoung
2016-09-12
Since the grain boundaries (GBs) within the semiconductor layer of organic field-effect transistors (OFETs) have a strong influence on device performance, a substantial number of studies have been devoted to controlling the crystallization characteristics of organic semiconductors. We studied the intrinsic effects of GBs within 5,11-bis(triethylsilylethynyl) anthradithiophene (TES-ADT) thin films on the electrical properties of OFETs. The GB density was easily changed by controlling nulceation event in TES-ADT thin films. When the mixing time was increased, the number of aggregates in as-spun TES-ADT thin films were increased and subsequent exposure of the films to 1,2-dichloroethane vapor led to a significant increase in the number of nuleation sites, thereby increasing the GB density of TES-ADT spherulites. The density of GBs strongly influences the angular spread and crystallographic orientation of TES-ADT spherulites. Accordingly, the FETs with higher GB densities showed much poorer electrical characteristics than devices with lower GB density. Especially, GBs provide charge trapping sites which are responsible for bias-stress driven electrical instability. Dielectric surface treatment with a polystyrene brush layer clarified the GB-induced charge trapping by reducing charge trapping at the semiconductor-dielectric interface. Our study provides an understanding on GB induced bias instability for the development of high performance OFETs.
Electrical transport properties of thermally evaporated phthalocyanine (H 2Pc) thin films
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Farid, A. M.; Attia, A. A.; Ali, H. A. M.
2006-08-01
Thin films of H 2Pc of various thicknesses have been deposited onto glass substrates using thermal evaporation technique at room temperature. The dark electrical resistivity measurements were carried out at different temperatures in the range 298-473 K. An estimation of mean free path ( lo) of charge carriers in H 2Pc thin films was attempted. Measurements of thermoelectric power confirm that H 2Pc thin films behave as a p-type semiconductor. The current density-voltage characteristics of Au/H 2Pc/Au at room temperature showed ohmic conduction mechanism at low voltages. At higher voltages the space-charge-limited conduction (SCLC) accompanied by an exponential trap distribution was dominant. The temperature dependence of current density allows the determination of some essential parameters such as the hole mobility ( μh), the total trap concentration ( Nt), the characteristic temperature ( Tt) and the trap density P( E).
NASA Technical Reports Server (NTRS)
Kern, J. W.
1961-01-01
This paper describes a mechanism for charge separation in the geomagnetically trapped radiation which may account for some observed phenomena associated with the polar aurora and the electrojet current systems. The following development is proposed: given that there exist eastward or westward longitudinal gradients in the geomagnetic field resulting from distortion of the geomagnetic field by solar streams, if the trapped radiation is adiabatic in character, radial drift separation of positive and negative charged particles must occur. It follows that, for bounded or irregular distributions of plasma number density in such an adiabatic - drift region, electric fields will arise. The origin of such electric fields will not arrest the drift separation of the charged particles, but will contribute to exponential growth of irregularities in the trapped plasma density. An adiabatic acceleration mechanism is described, which is based on incorporating the electrostatic energy of the particle in the energy function for the particle. Direct consequences of polarization of the geomagnetically trapped radiation will be the polar electrojet current systems and the polar aurora.
NASA Astrophysics Data System (ADS)
Johnson, Brian; Kendrick, Mark J.; Ostroverkhova, Oksana
2013-09-01
We present a model that describes nanosecond (ns) time-scale photocurrent dynamics in functionalized anthradithiophene (ADT) films and ADT-based donor-acceptor (D/A) composites. By fitting numerically simulated photocurrents to experimental data, we quantify contributions of multiple pathways of charge carrier photogeneration to the photocurrent, as well as extract parameters that characterize charge transport (CT) in organic films including charge carrier mobilities, trap densities, hole trap depth, and trapping and recombination rates. In pristine ADT films, simulations revealed two competing charge photogeneration pathways: fast, occurring on picosecond (ps) or sub-ps time scales with efficiencies below 10%, and slow, which proceeds at the time scale of tens of nanoseconds, with efficiencies of about 11%-12%, at the applied electric fields of 40-80 kV/cm. The relative contribution of these pathways to the photocurrent was electric field dependent, with the contribution of the fast process increasing with applied electric field. However, the total charge photogeneration efficiency was weakly electric field dependent exhibiting values of 14%-20% of the absorbed photons. The remaining 80%-86% of the photoexcitation did not contribute to charge carrier generation at these time scales. In ADT-based D/A composites with 2 wt.% acceptor concentration, an additional pathway of charge photogeneration that proceeds via CT exciton dissociation contributed to the total charge photogeneration. In the composite with the functionalized pentacene (Pn) acceptor, which exhibits strong exciplex emission from a tightly bound D/A CT exciton, the contribution of the CT state to charge generation was small, ˜8%-12% of the total number of photogenerated charge carriers, dependent on the electric field. In contrast, in the composite with PCBM acceptor, the CT state contributed about a half of all photogenerated charge carriers. In both D/A composites, the charge carrier mobilities were reduced and trap densities and average trap depths were increased, as compared to a pristine ADT donor film. A considerably slower recombination of free holes with trapped electrons was found in the composite with the PCBM acceptor, which led to slower decays of the transient photocurrent and considerably higher charge retention, as compared to a pristine ADT donor film and the composite with the functionalized Pn acceptor.
ac aging and space-charge characteristics in low-density polyethylene polymeric insulation
NASA Astrophysics Data System (ADS)
Chen, G.; Fu, M.; Liu, X. Z.; Zhong, L. S.
2005-04-01
In the present work efforts have been made to investigate the influence of ac aging on space-charge dynamics in low-density polyethylene (LDPE). LDPE films with 200 μm were aged under various electric stress levels at 50 Hz for various times at ambient temperature. Space-charge dynamics in the samples after aging were monitored using the pulsed electroacoustic technique. It has been revealed that the space charge under ac aging conditions is related to the level of the applied field, duration of the voltage application, as well as the electrode materials. By comparing with the results of unaged sample the results from aged sample provide a direct evidence of changing trapping characteristics after ac aging. Negative space charge is present in the bulk of the material and the total amount of charge increases with the aging time. The amount of charge increases with the applied field. Charge decay test indicates that the charges are captured in deep traps. These deep traps are believed to form during the aging and related to change caused by injected charge. By using different electrode materials such as gold, brass alloy, and polyethylene loaded with carbon black, it was found that the electrode has an important role in the formation of charge, hence subsequent changes caused by charge. The charge dynamics of the aged samples under dc bias differ from the sample without ac aging, indicating changes brought in by ac aging. Chemical analysis by Fourier transform infrared spectroscope and Raman microscope reveals no detectable chemical changes taken place in the bulk of the material after ac aging. Finally, the consequence of the accumulation of space charge under ac conditions on the lifetime of the material has been discussed. The presence of deeply trapped space charge leads to an electric stress enhancement which may shorten the lifetime of the insulation system.
NASA Astrophysics Data System (ADS)
Vagenas, N.; Giannopoulou, A.; Kounavis, P.
2015-01-01
This study demonstrates that the effect of light excitation on the density and the mobility of the majority carriers can be explored in organic semiconductors by modulated photocurrent spectroscopy. The spectra of phase and amplitude of the modulated photocurrent of pentacene films indicate a significant increase in the density of the photogenerated mobile holes (majority carriers). This increase is accompanied by a comparatively much smaller increase of the steady state photocurrent response which can be reconciled with a decrease in the mobility (μ) of holes. The decrease of μ is supported from an unusual increase of the Y/μ ratio of the out-of-phase modulated photocurrent (Y) signal to the mobility under light excitation. It is proposed that the mobile holes, which are generated from the dissociation of the light-created excitons more likely near the pentacene-substrate interface by electron trapping, populate grain boundaries charging them and producing a downward band bending. As a result, potential energy barriers are build up which limit the transport of holes interacting through trapping-detrapping with deep partially occupied traps in the charged grain boundaries. On the other hand, the transport of holes interacting through trapping-detrapping with empty traps is found unaffected.
NASA Astrophysics Data System (ADS)
Baumann, Thomas M.; Lapierre, Alain; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg
2014-07-01
The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r_{80%}=(212± 19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm2 is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.
NASA Astrophysics Data System (ADS)
Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu
2018-04-01
Charge-trapping memory requires the increase of bit density per cell and a larger memory window for lower-power operation. A tunnel field-effect transistor (TFET) can achieve to increase the bit density per cell owing to its steep subthreshold slope. In addition, a TFET structure has an asymmetric structure, which is promising for achieving a larger memory window. A TFET with the N-type gate shows a higher electric field between the P-type source and the N-type gate edge than the conventional FET structure. This high electric field enables large amounts of charges to be injected into the charge storage layer. In this study, we fabricated silicon-oxide-nitride-oxide-semiconductor (SONOS) memory devices with the TFET structure and observed a steep subthreshold slope and a larger memory window.
NASA Astrophysics Data System (ADS)
Hamm, Daniel S.; Rust, Mikah; Herrera, Elan H.; Matei, Liviu; Buliga, Vladimir; Groza, Michael; Burger, Arnold; Stowe, Ashley; Preston, Jeff; Lukosi, Eric D.
2018-06-01
This paper reports on the charge carrier properties of several lithium indium diselenide (LISe) semiconductors. It was found that the charge collection efficiency of LISe was improved after high flux thermal neutron irradiation including the presence of a typically unobservable alpha peak from hole-only collection. Charge carrier trap energies of the irradiated sample were measured using photo-induced current transient spectroscopy. Compared to previous studies of this material, no significant differences in trap energies were observed. Through trap-filled limited voltage measurements, neutron irradiation was found to increase the density of trap states within the bulk of the semiconductor, which created a polarization effect under alpha exposure but not neutron exposure. Further, the charge collection efficiency of the irradiated sample was higher (14-15 fC) than that of alpha particles (3-5 fC), indicating that an increase in hole signal contribution resulted from the neutron irradiation. Finally, it was observed that significant charge loss takes place near the point of generation, producing a significant scintillation response and artificially inflating the W-value of all semiconducting LISe crystals.
NASA Astrophysics Data System (ADS)
Xu, Dan
Silicon nitride (Si_3N _4) and silicon oxynitride (SiO _{rm x}N_ {rm y}) films in the form of metal -nitride-oxide-silicon (MNOS) structures were investigated to determine the correlation between their electrical characteristics and the nature of the chemical bonding so as to provide guidelines for the next generation of nonvolatile memory devices. The photoionization cross section of electron traps in the oxynitride films of MNOS devices were also measured as a function photon energy and oxygen concentration of the silicon oxynitride films. An effective photoionization cross section associated with electron traps was determined to be between 4.9 times 10 ^{-19} cm^2 to 10.8 times 10^ {-19} cm^2 over the photon energy of 2.06 eV to 3.1 eV for silicon oxynitride films containing 7 atomic % to 17 atomic % of oxygen. The interface state density of metal-nitride-oxide -silicon (MNOS) devices was investigated as a function of processing conditions. The interface state density around the midgap of the oxide-silicon interface of the MNOS structures for deposition temperature between 650^ circC to 850^circC increased from 1.1 to 8.2 times 10 ^{11} cm^ {-2}eV^{-1}, for as-deposited silicon nitride films; but decreased from 5.0 to 3.5 times 10^ {11} cm^{-2} eV^{-1}, for films annealed in nitrogen at 900^circC for 60 minutes; and further decreased and remained constant at 1.5 times 10^{11 } cm^{-2}eV ^{-1}, for films which were further annealed in hydrogen at 900^ circC for an additional 60 minutes. The interface state density increase was due to an increase in the loss of hydrogen at the interfacial region and also due to an increase in the thermal stress caused by differences in thermal expansion coefficients of silicon nitride and silicon dioxide films at higher deposition temperatures. The interface state density was subject to two opposing influences; an increase by thermal stress, and a reduction by hydrogen compensation of these states. The photocurrent-voltage (photoI-V) technique in combination with internal photo-electric technique were employed to determine the trapped charge density and its centroid as a function of processing conditions. Results showed that the trapped charge density was of the order of 10^{18} cm ^{-3}. However, the charge trapping density increased about 30% as the atomic percentage of hydrogen decreased from 6 to 2 atomic %.
Optoelectronically probing the density of nanowire surface trap states to the single state limit
NASA Astrophysics Data System (ADS)
Dan, Yaping
2015-02-01
Surface trap states play a dominant role in the optoelectronic properties of nanoscale devices. Understanding the surface trap states allows us to properly engineer the device surfaces for better performance. But characterization of surface trap states at nanoscale has been a formidable challenge using the traditional capacitive techniques. Here, we demonstrate a simple but powerful optoelectronic method to probe the density of nanowire surface trap states to the single state limit. In this method, we choose to tune the quasi-Fermi level across the bandgap of a silicon nanowire photoconductor, allowing for capture and emission of photogenerated charge carriers by surface trap states. The experimental data show that the energy density of nanowire surface trap states is in a range from 109 cm-2/eV at deep levels to 1012 cm-2/eV near the conduction band edge. This optoelectronic method allows us to conveniently probe trap states of ultra-scaled nano/quantum devices at extremely high precision.
NASA Astrophysics Data System (ADS)
Kim, Won-Ho; Kwon, Jin-Hyuk; Park, Gyeong-Tae; Kim, Jae-Hyun; Bae, Jin-Hyuk; Zhang, Xue; Park, Jaehoon
2014-09-01
Organic ferroelectric capacitors were fabricated using pentacene and poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) as an organic semiconductor and a ferroelectric material, respectively. A paraelectric poly(vinyl cinnamate) layer was adopted as an interlayer between the PVDF-TrFE layer and the bottom electrode. The paraelectric interlayer induced a depolarization field opposite to the direction of the polarization formed in the ferroelectric PVDF-TrFE insulator, thereby suppressing spontaneous polarization. As a result, the Mott-Schottky model could be used to evaluate, from the extracted flat-band voltages, the density of the charge trapped in the organic ferroelectric capacitors.
NASA Astrophysics Data System (ADS)
Mahata, C.; Bera, M. K.; Bose, P. K.; Maiti, C. K.
2009-02-01
Internal photoemission and magnetic resonance studies have been performed to investigate the charge trapping behavior and chemical nature of defects in ultrathin (~14 nm) high-k ZrO2 dielectric films deposited on p-Ge (1 0 0) substrates at low temperature (<200 °C) by plasma-enhanced chemical vapor deposition (PECVD) in a microwave (700 W, 2.45 GHz) plasma at a pressure of ~65 Pa. Both the band and defect-related electron states have been characterized using electron paramagnetic resonance, internal photoemission, capacitance-voltage and current-voltage measurements under UV illumination. Capacitance-voltage and photocurrent-voltage measurements were used to determine the centroid of oxide charge within the high-k gate stack. The observed shifts in photocurrent response of the Al/ZrO2/GeO2/p-Ge metal-insulator-semiconductor (MIS) capacitors indicate the location of the centroids to be within the ZrO2 dielectric near to the gate electrode. Moreover, the measured flat band voltage and photocurrent shifts also indicate a large density of traps in the dielectric. The impact of plasma nitridation on the interfacial quality of the oxides has been investigated. Different N sources, such as NO and NH3, have been used for nitrogen engineering. Oxynitride samples show a lower defect density and trapping over the non-nitrided samples. The charge trapping and detrapping properties of MIS capacitors under stressing in constant current and voltage modes have been investigated in detail.
NASA Astrophysics Data System (ADS)
Katsuno, Takashi; Manaka, Takaaki; Soejima, Narumasa; Iwamoto, Mitsumasa
2017-02-01
Trapped charges underneath the field-plate (FP) in a p-gallium nitride (GaN) gate AlGaN/ GaN high electron mobility transistor device were visualized by using electric field-induced optical second-harmonic generation imaging. Second-harmonic (SH) signals in the off-state of the device with FP indicated that the electric field decreased at the p-GaN gate edge and concentrated at the FP edge. Nevertheless, SH signals originating from trapped charges were slightly observed at the p-GaN gate edge and were not observed at the FP edge in the on-state. Compared with the device without FP, reduction of trapped charges at the p-GaN gate edge of the device with FP is attributed to attenuation of the electric field with the aid of the FP. Negligible trapped charges at the FP edge is owing to lower trap density of the SiO2/AlGaN interface at the FP edge compared with that of the SiO2/p-GaN sidewall interface at the p-GaN gate edge and attenuated electric field by the thickness of the SiO2 passivation layer on the AlGaN surface.
Liu, Jing; Zhang, Hai-Bo
2014-12-01
The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z=6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron-hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Temperature dependent charge transport in poly(3-hexylthiophene) diodes
NASA Astrophysics Data System (ADS)
Rahaman, Abdulla Bin; Sarkar, Atri; Banerjee, Debamalya
2018-04-01
In this work, we present charge transport properties of poly(3-hexylthiophene) (P3HT) diodes under dark conditions. Temperature dependent current-voltage (J-V) characteristics shows that charge transport represents a transition from ohomic to trap limited current. The forward current density obeys a power law J˜Vm, m>2 represents the space charge limited current region in presence of traps within the band gap. Frequency dependent conductivity has been studied in a temperature range 150K-473K. The dc conductivity values show Arrhenius like behavior and it gives conductivity activation energy 223 meV. Temperature dependent conductivity indicates a thermodynamic transition of our system.
The Pulse Response of Electrets to Energetic Ions
1988-09-01
reduction in the low temperature peak for the aged sample. This change is accompanied by a significant increase in the high temperature peak. Ion...density in electron-beam charged FEP does not change under normal conditions while the hole density falls rapidly with aging . Because hole traps are...power, S, and the aver- age energy required to produce a charge carrier pair, W, are constant. By Equation 4-1, the charge, Q, produced by an emission
films on silicon at different annealing temperatures
NASA Astrophysics Data System (ADS)
Zhao, Yan; Zhou, Chunlan; Zhang, Xiang; Zhang, Peng; Dou, Yanan; Wang, Wenjing; Cao, Xingzhong; Wang, Baoyi; Tang, Yehua; Zhou, Su
2013-03-01
Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density ( Q f) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Q f can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Q f obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Q f. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiO x /Si interface region decreased with increased temperature. Measurement results of Q f proved that the Al vacancy of the bulk film may not be related to Q f. The defect density in the SiO x region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C.
Operation mode switchable charge-trap memory based on few-layer MoS2
NASA Astrophysics Data System (ADS)
Hou, Xiang; Yan, Xiao; Liu, Chunsen; Ding, Shijin; Zhang, David Wei; Zhou, Peng
2018-03-01
Ultrathin layered two-dimensional (2D) semiconductors like MoS2 and WSe2 have received a lot of attention because of their excellent electrical properties and potential applications in electronic devices. We demonstrate a charge-trap memory with two different tunable operation modes based on a few-layer MoS2 channel and an Al2O3/HfO2/Al2O3 charge storage stack. Our device shows excellent memory properties under the traditional three-terminal operation mode. More importantly, unlike conventional charge-trap devices, this device can also realize the memory performance with just two terminals (drain and source) because of the unique atomic crystal electrical characteristics. Under the two-terminal operation mode, the erase/program current ratio can reach up to 104 with a stable retention property. Our study indicates that the conventional charge-trap memory cell can also realize the memory performance without the gate terminal based on novel two dimensional materials, which is meaningful for low power consumption and high integration density applications.
NASA Astrophysics Data System (ADS)
Hamzah, Afiq; Hamid, Fatimah A.; Ismail, Razali
2016-12-01
An explicit solution for long-channel surrounding-gate (SRG) MOSFETs is presented from intrinsic to heavily doped body including the effects of interface traps and fixed oxide charges. The solution is based on the core SRGMOSFETs model of the Unified Charge Control Model (UCCM) for heavily doped conditions. The UCCM model of highly doped SRGMOSFETs is derived to obtain the exact equivalent expression as in the undoped case. Taking advantage of the undoped explicit charge-based expression, the asymptotic limits for below threshold and above threshold have been redefined to include the effect of trap states for heavily doped cases. After solving the asymptotic limits, an explicit mobile charge expression is obtained which includes the trap state effects. The explicit mobile charge model shows very good agreement with respect to numerical simulation over practical terminal voltages, doping concentration, geometry effects, and trap state effects due to the fixed oxide charges and interface traps. Then, the drain current is obtained using the Pao-Sah's dual integral, which is expressed as a function of inversion charge densities at the source/drain ends. The drain current agreed well with the implicit solution and numerical simulation for all regions of operation without employing any empirical parameters. A comparison with previous explicit models has been conducted to verify the competency of the proposed model with the doping concentration of 1× {10}19 {{cm}}-3, as the proposed model has better advantages in terms of its simplicity and accuracy at a higher doping concentration.
NASA Astrophysics Data System (ADS)
Xu, Huifang; Dai, Yuehua
2017-02-01
A two-dimensional analytical model of double-gate (DG) tunneling field-effect transistors (TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potential profile is also taken into account in order to improve the accuracy of the models. On the basis of potential profile, the electric field is derived and the expression for the drain current is obtained by integrating the BTBT generation rate. The model can be used to study the impact of interface trapped charges on the surface potential, the shortest tunneling length, the drain current and the threshold voltage for varying interface trapped charge densities, length of damaged region as well as the structural parameters of the DG TFET and can also be utilized to design the charge trapped memory devices based on TFET. The biggest advantage of this model is that it is more accurate, and in its expression there are no fitting parameters with small calculating amount. Very good agreements for both the potential, drain current and threshold voltage are observed between the model calculations and the simulated results. Project supported by the National Natural Science Foundation of China (No. 61376106), the University Natural Science Research Key Project of Anhui Province (No. KJ2016A169), and the Introduced Talents Project of Anhui Science and Technology University.
Room-Temperature Activation of InGaZnO Thin-Film Transistors via He+ Irradiation.
Stanford, Michael G; Noh, Joo Hyon; Mahady, Kyle; Ievlev, Anton V; Maksymovych, Peter; Ovchinnikova, Olga S; Rack, Philip D
2017-10-11
Amorphous indium gallium zinc oxide (a-IGZO) is a transparent semiconductor which has demonstrated excellent electrical performance as thin-film transistors (TFTs). However, a high-temperature activation process is generally required which is incompatible for next-generation flexible electronic applications. In this work, He + irradiation is demonstrated as an athermal activation process for a-IGZO TFTs. Controlling the He + dose enables the tuning of charge density, and a dose of 1 × 10 14 He + /cm 2 induces a change in charge density of 2.3 × 10 12 cm -2 . Time-dependent transport measurements and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) indicate that the He + -induced trapped charge is introduced because of preferential oxygen-vacancy generation. Scanning microwave impedance microscopy confirms that He + irradiation improves the conductivity of the a-IGZO. For realization of a permanent activation, IGZO was exposed with a He + dose of 5 × 10 14 He + /cm 2 and then aged 24 h to allow decay of the trapped oxide charge originating for electron-hole pair generation. The resultant shift in the charge density is primarily attributed to oxygen vacancies generated by He + sputtering in the near-surface region.
Charge Transport and the Nature of Traps in Oxygen Deficient Tantalum Oxide.
Gritsenko, Vladimir A; Perevalov, Timofey V; Voronkovskii, Vitalii A; Gismatulin, Andrei A; Kruchinin, Vladimir N; Aliev, Vladimir Sh; Pustovarov, Vladimir A; Prosvirin, Igor P; Roizin, Yakov
2018-01-31
Optical and transport properties of nonstoichiometric tantalum oxide thin films grown by ion beam deposition were investigated in order to understand the dominant charge transport mechanisms and reveal the nature of traps. The TaO x films composition was analyzed by X-ray photoelectron spectroscopy and by quantum-chemistry simulation. From the optical absorption and photoluminescence measurements and density functional theory simulations, it was concluded that the 2.75 eV blue luminescence excited in a TaO x by 4.45 eV photons, originates from oxygen vacancies. These vacancies are also responsible for TaO x conductivity. The thermal trap energy of 0.85 eV determined from the transport experiments coincides with the half of the Stokes shift of the blue luminescence band. It is argued that the dominant charge transport mechanism in TaO x films is phonon-assisted tunneling between the traps.
Electron Trapping and Charge Transport by Large Amplitude Whistlers
NASA Technical Reports Server (NTRS)
Kellogg, P. J.; Cattell, C. A.; Goetz, K.; Monson, S. J.; Wilson, L. B., III
2010-01-01
Trapping of electrons by magnetospheric whistlers is investigated using data from the Waves experiment on Wind and the S/WAVES experiment on STEREO. Waveforms often show a characteristic distortion which is shown to be due to electrons trapped in the potential of the electrostatic part of oblique whistlers. The density of trapped electrons is significant, comparable to that of the unperturbed whistler. Transport of these trapped electrons to new regions can generate potentials of several kilovolts, Trapping and the associated potentials may play an important role in the acceleration of Earth's radiation belt electrons.
Pinning of topological solitons at extrinsic defects in a quasi one-dimensional charge density wave
NASA Astrophysics Data System (ADS)
Razzaq, Samad; Wippermann, Stefan; Tae Hwan Kim Collaboration; Han Woong Yeom Collaboration
Quasi one-dimensional (1D) electronic systems are known to exhibit exotic physical phenomena, such as, e.g., Jahn Teller distortions, charge density wave (CDW) formation and non-Fermi liquid behavior. Solitonic excitations of the charge density wave ordered ground state and associated topological edge states in atomic wires are presently the focus of increasing attention. We carried out a combined ab initio and scanning tunneling microscopy (STM) study of solitonic and non-solitonic phase defects in the In/Si(111) atomic wire array. While free solitons move too fast to be imaged directly in STM, they can become trapped at extrinsic de- fects within the wire. We discuss the detailed atomistic structure of the responsible extrinsic defects and trapped solitons. Our study highlights the key role of coupled theory-experimental investigations in order to understand also the elusive fast moving solitons. S. W. gratefully acknowledges financial support from the German Research Foundation (DFG), Grant No. FOR1700.
NASA Astrophysics Data System (ADS)
Tang, Guoqiang; Chen, Simon S. Y.; Lee, Kwan H.; Pivrikas, Almantas; Aljada, Muhsen; Burn, Paul L.; Meredith, Paul; Shaw, Paul E.
2013-06-01
We report the fabrication and charge transport characterization of carbazole dendrimer-based organic field-effect transistors (OFETs) for the sensing of explosive vapors. After exposure to para-nitrotoluene (pNT) vapor, the OFET channel carrier mobility decreases due to trapping induced by the absorbed pNT. The influence of trap states on transport in devices before and after exposure to pNT vapor has been determined using temperature-dependent measurements of the field-effect mobility. These data clearly show that the absorption of pNT vapor into the dendrimer active layer results in the formation of additional trap states. Such states inhibit charge transport by decreasing the density of conducting states.
Induced Charge Fluctuations in Semiconductor Detectors with a Cylindrical Geometry
NASA Astrophysics Data System (ADS)
Samedov, Victor V.
2018-01-01
Now, compound semiconductors are very appealing for hard X-ray room-temperature detectors for medical and astrophysical applications. Despite the attractive properties of compound semiconductors, such as high atomic number, high density, wide band gap, low chemical reactivity and long-term stability, poor hole and electron mobility-lifetime products degrade the energy resolution of these detectors. The main objective of the present study is in development of a mathematical model of the process of the charge induction in a cylindrical geometry with accounting for the charge carrier trapping. The formulae for the moments of the distribution function of the induced charge and the formulae for the mean amplitude and the variance of the signal at the output of the semiconductor detector with a cylindrical geometry were derived. It was shown that the power series expansions of the detector amplitude and the variance in terms of the inverse bias voltage allow determining the Fano factor, electron mobility lifetime product, and the nonuniformity level of the trap density of the semiconductor material.
Zhao, Yan; Zhou, Chunlan; Zhang, Xiang; Zhang, Peng; Dou, Yanan; Wang, Wenjing; Cao, Xingzhong; Wang, Baoyi; Tang, Yehua; Zhou, Su
2013-03-02
Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density (Qf) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Qf can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Qf obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Qf. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiOx/Si interface region decreased with increased temperature. Measurement results of Qf proved that the Al vacancy of the bulk film may not be related to Qf. The defect density in the SiOx region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C.
2013-01-01
Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density (Qf) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Qf can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Qf obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Qf. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiOx/Si interface region decreased with increased temperature. Measurement results of Qf proved that the Al vacancy of the bulk film may not be related to Qf. The defect density in the SiOx region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C. PMID:23452508
Full-range electrical characteristics of WS{sub 2} transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Jatinder; Bellus, Matthew Z.; Chiu, Hsin-Ying, E-mail: chiu@ku.edu
We fabricated transistors formed by few layers to bulk single crystal WS{sub 2} to quantify the factors governing charge transport. We established a capacitor network to analyze the full-range electrical characteristics of the channel, highlighting the role of quantum capacitance and interface trap density. We find that the transfer characteristics are mainly determined by the interplay between quantum and oxide capacitances. In the OFF-state, the interface trap density (<10{sup 12} cm{sup –2}) is a limiting factor for the subthreshold swing. Furthermore, the superior crystalline quality and the low interface trap density enabled the subthreshold swing to approach the theoretical limit onmore » a back-gated device on SiO{sub 2}/Si substrate.« less
Electrical characterization of amorphous Al2O3 dielectric films on n-type 4H-SiC
NASA Astrophysics Data System (ADS)
Khosa, R. Y.; Thorsteinsson, E. B.; Winters, M.; Rorsman, N.; Karhu, R.; Hassan, J.; Sveinbjörnsson, E. Ö.
2018-02-01
We report on the electrical properties of Al2O3 films grown on 4H-SiC by successive thermal oxidation of thin Al layers at low temperatures (200°C - 300°C). MOS capacitors made using these films contain lower density of interface traps, are more immune to electron injection and exhibit higher breakdown field (5MV/cm) than Al2O3 films grown by atomic layer deposition (ALD) or rapid thermal processing (RTP). Furthermore, the interface state density is significantly lower than in MOS capacitors with nitrided thermal silicon dioxide, grown in N2O, serving as the gate dielectric. Deposition of an additional SiO2 film on the top of the Al2O3 layer increases the breakdown voltage of the MOS capacitors while maintaining low density of interface traps. We examine the origin of negative charges frequently encountered in Al2O3 films grown on SiC and find that these charges consist of trapped electrons which can be released from the Al2O3 layer by depletion bias stress and ultraviolet light exposure. This electron trapping needs to be reduced if Al2O3 is to be used as a gate dielectric in SiC MOS technology.
Nonvolatile memories using deep traps formed in HfO2 by Nb ion implantation
NASA Astrophysics Data System (ADS)
Choul Kim, Min; Oh Kim, Chang; Taek Oh, Houng; Choi, Suk-Ho; Belay, K.; Elliman, R. G.; Russo, S. P.
2011-03-01
We report nonvolatile memories (NVMs) based on deep-energy trap levels formed in HfO2 by metal ion implantation. A comparison of Nb- and Ta-implanted samples shows that suitable charge-trapping centers are formed in Nb-implanted samples, but not in Ta-implanted samples. This is consistent with density-functional theory calculations which predict that only Nb will form deep-energy levels in the bandgap of HfO2. Photocurrent spectroscopy exhibits characteristics consistent with one of the trap levels predicted in these calculations. Nb-implanted samples showing memory windows in capacitance-voltage (V) curves always exhibit current (I) peaks in I-V curves, indicating that NVM effects result from deep traps in HfO2. In contrast, Ta-implanted samples show dielectric breakdowns during the I-V sweeps between 5 and 11 V, consistent with the fact that no trap levels are present. For a sample implanted with a fluence of 1013 Nb cm-2, the charge losses after 104 s are ˜9.8 and ˜25.5% at room temperature (RT) and 85°C, respectively, and the expected charge loss after 10 years is ˜34% at RT, very promising for commercial NVMs.
Solution processed molecular floating gate for flexible flash memories
NASA Astrophysics Data System (ADS)
Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.
2013-10-01
Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices.
Solution processed molecular floating gate for flexible flash memories
Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.
2013-01-01
Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices. PMID:24172758
A drain current model for amorphous InGaZnO thin film transistors considering temperature effects
NASA Astrophysics Data System (ADS)
Cai, M. X.; Yao, R. H.
2018-03-01
Temperature dependent electrical characteristics of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) are investigated considering the percolation and multiple trapping and release (MTR) conduction mechanisms. Carrier-density and temperature dependent carrier mobility in a-IGZO is derived with the Boltzmann transport equation, which is affected by potential barriers above the conduction band edge with Gaussian-like distributions. The free and trapped charge densities in the channel are calculated with Fermi-Dirac statistics, and the field effective mobility of a-IGZO TFTs is then deduced based on the MTR theory. Temperature dependent drain current model for a-IGZO TFTs is finally derived with the obtained low field mobility and free charge density, which is applicable to both non-degenerate and degenerate conductions. This physical-based model is verified by available experiment results at various temperatures.
NASA Astrophysics Data System (ADS)
Jia, Xinlei; Yan, Xiaobing; Wang, Hong; Yang, Tao; Zhou, Zhenyu; Zhao, Jianhui
2018-06-01
In this work, we have investigated two kinds of charge trapping memory devices with Pd/Al2O3/ZnO/SiO2/p-Si and Pd/Al2O3/ZnO/graphene oxide quantum-dots (GOQDs)/ZnO/SiO2/p-Si structure. Compared with the single ZnO sample, the memory window of the ZnO-GOQDs-ZnO sample reaches a larger value (more than doubled) of 2.7 V under the sweeping gate voltage ± 7 V, indicating a better charge storage capability and the significant charge trapping effects by embedding the GOQDs trapping layer. The ZnO-GOQDs-ZnO devices have better date retention properties with the high and low capacitances loss of ˜ 1.1 and ˜ 6.9%, respectively, as well as planar density of the trapped charges of 1.48 × 1012 cm- 2. It is proposed that the GOQDs play an important role in the outstanding memory characteristics due to the deep quantum potential wells and the discrete distribution of the GOQDs. The long date retention time might have resulted from the high potential barrier which suppressed both the back tunneling and the leakage current. Intercalating GOQDs in the memory device is a promising method to realize large memory window, low-power consumption and excellent retention properties.
NASA Astrophysics Data System (ADS)
Mäckel, Helmut; MacKenzie, Roderick C. I.
2018-03-01
Charge-carrier mobility is a fundamental material parameter, which plays an important role in determining solar-cell efficiency. The higher the mobility, the less time a charge carrier will spend in a device and the less likely it is that it will be lost to recombination. Despite the importance of this physical property, it is notoriously difficult to measure accurately in disordered thin-film solar cells under operating conditions. We, therefore, investigate a method previously proposed in the literature for the determination of mobility as a function of current density. The method is based on a simple analytical model that relates the mobility to carrier density and transport resistance. By revising the theoretical background of the method, we clearly demonstrate what type of mobility can be extracted (constant mobility or effective mobility of electrons and holes). We generalize the method to any combination of measurements that is able to determine the mean electron and hole carrier density, and the transport resistance at a given current density. We explore the robustness of the method by simulating typical organic solar-cell structures with a variety of physical properties, including unbalanced mobilities, unbalanced carrier densities, and for high or low carrier trapping rates. The simulations reveal that near VOC and JSC , the method fails due to the limitation of determining the transport resistance. However, away from these regions (and, importantly, around the maximum power point), the method can accurately determine charge-carrier mobility. In the presence of strong carrier trapping, the method overestimates the effective mobility due to an underestimation of the carrier density.
NASA Astrophysics Data System (ADS)
Jiang, Xiongwei; Sun, Potao; Peng, Qingjun; Sima, Wenxia
2018-01-01
In this study, to understand the effect of thermal aging on polymer films degradation, specimens of polyester films impregnated by epoxy resin with different thermal aging temperatures (80 and 130 °C) and aging times (500, 1600, 2400 and 3000 h) are prepared, then charge de-trapping properties of specimens are investigated via the isothermal relaxation current (IRC) measurement, the distributions of trap level and its corresponding density are obtained based on the modified IRC model. It is found that the deep trap density increases remarkably at the beginning of thermal aging (before 1600 h), but it decreases obviously as the aging degree increases. At elevated aging temperature and, in particular considering the presence of air gap between two-layer insulation, the peak densities of deep traps decrease more significant in the late period of aging. It can be concluded that it is the released energy from de-trapping process leads to the fast degradation of insulation. Moreover, after thermal aging, the microstructure changes of crystallinity and molecular structures are analyzed via the x-ray diffraction experiment and Fourier transform infrared spectrometer. The results indicate that the variation of the deep trap density is closely linked with the changes of microstructure, a larger interface of crystalline/amorphous phase, more defects and broken chains caused by thermal aging form higher deep trap density stored in the samples.
NASA Astrophysics Data System (ADS)
Chen, Zhuoying; Bird, Matthew; Lemaur, Vincent; Radtke, Guillaume; Cornil, Jérôme; Heeney, Martin; McCulloch, Iain; Sirringhaus, Henning
2011-09-01
Understanding the mechanisms limiting ambipolar transport in conjugated polymer field-effect transistors (FETs) is of both fundamental and practical interest. Here, we present a systematic study comparing hole and electron charge transport in an ambipolar conjugated polymer, semicrystalline poly(3,3''-di-n-decylterselenophene) (PSSS). Starting from a detailed analysis of the device characteristics and temperature/charge-density dependence of the mobility, we interpret the difference between hole and electron transport through both the Vissenberg-Matters and the mobility-edge model. To obtain microscopic insight into the quantum mechanical wave function of the charges at a molecular level, we combine charge modulation spectroscopy (CMS) measuring the charge-induced absorption signatures from positive and negative polarons in these ambipolar FETs with corresponding density functional theory (DFT) calculations. We observe a significantly higher switch-on voltage for electrons than for holes due to deep electron trap states, but also a higher activation energy of the mobility for mobile electrons. The CMS spectra reveal that the electrons that remain mobile and contribute to the FET current have a wave function that is more localized onto a single polymer chain than that of holes, which is extended over several polymer chains. We interpret this as evidence that the transport properties of the mobile electrons in PSSS are still affected by the presence of deep electron traps. The more localized electron state could be due to the mobile electrons interacting with shallow trap states in the vicinity of a chemical, potentially water-related, impurity that might precede the capture of the electron into a deeply trapped state.
NASA Astrophysics Data System (ADS)
Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A.
2017-03-01
Thermal aging of cross-linked polyethylene (XLPE) can cause serious concerns in the safety operation in high voltage system. To get a more detailed picture on the effect of thermal aging on the trapping and detrapping process of XLPE in the melting temperature range, Thermal Stimulated Current (TSC) have been implemented in a Scanning Electron Microscope (SEM) with a specific arrangement. The XLPE specimens are molded and aged at two temperatures (120 °C and 140 °C) situated close to the melting temperature of the material. The use of SEM allows us to measure both leakage and displacement currents induced in samples under electron irradiation. The first represents the conduction process of XLPE and the second gives information on the trapping of charges in the bulk of the material. TSC associated to the SEM leads to show spectra of XLPE discharge under thermal stimulation using both currents measured after electron irradiation. It was found that leakage current in the charging process may be related to the physical defects resulting in crystallinity variation under thermal aging. However the trapped charge can be affected by the carbonyl groups resulting from the thermo-oxidation degradation and the disorder in the material. It is evidenced from the TSC spectra of unaged XLPE that there is no detrapping charge under heat stimulation. Whereas the presence of peaks in the TSC spectra of thermally aged samples indicates that there is some amount of trapped charge released by heating. The detrapping behavior of aged XLPE is supported by the supposition of the existence of two trap levels: shallow traps and deep traps. Overall, physico-chemical reactions under thermal aging at high temperatures leads to the enhancement of shallow traps density and changes in range of traps depth. These changes induce degradation of electrical properties of XLPE.
Grain Boundary Effect on Charge Transport in Pentacene Thin Films
NASA Astrophysics Data System (ADS)
Weis, Martin; Gmucová, Katarína; Nádaždy, Vojtech; Majková, Eva; Haško, Daniel; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2011-04-01
We report on charge transport properties of polycrystalline pentacene films with variable average grain size in the range from 0.1 to 0.3 µm controlled by the preparation technology. We illustrate with the organic field-effect transistors decrease of the effective mobility and presence of traps with decrease of the grain size. Analysis of the charge transfer excitons reveals decrease of the mobile charge density and the steady-state voltammetry showed significant increase of oxygen- and hydrogen-related defects. We also briefly discuss accumulation of the defects on the grain boundary and show relation between the defect density and grain boundary length.
NASA Astrophysics Data System (ADS)
Chiang, Yen-Chang; Hsiao, Yang-Hsuan; Li, Jeng-Ting; Chen, Jen-Sue
2018-02-01
Charge-trapping memories (CTMs) based on zinc tin oxide (ZTO) semiconductor thin-film transistors (TFTs) can be programmed by a positive gate voltage and erased by a negative gate voltage in conjunction with light illumination. To understand the mechanism involved, the sub-gap density of states associated with ionized oxygen vacancies in the ZTO active layer is extracted from optical response capacitance-voltage (C-V) measurements. The corresponding energy states of ionized oxygen vacancies are observed below the conduction band minimum at approximately 0.5-1.0 eV. From a comparison of the fitted oxygen vacancy concentration in the CTM-TFT after the light-bias erasing operation, it is found that the pristine-erased device contains more oxygen vacancies than the program-erased device because the trapped electrons in the programmed device are pulled into the active layer and neutralized by the oxygen vacancies that are present there.
NASA Astrophysics Data System (ADS)
Wo, Songtao; Headrick, Randall L.; Anthony, John E.
2012-04-01
We have produced solution-processed thin films of 6,13-bis(tri-isopropyl-silylethynyl) pentacene with grain sizes from a few micrometers up to millimeter scale by lateral crystallization from a rectangular stylus. Grains are oriented along the crystallization direction, and the grain size transverse to the crystallization direction depends inversely on the writing speed, hence forming a regular array of oriented grain boundaries with controllable spacing. We utilize these controllable arrays to systematically study the role of large-angle grain boundaries in carrier transport and charge trapping in thin film transistors. The effective mobility scales with the grain size, leading to an estimate of the potential drop at individual large-angle grain boundaries of more than 1 volt. This result indicates that the structure of grain boundaries is not molecularly abrupt, which may be a general feature of solution-processed small molecule organic semiconductor thin films, where relatively high energy grain boundaries are typically formed. Transient measurements after switching from positive to negative gate bias or between large and small negative gate bias reveal reversible charge trapping, with time constants on the order of 10 s and trap densities that are correlated with grain boundary density. We suggest that charge diffusion along grain boundaries and other defects is the rate-determining mechanism of the reversible trapping.
NASA Astrophysics Data System (ADS)
Kim, Sungho; Ahn, Jae-Hyuk; Park, Tae Jung; Lee, Sang Yup; Choi, Yang-Kyu
2009-06-01
A unique direct electrical detection method of biomolecules, charge pumping, was demonstrated using a nanogap embedded field-effect-transistor (FET). With aid of a charge pumping method, sensitivity can fall below the 1 ng/ml concentration regime in antigen-antibody binding of an avian influenza case. Biomolecules immobilized in the nanogap are mainly responsible for the acute changes of the interface trap density due to modulation of the energy level of the trap. This finding is supported by a numerical simulation. The proposed detection method for biomolecules using a nanogap embedded FET represents a foundation for a chip-based biosensor capable of high sensitivity.
Vibrational modes of thin oblate clouds of charge
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Spencer, Ross L.
2002-07-01
A numerical method is presented for finding the eigenfunctions (normal modes) and mode frequencies of azimuthally symmetric non-neutral plasmas confined in a Penning trap whose axial thickness is much smaller than their radial size. The plasma may be approximated as a charged disk in this limit; the normal modes and frequencies can be found if the surface charge density profile σ(r) of the disk and the trap bounce frequency profile ωz(r) are known. The dependence of the eigenfunctions and equilibrium plasma shapes on nonideal components of the confining Penning trap fields is discussed. The results of the calculation are compared with the experimental data of Weimer et al. [Phys. Rev. A 49, 3842 (1994)] and it is shown that the plasma in this experiment was probably hollow and had mode displacement functions that were concentrated near the center of the plasma.
NASA Astrophysics Data System (ADS)
Wang, Yucheng; Zhang, Yuming; Liu, Yintao; Pang, Tiqiang; Hu, Ziyang; Zhu, Yuejin; Luan, Suzhen; Jia, Renxu
2017-11-01
Two types of perovskite (with and without doping of PCBM) based metal-oxide-semiconductor (MOS) gate-controlled devices were fabricated and characterized. The study of the interfacial characteristics and charge transfer mechanisms by doping of PCBM were analyzed by material and electrical measurements. Doping of PCBM does not affect the size and crystallinity of perovskite films, but has an impact on carrier extraction in perovskite MOS devices. The electrical hysteresis observed in capacitance-voltage and current-voltage measurements can be alleviated by doping of PCBM. Experimental results demonstrate that extremely low trap densities are found for the perovskite device without doping, while the doped sample leads to higher density of interface state. Three mechanisms including Ohm’s law, trap-filled-limit (TFL) emission, and child’s law were used to analyze possible charge transfer mechanisms. Ohm’s law mechanism is well suitable for charge transfer of both the perovskite MOS devices under light condition at large voltage, while TFL emission well addresses the behavior of charge transfer under dark at small voltage. This change of charge transfer mechanism is attributed to the impact of the ion drift within perovskites.
NASA Astrophysics Data System (ADS)
Kalb, Wolfgang L.; Haas, Simon; Krellner, Cornelius; Mathis, Thomas; Batlogg, Bertram
2010-04-01
We show that it is possible to reach one of the ultimate goals of organic electronics: producing organic field-effect transistors with trap densities as low as in the bulk of single crystals. We studied the spectral density of localized states in the band gap [trap density of states (trap DOS)] of small-molecule organic semiconductors as derived from electrical characteristics of organic field-effect transistors or from space-charge-limited current measurements. This was done by comparing data from a large number of samples including thin-film transistors (TFT’s), single crystal field-effect transistors (SC-FET’s) and bulk samples. The compilation of all data strongly suggests that structural defects associated with grain boundaries are the main cause of “fast” hole traps in TFT’s made with vacuum-evaporated pentacene. For high-performance transistors made with small-molecule semiconductors such as rubrene it is essential to reduce the dipolar disorder caused by water adsorbed on the gate dielectric surface. In samples with very low trap densities, we sometimes observe a steep increase in the trap DOS very close (<0.15eV) to the mobility edge with a characteristic slope of 10-20 meV. It is discussed to what degree band broadening due to the thermal fluctuation of the intermolecular transfer integral is reflected in this steep increase in the trap DOS. Moreover, we show that the trap DOS in TFT’s with small-molecule semiconductors is very similar to the trap DOS in hydrogenated amorphous silicon even though polycrystalline films of small-molecules with van der Waals-type interaction on the one hand are compared with covalently bound amorphous silicon on the other hand.
Proton trapping in SiO 2 layers thermally grown on Si and SiC
NASA Astrophysics Data System (ADS)
Afanas'ev, V. V.; Ciobanu, F.; Pensl, G.; Stesmans, A.
2002-11-01
Positive charging of thermal SiO 2 layers on (1 0 0)Si and (0 0 0 1)6H-, 4H-SiC related to trapping of protons is studied using low-energy proton implantation into the oxide, and compared to the trapping of holes generated by 10-eV photons. Proton trapping has an initial probability close to 100% and shows little sensitivity to the annealing-induced oxygen deficiency of SiO 2. In contrast to protons, hole trapping in as-grown SiO 2 shows a much lower efficiency which increases upon oxide annealing, in qualitative correlation with the higher density of O 3Si• defects (E' centers) detected by electron spin resonance after hole injection. Despite these differences, the neutralization of positive charges induced by holes and protons has the same cross-section, and in both cases is accompanied by liberation of atomic H suggesting that protons account for positive charge in both cases. The rupture of Si-O bonds in the oxide observed upon proton injection suggests, as a first basic step, the bonding of a proton to a bridging oxygen atom in SiO 2 network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, A.
2017-11-21
Electron beam ion sources technology made significant progress since 1968 when this method of producing highly charged ions in a potential trap within electron beam was proposed by E. Donets. Better understanding of physical processes in EBIS, technological advances and better simulation tools determined significant progress in key EBIS parameters: electron beam current and current density, ion trap capacity, attainable charge states. Greatly increased the scope of EBIS and EBIT applications. An attempt is made to compile some of EBIS engineering problems and solutions and to demonstrate a present stage of understanding the processes and approaches to build a bettermore » EBIS.« less
NASA Technical Reports Server (NTRS)
Bell, L. D.; Boer, E.; Ostraat, M.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.
2000-01-01
NASA requirements for computing and memory for microspacecraft emphasize high density, low power, small size, and radiation hardness. The distributed nature of storage elements in nanocrystal floating-gate memories leads to intrinsic fault tolerance and radiation hardness. Conventional floating-gate non-volatile memories are more susceptible to radiation damage. Nanocrystal-based memories also offer the possibility of faster, lower power operation. In the pursuit of filling these requirements, the following tasks have been accomplished: (1) Si nanocrystal charging has been accomplished with conducting-tip AFM; (2) Both individual nanocrystals on an oxide surface and nanocrystals formed by implantation have been charged; (3) Discharging is consistent with tunneling through a field-lowered oxide barrier; (4) Modeling of the response of the AFM to trapped charge has allowed estimation of the quantity of trapped charge; and (5) Initial attempts to fabricate competitive nanocrystal non-volatile memories have been extremely successful.
An electron beam ion trap and source for re-acceleration of rare-isotope ion beams at TRIUMF
NASA Astrophysics Data System (ADS)
Blessenohl, M. A.; Dobrodey, S.; Warnecke, C.; Rosner, M. K.; Graham, L.; Paul, S.; Baumann, T. M.; Hockenbery, Z.; Hubele, R.; Pfeifer, T.; Ames, F.; Dilling, J.; Crespo López-Urrutia, J. R.
2018-05-01
Electron beam driven ionization can produce highly charged ions (HCIs) in a few well-defined charge states. Ideal conditions for this are maximally focused electron beams and an extremely clean vacuum environment. A cryogenic electron beam ion trap fulfills these prerequisites and delivers very pure HCI beams. The Canadian rare isotope facility with electron beam ion source-electron beam ion sources developed at the Max-Planck-Institut für Kernphysik (MPIK) reaches already for a 5 keV electron beam and a current of 1 A with a density in excess of 5000 A/cm2 by means of a 6 T axial magnetic field. Within the trap, the beam quickly generates a dense HCI population, tightly confined by a space-charge potential of the order of 1 keV times the ionic charge state. Emitting HCI bunches of ≈107 ions at up to 100 Hz repetition rate, the device will charge-breed rare-isotope beams with the mass-over-charge ratio required for re-acceleration at the Advanced Rare IsotopE Laboratory (ARIEL) facility at TRIUMF. We present here its design and results from commissioning runs at MPIK, including X-ray diagnostics of the electron beam and charge-breeding process, as well as ion injection and HCI-extraction measurements.
NASA Astrophysics Data System (ADS)
Rhee, Jihyun; Choi, Sungju; Kang, Hara; Kim, Jae-Young; Ko, Daehyun; Ahn, Geumho; Jung, Haesun; Choi, Sung-Jin; Myong Kim, Dong; Kim, Dae Hwan
2018-02-01
Experimental extraction of the electron trap parameters which are associated with charge trapping into gate insulators under the positive bias temperature stress (PBTS) is proposed and demonstrated for the first time in amorphous indium-gallium-zinc-oxide thin-film transistors. This was done by combining the PBTS/recovery time-evolution of the experimentally decomposed threshold voltage shift (ΔVT) and the technology computer-aided design (TCAD)-based charge trapping simulation. The extracted parameters were the trap density (NOT) = 2.6 × 1018 cm-3, the trap energy level (ΔET) = 0.6 eV, and the capture cross section (σ0) = 3 × 10-19 cm2. Furthermore, based on the established TCAD framework, the relationship between the electron trap parameters and the activation energy (Ea) is comprehensively investigated. It is found that Ea increases with an increase in σ0, whereas Ea is independent of NOT. In addition, as ΔET increases, Ea decreases in the electron trapping-dominant regime (low ΔET) and increases again in the Poole-Frenkel (PF) emission/hopping-dominant regime (high ΔET). Moreover, our results suggest that the cross-over ΔET point originates from the complicated temperature-dependent competition between the capture rate and the emission rate. The PBTS bias dependence of the relationship between Ea and ΔET suggests that the electric field dependence of the PF emission-based electron hopping is stronger than that of the thermionic field emission-based electron trapping.
Petrović, Miloš; Ye, Tao; Chellappan, Vijila; Ramakrishna, Seeram
2017-12-13
Low-temperature optoelectrical studies of perovskite solar cells using MAPbI 3 and mixed-perovskite absorbers implemented into planar and mesoporous architectures reveal fundamental charge transporting properties in fully assembled devices operating under light bias. Both types of devices exhibit inverse correlation of charge carrier lifetime as a function of temperature, extending carrier lifetimes upon temperature reduction, especially after exposure to high optical biases. Contribution of bimolecular channels to the overall recombination process should not be overlooked because the density of generated charge surpasses trap-filling concentration requirements. Bimolecular charge recombination coefficient in both device types is smaller than Langevin theory prediction, and its mean value is independent of the applied illumination intensity. In planar devices, charge extraction declines upon MAPbI 3 transition from a tetragonal to an orthorhombic phase, indicating a connection between the trapping/detrapping mechanism and temperature. Studies on charge extraction by linearly increasing voltage further support this assertion, as charge carrier mobility dependence on temperature follows multiple-trapping predictions for both device structures. The monotonously increasing trend following the rise in temperature opposes the behavior observed in neat perovskite films and indicates the importance of transporting layers and the effect they have on charge transport in fully assembled solar cells. Low-temperature phase transition shows no pattern of influence on thermally activated electron/hole transport.
NASA Astrophysics Data System (ADS)
Huang, Yanhui; Wu, Ke; Bell, Michael; Oakes, Andrew; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt; Benicewicz, Brian C.; Schadler, Linda S.
2016-08-01
This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO2 and ZrO2 nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (˜1017 cm-3). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO2 filled composites and is likely caused by impact excitation due to the low excitation energy of TiO2 compared to ZrO2. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO2 may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO2 composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S.; Wu, Ke
This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO{sub 2} and ZrO{sub 2} nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (∼10{sup 17} cm{sup −3}). The charge trapping is found to havemore » the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO{sub 2} filled composites and is likely caused by impact excitation due to the low excitation energy of TiO{sub 2} compared to ZrO{sub 2}. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO{sub 2} may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO{sub 2} composites.« less
In-line charge-trapping characterization of dielectrics for sub-0.5-um CMOS technologies
NASA Astrophysics Data System (ADS)
Roy, Pradip K.; Chacon, Carlos M.; Ma, Yi; Horner, Gregory
1997-09-01
The advent of ultra-large and giga-scale-integration (ULSI/GSI) has placed considerable emphasis on the development of new gate oxides and interlevel dielectrics capable of meeting strict performance and reliability requirements. The costs and demands associated with ULSI fabrication have in turn fueled the need for cost-effective, rapid and accurate in-line characterization techniques for evaluating dielectric quality. The use of non-contact surface photovoltage characterization techniques provides cost-effective rapid feedback on dielectric quality, reducing costs through the reutilization of control wafers and the elimination of processing time. This technology has been applied to characterize most of the relevant C-V parameters, including flatband voltage (Vfb), density of interface traps (Dit), mobile charge density (Qm), oxide thickness (Tox), oxide resistivity (pox) and total charge (Qtot) for gate and interlevel (ILO) oxides. A novel method of measuring tunneling voltage by this technique on various gate oxides is discussed. For ILO, PECVD and high density plasma dielectrics, surface voltage maps are also presented. Measurements of near-surface silicon quality are described, including minority carrier generation lifetime, and examples of their application in diagnosing manufacturing problems.
