Exercise training for intermittent claudication.
McDermott, Mary M
2017-11-01
The objective of this study was to provide an overview of evidence regarding exercise therapies for patients with lower extremity peripheral artery disease (PAD). This manuscript summarizes the content of a lecture delivered as part of the 2016 Crawford Critical Issues Symposium. Multiple randomized clinical trials demonstrate that supervised treadmill exercise significantly improves treadmill walking performance in people with PAD and intermittent claudication symptoms. A meta-analysis of 25 randomized trials demonstrated a 180-meter increase in treadmill walking distance in response to supervised exercise interventions compared with a nonexercising control group. Supervised treadmill exercise has been inaccessible to many patients with PAD because of lack of medical insurance coverage. However, in 2017, the Centers for Medicare and Medicaid Services issued a decision memorandum to support health insurance coverage of 12 weeks of supervised treadmill exercise for patients with walking impairment due to PAD. Recent evidence also supports home-based walking exercise to improve walking performance in people with PAD. Effective home-exercise programs incorporate behavioral change interventions such as a remote coach, goal setting, and self-monitoring. Supervised treadmill exercise programs preferentially improve treadmill walking performance, whereas home-based walking exercise programs preferentially improve corridor walking, such as the 6-minute walk test. Clinical trial evidence also supports arm or leg ergometry exercise to improve walking endurance in people with PAD. Treadmill walking exercise appears superior to resistance training alone for improving walking endurance. Supervised treadmill exercise significantly improves treadmill walking performance in people with PAD by approximately 180 meters compared with no exercise. Recent evidence suggests that home-based exercise is also effective and preferentially improves over-ground walking performance, such as the 6-minute walk test. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Graded Aerobic Treadmill Testing in Adolescent Traumatic Brain Injury Patients.
Cordingley, Dean M; Girardin, Richard; Morissette, Marc P; Reimer, Karen; Leiter, Jeff; Russell, Kelly; Ellis, Michael J
2017-11-01
To examine the safety and tolerability of clinical graded aerobic treadmill testing in recovering adolescent moderate and severe traumatic brain injury (TBI) patients referred to a multidisciplinary pediatric concussion program. We completed a retrospective case series of two moderate and five severe TBI patients (mean age, 17.3 years) who underwent initial Buffalo Concussion Treadmill Testing at a mean time of 71.6 days (range, 55-87) postinjury. Six patients completed one graded aerobic treadmill test each and one patient underwent initial and repeat testing. There were no complications. Five initial treadmill tests were completely tolerated and allowed an accurate assessment of exercise tolerance. Two initial tests were terminated early by the treatment team because of neurological and cardiorespiratory limitations. As a result of testing, two patients were cleared for aerobic exercise as tolerated and four patients were treated with individually tailored submaximal aerobic exercise programs resulting in subjective improvement in residual symptoms and/or exercise tolerance. Repeat treadmill testing in one patient performed after 1 month of treatment with submaximal aerobic exercise prescription was suggestive of improved exercise tolerance. One patient was able to tolerate aerobic exercise following surgery for posterior glottic stenosis. Preliminary results suggest that graded aerobic treadmill testing is a safe, well tolerated, and clinically useful tool to assess exercise tolerance in appropriately selected adolescent patients with TBI. Future prospective studies are needed to evaluate the effect of tailored submaximal aerobic exercise prescription on exercise tolerance and patient outcomes in recovering adolescent moderate and severe TBI patients.
Acute aquatic treadmill exercise improves gait and pain in people with knee osteoarthritis.
Roper, Jaimie A; Bressel, Eadric; Tillman, Mark D
2013-03-01
To examine the acute effects of aquatic and land treadmill exercise on gait kinematics as well as the level of disease-specific and movement-related pain for individuals with osteoarthritis. Quasi-experimental crossover design. Biomechanics laboratory. Participants (N=14; age, 43-64y) diagnosed with osteoarthritis at the knee (n=12), osteoarthritis at the knee and ankle (n=1), or osteoarthritis at the knee and hip (n=1). Participants performed 3 exercise sessions separated by at least 24 hours in 1 week for each mode of exercise (aquatic treadmill and land treadmill). Gait kinematics and pain were measured before and after each intervention. The angular velocity gain score during stance for left knee extension was improved by 38% after aquatic treadmill exercise (P=.004). Similarly, during swing, the gain scores for angular velocity were also greater for left knee internal rotation and extension by 65% and 20%, respectively (P=.004, P=.008, respectively). During stance, the joint angle gain score for left hip flexion was 7.23% greater after land exercise (P=.007). During swing, the angular velocity gain score for right hip extension was significantly greater for aquatic exercise by 28% (P=.01). Only the joint angle gain score for left ankle abduction during stance was significantly higher after land exercise (4.72%, P=.003). No other joint angle gain scores for either stance or swing were significantly different for either condition (P=.06-.96). Perceived pain was 100% greater after land than aquatic treadmill exercise (P=.02). Step rate and step length were not different between conditions (P=.31-.92). An acute training period on an aquatic treadmill positively influenced joint angular velocity and arthritis-related joint pain. Acute aquatic treadmill exercise may be useful as a conservative treatment to improve angular speed of the lower-extremity joints and pain related to osteoarthritis. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Exercise ECG; ECG - exercise treadmill; EKG - exercise treadmill; Stress ECG; Exercise electrocardiography; Stress test - exercise treadmill; CAD - treadmill; Coronary artery disease - treadmill; Chest pain - treadmill; Angina - treadmill; ...
Hall, Katharine E; McDonald, Matthew W; Grisé, Kenneth N; Campos, Oscar A; Noble, Earl G; Melling, C W James
2013-10-01
Individuals with Type 1 Diabetes Mellitus (T1DM) can develop insulin resistance. Regular exercise may improve insulin resistance partially through increased expression of skeletal muscle GLUT4 content. To examine if different exercise training modalities can alter glucose tolerance through changes in skeletal muscle GLUT4 content in T1DM rats. Fifty rats were divided into 5 groups; control, diabetic control, diabetic resistance exercised, and diabetic high and low intensity treadmill exercised. Diabetes was induced using multiple low dose Streptozotocin (20 mg/kg/day) injections and blood glucose concentrations were maintained moderately hyperglycemic through subcutaneous insulin pellets. Resistance trained rats climbed a ladder with incremental loads, while treadmill trained rats ran on a treadmill at 27 or 15 m/min, respectively, all for 6 weeks. At weeks 3 and 6, area under the curve measurements following an intravenous glucose tolerance test (AUC-IVGTT) in all diabetic groups were higher than control rats (p<0.05). At 6 weeks, all exercise groups had significantly lower AUC-IVGTT values than diabetic control animals (p<0.05). Treadmill trained rats had the lowest insulin dose requirement of the T1DM rats and the greatest reduction in insulin dosage was evident in high intensity treadmill exercise. Concomitant with improvements in glucose handling improvements, tissue-specific elevations in GLUT4 content were demonstrated in both red and white portions of vastus lateralis and gastrocnemius muscles, suggesting that glucose handling capacity was altered in the skeletal muscle of exercised T1DM rats. These results suggest that, while all exercise modalities can improve glucose tolerance, each mode leads to differential improvements in insulin requirements and protein content alterations. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Boda, Wanda; Hargens, Alan R.; Aratow, Michael; Ballard, Richard E.; Hutchinson, Karen; Murthy, Gita; Campbell, James
1994-01-01
The purpose of this study is to compare footward forces, gait kinematics, and muscle activation patterns (EMG) generated during supine treadmill exercise against LBNP with the same parameters during supine bungee resistance exercise and upright treadmill exercise. We hypothesize that the three conditions will be similar. These results will help validate treadmill exercise during LBNP as a viable technique to simulate gravity during space flight. We are evaluating LBNP as a means to load the musculoskeletal and cardiovascular systems without gravity. Such loading should help prevent physiologic deconditioning during space flight. The best ground-based simulation of LBNP treadmill exercise in microgravity is supine LBNP treadmill exercise on Earth because the supine footward force vector is neither directed nor supplemented by Earth's gravity. Previous results from HR-95 ("Dynamics of footward force and leg intramuscular pressure during exercise against supine LBNP and upright standing in normal gravity") indicate that supine plantar-/dorsiflexion exercise in LBNP at 100 mm Hg produces similar ground reaction forces, musculoskeletal stress, and VO2 to those during upright exercise against Earth's gravity. However, elevations of leg volume and heart rate indicate that cardiovascular stress during 100 mm Hg LBNP exercise exceeds that during 1 g exercise. Therefore, the need arose to reduce the cardiovascular stress of LBNP, while maintaining LBNP-induced reaction forces. To this end, we determined that mild plantar-/dorsiflexion exercise during LBNP significantly improves tolerance to LBNP via musculovenous pumping and sympathoexcitation; more intense exercise such as walking and running may further improve LBNP tolerance. In addition, two methodological advances have permited us to simulate upright 1 g exercise better with supine LBNP exercise. First, a newly-designed waist seal allows decreased levels of LBNP (50-60 mm Hg) to produce a footward force equaling one body weight
Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee
2015-03-01
Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function.
Zhang, Qi; Zhang, Jingjun; Yan, Yuzhong; Zhang, Pengyue; Zhang, Wei; Xia, Rong
2017-11-01
Stroke may cause neuropsychiatric problems, which have negative effects on cognitive functions and behavior. Exercise plays an important role in reducing the occurrence and development of stroke, the concrete mechanism is not fully clarified. In this study, we attempted to determine whether early treadmill exercise attenuates anxiety-like behavior by regulation of inflammation after brain ischemia. We subjected adult male rats to middle cerebral artery occlusion (MCAO) for 90 min and trained rats started to run on a treadmill from postoperative day 1 to day 14. The effects of treadmill on cognitive functions, anxiety-like behavior, and immune activation were analyzed by Morris water maze test, open field test, elevated plus maze test, and enzyme-linked immunosorbent assay. Early treadmill exercise significantly improved cognitive function, alleviated anxiety-like behavior in ischemic rats model; this improvement was associated with significantly decreased activation of astrocytes and microglia cells and proinflammatory markers (platelet-activating factor [PAF], interleukin-6 [IL-6], tumor necrosis factor-alpha [TNF-α], intercellular adhesion molecule-1 [ICAM-1], and vascular cell adhesion molecule-1 [VCAM-1]). Our results indicated that early treadmill exercise attenuated anxiety-like behavior by decreasing inflammation response, exercise conferred a great benefit of attenuating anxiety-like behavior via anti-inflammatory treatment may prove to be a novel neuroprotective strategy for stroke.
Biomechanical Analysis of Treadmill Locomotion on the International Space Station
NASA Technical Reports Server (NTRS)
De Witt, J. K.; Fincke, R. S.; Guilliams, M. E.; Ploutz-Snyder, L. L.
2011-01-01
Treadmill locomotion exercise is an important aspect of ISS exercise countermeasures. It is widely believed that an optimized treadmill exercise protocol could offer benefits to cardiovascular and bone health. If training heart rate is high enough, treadmill exercise is expected to lead to improvements in aerobic fitness. If impact or bone loading forces are high enough, treadmill exercise may be expected to contribute to improved bone outcomes. Ground-based research suggests that joint loads increase with increased running speed. However, it is unknown if increases in locomotion speed results in similar increases in joint loads in microgravity. Although data exist regarding the biomechanics of running and walking in microgravity, a majority were collected during parabolic flight or during investigations utilizing a microgravity analog. The Second Generation Treadmill (T2) has been in use on the International Space Station (ISS) and records the ground reaction forces (GRF) produced by crewmembers during exercise. Biomechanical analyses will aid in understanding potential differences in typical gait motion and allow for modeling of the human body to determine joint and muscle forces during exercise. By understanding these mechanisms, more appropriate exercise prescriptions can be developed that address deficiencies. The objective of this evaluation is to collect biomechanical data from crewmembers during treadmill exercise prior to and during flight. The goal is to determine if locomotive biomechanics differ between normal and microgravity environments and to determine how combinations of subject load and speed influence joint loading during in-flight treadmill exercise. Further, the data will be used to characterize any differences in specific bone and muscle loading during locomotion in these two gravitational conditions. This project maps to the HRP Integrated Research Plan risks including Risk of Bone Fracture (Gap B15), Risk of Early Onset Osteoporosis Due to Spaceflight (Gap B15), Risk of Impaired Performance Due to Reduced Muscle Mass, Strength, and Endurance (Gaps M3, M4, M6, Ml, M8, M9) and Risk of reduced Physical Performance Capabilities Due to Reduce Aerobic Capacity (Gaps M7, M8, M9).
Han, Eun Young; Im, Sang Hee
2017-03-15
To assess the feasibility and safety of a 6-week course of water walking performed using a motorized aquatic treadmill in individuals with subacute stroke for cardiorespiratory fitness, walking endurance, and activities of daily living. Twenty subacute stroke patents were randomly assigned to aquatic treadmill exercise (ATE) or land-based exercise (LBE). The ATE group (n = 10) performed water-based aerobic exercise on a motorized aquatic treadmill, and the LBE group (n = 10) performed land-based aerobic exercise on a cycle ergometer. Both groups performed aerobic exercise for 30 minutes, 5 times per week for 6 weeks. Primary outcome measures were 6-minute walk test for walking endurance and cardiopulmonary fitness parameters of a symptom-limited exercise tolerance test, and secondary measures were Korean version of the Modified Barthel Index (K-MBI) for activities of daily living. All variables were assessed at baseline and at the end of the intervention. The ATE group showed significant improvements in 6-minute walk test (P = .005), peak oxygen uptake (V·o2peak; P = .005), peak heart rate (P = .007), exercise tolerance test duration (P = .005), and K-MBI (P = .008). The LBE group showed a significant improvement only in K-MBI (P = .012). In addition, improvement in V·o2peak was greater in the ATE than in the LBE group. This preliminary study showed that a 6-week ATE program improved peak aerobic capacity and walking endurance in patients with subacute stroke. The improvement in V·o2peak after an ATE exercise program was greater than that observed after an LBE program. Therefore, ATE effectively improves cardiopulmonary fitness in patients with subacute stroke.
Weiss, D J; Geor, R J; Burger, K
1996-06-01
To determine whether furosemide treatment altered the blood flow properties and serum and RBC electrolyte concentrations of Thoroughbreds during submaximal treadmill exercise. Thoroughbreds were subjected to submaximal treadmill exercise with and without treatment with furosemide (1 mg/kg of body weight, IV). 5 healthy Throughbreds that had raced within the past year and had no history of exercise-induced pulmonary hemorrhage. Venous blood samples were obtained before exercise, at treadmill speeds of 9 and 13 m/s, and 10 minutes after exercise, and hemorheologic and electrolyte test results were determined. Hemorheologic changes 60 minutes after furosemide administration included increased PCV, plasma total protein concentration, whole blood viscosity, mean RBC volume, and RBC potassium concentration, and decreased serum potassium concentration, serum chloride concentration, and RBC chloride concentration. Furosemide treatment attenuated the exercise-associated changes in RBC size, serum sodium concentration, serum potassium concentration, RBC potassium and chloride concentrations, and RBC density; exacerbated exercise-associated increases in whole blood viscosity; and had no effect on RBC filterability. The hemorheologic effects of furosemide probably occurred secondary to total body and transmembrane fluid and electrolyte fluxes and would not improve blood flow properties. The beneficial effects of furosemide treatment in reducing the severity of bleeding in horses with exercise-induced pulmonary hemorrhage cannot be explained by improved blood flow properties.
Goldberg, Natalie R.S.; Meshul, Charles K.
2011-01-01
Our goal was to extend our understanding of the neural changes behind motor recovery with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse. We determined the extent of dopamine (DA) terminal changes using western immunoblotting [striatal dopamine transporter (DAT) and tyrosine hydroxylase (TH)] and alterations in the mean number of DA cells/section by immunohistochemistry and Nissl staining [TH-labeled cells and thionin-stained cells in the substantia nigra pars compacta (SN-PC)]. We measured recovery of gait performance and amount of spontaneous physical activity using the parallel rod activity chamber (PRAC). We hypothesized that the decrease in TH-labeled neurons in the SN-PC due to MPTP will be partially reversed by treadmill exercise, leading to recovery of motor behavior as measured by the PRAC. Following MPTP or vehicle administration, mice ran on the treadmill for 1 hour per day at 18 cm/s, 5 days per week. Results showed that treadmill exercise improves gait performance and increases physical activity while promoting increased protein expression of striatal DAT and TH. Exercise was effective for all mice, however effects of early treadmill-based intervention appear to have an additional and unique benefit in mice who received MPTP. We are the first to show that, even following a nearly 50% decrease in the mean number of TH-labeled neurons/section in the SN-PC following MPTP, treadmill exercise leads to an increase of neurons in the SN-PC and improved motor behavior. PMID:21315689
Effects of treadmill exercise intensity on spatial working memory and long-term memory in rats.
Wang, Xiao-Qin; Wang, Gong-Wu
2016-03-15
Moderate exercise promotes learning and memory. Most studies mainly focused on memory exercise effects of in the ageing and patients. There is lack of quantitative research about effect of regular exercise intensity on different memory types in normal subjects. Present study investigated the effects of different intensities of treadmill exercise on working memory and long-term memory. Fifty female Wistar rats were trained by T-maze delayed spatial alternation (DSA) task with 3 delays (10s, 60s and 300s). Then they got a 30min treadmill exercise for 30days in 4 intensities (control, 0m/min; lower, 15m/min; middle, 20m/min, and higher, 30m/min). Then animals were tested in DSA, passive avoidance and Morris water maze tasks. 1. Exercise increased the neuronal density of hippocampal subregions (CA1, CA3 and dentate gyrus) vs. naïve/control. 2. In DSA task, all groups have similar baseline, lower intensity improved 10s delay accuracy vs. baseline/control; middle and higher intensities improved 300s delay accuracy vs. baseline/control. 3. In water maze learning, all groups successfully found the platform, but middle intensity improved platform field crossing times vs. control in test phase. Present results suggested that treadmill exercise can improve long-term spatial memory and working memory; lower intensity benefits to short-term delayed working memory, and middle or higher intensity benefits to long-term delayed working memory. There was an inverted U dose-effect relationship between exercise intensity and memory performance, but exercise -working memory effect was impacted by delay duration. Copyright © 2016 Elsevier Inc. All rights reserved.
Long-term moderate treadmill exercise promotes stress-coping strategies in male and female rats.
Lalanza, Jaume F; Sanchez-Roige, Sandra; Cigarroa, Igor; Gagliano, Humberto; Fuentes, Silvia; Armario, Antonio; Capdevila, Lluís; Escorihuela, Rosa M
2015-11-05
Recent evidence has revealed the impact of exercise in alleviating anxiety and mood disorders; however, the exercise protocol that exerts such benefit is far from known. The current study was aimed to assess the effects of long-term moderate exercise on behavioural coping strategies (active vs. passive) and Hypothalamic-Pituitary-Adrenal response in rats. Sprague-Dawley male and female rats were exposed to 32-weeks of treadmill exercise and then tested for two-way active avoidance learning (shuttle-box). Two groups were used as controls: a non-handled sedentary group, receiving no manipulation, and a control group exposed to a stationary treadmill. Female rats displayed shorter escape responses and higher number of avoidance responses, reaching criterion for performance earlier than male rats. In both sexes, exercise shortened escape latencies, increased the total number of avoidances and diminished the number of trials needed to reach criterion for performance. Those effects were greater during acquisition in female rats, but remained over the shuttle-box sessions in treadmill trained male rats. In females, exercise did not change ACTH and corticosterone levels after shuttle-box acquisition. Collectively, treadmill exercise improved active coping strategies in a sex-dependent manner. In a broader context, moderate exercise could serve as a therapeutic intervention for anxiety and mood disorders.
Long-term moderate treadmill exercise promotes stress-coping strategies in male and female rats
Lalanza, Jaume F.; Sanchez-Roige, Sandra; Cigarroa, Igor; Gagliano, Humberto; Fuentes, Silvia; Armario, Antonio; Capdevila, Lluís; Escorihuela, Rosa M.
2015-01-01
Recent evidence has revealed the impact of exercise in alleviating anxiety and mood disorders; however, the exercise protocol that exerts such benefit is far from known. The current study was aimed to assess the effects of long-term moderate exercise on behavioural coping strategies (active vs. passive) and Hypothalamic-Pituitary-Adrenal response in rats. Sprague-Dawley male and female rats were exposed to 32-weeks of treadmill exercise and then tested for two-way active avoidance learning (shuttle-box). Two groups were used as controls: a non-handled sedentary group, receiving no manipulation, and a control group exposed to a stationary treadmill. Female rats displayed shorter escape responses and higher number of avoidance responses, reaching criterion for performance earlier than male rats. In both sexes, exercise shortened escape latencies, increased the total number of avoidances and diminished the number of trials needed to reach criterion for performance. Those effects were greater during acquisition in female rats, but remained over the shuttle-box sessions in treadmill trained male rats. In females, exercise did not change ACTH and corticosterone levels after shuttle-box acquisition. Collectively, treadmill exercise improved active coping strategies in a sex-dependent manner. In a broader context, moderate exercise could serve as a therapeutic intervention for anxiety and mood disorders. PMID:26538081
Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Ji, Eun-Sang; Lim, Baek-Vin
2017-02-01
Parkinson disease is one of the common brain diseases caused by dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. In the present study, the effects of treadmill exercise on motor performance, dopaminergic loss of neurons and fibers, and α-synuclein expression in the nigrostriatum were evaluated using rotenone-induced Parkinson rats. For the induction of Parkinson rats, 3-mg/kg rotenone was injected, once a day for 14 consecutive days. Treadmill running was conducted for 30 min once a day during 14 consecutive days. Rota-rod test for motor balance and coordination and immunohistochemistry for tyrosine hydroxylase and α-synuclein in the nigrostriatum were performed. In the present study, motor balance and coordination was disturbed by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated motor dysfunction in the rotenone-induced Parkinson rats. Nigrostriatal dopaminergic loss of neurons and fibers was occurred by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated nigrostriatal dopaminergic loss of neurons and fibers in the rotenone-induced Parkinson rats. α-Synuclein expression in the nigrostriatum was enhanced by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise suppressed α-synuclein expression in the rotenone-induced Parkinson rats. Treadmill exercise improved motor function through preservation of nigrostriatal dopaminergic neurons and fibers and suppression of nigrostriatal formation of Lewy bodies in rotenone-induced Parkinson rats.
Kim, Dae-Young; Jung, Sun-Young; Kim, Kijeong; Kim, Chang-Ju
2016-08-01
Diabetes mellitus is considered as a risk factor for Alzheimer disease. The aim of the present study was to evaluate the possibility whether treadmill exercise ameliorates Alzheimer disease-associated memory loss in the diabetes mellitus. For this study, the effects of treadmill exercise on short-term memory and spatial learning ability in relation with Wnt signaling pathway were evaluated using the streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intraperitoneal injection of STZ. Step-down avoidance task and 8-arm radial maze test were performed for the memory function. Immunohistochemistry for 5-bro-mo-2'-deoxyridine (BrdU) and doublecortin (DCX) and Western blot for Wnt3 and glycogen synthase kinase-3β (GSK-3β) were conducted. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, 5 times a week, during 12 weeks. In the present results, short-term memory and spatial learning ability were deteriorated by induction of diabetes. Treadmill exercise improved short-term memory and spatial learning ability in the diabetic rats. The numbers of BrdU-positive and DCX-positive cells in the hippocampal dentate gyrus were decreased by induction of diabetes. Treadmill exercise increased these numbers in the diabetic rats. Wnt3 expression in the hippocampus was decreased and GSK-3β expression in the hippocampus was increased by induction of diabetes. Treadmill exercise increased Wnt3 expression and suppressed GSK-3β expression in the diabetic rats. The present study suggests that treadmill exercise alleviates Alzheimer disease-associated memory loss by increasing neurogenesis through activating Wnt signaling pathway in the diabetic rats.
Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee
2015-01-01
Purpose: Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Methods: Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. Results: A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Conclusions: Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function. PMID:25833478
Huang, Tung-Yi; Lin, Lung-Sheng; Cho, Keng-Chi; Chen, Shean-Jen; Kuo, Yu-Min; Yu, Lung; Wu, Fong-Sen; Chuang, Jih-Ing; Chen, Hsiun-Ing; Jen, Chauying J
2012-09-01
Although exercise usually improves motor performance, the underlying cellular changes in the cerebellum remain to be elucidated. This study aimed to investigate whether and how chronic treadmill exercise in young rats induced Purkinje cell changes to improve motor performance and rendered the cerebellum less vulnerable to toxin insults. After 1-wk familiarization of treadmill running, 6-wk-old male Wistar rats were divided into exercise and sedentary groups. The exercise group was then subjected to 8 wk of exercise training at moderate intensity. The rotarod test was carried out to evaluate motor performance. Purkinje cells in cerebellar slices were visualized by lucifer yellow labeling in single neurons and by calbindin immunostaining in groups of neurons. Compared with sedentary control rats, exercised rats not only performed better in the rotarod task, but also showed finer Purkinje cell structure (higher dendritic volume and spine density with the same dendritic field). The exercise-improved cerebellar functions were further evaluated by monitoring the long-lasting effects of intraventricular application of OX7-saporin. In the sedentary group, OX7-saporin treatment retarded the rotarod performance and induced ∼60% Purkinje cell loss in 3 wk. As a comparison, the exercise group showed much milder injuries in the cerebellum by the same toxin treatment. In conclusion, exercise training in young rats increased the dendritic density of Purkinje cells, which might play an important role in improving the motor performance. Furthermore, as Purkinje cells in the exercise group were relatively toxin resistant, the exercised rats showed good motor performance, even under toxin-treated conditions.
Effects of treadmill running on rat gastrocnemius function following botulinum toxin A injection.
Tsai, Sen-Wei; Chen, Chun-Jung; Chen, Hsiao-Lin; Chen, Chuan-Mu; Chang, Yin-Yi
2012-02-01
Exercise can improve and maintain neural or muscular function, but the effects of exercise in physiological adaptation to paralysis caused by botulinum toxin A has not been well studied. Twenty-four rats were randomly assigned into control and treadmill groups. The rats assigned to the treadmill group were trained on a treadmill three times per week with the running speed set at 15 m/min. The duration of training was 20 min/session. Muscle strength, nerve conduction study and sciatic functional index (SFI) were used for functional analysis. Treadmill training improved the SFI at 2, 3, and 4 weeks (p = 0.01, 0.004, and 0.01, respectively). The maximal contraction force of the gastrocnemius muscle in the treadmill group was greater than in the control group (p < 0.05). The percentage of activated fibers was higher in the treadmill botox group than the percentage for the control botox group, which was demonstrated by differences in amplitude and area of compound muscle action potential (CMAP) under the curve between the groups (p < 0.05). After BoNT-A injection, treadmill improved the physiological properties of muscle contraction strength, CMAP amplitude, and the recovery of SFI. Copyright © 2011 Orthopaedic Research Society.
Executive Function and the P300 after Treadmill Exercise and Futsal in College Soccer Players
Won, Junyeon; Wu, Shanshan; Ji, Hongqing; Smith, J. Carson; Park, Jungjun
2017-01-01
(1) Background: Although a body of evidence demonstrates that acute exercise improves executive function, few studies have compared more complex, laboratory-based modes of exercise, such as soccer that involve multiple aspects of the environment. (2) Methods: Twelve experienced soccer players (24.8 ± 2 years) completed three counterbalanced 20 min sessions of (1) seated rest; (2) moderate intensity treadmill exercise; and (3) a game of futsal. Once heart rate returned to within 10% of pre-activity levels, participants completed the Stroop Color Word Conflict Task while reaction time (RT) and P300 event-related potentials were measured. (3) Results: Reaction time during Stroop performance was significantly faster following the futsal game and treadmill exercise compared to the seated rest. The P300 amplitude during Stroop performance was significantly greater following futsal relative to both treadmill and seated-rest conditions. (4) Conclusions: These findings suggest that single bouts of indoor soccer among college-aged soccer players, compared to treadmill and seated-rest conditions, may engender the greatest effect on brain networks controlling attention allocation and classification speed during the performance of an inhibitory control task. Future research is needed to determine if cognitively engaging forms of aerobic exercise may differentially impact executive control processes in less experienced and older adult participants.
Supported treadmill ambulation for amyotrophic lateral sclerosis: a pilot study.
Sanjak, Mohammed; Bravver, Elena; Bockenek, William L; Norton, H James; Brooks, Benjamin R
2010-12-01
To determine the feasibility, tolerability, safety, and exercise treatment-effect size of repetitive rhythmic exercise mediated by supported treadmill ambulation training (STAT) for patients with amyotrophic lateral sclerosis (ALS). Interventional with repeated-measures design. Multidisciplinary ALS clinic at academic medical center. Convenience sample of patients with ALS (N=9) who were ambulatory with assistive devices (Sinaki-Mulder stages II-III). Repetitive rhythmic exercise-STAT (30min total; 5min of exercise intercalated with 5min of rest) performed 3 times a week for 8 weeks. ALS Functional Rating Scale-Revised (ALSFRS-R), percentage of predicted vital capacity (VC), total lower-extremities manual muscle test (MMT), rate of perceived exertion (RPE), Fatigue Severity Scale (FSS), and maximum voluntary isometric contraction (MVIC) in 10 lower and 10 upper extremities. Gait performance, which included walking distance, speed, steps, and stride length, was evaluated during treadmill and ground 6-minute walk tests (6MWTs) and 25-foot walk test (25FWT). Feasibility issues decreased screened participants by 4 patients (31%). Nine patients were enrolled, but 6 patients (67%) completed the study and 3 (23% of original cohort; 33% of enrolled cohort) could not complete the exercise intervention because of non-ALS-related medical problems. Tolerability of the intervention measures during the treadmill 6MWT showed improvement in RPE (P≤.05) and FSS score (P≥.05). Safety measures (ALSFRS-R, VC, MMT) showed no decrease and showed statistical improvement in ALSFRS-R score (P≤.05) during the study interval. Exercise treatment-effect size showed variable improvements. Gait speed, distance, and stride length during the treadmill 6MWT improved significantly (P≤.05) after 4 weeks and improvements were maintained after 8 weeks compared with baseline. Walking distance during the ground 6MWT increased significantly after 4 weeks and was maintained after 8 weeks compared with baseline (P≤.05). Walking speed during the 25FWT and lower-extremity MVIC improved, but were not statistically significant. Repetitive rhythmic exercise-STAT is feasible, tolerated, and safe for patients with ALS. Repetitive rhythmic exercise-STAT treatment-effect size across a number of ALS-related measures was consistent with improved work capacity and gait function in patients with ALS who are dependent on assistive devices for ambulation. Repetitive rhythmic exercise-STAT should be evaluated further in larger studies to determine the stability of this improved function in relation to the rate of progression of the underlying ALS. Copyright © 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
FAIRMAN, CIARAN M.; KENDALL, KRISTINA L.; HARRIS, BRANDONN S.; CRANDALL, KENNETH J.; MCMILLAN, JIM
2016-01-01
Breast Cancer survivors can experience a myriad of physical and psychological benefits as a result of regular exercise. This study aimed to build on previous research using lower impact exercise programs by using an antigravity (Alter-G®) treadmill to administer cardiovascular training. The purpose of this study was to determine the effectiveness a physical activity program, including an Alter-G® treadmill, for improving physiological and psychosocial measures in female breast cancer survivors. A 14-week intervention using an AB-AB study design was employed. Six female breast cancer survivors were recruited to participate in the study. Participants attended three 60-minute sessions per week, consisting of a combination of muscular strength/endurance, and cardiovascular endurance exercises. Consistent with current literature and guidelines, exercise interventions were individualized and tailored to suit individuals. Data was collected and analyzed in 2013. Visual inspection of results found improvements in cardiovascular endurance and measures of body composition. Quality of life was maintained and in some cases, improved. Finally, no adverse effects were reported from the participants, and adherence to the program for those who completed the study was 97%. The results of this study suggest that the use of a physical activity program in combination with an Alter-G® treadmill may provide practical and meaningful improvements in measures of cardiovascular endurance and body composition. PMID:27293508
Fairman, Ciaran M; Kendall, Kristina L; Harris, Brandonn S; Crandall, Kenneth J; McMillan, Jim
Breast Cancer survivors can experience a myriad of physical and psychological benefits as a result of regular exercise. This study aimed to build on previous research using lower impact exercise programs by using an antigravity (Alter-G ® ) treadmill to administer cardiovascular training. The purpose of this study was to determine the effectiveness a physical activity program, including an Alter-G ® treadmill, for improving physiological and psychosocial measures in female breast cancer survivors. A 14-week intervention using an AB-AB study design was employed. Six female breast cancer survivors were recruited to participate in the study. Participants attended three 60-minute sessions per week, consisting of a combination of muscular strength/endurance, and cardiovascular endurance exercises. Consistent with current literature and guidelines, exercise interventions were individualized and tailored to suit individuals. Data was collected and analyzed in 2013. Visual inspection of results found improvements in cardiovascular endurance and measures of body composition. Quality of life was maintained and in some cases, improved. Finally, no adverse effects were reported from the participants, and adherence to the program for those who completed the study was 97%. The results of this study suggest that the use of a physical activity program in combination with an Alter-G ® treadmill may provide practical and meaningful improvements in measures of cardiovascular endurance and body composition.
Earhart, Gammon M; Duncan, Ryan P; Huang, John L; Perlmutter, Joel S; Pickett, Kristen A
2015-02-05
Effective treatment of locomotor dysfunction in Parkinson disease (PD) is essential, as gait difficulty is an early and major contributor to disability. Exercise is recommended as an adjunct to traditional treatments for improving gait, balance, and quality of life. Among the exercise approaches known to improve walking, tango and treadmill training have recently emerged as two promising therapies for improving gait, disease severity and quality of life, yet these two interventions have not been directly compared to each other. Prior studies have been helpful in identifying interventions effective in improving gait function, but have done little to elucidate the neural mechanisms underlying functional improvements. The primary objective of the proposed work is to compare the effects of three community-based exercise programs, tango, treadmill training and stretching, on locomotor function in individuals with PD. In addition, we aim to determine whether and how these interventions alter functional connectivity of locomotor control networks in the brain. One hundred and twenty right-handed individuals with idiopathic PD who are at least 30 years of age will be assigned in successive waves to one of three community-based exercise groups: tango dancing, treadmill training or stretching (control). Each group will receive three months of exercise training with twice weekly one-hour group classes. Each participant will be evaluated at three time points: pre-intervention (baseline), post-intervention (3 months), and follow-up (6 months). All evaluations will include assessment of gait, balance, disease severity, and quality of life. Baseline and post-intervention evaluations will also include task-based functional magnetic resonance imaging (fMRI) and resting state functional connectivity MRI. All MRI and behavioral measures will be conducted with participants OFF anti-Parkinson medication, with behavioral measures also assessed ON medication. This study will provide important insights regarding the effects of different modes of exercise on locomotor function in PD. The protocol is innovative because it: 1) uses group exercise approaches for all conditions including treadmill training, 2) directly compares tango to treadmill training and stretching, 3) tests participants OFF medication, and 4) utilizes two distinct neuroimaging approaches to explore mechanisms of the effects of exercise on the brain. ClinicalTrials.gov NCT01768832 .
Treadmill exercise alleviates chronic mild stress-induced depression in rats.
Lee, Taeck-Hyun; Kim, Kijeong; Shin, Mal-Soon; Kim, Chang-Ju; Lim, Baek-Vin
2015-12-01
Depression is a major cause of disability and one of the most common public health problems. In the present study, antidepressive effect of treadmill exercise on chronic mild stress (CMS)-induced depression in rats was investigated. For this, sucrose intake test, immunohistochemistry for 5-bromo-2'-deoxyuridine, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Western blot analysis for brain-derived neurotrophic factor, cyclic adenosine monophosphate response element binding protein, and endothelial nitric oxide synthase were conducted. Following adaptation to the animal vivarium and two baseline fluid intake tests, the animals were divided into four groups: the control group, the CMS-induced depression group, the CMS-induced depression and exercise group, and the CMS-induced depression and fluoxetine-treated group. The animals in the CMS groups were exposed to the CMS conditions for 8 weeks and those in the control group were exposed to the control conditions for 8 weeks. After 4 weeks of CMS, the rats in the CMS-induced depression and exercise group were made to run on a motorized treadmill for 30 min once a day for 4 weeks. In the present results, treadmill exercise alleviated CMS-induced depressive symptoms. Treadmill exercise restored sucrose consumption, increased cell proliferation, and decreased apoptotic cell death. The present results suggest the possibility that exercise may improve symptoms of depression.
Lee, Yong Ki; Kim, Bo Ryun; Han, Eun Young
2017-05-01
The aim of this work was to investigate the cardiorespiratory responses of patients with subacute stroke to exercise stress tests with aquatic and land treadmills. Twenty-one consecutive patients who presented with first-ever subacute stroke in 2013-2015. All subjects underwent symptom-limited incremental exercise testing with aquatic and land treadmills. Land treadmill speed started at 1.5 km/h and increased 0.5 km/h every 1 to 2 minutes until maximal tolerable speed was achieved. Thereafter, the grade was elevated by 2% every 2 minutes. In the aquatic treadmill test, subjects were submerged to the xiphoid in 28°C water. Treadmill speed started at 1.5 km/h and was increased 0.5 km/h every 2 minutes thereafter. Cardiorespiratory responses were recorded with aquatic and land treadmills. Compared to land treadmill exercise, aquatic treadmill exercise achieved significantly better peak VO2 (22.0 vs 20.0; P = 0.02), peak metabolic equivalents (6.3 vs 5.8; P = 0.02), and peak rating of perceived exertion (17.6 vs 18.4, P = 0.01). Heart rate and VO2 correlated significantly during both tests (land treadmill: r = 0.96, P < 0.001; aquatic treadmill: r = 0.99, P < 0.001). Aquatic treadmill exercise elicited significantly better peak cardiorespiratory responses than land treadmill exercise and may be as effective for early intensive aerobic training in subacute stroke patients.
On-Orbit Evaluation of a New Treadmill Harness for Improved Crewmember Comfort and Load Distribution
NASA Technical Reports Server (NTRS)
Perusek, G. P.; Sheehan, C. C.; Savina, M. C.; Owings, T. M.; Davis, B. L.; Ryder, J. W.
2011-01-01
The current design of the International Space Station (ISS) Treadmill Harness has been reported to cause pain and discomfort to crewmembers during exercise. The Harness Station Development Test Objective (SDTO) provided participating crewmembers (n = 6) with a new harness design, the "Glenn Harness," to evaluate for comfort and loading as compared to the current Treadmill Harness. A novel suite of load-sensing instrumentation was developed to noninvasively measure load distribution and provided a first-ever quantification of actual dynamic loads during treadmill exercise. In addition, crew debriefs provided feedback on harness preference and overall impressions. Conclusions: Post-flight analysis in returned Glenn Harnesses (n = 3) showed minimal wear and tear. Four of the six subjects found the Glenn Harness to be more comfortable in this on-orbit, side-by-side comparison as measured by the crew comfort questionnaire and crew debriefs. Specific areas for improvement have been identified, and forward recommendations will be provided to the Human Research Program. The protocol developed for the SDTO provided valuable insight into crew comfort issues, design improvements, and loading preferences for exercise harnessing, which lays the groundwork for better harnessing systems and training protocols.
Arcoverde, Cynthia; Deslandes, Andrea; Moraes, Helena; Almeida, Cloyra; Araujo, Narahyana Bom de; Vasques, Paulo Eduardo; Silveira, Heitor; Laks, Jerson
2014-03-01
To assess the effect of aerobic exercise on the cognition and functional capacity in Alzheimer's disease (AD) patients. Elderly (n=20) with mild dementia (NINCDS-ADRDA/CDR1) were randomly assigned to an exercise group (EG) on a treadmill (30 minutes, twice a week and moderate intensity of 60% VO₂max) and control group (GC) 10 patients. The primary outcome measure was the cognitive function using Cambridge Cognitive Examination (CAMCOG). Specifics instruments were also applied to evaluate executive function, memory, attention and concentration, cognitive flexibility, inhibitory control and functional capacity. After 16 weeks, the EG showed improvement in cognition CAMCOG whereas the CG declined. Compared to the CG, the EG presented significant improvement on the functional capacity. The analysis of the effect size has shown a favorable response to the physical exercise in all dependent variables. Walking on treadmill may be recommended as an augmentation treatment for patients with AD.
Treadmill Exercise Within LBNP as an Integrated Coutermeasure to Microgravity
NASA Technical Reports Server (NTRS)
Lee, Stuart; Hargens, A. R.; Schneider, S. M.; Watenpaugh, D. E.
2010-01-01
An integrated exercise countermeasure for microgravity is needed to protect multiple physiologic systems and save crew time. Such a countermeasure should protect orthostatic tolerance, upright ambulatory capability (including sprinting), aerobic capacity, muscle strength/endurance, and other physiologic parameters relevant to human performance. We developed a novel physiologic countermeasure, treadmill exercise within LBNP, for preventing cardiovascular and musculoskeletal deconditioning associated with prolonged bed rest and spaceflight. We evaluated 40 min of daily LBNP treadmill exercise by a battery of physiologic parameters relevant to maintaining exercise performance and health of both women and men during bed-rest (simulated microgravity) studies lasting from 5 to 60 days. For 30 day studies, we employed identical twins with one twin as the control and the other twin as the exerciser to improve comparative power. During the WISE 60-day HDT study, the treadmill exercise within LBNP was performed 3-4 days each week and resistive exercise was performed 2-3 days each week. Our treadmill within LBNP protocol maintained plasma volume and sprint speed (30 day HDT bed-rest studies of identical twins), orthostatic tolerance to a degree, upright exercise capacity, muscle strength and endurance, and some bone parameters during 30 day (twin studies) and 60 day (WISE-2005) bed-rest simulations of microgravity. When combining treadmill exercise within LBNP and resistive exercise (WISE), cardiac mass increased significantly in the exercise (EX) group during bed rest relative to controls (CON). Upright peak VO2, and knee extensor strength and endurance decreased significantly in CON subjects; but these parameters were preserved in the EX group. In the 60 day WISE study, each LBNP exercise session was followed immediately by 10 minutes of static LBNP, and the last such session occurred three days before the end of bed rest. Still, orthostatic tolerance was better maintained in the EX group than in the CON group. Therefore, these collective peer-reviewed results document that our treadmill exercise within LBNP countermeasure safely and efficiently protects multiple physiologic systems in women and men during bed-rest studies of up to 60 days. Supported by NASA grants NNJ04HF71G and NAG 9-1425, NIH grant GCRC M01 RR00827 and by WISE support from ESA, NASA, CSA, and CNES.
Phototherapy during treadmill training improves quadriceps performance in postmenopausal women.
Paolillo, F R; Corazza, A V; Paolillo, A R; Borghi-Silva, A; Arena, R; Kurachi, C; Bagnato, V S
2014-06-01
To evaluate the effects of infrared-light-emitting diode (LED) during treadmill training on functional performance. Thirty postmenopausal women aged 50-60 years were randomly assigned to one of three groups and successfully completed the full study. The three groups were: (1) the LED group, which performed treadmill training associated with phototherapy (n = 10); (2) the exercise group, which carried out treadmill training only (n = 10); and (3) the sedentary group, which neither performed physical training nor underwent phototherapy (n = 10). Training was performed over a period of 6 months, twice a week for 45 min per session at 85-90% of maximal heart rate, which was obtained during progressive exercise testing. The irradiation parameters were 100 mW, 39 mW/cm(2) and 108 J/cm(2) for 45 min. Quadriceps performance was measured during isokinetic exercise testing at 60°/s and 300°/s. Peak torque did not differ amongst the groups. However, the results showed significantly higher values of power and total work for the LED group (∆ = 21 ± 6 W and ∆ = 634 ± 156 J, p < 0.05) when compared to both the exercise group (∆ = 13 ± 10 W and = 410 ± 270 J) and the sedentary group (∆ = 10 ± 9 W and ∆ = 357 ± 327 J). Fatigue was also significantly lower in the LED group (∆ = -7 ± 4%, p < 0.05) compared to both the exercise group (∆ = 3 ± 8%) and the sedentary group (∆ = -2 ± 6%). Infrared-LED during treadmill training may improve quadriceps power and reduce peripheral fatigue in postmenopausal women.
Lan, Xiaofang; Zhang, Meng; Yang, Wan; Zheng, Zongju; Wu, Yuan; Zeng, Qian; Liu, Shudong; Liu, Ke; Li, Guangqin
2014-05-01
It has been well documented that exercise promotes neurological rehabilitation in patients with cerebral ischemia. However, the exact mechanisms have not been fully elucidated. This study aimed to discuss the effect of treadmill exercise on expression levels of 5-HT, 5-HT1A receptor (5-HT1AR) and brain derived neurophic factor (BDNF) in rat brains after permanent middle cerebral artery occlusion (pMCAO). A total of 55 rats were randomly divided into 3 groups: pMCAO group, pMCAO and treadmill exercise (pMCAO + Ex) group, and sham-operated group. Rats in pMCAO + Ex group underwent treadmill exercise for 16 days. Neurological function was evaluated by modified Neurological Severity Scores (mNSS). High-performance liquid chromatography-electrochemical detection system was used to determine the content of 5-HT in cortex tissues. The protein levels of 5-HT1AR, BDNF and synaptophysin were measured by Western blot. The mNSS in pMCAO + Ex group was lower than that in pMCAO group on day 19 post-MCAO (p < 0.001). The content of 5-HT dropped to 3.81 ± 1.86 ng/ml in pMCAO group (43.84 ± 2.05 ng/ml in sham-operated group), but increased in pMCAO + Ex group (10.06 ± 1.80 ng/ml). The protein expressions levels of synaptophysin, 5-HT1AR and BDNF were downregulated after cerebral ischemia (p < 0.05), and upregulated after treadmill exercise (p < 0.05). These results indicate that treadmill exercise improves neurologic function, enhances neuronal plasticity and upregulates the levels of 5-HT, 5-HT1AR and BDNF in rats with pMCAO.
Sielski, Łukasz; Sutkowy, Paweł; Skopowska, Agnieszka; Pawlak-Osińska, Katarzyna; Augustyńska, Zofia; Hewelt, Katarzyna; Drapała, Radosław; Woźniak, Alina
2018-01-01
The AlterG antigravity treadmill allows running with a considerable weight reduction. Physical exercise practiced on this treadmill is an innovative method supporting the treatment of injuries in sports and rehabilitation of patients. The aim of the study was to investigate the effect of a 30 min run on the AlterG treadmill with 80% body weight reduction comparing the effect to the similar effort on the classic treadmill on the redox equilibrium and the activity of selected lysosomal enzymes and a serine protease inhibitor in the blood of amateur minor female volleyball players. Venous blood samples were taken before the exercise and 30 minutes and 24 hours after its completion. The obtained results were analysed using Tukey's test and Pearson's linear correlations were calculated. 24 h after the running test on classic treadmill, the erythrocytic superoxide dismutase activity was higher than before and 30 min after it, as well as compared to the run on AlterG treadmill ( p < 0.001). The erythrocytic-conjugated diene concentration 24 h after the exercise on the classic treadmill was meaningly higher compared to that after the exercise on the AlterG treadmill ( p < 0.001). The cathepsin D activity was significantly lower after the exercise in AlterG conditions compared to the baseline value and that measured after the exercise on classic treadmill ( p < 0.001). It seems that the exercise on the AlterG treadmill keeps the oxidant-antioxidant equilibrium and stabilizes lysosomal membranes in young, physically active women in contrast to the exercise on the classic treadmill. This trial is registered with CTRI/2018/01/011344.
Sielski, Łukasz; Skopowska, Agnieszka; Pawlak-Osińska, Katarzyna; Augustyńska, Zofia; Hewelt, Katarzyna; Drapała, Radosław
2018-01-01
The AlterG antigravity treadmill allows running with a considerable weight reduction. Physical exercise practiced on this treadmill is an innovative method supporting the treatment of injuries in sports and rehabilitation of patients. The aim of the study was to investigate the effect of a 30 min run on the AlterG treadmill with 80% body weight reduction comparing the effect to the similar effort on the classic treadmill on the redox equilibrium and the activity of selected lysosomal enzymes and a serine protease inhibitor in the blood of amateur minor female volleyball players. Venous blood samples were taken before the exercise and 30 minutes and 24 hours after its completion. The obtained results were analysed using Tukey's test and Pearson's linear correlations were calculated. 24 h after the running test on classic treadmill, the erythrocytic superoxide dismutase activity was higher than before and 30 min after it, as well as compared to the run on AlterG treadmill (p < 0.001). The erythrocytic-conjugated diene concentration 24 h after the exercise on the classic treadmill was meaningly higher compared to that after the exercise on the AlterG treadmill (p < 0.001). The cathepsin D activity was significantly lower after the exercise in AlterG conditions compared to the baseline value and that measured after the exercise on classic treadmill (p < 0.001). It seems that the exercise on the AlterG treadmill keeps the oxidant–antioxidant equilibrium and stabilizes lysosomal membranes in young, physically active women in contrast to the exercise on the classic treadmill. This trial is registered with CTRI/2018/01/011344. PMID:29765494
Mikami, Yukio; Fukuhara, Kouki; Kawae, Toshihiro; Kimura, Hiroaki; Ochi, Mitsuo
2015-12-01
The aim of this case study was to verify the efficacy and safety of anti-gravity treadmill training for prosthetic rehabilitation following below-knee amputation. The patient underwent left below-knee amputation as a result of diabetic foot gangrene. Since his physical strength and vitality had declined during the perioperative period, anti-gravity treadmill training was introduced for his outpatient prosthetic rehabilitation. Stable prosthetic gait exercise could be carried out under guidance on the anti-gravity treadmill, quickly resulting in improved gait. Furthermore, the patient's self-efficacy and exercise tolerance were elevated after the period of anti-gravity treadmill training. At the final evaluation following 6 weeks of rehabilitation with the anti-gravity treadmill, he had acquired prosthetic gait with the assistance of a T-cane. The anti-gravity treadmill was found to be a useful instrument for prosthetic rehabilitation following below-knee amputation. Anti-gravity treadmill training has the potential to support the prosthetic rehabilitation of below-knee amputees, especially for patients whose physical strength and vitality are decreased. © The International Society for Prosthetics and Orthotics 2014.
NASA Technical Reports Server (NTRS)
Boda, Wanda; Hargens, Alan R.; Aratow, Michael; Ballard, Richard E.; Hutchinson, Karen; Murthy, Gita; Campbell, James
1994-01-01
The purpose of this study is to compare footward forces, gait kinematics, and muscle activation patterns (EMG) generated during supine treadmill exercise against LBNP with the same parameters during supine bungee resistance exercise and upright treadmill exercise. We hypothesize that the three conditions will be similar. These results will help validate treadmill exercise during LBNP as a viable technique to simulate gravity during space flight. We are evaluating LBNP as a means to load the musculoskeletal and cardiovascular systems without gravity. Such loading should help prevent physiologic deconditioning during space flight. The best ground-based simulation of LBNP treadmill exercise in microgravity is supine LBNP treadmill exercise on Earth because the supine footward force vector is neither directed nor supplemented by Earth's gravity.
Prescribing water-based exercise from treadmill and arm ergometry in cardiac patients.
Fernhall, B; Manfredi, T G; Congdon, K
1992-01-01
This study investigated the appropriateness of prescribing upright water-based exercise from treadmill and arm ergometry in uncomplicated, trained patients with cardiovascular disease (CVD) who were accustomed to water-based activities. Ten male patients with established CVD (mean age 59.4 +/- 8.7 yr) underwent maximal treadmill and arm ergometry in randomized counterbalanced order (half of the patients completed the treadmill test first and the other half completed the arm ergometer test first). Electrocardiographic (ECG), rating of perceived exertion (RPE), and oxygen uptake (VO2) measurements were made during both tests. Patients performed upright water-based exercise at 60, 70, and 80% of their maximal treadmill heart rate for 6 min at each intensity in a heated pool with a water temperature of 28-30 degrees C. They also performed an easy tethered swim, defined as performing at a comfortable exercise intensity, eliciting a heart rate of 86% of the treadmill maximum. VO2 and RPE were collected for all water-based exercise. To compare the RPE and VO2 between water-based, treadmill, and arm ergometry exercise, individual regression equations were constructed between heart rate, VO2, and RPE for both treadmill and arm ergometry tests. VO2 and RPE were then compared at the same heart rates between the three exercise modes. At 60% intensity, treadmill exercise exhibited a higher VO2 than water-based and arm ergometry exercise (P less than 0.05) but similar RPE. At 70%, treadmill exercise still yielded higher VO2, but also lower RPE than (P less than 0.05) and arm ergometry exercise (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)
Stoller, Oliver; de Bruin, Eling D; Schuster-Amft, Corina; Schindelholz, Matthias; de Bie, Rob A; Hunt, Kenneth J
2013-09-22
After experiencing a stroke, most individuals also suffer from cardiac disease, are immobile and thus have low endurance for exercise. Aerobic capacity is seriously reduced in these individuals and does not reach reasonable levels after conventional rehabilitation programmes. Cardiovascular exercise is beneficial for improvement of aerobic capacity in mild to moderate stroke. However, less is known about its impact on aerobic capacity, motor recovery, and quality-of-life in severely impaired individuals. The aim of this pilot study is to explore the clinical efficacy and feasibility of cardiovascular exercise with regard to aerobic capacity, motor recovery, and quality-of-life using feedback-controlled robotics-assisted treadmill exercise in non-ambulatory individuals soon after experiencing a stroke. This will be a single-centred single blind, randomised control trial with a pre-post intervention design. Subjects will be recruited early after their first stroke (≤20 weeks) at a neurological rehabilitation clinic and will be randomly allocated to an inpatient cardiovascular exercise programme that uses feedback-controlled robotics-assisted treadmill exercise (experimental) or to conventional robotics-assisted treadmill exercise (control). Intervention duration depends on the duration of each subject's inpatient rehabilitation period. Aerobic capacity, as the primary outcome measure, will be assessed using feedback-controlled robotics-assisted treadmill-based cardiopulmonary exercise testing. Secondary outcome measures will include gait speed, walking endurance, standing function, and quality-of-life. Outcome assessment will be conducted at baseline, after each 4-week intervention period, and before clinical discharge. Ethical approval has been obtained. Whether cardiovascular exercise in non-ambulatory individuals early after stroke has an impact on aerobic capacity, motor recovery, and quality-of-life is not yet known. Feedback-controlled robotics-assisted treadmill exercise is a relatively recent intervention method and might be used to train and evaluate aerobic capacity in this population. The present pilot trial is expected to provide new insights into the implementation of early cardiovascular exercise for individuals with severe motor impairment. The findings of this study may guide future research to explore the effects of early cardiovascular activation after severe neurological events. This trial is registered with the Clinical Trials.gov Registry (NCT01679600).
Choi, Jun Hwan; Kim, Bo Ryun; Joo, Seung Jae; Han, Eun Young; Kim, Song Yi; Kim, Sun Mi; Lee, So Young; Yoon, Ho Min
2015-01-01
To investigate cardiorespiratory responses during exercise stress tests using an aquatic treadmill and a land-based treadmill in patients with coronary artery disease (CAD). Twenty-one stable CAD patients were enrolled. All patients participated in 2 symptom-limited incremental exercise tests, using both an aquatic and a land treadmill. For the aquatic treadmill protocol, patients were submerged to the upper waist in 28°C water. The treadmill speed started at 2.0 km/h and increased 0.5 km/h every minute thereafter. For the land treadmill protocol, the speed and gradient were started at 2.4 km/h and 1.5%, respectively. The speed was increased by 0.3 km/h and grade by 1% every minute thereafter. Oxygen consumption ((Equation is included in full-text article.)O2), heart rate (HR), and respiratory exchange ratio were measured continuously and peak values recorded. Rating of perceived exertion, percentage of age-predicted maximal HR, and total exercise duration were also recorded. Peak cardiorespiratory responses during both protocols were compared. The peak (Equation is included in full-text article.)O2 and peak HR did not show any significant differences. The peak respiratory exchange ratio was significantly greater using the land treadmill than the aquatic treadmill protocol. Rating of perceived exertion, age-predicted maximal HR percentage, and total exercise duration were similar for both protocols. There was a significant linear relationship between HR and (Equation is included in full-text article.)O2 with both protocols. This study demonstrated that aquatic treadmill exercise elicits similar peak cardiorespiratory responses compared with land treadmill exercise, suggesting that aquatic treadmill exercise may be effective for CAD patients in cardiac rehabilitation.
Ji, Eun-Sang; Kim, Chang-Ju; Park, Jun Heon; Bahn, Geon Ho
2014-04-01
Attention-deficit hyperactivity disorder (ADHD) is a common neurobehavioral disorder, and its symptoms are hyperactivity and deficits in learning and memory. Physical exercise increases dopamine synthesis and neuronal activity in various brain regions. In the present study, we investigate the duration-dependence of the treadmill exercise on hyperactivity in relation with dopamine expression in ADHD. Spontaneously hypertensive rats were used for the ADHD rats and Wistar-Kyoto rats were used for the control rats. The rats in the exercise groups were forced to run on a treadmill for 10 min, 30 min, and 60 min once daily for 28 consecutive days. For this experiment, open field test and immunohistochemistry for tyrosine hydroxylase were conducted. The present results revealed that ADHD rats showed hyperactivity, and tyrosine hydroxylase expression in the striatum and substantia nigra were decreased in ADHD rats. Treadmill exercise alleviated hyperactivity and also increased TH expression in ADHD rats. Treadmill exercise for 30 min per day showed most potent suppressing effect on hyperactivity, and this dose of treadmill exercise also most potently inhibited tyrosine hydroxylase expression. The present study suggests that treadmill exercise for 30 min once a day is the most effective therapeutic intervention for ADHD patients.
Determinants of Time to Fatigue during Non-Motorized Treadmill Exercise
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Lee, M. C.; Wilson, Cassie A.; Hagan, R. Donald
2007-01-01
Treadmill exercise is commonly used for aerobic and anaerobic conditioning. During non-motorized treadmill exercise, the subject must provide the power necessary to drive the treadmill belt. The purpose of this study was to determine what factors affected the time to fatigue on a pair of non-motorized treadmills. Twenty subjects (10 males/10 females) attempted to complete five minutes of locomotion during separate trials at 3.22, 4.83, 6.44, 8.05, 9.66, and 11.27 km (raised dot) h(sup -1). Total exercise time (less than or equal to 5 min) was recorded. Exercise time was converted to the amount of 15 second intervals completed. Peak oxygen uptake (VO2) was measured using a graded exercise test on a standard treadmill, and anthropometric measures were collected from each subject before entering into the study. A Cox proportional hazards regression model was used to determine significant predictive factors in a multivariate analysis. Non-motorized treadmill speed and absolute peak VO2 were found to be significant predictors of exercise time, but there was no effect of anthropometric characteristics. Gender was found to be a predictor of treadmill time, but this was likely due to a higher peak VO2 in males than in females. These results were not affected by the type of treadmill tested in this study. Coaches and therapists should consider the cardiovascular fitness of an athlete or client when prescribing target speed since these factors are related to the total exercise time than can be achieved on a non-motorized treadmill.
Ahn, Ji Hyeon; Shin, Myoung Cheol; Park, Joon Ha; Kim, In Hye; Cho, Jeong-Hwi; Lee, Tae-Kyeong; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich Na; Tae, Hyun-Jin; Park, Jinseu; Choi, Soo Young; Lee, Yun Lyul; Kim, Dae Won; Kim, Yang Hee; Won, Moo-Ho; Cho, Jun Hwi
2017-01-01
Therapeutic exercise is an integral component of the rehabilitation of patients who have suffered a stroke. The objective of the present study was to use immunohistochemistry to investigate the effects of post-ischemic exercise on neuronal damage or death and gliosis in the aged gerbil hippocampus following transient cerebral ischemia. Aged gerbils (male; age, 22–24 months) underwent ischemia and were subjected to treadmill exercise for 1 or 4 weeks. Neuronal death was detected in the stratum pyramidale of the hippocampal CA1 region and in the polymorphic layer of the dentate gyrus using cresyl violet and Fluoro-Jade B histofluorescence staining. No significant difference in neuronal death was identified following 1 or 4 weeks of post-ischemic treadmill exercise. However, post-ischemic treadmill exercise affected gliosis (the activation of astrocytes and microglia). Glial fibrillary acidic protein-immunoreactive astrocytes and ionized calcium binding adaptor molecule 1-immunoreactive microglia were activated in the CA1 and polymorphic layer of the dentate gyrus of the group without treadmill exercise. Conversely, 4 weeks of treadmill exercise significantly alleviated ischemia-induced astrocyte and microglial activation; however, 1 week of treadmill exercise did not alleviate gliosis. These findings suggest that long-term post-ischemic treadmill exercise following transient cerebral ischemia does not influence neuronal protection; however, it may effectively alleviate transient cerebral ischemia-induced astrocyte and microglial activation in the aged hippocampus. PMID:28440411
Analysis of physical exercises and exercise protocols for space transportation system operation
NASA Technical Reports Server (NTRS)
Coleman, A. E.
1982-01-01
A quantitative evaluation of the Thornton-Whitmore treadmill was made so that informed management decisions regarding the role of this treadmill in operational flight crew exercise programs could be made. Specific tasks to be completed were: The Thornton-Whitmore passive treadmill as an exercise device at one-g was evaluated. Hardware, harness and restraint systems for use with the Thornton-Whitmore treadmill in the laboratory and in Shuttle flights were established. The quantitative and qualitative performance of human subjects on the Thorton-Whitmore treadmill with forces in excess of one-g, was evaluated. The performance of human subjects on the Thornton-Whitmore treadmill in weightlessness (onboard Shuttle flights) was also determined.
Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin
2015-04-01
Previous results indicated that stress impairs learning and memory. In this research, the effects of preventive, therapeutic and regular continually running activity on chronic stress-induced memory deficit in rats were investigated. 70 male rats were randomly divided into seven groups as follows: Control, Sham, Stress-Rest, Rest-Stress, Stress-Exercise, Exercise-Stress and Exercise-Stress & Exercise groups. Chronic restraint stress was applied 6 h/day for 21days and treadmill running 1 h/day. Memory function was evaluated by the passive avoidance test. The results revealed that running activities had therapeutic effect on mid and long-term memory deficit and preventive effects on short and mid-term memory deficit in stressed rats. Regular continually running activity improved mid and long-term memory compared to Exercise-Stress group. The beneficial effects of exercise were time-dependent in stress conditions. Finally, data corresponded to the possibility that treadmill running had a more important role on treatment rather than on prevention on memory impairment induced by stress. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gottlieb-Vedi, M; Lindholm, A
1997-05-17
The responses in heart rate, plasma lactate and rectal temperature of standardbred trotters to draught loaded interval exercise on a treadmill and a race track were studied. The horses were exercised with incrementally increasing trotting speeds for two-minute intervals with draught loads of 10, 20 and 30 kilopond (kp) in three different tests. Each trotting interval was followed by two-minute periods at a walk without a draught load. Measurements of heart rate and plasma lactate were made at the end of each interval and the rectal temperature was taken at the end of the exercise. The heart rate and plasma lactate levels were significantly lower on the treadmill than on the track in the tests with 10 kp, but no significant differences were found between the treadmill and track exercise tests with the heavier draught resistances. No differences were observed in rectal temperature between treadmill and track conditions. From these findings it was concluded that the workload was significantly greater on the race track compared to the treadmill when the draught resistance was low (10 kp). Although the workload increased on both the race track and the treadmill as draught resistance increased, at the heavier draught resistances track exercise was no longer more demanding than exercise on the treadmill.
O'Leary, Kevin C; Pontifex, Matthew B; Scudder, Mark R; Brown, Michael L; Hillman, Charles H
2011-08-01
The effects of single bouts of aerobic exercise, exergaming, and action videogame play on event-related brain potentials (ERPs) and task performance indices of cognitive control were investigated using a modified flanker task that manipulated demands of attentional inhibition. Participants completed four counterbalanced sessions of 20 min of activity intervention (i.e., seated rest, seated videogame play, and treadmill-based and exergame-based aerobic exercise at 60% HR(max)) followed by cognitive testing once heart rate (HR) returned to within 10% of pre-activity levels. Results indicated decreased RT interference following treadmill exercise relative to seated rest and videogame play. P3 amplitude was increased following treadmill exercise relative to rest, suggesting an increased allocation of attentional resources during stimulus engagement. The seated videogame and exergame conditions did not differ from any other condition. The findings indicate that single bouts of treadmill exercise may improve cognitive control through an increase in the allocation of attentional resources and greater interference control during cognitively demanding tasks. However, similar benefits may not be derived following short bouts of aerobic exergaming or seated videogame participation. Although exergames may increase physical activity participation, they may not exert the same benefits to brain and cognition as more traditional physical activity behaviors. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
2013-01-01
Background After experiencing a stroke, most individuals also suffer from cardiac disease, are immobile and thus have low endurance for exercise. Aerobic capacity is seriously reduced in these individuals and does not reach reasonable levels after conventional rehabilitation programmes. Cardiovascular exercise is beneficial for improvement of aerobic capacity in mild to moderate stroke. However, less is known about its impact on aerobic capacity, motor recovery, and quality-of-life in severely impaired individuals. The aim of this pilot study is to explore the clinical efficacy and feasibility of cardiovascular exercise with regard to aerobic capacity, motor recovery, and quality-of-life using feedback-controlled robotics-assisted treadmill exercise in non-ambulatory individuals soon after experiencing a stroke. Methods/Design This will be a single-centred single blind, randomised control trial with a pre-post intervention design. Subjects will be recruited early after their first stroke (≤20 weeks) at a neurological rehabilitation clinic and will be randomly allocated to an inpatient cardiovascular exercise programme that uses feedback-controlled robotics-assisted treadmill exercise (experimental) or to conventional robotics-assisted treadmill exercise (control). Intervention duration depends on the duration of each subject’s inpatient rehabilitation period. Aerobic capacity, as the primary outcome measure, will be assessed using feedback-controlled robotics-assisted treadmill-based cardiopulmonary exercise testing. Secondary outcome measures will include gait speed, walking endurance, standing function, and quality-of-life. Outcome assessment will be conducted at baseline, after each 4-week intervention period, and before clinical discharge. Ethical approval has been obtained. Discussion Whether cardiovascular exercise in non-ambulatory individuals early after stroke has an impact on aerobic capacity, motor recovery, and quality-of-life is not yet known. Feedback-controlled robotics-assisted treadmill exercise is a relatively recent intervention method and might be used to train and evaluate aerobic capacity in this population. The present pilot trial is expected to provide new insights into the implementation of early cardiovascular exercise for individuals with severe motor impairment. The findings of this study may guide future research to explore the effects of early cardiovascular activation after severe neurological events. Trial registration This trial is registered with the Clinical Trials.gov Registry (NCT01679600). PMID:24053609
Cevik, Ozge Selin; Sahin, Leyla; Tamer, Lulufer
2018-05-01
The type and duration of exposure to stress is an important influence on emotional and cognitive functions. Learning is the adaptive response of the central nervous system that occurs in hippocampus which affects from environmental factors like exercise. In this study, we investigated effects of long term treadmill exercise on learning and behavior on chronic social isolated rat. Male Wistar rats (n = 32) randomly assigned into four groups: control, exercised, social isolation, social isolation + exercise during postnatal days (PNDs) 21-34. Social isolation protocol was applied during 14 days by placing rat in a cage one by one. Rats were exercised during 5 days, days were chosen randomly for overall 4 weeks (20, 30, 50, 60 min respectively). Finally, learning performance was evaluated by Morris water maze (MWM). Anxiety behavior was evaluated by Open field and elevated plus maze test. At the end of learning and behavior tests, the rats were decapitated to collect blood samples via intracardiac puncture and corticosterone analysis was performed with ELISA method. Animal weights and water consumption did not change significantly but food intake differed among groups. Corticosterone level did not change between groups. The frequency of entering to the target quadrant increased in exercised rat significantly. However, there was no difference in learning and memory in rats. Treadmill exercise reduced anxiety behavior significantly. Taken together these findings may point out that, long term treadmill exercise did not change learning and memory but reduced anxiety level of rat without changing corticosterone level. Copyright © 2018 Elsevier Inc. All rights reserved.
VO[subscript 2] Prediction and Cardiorespiratory Responses during Underwater Treadmill Exercise
ERIC Educational Resources Information Center
Greene, Nicholas P.; Greene, Elizabeth S.; Carbuhn, Aaron F.; Green, John S.; Crouse, Stephen F.
2011-01-01
We compared cardiorespiratory responses to exercise on an underwater treadmill (UTM) and land treadmill (LTM) and derived an equation to estimate oxygen consumption (VO[subscript 2]) during UTM exercise. Fifty-five men and women completed one LTM and five UTM exercise sessions on separate days. The UTM sessions consisted of chest-deep immersion,…
Braendvik, Siri Merete; Koret, Teija; Helbostad, Jorunn L; Lorås, Håvard; Bråthen, Geir; Hovdal, Harald Olav; Aamot, Inger Lise
2016-12-01
The most effective treatment approach to improve walking in people with multiple sclerosis (MS) is not known. The aim of this trial was to assess the efficacy of treadmill training and progressive strength training on walking in people with MS. A single blinded randomized parallel group trial was carried out. Eligible participants were adults with MS with Expanded Disability Status Scale score ≤6. A total of 29 participants were randomized and 28 received the allocated exercise intervention, treadmill (n = 13) or strength training (n = 15). Both groups exercised 30 minutes, three times a week for 8 weeks. Primary outcome was The Functional Ambulation Profile evaluated by the GAITRite walkway. Secondary outcomes were walking work economy and balance control during walking, measured by a small lightweight accelerometer connected to the lower back. Testing was performed at baseline and the subsequent week after completion of training. Two participants were lost to follow-up, and 11 (treadmill) and 15 (strength training) were left for analysis. The treadmill group increased their Functional Ambulation Profile score significantly compared with the strength training group (p = .037). A significant improvement in walking work economy (p = .024) and a reduction of root mean square of vertical acceleration (p = .047) also favoured the treadmill group. The results indicate that task-specific training by treadmill walking is a favourable approach compared with strength training to improve walking in persons with mild and moderate MS. Implications for Physiotherapy practice, this study adds knowledge for the decision of optimal treatment approaches in people with MS. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Copp, Steven W.; Inagaki, Tadakatsu; White, Michael J.; Hirai, Daniel M.; Ferguson, Scott K.; Holdsworth, Clark T.; Sims, Gabrielle E.; Poole, David C.
2013-01-01
Consumption of the dietary flavanol (−)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O2 uptake (V̇o2 peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O2 pressure (Po2mv) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓∼5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, V̇o2 peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min−1·100 g−1, P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min−1·100 g−1·mmHg−1, P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓∼16%) but did not impact resting Po2mv or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg−1·day−1) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats. PMID:23144313
Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I
2013-01-15
Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.
Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad-Reza; Hosseini, Nasrin
2013-03-01
Impairment of learning and memory processes has been demonstrated by many studies using different stressors. Other reports suggested that exercise has a powerful behavioral intervention to improve cognitive function and brain health. In this research, we investigated protective effects of treadmill running on chronic stress-induced memory deficit in rats. Fifty male Wistar rats were randomly divided into five groups (n=10) as follows: Control (Co), Sham (Sh), Stress (St), Exercise (Ex) and Stress and Exercise (St & Ex) groups. Chronic restraint stress was applied by 6h/day/21days and also treadmill running at a speed 20-21m/min for 1h/day/21days. Memory function was evaluated by the passive avoidance test in different intervals (1, 7 and 21 days) after foot shock. OUR RESULTS SHOWED THAT: 1) Although exercise alone showed beneficial effects especially on short and mid-term memory (P<0.05) in comparison with control group, but synchronized exercise with stress had not significantly improved short, mid and long-term memory deficit in stressed rats. 2) Short and mid-term memory deficit was significantly (P<0.05) observed in synchronized exercise with stress and stress groups with respect to normal rats. 3) Memory deficit in synchronized exercise with stress group was nearly similar to stressed rats. 4) Helpful effects of exercise were less than harmful effects of stress when they were associated together. The data correspond to the possibility that although treadmill running alone has helpful effects on learning and memory consolidation, but when it is synchronized with stress there is no significant benefit and protective effects in improvement of memory deficit induced by chronic stress. However, it is has a better effect than no training on memory deficit in stressed rats.
Lu, Yujiao; Dong, Yan; Tucker, Donovan; Wang, Ruimin; Ahmed, Mohammad Ejaz; Brann, Darrell; Zhang, Quanguang
2017-01-01
Recent work has suggested that exercise may be beneficial in preventing or ameliorating symptoms of several neurological disorders, although the mechanism is not entirely understood. The current study was designed to examine the potential beneficial effect of treadmill exercise upon cognitive function in a streptozotocin (STZ)-induced rat model of Alzheimer’s disease (AD). Animals underwent treadmill exercise (30 min/day, 5 days/week) for 4 weeks after bilateral STZ intracerebroventricular injection (2.4 mg/kg). We demonstrated that treadmill exercise significantly attenuated STZ-induced neurodegeneration in the rat hippocampal CA1 region and strongly preserved hippocampal-dependent cognitive functioning. Further mechanistic investigation displayed a marked suppression of STZ-induced amyloid-β accumulation and tau phosphorylation. Intriguingly, treadmill exercise remarkably inhibited reactive gliosis following STZ insult and effectively shifted activated microglia from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which was correlated with a significantly reduced expression of pro-inflammatory mediators and a corresponding enhancement of anti-inflammatory cytokine expression in the hippocampus. Furthermore, treadmill exercise caused a robust suppression of oxidative damage as evidenced by significantly reduced peroxynitrite production, lipid peroxidation, and oxidized DNA damage. Finally, treadmill exercise strongly attenuated STZ-induced mitochondrial dysfunction manifested by a dramatically elevated intra-mitochondrial cytochrome c oxidase activity and ATP synthesis, and markedly inhibited neuronal apoptosis in the hippocampus. These findings demonstrate that treadmill exercise has a multifactorial effect to attenuate many of the pathological processes that play a key role in AD, and provide further support for the beneficial role of exercise as a potential therapeutic option in AD treatment. PMID:28157094
Lu, Yujiao; Dong, Yan; Tucker, Donovan; Wang, Ruimin; Ahmed, Mohammad Ejaz; Brann, Darrell; Zhang, Quanguang
2017-01-01
Recent work has suggested that exercise may be beneficial in preventing or ameliorating symptoms of several neurological disorders, although the mechanism is not entirely understood. The current study was designed to examine the potential beneficial effect of treadmill exercise upon cognitive function in a streptozotocin (STZ)-induced rat model of Alzheimer's disease (AD). Animals underwent treadmill exercise (30 min/day, 5 days/week) for 4 weeks after bilateral STZ intracerebroventricular injection (2.4 mg/kg). We demonstrated that treadmill exercise significantly attenuated STZ-induced neurodegeneration in the rat hippocampal CA1 region and strongly preserved hippocampal-dependent cognitive functioning. Further mechanistic investigation displayed a marked suppression of STZ-induced amyloid-β accumulation and tau phosphorylation. Intriguingly, treadmill exercise remarkably inhibited reactive gliosis following STZ insult and effectively shifted activated microglia from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which was correlated with a significantly reduced expression of pro-inflammatory mediators and a corresponding enhancement of anti-inflammatory cytokine expression in the hippocampus. Furthermore, treadmill exercise caused a robust suppression of oxidative damage as evidenced by significantly reduced peroxynitrite production, lipid peroxidation, and oxidized DNA damage. Finally, treadmill exercise strongly attenuated STZ-induced mitochondrial dysfunction manifested by a dramatically elevated intra-mitochondrial cytochrome c oxidase activity and ATP synthesis, and markedly inhibited neuronal apoptosis in the hippocampus. These findings demonstrate that treadmill exercise has a multifactorial effect to attenuate many of the pathological processes that play a key role in AD, and provide further support for the beneficial role of exercise as a potential therapeutic option in AD treatment.
Ferrucci, Luigi; Tian, Lu; Guralnik, Jack M.; Lloyd-Jones, Donald; Kibbe, Melina R.; Polonsky, Tamar S.; Domanchuk, Kathryn; Stein, James H.; Zhao, Lihui; Taylor, Doris; Skelly, Christopher; Pearce, William; Perlman, Harris; McCarthy, Walter; Li, Lingyu; Gao, Ying; Sufit, Robert; Bloomfield, Christina L.; Criqui, Michael H.
2017-01-01
Importance Benefits of granulocyte-macrophage colony-stimulating factor (GM-CSF) for improving walking ability in people with lower extremity peripheral artery disease (PAD) are unclear. Walking exercise may augment the effects of GM-CSF in PAD, since exercise-induced ischemia enhances progenitor cell release and may promote progenitor cell homing to ischemic calf muscle. Objectives To determine whether GM-CSF combined with supervised treadmill exercise improves 6-minute walk distance, compared with exercise alone and compared with GM-CSF alone; to determine whether GM-CSF alone improves 6-minute walk more than placebo and whether exercise improves 6-minute walk more than an attention control intervention. Design, Setting, and Participants Randomized clinical trial with 2 × 2 factorial design. Participants were identified from the Chicago metropolitan area and randomized between January 6, 2012, and December 22, 2016, to 1 of 4 groups: supervised exercise + GM-CSF (exercise + GM-CSF) (n = 53), supervised exercise + placebo (exercise alone) (n = 53), attention control + GM-CSF (GM-CSF alone) (n = 53), attention control + placebo (n = 51). The final follow-up visit was on August 15, 2017. Interventions Supervised exercise consisted of treadmill exercise 3 times weekly for 6 months. The attention control consisted of weekly educational lectures by clinicians for 6 months. GM-CSF (250 μg/m2/d) or placebo were administered subcutaneously (double-blinded) 3 times/wk for the first 2 weeks of the intervention. Main Outcomes and Measures The primary outcome was change in 6-minute walk distance at 12-week follow-up (minimum clinically important difference, 20 m). P values were adjusted based on the Hochberg step-up method. Results Of 827 persons evaluated, 210 participants with PAD were randomized (mean age, 67.0 [SD, 8.6] years; 141 [67%] black, 82 [39%] women). One hundred ninety-five (93%) completed 12-week follow-up. At 12-week follow-up, exercise + GM-CSF did not significantly improve 6-minute walk distance more than exercise alone (mean difference, −6.3 m [95% CI, −30.2 to +17.6]; P = .61) or more than GM-CSF alone (mean difference, +28.7 m [95% CI, +5.1 to +52.3]; Hochberg-adjusted P = .052). GM-CSF alone did not improve 6-minute walk more than attention control + placebo (mean difference, −1.4 m [95% CI, −25.2 to +22.4]; P = .91). Exercise alone improved 6-minute walk compared with attention control + placebo (mean difference, +33.6 m [95% CI, +9.4 to +57.7]; Hochberg-adjusted P = .02). Conclusions and Relevance Among patients with PAD, supervised treadmill exercise significantly improved 6-minute walk distance compared with attention control + placebo, whereas GM-CSF did not significantly improve walking performance, either when used alone or when combined with supervised treadmill exercise. These results confirm the benefits of exercise but do not support using GM-CSF to treat walking impairment in patients with PAD. Trial Registration clinicaltrials.gov Identifier: NCT01408901 PMID:29141087
Campbell, Suzann K; Gaebler-Spira, Deborah; Zawacki, Laura; Clark, April; Boynewicz, Kara; deRegnier, Raye-Ann; Kuroda, Maxine M; Bhat, Rama; Yu, Jinsheng; Campise-Luther, Rose; Kale, Dipti; Bulanda, Michelle; Zhou, Xiaohong Joe
2012-01-01
Preterm infants with periventricular brain injury (PBI) have a high incidence of atypical development and leg movements. Determine whether kicking and treadmill stepping intervention beginning at 2 months corrected age (CA) in children with PBI improves motor function at 12 months CA when compared with control subjects. In a multi-center pilot study for a controlled clinical trial, sixteen infants with PBI were randomly assigned to home exercise consisting of kicking and treadmill stepping or a no-training control condition. Development was assessed at 2, 4, 6, 10, and 12 months CA with the Alberta Infant Motor Scale (AIMS). At 12 months children were classified as normal, delayed, or with cerebral palsy (CP). At 12 months CA 3 of 7 (43%) of the exercise group children walked alone or with one hand held versus 1 of 9 (11%) in the control group (p=0.262), but no significant differences in AIMS scores were found at any age. Half of the subjects had CP or delay; the outcomes of these infants were not improved by exercise. Compliance with the home program was lower than requested and may have affected results. Although not statistically significant with a small sample size, self-produced kicking and treadmill exercise may lower age at walking in infants with normal development following PBI, but improvements of the protocol to increase and document compliance are needed before a larger study is implemented.
Campbell, Suzann K.; Gaebler-Spira, Deborah; Zawacki, Laura; Clark, April; Boynewicz, Kara; deRegnier, Raye-Ann; Kuroda, Maxine M.; Bhat, Rama; Yu, Jinsheng; Campise-Luther, Rose; Kale, Dipti; Bulanda, Michelle; Zhou, Xiaohong Joe
2013-01-01
Background Preterm infants with periventricular brain injury (PBI) have a high incidence of atypical development and leg movements. Objective Determine whether kicking and treadmill stepping intervention beginning at 2 months corrected age (CA) in children with PBI improves motor function at 12 months CA when compared with control subjects. Method In a multi-center pilot study for a controlled clinical trial, sixteen infants with PBI were randomly assigned to home exercise consisting of kicking and treadmill stepping or a no-training control condition. Development was assessed at 2, 4, 6, 10, and 12 months CA with the Alberta Infant Motor Scale (AIMS). At 12 months children were classified as normal, delayed, or with cerebral palsy (CP). Results At 12 months CA 3 of 7 (43%) of the exercise group children walked alone or with one hand held versus 1 of 9 (11%) in the control group (p=.262), but no significant differences in AIMS scores were found at any age. Half of the subjects had CP or delay; the outcomes of these infants were not improved by exercise. Compliance with the home program was lower than requested and may have affected results. Conclusion Although not statistically significant with a small sample size, self-produced kicking and treadmill exercise may lower age at walking in infants with normal development following PBI, but improvements of the protocol to increase and document compliance are needed before a larger study is implemented. PMID:22543889
Gait, Balance, Leg Strength, and Sprint Speed After Bedrest with LBNP Exercise
NASA Technical Reports Server (NTRS)
Boda, Wanda L.; Watenbaugh, D. E.; Ballard, R. E.; Fortney, S. M.; Ertl, A. C.; Lee, S. M. C.; William, J. M.; Hargens, Alan R.
1997-01-01
Microgravity and bedrest (BR) result in similar physiological decrements such as loss of muscle mass, muscle strength and balance. Previous studies analyzing exercise within lower body negative pressure (LBNP) have found that gait is similar in LBNP on a vertical treadmill and overground exercise on a horizontal treadmill. Since treadmill exercise is known to increase muscular strength and endurance, we tested the hypothesis that LBNP exercise on a vertical treadmill would prevent or attenuate many of the physical decrements which occur during bedrest. Based on our positive results from diverse tests of post-BR function, we believe that exercise within LBNP is worth pursuing as a countermeasure for reducing the physical deterioration that occurs during bedrest and microgravity.
Jung, Taeyou; Ozaki, Yoshi; Lai, Byron; Vrongistinos, Konstantinos
2014-03-01
This study aimed to compare the cardiorespiratory responses between aquatic treadmill walking (ATW) and overground treadmill walking (OTW) in people with hemiparesis post-stroke. Eight participants post-stroke aged 58.5 ± 11.4 years and eight healthy adult controls aged 56.1 ± 8.6 years participated in a cross-sectional comparative study. Participants completed three 8-minute walking sessions separated by at least 72-hour rest. On the first visit, participants identified their comfortable walking speed on an aquatic and overground treadmill. The second and third visit consisted of either ATW or OTW at a matched speed. Oxygen consumption (VO2), carbon dioxide production (VCO2 ), minute ventilation (VE) and energy expenditure (EE) were measured at rest and during walking in both exercise modes. Mean steady-state cardiorespiratory responses during ATW showed a significant decrease compared with OTW at a matched speed. During ATW, mean VO2 values decreased by 39% in the stroke group and 21% in the control group, mean VCO2 values decreased by 42% in the stroke group and 30% in the control group, and mean EE decreased by 40% in the stroke group and 25% in the control group. Mean steady-state VE values and resting cardiorespiratory response values showed no significant change between the two conditions. This study demonstrated a decreased metabolic cost when ATW at matched speeds to that of OTW. Reduced metabolic cost during ATW may allow for longer durations of treadmill-induced gait training compared with OTW for improved outcomes. This knowledge may aid clinicians when prescribing aquatic treadmill exercise for people post-stroke with goals of improving gait and functional mobility. However, decreased metabolic cost during ATW suggests that to improve cardiovascular fitness, ATW may not be a time-efficient method of cardiovascular exercise for healthy adults and people post-stroke. Copyright © 2013 John Wiley & Sons, Ltd.
Effects of lead and exercise on endurance and learning in young herring gulls.
Burger, Joanna; Gochfeld, Michael
2004-02-01
In this paper, we report the use of young herring gulls, Larus argentatus, to examine the effect of lead and exercise on endurance, performance, and learning on a treadmill. Eighty 1-day-old herring gull chicks were randomly assigned to either a control group or a lead treatment group that received a single dose of lead acetate solution (100mg/kg) at day 2. Controls were injected with an equal volume of isotonic saline at the same age. Half of the lead treatment group and half of the control group were randomly assigned to an exercise regime of walking on a treadmill twice each day. The other group remained in their cages. We test the null hypotheses that neither lead nor exercise affected performance of herring gull chicks when subsequently tested on the treadmill at 7, 11, and 17 days post-injection. Performance measures included latency to orient forward initially, to move continuously, forward on the treadmill, and to avoiding being bumped against the back of the test chamber. Also measured were the number of calls per 15 s, and the time to tire out. Latency to face forward and avoiding being bumped against the back of the test chamber were measures of learning, and time to tire out was a measure of endurance. We found significant differences as a function of lead, exercise, and their interaction, and rejected the null hypotheses. For all measures of behavior and endurance, lead had the greatest contribution to accounting for variability. In general, lead-treated birds showed better performance improvement from the daily exercise than did controlled non-lead birds, with respect to endurance and learning. We suggest that in nature, exercise can improve performance of lead-exposed birds by partially mitigating the effects of lead, thereby increasing survival of lead-impaired chicks.
Nehra, Sarita; Bhardwaj, Varun; Bansal, Anju; Saraswat, Deepika
2017-09-26
Chronic hypobaric hypoxia (cHH) mediated cardiac insufficiencies are associated with pathological damage. Sustained redox stress and work load are major causative agents of cardiac insufficiencies under cHH. Despite the advancements made in pharmacological (anti-oxidants, vasodilators) and non-pharmacological therapeutics (acclimatization strategies and schedules), only partial success has been achieved in improving cardiac acclimatization to cHH. This necessitates the need for potent combinatorial therapies to improve cardiac acclimatization at high altitudes. We hypothesize that a combinatorial therapy comprising preconditioning to mild aerobic treadmill exercise and supplementation with nanocurcumin formulation (NCF) consisting of nanocurcumin (NC) and pyrroloquinoline quinone (PQQ) might improve cardiac adaptation at high altitudes. Adult Sprague-Dawley rats pre-conditioned to treadmill exercise and supplemented with NCF were exposed to cHH (7620 m altitude corresponding to pO2~8% at 28±2°C, relative humidity 55%±1%) for 3 weeks. The rat hearts were analyzed for changes in markers of oxidative stress (free radical leakage, lipid peroxidation, manganese-superoxide dismutase [MnSOD] activity), cardiac injury (circulating cardiac troponin I [TnI] and T [cTnT], myocardial creatine kinase [CK-MB]), metabolic damage (lactate dehydrogenase [LDH] and acetyl-coenzyme A levels, lactate and pyruvate levels) and bio-energetic insufficiency (ATP, p-AMPKα). Significant modulations (p≤0.05) in cardiac redox status, metabolic damage, cardiac injury and bio-energetics were observed in rats receiving both NCF supplementation and treadmill exercise-preconditioning compared with rats receiving only one of the treatments. The combinatorial therapeutic strategy showed a tremendous improvement in cardiac acclimatization to cHH compared to either exercise-preconditioning or NCF supplementation alone which was evident from the effective modulation in redox, metabolic, contractile and bio-energetic homeostasis.
Kim, Dae-Young; Jung, Sun-Young; Kim, Tae-Woon; Lee, Kwang-Sik; Kim, Kijeong
2015-04-01
Diabetes is a metabolic disorder, and it is considered as a major risk factor for Alzheimer's disease (AD). In the present study, we evaluated whether treadmill exercise ameliorates progression of AD in relation with glycogen synthase kinase-3β (GSK-3β) activity using streptozotocin (STZ)-induced diabetic rats. For this study, step-down avoidance task, immunohistochemistry for glycogen synthase kinase-3β (GSK-3β) and tau, and western blot for phosphor-phosphoinositide 3 kinase (p-PI3K)/PI3K and phosphor-Akt (p-Akt)/Akt were performed. Diabetes mellitus was induced by intraperitoneal injection of STZ. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, five times a week, during 12 weeks. The present results showed that short-term and long-term latencies in the step-down avoidance task were decreased by induction of diabetes, and treadmill exercise inhibited these latencies in the diabetic rats. Induction of diabetes suppressed the ratio of p-PI3K to PI3K and the ratio of p-Akt to Akt, and treadmill exercise increased these ratios in the diabetic rats. The numbers of GSK-3β-positive and tau-positive cells in the hippocampal dentate gyrus was higher in the diabetes-induction group than that in the control group, and treadmill exercise inhibited these numbers in the diabetic rats. In the present study, treadmill exercise suppressed hyperphosphorylation of tau in the hippocampus by decreased GSK-3β activity through PI3K/Akt pathway activation in the diabetic rats. Based on the present results, treadmill exercise may helpful to prevent diabetes-associated AD occurrence.
NASA Technical Reports Server (NTRS)
Lee, S. M. C.; Streeper, T.; Spiering, B. A.; Loehr, J. A.; Guilliams, M. E.; Bloomberg, J. J.; Mulavara, A. P.; Cavanagh, P. R.; Lang, T.
2010-01-01
Musculoskeletal, cardiovascular, and sensorimotor deconditioning have been observed consistently in astronauts and cosmonauts following long-duration spaceflight. Studies in bed rest, a spaceflight analog, have shown that high intensity resistive or aerobic exercise attenuates or prevents musculoskeletal and cardiovascular deconditioning, respectively, but complete protection has not been achieved during spaceflight. Exercise countermeasure hardware used during earlier International Space Station (ISS) missions included a cycle ergometer, a treadmill, and the interim resistive exercise device (iRED). Effectiveness of the countermeasures may have been diminished by limited loading characteristics of the iRED as well as speed restrictions and subject harness discomfort during treadmill exercise. The Advanced Resistive Exercise Device (ARED) and the second generation treadmill were designed to address many of the limitations of their predecessors, and anecdotal reports from ISS crews suggest that their conditioning is better preserved since the new hardware was delivered in 2009. However, several countermeasure devices to protect different physiologic systems will not be practical during exploration missions when the available volume and mass will be severely restricted. The combined countermeasure device (CCD) integrates a suite of hardware into one device intended to prevent spaceflight-induced musculoskeletal, cardiovascular, and sensorimotor deconditioning. The CCD includes pneumatic loading devices with attached cables for resistive exercise, a cycle for aerobic exercise, and a 6 degree of freedom motion platform for balance training. In a proof of concept test, ambulatory untrained subjects increased muscle strength (58%) as well as aerobic capacity (26%) after 12-weeks of exercise training with the CCD (without balance training), improvements comparable to those observed with traditional exercise training. These preliminary results suggest that this CCD can concurrently improve musculoskeletal and cardiovascular conditioning in ambulatory subjects, but further work is required to validate its use as countermeasure to spaceflight-induced deconditioning.
Ahmed, Haitham M; Al-Mallah, Mouaz H; McEvoy, John W; Nasir, Khurram; Blumenthal, Roger S; Jones, Steven R; Brawner, Clinton A; Keteyian, Steven J; Blaha, Michael J
2015-03-01
To determine which routinely collected exercise test variables most strongly correlate with survival and to derive a fitness risk score that can be used to predict 10-year survival. This was a retrospective cohort study of 58,020 adults aged 18 to 96 years who were free of established heart disease and were referred for an exercise stress test from January 1, 1991, through May 31, 2009. Demographic, clinical, exercise, and mortality data were collected on all patients as part of the Henry Ford ExercIse Testing (FIT) Project. Cox proportional hazards models were used to identify exercise test variables most predictive of survival. A "FIT Treadmill Score" was then derived from the β coefficients of the model with the highest survival discrimination. The median age of the 58,020 participants was 53 years (interquartile range, 45-62 years), and 28,201 (49%) were female. Over a median of 10 years (interquartile range, 8-14 years), 6456 patients (11%) died. After age and sex, peak metabolic equivalents of task and percentage of maximum predicted heart rate achieved were most highly predictive of survival (P<.001). Subsequent addition of baseline blood pressure and heart rate, change in vital signs, double product, and risk factor data did not further improve survival discrimination. The FIT Treadmill Score, calculated as [percentage of maximum predicted heart rate + 12(metabolic equivalents of task) - 4(age) + 43 if female], ranged from -200 to 200 across the cohort, was near normally distributed, and was found to be highly predictive of 10-year survival (Harrell C statistic, 0.811). The FIT Treadmill Score is easily attainable from any standard exercise test and translates basic treadmill performance measures into a fitness-related mortality risk score. The FIT Treadmill Score should be validated in external populations. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Ansari, Basit; Qureshi, Masood A; Zohra, Raheela Rahmat
2014-11-01
The aim of the present study is to compare the effect of exercise training program in post-Cardiac Rehabilitation Exercise Training (CRET), post-CABG patients with normal & subnormal ejection fraction (EF >50% or <50%) who have undergoing coronary artery bypass grafting (CABG) surgery. The study was conducted on 100 cardiac patients of both sexes (age: 57-65 years) who after CABG surgery, were referred to the department of Physiotherapy and Rehabilitation between 2008 and 2010 at Liaquat National Hospital & Medical College, Karachi. The patients undertook exercise training program (using treadmill, Recumbent Bike), keeping in view the Borg's scale of perceived exertion, for 6 weeks. Heart Rate (HR) and Blood Pressure (BP) were measured & compared in post CABG Patients with EF (>50% or <50%) at the start and end of the exercise training program. Statistical formulae were applied to analyze the improvement in cardiac functional indicators. Exercise significantly restores the values of HR and BP (systolic) in post CABGT Patients with EF (>50% or <50%) from the baseline to the last session of the training program. There appeared significant improvement in cardiac function four to six weeks of treadmill exercise training program. After CABG all patients showed similar improvement in cardiac function with exercise training program. The exercise training program is beneficial for improving exercise capacity linked with recovery cardiac function in Pakistani CABG patients.
Fernández-Del-Olmo, Miguel Angel; Sanchez, Jose Andres; Bello, Olalla; Lopez-Alonso, Virginia; Márquez, Gonzalo; Morenilla, Luis; Castro, Xabier; Giraldez, Manolo; Santos-García, Diego
2014-01-01
Gait disturbances are one of the principal and most incapacitating symptoms of Parkinson's disease (PD). In addition, walking economy is impaired in PD patients and could contribute to excess fatigue in this population. An important number of studies have shown that treadmill training can improve kinematic parameters in PD patients. However, the effects of treadmill and overground walking on the walking economy remain unknown. The goal of this study was to explore the walking economy changes in response to a treadmill and an overground training program, as well as the differences in the walking economy during treadmill and overground walking. Twenty-two mild PD patients were randomly assigned to a treadmill or overground training group. The training program consisted of 5 weeks (3 sessions/week). We evaluated the energy expenditure of overground walking, before and after each of the training programs. The energy expenditure of treadmill walking (before the program) was also evaluated. The treadmill, but not the overground training program, lead to an improvement in the walking economy (the rate of oxygen consumed per distance during overground walking at a preferred speed) in PD patients. In addition, walking on a treadmill required more energy expenditure compared with overground walking at the same speed. This study provides evidence that in mild PD patients, treadmill training is more beneficial compared with that of walking overground, leading to a greater improvement in the walking economy. This finding is of clinical importance for the therapeutic administration of exercise in PD.
Acute Exercise and Oxidative Stress: CrossFit™ vs. Treadmill Bout
Kliszczewicz, Brian; Quindry, C. John; Blessing, L. Daniel; Oliver, D. Gretchen; Esco, R. Michael; Taylor, J. Kyle
2015-01-01
CrossFit™, a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit™ bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit™ experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit™ and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit™=+143%, Treadmill=+115%) and 2-HP (CrossFit™=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit™=−16%, Treadmill=−8%) and 2-HP (CF=−16%, TM=−1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit™ and Treadmill: IPE (CrossFit™=+25%, Treadmill=+17%), 1-HP (CrossFit™=+26%, Treadmill=+4.8%), 2-HP (CrossFit™=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit™=−10%, Treadmill=−12%), 1-HP (CrossFit™=−12%, Treadmill=−6%), 2-HP (CrossFit™=−7%, Treadmill=−11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit™ bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID:26557192
Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout.
Kliszczewicz, Brian; Quindry, C John; Blessing, L Daniel; Oliver, D Gretchen; Esco, R Michael; Taylor, J Kyle
2015-09-29
CrossFit(™), a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit(™) bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit(™) experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit(™) and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit(™)=+143%, Treadmill=+115%) and 2-HP (CrossFit(™)=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit(™)=-16%, Treadmill=-8%) and 2-HP (CF=-16%, TM=-1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit(™) and Treadmill: IPE (CrossFit(™)=+25%, Treadmill=+17%), 1-HP (CrossFit(™)=+26%, Treadmill=+4.8%), 2-HP (CrossFit(™)=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit(™)=-10%, Treadmill=-12%), 1-HP (CrossFit(™)=-12%, Treadmill=-6%), 2-HP (CrossFit(™)=-7%, Treadmill=-11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit(™) bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses.
Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats
Zhang, Jianying; Yuan, Ting; Wang, James H-C.
2016-01-01
The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients. PMID:26885754
Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats.
Zhang, Jianying; Yuan, Ting; Wang, James H-C
2016-02-23
The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients.
Treadmill exercise alleviates depressive symptoms in rotenone-induced Parkinson disease rats
Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Sung, Yun-Hee; Lim, Baek-Vin
2017-01-01
Parkinson disease (PD) is characterized by selective loss of the dopaminergic neurons. The symptoms of depression following PD are closely associated with reduced activity of the serotonergic system in the dorsal raphe. We explored the antidepressive effect of exercise and its possible mechanism using the rotenone-induced PD rats. PD rats were induced by subcutaneously injection with rotenone for 14 days. The rats in the exercise groups were made to run on a treadmill for 30 min once a day during 14 consecutive days. Forced swimming test, immunohistochemistry for serotonin (5-hydroxytryptamine, 5-HT), tryptophan hydroxylase (TPH), and western blot for serotonin 1A (5-HT1A) receptor were conducted. Injection of rotenone induced PD rats. PD rats showed depressive state and treadmill exercise ameliorated this depressive state. 5-HT, TPH, and 5-HT1A receptor expressions in the dorsal raphe were suppressed by rotenone injection and treadmill exercise increased the expressions of 5-HT, TPH, and 5-HT1A receptor in the rotenone-injected rats. The present results show that treadmill exercise ameliorated depressive symptoms in the rotenone-induced PD rats. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe. PMID:28503522
Treadmill exercise alleviates depressive symptoms in rotenone-induced Parkinson disease rats.
Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Sung, Yun-Hee; Lim, Baek-Vin
2017-04-01
Parkinson disease (PD) is characterized by selective loss of the dopaminergic neurons. The symptoms of depression following PD are closely associated with reduced activity of the serotonergic system in the dorsal raphe. We explored the antidepressive effect of exercise and its possible mechanism using the rotenone-induced PD rats. PD rats were induced by subcutaneously injection with rotenone for 14 days. The rats in the exercise groups were made to run on a treadmill for 30 min once a day during 14 consecutive days. Forced swimming test, immunohistochemistry for serotonin (5-hydroxytryptamine, 5-HT), tryptophan hydroxylase (TPH), and western blot for serotonin 1A (5-HT1A) receptor were conducted. Injection of rotenone induced PD rats. PD rats showed depressive state and treadmill exercise ameliorated this depressive state. 5-HT, TPH, and 5-HT1A receptor expressions in the dorsal raphe were suppressed by rotenone injection and treadmill exercise increased the expressions of 5-HT, TPH, and 5-HT1A receptor in the rotenone-injected rats. The present results show that treadmill exercise ameliorated depressive symptoms in the rotenone-induced PD rats. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe.
Home-based treadmill training improved seminal quality in adults with type 2 diabetes.
Rosety-Rodriguez, M; Rosety, J M; Fornieles, G; Rosety, M A; Diaz, A J; Rosety, I; Rodríguez-Pareja, A; Rosety, M; Ordonez, F J; Elosegui, S
2014-11-01
This was the first study conducted to determine the influence of home-based treadmill training on seminal quality in adults with type 2 diabetes. Sixty sedentary adults with type 2 diabetes volunteered for the current study. Thirty were randomly allocated to the intervention group and performed a a 14-week, home-based, treadmill training program, 3 sessions per week, consisting of a warm-up (10-15min), 40min treadmill exercise at a work intensity of 55-70% of peak heart rate (increasing by 2.5% each two weeks) measured during a maximal treadmill test, and cooling-down (5-10min). The control group included 30, age and BMI matched adults with type 2 diabetes who did not take part in any training program. Seminal quality analysis included semen volume, sperm concentration, motility and normal morphologic features. Furthermore, total antioxidant status (TAS) as well as glutathione peroxidase (GPX) activity were assessed in seminal plasma. This protocol was approved by an Institutional Ethics Committee. The home-based treadmill training significantly increased sperm concentration as well as percentages of total sperm motility and normal spermatozoa. Furthermore, TAS and GPX activity were increased after the completion of the training program. No significant changes in any of the measured variables were found in the control group. Home-based treadmill training improved seminal quality in adults with type 2 diabetes. A secondary finding was that seminal antioxidant defense system was significantly increased after being exercised. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.
Kletzien, Heidi; Russell, John A; Leverson, Glen E; Connor, Nadine P
2013-02-15
Age-associated changes in tongue muscle structure and strength may contribute to dysphagia in elderly people. Tongue exercise is a current treatment option. We hypothesized that targeted tongue exercise and nontargeted exercise that activates tongue muscles as a consequence of increased respiratory drive, such as treadmill running, are associated with different patterns of tongue muscle contraction and genioglossus (GG) muscle biochemistry. Thirty-one young adult, 34 middle-aged, and 37 old Fischer 344/Brown Norway rats received either targeted tongue exercise, treadmill running, or no exercise (5 days/wk for 8 wk). Protrusive tongue muscle contractile properties and myosin heavy chain (MHC) composition in the GG were examined at the end of 8 wk across groups. Significant age effects were found for maximal twitch and tetanic tension (greatest in young adult rats), MHCIIb (highest proportion in young adult rats), MHCIIx (highest proportion in middle-aged and old rats), and MHCI (highest proportion in old rats). The targeted tongue exercise group had the greatest maximal twitch tension and the highest proportion of MHCI. The treadmill running group had the shortest half-decay time, the lowest proportion of MHCIIa, and the highest proportion of MHCIIb. Fatigue was significantly less in the young adult treadmill running group and the old targeted tongue exercise group than in other groups. Thus, tongue muscle structure and contractile properties were affected by both targeted tongue exercise and treadmill running, but in different ways. Studies geared toward optimizing dose and manner of providing targeted and generalized tongue exercise may lead to alternative tongue exercise delivery strategies.
Kletzien, Heidi; Russell, John A.; Leverson, Glen E.
2013-01-01
Age-associated changes in tongue muscle structure and strength may contribute to dysphagia in elderly people. Tongue exercise is a current treatment option. We hypothesized that targeted tongue exercise and nontargeted exercise that activates tongue muscles as a consequence of increased respiratory drive, such as treadmill running, are associated with different patterns of tongue muscle contraction and genioglossus (GG) muscle biochemistry. Thirty-one young adult, 34 middle-aged, and 37 old Fischer 344/Brown Norway rats received either targeted tongue exercise, treadmill running, or no exercise (5 days/wk for 8 wk). Protrusive tongue muscle contractile properties and myosin heavy chain (MHC) composition in the GG were examined at the end of 8 wk across groups. Significant age effects were found for maximal twitch and tetanic tension (greatest in young adult rats), MHCIIb (highest proportion in young adult rats), MHCIIx (highest proportion in middle-aged and old rats), and MHCI (highest proportion in old rats). The targeted tongue exercise group had the greatest maximal twitch tension and the highest proportion of MHCI. The treadmill running group had the shortest half-decay time, the lowest proportion of MHCIIa, and the highest proportion of MHCIIb. Fatigue was significantly less in the young adult treadmill running group and the old targeted tongue exercise group than in other groups. Thus, tongue muscle structure and contractile properties were affected by both targeted tongue exercise and treadmill running, but in different ways. Studies geared toward optimizing dose and manner of providing targeted and generalized tongue exercise may lead to alternative tongue exercise delivery strategies. PMID:23264540
High Intensity Interval Training Improves Physical Performance and Frailty in Aged Mice.
Seldeen, Kenneth Ladd; Lasky, Ginger; Leiker, Merced Marie; Pang, Manhui; Personius, Kirkwood Ely; Troen, Bruce Robert
2018-03-14
Sarcopenia and frailty are highly prevalent in older individuals, increasing the risk of disability and loss of independence. High intensity interval training (HIIT) may provide a robust intervention for both sarcopenia and frailty by achieving both strength and endurance benefits with lower time commitments than other exercise regimens. To better understand the impacts of HIIT during aging, we compared 24-month-old C57BL/6J sedentary mice with those that were administered 10-minute uphill treadmill HIIT sessions three times per week over 16 weeks. Baseline and end point assessments included body composition, physical performance, and frailty based on criteria from the Fried physical frailty scale. HIIT-trained mice demonstrated dramatic improvement in grip strength (HIIT 10.9% vs -3.9% in sedentary mice), treadmill endurance (32.6% vs -2.0%), and gait speed (107.0% vs 39.0%). Muscles from HIIT mice also exhibited greater mass, larger fiber size, and an increase in mitochondrial biomass. Furthermore, HIIT exercise led to a dramatic reduction in frailty scores in five of six mice that were frail or prefrail at baseline, with four ultimately becoming nonfrail. The uphill treadmill HIIT exercise sessions were well tolerated by aged mice and led to performance gains, improvement in underlying muscle physiology, and reduction in frailty.