Sapp, Wendi; Koodali, Ranjit; Kilin, Dmitri
2016-02-29
Solar energy conversion into chemical form is possible using artificial means. One example of a highly-efficient fuel is solar energy used to split water into oxygen and hydrogen. Efficient photocatalytic water-splitting remains an open challenge for researchers across the globe. Despite significant progress, several aspects of the reaction, including the charge transfer mechanism, are not fully clear. Density functional theory combined with density matrix equations of motion were used to identify and characterize the charge transfer mechanism involved in the dissociation of water. A simulated porous silica substrate, using periodic boundary conditions, with Ti 4+ ions embedded on the innermore » pore wall was found to contain electron and hole trap states that could facilitate a chemical reaction. A trap state was located within the silica substrate that lengthened relaxation time, which may favor a chemical reaction. A chemical reaction would have to occur within the window of photoexcitation; therefore, the existence of a trapping state may encourage a chemical reaction. Furthermore, this provides evidence that the silica substrate plays an integral part in the electron/hole dynamics of the system, leading to the conclusion that both components (photoactive materials and support) of heterogeneous catalytic systems are important in optimization of catalytic efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jae-sung; Piao, Mingxing; Jang, Ho-Kyun
2014-12-28
We report an investigation of the effects of low-temperature annealing on the electrical properties of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). X-ray photoelectron spectroscopy was used to characterize the charge carrier concentration, which is related to the density of oxygen vacancies. The field-effect mobility was found to decrease as a function of the charge carrier concentration, owing to the presence of band-tail states. By employing the transmission line method, we show that the contact resistance did not significantly contribute to the changes in device performance after annealing. In addition, using low-frequency noise analyses, we found that themore » trap density decreased by a factor of 10 following annealing at 120 °C. The switching operation and on/off ratio of the a-IGZO TFTs improved considerably after low-temperature annealing.« less
Conduction mechanism of leakage current due to the traps in ZrO2 thin film
NASA Astrophysics Data System (ADS)
Seo, Yohan; Lee, Sangyouk; An, Ilsin; Song, Chulgi; Jeong, Heejun
2009-11-01
In this work, a metal-oxide-semiconductor capacitor with zirconium oxide (ZrO2) gate dielectric was fabricated by an atomic layer deposition (ALD) technique and the leakage current characteristics under negative bias were studied. From the result of current-voltage curves there are two possible conduction mechanisms to explain the leakage current in the ZrO2 thin film. The dominant mechanism is the space charge limited conduction in the high-electric field region (1.5-5.0 MV cm-1) while the trap-assisted tunneling due to the existence of traps is prevailed in the low-electric field region (0.8-1.5 MV cm-1). Conduction caused by the trap-assisted tunneling is found from the experimental results of a weak temperature dependence of current, and the trap barrier height is obtained. The space charge limited conduction is evidenced, for different temperatures, by Child's law dependence of current density versus voltage. Child's law dependence can be explained by considering a single discrete trapping level and we can obtain the activation energy of 0.22 eV.
Effect of CdS nanocrystals on charge transport mechanism in poly(3-hexylthiophene)
NASA Astrophysics Data System (ADS)
Khan, Mohd Taukeer; Almohammedi, Abdullah
2017-08-01
The present manuscript demonstrates the optical and electrical characteristics of poly(3-hexylthiophene) (P3HT) and cadmium sulphide (CdS) hybrid nanocomposites. Optical results suggest that there is a formation of charge transfer complex (CTC) between host P3HT and guest CdS nanocrystals (NCs). Electrical properties of P3HT and P3HT-CdS thin films have been studied in hole only device configurations at different temperatures (290 K-150 K), and results were analysed by the space charge limited conduction mechanism. Density of traps and characteristic trap energy increase on incorporation of inorganic NCs in the polymer matrix, which might be due to the additional favourable energy states created by CdS NCs in the band gap of P3HT. These additional trap states assist charge carriers to move quicker which results in enhancement of hole mobility from 7 × 10-6 to 5.5 × 10-5 cm2/V s in nanocomposites. These results suggest that the P3HT-CdS hybrid system has desirable optical and electrical properties for its applications to photovoltaics devices.
Sherkar, Tejas S; Momblona, Cristina; Gil-Escrig, Lidón; Ávila, Jorge; Sessolo, Michele; Bolink, Henk J; Koster, L Jan Anton
2017-05-12
Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap-assisted recombination channels (grain boundaries and interfaces) and their correlation to defect ions in PSCs. We achieve this by using a validated device model to fit the simulations to the experimental data of efficient vacuum-deposited p-i-n and n-i-p CH 3 NH 3 PbI 3 solar cells, including the light intensity dependence of the open-circuit voltage and fill factor. We find that, despite the presence of traps at interfaces and grain boundaries (GBs), their neutral (when filled with photogenerated charges) disposition along with the long-lived nature of holes leads to the high performance of PSCs. The sign of the traps (when filled) is of little importance in efficient solar cells with compact morphologies (fused GBs, low trap density). On the other hand, solar cells with noncompact morphologies (open GBs, high trap density) are sensitive to the sign of the traps and hence to the cell preparation methods. Even in the presence of traps at GBs, trap-assisted recombination at interfaces (between the transport layers and the perovskite) is the dominant loss mechanism. We find a direct correlation between the density of traps, the density of mobile ionic defects, and the degree of hysteresis observed in the current-voltage ( J - V ) characteristics. The presence of defect states or mobile ions not only limits the device performance but also plays a role in the J - V hysteresis.
The electro-mechanical effect from charge dynamics on polymeric insulation lifetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alghamdi, H., E-mail: haalghamdi@nu.edu.sa; Faculty of Engineering, Najran University, Najran, P.O.Box 1988; Chen, G.
For polymeric material used as electrical insulation, the presence of space charges could be the consequence of material degradations that are thermally activated but increased by the application of an electric field. The dynamics of space charge, therefore, can be potentially used to characterize the material. In this direction, a new aging model in which parameters have clear physical meanings has been developed and applied to the material to extrapolate the lifetime. The kinetic equation has been established based on charge trapping and detrapping of the injected charge from the electrodes. The local electromechanical energy stored in the region surroundingmore » the trap is able to reduce the trap-depth with a value related to the electric field. At a level where the internal electric field exceeds the detrapping field in the material, an electron can be efficiently detrapped and the released energy from detrapping process can cause a weak bond or chain scission i.e. material degradation. The model has been applied to the electro-thermally aged low density polyethylene film samples, showing well fitted result, as well as interesting relationships between parameter estimates and insulation morphology.« less
Formation of Ion Beam from High Density Plasma of ECR Discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izotov, I.; Razin, S.; Sidorov, A.
2005-03-15
One of the most promising directions of ECR multicharged ion sources evolution is related with increase in frequency of microwave pumping. During last years microwave generators of millimeter wave range - gyrotrons have been used more frequently. Creation of plasma with density 1013 cm-3 with medium charged ions and ion flux density through a plug of a magnetic trap along magnetic field lines on level of a few A/cm2 is possible under pumping by powerful millimeter wave radiation and quasigasdynamic (collisional) regime of plasma confinement in the magnetic trap. Such plasma has great prospects for application in plasma based ionmore » implantation systems for processing of surfaces with complicated and petit relief. Use it for ion beam formation seams to be difficult because of too high ion current density. This paper continues investigations described elsewhere and shows possibility to arrange ion extraction in zone of plasma expansion from the magnetic trap along axis of system and magnetic field lines.Plasma was created at ECR gas discharge by means of millimeter wave radiation of a gyrotron with frequency 37.5 GHz, maximum power 100 kW, pulse duration 1.5 ms. Two and three electrode quasi-Pierce extraction systems were used for ion beam formation.It is demonstrated that there is no changes in ion charge state distribution along expansion routing of plasma under collisional confinement. Also ion flux density decreases with distance from plug of the trap, it allows to control extracting ion current density. Multicharged ion beam of Nitrogen with total current up to 2.5 mA at diameter of extracting hole 1 mm, that corresponds current density 320 mA/cm2, was obtained. Magnitude of total ion current was limited due to extracting voltage (60 kV). Under such conditions characteristic transversal dimension of plasma equaled 4 cm, magnetic field value in extracting zone was about 0.1 T at axisymmetrical configuration.« less
Floating potential of emitting surfaces in plasmas with respect to the space potential
Kraus, B. F.; Raitses, Y.
2018-03-19
The potential difference between a floating emitting surface and the plasma surrounding it has been described by several sheath models, including the space-charge-limited sheath, the electron sheath with high emission current, and the inverse sheath produced by charge-exchange ion trapping. Our measurements reveal that each of these models has its own regime of validity. We determine the potential of an emissive filament relative to the plasma potential, emphasizing variations in emitted current density and neutral particle density. The potential of a filament in a diffuse plasma is first shown to vanish, consistent with the electron sheath model and increasing electronmore » emission. In a denser plasma with ample neutral pressure, the floating filament potential is positive, as predicted by a derived ion trapping condition. In conclusion, the filament floated negatively in a third plasma, where flowing ions and electrons and nonnegligible electric fields may have disrupted ion trapping. Depending on the regime chosen, emitting surfaces can float positively or negatively with respect to the plasma potential.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalimova, M. B., E-mail: shamb@samsu.ru; Sachuk, N. V.
2015-08-15
The degradation of the characteristics of silicon metal-oxide-semiconductor (MOS) structures with oxides of rare-earth elements under the effect of electric fields with intensities of 0.1–4 MV/cm during the course of electroforming is studied. A specific feature of electroforming consists in the possibility of multiple switching of the structures from the insulating state to the low-resistivity one and back. The temporal characteristics of the degradation of MOS structures during the course of electroforming are exponential. The current-voltage characteristics follow the power law in the range of 0.2–3 V; the effect of an electric field brings about a variation in the distributionmore » of the energy density of traps responsible for currents limited by space charge. It is established that multiple cycles of electroforming lead to an increase in the density of surface states at the Si-oxide interface and to a variation in the energy position of the trap levels, which affects the charge state of the traps.« less
Floating potential of emitting surfaces in plasmas with respect to the space potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, B. F.; Raitses, Y.
The potential difference between a floating emitting surface and the plasma surrounding it has been described by several sheath models, including the space-charge-limited sheath, the electron sheath with high emission current, and the inverse sheath produced by charge-exchange ion trapping. Our measurements reveal that each of these models has its own regime of validity. We determine the potential of an emissive filament relative to the plasma potential, emphasizing variations in emitted current density and neutral particle density. The potential of a filament in a diffuse plasma is first shown to vanish, consistent with the electron sheath model and increasing electronmore » emission. In a denser plasma with ample neutral pressure, the floating filament potential is positive, as predicted by a derived ion trapping condition. In conclusion, the filament floated negatively in a third plasma, where flowing ions and electrons and nonnegligible electric fields may have disrupted ion trapping. Depending on the regime chosen, emitting surfaces can float positively or negatively with respect to the plasma potential.« less
Real-Space Mapping of Surface Trap States in CIGSe Nanocrystals Using 4D Electron Microscopy.
Bose, Riya; Bera, Ashok; Parida, Manas R; Adhikari, Aniruddha; Shaheen, Basamat S; Alarousu, Erkki; Sun, Jingya; Wu, Tom; Bakr, Osman M; Mohammed, Omar F
2016-07-13
Surface trap states in copper indium gallium selenide semiconductor nanocrystals (NCs), which serve as undesirable channels for nonradiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with subpicosecond temporal and nanometer spatial resolutions. Here, we precisely map the collective surface charge carrier dynamics of copper indium gallium selenide NCs as a function of the surface trap states before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, the removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.
Draguta, Sergiu; Christians, Jeffrey A.; Morozov, Yurii V.; ...
2018-01-01
Hybrid perovskites represent a potential paradigm shift for the creation of low-cost solar cells. Current power conversion efficiencies (PCEs) exceed 22%. However, despite this, record PCEs are still far from their theoretical Shockley–Queisser limit of 31%. To increase these PCE values, there is a pressing need to understand, quantify and microscopically model charge recombination processes in full working devices. Here, we present a complete microscopic account of charge recombination processes in high efficiency (18–19% PCE) hybrid perovskite (mixed cation and methylammonium lead iodide) solar cells. We employ diffraction-limited optical measurements along with relevant kinetic modeling to establish, for the firstmore » time, local photoluminescence quantum yields, trap densities, trapping efficiencies, charge extraction efficiencies, quasi-Fermi-level splitting, and effective PCE estimates. Correlations between these spatially resolved parameters, in turn, allow us to conclude that intrinsic electron traps in the perovskite active layers limit the performance of these state-of-the-art hybrid perovskite solar cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draguta, Sergiu; Christians, Jeffrey A.; Morozov, Yurii V.
Hybrid perovskites represent a potential paradigm shift for the creation of low-cost solar cells. Current power conversion efficiencies (PCEs) exceed 22%. However, despite this, record PCEs are still far from their theoretical Shockley–Queisser limit of 31%. To increase these PCE values, there is a pressing need to understand, quantify and microscopically model charge recombination processes in full working devices. Here, we present a complete microscopic account of charge recombination processes in high efficiency (18–19% PCE) hybrid perovskite (mixed cation and methylammonium lead iodide) solar cells. We employ diffraction-limited optical measurements along with relevant kinetic modeling to establish, for the firstmore » time, local photoluminescence quantum yields, trap densities, trapping efficiencies, charge extraction efficiencies, quasi-Fermi-level splitting, and effective PCE estimates. Correlations between these spatially resolved parameters, in turn, allow us to conclude that intrinsic electron traps in the perovskite active layers limit the performance of these state-of-the-art hybrid perovskite solar cells.« less
Investigation of multilayer WS2 flakes as charge trapping stack layers in non-volatile memories
NASA Astrophysics Data System (ADS)
Wang, Hong; Ren, Deliang; Lu, Chao; Yan, Xiaobing
2018-06-01
In this study, the non-volatile flash memory devices utilize tungsten sulfide flakes as the charge trapping stack layers were fabricated. The sandwiched structure of Pd/ZHO/WS2/ZHO/WS2/SiO2/Si manifests a memory window of 2.26 V and a high density of trapped charges 4.88 × 1012/cm2 under a ±5 V gate sweeping voltage. Moreover, the data retention results of as-fabricated non-volatile memories demonstrate that the high and low capacitance states are enhanced by 3.81% and 3.11%, respectively, after a measurement duration of 1.20 × 104 s. These remarkable achievements are probably attributed to the defects and band gap of WS2 flakes. Besides, the proposed memory fabrication is not only compatible with CMOS manufacturing processes but also gets rid of the high-temperature annealing process. Overall, this proposed non-volatile memory is highly attractive for low voltage, long data retention applications.
NASA Astrophysics Data System (ADS)
Scheinert, Susanne; Pernstich, Kurt P.; Batlogg, Bertram; Paasch, Gernot
2007-11-01
It has been demonstrated [K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid, and G. Schitter, J. Appl. Phys. 96, 6431 (2004)] that a controllable shift of the threshold voltage in pentacene thin film transistors is caused by the use of organosilanes with different functional groups forming a self-assembled monolayer (SAM) on the gate oxide. The observed broadening of the subthreshold region indicates that the SAM creates additional trap states. Indeed, it is well known that traps strongly influence the behavior of organic field-effect transistors (OFETs). Therefore, the so-called "amorphous silicon (a-Si) model" has been suggested to be an appropriate model to describe OFETs. The main specifics of this model are transport of carriers above a mobility edge obeying Boltzmann statistics and exponentially distributed tail states and deep trap states. Here, approximate trap distributions are determined by adjusting two-dimensional numerical simulations to the experimental data. It follows from a systematic variation of parameters describing the trap distributions that the existence of both donorlike and acceptorlike trap distributions near the valence band, respectively, and a fixed negative interface charge have to be assumed. For two typical devices with different organosilanes the electrical characteristics can be described well with a donorlike bulk trap distribution, an acceptorlike interface distribution, and/or a fixed negative interface charge. As expected, the density of the fixed or trapped interface charge depends strongly on the surface treatment of the dielectric. There are some limitations in determining the trap distributions caused by either slow time-dependent processes resulting in differences between transfer and output characteristics, or in the uncertainty of the effective mobility.
High charge state carbon and oxygen ions in Earth's equatorial quasi-trapping region
NASA Technical Reports Server (NTRS)
Christon, S. P.; Hamilton, D. C.; Gloeckler, G.; Eastmann, T. E.
1994-01-01
Observations of energetic (1.5 - 300 keV/e) medium-to-high charge state (+3 less than or equal to Q less than or equal to +7) solar wind origin C and O ions made in the quasi-trapping region (QTR) of Earth's magnetosphere are compared to ion trajectories calculated in model equatorial magnetospheric magnetic and electric fields. These comparisons indicate that solar wind ions entering the QTR on the nightside as an energetic component of the plasma sheet exit the region on the dayside, experiencing little or no charge exchange on the way. Measurements made by the CHarge Energy Mass (CHEM) ion spectrometer on board the Active Magnetospheric Particle Tracer Explorer/Charge Composition Explorer (AMPTE/CCE) spacecraft at 7 less than L less than 9 from September 1984 to January 1989 are the source of the new results contained herein: quantitative long-term determination of number densities, average energies, energy spectra, local time distributions, and their variation with geomagnetic disturbance level as indexed by Kp. Solar wind primaries (ions with charge states unchanged) and their secondaries (ions with generally lower charge states produced from primaries in the magnetosphere via charge exchange)are observed throughout the QTR and have distinctly different local time variations that persist over the entire 4-year analysis interval. During Kp larger than or equal to 3 deg intervals, primary ion (e.g., O(+6)) densities exhibit a pronounced predawn maximum with average energy minimum and a broad near-local-noon density minimum with average energy maximum. Secondary ion (e.g., O(+5)) densities do not have an identifiable predawn peak, rather they have a broad dayside maximum peaked in local morning and a nightside minimum. During Kp less than or equal to 2(-) intervals, primary ion density peaks are less intense, broader in local time extent, and centered near midnight, while secondary ion density local time variations diminish. The long-time-interval baseline helps to refine and extend previous observations; for example, we show that ionospheric contribution to O(+3)) is negligible. Through comparison with model ion trajectories, we interpret the lack of pronounced secondary ion density peaks colocated with the primary density peaks to indicate that: (1) negligible charge exchange occurs at L greater than 7, that is, solar wind secondaries are produced at L less than 7, and (2) solar wind secondaries do not form a significant portion of the plasma sheet population injected into the QTR. We conclude that little of the energetic solar wind secondary ion population is recirculated through the magnetosphere.
Panchal, A K; Rai, D K; Solanki, C S
2011-04-01
Post-deposition annealing of a-Si/SiN(x) multilayer films at different temperature shows varying shift in high frequency (1 MHz) capacitance-voltage (HFCV) characteristics. Various a-Si/SiN(x) multilayer films were deposited using hot wire chemical vapor deposition (HWCVD) and annealed in the temperature range of 800 to 900 degrees C to precipitate Si quantum dots (Si-QD) in a-Si layers. HFCV measurements of the as-deposited and annealed films in metal-insulator-semiconductor (MIS) structures show hysterisis in C-V curves. The hysteresis in the as-deposited films and annealed films is attributed to charge trapping in Si-dangling bonds in a-Si layer and in Si-QD respectively. The charge trapping density in Si-QD increases with temperature while the interface defects density (D(it)) remains constant.
NASA Astrophysics Data System (ADS)
Ambrico, Paolo F.; Ambrico, Marianna; Schiavulli, Luigi; De Benedictis, Santolo
2014-07-01
The charge trapping effect due to the exposure of alumina surfaces to plasma has been studied in a volume dielectric barrier discharge (DBD) in Ar and He noble gases. The long lasting charge trapping of alumina dielectric plates, used as barriers in DBDs, is evidenced by an ex situ thermoluminescence (TL) experiment performed with a standard and a custom two-dimensional (2D)-TL apparatus. The spatial density of trapped surface charges is found to be strongly correlated to the plasma morphology, and the surface spatial memory lasted for several minutes to hours after plasma exposure. In the case of Ar, the plasma channel impact signature on the surface shows a higher equivalent radiation dose with respect to the surface plasma wave and the post-discharge species signature. As a consequence, for the development of discharges, inside the dielectric surface the availability of lower energy trapped electrons is larger in the first region of plasma impact. The reported spatial memory increases the likelihood of the occurrence of plasma filaments in the same position in different runs. In He plasmas, the dielectric barrier shows an almost uniform distribution of trapped charges, meaning that there is no preferred region for the development of the discharge. In all cases a slight asymmetry was shown in the direction of the gas flow. This can be interpreted as being due to the long-living species moving in the direction of the gas flow, corresponding with the TL side experiment on the sample exposed to the plasma afterglow. The maximum values and the integral of the 2D-TL images showed a linear relation with the total charge per ac cycle, corresponding with findings for the TL glow curve. In conclusion, 2D-TL images allow the retrieval of information regarding the plasma surface interaction such as the plasma morphology, trap sites and their activation temperature.
NASA Astrophysics Data System (ADS)
Maslyanchuk, O. L.; Solovan, M. M.; Brus, V. V.; Kulchynsky, V. V.; Maryanchuk, P. D.; Fodchuk, I. M.; Gnatyuk, V. A.; Aoki, T.; Potiriadis, C.; Kaissas, Y.
2017-05-01
The charge transport mechanism and spectrometric properties of the X-ray and γ-ray detectors, fabricated by the deposition of molybdenum oxide thin films onto semi-insulating p-CdTe crystals were studied. The current transport processes in the Mo-MoOx/p-CdTe/MoOx-Mo structure are well described in the scope of the carrier's generation in the space-charge region and the space-charge-limited current models. The lifetime of charge carriers, the energy of hole traps, and the density of discrete trapping centers were determined from the comparison of the experimental data and calculations. Spectrometric properties of Mo-MoOx/p-CdTe/MoOx-Mo structures were also investigated. It is shown that the investigated heterojunctions have demonstrated promising characteristics for practical application in X-ray and γ-ray detector fabrication.
Crystal step edges can trap electrons on the surfaces of n-type organic semiconductors.
He, Tao; Wu, Yanfei; D'Avino, Gabriele; Schmidt, Elliot; Stolte, Matthias; Cornil, Jérôme; Beljonne, David; Ruden, P Paul; Würthner, Frank; Frisbie, C Daniel
2018-05-30
Understanding relationships between microstructure and electrical transport is an important goal for the materials science of organic semiconductors. Combining high-resolution surface potential mapping by scanning Kelvin probe microscopy (SKPM) with systematic field effect transport measurements, we show that step edges can trap electrons on the surfaces of single crystal organic semiconductors. n-type organic semiconductor crystals exhibiting positive step edge surface potentials display threshold voltages that increase and carrier mobilities that decrease with increasing step density, characteristic of trapping, whereas crystals that do not have positive step edge surface potentials do not have strongly step density dependent transport. A device model and microelectrostatics calculations suggest that trapping can be intrinsic to step edges for crystals of molecules with polar substituents. The results provide a unique example of a specific microstructure-charge trapping relationship and highlight the utility of surface potential imaging in combination with transport measurements as a productive strategy for uncovering microscopic structure-property relationships in organic semiconductors.
Time-resolved electric force microscopy of charge traps in polycrystalline pentacene films
NASA Astrophysics Data System (ADS)
Jaquith, Michael; Muller, Erik; Marohn, John
2006-03-01
The microscopic mechanisms by which charges trap in organic electronic materials are poorly understood. Muller and Marohn recently showed that electric force microscopy (EFM) can be used to image trapped charge in working pentacene thin-film transistors [E. M. Muller et al, Adv. Mater. 17 1410 (2005)]. We have extended their work by imaging trapped charge in pentacene films with much larger grains. In contrast to the previous study in which charge was found to trap inhomogeneously throughout the transistor gap, we find microscopic evidence for a new trapping mechanism in which charges trap predominantly at the pentacene/metal interface in large-grained devices. We have also made localized measurements of the trap growth over time by performing pulsed-gate EFM experiments. Integrated-rate kinetics data supports a charge trap mechanism which is second order in holes, e.g., holes trap in pairs, although the charge-trapping rate appears to depend on gate voltage.
Charge Carrier Dynamics in Cs2AgBiBr6 Double Perovskite
2018-01-01
Double perovskites, comprising two different cations, are potential nontoxic alternatives to lead halide perovskites. Here, we characterized thin films and crystals of Cs2AgBiBr6 by time-resolved microwave conductance (TRMC), which probes formation and decay of mobile charges upon pulsed irradiation. Optical excitation of films results in the formation of charges with a yield times mobility product, φΣμ > 1 cm2/Vs. On excitation of millimeter-sized crystals, the TRMC signals show, apart from a fast decay, a long-lived tail. Interestingly, this tail is dominant when exciting close to the bandgap, implying the presence of mobile charges with microsecond lifetimes. From the temperature and intensity dependence of the TRMC signals, we deduce a shallow trap state density of around 1016/cm3 in the bulk of the crystal. Despite this high concentration, trap-assisted recombination of charges in the bulk appears to be slow, which is promising for photovoltaic applications. PMID:29545908
NASA Astrophysics Data System (ADS)
Joyce, Hannah J.; Baig, Sarwat A.; Parkinson, Patrick; Davies, Christopher L.; Boland, Jessica L.; Tan, H. Hoe; Jagadish, Chennupati; Herz, Laura M.; Johnston, Michael B.
2017-06-01
Bare unpassivated GaAs nanowires feature relatively high electron mobilities (400-2100 cm2 V-1 s-1) and ultrashort charge carrier lifetimes (1-5 ps) at room temperature. These two properties are highly desirable for high speed optoelectronic devices, including photoreceivers, modulators and switches operating at microwave and terahertz frequencies. When engineering these GaAs nanowire-based devices, it is important to have a quantitative understanding of how the charge carrier mobility and lifetime can be tuned. Here we use optical-pump-terahertz-probe spectroscopy to quantify how mobility and lifetime depend on the nanowire surfaces and on carrier density in unpassivated GaAs nanowires. We also present two alternative frameworks for the analysis of nanowire photoconductivity: one based on plasmon resonance and the other based on Maxwell-Garnett effective medium theory with the nanowires modelled as prolate ellipsoids. We find the electron mobility decreases significantly with decreasing nanowire diameter, as charge carriers experience increased scattering at nanowire surfaces. Reducing the diameter from 50 nm to 30 nm degrades the electron mobility by up to 47%. Photoconductivity dynamics were dominated by trapping at saturable states existing at the nanowire surface, and the trapping rate was highest for the nanowires of narrowest diameter. The maximum surface recombination velocity, which occurs in the limit of all traps being empty, was calculated as 1.3 × 106 cm s-1. We note that when selecting the optimum nanowire diameter for an ultrafast device, there is a trade-off between achieving a short lifetime and a high carrier mobility. To achieve high speed GaAs nanowire devices featuring the highest charge carrier mobilities and shortest lifetimes, we recommend operating the devices at low charge carrier densities.
NASA Astrophysics Data System (ADS)
Hourdakis, E.; Koutsoureli, M.; Papaioannou, G.; Nassiopoulou, A. G.
2018-06-01
Barrier-type anodic alumina thin films are interesting for use in high capacitance density metal-insulator-metal capacitors due to their excellent dielectric properties at small thickness. This thickness is easily controlled by the anodization voltage. In previous papers we studied the main parameters of interest of the Al/barrier-type anodic alumina/Al structure for use in RF applications and showed the great potential of barrier-type anodic alumina in this respect. In this paper, we investigated in detail charging/discharging processes and leakage current of the above dielectric material. Two different sets of metal-insulator-metal capacitors were studied, namely, with the top Al electrode being either e-gun deposited or sputtered. The dielectric constant of the barrier-type anodic alumina was found at 9.3. Low leakage current was observed in all samples studied. Furthermore, depending on the film thickness, field emission following the Fowler-Nordheim mechanism was observed above an applied electric field. Charging of the anodic dielectric was observed, occurring in the bulk of the anodic layer. The stored charge was of the order of few μC/cm2 and the calculated trap density ˜2 × 1018 states/cm3, the most probable origin of charge traps being, in our opinion, positive electrolyte ions trapped in the dielectric during anodization. We do not think that oxygen vacancies play an important role, since their existence would have a more important impact on the leakage current characteristics, such as resistive memory effects or significant changes during annealing, which were not observed. Finally, discharging characteristic times as high as 5 × 109 s were measured.
NASA Astrophysics Data System (ADS)
Beilis, I. I.; Keidar, M.; Boxman, R. L.; Goldsmith, S.
1999-02-01
The objective of the present work was to determine the influence of positive bias on plasma and macroparticle (MP) flow in curved magnetized plasma ducts. The plasma bulk and sheath regions were analyzed. In the plasma bulk, the current density and electrical field component normal to the wall were obtained and used as boundary conditions for the near wall sheath region. In the sheath, a nonstationary model for MP charging and motion was developed. The solution of the hydrodynamic equations in the plasma when a positive bias is applied to the wall result in a radial electrical current. The electric field in the plasma bulk is generated by the separation between the magnetically confined electrons, and the ions, which are thrown outwards by the centrifugal force. The field increases with increasing positive bias. It was shown that MPs traveling in the sheath accumulate a charge which depends on the potential distribution, in contrast to MP charging in the quasineutral plasma where the charge depends on plasma density and electron temperature. MP trapping in the near-wall sheath was found. MPs may move in the sheath region along the wall by a repetitive process of electrostatic attraction to the wall, mechanical reflection and neutralization, followed by MP charging and attraction, etc. For example, titanium MPs with a radius less than 0.4 μm and with a velocity component normal to the wall of about 20 m/s are trapped if the sheath potential drop exceeds 20 V. It was obtained that the MP transmission fraction through filter decreases by more than few orders of magnitude due to the trapping effect when a bias potential of +100 V is applied between the wall and the plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Ho-Myoung; Kim, Hee-Dong; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr
Graphical abstract: The degradation tendency extracted by CP technique was almost the same in both the bulk-type and TFT-type cells. - Highlights: • D{sub it} is directly investigated from bulk-type and TFT-type CTF memory. • Charge pumping technique was employed to analyze the D{sub it} information. • To apply the CP technique to monitor the reliability of the 3D NAND flash. - Abstract: The energy distribution and density of interface traps (D{sub it}) are directly investigated from bulk-type and thin-film transistor (TFT)-type charge trap flash memory cells with tunnel oxide degradation, under program/erase (P/E) cycling using a charge pumping (CP)more » technique, in view of application in a 3-demension stackable NAND flash memory cell. After P/E cycling in bulk-type devices, the interface trap density gradually increased from 1.55 × 10{sup 12} cm{sup −2} eV{sup −1} to 3.66 × 10{sup 13} cm{sup −2} eV{sup −1} due to tunnel oxide damage, which was consistent with the subthreshold swing and transconductance degradation after P/E cycling. Its distribution moved toward shallow energy levels with increasing cycling numbers, which coincided with the decay rate degradation with short-term retention time. The tendency extracted with the CP technique for D{sub it} of the TFT-type cells was similar to those of bulk-type cells.« less
NASA Astrophysics Data System (ADS)
Li, Qian; Li, Shilong; Yang, Dehua; Su, Wei; Wang, Yanchun; Zhou, Weiya; Liu, Huaping; Xie, Sishen
2017-10-01
The electrical characteristics of carbon nanotube (CNT) thin-film transistors (TFTs) strongly depend on the properties of the gate dielectric that is in direct contact with the semiconducting CNT channel materials. Here, we systematically investigated the dielectric effects on the electrical characteristics of fully printed semiconducting CNT-TFTs by introducing the organic dielectrics of poly(methyl methacrylate) (PMMA) and octadecyltrichlorosilane (OTS) to modify SiO2 dielectric. The results showed that the organic-modified SiO2 dielectric formed a favorable interface for the efficient charge transport in s-SWCNT-TFTs. Compared to single-layer SiO2 dielectric, the use of organic-inorganic hybrid bilayer dielectrics dramatically improved the performances of SWCNT-TFTs such as mobility, threshold voltage, hysteresis and on/off ratio due to the suppress of charge scattering, gate leakage current and charge trapping. The transport mechanism is related that the dielectric with few charge trapping provided efficient percolation pathways for charge carriers, while reduced the charge scattering. High density of charge traps which could directly act as physical transport barriers and significantly restrict the charge carrier transport and, thus, result in decreased mobile carriers and low device performance. Moreover, the gate leakage phenomenon is caused by conduction through charge traps. So, as a component of TFTs, the gate dielectric is of crucial importance to the manufacture of high quality TFTs from the aspects of affecting the gate leakage current and device operation voltage, as well as the charge carrier transport. Interestingly, the OTS-modified SiO2 allows to directly print horizontally aligned CNT film, and the corresponding devices exhibited a higher mobility than that of the devices with the hybrid PMMA/SiO2 dielectric although the thickness of OTS layer is only ˜2.5 nm. Our present result may provide key guidance for the further development of printed nanomaterial electronics.
Overflow of a dipolar exciton trap at high magnetic fields
NASA Astrophysics Data System (ADS)
Dietl, Sebastian; Kowalik-Seidl, Katarzyna; Hammer, Lukas; Schuh, Dieter; Wegscheider, Werner; Holleitner, Alexander; Wurstbauer, Ursula
We study the photoluminescence of trapped dipolar excitons (IX) in coupled double GaAs quantum wells at low temperatures and high magnetic fields. A voltage-tunable electrode geometry controls the strength of the quantum confined Stark effect and defines the lateral trapping potential. Furthermore, it enhances the IX lifetime, enabling them to cool down to lattice temperature. We show that a magnetic field in Faraday configuration effectively prevents the escape of unbound photogenerated charge carriers from the trap area, thus increasing the density of dipolar excitons. For large magnetic fields, we observe an overflow of the IX trap and an effectively suppressed quantum confined Stark effect. We acknowledge financial support by the German Excellence Initiative via the Nanosystems Initiative Munich (NIM).
NASA Astrophysics Data System (ADS)
Rok Kim, Kyeong; You, Joo Hyung; Dal Kwack, Kae; Kim, Tae Whan
2010-10-01
Unique multibit NAND polycrystalline silicon-oxide-silicon nitride-oxide-silicon (SONOS) memory cells utilizing a separated control gate (SCG) were designed to increase memory density. The proposed NAND SONOS memory device based on a SCG structure was operated as two bits, resulting in an increase in the storage density of the NVM devices in comparison with conventional single-bit memories. The electrical properties of the SONOS memory cells with a SCG were investigated to clarify the charging effects in the SONOS memory cells. When the program voltage was supplied to each gate of the NAND SONOS flash memory cells, the electrons were trapped in the nitride region of the oxide-nitride-oxide layer under the gate to supply the program voltage. The electrons were accumulated without affecting the other gate during the programming operation, indicating the absence of cross-talk between two trap charge regions. It is expected that the inference effect will be suppressed by the lower program voltage than the program voltage of the conventional NAND flash memory. The simulation results indicate that the proposed unique NAND SONOS memory cells with a SCG can be used to increase memory density.
Time Resolved Microscopy of Charge Trapping in Polycrystalline Pentacene
NASA Astrophysics Data System (ADS)
Jaquith, Michael; Muller, Erik; Marohn, John
2007-03-01
The microscopic mechanisms by which charges trap in organic electronic materials are poorly understood. Muller and Marohn recently showed that electric force microscopy (EFM) can be used to image trapped charge in working pentacene thin-film transistors [E. M. Muller et al., Adv. Mater. 17 1410 (2005)]. We have made a new discovery by imaging trapped charge in pentacene films with much larger grains. In contrast to the previous study in which charge was found to trap inhomogeneously throughout the transistor gap, we find microscopic evidence for a new trapping mechanism in which charges trap predominantly at the pentacene/metal interface in large-grained devices. We conclude that at least two charge trapping mechanisms are at play in polycrystalline pentacene. We have made localized measurements of the trap growth over time by performing pulsed-gate EFM experiments. Trap formation is not instantaneous, taking up to a second to complete. Furthermore, the charge-trapping rate depends strongly on gate voltage (or hole concentration). This kinetics data is consistent with the hypothesis that traps form by chemical reaction.
NASA Astrophysics Data System (ADS)
Huang, Wei; Shi, Wei; Han, Shijiao; Yu, Junsheng
2013-05-01
Hysteresis mechanism of pentacene organic field-effect transistors (OFETs) with polyvinyl alcohol (PVA) and/or polymethyl methacrylate (PMMA) dielectrics is studied. Through analyzing the electrical characteristics of OFETs with various PVA/PMMA arrangements, it shows that charge, which is trapped in PVA bulk and at the interface of pentacene/PVA, is one of the origins of hysteresis. The results also show that memory window is proportional to both trap amount in PVA and charge density at the gate/PVA or PVA/pentacene interfaces. Hence, the controllable memory window of around 0 ˜ 10 V can be realized by controlling the thickness and combination of triple-layer polymer dielectrics.
Space charge characteristics of fluorinated polyethylene: Different effects of fluorine and oxygen
NASA Astrophysics Data System (ADS)
Zhao, Ni; Nie, Yongjie; Li, Shengtao
2018-04-01
Direct fluorination are proved having obvious effect on space charge characteristics of polyethylene. It is believed that fluorine has a positive effect on suppressing space charge injection while oxygen impurity has a negative effect. However, the mechanism for the opposite effect of fluorine and oxygen is still not clear. In this paper, the different effects of fluorine and oxygen on space charge characteristics of fluorinated low density polyethylene (LDPE) are investigated on the basis of dielectric property, chemical constitutes and trap performance of surface fluorinated layers. The results show that direct fluorination has obvious effect on chemical constitutes and dielectric properties of surface fluorinated layer. Introduced fluorine is the main factor for suppressing charge injection from the electrodes, because it seriously changes the chemical constitutes and further the trap properties of the surface fluorinated layer. While introduction of oxygen results in heterocharges and makes space charge distribution complex, due to the ionization of generated small groups like C=O containing groups. Moreover, direct fluorination will result in cleavage of some LDPE molecules whatever there is oxygen impurity or not.
NASA Astrophysics Data System (ADS)
Guo, Qingxun; Yang, Dezhi; Chen, Jiangshan; Qiao, Xianfeng; Ahamad, Tansir; Alshehri, Saad M.; Ma, Dongge
2017-03-01
A high performance tandem organic light-emitting diode (OLED) is realized by employing a C70/C70:pentacene/pentacene organic heterojunction as the efficient charge generation layer (CGL). Not only more than two time enhancement of external quantum efficiency but also significant improvement in both power efficiency and lifetime are well achieved. The mechanism investigations find that the electron injection from the CGL to the adjacent electron transport layer (ETL) in tandem devices is injection rate-limited due to the high interface energy barrier between the CGL and the ETL. By the capacitance-frequency (C-F) and low temperature current density-voltage (J-V) characteristic analysis, we confirm that the electron transport is a space-charge-limited current process with exponential trap distribution. These traps are localized states below the lowest unoccupied molecular orbital edge inside the gap and would be filled with the upward shift of the Fermi level during the n-doping process. Furthermore, both the trap density (Ht) and the activation energy (Ea) could be carefully worked out through low temperature J-V measurements, which is very important for developing high performance tandem OLEDs.
NASA Astrophysics Data System (ADS)
Lagger, P.; Steinschifter, P.; Reiner, M.; Stadtmüller, M.; Denifl, G.; Naumann, A.; Müller, J.; Wilde, L.; Sundqvist, J.; Pogany, D.; Ostermaier, C.
2014-07-01
The high density of defect states at the dielectric/III-N interface in GaN based metal-insulator-semiconductor structures causes tremendous threshold voltage drifts, ΔVth, under forward gate bias conditions. A comprehensive study on different dielectric materials, as well as varying dielectric thickness tD and barrier thickness tB, is performed using capacitance-voltage analysis. It is revealed that the density of trapped electrons, ΔNit, scales with the dielectric capacitance under spill-over conditions, i.e., the accumulation of a second electron channel at the dielectric/AlGaN barrier interface. Hence, the density of trapped electrons is defined by the charging of the dielectric capacitance. The scaling behavior of ΔNit is explained universally by the density of accumulated electrons at the dielectric/III-N interface under spill-over conditions. We conclude that the overall density of interface defects is higher than what can be electrically measured, due to limits set by dielectric breakdown. These findings have a significant impact on the correct interpretation of threshold voltage drift data and are of relevance for the development of normally off and normally on III-N/GaN high electron mobility transistors with gate insulation.
NASA Astrophysics Data System (ADS)
Racko, Juraj; Benko, Peter; Mikolášek, Miroslav; Granzner, Ralf; Kittler, Mario; Schwierz, Frank; Harmatha, Ladislav; Breza, Juraj
2017-02-01
The contribution employs electrical simulation to assess the effect of the distribution of aluminium in the metal/GaN/AlGaN heterostructure on the leakage current. The heterostructure is characterized by a high density of traps causing an increase of the leakage current consisting of the thermionic emission component and of a non-negligible contribution of trap-assisted tunnelling. The leakage current is highly sensitive to the bending of the potential barrier Ec in the subsurface region of the GaN/AlGaN structure. The band bending is strongly affected by the sheet bound charge at the first GaN/AlGaN/GaN interface due to spontaneous and piezoelectric polarization. The overall charge depends on the concentration of Al, the distribution of Al at the first heterointerface having a strong effect on the formation of the potential barrier.
Developing Density of Laser-Cooled Neutral Atoms and Molecules in a Linear Magnetic Trap
NASA Astrophysics Data System (ADS)
Velasquez, Joe, III; Walstrom, Peter; di Rosa, Michael
2013-05-01
In this poster we show that neutral particle injection and accumulation using laser-induced spin flips may be used to form dense ensembles of ultracold magnetic particles, i.e., laser-cooled paramagnetic atoms and molecules. Particles are injected in a field-seeking state, are switched by optical pumping to a field-repelled state, and are stored in the minimum-B trap. The analogous process in high-energy charged-particle accumulator rings is charge-exchange injection using stripper foils. The trap is a linear array of sextupoles capped by solenoids. Particle-tracking calculations and design of our linear accumulator along with related experiments involving 7Li will be presented. We test these concepts first with atoms in preparation for later work with selected molecules. Finally, we present our preliminary results with CaH, our candidate molecule for laser cooling. This project is funded by the LDRD program of Los Alamos National Laboratory.
Theory of space charge limited currents in films and nanowires with dopants
NASA Astrophysics Data System (ADS)
Zhang, Xiaoguang; Pantelides, Sokrates
2015-03-01
We show that proper description of the space charge limited currents (SCLC) in a homogeneous bulk material must account fully for the effect of the dopants and the interplay between dopants and traps. The sharp rise in the current at the trap-filled-limit (TFL) is partially mitigated by the dopant energy levels and the Frenkel effect, namely the lowering of the ionization energy by the electric field, which is screened by the free carriers. In nanowires, lack of effective screening causes the trap occupation at small biases to reach a high level comparable to the TFL in bulk. This explains the high current density in SCLCs observed in nanowires. This work is supported by the LDRD program at ORNL. Portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazlov, N., E-mail: n.bazlov@spbu.ru; Pilipenko, N., E-mail: nelly.pilipenko@gmail.com; Vyvenko, O.
2016-06-17
AlN films of different thicknesses were deposited on n-Si (100) substrates by reactive radio frequency (rf) magnetron sputtering. Dependences of structure and electrical properties on thickness of deposited films were researched. The structures of the films were analyzed with scanning electron microscopy (SEM) and with transmitting electron microscopy (TEM). Electrical properties of the films were investigated on Au-AlN-(n-Si) structures by means of current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) techniques. Electron microscopy investigations had shown that structure and chemical composition of the films were thickness stratified. Near silicon surface layer was amorphous aluminum oxide one contained trapsmore » of positive charges with concentration of about 4 × 10{sup 18} cm{sup −3}. Upper layers were nanocrystalline ones consisted of both wurzite AlN and cubic AlON nanocrystals. They contained traps both positive and negative charges which were situated within 30 nm distance from silicon surface. Surface densities of these traps were about 10{sup 12} cm{sup −2}. Electron traps with activation energies of (0.2 ÷ 0.4) eV and densities of about 10{sup 10} cm{sup −2} were revealed on interface between aluminum oxide layer and silicon substrate. Their densities varied weakly with the film thickness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babadi, A. S., E-mail: aein.shiri-babadi@eit.lth.se; Lind, E.; Wernersson, L. E.
A qualitative analysis on capacitance-voltage and conductance data for high-κ/InAs capacitors is presented. Our measured data were evaluated with a full equivalent circuit model, including both majority and minority carriers, as well as interface and border traps, formulated for narrow band gap metal-oxide-semiconductor capacitors. By careful determination of interface trap densities, distribution of border traps across the oxide thickness, and taking into account the bulk semiconductor response, it is shown that the trap response has a strong effect on the measured capacitances. Due to the narrow bandgap of InAs, there can be a large surface concentration of electrons and holesmore » even in depletion, so a full charge treatment is necessary.« less
NASA Astrophysics Data System (ADS)
Nour, Mohamed
Constructing an effective statistical model and a simulation tool that can predict the phenomenon of random telegraph signals (RTS) is the objective of this work. The continuous scaling down of metal oxide -- semiconductor field effect transistors (MOSFETs) makes charging/discharging traps(s) located at the silicon/silicon dioxide interface or deep in the oxide bulk by mobile charge(s) a more pronounced problem for both analog and digital applications. The intent of this work is to develop an RTS statistical model and a simulation tool based on first principles and supported by extensive experimental data. The newly developed RTS statistical model and its simulation tool should be able to replicate and predict the RTS in time and frequency domains. First, room temperature RTS measurements are performed which provide limited information about the trap. They yield the extraction of some trap and RTS characteristics such as average capture and emission times associated with RTS traces, trap position in the oxide with respect to the Si/SiO 2 interface and along the channel with respect to the source, capture cross section, and trap energies in the Si and SiO2 band -- gaps. Variable temperature measurements, on the other hand, yield much more valuable information. Variable temperature RTS measurements from room temperature down to 80 K were performed, with the MOSFET biased from threshold voltage to strong inversion, in the linear and saturation regions. Variable temperature RTS measurements yield the extraction of trap characteristics such as capture cross -- section prefactor, capture and emission activation energies, change in entropy and enthalpy, and relaxation energy associated with a trap from which the nature and origin of a defect center can be identified. The newly developed Random Telegraph Signals Simulation (RTSSIM) is based on several physical principles and mechanisms e.g. (1) capturing and emitting a mobile charge from and to the channel is governed by phonon- assisted- tunneling, (2) traps only within a few kBT of the Fermi energy level are considered electrically active, (3) trap density is taken as U -- shaped in energy in the silicon band-gap, (4) device scalability is accounted for, (5) and temperature dependence of all parameters is considered. RTSSIM reconstructs the RTS traces in time domain from which the power spectral density (PSD) is evaluated. If there is 20 or more active traps, RTSSIM evaluates the PSD from the superposition of the RTS spectra. RTSSIM extracts RTS and trap characteristics from the simulated RTS data and outputs them to MS Excel files for further analyses and study. The novelty of this work is: (1) it is the first time quantum trap states have been accurately assigned to each switching level in a complex RTS corresponding to dependently and independently interacting traps, (2) new physics-based measurement-driven model and simulation tool has been developed for RTS phenomenon in a MOSFET, (3) and it is the first time a species in SiO2 responsible for RTS has been identified through time-domain measurements and extensive analysis using four trap characteristics at the same time.
NASA Astrophysics Data System (ADS)
Hafsi, B.; Boubaker, A.; Guerin, D.; Lenfant, S.; Kalboussi, A.; Lmimouni, K.
2017-02-01
Organic field-effect transistors based on poly{[ N, N0- bis(2-octyldodecyl)- naphthalene-1,4,5,8- bis(dicarboximide)-2,6-diyl]-alt-5,50-(2,20-bithiophene)}, [P(NDI2OD-T2)n], were fabricated and characterized. The effect of octadecyltrichlorosilane (OTS) a self-assembled monolayer (SAM) grafted on to a SiO2 gate dielectric was investigated. A significant improvement of the charge mobility ( μ), up to 0.22 cm2/V s, was reached thanks to the OTS treatment. Modifying some technological parameters relating to fabrication, such as solvents, was also studied. We have analyzed the electrical properties of these thin-film transistors by using a two-dimensional drift-diffusion simulator, Integrated System Engineering-Technology Computer Aided Design (ISE-TCAD®). We studied the fixed surface charges at the organic semiconductor/oxide interface and the bulk traps effect. The dependence of the threshold voltage on the density and energy level of the trap states has also been considered. We finally found a good agreement between the output and transfer characteristics for experimental and simulated data.
NASA Astrophysics Data System (ADS)
Han, C. Y.; Qian, L. X.; Leung, C. H.; Che, C. M.; Lai, P. T.
2013-07-01
By including the generation-recombination process of charge carriers in conduction channel, a model for low-frequency noise in pentacene organic thin-film transistors (OTFTs) is proposed. In this model, the slope and magnitude of power spectral density for low-frequency noise are related to the traps in the gate dielectric and accumulation layer of the OTFT for the first time. The model can well fit the measured low-frequency noise data of pentacene OTFTs with HfO2 or HfLaO gate dielectric, which validates this model, thus providing an estimate on the densities of traps in the gate dielectric and accumulation layer. It is revealed that the traps in the accumulation layer are much more than those in the gate dielectric, and so dominate the low-frequency noise of pentacene OTFTs.
Low temperature solution processed high-κ ZrO2 gate dielectrics for nanoelectonics
NASA Astrophysics Data System (ADS)
Kumar, Arvind; Mondal, Sandip; Rao, K. S. R. Koteswara
2016-05-01
The high-κ gate dielectrics, specifically amorphous films offer salient features such as exceptional mechanical flexibility, smooth surfaces and better uniformity associated with low leakage current density. In this work, ∼35 nm thick amorphous ZrO2 films were deposited on silicon substrate at low temperature (300 °C, 1 h) from facile spin-coating method and characterized by various analytical techniques. The X-ray diffraction and X-ray photoelectron spectroscopy reveal the formation of amorphous phase ZrO2, while ellipsometry analysis together with the Atomic Force Microscope suggest the formation of dense film with surface roughness of 1.5 Å, respectively. The fabricated films were integrated in metal-oxide-semiconductor (MOS) structures to check the electrical capabilities. The oxide capacitance (Cox), flat band capacitance (CFB), flat band voltage (VFB), dielectric constant (κ) and oxide trapped charges (Qot) extracted from high frequency (1 MHz) C-V curve are 186 pF, 104 pF, 0.37 V, 15 and 2 × 10-11 C, respectively. The small flat band voltage 0.37 V, narrow hysteresis and very little frequency dispersion between 10 kHz-1 MHz suggest an excellent a-ZrO2/Si interface with very less trapped charges in the oxide. The films exhibit a low leakage current density 4.7 × 10-9 A/cm2 at 1 V. In addition, the charge transport mechanism across the MOSC is analyzed and found to have a strong bias dependence. The space charge limited conduction mechanism is dominant in the high electric field region (1.3-5 V) due to the presence of traps, while the trap-supported tunneling is prevailed in the intermediate region (0.35-1.3 V). Low temperature solution processed ZrO2 thin films obtained are of high quality and find their importance as a potential dielectric layer on Si and polymer based flexible electronics.
NASA Astrophysics Data System (ADS)
Lu, Wenjuan; Dai, Yuehua; Wang, Feifei; Yang, Fei; Ma, Chengzhi; Zhang, Xu; Jiang, Xianwei
2017-12-01
With the growing application of high-k dielectrics, the interface between HfO2 and Al2O3 play a crucial role in CTM devices. To clearly understand the interaction of the HfO-AlO interface at the atomic and electronic scale, the bonding feature, electronic properties and charge localized character of c- HfO2 (0 0 1)/α-Al2O3 (1 -1 0 2) interface has been investigated by first principle calculations. The c- HfO2 (0 0 1)/α-Al2O3 (1 -1 0 2) interface has adhesive energy about -1.754 J/m2, suggesting that this interface can exist stably. Through analysis of Bader charge and charge density difference, the intrinsic interfacial gap states are mainly originated from the OII and OIII types oxygen atoms at the interface, and only OIII type oxygen atoms can localized electrons effectively and are provided with good reliability during P/E cycles, which theoretically validate the experimental results that HfO2/Al2O3 multi-layered charge trapping layer can generate more effective traps in memory device. Furthermore, the influence of interfacial gap states during P/E cycles in the defective interface system have also been studied, and the results imply that defective system displays the degradation on the reliability during P/E cycles, while, the charge localized ability of interfacial states is stronger than intrinsic oxygen vacancy in the trapping layer. Besides, these charge localized characters are further explained by the analysis of the density of states correspondingly. In sum, our results compare well with similar experimental observations in other literatures, and the study of the interfacial gap states in this work would facilitate further development of interface passivation.
2017-01-01
We perform a quantitative analysis of the trap density of states (trap DOS) in PbS quantum dot field-effect transistors (QD-FETs), which utilize several polymer gate insulators with a wide range of dielectric constants. With increasing gate dielectric constant, we observe increasing trap DOS close to the lowest unoccupied molecular orbital (LUMO) of the QDs. In addition, this increase is also consistently followed by broadening of the trap DOS. We rationalize that the increase and broadening of the spectral trap distribution originate from dipolar disorder as well as polaronic interactions, which are appearing at strong dielectric polarization. Interestingly, the increased polaron-induced traps do not show any negative effect on the charge carrier mobility in our QD devices at the highest applied gate voltage, giving the possibility to fabricate efficient low-voltage QD devices without suppressing carrier transport. PMID:28084725
NASA Astrophysics Data System (ADS)
Chen, Zuhui; Jie, Bin B.; Sah, Chih-Tang
2008-11-01
Steady-state Shockley-Read-Hall kinetics is employed to explore the high concentration effect of neutral-potential-well interface traps on the electron-hole recombination direct-current current-voltage (R-DCIV) properties in metal-oxide-silicon field-effect transistors. Extensive calculations include device parameter variations in neutral-trapping-potential-well electron interface-trap density NET (charge states 0 and -1), dopant impurity concentration PIM, oxide thickness Xox, forward source/drain junction bias VPN, and transistor temperature T. It shows significant distortion of the R-DCIV lineshape by the high concentrations of the interface traps. The result suggests that the lineshape distortion observed in past experiments, previously attributed to spatial variation in surface impurity concentration and energy distribution of interface traps in the silicon energy gap, can also arise from interface-trap concentration along surface channel region.
Modeling carbonaceous particle formation in an argon graphite cathode dc discharge
NASA Astrophysics Data System (ADS)
Michau, A.; Lombardi, G.; Colina Delacqua, L.; Redolfi, M.; Arnas, C.; Bonnin, X.; Hassouni, K.
2010-12-01
We develop a model for the nucleation, growth and transport of carbonaceous dust particles in a non-reactive gas dc discharge where the carbon source is provided by cathode sputtering. We consider only the initial phase of the discharge when the dust charge density remains small with respect to the electron density. We find that an electric field reversal at the entrance of the negative glow region promotes trapping of negatively charged clusters and dust particles, confining them for long times in the plasma and favoring molecular growth. An essential ingredient for this process is electron attachment, which negatively charges the initially neutral clusters. We perform sensitivity studies on several number parameters: size of the largest molecular edifice, sticking coefficient, etc.
Modeling electronic trap state distributions in nanocrystalline anatase
NASA Astrophysics Data System (ADS)
Le, Nam; Schweigert, Igor
The charge transport properties of nanocrystalline TiO2 films, and thus the catalytic performance of devices that incorporate them, are affected strongly by the spatial and energetic distribution of localized electronic trap states. Such traps may arise from a variety of defects: Ti interstitials, O vacancies, step edges at surfaces, and grain boundaries. We have developed a procedure for applying density functional theory (DFT) and density functional tight binding (DFTB) calculations to characterize distributions of localized states arising from multiple types of defects. We have applied the procedure to investigate how the morphologies of interfaces between pairs of attached anatase nanoparticles determine the energies of trap states therein. Our results complement recent experimental findings that subtle changes in the morphology of highly porous TiO2 aerogel networks can have a dramatic effect on catalytic performance, which was attributed to changes in the distribution of trap states. This work was supported by the U.S. Naval Research Laboratory via the National Research Council and by the Office of Naval Research through the U.S. Naval Research Laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Boya; Zhang, Guixin, E-mail: guixin@mail.tsinghua.edu.cn; Li, Chuanyang
2015-12-15
Surface charge accumulation on insulators under high dc voltage is a major factor that may lead to the reduction of insulation levels in gas insulated devices. In this paper, disc insulators made of Al{sub 2}O{sub 3}-filled epoxy resin were surface fluorinated using a F{sub 2}/N{sub 2} mixture (12.5% F{sub 2}) at 50 °C and 0.1 MPa for different durations of 15 min, 30 min and 60 min. A dc voltage was applied to the insulator for 30 min and the charge density on its surface was measured by an electrostatic probe. The results revealed significant lower surface charge densities on themore » fluorinated insulators in comparison with the original one. Surface conductivity measurements indicated a higher surface conductivity by over three orders of magnitude after fluorination, which would allow the charges to transfer along the surface and thus may suppress their accumulation. Further, attenuated total reflection infrared analysis and surface morphology observations of the samples revealed that the introduction of fluoride groups altered the surface physicochemical properties. These structure changes, especially the physical defects reduced the depth of charge traps in the surface layer, which was verified by the measurement of energy distributions of the electron and hole traps based on the isothermal current theory. The results in this paper demonstrate that fluorination can be a promising and effective method to suppress surface charge accumulation on epoxy insulators in gas insulated devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Guo Xing; Hatchtel, Jordan; Shen, Xiao
Here, we investigate negative-bias temperature instabilities in SiGe pMOSFETs with SiO 2/HfO 2 gate dielectrics. The activation energies we measured for interface-trap charge buildup during negative-bias temperature stress were lower for SiGe channel pMOSFETs with SiO 2/HfO 2 gate dielectrics and Si capping layers than for conventional Si channel pMOSFETs with SiO 2 gate dielectrics. Electron energy loss spectroscopy and scanning transmission electron microscopy images demonstrate that Ge atoms can diffuse from the SiGe layer into the Si capping layer, which is adjacent to the SiO 2/HfO 2 gate dielectric. Density functional calculations show that these Ge atoms reduce themore » strength of nearby Si-H bonds and that Ge-H bond energies are still lower, thereby reducing the activation energy for interface-trap generation for the SiGe devices. Moreover, activation energies for oxide-trap charge buildup during negative-bias temperature stress are similarly small for SiGe pMOSFETs with SiO 2/HfO 2 gate dielectrics and Si pMOSFETs with SiO 2 gate dielectrics, suggesting that, in both cases, the oxide-trap charge buildup likely is rate-limited by hole tunneling into the near-interfacial SiO 2.« less
Hydrogen treatment as a detergent of electronic trap states in lead chalcogenide nanoparticles
Vörös, Márton; Brawand, Nicholas P.; Galli, Giulia
2016-11-15
Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial formore » charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Lastly, our findings suggest that postsynthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films.« less
Dependence of Grain Size on the Performance of a Polysilicon Channel TFT for 3D NAND Flash Memory.