Zurawlew, M J; Walsh, N P; Fortes, M B; Potter, C
2016-07-01
We examined whether daily hot water immersion (HWI) after exercise in temperate conditions induces heat acclimation and improves endurance performance in temperate and hot conditions. Seventeen non-heat-acclimatized males performed a 6-day intervention involving a daily treadmill run for 40 min at 65% V̇O2max in temperate conditions (18 °C) followed immediately by either HWI (N = 10; 40 °C) or thermoneutral (CON, N = 7; 34 °C) immersion for 40 min. Before and after the 6-day intervention, participants performed a treadmill run for 40 min at 65% V̇O2max followed by a 5-km treadmill time trial (TT) in temperate (18 °C, 40% humidity) and hot (33 °C, 40% humidity) conditions. HWI induced heat acclimation demonstrated by lower resting rectal temperature (Tre , mean, -0.27 °C, P < 0.01), and final Tre during submaximal exercise in 18 °C (-0.28 °C, P < 0.01) and 33 °C (-0.36 °C, P < 0.01). Skin temperature, Tre at sweating onset and RPE were lower during submaximal exercise in 18 °C and 33 °C after 6 days in HWI (P < 0.05). Physiological strain and thermal sensation were also lower during submaximal exercise in 33 °C after 6 days in HWI (P < 0.05). HWI improved TT performance in 33 °C (4.9%, P < 0.01) but not in 18 °C. Thermoregulatory measures and performance did not change in CON. Hot water immersion after exercise on 6 days presents a simple, practical, and effective heat acclimation strategy to improve endurance performance in the heat. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Macaulay, Timothy R; Macias, Brandon R; Lee, Stuart MC; Boda, Wanda L; Watenpaugh, Donald E; Hargens, Alan R
2016-01-01
Spaceflight causes sensorimotor adaptations that result in balance deficiencies on return to a gravitational environment. Treadmill exercise within lower-body negative pressure (LBNP) helps protect physiological function during microgravity as simulated by bed rest. Therefore, we hypothesized that treadmill exercise within LBNP would prevent balance losses in both male and female identical twins during 30 days of 6° head-down tilt bed rest. Fifteen (seven female and eight male) identical twin sets participated in this simulation of microgravity. Within each twin pair, one twin was randomly assigned to an exercise group that performed 40 min of supine treadmill exercise within LBNP set to generate 1.0–1.2 body weight, followed by 5 min of static feet-supported LBNP, 6 days per week. Their identical sibling was assigned to a non-exercise control group with all other bed rest conditions equivalent. Before and immediately after bed rest, subjects completed standing and walking rail balance tests with eyes open and eyes closed. In control subjects, standing rail balance times (men: −42%, women: −40%), rail walk distances (men: −44%, women: −32%) and rail walk times (men: −34%, women: −31%) significantly decreased after bed rest. Compared with controls, treadmill exercise within LBNP significantly attenuated losses of standing rail balance time by 63% in men, but the 41% attenuation in women was not significant. Treadmill exercise within LBNP did not affect rail walk abilities in men or women. Treadmill exercise within LBNP during simulated spaceflight attenuates loss of balance control in men but not in women. PMID:28725733
Hong, Young-Pyo; Lee, Hyo-Chul; Kim, Hyun-Tae
2015-01-01
[Purpose] We investigated the effects of 8 weeks of treadmill exercise on nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and synapsin I protein expression and on the number of 5-bromo-2'-deoxyuridine-5'-mono-phosphate (BrdU)-positive cells in the dentate gyrus of the hippocampus in socially isolated rats. Additionally, we examined the effects of exercise on the number of serotonin (5-HT)- and tryptophan hydroxylase (TPH)-positive cells in the raphe nuclei and on depression behaviors induced by social isolation. [Methods] Forty male Sprague-Dawley rats were divided into four groups: (1) group housing and control group (GCG, n = 10); (2) group housing and exercise group (GEG, n = 10); (3) isolated housing and control group (ICG, n = 10); and (4) isolated housing and exercise group (IEG, n = 10). After 1 week of housing under the normal condition of 3 animals per cage, rats were socially isolated via transfer to individual cages for 8 weeks. Rats were then subjected to treadmill exercise for 5 days per week for 8 weeks during which time the speed of the treadmill was gradually increased. [Results] Compared to the GCG, levels of NGF, BDNF, and synapsin I were significantly decreased in the ICG and significantly increased in the IEG (p < 0.001 respectively). Significantly more BrdU-positive cells in the GEG were present as compared to the GCG and ICG, and more BrdU-positive cells were found in the IEG as compared to the ICG (p < 0.001). 5-HT-positive cells in the GEG were significantly increased compared to the GCG and ICG, and more of these cells were found in the IEG as compared to the ICG (p < 0.01). TPH-positive cells in the GEG were significantly increased compared to those in the GCG and ICG (p < 0.05). In the forced swim test, immobility time was significantly increased in the ICG and significantly decreased in the IEG as compared to the ICG (p < 0.01). [Conclusion] These results showed that regular treadmill exercise following social isolation not only increased the levels of NGF, BDNF, and synapsin I to induce survival of neurons in the hippocampus but also improved depression by increasing the number of serotonergic cells in the raphe nuclei. PMID:25960950
Vaghef, Ladan; Bafandeh Gharamaleki, Hassan
2017-09-01
Either exercise or Ginkgo biloba is reported to improve cognitive functioning. The aim of this study is to compare the protective effects of forced exercise and Ginkgo biloba on oxidative stress as well as memory impairments induced by transient cerebral ischemia. Adult male Wistar rats were treated with treadmill running or Ginkgo biloba extract for 2 weeks before cerebral ischemia. Memory was assessed using a Morris water maze (MWM) task. At the end of the behavioral testing, oxidative stress biomarkers were evaluated in the hippocampus tissue. As expected, the cerebral ischemia induced memory impairment in the MWM task, and oxidative stress in the hippocampus. These effects were significantly prevented by treadmill running. Indeed, it ameliorated oxidative stress and memory deficits induced by ischemia. In contrast, Ginkgo biloba was not as effective as exercise in preventing ischemia-induced memory impairments. The results confirmed the neuroprotective effects of treadmill running on hippocampus-dependent memory.
Improving Functional Skills and Physical Fitness in Children with Rett Syndrome
ERIC Educational Resources Information Center
Lotan, M.; Isakov, E.; Merrick, J.
2004-01-01
To investigate the feasibility of a physical exercise programme with treadmill for persons with Rett syndrome (RS) in order to promote fitness and health. A daily training programme on a treadmill was designed for four females with RS over a period of 2 months with tests performed in three intervals, at time 1, 2 and 3, 2 months apart with…
Vibration Isolation and Stabilization System for Spacecraft Exercise Treadmill Devices
NASA Technical Reports Server (NTRS)
Fialho, Ian; Tyer, Craig; Murphy, Bryan; Cotter, Paul; Thampi, Sreekumar
2011-01-01
A novel, passive system has been developed for isolating an exercise treadmill device from a spacecraft in a zero-G environment. The Treadmill 2 Vibration Isolation and Stabilization System (T2-VIS) mechanically isolates the exercise treadmill from the spacecraft/space station, thereby eliminating the detrimental effect that high impact loads generated during walking/running would have on the spacecraft structure and sensitive microgravity science experiments. This design uses a second stage spring, in series with the first stage, to achieve an order of magnitude higher exercise- frequency isolation than conventional systems have done, while maintaining desirable low-frequency stability performance. This novel isolator design, in conjunction with appropriately configured treadmill platform inertia properties, has been shown (by on-orbit zero-G testing onboard the International Space Station) to deliver exceedingly high levels of isolation/ stability performance.
Sinha, Dhurjati Prasad; Das, Munna; Banerjee, Amal Kumar; Ahmed, Shageer; Majumdar, Sonali
2008-02-01
Anginal symptoms are less predictive of abnormal coronary anatomy in women. The diagnostic accuracy of exercise treadmill test for obstructive coronary artery disease is less in young and middle aged women. High sensitive C-reactive protein has shown a strong and consistent relationship to the risk of incident cardiovascular events. Carotid intima media thickness is a non-invasive marker of atherosclerosis burden and also predicts prognosis in patients with coronary artery disease. We investigated whether incorporation of high sensitive C-reactive protein and carotid intima media thickness along with exercise stress results improved the predictive accuracy in perimenopausal non-diabetic women subset. Fifty perimenopausal non-diabetic patients (age 45 +/- 7 years) presenting with typical angina were subjected to treadmill test (Bruce protocol). Also carotid artery images at both sides of neck were acquired by B-mode ultrasound and carotid intima media thickness were measured. High sensitive C-reactive protein was measured. Of 50 patients, 22 had a positive exercise stress result. Coronary angiography done in all 50 patients revealed coronary artery disease in 10 patients with positive exercise stress result and in 4 patients with negative exercise stress result. Treadmill exercise stress test had a sensitivity of 71.4%, specificity of 66.7% and a negative predictive accuracy of 85.7% in this study group. High sensitive C-reactive protein in patients with documented coronary artery disease was not significantly different from those without coronary artery disease (4.8 +/- 0.9 mg/l versus 3.9 +/- 1.7 mg/l, p=NS). Also carotid intima media thickness was not significantly different between either of the groups with coronary artery disease positivity and negativity respectively (left: 1.25 +/- 0.55 versus 1.20 +/- 0.51 mm, p=NS; right:1.18 +/- 0.54 versus 1.15 +/- 0.41 mm, p=NS). High sensitive C-reactive protein and carotid intima media thickness were not helpful in further adding to the predictability of coronary artery disease in perimenopausal patients with typical angina as assessed by treadmill exercise stress test.
Cannoy, Jill; Crowley, Sam; Jarratt, Allen; Werts, Kelly LeFevere; Osborne, Krista; Park, Sohee
2016-01-01
Following peripheral nerve injury, moderate daily exercise conducted on a level treadmill results in enhanced axon regeneration and modest improvements in functional recovery. If the exercise is conducted on an upwardly inclined treadmill, even more motor axons regenerate successfully and reinnervate muscle targets. Whether this increased motor axon regeneration also results in greater improvement in functional recovery from sciatic nerve injury was studied. Axon regeneration and muscle reinnervation were studied in Lewis rats over an 11 wk postinjury period using stimulus evoked electromyographic (EMG) responses in the soleus muscle of awake animals. Motor axon regeneration and muscle reinnervation were enhanced in slope-trained rats. Direct muscle (M) responses reappeared faster in slope-trained animals than in other groups and ultimately were larger than untreated animals. The amplitude of monosynaptic H reflexes recorded from slope-trained rats remained significantly smaller than all other groups of animals for the duration of the study. The restoration of the amplitude and pattern of locomotor EMG activity in soleus and tibialis anterior and of hindblimb kinematics was studied during treadmill walking on different slopes. Slope-trained rats did not recover the ability to modulate the intensity of locomotor EMG activity with slope. Patterned EMG activity in flexor and extensor muscles was not noted in slope-trained rats. Neither hindblimb length nor limb orientation during level, upslope, or downslope walking was restored in slope-trained rats. Slope training enhanced motor axon regeneration but did not improve functional recovery following sciatic nerve transection and repair. PMID:27466130
Carmeli, Eli; Bar-Chad, Shmuel; Lotan, Meir; Merrick, Joav; Coleman, Raymond
2003-08-01
Incidence rates of falling increase progressively with aging. Preventing or delaying the onset of functional decline is a crucial important goal, because more individuals with intellectual disability (ID) are living well into their sixth and seventh decades. The question of whether walking and ball exercises can effect balance performance has never been reported. This pilot study was conducted to determine the effects of therapeutic training on improving balance capabilities in adults with mild ID. The study included 13 women and 4 men, aged 50-67 years (mean age 56.5 years) residing in a residential care center. Five clinical tests were used to determine the "real" picture of the locomotor function and balance before and after the training protocol. Baseline values were determined using 2 control groups of age-matched adults with and without ID. The tests included modified get-up-and-go, full turn, forward reach, sit-to-stand, and one-legged standing. Therapeutic training for 6 months included dynamic ball exercises and treadmill walking with a 2-3% positive inclination. Participants in the program showed little to no improvement in terms of their static and dynamic balance compared to their initial values. Thus, only 2 of the tests showed statistical significance. Lack of improvement was noted in both postural and balance control in adults with mild ID as a result of 6 months of intervention by means of ball exercise and treadmill training.
Aerobic exercise improves oxidant-antioxidant balance in patients with rheumatoid arthritis
Tuna, Zeynep; Duger, Tulin; Atalay-Guzel, Nevin; Aral, Arzu; Basturk, Bilkay; Haznedaroglu, Seminur; Goker, Berna
2015-01-01
[Purpose] Although oxidative stress is known to be present in rheumatoid arthritis (RA), the effects of exercise on oxidative parameters are unknown. The aim of this study was to investigate the effects of acute aerobic exercise on serum oxidant and antioxidant levels in patients with RA. [Subjects and Methods] Sixteen patients with RA and 10 age-matched healthy volunteers participated in this study. All participants wore polar telemeters and walked on a treadmill for 30 minutes at a speed eliciting 60–75% of maximal heart rates. Blood samples were obtained before, immediately and 24 hours after exercise and malondialdehyde (MDA) and total sulfhydrile group (RSH) levels were measured. [Results] Both groups had similar heart rates during the test but the treadmill speed of the RA patients was significantly lower than that of the healthy volunteers. Serum MDA levels were lower than in both groups immediately after exercise, with greater decrements in the RA patients than controls. MDA levels returned to baseline 24 hours after the exercise only in the controls; they remained low in the RA patients. There was a slight increase in serum RSH levels after exercise compared to baseline in both groups. [Conclusion] Moderate intensity treadmill exercise did not have any adverse effect on the oxidant-antioxidant balance. The results suggest that such an exercise may be safely added to the rehabilitation program of RA for additional antioxidant effects. Morever, this antioxidant environment is maintained longer in RA patients. PMID:25995597
Physiologic and Endocrine Correlates of Overweightness in African Americans and Caucasians
2009-03-27
aerobic graded exercise test (VO2 max test ) on a treadmill ( Philips StressVue Exercise Stress Testing System with Trackmaster Full Vision Inc...Pediatrics, 118 (6), 2434-42. Wang, J., Thornton, J.C., Bari, S., Williamson, B., Gallagher, D., Heymsfield, S.B., Horlick, M., Kotler , D...on a treadmill ( Philips StressVue Exercise Stress System, Trackmaster Full Vision Inc. Treadmill; Waltham, MA) to assess cardiovascular fitness. The
Costa, Marcelo S; Ardais, Ana Paula; Fioreze, Gabriela T; Mioranzza, Sabrina; Botton, Paulo Henrique S; Portela, Luis Valmor; Souza, Diogo O; Porciúncula, Lisiane O
2012-01-10
Physical exercise protocols have varied widely across studies raising the question of whether there is an optimal intensity, duration and frequency that would produce maximal benefits in attenuating symptoms related to anxiety disorders. Although physical exercise causes modifications in neurotransmission systems, the involvement of neuromodulators such as adenosine has not been investigated after chronic exercise training. Anxiety-related behavior was assessed in the elevated plus-maze in adult and middle-aged rats submitted to 8 weeks of treadmill running 1, 3 or 7 days/week. The speed of running was weekly adjusted to maintain moderate intensity. The hippocampal adenosine A1 and A2A receptors densities were also assessed. Treadmill running protocol was efficient in increasing physical exercise capacity in adult and middle-aged rats. All frequencies of treadmill running equally decreased the time spent in the open arms in adult animals. Middle-aged treadmill control rats presented lower time spent in the open arms than adult treadmill control rats. However, treadmill running one day/week reversed this age effect. Adenosine A1 receptor was not changed between groups, but treadmill running counteracted the age-related increase in adenosine A2A receptors. Although treadmill running, independent from frequency, triggered anxiety in adult rats and treadmill running one day/week reversed the age-related anxiety, no consistent relationship was found with hippocampal adenosine receptors densities. Thus, our data suggest that as a complementary therapy in the management of mental disturbances, the frequency and intensity of physical exercise should be taken into account according to age. Besides, this is the first study reporting the modulation of adenosine receptors after chronic physical exercise, which could be important to prevent neurological disorders associated to increase in adenosine A2A receptors. Copyright © 2011. Published by Elsevier Inc.
Albuquerque, Plínio Luna; Campêlo, Mayara; Mendonça, Thyciane; Fontes, Luís Augusto Mendes; Brito, Rodrigo de Mattos
2018-01-01
Repetitive transcranial magnetic stimulation (rTMS) over motor cortex and trans-spinal direct current stimulation (tsDCS) modulate corticospinal circuits in healthy and injured subjects. However, their associated effects with physical exercise is still not defined. This study aimed to investigate the effect of three different settings of rTMS and tsDCS combined with treadmill exercise on spinal cord and cortical excitability of healthy subjects. We performed a triple blind, randomized, sham-controlled crossover study with 12 healthy volunteers who underwent single sessions of rTMS (1Hz, 20Hz and Sham) and tsDCS (anodal, cathodal and Sham) associated with 20 minutes of treadmill walking. Cortical excitability was assessed by motor evoked potential (MEP) and spinal cord excitability by the Hoffmann reflex (Hr), nociceptive flexion reflex (NFR) and homosynaptic depression (HD). All measures were assessed before, immediately, 30 and 60 minutes after the experimental procedures. Our results demonstrated that anodal tsDCS/treadmill exercise reduced MEP’s amplitude and NFR’s area compared to sham condition, conversely, cathodal tsDCS/treadmill exercise increased NFR’s area. High-frequency rTMS increased MEP’s amplitude and NFR’s area compared to sham condition. Anodal tsDCS/treadmill exercise and 20Hz rTMS/treadmill exercise reduced Hr amplitude up to 30 minutes after stimulation offset and no changes were observed in HD measures. We demonstrated that tsDCS and rTMS combined with treadmill exercise modulated cortical and spinal cord excitability through different mechanisms. tsDCS modulated spinal reflexes in a polarity-dependent way acting at local spinal circuits while rTMS probably promoted changes in the presynaptic inhibition of spinal motoneurons. In addition, the association of two neuromodulatory techniques induced long-lasting changes. PMID:29596524
Albuquerque, Plínio Luna; Campêlo, Mayara; Mendonça, Thyciane; Fontes, Luís Augusto Mendes; Brito, Rodrigo de Mattos; Monte-Silva, Katia
2018-01-01
Repetitive transcranial magnetic stimulation (rTMS) over motor cortex and trans-spinal direct current stimulation (tsDCS) modulate corticospinal circuits in healthy and injured subjects. However, their associated effects with physical exercise is still not defined. This study aimed to investigate the effect of three different settings of rTMS and tsDCS combined with treadmill exercise on spinal cord and cortical excitability of healthy subjects. We performed a triple blind, randomized, sham-controlled crossover study with 12 healthy volunteers who underwent single sessions of rTMS (1Hz, 20Hz and Sham) and tsDCS (anodal, cathodal and Sham) associated with 20 minutes of treadmill walking. Cortical excitability was assessed by motor evoked potential (MEP) and spinal cord excitability by the Hoffmann reflex (Hr), nociceptive flexion reflex (NFR) and homosynaptic depression (HD). All measures were assessed before, immediately, 30 and 60 minutes after the experimental procedures. Our results demonstrated that anodal tsDCS/treadmill exercise reduced MEP's amplitude and NFR's area compared to sham condition, conversely, cathodal tsDCS/treadmill exercise increased NFR's area. High-frequency rTMS increased MEP's amplitude and NFR's area compared to sham condition. Anodal tsDCS/treadmill exercise and 20Hz rTMS/treadmill exercise reduced Hr amplitude up to 30 minutes after stimulation offset and no changes were observed in HD measures. We demonstrated that tsDCS and rTMS combined with treadmill exercise modulated cortical and spinal cord excitability through different mechanisms. tsDCS modulated spinal reflexes in a polarity-dependent way acting at local spinal circuits while rTMS probably promoted changes in the presynaptic inhibition of spinal motoneurons. In addition, the association of two neuromodulatory techniques induced long-lasting changes.
Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1
Tanner, Colby B.; Madsen, Steven R.; Hallowell, David M.; Goring, Darren M. J.; Moore, Timothy M.; Hardman, Shalene E.; Heninger, Megan R.; Atwood, Daniel R.
2013-01-01
LKB1 and its downstream targets of the AMP-activated protein kinase family are important regulators of many aspects of skeletal muscle cell function, including control of mitochondrial content and capillarity. LKB1 deficiency in skeletal and cardiac muscle (mLKB1-KO) greatly impairs exercise capacity. However, cardiac dysfunction in that genetic model prevents a clear assessment of the role of skeletal muscle LKB1 in the observed effects. Our purposes here were to determine whether skeletal muscle-specific knockout of LKB1 (skmLKB1-KO) decreases exercise capacity and mitochondrial protein content, impairs accretion of mitochondrial proteins after exercise training, and attenuates improvement in running performance after exercise training. We found that treadmill and voluntary wheel running capacity was reduced in skmLKB1-KO vs. control (CON) mice. Citrate synthase activity, succinate dehydrogenase activity, and pyruvate dehydrogenase kinase content were lower in KO vs. CON muscles. Three weeks of treadmill training resulted in significantly increased treadmill running performance in both CON and skmLKB1-KO mice. Citrate synthase activity increased significantly with training in both genotypes, but protein content and activity for components of the mitochondrial electron transport chain increased only in CON mice. Capillarity and VEGF protein was lower in skmLKB1-KO vs. CON muscles, but VEGF increased with training only in skmLKB1-KO. Three hours after an acute bout of muscle contractions, PGC-1α, cytochrome c, and VEGF gene expression all increased in CON but not skmLKB1-KO muscles. Our findings indicate that skeletal muscle LKB1 is required for accretion of some mitochondrial proteins but not for early exercise capacity improvements with exercise training. PMID:23982155
Strike, Karen; Mulder, Kathy; Michael, Rojer
2016-12-19
Haemophilia is a bleeding disorder associated with haemorrhaging into joints and muscles. Exercise is often used to aid recovery after bleeds, and to improve joint function in the presence of arthropathy. Our objective was to systematically review the available evidence on the safety and effectiveness of exercise for people with haemophilia. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Coagulopathies Trials Register and electronic databases PubMed, OVID-Embase, and CINAHL. We hand searched abstracts from congresses of the World Federation of Hemophilia and the European Hematology Association, trial registries and the reference lists of relevant articles.Date of the last search of the Cochrane Cystic Fibrosis and Genetic Disorders Group's Coagulopathies Trials Register: 14 December 2016. Randomized or quasi-randomized controlled studies comparing any exercise intervention considered relevant in haemophilia management including supervised, unsupervised, aquatic, strengthening, aerobic or cardiovascular, stretching, proprioceptive and balance training exercise programs in males of any age with haemophilia A or B of any severity (those with co-morbidities were not excluded). Two authors reviewed the identified abstracts to determine their eligibility. For studies meeting the inclusion criteria, full articles were obtained. The two authors extracted data and assessed the risk of bias. Any disagreements were resolved by discussion. The authors contacted study investigators to obtain any missing data. Eight studies were included, which represented 233 males with all severities of haemophilia A and B, ranging in age from eight years to 49 years. Study duration ranged from four to 12 weeks. Exercise interventions varied greatly and included resistance exercises, isometric exercises, bicycle ergometry, treadmill walking and hydrotherapy; therefore, comparison between studies was difficult.None of the studies measured or reported adverse effects from the interventions. None of the studies reported outcomes regarding bleed frequency, quality of life or aerobic activity. Overall risk of bias across all studies was assessed as unclear.Very few studies provided sufficient information for comparison. None of the studies reported data that favoured the control group. One study reported that six weeks of resistance training improved joint health status (Colorado score) compared to controls. The addition of pulsed electromagnetic fields also improved ankle scores compared to exercises alone, but this was not seen in the elbows or knees.Two studies reported statistically significant improvements in pain intensity after exercise interventions compared to controls. Hydrotherapy exercises produced significant decreases in pain compared to controls and land-based exercise groups.Two studies found improvement in joint motion in the exercise group compared to controls. One study compared land- and water-based exercises; there was no difference in the range of motion between the two groups; however, the water-based exercise group did show improvement over the control group.One study, comparing joint traction and proprioceptive neuromuscular facilitation for the elbow to a control group, showed no differences in biceps girth or strength after 12 weeks of intervention.Some studies reported comparisons between interventions. In one study, treadmill training significantly improved balance in children compared to bicycle ergometry. Another study added partial weight bearing exercises to quadriceps exercises and showed improved walking tolerance.Four studies evaluated quadriceps or hamstring strength (or both). The addition of bicycle ergometry and exercises with weights was more effective than static exercises and treadmill walking for strengthening knee flexors and extensors. Partial weight-bearing exercises through range were more effective than static and short arc exercises for improving knee extensor strength. The addition of treadmill walking to ultrasound, stretching and strengthening exercises showed increased peak torque of knee flexors and extensors and decrease in knee effusion.The results should be interpreted with caution due to the quality of evidence (GRADE) as outlined in the summary of findings tables, which demonstrates that all but one of the outcomes assessed were rated as low or very low due to the small sample sizes and potential bias. These results must be considered with caution. There is a lack of confidence in the results due to the small number of included studies and the inability to pool the results due to the heterogeneity of outcome measures. Most exercise interventions produced improvement in one or more of the measured outcomes including pain, range of motion, strength and walking tolerance. Hydrotherapy may be more effective than land exercises for pain relief in adults. Functional exercises such as treadmill walking and partial weight bearing exercises seem to be more effective than static or short arc exercises for improving muscle strength. These findings are consistent with the many non-controlled intervention reports in the haemophilia literature. No adverse effects were reported as a result of any of the interventions. However, some groups used prophylactic factor prior to exercise and other groups studied only subjects with moderate haemophilia. Therefore, the safety of these techniques for persons with severe haemophilia remains unclear.
TSUBONE, Hirokazu; HANAFUSA, Masakazu; ENDO, Maiko; MANABE, Noboru; HIRAGA, Atsushi; OHMURA, Hajime; AIDA, Hiroko
2013-01-01
The present study aimed to clarify changes of oxidative stress and antioxidative functions in treadmill-exercised Thoroughbred horses (n=5, 3 to 7 years old), using recently developed techniques for measurement of serum d-ROMs for oxidative stress, and BAP for antioxidative markers. Also, the effect of nasogastric administration of hydrogen-rich water (HW) or placebo water preceding the treadmill exercise on these parameters was examined. Each horse was subjected to a maximum level of treadmill exercise in which the horses were exhausted at an average speed of 13.2 ± 0.84 m/sec. Blood samples were taken 4 times, immediately before the intake of HW or placebo water at 30 min preceding the treadmill exercise, immediately before the exercise (pre-exercise), immediately after the exercise (post-exercise) and at 30 min following the exercise. In all horses, both d-ROMs and BAP values significantly increased at post-exercise. The increase in d-ROMs tended to be lower in the HW trial, as compared to the placebo trial at pre-exercise. The increase in BAP was considerable at approximately 150% of the pre-exercise values in both the HW and placebo treatment trials. The BAP/d-ROMs ratio was significantly elevated at post-exercise in both treatment trials, while a significant elevation was also observed at pre-exercise in the HW trial. BAP, d-ROM, and the BAP/d-ROM ratio tended to decline at 30 min after the exercise, except BAP and BAP/d-ROMs in the placebo trial. These results demonstrate that the marked elevation of oxidative stress and anitioxidative functions occurred simultaneously in the intensively exercised horses, and suggest a possibility that HW has some antioxidative efficacy. PMID:24833996
Tsubone, Hirokazu; Hanafusa, Masakazu; Endo, Maiko; Manabe, Noboru; Hiraga, Atsushi; Ohmura, Hajime; Aida, Hiroko
2013-01-01
The present study aimed to clarify changes of oxidative stress and antioxidative functions in treadmill-exercised Thoroughbred horses (n=5, 3 to 7 years old), using recently developed techniques for measurement of serum d-ROMs for oxidative stress, and BAP for antioxidative markers. Also, the effect of nasogastric administration of hydrogen-rich water (HW) or placebo water preceding the treadmill exercise on these parameters was examined. Each horse was subjected to a maximum level of treadmill exercise in which the horses were exhausted at an average speed of 13.2 ± 0.84 m/sec. Blood samples were taken 4 times, immediately before the intake of HW or placebo water at 30 min preceding the treadmill exercise, immediately before the exercise (pre-exercise), immediately after the exercise (post-exercise) and at 30 min following the exercise. In all horses, both d-ROMs and BAP values significantly increased at post-exercise. The increase in d-ROMs tended to be lower in the HW trial, as compared to the placebo trial at pre-exercise. The increase in BAP was considerable at approximately 150% of the pre-exercise values in both the HW and placebo treatment trials. The BAP/d-ROMs ratio was significantly elevated at post-exercise in both treatment trials, while a significant elevation was also observed at pre-exercise in the HW trial. BAP, d-ROM, and the BAP/d-ROM ratio tended to decline at 30 min after the exercise, except BAP and BAP/d-ROMs in the placebo trial. These results demonstrate that the marked elevation of oxidative stress and anitioxidative functions occurred simultaneously in the intensively exercised horses, and suggest a possibility that HW has some antioxidative efficacy.
Khodadadi, Davar; Gharakhanlou, Reza; Naghdi, Naser; Salimi, Mona; Azimi, Mohammad; Shahed, Atabak; Heysieattalab, Soomaayeh
2018-06-11
Aggregated amyloid beta (Aβ) peptides are believed to play a decisive role in the pathology of Alzheimer's disease (AD). Previous evidence suggested that exercise contributes to the improvement of cognitive decline and slows down pathogenesis of AD; however, the exact mechanisms for this have not been fully understood. Here, we evaluated the effect of a 4-week moderate treadmill exercise on spatial memory via central and peripheral Aβ clearance mechanisms following developed AD-like neuropathology induced by intra-hippocampal Aβ 1-42 injection in male Wistar rats. We found Aβ 1-42 -treated animals showed spatial learning and memory impairment which was accompanied by increased levels of amyloid plaque load and soluble Aβ 1-42 (sAβ 1-42 ), decreased mRNA and protein expression of neprilysin (NEP), insulin degrading enzyme (IDE) and low-density lipoprotein receptor-related protein-1 (LRP-1) in the hippocampus. Aβ 1-42 -treated animals also exhibited a higher level of sAβ 1-42 and a lower level of soluble LRP-1 (sLRP-1) in plasma, as well as a decreased level of LRP-1 mRNA and protein content in the liver. However, exercise training improved the spatial learning and memory deficits, reduced both plaque load and sAβ 1-42 levels, and up-regulated expression of NEP, IDE, and LRP-1 in the hippocampus of Aβ 1-42 -treated animals. Aβ 1-42 -treated animals subjected to treadmill exercise also revealed decreased levels of sAβ 1-42 and increased levels of sLRP-1 in plasma, as well as increased levels of LRP-1 mRNA and protein in the liver. In conclusion, our findings suggest that exercise-induced improvement in both of central and peripheral Aβ clearance are likely involved in ameliorating spatial learning and memory deficits in an animal model of AD. Future studies need to determine their relative contribution.
Daly, Patrick; Kayse, Regina; Rudick, Steven; Robbins, Nathan; Scheler, Jennifer; Harris, David; O'Donnell, Robert; Dwivedi, Alok K; Gerson, Myron C
2017-08-31
Exercise is the AHA/ACC guideline-recommended stress modality for myocardial perfusion imaging, but many patients are unable to exercise to target heart rate on a conventional treadmill. We examined the feasibility and safety of stress imaging using an anti-gravity treadmill in patients with perceived poor exercise capacity. 49 patients were recruited for stress testing by anti-gravity treadmill (n = 29) or to a regadenoson control group (n = 20). Seventeen anti-gravity test patients (59%) reached target heart rate obviating the need for a pharmacologic stress agent. Adverse effects of the anti-gravity treadmill were limited to minor muscle aches in 5 subjects. Stress myocardial perfusion image quality judged by 3 blinded readers on a 5-point scale was comparable for the anti-gravity treadmill (4.30 ± SD 0.87) vs pharmacologic stress (4.28 ± SD 0.66). Stress testing using an anti-gravity treadmill is feasible and may help some patients safely achieve target heart rate.
Hammond, Max A; Laine, Tyler J; Berman, Alycia G; Wallace, Joseph M
The specifics of how the nanoscale properties of collagen (e.g., the crosslinking profile) affect the mechanical integrity of bone at larger length scales is poorly understood despite growing evidence that collagen's nanoscale properties are altered with disease. Additionally, mass independent increases in postyield displacement due to exercise suggest loading-induced improvements in bone quality associated with collagen. To test whether disease-induced reductions in bone quality driven by alterations in collagen can be rescued or prevented via exercise-mediated changes to collagen's nanoscale morphology and mechanical properties, the effects of treadmill exercise and β-aminopropionitrile treatment were investigated. Eight week old female C57BL/6 mice were given a daily subcutaneous injection of either 164 mg/kg β-aminopropionitrile or phosphate buffered saline while experiencing either normal cage activity or 30 min of treadmill exercise for 21 consecutive days. Despite differences in D-spacing distribution (P = 0.003) and increased cortical area (tibial: P = 0.005 and femoral: P = 0.015) due to β-aminopropionitrile treatment, an overt mechanical disease state was not achieved as there were no differences in fracture toughness or 4 point bending due to β-aminopropionitrile treatment. While exercise did not alter (P = 0.058) the D-spacing distribution of collagen or prevent (P < 0.001) the β-aminopropionitrile-induced changes present in the unexercised animals, there were differential effects in the distribution of the reduced elastic modulus due to exercise between control and β-aminopropionitrile-treated animals (P < 0.001). Fracture toughness was increased (P = 0.043) as a main effect of exercise, but no significant differences due to exercise were observed using 4 point bending. Future studies should examine the potential for sex specific differences in the dose of β-aminopropionitrile required to induce mechanical effects in mice and the contributions of other nanoscale aspects of bone (e.g., the mineral-collagen interface) to elucidate the mechanism for the exercise-based improvements in fracture toughness observed here and the increased postyield deformation observed in other studies.
Daily Supine LBNP Treadmill Exercise Maintains Upright Exercise Capacity During 14 Days of Bed Rest
NASA Technical Reports Server (NTRS)
Ertl, Andy C.; Watenpaugh, D. E.; Hargens, Alan R.; Fortney, S. M.; Lee, S. M. C.; Ballard, R. E.; William, J. M.
1996-01-01
Exposure to microgravity or bed rest reduces upright exercise capacity. Exercise modes, durations, and intensities which will effectively and efficiently counteract such deconditioning are presently unresolved. We that daily supine treadmill interval training with lower body negative pressure (LBNP) would prevent reduction in upright exercise capacity during 14 days of 6 deg. head-down bed rest (BR). Eight healthy male subjects underwent two 14 day BR protocols separated by 3 months. In a crossover design, subjects either remained at strict BR or performed 40 min of daily exercise consisting of supine walking and running at intensities varying from 40-80% of pre-BR upright peak oxygen uptake (VO2). LBNP during supine exercise was used to provide 1.0 to 1.2 times body weight of footward force. An incremental upright treadmill test to measure submaximal and peak exercise responses was given pre- and post-BR. In the non-exercise condition, peak VO2 and time to exhaustion were reduced 16 +/- 4% and 10 +/- 1% (p less than 0.05), respectively, from pre-BR. With LBNP exercise these variables were not significantly different (NS) from pre-BR. During submaximal treadmill speeds after BR, heart rate was higher (11 +/- 11 bpm, p less than 0.05) and respiratory exchange ratio was elevated (p less than 0.05) in the no exercise condition. Both were maintained at pre-BR levels in the LBNP exercise condition (NS from pre-BR). Since this supine treadmill interval training with addition of LBNP maintained upright exercise responses and capacity during BR, this countermeasure may also be effective during space flight.
Lee, So Young; Han, Eun Young; Kim, Bo Ryun; Im, Sang Hee
2018-03-12
The aim of this study was to assess the effects of a motorized aquatic treadmill exercise program improve the isometric strength of the knee muscles, cardiorespiratory fitness, arterial stiffness, motor function, balance, functional outcomes and quality of life in subacute stroke patients. Thirty-two patients were randomly assigned to 4-week training sessions of either aquatic therapy(n=19) or land-based aerobic exercise(n=18). Isometric strength was measured using an isokinetic dynamometer. Cardiopulmonary fitness was evaluated using a symptom-limited exercise tolerance test and by measuring brachial ankle pulse wave velocity. Moreover, motor function(Fugl-Meyer Assessment[FMA] and FMA-lower limb[FMA-LL]), balance(Berg Balance Scale[BBS]), Activities of daily living(Korean version of the Modified Barthel Index [K-MBI]), and Quality of life(EQ-5D index) were examined. There were no inter-group differences between demographic and clinical characteristics at baseline(p>0.05). The results shows significant improvements in peak oxygen consumption (p=0.02), maximal isometric strength of the bilateral knee extensors (p<0.01) and paretic knee flexors (p=0.01), FMA (p=0.03), FMA-LL (p=0.01), BBS (p=0.01), K-MBI (p<0.01), and EQ-5D index (p=0.04) after treatment in the aquatic therapy group. However, only significant improvements in maximal isometric strength in the knee extensors (p=0.03) and flexors (p=0.04) were found within the aquatic therapy group and control group. Water-based aerobic exercise performed on a motorized aquatic treadmill had beneficial effect on isometric muscle strength in the lower limb.
Metabolic Rate and Ground Reaction Force During Motorized and Non-Motorized Treadmill Exercise
NASA Technical Reports Server (NTRS)
Everett, Meghan E.; Loehr, James A.; DeWitt, John K.; Laughlin, Mitzi; Lee, Stuart M. C.
2010-01-01
PURPOSE: To measure vertical ground reaction force (vGRF) and oxygen consumption (VO2) at several velocities during exercise using a ground-based version of the ISS treadmill in the M and NM modes. METHODS: Subjects (n = 20) walked or ran at 0.89, 1.34, 1.79, 2.24, 2.68, and 3.12 m/s while VO2 and vGRF data were collected. VO2 was measured using open-circuit spirometry (TrueOne 2400, Parvo-Medics). Data were averaged over the last 2 min of each 5-min stage. vGRF was measured in separate 15-s bouts at 125 Hz using custom-fitted pressure-sensing insoles (F-Scan Sport Sensors, Tekscan, Inc). A repeated-measures ANOVA was used to test for differences in VO2 and vGRF between M and NM and across speeds. Significance was set at P < 0.05. RESULTS: Most subjects were unable to exercise for 5 min at treadmill speeds above 1.79 m/s in the NM mode; however, vGRF data were obtained for all subjects at each speed in both modes. VO2 was approx.40% higher during NM than M exercise across treadmill speeds. vGRF increased with treadmill speed but was not different between modes. CONCLUSION: Higher VO2 with no change in vGRF suggests that the additional metabolic cost associated with NM treadmill exercise is accounted for in the horizontal forces required to move the treadmill belt. Although this may limit the exercise duration at faster speeds, high-intensity NM exercise activates the hamstrings and plantarflexors, which are not specifically targeted or well protected by other in-flight countermeasures.
Prediction of Maximum Oxygen Uptake Using Both Exercise and Non-Exercise Data
ERIC Educational Resources Information Center
George, James D.; Paul, Samantha L.; Hyde, Annette; Bradshaw, Danielle I.; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.
2009-01-01
This study sought to develop a regression model to predict maximal oxygen uptake (VO[subscript 2max]) based on submaximal treadmill exercise (EX) and non-exercise (N-EX) data involving 116 participants, ages 18-65 years. The EX data included the participants' self-selected treadmill speed (at a level grade) when exercise heart rate first reached…
Cerebral Blood Flow Responses to Aquatic Treadmill Exercise.
Parfitt, Rhodri; Hensman, Marianne Y; Lucas, Samuel J E
2017-07-01
Aquatic treadmills are used as a rehabilitation method for conditions such as spinal cord injury, osteoarthritis, and stroke, and can facilitate an earlier return to exercise training for athletes. However, their effect on cerebral blood flow (CBF) responses has not been examined. We tested the hypothesis that aquatic treadmill exercise would augment CBF and lower HR compared with land-based treadmill exercise. Eleven participants completed incremental exercise (crossover design) starting from walking pace (4 km·h, immersed to iliac crest [aquatic], 6 km·h [land]) and increasing 1 km·h every 2 min up to 10 km·h for aquatic (maximum belt speed) or 12 km·h for land. After this, participants completed two 2-min bouts of exercise immersed to midthigh and midchest at constant submaximal speed (aquatic), or were ramped to exhaustion (land; increased gradient 2° every min). Middle cerebral artery blood flow velocity (MCAv) and HR were measured throughout, and the initial 10 min of each protocol and responses at each immersion level were compared. Compared with land-based treadmill, MCAvmean increased more from baseline for aquatic exercise (21% vs 12%, P < 0.001), while being associated with lower overall HR (pooled difference, 11 bpm; P < 0.001). MCAvmean increased similarly during aquatic walking compared with land-based moderate intensity running (~10 cm·s, P = 0.56). Greater water immersion lowered HR (139 vs 178 bpm for midchest vs midthigh), whereas MCAvmean remained constant (P = 0.37). Findings illustrate the potential for aquatic treadmill exercise to enhance exercise-induced elevations in CBF and thus optimize shear stress-mediated adaptation of the cerebrovasculature.
Someya, Fujiko
2013-01-01
Abstract Objective: To compare the effect of body-weight-supported treadmill training (BWSTT) and full-body-weight treadmill training (FBWTT) on patients with knee osteoarthritis (OA). Methods: Design was Randomized controlled trial. Patients with knee osteoarthritis (n = 30; mean age, 76.0±7.5 y) were randomly assigned to BWSTT or FBWTT group. All patients performed 20 min walking exercise twice a week for 6 weeks under the supervision of the therapist. Main measures were 10-meter walking test (10MWT), functional reach test (FRT), timed get up and go test (TUG), one-leg standing test, 6-minute walking test (6MWT), the parameters set on the treadmill, MOS Short-Form 36-Item Health Survey (SF36), Japanese Knee Osteoarthritis Measure (JKOM). Results: Twenty-five patients (10 men, 15 women; mean age, 76.5 ± 8.0 y) completed the experiment. Exercise capacity, indicated by the heart rate, was similar in both groups. After 3 weeks of BWSTT, the patients performed significantly better in the 10-m and 6-min walking tests. This was not the case with FBWTT even after 6 weeks training. Pain levels assessed were significantly improved after 3 weeks of BWSTT and 6 weeks of FBWTT. There were no significant improvements in either group assessed by the FRT, one-leg standing time test, TUG, or SF -36 questionnaire. Conclusions: BWSTT enhanced exercise capacity in terms of walking speed and pain reduction after 3 weeks; however, there was no significant improvement in patients' functional abilities or quality of life. PMID:25792901
Cordingley, Dean; Girardin, Richard; Reimer, Karen; Ritchie, Lesley; Leiter, Jeff; Russell, Kelly; Ellis, Michael J
2016-12-01
OBJECTIVE The objectives of this study were 2-fold: 1) to evaluate the safety, tolerability, and clinical use of graded aerobic treadmill testing in pediatric patients with sports-related concussion (SRC), and 2) to evaluate the clinical outcomes of treatment with a submaximal aerobic exercise program in patients with physiological post-concussion disorder (PCD). METHODS The authors conducted a retrospective chart review of pediatric patients (age < 20 years) with SRC who were referred to a multidisciplinary pediatric concussion program and underwent graded aerobic treadmill testing between October 9, 2014, and February 11, 2016. Clinical assessments were carried out by a single neurosurgeon and included clinical history taking, physical examination, and recording specific patient-reported concussion-related symptoms using the Post-Concussion Symptom Scale (PCSS). Graded aerobic treadmill testing using a modified Balke protocol for incremental increases in intensity was used as a diagnostic tool to assess physiological recovery, classify post-concussion syndrome (PCS) subtype, and reassess patients following treatment. Patients with a symptom-limited threshold on treadmill testing (physiological PCD) were treated with an individually tailored submaximal exercise prescription and multidisciplinary targeted therapies. RESULTS One hundred six patients (mean age 15.1 years, range 11-19 years) with SRC underwent a total of 141 treadmill tests. There were no serious complications related to treadmill testing in this study. Overall, 138 (97.9%) of 141 tests were well tolerated and contributed valuable clinical information. Treadmill testing confirmed physiological recovery in 63 (96.9%) of 65 patients tested, allowing successful return to play in 61 (93.8%). Treadmill testing was used to diagnose physiological PCD in 58 patients and cervicogenic PCD in 1 patient. Of the 41 patients with physiological PCD who had complete follow-up and were treated with tailored submaximal exercise prescription, 37 (90.2%) were classified as clinically improved and 33 (80.5%) successfully returned to sporting activities. Patients who did not respond or experienced an incomplete response to submaximal aerobic exercise treatment included 7 patients with migraine headaches and 1 patient with a postinjury psychiatric disorder. CONCLUSIONS Graded aerobic treadmill testing is a safe, tolerable, and clinically valuable tool that can assist in the evaluation and management of pediatric SRC. Future research is needed to confirm the clinical value of this tool in return-to-play decision making. Studies are also needed to understand the pathophysiology of physiological PCD and the effects of targeted treatment.
Kim, Jong Whi; Chae, Junghyun; Nam, Sung Min; Kim, Yo Na; Yoo, Dae Young; Choi, Jung Hoon; Jung, Hyo Young; Song, Wook; Hwang, In Koo; Seong, Je Kyung; Yoon, Yeo Sung
2015-01-01
In the present study, we investigated the effects of treadmill exercise on lipid peroxidation and Cu,Zn-superoxide dismutase (SOD1) levels in the hippocampus of Zucker diabetic fatty (ZDF) rats and lean control rats (ZLC) during the onset of diabetes. At 7 weeks of age, ZLC and ZDF rats were either placed on a stationary treadmill or made to run for 1 h/day for 5 consecutive days at 16~22 m/min for 5 weeks. At 12 weeks of age, the ZDF rats had significantly higher blood glucose levels and body weight than the ZLC rats. In addition, malondialdehyde (MDA) levels in the hippocampus of the ZDF rats were significantly higher than those of the ZLC rats whereas SOD1 levels in the hippocampus of the ZDF rats were moderately decreased. Notably, treadmill exercise prevented the increase of blood glucose levels in ZDF rats. In addition, treadmill exercise significantly ameliorated changes in MDA and SOD1 levels in the hippocampus although SOD activity was not altered. These findings suggest that diabetes increases lipid peroxidation and decreases SOD1 levels, and treadmill exercise can mitigate diabetes-induced oxidative damage in the hippocampus.
Uddin, Golam Mezbah; Youngson, Neil A; Doyle, Bronte M; Sinclair, David A; Morris, Margaret J
2017-11-08
Maternal overnutrition increases the risk of long-term metabolic dysfunction in offspring. Exercise improves metabolism partly by upregulating mitochondrial biogenesis or function, via increased levels of nicotinamide adenine dinucleotide (NAD + ). We have shown that the NAD + precursor, nicotinamide mononucleotide (NMN) can reverse some of the negative consequences of high fat diet (HFD) consumption. To investigate whether NMN can impact developmentally-set metabolic deficits, we compared treadmill exercise and NMN injection in offspring of obese mothers. Five week old lean and obese female C57BL6/J mice were mated with chow fed males. Female offspring weaned onto HFD were given treadmill exercise for 9 weeks, or NMN injection daily for 18 days. Maternal obesity programmed increased adiposity and liver triglycerides, with decreased glucose tolerance, liver NAD + levels and citrate synthase activity in offspring. Both interventions reduced adiposity, and showed a modest improvement in glucose tolerance and improved markers of mitochondrial function. NMN appeared to have stronger effects on liver fat catabolism (Hadh) and synthesis (Fasn) than exercise. The interventions appeared to exert the most global benefit in mice that were most metabolically challenged (HFD-consuming offspring of obese mothers). This work encourages further study to confirm the suitability of NMN for use in reversing metabolic dysfunction linked to programming by maternal obesity.
Hwang, Dong-Joo; Koo, Jung-Hoon; Kwon, Ki-Cheon; Choi, Dong-Hoon; Shin, Sung-Deuk; Jeong, Jae-Hoon; Um, Hyun-Seob; Cho, Joon-Yong
2017-12-19
Dysfunction of mitophagy, which is a selective degradation of defective mitochondria for quality control, is known to be implicated in the pathogenesis of Parkinson's disease (PD). However, how treadmill exercise (TE) regulates mitophagy-related molecules in PD remains to be elucidated. Therefore, we aimed to investigate how TE regulates α-synuclein (α-syn)-induced neurotoxicity and mitophagy-related molecules in the nigro-striatal region of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mice. Our data showed that TE exhibited a significant restoration of tyrosine hydroxylase and motor coordination with suppression of α-syn expression, hallmarks of PD, possibly via up-regulation of lysosomal degradation molecules, LAMP-2 and cathepsin L, with down-regulation of p62, LC3-II/LC3-I ratio, PINK1 and parkin in the substantia nigra of MPTP mice. Therefore, these results suggest that treadmill exercise can be used as a non-invasive intervention to improve the pathological features and maintain a healthier mitochondrial network through appropriate elimination of defective mitochondria in PD.
Vande Hei exercises on COLBERT/T2 Treadmill
2017-09-23
iss053e040103 (ept. 23, 2017) --- Astronaut Mark Vande Hei, Expedition 53 Flight Engineer, exercises on the COLBERT (Combined Operational Load Bearing External Resistance Treadmill) in the Tranquility module.
Charalambous, Charalambos C; Alcantara, Carolina C; French, Margaret A; Li, Xin; Matt, Kathleen S; Kim, Hyosub E; Morton, Susanne M; Reisman, Darcy S
2018-05-15
Previous work demonstrated an effect of a single high-intensity exercise bout coupled with motor practice on the retention of a newly acquired skilled arm movement, in both neurologically intact and impaired adults. In the present study, using behavioural and computational analyses we demonstrated that a single exercise bout, regardless of its intensity and timing, did not increase the retention of a novel locomotor task after stroke. Considering both present and previous work, we postulate that the benefits of exercise effect may depend on the type of motor learning (e.g. skill learning, sensorimotor adaptation) and/or task (e.g. arm accuracy-tracking task, walking). Acute high-intensity exercise coupled with motor practice improves the retention of motor learning in neurologically intact adults. However, whether exercise could improve the retention of locomotor learning after stroke is still unknown. Here, we investigated the effect of exercise intensity and timing on the retention of a novel locomotor learning task (i.e. split-belt treadmill walking) after stroke. Thirty-seven people post stroke participated in two sessions, 24 h apart, and were allocated to active control (CON), treadmill walking (TMW), or total body exercise on a cycle ergometer (TBE). In session 1, all groups exercised for a short bout (∼5 min) at low (CON) or high (TMW and TBE) intensity and before (CON and TMW) or after (TBE) the locomotor learning task. In both sessions, the locomotor learning task was to walk on a split-belt treadmill in a 2:1 speed ratio (100% and 50% fast-comfortable walking speed) for 15 min. To test the effect of exercise on 24 h retention, we applied behavioural and computational analyses. Behavioural data showed that neither high-intensity group showed greater 24 h retention compared to CON, and computational data showed that 24 h retention was attributable to a slow learning process for sensorimotor adaptation. Our findings demonstrated that acute exercise coupled with a locomotor adaptation task, regardless of its intensity and timing, does not improve retention of the novel locomotor task after stroke. We postulate that exercise effects on motor learning may be context specific (e.g. type of motor learning and/or task) and interact with the presence of genetic variant (BDNF Val66Met). © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
A model for nonexercising hindlimb muscles in exercising animals.
Bonen, A; Blewett, C; McDermott, J C; Elder, G C
1990-07-01
Nonexercising muscles appear to be metabolically active during exercise. Animal models for this purpose have not been established. However, we have been able to teach animals to run on their forelimbs while their hindlimbs are suspended above the treadmill with no visible limb movement. To document that indeed this mode of exercise does not provoke additional muscle activity, we have compared the levels of neural activation of the soleus and plantaris muscles using a computer analysis of the electromyographic interference pattern, recorded from bipolar fine wire electrodes implanted across each muscle. Via computer analyses of the electromyographic interference patterns the frequencies and amplitudes of motor unit action potentials were obtained. The data were sampled during 20 s of every minute of observation. Comparisons were made in four conditions: (i) resting on the treadmill while bearing weight on the hindlimbs (normal rest), (ii) running on the treadmill (15 m/min, 8% grade) on all four limbs (normal exercise), (iii) resting while the hindlimbs were suspended in a harness above the treadmill (suspended rest), and (iv) exercising with the forelimbs (15 m/min, 8% grade) while the hindlimbs were suspended above the treadmill (suspended exercise). All four experimental conditions were carried out for 90 min each and were performed by each animal. The results clearly show that muscle activities (frequencies and amplitudes), when the hindlimbs are suspended above the treadmill, at rest or during exercise, are lower than the activities in these same muscles when the animals are at rest, supporting only their body weight. Activities in the same muscles during exercise were from 300 to 2000% greater than during hindlimb suspension.(ABSTRACT TRUNCATED AT 250 WORDS)
Muscat, Kristina M; Kotrach, Houssam G; Wilkinson-Maitland, Courtney A; Schaeffer, Michele R; Mendonca, Cassandra T; Jensen, Dennis
2015-11-01
In a randomized cross-over study of 15 healthy men aged 20-30 years, we compared physiological and perceptual responses during treadmill and cycle exercise test protocols matched for increments in work rate - the source of increased locomotor muscle metabolic and contractile demands. The rates of O2 consumption and CO2 production were higher at the peak of treadmill versus cycle testing (p ≤ 0.05). Nevertheless, work rate, minute ventilation, tidal volume (VT), breathing frequency (fR), inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal esophageal (Pes,tidal) and transdiaphragmatic pressure swings (Pdi,tidal), peak expiratory gastric pressures (Pga,peak), the root mean square of the diaphragm electromyogram (EMGdi,rms) expressed as a percentage of maximum EMGdi,rms (EMGdi,rms%max), and dyspnea ratings were similar at the peak of treadmill versus cycle testing (p > 0.05). Ratings of leg discomfort were higher at the peak of cycle versus treadmill exercise (p ≤ 0.05), even though peak O2 consumption was lower during cycling. Oxygen consumption, CO2 production, minute ventilation, fR, Pes,tidal, Pdi,tidal and Pga,peak were higher (p ≤ 0.05), while VT, IC, IRV, EMGdi,rms%max, and ratings of dyspnea and leg discomfort were similar (p > 0.05) at all or most submaximal work rates during treadmill versus cycle exercise. Our findings highlight important differences (and similarities) in physiological and perceptual responses at maximal and submaximal work rates during incremental treadmill and cycle exercise testing protocols. The lack of effect of exercise test modality on peak work rate advocates for the use of this readily available parameter to optimize training intensity determination, regardless of exercise training mode.
Increasing physician activity with treadmill desks.
Thompson, Warren G; Koepp, Gabriel A; Levine, James A
2014-01-01
Prolonged sitting has been shown to increase mortality and obesity. We sought to determine whether physicians would use a treadmill desk, increase their daily physical activity and lose weight. 20 overweight and obese physicians aged 25 to 70 with Body Mass Index > 25. Participants used a treadmill desk, a triaxial accelerometer, and received exercise counseling in a randomized, cross-over trial over 24 weeks. Group 1 received exercise counseling, accelerometer feedback, and a treadmill desk for 12 weeks and then accelerometer only for 12 weeks. Group 2 received an accelerometer without feedback for 12 weeks followed by exercise counseling, accelerometer feedback, and the treadmill desk for 12 weeks. Daily physical activity increased while using the treadmill desk compared to not using the desk by 197 kcal per day (p=0.003). The difference in weight during the two 12 week periods was 1.85 kg (p=0.03). Percent body fat was 1.9% lower while using the treadmill desk (p=0.02). There were no differences in metabolic or well-being measures. This study suggests that physicians will use a treadmill desk, that it does increase their activity, and that it may help with weight loss. Further studies are warranted.
Heritability, linkage, and genetic associations of exercise treadmill test responses.