Kim, Seung-Yoon; Park, Jong Kyung; Hwang, Wan Sik; Lee, Seung-Jun; Lee, Ki-Hong; Pyi, Seung Ho; Cho, Byung Jin
2016-05-01
We investigated the dependence of grain size on the performance of a polycrystalline silicon (poly-Si) channel TFT for application to 3D NAND Flash memory devices. It has been found that the device performance and memory characteristics are strongly affected by the grain size of the poly-Si channel. Higher on-state current, faster program speed, and poor endurance/reliability properties are observed when the poly-Si grain size is large. These are mainly attributed to the different local electric field induced by an oxide valley at the interface between the poly-Si channel and the gate oxide. In addition, the trap density at the gate oxide interface was successfully measured using a charge pumping method by the separation between the gate oxide interface traps and traps at the grain boundaries in the poly-Si channel. The poly-Si channel with larger grain size has lower interface trap density.
Electron and hole transport in the organic small molecule α-NPD
NASA Astrophysics Data System (ADS)
Rohloff, R.; Kotadiya, N. B.; Crǎciun, N. I.; Blom, P. W. M.; Wetzelaer, G. A. H.
2017-02-01
Electron and hole transport properties of the organic small molecule N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine are investigated by space-charge-limited current measurements. The hole transport shows trap-free behavior with a mobility of 2.3 × 10-8 m2/Vs at vanishing carrier density and electric field. The electron transport, on the other hand, shows heavily trap-limited behavior, which leads to highly unbalanced transport. A trap concentration of 1.3 × 1024 m-3 was found by modeling the electron currents, similar to the universal trap concentration found in conjugated polymers. This indicates that electron trapping is a generic property of organic semiconductors, ranging from vacuum-deposited small-molecules to solution-processed conjugated polymers.
Local Time-Dependent Charging in a Perovskite Solar Cell.
Bergmann, Victor W; Guo, Yunlong; Tanaka, Hideyuki; Hermes, Ilka M; Li, Dan; Klasen, Alexander; Bretschneider, Simon A; Nakamura, Eiichi; Berger, Rüdiger; Weber, Stefan A L
2016-08-03
Efficient charge extraction within solar cells explicitly depends on the optimization of the internal interfaces. Potential barriers, unbalanced charge extraction, and interfacial trap states can prevent cells from reaching high power conversion efficiencies. In the case of perovskite solar cells, slow processes happening on time scales of seconds cause hysteresis in the current-voltage characteristics. In this work, we localized and investigated these slow processes using frequency-modulation Kelvin probe force microscopy (FM-KPFM) on cross sections of planar methylammonium lead iodide (MAPI) perovskite solar cells. FM-KPFM can map the charge density distribution and its dynamics at internal interfaces. Upon illumination, space charge layers formed at the interfaces of the selective contacts with the MAPI layer within several seconds. We observed distinct differences in the charging dynamics at the interfaces of MAPI with adjacent layers. Our results indicate that more than one process is involved in hysteresis. This finding is in agreement with recent simulation studies claiming that a combination of ion migration and interfacial trap states causes the hysteresis in perovskite solar cells. Such differences in the charging rates at different interfaces cannot be separated by conventional device measurements.
NASA Astrophysics Data System (ADS)
Shi, Yunzhou; Zhang, Li; Zhang, Jie; Yue, Zhenxing
2017-12-01
Mg0.95Ca0.05TiO3 (MCT) filled high density polyethylene (HDPE) composites were prepared by twin-screw extrusion followed by hot pressing technique. The thermally stimulated depolarization current (TSDC) measurement was performed to analyze the contribution of charge distribution and interfacial characteristics to the dielectric loss. TSDC spectra under different polarization conditions show that the introduction of ceramic fillers engenders shallow traps in the vicinity of ceramic-polymer interface, which hinders the injection of space charge from the electrode into the polymer matrix. In the composite materials applied to an external field, charges tend to be captured by these traps. The temperature dependence of relative permittivity and dielectric loss of the composites was measured, and a strong reliance of dielectric loss on temperature was observed. In the heating process, the release of charges accumulating at interfacial region is considered to contribute to the rise in dielectric loss with the increase of temperature.
Determination of intrinsic mobility of a bilayer oxide thin-film transistor by pulsed I-V method
NASA Astrophysics Data System (ADS)
Woo, Hyunsuk; Kim, Taeho; Hur, Jihyun; Jeon, Sanghun
2017-04-01
Amorphous oxide semiconductor thin-film transistors (TFT) have been considered as outstanding switch devices owing to their high mobility. However, because of their amorphous channel material with a certain level of density of states, a fast transient charging effect in an oxide TFT occurs, leading to an underestimation of the mobility value. In this paper, the effects of the fast charging of high-performance bilayer oxide semiconductor TFTs on mobility are examined in order to determine an accurate mobility extraction method. In addition, an approach based on a pulse I D -V G measurement method is proposed to determine the intrinsic mobility value. Even with the short pulse I D -V G measurement, a certain level of fast transient charge trapping cannot be avoided as long as the charge-trap start time is shorter than the pulse rising time. Using a pulse-amplitude-dependent threshold voltage characterization method, we estimated a correction factor for the apparent mobility, thus allowing us to determine the intrinsic mobility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Möller, Christian, E-mail: cmoeller@cismst.de; TU Ilmenau, Institut für Physik, Weimarer Str. 32, 98693 Ilmenau; Bartel, Til
Iron-boron (FeB) pairing is observed in the n-type region of a boron and phosphorus co-doped silicon sample which is unexpected from the FeB pair model of Kimerling and Benton. To explain the experimental data, the existing FeB pair model is extended by taking into account the electronic capture and emission rates at the interstitial iron (Fe{sub i}) trap level as a function of the charge carrier densities. According to this model, the charge state of the Fe{sub i} may be charged in n-type making FeB association possible. Further, FeB pair formation during illumination in p-type silicon is investigated. This permitsmore » the determination of the charge carrier density dependent FeB dissociation rate and in consequence allows to determine the acceptor concentration in the co-doped n-type silicon by lifetime measurement.« less
Electrical properties of radio-frequency sputtered HfO2 thin films for advanced CMOS technology
NASA Astrophysics Data System (ADS)
Sarkar, Pranab Kumar; Roy, Asim
2015-08-01
The Hafnium oxide (HfO2) high-k thin films have been deposited by radio frequency (rf) sputtering technique on p-type Si (100) substrate. The thickness, composition and phases of films in relation to annealing temperatures have been investigated by using cross sectional FE-SEM (Field Emission Scanning Electron Microscope) and grazing incidence x-ray diffraction (GI-XRD), respectively. GI-XRD analysis revealed that at annealing temperatures of 350°C, films phases change to crystalline from amorphous. The capacitance-voltage (C-V) and current-voltage (I-V) characteristics of the annealed HfO2 film have been studied employing Al/HfO2/p-Si metal-oxide-semiconductor (MOS) structures. The electrical properties such as dielectric constant, interface trap density and leakage current density have been also extracted from C-V and I-V Measurements. The value of dielectric constant, interface trap density and leakage current density of annealed HfO2 film is obtained as 23,7.57×1011eV-1 cm-2 and 2.7×10-5 Acm-2, respectively. In this work we also reported the influence of post deposition annealing onto the trapping properties of hafnium oxide and optimized conditions under which no charge trapping is observed into the dielectric stack.
Growth of Nanosized Single Crystals for Efficient Perovskite Light-Emitting Diodes.
Lee, Seungjin; Park, Jong Hyun; Nam, Yun Seok; Lee, Bo Ram; Zhao, Baodan; Di Nuzzo, Daniele; Jung, Eui Dae; Jeon, Hansol; Kim, Ju-Young; Jeong, Hu Young; Friend, Richard H; Song, Myoung Hoon
2018-04-24
Organic-inorganic hybrid perovskites are emerging as promising emitting materials due to their narrow full-width at half-maximum emissions, color tunability, and high photoluminescence quantum yields (PLQYs). However, the thermal generation of free charges at room temperature results in a low radiative recombination rate and an excitation-intensity-dependent PLQY, which is associated with the trap density. Here, we report perovskite films composed of uniform nanosized single crystals (average diameter = 31.7 nm) produced by introducing bulky amine ligands and performing the growth at a lower temperature. By effectively controlling the crystal growth, we maximized the radiative bimolecular recombination yield by reducing the trap density and spatially confining the charges. Finally, highly bright and efficient green emissive perovskite light-emitting diodes that do not suffer from electroluminescence blinking were achieved with a luminance of up to 55 400 cd m -2 , current efficiency of 55.2 cd A -1 , and external quantum efficiency of 12.1%.
NASA Astrophysics Data System (ADS)
Mohammadpour, Raheleh
2017-12-01
Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the anatase and rutile phase Fermi levels, with a higher electron affinity for anatase; this can result in a potential barrier in crystallite interfaces and the deterioration of electron mobility through mixed phase structures. Moreover, a higher density of shallow localized trap states below the conduction band with more depth (133 meV in anatase to 247 meV in 15% rutile phase) and also deep oxygen vacancy traps have been explored upon introducing the rutile phase. Based on our results, employing TiO2 nanotubes as just the electron transport medium in mixed crystalline phases can deteriorate the charge transport mechanism, however, in photocatalytic applications when both electrons and holes are present, a robust charge separation in crystalline anatase/rutile interphases will result in better performances.
Plausible carrier transport model in organic-inorganic hybrid perovskite resistive memory devices
NASA Astrophysics Data System (ADS)
Park, Nayoung; Kwon, Yongwoo; Choi, Jaeho; Jang, Ho Won; Cha, Pil-Ryung
2018-04-01
We demonstrate thermally assisted hopping (TAH) as an appropriate carrier transport model for CH3NH3PbI3 resistive memories. Organic semiconductors, including organic-inorganic hybrid perovskites, have been previously speculated to follow the space-charge-limited conduction (SCLC) model. However, the SCLC model cannot reproduce the temperature dependence of experimental current-voltage curves. Instead, the TAH model with temperature-dependent trap densities and a constant trap level are demonstrated to well reproduce the experimental results.
Understanding Trap Effects on Electrical Treeing Phenomena in EPDM/POSS Composites.
Du, Boxue; Su, Jingang; Tian, Meng; Han, Tao; Li, Jin
2018-05-31
POSS (polyhedral oligomeric silsesquioxane) provides an interesting alternative nano-silica and has the potential of superior dielectric properties to restrain electrical degradation. By incorporating POSS into EPDM to suppress electrical tree, one of precursors to dielectric failure, is promising to improve the lifetime of insulation materials. This paper focuses on the electrical treeing phenomena in EPDM/OVPOSS (ethylene propylene diene monomer/octavinyl-POSS) composites based on their physicochemical properties and trap distributions. ATR-IR and SEM characteristics are investigated to observe the chemical structure and physical dispersion of EPDM/OVPOSS composites. Electrical treeing characteristics are studied by the needle-plane electrode, and the trap level distributions are characterized by surface potential decay (SPD) tests. The results show that the 3 wt% EPDM/OVPOSS is more effective to restrain the electrical tree growth than the neat EPDM in this paper. It is indicated that the EPDM/OVPOSS with a filler content of 3 wt% introduces the largest energy level and trap density of deep trapped charges, which suppress the transportation of charge carriers injected from the needle tip and further prevent the degradation of polymer molecules. The polarity effects are obvious during the electrical treeing process, which is dependent on the trap level differences between positive and negative voltage.
Lee, Tae Hoon; Kim, Kwanpyo; Kim, Gwangwoo; ...
2017-02-27
Organic field-effect transistors have attracted much attention because of their potential use in low-cost, large-area, flexible electronics. High-performance organic transistors require a low density of grain boundaries in their organic films and a decrease in the charge trap density at the semiconductor–dielectric interface for efficient charge transport. In this respect, the role of the dielectric material is crucial because it primarily determines the growth of the film and the interfacial trap density. Here, we demonstrate the use of chemical vapor-deposited hexagonal boron nitride (CVD h-BN) as a scalable growth template/dielectric for high-performance organic field-effect transistors. The field-effect transistors based onmore » C60 films grown on single-layer CVD h-BN exhibit an average mobility of 1.7 cm 2 V –1 s –1 and a maximal mobility of 2.9 cm 2 V –1 s –1 with on/off ratios of 10 7. The structural and morphology analysis shows that the epitaxial, two-dimensional growth of C 60 on CVD h-BN is mainly responsible for the superior charge transport behavior. In conclusion, we believe that CVD h-BN can serve as a growth template for various organic semiconductors, allowing the development of large-area, high-performance flexible electronics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Tae Hoon; Kim, Kwanpyo; Kim, Gwangwoo
Organic field-effect transistors have attracted much attention because of their potential use in low-cost, large-area, flexible electronics. High-performance organic transistors require a low density of grain boundaries in their organic films and a decrease in the charge trap density at the semiconductor–dielectric interface for efficient charge transport. In this respect, the role of the dielectric material is crucial because it primarily determines the growth of the film and the interfacial trap density. Here, we demonstrate the use of chemical vapor-deposited hexagonal boron nitride (CVD h-BN) as a scalable growth template/dielectric for high-performance organic field-effect transistors. The field-effect transistors based onmore » C60 films grown on single-layer CVD h-BN exhibit an average mobility of 1.7 cm 2 V –1 s –1 and a maximal mobility of 2.9 cm 2 V –1 s –1 with on/off ratios of 10 7. The structural and morphology analysis shows that the epitaxial, two-dimensional growth of C 60 on CVD h-BN is mainly responsible for the superior charge transport behavior. In conclusion, we believe that CVD h-BN can serve as a growth template for various organic semiconductors, allowing the development of large-area, high-performance flexible electronics.« less
Kinetic energy offsets for multicharged ions from an electron beam ion source.
Kulkarni, D D; Ahl, C D; Shore, A M; Miller, A J; Harriss, J E; Sosolik, C E; Marler, J P
2017-08-01
Using a retarding field analyzer, we have measured offsets between the nominal and measured kinetic energy of multicharged ions extracted from an electron beam ion source (EBIS). By varying source parameters, a shift in ion kinetic energy was attributed to the trapping potential produced by the space charge of the electron beam within the EBIS. The space charge of the electron beam depends on its charge density, which in turn depends on the amount of negative charge (electron beam current) and its velocity (electron beam energy). The electron beam current and electron beam energy were both varied to obtain electron beams of varying space charge and these were related to the observed kinetic energy offsets for Ar 4+ and Ar 8+ ion beams. Knowledge of these offsets is important for studies that seek to utilize slow, i.e., low kinetic energy, multicharged ions to exploit their high potential energies for processes such as surface modification. In addition, we show that these offsets can be utilized to estimate the effective radius of the electron beam inside the trap.
Effects of trap density on drain current LFN and its model development for E-mode GaN MOS-HEMT
NASA Astrophysics Data System (ADS)
Panda, D. K.; Lenka, T. R.
2017-12-01
In this paper the drain current low-frequency noise (LFN) of E-mode GaN MOS-HEMT is investigated for different gate insulators such as SiO2, Al2O3/Ga2O3/GdO3, HfO2/SiO2, La2O3/SiO2 and HfO2 with different trap densities by IFM based TCAD simulation. In order to analyze this an analytical model of drain current low frequency noise is developed. The model is developed by considering 2DEG carrier fluctuations, mobility fluctuations and the effects of 2DEG charge carrier fluctuations on the mobility. In the study of different gate insulators it is observed that carrier fluctuation is the dominant low frequency noise source and the non-uniform exponential distribution is critical to explain LFN behavior, so the analytical model is developed by considering uniform distribution of trap density. The model is validated with available experimental data from literature. The effect of total number of traps and gate length scaling on this low frequency noise due to different gate dielectrics is also investigated.
NASA Astrophysics Data System (ADS)
Hu, Yaoqiao; San Yip, Pak; Tang, Chak Wah; Lau, Kei May; Li, Qiang
2018-04-01
Layered semiconductor molybdenum disulfide (MoS2) has recently emerged as a promising material for flexible electronic and optoelectronic devices because of its finite bandgap and high degree of gate control. Here, we report a hydrogen fluoride (HF) passivation technique for improving the carrier mobility and interface quality of chemical vapor deposited monolayer MoS2 on a SiO2/Si substrate. After passivation, the fabricated MoS2 back-gate transistors demonstrate a more than double improvement in average electron mobility, a reduced gate hysteresis gap of 3 V, and a low interface trapped charge density of ˜5.8 × 1011 cm-2. The improvements are attributed to the satisfied interface dangling bonds, thus a reduction of interface trap states and trapped charges. Surface x-ray photoelectron spectroscopy analysis and first-principles simulation were performed to verify the HF passivation effect. The results here highlight the necessity of a MoS2/dielectric passivation strategy and provides a viable route for enhancing the performance of MoS2 nano-electronic devices.
Effect of Fe{sub 3}O{sub 4} nanoparticles on positive streamer propagation in transformer oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Yuzhen, E-mail: yzlv@ncepu.edu.cn; School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206; Wang, Qi
Fe{sub 3}O{sub 4} nanoparticles with an average diameter of 10 nm were prepared and used to modify streamer characteristic of transformer oil. It was found that positive streamer propagation velocity in transformer oil-based Fe{sub 3}O{sub 4} nanofluid is greatly reduced by 51% in comparison with that in pure oil. The evolution of streamer shape is also dramatically affected by the presence of nanoparticles, changing from a tree-like shape with sharp branches in pure oil to a bush-like structure with thicker and denser branches in nanofluid. The TSC results reveal that the modification of Fe{sub 3}O{sub 4} nanoparticle can greatly increasemore » the density of shallow trap and change space charge distribution in nanofluid by converting fast electrons into slow electrons via trapping and de-trapping process in shallow traps. These negative space charges induced by nanoparticles greatly alleviate the electric field distortion in front of the positive streamer tip and significantly hinder the propagation of positive streamer.« less
NASA Astrophysics Data System (ADS)
Basile, A. F.; Cramer, T.; Kyndiah, A.; Biscarini, F.; Fraboni, B.
2014-06-01
Metal-oxide-semiconductor (MOS) transistors fabricated with pentacene thin films were characterized by temperature-dependent current-voltage (I-V) characteristics, time-dependent current measurements, and admittance spectroscopy. The channel mobility shows almost linear variation with temperature, suggesting that only shallow traps are present in the semiconductor and at the oxide/semiconductor interface. The admittance spectra feature a broad peak, which can be modeled as the sum of a continuous distribution of relaxation times. The activation energy of this peak is comparable to the polaron binding energy in pentacene. The absence of trap signals in the admittance spectra confirmed that both the semiconductor and the oxide/semiconductor interface have negligible density of deep traps, likely owing to the passivation of SiO2 before pentacene growth. Nevertheless, current instabilities were observed in time-dependent current measurements following the application of gate-voltage pulses. The corresponding activation energy matches the energy of a hole trap in SiO2. We show that hole trapping in the oxide can explain both the temperature and the time dependences of the current instabilities observed in pentacene MOS transistors. The combination of these experimental techniques allows us to derive a comprehensive model for charge transport in hybrid architectures where trapping processes occur at various time and length scales.
Glow plasma trigger for electron cyclotron resonance ion sources.
Vodopianov, A V; Golubev, S V; Izotov, I V; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu
2010-02-01
Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 micros and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10(12) cm(-3), required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T(e) approximately = 20 eV.
Ji, Hyunjin; Joo, Min-Kyu; Yi, Hojoon; Choi, Homin; Gul, Hamza Zad; Ghimire, Mohan Kumar; Lim, Seong Chu
2017-08-30
There is a general consensus that the carrier mobility in a field-effect transistor (FET) made of semiconducting transition-metal dichalcogenides (s-TMDs) is severely degraded by the trapping/detrapping and Coulomb scattering of carriers by ionic charges in the gate oxides. Using a double-gated (DG) MoTe 2 FET, we modulated and enhanced the carrier mobility by adjusting the top- and bottom-gate biases. The relevant mechanism for mobility tuning in this device was explored using static DC and low-frequency (LF) noise characterizations. In the investigations, LF-noise analysis revealed that for a strong back-gate bias the Coulomb scattering of carriers by ionized traps in the gate dielectrics is strongly screened by accumulation charges. This significantly reduces the electrostatic scattering of channel carriers by the interface trap sites, resulting in increased mobility. The reduction of the number of effective trap sites also depends on the gate bias, implying that owing to the gate bias, the carriers are shifted inside the channel. Thus, the number of active trap sites decreases as the carriers are repelled from the interface by the gate bias. The gate-controlled Coulomb-scattering parameter and the trap-site density provide new handles for improving the carrier mobility in TMDs, in a fundamentally different way from dielectric screening observed in previous studies.
Space Environment Effects on Flexible, Low-Voltage Organic Thin-Film Transistors.
Basiricò, Laura; Basile, Alberto Francesco; Cosseddu, Piero; Gerardin, Simone; Cramer, Tobias; Bagatin, Marta; Ciavatti, Andrea; Paccagnella, Alessandro; Bonfiglio, Annalisa; Fraboni, Beatrice
2017-10-11
Organic electronic devices fabricated on flexible substrates are promising candidates for applications in environments where flexible, lightweight, and radiation hard materials are required. In this work, device parameters such as threshold voltage, charge mobility, and trap density of 13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene)-based organic thin-film transistors (OTFTs) have been monitored for performing electrical measurements before and after irradiation by high-energy protons. The observed reduction of charge carrier mobility following irradiation can be only partially ascribed to the increased trap density. Indeed, we used other techniques to identify additional effects induced by proton irradiation in such devices. Atomic force microscopy reveals morphological defects occurring in the organic dielectric layer induced by the impinging protons, which, in turn, induce a strain on the TIPS-pentacene crystallites lying above. The effects of this strain are investigated by density functional theory simulations of two model structures, which describe the TIPS-pentacene crystalline films at equilibrium and under strain. The two different density of states distributions in the valence band have been correlated with the photocurrent spectra acquired before and after proton irradiation. We conclude that the degradation of the dielectric layer and the organic semiconductor sensitivity to strain are the two main phenomena responsible for the reduction of OTFT mobility after proton irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vörös, Márton; Brawand, Nicholas P.; Galli, Giulia
Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial formore » charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Lastly, our findings suggest that postsynthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films.« less
Brazovskii, Serguei; Brun, Christophe; Wang, Zhao-Zhong; Monceau, Pierre
2012-03-02
We report on scanning-tunneling microscopy experiments in a charge-density wave (CDW) system allowing visually capturing and studying in detail the individual solitons corresponding to the self-trapping of just one electron. This "Amplitude Soliton" is marked by vanishing of the CDW amplitude and by the π shift of its phase. It might be the realization of the spinon--the long-sought particle (along with the holon) in the study of science of strongly correlated electronic systems. As a distinct feature we also observe one-dimensional Friedel oscillations superimposed on the CDW which develop independently of solitons.
NASA Astrophysics Data System (ADS)
Cvikl, B.
2010-01-01
The closed solution for the internal electric field and the total charge density derived in the drift-diffusion approximation for the model of a single layer organic semiconductor structure characterized by the bulk shallow single trap-charge energy level is presented. The solutions for two examples of electric field boundary conditions are tested on room temperature current density-voltage data of the electron conducting aluminum/tris(8-hydroxyquinoline aluminum/calcium structure [W. Brütting et al., Synth. Met. 122, 99 (2001)] for which jexp∝Va3.4, within the interval of bias 0.4 V≤Va≤7. In each case investigated the apparent electron mobility determined at given bias is distributed within a given, finite interval of values. The bias dependence of the logarithm of their lower limit, i.e., their minimum values, is found to be in each case, to a good approximation, proportional to the square root of the applied electric field. On account of the bias dependence as incorporated in the minimum value of the apparent electron mobility the spatial distribution of the organic bulk electric field as well as the total charge density turn out to be bias independent. The first case investigated is based on the boundary condition of zero electric field at the electron injection interface. It is shown that for minimum valued apparent mobilities, the strong but finite accumulation of electrons close to the anode is obtained, which characterize the inverted space charge limited current (SCLC) effect. The second example refers to the internal electric field allowing for self-adjustment of its boundary values. The total electron charge density is than found typically to be of U shape, which may, depending on the parameters, peak at both or at either Alq3 boundary. It is this example in which the proper SCLC effect is consequently predicted. In each of the above two cases, the calculations predict the minimum values of the electron apparent mobility, which substantially exceed the corresponding published measurements. For this reason the effect of the drift term alone is additionally investigated. On the basis of the published empirical electron mobilities and the diffusion term revoked, it is shown that the steady state electron current density within the Al/Alq3 (97 nm)/Ca single layer organic structure may well be pictured within the drift-only interpretation of the charge carriers within the Alq3 organic characterized by the single (shallow) trap energy level. In order to arrive at this result, it is necessary that the nonzero electric field, calculated to exist at the electron injecting Alq3/Ca boundary, is to be appropriately accounted for in the computation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Joung-min, E-mail: cho.j.ad@m.titech.ac.jp; Akiyama, Yuto; Kakinuma, Tomoyuki
2013-10-15
We have investigated trap density of states (trap DOS) in n-channel organic field-effect transistors based on N,N ’-bis(cyclohexyl)naphthalene diimide (Cy-NDI) and dimethyldicyanoquinonediimine (DMDCNQI). A new method is proposed to extract trap DOS from the Arrhenius plot of the temperature-dependent transconductance. Double exponential trap DOS are observed, in which Cy-NDI has considerable deep states, by contrast, DMDCNQI has substantial tail states. In addition, numerical simulation of the transistor characteristics has been conducted by assuming an exponential trap distribution and the interface approximation. Temperature dependence of transfer characteristics are well reproduced only using several parameters, and the trap DOS obtained from the simulatedmore » characteristics are in good agreement with the assumed trap DOS, indicating that our analysis is self-consistent. Although the experimentally obtained Meyer-Neldel temperature is related to the trap distribution width, the simulation satisfies the Meyer-Neldel rule only very phenomenologically. The simulation also reveals that the subthreshold swing is not always a good indicator of the total trap amount, because it also largely depends on the trap distribution width. Finally, band transport is explored from the simulation having a small number of traps. A crossing point of the transfer curves and negative activation energy above a certain gate voltage are observed in the simulated characteristics, where the critical V{sub G} above which band transport is realized is determined by the sum of the trapped and free charge states below the conduction band edge.« less
NASA Astrophysics Data System (ADS)
Tsiaousis, D.; Munn, R. W.
2004-04-01
Calculations for the acetanilide crystal yield the effective polarizability (16.6 Å3), local electric field tensor, effective dipole moment (5.41 D), and dipole-dipole energy (-12.8 kJ/mol). Fourier-transform techniques are used to calculate the polarization energy P for a single charge in the perfect crystal (-1.16 eV); the charge-dipole energy WD is zero if the crystal carries no bulk dipole moment. Polarization energies for charge-transfer (CT) pairs combine with the Coulomb energy EC to give the screened Coulomb energy Escr; screening is nearly isotropic, with Escr≈EC/2.7. For CT pairs WD reduces to a term δWD arising from the interaction of the charge on each ion with the change in dipole moment on the other ion relative to the neutral molecule. The dipole moments calculated by density-functional theory methods with the B3LYP functional at the 6-311++G** level are 3.62 D for the neutral molecule, changing to 7.13 D and 4.38 D for the anion and cation, relative to the center of mass. Because of the large change in the anion, δWD reaches -0.9 eV and modifies the sequence of CT energies markedly from that of Escr, giving the lowest two CT pairs at -1.98 eV and -1.41 eV. The changes in P and WD near a vacancy are calculated; WD changes for the individual charges because the vacancy removes a dipole moment and modifies the crystal dielectric response, but δWD and EC do not change. A vacancy yields a positive change ΔP that scatters a charge or CT pair, but the change ΔWD can be negative and large enough to outweigh ΔP, yielding traps with depths that can exceed 150 meV for single charges and for CT pairs. Divacancies yield traps with depths nearly equal to the sum of those produced by the separate vacancies and so they can exceed 300 meV. These results are consistent with a mechanism of optical damage in which vacancies trap optically generated CT pairs that recombine and release energy; this can disrupt the lattice around the vacancy, thereby favoring trapping and recombination of CT pairs generated by subsequent photon absorption, leading to further lattice disruption. Revisions to previous calculations on trapping of CT pairs in anthracene are reported.
Benner, W.H.
1999-03-09
The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector. 5 figs.
NASA Astrophysics Data System (ADS)
Ťapajna, M.; Stoklas, R.; Gregušová, D.; Gucmann, F.; Hušeková, K.; Haščík, Š.; Fröhlich, K.; Tóth, L.; Pécz, B.; Brunner, F.; Kuzmík, J.
2017-12-01
III-N surface polarization compensating charge referred here to as 'surface donors' (SD) was analyzed in Al2O3/AlGaN/GaN metal-oxide-semiconductor (MOS) heterojunctions using scaled oxide films grown by metal-organic chemical vapor deposition at 600 °C. We systematically investigated impact of HCl pre-treatment prior to oxide deposition and post-deposition annealing (PDA) at 700 °C. SD density was reduced down to 1.9 × 1013 cm-2 by skipping HCl pre-treatment step as compared to 3.3 × 1013 cm-2 for structures with HCl pre-treatment followed by PDA. The nature and origin of SD was then analyzed based on the correlation between electrical, micro-structural, and chemical properties of the Al2O3/GaN interfaces with different SD density (NSD). From the comparison between distributions of interface traps of MOS heterojunction with different NSD, it is demonstrated that SD cannot be attributed to interface trapped charge. Instead, variation in the integrity of the GaOx interlayer confirmed by X-ray photoelectron spectroscopy is well correlated with NSD, indicating SD may be formed by border traps at the Al2O3/GaOx interface.
Durand, Corentin; Zhang, Xiaoguang; Fowlkes, Jason; ...
2015-01-16
We study the electrical transport properties of atomically thin individual crystalline grains of MoS 2 with four-probe scanning tunneling microscopy. The monolayer MoS 2 domains are synthesized by chemical vapor deposition on SiO 2/Si substrate. Temperature dependent measurements on conductance and mobility show that transport is dominated by an electron charge trapping and thermal release process with very low carrier density and mobility. The effects of electronic irradiation are examined by exposing the film to electron beam in the scanning electron microscope in an ultrahigh vacuum environment. The irradiation process is found to significantly affect the mobility and the carriermore » density of the material, with the conductance showing a peculiar time-dependent relaxation behavior. It is suggested that the presence of defects in active MoS 2 layer and dielectric layer create charge trapping sites, and a multiple trapping and thermal release process dictates the transport and mobility characteristics. The electron beam irradiation promotes the formation of defects and impact the electrical properties of MoS 2. Finally, our study reveals the important roles of defects and the electron beam irradiation effects in the electronic properties of atomic layers of MoS 2.« less
On current transients in MoS2 Field Effect Transistors.
Macucci, Massimo; Tambellini, Gerry; Ovchinnikov, Dmitry; Kis, Andras; Iannaccone, Giuseppe; Fiori, Gianluca
2017-09-14
We present an experimental investigation of slow transients in the gate and drain currents of MoS 2 -based transistors. We focus on the measurement of both the gate and drain currents and, from the comparative analysis of the current transients, we conclude that there are at least two independent trapping mechanisms: trapping of charges in the silicon oxide substrate, occurring with time constants of the order of tens of seconds and involving charge motion orthogonal to the MoS 2 sheet, and trapping at the channel surface, which occurs with much longer time constants, in particular when the device is in a vacuum. We observe that the presence of such slow phenomena makes it very difficult to perform reliable low-frequency noise measurements, requiring a stable and repeatable steady-state bias point condition, and may explain the sometimes contradictory results that can be found in the literature about the dependence of the flicker noise power spectral density on gate bias.
NASA Astrophysics Data System (ADS)
Basile, A. F.; Kyndiah, A.; Biscarini, F.; Fraboni, B.
2014-06-01
A numerical procedure to calculate the drain-current (ID) vs. gate-voltage (VG) characteristics from numerical solutions of the Poisson equation for organic Thin-Film Transistors (TFTs) is presented. Polaron transport is modeled as two-dimensional charge transport in a semiconductor having free-carrier density of states proportional to the density of molecules and traps with energy equal to the polaron-hopping barrier. The simulated ID-VG curves are proportional to the product of the density of free carriers, calculated as a function of VG, and the intrinsic mobility, assumed to be a constant independent of temperature. The presence of traps in the oxide was also taken into account in the model, which was applied to a TFT made with six monolayers of pentacene grown on an oxide substrate. The polaron-hopping barrier determines the temperature dependence of the simulated ID-VG curves, trapping in the oxide is responsible for current reduction at high bias and the slope of the characteristics near threshold is related to the metal-semiconductor work-function difference. The values of the model parameters yielding the best match between calculations and experiments are consistent with previous experimental results and theoretical predictions. Therefore, this model enables to extract both physical and technological properties of thin-film devices from the temperature-dependent dc characteristics.
Charge Dynamics in near-Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond.
Dhomkar, Siddharth; Jayakumar, Harishankar; Zangara, Pablo R; Meriles, Carlos A
2018-06-13
Although the spin properties of superficial shallow nitrogen-vacancy (NV) centers have been the subject of extensive scrutiny, considerably less attention has been devoted to studying the dynamics of NV charge conversion near the diamond surface. Using multicolor confocal microscopy, here we show that near-surface point defects arising from high-density ion implantation dramatically increase the ionization and recombination rates of shallow NVs compared to those in bulk diamond. Further, we find that these rates grow linearly, not quadratically, with laser intensity, indicative of single-photon processes enabled by NV state mixing with other defect states. Accompanying these findings, we observe NV ionization and recombination in the dark, likely the result of charge transfer to neighboring traps. Despite the altered charge dynamics, we show that one can imprint rewritable, long-lasting patterns of charged-initialized, near-surface NVs over large areas, an ability that could be exploited for electrochemical biosensing or to optically store digital data sets with subdiffraction resolution.
Recent charge-breeding developments with EBIS/T devices (invited).
Schwarz, S; Lapierre, A
2016-02-01
Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 10(3) or even 10(4) A/cm(2). These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities. Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL's ReA EBIS/T charge breeder.
Recent charge-breeding developments with EBIS/T devices (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, S., E-mail: schwarz@nscl.msu.edu; Lapierre, A.
Short breeding times, narrow charge state distributions, low background, high efficiency, and the flexible time structure of the ejected low-emittance ion pulses are among the most attractive features of electron beam ion source or trap (EBIS/T) based charge breeders. Significant progress has been made to further improve these properties: Several groups are working to increase current densities towards 10{sup 3} or even 10{sup 4} A/cm{sup 2}. These current densities will become necessary to deliver high charge states of heavy nuclei in a short time and/or provide sufficient space-charge capacity to handle high-current ion beams in next-generation rare-isotope beam (RIB) facilities.more » Efficient capture of continuous beams, attractive because of its potential of handling highest-current ion beams, has become possible with the development of high-density electron beams of >1 A. Requests for the time structure of the charge bred ion pulse range from ultra-short pulses to quasi-continuous beams. Progress is being made on both ends of this spectrum, by either dividing the extracted charge in many pulse-lets, adjusting the extraction potential for a near-uniform long pulse, or adding dedicated devices to spread the ion bunches delivered from the EBIS/T in time. Advances in EBIS/T charge state breeding are summarized, including recent results with NSCL’s ReA EBIS/T charge breeder.« less
Thermodynamic Theory of Spherically Trapped Coulomb Clusters
NASA Astrophysics Data System (ADS)
Wrighton, Jeffrey; Dufty, James; Bonitz, Michael; K"{A}Hlert, Hanno
2009-11-01
The radial density profile of a finite number of identical charged particles confined in a harmonic trap is computed over a wide ranges of temperatures (Coulomb coupling) and particle numbers. At low temperatures these systems form a Coulomb crystal with spherical shell structure which has been observed in ultracold trapped ions and in dusty plasmas. The shell structure is readily reproduced in simulations. However, analytical theories which used a mean field approachfootnotetext[1]C. Henning et al., Phys. Rev. E 74, 056403 (2006) or a local density approximationfootnotetext[2]C. Henning et al., Phys. Rev. E 76, 036404 (2007) have, so far, only been able to reproduce the average density profile. Here we present an approach to Coulomb correlations based on the hypernetted chain approximation with additional bridge diagrams. It is demonstrated that this model reproduces the correct shell structure within a few percent and provides the basis for a thermodynamic theory of Coulomb clusters in the strongly coupled fluid state.footnotetext[3]J. Wrighton, J.W. Dufty, H. K"ahlert and M. Bonitz, J. Phys. A 42, 214052 (2009) and Phys. Rev. E (2009) (to be submitted)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mekni, Omar, E-mail: omarmekni-lmop@yahoo.fr; Arifa, Hakim; Askri, Besma
2014-09-14
Usually, the trapping phenomenon in insulating materials is studied by injecting charges using a Scanning Electron Microscope. In this work, we use the dielectric spectroscopy technique for showing a correlation between the dielectric properties and the trapping-charging ability of insulating materials. The evolution of the complex permittivity (real and imaginary parts) as a function of frequency and temperature reveals different types of relaxation according to the trapping ability of the material. We found that the space charge relaxation at low frequencies affects the real part of the complex permittivity ε{sup ´} and the dissipation factor Tan(δ). We prove that themore » evolution of the imaginary part of the complex permittivity against temperature ε{sup ′′}=f(T) reflects the phenomenon of charge trapping and detrapping as well as trapped charge evolution Q{sub p}(T). We also use the electric modulus formalism to better identify the space charge relaxation. The investigation of trapping or conductive nature of insulating materials was mainly made by studying the activation energy and conductivity. The conduction and trapping parameters are determined using the Correlated Barrier Hopping (CBH) model in order to confirm the relation between electrical properties and charge trapping ability.« less
NASA Astrophysics Data System (ADS)
Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A.
2018-08-01
The effect of thermal aging on the charging phenomena in cross-linked polyethylene (XLPE) has been studied under electron beam irradiation in scanning electron microscope (SEM). The dynamic variation of trapped charge represents the trapping process of XLPE under electron beam irradiation. We have found that the trapped charge variation can be approximated by a first order exponential function. The amount of trapped charge presents enhanced values at the beginning of aging at lower temperatures (80 °C and 100 °C). This suggests the diffusion of cross-linking by-products to the surface of sample that acts as traps for injected electrons. The oxidation which is a very important form of XLPE degradation has an effect at the advanced stage of the aging process. For higher temperatures (120 °C and 140 °C), the taken part process in the evolution of the trapped charge is the crystallinity increase at the beginning of aging leading to the trapped charge decreasing, and the polar groups generated by thermo-oxidation process at the end of aging leading to the trapped charge increase. Variations of leakage current according to the aging time have quite similar trends with the dielectric losses factor and consequently some correlations must be made between charging mechanisms and the electrical behaviour of XLPE under thermal aging.
Shallow trapping vs. deep polarons in a hybrid lead halide perovskite, CH3NH3PbI3.
Kang, Byungkyun; Biswas, Koushik
2017-10-18
There has been considerable speculation over the nature of charge carriers in organic-inorganic hybrid perovskites, i.e., whether they are free and band-like, or they are prone to self-trapping via short range deformation potentials. Unusually long minority-carrier diffusion lengths and moderate-to-low mobilities, together with relatively few deep defects add to their intrigue. Here we implement density functional methods to investigate the room-temperature, tetragonal phase of CH 3 NH 3 PbI 3 . We compare charge localization behavior at shallow levels and associated lattice relaxation versus those at deep polaronic states. The shallow level originates from screened Coulomb interaction between the perturbed host and an excited electron or hole. The host lattice has a tendency towards forming these shallow traps where the electron or hole is localized not too far from the band edge. In contrast, there is a considerable potential barrier that must be overcome in order to initiate polaronic hole trapping. The formation of a hole polaron (I 2 - center) involves strong lattice relaxation, including large off-center displacement of the organic cation, CH 3 NH 3 + . This type of deep polaron is energetically unfavorable, and active shallow traps are expected to shape the carrier dynamics in this material.
NASA Astrophysics Data System (ADS)
Hejazi, M. M.; Safari, A.
2011-11-01
This paper discusses the electrical conduction mechanisms in a 0.88 Bi0.5Na0.5TiO3-0.08 Bi0.5K0.5TiO3-0.04 BaTiO3 thin film in the temperature range of 200-350 K. The film was deposited on a SrRuO3/SrTiO3 substrate by pulsed laser deposition technique. At all measurement temperatures, the leakage current behavior of the film matched well with the Lampert's triangle bounded by three straight lines of different slopes. The relative location of the triangle sides varied with temperature due to its effect on the density of charge carriers and un-filled traps. At low electric fields, the ohmic conduction governed the leakage mechanism. The calculated activation energy of the trap is 0.19 eV implying the presence of shallow traps in the film. With increasing the applied field, an abrupt increase in the leakage current was observed. This was attributed to a trap-filling process by the injected carriers. At sufficiently high electric fields, the leakage current obeyed the Child's trap-free square law suggesting the space charge limited current was the dominant mechanism.
NASA Astrophysics Data System (ADS)
Skottfelt, Jesper; Hall, David J.; Gow, Jason P. D.; Murray, Neil J.; Holland, Andrew D.; Prod'homme, Thibaut
2017-04-01
The visible imager instrument on board the Euclid mission is a weak-lensing experiment that depends on very precise shape measurements of distant galaxies obtained by a large charge-coupled device (CCD) array. Due to the harsh radiative environment outside the Earth's atmosphere, it is anticipated that the CCDs over the mission lifetime will be degraded to an extent that these measurements will be possible only through the correction of radiation damage effects. We have therefore created a Monte Carlo model that simulates the physical processes taking place when transferring signals through a radiation-damaged CCD. The software is based on Shockley-Read-Hall theory and is made to mimic the physical properties in the CCD as closely as possible. The code runs on a single electrode level and takes the three-dimensional trap position, potential structure of the pixel, and multilevel clocking into account. A key element of the model is that it also takes device specific simulations of electron density as a direct input, thereby avoiding making any analytical assumptions about the size and density of the charge cloud. This paper illustrates how test data and simulated data can be compared in order to further our understanding of the positions and properties of the individual radiation-induced traps.
Interpreting anomalies observed in oxide semiconductor TFTs under negative and positive bias stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Jong Woo; Nathan, Arokia, E-mail: an299@cam.ac.uk; Barquinha, Pedro
2016-08-15
Oxide semiconductor thin-film transistors can show anomalous behavior under bias stress. Two types of anomalies are discussed in this paper. The first is the shift in threshold voltage (V{sub TH}) in a direction opposite to the applied bias stress, and highly dependent on gate dielectric material. We attribute this to charge trapping/detrapping and charge migration within the gate dielectric. We emphasize the fundamental difference between trapping/detrapping events occurring at the semiconductor/dielectric interface and those occurring at gate/dielectric interface, and show that charge migration is essential to explain the first anomaly. We model charge migration in terms of the non-instantaneous polarizationmore » density. The second type of anomaly is negative V{sub TH} shift under high positive bias stress, with logarithmic evolution in time. This can be argued as electron-donating reactions involving H{sub 2}O molecules or derived species, with a reaction rate exponentially accelerated by positive gate bias and exponentially decreased by the number of reactions already occurred.« less
Continuum modeling of charging process and piezoelectricity of ferroelectrets
NASA Astrophysics Data System (ADS)
Xu, Bai-Xiang; von Seggern, Heinz; Zhukov, Sergey; Gross, Dietmar
2013-09-01
Ferroelectrets in the form of electrically charged micro-porous foams exhibit a very large longitudinal piezoelectric coefficient d33. The structure has hence received wide application interests as sensors particularly in acoustic devices. During charging process, electrical breakdown (Paschen breakdown) takes place in the air pores of the foam and introduces free charge pairs. These charges are separated by electrostatic forces and relocated at the interfaces between the polymer and the electrically broken-down medium, where they are trapped quasistatically. The development of this trapped charge density along the interfaces is key for enabling the piezoelectricity of ferroelectrets. In this article, an internal variable based continuum model is proposed to calculate the charge density development at the interfaces, whereas a Maxwell stress based electromechanical model is used for the bulk behavior, i.e., of the polymer and of the medium where the Paschen breakdown takes place. In the modeling, the electrostatic forces between the separated charge pairs are included, as well as the influence of deformation of the solid layers. The material models are implemented in a nonlinear finite element scheme, which allows a detailed analysis of different geometries. A ferroelectret unit with porous expanded polytetrafluoroethylene (ePTFE) surrounded by fluorinated ethylene propylene is studied first. The simulated hysteresis curves of charge density at the surfaces and the calculated longitudinal piezoelectric constant are in good agreement with experimental results. Simulations show a strong dependency of the interface charge development and thus the remnant charges on the thicknesses of the layers and the permittivity of the materials. According to the calculated relation between d33 and the Young's modulus of ePTFE, the value of the Young's modulus of ePTFE is identified to be around 0.75 MPa, which lies well in the predicted range of 0.45 to 0.80 MPa, determined from the dielectric resonance spectra in the work of Zhang et al. [X. Q. Zhang et al., J. Appl. Phys. 108, 064113 (2010)]. To show the potential of the models, it is also applied to simulation of ferroelectrets with a lens shape. The results indicate that the electrical breakdown happens in a sequential manner, and the local piezoelectric coefficient varies with position. Thereby, the middle point on the surface exhibits the maximum d33. The simulation results obtained by the proposed models will provide insight for device optimization.
On the surface trapping parameters of polytetrafluoroethylene block
NASA Astrophysics Data System (ADS)
Zhang, Guan-Jun; Yang, Kai; Zhao, Wen-Bin; Yan, Zhang
2006-12-01
Surface flashover phenomena under high electric field are closely related to the surface characteristics of a solid insulating material between energized electrodes. Based on measuring the surface potential decaying curve of polytetrafluoroethylene (PTFE) block charged by a needle-plane corona discharge, its surface trapping parameters are calculated with the isothermal current theory, and the correlative curve between the surface trap density and its energy level is obtained. The maximum density of electron traps and hole traps in the surface layer of PTFE presents a similar value of ∼2.7 × 1017 eV-1 m-3, and the energy level of its electron and hole traps is of about 0.85-1.0 eV and 0.80-0.90 eV, respectively. Via the X-ray photoelectron spectroscopy (XPS) technique, the F, C, K and O elements are detected on the surface of PTFE samples, and F shows a remarkable atom proportion of ∼73.3%, quite different from the intrinsic distribution corresponding to its chemical formula. The electron traps are attributed to quantities of F atoms existing on the surface of PTFE due to its molecular chain with C atoms surrounded by F atoms spirally. It is considered that the distortions of chemical and electronic structure on solid surface are responsible for the flashover phenomena occurring at a low applied voltage.
Jing, Ziang; Li, Changming; Zhao, Hong; Zhang, Guiling; Han, Baozhong
2016-01-01
The doping effect of graphene nanoplatelets (GNPs) on electrical insulation properties of polyethylene (PE) was studied by combining experimental and theoretical methods. The electric conduction properties and trap characteristics were tested for pure PE and PE/GNPs composites by using a direct measurement method and a thermal stimulated current (TSC) method. It was found that doping smaller GNPs is more beneficial to decrease the conductivity of PE/GNPs. The PE/GNPs composite with smaller size GNPs mainly introduces deep energy traps, while with increasing GNPs size, besides deep energy traps, shallow energy traps are also introduced. These results were also confirmed by density functional theory (DFT) and the non-equilibrium Green’s function (NEGF) method calculations. Therefore, doping small size GNPs is favorable for trapping charge carriers and enhancing insulation ability, which is suggested as an effective strategy in exploring powerful insulation materials. PMID:28773802
NASA Astrophysics Data System (ADS)
Le, Son Phuong; Nguyen, Duong Dai; Suzuki, Toshi-kazu
2018-01-01
We have investigated insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor (MIS) devices with Al2O3 or AlTiO (an alloy of Al2O3 and TiO2) gate dielectrics obtained by atomic layer deposition on AlGaN. Analyzing insulator-thickness dependences of threshold voltages for the MIS devices, we evaluated positive interface fixed charges, whose density at the AlTiO/AlGaN interface is significantly lower than that at the Al2O3/AlGaN interface. This and a higher dielectric constant of AlTiO lead to rather shallower threshold voltages for the AlTiO gate dielectric than for Al2O3. The lower interface fixed charge density also leads to the fact that the two-dimensional electron concentration is a decreasing function of the insulator thickness for AlTiO, whereas being an increasing function for Al2O3. Moreover, we discuss the relationship between the interface fixed charges and interface states. From the conductance method, it is shown that the interface state densities are very similar at the Al2O3/AlGaN and AlTiO/AlGaN interfaces. Therefore, we consider that the lower AlTiO/AlGaN interface fixed charge density is not owing to electrons trapped at deep interface states compensating the positive fixed charges and can be attributed to a lower density of oxygen-related interface donors.
System and method for trapping and measuring a charged particle in a liquid
Reed, Mark A; Krstic, Predrag S; Guan, Weihua; Zhao, Xiongce
2013-07-23
A system and method for trapping a charged particle is disclosed. A time-varying periodic multipole electric potential is generated in a trapping volume. A charged particle under the influence of the multipole electric field is confined to the trapping volume. A three electrode configuration giving rise to a 3D Paul trap and a four planar electrode configuration giving rise to a 2D Paul trap are disclosed.
System and method for trapping and measuring a charged particle in a liquid
Reed, Mark A; Krstic, Predrag S; Guan, Weihua; Zhao, Xiongce
2012-10-23
A system and method for trapping a charged particle is disclosed. A time-varying periodic multipole electric potential is generated in a trapping volume. A charged particle under the influence of the multipole electric field is confined to the trapping volume. A three electrode configuration giving rise to a 3D Paul trap and a four planar electrode configuration giving rise to a 2D Paul trap are disclosed.
Schwarz, S; Baumann, T M; Kittimanapun, K; Lapierre, A; Snyder, A
2014-02-01
The Electron Beam Ion Trap (EBIT) in NSCL's reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT's superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm(2) has been reached when the EBIT magnet was operated at 4 T.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, S., E-mail: schwarz@nscl.msu.edu; Baumann, T. M.; Kittimanapun, K.
The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assessmore » the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.« less
NASA Astrophysics Data System (ADS)
Wen, Xixing; Zeng, Xiangbin; Zheng, Wenjun; Liao, Wugang; Feng, Feng
2015-01-01
The charging/discharging behavior of Si quantum dots (QDs) embedded in amorphous silicon carbide (a-SiCx) was investigated based on the Al/insulating layer/Si QDs embedded in a-SiCx/SiO2/p-Si (metal-insulator-quantum dots-oxide-silicon) multilayer structure by capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. Transmission electron microscopy and Raman scattering spectroscopy measurements reveal the microstructure and distribution of Si QDs. The occurrence and shift of conductance peaks indicate the carrier transfer and the charging/discharging behavior of Si QDs. The multilayer structure shows a large memory window of 5.2 eV at ±8 V sweeping voltage. Analysis of the C-V and G-V results allows a quantification of the Coulomb charging energy and the trapped charge density associated with the charging/discharging behavior. It is found that the memory window is related to the size effect, and Si QDs with large size or low Coulomb charging energy can trap two or more electrons by changing the charging voltage. Meanwhile, the estimated lower potential barrier height between Si QD and a-SiCx, and the lower Coulomb charging energy of Si QDs could enhance the charging and discharging effect of Si QDs and lead to an enlarged memory window. Further studies of the charging/discharging mechanism of Si QDs embedded in a-SiCx can promote the application of Si QDs in low-power consumption semiconductor memory devices.
Effects of magnetization on fusion product trapping and secondary neutron spectraa)
NASA Astrophysics Data System (ADS)
Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Herrmann, M. C.
2015-05-01
By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG . cm, a ˜ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.
NASA Astrophysics Data System (ADS)
Song, Z. G.; Gong, H.; Ong, C. K.
1997-06-01
A scanning electron microscope (SEM) mirror-image method (MIM) is employed to investigate the charging behaviour of polarized polymethylmethacrylate (PMMA) under electron-beam irradiation. An ellipsoid is used to model the trapped charge distribution and a fitting method is employed to calculate the total amount of the trapped charge and its distribution parameters. The experimental results reveal that the charging ability decreases with increasing applied electric field, which polarizes the PMMA sample, whereas the trapped charge distribution is elongated along the direction of the applied electric field and increases with increasing applied electric field. The charges are believed to be trapped in some localization states, of activation energy and radius estimated to be about 19.6 meV and 0022-3727/30/11/004/img6, respectively.
Tsiaousis, D; Munn, R W
2004-04-15
Calculations for the acetanilide crystal yield the effective polarizability (16.6 A(3)), local electric field tensor, effective dipole moment (5.41 D), and dipole-dipole energy (-12.8 kJ/mol). Fourier-transform techniques are used to calculate the polarization energy P for a single charge in the perfect crystal (-1.16 eV); the charge-dipole energy W(D) is zero if the crystal carries no bulk dipole moment. Polarization energies for charge-transfer (CT) pairs combine with the Coulomb energy E(C) to give the screened Coulomb energy E(scr); screening is nearly isotropic, with E(scr) approximately E(C)/2.7. For CT pairs W(D) reduces to a term deltaW(D) arising from the interaction of the charge on each ion with the change in dipole moment on the other ion relative to the neutral molecule. The dipole moments calculated by density-functional theory methods with the B3LYP functional at the 6-311++G(**) level are 3.62 D for the neutral molecule, changing to 7.13 D and 4.38 D for the anion and cation, relative to the center of mass. Because of the large change in the anion, deltaW(D) reaches -0.9 eV and modifies the sequence of CT energies markedly from that of E(scr), giving the lowest two CT pairs at -1.98 eV and -1.41 eV. The changes in P and W(D) near a vacancy are calculated; W(D) changes for the individual charges because the vacancy removes a dipole moment and modifies the crystal dielectric response, but deltaW(D) and E(C) do not change. A vacancy yields a positive change DeltaP that scatters a charge or CT pair, but the change DeltaW(D) can be negative and large enough to outweigh DeltaP, yielding traps with depths that can exceed 150 meV for single charges and for CT pairs. Divacancies yield traps with depths nearly equal to the sum of those produced by the separate vacancies and so they can exceed 300 meV. These results are consistent with a mechanism of optical damage in which vacancies trap optically generated CT pairs that recombine and release energy; this can disrupt the lattice around the vacancy, thereby favoring trapping and recombination of CT pairs generated by subsequent photon absorption, leading to further lattice disruption. Revisions to previous calculations on trapping of CT pairs in anthracene are reported. (c) 2004 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Hu, Lilei; Mandelis, Andreas; Melnikov, Alexander; Lan, Xinzheng; Hoogland, Sjoerd; Sargent, Edward H.
2017-01-01
Solution-processed colloidal quantum dots (CQDs) are promising materials for realizing low-cost, large-area, and flexible photovoltaic devices. The study of charge carrier transport in quantum dot solids is essential for understanding energy conversion mechanisms. Recently, solution-processed two-layer oleic-acid-capped PbS CQD solar cells with one layer treated with tetrabutylammonium iodide (TBAI) serving as the main light-absorbing layer and the other treated with 1,2-ethanedithiol (EDT) acting as an electron-blocking/hole-extraction layer were reported. These solar cells demonstrated a significant improvement in power conversion efficiency of 8.55% and long-term air stability. Coupled with photocarrier radiometry measurements, this work used a new trap-state mediated exciton hopping transport model, specifically for CQD thin films, to unveil and quantify exciton transport mechanisms through the extraction of hopping transport parameters including exciton lifetimes, hopping diffusivity, exciton detrapping time, and trap-state density. It is shown that PbS-TBAI has higher trap-state density than PbS-EDT that results in higher PbS-EDT exciton lifetimes. Hopping diffusivities of both CQD thin film types show similar temperature dependence, particularly higher temperatures yield higher hopping diffusivity. The higher diffusivity of PbS-TBAI compared with PbS-EDT indicates that PbS-TBAI is a much better photovoltaic material than PbS-EDT. Furthermore, PCR temperature spectra and deep-level photothermal spectroscopy provided additional insights to CQD surface trap states: PbS-TBAI thin films exhibit a single dominant trap level, while PbS-EDT films with lower trap-state densities show multiple trap levels.
Improved understanding of the hot cathode current modes and mode transitions
NASA Astrophysics Data System (ADS)
Campanell, M. D.; Umansky, M. V.
2017-12-01
Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry, this ‘new plasma’ containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.
Modelling radiation damage to ESA's Gaia satellite CCDs
NASA Astrophysics Data System (ADS)
Seabroke, George; Holland, Andrew; Cropper, Mark
2008-07-01
The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in late 2011. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will not achieve its scientific requirements without detailed calibration and correction for radiation damage. Microscopic models of Gaia's CCDs are being developed to simulate the effect of radiation damage, charge trapping, which causes charge transfer inefficiency. The key to calculating the probability of a photoelectron being captured by a trap is the 3D electron density within each CCD pixel. However, this has not been physically modelled for Gaia CCD pixels. In this paper, the first of a series, we motivate the need for such specialised 3D device modelling and outline how its future results will fit into Gaia's overall radiation calibration strategy.
NASA Astrophysics Data System (ADS)
Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang
2018-01-01
Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.
NASA Astrophysics Data System (ADS)
Park, Junghak; Hur, Ji-Hyun; Jeon, Sanghun
2018-04-01
The threshold voltage instabilities and huge hysteresis of MoS2 thin film transistors (TFTs) have raised concerns about their practical applicability in next-generation switching devices. These behaviors are associated with charge trapping, which stems from tunneling to the adjacent trap site, interfacial redox reaction and interface and/or bulk trap states. In this report, we present quantitative analysis on the electron charge trapping mechanism of MoS2 TFT by fast pulse I-V method and the space charge limited current (SCLC) measurement. By adopting the fast pulse I-V method, we were able to obtain effective mobility. In addition, the origin of the trap states was identified by disassembling the sub-gap states into interface trap and bulk trap states by simple extraction analysis. These measurement methods and analyses enable not only quantitative extraction of various traps but also an understanding of the charge transport mechanism in MoS2 TFTs. The fast I-V data and SCLC data obtained under various measurement temperatures and ambient show that electron transport to neighboring trap sites by tunneling is the main charge trapping mechanism in thin-MoS2 TFTs. This implies that interfacial traps account for most of the total sub-gap states while the bulk trap contribution is negligible, at approximately 0.40% and 0.26% in air and vacuum ambient, respectively. Thus, control of the interface trap states is crucial to further improve the performance of devices with thin channels.
Park, Junghak; Hur, Ji-Hyun; Jeon, Sanghun
2018-04-27
The threshold voltage instabilities and huge hysteresis of MoS 2 thin film transistors (TFTs) have raised concerns about their practical applicability in next-generation switching devices. These behaviors are associated with charge trapping, which stems from tunneling to the adjacent trap site, interfacial redox reaction and interface and/or bulk trap states. In this report, we present quantitative analysis on the electron charge trapping mechanism of MoS 2 TFT by fast pulse I-V method and the space charge limited current (SCLC) measurement. By adopting the fast pulse I-V method, we were able to obtain effective mobility. In addition, the origin of the trap states was identified by disassembling the sub-gap states into interface trap and bulk trap states by simple extraction analysis. These measurement methods and analyses enable not only quantitative extraction of various traps but also an understanding of the charge transport mechanism in MoS 2 TFTs. The fast I-V data and SCLC data obtained under various measurement temperatures and ambient show that electron transport to neighboring trap sites by tunneling is the main charge trapping mechanism in thin-MoS 2 TFTs. This implies that interfacial traps account for most of the total sub-gap states while the bulk trap contribution is negligible, at approximately 0.40% and 0.26% in air and vacuum ambient, respectively. Thus, control of the interface trap states is crucial to further improve the performance of devices with thin channels.
NASA Astrophysics Data System (ADS)
Keifer, David Z.; Alexander, Andrew W.; Jarrold, Martin F.
2017-03-01
Spontaneous mass and charge losses from individual multi-megadalton ions have been observed with charge detection mass spectrometry (CDMS) by trapping single hepatitis B virus (HBV) capsids for 3 s. Gradual increases in the oscillation frequency of single ions in the ion trap are attributed mainly to mass loss (probably solvent, water, and/or salt). The total mass lost during the 3 s trapping period peaks at around 20 kDa for 4 MDa HBV T = 4 capsids. Discrete frequency drops punctuate the gradual increases in the oscillation frequencies. The drops are attributed to a sudden loss of charge. In most cases a single positive charge is lost along with some mass (on average around 1000 Da). Charge loss occurs for over 40% of the trapped ions. It usually occurs near the beginning of the trapping event, and it occurs preferentially in regions of the trap with strong electric fields, indicating that external electric fields promote charge loss. This process may contribute to the decrease in m/ z resolution that often occurs with megadalton ions.
95 MeV oxygen ion irradiation effects on N-channel MOSFETs
NASA Astrophysics Data System (ADS)
Prakash, A. P. G.; Ke, S. C.; Siddappa, K.
2003-09-01
The N-channel metal oxide semiconductor field effect transistors (MOSFETs) were exposed to 95 MeV oxygen ions, in the fluence range of 5 x 10(10) to 5 x 10(13) ions/cm(2). The influence of ion irradiation on threshold voltage (V-TH), linear drain current (I-DLin), leakage current (I-L), drain conductance (g(D)), transconductance (g(m)), mobility (mu) and drain saturation current (I-DSat) of MOSFETs was studied systematically for various fluence. The V-TH of the irradiated MOSFET was found to decrease significantly after irradiation. The interface (N-it) and oxide trapped charge (N-ot) were estimated from the subthreshold measurements and were found to increase after irradiation. The densities of oxide-trapped (DeltaN(it)) charge in irradiated MOSFETs were found to he higher than those of the interface trapped charge (DeltaN(ot)). The I-DLin and I-Dsat of MOSFETs were also found to decrease significantly after irradiation. Studies on effects of 95 MeV oxygen ion irradiation on g(m), g(D) and mu show a degradation varying front 70 to 75% after irradiation. The mobility degradation coefficients for N-it(alpha(it)) and N-ot(alpha(it)) were estimated. The results of these studies are presented and discussed.
Band-Like Behavior of Localized States of Metal Silicide Precipitate in Silicon
NASA Astrophysics Data System (ADS)
Bondarenko, Anton; Vyvenko, Oleg
2018-03-01
Deep-level transient spectroscopy (DLTS) investigations of energy levels of charge-carrier traps associated with precipitates of metal silicide often show that they behave not like localized monoenergetic traps but as a continuous density of allowed states in the bandgap with fast carrier exchange between these states, so-called band-like behavior. This kind of behavior was ascribed to the dislocation loop bounding the platelet, which in addition exhibits an attractive potential caused by long-range elastic strain. In previous works, the presence of the dislocation-related deformation potential in combination with the external electric field of the Schottky diode was included to obtain a reasonable fit of the proposed model to experimental data. Another well-known particular property of extended defects—the presence of their own strong electric field in their vicinity that is manifested in the logarithmic kinetics of electron capture—was not taken into account. We derive herein a theoretical model that takes into account both the external electric field and the intrinsic electric field of dislocation self-charge as well as its deformation potential, which leads to strong temporal variation of the activation energy during charge-carrier emission. We performed numerical simulations of the DLTS spectra based on such a model for a monoenergetic trap, finding excellent agreement with available experimental data.
Production of bare argon, manganese, iron and nickel nuclei in the Dresden EBIT
NASA Astrophysics Data System (ADS)
Kentsch, U.; Zschornack, G.; Großmann, F.; Ovsyannikov, V. P.; Ullmann, F.; Fritzsche, S.; Surzhykov, A.
2002-02-01
The production of highly charged argon, manganese, iron and nickel ions in a room-temperature electron beam ion trap (EBIT), the Dresden EBIT, has been investigated by means of energy dispersive X-ray spectroscopy of the direct excitation (DE) and radiative recombination (RR) processes. To derive the charge state distributions of the ions in the trap, direct excitation and radiative recombination cross-sections were calculated at electron energies of 8 and 14.4 keV. Based on these theoretical cross-sections and the measured X-ray spectra, the ion densities and the absolute number of ions, which are trapped in the electron beam, are determined for argon, manganese, iron and nickel. Emphasis has been paid to the highly charged ions, including the helium-like and hydrogen-like ions and bare nuclei. In the case of iron we also determined the contributions from lower ionization stages from DE transition lines. It is shown, that in the Dresden EBIT elements at least up to nickel can be fully ionized. Beside energy dispersive spectroscopy it is shown for iron by wavelength dispersive X-ray spectroscopy that with a comparably high gas pressure in the order of 10 -8 mbar carbon-, boron-, beryllium-, lithium- and helium-like iron ions can be produced.
Layer Splitting in a Complex Plasma
NASA Astrophysics Data System (ADS)
Smith, Bernard; Hyde, Truell; Matthews, Lorin; Johnson, Megan; Cook, Mike; Schmoke, Jimmy
2009-11-01
Dust particle clouds are found in most plasma processing environments and many astrophysical environments. Dust particles suspended within such plasmas often acquire an electric charge from collisions with free electrons in the plasma. Depending upon the ratio of interparticle potential energy to average kinetic energy, charged dust particles can form a gaseous, liquid or crystalline structure with short to longer range ordering. An interesting facet of complex plasma behavior is that particle layers appear to split as the DC bias is increased. This splitting of layers points to a phase transition differing from the normal phase transitions found in two-dimensional solids. In 1993, Dubin noted that as the charged particle density of an initially two-dimensional Coulomb crystal increases the system's layers split at specific charge densities. This work modeled ions in a Paul or Penning trap, but may be applicable to dusty plasma systems as well. This work will discuss this possibility along with splitting observed in the CASPER GEC rf Reference Cell at specific pressures and powers.
Origin of low-frequency noise in pentacene field-effect transistors
NASA Astrophysics Data System (ADS)
Xu, Yong; Minari, Takeo; Tsukagoshi, Kazuhito; Chroboczek, Jan; Balestra, Francis; Ghibaudo, Gerard
2011-07-01
Measurements of power spectral density (PSD) of low-frequency noise (LFN) in pentacene field-effect transistors reveal the preponderance of a 1/ f-type PSD behavior with the amplitude varying as the squared transistor gain and increasing as the inverse of the gate surface area. Such features impose an interpretation of LFN by carrier number fluctuations model involving capture/release of charges on traps uniformly distributed over the gate surface. The surface slow trap density extracted by the noise analysis is close to the surface states density deduced independently from static I(V) data, which confirms the validity of the proposed LFN interpretation. Further, we found that the trap densities in bottom-contact (BC) devices were higher than in their top-contact (TC) counterparts, in agreement with observations of a poorer crystal structure of BC devices, in the contact regions in particular. At the highest bias the noise originating from the contact resistance is also shown to be a dominant component in the PSD, and it is well explained by the noise originating from a gate-voltage dependent contact resistance. A gate area scaling was also performed, and the good scaling and the dispersion at the highest bias confirm the validity of the applied carrier number fluctuations model and the predominant contact noise at high current intensities.
Time-resolved electric force microscopy of charge trapping in polycrystalline pentacene.
Jaquith, Michael; Muller, Erik M; Marohn, John A
2007-07-12
Here we introduce time-resolved electric force microscopy measurements to directly and locally probe the kinetics of charge trap formation in a polycrystalline pentacene thin-film transistor. We find that the trapping rate depends strongly on the initial concentration of free holes and that trapped charge is highly localized. The observed dependence of trapping rate on the hole chemical potential suggests that the trapping process should not be viewed as a filling of midgap energy levels, but instead as a process in which the very creation of trapped states requires the presence of free holes.
NASA Astrophysics Data System (ADS)
Smieska, Louisa Marion
Organic semiconductors could have wide-ranging applications in lightweight, efficient electronic circuits. However, several fundamental questions regarding organic electronic device behavior have not yet been fully addressed, including the nature of chemical charge traps, and robust models for injection and transport. Many studies focus on engineering devices through bulk transport measurements, but it is not always possible to infer the microscopic behavior leading to the observed measurements. In this thesis, we present scanning-probe microscope studies of organic semiconductor devices in an effort to connect local properties with local device behavior. First, we study the chemistry of charge trapping in pentacene transistors. Working devices are doped with known pentacene impurities and the extent of charge trap formation is mapped across the transistor channel. Trap-clearing spectroscopy is employed to measure an excitation of the pentacene charge trap species, enabling identification of the degradationrelated chemical trap in pentacene. Second, we examine transport and trapping in peryelene diimide (PDI) transistors. Local mobilities are extracted from surface potential profiles across a transistor channel, and charge injection kinetics are found to be highly sensitive to electrode cleanliness. Trap-clearing spectra generally resemble PDI absorption spectra, but one derivative yields evidence indicating variation in trap-clearing mechanisms for different surface chemistries. Trap formation rates are measured and found to be independent of surface chemistry, contradicting a proposed silanol trapping mechanism. Finally, we develop a variation of scanning Kelvin probe microscopy that enables measurement of electric fields through a position modulation. This method avoids taking a numeric derivative of potential, which can introduce high-frequency noise into the electric field signal. Preliminary data is presented, and the theoretical basis for electric field noise in both methods is examined.
NASA Astrophysics Data System (ADS)
Jia, Yifan; Lv, Hongliang; Niu, Yingxi; Li, Ling; Song, Qingwen; Tang, Xiaoyan; Li, Chengzhan; Zhao, Yanli; Xiao, Li; Wang, Liangyong; Tang, Guangming; Zhang, Yimen; Zhang, Yuming
2016-09-01
The effect of nitric oxide (NO) annealing on charge traps in the oxide insulator and transition layer in n-type 4H-SiC metal-oxide-semiconductor (MOS) devices has been investigated using the time-dependent bias stress (TDBS), capacitance-voltage (C-V), and secondary ion mass spectroscopy (SIMS). It is revealed that two main categories of charge traps, near interface oxide traps (Nniot) and oxide traps (Not), have different responses to the TDBS and C-V characteristics in NO-annealed and Ar-annealed samples. The Nniot are mainly responsible for the hysteresis occurring in the bidirectional C-V characteristics, which are very close to the semiconductor interface and can readily exchange charges with the inner semiconductor. However, Not is mainly responsible for the TDBS induced C-V shifts. Electrons tunneling into the Not are hardly released quickly when suffering TDBS, resulting in the problem of the threshold voltage stability. Compared with the Ar-annealed sample, Nniot can be significantly suppressed by the NO annealing, but there is little improvement of Not. SIMS results demonstrate that the Nniot are distributed within the transition layer, which correlated with the existence of the excess silicon. During the NO annealing process, the excess Si atoms incorporate into nitrogen in the transition layer, allowing better relaxation of the interface strain and effectively reducing the width of the transition layer and the density of Nniot. Project supported by the National Natural Science Foundation of China (Grant Nos. 61404098 and 61274079), the Doctoral Fund of Ministry of Education of China (Grant No. 20130203120017), the National Key Basic Research Program of China (Grant No. 2015CB759600), the National Grid Science & Technology Project, China (Grant No. SGRI-WD-71-14-018), and the Key Specific Project in the National Science & Technology Program, China (Grant Nos. 2013ZX02305002-002 and 2015CB759600).
NASA Astrophysics Data System (ADS)
Arregui, C.; Ramiro, J. B.; Alcázar, A.; Méndez, A.; Muñoz-Martínez, J. F.; Carrascosa, M.
2015-05-01
This paper describes the dielectrophoretic potential created by the evanescent electric field acting on a particle near a photovoltaic crystalsurface depending on the crystal cut. This electric field is obtained from the steady state solution of the Kukhtarev equations for thephotovoltaic effect, where the diffusion term has been disregarded. First, the space charge field generated by a small, square, light spotwhere d << l (being d a side of the square and l the crystal thickness) is studied. The surface charge density generated in both geometriesis calculated and compared as their relation determines the different properties of the dielectrophoretic potential for both cuts. The shapeof the dielectrophoretic potential is obtained and compared for several distances to the sample. Afterwards other light patterns are studiedby the superposition of square spots, and the resulting trapping profiles are analysed. Finally the surface charge densities and trappingprofiles for different d/l relations are studied.
Effect of Single-Electron Interface Trapping in Decanano MOSFETs: A 3D Atomistic Simulation Study
NASA Technical Reports Server (NTRS)
Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.
2000-01-01
We study the effect of trapping/detrapping of a single-electron in interface states in the channel of n-type MOSFETs with decanano dimensions using 3D atomistic simulation techniques. In order to highlight the basic dependencies, the simulations are carried out initially assuming continuous doping charge, and discrete localized charge only for the trapped electron. The dependence of the random telegraph signal (RTS) amplitudes on the device dimensions and on the position of the trapped charge in the channel are studied in detail. Later, in full-scale, atomistic simulations assuming discrete charge for both randomly placed dopants and the trapped electron, we highlight the importance of current percolation and of traps with strategic position where the trapped electron blocks a dominant current path.
NASA Astrophysics Data System (ADS)
Kwon, Hyuk-Min; Kim, Dae-Hyun; Kim, Tae-Woo
2018-03-01
The effective mobility and reliability characteristics of In0.7Ga0.3As quantum-well (QW) MOSFETs with various high-κ gate stacks and HEMTs with a Schottky gate under bias temperature instability (BTI) stress were investigated. The effective mobilities (μeff) of HEMTs, single-layer Al2O3, bilayer Al2O3 (0.6 nm)/HfO2 (2.0 nm), and Al2O3 (0.6 nm)/HfO2 (3.0 nm) were ˜9000, ˜6158, ˜4789, and ˜4447 cm2 V-1 s-1 at N inv = 1.5 × 1012/cm2, respectively. The maximum effective mobility of In0.7Ga0.3As channel MOSFETs was compared with that of In0.7Ga0.3As/In0.48Al0.52As HEMTs, which are interface and border trap-free FETs. The results showed that the effective channel mobility was sensitive to traps in high-κ dielectrics related to interface trap density and border traps in the oxide. The ΔV T degradation of the bilayer Al2O3/HfO2 under BTI stress was greater than that of a single Al2O3 layer because the HfO2 layer had a high density of oxygen vacancies which were related to border traps.
Ming, Wenmei; Shi, Hongliang; Du, Mao-Hua
2016-01-01
Here we report that many metal halides that contain cations with the ns 2 electronic configuration have recently been discovered as high-performance optoelectronic materials. In particular, solar cells based on lead halide perovskites have shown great promise as evidenced by the rapid increase of the power conversion efficiency. In this paper, we show density functional theory calculations of electronic structure and dielectric and defect properties of CsGeI 3 (a lead-free halide perovskite material). The potential of CsGeI 3 as a solar cell material is assessed based on its intrinsic properties. We find anomalously large Born effective charges and a largemore » static dielectric constant dominated by lattice polarization, which should reduce carrier scattering, trapping, and recombination by screening charged defects and impurities. Defect calculations show that CsGeI 3 is a p-type semiconductor and its hole density can be modified by varying the chemical potentials of the constituent elements. Despite the reduction of long-range Coulomb attraction by strong screening, the iodine vacancy in CsGeI3 is found to be a deep electron trap due to the short-range potential, i.e., strong Ge–Ge covalent bonding, which should limit electron transport efficiency in p-type CsGeI 3. This is in contrast to the shallow iodine vacancies found in several Pb and Sn halide perovskites (e.g., CH 3NH 3PbI 3, CH 3NH 3SnI 3, and CsSnI 3). The low-hole-density CsGeI 3 may be a useful solar absorber material but the presence of the low-energy deep iodine vacancy may significantly reduce the open circuit voltage of the solar cell. Still, on the other hand, CsGeI 3 may be used as an efficient hole transport material in solar cells due to its small hole effective mass, the absence of low-energy deep hole traps, and the favorable band offset with solar absorber materials such as dye molecules and CH 3NH 3PbI 3.« less
NASA Astrophysics Data System (ADS)
Wang, Si-Jiao; Zha, Jun-Wei; Li, Wei-Kang; Dang, Zhi-Min
2016-02-01
The sandwich-structured Al2O3/low density polyethylene (Al2O3/LDPE) nanocomposite dielectrics consisting of layer-by-layer with different concentration Al2O3 loading were prepared by melt-blending and following hot pressing method. The space charge distribution from pulsed electro-acoustic method and breakdown strength of the nanocomposites were investigated. Compared with the single-layer Al2O3/LDPE nanocomposites, the sandwich-structured nanocomposites remarkably suppressed the space charge accumulation and presented higher breakdown strength. The charges in the sandwich-structured nanocomposites decayed much faster than that in the single-layer nanocomposites, which was attributed to an effective electric field caused by the formation of the interfacial space charges. The energy depth of shallow and deep traps was estimated as 0.73 eV and 1.17 eV in the sandwich-structured nanocomposites, respectively, according to the thermal excitation theoretical model we proposed. This work provides an attractive strategy of design and fabrication of polymer nanocomposites with excellent space charge suppression.
Currents Induced by Injected Charge in Junction Detectors
Gaubas, Eugenijus; Ceponis, Tomas; Kalesinskas, Vidas
2013-01-01
The problem of drifting charge-induced currents is considered in order to predict the pulsed operational characteristics in photo- and particle-detectors with a junction controlled active area. The direct analysis of the field changes induced by drifting charge in the abrupt junction devices with a plane-parallel geometry of finite area electrodes is presented. The problem is solved using the one-dimensional approach. The models of the formation of the induced pulsed currents have been analyzed for the regimes of partial and full depletion. The obtained solutions for the current density contain expressions of a velocity field dependence on the applied voltage, location of the injected surface charge domain and carrier capture parameters. The drift component of this current coincides with Ramo's expression. It has been illustrated, that the synchronous action of carrier drift, trapping, generation and diffusion can lead to a vast variety of possible current pulse waveforms. Experimental illustrations of the current pulse variations determined by either the rather small or large carrier density within the photo-injected charge domain are presented, based on a study of Si detectors. PMID:24036586
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohashi, Hayato, E-mail: ohashi@cc.utsunomiya-u.ac.jp; Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp; Suzuki, Yuhei
2014-01-21
We report on the identification of the optimum plasma conditions for a laser-produced plasma source for efficient coupling with multilayer mirrors at 6.x nm for beyond extreme ultraviolet lithography. A small shift to lower energies of the peak emission for Nd:YAG laser-produced gadolinium plasmas was observed with increasing laser power density. Charge-defined emission spectra were observed in electron beam ion trap (EBIT) studies and the charge states responsible identified by use of the flexible atomic code (FAC). The EBIT spectra displayed a larger systematic shift of the peak wavelength of intense emission at 6.x nm to longer wavelengths with increasingmore » ionic charge. This combination of spectra enabled the key ion stage to be confirmed as Gd{sup 18+}, over a range of laser power densities, with contributions from Gd{sup 17+} and Gd{sup 19+} responsible for the slight shift to longer wavelengths in the laser-plasma spectra. The FAC calculation also identified the origin of observed out-of-band emission and the charge states responsible.« less
Hydrogen treatment as a detergent of electronic trap states in lead chalcogenide nanoparticles
NASA Astrophysics Data System (ADS)
Voros, Marton; Brawand, Nicholas; Galli, Giulia
Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations, irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial for charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Our findings suggest that post-synthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films. Work supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (NB) and U.S. DOE under Contract No. DE-AC02-06CH11357 (MV).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ťapajna, M., E-mail: milan.tapajna@savba.sk; Jurkovič, M.; Válik, L.
2014-09-14
Oxide/semiconductor interface trap density (D{sub it}) and net charge of Al₂O₃/(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. D{sub it} distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher D{sub it} (∼5–8 × 10¹²eV⁻¹ cm⁻²) was found at trap energies ranging from E C-0.5 to 1 eV for structure with GaN cap compared to that (D{sub it} ∼ 2–3 × 10¹²eV⁻¹ cm⁻²) where the GaN cap was selectively etched away. D{sub it} distributions were then used for simulation of capacitance-voltage characteristics. A good agreement betweenmore » experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high D{sub it} (>10¹³eV⁻¹ cm⁻²) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher D{sub it} centered about E C-0.6 eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al₂O₃ thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.« less
NASA Astrophysics Data System (ADS)
Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin; Chi, Li-Feng; Wang, Sui-Dong
2015-03-01
Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.
Johnston, Michael B; Herz, Laura M
2016-01-19
Photovoltaic (PV) devices that harvest the energy provided by the sun have great potential as renewable energy sources, yet uptake has been hampered by the increased cost of solar electricity compared with fossil fuels. Hybrid metal halide perovskites have recently emerged as low-cost active materials in PV cells with power conversion efficiencies now exceeding 20%. Rapid progress has been achieved over only a few years through improvements in materials processing and device design. In addition, hybrid perovskites appear to be good light emitters under certain conditions, raising the prospect of applications in low-cost light-emitting diodes and lasers. Further optimization of such hybrid perovskite devices now needs to be supported by a better understanding of how light is converted into electrical currents and vice versa. This Account provides an overview of charge-carrier recombination and mobility mechanisms encountered in such materials. Optical-pump-terahertz-probe (OPTP) photoconductivity spectroscopy is an ideal tool here, because it allows the dynamics of mobile charge carriers inside the perovskite to be monitored following excitation with a short laser pulse whose photon energy falls into the range of the solar spectrum. We first review our insights gained from transient OPTP and photoluminescence spectroscopy on the mechanisms dominating charge-carrier recombination in these materials. We discuss that mono-molecular charge-recombination predominantly originates from trapping of charges, with trap depths being relatively shallow (tens of millielectronvolts) for hybrid lead iodide perovskites. Bimolecular recombination arises from direct band-to-band electron-hole recombination and is found to be in significant violation of the simple Langevin model. Auger recombination exhibits links with electronic band structure, in accordance with its requirement for energy and momentum conservation for all charges involved. We further discuss charge-carrier mobility values extracted from OPTP measurements and their dependence on perovskite composition and morphology. The significance of the reviewed charge-carrier recombination and mobility parameters is subsequently evaluated in terms of the charge-carrier diffusion lengths and radiative efficiencies that may be obtained for such hybrid perovskites. We particularly focus on calculating such quantities in the limit of ultra-low trap-related recombination, which has not yet been demonstrated but could be reached through further advances in material processing. We find that for thin films of hybrid lead iodide perovskites with typical charge-carrier mobilities of ∼30cm(2)/(V s), charge-carrier diffusion lengths at solar (AM1.5) irradiation are unlikely to exceed ∼10 μm even if all trap-related recombination is eliminated. We further examine the radiative efficiency for hybrid lead halide perovskite films and show that if high efficiencies are to be obtained for intermediate charge-carrier densities (n ≈ 10(14) cm(-3)) trap-related recombination lifetimes will have to be enhanced well into the microsecond range.
Charge Storage, Conductivity and Charge Profiles of Insulators as Related to Spacecraft Charging
NASA Technical Reports Server (NTRS)
Dennison, J. R.; Swaminathan, Prasanna; Frederickson, A. R.
2004-01-01
Dissipation of charges built up near the surface of insulators due to space environment interaction is central to understanding spacecraft charging. Conductivity of insulating materials is key to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. To understand these processes requires knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and charge transport within the insulator, and how the profile of trapped charge affects the transport and emission of charges from insulators. One must consider generation of mobile electrons and holes, their trapping, thermal de-trapping, mobility and recombination. Conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator, rather than by flow of current across two electrodes around the sample. We have found that conductivity determined from charge storage decay methods is 102 to 104 smaller than values obtained from classical ASTM and IEC methods for a variety of thin film insulating samples. For typical spacecraft charging conditions, classical conductivity predicts decay times on the order of minutes to hours (less than typical orbit periods); however, the higher charge storage conductivities predict decay times on the order of weeks to months leading to accumulation of charge with subsequent orbits. We found experimental evidence that penetration profiles of radiation and light are exceedingly important, and that internal electric fields due to charge profiles and high-field conduction by trapped electrons must be considered for space applications. We have also studied whether the decay constants depend on incident voltage and flux or on internal charge distributions and electric fields; light-activated discharge of surface charge to distinguish among differing charge trapping centers; and radiation-induced conductivity. Our experiments also show that "Malter" electron emission occurs for hours after turning off the electron beam. This Malter emission similar to emission due to negative electron affinity in semiconductors is a result of the prior radiation or optical excitations of valence electrons and their slow drift among traps towards the surface where they are subsequently emitted. This work is supported through funding from the NASA Space Environments and Effects Program.
NASA Astrophysics Data System (ADS)
Rathore, Priyanka; Mohan Singh Negi, Chandra; Singh Verma, Ajay; Singh, Amarjeet; Chauhan, Gayatri; Regis Inigo, Anto; Gupta, Saral K.
2017-08-01
Devices comprised of solution-processed poly (3-hexylthiophene) (P3HT)/multiwall carbon nanotubes (MWCNTs), with various concentrations of MWCNTs, were fabricated and characterized. The morphology of the P3HT: MWCNT nanocomposite was characterized by using field emission scanning electron microscopy (FESEM). The optical characteristics of the nanocomposite were studied by UV/VIS/NIR spectroscopy and Raman spectroscopy. The electrical properties of the fabricated devices were characterized by measuring the current density-voltage (J-V) characteristics. While the J-V characteristics of a pristine P3HT device reveal thermal injection limited charge transport, the P3HT: MWCNT nanocomposite-based devices exhibit three distinct voltage-dependent conduction regimes. The fitting curve with measured data reveals Ohmic conduction for a low voltage range, a trap-charge limited conduction (TCLC) process at an intermediate voltage range followed by a trap free space-charge limited conduction (SCLC) process at much higher voltages. A fundamental understanding of this work can assist in creating new charge transport pathways which will provide new avenues for the development of highly efficient polymer-based optoelectronic devices.
Shao, Yuchuan; Xiao, Zhengguo; Bi, Cheng; ...
2014-12-15
The large photocurrent hysteresis observed in many organometal trihalide perovskite solar cells has become a major hindrance impairing the ultimate performance and stability of these devices, while its origin was unknown. Here we demonstrate the trap states on the surface and grain boundaries of the perovskite materials to be the origin of photocurrent hysteresis and that the fullerene layers deposited on perovskites can effectively passivate these charge trap states and eliminate the notorious photocurrent hysteresis. Fullerenes deposited on the top of the perovskites reduce the trap density by two orders of magnitude and double the power conversion efficiency of CHmore » 3NH 3PbI 3 solar cells. As a result, the elucidation of the origin of photocurrent hysteresis and its elimination by trap passivation in perovskite solar cells provides important directions for future enhancements to device efficiency.« less
Effects of magnetization on fusion product trapping and secondary neutron spectra
Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; ...
2015-05-14
In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used tomore » infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.« less
MAGNETIZED ACCRETION AND DEAD ZONES IN PROTOSTELLAR DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzyurkevich, Natalia; Henning, Thomas; Turner, Neal J.
The edges of magnetically dead zones in protostellar disks have been proposed as locations where density bumps may arise, trapping planetesimals and helping form planets. Magneto-rotational turbulence in magnetically active zones provides both accretion of gas on the star and transport of mass to the dead zone. We investigate the location of the magnetically active regions in a protostellar disk around a solar-type star, varying the disk temperature, surface density profile, and dust-to-gas ratio. We also consider stellar masses between 0.4 and 2 M{sub Sun }, with corresponding adjustments in the disk mass and temperature. The dead zone's size andmore » shape are found using the Elsasser number criterion with conductivities including the contributions from ions, electrons, and charged fractal dust aggregates. The charged species' abundances are found using the approach proposed by Okuzumi. The dead zone is in most cases defined by the ambipolar diffusion. In our maps, the dead zone takes a variety of shapes, including a fish tail pointing away from the star and islands located on and off the midplane. The corresponding accretion rates vary with radius, indicating locations where the surface density will increase over time, and others where it will decrease. We show that density bumps do not readily grow near the dead zone's outer edge, independently of the disk parameters and the dust properties. Instead, the accretion rate peaks at the radius where the gas-phase metals freeze out. This could lead to clearing a valley in the surface density, and to a trap for pebbles located just outside the metal freezeout line.« less
Current Voltage Characteristics and Excess Noise at the Trap Filling Transition in Polyacenes
NASA Astrophysics Data System (ADS)
Pousset, Jeremy; Alfinito, Eleonora; Carbone, Anna; Pennetta, Cecilia; Reggiani, Lino
Experiments in organic semiconductors (polyacenes) evidence a strong super quadratic increase of the current-voltage (I-V) characteristic at voltages in the transition region between linear (Ohmic) and quadratic (trap-free space-charge-limited current) behaviors. Similarly, excess noise measurements at a given frequency and increasing voltages evidence a sharp peak of the relative spectral density of the current noise in concomitance with the strong superquadratic I-V characteristics. Here, we discuss the physical interpretation of these experiments in terms of an essential contribution from field-assisted trapping-detrapping processes of injected carriers. To this purpose, the fraction of filled traps determined by the I-V characteristics is used to evaluate the excess noise in the trap-filled transition (TFT) regime. We have found an excellent agreement between the predictions of our model and existing experimental results in tetracene and pentacene thin films of different length in the range 0.65÷35μm.
NASA Astrophysics Data System (ADS)
Lechaux, Y.; Fadjie, A.; Bollaert, S.; Talbo, V.; Mateos, J.; González, T.; Vasallo, B. G.; Wichmann, N.
2015-10-01
In this work, Metal - Oxide - Semiconductor Capacitors (MOSCaps) based on Al2O3/ n-Ga0.47In0.53As interface have been studied. In order to have high MOSFETs performance, it is necessary to improve the semiconductor - oxide interface quality. It is observed that the (NH4)2S passivation shows lower interface trap density in the order of 6×1011cm-2.eV-1. Also, it is observed that O2 plasma densification after a passivation in a NH4OH solution improves the electrical behaviour of the charge control. Low interface trap density in the order of 1×1012cm-2.eV-1 was obtained for different treatments presented in this work.
Solution-Processed Organic and Halide Perovskite Transistors on Hydrophobic Surfaces.
Ward, Jeremy W; Smith, Hannah L; Zeidell, Andrew; Diemer, Peter J; Baker, Stephen R; Lee, Hyunsu; Payne, Marcia M; Anthony, John E; Guthold, Martin; Jurchescu, Oana D
2017-05-31
Solution-processable electronic devices are highly desirable due to their low cost and compatibility with flexible substrates. However, they are often challenging to fabricate due to the hydrophobic nature of the surfaces of the constituent layers. Here, we use a protein solution to modify the surface properties and to improve the wettability of the fluoropolymer dielectric Cytop. The engineered hydrophilic surface is successfully incorporated in bottom-gate solution-deposited organic field-effect transistors (OFETs) and hybrid organic-inorganic trihalide perovskite field-effect transistors (HTP-FETs) fabricated on flexible substrates. Our analysis of the density of trapping states at the semiconductor-dielectric interface suggests that the increase in the trap density as a result of the chemical treatment is minimal. As a result, the devices exhibit good charge carrier mobilities, near-zero threshold voltages, and low electrical hysteresis.
Luria, Justin L; Schwarz, Kathleen A; Jaquith, Michael J; Hennig, Richard G; Marohn, John A
2011-02-01
Spatial maps of topography and trapped charge are acquired for polycrystalline pentacene thin-film transistors using electric and atomic force microscopy. In regions of trapped charge, the rate of trap clearing is studied as a function of the wavelength of incident radiation.
Hybrid Quantum Systems with Trapped Charged Particles
NASA Astrophysics Data System (ADS)
Kotler, Shlomi; Leibfried, Dietrich; Simmonds, Raymond; Wineland, Dave
We will review a joint effort by the Ion Storage Group and the Advanced Microwave Photonics Group at NIST (Boulder, CO) to design a hybrid system that interfaces charged particles with macroscopic high-Q resonators. We specifically consider coupling trapped charges to superconducting LC resonators, the mechanical modes of Silicon-Nitride membranes, and piezo-electric materials. We aim to achieve the strong coupling regime, where a single quantum of motion of the trapped charge can be coherently exchanged with harmonic motion of the macroscopic entity (electrical and/or mechanical). These kind of devices could potentially take advantage of both macroscopic control techniques and the long quantum coherence of its trapped charged particles.
Trap-induced photoconductivity in singlet fission pentacene diodes
NASA Astrophysics Data System (ADS)
Qiao, Xianfeng; Zhao, Chen; Chen, Bingbing; Luan, Lin
2014-07-01
This paper reports a trap-induced photoconductivity in ITO/pentacene/Al diodes by using current-voltage and magneto-conductance measurements. The comparison of photoconductivity between pentacene diodes with and without trap clearly shows that the traps play a critical role in generating photoconductivity. It shows that no observable photoconductivity is detected for trap-free pentacene diodes, while significant photoconductivity is observed in diodes with trap. This is because the initial photogenerated singlet excitons in pentacene can rapidly split into triplet excitons with higher binding energy prior to dissociating into free charge carriers. The generated triplet excitons react with trapped charges to release charge-carriers from traps, leading to a trap-induced photoconductivity in the single-layer pentacene diodes. Our studies elucidated the formation mechanisms of photoconductivity in pentacene diodes with extremely fast singlet fission rate.
Stability of an aqueous quadrupole micro-trap
Park, Jae Hyun; Krstić, Predrag S.
2012-03-30
Recently demonstrated functionality of an aqueous quadrupole micro- or nano-trap opens a new avenue for applications of the Paul traps, like is confinement of a charged biomolecule which requires water environment for its chemical stability. Besides strong viscosity forces, motion of a charged particle in the aqueous trap is subject to dielectrophoretic and electrophoretic forces. In this study, we describe the general conditions for stability of a charged particle in an aqueous quadrupole trap. We find that for the typical micro-trap parameters, effects of both dielectrophoresis and electrophoresis significantly influence the trap stability. In particular, the aqueous quadrupole trap couldmore » play of a role of a synthetic virtual nanopore for the 3rd generation of DNA sequencing technology.« less
Defect-related degradation of III-V/Silicon 1.55 μm DBR laser diodes
NASA Astrophysics Data System (ADS)
Buffolo, Matteo; Meneghini, Matteo; De Santi, Carlo; Trivellin, Nicola; Davenport, Michael L.; Bowers, John E.; Meneghesso, Gaudenzio; Zanoni, Enrico
2018-02-01
This paper reports on an extensive investigation on the degradation mechanisms that may limit the long term reliability of heterogeneous III-V/Silicon DBR laser diodes for integrated telecommunication applications in the 1.55 μm window. The devices under test, aged for up to 500 hours under different bias conditions, showed a gradual variation of both optical (L-I) and electrical (I-V, C-V) characteristics. In particular, the laser diodes exhibited an increase in the threshold current, a decrease of the turn-on voltage and an increase in the apparent charge density within the space-charge region, which was extrapolated from C-V measurements. For longer stress times, these two latter processes were found to be well correlated with the worsening of the optical parameters, which suggests that degradation occurred due to an increase in the density of defects within the active region, with consequent decrease in the non-radiative (SRH) lifetime. This conclusion is also supported by the fact that during stress the apparent charge profiles indicated a re-distribution of charge within the junction. A preliminary investigation on the physical origin of the defects responsible for degradation was carried out by DLTS measurements, which revealed the presence of five different deep levels, with a main trap located around 0.43 eV above the valence band energy. This trap was found to be compatible with an interface defect located between the In0.53AlxGa0.47-xAs SCH region and the InP layer.
Interactions of hydrogen with amorphous hafnium oxide
NASA Astrophysics Data System (ADS)
Kaviani, Moloud; Afanas'ev, Valeri V.; Shluger, Alexander L.
2017-02-01
We used density functional theory (DFT) calculations to study the interaction of hydrogen with amorphous hafnia (a -HfO2 ) using a hybrid exchange-correlation functional. Injection of atomic hydrogen, its diffusion towards electrodes, and ionization can be seen as key processes underlying charge instability of high-permittivity amorphous hafnia layers in many applications. Hydrogen in many wide band gap crystalline oxides exhibits negative-U behavior (+1 and -1 charged states are thermodynamically more stable than the neutral state) . Our results show that in a -HfO2 hydrogen is also negative-U, with charged states being the most thermodynamically stable at all Fermi level positions. However, metastable atomic hydrogen can share an electron with intrinsic electron trapping precursor sites [Phys. Rev. B 94, 020103 (2016)., 10.1103/PhysRevB.94.020103] forming a [etr -+O -H ] center, which is lower in energy on average by about 0.2 eV. These electron trapping sites can affect both the dynamics and thermodynamics of the interaction of hydrogen with a -HfO2 and the electrical behavior of amorphous hafnia films in CMOS devices.
Domain wall remote pinning in magnetic nano wires
NASA Astrophysics Data System (ADS)
Read, Dan; Miguel, Jorge; Maccherozzi, Francesco; Cavill, Stuart; Dhesi, Sarnjeet; Cardiff University Collaboration; Diamond Light Source Collaboration
2013-03-01
In the current race for information storage media with ever increasing density the position of magnetic domain walls, the region in a magnetic system where the local magnetization continually rotates its direction between adjacent magnetic domains, is one of the most promising routes for future storage media devices. Information storage requires ultrafast read-out and writing operations, but domain walls need to be pinned so that the information is safely stored in the long term. Here we investigate the use of remote magnetostatic charges to trap domain walls. By using X-ray photoelectron emission microscopy we have followed the position of domain walls of opposite charge being pinned or repelled by pinning potentials of increasing strength. Micromagnetic simulations show an excellent agreement with the experimental results. We demonstrate the attractive or repulsive character of the interaction between domain wall and trap depending upon the sign of their magnetic charges. These quasi-static experiments are the antecedent to ultrafast time-resolved XMCD-PEEM experiments where the spin-transfer torque effect will be studied dynamically by applying picosecond-long current pulses across the magnetic nanowire.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campanell, Michael D.; Umansky, M. V.
Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry,more » this 'new plasma' containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Lastly, our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.« less
Campanell, Michael D.; Umansky, M. V.
2017-11-22
Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry,more » this 'new plasma' containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Lastly, our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.« less
NASA Astrophysics Data System (ADS)
Yabunaka, Shunsuke; Onuki, Akira
2017-09-01
We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ >0 the anions remain accumulated, but for σ <0 the cations are attracted to the wall with increasing |σ |. Furthermore, the electric potential drop Ψ (σ ) is nonmonotonic when the solvent interaction parameter χ (T ) exceeds a critical value χc determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ . In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.
Status of the NIST Penning-Trap Neutron Lifetime Measurement
NASA Astrophysics Data System (ADS)
Snow, W. M.; Fei, X.; Chowdhuri, Z.; Dewey, M. S.; Gilliam, D.; Nico, J. S.; Greene, G. L.
1998-10-01
The decay rate of the free neutron is important input for Big-Bang Nucleosynthesis calculations of the primordial ^4He abundance in the universe(T. P. Walker et al, Astrophys. J. 376, 51 (1991).) and for tests of the electroweak model in the charged-current sector(I. S. Towner, Nucl. Phys. A540, 478 (1992).). We will describe an experiment in progress at NIST to measure the neutron decay rate. The technique uses a Penning trap to trap and count protons from in-beam neutron decay(J. Byrne et al., Phys. Rev. Lett. 65, 289 (1990).) and an absolutely calibrated beam monitor to measure the neutron density in the beam(R. D. Scott et al., Nucl. Inst. Meth. A362, 151 (1995).). We will present data taken in the spring and summer of 1998.
Confinement time exceeding one second for a toroidal electron plasma.
Marler, J P; Stoneking, M R
2008-04-18
Nearly steady-state electron plasmas are trapped in a toroidal magnetic field for the first time. We report the first results from a new toroidal electron plasma experiment, the Lawrence Non-neutral Torus II, in which electron densities on the order of 10(7) cm(-3) are trapped in a 270-degree toroidal arc (670 G toroidal magnetic field) by application of trapping potentials to segments of a conducting shell. The total charge inferred from measurements of the frequency of the m=1 diocotron mode is observed to decay on a 3 s time scale, a time scale that approaches the predicted limit due to magnetic pumping transport. Three seconds represents approximately equal to 10(5) periods of the lowest frequency plasma mode, indicating that nearly steady-state conditions are achieved.
Characterization of trapped charges distribution in terms of mirror plot curve.
Al-Obaidi, Hassan N; Mahdi, Ali S; Khaleel, Imad H
2018-01-01
Accumulation of charges (electrons) at the specimen surface in scanning electron microscope (SEM) lead to generate an electrostatic potential. By using the method of image charges, this potential is defined in the chamber's space of such apparatus. The deduced formula is expressed in terms a general volumetric distribution which proposed to be an infinitesimal spherical extension. With aid of a binomial theorem the defined potential is expanded to a multipolar form. Then resultant formula is adopted to modify a novel mirror plot equation so as to detect the real distribution of trapped charges. Simulation results reveal that trapped charges may take a various sort of arrangement such as monopole, quadruple and octuple. But existence of any of these arrangements alone may never be take place, rather are some a formations of a mix of them. Influence of each type of these profiles depends on the distance between the incident electron and surface of a sample. Result also shows that trapped charge's amount of trapped charges can refer to a threshold for failing of point charge approximation. Copyright © 2017 Elsevier B.V. All rights reserved.
A cooler Penning trap for the TITAN mass measurement facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, U.; Kootte, B.; Good, M.
The TITAN facility at TRIUMF makes use of highly charged ions, charge-bred in an electron beam ion trap, to carry out accurate mass measurements on radioactive isotopes. We report on our progress to develop a cooler Penning trap, CPET, which aims at reducing the energy spread of the ions to ≈ 1 eV/charge prior to injection into the mass measurement trap. In off-line mode, we can now trap electron plasmas for minutes, and we observe the damping of the m = 1 diocotron plasma mode within ≈ 2 s.
Active charge trapping control in dielectrics under ionizing radiation
NASA Astrophysics Data System (ADS)
Dominguez-Pumar, M.; Bheesayagari, C.; Gorreta, S.; Pons-Nin, J.
2017-12-01
Charge trapping is is a design and reliability factor in plasma sensors. Examples can be found in microchannel plate detectors in plasma analyzers, where multiple layers have been devised to ensure filled trapped electrons for enhanced secondary emission [1]. Charge trap mapping is used to recover distortion in telescope CCDs [2]. Specific technologies are designed to mitigate the effect of ionizing radiation in monolithic Active Pixel Sensors [3]. We report in this paper a control loop designed to control charge in Metal-Oxide-Semiconductor capacitors. We find that the net trapped charge in the device can be set within some limits to arbitrary values that can be changed with time. The control loop periodically senses the net trapped charge by detecting shifts in the capacitance vs voltage characteristic, and generates adequate waveform sequences to keep the trapped charge at the desired level [4]. The waveforms continuously applied have been chosen to provide different levels of charge injection into the dielectric. The control generates the adequate average charge injection to reach and maintain the desired level of trapped charge, compensating external disturbances. We also report that this control can compensate charge generated by ionizing radiation. Experiments will be shown in which this compensation is obtained with X-rays and gamma radiation. The presented results open the possibility of applying active compensation techniques for the first time in a wide number of devices such as radiation sensors, MOS transistors and other devices. The continuous drive towards integration may allow the implementation of this type of controls in devices needing to reject external disturbances, or needing to optimize their response to radiation or ion fluxes. References: [1] patent US 2009/0212680 A1. [2] A&A 534, A20 (2011). [3] Hemperek, Nucl. Instr. and Meth. in Phys. Res. Sect. A.796, pp 8-12, 2015. [4] Dominguez, IEEE Trans. Ind. Electr, 64 (4), 3023-3029, 2017.
Structural Defects in Donor-Acceptor Blends: Influence on the Performance of Organic Solar Cells
NASA Astrophysics Data System (ADS)
Sergeeva, Natalia; Ullbrich, Sascha; Hofacker, Andreas; Koerner, Christian; Leo, Karl
2018-02-01
Defects play an important role in the performance of organic solar cells. The investigation of trap states and their origin can provide ways to further improve their performance. Here, we investigate defects in a system composed of the small-molecule oligothiophene derivative DCV5T-Me blended with C60 , which shows power conversion efficiencies above 8% when used in a solar cell. From a reconstruction of the density of trap states by impedance spectroscopy, we obtain a Gaussian distribution of trap states with Et=470 meV below the electron transport level, Nt=8 ×1014 cm-3 , and σt=41 meV . From Voc vs illumination intensity and open-circuit corrected charge carrier extraction measurements, we find that these defects lead to trap-assisted recombination. Moreover, drift-diffusion simulations show that the trap states decrease the fill factor by 10%. By conducting degradation measurements and varying the blend ratio, we find that the observed trap states are structural defects in the C60 phase due to the distortion of the natural morphology induced by the mixing.
A Long DNA Segment in a Linear Nanoscale Paul Trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, Sony nmn; Guan, Weihau; Reed, Mark A
2009-01-01
We study the dynamics of a linearly distributed line charge such as single stranded DNA (ssDNA) in a nanoscale, linear 2D Paul trap in vacuum. Using molecular dynamics simulations we show that a line charge can be trapped effectively in the trap for a well defined range of stability parameters. We investigated (i) a flexible bonded string of charged beads and (ii) a ssDNA polymer of variable length, for various trap parameters. A line charge undergoes oscillations or rotations as it moves, depending on its initial angle, the position of the center of mass and the velocity. The stability regionmore » for a strongly bonded line of charged beads is similar to that of a single ion with the same charge to mass ratio. Single stranded DNA as long as 40 nm does not fold or curl in the Paul trap, but could undergo rotations about the center of mass. However, we show that a stretching field in the axial direction can effectively prevent the rotations and increase the confinement stability.« less
NASA Astrophysics Data System (ADS)
LeRoy, S.; Segur, P.; Teyssedre, G.; Laurent, C.
2004-01-01
We present a conduction model aimed at describing bipolar transport and space charge phenomena in low density polyethylene under dc stress. In the first part we recall the basic requirements for the description of charge transport and charge storage in disordered media with emphasis on the case of polyethylene. A quick review of available conduction models is presented and our approach is compared with these models. Then, the bases of the model are described and related assumptions are discussed. Finally, results on external current, trapped and free space charge distributions, field distribution and recombination rate are presented and discussed, considering a constant dc voltage, a step-increase of the voltage, and a polarization-depolarization protocol for the applied voltage. It is shown that the model is able to describe the general features reported for external current, electroluminescence and charge distribution in polyethylene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guochang; Chen, George, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn; School of Electronic and Computer Science, University of Southampton, Southampton SO17 1BJ
Charge transport properties in nanodielectrics present different tendencies for different loading concentrations. The exact mechanisms that are responsible for charge transport in nanodielectrics are not detailed, especially for high loading concentration. A charge transport model in nanodielectrics has been proposed based on quantum tunneling mechanism and dual-level traps. In the model, the thermally assisted hopping (TAH) process for the shallow traps and the tunnelling process for the deep traps are considered. For different loading concentrations, the dominant charge transport mechanisms are different. The quantum tunneling mechanism plays a major role in determining the charge conduction in nanodielectrics with high loadingmore » concentrations. While for low loading concentrations, the thermal hopping mechanism will dominate the charge conduction process. The model can explain the observed conductivity property in nanodielectrics with different loading concentrations.« less
NASA Astrophysics Data System (ADS)
Hu, Yin; White, Marvin H.
1993-10-01
A new analytical model is developed to investigate the influence of the charge loss processes in the retention mode of the SONOS NVSM device. The model considers charge loss by the following processes: (1) electron back-tunneling from the nitride traps to the Si conduction band, (2) electron back-tunneling from the nitride traps to the Si/SiO 2 interface traps and (3) hole injection from the Si valence band to the nitride traps. An amphoteric trap charge distribution is used in this model. The new charge retention model predicts that process (1) determines the short term retention, while processes (2) and (3) determine the long term retention. Good agreement has been reached between the results of analytical calculations and the experimental retention data on both surface channel and buried channel SONOS devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Xianfeng, E-mail: qiaoxianfeng@hotmail.com; Zhao, Chen; Chen, Bingbing
This paper reports a trap-induced photoconductivity in ITO/pentacene/Al diodes by using current-voltage and magneto-conductance measurements. The comparison of photoconductivity between pentacene diodes with and without trap clearly shows that the traps play a critical role in generating photoconductivity. It shows that no observable photoconductivity is detected for trap-free pentacene diodes, while significant photoconductivity is observed in diodes with trap. This is because the initial photogenerated singlet excitons in pentacene can rapidly split into triplet excitons with higher binding energy prior to dissociating into free charge carriers. The generated triplet excitons react with trapped charges to release charge-carriers from traps, leadingmore » to a trap-induced photoconductivity in the single-layer pentacene diodes. Our studies elucidated the formation mechanisms of photoconductivity in pentacene diodes with extremely fast singlet fission rate.« less
High frequency capacitance-voltage characteristics of thermally grown SiO2 films on beta-SiC
NASA Technical Reports Server (NTRS)
Tang, S. M.; Berry, W. B.; Kwor, R.; Zeller, M. V.; Matus, L. G.
1990-01-01
Silicon dioxide films grown under dry and wet oxidation environment on beta-SiC films have been studied. The beta-SiC films had been heteroepitaxially grown on both on-axis and 2-deg off-axis (001) Si substrates. Capacitance-voltage and conductance-voltage characteristics of metal-oxide-semiconductor structures were measured in a frequency range of 10 kHz to 1 MHz. From these measurements, the interface trap density and the effective fixed oxide charge density were observed to be generally lower for off-axis samples.
Flash Memory Featuring Low-Voltage Operation by Crystalline ZrTiO4 Charge-Trapping Layer
NASA Astrophysics Data System (ADS)
Shen, Yung-Shao; Chen, Kuen-Yi; Chen, Po-Chun; Chen, Teng-Chuan; Wu, Yung-Hsien
2017-03-01
Crystalline ZrTiO4 (ZTO) in orthorhombic phase with different plasma treatments was explored as the charge-trapping layer for low-voltage operation flash memory. For ZTO without any plasma treatment, even with a high k value of 45.2, it almost cannot store charges due the oxygen vacancies-induced shallow-level traps that make charges easy to tunnel back to Si substrate. With CF4 plasma treatment, charge storage is still not improved even though incorporated F atoms could introduce additional traps since the F atoms disappear during the subsequent thermal annealing. On the contrary, nevertheless the k value degrades to 40.8, N2O plasma-treated ZTO shows promising performance in terms of 5-V hysteresis memory window by ±7-V sweeping voltage, 2.8-V flatband voltage shift by programming at +7 V for 100 μs, negligible memory window degradation with 105 program/erase cycles and 81.8% charge retention after 104 sec at 125 °C. These desirable characteristics are ascribed not only to passivation of oxygen vacancies-related shallow-level traps but to introduction of a large amount of deep-level bulk charge traps which have been proven by confirming thermally excited process as the charge loss mechanism and identifying traps located at energy level beneath ZTO conduction band by 0.84 eV~1.03 eV.
Flash Memory Featuring Low-Voltage Operation by Crystalline ZrTiO4 Charge-Trapping Layer.
Shen, Yung-Shao; Chen, Kuen-Yi; Chen, Po-Chun; Chen, Teng-Chuan; Wu, Yung-Hsien
2017-03-08
Crystalline ZrTiO 4 (ZTO) in orthorhombic phase with different plasma treatments was explored as the charge-trapping layer for low-voltage operation flash memory. For ZTO without any plasma treatment, even with a high k value of 45.2, it almost cannot store charges due the oxygen vacancies-induced shallow-level traps that make charges easy to tunnel back to Si substrate. With CF 4 plasma treatment, charge storage is still not improved even though incorporated F atoms could introduce additional traps since the F atoms disappear during the subsequent thermal annealing. On the contrary, nevertheless the k value degrades to 40.8, N 2 O plasma-treated ZTO shows promising performance in terms of 5-V hysteresis memory window by ±7-V sweeping voltage, 2.8-V flatband voltage shift by programming at +7 V for 100 μs, negligible memory window degradation with 10 5 program/erase cycles and 81.8% charge retention after 10 4 sec at 125 °C. These desirable characteristics are ascribed not only to passivation of oxygen vacancies-related shallow-level traps but to introduction of a large amount of deep-level bulk charge traps which have been proven by confirming thermally excited process as the charge loss mechanism and identifying traps located at energy level beneath ZTO conduction band by 0.84 eV~1.03 eV.