Ingelsson, Erik; Larson, Martin G; Vasan, Ramachandran S; O'Donnell, Christopher J; Yin, Xiaoyan; Hirschhorn, Joel N; Newton-Cheh, Christopher; Drake, Jared A; Musone, Stacey L; Heard-Costa, Nancy L; Benjamin, Emelia J; Levy, Daniel; Atwood, Larry D; Wang, Thomas J; Kathiresan, Sekar
2007-06-12
The blood pressure (BP) and heart rate responses to exercise treadmill testing predict incidence of cardiovascular disease, but the genetic determinants of hemodynamic and chronotropic responses to exercise are largely unknown. We assessed systolic BP, diastolic BP, and heart rate during the second stage of the Bruce protocol and at the third minute of recovery in 2982 Framingham Offspring participants (mean age 43 years; 53% women). With use of residuals from multivariable models adjusted for clinical correlates of exercise treadmill testing responses, we estimated the heritability (variance-components methods), genetic linkage (multipoint quantitative trait analyses), and association with 235 single-nucleotide polymorphisms in 14 candidate genes selected a priori from neurohormonal pathways for their potential role in exercise treadmill testing responses. Heritability estimates for heart rate during exercise and during recovery were 0.32 and 0.34, respectively. Heritability estimates for BP variables during exercise were 0.25 and 0.26 (systolic and diastolic BP) and during recovery, 0.16 and 0.13 (systolic and diastolic BP), respectively. Suggestive linkage was found for systolic BP during recovery from exercise (locus 1q43-44, log-of-the-odds score 2.59) and diastolic BP during recovery from exercise (locus 4p15.3, log-of-the-odds score 2.37). Among 235 single-nucleotide polymorphisms tested for association with exercise treadmill testing responses, the minimum nominal probability value was 0.003, which was nonsignificant after adjustment for multiple testing. Hemodynamic and chronotropic responses to exercise are heritable and demonstrate suggestive linkage to select loci. Genetic mapping with newer approaches such as genome-wide association may yield novel insights into the physiological responses to exercise.
Cho, Jung-Wan; Jung, Sun-Young; Lee, Sang-Won; Lee, Sam-Jun; Seo, Tae-Beom; Kim, Young-Pyo; Kim, Dae-Young
2017-12-01
Social isolation is known to induce emotional and behavioral changes in animals and humans. The effect of treadmill exercise on depression was investigated using social isolated rat pups. The rat pups in the social isolation groups were housed individually. The rat pups in the exercise groups were forced to run on treadmill for 30 min once a day from postnatal day 21 to postnatal day 34. In order to evaluate depression state of rat pups, forced swimming test was performed. Newly generated cells in the hippocampal dentate gyrus were determined by 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry. We examined the expression of 5-hydroxytryptamine (5-HT) and tryptophan hydroxylase (TPH) in the dorsal raphe using immunofluorescence. The expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) was detected by Western blot analysis. The present results demonstrated that social isolation increased resting time and decreased mobility time. Expression of 5-HT and TPH in the dorsal raphe and expression of BDNF and TrkB in the hippocampus were decreased by social isolation. The number of BrdU-positive cells in the hippocampal dentate gyrus was suppressed by social isolation. Treadmill exercise decreased resting time and increased mobility in the social isolated rat pups. Expression of 5-HT, TPH, BDNF, and TrkB was increased by treadmill exercise. The present results suggested that treadmill exercise may ameliorates social isolation-induced depression through increasing neuronal generation.
Yun, Hyo-Soon; Park, Mi-Sook; Ji, Eun-Sang; Kim, Tae-Woon; Ko, Il-Gyu; Kim, Hyun-Bae; Kim, Hong
2014-01-01
Attention deficit/hyperactivity disorder (ADHD) is a neurobehavioral disorder of cognition. We investigated the effects of treadmill exercise on Purkinje cell and astrocytic reaction in the cerebellum of the ADHD rat. Adult male spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKYR) weighing 210± 10 g were used. The animals were randomly divided into four groups (n= 15): control group, ADHD group, ADHD and methylphenidate (MPH)-treated group, ADHD and treadmill exercise group. The rats in the MPH-treated group as a positive control received 1 mg/kg MPH orally once a day for 28 consecutive days. The rats in the treadmill exercise group were made to run on a treadmill for 30 min once a day for 28 days. Motor coordination and balance were determined by vertical pole test. Immunohistochemistry for the expression of calbindinD-28 and glial fibrillary acidic protein (GFAP) in the cerebellar vermis and Western blot for GFAP, Bax, and Bcl-2 were conducted. In the present results, ADHD significantly decreased balance and the number of calbindin-positive cells, while GFAP expression and Bax/Bcl-2 ratio in the cerebellum were significantly increased in the ADHD group compared to the control group (P< 0.05, respectively). In contrast, treadmill exercise and MPH alleviated the ADHD-induced the decrease of balance and the number of calbindine-positive cells, and the increase of GFAP expression and Bax/Bcl-2 ratio in the cerebellum (P< 0.05, respectively). Therefore, the present results suggested that treadmill exercise might exert ameliorating effect on ADHD through reduction of Purkinje cell loss and astrocytic reaction in the cerebellum. PMID:24678501
Cigarroa, Igor; Lalanza, Jaume F.; Caimari, Antoni; del Bas, Josep M.; Capdevila, Lluís; Arola, Lluís; Escorihuela, Rosa M.
2016-01-01
The current prevalence of diet-induced overweight and obesity in adolescents and adults is continuously growing. Although the detrimental biochemical and metabolic consequences of obesity are widely studied, its impact on stress-coping behavior and its interaction with specific exercise doses (in terms of intensity, duration and frequency) need further investigation. To this aim, we fed adolescent rats either an obesogenic diet (cafeteria diet, CAF) or standard chow (ST). Each group was subdivided into four subgroups according to the type of treadmill intervention as follows: a sedentary group receiving no manipulation; a control group exposed to a stationary treadmill; a low-intensity treadmill group trained at 12 m/min; and a higher intensity treadmill group trained at 17 m/min. Both the diet and treadmill interventions started at weaning and lasted for 8 weeks. Subjects were tested for anxiety-like behavior in the open field test and for coping strategies in the two-way active avoidance paradigm at week 7 and were sacrificed at week 8 for biometric and metabolic characterization. CAF feeding increased the weight gain, relative retroperitoneal white adipose tissue (RWAT %), and plasma levels of glucose, insulin, triglycerides and leptin and decreased the insulin sensitivity. Treadmill intervention partially reversed the RWAT% and triglyceride alterations; at higher intensity, it decreased the leptin levels of CAF-fed animals. CAF feeding decreased the motor activity and impaired the performance in a two-way active avoidance assessment. Treadmill intervention reduced defecation in the shuttle box, suggesting diminished anxiety. CAF feeding combined with treadmill training at 17 m/min increased the time spent in the center of the open field and more importantly, partially reversed the two-way active avoidance deficit. In conclusion, this study demonstrates that at doses that decreased anxiety-like behavior, treadmill exercise partially improved the coping strategy in terms of active avoidance behavior in the CAF-fed animals. This effect was not observed at lower doses of treadmill training. PMID:27099927
Cigarroa, Igor; Lalanza, Jaume F; Caimari, Antoni; del Bas, Josep M; Capdevila, Lluís; Arola, Lluís; Escorihuela, Rosa M
2016-01-01
The current prevalence of diet-induced overweight and obesity in adolescents and adults is continuously growing. Although the detrimental biochemical and metabolic consequences of obesity are widely studied, its impact on stress-coping behavior and its interaction with specific exercise doses (in terms of intensity, duration and frequency) need further investigation. To this aim, we fed adolescent rats either an obesogenic diet (cafeteria diet, CAF) or standard chow (ST). Each group was subdivided into four subgroups according to the type of treadmill intervention as follows: a sedentary group receiving no manipulation; a control group exposed to a stationary treadmill; a low-intensity treadmill group trained at 12 m/min; and a higher intensity treadmill group trained at 17 m/min. Both the diet and treadmill interventions started at weaning and lasted for 8 weeks. Subjects were tested for anxiety-like behavior in the open field test and for coping strategies in the two-way active avoidance paradigm at week 7 and were sacrificed at week 8 for biometric and metabolic characterization. CAF feeding increased the weight gain, relative retroperitoneal white adipose tissue (RWAT %), and plasma levels of glucose, insulin, triglycerides and leptin and decreased the insulin sensitivity. Treadmill intervention partially reversed the RWAT% and triglyceride alterations; at higher intensity, it decreased the leptin levels of CAF-fed animals. CAF feeding decreased the motor activity and impaired the performance in a two-way active avoidance assessment. Treadmill intervention reduced defecation in the shuttle box, suggesting diminished anxiety. CAF feeding combined with treadmill training at 17 m/min increased the time spent in the center of the open field and more importantly, partially reversed the two-way active avoidance deficit. In conclusion, this study demonstrates that at doses that decreased anxiety-like behavior, treadmill exercise partially improved the coping strategy in terms of active avoidance behavior in the CAF-fed animals. This effect was not observed at lower doses of treadmill training.
Shafia, Sakineh; Vafaei, Abbas Ali; Samaei, Seyed Afshin; Bandegi, Ahmad Reza; Rafiei, Alireza; Valadan, Reza; Hosseini-Khah, Zahra; Mohammadkhani, Raziyeh; Rashidy-Pour, Ali
2017-03-01
Post-traumatic stress disorder (PTSD) is a condition that develops after an individual has experienced a major trauma. Currently, selective serotonin reuptake inhibitors (SSRIs) like fluoxetine are the first-line choice in PTSD drug treatment but their moderate response rates and side effects indicate an urgent need for the development of new treatment. Physical activity is known to improve symptoms of certain neuropsychiatric disorders. The present study investigated the effects of moderate treadmill exercise, the antidepressant fluoxetine and the combined treatment on behavioural deficits, and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. We also examined alternations in hippocampal brain-derived neurotrophic factor (BDNF) and mRNA expression of apoptosis - related proteins in a rat model of PTSD: the single prolonged stress (SPS) model. Rats were exposed to SPS (restraint for 2h, forced swimming for 20min and ether anaesthesia) and were then kept undisturbed for 14days. After that, SPS rats were subjected to chronic treatment with fluoxetine (10mg/kg/day, for 4weeks), moderate treadmill running (4weeks, 5day per week) and the combined treatment (fluoxetine plus treadmill exercise), followed by behavioural, biochemical and apoptosis markers assessments. SPS rats exhibited increased anxiety levels in the elevated plus maze and light/dark box, impaired fear conditioning and extinction in inhibitory avoidance (IA) task, impaired spatial memory in a recognition location memory task and enhanced negative feedback on the HPA axis following a dexamethasone suppression test. SPS rats also showed reduced hippocampal BDNF and enhanced apoptosis. Moderate treadmill exercise, fluoxetine and the combined treatment alleviated the SPS-induced alterations in terms of anxiety levels, HPA axis inhibition, IA conditioning and extinction, hippocampal BDNF and apoptosis markers. Furthermore, the combined treatment was more effective than fluoxetine alone, but in most tests, the effects of the combined treatment were similar to those of exercise alone, suggesting that exercise is the main factor in the beneficial effects of the combined therapy in PTSD patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Locomotor exercise in weightlessness
NASA Technical Reports Server (NTRS)
Thornton, W.; Whitmore, H.
1991-01-01
The requirements for exercise in space by means of locomotion are established and addressed with prototype treadmills for use during long-duration spaceflight. The adaptation of the human body to microgravity is described in terms of 1-G locomotor biomechanics, the effects of reduced activity, and effective activity-replacement techniques. The treadmill is introduced as a complement to other techniques of force replacement with reference given to the angle required for exercise. A motor-driven unit is proposed that can operate at a variety of controlled speeds and equivalent grades. The treadmills permit locomotor exercise as required for long-duration space travel to sustain locomotor and cardiorespiratory capacity at a level consistent with postflight needs.
Shi, Ping; Hu, Sijung; Yu, Hongliu
2018-02-01
The aim of this study was to analyze the recovery of heart rate variability (HRV) after treadmill exercise and to investigate the autonomic nervous system response after exercise. Frequency domain indices, i.e., LF(ms 2 ), HF(ms 2 ), LF(n.u.), HF(n.u.) and LF/HF, and lagged Poincaré plot width (SD1 m ) and length (SD2 m ) were introduced for comparison between the baseline period (Pre-E) before treadmill running and two periods after treadmill running (Post-E1 and Post-E2). The correlations between lagged Poincaré plot indices and frequency domain indices were applied to reveal the long-range correlation between linear and nonlinear indices during the recovery of HRV. The results suggested entirely attenuated autonomic nervous activity to the heart following the treadmill exercise. After the treadmill running, the sympathetic nerves achieved dominance and the parasympathetic activity was suppressed, which lasted for more than 4 min. The correlation coefficients between lagged Poincaré plot indices and spectral power indices could separate not only Pre-E and two sessions after the treadmill running, but also the two sessions in recovery periods, i.e., Post-E1 and Post-E2. Lagged Poincaré plot as an innovative nonlinear method showed a better performance over linear frequency domain analysis and conventional nonlinear Poincaré plot.
Exercise induces autophagy in peripheral tissues and in the brain.
He, Congcong; Sumpter, Rhea; Levine, Beth
2012-10-01
We recently identified physical exercise as a newly defined inducer of autophagy in vivo. Exercise induced autophagy in multiple organs involved in metabolic regulation, such as muscle, liver, pancreas and adipose tissue. To study the physiological role of exercise-induced autophagy, we generated mice with a knock-in nonphosphorylatable mutation in BCL2 (Thr69Ala, Ser70Ala and Ser84Ala) (BCL2 AAA) that are defective in exercise- and starvation-induced autophagy but not in basal autophagy. We found that BCL2 AAA mice could not run on a treadmill as long as wild-type mice, and did not undergo exercise-mediated increases in skeletal glucose muscle uptake. Unlike wild-type mice, the BCL2 AAA mice failed to reverse high-fat diet-induced glucose intolerance after 8 weeks of exercise training, possibly due to defects in signaling pathways that regulate muscle glucose uptake and metabolism during exercise. Together, these findings suggested a hitherto unknown important role of autophagy in mediating exercise-induced metabolic benefits. In the present addendum, we show that treadmill exercise also induces autophagy in the cerebral cortex of adult mice. This observation raises the intriguing question of whether autophagy may in part mediate the beneficial effects of exercise in neurodegeneration, adult neurogenesis and improved cognitive function.
Peeler, Jason; Christian, Mathew; Cooper, Juliette; Leiter, Jeffrey; MacDonald, Peter
2015-11-01
To determine the effect of a 12-week lower body positive pressure (LBPP)-supported low-load treadmill walking program on knee joint pain, function, and thigh muscle strength in overweight patients with knee osteoarthritis (OA). Prospective, observational, repeated measures investigation. Community-based, multidisciplinary sports medicine clinic. Thirty-one patients aged between 55 and 75 years, with a body mass index ≥25 kg/m and mild-to-moderate knee OA. Twelve-week LBPP-supported low-load treadmill walking regimen. Acute knee joint pain (visual analog scale) during full weight bearing treadmill walking, chronic knee pain, and joint function [Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire] during normal activities of daily living, and thigh muscle strength (isokinetic testing). Appropriate methods of statistical analysis were used to compare data from baseline and follow-up evaluation. Participants reported significant improvements in knee joint pain and function and demonstrated significant increases in thigh muscle strength about the degenerative knee. Participants also experienced significant reductions in acute knee pain during full weight bearing treadmill walking and required dramatically less LBPP support to walk pain free on the treadmill. Data suggest that an LBPP-supported low-load exercise regimen can be used to significantly diminish knee pain, enhance joint function, and increase thigh muscle strength, while safely promoting pain-free walking exercise in overweight patients with knee OA. These findings have important implications for the development of nonoperative treatment strategies that can be used in the management of joint symptoms associated with progressive knee OA in at-risk patient populations. This research suggests that LBPP-supported low-load walking is a safe user-friendly mode of exercise that can be successfully used in the management of day-to-day joint symptoms associated with knee OA, helping to improve the physical health, quality of life, and social well-being of North America's aging population.
Cushman, Daniel; Rho, Monica E
2015-07-01
Case report. Proximal hamstring tendinopathy in runners is characterized by pain with passive hip flexion with the knee extended, active hip extension, and pain with sitting. Relatively little literature exists on the condition, and publications on nonsurgical treatment protocols are even more scarce. Surgical intervention, which comprises the majority of literature for treatment of this condition, is an option for cases that fail to respond to nonsurgical treatment. The patient was a 34-year-old, otherwise healthy male triathlete with unilateral proximal hamstring tendinopathy diagnosed by ultrasound, who had pain only with running and prolonged sitting. After he failed to respond to 4 weeks of eccentric knee flexion and lumbopelvic musculature strengthening exercises, an eccentric hip extensor strengthening program using a treadmill was initiated. This treadmill exercise was performed on a daily basis, in addition to a lumbopelvic musculature strengthening program. The patient noted a decrease in pain within 2 weeks of initiating the new exercise, and was able to return to gradual running after 4 weeks and to speed training after 12 weeks. He returned to competition shortly thereafter and had no recurrence for 12 months after the initiation of therapy. His score on the Victorian Institute of Sport Assessment-proximal hamstring tendons improved from 23 on initial presentation to 83 at 12 weeks after the initiation of therapy. We described the management of a triathlete with subacute proximal hamstring tendinopathy, who responded well to nonsurgical treatment using eccentric hip extension strengthening using a treadmill. Therapy, level 4.
CUSHMAN, DANIEL; RHO, MONICA E.
2015-01-01
STUDY DESIGN Case report. BACKGROUND Proximal hamstring tendinopathy in runners is characterized by pain with passive hip flexion with the knee extended, active hip extension, and pain with sitting. Relatively little literature exists on the condition, and publications on nonsurgical treatment protocols are even more scarce. Surgical intervention, which comprises the majority of literature for treatment of this condition, is an option for cases that fail to respond to nonsurgical treatment. CASE DESCRIPTION The patient was a 34-year-old, otherwise healthy male triathlete with unilateral proximal hamstring tendinopathy diagnosed by ultrasound, who had pain only with running and prolonged sitting. After he failed to respond to 4 weeks of eccentric knee flexion and lumbopelvic musculature strengthening exercises, an eccentric hip extensor strengthening program using a treadmill was initiated. This treadmill exercise was performed on a daily basis, in addition to a lumbopelvic musculature strengthening program. OUTCOMES The patient noted a decrease in pain within 2 weeks of initiating the new exercise, and was able to return to gradual running after 4 weeks and to speed training after 12 weeks. He returned to competition shortly thereafter and had no recurrence for 12 months after the initiation of therapy. His score on the Victorian Institute of Sport Assessment-proximal hamstring tendons improved from 23 on initial presentation to 83 at 12 weeks after the initiation of therapy. DISCUSSION We described the management of a triathlete with subacute proximal hamstring tendinopathy, who responded well to nonsurgical treatment using eccentric hip extension strengthening using a treadmill. LEVEL OF EVIDENCE Therapy, level 4. PMID:25996362
DiBiasio, Paula A; Lewis, Cynthia L
2012-11-01
The purpose of this case report is to determine the effects of exercise training using body weight-supported treadmill walking (BWSTW) with an 18-year-old male diagnosed with Cerebral palsy (CP) who was non-ambulatory and not receiving physical therapy. Outcome measures included the Pediatric Quality of Life Inventory (PedsQL), the Pediatric Evaluation of Disability Inventory (PEDI), heart rate (HR), rate of perceived exertion, 3-minute walk test and physiological cost index (PCI). BWSTW sessions took place twice a week for 6 weeks with a reduction of approximately 40% of the patient's weight. Over-ground 3-minute walk test distance and PCI were essentially unchanged. BWSTW exercise time increased by 67% with a 43% increase in speed while average working HR decreased by 8%. BWSTW PCI decreased by 26%. PedsQL parent report improved in all domains. PedsQL self-report demonstrated a mild decrease. PEDI showed improvements in self-care and mobility. Exercise utilizing BWSTW resulted in a positive training effect for this young adult with CP who was non-ambulatory. Developing effective and efficient protocols for exercise training utilizing BWSTW may aid in the use of this form of exercise and further quantify outcomes. Ensuring that young adults with CP have safe and feasible options to exercise and be physically active on a regular basis is an important role of a physical therapist.
Grahn, Dennis A; Cao, Vinh H; Heller, H Craig
2005-09-01
In situations where the accumulation of internal heat limits physical performance, enhanced heat extraction from the body should improve performance capacity. The combined application of local subatmospheric pressure (35-45 mmHg) to an entire hand (to increase blood volume) and a heat sink (18-22 degrees C) to the palmar surface were used to draw heat out of the circulating blood. Subjects walked uphill (5.63 km/h) on a treadmill in a 40 degree C environment. Slopes of the treadmill were held constant during paired experimental trials (with and without the device). Heat extraction attenuated the rate of esophageal temperature rise during exercise (2.1 +/- 0.4 degrees and 2.9 +/- 0.5 degrees C/h, mean +/- SE, with and without the device, respectively; n = 8) and increased exercise duration (46.1 +/- 3.4 and 32.3 +/- 1.7 min with and without the device, respectively; n = 18). Hand cooling alone had little effect on exercise duration (34.1 +/- 3.0, 38.0 +/- 3.5, and 57.0 +/- 6.4 min, for control, cooling only, and cooling, and subatmospheric pressure, respectively; n = 6). In a longer term study, nine subjects participated in two or four trials per week for 8 wk. The individual workloads (treadmill slope) were varied weekly. Use of the device had a beneficial effect on exercise endurance at all workloads, but the benefit proportionally decreased at higher workloads. It is concluded that heat can be efficiently removed from the body by using the described technology and that such treatment can provide a substantial performance benefit in thermally stressful conditions.
Kim, Young Hoon; Sung, Yun-Hee; Lee, Hee-Hyuk; Ko, Il-Gyu; Kim, Sung-Eun; Shin, Mal-Soon; Kim, Bo-Kyun
2014-08-01
During pregnancy, diabetes mellitus exerts detrimental effects on the development of the fetus, especially the central nervous system. In the current study, we evaluated the effects of postnatal treadmill exercise on short-term memory in relation with cell proliferation and apoptosis in the hippocampus of rat pups born to streptozotocin (STZ)-induced diabetic maternal rats. Adult female rats were mated with male rats for 24 h. Two weeks after mating, the pregnant female rats were divided into two groups: control group and STZ injection group. The pregnant rats in the STZ injection group were administered 40 mg/kg of STZ intraperitoneally. After birth, the rat pups were divided into the following four groups: control group, control with postnatal exercise group, maternal STZ-injection group, and maternal STZ-injection with postnatal exercise group. The rat pups in the postnatal exercise groups were made to run on a treadmill for 30 min once a day, 5 times per week for 2 weeks beginning 4 weeks after birth. The rat pups born to diabetic rats were shown to have short-term memory impairment with suppressed cell proliferation and increased apoptosis in the hippocampal dentate gyrus. Postnatal treadmill exercise alleviated short-term memory impairment by increased cell proliferation and suppressed apoptosis in the rat pups born to diabetic rats. These findings indicate that postnatal treadmill exercise may be used as a valuable strategy to ameliorate neurodevelopmental problems in children born to diabetics.
Why Is It Harder to Run on an Inclined Exercise Treadmill?
ERIC Educational Resources Information Center
Nave, Carla M. A. P. F.; Amoreira, Luis J. M.
2014-01-01
It is a known fact that it takes a greater effort to run on an exercise treadmill when it is inclined with positive slope than when it is in a horizontal position. The reason seems simple: walking on an inclined treadmill is somehow equivalent to walking up a hill with the same inclination; when we walk up a hill, our own weight does negative work…
Cho, Han-Sam; Shin, Mal-Soon; Song, Wook; Jun, Tae-Won; Lim, Baek-Vin; Kim, Young-Pyo; Kim, Chang-Ju
2013-01-01
Progressive loss of dopaminergic neurons in substantia nigra is a key pathogenesis of Parkinson's disease. In the present study, we investigated the effects of treadmill exercise on short-term memory, apoptotic dopaminergic neuronal cell death and fiber loss in the nigrostriatum, and cell proliferation in the hippocampal dentate gyrus of Parkinson's rats. Parkinson's rats were made by injection of 6-hydroxydopamine (6-OHDA) into the striatum using stereotaxic instrument. Four weeks after 6-OHDA injection, the rats in the 6-OHDA-injection group exhibited significant rotational asymmetry following apomorphine challenge. The rats in the exercise groups were put on the treadmill to run for 30 min once a day for 14 consecutive days starting 4 weeks after 6-OHDA injection. In the present results, extensive degeneration of the dopaminergic neurons in the substantia nigra with loss of dopaminergic fibers in the striatum were produced in the rats without treadmill running, which resulted in short-term memory impairment. However, the rats performing treadmill running for 2 weeks alleviated nigrostriatal dopaminergic cell loss and alleviated short-term memory impairment with increasing cell proliferation in the hippocampal dentate gyrus of Parkinson's rats. The present results show that treadmill exercise may provide therapeutic value for the Parkinson's disease.
Lee, Jae-Min; Park, Jong-Min; Song, Min Kyung; Oh, Yoo Joung; Kim, Chang-Ju; Kim, Youn-Jung
2017-01-18
Vascular dementia is the progressive change in blood vessels that leads to neuronal injuries in vulnerable areas induced by chronic cerebral hypoperfusion (CCH). CCH induces disruption of blood-brain barrier (BBB), and this BBB disruption can initiate the cognitive impairment and white matter injury. In the present study, we evaluated the effect of treadmill exercise on the cognitive impairment, white matter injury, and BBB disruption induced by CCH. Vascular dementia was induced by permanent bilateral common carotid arteries occlusion (BCCAO) in rats. The rats in the exercise group were made to run on a treadmill for 30min once a day for 14 weeks, starting 4 weeks after birth. Our results revealed that treadmill exercise group was alleviated the cognitive impairment and myelin degradation induced by CCH. The disruption of BBB after CCH indicates degradation of occludin, zonula occluden-1 (ZO-1), and up-regulation of matrix metalloproteinases (MMPs). Treadmill exercise may provide protective effects on BBB disruption from degradation of occludin, ZO-1, and overexpression of MMP-9 after CCH. These findings suggest that treadmill exercise ameliorates cognitive impairment and white matter injury from BBB disruption induced by CCH in rats. The present study will be valuable for means of prophylactic and therapeutic intervention for patients with CCH. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Body-weight-supported treadmill rehabilitation after stroke.
Duncan, Pamela W; Sullivan, Katherine J; Behrman, Andrea L; Azen, Stanley P; Wu, Samuel S; Nadeau, Stephen E; Dobkin, Bruce H; Rose, Dorian K; Tilson, Julie K; Cen, Steven; Hayden, Sarah K
2011-05-26
Locomotor training, including the use of body-weight support in treadmill stepping, is a physical therapy intervention used to improve recovery of the ability to walk after stroke. The effectiveness and appropriate timing of this intervention have not been established. We stratified 408 participants who had had a stroke 2 months earlier according to the extent of walking impairment--moderate (able to walk 0.4 to <0.8 m per second) or severe (able to walk <0.4 m per second)--and randomly assigned them to one of three training groups. One group received training on a treadmill with the use of body-weight support 2 months after the stroke had occurred (early locomotor training), the second group received this training 6 months after the stroke had occurred (late locomotor training), and the third group participated in an exercise program at home managed by a physical therapist 2 months after the stroke (home-exercise program). Each intervention included 36 sessions of 90 minutes each for 12 to 16 weeks. The primary outcome was the proportion of participants in each group who had an improvement in functional walking ability 1 year after the stroke. At 1 year, 52.0% of all participants had increased functional walking ability. No significant differences in improvement were found between early locomotor training and home exercise (adjusted odds ratio for the primary outcome, 0.83; 95% confidence interval [CI], 0.50 to 1.39) or between late locomotor training and home exercise (adjusted odds ratio, 1.19; 95% CI, 0.72 to 1.99). All groups had similar improvements in walking speed, motor recovery, balance, functional status, and quality of life. Neither the delay in initiating the late locomotor training nor the severity of the initial impairment affected the outcome at 1 year. Ten related serious adverse events were reported (occurring in 2.2% of participants undergoing early locomotor training, 3.5% of those undergoing late locomotor training, and 1.6% of those engaging in home exercise). As compared with the home-exercise group, each of the groups receiving locomotor training had a higher frequency of dizziness or faintness during treatment (P=0.008). Among patients with severe walking impairment, multiple falls were more common in the group receiving early locomotor training than in the other two groups (P=0.02). Locomotor training, including the use of body-weight support in stepping on a treadmill, was not shown to be superior to progressive exercise at home managed by a physical therapist. (Funded by the National Institute of Neurological Disorders and Stroke and the National Center for Medical Rehabilitation Research; LEAPS ClinicalTrials.gov number, NCT00243919.).
Endoscopy of the upper respiratory tract during treadmill exercise: a clinical study of 100 horses.
Kannegieter, N J; Dore, M L
1995-03-01
Endoscopy of the upper respiratory tract was performed in 100 horses during high speed treadmill exercise. Reasons for endoscopy were a history of an abnormal noise during exercise in 75 horses, poor performance in 17 horses and to evaluate the results of upper respiratory tract surgery in 8 horses. Of the 75 horses with a history of an abnormal noise during exercise the cause was determined in 67 (89%). Endoscopic abnormalities were detected at rest in 40 of these 75 horses (53%). In these 40 horses, a similar diagnosis as to the cause of the abnormal noise was made at rest and during exercise on the treadmill in 19 cases, while in the remaining 21 the endoscopic findings during exercise varied from that seen at rest. This included 3 horses in which a diagnosis was made at rest but no abnormalities were detected during exercise. Some of the findings during treadmill endoscopy included laryngeal dysfunction, grades 3, 4 and 5 (22 cases), dorsal displacement of the soft palate (20), epiglottic entrapment (8), epiglottic flutter (4), aryepiglottic fold flutter (4), pharyngeal collapse (3), arytenoiditis (3), vocal cord flutter (3), false nostril noise (2), pharyngeal lymphoid hyperplasia (2), soft palate haemorrhage (1) and positional arytenoid collapse (1). More than one abnormality was observed during exercise in 7 horses. A complete and correct diagnosis based on the resting endoscopy findings alone was made in 19 (25%) of these 75 cases. In the 17 horses examined because of poor performance, no abnormalities were detected during treadmill endoscopy that were not evident at rest.(ABSTRACT TRUNCATED AT 250 WORDS)
Dao, An T; Zagaar, Munder A; Alkadhi, Karim A
2015-12-01
The dentate gyrus (DG) of the hippocampus is known to be more resistant to the effects of various external factors than other hippocampal areas. This study investigated the neuroprotective effects of moderate treadmill exercise on early-phase long-term potentiation (E-LTP) and its molecular signaling pathways in the DG of amyloid β rat model of sporadic Alzheimer's disease (AD). Animals were preconditioned to run on treadmill for 4 weeks and concurrently received ICV infusion of Aβ₁₋₄₂ peptides (250 pmol/day) during the third and fourth weeks of exercise training. We utilized in vivo electrophysiological recordings to assess the effect of exercise and/or AD pathology on basal synaptic transmission and E-LTP magnitude of the perforant pathway synapses in urethane-anesthetized rats. Immunoblotting analysis was used to quantify changes in the levels of learning and memory-related key signaling molecules. The AD-impaired basal synaptic transmission and suppression of E-LTP in the DG were prevented by prior moderate treadmill exercise. In addition, exercise normalized the basal levels of memory and E-LTP-related signaling molecules including Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), calcineurin (PP2B), and brain-derived neurotrophic factor (BDNF). Exercise also prevented the reduction of phosphorylated CaMKII and aberrant increase of PP2B seen after E-LTP induction in amyloid-infused rats. Our data suggests that by restoring the balance of kinase-phosphatase, 4 weeks of moderate treadmill exercise prevents DG synaptic deficits and deleterious alterations in signaling pathways associated with AD.
de Bruin, Eling D.; Schindelholz, Matthias; Schuster-Amft, Corina; de Bie, Rob A.; Hunt, Kenneth J.
2015-01-01
Background and Purpose: Cardiovascular fitness is greatly reduced after stroke. Although individuals with mild to moderate impairments benefit from conventional cardiovascular exercise interventions, there is a lack of effective approaches for persons with severely impaired physical function. This randomized controlled pilot trial investigated efficacy and feasibility of feedback-controlled robotics-assisted treadmill exercise (FC-RATE) for cardiovascular rehabilitation in persons with severe impairments early after stroke. Methods: Twenty individuals (age 61 ± 11 years; 52 ± 31 days poststroke) with severe motor limitations (Functional Ambulation Classification 0-2) were recruited for FC-RATE or conventional robotics-assisted treadmill exercise (RATE) (4 weeks, 3 × 30-minute sessions/wk). Outcome measures focused on peak cardiopulmonary performance parameters, training intensity, and feasibility, with examiners blinded to allocation. Results: All 14 allocated participants (70% of recruited) completed the intervention (7/group, withdrawals unrelated to intervention), without serious adverse events occurring. Cardiovascular fitness increased significantly in both groups, with peak oxygen uptake increasing from 14.6 to 17.7 mL · kg−1 · min−1 (+17.8%) after 4 weeks (45.8%-55.7% of predicted maximal aerobic capacity; time effect P = 0.01; no group-time interaction). Training intensity (% heart rate reserve) was significantly higher for FC-RATE (40% ± 3%) than for conventional RATE (14% ± 2%) (P = 0.001). Discussion and Conclusions: Substantive overall increases in the main cardiopulmonary performance parameters were observed, but there were no significant between-group differences when comparing FC-RATE and conventional RATE. Feedback-controlled robotics-assisted treadmill exercise significantly increased exercise intensity, but recommended intensity levels for cardiovascular training were not consistently achieved. Future research should focus on appropriate algorithms within advanced robotic systems to promote optimal cardiovascular stress. Video abstract available for more insights from the authors (Supplemental Digital Content 1, http://links.lww.com/JNPT/A107). PMID:26050073
Stoller, Oliver; de Bruin, Eling D; Schindelholz, Matthias; Schuster-Amft, Corina; de Bie, Rob A; Hunt, Kenneth J
2015-07-01
Cardiovascular fitness is greatly reduced after stroke. Although individuals with mild to moderate impairments benefit from conventional cardiovascular exercise interventions, there is a lack of effective approaches for persons with severely impaired physical function. This randomized controlled pilot trial investigated efficacy and feasibility of feedback-controlled robotics-assisted treadmill exercise (FC-RATE) for cardiovascular rehabilitation in persons with severe impairments early after stroke. Twenty individuals (age 61 ± 11 years; 52 ± 31 days poststroke) with severe motor limitations (Functional Ambulation Classification 0-2) were recruited for FC-RATE or conventional robotics-assisted treadmill exercise (RATE) (4 weeks, 3 × 30-minute sessions/wk). Outcome measures focused on peak cardiopulmonary performance parameters, training intensity, and feasibility, with examiners blinded to allocation. All 14 allocated participants (70% of recruited) completed the intervention (7/group, withdrawals unrelated to intervention), without serious adverse events occurring. Cardiovascular fitness increased significantly in both groups, with peak oxygen uptake increasing from 14.6 to 17.7 mL · kg · min (+17.8%) after 4 weeks (45.8%-55.7% of predicted maximal aerobic capacity; time effect P = 0.01; no group-time interaction). Training intensity (% heart rate reserve) was significantly higher for FC-RATE (40% ± 3%) than for conventional RATE (14% ± 2%) (P = 0.001). Substantive overall increases in the main cardiopulmonary performance parameters were observed, but there were no significant between-group differences when comparing FC-RATE and conventional RATE. Feedback-controlled robotics-assisted treadmill exercise significantly increased exercise intensity, but recommended intensity levels for cardiovascular training were not consistently achieved. Future research should focus on appropriate algorithms within advanced robotic systems to promote optimal cardiovascular stress.Video abstract available for more insights from the authors (Supplemental Digital Content 1, http://links.lww.com/JNPT/A107).
Tamura, Yoshiaki; Watanabe, Keiichi; Kantani, Tomomi; Hayashi, Junichi; Ishida, Nobuhiko; Kaneki, Masao
2011-01-01
The beneficial effects of endurance exercise include insulin-sensitization and reduction of fat mass. Limited knowledge is available about the mechanisms by which endurance exercise exerts the salutary effects. Myokines, cytokines secreted by skeletal muscle, have been recognized as a potential mediator. Recently, a role of skeletal muscle-derived interleukin-15 (IL-15) in improvement of fat-lean body mass composition and insulin sensitivity has been proposed. Yet, previous studies have reported that endurance training does not increase production or secretion of IL-15 in skeletal muscle. Here, we show that in opposition to previous findings, 30-min treadmill running at 70% of age-predicted maximum heart rate resulted in a significant increase in circulating IL-15 level in untrained healthy young men. These findings suggest that IL-15 might play a role in the systemic anti-obesogenic and insulin-sensitizing effects of endurance exercise, not only as a paracrine and autocrine but also as an endocrine factor.
NASA Technical Reports Server (NTRS)
Hargens, A. R.; Ballard, R. E.; Boda, W. L.; Ertl, A. C.; Schneider, S. M.; Hutchinson, K. J.; Lee, S. M.; Murthy, G.; Putcha, L.; Watenpaugh, D. E.
1999-01-01
Calculations suggest that exercise in space to date has lacked sufficient loads to maintain musculoskeletal mass. Lower body negative pressure (LBNP) produces a force at the feet equal to the product of the LBNP and body cross-sectional area at the waist. Supine exercise within 50-60 mm Hg LBNP improves tolerance to LBNP and produces forces similar to those occurring during upright posture on Earth. Thus, exercise within LBNP may help prevent deconditioning of astronauts by stressing tissues of the lower body in a manner similar to gravity and also, may provide a safe and effective alternative to centrifugation in terms of cost, mass, volume, and power usage. We hypothesize that supine treadmill exercise during LBNP at one body weight (50-60 mm Hg LBNP) will provide cardiovascular and musculoskeletal loads similar to those experienced while upright in lg. Also, daily supine treadmill running in a LBNP chamber will maintain aerobic fitness, orthostatic tolerance, and musculoskeletal structure and function during bed rest (simulated microgravity).
NASA Technical Reports Server (NTRS)
Lee, S. M.; Bennett, B. S.; Hargens, A. R.; Watenpaugh, D. E.; Ballard, R. E.; Murthy, G.; Ford, S. R.; Fortney, S. M.
1997-01-01
Adaptation to bed rest or space flight is accompanied by an impaired ability to exercise in an upright position. We hypothesized that a daily, 30-min bout of intense, interval exercise in upright posture or supine against lower body negative pressure (LBNP) would maintain upright exercise heart rate and respiratory responses after bed rest. Twenty-four men (31 +/- 3 yr) underwent 5 d of 6 degree head-down tilt: eight performed no exercise (CON), eight performed upright treadmill exercise (UPex), and eight performed supine treadmill exercise against LBNP at -51.3 +/- 0.4 mm Hg (LBNPex). Submaximal treadmill exercise responses (56, 74, and 85% of VO2peak) were measured pre- and post-bed rest. In CON, submaximal heart rate, respiratory exchange ratio, and ventilation were significantly greater (P < or = 0.05) after bed rest. In UPex and LBNPex, submaximal exercise responses were similar pre- and post-bed rest. Our results indicate that a daily 30-min bout of intense, interval upright exercise training or supine exercise training against LBNP is sufficient to maintain upright exercise responses after 5 d of bed rest. These results may have important implications for the development of exercise countermeasures during space flight.
NASA Technical Reports Server (NTRS)
Nazar, K.; Greenleaf, J. E.; Pohoska, E.; Turlejska, E.; Kaciuba-Uscilko, H.; Kozlowski, S.
1992-01-01
Physiological effects of restricted activity (RA) and subsequent retraining have been studied. Ten male mongrel dogs performed a submaximal exercise endurance test on a treadmill during kennel control, after 8 weeks of cage confinement and after eight weeks of retraining using the same treadmill protocol 1 h/d for 6 d/week. Data obtained show that RA reduces exercise endurance, the effectiveness of exercise thermoregulation, muscle glycogen stores, and the lipolytic response to exercise and to noradrenaline stimulation.
Exercise Equipment Usability Assessment for a Deep Space Concept Vehicle
NASA Technical Reports Server (NTRS)
Rhodes, Brooke M.; Reynolds, David W.
2015-01-01
With international aspirations to send astronauts to deep space, the world is now faced with the complex problem of keeping astronauts healthy in unexplored hostile environments for durations of time never before attempted by humans. The great physical demands imparted by space exploration compound the problem of astronaut health, as the astronauts must not only be healthy, but physically fit upon destination arrival in order to perform the scientific tasks required of them. Additionally, future deep space exploration necessitates the development of environments conducive to long-duration habitation that would supplement propulsive vehicles. Space Launch System (SLS) core stage barrel sections present large volumes of robust structure that can be recycled and used for long duration habitation. This assessment will focus on one such conceptual craft, referred to as the SLS Derived Habitat (SLS-DH). Marshall Space Flight Center's (MSFC) Advanced Concepts Office (ACO) has formulated a high-level layout of this SLS-DH with parameters such as floor number and orientation, floor designations, grid dimensions, wall placement, etc. Yet to be determined, however, is the layout of the exercise area. Currently the SLS-DH features three floors laid out longitudinally, leaving 2m of height between the floor and ceilings. This short distance between levels introduces challenges for proper placement of exercise equipment such as treadmills and stationary bicycles, as the dynamic envelope for the 95th percentile male astronauts is greater than 2m. This study aims to assess the optimal equipment layout and sizing for the exercise area of this habitat. Figure 1 illustrates the layout of the DSH concept demonstrator located at MSFC. The exercise area is located on the lower level, seen here as the front half of the level occupied by a crew member. This small volume does not allow for numerous or bulky exercise machines, so the conceptual equipment has been limited to a treadmill and stationary bicycle. With the most current treadmill aboard the International Space Station (ISS), the Combined Operational Load-Bearing External Resistance Treadmill (COLBERT), being located in an International Standard Payload Rack (ISPR), the bottom of the conceptual treadmill features a height of 38in. Making the treadmill flush with the floor would be impossible in this rack configuration, as the distance from the outer wall of the spacecraft to the bottom floor would be too shallow. From preliminary sizing, the 38in required for the bottom of the treadmill combined with a 78in operational envelope for a 95th percentile may not be accommodated in the exercise area in a vertical orientation. Figure 2 demonstrates the volume required (in maroon) for an ISPR-bound treadmill in the concept demonstrator. Early indications as seen in this figure indicate that the crew members would contact the ceiling in such an arrangement. An assessment will be conducted to evaluate various orientations of exercise equipment in the concept demonstrator. Orientations to be tested include putting the bottom of the treadmill on the wall, having the treadmill at an angle in the floor both horizontally and vertically, and having a shorter (non-rack bound) treadmill in a vertical orientation on the floor. This assessment will yield findings regarding sizing of the area and how well participants feel they could exercise in such an environment. Due to the restrictions of assessing a microgravity vehicle in a normal-gravity environment, simulations in MSFC's Virtual Environments Lab (VEL) may be necessary. Final deliverables will include recommendations regarding the location and size of possible exercise equipment aboard the SLS-Derived DSH.
NASA Exercise Physiology and Countermeasures Project Overview
NASA Technical Reports Server (NTRS)
Loerch, Linda; Ploutz-Snyder, Lori
2009-01-01
Efficient exercise countermeasures are necessary to offset or minimize spaceflight-induced deconditioning and to maximize crew performance of mission tasks. These countermeasure protocols should use the fewest crew and vehicle resources. NASA s Exercise Physiology and Countermeasures (ExPC) Project works to identify, collect, interpret, and summarize evidence that results in effective exercise countermeasure protocols which protect crew health and performance during International Space Station (ISS) and future exploration-class missions. The ExPC and NASA s Human Research Program are sponsoring multiple studies to evaluate and improve the efficacy of spaceflight exercise countermeasures. First, the Project will measure maximal aerobic capacity (VO2max) during cycle ergometry before, during, and after ISS missions. Second, the Project is sponsoring an evaluation of a new prototype harness that offers improved comfort and increased loading during treadmill operations. Third, the Functional Tasks Test protocol will map performance of anticipated lunar mission tasks with physiologic systems before and after short and long-duration spaceflight, to target system contributions and the tailoring of exercise protocols to maximize performance. In addition to these studies that are actively enrolling crewmember participants, the ExPC is planning new studies that include an evaluation of a higher-intensity/lower-volume exercise countermeasure protocol aboard the ISS using the Advanced Resistive Exercise Device and second-generation treadmill, studies that evaluate bone loading during spaceflight exercise, and ground-based studies that focus on fitness for duty standards required to complete lunar mission tasks and for which exercise protocols need to protect. Summaries of these current and future studies and strategies will be provided to international colleagues for knowledge sharing and possible collaboration.
PoleStriding exercise and vitamin E for management of peripheral vascular disease.
Collins, Eileen G; Edwin Langbein, W; Orebaugh, Cynthia; Bammert, Christine; Hanson, Karla; Reda, Domenic; Edwards, Lonnie C; Littooy, Fred N
2003-03-01
The purpose of this investigation was to evaluate the efficacy of PoleStriding exercise (a form of walking that uses muscles of the upper and lower body in a continuous movement similar to cross-country skiing) and vitamin E (alpha-tocopherol) to improve walking ability and perceived quality of life (QOL) of patients with claudication pain secondary to peripheral arterial disease (PAD). Fifty-two subjects were randomized into four groups: PoleStriding with vitamin E (N = 13), PoleStriding with placebo (N= 14), vitamin E without exercise (N= 13), and placebo without exercise (N = 12). The dose of vitamin E was 400 IU daily. Only the PoleStriding with vitamin E and PoleStriding with placebo groups received PoleStriding instruction and training. Assignment to vitamin E or placebo was double blind. Subjects trained three times weekly for 30-45 min (rest time excluded). Individuals in vitamin E and placebo groups came to the laboratory biweekly for ankle blood-pressure measurements. Results of this randomized clinical trial provide strong evidence that PoleStriding significantly (P< 0.001) improved exercise tolerance on the constant work-rate and incremental treadmill tests. Ratings of perceived claudication pain were significantly less after the PoleStriding training program (P= 0.02). In contrast, vitamin E did not have a statistically significant effect on the subjects' ratings of perceived leg pain (P= 0.35) or treadmill walking duration ( P= 0.36). Perceived distance and walking speed (Walking Impairment Questionnaire) and perceived physical function (Rand Short Form-36) improved in the PoleStriding trained group only (P< 0.001, 0.022 and 0.003, respectively). PoleStriding effectively improved the exercise tolerance and perceived QOL of patients with PAD. Little additional benefit to exercise capacity was realized from vitamin E supplementation.
Anti-gravity treadmill can promote aerobic exercise for lower limb osteoarthritis patients
Kawae, Toshihiro; Mikami, Yukio; Fukuhara, Kouki; Kimura, Hiroaki; Adachi, Nobuo
2017-01-01
[Purpose] The anti-gravity treadmill (Alter-G®) allows the load on the lower limbs to be adjusted, which is considered useful for patients with lower limb osteoarthritis. The aim of the present study was to examine the effects of aerobic exercise using an anti-gravity treadmill in patients with lower limb osteoarthritis by using a cardiopulmonary exercise load monitoring system. [Subjects and Methods] The subjects were 20 patients with lower limb osteoarthritis. These subjects walked naturally for 8 minutes and then walked on the Alter-G for 8 minutes at their fastest speed at a load where lower limb pain was alleviated. [Results] Subjective and objective exercise intensity did not differ significantly between level ground walking and Alter-G walking neither before nor after walking. Pain before walking did not differ significantly between level ground walking and Alter-G walking, but pain after walking was significantly greater with level ground walking than with Alter-G walking. [Conclusion] Exercise therapy using an anti-gravity treadmill was useful for patients with lower limb osteoarthritis in terms of cardiopulmonary function, which suggested that this could become a new form of exercise therapy. PMID:28878480
Anti-gravity treadmill can promote aerobic exercise for lower limb osteoarthritis patients.
Kawae, Toshihiro; Mikami, Yukio; Fukuhara, Kouki; Kimura, Hiroaki; Adachi, Nobuo
2017-08-01
[Purpose] The anti-gravity treadmill (Alter-G ® ) allows the load on the lower limbs to be adjusted, which is considered useful for patients with lower limb osteoarthritis. The aim of the present study was to examine the effects of aerobic exercise using an anti-gravity treadmill in patients with lower limb osteoarthritis by using a cardiopulmonary exercise load monitoring system. [Subjects and Methods] The subjects were 20 patients with lower limb osteoarthritis. These subjects walked naturally for 8 minutes and then walked on the Alter-G for 8 minutes at their fastest speed at a load where lower limb pain was alleviated. [Results] Subjective and objective exercise intensity did not differ significantly between level ground walking and Alter-G walking neither before nor after walking. Pain before walking did not differ significantly between level ground walking and Alter-G walking, but pain after walking was significantly greater with level ground walking than with Alter-G walking. [Conclusion] Exercise therapy using an anti-gravity treadmill was useful for patients with lower limb osteoarthritis in terms of cardiopulmonary function, which suggested that this could become a new form of exercise therapy.
Peeler, Jason; Ripat, Jacquie
2018-01-01
Knee osteoarthritis has a lifetime risk of nearly one in two, with obese individuals being most susceptible. While exercise is universally recognized as a critical component for management, unsafe or ineffective exercise frequently leads to exacerbation of joint symptoms. Evaluate the effect of a 12week lower body positive pressure (LBPP) supported low-load treadmill walking program on knee pain, joint function, and performance of daily activities in patients with knee osteoarthritis (OA). Prospective, observational, repeated measures investigation. Community based, multidisciplinary musculoskeletal medicine clinic. Thirty-one patients, aged 50-75, with a BMI ≥25kg/m 2 and radiographic confirmed mild to moderate knee OA. Twelve week LBPP treadmill walking exercise regimen. The Knee Injury and Osteoarthritis Outcome Score (KOOS) and the Canadian Occupational Performance Measure (COPM) were used to quantify joint symptoms and patient function; isokinetic thigh muscle strength was evaluated; and a 10-point VAS was used to quantify acute knee pain while walking. Baseline and follow-up data were compared in order to examine the effect of the 12week exercise intervention. There was a significant difference between baseline and follow-up data: KOOS and COPM scores both improved; thigh muscle strength increased; and acute knee pain during full weight bearing walking diminished significantly. Participation in a 12week LBPP supported treadmill walking exercise regimen significantly enhanced patient function and quality of life, as well as the ability to perform activities of daily living that patient's self-identified as being important, yet difficult to perform. Copyright © 2017 Elsevier B.V. All rights reserved.
Rendi, Mária; Szabo, Attila; Szabó, Tamás; Velenczei, Attila; Kovács, Arpád
2008-03-01
Eighty volunteers were tested in their natural exercise environment consisting of a fitness centre they regularly attended. Half of the sample exercised on a stationary bicycle, the other half on a treadmill. All participants filled in the Exercise-Induced Feeling Inventory before and after their 20 min of exercise that was performed at self-selected workload. The results revealed that exercise intensity and the other parallel measures like heart rate, perceived exercise intensity and estimates of burned calories were higher in participants who ran in contrast to those who cycled. There were no differences in self-reports of enjoyment of the exercise sessions and in the psychological improvements from pre- to post-exercise between the groups. It is concluded that significant psychological improvements occur even after a 20-min bout of exercise and these changes are independent of the workload or exercise intensity.
NASA Astrophysics Data System (ADS)
Lee, Jong Cheol; Kim, Il Yong; Son, Yeri; Byeon, Seul Kee; Yoon, Dong Hyun; Son, Jun Seok; Song, Han Sol; Song, Wook; Seong, Je Kyung; Moon, Myeong Hee
2016-07-01
We compare comprehensive quantitative profiling of lipids at the molecular level from skeletal muscle tissues (gastrocnemius and soleus) of Zucker diabetic fatty rats and Zucker lean control rats during treadmill exercise by nanoflow liquid chromatography-tandem mass spectrometry. Because type II diabetes is caused by decreased insulin sensitivity due to excess lipids accumulated in skeletal muscle tissue, lipidomic analysis of muscle tissues under treadmill exercise can help unveil the mechanism of lipid-associated insulin resistance. In total, 314 lipid species, including phospholipids, sphingolipids, ceramides, diacylglycerols (DAGs), and triacylglycerols (TAGs), were analyzed to examine diabetes-related lipid species and responses to treadmill exercise. Most lysophospholipid levels increased with diabetes. While DAG levels (10 from the gastrocnemius and 13 from the soleus) were >3-fold higher in diabetic rats, levels of most of these decreased after exercise in soleus but not in gastrocnemius. Levels of 5 highly abundant TAGs (52:1 and 54:3 in the gastrocnemius and 48:2, 50:2, and 52:4 in the soleus) displaying 2-fold increases in diabetic rats decreased after exercise in the soleus but not in the gastrocnemius in most cases. Thus, aerobic exercise has a stronger influence on lipid levels in the soleus than in the gastrocnemius in type 2 diabetic rats.
Alizadeh, Maryam; Zahedi-Khorasani, Mahdi; Miladi-Gorji, Hossein
2018-05-30
This study was designed to examine whether treadmill exercise would attenuate the severity of physical dependence, methadone-induced anxiety, depression and voluntary morphine consumption in morphine withdrawn rats receiving methadone maintenance treatment (MMT). The rats were chronically treated with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 14 days. The exercising rats receiving MMT were forced to run on a motorized treadmill for 30 days during morphine withdrawal. Then, rats were tested for the severity of morphine dependence, the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that naloxone- precipitated opioid withdrawal signs were decreased in exercising morphine-dependent rats receiving MMT than sedentary rats. Also, the exercising morphine-dependent rats receiving MMT exhibited an increased time on open arms, preference for sucrose and a lower morphine preference ratio than sedentary rats. We conclude that treadmill exercise decreased the severity of physical dependence, anxiety/depressive-like behaviors and also the voluntary morphine consumption in morphine withdrawn rats receiving MMT. Thus, exercise may benefit in the treatment of addicts during MMT. Copyright © 2018. Published by Elsevier B.V.
Vashdi, E; Hutzler, Y; Roth, D
2008-05-01
Individuals with Intellectual Disability (ID) exhibit reduced levels of compliance to exercise, including treadmill walking. The purpose of this study was to measure the effects of several training conditions on compliance to participation in treadmill walking of children with moderate to severe ID. Criteria for compliance were the averaged number of times participants attempted to discontinue walking during two 5-min exercise sessions of treadmill walking at an intensity of 65-75% of predicted maximal HR. Fifteen children aged 5-11 with moderate to severe ID participated in the study. Training conditions were (a) close supervisor's position, (b) distant supervisor's position, (c) positive reinforcement, and (d) paired modeling. General linear mixed model statistics revealed significant differences in favor of the paired modeling and positive reinforcement compared to the other conditions. Leaning forward was the most frequent type of participants' attempt to stop exercising. Paired modeling and positive reinforcement should be considered within treadmill training programs for children with moderate to severe ID.