Yamada, Yasuhiro; Yamada, Takumi; Shimazaki, Ai; Wakamiya, Atsushi; Kanemitsu, Yoshihiko
2016-06-02
The fast-decaying component of photoluminescence (PL) under very weak pulse photoexcitation is dominated by the rapid relaxation of the photoexcited carriers into a small number of carrier-trapping defect states. Here, we report the subnanosecond decay of the PL under excitation weaker than 1 nJ/cm(2) both in CH3NH3PbI3-based heterostructures and bare thin films. The trap-site density at the interface was evaluated on the basis of the fluence-dependent PL decay profiles. It was found that high-density defects determining the PL decay dynamics are formed near the interface between CH3NH3PbI3 and the hole-transporting Spiro-OMeTAD but not at the CH3NH3PbI3/TiO2 interface and the interior regions of CH3NH3PbI3 films. This finding can aid the fabrication of high-quality heterointerfaces, which are required improving the photoconversion efficiency of perovskite-based solar cells.
Šedivý, L.; Čížek, J.; Belas, E.; Grill, R.; Melikhova, O.
2016-01-01
Positron annihilation spectroscopy (PAS) was used to examine the effect of defined Cd-rich and Te-rich annealing on point defects in Cl-doped CdTe and Ge-doped CdZnTe semi-insulating single crystals. The as-grown crystals contain open-volume defects connected with Cd vacancies . It was found that the Cd vacancies agglomerate into clusters coupled with Cl in CdTe:Cl, and in CdZnTe:Ge they are coupled with Ge donors. While annealing in Cd pressure reduces of the density, subsequent annealing in Te pressure restores . The CdTe:Cl contains negatively-charged shallow traps interpreted as Rydberg states of A-centres and representing the major positron trapping sites at low temperature. Positrons confined in the shallow traps exhibit lifetime, which is shorter than the CdTe bulk lifetime. Interpretation of the PAS data was successfully combined with electrical resistivity, Hall effect measurements and chemical analysis, and allowed us to determine the principal point defect densities. PMID:26860684
Pronounced photogating effect in atomically thin WSe2 with a self-limiting surface oxide layer
NASA Astrophysics Data System (ADS)
Yamamoto, Mahito; Ueno, Keiji; Tsukagoshi, Kazuhito
2018-04-01
The photogating effect is a photocurrent generation mechanism that leads to marked responsivity in two-dimensional (2D) semiconductor-based devices. A key step to promote the photogating effect in a 2D semiconductor is to integrate it with a high density of charge traps. Here, we show that self-limiting surface oxides on atomically thin WSe2 can serve as effective electron traps to facilitate p-type photogating. By examining the gate-bias-induced threshold voltage shift of a p-type transistor based on single-layer WSe2 with surface oxide, the electron trap density and the trap rate of the oxide are determined to be >1012 cm-2 and >1010 cm-2 s-1, respectively. White-light illumination on an oxide-covered 4-layer WSe2 transistor leads to the generation of photocurrent, the magnitude of which increases with the hole mobility. During illumination, the photocurrent evolves on a timescale of seconds, and a portion of the current persists even after illumination. These observations indicate that the photogenerated electrons are trapped deeply in the surface oxide and effectively gate the underlying WSe2. Owing to the pronounced photogating effect, the responsivity of the oxide-covered WSe2 transistor is observed to exceed 3000 A/W at an incident optical power of 1.1 nW, suggesting the effectiveness of surface oxidation in facilitating the photogating effect in 2D semiconductors.
Energetic mapping of oxide traps in MoS2 field-effect transistors
NASA Astrophysics Data System (ADS)
Illarionov, Yury Yu; Knobloch, Theresia; Waltl, Michael; Rzepa, Gerhard; Pospischil, Andreas; Polyushkin, Dmitry K.; Furchi, Marco M.; Mueller, Thomas; Grasser, Tibor
2017-06-01
The performance of MoS2 transistors is strongly affected by charge trapping in oxide traps with very broad distributions of time constants. These defects degrade the mobility and additionally lead to the hysteresis of the gate transfer characteristics, which presents a crucial performance and reliability issue for these new technologies. Here we perform a detailed study of the hysteresis in double-gated MoS2 FETs and show that this issue is nothing else than a combination of threshold voltage shifts resulting from positive and negative bias-temperature instabilities. While these instabilities are well known from silicon devices, they are even more important in 2D devices given the considerably larger defect densities. Most importantly, the magnitudes of these threshold voltage shifts depend strongly on the density and energetic alignment of the active oxide traps. Based on this, we introduce the incremental hysteresis sweep method which allows for an accurate mapping of these defects and extract their energy distributions from simulations. By applying our method to analyze the impact of oxide traps situated in the Al2O3 top gate of several devices, we confirm its versatility. Since all 2D devices investigated so far suffer from a similar hysteresis behavior, the incremental hysteresis sweep method provides a unique and powerful way for the detailed characterization of their defect bands.
Control of Screening of a Charged Particle in Electrolytic Aqueous Paul Trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jae Hyun nmn; Krstic, Predrag S
2011-01-01
Individual charged particles could be trapped and confined in the combined radio-frequency and DC quadrupole electric field of an aqueous Paul trap. Viscosity of water improves confinement and extends the range of the trap parameters which characterize the stability of the trap. Electrolyte, if present in aqueous solution, may screen the charged particle and thus partially or fully suppress electrophoretic interaction with the applied filed, possibly reducing it to a generally much weaker dielectrophoretic interaction with an induced dipole. Applying molecular dynamics simulation we show that the quadrupole field has a different affects at the electrolyte ions and at muchmore » heavier charged particle, effectively eliminating the screening effect and reinstating the electrophoretic confinement.« less
Control Of Screening Of A Charged Particle In Electrolytic Aqueous Paul Trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jae Hyun; Krstic, Predrag S.
2011-06-01
Individual charged particles could be trapped and confined by the combined radio-frequency and DC quadrupole electric field of an aqueous Paul trap. Viscosity of water improves confinement and extends the range of the trap parameters which characterize the stability of the trap. Electrolyte, if present in aqueous solution, may screen the charged particle and thus partially or fully suppress electrophoretic interaction with the applied filed, possibly reducing it to a generally much weaker dielectrophoretic interaction with an induced dipole. Applying molecular dynamics simulation we show that the quadrupole field has a different effect at the electrolyte ions and at muchmore » heavier charged particle, effectively eliminating the screening by electrolyte ions and reinstating the electrophoretic confinement.« less
Local Charge Injection and Extraction on Surface-Modified Al2O3 Nanoparticles in LDPE.
Borgani, Riccardo; Pallon, Love K H; Hedenqvist, Mikael S; Gedde, Ulf W; Haviland, David B
2016-09-14
We use a recently developed scanning probe technique to image with high spatial resolution the injection and extraction of charge around individual surface-modified aluminum oxide nanoparticles embedded in a low-density polyethylene (LDPE) matrix. We find that the experimental results are consistent with a simple band structure model where localized electronic states are available in the band gap (trap states) in the vicinity of the nanoparticles. This work offers experimental support to a previously proposed mechanism for enhanced insulating properties of nanocomposite LDPE and provides a powerful experimental tool to further investigate such properties.
Vacancy effects on the electronic and structural properties pentacene
NASA Astrophysics Data System (ADS)
Laraib, Iflah; Janotti, Anderson
Defects in organic crystals are likely to affect charge transport in organic electronic devices. Vacancies can create lattice distortions and modify electronic states associated with the molecules in its surrounding. Spectroscopy experiments indicate that molecular vacancies trap charge carriers. Experimental characterization of individual defects is challenging and unambiguous. Here we use density functional calculations including van der Waals interactions in a supercell approach to study the single vacancy in pentacene, a prototype organic semiconductor. We determine formation energies, local lattice relaxations, and discuss how vacancies locally distort the lattice and affect the electronic properties of the host organic semiconductor.
NASA Astrophysics Data System (ADS)
Anada, Satoshi; Yamamoto, Kazuo; Sasaki, Hirokazu; Shibata, Naoya; Hori, Yujin; Kinugawa, Kouhei; Imamura, Akihiro; Hirayama, Tsukasa
2017-12-01
We combined an in situ biasing technique with phase-shifting electron holography, which can simultaneously achieve a high precision and high spatial resolution, to measure the electric potential, field, and charge density profiles across a GaAs p-n tunnel junction. A thin-film specimen was prepared by thinning one part of a bulk specimen using a cryo focused ion beam (FIB) system. We obtained precise electric potential profiles and successfully converted them into smooth electric field and charge density profiles without any fitting simulations. From the relationship between the applied voltage and measured height of the potential step across the p-n junction, the built-in potential of the p-n junction was determined to be 1.55 ± 0.02 V. The electric field profiles showed that the unbiased p-n junction had a depletion layer with a width of 24 ± 1 nm; the width increased to 26 ± 1 nm under a reverse bias of -0.3 V and decreased to 22 ± 1 nm under a forward bias of 0.5 V. Moreover, the charge density profiles indicated the presence of passivated dopants and/or trapped carriers even in the internal active layer of the specimen, with little damage introduced by FIB milling.
NASA Astrophysics Data System (ADS)
Lükens, G.; Yacoub, H.; Kalisch, H.; Vescan, A.
2016-05-01
The interface charge density between the gate dielectric and an AlGaN/GaN heterostructure has a significant impact on the absolute value and stability of the threshold voltage Vth of metal-insulator-semiconductor (MIS) heterostructure field effect transistor. It is shown that a dry-etching step (as typically necessary for normally off devices engineered by gate-recessing) before the Al2O3 gate dielectric deposition introduces a high positive interface charge density. Its origin is most likely donor-type trap states shifting Vth to large negative values, which is detrimental for normally off devices. We investigate the influence of oxygen plasma annealing techniques of the dry-etched AlGaN/GaN surface by capacitance-voltage measurements and demonstrate that the positive interface charge density can be effectively compensated. Furthermore, only a low Vth hysteresis is observable making this approach suitable for threshold voltage engineering. Analysis of the electrostatics in the investigated MIS structures reveals that the maximum Vth shift to positive voltages achievable is fundamentally limited by the onset of accumulation of holes at the dielectric/barrier interface. In the case of the Al2O3/Al0.26Ga0.74N/GaN material system, this maximum threshold voltage shift is limited to 2.3 V.
Comparing simulations and test data of a radiation damaged CCD for the Euclid mission
NASA Astrophysics Data System (ADS)
Skottfelt, Jesper; Hall, David; Gow, Jason; Murray, Neil; Holland, Andrew; Prod'homme, Thibaut
2016-07-01
The radiation damage effects from the harsh radiative environment outside the Earth's atmosphere can be a cause for concern for most space missions. With the science goals becoming ever more demanding, the requirements on the precision of the instruments on board these missions also increases, and it is therefore important to investigate how the radiation induced damage affects the Charge-Coupled Devices (CCDs) that most of these instruments rely on. The primary goal of the Euclid mission is to study the nature of dark matter and dark energy using weak lensing and baryonic acoustic oscillation techniques. The weak lensing technique depends on very precise shape measurements of distant galaxies obtained by a large CCD array. It is anticipated that over the 6 year nominal lifetime of mission, the CCDs will be degraded to an extent that these measurements will not be possible unless the radiation damage effects are corrected. We have therefore created a Monte Carlo model that simulates the physical processes taking place when transferring signal through a radiation damaged CCD. The software is based on Shockley-Read-Hall theory, and is made to mimic the physical properties in the CCD as close as possible. The code runs on a single electrode level and takes charge cloud size and density, three dimensional trap position, and multi-level clocking into account. A key element of the model is that it takes device specific simulations of electron density as a direct input, thereby avoiding to make any analytical assumptions about the size and density of the charge cloud. This paper illustrates how test data and simulated data can be compared in order to further our understanding of the positions and properties of the individual radiation-induced traps.
Lunar exospheric argon modeling
NASA Astrophysics Data System (ADS)
Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.
2015-07-01
Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap argon, 0.007% of the total lunar surface, is consistent with the presence of adsorbed water in such PSRs.
NASA Astrophysics Data System (ADS)
Jayawardena, Asanka; Shen, X.; Mooney, P. M.; Dhar, Sarit
2018-06-01
Interfacial charge trapping in 4H–SiC MOS capacitors with P doped SiO2 or phospho-silicate glass (PSG) as a gate dielectric has been investigated with temperature dependent capacitance–voltage measurements and constant capacitance deep level transient spectroscopy (CCDLTS) measurements. The measurements indicate that P doping in the dielectric results in significant reduction of near-interface electron traps that have energy levels within 0.5 eV of the 4H–SiC conduction band edge. Extracted trap densities confirm that the phosphorus induced near-interface trap reduction is significantly more effective than interfacial nitridation, which is typically used for 4H–SiC MOSFET processing. The CCDLTS measurements reveal that the two broad near-interface trap peaks, named ‘O1’ and ‘O2’, with activation energies around 0.15 eV and 0.4 eV below the 4H–SiC conduction band that are typically observed in thermal oxides on 4H–SiC, are also present in PSG devices. Previous atomic scale ab initio calculations suggested these O1 and O2 traps to be carbon dimers substituted for oxygen dimers (CO=CO) and interstitial Si (Sii) in SiO2, respectively. Theoretical considerations in this work suggest that the presence of P in the near-interfacial region reduces the stability of the CO=CO defects and reduces the density of Sii defects through the network restructuring. Qualitative comparison of results in this work and reported work suggest that the O1 and O2 traps in SiO2/4H–SiC MOS system negatively impact channel mobility in 4H–SiC MOSFETs.
Ferroelectric Diodes with Charge Injection and Trapping
NASA Astrophysics Data System (ADS)
Fan, Zhen; Fan, Hua; Lu, Zengxing; Li, Peilian; Huang, Zhifeng; Tian, Guo; Yang, Lin; Yao, Junxiang; Chen, Chao; Chen, Deyang; Yan, Zhibo; Lu, Xubing; Gao, Xingsen; Liu, Jun-Ming
2017-01-01
Ferroelectric diodes with polarization-modulated Schottky barriers are promising for applications in resistive switching (RS) memories. However, they have not achieved satisfactory performance reliability as originally hoped. The physical origins underlying this issue have not been well studied, although they deserve much attention. Here, by means of scanning Kelvin probe microscopy we show that the electrical poling of ferroelectric diodes can cause significant charge injection and trapping besides polarization switching. We further show that the reproducibility and stability of switchable diode-type RS behavior are significantly affected by the interfacial traps. A theoretical model is then proposed to quantitatively describe the modifications of Schottky barriers by charge injection and trapping. This model is able to reproduce various types of hysteretic current-voltage characteristics as experimentally observed. It is further revealed that the charge injection and trapping can significantly modify the electroresistance ratio, RS polarity, and high- or low-resistance states initially defined by the polarization direction. Several approaches are suggested to suppress the effect of charge injection and trapping so as to realize high-performance polarization-reversal-induced RS. This study, therefore, reveals the microscopic mechanisms for the RS behavior comodulated by polarization reversal and charge trapping in ferroelectric diodes, and also provides useful suggestions for developing reliable ferroelectric RS memories.
Boehme, Simon C; Walvis, T Ardaan; Infante, Ivan; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Houtepen, Arjan J
2014-07-22
Understanding and controlling charge transfer between different kinds of colloidal quantum dots (QDs) is important for devices such as light-emitting diodes and solar cells and for thermoelectric applications. Here we study photoinduced electron transfer between CdTe and CdSe QDs in a QD film. We find that very efficient electron trapping in CdTe QDs obstructs electron transfer to CdSe QDs under most conditions. Only the use of thiol ligands results in somewhat slower electron trapping; in this case the competition between trapping and electron transfer results in a small fraction of electrons being transferred to CdSe. However, we demonstrate that electron trapping can be controlled and even avoided altogether by using the unique combination of electrochemistry and transient absorption spectroscopy. When the Fermi level is raised electrochemically, traps are filled with electrons and electron transfer from CdTe to CdSe QDs occurs with unity efficiency. These results show the great importance of knowing and controlling the Fermi level in QD films and open up the possibility of studying the density of trap states in QD films as well as the systematic investigation of the intrinsic electron transfer rates in donor-acceptor films.
Ion Temperature Measurements in an electron beam ion trap (EBIT)
NASA Astrophysics Data System (ADS)
Beiersdorfer, P.; Decaux, V.; Widmann, K.
1997-11-01
An electron beam ion trap consists of a Penning-type cylindrical trap traversed by a high-energy (<= 200 keV), high-density (Ne <= 10^13 cm-3) electron beam. Ions are trapped by the space charge potential of the electron beam, a static potential on the end electrodes, and a 3-T axial magnetic field [1]. The ions are heated by the electron beam and leave the trap once their kinetic energy suffices to overcome the potential barriers. Using high-resolution x-ray spectroscopy, we have made systematic measurements of the temperature of Ti^20+ and Cs^45+ ions in the trap [2]. The dependence of the ion temperature on operating parameters, such as trapping potential, beam current, and neutral gas pressure, will be presented. Temperatures as low as 15.4 ± 4.4 eV and as high as 2 keV were observed. *Work performed under the auspices of the U.S.D.o.E. by Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48. [1] M. Levine et al., Phys. Scripta T22, 157 (1989). [2]P. Beiersdorfer et al., PRL 77, 5356 (1996); P. Beiersdorfer, in AIP Conf. Proc. No. 389, p. 121 (1997).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, Stephen G., E-mail: sdale@ucmerced.edu; Johnson, Erin R., E-mail: erin.johnson@dal.ca
2015-11-14
Exploration of the solvated electron phenomena using density-functional theory (DFT) generally results in prediction of a localised electron within an induced solvent cavity. However, it is well known that DFT favours highly delocalised charges, rendering the localisation of a solvated electron unexpected. We explore the origins of this counterintuitive behaviour using a model Kevan-structure system. When a polarisable-continuum solvent model is included, it forces electron localisation by introducing a strong energetic bias that favours integer charges. This results in the formation of a large energetic barrier for charge-hopping and can cause the self-consistent field to become trapped in local minimamore » thus converging to stable solutions that are higher in energy than the ground electronic state. Finally, since the bias towards integer charges is caused by the polarisable continuum, these findings will also apply to other classical polarisation corrections, as in combined quantum mechanics and molecular mechanics (QM/MM) methods. The implications for systems beyond the solvated electron, including cationic DNA bases, are discussed.« less
NASA Technical Reports Server (NTRS)
Howell, L. W.; Kennel, H. F.
1984-01-01
The Space Telescope (ST) is subjected to charged particle strikes in its space environment. ST's onboard fine guidance sensors utilize multiplier phototubes (PMT) for attitude determination. These tubes, when subjected to charged particle strikes, generate spurious photons in the form of Cerenkov radiation and fluorescence which give rise to unwanted disturbances in the pointing of the telescope. A stochastic model for the number of these spurious photons which strike the photocathode of the multiplier phototube which in turn produce the unwanted photon noise are presented. The model is applicable to both galactic cosmic rays and charged particles trapped in the Earth's radiation belts. The model which was programmed allows for easy adaption to a wide range of particles and different parameters for the phototube of the multiplier. The probability density functions for photons noise caused by protons, alpha particles, and carbon nuclei were using thousands of simulated strikes. These distributions are used as part of an overall ST dynamics simulation. The sensitivity of the density function to changes in the window parameters was also investigated.
NASA Technical Reports Server (NTRS)
Howell, L. W.; Kennel, H. F.
1986-01-01
The Space Telescope (ST) is subjected to charged particle strikes in its space environment. ST's onboard fine guidance sensors utilize multiplier phototubes (PMT) for attitude determination. These tubes, when subjected to charged particle strikes, generate spurious photons in the form of Cerenkov radiation and fluorescence which give rise to unwanted disturbances in the pointing of the telescope. A stochastic model for the number of these spurious photons which strike the photocathodes of the multiplier phototube which in turn produce the unwanted photon noise are presented. The model is applicable to both galactic cosmic rays and charged particles trapped in the earth's radiation belts. The model which was programmed allows for easy adaption to a wide range of particles and different parameters for the phototube of the multiplier. The probability density functions for photons noise caused by protons, alpha particles, and carbon nuclei were using thousands of simulated strikes. These distributions are used as part of an overall ST dynamics simulation. The sensitivity of the density function to changes in the window parameters was also investigated.
Determination of P3HT Trap Site Energies by Thermally Stimulated Current
NASA Astrophysics Data System (ADS)
Souza, J. F. P.; Serbena, J. P. M.; Kowalski, E. L.; Akcelrud, L. C.
2018-02-01
The thermal, electrical and morphological characterization of poly(3-hexylthiophene-2,5diyl) (P3HT) is presented and discussed. Thermal analyses revealed high glass transition, melting and degradation temperatures, indicating high stability of the polymer to annealings in the range 25-200°C. Electrical measurements were performed in spin-coated devices constructed using indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) in the sandwich structure ITO/PEDOT:PSS/P3HT/Al. The devices were thermally treated at 25°C, 100°C, 150°C, and 200°C prior to the measurements. Characteristic curves of current density versus voltage showed that the injection of charge carriers is governed by tunneling at high electric fields. Hole mobility was estimated by impedance spectroscopy, showing a maximum value of 8.6 × 10-5 cm2/Vs for annealed films at 150°C. A thermally stimulated current technique was used to analyze the trap density in the P3HT and its respective energies for all devices, presenting the lowest trap density for annealed films at 150°C. Morphological features observed by atomic force microscopy showed that the 150°C thermally treated film presents the best interface condition of the four investigated annealing temperatures.
Origin of traps and charge transport mechanism in hafnia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islamov, D. R., E-mail: damir@isp.nsc.ru; Gritsenko, V. A., E-mail: grits@isp.nsc.ru; Novosibirsk State University, Novosibirsk 630090
2014-12-01
In this study, we demonstrated experimentally and theoretically that oxygen vacancies are responsible for the charge transport in HfO{sub 2}. Basing on the model of phonon-assisted tunneling between traps, and assuming that the electron traps are oxygen vacancies, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. The thermal trap energy of 1.25 eV in HfO{sub 2} was determined based on the charge transport experiments.
Light programmable organic transistor memory device based on hybrid dielectric
NASA Astrophysics Data System (ADS)
Ren, Xiaochen; Chan, Paddy K. L.
2013-09-01
We have fabricated the transistor memory devices based on SiO2 and polystyrene (PS) hybrid dielectric. The trap states densities with different semiconductors have been investigated and a maximum 160V memory window between programming and erasing is realized. For DNTT based transistor, the trapped electron density is limited by the number of mobile electrons in semiconductor. The charge transport mechanism is verified by light induced Vth shift effect. Furthermore, in order to meet the low operating power requirement of portable electronic devices, we fabricated the organic memory transistor based on AlOx/self-assembly monolayer (SAM)/PS hybrid dielectric, the effective capacitance of hybrid dielectric is 210 nF cm-2 and the transistor can reach saturation state at -3V gate bias. The memory window in transfer I-V curve is around 1V under +/-5V programming and erasing bias.
NASA Astrophysics Data System (ADS)
Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.
2015-07-01
Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br- or I-) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.
NASA Astrophysics Data System (ADS)
Aziz, A.; Kassmi, K.; Maimouni, R.; Olivié, F.; Sarrabayrouse, G.; Martinez, A.
2005-09-01
In this paper, we present the theoretical and experimental results of the influence of a charge trapped in ultra-thin oxide of metal/ultra-thin oxide/semiconductor structures (MOS) on the I(Vg) current-voltage characteristics when the conduction is of the Fowler-Nordheim (FN) tunneling type. The charge, which is negative, is trapped near the cathode (metal/oxide interface) after constant current injection by the metal (Vg<0). Of particular interest is the influence on the Δ Vg(Vg) shift over the whole I(Vg) characteristic at high field (greater than the injection field (>12.5 MV/cm)). It is shown that the charge centroid varies linearly with respect to the voltage Vg. The behavior at low field (<12.5 MV/cm) is analyzed in référence A. Aziz, K. Kassmi, Ka. Kassmi, F. Olivié, Semicond. Sci. Technol. 19, 877 (2004) and considers that the trapped charge centroid is fixed. The results obtained make it possible to analyze the influence of the injected charge and the applied field on the centroid position of the trapped charge, and to highlight the charge instability in the ultra-thin oxide of MOS structures.
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Olenga, Antoine; Weiss, A. H.
2013-03-01
The process by which oxide layers are formed on metal surfaces is still not well understood. In this work we present the results of theoretical studies of positron states and annihilation characteristics of surface-trapped positrons at the oxidized Cu(110) surface. An ab-initio investigation of stability and associated electronic properties of different adsorption phases of oxygen on Cu(110) has been performed on the basis of density functional theory and using DMOl3 code. The changes in the positron work function and the surface dipole moment when oxygen atoms occupy on-surface and sub-surface sites have been attributed to charge redistribution within the first two layers, buckling effects within each layer and interlayer expansion. The computed positron binding energy, positron surface state wave function, and annihilation probabilities of surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, elemental content, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data obtained from studies of oxidized transition metal surfaces using positron annihilation induced Auger electron spectroscopy. This work was supported in part by the National Science Foundation Grant DMR-0907679.
A dynamic Monte Carlo study of anomalous current voltage behaviour in organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feron, K., E-mail: Krishna.Feron@csiro.au; Fell, C. J.; CSIRO Energy Flagship, Newcastle, NSW 2300
2014-12-07
We present a dynamic Monte Carlo (DMC) study of s-shaped current-voltage (I-V) behaviour in organic solar cells. This anomalous behaviour causes a substantial decrease in fill factor and thus power conversion efficiency. We show that this s-shaped behaviour is induced by charge traps that are located at the electrode interface rather than in the bulk of the active layer, and that the anomaly becomes more pronounced with increasing trap depth or density. Furthermore, the s-shape anomaly is correlated with interface recombination, but not bulk recombination, thus highlighting the importance of controlling the electrode interface. While thermal annealing is known tomore » remove the s-shape anomaly, the reason has been not clear, since these treatments induce multiple simultaneous changes to the organic solar cell structure. The DMC modelling indicates that it is the removal of aluminium clusters at the electrode, which act as charge traps, that removes the anomalous I-V behaviour. Finally, this work shows that the s-shape becomes less pronounced with increasing electron-hole recombination rate; suggesting that efficient organic photovoltaic material systems are more susceptible to these electrode interface effects.« less
Charge Trapping Properties of Ge Nanocrystals Grown via Solid-State Dewetting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Steven; Jadli, I.; Aouassa, M.
2018-05-04
In the present work, we report on the charge trapping properties of Germanium Nanocrystals (Ge NCs) self assembled on SiO2 thin layer for promising applications in next-generation non volatile memory by the means of Deep Level Transient Spectroscopy (DLTS) and high frequency C-V method. The Ge NCs were grown via dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing and passivated with silicon before SiO2 capping. The role of the surface passivation is to reduce the electrical defect density at the Ge NCs-SiO2 interface. The presence of the Ge NCs in the oxide of the MOS capacitors strongly affectsmore » the C-V characteristics and increases the accumulation capacitance, causes a negative flat band voltage (VFB) shift. The DLTS has been used to study the individual Ge NCs as a single point deep level defect in the oxide. DLTS reveals two main features: the first electron traps around 255 K could correspond to dangling bonds at the Si/SiO2 interface and the second, at high-temperature (>300 K) response, could be originated from minority carrier generation in Ge NCs.« less
Gopika, G; Asha, A M; Sivakumar, N; Balakrishnan, A; Nair, S V; Subramanian, K R V
2015-09-01
In this paper, we have synthesized electrospun TiO2 nanofibers embedded with bimodal sized and prismatic gold nanoparticles. The surface plasmons generated in the gold nanoparticles were used to enhance the performance of photocatalysis. The photocatalytic conversion efficiencies of these bimodal sized/prismatic gold nanoparticles when embedded in electrospun TiO2 fibres showed an enhancement of upto 60% over bare fiber systems and also show higher efficiencies than electrospun fibrous systems embedded with unimodal sized gold nanoparticles. Anisotropic bimodal gold nanoparticles show the highest degree of photocatalytic activity. This may be attributed to greater density/concentration of nanoparticles with higher effective surface area and formation of a junction between the smaller and larger nanoparticles. Such a bimodally distributed range of nanoparticles could also lead to greater trapping of charge carriers at the TiO2 conduction band edge and promoting catalytic reactions on account of these trapped charges. This enhanced photocatalytic activity is explained by invoking different operating mechanisms such as improved surface area, greater trapping, coarse plasmon resonance and band effects. Thus, a useful applicability of the gold nanoparticles is shown in the area of photocatalysis.
Reduced electron back-injection in Al2O3/AlOx/Al2O3/graphene charge-trap memory devices
NASA Astrophysics Data System (ADS)
Lee, Sejoon; Song, Emil B.; Min Kim, Sung; Lee, Youngmin; Seo, David H.; Seo, Sunae; Wang, Kang L.
2012-12-01
A graphene charge-trap memory is devised using a single-layer graphene channel with an Al2O3/AlOx/Al2O3 oxide stack, where the ion-bombarded AlOx layer is intentionally added to create an abundance of charge-trap sites. The low dielectric constant of AlOx compared to Al2O3 reduces the potential drop in the control oxide Al2O3 and suppresses the electron back-injection from the gate to the charge-storage layer, allowing the memory window of the device to be further extended. This shows that the usage of a lower dielectric constant in the charge-storage layer compared to that of the control oxide layer improves the memory performance for graphene charge-trap memories.
Liu, Chunsen; Yan, Xiao; Wang, Jianlu; Ding, Shijin; Zhou, Peng; Zhang, David Wei
2017-05-01
Atomic crystal charge trap memory, as a new concept of nonvolatile memory, possesses an atomic level flatness interface, which makes them promising candidates for replacing conventional FLASH memory in the future. Here, a 2D material WSe 2 and a 3D Al 2 O 3 /HfO 2 /Al 2 O 3 charge-trap stack are combined to form a charge-trap memory device with a separation of control gate and memory stack. In this device, the charges are erased/written by built-in electric field, which significantly enhances the write speed to 1 µs. More importantly, owing to the elaborate design of the energy band structure, the memory only captures electrons with a large electron memory window over 20 V and trap selectivity about 13, both of them are the state-of-the-art values ever reported in FLASH memory based on 2D materials. Therefore, it is demonstrated that high-performance charge trap memory based on WSe 2 without the fatal overerase issue in conventional FLASH memory can be realized to practical application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chung, Heejae; Cho, Kyung-Sang; Koh, Weon-Kyu; Kim, Dongho; Kim, Jiwon
2016-07-21
Although Group II-VI quantum dots (QDs) have attracted much attention due to their wide range of applications in QD-based devices, the presence of toxic ions in II-VI QDs raises environmental concerns. To fulfill the demands of nontoxic QDs, synthetic routes for III-V QDs have been developed. However, only a few comparative analyses on optical properties of III-V QDs have been performed. In this study, the composition-related energetic trap distributions have been explored by using three different types of core/multishell QDs: CdSe-CdS (CdSe/CdS/ZnS), InP-ZnSe (InP/ZnSe/ZnS), and InP-GaP (InP/GaP/ZnS). It was shown that CdSe-CdS QDs have much larger trap densities than InP-shell QDs at higher energy states (at least 1Eg (band gap energy) above the lowest conduction band edge) based on probability density plots and Auger ionization efficiencies which are determined by analyses of photoluminescence blinking dynamics. This result suggests that the composition of encapsulated QDs is closely associated with the charge trapping processes, and also provides an insight into the development of more environmentally friendly QD-based devices.
NASA Astrophysics Data System (ADS)
Zheng, Zhiwei; Huo, Zongliang; Zhang, Manhong; Zhu, Chenxin; Liu, Jing; Liu, Ming
2011-10-01
This paper reports the simultaneous improvements in erase speed and data retention characteristics in flash memory using a stacked HfO2/Ta2O5 charge-trapping layer. In comparison to a memory capacitor with a single HfO2 trapping layer, the erase speed of a memory capacitor with a stacked HfO2/Ta2O5 charge-trapping layer is 100 times faster and its memory window is enlarged from 2.7 to 4.8 V for the same ±16 V sweeping voltage range. With the same initial window of ΔVFB = 4 V, the device with a stacked HfO2/Ta2O5 charge-trapping layer has a 3.5 V extrapolated 10-year retention window, while the control device with a single HfO2 trapping layer has only 2.5 V for the extrapolated 10-year window. The present results demonstrate that the device with the stacked HfO2/Ta2O5 charge-trapping layer has a strong potential for future high-performance nonvolatile memory application.
Park, Ji Hoon; Lee, Young Tack; Lee, Hee Sung; Lee, Jun Young; Lee, Kimoon; Lee, Gyu Baek; Han, Jiwon; Kim, Tae Woong; Im, Seongil
2013-03-13
The stabilities of a blending type organic thin-film transistor with phase-separated TIPS-pentacene channel layer were characterized under the conditions of negative-bias-stress (NBS) and positive-bias-stress (PBS). During NBS, threshold voltage (Vth) shifts noticeably. NBS-imposed devices revealed interfacial trap density-of-states (DOS) at 1.56 and 1.66 eV, whereas initial device showed the DOS at only 1.56 eV, as measured by photoexcited charge-collection spectroscopy (PECCS) method. Possible origin of this newly created defect is related to ester group in PMMA, which induces some hole traps at the TIPS-pentacene/i-PMMA interface. PBS-imposed device showed little Vth shift but visible off-current increase as "back-channel" effect, which is attributed to the water molecules trapped on the TFT surface.
Instability of phosphorous doped SiO2 in 4H-SiC MOS capacitors at high temperatures
NASA Astrophysics Data System (ADS)
Idris, M. I.; Weng, M. H.; Chan, H.-K.; Murphy, A. E.; Clark, D. T.; Young, R. A. R.; Ramsay, E. P.; Wright, N. G.; Horsfall, A. B.
2016-12-01
In this paper, the effect of inclusion of phosphorous (at a concentration below 1%) on the high temperature characteristics (up to 300 °C) of the SiO2/SiC interface is investigated. Capacitance-voltage measurements taken for a range of frequencies have been utilized to extract parameters including flatband voltage, threshold voltage, effective oxide charge, and interface state density. The variation of these parameters with temperature has been investigated for bias sweeps in opposing directions and a comparison made between phosphorous doped and as-grown oxides. At room temperature, the effective oxide charge for SiO2 may be reduced by the phosphorous termination of dangling bonds at the interface. However, at high temperatures, the effective charge in the phosphorous doped oxide remains unstable and effects such as flatband voltage shift and threshold voltage shift dominate the characteristics. The instability in these characteristics was found to result from the trapped charges in the oxide (±1012 cm-3) or near interface traps at the interface of the gate oxide and the semiconductor (1012-1013 cm-2 eV-1). Hence, the performance enhancements observed for phosphorous doped oxides are not realised in devices operated at elevated temperatures.
Thermoelectric transport properties of high mobility organic semiconductors
NASA Astrophysics Data System (ADS)
Venkateshvaran, Deepak; Broch, Katharina; Warwick, Chris N.; Sirringhaus, Henning
2016-09-01
Transport in organic semiconductors has traditionally been investigated using measurements of the temperature and gate voltage dependent mobility of charge carriers within the channel of organic field-effect transistors (OFETs). In such measurements, the behavior of charge carrier mobility with temperature and gate voltage, studied together with carrier activation energies, provide a metric to quantify the extent of disorder within these van der Waals bonded materials. In addition to the mobility and activation energy, another potent but often-overlooked transport coefficient useful in understanding disorder is the Seebeck coefficient (also known as thermoelectric power). Fundamentally, the Seebeck coefficient represents the entropy per charge carrier in the solid state, and thus proves powerful in distinguishing materials in which charge carriers move freely from those where a high degree of disorder causes the induced carriers to remain trapped. This paper briefly covers the recent highlights in the field of organic thermoelectrics, showing how significant strides have been made both from an applied standpoint as well as from a viewpoint of fundamental thermoelectric transport physics. It shall be illustrated how thermoelectric transport parameters in organic semiconductors can be tuned over a significant range, and how this tunability facilitates an enhanced performance for heat-to-electricity conversion as well as quantifies energetic disorder and the nature of the density of states (DOS). The work of the authors shall be spotlighted in this context, illustrating how Seebeck coefficient measurements in the polymer indacenodithiophene-co-benzothiadiazole (IDTBT) known for its ultra-low degree of torsion within the polymer backbone, has a trend consistent with low disorder. 1 Finally, using examples of the small molecules C8-BTBT and C10-DNTT, it shall be discussed how the Seebeck coefficient can aid the estimation of the density and distribution of trap states within these materials. 2, 3
Paydavosi, Sarah; Aidala, Katherine E; Brown, Patrick R; Hashemi, Pouya; Supran, Geoffrey J; Osedach, Timothy P; Hoyt, Judy L; Bulović, Vladimir
2012-03-14
Retention and diffusion of charge in tris(8-hydroxyquinoline) aluminum (Alq(3)) molecular thin films are investigated by injecting electrons and holes via a biased conductive atomic force microscopy tip into the Alq(3) films. After the charge injection, Kelvin force microscopy measurements reveal minimal changes with time in the spatial extent of the trapped charge domains within Alq(3) films, even for high hole and electron densities of >10(12) cm(-2). We show that this finding is consistent with the very low mobility of charge carriers in Alq(3) thin films (<10(-7) cm(2)/(Vs)) and that it can benefit from the use of Alq(3) films as nanosegmented floating gates in flash memory cells. Memory capacitors using Alq(3) molecules as the floating gate are fabricated and measured, showing durability over more than 10(4) program/erase cycles and the hysteresis window of up to 7.8 V, corresponding to stored charge densities as high as 5.4 × 10(13) cm(-2). These results demonstrate the potential for use of molecular films in high storage capacity nonvolatile memory cells. © 2012 American Chemical Society
Measurements of charge state breeding efficiency at BNL test EBIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondrashev, S.; Alessi, J.; Beebe, E.N.
Charge breeding of singly charged ions is required to efficiently accelerate rare isotope ion beams for nuclear and astrophysics experiments, and to enhance the accuracy of low-energy Penning trap-assisted spectroscopy. An efficient charge breeder for the Californium Rare Isotope Breeder Upgrade (CARIBU) to the ANL Tandem Linear Accelerator System (ATLAS) facility is being developed using the BNL Test Electron Beam Ion Source (Test EBIS) as a prototype. Parameters of the CARIBU EBIS charge breeder are similar to those of the BNL Test EBIS except the electron beam current will be adjustable in the range from 1 to 2 {angstrom}. Themore » electron beam current density in the CARIBU EBIS trap will be significantly higher than in existing operational charge state breeders based on the EBIS concept. The charge state breeding efficiency is expected to be about 25% for the isotope ions extracted from the CARIBU. For the success of our EBIS project, it is essential to demonstrate high breeding efficiency at the BNL Test EBIS tuned to the regime close to the parameters of the CARIBU EBIS at ANL. The breeding efficiency optimization and measurements have been successfully carried out using a Cs{sup +} surface ionization ion source for externally pulsed injection into the BNL Test EBIS. A Cs{sup +} ion beam with a total number of ions of 5 x 10{sup 8} and optimized pulse length of 70 {mu}s has been injected into the Test EBIS and charge-bred for 5.3 ms for two different electron beam currents 1 and 1.5 {angstrom}. In these experiments we have achieved 70% injection/extraction efficiency and breeding efficiency into the most abundant charge state 17%.« less
Model for thickness dependence of radiation charging in MOS structures
NASA Technical Reports Server (NTRS)
Viswanathan, C. R.; Maserjian, J.
1976-01-01
The model considers charge buildup in MOS structures due to hole trapping in the oxide and the creation of sheet charge at the silicon interface. The contribution of hole trapping causes the flatband voltage to increase with thickness in a manner in which square and cube dependences are limiting cases. Experimental measurements on samples covering a 200 - 1000 A range of oxide thickness are consistent with the model, using independently obtained values of hole-trapping parameters. An important finding of our experimental results is that a negative interface charge contribution due to surface states created during irradiation compensates most of the positive charge in the oxide at flatband. The tendency of the surface states to 'track' the positive charge buildup in the oxide, for all thicknesses, applies both in creation during irradiation and in annihilation during annealing. An explanation is proposed based on the common defect origin of hole traps and potential surface states.
Environmental Electrometry with Luminescent Carbon Nanotubes.
Noé, Jonathan C; Nutz, Manuel; Reschauer, Jonathan; Morell, Nicolas; Tsioutsios, Ioannis; Reserbat-Plantey, Antoine; Watanabe, Kenji; Taniguchi, Takashi; Bachtold, Adrian; Högele, Alexander
2018-06-25
We demonstrate that localized excitons in luminescent carbon nanotubes can be utilized to study electrostatic fluctuations in the nanotube environment with sensitivity down to the elementary charge. By monitoring the temporal evolution of the cryogenic photoluminescence from individual carbon nanotubes grown on silicon oxide and hexagonal boron nitride, we characterize the dynamics of charge trap defects for both dielectric supports. We find a one order of magnitude reduction in the photoluminescence spectral wandering for nanotubes on extended atomically flat terraces of hexagonal boron nitride. For nanotubes on hexagonal boron nitride with pronounced spectral fluctuations, our analysis suggests proximity to terrace ridges where charge fluctuators agglomerate to exhibit areal densities exceeding those of silicon oxide. Our results establish carbon nanotubes as sensitive probes of environmental charge fluctuations and highlight their potential for applications in electrometric nanodevices with all-optical readout.
NASA Astrophysics Data System (ADS)
Zhou, You; Sui, Sanyi; Li, Jie; Ouyang, Zigui; Lv, Yuzhen; Li, Chengrong; Lu, Wu
2018-03-01
Nanotechnology provides a new way to improve the insulating properties of traditional dielectric materials. In this study, three types of mineral oil based nanofluids were prepared by suspending Fe3O4, TiO2 and Al2O3 nanoparticles all of which were surface modified by oleic acid. The inception voltage, stopping length and propagating velocity of streamers in the nanofluids under positive lightning impulse voltage were experimentally studied. It is found that nanoparticles can restrain the initiation and propagation processes of positive streamers in transformer oil depending on the types of nanoparticles. In addition, the trap characteristics in pure oil and nanofluids were comparably studied. The relationship between the trap characteristics and mobility of charge carriers in oil samples were then established. The increased trap density in nanofluids diffuses kinetic energy of ionized electrons and converts them into negative ions, resulting in the reduced electrical field strength in front of positive streamer and increased breakdown strength of nanofluids.
New progress of high current gasdynamic ion source (invited).
Skalyga, V; Izotov, I; Golubev, S; Sidorov, A; Razin, S; Vodopyanov, A; Tarvainen, O; Koivisto, H; Kalvas, T
2016-02-01
The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)-the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller's ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10(13) cm(-3)) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10(-4)-10(-3) mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jähnig, Fabian; Bozyigit, Deniz; Yarema, Olesya
2015-02-01
Molecular- and salt-based chemical treatments are believed to passivate electronic trap states in nanocrystal-based semiconductors, which are considered promising for solar cells but suffer from high carrier recombination. Here, we compare the chemical, optical, and electronic properties of PbS nanocrystal-based solids treated with molecular iodine and tetrabutylammonium iodide. Surprisingly, both treatments increase—rather than decrease—the number density of trap states; however, the increase does not directly influence solar cell performance. We explain the origins of the observed impact on solar cell performance and the potential in using different chemical treatments to tune charge carrier dynamics in nanocrystal-solids.
Deep level transient spectroscopy (DLTS) on colloidal-synthesized nanocrystal solids.
Bozyigit, Deniz; Jakob, Michael; Yarema, Olesya; Wood, Vanessa
2013-04-24
We demonstrate current-based, deep level transient spectroscopy (DLTS) on semiconductor nanocrystal solids to obtain quantitative information on deep-lying trap states, which play an important role in the electronic transport properties of these novel solids and impact optoelectronic device performance. Here, we apply this purely electrical measurement to an ethanedithiol-treated, PbS nanocrystal solid and find a deep trap with an activation energy of 0.40 eV and a density of NT = 1.7 × 10(17) cm(-3). We use these findings to draw and interpret band structure models to gain insight into charge transport in PbS nanocrystal solids and the operation of PbS nanocrystal-based solar cells.
Quantum Corrections to the 'Atomistic' MOSFET Simulations
NASA Technical Reports Server (NTRS)
Asenov, Asen; Slavcheva, G.; Kaya, S.; Balasubramaniam, R.
2000-01-01
We have introduced in a simple and efficient manner quantum mechanical corrections in our 3D 'atomistic' MOSFET simulator using the density gradient formalism. We have studied in comparison with classical simulations the effect of the quantum mechanical corrections on the simulation of random dopant induced threshold voltage fluctuations, the effect of the single charge trapping on interface states and the effect of the oxide thickness fluctuations in decanano MOSFETs with ultrathin gate oxides. The introduction of quantum corrections enhances the threshold voltage fluctuations but does not affect significantly the amplitude of the random telegraph noise associated with single carrier trapping. The importance of the quantum corrections for proper simulation of oxide thickness fluctuation effects has also been demonstrated.
HITRAP: A Facility for Experiments with Trapped Highly Charged Ions
NASA Astrophysics Data System (ADS)
Quint, W.; Dilling, J.; Djekic, S.; Häffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schönfelder, J.; Sikler, G.; Valenzuela, T.; Verdú, J.; Weber, C.; Werth, G.
2001-01-01
HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy.
Wet oxidation of GeSi strained layers by rapid thermal processing
NASA Astrophysics Data System (ADS)
Nayak, D. K.; Kamjoo, K.; Park, J. S.; Woo, J. C. S.; Wang, K. L.
1990-07-01
A cold-wall rapid thermal processor is used for the wet oxidation of the commensurately grown GexSi1-x layers on Si substrates. The rate of oxidation of the GexSi1-x layer is found to be significantly higher than that of pure Si, and the oxidation rate increases with the increase in the Ge content in GexSi1-x layer. The oxidation rate of GexSi1-x appears to decrease with increasing oxidation time for the time-temperature cycles considered here. Employing high-frequency and quasi-static capacitance-voltage measurements, it is found that a fixed negative oxide charge density in the range of 1011- 1012/cm2 and the interface trap level density (in the mid-gap region) of about 1012/cm2 eV are present. Further, the density of this fixed interface charge at the SiO2/GeSi interface is found to increase with the Ge concentration in the commensurately grown GeSi layers.
Fabrication of Amorphous Indium Gallium Zinc Oxide Thin Film Transistor by using Focused Ion Beam
NASA Astrophysics Data System (ADS)
Zhu, Wencong
Compared with other transparent semiconductors, amorphous indium gallium zinc oxide (a-IGZO) has both good uniformity and high electron mobility, which make it as a good candidate for displays or large-scale transparent circuit. The goal of this research is to fabricate alpha-IGZO thin film transistor (TFT) with channel milled by focused ion beam (FIB). TFTs with different channel geometries can be achieved by applying different milling strategies, which facilitate modifying complex circuit. Technology Computer-Aided Design (TCAD) was also introduced to understand the effect of trapped charges on the device performance. The investigation of the trapped charge at IGZO/SiO2 interface was performed on the IGZO TFT on p-Silicon substrate with thermally grown SiO2 as dielectric. The subgap density-of-state model was used for the simulation, which includes conduction band-tail trap states and donor-like state in the subgap. The result shows that the de-trapping and donor-state ionization determine the interface trapped charge density at various gate biases. Simulation of IGZO TFT with FIB defined channel on the same substrate was also applied. The drain and source were connected intentionally during metal deposition and separated by FIB milling. Based on the simulation, the Ga ions in SiO2 introduced by the ion beam was drifted by gate bias and affects the saturation drain current. Both side channel and direct channel transparent IGZO TFTs were fabricated on the glass substrate with coated ITO. Higher ion energy (30 keV) was used to etch through the substrate between drain and source and form side channels at the corner of milled trench. Lower ion energy (16 keV) was applied to stop the milling inside IGZO thin film and direct channel between drain and source was created. Annealing after FIB milling removed the residual Ga ions and the devices show switch feature. Direct channel shows higher saturation drain current (~10-6 A) compared with side channel (~10-7 A) because of its shorter channel length and wider width, however, it also exhibit higher gate leakage current (>10-7 A) than side channel (<10-7 A) due to larger Ga ion implantation and diffusion region in SiO2 after annealing. Hysteresis window increase and positive VON shift were also observed due to the interface trap density increase and carrier density suppression both by Ga ions. Laser interference lithography was applied to define the IGZO active region, which gives more flexibility on TFT channel dimension and circuit modification. He-Cd laser with 325 nm wavelength was used to define 2D array of IGZO islands with period of 2.5 im. Logic gate array was designed and fabricated by combining this 2D array of IGZO islands and FIB direct channel milling. After annealing, device shows on-off feature, but high temperature (400 °C) release more free carrier and results in negative shift of VON. The row selection voltage was also introduced in the design of logic gate array to act as switch of input signals to each row separately. However, due to the long input signal sweeping time, the leakage current cannot be overlooked. The idea can be verified by AC or short pulse input signal.
High-k shallow traps observed by charge pumping with varying discharging times
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen
2013-11-07
In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO{sub 2}/metal gate stacks. N{sub T}-V{sub high} {sub level} characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N{sub T} for extra contribution of I{sub cp} traps. N{sub T} is the number of traps, and I{sub cp} is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I{sub cp} traps at high voltage are inmore » fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti{sub x}N{sub 1−x} metal gate concentrations. Next, N{sub T}-V{sub high} {sub level} characteristic curves with different falling times (t{sub falling} {sub time}) and base level times (t{sub base} {sub level}) show that extra contribution of I{sub cp} traps decrease with an increase in t{sub falling} {sub time}. By fitting discharge formula for different t{sub falling} {sub time}, the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t{sub falling} {sub time}. This current cannot be measured by the charge pumping technique. Subsequent measurements of N{sub T} by charge pumping technique at t{sub base} {sub level} reveal a remainder of electrons trapped in high-k bulk shallow traps.« less
NASA Astrophysics Data System (ADS)
Boon-on, Patsorn; Tubtimtae, Auttasit; Vailikhit, Veeramol; Teesetsopon, Pichanan; Choopun, Supab
2017-06-01
Tin manganese telluride nanoparticles (Sn1-xMnxTe NPs) were first synthesized on a niobium pentoxide (Nb2O5) film using a chemical bath deposition (CBD) route. An individual particle size before and after indium (In3+) doping of ∼70-150 nm was investigated with stoichiometric formation of the SnMnTe phase. Furthermore, a cubic or rocksalt structure of the Sn0.938Mn0.062Te phase was also kept incorporated in the structure. The plotted energy band gaps for undoped and In3+-doped samples were 2.17 and 1.83 eV, respectively. The reduction of photoluminescence (PL) spectra after In3+ doping, while the indium dopant acted as a trap state incorporated in Sn1-xMnxTe NPs, showed enhanced charge separation and reduced charge recombination, which resulted in a higher charge density trapped in the conduction band of Nb2O5 and was also confirmed by the result of anodic peaks in the cyclic voltammetry. These results suggest new possibilities in optoelectronic and electrochemical devices.
Wang, Hao-Yi; Hao, Ming-Yang; Han, Jun; Yu, Man; Qin, Yujun; Zhang, Pu; Guo, Zhi-Xin; Ai, Xi-Cheng; Zhang, Jian-Ping
2017-03-17
Organic-inorganic halide perovskite solar cells have rapidly come to prominence in the photovoltaic field. In this context, CH 3 NH 3 PbI 3 , as the most widely adopted active layer, has been attracting great attention. Generally, in a CH 3 NH 3 PbI 3 layer, unreacted PbI 2 inevitably coexists with the perovskite crystals, especially following a two-step fabrication process. There appears to be a consensus that an appropriate amount of unreacted PbI 2 is beneficial to the overall photovoltaic performance of a device, the only disadvantageous aspect of excess residual PbI 2 being viewed as its insulating nature. However, the further development of such perovskite-based devices requires a deeper understanding of the role of residual PbI 2 . In this work, PbI 2 -enriched and PbI 2 -controlled perovskite films, as two extreme cases, have been prepared by modulating the crystallinity of a pre-deposited PbI 2 film. The effects of excess residual PbI 2 have been elucidated on the basis of spectroscopic and optoelectronic studies. The initial charge separation, the trap-state density, and the trap-state distribution have all been found to be adversely affected in PbI 2 -enriched devices, to the detriment of photovoltaic performance. This leads to a biphasic recombination process and accelerates the charge carrier recombination dynamics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zang, Huidong; Cristea, Mihail; Shen, Xuan; Liu, Mingzhao; Camino, Fernando; Cotlet, Mircea
2015-09-28
Single nanoparticle studies of charge trapping and de-trapping in core/shell CdSe/ZnS nanocrystals incorporated into an insulating matrix and subjected to an external electric field demonstrate the ability to reversibly modulate the exciton dynamics and photoluminescence blinking while providing indirect evidence for the existence of a permanent ground state dipole moment in such nanocrystals. A model assuming the presence of energetically deep charge traps physically aligned along the direction of the permanent dipole is proposed in order to explain the dynamics of nanocrystal blinking in the presence of a permanent dipole moment.
Zang, Huidong; Cristea, Mihail; Shen, Xuan; ...
2015-08-05
Single nanoparticle studies of charge trapping and de-trapping in core/shell CdSe/ZnS nanocrystals incorporated into an insulating matrix and subjected to an external electric field demonstrate the ability to reversibly modulate the exciton dynamics and photoluminescence blinking while providing indirect evidence for the existence of a permanent ground state dipole moment in such nanocrystals. A model assuming the presence of energetically deep charge traps physically aligned along the direction of the permanent dipole is proposed in order to explain the dynamics of nanocrystal blinking in the presence of a permanent dipole moment.
Trapping effect of metal nanoparticle mono- and multilayer in the organic field-effect transistor
NASA Astrophysics Data System (ADS)
Lee, Keanchuan; Weis, Martin; Lin, Jack; Taguchi, Dai; Majková, Eva; Manaka, Takaaki; Iwamoto, Mitsumasa
2011-03-01
The effect of silver nanoparticles self-assembled monolayer (Ag NPs SAM) on charge transport in pentacene organic field-effect transistors (OFET) was investigated by both steady-state and transient-state methods, which are current-voltage measurements in steady-state and time-resolved microscopic (TRM) second harmonic generation (SHG) in transient-state, respectively. The analysis of electronic properties revealed that OFET with SAM exhibited significant charge trapping effect due to the space-charge field formed by immobile charges. Lower transient-state mobility was verified by the direct probing of carrier motion by TRM-SHG technique. It was shown that the trapping effect rises together with increase of SAM layers suggesting the presence of traps in the bulk of NP films. The model based on the electrostatic charge barrier is suggested to explain the phenomenon.
The design of an electron gun switchable between immersed and Brillouin flowa)
NASA Astrophysics Data System (ADS)
Becker, R.; Kester, O.
2012-02-01
An electron gun, which can be switched from immersed flow to Brillouin flow during operation, may have advantages for charge breeders as well as for electron beam ion sources and traps (EBISTs). For EBISTs this allows to change the current density according to the repetition frequency and charge state, for charge breeders and EBISTs a lower current density in immersed flow provides higher acceptance for injected ions, while the higher current density in Brillouin flow results in shorter breeding times and a lower emittance for the extracted beam. Therefore, we have designed such a gun for an EBIS with 5 T central magnetic field and without the use of iron and moving the gun. The gun was placed in the axial fringing field of the 5 T solenoid in such a position that a gate valve can be placed between the gun and the cryostat to allow for simple maintenance. The field at the cathode surface turned out to be only 0.05 T, which is not enough to focus 50 A/cm2 at a few kV. However, if a small normal conducting solenoid is placed over the vacuum tube in position of the gun, a field of 0.1 T may be obtained. With this the use of LaB6 as cathode material results in a magnetic compression of 44 and therewith in a focused current density in the trap region of more than 2000 A/cm2. By reversing the current in the gun solenoid the cathode field can easily compensated to zero. By proper design of the electrodes and the compression region, the gun will be able to deliver a beam in Brillouin flow. While this is interesting by itself - remember the "super-compression" reported on CRYEBIS-I - any magnetic field between zero and the value for immersed flow will result in an electron beam with a wide range of adjustable high current densities. The design tools used have been INTMAG(C) for the calculation of magnetic fields, EGN2(C) for the simulation of the gun and ANALYSE(C) for detailed analysis of the results (for more information see www.egun-igun.com).
The design of an electron gun switchable between immersed and Brillouin flow.
Becker, R; Kester, O
2012-02-01
An electron gun, which can be switched from immersed flow to Brillouin flow during operation, may have advantages for charge breeders as well as for electron beam ion sources and traps (EBISTs). For EBISTs this allows to change the current density according to the repetition frequency and charge state, for charge breeders and EBISTs a lower current density in immersed flow provides higher acceptance for injected ions, while the higher current density in Brillouin flow results in shorter breeding times and a lower emittance for the extracted beam. Therefore, we have designed such a gun for an EBIS with 5 T central magnetic field and without the use of iron and moving the gun. The gun was placed in the axial fringing field of the 5 T solenoid in such a position that a gate valve can be placed between the gun and the cryostat to allow for simple maintenance. The field at the cathode surface turned out to be only 0.05 T, which is not enough to focus 50 A∕cm(2) at a few kV. However, if a small normal conducting solenoid is placed over the vacuum tube in position of the gun, a field of 0.1 T may be obtained. With this the use of LaB(6) as cathode material results in a magnetic compression of 44 and therewith in a focused current density in the trap region of more than 2000 A∕cm(2). By reversing the current in the gun solenoid the cathode field can easily compensated to zero. By proper design of the electrodes and the compression region, the gun will be able to deliver a beam in Brillouin flow. While this is interesting by itself--remember the "super-compression" reported on CRYEBIS-I--any magnetic field between zero and the value for immersed flow will result in an electron beam with a wide range of adjustable high current densities. The design tools used have been INTMAG(C) for the calculation of magnetic fields, EGN2(C) for the simulation of the gun and ANALYSE(C) for detailed analysis of the results (for more information see www.egun-igun.com).
NASA Astrophysics Data System (ADS)
Liu, Yu-Heng; Jiang, Cheng-Min; Lin, Hsiao-Yi; Wang, Tahui; Tsai, Wen-Jer; Lu, Tao-Cheng; Chen, Kuang-Chao; Lu, Chih-Yuan
2017-07-01
We use a random telegraph signal method to investigate nitride trapped hole lateral transport in a charge trap flash memory. The concept of this method is to utilize an interface oxide trap and its associated random telegraph signal as an internal probe to detect a local channel potential change resulting from nitride charge lateral movement. We apply different voltages to the drain of a memory cell and vary a bake temperature in retention to study the electric field and temperature dependence of hole lateral movement in a nitride. Thermal energy absorption by trapped holes in lateral transport is characterized. Mechanisms of hole lateral transport in retention are investigated. From the measured and modeled results, we find that thermally assisted trap-to-band tunneling is a major trapped hole emission mechanism in nitride hole lateral transport.
Trap pumping schemes for the Euclid CCD273 detector: characterisation of electrodes and defects
NASA Astrophysics Data System (ADS)
Skottfelt, J.; Hall, D. J.; Dryer, B.; Bush, N.; Campa, J.; Gow, J. P. D.; Holland, A. D.; Jordan, D.; Burt, D.
2017-12-01
The VISible imager instrument (VIS) on board the Euclid mission will deliver high resolution shape measurements of galaxies down to very faint limits (R ~ 25 at 10σ) in a large part of the sky, in order to infer the distribution of dark matter in the Universe. To help mitigate radiation damage effects that will accumulate in the detectors over the mission lifetime, the properties of the radiation induced traps needs to be known with as high precision as possible. For this purpose the trap pumping method will be employed as part of the in-orbit calibration routines. Using trap pumping it is possible to identify and characterise single traps in a Charge-Coupled Device (CCD), thus providing information such as the density, emission time constants and sub-pixel positions of the traps in the detectors. This paper presents the trap pumping algorithms used for the radiation testing campaign of the CCD273 detectors, performed by the Centre for Electronic Imaging (CEI) at the Open University, that will be used for the VIS instrument. The CCD273 is a four-phase device with uneven phase widths, which complicates the trap pumping analysis. However, we find that by optimising the trap pumping algorithms and analysis routines, it is possible to obtain sub-pixel and even sub-phase positional information about the traps. Further, by comparing trap pumping data with simulations, it is possible to gain more information about the effective electrode widths of the device.
NASA Astrophysics Data System (ADS)
Hayase, Shuzi; Hirotani, Daisuke; Moriya, Masahiro; Ogomi, Yuhei; Shen, Qing; Yoshino, Kenji; Toyoda, Taro
2016-09-01
In order to examine the interface structure of TiO2/perovskite layer, quartz crystal microbalance sensor (QCM) was used. On the QCM sensor, TiO2 layer was fabricated and the PbI2 solution in Dimethylformamide (DMF) was passed on the QCM sensor to estimate the adsorption density of the PbI2 on the titania2. The amount of PbI2 adsorption on TiO2 surface increased as the adsorption time and leveled off at a certain time. PbI2 still remained even after the solvent only (DMF) was passed on the TiO2 layer on QCM (namely rinsing with DMF), suggesting that the PbI2 was tightly bonded on the TiO2 surface. The bonding structure was found to be Ti-O-Pb linkage by XPS analysis. We concluded that the Ti-OH on the surface of TiO2 reacts with I-Pb-I to form Ti-O-Pb-I and HI (Fig.1 B). The surface trap density was measured by thermally stimulated current (TSC) method. Before the PbI2 passivation, the trap density of TiO2 was 1019 cm3. The trap density decreased to 1016/cm3 after the PbI2 passivation, suggesting that the TiO2 surface trap was passivated with I-Pb-I. The passivation density was tuned by the concentration of PbI2 in DMF, by which TiO2 layer was passivated. Perovskite solar cells were fabricated on the passivated TiO2 layer with various PbI2 passivation densities by one step process (mixture of PbI2 + MAI in DMF). It was found that Jsc increased with an increase in the Ti-O-Pb density. We concluded that the interface between TiO2 and perovskite layer has passivation structure consisting of Ti-O-Pb-I which decreases the trap density of the interfaces and supresses charge recombination. The effect of Cl anion on high efficiency is still controversial when perovskite layer is prepared by one step method from the mixture of MAI and PbCl2. It was found that adsorption density of PbCl2 on TiO2 surface was much higher than that of PbI2 from the experiment using QCM sensor. After the surface was washed with DMF, Cl and Pb were detected. These results suggest that the TiO2 surface was much more passivated by PbCl2 than by PbI2. This may explain partially the high efficiency when the perovskite layer was fabricated by one step process consisting of MAI and PbCl2 solution. We also observed that the crystal size increased with an increase in the amount of Cl anion which of course one of the explanation of the high efficiency. The interface of hole transport layer/perovskite layer, and between perovskite layer /perovskite layer (grain boundary) was passivated with organic amines. The passivation was also effective for increasing Voc and Jsc. This was explained by the results of transient absorption spectroscopy that the charge recombination time between hole transport payer/perovskite layer increased from 0.3 μsec to 60 μsec.
Magnetic monopole search with the MoEDAL test trapping detector
NASA Astrophysics Data System (ADS)
Katre, Akshay
2016-11-01
IMoEDAL is designed to search for monopoles produced in high-energy Large Hadron Collider (LHC) collisions, based on two complementary techniques: nucleartrack detectors for high-ionisation signatures and other highly ionising avatars of new physics, and trapping volumes for direct magnetic charge measurements with a superconducting magnetometer. The MoEDAL test trapping detector array deployed in 2012, consisting of over 600 aluminium samples, was analysed and found to be consistent with zero trapped magnetic charge. Stopping acceptances are obtained from a simulation of monopole propagation in matter for a range of charges and masses, allowing to set modelindependent and model-dependent limits on monopole production cross sections. Multiples of the fundamental Dirac magnetic charge are probed for the first time at the LHC.
Ion funnel ion trap and process
Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA
2011-02-15
An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.
Space-charge effects in Penning ion traps
NASA Astrophysics Data System (ADS)
Porobić, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Fléchard, X.; Liénard, E.; Ban, G.; Zákoucký, D.; Soti, G.; Van Gorp, S.; Weinheimer, Ch.; Wursten, E.; Severijns, N.
2015-06-01
The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with K39+ using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.
Ionic liquid gating reveals trap-filled limit mobility in low temperature amorphous zinc oxide
NASA Astrophysics Data System (ADS)
Bubel, S.; Meyer, S.; Kunze, F.; Chabinyc, M. L.
2013-10-01
In low-temperature solution processed amorphous zinc oxide (a-ZnO) thin films, we show the thin film transistor (TFT) characteristics for the trap-filled limit (TFL), when the quasi Fermi energy exceeds the conduction band edge and all tail-states are filled. In order to apply gate fields that are high enough to reach the TFL, we use an ionic liquid tape gate. Performing capacitance voltage measurements to determine the accumulated charge during TFT operation, we find the TFL at biases higher than predicted by the electronic structure of crystalline ZnO. We conclude that the density of states in the conduction band of a-ZnO is higher than in its crystalline state. Furthermore, we find no indication of percolative transport in the conduction band but trap assisted transport in the tail-states of the band.
Zaikowski, Lori; Mauro, Gina; Bird, Matthew; ...
2014-12-22
Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are asmore » large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl 3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length L D =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.« less
NASA Astrophysics Data System (ADS)
Cheng, Chin-Lung; Horng, Jeng-Haur; Chang-Liao, Kuei-Shu; Jeng, Jin-Tsong; Tsai, Hung-Yang
2010-10-01
Charge trapping and related current-conduction mechanisms in metal-oxide-semiconductor (MOS) capacitors with La xTa y dual-doped HfON dielectrics have been investigated under various post-deposition annealing (PDA). The results indicate that by La xTa y incorporation into HfON dielectric enhances electrical and reliability characteristics, including equivalent-oxide-thickness (EOT), stress-induced leakage current (SILC), and trap energy level. The mechanisms related to larger positive charge generation in the gate dielectric bulk can be attributed to La xTa y dual-doped HfON dielectric. The results of C- V measurement indicate that more negative charges are induced with increasing PDA temperature for the La xTa y dual-doped HfON dielectric. The charge current transport mechanisms through various dielectrics have been analyzed with current-voltage ( I- V) measurements under various temperatures. The current-conduction mechanisms of HfLaTaON dielectric at the low-, medium-, and high-electrical fields were dominated by Schottky emission (SE), Frenkel-Poole emission (F-P), and Fowler-Nordheim (F-N), respectively. A low trap energy level ( Φ trap) involved in Frenkel-Pool conduction in an HfLaTaON dielectric was estimated to be around 0.142 eV. Although a larger amount of positive charges generated in the HfLaTaON dielectric was obtained, the Φ trap of these positive charges in the HfLaTaON dielectric are shallow compared with HfON dielectric.
Demonstration of charge breeding in a compact room temperature electron beam ion trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorobjev, G.; Sokolov, A.; Herfurth, F.
2012-05-15
For the first time, a small room-temperature electron beam ion trap (EBIT), operated with permanent magnets, was successfully used for charge breeding experiments. The relatively low magnetic field of this EBIT does not contribute to the capture of the ions; single-charged ions are only caught by the space charge potential of the electron beam. An over-barrier injection method was used to fill the EBIT's electrostatic trap with externally produced, single-charged potassium ions. Charge states as high as K{sup 19+} were reached after about a 3 s breeding time. The capture and breeding efficiencies up to 0.016(4)% for K{sup 17+} havemore » been measured.« less
1980-01-01
OF THIS PAOE(3tn Dea afm 20. Contd. It is possible that space charges are also present in the’film. However, the distribution of space charges in the...the discontinuities so that space charge effects may cause field perturbations. On the other hand, the corona charging procedure may drive ions into...trapped space charge effects; (iv) tunnelling of charge from the electrodes to empty traps; (v) hopping of charge carriers through localized states. The
Interface Superconductivity in Cuprates Defies Fermi-Liquid Description
Radović, Zoran; Vanević, Mihajlo; Wu, Jie; ...
2016-07-26
La 2-xSr xCuO 4/La 2CuO 4 bilayers show interface superconductivity that originates from accumulation and depletion of mobile charge carriers across the interface. Surprisingly, the doping level can be varied broadly (within the interval 0.15 < x < 0.47) without affecting the transition temperature, which stays essentially constant and equal to that in optimally doped material, T c ≈ 40 K. Here we argue that this finding implies that doping up to the optimum level does not shift the chemical potential, unlike in ordinary Fermi liquids. Lastly, we discuss possible physical scenarios that can give doping-independent chemical potential in themore » pseudogap regime: electronic phase separation, formation of charge-density waves, strong Coulomb interactions, or self-trapping of mobile charge carriers.« less
Contact Electrification of Individual Dielectric Microparticles Measured by Optical Tweezers in Air.
Park, Haesung; LeBrun, Thomas W
2016-12-21
We measure charging of single dielectric microparticles after interaction with a glass substrate using optical tweezers to control the particle, measure its charge with a sensitivity of a few electrons, and precisely contact the particle with the substrate. Polystyrene (PS) microparticles adhered to the substrate can be selected based on size, shape, or optical properties and repeatedly loaded into the optical trap using a piezoelectric (PZT) transducer. Separation from the substrate leads to charge transfer through contact electrification. The charge on the trapped microparticles is measured from the response of the particle motion to a step excitation of a uniform electric field. The particle is then placed onto a target location of the substrate in a controlled manner. Thus, the triboelectric charging profile of the selected PS microparticle can be measured and controlled through repeated cycles of trap loading followed by charge measurement. Reversible optical trap loading and manipulation of the selected particle leads to new capabilities to study and control successive and small changes in surface interactions.
NASA Astrophysics Data System (ADS)
Vallayer, B.; Blaise, G.; Treheux, D.
1999-07-01
When an insulating material is subjected to electron irradiation, it produces a secondary emission the yield of which varies from a few percent to very high values (up to 24 per incoming electron) depending on the material and the experimental conditions. If the secondary electron emission yield is less than one, a net negative charge remains trapped in the sample. In this case, the study of the electric charges trapping properties of the material becomes possible. This article describes how it is possible to use a secondary electron microscope (SEM) as a device to perform such a study. In Sec. II, the effect of a net negative trapped charge resulting (from the injection of typically 50 pC) on the imaging process of the SEM has been described. It has been shown that when the trapped charge is high enough, it acts as a mirror reflecting the incoming electron beam which is deflected somewhere in the vacuum chamber of the microscope. A global qualitative description of the image displayed on the screen is first presented. Then electron trajectories are quantitatively studied by using the Rutherford scattering cross section in the case of a point charge. When the charge is extended, a numeric simulation has been done in order to predict the validity range of the previous model. Once the trajectories have been calculated, the connection between the remarkable elements of the image and the quantity of trapped charges has been established. Moreover, this technique allows one to study the lateral dimension of the trapped charge zone and to measure the surface potential. In Sec. III, the discussion is first focused on some precautions to be taken concerning the sample preparation before the experiment is performed. It has been shown that surface defects due either to contamination layers or machining change the trapping properties of single-crystals ceramics such as MgO and Al2O3. A cleaning procedure is proposed that consists of annealing the sample at 1500 °C for 4 h in order to heal the crystalline defects and a heating at 400 °C in the vacuum chamber of the SEM to remove the contamination layers. Finally, the effect of the temperature on the trapping properties of pure and chromium doped sapphire has been studied in relation with the chromium concentration. It is shown that temperature behavior of trapping is in relation with the chromium concentration. In the pure sapphire trapping is activated below -16 °C, in 500 ppm rubis it is below -9.5 °C due to isolated chromium atoms, and in the 8000 ppm rubis the critical trapping temperature rises to 3.7 °C due to Cr3+ pairs. The interpretation of the role played by chromium on trapping is based on the experimental study of the fluorescence of chromium atoms and pairs as a function of concentration.
What's on the Surface? Physics and Chemistry of Delta-Doped Surfaces
NASA Technical Reports Server (NTRS)
Hoenk, Michael
2011-01-01
Outline of presentation: 1. Detector surfaces and the problem of stability 2. Delta-doped detectors 3. Physics of Delta-doped Silicon 4. Chemistry of the Si-SiO2 Interface 5. Physics and Chemistry of Delta-doped Surfaces a. Compensation b. Inversion c. Quantum exclusion. Conclusions: 1. Quantum confinement of electrons and holes dominates the behavior of delta-doped surfaces. 2. Stability of delta-doped detectors: Delta-layer creates an approx 1 eV tunnel barrier between bulk and surface. 3. At high surface charge densities, Tamm-Shockley states form at the surface. 4. Surface passivation by quantum exclusion: Near-surface delta-layer suppresses T-S trapping of minority carriers. 5. The Si-SiO2 interface compensates the surface 6. For delta-layers at intermediate depth, surface inversion layer forms 7. Density of Si-SiO2 interface charge can be extremely high (>10(exp 14)/sq cm)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.; Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900; Zhao, Z. Q.
2015-01-15
Refluxed electrons direct laser acceleration is proposed so as to generate a high-charge energetic electron beam. When a laser pulse is incident on a relativistic critical density target, the rising edge of the pulse heats the target and the sheath fields on the both sides of the target reflux some electrons inside the expanding target. These electrons can be trapped and accelerated due to the self-transparency and the negative longitudinal electrostatic field in the expanding target. Some of the electrons can be accelerated to energies exceeding the ponderomotive limit 1/2a{sub 0}{sup 2}mc{sup 2}. Effective temperature significantly above the ponderomotive scalingmore » is observed. Furthermore, due to the limited expanding length, the laser propagating instabilities are suppressed in the interaction. Thus, high collimated beams with tens of μC charge can be generated.« less
Design and numerical characterization of a crossover EBIS
NASA Astrophysics Data System (ADS)
Geyer, Sabrina; Langbein, A.; Meusel, Oliver; Kester, Oliver
2015-01-01
For the investigation of highly charged ions, a crossover EBIS (XEBIS) was developed at the University of Frankfurt. In contrast to conventional EBIS/T devices the compression of the electron beam is achieved by electrostatic focusing to a crossover point in the interaction region. This concept allows a compact and simple design. Simulations performed with EGUN show a perveance of 2.1×10-7 A/V3/2 for the realized gun system. In the interaction region the electron beam has a density of around 10 A/cm2 and a minimum radius of 0.15 mm. The XEBIS has a total length of 112 mm with a trap length of 26 mm. It is designed for electron beam energies of up to 6 keV/q. The storage capacity of the trap region is in the order of 1×108 charges. Charge state breeding studies with CBSIM indicate for the noble gases as maximal achievable charge state Ar16+, Kr30+ and Xe35+. Thus ion beam currents of around 2.04 nA assuming 50 Hz repetition rate can be expected. The emittance of the extracted beam is approximated to 8 mm mrad. After completion of the construction phase, the XEBIS will be installed for first performance investigations at a dedicated test bench, equipped with a fast Faraday Cup (FC), a retarding field spectrometer, a luminescence screen and optical diagnostics. Subsequently the XEBIS will serve as source for highly charged ions at different experimental setups.
NASA Astrophysics Data System (ADS)
Israel, Holger; Massey, Richard; Prod'homme, Thibaut; Cropper, Mark; Cordes, Oliver; Gow, Jason; Kohley, Ralf; Marggraf, Ole; Niemi, Sami; Rhodes, Jason; Short, Alex; Verhoeve, Peter
2015-10-01
Radiation damage to space-based charge-coupled device detectors creates defects which result in an increasing charge transfer inefficiency (CTI) that causes spurious image trailing. Most of the trailing can be corrected during post-processing, by modelling the charge trapping and moving electrons back to where they belong. However, such correction is not perfect - and damage is continuing to accumulate in orbit. To aid future development, we quantify the limitations of current approaches, and determine where imperfect knowledge of model parameters most degrades measurements of photometry and morphology. As a concrete application, we simulate 1.5 × 109 `worst-case' galaxy and 1.5 × 108 star images to test the performance of the Euclid visual instrument detectors. There are two separable challenges. If the model used to correct CTI is perfectly the same as that used to add CTI, 99.68 per cent of spurious ellipticity is corrected in our setup. This is because readout noise is not subject to CTI, but gets overcorrected during correction. Secondly, if we assume the first issue to be solved, knowledge of the charge trap density within Δρ/ρ = (0.0272 ± 0.0005) per cent and the characteristic release time of the dominant species to be known within Δτ/τ = (0.0400 ± 0.0004) per cent will be required. This work presents the next level of definition of in-orbit CTI calibration procedures for Euclid.
Induced-charge electroosmotic trapping of particles.
Ren, Yukun; Liu, Weiyu; Jia, Yankai; Tao, Ye; Shao, Jinyou; Ding, Yucheng; Jiang, Hongyuan
2015-05-21
Position-controllable trapping of particles on the surface of a bipolar metal strip by induced-charge electroosmotic (ICEO) flow is presented herein. We demonstrate a nonlinear ICEO slip profile on the electrode surface accounting for stable particle trapping behaviors above the double-layer relaxation frequency, while no trapping occurs in the DC limit as a result of a strong upward fluidic drag induced by a linear ICEO slip profile. By extending an AC-flow field effect transistor from the DC limit to the AC field, we reveal that fixed-potential ICEO exceeding RC charging frequency can adjust the particle trapping position flexibly by generating controllable symmetry breaking in a vortex flow pattern. Our results open up new opportunities to manipulate microscopic objects in modern microfluidic systems by using ICEO.
Radiation induced leakage due to stochastic charge trapping in isolation layers of nanoscale MOSFETs
NASA Astrophysics Data System (ADS)
Zebrev, G. I.; Gorbunov, M. S.; Pershenkov, V. S.
2008-03-01
The sensitivity of sub-100 nm devices to microdose effects, which can be considered as intermediate case between cumulative total dose and single event errors, is investigated. A detailed study of radiation-induced leakage due to stochastic charge trapping in irradiated planar and nonplanar devices is developed. The influence of High-K insulators on nanoscale ICs reliability is discussed. Low critical values of trapped charge demonstrate a high sensitivity to single event effect.
NASA Astrophysics Data System (ADS)
Nakhostin, M.; Hitomi, K.
2012-05-01
The energy resolution of thallium bromide (TlBr) detectors is significantly limited by charge-trapping effect and pulse ballistic deficit, caused by the slow charge collection time. A digital pulse processing algorithm has been developed aiming to compensate for charge-trapping effect, while minimizing pulse ballistic deficit. The algorithm is examined using a 1 mm thick TlBr detector and an excellent energy resolution of 3.37% at 662 keV is achieved at room temperature. The pulse processing algorithms are presented in recursive form, suitable for real-time implementations.
Controlling charge on levitating drops.
Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M
2007-08-01
Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation.
Surface states and annihilation characteristics of positrons trapped at the oxidized Cu(100) surface
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Weiss, A. H.
2013-06-01
In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Oxidation of the Cu(100) surface has been studied by performing an ab-initio investigation of the stability and electronic structure of the Cu(100) missing row reconstructed surface at various on-surface and subsurface oxygen coverages ranging from 0.5 to 1.5 monolayers using density functional theory (DFT). All studied structures have been found to be energetically more favorable as compared to structures formed by purely on-surface oxygen adsorption. The observed decrease in the positron work function when oxygen atoms occupy on-surface and subsurface sites has been attributed to a significant charge redistribution within the first two layers, buckling effects within each layer and an interlayer expansion. The computed positron binding energy, positron surface state wave function, and annihilation probabilities of the surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). The results presented provide an explanation for the changes observed in the probability of annihilation of surface trapped positrons with Cu 3p core-level electrons as a function of annealing temperature.
A Monte Carlo modeling on charging effect for structures with arbitrary geometries
NASA Astrophysics Data System (ADS)
Li, C.; Mao, S. F.; Zou, Y. B.; Li, Yong Gang; Zhang, P.; Li, H. M.; Ding, Z. J.
2018-04-01
Insulating materials usually suffer charging effects when irradiated by charged particles. In this paper, we present a Monte Carlo study on the charging effect caused by electron beam irradiation for sample structures with any complex geometry. When transporting in an insulating solid, electrons encounter elastic and inelastic scattering events; the Mott cross section and a Lorentz-type dielectric function are respectively employed to describe such scatterings. In addition, the band gap and the electron–long optical phonon interaction are taken into account. The electronic excitation in inelastic scattering causes generation of electron–hole pairs; these negative and positive charges establish an inner electric field, which in turn induces the drift of charges to be trapped by impurities, defects, vacancies etc in the solid, where the distributions of trapping sites are assumed to have uniform density. Under charging conditions, the inner electric field distorts electron trajectories, and the surface electric potential dynamically alters secondary electron emission. We present, in this work, an iterative modeling method for a self-consistent calculation of electric potential; the method has advantages in treating any structure with arbitrary complex geometry, in comparison with the image charge method—which is limited to a quite simple boundary geometry. Our modeling is based on: the combination of the finite triangle mesh method for an arbitrary geometry construction; a self-consistent method for the spatial potential calculation; and a full dynamic description for the motion of deposited charges. Example calculations have been done to simulate secondary electron yield of SiO2 for a semi-infinite solid, the charging for a heterostructure of SiO2 film grown on an Au substrate, and SEM imaging of a SiO2 line structure with rough surfaces and SiO2 nanoparticles with irregular shapes. The simulations have explored interesting interlaced charge layer distribution underneath the nanoparticle surface and the mechanism by which it is produced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatbouri, S., E-mail: Samir.chatbouri@yahoo.com; Troudi, M.; Sghaier, N.
2016-09-15
In this paper we present the trapping of photogenerated charge carriers for 300 s resulted by their direct exchange under illumination between a few silicon nanocrystals (ncs-Si) embedded in an oxide tunnel layer (SiO{sub x} = 1.5) and the tunnel oxide traps levels for a single electron photodetector (photo-SET or nanopixel). At first place, the presence of a photocurrent limited in the inversion zone under illumination in the I–V curves confirms the creation of a pair electron/hole (e–h) at high energy. This photogenerated charge carriers can be trapped in the oxide. Using the capacitance-voltage under illumination (the photo-CV measurements) wemore » show a hysteresis chargement limited in the inversion area, indicating that the photo-generated charge carriers are stored at traps levels at the interface and within ncs-Si. The direct exchange of the photogenerated charge carriers between the interface traps levels and the ncs-Si contributed on the photomemory effect for 300 s for our nanopixel at room temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baly, L.; Otazo, M. R.; Molina, D.
2006-09-08
A study of the phototransference of charges from deep to dosimetric traps in GR-200 material is presented and its convenience for dose re-estimation in the dose range between 2 and 100mSv is also analyzed. The recovering coefficient (RC) defined as the ratio between the phototransferred thermoluminescence (PTTL) and the original thermoluminescence (TL) of the dosimetric trap was used to evaluate the ratio of phototransferred charges from deep traps and the original charges in the dosimetric traps. The results show the convenience of this method for dose re-estimation for this material in the selected range of doses.
NASA Astrophysics Data System (ADS)
Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay
2010-05-01
Photoconductivity relaxation in rf magnetron sputtered ZnO thin films integrated with ultrathin tin metal overlayer is investigated. Charge carriers induced at the ZnO-metal interface by the tin metal overlayer compensates the surface lying trap centers and leads to the enhanced photoresponse. On termination of ultraviolet radiation, recombination of the photoexcited electrons with the valence band holes leaves the excess carriers deeply trapped at the recombination center and holds the dark conductivity level at a higher value. Equilibrium between the recombination centers and valence band, due to trapped charges, eventually stimulates the persistent photoconductivity in the Sn/ZnO photodetectors.
2010-03-31
in OFETs have been investigated extensively in the past couple of years. They are mainly attributed to the (i) charge trapping and release in the...This sharp rise in capacitance can be attributed due to trap charges or impurities such as ions which is most likely in the bulk of DNA-CTMA as well...5 Transient response of BiOFETs As mentioned before, charge trapping and release time can be strong function of applied voltage as well as device
NASA Astrophysics Data System (ADS)
Ke, Wen-Cheng; Lee, Fang-Wei; Yang, Cheng-Yi; Chen, Wei-Kuo; Huang, Hao-Ping
2015-10-01
This study developed an Ohmic contact formation method for a ZnO:Al (AZO) transparent conductive layer on p-GaN films involving the introduction of an indium oxynitride (InON) nanodot interlayer. An antisurfactant pretreatment was used to grow InON nanodots on p-GaN films in a RF magnetron sputtering system. A low specific contact resistance of 1.12 × 10-4 Ω cm2 was achieved for a sample annealed at 500 °C for 30 s in nitrogen ambient and embedded with an InON nanodot interlayer with a nanodot density of 6.5 × 108 cm-2. By contrast, a sample annealed in oxygen ambient exhibited non-Ohmic behavior. X-ray photoemission spectroscopy results showed that the oxygen vacancy (Vo) in the InON nanodots played a crucial role in carrier transport. The fitting I-V characteristic curves indicated that the hopping mechanism with an activation energy of 31.6 meV and trap site spacing of 1.1 nm dominated the carrier transport in the AZO/InON nanodot/p-GaN sample. Because of the high density of donor-like oxygen vacancy defects at the InON nanodot/p-GaN interface, positive charges from the underlying p-GaN films were absorbed at the interface. This led to positive charge accumulation, creating a narrow depletion layer; therefore, carriers from the AZO layer passed through InON nanodots by hopping transport, and subsequently tunneling through the interface to enter the p-GaN films. Thus, AZO Ohmic contact can be formed on p-GaN films by embedding an InON nanodot interlayer to facilitate trap-assisted tunneling.
Electronic transport and Schottky barrier heights of p-type CuAlO2 Schottky diodes
NASA Astrophysics Data System (ADS)
Lin, Yow-Jon; Luo, Jie; Hung, Hao-Che
2013-05-01
A CuAlO2 Schottky diode was fabricated and investigated using current density-voltage (J-V) and capacitance-voltage (C-V) methods. It is shown that the barrier height (qϕB) determined from J-V measurements is lower than that determined from C-V measurements and qϕB determined from C-V measurements is close to the Schottky limit. This is due to a combined effect of the image-force lowering and tunneling. Time domain measurements provide evidence of the domination of electron trapping with long-second lifetime in CuAlO2. Carrier capture and emission from charge traps may lead to the increased probability of tunneling, increasing the ideality factor.
NASA Astrophysics Data System (ADS)
Ji, Hyunjin; Lee, Gwanmu; Joo, Min-Kyu; Yun, Yoojoo; Yi, Hojoon; Park, Ji-Hoon; Suh, Dongseok; Lim, Seong Chu
2017-05-01
The correlation between the channel thickness and the carrier mobility is investigated by conducting static and low frequency (LF) noise characterization for ambipolar carriers in multilayer MoTe2 transistors. For channel thicknesses in the range of 5-15 nm, both the low-field carrier mobility and the Coulomb-scattering-limited carrier mobility (μC) are maximal at a thickness of ˜10 nm. For LF noise, the interplay of interface trap density (NST), which was minimal at ˜10 nm, and the interfacial Coulomb scattering parameter (αSC), which decreased up to 10 nm and saturated above 10 nm, explained the mobility (μC) peaked near 10 nm by the carrier fluctuation and charge distribution.
Increasing the efficiency of organic solar cells by photonic and electrostatic-field enhancements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nalwa, Kanwar
2011-01-01
Organic photovoltaic (OPV) technology is an attractive solar-electric conversion paradigm due to the promise of low cost roll-to-roll production and amenability to flexible substrates. Power conversion efficiency (PCE) exceeding 7% has recently been achieved. OPV cells suffer from low charge carrier mobilities of polymers, leading to recombination losses, higher series resistances and lower fill-factors. Thus, it is imperative to develop fabrication methodologies that can enable efficient optical absorption in films thinner than optical absorption length. Active layers conformally deposited on light-trapping, microscale textured, grating-type surfaces is one possible approach to achieve this objective. In this study, 40% theoretical increase inmore » photonic absorption over flat OPVs is shown for devices with textured geometry by the simulation results. For verifying this theoretical result and improving the efficiency of OPVs by light trapping, OPVs were fabricated on grating-type textured substrates possessing t pitch and -coat PV active-layer on these textured substrates led to over filling of the valleys and shunts at the crest, which severely affected the performance of the resultant PV devices. Thus, it is established that although the optical design is important for OPV performance but the potential of light trapping can only be effectively tapped if the textures are amenable for realizing a conformal active layer. It is discovered that if the height of the underlying topographical features is reduced to sub-micron regime (e.g. 300 nm) and the pitch is increased to more than a micron (e.g. 2 μm), the textured surface becomes amenable to coating a conformal PV active-layer. The resultant PV cells showed 100% increase in average light absorption near the band edge due to trapping of higher wavelength photons, and 20% improvement in power conversion efficiency as compared with the flat PV cell. Another factor that severely limits the performance of OPVs is recombination of charge carriers. Thus it becomes imperative to understand the effect of processing conditions such as spin coating speed and drying rate on defect density and hence induced carrier recombination mechanism. In this study, It is shown that slow growth (longer drying time) of the active-layer leads to reduction of sub-bandgap traps by an order of magnitude as compared to fast grown active-layer. By coupling the experimental results with simulations, it is demonstrated that at one sun condition, slow grown device has bimolecular recombination as the major loss mechanism while in the fast grown device with high trap density, the trap assisted recombination dominates. It has been estimated that non-radiative recombination accounts nearly 50% of efficiency loss in modern OPVs. Generally, an external bias (electric field) is required to collect all the photogenerated charges and thus prevent their recombination. The motivation is to induce additional electric field in otherwise low mobility conjugated polymer based active layer by incorporating ferroelectric dipoles. This is expected to facilitate singlet exciton dissociation in polymer matrix and impede charge transfer exciton (CTE) recombination at polymer:fullerene interface. For the first time, it is shown that the addition of ferroelectric dipoles to modern bulk heterojunction (BHJ) can significantly improve exciton dissociation, resulting in a ~50% enhancement of overall solar cell efficiency. The devices also exhibit the unique ferroelectric-photovoltaic effect with polarization-controlled power conversion efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong Hoe; Park, Jaehong; Li, Zhen
Organic-inorganic perovskites with intriguing optical and electrical properties have attracted significant research interests due to their excellent performance in optoelectronic devices. Recent efforts on preparing uniform and large-grain polycrystalline perovskite films have led to enhanced carrier lifetime up to several microseconds. However, the mobility and trap densities of polycrystalline perovskite films are still significantly behind their single-crystal counterparts. Here, a facile topotactic-oriented attachment (TOA) process to grow highly oriented perovskite films, featuring strong uniaxial-crystallographic texture, micrometer-grain morphology, high crystallinity, low trap density (≈4 x 10 14 cm -3), and unprecedented 9 GHz charge-carrier mobility (71 cm 2 V -1 smore » -1), is demonstrated. TOA-perovskite-based n-i-p planar solar cells show minimal discrepancies between stabilized efficiency (19.0%) and reverse-scan efficiency (19.7%). In conclusion, the TOA process is also applicable for growing other state-of-the-art perovskite alloys, including triple-cation and mixed-halide perovskites.« less
Suppression in the electrical hysteresis by using CaF2 dielectric layer for p-GaN MIS capacitors
NASA Astrophysics Data System (ADS)
Sang, Liwen; Ren, Bing; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo
2018-04-01
The capacitance-voltage (C-V) hysteresis in the bidirectional measurements of the p-GaN metal-insulator-semiconductor (MIS) capacitor is suppressed by using a CaF2 dielectric layer and a post annealing treatment. The density of trapped charge states at the CaF2/p-GaN interface is dramatically reduced from 1.3 × 1013 cm2 to 1.1 × 1011/cm2 compared to that of the Al2O3/p-GaN interface with a large C-V hysteresis. It is observed that the disordered oxidized interfacial layer can be avoided by using the CaF2 dielectric. The downward band bending of p-GaN is decreased from 1.51 to 0.85 eV as a result of the low-density oxides-related trap states. Our work indicates that the CaF2 can be used as a promising dielectric layer for the p-GaN MIS structures.
Kim, Dong Hoe; Park, Jaehong; Li, Zhen; ...
2017-04-18
Organic-inorganic perovskites with intriguing optical and electrical properties have attracted significant research interests due to their excellent performance in optoelectronic devices. Recent efforts on preparing uniform and large-grain polycrystalline perovskite films have led to enhanced carrier lifetime up to several microseconds. However, the mobility and trap densities of polycrystalline perovskite films are still significantly behind their single-crystal counterparts. Here, a facile topotactic-oriented attachment (TOA) process to grow highly oriented perovskite films, featuring strong uniaxial-crystallographic texture, micrometer-grain morphology, high crystallinity, low trap density (≈4 x 10 14 cm -3), and unprecedented 9 GHz charge-carrier mobility (71 cm 2 V -1 smore » -1), is demonstrated. TOA-perovskite-based n-i-p planar solar cells show minimal discrepancies between stabilized efficiency (19.0%) and reverse-scan efficiency (19.7%). In conclusion, the TOA process is also applicable for growing other state-of-the-art perovskite alloys, including triple-cation and mixed-halide perovskites.« less
On the properties of synchrotron-like X-ray emission from laser wakefield accelerated electron beams
NASA Astrophysics Data System (ADS)
McGuffey, C.; Schumaker, W.; Matsuoka, T.; Chvykov, V.; Dollar, F.; Kalintchenko, G.; Kneip, S.; Najmudin, Z.; Mangles, S. P. D.; Vargas, M.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.
2018-04-01
The electric and magnetic fields responsible for electron acceleration in a Laser Wakefield Accelerator (LWFA) also cause electrons to radiate x-ray photons. Such x-ray pulses have several desirable properties including short duration and being well collimated with tunable high energy. We measure the scaling of this x-ray source experimentally up to laser powers greater than 100 TW. An increase in laser power allows electron trapping at a lower density as well as with an increased trapped charge. These effects resulted in an x-ray fluence that was measured to increase non-linearly with laser power. The fluence of x-rays was also compared with that produced from K-α emission resulting from a solid target interaction for the same energy laser pulse. The flux was shown to be comparable, but the LWFA x-rays had a significantly smaller source size. This indicates that such a source may be useful as a backlighter for probing high energy density plasmas with ultrafast temporal resolution.
Interface traps and quantum size effects on the retention time in nanoscale memory devices
2013-01-01
Based on the analysis of Poisson equation, an analytical surface potential model including interface charge density for nanocrystalline (NC) germanium (Ge) memory devices with p-type silicon substrate has been proposed. Thus, the effects of Pb defects at Si(110)/SiO2, Si(111)/SiO2, and Si(100)/SiO2 interfaces on the retention time have been calculated after quantum size effects have been considered. The results show that the interface trap density has a large effect on the electric field across the tunneling oxide layer and leakage current. This letter demonstrates that the retention time firstly increases with the decrease in diameter of NC Ge and then rapidly decreases with the diameter when it is a few nanometers. This implies that the interface defects, its energy distribution, and the NC size should be seriously considered in the aim to improve the retention time from different technological processes. The experimental data reported in the literature support the theoretical expectation. PMID:23984827
NASA Technical Reports Server (NTRS)
Lagowski, J.; Lin, D. G.; Chen, T.-P.; Skowronski, M.; Gatos, H. C.
1985-01-01
A dominant hole trap has been identified in p-type bulk GaAs employing deep level transient and photocapacitance spectroscopies. The trap is present at a concentration up to about 4 x 10 to the 16th per cu cm, and it has two charge states with energies 0.54 + or - 0.02 and 0.77 + or - 0.02 eV above the top of the valence band (at 77 K). From the upper level the trap can be photoexcited to a persistent metastable state just as the dominant midgap level, EL2. Impurity analysis and the photoionization characteristics rule out association of the trap with impurities Fe, Cu, or Mn. Taking into consideration theoretical results, it appears most likely that the two charge states of the trap are the single and double donor levels of the arsenic antisite As(Ga) defect.
Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Yi, Mingdong; Wang, Laiyuan; Wu, Dequn; Xie, Linghai; Huang, Wei
2017-08-01
Nonvolatile organic field-effect transistor (OFET) memory devices based on pentacene/ N , N '-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n-type P13 embedded in p-type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well-like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge-trapping property of the poly(4-vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high-performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory.
Evaluation of trapping-web designs
Lukacs, P.M.; Anderson, D.R.; Burnham, K.P.
2005-01-01
The trapping web is a method for estimating the density and abundance of animal populations. A Monte Carlo simulation study is performed to explore performance of the trapping web for estimating animal density under a variety of web designs and animal behaviours. The trapping performs well when animals have home ranges, even if the home ranges are large relative to trap spacing. Webs should contain at least 90 traps. Trapping should continue for 5-7 occasions. Movement rates have little impact on density estimates when animals are confined to home ranges. Estimation is poor when animals do not have home ranges and movement rates are rapid. The trapping web is useful for estimating the density of animals that are hard to detect and occur at potentially low densities. ?? CSIRO 2005.
New progress of high current gasdynamic ion source (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skalyga, V., E-mail: skalyga@ipfran.ru; Sidorov, A.; Vodopyanov, A.
2016-02-15
The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma withmore » significant density (up to 8 × 10{sup 13} cm{sup −3}) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10{sup −4}–10{sup −3} mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.« less
Hybrid quantum systems with trapped charged particles
NASA Astrophysics Data System (ADS)
Kotler, Shlomi; Simmonds, Raymond W.; Leibfried, Dietrich; Wineland, David J.
2017-02-01
Trapped charged particles have been at the forefront of quantum information processing (QIP) for a few decades now, with deterministic two-qubit logic gates reaching record fidelities of 99.9 % and single-qubit operations of much higher fidelity. In a hybrid system involving trapped charges, quantum degrees of freedom of macroscopic objects such as bulk acoustic resonators, superconducting circuits, or nanomechanical membranes, couple to the trapped charges and ideally inherit the coherent properties of the charges. The hybrid system therefore implements a "quantum transducer," where the quantum reality (i.e., superpositions and entanglement) of small objects is extended to include the larger object. Although a hybrid quantum system with trapped charges could be valuable both for fundamental research and for QIP applications, no such system exists today. Here we study theoretically the possibilities of coupling the quantum-mechanical motion of a trapped charged particle (e.g., an ion or electron) to the quantum degrees of freedom of superconducting devices, nanomechanical resonators, and quartz bulk acoustic wave resonators. For each case, we estimate the coupling rate between the charged particle and its macroscopic counterpart and compare it to the decoherence rate, i.e., the rate at which quantum superposition decays. A hybrid system can only be considered quantum if the coupling rate significantly exceeds all decoherence rates. Our approach is to examine specific examples by using parameters that are experimentally attainable in the foreseeable future. We conclude that hybrid quantum systems involving a single atomic ion are unfavorable compared with the use of a single electron because the coupling rates between the ion and its counterpart are slower than the expected decoherence rates. A system based on trapped electrons, on the other hand, might have coupling rates that significantly exceed decoherence rates. Moreover, it might have appealing properties such as fast entangling gates, long coherence, and flexible topology that is fully electronic in nature. Realizing such a system, however, is technologically challenging because it requires accommodating both a trapping technology and superconducting circuitry in a compatible manner. We review some of the challenges involved, such as the required trap parameters, electron sources, electrical circuitry, and cooling schemes in order to promote further investigations towards the realization of such a hybrid system.
Wide memory window in graphene oxide charge storage nodes
NASA Astrophysics Data System (ADS)
Wang, Shuai; Pu, Jing; Chan, Daniel S. H.; Cho, Byung Jin; Loh, Kian Ping
2010-04-01
Solution-processable, isolated graphene oxide (GO) monolayers have been used as a charge trapping dielectric in TaN gate/Al2O3/isolated GO sheets/SiO2/p-Si memory device (TANOS). The TANOS type structure serves as memory device with the threshold voltage controlled by the amount of charge trapped in the GO sheet. Capacitance-Voltage hysteresis curves reveal a 7.5 V memory window using the sweep voltage of -5-14 V. Thermal reduction in the GO to graphene reduces the memory window to 1.4 V. The unique charge trapping properties of GO points to the potential applications in flexible organic memory devices.
NASA Astrophysics Data System (ADS)
Oh, Dong Keun; Hong, Sung Mok; Lee, Cheol Eui; Kim, B.-S.; Jin, J.-I.
2005-12-01
Using the time of flight (ToF) method, we investigated the bipolar charge transport for two glass-forming molecules containing carbazole and cyano-carbazole moiety. The enhanced electron mobility was observed in the cyano-carbazole compound. From the numerical method based the Laplace formalism, the distribution of hole trapping energy was obtained for the carbazole compound. This result was compared with the exponential distribution extracted from dispersion parameter for the cyano-carbazole material. Considering charge-dipole interactions as a reason for the disordered trapping mechanism, we discussed dispersive charge transport induced by a strong dipolar (i.e. cyano) group by comparing the distributions of hole trapping sites for two compounds.
Interface investigation of solution processed high- κ ZrO2/Si MOS structure by DLTS
NASA Astrophysics Data System (ADS)
Kumar, Arvind; Mondal, Sandip; Rao, Ksr Koteswara
The interfacial region is dominating due to the continuous downscaling and integration of high- k oxides in CMOS applications. The accurate characterization of high- k oxides/semiconductor interface has the significant importance towards its usage in memory and thin film devices. The interface traps at the high - k /semiconductor interface can be quantified by deep level transient spectroscopy (DLTS) with better accuracy in contrast to capacitance-voltage (CV) and conductance technique. We report the fabrication of high- k ZrO2 films on p-Si substrate by a simple and inexpensive sol-gel spin-coating technique. Further, the ZrO2/Si interface is characterized through DLTS. The flat-band voltage (VFB) and the density of slow interface states (oxide trapped charges) extracted from CV characteristics are 0.37 V and 2x10- 11 C/cm2, respectively. The activation energy, interface state density and capture cross-section quantified by DLTS are EV + 0.42 eV, 3.4x1011 eV- 1 cm- 2 and 5.8x10- 18 cm2, respectively. The high quality ZrO2 films own high dielectric constant 15 with low leakage current density might be an appropriate insulating layer in future electronic application. The low value of interface state density and capture cross-section are the indication of high quality interface and the defect present at the interface may not affect the device performance to a great extent. The DLTS study provides a broad understanding about the traps present at the interface of spin-coated ZrO2/Si.
I-V-T analysis of radiation damage in high efficiency Si solar cells
NASA Technical Reports Server (NTRS)
Banerjee, S.; Anderson, W. A.; Rao, B. B.
1985-01-01
A detailed analysis of current-voltage characteristics of N(+)-P/P solar cells indicate that there is a combination of different mechanisms which results in an enhancement in the dark current and in turn deteriorates the photovoltaic performance of the solar cells after 1 MeV e(-) irradiation. The increase in the dark current is due to three effects, i.e., bulk recombination, space charge recombination by deep traps and space charge recombination through shallow traps. It is shown that the increase in bulk recombination current is about 2 to 3 orders of magnitude whereas space charge recombination current due to shallow traps increases only by an order or so and no space charge recombination through deep traps was observed after irradiation. Thus, in order to improve the radiation hardness of these devices, bulk properties should be preserved.
NASA Astrophysics Data System (ADS)
Krasovsky, Victor L.; Kiselyov, Alexander A.
2017-12-01
New results of numerical simulation of collisionless plasma perturbation caused by a sphere absorbing electrons and ions are presented. Consideration is given to nonstationary phenomena accompanying the process of charging as well as to plasma steady state reached at long times. Corresponding asymptotic values of charges of the sphere and trapped-ion cloud around it have been found along with self-consistent electric field pattern depending on parameters of the unperturbed plasma. It is established that contribution of the trapped ions to screening of the charged sphere can be quite significant, so that the screening becomes essentially nonlinear in nature. A simple interconnection between the sphere radius, electron and ion Debye lengths has been revealed as the condition for maximum trapped-ion effect. Kinetic structure of the space charge induced in the plasma is discussed with relation to the specific form of the unperturbed charged particle distribution functions.
Isotope effects of trapped electron modes in the presence of impurities in tokamak plasmas
NASA Astrophysics Data System (ADS)
Shen, Yong; Dong, J. Q.; Sun, A. P.; Qu, H. P.; Lu, G. M.; He, Z. X.; He, H. D.; Wang, L. F.
2016-04-01
The trapped electron modes (TEMs) are numerically investigated in toroidal magnetized hydrogen, deuterium and tritium plasmas, taking into account the effects of impurity ions such as carbon, oxygen, helium, tungsten and others with positive and negative density gradients with the rigorous integral eigenmode equation. The effects of impurity ions on TEMs are investigated in detail. It is shown that impurity ions have substantially-destabilizing (stabilizing) effects on TEMs in isotope plasmas for {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 (<0 ), opposite to the case of ion temperature gradient (ITG) driven modes. Detailed analyses of the isotope mass dependence for TEM turbulences in hydrogenic isotope plasmas with and without impurities are performed. The relations between the maximum growth rate of the TEMs with respect to the poloidal wave number and the ion mass number are given in the presence of the impurity ions. The results demonstrate that the maximum growth rates scale as {γ\\max}\\propto Mi-0.5 in pure hydrogenic plasmas. The scale depends on the sign of its density gradient and charge number when there is a second species of (impurity) ions. When impurity ions have density profiles peaking inwardly (i.e. {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 ), the scaling also depends on ITG parameter {ηi} . The maximum growth rates scale as {γ\\max}\\propto M\\text{eff}-0.5 for the case without ITG ({ηi}=0 ) or the ITG parameter is positive ({ηi}>0 ) but the impurity ion charge number is low (Z≤slant 5.0 ). However, when {ηi}>0 and the impurity ion charge number is moderate (Z=6.0-8.0 ), the scaling law is found as {γ\\max}\\propto M\\text{eff}-1.0 . Here, Z is impurity ion charge number, and the effective mass number, {{M}\\text{eff}}=≤ft(1-{{f}z}\\right){{M}i}+{{f}z}{{M}z} , with {{M}i} and {{M}Z} being the mass numbers of the hydrogenic and impurity ions, respectively, and {{f}z}=Z{{n}0z}/{{n}0e} being the charge concentration of impurity ions. In addition, with regard to the case of {{L}ez}<0 , the maximum growth rate scaling is {γ\\max}\\propto Mi-0.5 . The possible relations of the results with experimental observations are discussed.
Effect of Trapped Ions on Shielding and Floating Potential of a Dust Grain in a Plasma
NASA Astrophysics Data System (ADS)
Lampe, Martin; Ganguli, Gurudas; Joyce, Glenn; Gavrishchaka, Valeriy
2001-10-01
The problem of electrostatic shielding around a small spherical collector immersed in plasma, and the related problem of electron and ion flow to the collector, date to the origins of plasma physics. Beginning with Mott-Smith and Langmuir (1926), calculations have typically neglected collisions, on the grounds that the mean free path is long compared to shielding length scales, i.e. the Debye length. However, investigators beginning with Bernstein and Rabinowitz (1959) have known that negative-energy trapped ions, created by occasional collisions, might be important. We present an analytic calculation of the density of trapped and untrapped ions, self-consistent with the potential. Under typical conditions for dust grains immersed in a discharge plasma, trapped ions dominate the shielding cloud in steady state, even in the limit of very long mean free path. As a result the shielded potential is different from the results of orbital motion limited theory. Collisions also greatly increase the ion current to the collector, thereby decreasing the floating potential and the grain charge by a factor as large as two to three.
Revealing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy
Penfold, Thomas J.; Szlachetko, Jakub; Santomauro, Fabio G.; ...
2018-02-02
Nanostructures of transition metal oxides (TMO), such as ZnO, have attracted considerable interest for solar-energy conversion and photocatalysis. For the latter, trapping of charge carriers has an essential role. The probing of electron trapping in the conduction band of room temperature photoexcited TMOs has recently become possible owing to the emergence of time-resolved element-sensitive methods, such as X-ray spectroscopy. However, because the valence band of TMOs is dominated by the oxygen 2p orbitals,holes have so far escaped observation. Herein we use a novel dispersive X-ray emission spectrometer combined with X-ray absorption spectroscopy to directly probe the charge carrier relaxation andmore » trapping pro-cesses in ZnO nanoparticles after above band-gap photoexcitation. Here, our results, supported by simulations, demonstrate that within our temporal resolution of 80 ps, photo-excited holes are trapped at singly charged oxygen vacancies, turning them into doubly charged vacancies, which causes an outward displacement by approximately 15% of the four surrounding Zn atoms away from the central vacancy. These traps recombine radiatively with the delocalised electrons of the conduction band yielding the commonly observed green luminescence. This identification of the hole traps and their evolution provides new insight for future developments of TMO-based nanodevices.« less
Revealing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penfold, Thomas J.; Szlachetko, Jakub; Santomauro, Fabio G.
Nanostructures of transition metal oxides (TMO), such as ZnO, have attracted considerable interest for solar-energy conversion and photocatalysis. For the latter, trapping of charge carriers has an essential role. The probing of electron trapping in the conduction band of room temperature photoexcited TMOs has recently become possible owing to the emergence of time-resolved element-sensitive methods, such as X-ray spectroscopy. However, because the valence band of TMOs is dominated by the oxygen 2p orbitals,holes have so far escaped observation. Herein we use a novel dispersive X-ray emission spectrometer combined with X-ray absorption spectroscopy to directly probe the charge carrier relaxation andmore » trapping pro-cesses in ZnO nanoparticles after above band-gap photoexcitation. Here, our results, supported by simulations, demonstrate that within our temporal resolution of 80 ps, photo-excited holes are trapped at singly charged oxygen vacancies, turning them into doubly charged vacancies, which causes an outward displacement by approximately 15% of the four surrounding Zn atoms away from the central vacancy. These traps recombine radiatively with the delocalised electrons of the conduction band yielding the commonly observed green luminescence. This identification of the hole traps and their evolution provides new insight for future developments of TMO-based nanodevices.« less
Multibit data storage states formed in plasma-treated MoS₂ transistors.
Chen, Mikai; Nam, Hongsuk; Wi, Sungjin; Priessnitz, Greg; Gunawan, Ivan Manuel; Liang, Xiaogan
2014-04-22
New multibit memory devices are desirable for improving data storage density and computing speed. Here, we report that multilayer MoS2 transistors, when treated with plasmas, can dramatically serve as low-cost, nonvolatile, highly durable memories with binary and multibit data storage capability. We have demonstrated binary and 2-bit/transistor (or 4-level) data states suitable for year-scale data storage applications as well as 3-bit/transistor (or 8-level) data states for day-scale data storage. This multibit memory capability is hypothesized to be attributed to plasma-induced doping and ripple of the top MoS2 layers in a transistor, which could form an ambipolar charge-trapping layer interfacing the underlying MoS2 channel. This structure could enable the nonvolatile retention of charged carriers as well as the reversible modulation of polarity and amount of the trapped charge, ultimately resulting in multilevel data states in memory transistors. Our Kelvin force microscopy results strongly support this hypothesis. In addition, our research suggests that the programming speed of such memories can be improved by using nanoscale-area plasma treatment. We anticipate that this work would provide important scientific insights for leveraging the unique structural property of atomically layered two-dimensional materials in nanoelectronic applications.
Solvation of excess electrons trapped in charge pockets on molecular surfaces
NASA Astrophysics Data System (ADS)
Jalbout, Abraham F.
This work considers the ability of hydrogen fluoride (HF) to solvate excess electrons located on cyclic hydrocarbon surfaces. The principle applied involves the formation of systems in which excess electrons can be stabilized not only on concentrated molecular surface charge pockets but also by HF. Recent studies have shown that OH groups can form stable hydrogen-bonded networks on one side of a hydrocarbon surface (i.e. cyclohexane sheets), at the same time, the hydrogen atoms on the opposite side of this surface form a pocket of positive charge can attract the excess electron. This density can be further stabilized by the addition of an HF molecule that can form an 'anion with an internally solvated electron' (AISE) state. These systems are shown to be stable with respect to vertical electron detachment (VDE).
NASA Astrophysics Data System (ADS)
Djezzar, Boualem; Tahi, Hakim; Benabdelmoumene, Abdelmadjid; Chenouf, Amel; Kribes, Youcef
2012-11-01
In this paper, we present a new method, named on the fly oxide trap (OTFOT), to extract the bias temperature instability (BTI) in MOS transistors. The OTFOT method is based on charge pumping technique (CP) at low and high frequencies. We emphasize on the theoretical-based concept, giving a clear insight on the easy-use of the OTFOT methodology and demonstrating its viability to characterize the negative BTI (NBTI). Using alternatively high and low frequencies, OTFOT method separates the interface-traps (ΔNit) and border-trap (ΔNbt) (switching oxide-trap) densities independently and also their contributions to the threshold voltage shift (ΔVth), without needing additional methods. The experimental results, from two experimental scenarios, showing the extraction of NBTI-induced shifts caused by interface- and oxide-trap increases are also presented. In the first scenario, all stresses are performed on the same transistor. It exhibits an artifact value of exponent n. In the second scenario, each voltage stress is applied only on one transistor. Its results show an average n of 0.16, 0.05, and 0.11 for NBTI-induced ΔNit, ΔNbt, ΔVth, respectively. Therefore, OTFOT method can contribute to further understand the behavior of the NBTI degradation, especially through the threshold voltage shift components such as ΔVit and ΔVot caused by interface-trap and border-trap, respectively.
NASA Astrophysics Data System (ADS)
Mansour, Ahmed M.; Shehab, Ola R.