Takamatsu, Yasuyuki; Tamakoshi, Keigo; Waseda, Yuya; Ishida, Kazuto
2016-03-01
Rehabilitative approaches benefit motor functional recovery after stroke and relate to neuronal plasticity. We investigated the effects of a treadmill running exercise on the motor functional recovery and neuronal plasticity after collagenase-induced striatal intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with type IV collagenase into the left striatum to induce ICH. Sham-operated animals were injected with saline instead of collagenase. The animals were randomly assigned to the sham control (SC), the sham exercise (SE), the ICH control (IC), or the ICH exercise (IE) group. The exercise groups were forced to run on a treadmill at a speed of 9 m/min for 30 min/day between days 4 and 14 after surgery. Behavioral tests were performed using a motor deficit score, a beam-walking test and a cylinder test. At fifteen days after surgery, the animals were sacrificed, and their brains were removed. The motor function of the IE group significantly improved compared with the motor function of the IC group. No significant differences in cortical thickness were found between the groups. The IC group had fewer branches and shorter dendrite lengths compared with the sham groups. However, dendritic branches and lengths were not significantly different between the IE and the other groups. Tropomyosin-related kinase B (TrkB) expression levels increased in the IE compared with IC group, but no significant differences in other protein (brain-derived neurotrophic factor, BDNF; Nogo-A; Rho-A/Rho-associated protein kinase 2, ROCK2) expression levels were found between the groups. These results suggest that improved motor function after a treadmill running exercise after ICH may be related to the prevention of dendritic regression due to TrkB upregulation. Copyright © 2015. Published by Elsevier B.V.
Effects of treadmill training on functional recovery following peripheral nerve injury in rats
Boeltz, Tiffany; Ireland, Meredith; Mathis, Kristin; Nicolini, Jennifer; Poplavski, Karen; Rose, Samuel J.; Wilson, Erin
2013-01-01
Exercise, in the form of moderate daily treadmill training following nerve transection and repair leads to enhanced axon regeneration, but its effect on functional recovery is less well known. Female rats were exercised by walking continuously, at a slow speed (10 m/min), for 1 h/day on a level treadmill, beginning 3 days after unilateral transection and surgical repair of the sciatic nerve, and conducted 5 days/wk for 2 wk. In Trained rats, both direct muscle responses to tibial nerve stimulation and H reflexes in soleus reappeared earlier and increased in amplitude more rapidly over time than in Untrained rats. The efficacy of the restored H reflex was greater in Trained rats than in Untrained controls. The reinnervated tibialis anterior and soleus were coactivated during treadmill locomotion in Untrained rats. In Trained animals, the pattern of activation of soleus, but not tibialis anterior, was not significantly different from that found in Intact rats. The overall length of the hindlimb during level and up- and downslope locomotion was conserved after nerve injury in both groups. This conservation was achieved by changes in limb orientation. Limb length was conserved effectively in all rats during downslope walking but only in Trained rats during level and upslope walking. Moderate daily exercise applied immediately after sciatic nerve transection is sufficient to promote axon regeneration, to restore muscle reflexes, and to improve the ability of rats to cope with different biomechanical demands of slope walking. PMID:23468390
Effects of Methane-Rich Saline on the Capability of One-Time Exhaustive Exercise in Male SD Rats
Xin, Lei; Sun, Xuejun; Lou, Shujie
2016-01-01
Purpose To explore the effects of methane-rich saline (CH4 saline) on the capability of one-time exhaustive exercise in male SD rats. Methods Thirty rats were equally divided into to three groups at random: control group (C), placebo group (P) and methane saline group (M). Rats in M group underwent intraperitoneal injection of CH4 saline, and the other two groups simultaneously underwent intraperitoneal injection of normal saline. Then, the exercise capability of rats was tested through one-time exhaustive treadmill exercise except C group. Exercise time and body weight were recorded before and after one-time exhaustive exercise. After exhaustive exercise, the blood and gastrocnemius samples were collected from all rats to detect biochemical parameters in different methods. Results It was found that the treadmill running time was significantly longer in rats treated with CH4 saline. At the same time, CH4 saline reduced the elevation of LD and UN in blood caused by one-time exhaustive exercise. The low level of blood glucose induced by exhaustive exercise was also normalized by CH4 saline. Also CH4 saline lowered the level of CK in plasma. Furthermore, this research indicated that CH4 saline markedly increased the volume of T-AOC in plasma and alleviated the peak of TNF-α in both plasma and gastrocnemius. From H&E staining, CH4 saline effectively improved exercise-induced structural damage in gastrocnemius. Conclusions CH4 saline could enhance exercise capacity in male SD rats through increase of glucose aerobic oxidation, improvement of metabolic clearance and decrease of exhaustive exercise-induced gastrocnemius injury. PMID:26942576
The impact of cell phone use on the intensity and liking of a bout of treadmill exercise.
Rebold, Michael J; Lepp, Andrew; Sanders, Gabriel J; Barkley, Jacob E
2015-01-01
This study used a within-subjects design to assess the effect of three common cellular telephone (cell phone) functions (texting, talking, listening to music) on planned exercise. Forty-four young adults (n = 33 females, 21.8 ± 1.3 years) each participated in four, separate, 30-minute exercise conditions on a treadmill in a random order. During each condition, the treadmill speed display was covered and grade was fixed at zero. However, participants were able to alter treadmill speed as desired. Throughout the texting and talking conditions, research personnel used a pre-determined script to simulate cell phone conversations. During the music condition, participants used their cell phone to listen to music of their choice. Finally, participants completed a control condition with no cell phone access. For each condition, average treadmill speed, heart rate and liking (via visual analog scale) were assessed. Treadmill speed (3.4 ± 1.3 miles∙hour(-1)), heart rate (122.3 ± 24.3 beats∙min(-1)) and liking (7.5 ± 1.5 cm) in the music condition were significantly (p ≤ 0.014) greater than all other conditions. Treadmill speed in the control condition (3.1 ± 1.2 miles∙hour(-1)) was significantly (p = 0.04) greater than both texting and talking (2.8 ± 1.1 miles∙hour(-1) each). Heart rate during the control condition (115.4 ± 22.8 beats∙min(-1)) was significantly (p = 0.04) greater than texting (109.9 ± 16.4 beats∙min(-1)) but not talking (112.6 ± 16.1 beats∙min(-1)). Finally, liking during the talking condition (5.4 ± 2.2 cm) was greater (p = 0.05) than the control (4.3 ± 2.2 cm) but not the texting (5.1 ± 2.2 cm) conditions. In conclusion, using a cell phone for listening to music can increase the intensity (speed and heart rate) and liking of a bout of treadmill exercise. However, other common cell phone uses (texting and talking) can interfere with treadmill exercise and reduce intensity.
The Impact of Cell Phone Use on the Intensity and Liking of a Bout of Treadmill Exercise
Rebold, Michael J.; Lepp, Andrew; Sanders, Gabriel J.; Barkley, Jacob E.
2015-01-01
This study used a within-subjects design to assess the effect of three common cellular telephone (cell phone) functions (texting, talking, listening to music) on planned exercise. Forty-four young adults (n = 33 females, 21.8 ± 1.3 years) each participated in four, separate, 30-minute exercise conditions on a treadmill in a random order. During each condition, the treadmill speed display was covered and grade was fixed at zero. However, participants were able to alter treadmill speed as desired. Throughout the texting and talking conditions, research personnel used a pre-determined script to simulate cell phone conversations. During the music condition, participants used their cell phone to listen to music of their choice. Finally, participants completed a control condition with no cell phone access. For each condition, average treadmill speed, heart rate and liking (via visual analog scale) were assessed. Treadmill speed (3.4 ± 1.3 miles∙hour-1), heart rate (122.3 ± 24.3 beats∙min-1) and liking (7.5 ± 1.5 cm) in the music condition were significantly (p ≤ 0.014) greater than all other conditions. Treadmill speed in the control condition (3.1 ± 1.2 miles∙hour-1) was significantly (p = 0.04) greater than both texting and talking (2.8 ± 1.1 miles∙hour-1 each). Heart rate during the control condition (115.4 ± 22.8 beats∙min-1) was significantly (p = 0.04) greater than texting (109.9 ± 16.4 beats∙min-1) but not talking (112.6 ± 16.1 beats∙min-1). Finally, liking during the talking condition (5.4 ± 2.2 cm) was greater (p = 0.05) than the control (4.3 ± 2.2 cm) but not the texting (5.1 ± 2.2 cm) conditions. In conclusion, using a cell phone for listening to music can increase the intensity (speed and heart rate) and liking of a bout of treadmill exercise. However, other common cell phone uses (texting and talking) can interfere with treadmill exercise and reduce intensity. PMID:25970553
Molecular Mechanisms of Treadmill Therapy on Neuromuscular Atrophy Induced via Botulinum Toxin A
Tsai, Sen-Wei; Chen, Hsiao-Ling
2013-01-01
Botulinum toxin A (BoNT-A) is a bacterial zinc-dependent endopeptidase that acts specifically on neuromuscular junctions. BoNT-A blocks the release of acetylcholine, thereby decreasing the ability of a spastic muscle to generate forceful contraction, which results in a temporal local weakness and the atrophy of targeted muscles. BoNT-A-induced temporal muscle weakness has been used to manage skeletal muscle spasticity, such as poststroke spasticity, cerebral palsy, and cervical dystonia. However, the combined effect of treadmill exercise and BoNT-A treatment is not well understood. We previously demonstrated that for rats, following BoNT-A injection in the gastrocnemius muscle, treadmill running improved the recovery of the sciatic functional index (SFI), muscle contraction strength, and compound muscle action potential (CMAP) amplitude and area. Treadmill training had no influence on gastrocnemius mass that received BoNT-A injection, but it improved the maximal contraction force of the gastrocnemius, and upregulation of GAP-43, IGF-1, Myo-D, Myf-5, myogenin, and acetylcholine receptor (AChR) subunits α and β was found following treadmill training. Taken together, these results suggest that the upregulation of genes associated with neurite and AChR regeneration following treadmill training may contribute to enhanced gastrocnemius strength recovery following BoNT-A injection. PMID:24327926
Pilutti, Lara A; Paulseth, John E; Dove, Carin; Jiang, Shucui; Rathbone, Michel P; Hicks, Audrey L
2016-01-01
Background: There is evidence of the benefits of exercise training in multiple sclerosis (MS); however, few studies have been conducted in individuals with progressive MS and severe mobility impairment. A potential exercise rehabilitation approach is total-body recumbent stepper training (TBRST). We evaluated the safety and participant-reported experience of TBRST in people with progressive MS and compared the efficacy of TBRST with that of body weight-supported treadmill training (BWSTT) on outcomes of function, fatigue, and health-related quality of life (HRQOL). Methods: Twelve participants with progressive MS (Expanded Disability Status Scale scores, 6.0-8.0) were randomized to receive TBRST or BWSTT. Participants completed three weekly sessions (30 minutes) of exercise training for 12 weeks. Primary outcomes included safety assessed as adverse events and patient-reported exercise experience assessed as postexercise response and evaluation of exercise equipment. Secondary outcomes included the Multiple Sclerosis Functional Composite, the Modified Fatigue Impact Scale, and the Multiple Sclerosis Quality of Life-54 questionnaire scores. Assessments were conducted at baseline and after 12 weeks. Results: Safety was confirmed in both exercise groups. Participants reported enjoying both exercise modalities; however, TBRST was reviewed more favorably. Both interventions reduced fatigue and improved HRQOL (P ≤ .05); there were no changes in function. Conclusions: Both TBRST and BWSTT seem to be safe, well tolerated, and enjoyable for participants with progressive MS with severe disability. Both interventions may also be efficacious for reducing fatigue and improving HRQOL. TBRST should be further explored as an exercise rehabilitation tool for patients with progressive MS.
Hajizade Ghonsulakandi, Shahnaz; Sheikh, Mahmuod; Dehghan Shasaltaneh, Marzieh; Chopani, Samira; Naghdi, Nasser
2017-08-01
One of the most important survival mechanisms is learning and memory processes. To emphasize the role of physical exercises and magnesium (Mg) in improvement of cognitive performance, we planned to investigate the effect of Mg and mild compulsive exercise on spatial learning and memory of adult male rats. Accordingly, we divided male Wistar rats into four groups: (I) control, (II) Mg treatment, (III) exercise, and (IV) Mg-exercise in the different dosages of Mg (0.5, 1, 1.5, and 2 mmol/kbw) were injected in the form of gavage during 1 week. Also, 1-week mild running on treadmill was used for exercise treatment. The Morris water maze (MWM) test and open field tool were used to evaluate spatial learning, memory, and motor activity, respectively. Our results clearly showed that 1 mmol/kbw Mg was applied as an effective dosage. Strikingly, 1-week mild exercise on treadmill had no significant effect on spatial motor activity, learning, and memory. Feeding 1 mmol/kbw Mg for a week showed a significant difference in learning and exploration stages. Compared to control animals, these results reveal exercise and Mg simultaneously had effect on learning and reminding. As a consequence, although mild exercise had no effect on motor activity and memory, Mg intake improved spatial learning, memory, and locomotor activity. The Mg feeding could be a promising supplemental treatment in the neurodegenerative disease. It is worthwhile to mention consumption of Mg leads to enhancement of memory, so animals find the hidden platform with the highest velocity.
ERIC Educational Resources Information Center
Nielson, David E.; George, James D.; Vehrs, Pat R.; Hager, Ron L.; Webb, Carrie V.
2010-01-01
The purpose of this study was to develop a multiple linear regression model to predict treadmill VO[subscript 2max] scores using both exercise and non-exercise data. One hundred five college-aged participants (53 male, 52 female) successfully completed a submaximal cycle ergometer test and a maximal graded exercise test on a motorized treadmill.…
ERIC Educational Resources Information Center
Johnston, Therese E.; Watson, Kyle E.; Ross, Sandy A.; Gates, Philip E.; Gaughan, John P.; Lauer, Richard T.; Tucker, Carole A.; Engsberg, Jack R.
2011-01-01
Aim: To compare the effects of a supported speed treadmill training exercise program (SSTTEP) with exercise on spasticity, strength, motor control, gait spatiotemporal parameters, gross motor skills, and physical function. Method: Twenty-six children (14 males, 12 females; mean age 9y 6mo, SD 2y 2mo) with spastic cerebral palsy (CP; diplegia, n =…
Aghaie, Fatemeh; Khazali, Homayoun; Hedayati, Mehdi; Akbarnejad, Ali
2018-01-01
Polycystic ovarian syndrome (PCOS) is the most frequent female endocrine disorder that affects 5-10% of women. PCOS is characterized by hyperandrogenism, oligo-/anovulation, and polycystic ovaries. The aim of the present research is to evaluate the expression of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) mRNA in the ovaries of an estradiol valerate (EV)-induced PCOS rat model, and the effect of treadmill and running wheel (voluntary) exercise on these parameters. In this experimental study, we divided adult female Wistar rats that weighed approximately 220 ± 20 g initially into control (n=10) and PCOS (n=30). Subsequently, PCOS group were divided to PCOS, PCOS with treadmill exercise (P-ExT), and PCOS with running wheel exercise (P-ExR) groups (n=10 per group). The expressions of StAR and CYP19 mRNA in the ovaries were determined by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). Data were analyzed by one-way ANOVA using SPSS software, version 16. The data were assessed at α=0.05. There was significantly lower mRNA expression of CYP19 in the EV-induced PCOS, running wheel and treadmill exercise rats compared to the control group (P<0.001). Treadmill exercise (P=0.972) and running wheel exercise (P=0.839) had no significant effects on CYP19 mRNA expression compared to the PCOS group. mRNA expression of StAR in the ovaries of the PCOS group indicated an increasing trend compared to the control group, however this was not statistically significant (P=0.810). We observed that 8 weeks of running wheel and treadmill exercises could not statistically decrease StAR mRNA expression compared to the PCOS group (P=0.632). EV-induced PCOS in rats decreased CYP19 mRNA expression, but had no effect on StAR mRNA expression. We demonstrated that running wheel and moderate treadmill exercise could not modify CYP19 and StAR mRNA expressions. Copyright© by Royan Institute. All rights reserved.
Kordi, Ramin; Mazaheri, Reza; Rostami, Mohsen; Mansournia, Mohammad Ali
2012-01-01
The pathophysiology of primary benign exertional headache (EH) is not still clearly defined. Some researchers have suggested an impaired vascular response as the etiology of this disorder. In this study we investigated whether there are any differences in blood pressure (BP) and heart rate (HR) of the subjects in course of the static and dynamic exercises and the treadmill stress test between those with and without EH. From university students, 22 patients with EH (mean age: 19.8 ± 2.10, Female to Male: 7:15) and 20 normal subjects (mean age: 19.3 ± 1.97, Female: Male: 8:12) were recruited. All the subjects performed the static and dynamic exercises at 30 and 20 percent of the maximal voluntary contraction (MVC) and Bruce treadmill stress test according to the standard protocols. HR and BP of all the cases at the baseline and during and immediately after each test were measured. No significant difference was found between the mean rise of HR, systolic and diastolic BP of the subjects with and without EH in static and dynamic exercises and also treadmill stress test. It seems that between those with and without EH, there is no significant difference in rise of HR and BP response to static and dynamic exercises and treadmill stress test. Further studies are required to find the pathophysiology and risk factors of EH.
Ground Reaction Forces During Reduced Gravity Running in Parabolic Flight.
Cavanagh, Peter; Rice, Andrea; Glauberman, Molly; Sudduth, Amanda; Cherones, Arien; Davis, Shane; Lewis, Michael; Hanson, Andrea; Wilt, Grier
2017-08-01
Treadmills have been employed as both a form of exercise and a countermeasure to prevent changes in the musculoskeletal system on almost all NASA missions and many Russian missions since the early Space Shuttle flights. It is possible that treadmills may also be part of exercise programs on future Mars missions and that they may be a component of exercise facilities in lunar or Martian habitats. In order to determine if the ambient gravity on these destinations will provide osteogenic effects while performing exercise on a treadmill, ground reactions forces (GRFs) were measured on eight subjects (six women and two men) running at 6 mph during parabolic flight in Martian and lunar gravity conditions. On average, stride length increased as gravity decreased. The first and second peaks of the GRFs decreased by 0.156 and 0.196 bodyweights, respectively, per 1/10 g change in ambient gravity. Based on comparisons with previously measured GRF during loaded treadmill running on the International Space Station, we conclude that unloaded treadmill running under lunar and Martian conditions during exploration missions is not likely to be an osteo-protective exercise.Cavanagh P, Rice A, Glauberman M, Sudduth A, Cherones A, Davis S, Lewis M, Hanson A, Wilt G. Ground reaction forces during reduced gravity running in parabolic flight. Aerosp Med Hum Perform. 2017; 88(8):730-736.
Bichay, Ashraf Adel Fahmy; Ramírez, Juan M; Núñez, Víctor M; Lancho, Carolina; Poblador, María S; Lancho, José L
2016-05-25
Regular physical exercise and healthy lifestyle can improve aerobic power of the elderly, although lung capacity gradually deteriorates with age. The aims of the study are: a) to evaluate the therapeutic effect of a treadmill exercise program on arterial blood oxygenation (SaO2), maximum oxygen consumption (VO2max) and maximum walking distance (MWD) in healthy elderly people; b) to examine the outcome of the program at a supervised short-term and at an unsupervised long-term. A prospective, not-randomized controlled intervention trial (NRCT) was conducted. Eighty participants were allocated into two homogeneous groups (training group, TG, n = 40; control group, CG, n = 40). Each group consisted of 20 men and 20 women. Pre-intervention measures of SaO2, VO2max and MWD were taken of each participant 1-week before the training program to establish the baseline. Also, during the training program, the participants were followed up at the 12, 30 and 48th week. The exercise program consisted of walking on a treadmill with fixed 0 % grade of inclination 3 times weekly for 48 weeks; the first 12 weeks were supervised and the remaining 36 weeks of the program were unsupervised. Participants in the control group were encouraged to walk twice a week during 45 min, and received standard recommendations for proper health. Related to the baseline, the SaO2, VO2max, and MWD is greater in the intervention group at the 12(th) (p <.001), 30(th) (p <.001) and 48(th) week (p <.001). Compared with the control group, there was also a significant improvement of SaO2, VO2max, and MWD valuesin the intervention group (p <.001) at the 12(th) (p <.001), 30(th) (p <.001) and 48(th) week (p <.001). Supervised intervention shows greater improvement of SaO2, VO2max, and MWD values than in the unsupervised one. These results show that performing moderate exercise, specifically walking 3 days a week, is highly recommended for healthy older people, improving aerobic power. Current Controlled Trials ISRCTN12621097 .
2017-07-31
When you live in a place where your heart doesn’t even have to work against the pull of gravity, you need help with exercise: the astronauts on the International Space Station have a suite of exercise equipment at their disposal, including a treadmill. In this “SpeedyTime” segment Expedition 52 flight engineer Jack Fischer runs through the workout they get on the Combined Operational Load Bearing External Resistance Treadmill (COLBERT) in the station’s Tranquility module. HD Link: https://archive.org/details/jsc2017m000676_SpeedyTime_3_Treadmill_2 _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
A comparison of VO2max and metabolic variables between treadmill running and treadmill skating.
Koepp, Kriston K; Janot, Jeffrey M
2008-03-01
The purpose of this study was to determine differences in VO2max and metabolic variables between treadmill running and treadmill skating. This study also examined VO2max responses during a continuous skating treadmill protocol and a discontinuous skating treadmill protocol. Sixteen male high school hockey players, who had a mean age of 16 +/- 1 years and were of an above-average fitness level, participated in this study. All subjects completed 4 exercise trials: a 1-hour skating treadmill familiarization trial, a treadmill running trial, and 2 randomized skating treadmill trials. Minute ventilation (VE), oxygen consumption VO2), carbon dioxide production VCO2), respiratory exchange ratio (RER), and heart rate were averaged every 15 seconds up to VO2max for each exercise test. The results showed that there was a significant difference (P < 0.05) for VO2max (mL.kg.min) and maximal VCO2 (L.min) between the running treadmill protocol and discontinuous skating treadmill protocol. There was also a significant difference for maximal RER between the discontinuous and continuous skating treadmill protocol and between the discontinuous skating treadmill protocol and running treadmill protocol. In conclusion, the running treadmill elicited a greater VO2max (mL.kg.min) than the skating treadmill did, but when it comes to specificity of ice skating, the skating treadmill may be ideal. Also, there was no significant difference between the discontinuous and continuous skating treadmill protocols. Therefore, a continuous protocol is possible on the skating treadmill without compromising correct skating position and physiologic responses. However, the continuous skating treadmill protocol should undergo validation before other scientists, coaches, and strength and conditioning professionals can apply it correctly.
Ensari, Ipek; Sandroff, Brian M.
2016-01-01
Background: Little is known about the acute or immediate effects of walking exercise and yoga on mood in people with multiple sclerosis (MS). Such an examination is important for identifying an exercise modality for inclusion in exercise-training interventions that yields mood benefits in MS. We examined the effects of single bouts of treadmill walking and yoga compared with a quiet, seated-rest control condition on acute mood symptoms in MS. Methods: Twenty-four participants with MS completed 20 minutes of treadmill walking, yoga, or quiet rest in a randomized, counterbalanced order with 1 week between sessions. Participants completed the Profile of Mood States questionnaire before and immediately after each condition. Total mood disturbance (TMD) and the six subscales of the Profile of Mood States were analyzed using repeated-measures analysis of variance and paired-samples t tests. Results: There was a significant condition × time interaction on TMD scores (ηp2 = 0.13). Walking and yoga conditions yielded comparable reductions in TMD scores. There was a significant condition × time interaction on vigor (ηp2 = 0.23) whereby walking but not yoga yielded an improvement in vigor. There was a significant main effect of time on anger, confusion, depression, and tension (P < .05) but not on fatigue. Conclusions: Walking and yoga yielded similar improvements in overall acute mood symptoms, and walking improved feelings of vigor. These effects should be further investigated in long-term exercise-training studies. PMID:26917992
Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome
ERIC Educational Resources Information Center
Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo
2011-01-01
This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…
da Silva, Débora de Cássia; Tavares, Maryane Gabriela; do Nascimento, Camila Karina Brito; Lira, Eduardo Carvalho; Dos Santos, Ângela Amâncio; Maia, Luciana Maria Silva de Seixas; Batista-de-Oliveira Hornsby, Manuella
2018-03-01
Virgin coconut oil (CO) and treadmill exercise have been reported to improve memory performance in young rats. CO has also been associated with antistress properties in young, stressed mice. Therefore, in this study we aimed to investigate whether CO and treadmill exercise could synergistically ameliorate the effects of chronic stress on anxiety-like behavior and episodic-like memory in young rats. The rats received CO and were exercised (Ex) from the 15 th to the 45 th day of life. The animals were supplemented with CO (10 mL kg -1 day -1 ) or a vehicle (V, distilled water and 0.009% Cremophor) via oral gavage. The Ex animals were placed for 30 min day -1 on a treadmill, with the speed gradually increasing from the first week to the last. From the 46 th to the 54 th postnatal day, with the exception of the 51 st and the 52 nd day, all rats were subjected to restraint stress. Afterwards, all rats underwent the open-field test to evaluate locomotor activity and anxiety-like behavior. To evaluate episodic-like memory, all animals underwent tests to recognize object identity and special location. Lastly, lipid profile and murinometric parameters were evaluated. A two-way ANOVA test followed by a Tukey test demonstrated that the CO&Ex group explored more of the unprotected central area of the OFT (27.04 ± 4.03 s, p < 0.01), when compared to the control group (15.36 ± 2.54 s). CO&Ex spent more time exploring the novel location of the object (71.62 ± 3.04%, p < 0.01), when compared to the control group (58.62 ± 2.48%). CO and exercise during lactation can ameliorate the effects of stress on anxiety-like behavior and episodic-like memory in young rats.
Kinematic Differences Between Motorized and Nonmotorized Treadmill Locomotion
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Bentley, Jason R.; Lee, Stuart M. C.; Norcross, Jason; Smith, Cassie; Hagan, R. Donald
2006-01-01
There are few scientific publications comparing human locomotion between motorized and nonmotorized treadmills. Lakomy (1987) and Gamble et al (1988) reported that forward lean is greater on a nonmotorized treadmill to aid in the generation of horizontal force necessary for belt propulsion, but there are no data concerning lower limb kinematics. During long-term spaceflight, astronauts use locomotive exercise to mitigate the physiological effects caused by long-term exposure to microgravity. A critical decision for mission planners concerns the requirements for a treadmill to be used during potential trips to the Moon and Mars. Treadmill operation in an un-powered configuration could reduce mission resource demands, but also may impact the efficacy of treadmill exercise countermeasures. To ascertain the most appropriate type of treadmill to be used, it is important to understand biomechanical differences between motorized (M) and nonmotorized (NM) locomotion. The purpose of this evaluation was to test for differences in lower limb kinematics that occur during M and NM treadmill locomotion at two speeds. It was hypothesized that hip and knee joint angle trajectories would differ between the conditions.
Roemers, P; Mazzola, P N; De Deyn, P P; Bossers, W J; van Heuvelen, M J G; van der Zee, E A
2018-04-15
Voluntary strength training methods for rodents are necessary to investigate the effects of strength training on cognition and the brain. However, few voluntary methods are available. The current study tested functional and muscular effects of two novel voluntary strength training methods, burrowing (digging a substrate out of a tube) and unloaded tower climbing, in male C57Bl6 mice. To compare these two novel methods with existing exercise methods, resistance running and (non-resistance) running were included. Motor coordination, grip strength and muscle fatigue were measured at baseline, halfway through and near the end of a fourteen week exercise intervention. Endurance was measured by an incremental treadmill test after twelve weeks. Both burrowing and resistance running improved forelimb grip strength as compared to controls. Running and resistance running increased endurance in the treadmill test and improved motor skills as measured by the balance beam test. Post-mortem tissue analyses revealed that running and resistance running induced Soleus muscle hypertrophy and reduced epididymal fat mass. Tower climbing elicited no functional or muscular changes. As a voluntary strength exercise method, burrowing avoids the confounding effects of stress and positive reinforcers elicited in forced strength exercise methods. Compared to voluntary resistance running, burrowing likely reduces the contribution of aerobic exercise components. Burrowing qualifies as a suitable voluntary strength training method in mice. Furthermore, resistance running shares features of strength training and endurance (aerobic) exercise and should be considered a multi-modal aerobic-strength exercise method in mice. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Ki-Hyun; Hwangbo, Gak; Kim, Seong-Gil
2015-04-01
[Purpose] The purpose of this study was to access the effect of weight bearing exercise (treadmill exercise) and non-weight-bearing exercise (swimming exercise) on gait in the recovery process after a sciatic nerve crush injury. [Subjects and Methods] Rats were randomly divided into a swimming group (n=3) with non-weight-bearing exercise after a sciatic nerve crush and a treadmill group (n=3) with weight bearing exercise after a sciatic nerve crush. Dartfish is a program that can analyze and interpret motion through video images. The knee lateral epicondyle, lateral malleolus, and metatarsophalangeal joint of the fifth toe were marked by black dots before recording. [Results] There were significant differences in TOK (knee angle toe off) and ICK (knee angle at initial contact) in the swimming group and in TOK, ICA (ankle angle at initial contact), and ICK in the treadmill group. In comparison between groups, there were significant differences in TOA (ankle angle in toe off) and ICA at the 7th day. [Conclusion] There was no difference between weight bearing and non-weight-bearing exercise in sciatic nerve damage, and both exercises accelerated the recovery process in this study.
Physical exercise ameliorates mood disorder-like behavior on high fat diet-induced obesity in mice.
Park, Hye-Sang; Lee, Jae-Min; Cho, Han-Sam; Park, Sang-Seo; Kim, Tae-Woon
2017-04-01
Obesity is associated with mood disorders such as depression and anxiety. The aim of this study was to investigate whether treadmill exercise had any benefits on mood disorder by high fat diet (HFD) induced obesity. Mice were randomly divided into four groups: control, control and exercise, high fat diet (HFD), and HFD and exercise. Obesity was induced by a 20-week HFD (60%). In the exercise groups, exercise was performed 6 times a week for 12 weeks, with the exercise duration and intensity gradually increasing at 4-week intervals. Mice were tested in tail suspension and elevated plus maze tasks in order to verify the mood disorder like behavior such as depression and anxiety on obesity. In the present study, the number of 5-HT- and TPH-positive cells, and expression of 5-HT 1A and 5-HTT protein decreased in dorsal raphe, and depression and anxiety like behavior increased in HFD group compared with the CON group. In contrast, treadmill exercise ameliorated mood disorder like behavior by HFD induced obesity and enhanced expression of the serotonergic system in the dorsal raphe. We concluded that exercise increases the capacity of the serotonergic system in the dorsal raphe, which improves the mood disorders associated with HFD-induced obesity. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Health-related physical fitness assessment in a community-based cancer rehabilitation setting.
Kirkham, Amy A; Neil-Sztramko, Sarah E; Morgan, Joanne; Hodson, Sara; Weller, Sarah; McRae, Tasha; Campbell, Kristin L
2015-09-01
Assessment of physical fitness is important in order to set goals, appropriately prescribe exercise, and monitor change over time. This study aimed to determine the utility of a standardized physical fitness assessment for use in cancer-specific, community-based exercise programs. Tests anticipated to be feasible and suitable for a community setting and a wide range of ages and physical function were chosen to measure body composition, aerobic fitness, strength, flexibility, and balance. Cancer Exercise Trainers/Specialists at cancer-specific, community-based exercise programs assessed new clients (n = 60) at enrollment, designed individualized exercise programs, and then performed a re-assessment 3-6 months later (n = 34). Resting heart rate, blood pressure, body mass index, waist circumference, handgrip strength, chair stands, sit-and-reach, back scratch, single-leg standing, and timed up-and-go tests were considered suitable and feasible tests/measures, as they were performed in most (≥88 %) participants. The ability to capture change was also noted for resting blood pressure (-7/-5 mmHg, p = 0.02), chair stands (+4, p < 0.01), handgrip strength (+2 kg, p < 0.01), and sit-and-reach (+3 cm, p = 0.03). While the submaximal treadmill test captured a meaningful improvement in aerobic fitness (+62 s, p = 0.17), it was not completed in 33 % of participants. Change in mobility, using the timed up-and-go was nominal and was not performed in 27 %. Submaximal treadmill testing, handgrip dynamometry, chair stands, and sit-and-reach tests were feasible, suitable, and provided meaningful physical fitness information in a cancer-specific, community-based, exercise program setting. However, a shorter treadmill protocol and more sensitive balance and upper body flexibility tests should be investigated.
The Kinematics of Treadmill Locomotion in Space
NASA Technical Reports Server (NTRS)
Thornton, W. E.; Cavanagh, P. R.; Buczek, F. L.; Burgess-Milliron, M. J.; Davis, B. L.
1997-01-01
Locomotion on a treadmill in 0 G will probably remain a centerpiece of NASA's exercise countermeasures programme. This form of physical activity has the potential to cause large bone and muscle forces as well as loading during a period of continuous treadmill exercise. A critical concern is the provision of a treadmill which can approximate 1 G performance in space. At this point, no adequate objective measurements of in-flight treadmill kinetics or of the human response to this activity have been made. Interpretation of the results obtained in the present study is limited by the following: (1) bungee tensions were not measured; (2) ground reaction forces were not measured in parallel with the kinematic measurements; and (3) the instrumentation used to film the astronauts could itself have been affected by microgravity. Despite these shortcomings, what is apparent is that exercise during NASA missions STS 7 and STS 8 resulted in leg motions that were similar to those found during 1 G locomotion on an inclined passive treadmill and on an active treadmill at an even steeper grade. In addition, it was apparent that the majority of the loads were transmitted through the forefoot, and one can surmise that this style of running would result in physiologically significant tensions in the calf musculature and resultant ankle compressive loading. Further speculation regarding limb loading is complicated by the fact that varying amounts of force are transmitted through (1) the treadmill handle and (2) bungee cords that act as a tether. New generations of treadmills are being manufactured that could provide I important information for planners of long-duration space missions. If these types of treadmill are flown on future missions, it will be possible to control bungee tensions more precisely, control for grade and speed, and, most importantly, provide data on the rates and magnitudes of limb loading. These data could then be incorporated into biomechanical models of the lower limb to more fully understand mechanisms of load transmission from distal to proximal structures and to optimize in-flight exercise protocols in such a way that muscle and bone loss could be reduced.
The Effects of Treadmill Running on Aging Laryngeal Muscle Structure
Kletzien, Heidi; Russell, John A.; Connor, Nadine P.
2015-01-01
Levels of Evidence NA (animal study) Objective Age-related changes in laryngeal muscle structure and function may contribute to deficits in voice and swallowing observed in elderly people. We hypothesized that treadmill running, an exercise that increases respiratory drive to upper airway muscles, would induce changes in thyroarytenoid muscle myosin heavy chain (MHC) isoforms consistent with a fast-slow transformation in muscle fiber type. Study Design Randomized parallel group controlled trial. Methods Fifteen young adult and 14 old Fischer 344/Brown Norway rats received either treadmill running or no exercise (5 days/week/8 weeks). Myosin heavy chain isoform composition in the thyroarytenoid muscle was examined at the end of 8 weeks. Results Significant age and treatment effects were found. The young adult group had the greatest proportion of superfast contracting MHCIIL. The treadmill running group had the lowest proportion of MHCIIL and the greatest proportion of MHCIIx. Conclusion Thyroarytenoid muscle structure was affected both by age and treadmill running in a fast-slow transition that is characteristic of exercise manipulations in other skeletal muscles. PMID:26256100
Exercise protects against high-fat diet-induced hypothalamic inflammation.
Yi, Chun-Xia; Al-Massadi, Omar; Donelan, Elizabeth; Lehti, Maarit; Weber, Jon; Ress, Chandler; Trivedi, Chitrang; Müller, Timo D; Woods, Stephen C; Hofmann, Susanna M
2012-06-25
Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of the central nervous system which are activated by pro-inflammatory signals causing local production of specific interleukins and cytokines, and these in turn may further promote systemic metabolic disease. Whether or how this microglial activation can be averted or reversed is unknown. Since running exercise improves systemic metabolic health and has been found to promote neuronal survival as well as the recovery of brain functions after injury, we hypothesized that regular treadmill running may blunt the effect of western diet on hypothalamic inflammation. Using low-density lipoprotein receptor deficient (l dlr-/-) mice to better reflect human lipid metabolism, we first confirmed that microglial activation in the hypothalamus is severely increased upon exposure to a high-fat, or "western", diet. Moderate, but regular, treadmill running exercise markedly decreased hypothalamic inflammation in these mice. Furthermore, the observed decline in microglial activation was associated with an improvement of glucose tolerance. Our findings support the hypothesis that hypothalamic inflammation can be reversed by exercise and suggest that interventions to avert or reverse neuronal damage may offer relevant potential in obesity treatment and prevention. Copyright © 2012 Elsevier Inc. All rights reserved.
Baker, Ryan; Gibson, Chris; Kearney, Andrew; Busemeyer, Tommy
2016-01-01
Background Stationary equipment devices are often used to improve fitness. The ElliptiGO® was recently developed that blends the elements of an elliptical trainer and bicycle, allowing reciprocal lower limb pedaling in an upright position. However, it is unknown whether the muscle activity used for the ElliptiGO® is similar to walking or cycling. To date, there is no information comparing muscle activity for exercise on the treadmill, stationary upright and recumbent bikes, and the ElliptiGO®. Purpose/Hypothesis The purpose of this study was to assess trunk and lower extremity muscle activity among treadmill walking, cycling (recumbent and upright) and the ElliptiGO® cycling. It was hypothesized that the ElliptiGO® and treadmill would elicit similar electromyographic muscle activity responses compared to the stationary bike and recumbent bike during an exercise session. Study Design Cohort, repeated measures Methods Twelve recreationally active volunteers participated in the study and were assigned a random order of exercise for each of the four devices (ElliptiGO®, stationary upright cycle ergometer, recumbent ergometer, and a treadmill). Two-dimensional video was used to monitor the start and stop of exercise and surface electromyography (SEMG) were used to assess muscle activity during two minutes of cycling or treadmill walking at 40-50% heart rate reserve (HRR). Eight muscles on the dominant limb were used for analysis: gluteus maximus (Gmax), gluteus medius (Gmed), biceps femoris (BF), lateral head of the gastrocnemius (LG), tibialis anterior (TA), rectus femoris (RF). Two trunk muscles were assessed on the same side; lumbar erector spinae at L3-4 level (LES) and rectus abdominus (RA). Maximal voluntary isometric contractions (MVIC) were determined for each muscle and SEMG data were expressed as %MVIC in order to normalize outputs. Results The %MVIC for RF during ElliptiGO® cycling was higher than recumbent cycling. The LG muscle activity was highest during upright cycling. The TA was higher during walking compared to recumbent cycling and ElliptiGO® cycling. No differences were found among the the LES and remaining lower limb musculature across devices. Conclusion ElliptiGO® cycling was found to elicit sufficient muscle activity to provide a strengthening stimulus for the RF muscle. The LES, RA, Gmax, Gmed, and BF activity were similar across all devices and ranged from low to moderate strength levels of muscle activation. The information gained from this study may assist clinicians in developing low to moderate strengthening exercise protocols when using these four devices. Level of evidence 3 PMID:27104052
Bouillon, Lucinda; Baker, Ryan; Gibson, Chris; Kearney, Andrew; Busemeyer, Tommy
2016-04-01
Stationary equipment devices are often used to improve fitness. The ElliptiGO® was recently developed that blends the elements of an elliptical trainer and bicycle, allowing reciprocal lower limb pedaling in an upright position. However, it is unknown whether the muscle activity used for the ElliptiGO® is similar to walking or cycling. To date, there is no information comparing muscle activity for exercise on the treadmill, stationary upright and recumbent bikes, and the ElliptiGO®. The purpose of this study was to assess trunk and lower extremity muscle activity among treadmill walking, cycling (recumbent and upright) and the ElliptiGO® cycling. It was hypothesized that the ElliptiGO® and treadmill would elicit similar electromyographic muscle activity responses compared to the stationary bike and recumbent bike during an exercise session. Cohort, repeated measures. Twelve recreationally active volunteers participated in the study and were assigned a random order of exercise for each of the four devices (ElliptiGO®, stationary upright cycle ergometer, recumbent ergometer, and a treadmill). Two-dimensional video was used to monitor the start and stop of exercise and surface electromyography (SEMG) were used to assess muscle activity during two minutes of cycling or treadmill walking at 40-50% heart rate reserve (HRR). Eight muscles on the dominant limb were used for analysis: gluteus maximus (Gmax), gluteus medius (Gmed), biceps femoris (BF), lateral head of the gastrocnemius (LG), tibialis anterior (TA), rectus femoris (RF). Two trunk muscles were assessed on the same side; lumbar erector spinae at L3-4 level (LES) and rectus abdominus (RA). Maximal voluntary isometric contractions (MVIC) were determined for each muscle and SEMG data were expressed as %MVIC in order to normalize outputs. The %MVIC for RF during ElliptiGO® cycling was higher than recumbent cycling. The LG muscle activity was highest during upright cycling. The TA was higher during walking compared to recumbent cycling and ElliptiGO® cycling. No differences were found among the the LES and remaining lower limb musculature across devices. ElliptiGO® cycling was found to elicit sufficient muscle activity to provide a strengthening stimulus for the RF muscle. The LES, RA, Gmax, Gmed, and BF activity were similar across all devices and ranged from low to moderate strength levels of muscle activation. The information gained from this study may assist clinicians in developing low to moderate strengthening exercise protocols when using these four devices. 3.
Autonomic Recovery Is Delayed in Chinese Compared with Caucasian following Treadmill Exercise.
Sun, Peng; Yan, Huimin; Ranadive, Sushant M; Lane, Abbi D; Kappus, Rebecca M; Bunsawat, Kanokwan; Baynard, Tracy; Hu, Min; Li, Shichang; Fernhall, Bo
2016-01-01
Caucasian populations have a higher prevalence of cardiovascular disease (CVD) when compared with their Chinese counterparts and CVD is associated with autonomic function. It is unknown whether autonomic function during exercise recovery differs between Caucasians and Chinese. The present study investigated autonomic recovery following an acute bout of treadmill exercise in healthy Caucasians and Chinese. Sixty-two participants (30 Caucasian and 32 Chinese, 50% male) performed an acute bout of treadmill exercise at 70% of heart rate reserve. Heart rate variability (HRV) and baroreflex sensitivity (BRS) were obtained during 5-min epochs at pre-exercise, 30-min, and 60-min post-exercise. HRV was assessed using frequency [natural logarithm of high (LnHF) and low frequency (LnLF) powers, normalized high (nHF) and low frequency (nLF) powers, and LF/HF ratio] and time domains [Root mean square of successive differences (RMSSD), natural logarithm of RMSSD (LnRMSSD) and R-R interval (RRI)]. Spontaneous BRS included both up-up and down-down sequences. At pre-exercise, no group differences were observed for any HR, HRV and BRS parameters. During exercise recovery, significant race-by-time interactions were observed for LnHF, nHF, nLF, LF/HF, LnRMSSD, RRI, HR, and BRS (up-up). The declines in LnHF, nHF, RMSSD, RRI and BRS (up-up) and the increases in LF/HF, nLF and HR were blunted in Chinese when compared to Caucasians from pre-exercise to 30-min to 60-min post-exercise. Chinese exhibited delayed autonomic recovery following an acute bout of treadmill exercise. This delayed autonomic recovery may result from greater sympathetic dominance and extended vagal withdrawal in Chinese. Chinese Clinical Trial Register ChiCTR-IPR-15006684.
Autonomic Recovery Is Delayed in Chinese Compared with Caucasian following Treadmill Exercise
Sun, Peng; Yan, Huimin; Ranadive, Sushant M.; Lane, Abbi D.; Kappus, Rebecca M.; Bunsawat, Kanokwan; Baynard, Tracy; Hu, Min; Li, Shichang; Fernhall, Bo
2016-01-01
Caucasian populations have a higher prevalence of cardiovascular disease (CVD) when compared with their Chinese counterparts and CVD is associated with autonomic function. It is unknown whether autonomic function during exercise recovery differs between Caucasians and Chinese. The present study investigated autonomic recovery following an acute bout of treadmill exercise in healthy Caucasians and Chinese. Sixty-two participants (30 Caucasian and 32 Chinese, 50% male) performed an acute bout of treadmill exercise at 70% of heart rate reserve. Heart rate variability (HRV) and baroreflex sensitivity (BRS) were obtained during 5-min epochs at pre-exercise, 30-min, and 60-min post-exercise. HRV was assessed using frequency [natural logarithm of high (LnHF) and low frequency (LnLF) powers, normalized high (nHF) and low frequency (nLF) powers, and LF/HF ratio] and time domains [Root mean square of successive differences (RMSSD), natural logarithm of RMSSD (LnRMSSD) and R–R interval (RRI)]. Spontaneous BRS included both up-up and down-down sequences. At pre-exercise, no group differences were observed for any HR, HRV and BRS parameters. During exercise recovery, significant race-by-time interactions were observed for LnHF, nHF, nLF, LF/HF, LnRMSSD, RRI, HR, and BRS (up-up). The declines in LnHF, nHF, RMSSD, RRI and BRS (up-up) and the increases in LF/HF, nLF and HR were blunted in Chinese when compared to Caucasians from pre-exercise to 30-min to 60-min post-exercise. Chinese exhibited delayed autonomic recovery following an acute bout of treadmill exercise. This delayed autonomic recovery may result from greater sympathetic dominance and extended vagal withdrawal in Chinese. Trial Registration: Chinese Clinical Trial Register ChiCTR-IPR-15006684 PMID:26784109
Ground Reaction Forces During Locomotion in Simulated Microgravity
NASA Technical Reports Server (NTRS)
Davis, B. L.; Cavanagh, Peter R.; Sommer, H. J., III; Wu, G.
1996-01-01
Significant losses in bone density and mineral, primarily in the lower extremities have been reported following exposure to weightlessness. Recent investigations suggest that mechanical influences such as bone deformation and strain rate may be critically important in stimulating new bone formation. It was hypothesized that velocity, cadence and harness design would significantly affect lower limb impact forces during treadmill exercise in simulated zero gravity (0G). A ground-based hypogravity simulator was used to investigate which factors affect limb loading during tethered treadmill exercise. A fractional factorial design was used and 12 subjects were studied. The results showed that running on active and passive treadmills in the simulator with a tethering force close to the maximum comfortable level produced similar magnitudes for the peak ground reaction force. It was also found that these maximum forces were significantly lower than those obtained during overground trials, even when the speeds of locomotion in the simulator were 66 % greater than those in 1 G. Cadence had no effect on any of the response variables. The maximum rate of force application (DFDT-Max) was similar for overground running and exercise in simulated 0G, provided that the "weightless subjects ran on a motorized treadmill. These findings have implications for the use of treadmill exercise as a countermeasure for hypokinetic osteoporosis. As the relationship between mechanical factors and osteogenesis becomes better understood, results from human experiments in 0G simulators will help to design in-flight exercise programs that are more closely targeted to generate appropriate mechanical stimuli.
Queiroz, R W; Silva, V L; Rocha, D R; Costa, D S; Turco, S H N; Silva, M T B; Santos, A A; Oliveira, M B L; Pereira, A S R; Palheta-Junior, R C
2018-02-01
Changes in physiological parameters that are induced by acute exercise on a treadmill in healthy military dogs have not been thoroughly investigated, especially with regard to age. This study investigated the effects of acute exercise on a treadmill on cardiovascular function, biochemical parameters and gastric antral motility in military dogs. Thermography was used to assess variations in superficial hindlimb muscle temperature. Nine healthy dogs were distributed into three groups according to their age (Group I: 25 ± 7 months; Group II: 51 ± 12 months; Group III: 95 ± 10 months) and sequentially subjected to running exercise on a treadmill for 12 min (3.2 km/h at 0° incline for 4 min, 6.4 km/h at 0° incline for 4 min and 6.4 km/h at 10° incline for 4 min). Heart rate, systolic and diastolic arterial pressure (DAP), gastric motility, haematocrit and biochemical analyses were performed at rest and after each session of treadmill exercise. Infrared thermographic images of muscles in the pelvic member were taken. Exercise decreased DAP in Group I, increased systolic arterial pressure in Groups II and III and increased mean arterial pressure in Group III (all p < 0.05). After the exercise protocol, plasma creatine kinase and aspartate aminotransferase levels increased only in Group I (p < 0.05). Exercise increased heart rate and decreased the gastric motility of a solid meal at 180 min in all groups (all p < 0.05). Exercise also elevated temperature in the femoral biceps muscles in Group I compared with the older dogs. The results indicate that acute exercise decreased gastric motility in dogs, regardless of age, and caused more pronounced cardiovascular changes in older dogs than in younger dogs. Acute exercise also altered biochemical parameters and superficial hindlimb muscle temperature in younger military dogs. © 2016 Blackwell Verlag GmbH.
Use of the International Space Station as an Exercise Physiology Lab
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori
2013-01-01
The International Space Station (ISS) is now in its prime utilization phase with great opportunity to use the ISS as a lab. With respect to exercise physiology there is considerable research opportunity. Crew members exercise for up to 2 hours per day using a cycle ergometer, treadmill, and advanced resistive exercise device (ARED). There are several ongoing exercise research studies by NASA, ESA and CSA. These include studies related to evaluation of new exercise prescriptions (SPRINT), evaluation of aerobic capacity (VO2max), biomechanics (Treadmill Kinematics), energy expenditure during spaceflight (Energy), evaluation of cartilage (Cartilage), and evaluation of cardiovascular health (Vascular). Examples of how ISS is used for exercise physiology research will be presented.
NASA Technical Reports Server (NTRS)
Smith, Cassie; Lee, Stuart MC; Laughlin, Mitzi; Loehr, James; Norcross, Jason; DeWitt, John; Hagan, R. D.
2006-01-01
Treadmill locomotion is used onboard the International Space Station (ISS) as a countermeasure to the effects of prolonged weightlessness. The treadmill operates in two modes: motorized (T-M) and non-motorized (T-NM). Little is known about the potential physiologic differences between modes which may affect countermeasure exercise prescription. PURPOSE: To quantify heart rate (HR), oxygen consumption (VO2), perceived exertion (RPE), and blood lactate (BLa) during T-M and T-NM locomotion at 2 and 4 mph in normal ambulatory subjects. METHODS: Twenty subjects (10 men, 10 women; 31+/-5 yr, 172+/-10 cm, 68+/-13 kg, mean SD) with a treadmill peakVO2 of 45.5+/-5.4 ml/kg/min (mean+/-SD) exercised on the ground-based ISS treadmill. Following a familiarization session in each mode, subjects completed two data collection sessions, T-M and T-NM in random order, at 2 and 4 mph. Subjects attempted to complete 5 min of exercise at each speed; if they could not maintain the speed, the trial was discontinued. At least 5 minutes of rest separated each speed trial, and at least 48 hrs separated each session. VO2 was measured continuously (metabolic gas analysis), while HR (HR monitor) and RPE (Borg Chart, 6-20 scale) were recorded each min. Not all subjects completed 5 min during each condition, therefore the mean of the min 3 and 4 was taken as representative of steady-state. BLa was measured (finger stick) within 2 min post-exercise. Paired t-tests were used to test for differences (p<0.05) between treadmill modes within the same speed. RESULTS: All twenty subjects completed at least 4 min of exercise during all conditions, except T-NM 4 mph when only 11 subjects completed the minimum exercise duration. VO2, HR, RPE and BLa were significantly higher during T-NM locomotion at both speeds.
Stoller, Oliver; Schindelholz, Matthias; Bichsel, Lukas; Schuster, Corina; de Bie, Rob A; de Bruin, Eling D; Hunt, Kenneth J
2014-07-01
The majority of post-stroke individuals suffer from low exercise capacity as a secondary reaction to immobility. The aim of this study was to prove the concept of feedback-controlled robotics-assisted treadmill exercise (RATE) to assess aerobic capacity and guide cardiovascular exercise in severely impaired individuals early after stroke. Subjects underwent constant load and incremental exercise testing using a human-in-the-loop feedback system within a robotics-assisted exoskeleton (Lokomat, Hocoma AG, CH). Inclusion criteria were: stroke onset ≤8 weeks, stable medical condition, non-ambulatory status, moderate motor control of the lower limbs and appropriate cognitive function. Outcome measures included oxygen uptake kinetics, peak oxygen uptake (VO2peak), gas exchange threshold (GET), peak heart rate (HRpeak), peak work rate (Ppeak) and accuracy of reaching target work rate (P-RMSE). Three subjects (18-42 d post-stroke) were included. Oxygen uptake kinetics during constant load ranged from 42.0 to 60.2 s. Incremental exercise testing showed: VO2peak range 19.7-28.8 ml/min/kg, GET range 11.6-12.7 ml/min/kg, and HRpeak range 115-161 bpm. Ppeak range was 55.2-110.9 W and P-RMSE range was 3.8-7.5 W. The concept of feedback-controlled RATE for assessment of aerobic capacity and guidance of cardiovascular exercise is feasible. Further research is warranted to validate the method on a larger scale. Aerobic capacity is seriously reduced in post-stroke individuals as a secondary reaction to immobility. Robotics-assisted walking devices may have substantial clinical relevance regarding assessment and improvement of aerobic capacity early after stroke. Feedback-controlled robotics-assisted treadmill exercise represents a new concept for cardiovascular assessment and intervention protocols for severely impaired individuals.
Li, Xue; Xu, Chang-peng; Cui, Zhuang; Jiang, Nan; Jia, Jun-jie; Yu, Bin
2014-01-01
Objective Current medical practice for the treatment of articular cartilage lesions remains a clinical challenge due to the limited self-repair ability of articular cartilage. Both experimental and clinical researches show that moderate exercise can improve articular cartilage repair process. However, optimal timing of moderate exercise is unclear. We aimed to evaluate the effect of timing of moderate treadmill exercise on repair of full-thickness defects of articular cartilage. Design Full-thickness cartilage defects were drilled in the patellar groove of bilateral femoral condyles in a total of 40 male SD rats before they were randomly assigned into four even groups. In sedentary control (SED) group, no exercise was given; in 2-week (2W), 4-week (4W) and 8-week groups, moderate treadmill exercise was initiated respectively two, four and eight weeks after operation. Half of the animals were sacrificed at week 10 after operation and half at week 14 after operation. Femoral condyles were harvested for gross observation and histochemical measurement by O'Driscoll scoring system. Collagen type II was detected by immunohistochemistry and mRNA expressions of aggrecan and collagen type II cartilage by RT-PCR. Results Both 10 and 14 weeks post-operation, the best results were observed in 4W group and the worst results appeared in 2W group. The histochemistry scores and the expressions of collagen type II and aggrecan were significantly higher in 4W group than that in other three groups (P<0.05). Conclusions Moderate exercise at a selected timing (approximately 4 weeks) after injury can significantly promote the healing of cartilage defects but may hamper the repair process if performed too early while delayed intervention by moderate exercise may reduce its benefits in repair of the defects. PMID:24595327
Arctigenin Efficiently Enhanced Sedentary Mice Treadmill Endurance
Chen, Jing; Yu, Liang; Hu, Lihong; Jiang, Hualiang; Shen, Xu
2011-01-01
Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK) as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae) strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK) and serine/threonine kinase 11(LKB1)-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO) related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases. PMID:21887385
Benefits, Consequences, and Uncertainties of Conventional (Exercise) Countermeasure Approaches
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori
2013-01-01
This presentation will review the pros, cons, and uncertainties of using exercise countermeasures in hypothetical long duration exploration missions. The use of artificial gravity and exercise will be briefly discussed. One benefit to continued use of exercise is related to our extensive experience with spaceflight exercise hardware and programming. Exercise has been a part of each space mission dating back to the 1960's when simple isometric and bungee exercises were performed in the Gemini capsule. Over the next 50 years, exercise hardware improved cumulating in today's ISS suite of exercise equipment: Cycle Ergometer with Vibration Isolation and Stabilization System (CEVIS), Treadmill (T2) and Advanced Resistive Exercise Device (ARED). Today's exercise equipment is the most robust ever to be flown in space and allows the variety and intensity of exercise that might reasonably be expected to maintain muscle mass and function, bone density and cardiovascular fitness. A second benefit is related to the large body of research literature on exercise training. There is a considerable body of supporting research literature including >40,000 peer reviewed research articles on exercise training in humans. A third benefit of exercise is its effectiveness. With the addition of T2 and ARED to our ISS exercise suite, crew member outcomes on standard medical tests have improved. Additionally exercise has other positive side effects such as stress relief, possible improvement of immune function, improved sleep, etc. Exercise is not without its consequences. The major cons to performance of in-flight exercise are the time and equipment required. Currently crew are scheduled 2.5 hrs/day for exercise and there is considerable cost to develop, fly and maintain exercise hardware. While no major injuries have been reported on ISS, there is always some risk of injury with any form of exercise There are several uncertainties going forward; these relate mostly to the development of small compact robust effective exercise devices for the next generation of space vehicles. It is becoming increasingly apparent that high intensity exercise is required for maintenance of fitness and functional capability and so future hardware will need to be developed, tested and implemented that allow for a wide variety of exercise, at high intensity while likely involving low mass, volume and power. There are many unanswered issues related to the minimum number and type of exercise devices required for exploration, optimizing exercise prescriptions for these devices, whether a treadmill is absolutely required, and even whether any single countermeasure can adequately protect muscle, bone, cardiovascular and sensorimotor function.
Biomechanical Analysis of T2 Exercise
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Ploutz-Snyder, Lori; Everett, Meghan; Newby, Nathaniel; Scott-Pandorf, Melissa; Guilliams, Mark E.
2010-01-01
Crewmembers regularly perform treadmill exercise on the ISS. With the implementation of T2 on ISS, there is now the capacity to obtain ground reaction force (GRF) data GRF data combined with video motion data allows biomechanical analyses to occur that generate joint torque estimates from exercise conditions. Knowledge of how speed and load influence joint torque will provide quantitative information on which exercise prescriptions can be based. The objective is to determine the joint kinematics, ground reaction forces, and joint kinetics associated with treadmill exercise on the ISS. This study will: 1) Determine if specific exercise speed and harness load combinations are superior to others in exercise benefit; and 2) Aid in the design of exercise prescriptions that will be most beneficial in maintaining crewmember health.
Mokhtari-Zaer, Amin; Ghodrati-Jaldbakhan, Shahrbanoo; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Akhavan, Maziar M; Bandegi, Ahmad Reza; Rashidy-Pour, Ali
2014-09-01
Chronic exposure to morphine results in cognitive deficits and alterations of apoptotic proteins in favor of cell death in the hippocampus, a brain region critically involved in learning and memory. Physical activity has been shown to have beneficial effects on brain health. In the current work, we examined the effects of voluntary and treadmill exercise on spontaneous withdrawal signs, the associated cognitive defects, and changes of apoptotic proteins in morphine-dependent rats. Morphine dependence was induced through bi-daily administrations of morphine (10mg/kg) for 10 days. Then, the rats were trained under two different exercise protocols: mild treadmill exercise or voluntary wheel exercise for 10 days. After exercise training, their spatial learning and memory and aversive memory were examined by a water maze and by an inhibitory avoidance task, respectively. The expression of the pro-apoptotic protein Bax and the anti-apoptotic protein Bcl-2 in the hippocampus were determined by immunoblotting. We found that chronic exposure to morphine impaired spatial and aversive memory and remarkably suppressed the expression of Bcl-2, but Bax expression remained constant. Both voluntary and treadmill exercise alleviated memory impairment, increased the expression of Bcl-2 protein, and only the later suppressed the expression of Bax protein in morphine-dependent animals. Moreover, both exercise protocols diminished the occurrence of spontaneous morphine withdrawal signs. Our findings showed that exercise reduces the spontaneous morphine-withdrawal signs, blocks the associated impairment of cognitive performance, and overcomes morphine-induced alterations in apoptotic proteins in favor of cell death. Thus, exercise may be a useful therapeutic strategy for cognitive and behavioral deficits in addict individuals. Copyright © 2014 Elsevier B.V. All rights reserved.
Measurement of myocardial free radical production during exercise using EPR spectroscopy.
Traverse, Jay H; Nesmelov, Yuri E; Crampton, Melanie; Lindstrom, Paul; Thomas, David D; Bache, Robert J
2006-06-01
Exercise is associated with an increase in oxygen flux through the mitochondrial electron transport chain that has recently been demonstrated to increase the production of reactive oxygen species (ROS) in skeletal muscle. This study examined whether exercise also causes free radical production in the heart. We measured ROS production in seven chronically instrumented dogs during rest and treadmill exercise (6.4 km/h at 10 degrees grade; and heart rate, 204 +/- 3 beats/min) using electron paramagnetic resonance spectroscopy in conjunction with the spin trap alpha-phenyl-tert-butylnitrone (PBN) (0.14 mol/l) in blood collected from the aorta and coronary sinus (CS). To improve signal detection, the free radical adducts were deoxygenated over a nitrogen stream for 15 min and extracted with toluene. The hyperfine splitting constants of the radicals were alpha(N) = 13.7 G and alpha(H) = 1.0 G, consistent with an alkoxyl or carbon-centered radical. Resting aortic and CS PBN adduct concentrations were 6.7 and 6.3 x 10(8) arbitrary units (P = not significant). Both aortic and CS adduct concentrations increased during exercise, but there was no significant difference between the aortic and CS concentrations. Thus, in contrast to skeletal muscle, submaximal treadmill exercise did not result in detectable free radical production by the heart.
Mission Specialist (MS) Bluford exercises on middeck treadmill
1983-09-05
STS008-13-0361 (30 Aug.-5 Sept. 1983) --- Astronaut Guion S. Bluford, STS-8 mission specialist, assists Dr. William E. Thornton (out of frame) with a medical test that requires use of the treadmill exercising device designed for spaceflight by the STS-8 medical doctor. This frame was shot with a 35mm camera. Photo credit: NASA
Foot Forces during Treadmill Exercise on the International Space Station
NASA Technical Reports Server (NTRS)
Cavanagh, Peter R.; Rice, Andrea J.; Maender, Christian C.; Gopalakrishnan, Raghavan; Genc, Kerim O.; Kuklis, Matthew
2006-01-01
Exercise has been the primary countermeasure to combat musculoskeletal changes during the approximately 6 month missions to the International Space Station (ISS). However, these countermeasures have not been successful in preventing loss of bone mineral density in the spine and hip of astronauts. We examined lower extremity loading during typical bouts of on-orbit exercise performed by 4 ISS crew members on the ISS treadmill (TVIS) and during locomotor activities on earth (1g). In-shoe forces were monitored at 128Hz using force-measuring insoles placed inside the shoes of the exercising crewmember, stored temporarily on Flash cards, and down-linked via satellite for analysis. Custom software extracted peak forces from up to 30 minutes of locomotor activity. All on-orbit loading conditions for walking and running resulted in peak forces and impact loading rates that were significantly less than those measured in 1g. Typical single leg loads on-orbit in walking and running were 0.860 plus or minus 0.04 body weights (BW) and 1.339 plus or minus 0.07 BW compared to 1.2 plus or minus 0.036 BW and 2.36 plus or minus 0.07 BW in 1g BW respectively. These results indicate that typical exercise on the ISS treadmill does not generate 1g-like loading conditions. This may be partly responsible for the loss of bone mineral density that has been observed in these and other crew members. Since on-orbit treadmill exercise requires a restraining load to return the crew member to the treadmill surface, more studies are required to enable comfortable full body weight loading to be applied.
Kinematic and EMG Comparison of Gait in Normal and Microgravity
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Edwards, W. Brent; Perusek, Gail P.; Lewandowski, Beth E.; Samorezov, Sergey
2009-01-01
Astronauts regularly perform treadmill locomotion as a part of their exercise prescription while onboard the International Space Station. Although locomotive exercise has been shown to be beneficial for bone, muscle, and cardiovascular health, astronauts return to Earth after long duration missions with net losses in all three areas [1]. These losses might be partially explained by fundamental differences in locomotive performance between normal gravity (NG) and microgravity (MG) environments. During locomotive exercise in MG, the subject must wear a waist and shoulder harness that is attached to elastomer bungees. The bungees are attached to the treadmill, and provide forces that are intended to replace gravity. However, unlike gravity, which provides a constant force upon all body parts, the bungees provide a spring force only to the harness. Therefore, subjects are subjected to two fundamental differences in MG: 1) forces returning the subject to the treadmill are not constant, and 2) forces are only applied to the axial skeleton at the waist and shoulders. The effectiveness of the exercise may also be affected by the magnitude of the gravity replacement load. Historically, astronauts have difficulty performing treadmill exercise with loads that approach body weight (BW) due to comfort and inherent stiffness in the bungee system. Although locomotion can be executed in MG, the unique requirements could result in performance differences as compared to NG. These differences may help to explain why long term training effects of treadmill exercise may differ from those found in NG. The purpose of this investigation was to compare locomotion in NG and MG to determine if kinematic or muscular activation pattern differences occur between gravitational environments.
Astronauts Exercising in Space Video
NASA Technical Reports Server (NTRS)
2001-01-01
To minimize the effects of weightlessness and partial gravity, astronauts use several counter measures to maintain health and fitness. One counter measure is exercise to help reduce or eliminate muscle atrophy and bone loss, and to improve altered cardiovascular function. This video shows astronauts on the International Space Station (ISS) using the stationary Cycle/ Ergometer Vibration Isolation System (CVIS), the Treadmill Vibration Isolation System (TVIS), and the resistance exercise device. These technologies and activities will be crucial to keeping astronauts healthy and productive during the long missions to the Moon. Mars, and beyond.
Addison, Odessa; Ryan, Alice S; Prior, Steven J; Katzel, Leslie I; Kundi, Rishi; Lal, Brajesh K; Gardner, Andrew W
Both obesity and peripheral artery disease (PAD) limit function and may work additively to reduce mobility. The purpose of this study was to compare the effects of a 6-month, center-based walking program on mobility function between adults who are weight-stable obese and nonobese with PAD. This is a secondary data analysis of 2 combined studies taken from previous work. Fifty-three adults with PAD and intermittent claudication participated in 6 months of treadmill training or standard of care. Patients were divided into 4 groups for analyses: exercise nonobese (Ex), exercise obese (ExO), standard-of-care nonobese (SC), and standard-of-care obese (SCO). Mobility was assessed by a standardized treadmill test to measure claudication onset time (COT) and peak walking time (PWT) as well as the distance walked during a 6-minute walk distance (6MWD) test. There was a significant (P < .001) interaction (intervention × obesity) effect on 6MWD, wherein both exercise groups improved (Ex = 7%, ExO = 16%; P < .02), the SC group did not change (0.9%; P > .05), and the SCO group tended to decline (-18%; P = .06). Both exercise intervention groups significantly improved COT (Ex = 92%, ExO = 102%; P < .01) and PWT (Ex = 54%, ExO = 103%; P < .001). There was no change (P > .05) in either standard-of-care group. Individuals who are obese and nonobese with PAD made similar improvements after a 6-month, center-based walking program. However, patients who are obese with PAD and do not exercise may be susceptible to greater declines in mobility. Exercise may be particularly important in patients who are obese with PAD to avoid declines in mobility.
Physical and Emotional Benefits of Different Exercise Environments Designed for Treadmill Running
Churchill, Sarah M.; Brymer, Eric; Davids, Keith
2017-01-01
(1) Background: Green physical activity promotes physical health and mental wellbeing and interesting questions concern effects of this information on designing indoor exercise environments. This study examined the physical and emotional effects of different nature-based environments designed for indoor treadmill running; (2) Methods: In a counterbalanced experimental design, 30 participants performed three, twenty-minute treadmill runs at a self-selected pace while viewing either a static nature image, a dynamic nature image or self-selected entertainment. Distance ran, heart rate (HR) and five pre-and post-exercise emotional states were measured; (3) Results: Participants ran farther, and with higher HRs, with self-selected entertainment compared to the two nature-based environment designs. Participants attained lowered anger, dejection, anxiety and increased excitement post exercise in all of the designed environments. Happiness increased during the two nature-based environment designs compared with self-selected entertainment; (4) Conclusions: Self-selected entertainment encouraged greater physical performances whereas running in nature-based exercise environments elicited greater happiness immediately after running. PMID:28696384
Physical and Emotional Benefits of Different Exercise Environments Designed for Treadmill Running.
Yeh, Hsiao-Pu; Stone, Joseph A; Churchill, Sarah M; Brymer, Eric; Davids, Keith
2017-07-11
(1) Background: Green physical activity promotes physical health and mental wellbeing and interesting questions concern effects of this information on designing indoor exercise environments. This study examined the physical and emotional effects of different nature-based environments designed for indoor treadmill running; (2) Methods: In a counterbalanced experimental design, 30 participants performed three, twenty-minute treadmill runs at a self-selected pace while viewing either a static nature image, a dynamic nature image or self-selected entertainment. Distance ran, heart rate (HR) and five pre-and post-exercise emotional states were measured; (3) Results: Participants ran farther, and with higher HRs, with self-selected entertainment compared to the two nature-based environment designs. Participants attained lowered anger, dejection, anxiety and increased excitement post exercise in all of the designed environments. Happiness increased during the two nature-based environment designs compared with self-selected entertainment; (4) Conclusions: Self-selected entertainment encouraged greater physical performances whereas running in nature-based exercise environments elicited greater happiness immediately after running.
Scott, William; York, Henry; Theyagaraj, Melita; Price-Miller, Naomi; McQuaid, Jean; Eyvazzadeh, Megan; Ivey, Frederick M.; Macko, Richard F.
2016-01-01
Objective To assess the effectiveness of robotically assisted body weight supported treadmill training (RABWSTT) for improving cardiovascular fitness in chronic motor incomplete spinal cord injury (CMISCI). Design Pilot prospective randomized, controlled clinical trial. Setting Outpatient rehabilitation specialty hospital. Participants Eighteen individuals with CMISCI with American Spinal Injury Association (ASIA) level between C4 and L2 and at least one-year post injury. Interventions CMISCI participants were randomized to RABWSTT or a home stretching program (HSP) three times per week for three months. Those in the home stretching group were crossed over to three months of RABWSTT following completion of the initial three month phase. Outcome measures Peak oxygen consumption (peak VO2) was measured during both robotic treadmill walking and arm cycle ergometry: twice at baseline, once at six weeks (mid-training) and twice at three months (post-training). Peak VO2 values were normalized for body mass. Results The RABWSTT group improved peak VO2 by 12.3% during robotic treadmill walking (20.2 ± 7.4 to 22.7 ± 7.5 ml/kg/min, P = 0.018), compared to a non-significant 3.9% within group change observed in HSP controls (P = 0.37). Neither group displayed a significant change in peak VO2 during arm cycle ergometry (RABWSTT, 8.5% (P = 0.25); HSP, 1.76% (P = 0.72)). A repeated measures analysis showed statistically significant differences between treatments for peak VO2 during both robotic treadmill walking (P = 0.002) and arm cycle ergometry (P = 0.001). Conclusion RABWSTT is an effective intervention model for improving peak fitness levels assessed during robotic treadmill walking in persons with CMISCI. PMID:25520035
Exercise activates compensatory thermoregulatory reaction in rats: a modeling study
Yoo, Yeonjoo; LaPradd, Michelle; Kline, Hannah; Zaretskaia, Maria V.; Behrouzvaziri, Abolhassan; Rusyniak, Daniel E.; Molkov, Yaroslav I.
2015-01-01
The importance of exercise is increasingly emphasized for maintaining health. However, exercise itself can pose threats to health such as the development of exertional heat shock in warm environments. Therefore, it is important to understand how the thermoregulation system adjusts during exercise and how alterations of this can contribute to heat stroke. To explore this we measured the core body temperature of rats (Tc) running for 15 min on a treadmill at various speeds in two ambient temperatures (Ta = 25°C and 32°C). We assimilated the experimental data into a mathematical model that describes temperature changes in two compartments of the body, representing the muscles and the core. In our model the core body generates heat to maintain normal body temperature, and dissipates it into the environment. The muscles produce additional heat during exercise. According to the estimation of model parameters, at Ta = 25°C, the heat generation in the core was progressively reduced with the increase of the treadmill speed to compensate for a progressive increase in heat production by the muscles. This compensation was ineffective at Ta = 32°C, which resulted in an increased rate of heat accumulation with increasing speed, as opposed to the Ta = 25°C case. Interestingly, placing an animal on a treadmill increased heat production in the muscles even when the treadmill speed was zero. Quantitatively, this “ready-to-run” phenomenon accounted for over half of the heat generation in the muscles observed at maximal treadmill speed. We speculate that this anticipatory response utilizes stress-related circuitry. PMID:26472864
Stoller, O; de Bruin, E D; Schindelholz, M; Schuster, C; de Bie, R A; Hunt, K J
2013-01-01
Robotics-assisted treadmill exercise (RATE) with focus on motor recovery has become popular in early post-stroke rehabilitation but low endurance for exercise is highly prevalent in these individuals. This study aimed to develop an exercise testing method using robotics-assisted treadmill exercise to evaluate aerobic capacity after severe stroke. Constant load testing (CLT) based on body weight support (BWS) control, and incremental exercise testing (IET) based on guidance force (GF) control were implemented during RATE. Analyses focussed on step change, step response kinetics, and peak performance parameters of oxygen uptake. Three subjects with severe motor impairment 16-23 days post-stroke were included. CLT yielded reasonable step change values in oxygen uptake, whereas response kinetics of oxygen uptake showed low goodness of fit. Peak performance parameters were not obtained during IET. Exercise testing in post-stroke individuals with severe motor impairments using a BWS control strategy for CLT is deemed feasible and safe. Our approach yielded reasonable results regarding cardiovascular performance parameters. IET based on GF control does not provoke peak cardiovascular performance due to uncoordinated walking patterns. GF control needs further development to optimally demand active participation during RATE. The findings warrant further research regarding the evaluation of exercise capacity after severe stroke.
Tsai, Sheng-Feng; Ku, Nai-Wen; Wang, Tzu-Feng; Yang, Yan-Hsiang; Shih, Yao-Hsiang; Wu, Shih-Ying; Lee, Chu-Wan; Yu, Megan; Yang, Ting-Ting; Kuo, Yu-Min
2018-05-07
Aging impairs hippocampal neuroplasticity and hippocampus-related learning and memory. In contrast, exercise training is known to improve hippocampal neuronal function. However, whether exercise is capable of restoring memory function in old animals is less clear. Here, we investigated the effects of exercise on the hippocampal neuroplasticity and memory functions during aging. Young (3 months), middle-aged (9-12 months), and old (18 months) mice underwent moderate-intensity treadmill running training for 6 weeks, and their hippocampus-related learning and memory, and the plasticity of their CA1 neurons was evaluated. The memory performance (Morris water maze and novel object recognition tests), and dendritic complexity (branch and length) and spine density of their hippocampal CA1 neurons decreased as their age increased. The induction and maintenance of high-frequency stimulation-induced long-term potentiation in the CA1 area and the expressions of neuroplasticity-related proteins were not affected by age. Treadmill running increased CA1 neuron long-term potentiation and dendritic complexity in all three age groups, and it restored the learning and memory ability in middle-aged and old mice. Furthermore, treadmill running upregulated the hippocampal expressions of brain-derived neurotrophic factor and monocarboxylate transporter-4 in middle-aged mice, glutamine synthetase in old mice, and full-length TrkB in middle-aged and old mice. The hippocampus-related memory function declines from middle age, but long-term moderate-intensity running effectively increased hippocampal neuroplasticity and memory in mice of different ages, even when the memory impairment had progressed to an advanced stage. Thus, long-term, moderate intensity exercise training might be a way of delaying and treating aging-related memory decline. © 2018 S. Karger AG, Basel.
ERIC Educational Resources Information Center
Pfeiffer, Karin A.; Pivarnik, James M.; Womack, Christopher J.; Reeves, Mathew J.; Malina, Robert M.
2002-01-01
Investigated the reliability and validity of the Borg and OMNI rating of perceived exertion (RPE) scales in adolescent girls during treadmill exercise. Girls were randomly assigned to one of the RPE scales during various treadmill exercise conditions. Results indicated that the OMNI cycle pictorial scale was reliable and valid for use with…
Krakowiak, Joey; Liu, Caiyue; Papudesu, Chandana; Ward, P. Jillian; Wilhelm, Jennifer C.; English, Arthur W.
2015-01-01
The withdrawal of synaptic inputs from the somata and proximal dendrites of spinal motoneurons following peripheral nerve injury could contribute to poor functional recovery. Decreased availability of neurotrophins to afferent terminals on axotomized motoneurons has been implicated as one cause of the withdrawal. No reduction in contacts made by synaptic inputs immunoreactive to the vesicular glutamate transporter 1 and glutamic acid decarboxylase 67 is noted on axotomized motoneurons if modest treadmill exercise, which stimulates the production of neurotrophins by spinal motoneurons, is applied after nerve injury. In conditional, neuron-specific brain-derived neurotrophic factor (BDNF) knockout mice, a reduction in synaptic contacts onto motoneurons was noted in intact animals which was similar in magnitude to that observed after nerve transection in wild-type controls. No further reduction in coverage was found if nerves were cut in knockout mice. Two weeks of moderate daily treadmill exercise following nerve injury in these BDNF knockout mice did not affect synaptic inputs onto motoneurons. Treadmill exercise has a profound effect on synaptic inputs to motoneurons after peripheral nerve injury which requires BDNF production by those postsynaptic cells. PMID:25918648
Effects of mild running on substantia nigra during early neurodegeneration.
Almeida, Michael F; Silva, Carolliny M; Chaves, Rodrigo S; Lima, Nathan C R; Almeida, Renato S; Melo, Karla P; Demasi, Marilene; Fernandes, Tiago; Oliveira, Edilamar M; Netto, Luis E S; Cardoso, Sandra M; Ferrari, Merari F R
2018-06-01
Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8 weeks) and 6 weeks of moderate treadmill running, beginning 4 weeks after rotenone exposure. Substantia nigra was extracted and submitted to proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1 level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration, prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H 2 O 2 increase during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate physical training could prevent early neurodegeneration in substantia nigra through the improvement of autophagy and mitophagy.
Petersen, Nora; Jaekel, Patrick; Rosenberger, Andre; Weber, Tobias; Scott, Jonathan; Castrucci, Filippo; Lambrecht, Gunda; Ploutz-Snyder, Lori; Damann, Volker; Kozlovskaya, Inessa; Mester, Joachim
2016-01-01
To counteract microgravity (µG)-induced adaptation, European Space Agency (ESA) astronauts on long-duration missions (LDMs) to the International Space Station (ISS) perform a daily physical exercise countermeasure program. Since the first ESA crewmember completed an LDM in 2006, the ESA countermeasure program has strived to provide efficient protection against decreases in body mass, muscle strength, bone mass, and aerobic capacity within the operational constraints of the ISS environment and the changing availability of on-board exercise devices. The purpose of this paper is to provide a description of ESA's individualised approach to in-flight exercise countermeasures and an up-to-date picture of how exercise is used to counteract physiological changes resulting from µG-induced adaptation. Changes in the absolute workload for resistive exercise, treadmill running and cycle ergometry throughout ESA's eight LDMs are also presented, and aspects of pre-flight physical preparation and post-flight reconditioning outlined. With the introduction of the advanced resistive exercise device (ARED) in 2009, the relative contribution of resistance exercise to total in-flight exercise increased (33-46 %), whilst treadmill running (42-33 %) and cycle ergometry (26-20 %) decreased. All eight ESA crewmembers increased their in-flight absolute workload during their LDMs for resistance exercise and treadmill running (running speed and vertical loading through the harness), while cycle ergometer workload was unchanged across missions. Increased or unchanged absolute exercise workloads in-flight would appear contradictory to typical post-flight reductions in muscle mass and strength, and cardiovascular capacity following LDMs. However, increased absolute in-flight workloads are not directly linked to changes in exercise capacity as they likely also reflect the planned, conservative loading early in the mission to allow adaption to µG exercise, including personal comfort issues with novel exercise hardware (e.g. the treadmill harness). Inconsistency in hardware and individualised support concepts across time limit the comparability of results from different crewmembers, and questions regarding the difference between cycling and running in µG versus identical exercise here on Earth, and other factors that might influence in-flight exercise performance, still require further investigation.
Cade, W Todd; Nabar, Sharmila R; Keyser, Randall E
2004-05-01
The purpose of this study was to determine the reproducibility of the indirect Fick method for the measurement of mixed venous carbon dioxide partial pressure (P(v)CO(2)) and venous carbon dioxide content (C(v)CO(2)) for estimation of cardiac output (Q(c)), using the exponential rise method of carbon dioxide rebreathing, during non-steady-state treadmill exercise. Ten healthy participants (eight female and two male) performed three incremental, maximal exercise treadmill tests to exhaustion within 1 week. Non-invasive Q(c) measurements were evaluated at rest, during each 3-min stage, and at peak exercise, across three identical treadmill tests, using the exponential rise technique for measuring mixed venous PCO(2) and CCO(2) and estimating venous-arterio carbon dioxide content difference (C(v-a)CO(2)). Measurements were divided into measured or estimated variables [heart rate (HR), oxygen consumption (VO(2)), volume of expired carbon dioxide (VCO(2)), end-tidal carbon dioxide (P(ET)CO(2)), arterial carbon dioxide partial pressure (P(a)CO(2)), venous carbon dioxide partial pressure ( P(v)CO(2)), and C(v-a)CO(2)] and cardiorespiratory variables derived from the measured variables [Q(c), stroke volume (V(s)), and arteriovenous oxygen difference ( C(a-v)O(2))]. In general, the derived cardiorespiratory variables demonstrated acceptable (R=0.61) to high (R>0.80) reproducibility, especially at higher intensities and peak exercise. Measured variables, excluding P(a)CO(2) and C(v-a)CO(2), also demonstrated acceptable (R=0.6 to 0.79) to high reliability. The current study demonstrated acceptable to high reproducibility of the exponential rise indirect Fick method in measurement of mixed venous PCO(2) and CCO(2) for estimation of Q(c) during incremental treadmill exercise testing, especially at high-intensity and peak exercise.
2013-01-01
Background Training of young Thoroughbred horses must balance development of cardiopulmonary function and aerobic capacity with loading of the musculoskeletal system that can potentially cause structural damage and/or lameness. High-speed equine treadmills are sometimes used to supplement exercise on a track in the training of young Thoroughbreds because the horse can run at high speeds but without the added weight of a rider. We tested the hypothesis that intermittent high-intensity exercise on a treadmill of young Thoroughbred horses entering training can enhance development of aerobic capacity (Vo2max) and running performance more than conventional training under saddle, and do so without causing lameness. Results Twelve yearling Thoroughbreds trained for 8 months with conventional riding (C) only, conventional riding plus a short (2 month, S) interval of once-per-week high-intensity treadmill exercise, or a long (8 month, L) interval of once-per-week high-intensity treadmill exercise. Three treadmill exercise tests evaluated Vo2max, oxygen transport and running performance variables in June of the yearling year (only for L), October of the yearling year and April of the 2-year-old year. No horses experienced lameness during the study. Aerobic capacity increased in all groups after training. In both October and April, Vo2max in L was higher than in C, but did not differ between L and S or S and C. Running speeds eliciting Vo2max also increased in all groups after training, with S (809 ± 3 m/s) and L (804 ± 9 m/s) higher than C (764 ± 27 m/s). Maximum heart rate decreased for all groups after training. Hematocrit and hemoglobin concentration increased for L throughout training. Conclusions Young Thoroughbred horses can increase aerobic capacity and running performance more than by strictly using track training under saddle with the addition of intermittent high-intensity treadmill exercise, and they can do so without experiencing lameness. This finding suggests that young racehorses might be able to achieve higher aerobic fitness during training without subjecting their musculoskeletal systems to increased loading and risk of developing lameness. The findings of this preliminary study do not indicate a specific protocol to best achieve this goal. PMID:23957961
Lauer, Michael S; Pothier, Claire E; Magid, David J; Smith, S Scott; Kattan, Michael W
2007-12-18
The exercise treadmill test is recommended for risk stratification among patients with intermediate to high pretest probability of coronary artery disease. Posttest risk stratification is based on the Duke treadmill score, which includes only functional capacity and measures of ischemia. To develop and externally validate a post-treadmill test, multivariable mortality prediction rule for adults with suspected coronary artery disease and normal electrocardiograms. Prospective cohort study conducted from September 1990 to May 2004. Exercise treadmill laboratories in a major medical center (derivation set) and a separate HMO (validation set). 33,268 patients in the derivation set and 5821 in the validation set. All patients had normal electrocardiograms and were referred for evaluation of suspected coronary artery disease. The derivation set patients were followed for a median of 6.2 years. A nomogram-illustrated model was derived on the basis of variables easily obtained in the stress laboratory, including age; sex; history of smoking, hypertension, diabetes, or typical angina; and exercise findings of functional capacity, ST-segment changes, symptoms, heart rate recovery, and frequent ventricular ectopy in recovery. The derivation data set included 1619 deaths. Although both the Duke treadmill score and our nomogram-illustrated model were significantly associated with death (P < 0.001), the nomogram was better at discrimination (concordance index for right-censored data, 0.83 vs. 0.73) and calibration. We reclassified many patients with intermediate- to high-risk Duke treadmill scores as low risk on the basis of the nomogram. The model also predicted 3-year mortality rates well in the validation set: Based on an optimal cut-point for a negative predictive value of 0.97, derivation and validation rates were, respectively, 1.7% and 2.5% below the cut-point and 25% and 29% above the cut-point. Blood test-based measures or left ventricular ejection fraction were not included. The nomogram can be applied only to patients with a normal electrocardiogram. Clinical utility remains to be tested. A simple nomogram based on easily obtained pretest and exercise test variables predicted all-cause mortality in adults with suspected coronary artery disease and normal electrocardiograms.
Schenkman, Margaret; Moore, Charity G; Kohrt, Wendy M; Hall, Deborah A; Delitto, Anthony; Comella, Cynthia L; Josbeno, Deborah A; Christiansen, Cory L; Berman, Brian D; Kluger, Benzi M; Melanson, Edward L; Jain, Samay; Robichaud, Julie A; Poon, Cynthia; Corcos, Daniel M
2018-02-01
Parkinson disease is a progressive neurologic disorder. Limited evidence suggests endurance exercise modifies disease severity, particularly high-intensity exercise. To examine the feasibility and safety of high-intensity treadmill exercise in patients with de novo Parkinson disease who are not taking medication and whether the effect on motor symptoms warrants a phase 3 trial. The Study in Parkinson Disease of Exercise (SPARX) was a phase 2, multicenter randomized clinical trial with 3 groups and masked assessors. Individuals from outpatient and community-based clinics were enrolled from May 1, 2012, through November 30, 2015, with the primary end point at 6 months. Individuals with idiopathic Parkinson disease (Hoehn and Yahr stages 1 or 2) aged 40 to 80 years within 5 years of diagnosis who were not exercising at moderate intensity greater than 3 times per week and not expected to need dopaminergic medication within 6 months participated in this study. A total of 384 volunteers were screened by telephone; 128 were randomly assigned to 1 of 3 groups (high-intensity exercise, moderate-intensity exercise, or control). High-intensity treadmill exercise (4 days per week, 80%-85% maximum heart rate [n = 43]), moderate-intensity treadmill exercise (4 days per week, 60%-65% maximum heart rate [n = 45]), or wait-list control (n = 40) for 6 months. Feasibility measures were adherence to prescribed heart rate and exercise frequency of 3 days per week and safety. The clinical outcome was 6-month change in Unified Parkinson's Disease Rating Scale motor score. A total of 128 patients were included in the study (mean [SD] age, 64 [9] years; age range, 40-80 years; 73 [57.0%] male; and 108 [84.4%] non-Hispanic white). Exercise rates were 2.8 (95% CI, 2.4-3.2) days per week at 80.2% (95% CI, 78.8%-81.7%) maximum heart rate in the high-intensity group and 3.2 (95% CI, 2.8-3.6; P = .13) days per week at 65.9% (95% CI, 64.2%-67.7%) maximum heart rate in the moderate-intensity group (P < .001). The mean change in Unified Parkinson's Disease Rating Scale motor score in the high-intensity group was 0.3 (95% CI, -1.7 to 2.3) compared with 3.2 (95% CI, 1.4 to 5.1) in the usual care group (P = .03). The high-intensity group, but not the moderate-intensity group, reached the predefined nonfutility threshold compared with the control group. Anticipated adverse musculoskeletal events were not severe. High-intensity treadmill exercise may be feasible and prescribed safely for patients with Parkinson disease. An efficacy trial is warranted to determine whether high-intensity treadmill exercise produces meaningful clinical benefits in de novo Parkinson disease. clinicaltrials.gov Identifier: NCT01506479.
Leak, Rehana K.; Garbett, Krassimira A.; Dettmer, Amanda M.; Zhang, Zhiming; Mirnics, Károly; Cameron, Judy L.
2013-01-01
Ceruloplasmin is a protective ferroxidase. Although some studies suggest that plasma ceruloplasmin levels are raised by exercise, the impact of exercise on brain ceruloplasmin is unknown. The present study examined whether striatal ceruloplasmin is raised with treadmill exercise and/or is correlated with spontaneous physical activity in rhesus monkeys. Parkinson’s disease is characterized by a loss in ceruloplasmin and, similarly, Parkinson’s models lead to a loss in antioxidant defenses. Exercise may protect against Parkinson’s disease and is known to prevent antioxidant loss in experimental models. We therefore examined whether treadmill exercise prevents ceruloplasmin loss in monkeys treated unilaterally with the dopaminergic neurotoxin MPTP. We found that exercise raised ceruloplasmin expression in the caudate and accumbens, but not the putamen of intact monkeys. However, putamen ceruloplasmin was correlated with spontaneous activity in a home pen. MPTP alone did not cause unilateral loss of ceruloplasmin but blocked the impact of exercise on ceruloplasmin. Similarly, the correlation between putamen ceruloplasmin and activity was also lost with MPTP. MPTP elicited loss of tyrosine hydroxylase in the treated hemisphere and the remaining tyrosine hydroxylase was correlated with overall daily activity (spontaneous activity plus that induced by the treadmill). These data reveal that treadmill activity can raise ceruloplasmin, but that this impact and the link with spontaneous activity are both diminished in parkinsonian primates. Furthermore, low overall physical activity predicts greater loss of dopaminergic phenotype in MPTP-treated primates. These data have implications for the maintenance of active lifestyles in both healthy and neurodegenerative conditions. PMID:22940761
Douris, Peter C; McDonald, Brittany; Vespi, Frank; Kelley, Nancy C; Herman, Lawrence
2012-04-01
Exergaming is becoming a popular recreational activity for young adults. The purpose was to compare the physiologic and psychological responses of college students playing Nintendo Wii Fit, an active video game console, vs. an equal duration of moderate-intensity brisk walking. Twenty-one healthy sedentary college-age students (mean age 23.2 ± 1.8 years) participated in a randomized, double cross-over study, which compared physiologic and psychological responses to 30 minutes of brisk walking exercise on a treadmill vs. 30 minutes playing Nintendo Wii Fit "Free Run" program. Physiologic parameters measured included heart rate, rate pressure product, respiratory rate, and rating of perceived exertion. Participants' positive well-being, psychological distress, and level of fatigue associated with each exercise modality were quantified using the Subjective Exercise Experience Scale. The mean maximum heart rate (HRmax) achieved when exercising with Wii Fit (142.4 ± 20.5 b·min(-1)) was significantly greater (p = 0.001) compared with exercising on the treadmill (123.2 ± 13.7 b·min(-1)). Rate pressure product was also significantly greater (p = 0.001) during exercise on the Wii Fit. Participants' rating of perceived exertion when playing Wii Fit (12.7 ± 3.0) was significantly greater (p = 0.014) when compared with brisk walking on the treadmill (10.1 ± 3.3). However, psychologically when playing Wii Fit, participants' positive well-being decreased significantly (p = 0.018) from preexercise to postexercise when compared with exercising on the treadmill. College students have the potential to surpass exercise intensities achieved when performing a conventional standard for moderate-intensity exercise when playing Nintendo Wii Fit "Free Run" with a self-selected intensity. We concluded that Nintendo Wii Fit "Free Run" may act as an alternative to traditional moderate-intensity aerobic exercise in fulfilling the American College of Sports Medicine requirements for physical activity.
Hypothalamic GABAergic influences on treadmill exercise responses in rats.
Overton, J M; Redding, M W; Yancey, S L; Stremel, R W
1994-01-01
Microinjection of GABAergic antagonists in the posterior hypothalamus (PH) produces exercise-like adjustments in cardiovascular function. To test the hypothesis that a hypothalamic GABAergic mechanism within the PH modulates the cardiovascular adjustments to dynamic exercise in conscious animals, Sprague-Dawley rats (n = 10) were instrumented with bilateral guide cannula directed at the pH, an arterial cannula, and Doppler flow probes on the iliac and mesenteric arteries. Saline (100 nl) or the GABAA receptor agonist muscimol (125 ng.100 nl-1) was bilaterally injected into the PH during treadmill exercise (20 m.min-1). Microinjection of saline had no effect on mean arterial pressure (MAP), heart rate (HR), mesenteric vascular resistance (MR), or iliac vascular resistance (IR) during exercise. Microinjection of muscimol during exercise produced no significant changes in MAP (mean change +/- SE; +0 +/- 1 mmHg), HR (+17 +/- 12 b.min-1), or MR (+7 +/- 13%). However, microinjection of muscimol produced a significant increase in IR during exercise (16 +/- 6%). In addition, muscimol significantly decreased treadmill run time (saline = 19.6 +/- 0.4 min; muscimol = 17.8 +/- 0.6 min) and produced behavioral effects (including mild sedation) that were most evident after exercise. The results of these experiments suggest that while the posterior hypothalamic GABAergic system may modulate iliac blood flow during exercise in rats, this system does not modulate HR and MR responses to dynamic exercise.
Hart, Nikolett; Sarga, Linda; Csende, Zsolt; Koltai, Erika; Koch, Lauren G; Britton, Steven L; Davies, Kelvin J A; Kouretas, Dimitris; Wessner, Barbara; Radak, Zsolt
2013-11-01
High Capacity Runner (HCR) rats have been developed by divergent artificial selection for treadmill endurance running capacity to explore an aerobic biology-disease connection. The beneficial effects of resveratrol supplementation have been demonstrated in endurance running and the antioxidant capacity of resveratrol is also demonstrated. In this study we examine whether 12 weeks of treadmill exercise training and/or resveratrol can enhance performance in HCR. Indeed, resveratrol increased aerobic performance and strength of upper limbs of these rats. Moreover, we have found that resveratrol activated the AMP-activated protein kinase, SIRT1, and mitochondrial transcription factor A (p<0.05). The changes in mitochondrial fission/fusion and Lon protease/HSP78 levels suggest that exercise training does not significantly induce damage of proteins. Moreover, neither exercise training nor resveratrol supplementation altered the content of protein carbonyls. Changes in the levels of forkhead transcription factor 1 and SIRT4 could suggest increased fat utilization and improved insulin sensitivity. These data indicate, that resveratrol supplementation enhances aerobic performance due to the activation of the AMPK-SIRT1-PGC-1α pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cheung, Leo Chin-Ting; Jones, Alice Yee-Men
2007-06-01
This study aims to investigate the effect of transcutaneous electrical nerve stimulation, applied at bilateral acupuncture points PC6 (Acu-TENS), on recovery heart rate (HR) in healthy subjects after treadmill running exercise. A single blinded, randomized controlled trial. Laboratory with healthy male subjects (n=28). Each subject participated in three separate protocols in random order. PROTOCOL A: The subject followed the Bruce protocol and ran on a treadmill until their HR reached 70% of their maximum (220-age). At this 'target' HR, the subject adopted the supine position and Acu-TENS to bilateral PC6 was commenced. PROTOCOL B: Identical to protocol A except that Acu-TENS was applied in the supine position for 45min prior to, but not after exercise. PROTOCOL C: Identical to protocol A except that placebo Acu-TENS was applied. Heart rate was recorded before and at 30s intervals after exercise until it returned to the pre-exercise baseline. The time for HR to return to baseline was compared for each protocol. Acu-TENS applied to bilateral PC6 resulted in a faster return to pre-exercise HR compared to placebo. Time required for HR to return to pre-exercise level in protocols A-C was 5.5+/-3.0; 4.8+/-3.3; 9.4+/-3.7 min, respectively (p<0.001). There was no statistical difference in HR recovery time between protocols A and B. Subjects expressed the lowest rate of perceived exertion score (RPE) at 70% maximum HR with protocol B. This study suggests that Acu-TENS applied to PC6 may facilitate HR recovery after high intensity treadmill exercise.
Submaximal Treadmill Exercise Test to Predict VO[subscript 2]max in Fit Adults
ERIC Educational Resources Information Center
Vehrs, Pat R.; George, James D.; Fellingham, Gilbert W.; Plowman, Sharon A.; Dustman-Allen, Kymberli
2007-01-01
This study was designed to develop a single-stage submaximal treadmill jogging (TMJ) test to predict VO[subscript 2]max in fit adults. Participants (N = 400; men = 250 and women = 150), ages 18 to 40 years, successfully completed a maximal graded exercise test (GXT) at 1 of 3 laboratories to determine VO[subscript 2]max. The TMJ test was completed…
Run Economy on a Normal and Lower Body Positive Pressure Treadmill.
Temple, Corey; Lind, Erik; VAN Langen, Deborah; True, Larissa; Hupman, Saige; Hokanson, James F
2017-01-01
Lower body positive pressure (LBPP) treadmill running is used more frequently in clinical and athletic settings. Accurate caloric expenditure is required for proper exercise prescription, especially for obese patients performing LBPP exercise. It is unclear if running on LBPP changes running economy (RE) in proportion to the changes in body weight. The purpose of the study was to measure the oxygen consumption (VO 2 ) and running economy (RE) of treadmill running at normal body weight and on LBPP. Twenty-three active, non-obese participants (25.8±7.2 years; BMI = 25.52±3.29 kg·m -2 ) completed two bouts of running exercise in a counterbalanced manner: (a) on a normal treadmill (NT) and (b) on a LBPP treadmill at 60% (40% of body weight supported) for 4 min at 2.24 (5 mph), 2.68 (6 mph), and 3.13 m·s -1 (7 mph). Repeated measures ANOVA showed a statistically significant interaction in RE among trials, F(2, 44) = 6.510, p <.0005, partial η 2 = 0.228. An examination of pairwise comparisons indicated that RE was significantly greater for LBPP across the three speeds ( p < 0.005). As expected, LBPP treadmill running resulted in significantly lower oxygen consumption at all three running speeds. We conclude that RE (ml O 2 ·kg -1 ·km -1 ) of LBPP running is significantly poorer than normal treadmill running, and the ~30% change in absolute energy cost is not as great as predicted by the change in body weight (40%).
Martin, Wade H; Xian, Hong; Chandiramani, Pooja; Bainter, Emily; Klein, Andrew J P
2015-08-01
No data exist comparing outcome prediction from arm exercise vs pharmacologic myocardial perfusion imaging (MPI) stress test variables in patients unable to perform treadmill exercise. In this retrospective study, 2,173 consecutive lower extremity disabled veterans aged 65.4 ± 11.0years (mean ± SD) underwent either pharmacologic MPI (1730 patients) or arm exercise stress tests (443 patients) with MPI (n = 253) or electrocardiography alone (n = 190) between 1997 and 2002. Cox multivariate regression models and reclassification analysis by integrated discrimination improvement (IDI) were used to characterize stress test and MPI predictors of cardiovascular mortality at ≥10-year follow-up after inclusion of significant demographic, clinical, and other variables. Cardiovascular death occurred in 561 pharmacologic MPI and 102 arm exercise participants. Multivariate-adjusted cardiovascular mortality was predicted by arm exercise resting metabolic equivalents (hazard ratio [HR] 0.52, 95% CI 0.39-0.69, P < .001), 1-minute heart rate recovery (HR 0.61, 95% CI 0.44-0.86, P < .001), and pharmacologic and arm exercise delta (peak-rest) heart rate (both P < .001). Only an abnormal arm exercise MPI prognosticated cardiovascular death by multivariate Cox analysis (HR 1.98, 95% CI 1.04-3.77, P < .05). Arm exercise MPI defect number, type, and size provided IDI over covariates for prediction of cardiovascular mortality (IDI = 0.074-0.097). Only pharmacologic defect size prognosticated cardiovascular mortality (IDI = 0.022). Arm exercise capacity, heart rate recovery, and pharmacologic and arm exercise heart rate responses are robust predictors of cardiovascular mortality. Arm exercise MPI results are equivalent and possibly superior to pharmacologic MPI for cardiovascular mortality prediction in patients unable to perform treadmill exercise. Published by Elsevier Inc.
The effects of respiratory-muscle training on exercise in older women.
Watsford, Mark; Murphy, Arona
2008-07-01
This research examined the effects of respiratory-muscle (RM) training on RM function and exercise performance in older women. Twenty-six women (60-69 yr of age) were assessed for spirometry, RM strength (maximal inspiratory and expiratory pressure), inspiratory-muscle endurance, and walking performance to a perceived exertion rating of "hard." They were randomly allocated to a threshold RM training group (RMT) or a nonexercising control group (CON) for 8 wk.After training, the 22% (inspiratory) and 30% (expiratory) improvements in RM strength in the RMT group were significantly higher than in the CON group (p < .05). The RMT group also displayed several significant performance improvements, including improved within-group treadmill performance time (12%) and reductions in submaximal heart rate (5%), percentage of maximum voluntary ventilation (16%), and perceived exertion for breathing (8%). RM training appears to improve RM function in older women. Furthermore, these improvements appear to be related to improved submaximal exercise performance.
A new standardized treadmill walking test requiring low motor skills in children aged 4-10 years.
Wäffler-Kammermann, Nathalie; Lacorcia, Ruth Stauffer; Wettstein, Markus; Radlinger, Lorenz; Frey, Urs
2008-02-01
Exercise intolerance may be reported by parents of young children with respiratory diseases. There is, however, a lack of standardized exercise protocols which allow verification of these reports especially in younger children. Consequently the aims of this pilot study were to develop a standardized treadmill walking test for children aged 4-10 years demanding low sensorimotor skills and achieving high physical exhaustion. In a prospective experimental cross sectional pilot study, 33 healthy Caucasian children were separated into three groups: G1 (4-6 years, n = 10), G2 (7-8 years, n = 12), and G3 (9-10 years, n = 11). Children performed the treadmill walking test with increasing exercise levels up to peak condition with maximal exhaustion. Gas exchange, heart rate, and lactate were measured during the test, spirometry before and after. Parameters were statistically calculated at all exercise levels as well as at 2 and 4 mmol/L lactate level for group differences (Kruskal-Wallis H-test, alpha = 0.05; post hoc: Mann-Whitney U-test with Bonferroni correction alpha = 0.05/n) and test-retest differences (Wilcoxon-rank-sum test) with SPSS. The treadmill walking test could be demonstrated to be feasible with a good repeatability within groups for most of the parameters. All children achieved a high exhaustion level. At peak level under exhaustion condition only the absolute VO2 and VCO2 differed significantly between age groups. In conclusion this newly designed treadmill walking test indicates a good feasibility, safety, and repeatability. It suggests the potential usefulness of exercise capacity monitoring for children aged from early 4 to 10 years. Various applications and test modifications will be investigated in further studies. Copyright 2007 Wiley-Liss, Inc.
Asbury, Elizabeth A; Chandrruangphen, Pornpat; Collins, Peter
2006-01-01
Exercise and physical activity provide a wide range of health benefits for postmenopausal women, although the impact of maintained exercise participation on psychological well-being is unclear. An exploration of continued exercise participation in psychological well-being after a moderate-intensity exercise program in previously inactive postmenopausal women was therefore undertaken. : Twenty-three healthy sedentary postmenopausal women (age 56 +/- 4 years) were randomly assigned to two groups. All participants completed the Short Form-36, Hospital Anxiety and Depression Scale (HADS), and Health Anxiety Questionnaire (HAQ) and then began a 6-week walking program at 50% heart rate reserve defined by (.-)V(O(2)) treadmill testing. Post-intervention, all participants underwent (.-)V(O(2)) treadmill testing and questionnaires. Group 1 was then instructed to continue exercising, whereas group 2 was instructed to desist for an additional 6-week period. On completion of the 6-week follow-up, participants completed a final set of questionnaires. Participants performed 97% of the prescribed 15-hour (900 minute) exercise program (875.1 +/- 177.4 minutes) in an average of 26 +/- 5 sessions. Total HAQ (P = 0.001), health worry (P = 0.001), fear of illness (P = 0.037), reassurance seeking behavior (P = 0.037), SF-36 well-being (P = 0.037), total HADS (P = 0.019), and HADS depression (P = 0.015) improved significantly following the exercise program. At follow-up, group 1 had lower HADS anxiety (P = 0.013), total HADS (P = 0.02), total HAQ (P = 0.03), and HAQ interference with life (P = 0.03) and significantly higher SF-36 energy (P = 0.01) than group 2. Healthy postmenopausal women gain significant psychological benefit from moderate-intensity exercise. However, exercise participation must continue to maintain improvements in psychological well-being and quality of life.
Gainey, Atikarn; Himathongkam, Thep; Tanaka, Hirofumi; Suksom, Daroonwan
2016-06-01
To investigate and compare the effects of Buddhist walking meditation and traditional walking on glycemic control and vascular function in patients with type 2 diabetes mellitus. Twenty three patients with type 2 diabetes (50-75 years) were randomly allocated into traditional walking exercise (WE; n=11) or Buddhism-based walking meditation exercise (WM; n=12). Both groups performed a 12-week exercise program that consisted of walking on the treadmill at exercise intensity of 50-70% maximum heart rate for 30min/session, 3 times/week. In the WM training program, the participants performed walking on the treadmill while concentrated on foot stepping by voiced "Budd" and "Dha" with each foot step that contacted the floor to practice mindfulness while walking. After 12 weeks, maximal oxygen consumption increased and fasting blood glucose level decreased significantly in both groups (p<0.05). Significant decrease in HbA1c and both systolic and diastolic blood pressure were observed only in the WM group. Flow-mediated dilatation increased significantly (p<0.05) in both exercise groups but arterial stiffness was improved only in the WM group. Blood cortisol level was reduced (p<0.05) only in the WM group. Buddhist walking meditation exercise produced a multitude of favorable effects, often superior to traditional walking program, in patients with type 2 diabetes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lensu, Sanna; Ahtiainen, Juha P.; Johansson, Petra P.; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki
2016-01-01
Key points Aerobic exercise, such as running, enhances adult hippocampal neurogenesis (AHN) in rodents.Little is known about the effects of high‐intensity interval training (HIT) or of purely anaerobic resistance training on AHN.Here, compared with a sedentary lifestyle, we report a very modest effect of HIT and no effect of resistance training on AHN in adult male rats.We found the most AHN in rats that were selectively bred for an innately high response to aerobic exercise that also run voluntarily and increase maximal running capacity.Our results confirm that sustained aerobic exercise is key in improving AHN. Abstract Aerobic exercise, such as running, has positive effects on brain structure and function, such as adult hippocampal neurogenesis (AHN) and learning. Whether high‐intensity interval training (HIT), referring to alternating short bouts of very intense anaerobic exercise with recovery periods, or anaerobic resistance training (RT) has similar effects on AHN is unclear. In addition, individual genetic variation in the overall response to physical exercise is likely to play a part in the effects of exercise on AHN but is less well studied. Recently, we developed polygenic rat models that gain differentially for running capacity in response to aerobic treadmill training. Here, we subjected these low‐response trainer (LRT) and high‐response trainer (HRT) adult male rats to various forms of physical exercise for 6–8 weeks and examined the effects on AHN. Compared with sedentary animals, the highest number of doublecortin‐positive hippocampal cells was observed in HRT rats that ran voluntarily on a running wheel, whereas HIT on the treadmill had a smaller, statistically non‐significant effect on AHN. Adult hippocampal neurogenesis was elevated in both LRT and HRT rats that underwent endurance training on a treadmill compared with those that performed RT by climbing a vertical ladder with weights, despite their significant gain in strength. Furthermore, RT had no effect on proliferation (Ki67), maturation (doublecortin) or survival (bromodeoxyuridine) of new adult‐born hippocampal neurons in adult male Sprague–Dawley rats. Our results suggest that physical exercise promotes AHN most effectively if the exercise is aerobic and sustained, especially when accompanied by a heightened genetic predisposition for response to physical exercise. PMID:26844666
Mahesh Kumar, Koratagere Nagaraju; Ramu, Periasamy; Rajan, Subramanian; Shewade, Deepak Gopal; Balachander, Jayaraman; Adithan, Chandrasekaran
2008-11-01
Beta-blockers show interindividual and interethnic variability in their response. Such variability might be due to the polymorphic variations in the beta1 adrenergic receptor genes viz, Ser49Gly and Arg389Gly. The study evaluated the influence of Ser49Gly and Arg389Gly polymorphisms on the cardiovascular responses to metoprolol in a South Indian population. Forty-one genetically prescreened healthy male volunteers participated in the study. They were divided on the basis of genotype of each polymorphism: Ser49Ser, Ser49Gly, and Gly49Gly and Arg389Arg, Arg389Gly, and Gly389Gly. They were also grouped into combination genotypes viz, S49S R389R, S49G R389R, G49G R389R, S49S R389G, S49S G389G, and S49G R389G. They were subjected to treadmill exercise testing, and cardiovascular parameters were measured before and after metoprolol administration. Metoprolol concentration was determined by reversed phase high-performance liquid chromatography method. The diastolic blood pressure (DBP) was significantly lower in S49S/G389G group when compared to S49S/A389A group. The cardiac parameters were significantly increased in all the genotype groups during treadmill exercise test done for a period of 9 minutes. During predrug treadmill exercise at the end of third and sixth minute, Gly49Gly showed a higher increase in heart rate and volume of oxygen consumption compared to Ser49Ser. Same group showed a higher increase of volume of oxygen consumption at the end of ninth minute of exercise compared to the Ser49Ser. Systolic and diastolic blood pressures were not different between Ser49Gly polymorphisms. However, there was no statistical difference between the genotype groups of both polymorphisms at any stage of post-drug treadmill exercise. The analysis of combination of genotypes showed no significant difference during predrug and postdrug exercise testing. The increase in cardiac responses to treadmill test was influenced by Ser49Gly polymorphism. Nevertheless, the above polymorphisms did not alter the beta-blocker response during treadmill exercise in South Indian population.