2014-07-01
Structural properties of methocarbamol (Mcm) were extensively studied both experimentally and theoretically using FT IR, 1H NMR, UV-Vis., geometry optimization, Mulliken charge, and molecular electrostatic potential. Stability arises from hyper-conjugative interactions, charge delocalization and H-bonding was analyzed using natural bond orbital (NBO) analysis. Mcm was decomposed in ethanol/water mixture at 80 °C to guaifenesin [(RS)-3-(2-methoxyphenoxy)propane-1,2-diol] and carbamate ion [NH2COO-], where the degradation mechanism was explained by trapping the carbamate ion via the complexation with copper(II) ion. The structure of the isolated complex ([Cu(NH2COO)2(H2O)]ṡ4H2O) was elucidated by spectral, thermal, and magnetic tools. Electronic spectra were discussed by TD-DFT and the descriptions of frontier molecular orbitals and the relocations of the electron density were determined. Calculated g-tensor values showed best agreement with experimental values from EPR when carried out using both the B3LYP and B3PW91 functional.
Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A
2012-02-01
A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.
Optical patterning of trapped charge in nitrogen-doped diamond
NASA Astrophysics Data System (ADS)
Jayakumar, Harishankar; Henshaw, Jacob; Dhomkar, Siddharth; Pagliero, Daniela; Laraoui, Abdelghani; Manson, Neil B.; Albu, Remus; Doherty, Marcus W.; Meriles, Carlos A.
2016-08-01
The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects. Further, by using the NV as a probe, we map the relative fraction of positively charged nitrogen on localized optical excitation. These observations may prove important to transporting quantum information between NVs or to developing three-dimensional, charge-based memories.
Optical patterning of trapped charge in nitrogen-doped diamond.
Jayakumar, Harishankar; Henshaw, Jacob; Dhomkar, Siddharth; Pagliero, Daniela; Laraoui, Abdelghani; Manson, Neil B; Albu, Remus; Doherty, Marcus W; Meriles, Carlos A
2016-08-30
The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects. Further, by using the NV as a probe, we map the relative fraction of positively charged nitrogen on localized optical excitation. These observations may prove important to transporting quantum information between NVs or to developing three-dimensional, charge-based memories.
Optical patterning of trapped charge in nitrogen-doped diamond
Jayakumar, Harishankar; Henshaw, Jacob; Dhomkar, Siddharth; Pagliero, Daniela; Laraoui, Abdelghani; Manson, Neil B.; Albu, Remus; Doherty, Marcus W.; Meriles, Carlos A.
2016-01-01
The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects. Further, by using the NV as a probe, we map the relative fraction of positively charged nitrogen on localized optical excitation. These observations may prove important to transporting quantum information between NVs or to developing three-dimensional, charge-based memories. PMID:27573190
2014-07-09
operations, in addition to laser - or microwave-driven logic gates. Essential shuttling operations are splitting and merging of linear ion crystals. It is...from stray charges, laser induced charging of the trap [19], trap geometry imperfections or residual ponderomotive forces along the trap axis. The...transfer expressed as the mean phonon number Δ ω¯ = n E / f . We distinguish several regimes of laser –ion interaction: (i) if the vibrational
Charge-Trapping-Induced Non-Ideal Behaviors in Organic Field-Effect Transistors.
Un, Hio-Ieng; Cheng, Peng; Lei, Ting; Yang, Chi-Yuan; Wang, Jie-Yu; Pei, Jian
2018-05-01
Organic field-effect transistors (OFETs) with impressively high hole mobilities over 10 cm 2 V -1 s -1 and electron mobilities over 1 cm 2 V -1 s -1 have been reported in the past few years. However, significant non-ideal electrical characteristics, e.g., voltage-dependent mobilities, have been widely observed in both small-molecule and polymer systems. This issue makes the accurate evaluation of the electrical performance impossible and also limits the practical applications of OFETs. Here, a semiconductor-unrelated, charge-trapping-induced non-ideality in OFETs is reported, and a revised model for the non-ideal transfer characteristics is provided. The trapping process can be directly observed using scanning Kelvin probe microscopy. It is found that such trapping-induced non-ideality exists in OFETs with different types of charge carriers (p-type or n-type), different types of dielectric materials (inorganic and organic) that contain different functional groups (OH, NH 2 , COOH, etc.). As fas as it is known, this is the first report for the non-ideal transport behaviors in OFETs caused by semiconductor-independent charge trapping. This work reveals the significant role of dielectric charge trapping in the non-ideal transistor characteristics and also provides guidelines for device engineering toward ideal OFETs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of a falling edge on high power microwave pulse combination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jiawei; Huang, Wenhua; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024
This paper presents an explanation of the influence of a microwave falling edge on high-power microwave pulse combination. Through particle-in-cell simulations, we discover that the falling edge is the driving factor that limits the output power of the combined pulses. We demonstrate that the space charge field, which accumulates to become comparable to the E-field at the falling edge of the former pulse, will trap the electrons in the gas layer and decrease its energy to attain a high ionization rate. Hence, avalanche discharge, caused by trapped electrons, makes the plasma density to approach the critical density and cuts offmore » the latter microwave pulse. An X-band combination experiment is conducted with different pulse intervals. This experiment confirms that the high density plasma induced by the falling edge can cut off the latter pulse, and that the time required for plasma recombination in the transmission channel is several microseconds. To ensure a high output power for combined pulses, the latter pulse should be moved ahead of the falling edge of the former one, and consequently, a beat wave with high peak power becomes the output by adding two pulses with normal amplitudes.« less
NASA Astrophysics Data System (ADS)
Shijeesh, M. R.; Vikas, L. S.; Jayaraj, M. K.; Puigdollers, J.
2014-10-01
The OTFTs with both p type and n type channel layers were fabricated using the inverted-staggered (top contact) structure by thermal vapour deposition on Si/SiO2 substrate. Pentacene and N,N'-Dioctyl- 3,4,9,10- perylenedicarboximide (PTCDI-C8) were used as channel layer for the fabrications of p type and n type OTFTs respectively. A comparative study on the degradation and density of states (DOS) of p type and n type organic semiconductors have been carried out. In order to compare the stability and degradation of pentacene and PTCDI-C8 OTFTs, the devices were exposed to air for 2 h before performing electrical measurements in air. The DOS measurements revealed that a level with defect density of 1020 cm-3 was formed only in PTCDI C8 layer on exposure to air. The oxygen adsorption into the PTCDI-C8 active layer can be attributed to the formation of this level at 0.15 eV above the LUMO level. The electrical charge transport is strongly affected by the oxygen traps and hence n type organic materials are less stable than p type organic materials.
Influence of a falling edge on high power microwave pulse combination
NASA Astrophysics Data System (ADS)
Li, Jiawei; Huang, Wenhua; Zhu, Qi; Xiao, Renzhen; Shao, Hao
2016-07-01
This paper presents an explanation of the influence of a microwave falling edge on high-power microwave pulse combination. Through particle-in-cell simulations, we discover that the falling edge is the driving factor that limits the output power of the combined pulses. We demonstrate that the space charge field, which accumulates to become comparable to the E-field at the falling edge of the former pulse, will trap the electrons in the gas layer and decrease its energy to attain a high ionization rate. Hence, avalanche discharge, caused by trapped electrons, makes the plasma density to approach the critical density and cuts off the latter microwave pulse. An X-band combination experiment is conducted with different pulse intervals. This experiment confirms that the high density plasma induced by the falling edge can cut off the latter pulse, and that the time required for plasma recombination in the transmission channel is several microseconds. To ensure a high output power for combined pulses, the latter pulse should be moved ahead of the falling edge of the former one, and consequently, a beat wave with high peak power becomes the output by adding two pulses with normal amplitudes.
Nitrided SrTiO3 as charge-trapping layer for nonvolatile memory applications
NASA Astrophysics Data System (ADS)
Huang, X. D.; Lai, P. T.; Liu, L.; Xu, J. P.
2011-06-01
Charge-trapping characteristics of SrTiO3 with and without nitrogen incorporation were investigated based on Al/Al2O3/SrTiO3/SiO2/Si (MONOS) capacitors. A Ti-silicate interlayer at the SrTiO3/SiO2 interface was confirmed by x-ray photoelectron spectroscopy and transmission electron microscopy. Compared with the MONOS capacitor with SrTiO3 as charge-trapping layer (CTL), the one with nitrided SrTiO3 showed a larger memory window (8.4 V at ±10 V sweeping voltage), higher P/E speeds (1.8 V at 1 ms +8 V) and better retention properties (charge loss of 38% after 104 s), due to the nitrided SrTiO3 film exhibiting higher dielectric constant, higher deep-level traps induced by nitrogen incorporation, and suppressed formation of Ti silicate between the CTL and SiO2 by nitrogen passivation.
Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors.
Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun; Chung, Hyunjoong; Diao, Ying
2017-07-01
Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C 8 -benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This paper further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor-acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun
Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C8-benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This papermore » further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor–acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall.« less
Surface damage characterization of FBK devices for High Luminosity LHC (HL-LHC) operations
NASA Astrophysics Data System (ADS)
Moscatelli, F.; Passeri, D.; Morozzi, A.; Dalla Betta, G.-F.; Mattiazzo, S.; Bomben, M.; Bilei, G. M.
2017-12-01
The very high fluences (e.g. up to 2×1016 1 MeV neq/cm2) and total ionising doses (TID) of the order of 1 Grad, expected at the High Luminosity LHC (HL-LHC), impose new challenges for the design of effective, radiation resistant detectors. Ionising energy loss is the dominant effect for what concerns SiO2 and SiO2/Si interface radiation damage. In particular, surface damage can create a positive charge layer near the SiO2/Si interface and interface traps along the SiO2/Si interface, which strongly influence the breakdown voltage, the inter-electrode isolation and capacitance, and might also impact the charge collection properties of silicon sensors. To better understand in a comprehensive framework the complex and articulated phenomena related to surface damage at these very high doses, measurements on test structures have been carried out in this work (e.g. C-V and I-V). In particular, we have studied the properties of the SiO2 layer and of the SiO2/Si interface, using MOS capacitors, gated diodes (GD) and MOSFETs manufactured by FBK on high-resistivity n-type and p-type silicon, before and after irradiation with X-rays in the range from 50 krad(SiO2) to 20 Mrad(SiO2). Relevant parameters have been determined for all the tested devices, converging in the oxide charge density NOX, the surface generation velocity s0 and the integrated interface-trap density NIT dose-dependent values. These parameters have been extracted to both characterize the technology as a function of the dose and to be used in TCAD simulations for the surface damage effect modeling and the analysis and optimization of different classes of detectors for the next HEP experiments.
NASA Astrophysics Data System (ADS)
Huo, Zongliang; Jin, Lei; Han, Yulong; Li, Xinkai; Ye, Tianchun; Liu, Ming
2015-01-01
The influence of post-deposition annealing (PDA) temperature condition on charge distribution behavior of HfO2 thin films was systematically investigated by various-temperature Kelvin probe force microscopy technology. Contact potential difference profiles demonstrated that charge storage capability shrinks with decreasing annealing temperature from 1,000 to 500 °C and lower. Compared to 1,000 °C PDA, it was found that 500 °C PDA causes deeper effective trap energy level, suppresses lateral charge spreading, and improves the retention characteristics. It is concluded that low-temperature PDA can be adopted in 3D HfO2-based charge trap flash memory to improve the thermal treatment compatibility of the bottom peripheral logic and upper memory arrays.
Di Pietro, Riccardo; Fazzi, Daniele; Kehoe, Tom B; Sirringhaus, Henning
2012-09-12
We present an optical spectroscopy study on the role of oxygen and water in electron trapping and storage/bias-stress degradation of n-type polymer field-effect transistors based on one of the most widely studied electron transporting conjugated polymers, poly{[N,N9-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,59-(2,29-bisthiophene)} (P(NDI2OD-T2)). We combine results obtained from charge accumulation spectroscopy, which allow optical quantification of the concentration of mobile and trapped charges in the polymer film, with electrical characterization of P(NDI2OD-T2) organic field-effect transistors to study the mechanism for storage and bias-stress degradation upon exposure to dry air/oxygen and humid nitrogen/water environments, thus separating the effect of the two molecules and determining the nature of their interaction with the polymer. We find that the stability upon oxygen exposure is limited by an interaction between the neutral polymer and molecular oxygen leading to a reduction in electron mobility in the bulk of the semiconductor. We use density functional theory quantum chemical calculations to ascribe the drop in mobility to the formation of a shallow, localized, oxygen-induced trap level, 0.34 eV below the delocalized lowest unoccupied molecular orbital of P(NDI2OD-T2). In contrast, the stability of the polymer anion against water is limited by two competing reactions, one involving the electrochemical oxidation of the polymer anion by water without degradation of the polymer and the other involving a radical anion-catalyzed chemical reaction of the polymer with water, in which the electron can be recycled and lead to further degradation reactions, such that a significant portion of the film is degraded after prolonged bias stressing. Using Raman spectroscopy, we have been able to ascribe this to a chemical interaction of water with the naphthalene diimide unit of the polymer. The degradation mechanisms identified here should be considered to explain electron trapping in other rylene diimides and possibly in other classes of conjugated polymers as well.
McEntee, Monica; Stevanovic, Ana; Tang, Wenjie; Neurock, Matthew; Yates, John T
2015-02-11
Infrared (IR) studies of Au/TiO2 catalyst particles indicate that charge transfer from van der Waals-bound donor or acceptor molecules on TiO2 to or from Au occurs via transport of charge carriers in the semiconductor TiO2 support. The ΔνCO on Au is shown to be proportional to the polarizability of the TiO2 support fully covered with donor or acceptor molecules, producing a proportional frequency shift in νCO. Charge transfer through TiO2 is associated with the population of electron trap sites in the bandgap of TiO2 and can be independently followed by changes in photoluminescence intensity and by shifts in the broad IR absorbance region for electron trap sites, which is also proportional to the polarizability of donors by IR excitation. Density functional theory calculations show that electron transfer from the donor molecules to TiO2 and to supported Au particles produces a negative charge on the Au, whereas the transfer from the Au particles to the TiO2 support into acceptor molecules results in a positive charge on the Au. These changes along with the magnitudes of the shifts are consistent with the Stark effect. A number of experiments show that the ∼3 nm Au particles act as "molecular voltmeters" in influencing ΔνCO. Insulator particles, such as SiO2, do not display electron-transfer effects to Au particles on their surface. These studies are preliminary to doping studies of semiconductor-oxide particles by metal ions which modify Lewis acid/base oxide properties and possibly strongly modify the electron-transfer and catalytic activity of supported metal catalyst particles.
NASA Astrophysics Data System (ADS)
Itoh, Takuro; Toyota, Taro; Higuchi, Hiroyuki; Matsushita, Michio M.; Suzuki, Kentaro; Sugawara, Tadashi
2017-03-01
A tetracyanoquaterthienoquinoid (TCT4Q)-based field effect transistor is characterized by the ambipolar transfer characteristics and the facile shift of the threshold voltage induced by the bias stress. The trapping and detrapping kinetics of charge carriers was investigated in detail by the temperature dependence of the decay of source-drain current (ISD). We found a repeatable formation of a molecular floating gate is derived from a 'charge carrier-and-gate' cycle comprising four stages, trapping of mobile carriers, formation of a floating gate, induction of oppositely charged mobile carriers, and recombination between mobile and trapped carriers to restore the initial state.
Formation of intra-island grain boundaries in pentacene monolayers.
Zhang, Jian; Wu, Yu; Duhm, Steffen; Rabe, Jürgen P; Rudolf, Petra; Koch, Norbert
2011-12-21
To assess the formation of intra-island grain boundaries during the early stages of pentacene film growth, we studied sub-monolayers of pentacene on pristine silicon oxide and silicon oxide with high pinning centre density (induced by UV/O(3) treatment). We investigated the influence of the kinetic energy of the impinging molecules on the sub-monolayer growth by comparing organic molecular beam deposition (OMBD) and supersonic molecular beam deposition (SuMBD). For pentacene films fabricated by OMBD, higher pentacene island-density and higher polycrystalline island density were observed on UV/O(3)-treated silicon oxide as compared to pristine silicon oxide. Pentacene films deposited by SuMBD exhibited about one order of magnitude lower island- and polycrystalline island densities compared to OMBD, on both types of substrates. Our results suggest that polycrystalline growth of single islands on amorphous silicon oxide is facilitated by structural/chemical surface pinning centres, which act as nucleation centres for multiple grain formation in a single island. Furthermore, the overall lower intra-island grain boundary density in pentacene films fabricated by SuMBD reduces the number of charge carrier trapping sites specific to grain boundaries and should thus help achieving higher charge carrier mobilities, which are advantageous for their use in organic thin-film transistors.
Durand, Grégory; Choteau, Fanny; Pucci, Bernard; Villamena, Frederick A
2008-12-04
Nitrones have exhibited pharmacological activity against radical-mediated pathophysiological conditions and as analytical reagents for the identification of transient radical species by electron paramagnetic resonance (EPR) spectroscopy. In this work, competitive spin trapping, stopped-flow kinetics, and density functional theory (DFT) were employed to assess and predict the reactivity of O(2)(*-) and HO(2)(*) with various para-substituted alpha-phenyl-N-tert-butylnitrone (PBN) spin traps. Rate constants of O(2)(*-) trapping by nitrones were determined using competitive UV-vis stopped-flow method with phenol red (PR) as probe, while HO(2)(*) trapping rate constants were calculated using competition kinetics with 5,5-dimethylpyrroline N-oxide (DMPO) by employing EPR spectroscopy. The effects of the para substitution on the charge density of the nitronyl-carbon and on the free energies of nitrone reactivity with O(2)(*-) and HO(2)(*) were computationally rationalized at the PCM/B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) level of theory. Theoretical and experimental data show that the rate of O(2)(*-) addition to PBN derivatives is not affected by the polar effect of the substituents. However, the reactivity of HO(2)(*) follows the Hammett equation and is increased as the substituent becomes more electron withdrawing. This supports the conclusion that the nature of HO(2)(*) addition to PBN derivatives is electrophilic, while the addition of O(2)(*-) to PBN-type compounds is only weakly electrophilic.
Improved organic thin-film transistor performance using novel self-assembled monolayers
NASA Astrophysics Data System (ADS)
McDowell, M.; Hill, I. G.; McDermott, J. E.; Bernasek, S. L.; Schwartz, J.
2006-02-01
Pentacene-based organic thin-film transistors have been fabricated using a phosphonate-linked anthracene self-assembled monolayer as a buffer between the silicon dioxide gate dielectric and the active pentacene channel region. Vast improvements in the subthreshold slope and threshold voltage are observed compared to control devices fabricated without the buffer. Both observations are consistent with a greatly reduced density of charge trapping states at the semiconductor-dielectric interface effected by introduction of the self-assembled monolayer.
2014-06-19
the AlGaN is unintentionally doped . Figure 2.3. AlGaN/GaN band diagram showing polarization charges. The band diagram in Figure 2.3 shows...intentionally doped as are MESFETS, and the channel gets its electrons from the unintentional doping . There is less Coulomb scattering in the...temperature measurements are often used to provide spatial PL maps of doping and trap densities. Laser excitation (quasi-monochromatic) is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S.
The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by amore » Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.« less
Davis, Amy J; Leland, Bruce; Bodenchuk, Michael; VerCauteren, Kurt C; Pepin, Kim M
2017-06-01
Population density is a key driver of disease dynamics in wildlife populations. Accurate disease risk assessment and determination of management impacts on wildlife populations requires an ability to estimate population density alongside management actions. A common management technique for controlling wildlife populations to monitor and mitigate disease transmission risk is trapping (e.g., box traps, corral traps, drop nets). Although abundance can be estimated from trapping actions using a variety of analytical approaches, inference is limited by the spatial extent to which a trap attracts animals on the landscape. If the "area of influence" were known, abundance estimates could be converted to densities. In addition to being an important predictor of contact rate and thus disease spread, density is more informative because it is comparable across sites of different sizes. The goal of our study is to demonstrate the importance of determining the area sampled by traps (area of influence) so that density can be estimated from management-based trapping designs which do not employ a trapping grid. To provide one example of how area of influence could be calculated alongside management, we conducted a small pilot study on wild pigs (Sus scrofa) using two removal methods 1) trapping followed by 2) aerial gunning, at three sites in northeast Texas in 2015. We estimated abundance from trapping data with a removal model. We calculated empirical densities as aerial counts divided by the area searched by air (based on aerial flight tracks). We inferred the area of influence of traps by assuming consistent densities across the larger spatial scale and then solving for area impacted by the traps. Based on our pilot study we estimated the area of influence for corral traps in late summer in Texas to be ∼8.6km 2 . Future work showing the effects of behavioral and environmental factors on area of influence will help mangers obtain estimates of density from management data, and determine conditions where trap-attraction is strongest. The ability to estimate density alongside population control activities will improve risk assessment and response operations against disease outbreaks. Published by Elsevier B.V.
Measurements of trap dynamics of cold OH molecules using resonance-enhanced multiphoton ionization
NASA Astrophysics Data System (ADS)
Gray, John M.; Bossert, Jason A.; Shyur, Yomay; Lewandowski, H. J.
2017-08-01
Trapping cold, chemically important molecules with electromagnetic fields is a useful technique to study small molecules and their interactions. Traps provide long interaction times, which are needed to precisely examine these low-density molecular samples. However, the trapping fields lead to nonuniform molecular density distributions in these systems. Therefore, it is important to be able to experimentally characterize the spatial density distribution in the trap. Ionizing molecules at different locations in the trap using resonance-enhanced multiphoton ionization (REMPI) and detecting the resulting ions can be used to probe the density distribution even at the low density present in these experiments because of the extremely high efficiency of detection. Until recently, one of the most chemically important molecules, OH, did not have a convenient REMPI scheme identified. Here, we use a newly developed 1 +1' REMPI scheme to detect trapped cold OH molecules. We use this capability to measure the trap dynamics of the central density of the cloud and the density distribution. These types of measurements can be used to optimize loading of molecules into traps, as well as to help characterize the energy distribution, which is critical knowledge for interpreting molecular collision experiments.
Electro-chemical sensors, sensor arrays and circuits
Katz, Howard E.; Kong, Hoyoul
2014-07-08
An electro-chemical sensor includes a first electrode, a second electrode spaced apart from the first electrode, and a semiconductor channel in electrical contact with the first and second electrodes. The semiconductor channel includes a trapping material. The trapping material reduces an ability of the semiconductor channel to conduct a current of charge carriers by trapping at least some of the charge carriers to localized regions within the semiconductor channel. The semiconductor channel includes at least a portion configured to be exposed to an analyte to be detected, and the trapping material, when exposed to the analyte, interacts with the analyte so as to at least partially restore the ability of the semiconductor channel to conduct the current of charge carriers.
NASA Astrophysics Data System (ADS)
Seeley, Alexander J. A. B.; Friend, Richard H.; Kim, Ji-Seon; Burroughes, Jeremy H.
2004-12-01
We report a reversible many-fold quantum efficiency enhancement during electrical driving of polymer light-emitting diodes (LEDs) containing poly(9,9' dioctylfluorene-alt-benzothiadiazole) (F8BT), developing over several minutes or hours at low applied bias and recovering on similar time scales after driving. This phenomenon is observed only in devices containing F8BT as an emissive layer in pure or blended form, regardless of anode and cathode choices and even in the absence of a poly(styrene-sulphonate)-doped poly(3,4-ethylene-dioxythiophene) (PEDOT:PSS) layer. We report detailed investigations using a standardized device structure containing PEDOT:PSS and a calcium cathode. Direct measurements of trapped charge recovered from the device after driving significantly exceed the unipolar limit, and thermally activated relaxation suggests a maximum trap depth around 0.6eV. Neither photoluminescence nor electroluminescence spectra reveal any change in the bulk optoelectronic properties of the emissive polymer nor any new emissive species. During the quantum efficiency (QE) enhancement process, the bulk conduction of the device increases. Reverse bias treatment of the device significantly reinforces the QE enhancement. Based on these observations, we propose a simple model in which interfacial dipoles are generated by trapped holes near the anode combining with injected electrons, to produce a narrow tunneling barrier for easy hole injection. The new injection pathway leads to a higher hole current density and thus a better charge injection balance. This produces the relatively high quantum efficiency observed in all F8BT LEDs.
NASA Astrophysics Data System (ADS)
Kim, Taeho; Hur, Jihyun; Jeon, Sanghun
2016-05-01
Defects in oxide semiconductors not only influence the initial device performance but also affect device reliability. The front channel is the major carrier transport region during the transistor turn-on stage, therefore an understanding of defects located in the vicinity of the interface is very important. In this study, we investigated the dynamics of charge transport in a nanocrystalline hafnium-indium-zinc-oxide thin-film transistor (TFT) by short pulse I-V, transient current and 1/f noise measurement methods. We found that the fast charging behavior of the tested device stems from defects located in both the front channel and the interface, following a multi-trapping mechanism. We found that a silicon-nitride stacked hafnium-indium-zinc-oxide TFT is vulnerable to interfacial charge trapping compared with silicon-oxide counterpart, causing significant mobility degradation and threshold voltage instability. The 1/f noise measurement data indicate that the carrier transport in a silicon-nitride stacked TFT device is governed by trapping/de-trapping processes via defects in the interface, while the silicon-oxide device follows the mobility fluctuation model.
Organic transistor memory with a charge storage molecular double-floating-gate monolayer.
Tseng, Chiao-Wei; Huang, Ding-Chi; Tao, Yu-Tai
2015-05-13
A flexible, low-voltage, and nonvolatile memory device was fabricated by implanting a functional monolayer on an aluminum oxide dielectric surface in a pentacene-based organic transistor. The monolayer-forming molecule contains a phosphonic acid group as the anchoring moiety and a charge-trapping core group flanked between two alkyl chain spacers as the charge trapping site. The memory characteristics strongly depend on the monolayer used due to the localized charge-trapping capability for different core groups, including the diacetylenic (DA) unit as the hole carrier trap, the naphthalenetetracarboxyldiimide (ND) unit as the electron carrier trap, and the one with both DA and ND units present, respectively. The device with the monolayer carrying both DA and ND groups has a larger memory window than that for the one containing DA only and a longer retention time than that for the one containing DA or ND only, giving a memory window of 1.4 V and a retention time around 10(9) s. This device with hybrid organic monolayer/inorganic dielectrics also exhibited rather stable device characteristics upon bending of the polymeric substrate.
Electrofluidics in Micro/Nanofluidic Systems
NASA Astrophysics Data System (ADS)
Guan, Weihua
This work presents the efforts to study the electrofluidics, with a focus on the electric field - matter interactions in microfluidic and nanofluidic systems for lab-on-a-chip applications. The field of electrofluidics integrates the multidisciplinary knowledge in silicon technology, solid and soft condensed matter physics, fluidics, electrochemistry, and electronics. The fundamental understanding of electrofluidics in engineered micro and nano structures opens up wide opportunities for biomedical sensing and actuation devices integrated on a single chip. Using spatial and temporal properties of electric fields in top-down engineered micro/nana structures, we successfully demonstrated the precise control over a single macro-ion and a collective group of ions in aqueous solutions. In the manipulation of a single macro-ion, we revisited the long-time overlooked AC electrophoretic (ACEP) phenomena. We proved that the widely held notion of vanishing electrophoretic (EP) effects in AC fields does not apply to spatially non-uniform electric fields. In contrast to dielectrophoretic (DEP) traps, ACEP traps favor the downscaling of the particle size if it is sufficiently charged. We experimentally demonstrated the predicted ACEP trap by recognizing that the ACEP dynamics is equivalent to that of Paul traps working in an aqueous solution. Since all Paul traps realized so far have only been operated in vacuum or gaseous phase, our experimental effort represents the world's first aqueous Paul trap device. In the manipulation of a collective group of ions, we demonstrated that the ion transport in nanochannels can be directly gated by DC electric fields, an impossible property in microscale geometries. Successful fabrication techniques were developed to create the nanochannel structures with gating ability. Using the gated nanochannel structures, we demonstrated a field effect reconfigurable nanofluidic diode, whose forward/reverse direction as well as the rectification degree can be significantly modulated. We also demonstrated a solid-state protocell, whose ion selectivity and membrane potential can be modulated by external electric field. Moreover, by recognizing the key role played by the surface charge density in electrofluidic gating of nanochannels, a low-cost, off-chip extended gate field effect transistor (FET) structure to measure the surface charges at the dielectric-electrolyte interface is demonstrated. This technique simplifies and accelerates the process of dielectric selection for effective electrofluidic gating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, Sk Masiul, E-mail: masiulelt@gmail.com; Chowdhury, Sisir; Sarkar, Krishnendu
2015-06-24
Ultra-thin InP passivated GaAs metal-oxide-semiconductor based non-volatile flash memory devices were fabricated using InAs quantum dots (QDs) as charge storing elements by metal organic chemical vapor deposition technique to study the efficacy of the QDs as charge storage elements. The grown QDs were embedded between two high-k dielectric such as HfO{sub 2} and ZrO{sub 2}, which were used for tunneling and control oxide layers, respectively. The size and density of the QDs were found to be 5 nm and 1.8×10{sup 11} cm{sup −2}, respectively. The device with a structure Metal/ZrO{sub 2}/InAs QDs/HfO{sub 2}/GaAs/Metal shows maximum memory window equivalent to 6.87 V. Themore » device also exhibits low leakage current density of the order of 10{sup −6} A/cm{sup 2} and reasonably good charge retention characteristics. The low value of leakage current in the fabricated memory device is attributed to the Coulomb blockade effect influenced by quantum confinement as well as reduction of interface trap states by ultra-thin InP passivation on GaAs prior to HfO{sub 2} deposition.« less
NASA Astrophysics Data System (ADS)
Kiani, Ahmed; Hasko, David G.; Milne, William I.; Flewitt, Andrew J.
2013-04-01
It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation.
NASA Astrophysics Data System (ADS)
An, Gil Woo; Mahadik, Mahadeo A.; Chae, Weon-Sik; Kim, Hyun Gyu; Cho, Min; Jang, Jum Suk
2018-05-01
The vertically aligned TiO2 nanorod arrays (NRA) with manipulated aspect ratio were hydrothermally synthesized by changing the amount of the titanium (Ti) precursor in the initial growth solution. FE-SEM images show the optimum morphology, density and aspect ratio of the well-aligned TB-1.2 NRs on the surface of the FTO substrate. The UV-vis-absorption measurements revealed that a sample prepared at TB-1.2 can provide an increased light trapping effect. PEC analyses demonstrated that the TiO2 nanorods deposited at TB-1.2 of Titanium butoxide show a relatively high PEC conversion efficiency (3.5 times) compared with the TB-0.8 prepared TiO2 at a 1.0 V versus RHE. The higher PEC performance is believed to be the result of an enhancement of the optimum aspect ratio, light trapping, an efficient charge separation, and the high carrier transport in the vertically aligned TiO2 NRs. Further, the PEC based organic dye degradation experiments showed 77% and 94% removal of Orange II and methylene blue respectively. Additionally, 109 μmol h-1 cm-2 hydrogen generations were attributed using optimized vertically aligned TiO2 NRA's. Thus, the appropriate morphology manipulated the TiO2 NRAs are useful for solar conversion applications.
Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage
NASA Astrophysics Data System (ADS)
Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yakimov, E. B.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Kuramata, A.; Pearton, S. J.
2018-01-01
Deep electron and hole traps in 10 MeV proton irradiated high-quality β-Ga2O3 films grown by Hydride Vapor Phase Epitaxy (HVPE) on bulk β-Ga2O3 substrates were measured by deep level transient spectroscopy with electrical and optical injection, capacitance-voltage profiling in the dark and under monochromatic irradiation, and also electron beam induced current. Proton irradiation caused the diffusion length of charge carriers to decrease from 350-380 μm in unirradiated samples to 190 μm for a fluence of 1014 cm-2, and this was correlated with an increase in density of hole traps with optical ionization threshold energy near 2.3 eV. These defects most likely determine the recombination lifetime in HVPE β-Ga2O3 epilayers. Electron traps at Ec-0.75 eV and Ec-1.2 eV present in as-grown samples increase in the concentration after irradiation and suggest that these centers involve native point defects.
Fleming, R. M.; Seager, C. H.; Lang, D. V.; ...
2015-07-02
In this study, an improved method for measuring the cross sections for carrier trapping at defects in semiconductors is described. This method, a variation of deep level transient spectroscopy(DLTS) used with bipolar transistors, is applied to hot carrier trapping at vacancy-oxygen, carbon-oxygen, and three charge states of divacancy centers (V 2) in n- and p-type silicon. Unlike standard DLTS, we fill traps by injecting carriers into the depletion region of a bipolar transistor diode using a pulse of forward bias current applied to the adjacent diode. We show that this technique is capable of accurately measuring a wide range ofmore » capture cross sections at varying electric fields due to the control of the carrier density it provides. Because this technique can be applied to a variety of carrier energy distributions, it should be valuable in modeling the effect of radiation-induced generation-recombination currents in bipolar devices.« less
NASA Astrophysics Data System (ADS)
Zha, Jun-Wei; Yan, Hong-Da; Li, Wei-Kang; Dang, Zhi-Min
2016-11-01
Polypropylene (PP) has become one promising material to potentially replace the cross-link polyethylene used for high voltage direct current cables. Besides the isotactic polypropylene, the block polypropylene (b-PP) and random polypropylene (r-PP) can be synthesized through the copolymerization of ethylene and propylene molecules. In this letter, the effect of morphology and crystalline phases on the insulating electrical properties of PP was investigated. It was found that the introduction of polyethylene monomer resulted in the formation of β and γ phases in b-PP and r-PP. The results from the characteristic trap energy levels indicated that the β and γ phases could induce deep electron traps which enable to capture the carriers. And the space charge accumulation was obviously suppressed. Besides, the decreased electrical conductivity was observed in b-PP and r-PP. It is attributed to the existence of deep traps which can effectively reduce the carrier mobility and density in materials.
NASA Astrophysics Data System (ADS)
Matsuoka, Satoshi; Tsutsumi, Jun'ya; Kamata, Toshihide; Hasegawa, Tatsuo
2018-04-01
In this work, a high-resolution microscopic gate-modulation imaging (μ-GMI) technique is successfully developed to visualize inhomogeneous charge and electric field distributions in operating organic thin-film transistors (TFTs). We conduct highly sensitive and diffraction-limit gate-modulation sensing for acquiring difference images of semiconducting channels between at gate-on and gate-off states that are biased at an alternate frequency of 15 Hz. As a result, we observe unexpectedly inhomogeneous distribution of positive and negative local gate-modulation (GM) signals at a probe photon energy of 1.85 eV in polycrystalline pentacene TFTs. Spectroscopic analyses based on a series of μ-GMI at various photon energies reveal that two distinct effects appear, simultaneously, within the polycrystalline pentacene channel layers: Negative GM signals at 1.85 eV originate from the second-derivative-like GM spectrum which is caused by the effect of charge accumulation, whereas positive GM signals originate from the first-derivative-like GM spectrum caused by the effect of leaked gate fields. Comparisons with polycrystalline morphologies indicate that grain centers are predominated by areas with high leaked gate fields due to the low charge density, whereas grain edges are predominantly high-charge-density areas with a certain spatial extension as associated with the concentrated carrier traps. Consequently, it is reasonably understood that larger grains lead to higher device mobility, but with greater inhomogeneity in charge distribution. These findings provide a clue to understand and improve device characteristics of polycrystalline TFTs.
Interaction of an ion bunch with a plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.
2016-11-15
Charge neutralization of a short ion bunch passing through a plasma slab is studied by means of numerical simulation. It is shown that a fraction of plasma electrons are trapped by the bunch under the action of the collective charge separation field. The accelerated electrons generated in this process excite beam−plasma instability, thereby violating the trapping conditions. The process of electron trapping is also strongly affected by the high-frequency electric field caused by plasma oscillations at the slab boundaries. It is examined how the degree of charge neutralization depends on the parameters of the bunch and plasma slab.
NASA Astrophysics Data System (ADS)
Häusermann, R.; Batlogg, B.
2011-08-01
Gate bias stress instability in organic field-effect transistors (OFETs) is a major conceptual and device issue. This effect manifests itself by an undesirable shift of the transfer characteristics and is associated with long term charge trapping. We study the role of the dielectric and the semiconductor separately by producing OFETs with the same semiconductor (pentacene) combined with different dielectrics (SiO2 and Cytop). We show that it is possible to fabricate devices which are immune to gate bias stress. For other material combinations, charge trapping occurs in the semiconductor alone or in the dielectric.
Statistical fluctuations as the origin of nontopological solitons
NASA Technical Reports Server (NTRS)
Griest, Kim; Kolb, Edward W.; Masarotti, Alessandro
1989-01-01
Nontopological solitons can be formed during a phase transition in the early universe as long as some net charge can be trapped in regions of false vacuum. It has been previously suggested that a particle-antiparticle asymmetry would provide a source for such trapped charge. It is pointed out that, for the model and parameters considered, statistical fluctuations provide a much larger concentration of charge, and are therefore, the dominant source of charge fluctuations in solitogenesis.
Molecular control of pentacene/ZnO photoinduced charge transfer
NASA Astrophysics Data System (ADS)
Spalenka, Josef W.; Paoprasert, Peerasak; Franking, Ryan; Hamers, Robert J.; Gopalan, Padma; Evans, Paul G.
2011-03-01
Photoinduced charge transfer modifies the device properties of illuminated pentacene field effect transistors (FETs) incorporating ZnO quantum dots at the gate insulator/pentacene interface. The transferred charge is trapped on electronic states associated with the ZnO quantum dots, with a steady state population approximately proportional to the rate of organic-inorganic charge transfer. Trapped charge shifts the threshold voltage of the FETs, providing the means to evaluate the rate of organic/inorganic charge transfer and the effects of interface modification. Monolayers of the wide-gap alkane stearic acid and the conjugated oligomer terthiophene attached to the ZnO suppress or permit charge transfer, respectively.
Role of interface states on electron transport in a-Si:H/nc-Si:H multilayer structures
NASA Astrophysics Data System (ADS)
Yadav, Asha; Kumari, Juhi; Agarwal, Pratima
2018-05-01
In this paper we report, I-V characteristic of a-Si:H/nc-Si:H multilayer structures in lateral as well as transverse direction. In lateral geometry, where the interfaces are parallel to the direction of electronic transport, residual photo conductivity (persistent photoconductivity) is observed after the light was turned off. On the other hand, in transverse geometry, where interfaces are along the direction of electronic transport, the space charge limited currents are affected and higher density of states is obtained. The PPC was more in the structures where numbers of such interface were more. These results have been understood in terms of the charge carriers trapped at the interface, which influence the electronic transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Fouran; Kumar, Vinod; Chaudhary, Babloo
2012-10-01
This paper report on the disorder induced semiconductor to metal transition (SMT) and modifications of grain boundaries in nanocrystalline zinc oxide thin film. Disorder is induced using energetic ion irradiation. It eliminates the possibility of impurities induced transition. However, it is revealed that some critical concentration of defects is needed for inducing such kind of SMT at certain critical temperature. Above room temperature, the current-voltage characteristics in reverse bias attributes some interesting phenomenon, such as electric field induced charge transfer, charge trapping, and diffusion of defects. The transition is explained by the defects induced disorder and strain in ZnO crystallitesmore » created by high density of electronic excitations.« less
Positive Ion Induced Solidification of He4
NASA Astrophysics Data System (ADS)
Moroshkin, P.; Lebedev, V.; Weis, A.
2009-03-01
We have observed bulk solidification of He4 induced by nucleation on positive alkali ions in pressurized superfluid helium. The ions are extracted into the liquid from alkali-doped solid He by a static electric field. The experiments prove the existence of charged particles in a solid structure composed of doped He that was recently shown to coexist with superfluid helium below the He solidification pressure. This supports our earlier suggestion that the Coulomb interaction of positive ions surrounded by a solid He shell (snowballs) and electrons trapped in spherical cavities (electron bubbles), together with surface tension, is responsible for the stability of that structure against melting. We have determined the density of charges in the sample by two independent methods.
Photocurrent spectroscopy of pentacene thin film transistors
NASA Astrophysics Data System (ADS)
Breban, Mihaela
We demonstrate the application of photocurrent modulation spectroscopy in characterizing the performance of organic thin-film transistors. A parallel analysis of the direct current and photocurrent voltage characteristics provides a model free determination of the field-effect mobility and the density of free carriers in the transistor channel as a function of the applied gate voltage. Applying this technique to pentacene thin-film transistors demonstrates that the mobility increases as V1/3g . The free-carrier density is approximately 1/10 of the expected capacitive charge, and the mobility increases monotonically with the free carrier density, consistent with the trap and release model of transport. Also, the modulated photocurrent spectroscopy can be used as a probe of defect states in pentacene thin film transistors, measuring simultaneously the magnitude and the phase of the photocurrent as a function of the modulation frequency. This is accomplished by modeling the photo-carrier generation process as exciton dissociation via interaction with localized traps. Experimental data reveal a Gaussian distribution of localized states centered around 0.3 eV above the highest occupied molecular orbital. We also investigated the effect of the gate dielectric material with our probe and found that the position of the extracted Gaussian slightly shifts, consistent with the expected image charge effect for Pn through the dielectric substrate. Also shifts in the Gaussian position for samples fabricated with variable deposition conditions are correlated with changes in Pn morphology. The morphological differences between Pn films were also detected in current-voltage characteristics and photocurrent spectra. However, the origin of the ubiquitous 0.3 eV defect in Pn seems to be unrelated to structural differences in Pn films.
Formation of Ultrarelativistic Electron Rings from a Laser-Wakefield Accelerator.
Pollock, B B; Tsung, F S; Albert, F; Shaw, J L; Clayton, C E; Davidson, A; Lemos, N; Marsh, K A; Pak, A; Ralph, J E; Mori, W B; Joshi, C
2015-07-31
Ultrarelativistic-energy electron ring structures have been observed from laser-wakefield acceleration experiments in the blowout regime. These electron rings had 170-280 MeV energies with 5%-25% energy spread and ∼10 pC of charge and were observed over a range of plasma densities and compositions. Three-dimensional particle-in-cell simulations show that laser intensity enhancement in the wake leads to sheath splitting and the formation of a hollow toroidal pocket in the electron density around the wake behind the first wake period. If the laser propagates over a distance greater than the ideal dephasing length, some of the dephasing electrons in the second period can become trapped within the pocket and form an ultrarelativistic electron ring that propagates in free space over a meter-scale distance upon exiting the plasma. Such a structure acts as a relativistic potential well, which has applications for accelerating positively charged particles such as positrons.
Semiconducting molecular crystals: Bulk in-gap states modified by structural and chemical defects
NASA Astrophysics Data System (ADS)
Haas, S.; Krellner, C.; Goldmann, C.; Pernstich, K. P.; Gundlach, D. J.; Batlogg, B.
2007-03-01
Charge transport in organic molecular crystals is strongly influenced by the density of localized in-gap states (traps). Thus, a profound knowledge of the defect states' origin is essential. Temperature-dependent space-charge limited current (TD-SCLC) spectroscopy was used as a powerful tool to quantitatively study the density of states (DOS) in high-quality rubrene and pentacene single crystals. In particular, changes of the DOS due to intentionally induced chemical and structural defects were monitored. For instance, the controlled exposure of pentacene and rubrene to x-ray radiation results in a broad over-all increase of the DOS. Namely, the ionizing radiation induces a variety of both chemical and structural defects. On the other hand, exposure of rubrene to UV-excited oxygen is reflected in a sharp peak in the DOS, whereas in a similar experiment with pentacene oxygen acts as a dopant, and possible defects are metastable on the time-scale of the measurement, thus leaving the extracted DOS virtually unchanged.
Gravitational collapse to a Kerr-Newman black hole
NASA Astrophysics Data System (ADS)
Nathanail, Antonios; Most, Elias R.; Rezzolla, Luciano
2017-07-01
We present the first systematic study of the gravitational collapse of rotating and magnetized neutron stars to charged and rotating (Kerr-Newman) black holes. In particular, we consider the collapse of magnetized and rotating neutron stars assuming that no pair-creation takes place and that the charge density in the magnetosphere is so low that the stellar exterior can be described as an electrovacuum. Under these assumptions, which are rather reasonable for a pulsar that has crossed the 'death line', we show that when the star is rotating, it acquires a net initial electrical charge, which is then trapped inside the apparent horizon of the newly formed back hole. We analyse a number of different quantities to validate that the black hole produced is indeed a Kerr-Newman one and show that, in the absence of rotation or magnetic field, the end result of the collapse is a Schwarzschild or Kerr black hole, respectively.
NASA Astrophysics Data System (ADS)
Lin, Jack; Weis, Martin; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2011-04-01
Transient measurements of impedance spectroscopy and electrical time-of-flight (TOF) techniques were used for the evaluation of carrier propagation dependence on applied potentials in a pentacene organic field effect transistor (OFET). These techniques are based on carrier propagation, thus isolates the effect of charge density. The intrinsic mobility which is free from contact resistance effects was obtained by measurement of various channel lengths. The obtained intrinsic mobility shows good correspondence with steady-state current-voltage measurement's saturation mobility. However, their power law relations on mobility vs applied potential resulted in different exponents, suggesting different carrier propagation mechanisms, which is attributable to filling of traps or space charge field in the channel region. The hypothesis was verified by a modified electrical TOF experiment which demonstrated how the accumulated charges in the channel influence the effective mobility.
NASA Astrophysics Data System (ADS)
Liao, Baochen; Stangl, Rolf; Mueller, Thomas; Lin, Fen; Bhatia, Charanjit S.; Hoex, Bram
2013-01-01
The effect of light soaking of crystalline silicon wafer lifetime samples surface passivated by thermal atomic layer deposited (ALD) Al2O3 is investigated in this paper. Contrary to other passivation materials used in solar cell applications (i.e., SiO2, SiNx), using thermal ALD Al2O3, an increase in effective carrier lifetime after light soaking under standard testing conditions is observed for both p-type (˜45%) and n-type (˜60%) FZ c-Si lifetime samples. After light soaking and storing the samples in a dark and dry environment, the effective lifetime decreases again and practically returns to the value before light soaking. The rate of lifetime decrease after light soaking is significantly slower than the rate of lifetime increase by light soaking. To investigate the underlying mechanism, corona charge experiments are carried out on p-type c-Si samples before and after light soaking. The results indicate that the negative fixed charge density Qf present in the Al2O3 films increases due to the light soaking, which results in an improved field-effect passivation. Numerical calculations also confirm that the improved field-effect passivation is the main contributor for the increased effective lifetime after light soaking. To further understand the light soaking phenomenon, a kinetic model—a charge trapping/de-trapping model—is proposed to explain the time dependent behavior of the lifetime increase/decrease observed under/after light soaking. The trap model fits the experimental results very well. The observed light enhanced passivation for ALD Al2O3 passivated c-Si is of technological relevance, because solar cell devices operate under illumination, thus an increase in solar cell efficiency due to light soaking can be expected.
The nature of excess electrons in anatase and rutile from hybrid DFT and RPA.
Spreafico, Clelia; VandeVondele, Joost
2014-12-21
The behavior of excess electrons in undoped and defect free bulk anatase and rutile TiO2 has been investigated by state-of-the-art electronic structure methods including hybrid density functional theory (DFT) and the random phase approximation (RPA). Consistent with experiment, charge trapping and polaron formation is observed in both anatase and rutile. The difference in the anisotropic shape of the polarons is characterized, confirming for anatase the large polaron picture. For anatase, where polaron formation energies are small, charge trapping is observed also with standard hybrid functionals, provided the simulation cell is sufficiently large (864 atoms) to accommodate the lattice relaxation. Even though hybrid orbitals are required as a starting point for RPA in this system, the obtained polaron formation energies are relatively insensitive to the amount of Hartree-Fock exchange employed. The difference in trapping energy between rutile and anatase can be obtained accurately with both hybrid functionals and RPA. Computed activation energies for polaron hopping and delocalization clearly show that anatase and rutile might have different charge transport mechanisms. In rutile, only hopping is likely, whereas in anatase hopping and delocalization are competing. Delocalization will result in conduction-band-like and thus enhanced transport. Anisotropic conduction, in agreement with experimental data, is observed, and results from the tendency to delocalize in the [001] direction in rutile and the (001) plane in anatase. For future work, our calculations serve as a benchmark and suggest RPA on top on hybrid orbitals (PBE0 with 30% Hartree-Fock exchange), as a suitable method to study the rich chemistry and physics of TiO2.
Lee, Changhee; Rathi, Servin; Khan, Muhammad Atif; Lim, Dongsuk; Kim, Yunseob; Yun, Sun Jin; Youn, Doo-Hyeb; Watanabe, Kenji; Taniguchi, Takashi; Kim, Gil-Ho
2018-08-17
Molybdenum disulfide (MoS 2 ) based field effect transistors (FETs) are of considerable interest in electronic and opto-electronic applications but often have large hysteresis and threshold voltage instabilities. In this study, by using advanced transfer techniques, hexagonal boron nitride (hBN) encapsulated FETs based on a single, homogeneous and atomic-thin MoS 2 flake are fabricated on hBN and SiO 2 substrates. This allows for a better and a precise comparison between the charge traps at the semiconductor-dielectric interfaces at MoS 2 -SiO 2 and hBN interfaces. The impact of ambient environment and entities on hysteresis is minimized by encapsulating the active MoS 2 layer with a single hBN on both the devices. The device to device variations induced by different MoS 2 layer is also eliminated by employing a single MoS 2 layer for fabricating both devices. After eliminating these additional factors which induce variation in the device characteristics, it is found from the measurements that the trapped charge density is reduced to 1.9 × 10 11 cm -2 on hBN substrate as compared to 1.1 × 10 12 cm -2 on SiO 2 substrate. Further, reduced hysteresis and stable threshold voltage are observed on hBN substrate and their dependence on gate sweep rate, sweep range, and gate stress is also studied. This precise comparison between encapsulated devices on SiO 2 and hBN substrates further demonstrate the requirement of hBN substrate and encapsulation for improved and stable performance of MoS 2 FETs.
Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaoyang; Frisbie, Daniel
2017-03-31
The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.
Investigating the electronic properties of Al2O3/Cu(In,Ga)Se2 interface
NASA Astrophysics Data System (ADS)
Kotipalli, R.; Vermang, B.; Joel, J.; Rajkumar, R.; Edoff, M.; Flandre, D.
2015-10-01
Atomic layer deposited (ALD) Al2O3 films on Cu(In,Ga)Se2 (CIGS) surfaces have been demonstrated to exhibit excellent surface passivation properties, which is advantageous in reducing recombination losses at the rear metal contact of CIGS thin-film solar cells. Here, we report, for the first time, experimentally extracted electronic parameters, i.e. fixed charge density (Qf) and interface-trap charge density (Dit), for as-deposited (AD) and post-deposition annealed (PDA) ALD Al2O3 films on CIGS surfaces using capacitance-voltage (C-V) and conductance-frequency (G-f) measurements. These results indicate that the AD films exhibit positive fixed charges Qf (approximately 1012 cm-2), whereas the PDA films exhibit a very high density of negative fixed charges Qf (approximately 1013 cm-2). The extracted Dit values, which reflect the extent of chemical passivation, were found to be in a similar range of order (approximately 1012 cm-2 eV-1) for both AD and PDA samples. The high density of negative Qf in the bulk of the PDA Al2O3 film exerts a strong Coulomb repulsive force on the underlying CIGS minority carriers (ns), preventing them to recombine at the CIGS/Al2O3 interface. Using experimentally extracted Qf and Dit values, SCAPS simulation results showed that the surface concentration of minority carriers (ns) in the PDA films was approximately eight-orders of magnitude lower than in the AD films. The electrical characterization and estimations presented in this letter construct a comprehensive picture of the interfacial physics involved at the Al2O3/CIGS interface.
Optical patterning of trapped charge in nitrogen-doped diamond
NASA Astrophysics Data System (ADS)
Dhomkar, Siddharth; Jayakumar, Harishankar; Pagliero, Daniela; Laraoui, Abdelghani; Albu, Remus; Manson, Neil; Doherty, Marcus; Henshaw, Jacob; Meriles, Carlos
The nitrogen-vacancy (NV) center in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge state, which can be attained by optical illumination. Here we use two-color optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion, and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs and to subsequently probe the corresponding redistribution of charge. We uncover the formation of various spatial patterns of trapped charge, which we semi-quantitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects in the diamond lattice. Further, by using the NV as a local probe, we map the relative fraction of positively charged nitrogen upon localized optical excitation. These observations may prove important to various technologies, including the transport of quantum information between remote NVs and the development of three-dimensional, charge-based memories. We acknowledge support from the National Science Foundation through Grant NSF-1314205.
On the c-Si/SiO2 interface recombination parameters from photo-conductance decay measurements
NASA Astrophysics Data System (ADS)
Bonilla, Ruy S.; Wilshaw, Peter R.
2017-04-01
The recombination of electric charge carriers at semiconductor surfaces continues to be a limiting factor in achieving high performance optoelectronic devices, including solar cells, laser diodes, and photodetectors. The theoretical model and a solution algorithm for surface recombination have been previously reported. However, their successful application to experimental data for a wide range of both minority excess carrier concentrations and dielectric fixed charge densities has not previously been shown. Here, a parametrisation for the semiconductor-dielectric interface charge Q i t is used in a Shockley-Read-Hall extended formalism to describe recombination at the c-Si/SiO2 interface, and estimate the physical parameters relating to the interface trap density D i t , and the electron and hole capture cross-sections σ n and σ p . This approach gives an excellent description of the experimental data without the need to invoke a surface damage region in the c-Si/SiO2 system. Band-gap tail states have been observed to limit strongly the effectiveness of field effect passivation. This approach provides a methodology to determine interface recombination parameters in any semiconductor-insulator system using macro scale measuring techniques.
Charging and heat collection by a positively charged dust grain in a plasma.
Delzanno, Gian Luca; Tang, Xian-Zhu
2014-07-18
Dust particulates immersed in a quasineutral plasma can emit electrons in several important applications. Once electron emission becomes strong enough, the dust enters the positively charged regime where the conventional orbital-motion-limited (OML) theory can break down due to potential-well effects on trapped electrons. A minimal modification of the trapped-passing boundary approximation in the so-called OML(+) approach is shown to accurately predict the dust charge and heat collection flux for a wide range of dust size and temperature.
Charged particle capturing in air flow by linear Paul trap
NASA Astrophysics Data System (ADS)
Lapitsky, D. S.; Filinov, V. S.; Vladimirov, V. I.; Syrovatka, R. A.; Vasilyak, L. M.; Pecherkin, V. Ya; Deputatova, L. V.
2018-01-01
The paper presents the simulation results of micro- and nanoparticle capturing in an air flows by linear Paul traps in assumption that particles gain their charges in corona discharge, its electric field strength is restricted by Paschen equation and spherical shape of particles.
NASA Astrophysics Data System (ADS)
Lim, Jae-Gab; Yang, Seung-Dong; Yun, Ho-Jin; Jung, Jun-Kyo; Park, Jung-Hyun; Lim, Chan; Cho, Gyu-seok; Park, Seong-gye; Huh, Chul; Lee, Hi-Deok; Lee, Ga-Won
2018-02-01
In this paper, SONOS-type flash memory device with highly improved charge-trapping efficiency is suggested by using silicon nanocrystals (Si-NCs) embedded in silicon nitride (SiNX) charge trapping layer. The Si-NCs were in-situ grown by PECVD without additional post annealing process. The fabricated device shows high program/erase speed and retention property which is suitable for multi-level cell (MLC) application. Excellent performance and reliability for MLC are demonstrated with large memory window of ∼8.5 V and superior retention characteristics of 7% charge loss for 10 years. High resolution transmission electron microscopy image confirms the Si-NC formation and the size is around 1-2 nm which can be verified again in X-ray photoelectron spectroscopy (XPS) where pure Si bonds increase. Besides, XPS analysis implies that more nitrogen atoms make stable bonds at the regular lattice point. Photoluminescence spectra results also illustrate that Si-NCs formation in SiNx is an effective method to form deep trap states.
NASA Astrophysics Data System (ADS)
Chigvintsev, A. Yu; Zorina, I. G.; Noginova, L. Yu; Iosilevskiy, I. L.
2018-01-01
Impressive appearance of discontinuities in equilibrium spatial charge profiles in non-uniform Coulomb systems is under discussions in wide number of thermoelectrostatics problems. Such discontinuities are considered as peculiar micro-level manifestation of phase transitions and intrinsic macro-level non-ideality effects in local equation of state (EOS), which should be used for description of non-ideal ionic subsystem in frames of local-density (or “pseudofluid”, or “jellium” etc) approximation. Such discontinuities were discussed already by the authors for electronic subsystems. Special emphasis is made in present paper on the mentioned above non-ideality effects in non-uniform ionic subsystems, such as micro-ions profile within screening “cloud” around macro-ion in complex (dusty, colloid etc) plasmas, equilibrium charge profile in ionic traps or (and) in the neighborhood vicinity of “charged wall” etc). Multiphase EOS for simplified ionic model of classical charged hard spheres on uniformly compressible electrostatic compensating background was constructed and several illustrative examples of discussed discontinuous ionic profiles were calculated.