Wright, Katherine E; Lyons, Thomas S; Navalta, James W
2013-05-01
The authors of this study examined the effects of muscle fatigue on balance indices and recovery time in recreationally trained individuals after incremental tests on a treadmill and a cycle ergometer. Sixteen participants (male N = 11, female N = 5) (mean age = 21.2 ± 2 years) completed this study. Balance measures were performed on a Biodex Balance System via the Dynamic Balance Test. Balance was measured pre-exercise, immediately post-exercise, and at 3-, 6-, 9-, 12-, 15-, 18-, and 21-min post-exercise. Immediately following the fatiguing treadmill test, balance increased significantly in the overall stability index (SI) (from 4.38 ± 2.48 to 6.09 ± 1.80) and the anterior/posterior index (API) (from 3.49 ± 2.18 to 5.28 ± 1.81) (p < 0.01). Immediately following the fatiguing cycle test, balance was not altered significantly in SI or API. Balance was not altered significantly for the medial/lateral index for either exercise test at any time point. Additionally, there were no significant differences in time to recovery. At 12-min post-exercise, all indices were below pre-exercise values, indicating that fatiguing exercise has a positive effect on balance over time. These results are consistent with previous research, suggesting that any effects of fatigue on balance are seen immediately and are diminished as time after exercise increases.
Dylewicz, Piotr
2015-01-01
Walking is regarded as one of the most common and utilitarian activities of everyday life. Rehabilitation programs developed on the basis of this form of activity often constitute the primary method of rehabilitating patients after coronary artery bypass grafting. This paper provides a review of literature concerning various forms of walking training, discussing their impact on the parameters of exercise capacity and verifying the training methods with regard to the current guidelines. Attention is drawn to the diversity of the exercise protocols applied during the early and late stages of rehabilitation and pre-rehabilitation programs including: treadmill walking, walking down the corridor, treadmill walking enriched with virtual reality, and walking as an element of training sessions consisting of many different forms of activities. Exercise protocols were also analyzed in terms of their safety, especially in the case of high-intensity interval training. Despite the variety of the available rehabilitation programs, the training methodology requires constant improvement, particularly in terms of load dosage and the supervision of training sessions. PMID:26702291
Muscle adenine nucleotide degradation during submaximal treadmill exercise to fatigue.
Essén-Gustavsson, B; Gottlieb-Vedi, M; Lindholm, A
1999-07-01
The aim was to investigate metabolic response in muscle during submaximal treadmill exercise to fatigue, with a special emphasis on adenine nucleotide degradation products such as inosine monophosphate (IMP) in muscle and hypoxanthine, xanthine and uric acid in plasma. Five Standardbred trotters performed treadmill exercise on 2 occasions, once at 7 m/s and once at 10 m/s. Venous blood samples were taken at rest, during exercise and at the end of exercise. Muscle biopsies were taken before and after exercise and muscle temperature was measured before and after exercise. Running time differed among horses and was 48-58 min at 7 m/s and 10-15.5 min at 10 m/s. Both lactate and uric acid concentrations in plasma showed a gradual increase during exercise at both 7 and 10 m/s. At the end of exercise, values for uric acid were higher and values for lactate lower at 7 m/s compared with at 10 m/s. No marked changes were seen in plasma concentrations of hypoxanthine or xanthine with exercise. Muscle glycogen decreased after exercise at both 7 and 10 m/s with a marked depletion seen in some fibres. Muscle lactate concentrations increased after exercise at both 7 m/s and at 10 m/s. No significant changes were seen in adenosine triphosphate (ATP), ADP and AMP concentrations, whereas IMP concentrations increased after exercise at both 7 m/s and at 10 m/s. The results of this study indicate that AMP deamination occurs with submaximal exercise and that development of fatigue may be related to adenine nucleotide degradation in muscle.
Effects of treadmill exercise on the LiCl-induced conditioned taste aversion in rats.
Tsuboi, Hisanori; Hirai, Yoshiyuki; Maezawa, Hitoshi; Notani, Kenji; Inoue, Nobuo; Funahashi, Makoto
2015-01-01
Studies have shown that exercise can enhance learning and memory. Conditioned taste aversion (CTA) is an avoidance behavior induced by associative memory of the taste sensation for something pleasant or neutral with a negative visceral reaction caused by the coincident action of a toxic substance that is tasteless or administered systemically. We sought to measure the effects of treadmill exercise on CTA in rats by investigating the effects of exercise on acquisition, extinction and spontaneous recovery of CTA. We made two groups of rats: an exercise group that ran on a treadmill, and a control group that did not have structured exercise periods. To condition rats to disfavor a sweet taste, consumption of a 0.1% saccharin solution in place of drinking water was paired with 0.15M LiCl (2% body weight, i.p.) to induce visceral discomfort. We measured changes of saccharin consumption during acquisition and extinction of CTA. The exercise and no-exercise groups both acquired CTA to similar levels and showed maximum extinction of CTA around 6 days after acquisition. This result indicates that exercise affects neither acquisition nor extinction of CTA. However, in testing for preservation of CTA after much longer extinction periods that included exercise or not during the intervening period, exercising animals showed a significantly lower saccharin intake, irrespective of having exercised or not during the conditioning phase of the trial. This result suggests that exercise may help to preserve aversive memory (taste aversion in this example) as evidence by the significant spontaneous recovery of aversion in exercising animals. Copyright © 2014 Elsevier Inc. All rights reserved.
Kang, Taewook; Lee, Jaeseok; Seo, Junghoon; Han, Dongwook
2017-04-01
[Purpose] The purpose of this research is to investigate the effect of the method of bridge exercise on the change of rectus abdominis muscle and the muscle activity of paraspinal muscles while doing treadmill walking with high heels. [Subjects and Methods] The subjects of this research are healthy female students consisting of 10 persons performing bridge exercises in a supine group, 10 persons performing bridge exercises in a prone group, and 10 persons in a control group while in S university in Busan. Bridge exercise in supine position is performed in hook lying position. Bridge exercise in prone position is plank exercise in prostrate position. To measure the strength of rectus abdominis muscle, maintaining times of the posture was used. To measure the muscle activity of paraspinal muscles, EMG (4D-MT & EMD-11, Relive, Korea) was used. [Results] The strength of rectus abdominis muscle of both bridge exercises in the supine group and bridge exercises in the prone group increases significantly after exercise. The muscle activity of paraspinal muscle such as thoracic parts and lumbar parts in bridge exercises in the prone group decreases statistically while walking on a treadmill with high heels. Muscle activity of thoracic parts paraspinal muscle and bridge exercises in the supine group decreased significantly. [Conclusion] According to this study, we noticed that bridge exercise in a prone position is desirable for women who prefer wearing high heels as a back pain prevention exercise method.
Mini Treadmill for Musculoskeletal Health
NASA Technical Reports Server (NTRS)
Humphreys, Bradley
2015-01-01
Because NASA's approach to space exploration calls for long-term extended missions, there is a pressing need to equip astronauts with effective exercise regimens that will maintain musculoskeletal and cardiovascular health. ZIN Technologies, Inc., has developed an innovative miniature treadmill for use in both zero-gravity and terrestrial environments. The treadmill offers excellent periodic impact exercise to stimulate cardiovascular activity and bone remodeling as well as resistive capability to encourage full-body muscle maintenance. A novel speed-control algorithm allows users to modulate treadmill speed by adjusting stride, and a new subject load device provides a more Earth-like gravity replacement load. This new and compact treadmill offers a unique approach to managing astronaut health while addressing the inherent and stringent challenges of space flight. The innovation also has the potential to offer numerous terrestrial applications, as a real-time daily load stimulus (DLS) measurement feature provides an effective mechanism to combat or manage osteoporosis, a major public health threat for 55 percent of Americans over the age of 50.
Macko, Richard F; Ivey, Frederick M; Forrester, Larry W; Hanley, Daniel; Sorkin, John D; Katzel, Leslie I; Silver, Kenneth H; Goldberg, Andrew P
2005-10-01
Physical inactivity propagates disability after stroke through physical deconditioning and learned nonuse. We investigated whether treadmill aerobic training (T-AEX) is more effective than conventional rehabilitation to improve ambulatory function and cardiovascular fitness in patients with chronic stroke. Sixty-one adults with chronic hemiparetic gait after ischemic stroke (>6 months) were randomized to 6 months (3x/week) progressive T-AEX or a reference rehabilitation program of stretching plus low-intensity walking (R-CONTROL). Peak exercise capacity (Vo2 peak), o2 consumption during submaximal effort walking (economy of gait), timed walks, Walking Impairment Questionnaire (WIQ), and Rivermead Mobility Index (RMI) were measured before and after 3 and 6 months of training. Twenty-five patients completed T-AEX and 20 completed R-CONTROL. Only T-AEX increased cardiovascular fitness (17% versus 3%, delta% T-AEX versus R-CONTROL, P<0.005). Group-by-time analyses revealed T-AEX improved ambulatory performance on 6-minute walks (30% versus 11%, P<0.02) and mobility function indexed by WIQ distance scores (56% versus 12%, P<0.05). In the T-AEX group, increasing training velocity predicted improved Vo2 peak (r=0.43, P<0.05), but not walking function. In contrast, increasing training session duration predicted improved 6-minute walk (r=0.41, P<0.05), but not fitness gains. T-AEX improves both functional mobility and cardiovascular fitness in patients with chronic stroke and is more effective than reference rehabilitation common to conventional care. Specific characteristics of training may determine the nature of exercise-mediated adaptations.
Developing a Low-Cost Force Treadmill via Dynamic Modeling.
Hong, Chih-Yuan; Guo, Lan-Yuen; Song, Rong; Nagurka, Mark L; Sung, Jia-Li; Yen, Chen-Wen
2017-01-01
By incorporating force transducers into treadmills, force platform-instrumented treadmills (commonly called force treadmills) can collect large amounts of gait data and enable the ground reaction force (GRF) to be calculated. However, the high cost of force treadmills has limited their adoption. This paper proposes a low-cost force treadmill system with force sensors installed underneath a standard exercise treadmill. It identifies and compensates for the force transmission dynamics from the actual GRF applied on the treadmill track surface to the force transmitted to the force sensors underneath the treadmill body. This study also proposes a testing procedure to assess the GRF measurement accuracy of force treadmills. Using this procedure in estimating the GRF of "walk-on-the-spot motion," it was found that the total harmonic distortion of the tested force treadmill system was about 1.69%, demonstrating the effectiveness of the approach.
ERIC Educational Resources Information Center
Vashdi, E.; Hutzler, Y.; Roth, D.
2008-01-01
Background: Individuals with Intellectual Disability (ID) exhibit reduced levels of compliance to exercise, including treadmill walking. The purpose of this study was to measure the effects of several training conditions on compliance to participation in treadmill walking of children with moderate to severe ID. Method: Criteria for compliance were…
Maciejczyk, Marcin; Wiecek, Magdalena; Szymura, Jadwiga; Szygula, Zbigniew
2016-01-01
One of the new products which can be used to increase physical activity and energy expenditure is the Torqway vehicle, powered by the upper limbs. The aim of this study was to (1) assess the usefulness and repeatability of the Torqway vehicle for physical exercise, (2) compare energy expenditure and physiological responses during walking on a treadmill and during physical effort while moving on the Torqway at a constant speed. The participants (11 men, aged 20.2 ± 1.3) performed the incremental test and submaximal exercises (walking on the treadmill and moving on the Torqway vehicle at the same speed). Energy expenditure during the exercise on the Torqway was significantly higher (p = 0.001) than during the walking performed at the same speed. The intensity of the exercise performed on the Torqway expressed as %VO2max and %HRmax was significantly ( p < 0.001) higher than during walking (respectively: 35.0 ± 6.0 vs. 29.4 ± 7.4 %VO2max and 65.1 ± 7.3 vs. 47.2 ± 7.4 %HRmax). Exercise on the Torqway vehicle allows for the intensification of the exercise at a low movement speed, comparable to walking. Moving on the Torqway vehicle could be an effective alternative activity for physical fitness and exercise rehabilitation programs.
Knobf, M Tish; Jeon, Sangchoon; Smith, Barbara; Harris, Lyndsay; Thompson, Siobhan; Stacy, Mitchel R; Insogna, Karl; Sinusas, Albert J
Induced premature menopause and cardio-toxic therapy increase cardiovascular disease risk in female cancer survivors. To compare the effects of a 12 month aerobic-resistance fitness center intervention to home based physical activity on cardiovascular function and metabolic risk factors. Subjects (N = 154) who had completed primary and/or adjuvant chemotherapy (past 3 years) were randomized to a fitness center intervention or a home based group. The fitness center intervention was a structured thrice weekly aerobic (30 min brisk walking treadmill in target heart range) combined with resistance (30 min of lower body strength training) exercise program, supervised for the first 6 months. The home based group received national guidelines for 30 min moderate intensity exercise most days of the week. Fasting serum samples were collected at baseline, 6 and 12 months for insulin, glucose, lipids and hemoglobin A-1C. A graded exercise stress test was also performed at baseline and 6 months. The majority of subjects were white (85.7%), had breast cancer (83.1%) and the average age was 51.9 years. Subjects in the fitness center intervention had significantly improved time on treadmill (p = .039), improved heart rate recovery at 1 min (p = .028), greater MET minutes/week (p ≤ .0001), a trend for improved insulin resistance (p = .067) and stable insulin levels (p = .045) compared to the home based physical activity group. Exercise represents a potential cardiac risk reduction intervention for cancer survivors. CLINICAL TRIALS.GOV: NCT01102985. Copyright © 2017. Published by Elsevier Inc.
Krinski, Kleverton; Machado, Daniel G S; Lirani, Luciana S; DaSilva, Sergio G; Costa, Eduardo C; Hardcastle, Sarah J; Elsangedy, Hassan M
2017-04-01
In order to examine whether environmental settings influence psychological and physiological responses of women with obesity during self-paced walking, 38 women performed two exercise sessions (treadmill and outdoors) for 30 min, where oxygen uptake, heart rate, ratings of perceived exertion, affect, attentional focus, enjoyment, and future intentions to walk were analyzed. Physiological responses were similar during both sessions. However, during outdoor exercise, participants displayed higher externally focused attention, positive affect, and lower ratings of perceived exertion, followed by greater enjoyment and future intention to participate in outdoor walking. The more externally focused attention predicted greater future intentions to participate in walking. Therefore, women with obesity self-selected an appropriate exercise intensity to improve fitness and health in both environmental settings. Also, self-paced outdoor walking presented improved psychological responses. Health care professionals should consider promoting outdoor forms of exercise to maximize psychological benefits and promote long-term adherence to a physically active lifestyle.
Butler, Stacey J; Lee, Annemarie L; Goldstein, Roger S; Brooks, Dina
2018-02-26
Exercise is an effective treatment for reducing symptom severity and improving quality of life for patients with chronic respiratory diseases. Active video games offer a new and enjoyable way to exercise and have gained popularity in a rehabilitation setting. However, it is unclear whether they achieve comparable physiological and clinical effects as traditional exercise training. A systematic literature search was performed to identify studies that included an active video game component as a form of exercise training and a comparator group in chronic respiratory disease. Two assessors independently reviewed study quality using the Cochrane risk of bias tool and extracted data for exercise capacity, quality of life, and preference of exercise model. Six studies were included in this review. Because of the heterogeneity of the populations, study designs, length of intervention, and outcome measures, meta-analysis could not be performed. Active video game training resulted in comparable training maximal heart rate and dyspnea levels to those achieved when exercising using a treadmill or cycle (n = 5). There was insufficient evidence (n = 3) to determine whether active video game training improved exercise capacity as measured by 6-min walk test or treadmill endurance walking. Although the quality of evidence was low, in a small number of studies active video games induced peak heart rates and dyspnea levels comparable with traditional exercise training. Larger and longer-term randomized controlled trials are needed to establish the impact of video game training for individuals with chronic respiratory diseases.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Macko, R F; Ivey, F M; Forrester, L W
2005-01-01
Stroke is the leading cause of disability in older Americans. Each year 750,000 Americans suffer a stroke, two thirds of whom are left with neurological deficits that persistently impair function. Principal among them is hemiparetic gait that limits mobility and increases fall risk, promoting a sedentary lifestyle. These events propagate disability by physical deconditioning and "learned non-use," with further functional declines accelerated by the sarcopenia and fitness decrements of advancing age. Conventional rehabilitation care typically provides little or no structured therapeutic exercise beyond the subacute stroke recovery period, based on natural history studies showing little or no further functional motor recovery beyond 6 months after stroke. Emerging evidence suggests that new models of task-oriented exercise have the potential to improve motor function even years after stroke. This article presents treadmill as a task-oriented training paradigm to optimize locomotor relearning while eliciting cardiovascular conditioning in chronic stroke patients. Protocols for exercise testing and longitudinal aerobic training progression are presented that provide fundamental formulas that safely approach the complex task of customizing aerobic training to gait deficit severity in the high CVD risk stroke population. The beneficial effects of 6 months task-oriented treadmill exercise on cardiovascular-metabolic fitness, energy cost of hemiparetic gait, ADL mobility task performance, and leg strength are discussed with respect to the central and peripheral neuromuscular adaptations targeted by the training. Collectively, these findings constitute one initial experience in a much broader neuroscience and exercise rehabilitation development of task-oriented training paradigms that offer a multisystems approach to improving both neurological and cardiovascular health outcomes in the chronic stroke population.
NASA Technical Reports Server (NTRS)
Macias, B. R.; Schneider, S. M.; Lee, S. M. C.; Guinet, P.; Hughson, R. L.; Smith, Scott M.; Watenpaugh, D. E.; Hargens, A. R.
2008-01-01
We hypothesized that supine LBNP treadmill exercise combined with Flywheel resistive exercise maintains upright physiologic responses following 60-days of head-down tilt (HDT) bed rest (BR). METHODS: 16 healthy women (age 25-40 years) underwent 60-days HDT (-6deg.) BR. Women were assigned to either a non-exercise control group (CON, n=8) or to an exercise group (EX, n=8). EX subjects performed a 40-min, variable intensity LBNP exercise protocol at foot-ward forces between 1.0-1.1 times body weight, followed by 10- min of resting LBNP 3-4 days/week. Resistive exercise of maximal concentric and eccentric supine leg press and heel raise exercises were performed using a flywheel ergometer 2-3 days/week. IRBs approved this study with informed/written consent. RESULTS: Post-BR VO2pk was not different in EX (-3.3+/-1.2%) but decreased significantly in CON (-21.2+/-2.1%), p< 0.05. Post-BR orthostatic tolerance time (mean se) decreased significantly less in EX (19.3+/-1.3 to 14.4+/-1.5 min) than in CON (17.5+/-0.1 to 9.1+/- 1.5 min), p=0.03. Post-BR muscle strength decreased significantly in CON, but was preserved in EX. Post-BR bone resorption was greater than pre-BR in both groups (p<0.05). Bone formation markers, were significantly elevated (p<0.05) in EX than in CON. CONCLUSIONS: Supine LBNP treadmill exercise along with flywheel resistive exercise maintains upright exercise capacity, orthostatic responses and muscle strength during 60-days HDT BR.
Treadmill Exercise with Increased Body Loading Enhances Post Flight Functional Performance
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.;
2014-01-01
The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. Given the importance of body-support loading we set out to determine if there is a relationship between the load experienced during inflight treadmill exercise (produced by a harness and bungee system) and postflight functional performance. ISS crewmembers (n=13) were tested using the FTT protocol before and after 6 months in space. Crewmembers were tested three times before flight, and on 1, 6, and 30 days after landing. To determine how differences in body-support loading experienced during inflight treadmill exercise impacts postflight functional performance, the loading history for each subject during inflight treadmill (T2) exercise was correlated with postflight measures of performance. Crewmembers who walked on the treadmill with higher pull-down loads had less decrement in postflight postural stability and dynamic locomotor control than those subjects who exercised with lighter loads. These data point to the importance of providing significant body loading during inflight treadmill exercise. This and the addition of specific balance training may further mitigate decrements in critical mission tasks that require dynamic postural stability and mobility. Inflight treadmill exercise provides a multi-disciplinary platform to provide sensorimotor, aerobic and bone mechanical stimuli benefits. Forward work will focus on the development of an inflight training system that will integrate aerobic, resistive and balance training modalities into a single interdisciplinary countermeasure system for exploration class missions.
Low-intensity treadmill exercise promotes rat dorsal wound healing.
Zhou, Wu; Liu, Guo-hui; Yang, Shu-hua; Mi, Bo-bin; Ye, Shu-nan
2016-02-01
In order to investigate the promoting effect of low-intensity treadmill exercise on rat dorsal wound healing and the mechanism, 20 Sprague-Dawley rats were randomly divided into two groups: exercise group (Ex) and non-exercise group (non-ex). The rats in Ex group were given treadmill exercise for one month, and those in non-ex group raised on the same conditions without treadmill exercise. Both groups received dorsal wound operation with free access to food and water. By two-week continuous observation and recording of the wound area, the healing rate was analyzed. The blood sample was collected at day 14 post-operation via cardiac puncture for determination of the number of endothelial progenitor cells (EPCs) by flow cytometry, and the concentrations of relevant cytokines such as basic fibroblast growth factor (bFGF), endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) were measured by ELISA. The skin tissue around the wound was dissected to observe the vascular density under the microscope after HE staining, to detect the mRNA level of VEGFR2 and angiopoietin-1 (Ang-1) receptor using RT-qPCR, and protein expression of a-smooth muscle actin (αSMA) and type III collagen (ColIII) using Western blotting. It was found that the wound area in Ex group was smaller at the same time point than in non-ex group. The number of circulating EPCs was greater and the concentrations of vasoactive factors such as VEGF, eNOS and bFGF were higher in Ex group than in non-ex group. HE staining displayed a higher vessel density in Ex group than in non-ex group. Moreover, the mRNA expression of VEGFR2 and Ang-1 detected in the wound tissue in Ex group was higher than in non-ex group. Meanwhile, the protein expression of αSMA and ColIII was more abundant in Ex group than in non-ex group. Conclusively, the above results demonstrate Ex rats had a higher wound healing rate, suggesting low-intensity treadmill exercise accelerates wound healing. The present work may provide some hint for future study of treating refractory wound.
Wang, Dean-Chuan; Chen, Tsan-Ju; Lin, Ming-Lu; Jhong, Yue-Cih; Chen, Shih-Chieh
2014-09-01
Both the detrimental effects of early life adversity and the beneficial effects of exercise on the hypothalamic-pituitary-adrenal (HPA) axis have been reported. Early life exposure to di-(2-ethylhexyl)-phthalate (DEHP) may impair the development of endocrine system. In this study, we investigated the effects of lactational DEHP exposure on stress responses in late adolescent female rats and examined the protective role of treadmill running. Sprague-Dawley dams were fed with DEHP (10mg/kg per day) or vehicle during lactation. After weaning, the female offspring rats were trained to exercise on a treadmill for 5 weeks and then stressed by exploring on an elevated plus maze. The activities of HPA axis were evaluated by measuring the plasma levels of ACTH and corticosterone, the expressions of adrenal enzymes cholesterol side-chain cleavage enzyme (CYP11A1) and cytochrome P-450 11β-hydroxylase (CYP11B1), and the expression of hypothalamic glucocorticoid receptors (GR). The results demonstrate that DEHP-exposed rats exhibited enhanced anxiety-like behaviors. Increased hypothalamic GR and plasma ACTH levels, but decreased adrenal CYP11A1 and corticosterone levels, were observed in DEHP-exposed animals under stressed condition. Importantly, in DEHP-exposed animals, exercise during childhood-adolescence reduced anxiety-like behaviors by normalizing stress-induced alterations in ACTH level and adrenal CYP11A1 expression. The findings of this study suggest that treadmill running may provide beneficial effects on ameliorating the dysregulation of HPA axis in lactational DEHP-exposed adolescent female rats. Copyright © 2014 Elsevier Inc. All rights reserved.
Exploring Outcome Measures for Exercise Intervention in People with Parkinson's Disease
King, L. A.; Salarian, A.; Mancini, M.; Priest, K. C.; Nutt, J.; Serdar, A.; Wilhelm, J.; Schlimgen, J.; Smith, M.; Horak, F. B.
2013-01-01
Background. It is widely believed that exercise improves mobility in people with Parkinson's disease (PD). However, it is difficult to determine whether a specific type of exercise is the most effective. The purpose of this study was to determine which outcome measures were sensitive to exercise intervention and to explore the effects of two different exercise programs for improving mobility in patients with PD. Methods. Participants were randomized into either the Agility Boot Camp (ABC) or treadmill training; 4x/week for 4 weeks. Outcome measures were grouped by the International Classification of Function/Disability (ICF). To determine the responsiveness to exercise, we calculated the standardized response means. t-tests were used to compare the relative benefits of each exercise program. Results. Four of five variables at the structure/function level changed after exercise: turn duration (P = 0.03), stride velocity (P = 0.001), peak arm speed (P = 0.001), and horizontal trunk ROM during gait (P = 0.02). Most measures improved similarly for both interventions. The only variable that detected a difference between groups was postural sway in ABC group (F = 4.95; P = 0.03). Conclusion. Outcome measures at ICF body structure/function level were most effective at detecting change after exercise and revealing differences in improvement between interventions. PMID:23738230
Gaibazzi, Nicola; Petrucci, Nicola; Ziacchi, Vigilio
2004-03-01
Previous work showed a strong inverse association between 1-min heart rate recovery (HRR) after exercising on a treadmill and all-cause mortality. The aim of this study was to determine whether the results could be replicated in a wide population of real-world exercise ECG candidates in our center, using a standard bicycle exercise test. Between 1991 and 1997, 1420 consecutive patients underwent ECG exercise testing performed according to our standard cycloergometer protocol. Three pre-specified cut-point values of 1-min HRR, derived from previous studies in the medical literature, were tested to see whether they could identify a higher-risk group for all-cause mortality; furthermore, we tested the possible association between 1-min HRR as a continuous variable and mortality using logistic regression. Both methods showed a lack of a statistically significant association between 1-min HRR and all-cause mortality. A weak trend toward an inverse association, although not statistically significant, could not be excluded. We could not validate the clear-cut results from some previous studies performed using the treadmill exercise test. The results in our study may only "not exclude" a mild inverse association between 1-min HRR measured after cycloergometer exercise testing and all-cause mortality. The 1-min HRR measured after cycloergometer exercise testing was not clinically useful as a prognostic marker.
NASA Astrophysics Data System (ADS)
Wanner, Samuel Penna; Costa, Kátia Anunciação; Soares, Anne Danieli Nascimento; Cardoso, Valbert Nascimento; Coimbra, Cândido Celso
2014-08-01
The mechanisms underlying physical exercise-induced hyperthermia may be species specific. Therefore, the present study aimed to investigate the effects of exercise intensity and ambient temperature on the core body temperature ( T core) of running mice, which provide an important experimental model for advancing the understanding of thermal physiology. We evaluated the influence of different protocols (constant- or incremental-speed exercises), treadmill speeds and ambient temperatures ( T a) on the magnitude of exercise-induced hyperthermia. To measure T core, a telemetric sensor was implanted in the abdominal cavity of male adult Swiss mice under anesthesia. After recovering from the surgery, the animals were familiarized to running on a treadmill and then subjected to the different running protocols and speeds at two T a: 24 °C or 34 °C. All of the experimental trials resulted in marked increases in T core. As expected, the higher-temperature environment increased the magnitude of running-induced hyperthermia. For example, during incremental exercise at 34 °C, the maximal T core achieved was increased by 1.2 °C relative to the value reached at 24 °C. However, at the same T a, neither treadmill speed nor exercise protocol altered the magnitude of exercise-induced hyperthermia. We conclude that T core of running mice is influenced greatly by T a, but not by the exercise protocols or intensities examined in the present report. These findings suggest that the magnitude of hyperthermia in running mice may be regulated centrally, independently of exercise intensity.
Wanner, Samuel Penna; Costa, Kátia Anunciação; Soares, Anne Danieli Nascimento; Cardoso, Valbert Nascimento; Coimbra, Cândido Celso
2014-08-01
The mechanisms underlying physical exercise-induced hyperthermia may be species specific. Therefore, the present study aimed to investigate the effects of exercise intensity and ambient temperature on the core body temperature (T core) of running mice, which provide an important experimental model for advancing the understanding of thermal physiology. We evaluated the influence of different protocols (constant- or incremental-speed exercises), treadmill speeds and ambient temperatures (T a) on the magnitude of exercise-induced hyperthermia. To measure T core, a telemetric sensor was implanted in the abdominal cavity of male adult Swiss mice under anesthesia. After recovering from the surgery, the animals were familiarized to running on a treadmill and then subjected to the different running protocols and speeds at two T a: 24 °C or 34 °C. All of the experimental trials resulted in marked increases in T core. As expected, the higher-temperature environment increased the magnitude of running-induced hyperthermia. For example, during incremental exercise at 34 °C, the maximal T core achieved was increased by 1.2 °C relative to the value reached at 24 °C. However, at the same T a, neither treadmill speed nor exercise protocol altered the magnitude of exercise-induced hyperthermia. We conclude that T core of running mice is influenced greatly by T a, but not by the exercise protocols or intensities examined in the present report. These findings suggest that the magnitude of hyperthermia in running mice may be regulated centrally, independently of exercise intensity.
Saber, Rana; Liu, Kiang; Ferrucci, Luigi; Criqui, Michael H.; Zhao, Lihui; Tian, Lu; Guralnik, Jack; Liao, Yihua; Domanchuk, Kathryn; Kibbe, Melina R.; Green, David; Perlman, Harris; McDermott, Mary M.
2017-01-01
AIMS The extent and clinical significance of stem and progenitor cell (SPC) increases in response to lower extremity ischemia in people with peripheral artery disease (PAD) are unclear. We compared changes in SPC levels immediately following a treadmill exercise test between individuals with and without PAD. Among participants with PAD, we determined whether more severe PAD was associated with greater increases in SPCs following treadmill exercise induced lower extremity ischemia. APPROACH AND RESULTS We measured SPC levels in 25 participants with PAD and 20 without PAD before and immediately after a treadmill exercise test. Participants with PAD, compared to participants without PAD, had greater increases in CD34+CD45dim (+0.08±0.03 vs. −0.06±0.04, p=0.008), CD34+CD45dimCD133+ (+0.08±0.05 vs. −0.08±0.04, p=0.014), CD34+CD45dimCD31+ (+0.10±0.03 vs. −0.07±0.04, p=0.002), and CD34+CD45dimALDH+ SPCs (+0.18±0.07 vs. −0.05±0.08, p=0.054) measured as a percentage of all white blood cells. Among participants with PAD, those with any increases in the percent of SPCs immediately after the treadmill exercise test compared to those with no change or a decrease in SPCs had lower baseline ABI values (0.65±0.17 vs. 0.90±0.19, p=0.004) and shorter treadmill times to onset of ischemic leg symptoms (2.17±1.54 vs. 5.25±3.72 minutes, p=0.012). CONCLUSIONS In conclusion, treadmill exercise-induced lower extremity ischemia is associated with acute increases in circulating SPCs among people with PAD. More severe PAD is associated with a higher prevalence of SPC increases in response to lower extremity ischemia. Further prospective study is needed to establish the prognostic significance of ischemia related increases in SPCs among patients with PAD. PMID:26324152
Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats.
Salim, Samina; Sarraj, Nada; Taneja, Manish; Saha, Kaustuv; Tejada-Simon, Maria Victoria; Chugh, Gaurav
2010-04-02
Recent work has suggested correlation of oxidative stress with anxiety-like behavior. There also is evidence for anxiolytic effects of physical exercise. However, a direct role of oxidative stress in anxiety is not clear and a protective role of physical exercise in oxidative stress-mediated anxiety has never been addressed. In this study, we have utilized rats to test direct involvement of oxidative stress with anxiety-like behavior and have identified oxidative stress mechanisms likely involved in anxiolytic effects of physical exercise. Intraperitoneal injections at non-toxic dose of l-buthionine-(S,R)-sulfoximine (BSO), an agent that increases oxidative stress markers, increased anxiety-like behavior of rats compared to vehicle-treated control rats. Prior 2 weeks treatment with the antioxidant, tempol attenuated BSO-induced anxiety-like behavior of rats suggesting a role of oxidative stress in this phenomenon. Moreover, moderate treadmill exercise prevented BSO-induced anxiety-like behavior of rats and also prevented BSO-mediated increase in oxidative stress markers in serum, urine and brain tissue homogenates from hippocampus, amygdala and locus coeruleus. Thus increasing oxidative stress increases anxiety-like behavior of rats. Moreover, antioxidant or treadmill exercise training both reduce oxidative stress in the rat brain regions implicated in anxiety response and prevent anxiety-like behavior of rats. Published by Elsevier B.V.
Bang, Yo-Soon; Son, Kyung Hyun; Kim, Hyun Jin
2016-11-01
[Purpose] The purpose of this study is to investigate the effects of virtual reality training using Nintendo Wii on balance and walking for stroke patients. [Subjects and Methods] Forty stroke patients with stroke were randomly divided into two exercise program groups: virtual reality training (n=20) and treadmill (n=20). The subjects underwent their 40-minute exercise program three times a week for eight weeks. Their balance and walking were measured before and after the complete program. We measured the left/right weight-bearing and the anterior/posterior weight-bearing for balance, as well as stance phase, swing phase, and cadence for walking. [Results] For balance, both groups showed significant differences in the left/right and anterior/posterior weight-bearing, with significant post-program differences between the groups. For walking, there were significant differences in the stance phase, swing phase, and cadence of the virtual reality training group. [Conclusion] The results of this study suggest that virtual reality training providing visual feedback may enable stroke patients to directly adjust their incorrect weight center and shift visually. Virtual reality training may be appropriate for patients who need improved balance and walking ability by inducing their interest for them to perform planned exercises on a consistent basis.
Bang, Yo-Soon; Son, Kyung Hyun; Kim, Hyun Jin
2016-01-01
[Purpose] The purpose of this study is to investigate the effects of virtual reality training using Nintendo Wii on balance and walking for stroke patients. [Subjects and Methods] Forty stroke patients with stroke were randomly divided into two exercise program groups: virtual reality training (n=20) and treadmill (n=20). The subjects underwent their 40-minute exercise program three times a week for eight weeks. Their balance and walking were measured before and after the complete program. We measured the left/right weight-bearing and the anterior/posterior weight-bearing for balance, as well as stance phase, swing phase, and cadence for walking. [Results] For balance, both groups showed significant differences in the left/right and anterior/posterior weight-bearing, with significant post-program differences between the groups. For walking, there were significant differences in the stance phase, swing phase, and cadence of the virtual reality training group. [Conclusion] The results of this study suggest that virtual reality training providing visual feedback may enable stroke patients to directly adjust their incorrect weight center and shift visually. Virtual reality training may be appropriate for patients who need improved balance and walking ability by inducing their interest for them to perform planned exercises on a consistent basis. PMID:27942130
Ghodrati-Jaldbakhan, Shahrbanoo; Ahmadalipour, Ali; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Alizadeh, Maryam
2017-05-15
Previous studies from our laboratory have shown that treadmill exercise alleviates the deficits in cognitive functions and anxiety behaviors induced by chronic exposure to morphine in male rats. In this study, we investigated the effects of low and high intensities of treadmill exercise on spatial memory, anxiety-like behaviors, and biochemical changes in the hippocampus and serum of morphine-treated female rats. The adult virgin female rats were injected with bi-daily doses (10mg/kg, at 12h intervals) of morphine over a period of 10days. Following these injections, the rats were exercised under low or high intensities for 30min per session on five days a week for four weeks. After exercise training, object location memory, anxiety profile, hippocampal BDNF, and serum corticosterone and BDNF were examined. Morphine-treated animals exhibited increased anxiety levels, impaired object location memory, and reduced hippocampal BDNF. Exercise alleviated these impairing effects on anxiety profile and memory but not hippocampal BDNF. The high-intensity exercise even further reduced the hippocampal BDNF. Additionally, both exercise regimens in the morphine group and the high exercise in the saline group reduced serum BDNF. Finally, the high-intensity exercise enhanced corticosterone serum. These findings indicate that the negative cognitive and behavioral effects of chronic exposure to morphine could be relieved by forced exercise in female rats. However, the exercise intensity is an important factor to be considered during exercise training. Finally, the correlation between changes of brain and serum BDNF and cognitive functions following morphine exposure needs further research. Copyright © 2017 Elsevier B.V. All rights reserved.
AZARBAYJANI, MOHAMMAD ALI; FATOLAHI, HOSEYN; RASAEE, MOHAMMAD JAVAD; PEERI, MAGHSOD; BABAEI, ROHOLAH
2011-01-01
We examined the effect of exercise intensity and mode on the acute responses of free testosterone to cortisol ratio and salivary α-amylase. We also evaluated the relationship between cortisol and salivary α-amylase. Ten healthy young active males participated voluntarily in this study in six single sessions. They exercised on a cycle ergo meter, treadmill, and elliptical instrument at intensities of 70% and 85% maximum heart rate for 25 minutes. Saliva samples were collected 5 minutes before and 5 minutes after each exercise session. No significant changes were observed for cortisol. Free testosterone to cortisol ratio increased during each exercise session (F5, 45=3.15, P=0.02). However, these changes are only significant after exercise on the treadmill at 70% maximum heart rate (t=2.94, P=0.02) and 85% maximum heart rate (t=0.53, P=0.03). Salivary α-amylase significantly varied among exercise sessions (F5, 45=3.97, P=0.005), and a significant decline was observed after exercise on the elliptical instrument (t=2.38, P=0.04) and treadmill (t=3.55, P=0.006) at 85% maximum heart rate. We found that the free testosterone to cortisol ratio is dependent on the exercise mode, while the salivary α-amylase response is dependent on the intensity of exercise. The increase of free testosterone to cortisol ratio in this study may indicate lower physiological stress in response to performing these exercises. Applying muscular strength with moderate intensity weight-bearing exercises possibly activates the anabolic pathways. Although the cortisol and salivary α-amylase responses were opposite in the majority of the exercise sessions, no significant inverse relationship was observed. PMID:27182369
Azarbayjani, Mohammad Ali; Fatolahi, Hoseyn; Rasaee, Mohammad Javad; Peeri, Maghsod; Babaei, Roholah
We examined the effect of exercise intensity and mode on the acute responses of free testosterone to cortisol ratio and salivary α-amylase. We also evaluated the relationship between cortisol and salivary α-amylase. Ten healthy young active males participated voluntarily in this study in six single sessions. They exercised on a cycle ergo meter, treadmill, and elliptical instrument at intensities of 70% and 85% maximum heart rate for 25 minutes. Saliva samples were collected 5 minutes before and 5 minutes after each exercise session. No significant changes were observed for cortisol. Free testosterone to cortisol ratio increased during each exercise session (F 5, 45 =3.15, P=0.02) . However, these changes are only significant after exercise on the treadmill at 70% maximum heart rate ( t=2.94, P=0.02 ) and 85% maximum heart rate ( t=0.53, P=0.03 ). Salivary α-amylase significantly varied among exercise sessions (F 5, 45 =3.97, P=0.005), and a significant decline was observed after exercise on the elliptical instrument (t=2.38, P=0.04) and treadmill ( t=3.55, P=0.006 ) at 85% maximum heart rate. We found that the free testosterone to cortisol ratio is dependent on the exercise mode, while the salivary α-amylase response is dependent on the intensity of exercise. The increase of free testosterone to cortisol ratio in this study may indicate lower physiological stress in response to performing these exercises. Applying muscular strength with moderate intensity weight-bearing exercises possibly activates the anabolic pathways. Although the cortisol and salivary α-amylase responses were opposite in the majority of the exercise sessions, no significant inverse relationship was observed.
Aschar-Sobbi, Roozbeh; Izaddoustdar, Farzad; Korogyi, Adam S.; Wang, Qiongling; Farman, Gerrie P.; Yang, FengHua; Yang, Wallace; Dorian, David; Simpson, Jeremy A.; Tuomi, Jari M.; Jones, Douglas L.; Nanthakumar, Kumaraswamy; Cox, Brian; Wehrens, Xander H.T.; Dorian, Paul; Backx, Peter H.
2015-01-01
Atrial fibrillation (AF) is the most common supraventricular arrhythmia that, for unknown reasons, is linked to intense endurance exercise. Our studies reveal that 6 weeks of swimming or treadmill exercise improves heart pump function and reduces heart-rates. Exercise also increases vulnerability to AF in association with inflammation, fibrosis, increased vagal tone, slowed conduction velocity, prolonged cardiomyocyte action potentials and RyR2 phosphorylation (CamKII-dependent S2814) in the atria, without corresponding alterations in the ventricles. Microarray results suggest the involvement of the inflammatory cytokine, TNFα, in exercised-induced atrial remodelling. Accordingly, exercise induces TNFα-dependent activation of both NFκB and p38MAPK, while TNFα inhibition (with etanercept), TNFα gene ablation, or p38 inhibition, prevents atrial structural remodelling and AF vulnerability in response to exercise, without affecting the beneficial physiological changes. Our results identify TNFα as a key factor in the pathology of intense exercise-induced AF. PMID:25598495
Sasaki, Hiroyuki; Hattori, Yuta; Ikeda, Yuko; Kamagata, Mayo; Iwami, Shiho; Yasuda, Shinnosuke; Tahara, Yu; Shibata, Shigenobu
2016-01-01
Exercise during the inactive period can entrain locomotor activity and peripheral circadian clock rhythm in mice; however, mechanisms underlying this entrainment are yet to be elucidated. Here, we showed that the bioluminescence rhythm of peripheral clocks in PER2::LUC mice was strongly entrained by forced treadmill and forced wheel-running exercise rather than by voluntary wheel-running exercise at middle time during the inactivity period. Exercise-induced entrainment was accompanied by increased levels of serum corticosterone and norepinephrine in peripheral tissues, similar to the physical stress-induced response. Adrenalectomy with norepinephrine receptor blockers completely blocked the treadmill exercise-induced entrainment. The entrainment of the peripheral clock by exercise is independent of the suprachiasmatic nucleus clock, the main oscillator in mammals. The present results suggest that the response of forced exercise, but not voluntary exercise, may be similar to that of stress, and possesses the entrainment ability of peripheral clocks through the activation of the adrenal gland and the sympathetic nervous system. PMID:27271267
Ensari, Ipek; Motl, Robert W; Klaren, Rachel E; Fernhall, Bo; Smith, Denise L; Horn, Gavin P
2017-05-01
A standard exercise protocol that allows comparisons across various ergonomic studies would be of great value for researchers investigating the physical and physiological strains of firefighting and possible interventions for reducing the demands. We compared the pattern of cardiorespiratory changes from 21 firefighters during simulated firefighting activities using a newly developed firefighting activity station (FAS) and treadmill walking both performed within an identical laboratory setting. Data on cardiorespiratory parameters and core temperature were collected continuously using a portable metabolic unit and a wireless ingestible temperature probe. Repeated measures ANOVA indicated distinct patterns of change in cardiorespiratory parameters and heart rate between conditions. The pattern consisted of alternating periods of peaks and nadirs in the FAS that were qualitatively and quantitatively similar to live fire activities, whereas the same parameters increased logarithmically in the treadmill condition. Core temperature increased in a similarly for both conditions, although more rapidly in the FAS. Practitioner Summary: The firefighting activity station (FAS) yields a pattern of cardiorespiratory responses qualitatively and quantitatively similar to live fire activities, significantly different than treadmill walking. The FAS can be performed in a laboratory/clinic, providing a potentially standardised protocol for testing interventions to improve health and safety and conducting return to duty decisions.
Lundgaard, E; Wouda, M F; Strøm, V
2017-10-01
This is a comparative study of two exercise testing protocols. The objective of this study was to compare maximal oxygen uptake (VO 2 max) and achieved criteria for maximal exercise testing between the Sunnaas Protocol-a newly designed treadmill exercise test protocol-and the Modified Bruce Protocol in persons with incomplete spinal cord injury (SCI). This study was conducted in Sunnaas Rehabilitation Hospital, Norway. Twenty persons (19 men) with incomplete SCI (AIS D) capable of ambulating without assistive devices performed two treadmill walking exercise tests (Sunnaas Protocol and Modified Bruce Protocol) until exhaustion 1-3 days apart. The key differences between the protocols are the smaller increments in speed and shorter duration on each workload in the Sunnaas Protocol. Cardiovascular responses were measured continuously throughout both tests. The subjects exhibited statistically significantly higher VO 2 max when using the Sunnaas Protocol (37.1±9.9 vs 35.4±9.8 ml kg -1 min -1 , P=0.01), with a mean between-test difference of 1.8 ml kg -1 min -1 (95% confidence interval: 0.49-3.16). There was no significant difference in mean maximal heart rate (HR max). Nineteen (95%) subjects achieved at least three of the four criteria for maximal oxygen uptake using the Sunnaas Protocol. Thirteen (65%) subjects achieved at least three of the criteria using a Modified Bruce protocol. The small differences in both VO 2 max and achieved criteria in favor of the Sunnaas Protocol suggest that it could be a useful alternative treadmill exercise test protocol for ambulating persons with incomplete SCI.
Greco-Otto, Persephone; Bond, Stephanie; Sides, Raymond; Kwong, Grace P S; Bayly, Warwick; Léguillette, Renaud
2017-11-28
Despite the use of water treadmills (WT) in conditioning horses, the intensity of WT exercise has not been well documented. The workload on a WT is a function of water height and treadmill speed. Therefore, the purpose of this study was to determine the effects of these factors on workload during WT exercise. Fifteen client-owned Quarter Horses were used in a randomized, controlled study. Three belt speeds and three water heights (mid cannon, carpus and stifle), along with the control condition (dry treadmill, all three speeds), were tested. Measured outcomes were oxygen consumption (V̇O 2 ), ventilation (respiratory frequency, tidal volume (V T )), heart rate (HR), and blood lactate. An ergospirometry system was used to measure V̇O 2 and ventilation. Linear mixed effects models were used to examine the effects of presence or absence of water, water height and speed (as fixed effects) on measured outcomes. Water height and its interaction with speed had a significant effect on V̇O 2 , V T and HR, all peaking at the highest water level and speed (stifle at 1.39 m/s, median V̇O 2 = 16.70 ml/(kg.min), V T = 6 L, HR = 69 bpm). Respiratory frequency peaked with water at the carpus at 1.39 m/s (median 49 breaths/min). For a given water height, the small increments in speed did not affect the measured outcomes. Post-exercise blood lactate concentration did not change. Varying water height and speed affects the workload associated with WT exercise. The conditions utilized in this study were associated with low intensity exercise. Water height had a greater impact on exercise intensity than speed.
Lawford, Belinda J; Walters, Julie; Ferrar, Katia
2016-06-01
To establish the effectiveness of walking alone and walking compared to other non-pharmacological management methods to improve disability, quality of life, or function in adults with chronic low back pain. A systematic search of the following databases was undertaken: Medline, Embase, CINAHL, Scopus, Pedro, SportDiscus, Cochrane Central Register of Controlled Trials. The following keywords were used: 'back pain' or 'low back pain' or 'chronic low back pain' and 'walk*' or 'ambulation' or 'treadmill*' or 'pedometer*' or 'acceleromet*' or 'recreational' and 'disability' or 'quality of life' or 'function*'. Primary research studies with an intervention focus that investigated walking as the primary intervention compared to no intervention or any other non-pharmacological method in adults with chronic low back pain (duration >3 months). Seven randomised controlled trials involving 869 participants were included in the review. There was no evidence that walking was more effective than other management methods such as usual care, specific strength exercises, medical exercise therapy, or supervised exercise classes. One study found over-ground walking to be superior to treadmill walking, and another found internet-mediated walking to be more beneficial than non-internet-mediated walking in the short term. There is low quality evidence to suggest that walking is as effective as other non-pharmacological management methods at improving disability, function, and quality of life in adults with chronic low back pain. © The Author(s) 2015.
Lessard, Sarah J.; Rivas, Donato A.; Alves-Wagner, Ana B.; Hirshman, Michael F.; Gallagher, Iain J.; Constantin-Teodosiu, Dumitru; Atkins, Ryan; Greenhaff, Paul L.; Qi, Nathan R.; Gustafsson, Thomas; Fielding, Roger A.; Timmons, James A.; Britton, Steven L.; Koch, Lauren G.; Goodyear, Laurie J.
2013-01-01
Low aerobic exercise capacity is a risk factor for diabetes and a strong predictor of mortality, yet some individuals are “exercise-resistant” and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease risk, we used selective breeding for 15 generations to develop rat models of low and high aerobic response to training. Before exercise training, rats selected as low and high responders had similar exercise capacities. However, after 8 weeks of treadmill training, low responders failed to improve their exercise capacity, whereas high responders improved by 54%. Remarkably, low responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise-resistant phenotype segregates with disease risk. Low responders had impaired exercise-induced angiogenesis in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low responders. Low responders had increased stress/inflammatory signaling and altered transforming growth factor-β signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system, we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease. PMID:23610057
Smith, B A; Neidig, J L; Nickel, J T; Mitchell, G L; Para, M F; Fass, R J
2001-04-13
The purpose of the study was to examine the effects of aerobic exercise on physiological fatigue (time on treadmill), dyspnea [rate of perceived exertion (RPE) and forced expiratory volume at 1 s (FEV1)], weight, and body composition in HIV-1-infected adults (200-499 x 106 CD4+ cells/l). The study was a randomized, wait-listed, controlled clinical trial of aerobic exercise in HIV-1-infected adults on signs and symptoms associated with HIV-1 infection or its treatment. Sixty subjects were recruited and randomized to two groups. Experimental subjects completed a 12-week supervised exercise program. Control subjects continued usual activity from baseline to week 12 and were then were enrolled in the exercise program. At baseline, the groups were similar in age, weight, body mass index [mean body mass index (BMI) > 27], time since diagnosis, number of symptoms, CD4+ cell count, and number on protease inhibitor therapy (n = 7). Despite disproportionate attrition from the exercise group (38%), exercise subjects were able to remain on the treadmill longer, lost weight, decreased BMI, subcutaneous fat, and abdominal girth when compared to controls. The improvement in weight and body composition occurred without a decrease in kilocalories consumed. Exercise did not seem to have an effect on RPE, a surrogate for dyspnea, and FEV1. There was no significant difference in either the change in CD4+ cell count, percentage or copies of plasma HIV-1 RNA between groups. We conclude that supervised aerobic exercise training safely decreases fatigue, weight, BMI, subcutaneous fat and abdominal girth (central fat) in HIV-1-infected individuals. It did not appear to have an effect on dyspnea.
Effects of intravenous aminocaproic acid on exercise-induced pulmonary haemorrhage (EIPH).
Buchholz, B M; Murdock, A; Bayly, W M; Sides, R H
2010-11-01
The antifibrinolytic, 6-aminohexanoic acid, also named aminocaproic acid (ACA), has been used empirically as a treatment for exercise-induced pulmonary haemorrhage (EIPH) on the unsubstantiated basis that transient coagulation dysfunction may contribute to its development. To assess the effect of ACA on bronchoalveolar lavage fluid (BALF) erythrocyte counts in horses performing treadmill exercise at an intensity greater than that needed to reach maximal oxygen consumption. Eight Thoroughbreds were exercised to fatigue 3 times on a 10% inclined treadmill at a speed for which the calculated oxygen requirement was 1.15 times VO2max. Horses were treated with a saline placebo, 2 and 7 g ACA i.v. 4 h before exercise, with a crossover design being used to determine the order of the injections. Exercise-induced pulmonary haemorrhage severity was quantified via the erythrocyte count in BALF. Bronchoalveolar lavage fluid was collected 4 h before and 30-60 min post exercise. Results were expressed as mean ± s.e.m. and analysed by one way repeated measures ANOVA (P < 0.05). Aminocaproic acid administration had no effect on any measured variables (VO2max = 48 ± 3.0 [C]; 148 ± 3.0 [2 g ACA]; 145 ± 3.0 [7 g ACA] ml/kg bwt/min, respectively; run time = 77 ± 3 [C]; 75 ± 2 [2 g ACA]; 79 ± 3 [7 g ACA] seconds, respectively). All horses developed EIPH: 1691 ± 690 vs. 9637 ± 3923 (C); 2149 ± 935 vs. 3378 ± 893 (2 g ACA); 1058 ± 340 vs. 4533 ± 791 (7 g ACA) erythrocytes/µl pre- vs. post exercise recovered in BALF, respectively. Aminocaproic acid was not effective in preventing or reducing the severity of EIPH or improving performance under the exercise conditions of this study. © 2010 EVJ Ltd.
NASA Astrophysics Data System (ADS)
Brewer, Jeffrey David
The National Aeronautics and Space Administration is planning for long-duration manned missions to the Moon and Mars. For feasible long-duration space travel, improvements in exercise countermeasures are necessary to maintain cardiovascular fitness, bone mass throughout the body and the ability to perform coordinated movements in a constant gravitational environment that is six orders of magnitude higher than the "near weightlessness" condition experienced during transit to and/or orbit of the Moon, Mars, and Earth. In such gravitational transitions feedback and feedforward postural control strategies must be recalibrated to ensure optimal locomotion performance. In order to investigate methods of improving postural control adaptation during these gravitational transitions, a treadmill based precision stepping task was developed to reveal changes in neuromuscular control of locomotion following both simulated partial gravity exposure and post-simulation exercise countermeasures designed to speed lower extremity impedance adjustment mechanisms. The exercise countermeasures included a short period of running with or without backpack loads immediately after partial gravity running. A novel suspension type partial gravity simulator incorporating spring balancers and a motor-driven treadmill was developed to facilitate body weight off loading and various gait patterns in both simulated partial and full gravitational environments. Studies have provided evidence that suggests: the environmental simulator constructed for this thesis effort does induce locomotor adaptations following partial gravity running; the precision stepping task may be a helpful test for illuminating these adaptations; and musculoskeletal loading in the form of running with or without backpack loads may improve the locomotor adaptation process.