NASA Astrophysics Data System (ADS)
Hoffmann, Ryan; Dennison, J. R.; Abbott, Jonathan
2006-03-01
When incident energetic electrons interact with a material, they excite electrons within the material to escape energies. The electron emission is quantified as the ratio of emitted electrons to incident particle flux, termed electron yield. Measuring the electron yield of insulators is difficult due to dynamic surface charge accumulation which directly affects landing energies and the potential barrier that emitted electrons must overcome. Our recent measurements of highly insulating materials have demonstrated significant changes in total yield curves and yield decay curves for very small electron doses equivalent to a trapped charge density of <10^10 electrons /cm^3. The Chung-Everhart theory provides a basic model for the behavior of the electron emission spectra which we relate to yield decay curves as charge is allowed to accumulate. Yield measurements as a function of dose for polyimide (Kapton^TM) and microcrystalline SiO2 will be presented. We use our data and model to address the question of whether there is a minimal dose threshold at which the accumulated charge no longer affects the yield.
NASA Astrophysics Data System (ADS)
Held, Martin; Schießl, Stefan P.; Miehler, Dominik; Gannott, Florentina; Zaumseil, Jana
2015-08-01
Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfOx) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states at the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100-300 nF/cm2) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfOx dielectrics.
NASA Astrophysics Data System (ADS)
Nardali, Ş.; Ucun, F.; Karakaya, M.
2017-11-01
The optimized structures of some radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were computed by different methods on ESR spectra. As trapped radicals, H, N3, NH2, CH3, CCl3, OOH in water and F, OH, CF3, CH2OH, OC2H5 in benzene solutions were used. The calculated isotropic hyperfine coupling constants of all the trapped radicals were compared with the corresponding experimental data. The hyperfine coupling constant due to the β proton of the nitroxide radical was seen to be consist with the McConnel's relation αβ = B 0 + B 1cos2θ and, to be effected with the opposite spin density of oxygen nucleus bonded to the nitrogen. It was concluded that in hyperfine calculations the DFT(B3PW91)/LanL2DZ level is superior computational quantum model relative to the used other level. Also, the study has been enriched by the computational of the optimized geometrical parameters, the hyper conjugative interaction energies, the atomic charges and spin densities for all the radical adducts.
Shaping of nested potentials for electron cooling of highly-charged ions in a cooler Penning trap
NASA Astrophysics Data System (ADS)
Paul, Stefan; Kootte, Brian; Lascar, Daniel; Gwinner, Gerald; Dilling, Jens; Titan Collaboration
2016-09-01
TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) is dedicated to mass spectrometry and decay spectroscopy of short-lived radioactive nuclides in a series of ion traps including a precision Penning trap. In order to boost the achievable precision of mass measurements TITAN deploys an Electron Beam Ion Trap (EBIT) providing Highly-Charged Ions (HCI). However, the charge breeding process in the EBIT leads to an increase in the ion bunch's energy spread which is detrimental to the overall precision gain. To reduce this effect a new cylindrical Cooler PEnning Trap (CPET) is being commissioned to sympathetically cool the HCI via a simultaneously trapped electron plasma. Simultaneous trapping of ions and electrons requires a high level of control over the nested potential landscape and sophisticated switching schemes for the voltages on CPET's multiple ring electrodes. For this purpose, we are currently setting up a new experimental control system for multi-channel voltage switching. The control system employs a Raspberry Pi communicating with a digital-to-analog board via a serial peripheral interface. We report on the implementation of the voltage control system and its performance with respect to electron and ion manipulation in CPET. University of British Columbia, Vancouver, BC, Canada.
Electrical characteristics of SiO2/ZrO2 hybrid tunnel barrier for charge trap flash memory
NASA Astrophysics Data System (ADS)
Choi, Jaeho; Bae, Juhyun; Ahn, Jaeyoung; Hwang, Kihyun; Chung, Ilsub
2017-08-01
In this paper, we investigate the electrical characteristics of SiO2/ZrO2 hybrid tunnel oxide in metal-Al2O3-SiO2-Si3N4-SiO2-silicon (MAONOS) structure in an effort to improve program and erase speed as well as retention characteristics. Inserting ZrO2 into the conventional MAONOS structure increased the programmed V th variation to 6.8 V, and increased the erased V th variation to -3.7 V at 17 MV/cm. The results can be understood in terms of reducing the Fowler-Nordheim (F/N) tunneling barrier due to high-k ZrO2 in the tunneling oxide. In addition, Zr diffusion in SiO2 caused the formation of Zr x Si1- x O2 at the interface region, which reduced the energy band gap of SiO2. The retention property of the hybrid tunnel oxide varied depending on the thickness of SiO2. For thin SiO2 less than 30 Å, the retention properties of the tunneling oxides were poor compared with those of the SiO2 only tunneling oxides. However, the hybrid tunneling oxides with SiO2 thickness thicker than 40 Å yielded improved retention behavior compared with those of the SiO2-only tunneling oxides. The detailed analysis in charge density of ZrO2 was carried out by ISPP test. The obtained charge density was quite small compared to that of the total charge density, which indicates that the inserted ZrO2 layer serves as a tunneling material rather than charge storage dielectric.
A Study of the Charge Trap Transistor (CTT) for Post-Fab Modification of Wafers
2018-04-01
conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies of endorsements, either...applicability of the charge trap transistor (CTT) for embedded memory applications. Two case uses are considered (1) as a digital multi-time...28 Figure 38: (a) Weight-Dependent Plasticity when Five Trapping/Detrapping Pulses are applied in the LTD/LTP Regimes, respectively and (b
NASA Technical Reports Server (NTRS)
Pearson, J. B.; Sims, Herb; Martin, James; Chakrabarti, Suman; Lewis, Raymond; Fant, Wallace
2003-01-01
The significant energy density of matter-antimatter annihilation is attractive to the designers of future space propulsion systems, with the potential to offer a highly compact source of power. Many propulsion concepts exist that could take advantage of matter-antimatter reactions, and current antiproton production rates are sufficient to support basic proof-of-principle evaluation of technology associated with antimatter- derived propulsion. One enabling technology for such experiments is portable storage of low energy antiprotons, allowing antiprotons to be trapped, stored, and transported for use at an experimental facility. To address this need, the Marshall Space Flight Center's Propulsion Research Center is developing a storage system referred to as the High Performance Antiproton Trap (HiPAT) with a design goal of containing 10(exp 12) particles for up to 18 days. The HiPAT makes use of an electromagnetic system (Penning- Malmberg design) consisting of a 4 Telsa superconductor, high voltage electrode structure, radio frequency (RF) network, and ultra high vacuum system. To evaluate the system normal matter sources (both electron guns and ion sources) are used to generate charged particles. The electron beams ionize gas within the trapping region producing ions in situ, whereas the ion sources produce the particles external to the trapping region and required dynamic capture. A wide range of experiments has been performed examining factors such as ion storage lifetimes, effect of RF energy on storage lifetime, and ability to routinely perform dynamic ion capture. Current efforts have been focused on improving the FW rotating wall system to permit longer storage times and non-destructive diagnostics of stored ions. Typical particle detection is performed by extracting trapped ions from HiPAT and destructively colliding them with a micro-channel plate detector (providing number and energy information). This improved RF system has been used to detect various plasma modes for both electron and ion plasmas in the two traps at MSFC, including axial, cyclotron, and diocotron modes. New diagnostics are also being added to HiPAT to measure the axial density distribution of the trapped cloud to match measured RF plasma modes to plasma conditions.
Camera traps and activity signs to estimate wild boar density and derive abundance indices.
Massei, Giovanna; Coats, Julia; Lambert, Mark Simon; Pietravalle, Stephane; Gill, Robin; Cowan, Dave
2018-04-01
Populations of wild boar and feral pigs are increasing worldwide, in parallel with their significant environmental and economic impact. Reliable methods of monitoring trends and estimating abundance are needed to measure the effects of interventions on population size. The main aims of this study, carried out in five English woodlands were: (i) to compare wild boar abundance indices obtained from camera trap surveys and from activity signs; and (ii) to assess the precision of density estimates in relation to different densities of camera traps. For each woodland, we calculated a passive activity index (PAI) based on camera trap surveys, rooting activity and wild boar trails on transects, and estimated absolute densities based on camera trap surveys. PAIs obtained using different methods showed similar patterns. We found significant between-year differences in abundance of wild boar using PAIs based on camera trap surveys and on trails on transects, but not on signs of rooting on transects. The density of wild boar from camera trap surveys varied between 0.7 and 7 animals/km 2 . Increasing the density of camera traps above nine per km 2 did not increase the precision of the estimate of wild boar density. PAIs based on number of wild boar trails and on camera trap data appear to be more sensitive to changes in population size than PAIs based on signs of rooting. For wild boar densities similar to those recorded in this study, nine camera traps per km 2 are sufficient to estimate the mean density of wild boar. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erokhin, A. N.; Erokhin, N. S.; Milant'ev, V. P.
2012-05-15
The phenomenon of trapping of weakly relativistic charged particles (with kinetic energies on the order of mc{sup 2}) into a regime of surfatron acceleration by an electromagnetic wave that propagates in plasma across a weak external magnetic field has been studied using nonlinear numerical calculations based on a solution of the relativistic equations of motion. Analysis showed that, for the wave amplitude above a certain threshold value and the initial wave phase outside the interval favorable for the surfing regime, the trajectory of a charged particle initially corresponds to its cyclotron rotation in the external magnetic field. For the initialmore » particle energies studied, the period of this rotation is relatively short. After a certain number (from several dozen to several thousand and above) of periods of rotation, the wave phase takes a value that is favorable for trapping of the charged particle on its trajectory by the electromagnetic wave, provided the Cherenkov resonance conditions are satisfied. As a result, the wave traps the charged particle and imparts it an ultrarelativistic acceleration. In momentum space, the region of trapping into the regime of surfing on an electromagnetic wave turns out to be rather large.« less
Effect of Trapped Ions on Shielding of a Charged Spherical Object in a Plasma
NASA Astrophysics Data System (ADS)
Lampe, Martin; Ganguli, Gurudas; Joyce, Glenn; Gavrishchaka, Valeriy
2001-04-01
The problem of electrostatic shielding around a small spherical collector immersed in plasma, and the related problem of electron and ion flow to the collector, date to the origins of plasma physics. Beginning with Langmuir[1], all calculations have neglected collisions, on the grounds that the mean free path is long compared to shielding length scales, i.e. the Debye length. However, investigators beginning with Bernstein and Rabinowitz[2] have known that negative-energy trapped ions, created by occasional collisions, might be important. We present an analytic calculation of the density of trapped and untrapped ions, self-consistent with a calculation of the potential. We show that under typical conditions for dust grains immersed in a discharge plasma, trapped ions dominate the shielding cloud in steady state, even in the limit of very long mean free path. As a result the shielded potential is quite different from the Debye form or the results of orbital motion limited theory. Collisions also modify the ion current to the grain, but to a lesser extent. [1]H. Mott-Smith and I. Langmuir, Phys. Rev. 28, 27 (1926). [2]I. Bernstein and I. Rabinowitz, Phys. Fluids 2,112(1959).
Circuit model for single-energy-level trap centers in FETs
NASA Astrophysics Data System (ADS)
Albahrani, Sayed Ali; Parker, Anthony; Heimlich, Michael
2016-12-01
A circuit implementation of a single-energy-level trap center in an FET is presented. When included in transistor models it explains the temperature-potential-dependent time constants seen in the circuit manifestations of charge trapping, being gate lag and drain overshoot. The implementation is suitable for both time-domain and harmonic-balance simulations. The proposed model is based on the Shockley-Read-Hall (SRH) statistics of the trapping process. The results of isothermal pulse measurements performed on a GaN HEMT are presented. These measurement allow characterizing charge trapping in isolation from the effect of self-heating. These results are used to obtain the parameters of the proposed model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villis, B. J.; Sanquer, M.; Jehl, X.
2014-06-09
The continuous downscaling of transistors results in nanoscale devices which require fewer and fewer charged carriers for their operation. The ultimate charge controlled device, the single-electron transistor (SET), controls the transfer of individual electrons. It is also the most sensitive electrometer, and as a result the electron transport through it can be dramatically affected by nearby charges. Standard direct-current characterization techniques, however, are often unable to unambiguously detect and resolve the origin of the observed changes in SET behavior arising from changes in the charge state of a capacitively coupled trap. Using a radio-frequency (RF) reflectometry technique, we are ablemore » to unequivocally detect this process, in very close agreement with modeling of the trap's occupation probability.« less
Uncovering the density of nanowire surface trap states hidden in the transient photoconductance.
Xu, Qiang; Dan, Yaping
2016-09-21
The gain of nanoscale photoconductors is closely correlated with surface trap states. Mapping out the density of surface trap states in the semiconductor bandgap is crucial for engineering the performance of nanoscale photoconductors. Traditional capacitive techniques for the measurement of surface trap states are not readily applicable to nanoscale devices. Here, we demonstrate a simple technique to extract the information on the density of surface trap states hidden in the transient photoconductance that is widely observed. With this method, we found that the density of surface trap states of a single silicon nanowire is ∼10(12) cm(-2) eV(-1) around the middle of the upper half bandgap.
Cheng, Baochang; Zhao, Jie; Xiao, Li; Cai, Qiangsheng; Guo, Rui; Xiao, Yanhe; Lei, Shuijin
2015-01-01
Resistive switching (RS) devices are commonly believed as a promising candidate for next generation nonvolatile resistance random access memory. Here, polymethylmethacrylate (PMMA) interlayer was introduced at the heterointerface of p-CuSCN hollow nanopyramid arrays and n-ZnO nanorod arrays, resulting in a typical bipolar RS behavior. We propose the mechanism of nanostructure trap-induced space charge polarization modulated by PMMA interlayer. At low reverse bias, PMMA insulator can block charges through the heterointerface, and and trapped states are respectively created on both sides of PMMA, resulting in a high resistance state (HRS) due to wider depletion region. At high reverse bias, however, electrons and holes can cross PMMA interlayer by Fowler-Nordeim tunneling due to a massive tilt of energy band, and then inject into the traps of ZnO and CuSCN, respectively. and trapped states are created, resulting in the formation of degenerate semiconductors on both sides of PMMA. Therefore, quantum tunneling and space charge polarization lead to a low resistance state (LRS). At relatively high forward bias, subsequently, the trapped states of and are recreated due to the opposite injection of charges, resulting in a recovery of HRS. The introduction of insulating interlayer at heterointerface, point a way to develop next-generation nonvolatile memories. PMID:26648249
Rotation of an optically trapped vaterite microsphere measured using rotational Doppler effect
NASA Astrophysics Data System (ADS)
Chen, Xinlin; Xiao, Guangzong; Xiong, Wei; Yang, Kaiyong; Luo, Hui; Yao, Baoli
2018-03-01
The angular velocity of a vaterite microsphere spinning in the optical trap is measured using rotational Doppler effect. The perfectly spherical vaterite microspheres are synthesized via coprecipitation in the presence of silk fibroin nanospheres. When trapped by a circularly polarized beam, the vaterite microsphere is uniformly rotated in the trap center. The probe beams containing two Laguerre-Gaussian beams of opposite topological charge l = ± 7, l = ± 8, and l = ± 9 are illuminated on the spinning vaterite. By analyzing the backscattered light, a frequency shift is observed scaling with the rotation rate of the vaterite microsphere. The multiplicative enhancement of the frequency shift proportion to the topological charge has greatly improved the measurement precision. The reliability and practicability of this approach are verified through varying the topological charge of the probe beam and the trapping laser power. In consideration of the excellent measurement precision of the rotation frequency, this technique might be generally applicable in studying the torsional properties of micro-objects.
Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Wang, Laiyuan; Wu, Dequn
2017-01-01
Nonvolatile organic field‐effect transistor (OFET) memory devices based on pentacene/N,N′‐ditridecylperylene‐3,4,9,10‐tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n‐type P13 embedded in p‐type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well‐like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge‐trapping property of the poly(4‐vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high‐performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory. PMID:28852619
Halim, Mohammad A; Clavier, Christian; Dagany, Xavier; Kerleroux, Michel; Dugourd, Philippe; Dunbar, Robert C; Antoine, Rodolphe
2018-05-07
In this study, we report the unimolecular dissociation mechanism of megadalton SO 3 -containing poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) polymer cations and anions with the aid of infrared multiphoton dissociation coupled to charge detection ion trap mass spectrometry. A gated electrostatic ion trap ("Benner trap") is used to store and detect single gaseous polymer ions generated by positive and negative polarity in an electrospray ionization source. The trapped ions are then fragmented due to the sequential absorption of multiple infrared photons produced from a continuous-wave CO 2 laser. Several fragmentation pathways having distinct signatures are observed. Highly charged parent ions characteristically adopt a distinctive "stair-case" pattern (assigned to the "fission" process) whereas low charge species take on a "funnel like" shape (assigned to the "evaporation" process). Also, the log-log plot of the dissociation rate constants as a function of laser intensity between PAMPS positive and negative ions is significantly different.
Modification of electron states in CdTe absorber due to a buffer layer in CdTe/CdS solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorenko, Y. G., E-mail: y.fedorenko@liverpool.ac.uk; Major, J. D.; Pressman, A.
2015-10-28
By application of the ac admittance spectroscopy method, the defect state energy distributions were determined in CdTe incorporated in thin film solar cell structures concluded on ZnO, ZnSe, and ZnS buffer layers. Together with the Mott-Schottky analysis, the results revealed a strong modification of the defect density of states and the concentration of the uncompensated acceptors as influenced by the choice of the buffer layer. In the solar cells formed on ZnSe and ZnS, the Fermi level and the energy position of the dominant deep trap levels were observed to shift closer to the midgap of CdTe, suggesting the mid-gapmore » states may act as recombination centers and impact the open-circuit voltage and the fill factor of the solar cells. For the deeper states, the broadening parameter was observed to increase, indicating fluctuations of the charge on a microscopic scale. Such changes can be attributed to the grain-boundary strain and the modification of the charge trapped at the grain-boundary interface states in polycrystalline CdTe.« less
NASA Astrophysics Data System (ADS)
Martinez, F.; Marx, G.; Schweikhard, L.; Vass, A.; Ziegler, F.
2011-07-01
ClusterTrap has been designed to investigate properties of atomic clusters in the gas phase with particular emphasis on the dependence on the cluster size and charge state. The combination of cluster source, Penning trap and time-of-flight mass spectrometry allows a variety of experimental schemes including collision-induced dissociation, photo-dissociation, further ionization by electron impact, and electron attachment. Due to the storage capability of the trap extended-delay reaction experiments can be performed. Several recent modifications have resulted in an improved setup. In particular, an electrostatic quadrupole deflector allows the coupling of several sources or detectors to the Penning trap. Furthermore, a linear radio-frequency quadrupole trap has been added for accumulation and ion bunching and by switching the potential of a drift tube the kinetic energy of the cluster ions can be adjusted on their way towards or from the Penning trap. Recently, experiments on multiply negatively charged clusters have been resumed.
Electrical properties of metal/Al2O3/In0.53Ga0.47As capacitors grown on InP
NASA Astrophysics Data System (ADS)
Ferrandis, Philippe; Billaud, Mathilde; Duvernay, Julien; Martin, Mickael; Arnoult, Alexandre; Grampeix, Helen; Cassé, Mikael; Boutry, Hervé; Baron, Thierry; Vinet, Maud; Reimbold, Gilles
2018-04-01
To overcome the Fermi-level pinning in III-V metal-oxide-semiconductor capacitors, attention is usually focused on the choice of dielectric and surface chemical treatments prior to oxide deposition. In this work, we examined the influence of the III-V material surface cleaning and the semiconductor growth technique on the electrical properties of metal/Al2O3/In0.53Ga0.47As capacitors grown on InP(100) substrates. By means of the capacitance-voltage measurements, we demonstrated that samples do not have the same total oxide charge density depending on the cleaning solution used [(NH4)2S or NH4OH] prior to oxide deposition. The determination of the interface trap density revealed that a Fermi-level pinning occurs for samples grown by metalorganic chemical vapor deposition but not for similar samples grown by molecular beam epitaxy. Deep level transient spectroscopy analysis explained the Fermi-level pinning by an additional signal for samples grown by metalorganic chemical vapor deposition, attributed to the tunneling effect of carriers trapped in oxide toward interface states. This work emphasizes that the choice of appropriate oxide and cleaning treatment is not enough to prevent a Fermi-level pinning in III-V metal-oxide-semiconductor capacitors. The semiconductor growth technique needs to be taken into account because it impacts the trapping properties of the oxide.
NASA Astrophysics Data System (ADS)
Xu, Hao; Yang, Hong; Luo, Wei-Chun; Xu, Ye-Feng; Wang, Yan-Rong; Tang, Bo; Wang, Wen-Wu; Qi, Lu-Wei; Li, Jun-Feng; Yan, Jiang; Zhu, Hui-Long; Zhao, Chao; Chen, Da-Peng; Ye, Tian-Chun
2016-08-01
The thickness effect of the TiN capping layer on the time dependent dielectric breakdown (TDDB) characteristic of ultra-thin EOT high-k metal gate NMOSFET is investigated in this paper. Based on experimental results, it is found that the device with a thicker TiN layer has a more promising reliability characteristic than that with a thinner TiN layer. From the charge pumping measurement and secondary ion mass spectroscopy (SIMS) analysis, it is indicated that the sample with the thicker TiN layer introduces more Cl passivation at the IL/Si interface and exhibits a lower interface trap density. In addition, the influences of interface and bulk trap density ratio N it/N ot are studied by TDDB simulations through combining percolation theory and the kinetic Monte Carlo (kMC) method. The lifetime reduction and Weibull slope lowering are explained by interface trap effects for TiN capping layers with different thicknesses. Project supported by the National High Technology Research and Development Program of China (Grant No. SS2015AA010601), the National Natural Science Foundation of China (Grant Nos. 61176091 and 61306129), and the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of MicroElectronics of Chinese Academy of Sciences.
Electron Trap Energy Distribution in ALD Al2O3, LaAl4Ox, and GdyAl2-yO3 Layers on Silicon
NASA Astrophysics Data System (ADS)
Wang, W. C.; Badylevich, M.; Adelmann, C.; Swerts, J.; Kittl, J. A.; Afanas'ev, V. V.
2012-12-01
The energy distribution of electron trap density in atomic layer deposited Al2O3, LaAl4Ox and GdyAl2-yO3 insulating layers was studied by using the exhaustive photodepopulation spectroscopy. Upon filling the traps by electron tunneling from Si substrate, a broad energy distribution of trap levels in the energy range 2-4 eV is found in all studied insulators with trap densities in the range of 1012 cm-2eV-1. The incorporation of La and Gd cations reduces the trap density in aluminate layers as compared to Al2O3. Crystallization of the insulator by the post-deposition annealing is found to increase the trap density while the energy distribution remains unchanged. The similar trap spectra in the Al2O3 and La or Gd aluminate layers suggest the common nature of the traps, probably originating from imperfections in the AlOx sub-network.
1994-11-01
separation of a stable, negatively charged exciplex such as (ClXe2)- and a self- trapped positive hole (STi) localized on a Xe+ (n = 2-3) molecule. The first...solid to form Xe + HO + 2hv -- Xe÷ (HCI)-, which quickly reacts with another Xe atom to form the more stable tri-atomic exciplex X407. This exciplex ...Transfer Reaction Dynamics in Rare Gas Solids. I. Photodynamics of Localized Xenon Chloride Exciplexes ." Journal of Chemical Physics. vol. 85, p. 5660
Intense Ly-alpha emission from Uranus
NASA Technical Reports Server (NTRS)
Durrance, S. T.; Moos, H. W.
1982-01-01
The existence of intense atomic hydrogen Ly-alpha emission from Uranus is demonstrated here by utilizing the monochromatic imaging capabilities of the International Ultraviolet Explorer (IUE) spectrograph. Observations show increased emission in the vicinity of Uranus superimposed on the geocoronal/interplanetary background. If resonant scattering of solar Ly-alpha is the source of the 1.6 + or - 0.4 kR disk averaged brightness, then very high column densities of atomic H above the absorbing methane are required. Precipitation of trapped charged particles, i.e., aurora, could explain the emissions. This would imply a planetary magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Wen-Cheng, E-mail: wcke@mail.ntust.edu.tw; Yang, Cheng-Yi; Lee, Fang-Wei
2015-10-21
This study developed an Ohmic contact formation method for a ZnO:Al (AZO) transparent conductive layer on p-GaN films involving the introduction of an indium oxynitride (InON) nanodot interlayer. An antisurfactant pretreatment was used to grow InON nanodots on p-GaN films in a RF magnetron sputtering system. A low specific contact resistance of 1.12 × 10{sup −4} Ω cm{sup 2} was achieved for a sample annealed at 500 °C for 30 s in nitrogen ambient and embedded with an InON nanodot interlayer with a nanodot density of 6.5 × 10{sup 8} cm{sup −2}. By contrast, a sample annealed in oxygen ambient exhibited non-Ohmic behavior. X-ray photoemission spectroscopy resultsmore » showed that the oxygen vacancy (V{sub o}) in the InON nanodots played a crucial role in carrier transport. The fitting I–V characteristic curves indicated that the hopping mechanism with an activation energy of 31.6 meV and trap site spacing of 1.1 nm dominated the carrier transport in the AZO/InON nanodot/p-GaN sample. Because of the high density of donor-like oxygen vacancy defects at the InON nanodot/p-GaN interface, positive charges from the underlying p-GaN films were absorbed at the interface. This led to positive charge accumulation, creating a narrow depletion layer; therefore, carriers from the AZO layer passed through InON nanodots by hopping transport, and subsequently tunneling through the interface to enter the p-GaN films. Thus, AZO Ohmic contact can be formed on p-GaN films by embedding an InON nanodot interlayer to facilitate trap-assisted tunneling.« less
Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high-k passivation.
Na, Junhong; Joo, Min-Kyu; Shin, Minju; Huh, Junghwan; Kim, Jae-Sung; Piao, Mingxing; Jin, Jun-Eon; Jang, Ho-Kyun; Choi, Hyung Jong; Shim, Joon Hyung; Kim, Gyu-Tae
2014-01-07
Diagnosing of the interface quality and the interactions between insulators and semiconductors is significant to achieve the high performance of nanodevices. Herein, low-frequency noise (LFN) in mechanically exfoliated multilayer molybdenum disulfide (MoS2) (~11.3 nm-thick) field-effect transistors with back-gate control was characterized with and without an Al2O3 high-k passivation layer. The carrier number fluctuation (CNF) model associated with trapping/detrapping the charge carriers at the interface nicely described the noise behavior in the strong accumulation regime both with and without the Al2O3 passivation layer. The interface trap density at the MoS2-SiO2 interface was extracted from the LFN analysis, and estimated to be Nit ~ 10(10) eV(-1) cm(-2) without and with the passivation layer. This suggested that the accumulation channel induced by the back-gate was not significantly influenced by the passivation layer. The Hooge mobility fluctuation (HMF) model implying the bulk conduction was found to describe the drain current fluctuations in the subthreshold regime, which is rarely observed in other nanodevices, attributed to those extremely thin channel sizes. In the case of the thick-MoS2 (~40 nm-thick) without the passivation, the HMF model was clearly observed all over the operation regime, ensuring the existence of the bulk conduction in multilayer MoS2. With the Al2O3 passivation layer, the change in the noise behavior was explained from the point of formation of the additional top channel in the MoS2 because of the fixed charges in the Al2O3. The interface trap density from the additional CNF model was Nit = 1.8 × 10(12) eV(-1) cm(-2) at the MoS2-Al2O3 interface.
2010-08-25
coulombically bound electron-hole (e-h) pairs, commonly having a short range of the separation distance. [27, 31-34] Those excitons may undergo a...reactions causes a simultaneous reduction in the Isc and accounts for a negative MC response. The exciton-charge reaction is essentially Coulombic ...effect indicate that the excitons can interact with trapped charge carriers to de -trap the charge carriers. [46, 57, 58] Alternatively, the triplet
Evidence for charge-trapping inducing polymorphic structural-phase transition in pentacene.
Ando, Masahiko; Kehoe, Tom B; Yoneya, Makoto; Ishii, Hiroyuki; Kawasaki, Masahiro; Duffy, Claudia M; Minakata, Takashi; Phillips, Richard T; Sirringhaus, Henning
2015-01-07
Trapped-charge-induced transformation of pentacene polymorphs is observed by using in situ Raman spectroscopy and molecular dynamics simulations reveal that the charge should be localized in pentacene molecules at the interface with static intermolecular disorder along the long axis. Quantum chemical calculations of the intermolecular transfer integrals suggest the disorder to be large enough to induce Anderson-type localization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Whited, Richard C.
1981-01-01
A system for obtaining improved resolution in relatively thick semiconductor radiation detectors, such as HgI.sub.2, which exhibit significant hole trapping. Two amplifiers are used: the first measures the charge collected and the second the contribution of the electrons to the charge collected. The outputs of the two amplifiers are utilized to unfold the total charge generated within the detector in response to a radiation event.
A charge carrier transport model for donor-acceptor blend layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Janine, E-mail: janine.fischer@iapp.de; Widmer, Johannes; Koerner, Christian
2015-01-28
Highly efficient organic solar cells typically comprise donor-acceptor blend layers facilitating effective splitting of excitons. However, the charge carrier mobility in the blends can be substantially smaller than in neat materials, hampering the device performance. Currently, available mobility models do not describe the transport in blend layers entirely. Here, we investigate hole transport in a model blend system consisting of the small molecule donor zinc phthalocyanine (ZnPc) and the acceptor fullerene C{sub 60} in different mixing ratios. The blend layer is sandwiched between p-doped organic injection layers, which prevent minority charge carrier injection and enable exploiting diffusion currents for themore » characterization of exponential tail states from a thickness variation of the blend layer using numerical drift-diffusion simulations. Trap-assisted recombination must be considered to correctly model the conductivity behavior of the devices, which are influenced by local electron currents in the active layer, even though the active layer is sandwiched in between p-doped contacts. We find that the density of deep tail states is largest in the devices with 1:1 mixing ratio (E{sub t} = 0.14 eV, N{sub t} = 1.2 × 10{sup 18 }cm{sup −3}) directing towards lattice disorder as the transport limiting process. A combined field and charge carrier density dependent mobility model are developed for this blend layer.« less
Estimation of density of mongooses with capture-recapture and distance sampling
Corn, J.L.; Conroy, M.J.
1998-01-01
We captured mongooses (Herpestes javanicus) in live traps arranged in trapping webs in Antigua, West Indies, and used capture-recapture and distance sampling to estimate density. Distance estimation and program DISTANCE were used to provide estimates of density from the trapping-web data. Mean density based on trapping webs was 9.5 mongooses/ha (range, 5.9-10.2/ha); estimates had coefficients of variation ranging from 29.82-31.58% (X?? = 30.46%). Mark-recapture models were used to estimate abundance, which was converted to density using estimates of effective trap area. Tests of model assumptions provided by CAPTURE indicated pronounced heterogeneity in capture probabilities and some indication of behavioral response and variation over time. Mean estimated density was 1.80 mongooses/ha (range, 1.37-2.15/ha) with estimated coefficients of variation of 4.68-11.92% (X?? = 7.46%). Estimates of density based on mark-recapture data depended heavily on assumptions about animal home ranges; variances of densities also may be underestimated, leading to unrealistically narrow confidence intervals. Estimates based on trap webs require fewer assumptions, and estimated variances may be a more realistic representation of sampling variation. Because trap webs are established easily and provide adequate data for estimation in a few sample occasions, the method should be efficient and reliable for estimating densities of mongooses.
Nonvolatile memory with graphene oxide as a charge storage node in nanowire field-effect transistors
NASA Astrophysics Data System (ADS)
Baek, David J.; Seol, Myeong-Lok; Choi, Sung-Jin; Moon, Dong-Il; Choi, Yang-Kyu
2012-02-01
Through the structural modification of a three-dimensional silicon nanowire field-effect transistor, i.e., a double-gate FinFET, a structural platform was developed which allowed for us to utilize graphene oxide (GO) as a charge trapping layer in a nonvolatile memory device. By creating a nanogap between the gate and the channel, GO was embedded after the complete device fabrication. By applying a proper gate voltage, charge trapping, and de-trapping within the GO was enabled and resulted in large threshold voltage shifts. The employment of GO with FinFET in our work suggests that graphitic materials can potentially play a significant role for future nanoelectronic applications.
Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.
1997-01-01
An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.
Hydrogen isotope trapping in Al-Cu binary alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Paul; Karnesky, Richard A.
In this study, the trapping mechanisms for hydrogen isotopes in Al–X Cu (0.0 at. % < X < 3.5 at. %) alloys were investigated using thermal desorption spectroscopy (TDS), electrical conductivity, and differential scanning calorimetry. Constant heating rate TDS was used to determine microstructural trap energies and occupancies. In addition to the trapping states in pure Al reported in the literature (interstitial lattice sites, dislocations, and vacancies), a trap site due to Al–Cu intermetallic precipitates is observed. The binding energy of this precipitate trap is (18 ± 3) kJ•mol –1 (0.19 ± 0.03 eV). Typical occupancy of this trap ismore » high; for Al–2.6 at. % Cu (a Cu composition comparable to that in AA2219) charged at 200 °C with 130 MPa D 2 for 68 days, there is ca. there is 3.15×10 –7 mol D bound to the precipitate trap per mol of Al, accounting for a third of the D in the charged sample.« less
Hydrogen isotope trapping in Al-Cu binary alloys
Chao, Paul; Karnesky, Richard A.
2016-01-01
In this study, the trapping mechanisms for hydrogen isotopes in Al–X Cu (0.0 at. % < X < 3.5 at. %) alloys were investigated using thermal desorption spectroscopy (TDS), electrical conductivity, and differential scanning calorimetry. Constant heating rate TDS was used to determine microstructural trap energies and occupancies. In addition to the trapping states in pure Al reported in the literature (interstitial lattice sites, dislocations, and vacancies), a trap site due to Al–Cu intermetallic precipitates is observed. The binding energy of this precipitate trap is (18 ± 3) kJ•mol –1 (0.19 ± 0.03 eV). Typical occupancy of this trap ismore » high; for Al–2.6 at. % Cu (a Cu composition comparable to that in AA2219) charged at 200 °C with 130 MPa D 2 for 68 days, there is ca. there is 3.15×10 –7 mol D bound to the precipitate trap per mol of Al, accounting for a third of the D in the charged sample.« less
Thermal noise in aqueous quadrupole micro- and nano-traps
Park, Jae; Krstić, Predrag S.
2012-02-27
Recent simulations and experiments with aqueous quadrupole micro-traps have confirmed a possibility for control and localization of motion of a charged particle in a water environment, also predicting a possibility of further reduction of the trap size to tens of nano-meters for trapping charged bio-molecules and DNA segments. We study the random thermal noise due to Brownian motion in water which significantly influences the trapping of particles in an aqueous environment. We derive the exact, closed-form expressions for the thermal fluctuations of position and velocity of a trapped particle and thoroughly examine the properties of the rms for the fluctuationsmore » as functions of the system parameters and time. The instantaneous signal transferring mechanism between the velocity and position fluctuations could not be achieved in the previous phase-average approaches.« less
The thermally stimulated discharge of ion-irradiated oxide films
NASA Astrophysics Data System (ADS)
Wang, Qiuru; Zeng, Huizhong; Zhang, Wanli
2018-01-01
The ion irradiation technique is utilized to modify the surface structure of amorphous insulating oxide films. While introducing defects, a number of surface charges are injected into the films and captured in the traps during ion irradiation. The variation of surface morphology and the enhancement of emission spectrum corresponding to vacancy defects are respectively verified by atomic force microscopy and photoluminescence measurements. The surface charges trapped in the shallow traps are easy to release caused by thermal excitation, and discharge is observed during heating. Based on the thermally stimulated discharge measurements, the trap parameters of oxide films, such as activation energy and relaxation time, are calculated from experimental data.
Physics with Trapped Antihydrogen
NASA Astrophysics Data System (ADS)
Charlton, Michael
2017-04-01
For more than a decade antihydrogen atoms have been formed by mixing antiprotons and positrons held in arrangements of charged particle (Penning) traps. More recently, magnetic minimum neutral atom traps have been superimposed upon the anti-atom production region, promoting the trapping of a small quantity of the antihydrogen yield. We will review these advances, and describe some of the first physics experiments performed on anrtihydrogen including the observation of the two-photon 1S-2S transition, invesigation of the charge neutrailty of the anti-atom and studies of the ground state hyperfine splitting. We will discuss the physics motivations for undertaking these experiments and describe some near-future initiatives.
High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.
Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu
2008-02-01
A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.
NASA Astrophysics Data System (ADS)
Harper, Conner C.; Elliott, Andrew G.; Lin, Haw-Wei; Williams, Evan R.
2018-06-01
A general method for in situ measurements of the energy of individual ions trapped and weighed using charge detection mass spectrometry (CDMS) is described. Highly charged (> 300 e), individual polyethylene glycol (PEG) ions are trapped and oscillate within an electrostatic trap, producing a time domain signal. A segmented Fourier transform (FT) of this signal yields the temporal evolution of the fundamental and harmonic frequencies of ion motion throughout the 500-ms trap time. The ratio of the fundamental frequency and second harmonic (HAR) depends on the ion energy, which is an essential parameter for measuring ion mass in CDMS. This relationship is calibrated using simulated ion signals, and the calibration is compared to the HAR values measured for PEG ion signals where the ion energy was also determined using an independent method that requires that the ions be highly charged (> 300 e). The mean error of 0.6% between the two measurements indicates that the HAR method is an accurate means of ion energy determination that does not depend on ion size or charge. The HAR is determined dynamically over the entire trapping period, making it possible to observe the change in ion energy that takes place as solvent evaporates from the ion and collisions with background gas occur. This method makes it possible to measure mass changes, either from solvent evaporation or from molecular fragmentation (MSn), as well as the cross sections of ions measured using CDMS.
NASA Astrophysics Data System (ADS)
Dawidczyk, T. J.; Johns, G. L.; Ozgun, R.; Alley, O.; Andreou, A. G.; Markovic, N.; Katz, H. E.
2012-02-01
Charge carriers trapped in polystyrene (PS) were investigated with Kelvin probe microscopy (KPM) and thermally stimulated discharge current (TSDC). Lateral heterojunctions of pentacene/PS were scanned using KPM, effectively observing polarization along a side view of a lateral nonvolatile organic field-effect transistor dielectric interface. TSDC was used to observe charge migration out of PS films and to estimate the trap energy level inside the PS, using the initial rise method.
Boughariou, A; Damamme, G; Kallel, A
2015-04-01
This paper focuses on the effect of sample annealing temperature and crystallographic orientation on the secondary electron yield of MgO during charging by a defocused electron beam irradiation. The experimental results show that there are two regimes during the charging process that are better identified by plotting the logarithm of the secondary electron emission yield, lnσ, as function of the total trapped charge in the material QT. The impact of the annealing temperature and crystallographic orientation on the evolution of lnσ is presented here. The slope of the asymptotic regime of the curve lnσ as function of QT, expressed in cm(2) per trapped charge, is probably linked to the elementary cross section of electron-hole recombination, σhole, which controls the trapping evolution in the reach of the stationary flow regime. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Analytical model of secondary electron emission yield in electron beam irradiated insulators.
Ghorbel, N; Kallel, A; Damamme, G
2018-06-12
The study of secondary electron emission (SEE) yield as a function of the kinetic energy of the incident primary electron beam and its evolution with charge accumulation inside insulators is a source of valuable information (even though an indirect one) on charge transport and trapping phenomena. We will show that this evolution is essentially due, in plane geometry conditions (achieved using a defocused electron beam), to the electric field effect (due to the accumulation of trapped charges in the bulk) in the escape zone of secondary electrons and not to modifications of trapping cross sections, which only have side effects. We propose an analytical model including the main basic phenomena underlying the space charge dynamics. It will be observed that such a model makes it possible to reproduce both qualitatively and quantitatively the measurement of SEE evolution as well as to provide helpful indications concerning charge transport (more precisely, the ratios between the mobility and diffusion coefficient with the thermal velocity of the charge carrier). Copyright © 2018 Elsevier Ltd. All rights reserved.
Sub-diffusion and trapped dynamics of neutral and charged probes in DNA-protein coacervates
NASA Astrophysics Data System (ADS)
Arfin, Najmul; Yadav, Avinash Chand; Bohidar, H. B.
2013-11-01
The physical mechanism leading to the formation of large intermolecular DNA-protein complexes has been studied. Our study aims to explain the occurrence of fast coacervation dynamics at the charge neutralization point, followed by the appearance of smaller complexes and slower coacervation dynamics as the complex experiences overcharging. Furthermore, the electrostatic potential and probe mobility was investigated to mimic the transport of DNA / DNA-protein complex in a DNA-protein complex coacervate medium [N. Arfin and H. B. Bohidar, J. Phys. Chem. B 116, 13192 (2012)] by assigning neutral, negative, or positive charge to the probe particle. The mobility of the neutral probe was maximal at low matrix concentrations and showed random walk behavior, while its mobility ceased at the jamming concentration of c = 0.6, showing sub-diffusion and trapped dynamics. The positively charged probe showed sub-diffusive random walk followed by trapped dynamics, while the negatively charged probe showed trapping with occasional hopping dynamics at much lower concentrations. Sub-diffusion of the probe was observed in all cases under consideration, where the electrostatic interaction was used exclusively as the dominant force involved in the dynamics. For neutral and positive probes, the mean square displacement ⟨R2⟩ exhibits a scaling with time as ⟨R2⟩ ˜ tα, distinguishing random walk and trapped dynamics at α = 0.64 ± 0.04 at c = 0.12 and c = 0.6, respectively. In addition, the same scaling factors with the exponent β = 0.64 ± 0.04 can be used to distinguish random walk and trapped dynamics for the neutral and positive probes using the relation between the number of distinct sites visited by the probe, S(t), which follows the scaling, S(t) ˜ tβ/ln (t). Our results established the occurrence of a hierarchy of diffusion dynamics experienced by a probe in a dense medium that is either charged or neutral.
A spatially explicit capture-recapture estimator for single-catch traps.
Distiller, Greg; Borchers, David L
2015-11-01
Single-catch traps are frequently used in live-trapping studies of small mammals. Thus far, a likelihood for single-catch traps has proven elusive and usually the likelihood for multicatch traps is used for spatially explicit capture-recapture (SECR) analyses of such data. Previous work found the multicatch likelihood to provide a robust estimator of average density. We build on a recently developed continuous-time model for SECR to derive a likelihood for single-catch traps. We use this to develop an estimator based on observed capture times and compare its performance by simulation to that of the multicatch estimator for various scenarios with nonconstant density surfaces. While the multicatch estimator is found to be a surprisingly robust estimator of average density, its performance deteriorates with high trap saturation and increasing density gradients. Moreover, it is found to be a poor estimator of the height of the detection function. By contrast, the single-catch estimators of density, distribution, and detection function parameters are found to be unbiased or nearly unbiased in all scenarios considered. This gain comes at the cost of higher variance. If there is no interest in interpreting the detection function parameters themselves, and if density is expected to be fairly constant over the survey region, then the multicatch estimator performs well with single-catch traps. However if accurate estimation of the detection function is of interest, or if density is expected to vary substantially in space, then there is merit in using the single-catch estimator when trap saturation is above about 60%. The estimator's performance is improved if care is taken to place traps so as to span the range of variables that affect animal distribution. As a single-catch likelihood with unknown capture times remains intractable for now, researchers using single-catch traps should aim to incorporate timing devices with their traps.
Warburton, Bruce; Gormley, Andrew M
2015-01-01
Internationally, invasive vertebrate species pose a significant threat to biodiversity, agricultural production and human health. To manage these species a wide range of tools, including traps, are used. In New Zealand, brushtail possums (Trichosurus vulpecula), stoats (Mustela ermine), and ship rats (Rattus rattus) are invasive and there is an ongoing demand for cost-effective non-toxic methods for controlling these pests. Recently, traps with multiple-capture capability have been developed which, because they do not require regular operator-checking, are purported to be more cost-effective than traditional single-capture traps. However, when pest populations are being maintained at low densities (as is typical of orchestrated pest management programmes) it remains uncertain if it is more cost-effective to use fewer multiple-capture traps or more single-capture traps. To address this uncertainty, we used an individual-based spatially explicit modelling approach to determine the likely maximum animal-captures per trap, given stated pest densities and defined times traps are left between checks. In the simulation, single- or multiple-capture traps were spaced according to best practice pest-control guidelines. For possums with maintenance densities set at the lowest level (i.e. 0.5/ha), 98% of all simulated possums were captured with only a single capacity trap set at each site. When possum density was increased to moderate levels of 3/ha, having a capacity of three captures per trap caught 97% of all simulated possums. Results were similar for stoats, although only two potential captures per site were sufficient to capture 99% of simulated stoats. For rats, which were simulated at their typically higher densities, even a six-capture capacity per trap site only resulted in 80% kill. Depending on target species, prevailing density and extent of immigration, the most cost-effective strategy for pest control in New Zealand might be to deploy several single-capture traps rather than investing in fewer, but more expense, multiple-capture traps.
A versatile system for optical manipulation experiments
NASA Astrophysics Data System (ADS)
Hanstorp, Dag; Ivanov, Maksym; Alemán Hernández, Ademir F.; Enger, Jonas; Gallego, Ana M.; Isaksson, Oscar; Karlsson, Carl-Joar; Monroy Villa, Ricardo; Varghese, Alvin; Chang, Kelken
2017-08-01
In this paper a versatile experimental system for optical levitation is presented. Microscopic liquid droplets are produced on demand from piezo-electrically driven dispensers. The charge of the droplets is controlled by applying an electric field on the piezo-dispenser head. The dispenser releases droplets into a vertically focused laser beam. The size and position in 3 dimensions of trapped droplets are measured using two orthogonally placed high speed cameras. Alternatively, the vertical position is determined by imaging scattered light onto a position sensitive detector. The charge of a trapped droplets is determined by recording its motion when an electric field is applied, and the charge can be altered by exposing the droplet to a radioactive source or UV light. Further, spectroscopic information of the trapped droplet is obtained by imaging the droplet on the entrance slit of a spectrometer. Finally, the trapping cell can be evacuated, allowing investigations of droplet dynamics in vacuum. The system is utilized to study a variety of physical phenomena, and three pilot experiments are given in this paper. First, a system used to control and measure the charge of the droplet is presented. Second, it is demonstrated how particles can be made to rotate and spin by trapping them using optical vortices. Finally, the Raman spectra of trapped glycerol droplets are obtained and analyzed. The long term goal of this work is to create a system where interactions of droplets with the surrounding medium or with other droplets can be studied with full control of all physical variables.
NASA Astrophysics Data System (ADS)
Cai, Xiuyu
2007-12-01
Organic semiconductors are attracting more and more interest as a promising set of materials in the field of electronics research. This thesis focused on several new organic semiconductors and a novel high-kappa dielectric thin film (SrTiO3), which are two essential parts in Organic Thin Film Transistors (OTFTs). Structure and morphology of thin films of tricyanovinyl capped oligothiophenes were studied using atomic force microscopy and x-ray diffraction. Thin film transistors of one compound exhibited a reasonable electron mobility of 0.02 cm2/Vs. Temperature dependent measurements on the thin film transistor based on this compound revealed shallow trap states that were interpreted in terms of a multiple trap and release model. Moreover, inversion of the majority charge carrier type from electrons to holes was observed when the number of oligothiophene rings increased to six and ambipolar transport behavior was observed for tricyanovinyl sexithiophene. Another interesting organic semiconductor compound is the fluoalkylquarterthiophene, which showed ambipolar transport and large hysteresis in the transfer curve. Due to the bistable state at floating gate, the thin film transistor was exploited to study non-volatile floating gate memory effects. The temperature dependence of the retention time for this memory device revealed that the electron trapping was an activated process. Following the earlier work on hybrid acene-thiophene organic semiconductors, new compounds with similar structure were studied to reveal the mechanism of the air-stability exhibited by some compounds. They all formed highly crystalline thin films and showed reasonable device performances which are well correlated with the molecular structures, thin film microstructures, and solid state packing. The most air-stable compound had no observable degradation with exposure to air for 15 months. SrTiO3 was developed to be employed in OTFTs. Optimization of thin film growth was performed using reactive sputtering growth. Excellent SrTiO3 epitaixal thin film growth was revealed on conductive SrTiO 3:Nb substrates. A maximum charge carrier density of 1014 cm-2 was obtained based on pentacene and perylene diimide thin film transistors. Some new physical phenomena, such as step-like transfer characteristic curve and negative transconductance, were observed at such high field effect induced charge carrier density.
Athermal fading of luminescence in Al2 O3 ceramic substrates
NASA Astrophysics Data System (ADS)
Terry, Ian; Kouroukla, Eftychia; Bailiff, Ian K.
2015-03-01
Retrospective dosimetry aims to reconstruct ionising radiation dose to populations following a radiological incident using materials not designed for that purpose. Sintered alumina ceramic can function as a dosimeter with its luminescence properties and related trapped charge storage mechanism. Its widespread use as a substrate in surface mount devices and incorporation in devices such as mobile phones make it a ubiquitous potential dosimeter. We investigated the optically (OSL) and thermally (TL) stimulated luminescence properties of sintered alumina substrates. In contrast to their single crystal analogue developed for personal dosimetry, Al2O3:C, the substrates exhibit a significant loss of trapped charge (fading) within hours following irradiation at RT that seriously limits their utility for dosimetry over an extended timescale. The fading rates of OSL and TL signals of 0402 resistors were analysed under various storage conditions (time and temperature), complemented by a study of their microstructure. The results support a model of athermal loss of trapped charge due to electron tunnelling from trapping states; this contrasting behaviour is attributed to a physical modification of the trap environment arising from the manufacturing process.
Improving Charging-Breeding Simulations with Space-Charge Effects
NASA Astrophysics Data System (ADS)
Bilek, Ryan; Kwiatkowski, Ania; Steinbrügge, René
2016-09-01
Rare-isotope-beam facilities use Highly Charged Ions (HCI) for accelerators accelerating heavy ions and to improve measurement precision and resolving power of certain experiments. An Electron Beam Ion Trap (EBIT) is able to create HCI through successive electron impact, charge breeding trapped ions into higher charge states. CBSIM was created to calculate successive charge breeding with an EBIT. It was augmented by transferring it into an object-oriented programming language, including additional elements, improving ion-ion collision factors, and exploring the overlap of the electron beam with the ions. The calculation is enhanced with the effects of residual background gas by computing the space charge due to charge breeding. The program assimilates background species, ionizes and charge breeds them alongside the element being studied, and allows them to interact with the desired species through charge exchange, giving fairer overview of realistic charge breeding. Calculations of charge breeding will be shown for realistic experimental conditions. We reexamined the implementation of ionization energies, cross sections, and ion-ion interactions when charge breeding.
NASA Astrophysics Data System (ADS)
Wu, Li-Fan; Zhang, Yu-Ming; Lv, Hong-Liang; Zhang, Yi-Men
2016-10-01
Al2O3 and HfO2 thin films are separately deposited on n-type InAlAs epitaxial layers by using atomic layer deposition (ALD). The interfacial properties are revealed by angle-resolved x-ray photoelectron spectroscopy (AR-XPS). It is demonstrated that the Al2O3 layer can reduce interfacial oxidation and trap charge formation. The gate leakage current densities are 1.37 × 10-6 A/cm2 and 3.22 × 10-6 A/cm2 at +1 V for the Al2O3/InAlAs and HfO2/InAlAs MOS capacitors respectively. Compared with the HfO2/InAlAs metal-oxide-semiconductor (MOS) capacitor, the Al2O3/InAlAs MOS capacitor exhibits good electrical properties in reducing gate leakage current, narrowing down the hysteresis loop, shrinking stretch-out of the C-V characteristics, and significantly reducing the oxide trapped charge (Q ot) value and the interface state density (D it). Project supported by the National Basic Research Program of China (Grant No. 2010CB327505), the Advanced Research Foundation of China (Grant No. 914xxx803-051xxx111), the National Defense Advance Research Project, China (Grant No. 513xxxxx306), the National Natural Science Foundation of China (Grant No. 51302215), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 14JK1656), and the Science and Technology Project of Shaanxi Province, China (Grant No. 2016KRM029).
NASA Astrophysics Data System (ADS)
Gnana Prakash, A. P.; Pradeep, T. M.; Hegde, Vinayakprasanna N.; Pushpa, N.; Bajpai, P. K.; Patel, S. P.; Trivedi, Tarkeshwar; Bhushan, K. G.
2017-12-01
NPN transistors and N-channel depletion metal oxide semiconductor field effect transistors (MOSFETs) were irradiated with 5 MeV protons and 60Co gamma radiation in the dose ranging from 1 Mrad(Si) to 100 Mrad(Si). The different electrical characteristics of the NPN transistor such as Gummel characteristics, excess base current (ΔIB), dc current gain (hFE), transconductance (gm), displacement damage factor (K) and output characteristics were studied as a function of total dose. The different electrical characteristics of N-channel MOSFETs such as threshold voltage (Vth), density of interface trapped charges (ΔNit), density of oxide trapped charges (ΔNot), transconductance (gm), mobility (µ) and drain saturation current (IDSat) were studied systematically before and after irradiation in the same dose ranges. A considerable increase in the base current (IB) and decrease in the hFE, gm and collector saturation current (ICSat) were observed after irradiation in the case of the NPN transistor. In the N-channel MOSFETs, the ΔNit and ΔNot were found to increase and Vth, gm, µ and IDSat were found to decrease with increase in the radiation dose. The 5 MeV proton irradiation results of both the NPN transistor and N-channel MOSFETs were compared with 60Co gamma-irradiated devices in the same dose ranges. It was observed that the degradation in 5 MeV proton-irradiated devices is more when compared with the 60Co gamma-irradiated devices at higher total doses.
Photo-reactive charge trapping memory based on lanthanide complex.
Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V A L
2015-10-09
Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 10(4) s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.
Photo-reactive charge trapping memory based on lanthanide complex
NASA Astrophysics Data System (ADS)
Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V. A. L.
2015-10-01
Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 104 s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.
A SONOS device with a separated charge trapping layer for improvement of charge injection
NASA Astrophysics Data System (ADS)
Ahn, Jae-Hyuk; Moon, Dong-Il; Ko, Seung-Won; Kim, Chang-Hoon; Kim, Jee-Yeon; Kim, Moon-Seok; Seol, Myeong-Lok; Moon, Joon-Bae; Choi, Ji-Min; Oh, Jae-Sub; Choi, Sung-Jin; Choi, Yang-Kyu
2017-03-01
A charge trapping layer that is separated from the primary gate dielectric is implemented on a FinFET SONOS structure. By virtue of the reduced effective oxide thickness of the primary gate dielectric, a strong gate-to-channel coupling is obtained and thus short-channel effects in the proposed device are effectively suppressed. Moreover, a high program/erase speed and a large shift in the threshold voltage are achieved due to the improved charge injection by the reduced effective oxide thickness. The proposed structure has potential for use in high speed flash memory.
Simulation of perturbation produced by an absorbing spherical body in collisionless plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasovsky, V. L., E-mail: vkrasov@iki.rssi.ru; Kiselyov, A. A., E-mail: alexander.kiselyov@stonehenge-3.net.ru; Dolgonosov, M. S.
2017-01-15
A steady plasma state reached in the course of charging of an absorbing spherical body is found using computational methods. Numerical simulations provide complete information on this process, thereby allowing one to find the spatiotemporal dependences of the physical quantities and observe the kinetic phenomena accompanying the formation of stable electron and ion distributions in phase space. The distribution function of trapped ions is obtained, and their contribution to the screening of the charged sphere is determined. The sphere charge and the charge of the trapped-ion cloud are determined as functions of the unperturbed plasma parameters.
Persistence time of charge carriers in defect states of molecular semiconductors.
McMahon, David P; Troisi, Alessandro
2011-06-07
Charge carriers in organic crystals are often trapped in point defects. The persistence time of the charge in these defect states is evaluated by computing the escape rate from this state using non-adiabatic rate theory. Two cases are considered (i) the hopping between separate identical defect states and (ii) the hopping between a defect state and the bulk (delocalized) states. We show that only the second process is likely to happen with realistic defect concentrations and highlight that the inclusion of an effective quantum mode of vibration is essential for accurate computation of the rate. The computed persistence time as a function of the trap energy indicates that trap states shallower than ∼0.3 eV cannot be effectively investigated with some slow spectroscopic techniques such as THz spectroscopy or EPR commonly used to study the nature of excess charge in semiconductors.
Cavity cooling a single charged levitated nanosphere.
Millen, J; Fonseca, P Z G; Mavrogordatos, T; Monteiro, T S; Barker, P F
2015-03-27
Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.