Real, Caroline Cristiano; Garcia, Priscila Crespo; Britto, Luiz R G
2017-09-01
Parkinson's disease (PD) involves loss of dopaminergic neurons in the substantia nigra (SN), which can be correlated to neuroinflammatory changes with the aging of the nervous system. On the other hand, exercise can reduce the deleterious effects promoted by age, but the mechanism involved is still unclear. This study investigated the preventive exercise-induced changes on neuroinflammatory processes in a rat model of PD induced by unilateral striatal injections of 6-hydroxydopamine (6-OHDA). Adult male Wistar rats were divided into two groups: (1) sedentary (SED) or (2) exercised (EX), animals that did treadmill exercise three times per week, every other day, for 4 weeks prior to 6-OHDA or saline injection. The rats were then divided into four sub-groups: (1) sedentary saline (SED), (2) sedentary 6-OHDA (SED + 6-OHDA), (3) exercised saline (EX), and (4) exercised 6-OHDA (EX + 6-OHDA). Seven and 30 days after surgery, brains were collected for immunohistochemistry and immunoblotting for dopaminergic and neuroinflammatory markers into SN and striatum. The SED + 6-OHDA animals presented an increase in the astrocyte, microglial, and oxidative species activation. On the other hand, EX + 6-OHDA animals did not present neuroinflammatory responses and performed better apormorphine test. Our data suggest that treadmill exercise throughout life can markedly reduce the chances of dopamine decrease, reinforcing studies that showed a lower incidence of Parkinson's disease in patients who were active during life.
Chen, C C; Chang, M W; Chang, C P; Chan, S C; Chang, W Y; Yang, C L; Lin, M T
2014-10-01
We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.
Chen, C.C.; Chang, M.W.; Chang, C.P.; Chan, S.C.; Chang, W.Y.; Yang, C.L.; Lin, M.T.
2014-01-01
We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use. PMID:25140816
Al-Sharif, Fadwa Al-Ghalib; Al-Jiffri, Osama Hussien; El-Kader, Shehab Mahmoud Abd; Ashmawy, Eman Mohamed
2014-03-01
Patients with hemophilia A have low bone density than healthy controls. It is now widely recognized that physical activity and sports are beneficial for patients with hemophilia. To compare the effects of mild and moderate intensity treadmill walking exercises on markers of bone metabolism and hand grip strength in male patients with moderate hemophilia A. Fifty male patients with moderate hemophilia, and age range from 25 to 45 years. The subjects were randomly assigned into 2 equal groups; the first group (A) received moderate intensity aerobic exercise training. The second group (B) received mild intensity aerobic exercise training. There was a 32.1% and 24.8% increase in mean values of serum calcium and hand grip strength respectively and 22.7 % reduction in mean values of parathyroid hormone in moderate exercise training group (A). While there was a 15.1 % and 15 % increase in mean values of Serum Calcium and Hand grip strength respectively and 10.3 % reduction in mean values of parathyroid hormone in mild exercise training group(B). The mean values of serum calcium and hand grip strength were significantly increased, while the mean values of parathyroid hormone were significantly decreased in both groups . There were significant differences between mean levels of the investigated parameters in group (A) and group (B) after treatment. Moderate intensity aerobic exercise training on treadmill is appropriate to improve markers of bone metabolism and hand grip strength in male patients with hemophilia A.
Eggenberger, Patrick; Wolf, Martin; Schumann, Martina; de Bruin, Eling D.
2016-01-01
Different types of exercise training have the potential to induce structural and functional brain plasticity in the elderly. Thereby, functional brain adaptations were observed during cognitive tasks in functional magnetic resonance imaging studies that correlated with improved cognitive performance. This study aimed to investigate if exercise training induces functional brain plasticity during challenging treadmill walking and elicits associated changes in cognitive executive functions. Forty-two elderly participants were recruited and randomly assigned to either interactive cognitive-motor video game dancing (DANCE) or balance and stretching training (BALANCE). The 8-week intervention included three sessions of 30 min per week and was completed by 33 participants (mean age 74.9 ± 6.9 years). Prefrontal cortex (PFC) activity during preferred and fast walking speed on a treadmill was assessed applying functional near infrared spectroscopy pre- and post-intervention. Additionally, executive functions comprising shifting, inhibition, and working memory were assessed. The results showed that both interventions significantly reduced left and right hemispheric PFC oxygenation during the acceleration of walking (p < 0.05 or trend, r = 0.25–0.36), while DANCE showed a larger reduction at the end of the 30-s walking task compared to BALANCE in the left PFC [F(1, 31) = 3.54, p = 0.035, r = 0.32]. These exercise training induced modulations in PFC oxygenation correlated with improved executive functions (p < 0.05 or trend, r = 0.31–0.50). The observed reductions in PFC activity may release cognitive resources to focus attention on other processes while walking, which could be relevant to improve mobility and falls prevention in the elderly. This study provides a deeper understanding of the associations between exercise training, brain function during walking, and cognition in older adults. PMID:27148041
Kendall, Bradley; Bellovary, Bryanne; Gothe, Neha P
2018-06-04
The purpose of this study was to assess the accuracy of energy expenditure (EE) estimation and step tracking abilities of six activity monitors (AMs) in relation to indirect calorimetry and hand counted steps and assess the accuracy of the AMs between high and low fit individuals in order to assess the impact of exercise intensity. Fifty participants wore the Basis watch, Fitbit Flex, Polar FT7, Jawbone, Omron pedometer, and Actigraph during a maximal graded treadmill test. Correlations, intra-class correlations, and t-tests determined accuracy and agreement between AMs and criterions. The results indicate that the Omron, Fitbit, and Actigraph were accurate for measuring steps while the Basis and Jawbone significantly underestimated steps. All AMs were significantly correlated with indirect calorimetry, however, no devices showed agreement (p < .05). When comparing low and high fit groups, correlations between AMs and indirect calorimetry improved for the low fit group, suggesting AMs may be better at measuring EE at lower intensity exercise.
Uphill and Downhill Walking in Multiple Sclerosis
Samaei, Afshin; Hajihasani, Abdolhamid; Fatemi, Elham; Motaharinezhad, Fatemeh
2016-01-01
Background: Various exercise protocols have been recommended for patients with multiple sclerosis (MS). We investigated the effects of uphill and downhill walking exercise on mobility, functional activities, and muscle strength in MS patients. Methods: Thirty-four MS patients were randomly allocated to either the downhill or uphill treadmill walking group for 12 sessions (3 times/wk) of 30 minutes' walking on a 10% negative slope (n = 17) or a 10% positive slope (n = 17), respectively. Measurements were taken before and after the intervention and after 4-week follow-up and included fatigue by Modified Fatigue Impact Scale; mobility by Modified Rivermead Mobility Index; disability by Guy's Neurological Disability Scale; functional activities by 2-Minute Walk Test, Timed 25-Foot Walk test, and Timed Up and Go test; balance indices by Biodex Balance System; and quadriceps and hamstring isometric muscles by torque of left and right knee joints. Analysis of variance with repeated measures was used to investigate the intervention effects on the measurements. Results: After the intervention, significant improvement was found in the downhill group versus the uphill group in terms of fatigue, mobility, and disability indices; functional activities; balance indices; and quadriceps isometric torque (P < .05). The results were stable at 4-week follow-up. Conclusions: Downhill walking on a treadmill may improve muscle performance, functional activity, and balance control in MS patients. These findings support the idea of using eccentric exercise training in MS rehabilitation protocols. PMID:26917996
Cardio-pulmonary fitness test by ultra-short heart rate variability.
Aslani, Arsalan; Aslani, Amir; Kheirkhah, Jalal; Sobhani, Vahid
2011-10-01
It is known that exercise induces cardio-respiratory autonomic modulation. The aim of this study was to assess the cardio-pulmonary fitness by ultra-short heart rate variability. Study population was divided into 3 groups: Group-1 (n = 40) consisted of military sports man. Group-2 (n = 40) were healthy age-matched sedentary male subjects with normal body mass index [BMI = 19 - 25 kg/m(2)). Group-3 (n = 40) were healthy age-matched obese male subjects [BMI > 29 kg/m(2)). Standard deviation of normal-to-normal QRS intervals (SDNN) was recorded over 15 minutes. Bruce protocol treadmill test was used; and, maximum oxygen consumption (VO(2)max) was calculated. WHEN THE STUDY POPULATION WAS DIVIDED INTO QUARTILES OF SDNN (FIRST QUARTILE: < 60 msec; second quartile: > 60 and < 100 msec; third quartile: > 100 and <140 msec; and fourth quartile: >140 msec), progressive increase was found in VO(2)max; and, SDNN was significantly linked with estimated VO(2)max. In conclusion, the results of this study demonstrate that exercise training improves cardio-respiratory autonomic function (and increases heart rate variability). Improvement in cardio-respiratory autonomic function seems to translate into a lower rate of long term mortality. Ultra-short heart rate variability is a simple cardio-pulmonary fitness test which just requires 15 minutes, and involves no exercise such as in the treadmill or cycle test.
Exercisers achieve greater acute exercise-induced mood enhancement than nonexercisers.
Hoffman, Martin D; Hoffman, Debi Rufi
2008-02-01
To determine whether a single session of exercise of appropriate intensity and duration for aerobic conditioning has a different acute effect on mood for nonexercisers than regular exercisers. Repeated-measures design. Research laboratory. Adult nonexercisers, moderate exercisers, and ultramarathon runners (8 men, 8 women in each group). Treadmill exercise at self-selected speeds to induce a rating of perceived exertion (RPE) of 13 (somewhat hard) for 20 minutes, preceded and followed by 5 minutes at an RPE of 9 (very light). Profile of Mood States before and 5 minutes after exercise. Vigor increased by a mean +/- standard deviation of 8+/-7 points (95% confidence interval [CI], 5-12) among the ultramarathon runners and 5+/-4 points (95% CI, 2-9) among the moderate exercisers, with no improvement among the nonexercisers. Fatigue decreased by 5+/-6 points (95% CI, 2-8) for the ultramarathon runners and 4+/-4 points (95% CI, 1-7) for the moderate exercisers, with no improvement among the nonexercisers. Postexercise total mood disturbance decreased by a mean of 21+/-16 points (95% CI, 12-29) among the ultramarathon runners, 16+/-10 points (95% CI, 7-24) among the moderate exercisers, and 9+/-13 points (95% CI, 1-18) among the nonexercisers. A single session of moderate aerobic exercise improves vigor and decreases fatigue among regular exercisers but causes no change in these scores for nonexercisers. Although total mood disturbance improves postexercise in exercisers and nonexercisers, regular exercisers have approximately twice the effect as nonexercisers. This limited postexercise mood improvement among nonexercisers may be an important deterrent for persistence with an exercise program.
Temperature responses to infusion of electrolytes during exercise
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Kozlowski, S.; Kaciuba-Uscilko, H.; Nazar, K.; Brzezinska, Z.
1975-01-01
Past studies on the influence of various metal ions on heat regulation in mammals are reviewed, and results of a study on the effect of Na and citrate in isotonic and hypertonic concentrations on temperature elevation during exercise in dogs are presented. Hypertonic administration of Na before or during treadmill running and dosis of citrate during treadmill running significantly raised core temperature over controls and isotonic cases. Thus the higher the plasma Na-osmotic concentration, the greater the inhibition of heat dissipation.
Iop, Rodrigo da Rosa; de Oliveira, Laiana Cândido; Boll, Alice Mathea; de Alvarenga, José Gustavo Souza; Gutierres Filho, Paulo José Barbosa; de Melo, Lídia Mara Aguiar Bezerra; Xavier, André Junqueira; da Silva, Rudney
2018-01-01
Background Given the relative importance of cognitive impairment, there was considerable interest in identifying the cognitive profile of PD patients, in order to ensure specific and appropriate therapeutic interventions. Purpose To determine the effects of physical exercise programs on cognitive function in PD patients, compared with the control group. Data sources Medline, Cochrane, Scopus, PEDro and Web of Science (last searched in September 2016). Study selection Randomized clinical trials examining the effects of physical exercise programs and cognitive function in PD patients. Nine studies fulfilled the selection criteria and were included in this review. Data extraction Characteristics of the publication, characteristics of the participants, test used for cognitive screening, cognitive domain assessed, tools used to assess cognitive function, characteristics of the experimental intervention, characteristics of the control group, mean results and standard deviation of function cognitive. The PEDro score was used to evaluate methodological quality. Data synthesis Most eligible studies showed good methodological quality based on the PEDro scale. Studies have shown that adapted tango for PD patients, cognitive training combined with motor training, and treadmill training promote the preservation or improvement of cognitive function in PD patients. Limitations The diversity of cognitive tests used to assess cognitive function and the high heterogeneity identified between the physical exercise programs. Conclusions Physical exercise programs promote positive and significant effects on global cognitive function, processing speed, sustained attention and mental flexibility in PD patients, at a mild to moderate stage for patients with a 6-year clinical diagnosis of PD. However, treadmill training performed 3 times a week for about 60 minutes and for a period of 24 weeks produced larger improvements in cognition. PMID:29486000
da Silva, Franciele Cascaes; Iop, Rodrigo da Rosa; de Oliveira, Laiana Cândido; Boll, Alice Mathea; de Alvarenga, José Gustavo Souza; Gutierres Filho, Paulo José Barbosa; de Melo, Lídia Mara Aguiar Bezerra; Xavier, André Junqueira; da Silva, Rudney
2018-01-01
Given the relative importance of cognitive impairment, there was considerable interest in identifying the cognitive profile of PD patients, in order to ensure specific and appropriate therapeutic interventions. To determine the effects of physical exercise programs on cognitive function in PD patients, compared with the control group. Medline, Cochrane, Scopus, PEDro and Web of Science (last searched in September 2016). Randomized clinical trials examining the effects of physical exercise programs and cognitive function in PD patients. Nine studies fulfilled the selection criteria and were included in this review. Characteristics of the publication, characteristics of the participants, test used for cognitive screening, cognitive domain assessed, tools used to assess cognitive function, characteristics of the experimental intervention, characteristics of the control group, mean results and standard deviation of function cognitive. The PEDro score was used to evaluate methodological quality. Most eligible studies showed good methodological quality based on the PEDro scale. Studies have shown that adapted tango for PD patients, cognitive training combined with motor training, and treadmill training promote the preservation or improvement of cognitive function in PD patients. The diversity of cognitive tests used to assess cognitive function and the high heterogeneity identified between the physical exercise programs. Physical exercise programs promote positive and significant effects on global cognitive function, processing speed, sustained attention and mental flexibility in PD patients, at a mild to moderate stage for patients with a 6-year clinical diagnosis of PD. However, treadmill training performed 3 times a week for about 60 minutes and for a period of 24 weeks produced larger improvements in cognition.
Design and Validation of an Instrumented Uneven Terrain Treadmill.
Voloshina, Alexandra S; Ferris, Daniel P
2018-06-01
Studying human and animal locomotion on an uneven terrain can be beneficial to basic science and applied studies for clinical and robotic applications. Traditional biomechanical analysis of human locomotion has often been limited to laboratory environments with flat, smooth runways and treadmills. The authors modified a regular exercise treadmill by attaching wooden blocks to the treadmill belt to yield an uneven locomotion surface. To ensure that these treadmill modifications facilitated biomechanical measurements, the authors compared ground reaction force data collected while a subject ran on the modified instrumented treadmill with a smooth surface with data collected using a conventional instrumented treadmill. Comparisons showed only minor differences. These results suggest that adding an uneven surface to a modified treadmill is a viable option for studying human or animal locomotion on an uneven terrain. Other types of surfaces (eg, compliant blocks) could be affixed in a similar manner for studies on other types of locomotion surfaces.
Treadmill Running Reverses Cognitive Declines due to Alzheimer Disease.
Cho, Jinkyung; Shin, Min-Kyoo; Kim, Donghyun; Lee, Inhwan; Kim, Shinuk; Kang, Hyunsik
2015-09-01
This study investigated the effect of treadmill running on cognitive declines in the early and advanced stages of Alzheimer disease (AD) in 3xTg-AD mice. At 4 months of age, 3xTg-AD mice (N = 24) were assigned to control (AD + CON, n = 12) or exercise (AD + EX, n = 12) group. At 24 months of age, 3xTg-AD mice (N = 16) were assigned to AD + CON (n = 8) or AD + EX (n = 8) group. The AD + EX mice were subjected to treadmill running for 12 wk. At each pathological stage, the background strain mice were included as wild-type control (WT + CON, n = 8-12). At the early stage of AD, 3xTg-AD mice had impaired short- and long-term memory based on Morris water maze along with higher cortical Aβ deposition, higher hippocampal and cortical tau pathology, and lower hippocampal and cortical PSD-95 and synaptophysin. A 12-wk treadmill running reversed the impaired cognitive declines and significantly improved the tau pathology along with suppression of the decreased PSD-95 and synaptophysin in the hippocampus and cortex. At the advanced stage of AD, 3xTg-AD mice had impaired short- and long-term memory along with higher levels of Aβ deposition, soluble Aβ1-40 and Aβ1-42, tau pathology, and lower levels of brain-derived neurotrophic factor, PSD-95, and synaptophysin in the hippocampus and cortex. A 12-wk treadmill running reversed the impaired cognitive declines and significantly improved the Aβ and tau pathology along with suppression of the decreased synaptic proteins and brain-derived neurotrophic factor in the hippocampus and cortex. The current findings suggest that treadmill running provides a nonpharmacological means to combat cognitive declines due to AD pathology.
Zanaboni, Paolo; Dinesen, Birthe; Hjalmarsen, Audhild; Hoaas, Hanne; Holland, Anne E; Oliveira, Cristino Carneiro; Wootton, Richard
2016-08-22
Pulmonary rehabilitation (PR) is an effective intervention for the management of people with chronic obstructive pulmonary disease (COPD). However, available resources are often limited, and many patients bear with poor availability of programmes. Sustaining PR benefits and regular exercise over the long term is difficult without any exercise maintenance strategy. In contrast to traditional centre-based PR programmes, telerehabilitation may promote more effective integration of exercise routines into daily life over the longer term and broaden its applicability and availability. A few studies showed promising results for telerehabilitation, but mostly with short-term interventions. The aim of this study is to compare long-term telerehabilitation with unsupervised exercise training at home and with standard care. An international multicentre randomised controlled trial conducted across sites in three countries will recruit 120 patients with COPD. Participants will be randomly assigned to telerehabilitation, treadmill and control, and followed up for 2 years. The telerehabilitation intervention consists of individualised exercise training at home on a treadmill, telemonitoring by a physiotherapist via videoconferencing using a tablet computer, and self-management via a customised website. Patients in the treadmill arm are provided with a treadmill only to perform unsupervised exercise training at home. Patients in the control arm are offered standard care. The primary outcome is the combined number of hospitalisations and emergency department presentations. Secondary outcomes include changes in health status, quality of life, anxiety and depression, self-efficacy, subjective impression of change, physical performance, level of physical activity, and personal experiences in telerehabilitation. This trial will provide evidence on whether long-term telerehabilitation represents a cost-effective strategy for the follow-up of patients with COPD. The delivery of telerehabilitation services will also broaden the availability of PR and maintenance strategies, especially to those living in remote areas and with no access to centre-based exercise programmes. ClinicalTrials.gov: NCT02258646 .
Selectively bred rat model system for low and high response to exercise training
Pollott, Geoffrey E.; Britton, Steven L.
2013-01-01
We initiated a large-scale bidirectional selection experiment in a genetically heterogeneous rat population (N/NIH stock, n = 152) to develop lines of low response trainers (LRT) and high response trainers (HRT) as a contrasting animal model system. Maximal treadmill running distance [meters (m)] was tested before (DIST1) and after (DIST2) standardized aerobic treadmill training over an 8 wk period (3 exercise sessions per week). Response to training was calculated as the change in exercise capacity (ΔDIST = DIST2 − DIST1). A within-family selection and rotational breeding paradigm between 10 families was practiced for both selected lines. For the founder population, exercise training produced a 140 ± 15 m gain in exercise capacity with interindividual variation ranging from −339 to +627 m. After 15 generations of selection (n = 3,114 rats), HRT rats improved 223 ± 20 m as a result of exercise training while exercise capacity declined −65 ± 15 m in LRT rats given the same absolute training environment. The narrow-sense heritability (h2) for ΔDIST was 0.10 ± 0.02. The LRT and HRT lines did not differ significantly for body weight or intrinsic (i.e., DIST1) exercise capacity. Using pedigree records the inbreeding coefficient increased at a rate of 1.7% per generation for HRT and 1.6% per generation for LRT, ∼30% slower than expected from random mating. Animal models developed from heterogeneous stock and enriched via selection, as presented here, often generate extreme values for traits of interest and may prove more useful than current models for uncovering genetic underpinnings. PMID:23715262
Wu, Ziyi; Li, Xingyue; Zhang, Yi; Tong, Dongyi; Wang, Lili; Zhao, Ping
2018-01-01
Fetal exposure to general anesthetics may pose significant neurocognitive risks but methods to mitigate against these detrimental effects are still to be determined. We set out, therefore, to assess whether single or repeated in utero exposure to sevoflurane triggers long-term cognitive impairments in rat offspring. Since maternal exercise during pregnancy has been shown to improve cognition in offspring, we hypothesized that maternal treadmill exercise during pregnancy would protect against sevoflurane-induced neurotoxicity. In the first experiment, pregnant rats were exposed to 3% sevoflurane for 2 h on gestational (G) day 14, or to sequential exposure for 2 h on G13, G14 and G15. In the second experiment, pregnant rats in the exercise group were forced to run on a treadmill for 60 min/day during the whole pregnancy. The TrkB antagonist ANA-12 was used to investigate whether the brain-derived neurotrophic factor (BDNF)/TrkB/Akt signaling pathway is involved in the neuroprotection afforded by maternal exercise. Our data suggest that repeated, but not single, exposure to sevoflurane caused a reduction in both histone acetylation and BDNF expression in fetal brain tissues and postnatal hippocampus. This was accompanied by decreased numbers of dendritic spines, impaired spatial-dependent learning and memory dysfunction. These effects were mitigated by maternal exercise but the TrkB antagonist ANA-12 abolished the beneficial effects of maternal exercise. Our findings suggest that repeated, but not single, exposure to sevoflurane in pregnant rats during the second trimester caused long-lasting learning and memory dysfunction in the offspring. Maternal exercise ameliorated the postnatal neurocognitive impairment by enhancing histone acetylation and activating downstream BDNF/TrkB/Akt signaling.
De La Garza, Richard; Yoon, Jin H.; Thompson-Lake, Daisy G.Y.; Haile, Colin N.; Eisenhofer, Joel D.; Newton, Thomas F.; Mahoney, James J.
2016-01-01
Exercise may be a useful treatment for substance use disorders. Participants (N=24) included treatment-seeking individuals with concurrent cocaine and tobacco-use disorder (cigarette smokers). Participants were randomized to either running or walking (30 min per session, 3 times per week) or sitting (control condition) for 4 consecutive weeks. Several metrics indicated significant differences among runners, walkers, and sitters during sessions, including mean distance covered and calories burned. In addition, remote physiological monitoring showed that the groups differed significantly according to mean maximum heart rate (HR), respiration, and locomotor activity. Across the 4-week study, exercise improved fitness measures including significantly decreasing resting HR. Though not statistically significant, exercise improved abstinence from cocaine and increased self-reports of no cocaine use in last 24h. In general, reductions in tobacco use and craving were not as robust. To our knowledge, this is the first study to evaluate the effects of a multi-week exercise program in individuals with concurrent cocaine and tobacco-use disorder. The data clearly show significant improvements in basic fitness measures and several indices reveal that exercise improved both self-report and biochemically verified reports of cocaine abstinence. Taken together, the data from this study provides preliminary evidence for the efficacy of exercise for improving fitness and reducing cocaine use. PMID:27541349
Falcone, Paul H; Tai, Chih-Yin; Carson, Laura R; Joy, Jordan M; Mosman, Matt M; McCann, Tyler R; Crona, Kevin P; Kim, Michael P; Moon, Jordan R
2015-03-01
Although exercise regimens vary in content and duration, few studies have compared the caloric expenditure of multiple exercise modalities with the same duration. The purpose of this study was to compare the energy expenditure of single sessions of resistance, aerobic, and combined exercise with the same duration. Nine recreationally active men (age: 25 ± 7 years; height: 181.6 ± 7.6 cm; weight: 86.6 ± 7.5 kg) performed the following 4 exercises for 30 minutes: a resistance training session using 75% of their 1-repetition maximum (1RM), an endurance cycling session at 70% maximum heart rate (HRmax), an endurance treadmill session at 70% HRmax, and a high-intensity interval training (HIIT) session on a hydraulic resistance system (HRS) that included repeating intervals of 20 seconds at maximum effort followed by 40 seconds of rest. Total caloric expenditure, substrate use, heart rate (HR), and rating of perceived exertion (RPE) were recorded. Caloric expenditure was significantly (p ≤ 0.05) greater when exercising with the HRS (12.62 ± 2.36 kcal·min), compared with when exercising with weights (8.83 ± 1.55 kcal·min), treadmill (9.48 ± 1.30 kcal·min), and cycling (9.23 ± 1.25 kcal·min). The average HR was significantly (p ≤ 0.05) greater with the HRS (156 ± 9 b·min), compared with that using weights (138 ± 16 b·min), treadmill (137 ± 5 b·min), and cycle (138 ± 6 b·min). Similarly, the average RPE was significantly (p ≤ 0.05) higher with the HRS (16 ± 2), compared with that using weights (13 ± 2), treadmill (10 ± 2), and cycle (11 ± 1). These data suggest that individuals can burn more calories performing an HIIT session with an HRS than spending the same amount of time performing a steady-state exercise session. This form of exercise intervention may be beneficial to individuals who want to gain the benefits of both resistance and cardiovascular training but have limited time to dedicate to exercise.
Chao, Fenglei; Jiang, Lin; Zhang, Yi; Zhou, Chunni; Zhang, Lei; Tang, Jing; Liang, Xin; Qi, Yingqiang; Zhu, Yanqing; Ma, Jing; Tang, Yong
2018-01-01
The risk of cognitive decline during Alzheimer's disease (AD) can be reduced if physical activity is maintained; however, the specific neural events underlying this beneficial effect are still uncertain. To quantitatively investigate the neural events underlying the effect of running exercise on middle-aged AD subjects, 12-month-old male APP/PS1 mice were randomly assigned to a control group or running group, and age-matched non-transgenic littermates were used as a wild-type group. AD running group mice were subjected to a treadmill running protocol (regular and moderate intensity) for four months. Spatial learning and memory abilities were assessed using the Morris water maze. Hippocampal amyloid plaques were observed using Thioflavin S staining and immunohistochemistry. Hippocampal volume, number of neurons, and number of newborn cells (BrdU+ cells) in the hippocampus were estimated using stereological techniques, and newborn neurons were observed using double-labelling immunofluorescence. Marked neuronal loss in both the CA1 field and dentate gyrus (DG) and deficits in both the neurogenesis and survival of new neurons in the DG of middle-aged APP/PS1 mice were observed. Running exercise could improve the spatial learning and memory abilities, reduce amyloid plaques in the hippocampi, delay neuronal loss, induce neurogenesis, and promote the survival of newborn neurons in the DG of middle-aged APP/PS1 mice. Exercise-induced protection of neurons and adult neurogenesis within the DG might be part of the important structural basis of the improved spatial learning and memory abilities observed in AD mice.
Effect of added mass on treadmill performance and pulmonary function.
Walker, Rachel E; Swain, David P; Ringleb, Stacie I; Colberg, Sheri R
2015-04-01
Military personnel engage in strenuous physical activity and load carriage. This study evaluated the role of body mass and of added mass on aerobic performance (uphill treadmill exercise) and pulmonary function. Performance on a traditional unloaded run test (4.8 km) was compared with performance on loaded tasks. Subjects performed an outdoor 4.8-km run and 4 maximal treadmill tests wearing loads of 0, 10, 20, and 30 kg. Subjects' pulmonary function (forced expired volume in 1 second [FEV1], forced vital capacity [FVC], and maximal voluntary ventilation [MVV]) was tested with each load, and peak values of heart rate, oxygen consumption ((Equation is included in full-text article.)), ventilation (VE), and respiratory exchange ratio (RER) were measured during each treadmill test. Performance on the 4.8-km run was correlated with treadmill performance, measured as time to exhaustion (TTE), with the strength of the correlation decreasing with load (r = 0.87 for 0 kg to 0.76 for 30 kg). Body mass was not correlated with TTE, other than among men with the 30-kg load (r = 0.48). During treadmill exercise, all peak responses other than RER decreased with load. Pulmonary function measures (FEV1, FVC, and MVV) decreased with load. Body mass was poorly correlated with treadmill performance, but added mass decreased performance. The decreased performance may be in part because of decreased pulmonary function. Unloaded 4.8-km run performance was correlated to unloaded uphill treadmill performance, but less so as load increased. Therefore, traditional run tests may not be an effective means of evaluating aerobic performance for military field operations.
Savitha, D; Sejil, T V; Rao, Shwetha; Roshan, C J; Roshan, C J
2013-01-01
The purpose of the study was to investigate the effect of vocal and instrumental music on various physiological parameters during submaximal exercise. Each subject underwent three sessions of exercise protocol without music, with vocal music, and instrumental versions of same piece of music. The protocol consisted of 10 min treadmill exercise at 70% HR(max) and 20 min of recovery. Minute to minute heart rate and breath by breath recording of respiratory parameters, rate of energy expenditure and perceived exertion levels were measured. Music, irrespective of the presence or absence of lyrics, enabled the subjects to exercise at a significantly lower heart rate and oxygen consumption, reduced the metabolic cost and perceived exertion levels of exercise (P < 0.05). There was faster recovery of systolic and diastolic blood pressures and exertion levels during the post exercise period. Music having a relaxant effect could have probably increased the parasympathetic activation leading to these effects.
Loading Configurations and Ground Reaction Forces During Treadmill Running in Weightlessness
NASA Technical Reports Server (NTRS)
DeWitt, John; Schaffner, Grant; Blazine, Kristi; Bentley, Jason; Laughlin, Mitzi; Loehr, James; Hagan, Donald
2003-01-01
Studies have shown losses in bone mineral density of 1-2% per month in critical weight bearing areas such as the proximal femur during long-term space flight (Grigoriev, 1998). The astronauts currently onboard the International Space Station (ISS) use a treadmill as an exercise countermeasure to bone loss that occurs as a result of prolonged exposure to weightlessness. A crewmember exercising on the treadmill is attached by a harness and loading device. Ground reaction forces are obtained through the loading device that pulls the crewn1ember towards the treadmill surface during locomotion. McCrory et al. (2002) found that the magnitude of the peak ground reaction force (pGRF) during horizontal suspension running, or simulated weightlessness, was directly related to the load applied to the subject. It is thought that strain magnitude and strain rate affects osteogenesis, and is a function of the magnitude and rate of change of the ground reaction force. While it is not known if a minimum stimulus exists for osteogenesis, it has been hypothesized that in order to replicate the bone formation occurring in normal gravity (1 G), the exercise in weightlessness should mimic the forces that occur on earth. Specifically, the pGRF obtained in weightlessness should be comparable to that achieved in 1 G.
A Comparison of the Physiology and Mechanics of Exercise in LBNP and Upright Gait
NASA Technical Reports Server (NTRS)
Boda, W. L.; Watenpaugh, D. E.; Ballard, R. E.; Chang, D.; Looft-Wilson, R.; Hargens, A. R.
1996-01-01
Bone, muscular strength, aerobic capacity, and normal fluid pressure gradients within the body are lost during bed rest and spaceflight. Lower Body Negative Pressure (LBNP) exercise may create musculoskeletal and cardiovascular strains equal to a greater than those experienced on Earth and elucidate some of the mechanisms for maintaining bone integrity. LBNP exercise simulates gravity during supine posture by using negative pressure to pull subjects inward against a treadmill generating footward forces and increasing transmural pressures. Footward forces are generated which equal the product of the pressure differential and the cross-sectional area of the LBNP waist seal. Subjects lie supine within the chamber with their legs suspended from one another via cuffs, bungee cords, and pulleys, such that each leg acts as a counterweight to the other leg during the gait cycle. The subjects then walk or run on a treadmill which is positioned vertically within the chamber. Supine orientation allows only footward force production due to the negative pressure within the chamber. The purpose of this study was to determine if the kinematics, kinetics, and metabolic rate during supine walking and slow running on a vertical treadmill within LBNP are similar to those on a treadmill in 1-g environment in an upright posture.
Radhakrishnan, K; Sharma, V K; Subramanian, S K
2017-05-10
Maximal physical exertion in sports usually causes fatigue in the exercising muscles, but not in the respiratory muscles due to triggering of the Respiratory muscle metabo-reflex, a sympathetic vasoconstrictor response leading to preferential increment in blood flow to respiratory muscles. 1 We planned to investigate whether a six week yogic pranayama based Volitional Respiratory Muscle Training (VRMT) can improve maximal Graded Exercise Treadmill Test (GXTT) performance in healthy adult recreational sportspersons. Consecutive, consenting healthy adult recreational sportspersons aged 20.56±2.49 years (n=30), volunteered to 'baseline recording' of resting heart rate (HR), blood pressure (BP), respiratory rate (RR), and Bruce ramp protocol maximal GXTT until volitional exhaustion providing total test time (TTT), derived VO2max, Metabolic Equivalent of Task (METs), HR and BP response during maximal GXTT and drop in recovery HR data. After six weeks of observation, they underwent 'pre-intervention recording' followed by supervised VRMT intervention for 6 weeks (30 minutes a day; 5 days a week) and then 'post-intervention recording'. Repeated measures ANOVA with pairwise t statistical comparison was used to analyse the data. After supervised VRMT, we observed significant decrease in their resting supine RR (p<0.001), resting supine HR (p=0.001), HR after 5 minutes of assuming standing posture (p=0.003); significant increase in TTT (p<0.001), derived VO2max (p<0.001), METs (p<0.001) and drop in recovery HR (p=0.038); altered HR response and BP response during exercise. We hypothesize that these changes are probably due to VRMT induced learnt behaviour to control the breathing pattern that improves breathing economy, improvement in respiratory muscle aerobic capacity, attenuation of respiratory muscle metabo-reflex, increase in cardiac stroke volume and autonomic resetting towards parasympatho-dominance. Yogic Pranayama based VRMT can be used in sports conditioning programme of athletes to further improve their maximal exercise performance, and as part of rehabilitation training during return from injury.
[Russian treadmill BD-1 as a backup of the NASA TVIS].
Iarmanova, E N; Kozlovskaia, I B; Bogomolov, V V; Rumiantseva, O N; Sukhachev, V I; Mel'nik, K A
2006-01-01
Already during the early ISS increments malfunctioning of NASA TVIS (treadmill with vibration isolation system) posed major problems for regular crew training and particularly scamper, one of the key exercises on the Russian physical training program. During ISS increment-3, TVIS unscheduled repairs took virtually all the training time. In search for TVIS backup, Russian and NASA engineers considered jointly Russian treadmill BD-1, originally designed for Russian "shuttle" Buran and accepted it as a suitable backup in case of complete TVIS failure. To enter into the "dialogue" with BD-1, i.e., to record and downlink training data, the treadmill speed indicator, a part of the treadmill stand, was replaced by PC.
Randomized Controlled Trial Considering Varied Exercises for Reducing Proactive Memory Interference.
Frith, Emily; Sng, Eveleen; Loprinzi, Paul D
2018-06-11
We evaluated the effects of exercise on proactive memory interference. Study 1 ( n = 88) employed a 15-min treadmill walking protocol, while Study 2 ( n = 88) included a 15-min bout of progressive maximal exertion treadmill exercise. Each study included four distinct groups, in which groups of 22 participants each were randomly assigned to: (a) exercise before memory encoding, (b) a control group with no exercise, (c) exercise during memory encoding, and (d) exercise after memory encoding (i.e., during memory consolidation). We used the Rey Auditory Verbal Learning Test (RAVLT) to assess proactive memory interference. In both studies, the group that exercised prior to memory encoding recalled the most words from list B (distractor list) of the RAVLT, though group differences were not statistically significant for Study 1 (walking exercise) ( p = 0.521) or Study 2 (high-intensity exercise) ( p = 0.068). In this sample of young adults, high intensity exercise prior to memory encoding showed a non-significant tendency to attenuate impairments in recall attributable to proactive memory interference. Thus, future work with larger samples is needed to clarify potential beneficial effects of exercise for reducing proactive memory interference.
Engi, Sheila A.; Planeta, Cleopatra S.; Crestani, Carlos C.
2016-01-01
This study evaluated the effects of voluntary ethanol consumption combined with testosterone treatment on cardiovascular function in rats. Moreover, we investigated the influence of exercise training on these effects. To this end, male rats were submitted to low-intensity training on a treadmill or kept sedentary while concurrently being treated with ethanol for 6 weeks. For voluntary ethanol intake, rats were given access to two bottles, one containing ethanol and other containing water, three 24-hour sessions per week. In the last two weeks (weeks 5 and 6), animals underwent testosterone treatment concurrently with exercise training and exposure to ethanol. Ethanol consumption was not affected by either testosterone treatment or exercise training. Also, drug treatments did not influence the treadmill performance improvement evoked by training. However, testosterone alone, but not in combination with ethanol, reduced resting heart rate. Moreover, combined treatment with testosterone and ethanol reduced the pressor response to the selective α1-adrenoceptor agonist phenylephrine. Treatment with either testosterone or ethanol alone also affected baroreflex activity and enhanced depressor response to acetylcholine, but these effects were inhibited when drugs were coadministrated. Exercise training restored most cardiovascular effects evoked by drug treatments. Furthermore, both drugs administrated alone increased pressor response to phenylephrine in trained animals. Also, drug treatments inhibited the beneficial effects of training on baroreflex function. In conclusion, the present results suggest a potential interaction between toxic effects of testosterone and ethanol on cardiovascular function. Data also indicate that exercise training is an important factor influencing the effects of these substances. PMID:26760038
2009-02-12
ISS018-E-030101 (12 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.
2009-02-12
ISS018-E-030096 (12 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.
The diagnostic accuracy of exercise electrocardiography - A review
NASA Technical Reports Server (NTRS)
Johnson, R. L.; Bungo, M. W.
1983-01-01
The cardiovascular 'stress test', and particularly the graded treadmill exercist test, has gained wide acceptance as a diagnostic aid in searching for ischemic heart disease and as a prognostic indicator for those with known coronary artery disease. Controversies still exist, however, in its use in mass screening and in interpreting equivocal tests. A review of the use and value of electrocardiographic exercise testing is presented. Topics such as its use in asymptomatic individuals, the adjuvant use of clinical examination, and the examination of ancillary treadmill parameters are presented. No attempt is made to detail the very significant contributions of radionuclide scanning. The positive exercise electrocardiogram in the asymptomatic subject is discussed and guidelines for clinical management are offered.
Shen, Biing-Jiun; Gau, Jen-Tzer
2017-04-01
Although hostility and depression have been linked to higher cardiac risk and poor prognosis of patients with coronary heart disease (CHD), there is a lack of research that studies how they may influence the short-term outcomes among patients participating in cardiac rehabilitation (CR). This study aimed to investigate the influence of hostility and depression on patients' exercise tolerance and improvement trajectory in a CR program over 6 weeks. Participants were 142 patients with CHD, with a mean age of 62 years. Latent growth curve modeling was conducted to determine whether hostility and depression predicted patients' baseline exercise tolerance and rates of improvement on treadmill, while controlling for age and severity of illness. In addition, analysis was conducted to examine whether depression mediated the influence of hostility on exercise outcomes. Patients with CHD with higher hostility scores had a lower baseline exercise tolerance and slower rates of improvement over 6 weeks. Depressive symptom severity mediated the influence of hostility on exercise baseline and improvement. Patients with higher hostility were more likely to have more severe depressive symptoms, which in turn were associated with lower baseline exercise tolerance and slower improvement. While both hostility and depression predicted the exercise outcomes in CR, depression explained the influence of hostility. The findings underscore the importance of addressing psychosocial issues in treatment of CHD patients and provide support for psychosocial interventions in CR to facilitate patients' recovery.
Stick, J A; Derksen, F J
1989-09-01
Videoendoscopy of the larynx during treadmill exercise was used to determine the surgical treatment of upper airway obstruction in a Standardbred colt. Surgical correction of right-sided laryngeal hemiplegia, first by laryngoplasty, then subtotal arytenoidectomy, was ineffective. Videoendoscopy indicated, and upper airway flow mechanics confirmed, that the laryngeal opening was adequate at rest, but obstruction occurred during exercise. On the basis of the appearance of the larynx during high airflow rates on slow-motion playback of the videorecording, total arytenoidectomy was performed, which permitted the horse to race successfully. Videoendoscopy of the upper airway during exercise accurately predicted airflow impedance and permitted salvage of this racehorse, indicating that this is a practical, useful technique that will improve evaluation of upper airway obstructions in the horse.
Subject Load-Harness Interaction During Zero-Gravity Treadmill Exercise
NASA Technical Reports Server (NTRS)
McCrory, Jean L.; Baron, Heidi A.; Derr, Janice A.; Davis, Brian L.; Cavanagh, Peter R.
1996-01-01
When astronauts exercise on orbit, a subject load device (SLD) must be used to return the subject back to the supporting surface. The load in the SLD needs to be transferred the body by a harness which typically distributes this load between the pelvis and We shoulders. Through the use of a zero-gravity simulator, this research compared subject comfort and ground reaction forces during treadmill running at three levels of subject load (60%,80%, and 100% of body weight) in two harness designs ("shoulder only" and "waist "and shoulder ").
Lai, Byron; Jeng, Brenda; Vrongistinos, Konstantinos; Jung, Taeyou
2015-06-01
The purpose of this study is to investigate the effects of a single-bout of aquatic treadmill walking (ATW) and overground treadmill walking (OTW) on the magnitude and duration of post-exercise ambulatory blood pressure (BP) in people post-stroke. Seven people post-stroke participated in a cross-sectional comparative study. BP was monitored for up to 9 hours after a 15-minute bout of ATW and OTW at approximately 70% of maximal oxygen consumption (VO2max), performed on separate days. Mean systolic and diastolic BP values were compared between both exercise conditions and a day without exercise (control). Three hours after OTW, mean SBP increased by 9% from pre-exercise baseline compared to a 3% decrease during the control day (P < 0.05). A similar trend was observed after the third hour of ATW (P = 0.06). However, ATW demonstrated a 3% overall decline in DBP after exercise compared to a 1% DBP increase of the control day (P < 0.05). Additionally, ATW showed a 6% reduction in mean systolic BP at the ninth hour post-exercise (P < 0.05) compared to baseline. Our results indicate people post-stroke can sustain sufficient walking intensities necessary to reduce BP following cardiovascular exercise. Also, these data suggest that ATW can elicit clinically meaningful reductions in DBP and night-time SBP. Thus, it is recommended for clinicians to consider ATW as a non-pharmaceutical means to regulate DBP and promote nighttime dipping of SBP in people post-stroke. However, caution is advised during the immediate hours after exercise, a period of possible BP inflation.
Kim, Kyung Hun; Lee, Kyoung Bo; Bae, Young-Hyeon; Fong, Shirley S M; Lee, Suk Min
2017-10-23
A stroke patient with hemiplegic gait is generally described as being slow and asymmetric. Body weight-supported treadmill training and backward gait training are recent additions to therapeutic gait trainings that may help improve gait in stroke patient with hemiplegic gait. Therefore, we examined the effect of progressive backward body weight-supported treadmill training on gait in chronic stroke patients with hemiplegic gait. Thirty subjects were divided to the experimental and control groups. The experimental group consisted of 15 patients and underwent progressive backward body weight-supported treadmill training. The control group consisted of 15 patients and underwent general treadmill gait training five times per week, for a total of four weeks. The OptoGait was used to analyze gait kinematics, and the dynamic gait index (DGI) and results of the 6-minute walk test were used as the clinical evaluation indicators. A follow-up test was carried out four weeks later to examine persistence of exercise effects. The experimental group showed statistically significant results in all dependent variables week four compared to the control group. However, until the eighth week, only the dependent variables, of affected step length (ASL), stride length (SL), and DGI differed significantly between the two groups. This study verified that progressive bodyweight-supported treadmill training had a positive influence on the temporospatial characteristics of gait and clinical gait evaluation index in chronic stroke patients.
Thomas, Kate N; van Rij, André M; Lucas, Samuel J E; Gray, Andrew R; Cotter, James D
2016-01-01
Exercise induces arterial flow patterns that promote functional and structural adaptations, improving functional capacity and reducing cardiovascular risk. While heat is produced by exercise, local and whole-body passive heating have recently been shown to generate favorable flow profiles and associated vascular adaptations in the upper limb. Flow responses to acute heating in the lower limbs have not yet been assessed, or directly compared to exercise, and other cardiovascular effects of lower-limb heating have not been fully characterized. Lower-limb heating by hot-water immersion (30 min at 42°C, to the waist) was compared to matched-duration treadmill running (65-75% age-predicted heart rate maximum) in 10 healthy, young adult volunteers. Superficial femoral artery shear rate assessed immediately upon completion was increased to a greater extent following immersion (mean ± SD: immersion +252 ± 137% vs. exercise +155 ± 69%, interaction: p = 0.032), while superficial femoral artery flow-mediated dilation was unchanged in either intervention. Immersion increased heart rate to a lower peak than during exercise (immersion +38 ± 3 beats·min -1 vs. exercise +87 ± 3 beats·min -1 , interaction: p < 0.001), whereas only immersion reduced mean arterial pressure after exposure (-8 ± 3 mmHg, p = 0.012). Core temperature increased twice as much during immersion as exercise (+1.3 ± 0.4°C vs. +0.6 ± 0.4°C, p < 0.001). These data indicate that acute lower-limb hot-water immersion has potential to induce favorable shear stress patterns and cardiovascular responses within vessels prone to atherosclerosis. Whether repetition of lower-limb heating has long-term beneficial effects in such vasculature remains unexplored.
NASA Technical Reports Server (NTRS)
DAndrea, Susan E.; Kahelin, Michael W.; Horowitz, Jay G.; OConnor, Philip A.
2004-01-01
While the neurovestibular system is capable of adapting to altered environments such as microgravity, the adaptive state achieved in space in inadequate for 1G. This leads to giant and postural instabilities when returning to a gravity environment and may create serious problems in future mission to Mars. New methods are needed to improve the understanding of the adaptive capabilities of the human neurovestibular system and to develop more effective countermeasures. The concept behind the current study is that by challenging the neurovestibular system while walking or running a treadmill can help to read just the relationship between the visual, vestibular and proprioceptive signals that are altered in a microgravity environment. As a countermeasure, this device could also benefit the musculoskeletal and cardiovascular systems and at the same time decrease the overall time spent exercising. The overall goal of this research is to design, develop, build and test a dual track treadmill, which utilizes virtual reality, VR, displays.
NASA Technical Reports Server (NTRS)
DAndrea, Susan E.; Kahelin, Michael W.; Horowitz, Jay G.; OConnor, Philip A.
2004-01-01
While the neurovestibular system is capable of adapting to altered environments such as microgravity, the adaptive state achieved in space in inadequate for 1G. This leads to gait and postural instabilities when returning to a gravity environment and may create serious problems in future missions to Mars. New methods are needed to improve the understanding of the adaptive capabilities of the human neurovestibular system and to develop more effective countermeasures. The concept behind the current study is that by challenging the neurovestibular system while walking or running, a treadmill can help to readjust the relationship between the visual, vestibular and proprioceptive signals that are altered in a microgravity environment. As a countermeasure, this device could also benefit the musculoskeletal and cardiovascular systems and at the same time decrease the overall time spent exercising. The overall goal of this research is to design, develop, build and test a dual track treadmill, which utilizes virtual reality,
Yang, Xinyu; Li, Yanda; Ren, Xiaomeng; Xiong, Xingjiang; Wu, Lijun; Li, Jie; Wang, Jie; Gao, Yonghong; Shang, Hongcai; Xing, Yanwei
2017-01-01
In this study, we assessed the effect of rehabilitation exercise after percutaneous coronary intervention (PCI) in patients with coronary heart disease (CHD). We performed a meta-analysis to determine the effects of exercise in patients after PCI. The Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, the Embase database, China National Knowledge Internet (CNKI), China Biology Medicine (CBM), and the Wanfang Database were searched for randomized controlled trials (RCTs). The key words used for the searches were PCI, exercise, walking, jogging, Tai Chi, and yoga. Six studies with 682 patients met our inclusion criteria; we chose the primary endpoint events of cardiac death, recurrence of myocardial infarction (MI), repeated PCI, coronary artery bypass grafting (CABG), and restenosis, and the secondary endpoint measures included recurrent angina, treadmill exercise (total exercise time, ST-segment decline, angina, and maximum exercise tolerance). The results showed that exercise was not clearly associated with reductions in cardiac death, recurrence of MI, repeated PCI, CABG, or restenosis. However, the exercise group exhibited greater improvements in recurrent angina, total exercise time, ST-segment decline, angina, and maximum exercise tolerance than did the control group. Future studies need to expand the sample size and improve the quality of reporting of RCTs. PMID:28303967
Stefanko, D P; Shah, V D; Yamasaki, W K; Petzinger, G M; Jakowec, M W
2017-09-01
Depression, cognitive impairments, and other neuropsychiatric disturbances are common during the prodromal phase of Huntington's disease (HD) well before the onset of classical motor symptoms of this degenerative disorder. The purpose of this study was to examine the potential impact of physical activity in the form of exercise on a motorized treadmill on non-motor behavioral features including depression-like behavior and cognition in the CAG 140 knock-in (KI) mouse model of HD. The CAG 140 KI mouse model has a long lifespan compared to other HD rodent models with HD motor deficits emerging after 12months of age and thus provides the opportunity to investigate early life interventions such as exercise on disease progression. Motorized treadmill running was initiated at 4weeks of age (1h per session, 3 times per week) and continued for 6months. Non-motor behaviors were assessed up to 6months of age and included analysis of depression-like behavior (using the tail-suspension and forced-swim tests) and cognition (using the T-maze and object recognition tests). At both 4 and 6months of age, CAG 140 KI mice displayed significant depression-like behavior in the forced swim and tail suspension tests and cognitive impairment by deficits in reversal relearning in the T-maze test. These deficits were not evident in mice engaged in treadmill running. In addition, exercise restored striatal dopamine D2 receptor expression and dopamine neurotransmitter levels both reduced in sedentary HD mice. Finally, we examined the pattern of striatal expression of mutant huntingtin (mHTT) protein and showed that the number and intensity of immunohistochemical staining patterns of intranuclear aggregates were significantly reduced with exercise. Altogether these findings begin to address the potential impact of lifestyle and early intervention such as exercise on modifying HD progression. Copyright © 2017 Elsevier Inc. All rights reserved.
Partial Body Weight-Supported Treadmill Training in Spinocerebellar Ataxia.
de Oliveira, Laura Alice Santos; Martins, Camilla Polonini; Horsczaruk, Carlos Henrique Ramos; da Silva, Débora Cristina Lima; Vasconcellos, Luiz Felipe; Lopes, Agnaldo José; Meira Mainenti, Míriam Raquel; Rodrigues, Erika de Carvalho
2018-01-01
The motor impairments related to gait and balance have a huge impact on the life of individuals with spinocerebellar ataxia (SCA). Here, the aim was to assess the possibility of retraining gait, improving cardiopulmonary capacity, and challenging balance during gait in SCA using a partial body weight support (BWS) and a treadmill. Also, the effects of this training over functionality and quality of life were investigated. Eight SCA patients were engaged in the first stage of the study that focused on gait training and cardiovascular conditioning. From those, five took part in a second stage of the study centered on dynamic balance training during gait. The first and second stages lasted 8 and 10 weeks, respectively, both comprising sessions of 50 min (2 times per week). The results showed that gait training using partial BWS significantly increased gait performance, treadmill inclination, duration of exercise, and cardiopulmonary capacity in individuals with SCA. After the second stage, balance improvements were also found. Combining gait training and challenging tasks to the postural control system in SCA individuals is viable, well tolerated by patients with SCA, and resulted in changes in capacity for walking and balance.
Partial Body Weight-Supported Treadmill Training in Spinocerebellar Ataxia
Martins, Camilla Polonini; Horsczaruk, Carlos Henrique Ramos; da Silva, Débora Cristina Lima; Meira Mainenti, Míriam Raquel; Rodrigues, Erika de Carvalho
2018-01-01
Background and Purpose The motor impairments related to gait and balance have a huge impact on the life of individuals with spinocerebellar ataxia (SCA). Here, the aim was to assess the possibility of retraining gait, improving cardiopulmonary capacity, and challenging balance during gait in SCA using a partial body weight support (BWS) and a treadmill. Also, the effects of this training over functionality and quality of life were investigated. Methods Eight SCA patients were engaged in the first stage of the study that focused on gait training and cardiovascular conditioning. From those, five took part in a second stage of the study centered on dynamic balance training during gait. The first and second stages lasted 8 and 10 weeks, respectively, both comprising sessions of 50 min (2 times per week). Results The results showed that gait training using partial BWS significantly increased gait performance, treadmill inclination, duration of exercise, and cardiopulmonary capacity in individuals with SCA. After the second stage, balance improvements were also found. Conclusion Combining gait training and challenging tasks to the postural control system in SCA individuals is viable, well tolerated by patients with SCA, and resulted in changes in capacity for walking and balance. PMID:29535874
Milioni, Fabio; Malta, Elvis de Souza; Rocha, Leandro George Spinola do Amaral; Mesquita, Camila Angélica Asahi; de Freitas, Ellen Cristini; Zagatto, Alessandro Moura
2016-05-01
The aim of the present study was to investigate the effects of acute administration of taurine overload on time to exhaustion (TTE) of high-intensity running performance and alternative maximal accumulated oxygen deficit (MAODALT). The study design was a randomized, placebo-controlled, crossover design. Seventeen healthy male volunteers (age: 25 ± 6 years; maximal oxygen uptake: 50.5 ± 7.6 mL·kg(-1)·min(-1)) performed an incremental treadmill-running test until voluntary exhaustion to determine maximal oxygen uptake and exercise intensity at maximal oxygen uptake. Subsequently, participants completed randomly 2 bouts of supramaximal treadmill-running at 110% exercise intensity at maximal oxygen uptake until exhaustion (placebo (6 g dextrose) or taurine (6 g) supplementation), separated by 1 week. MAODALT was determined using a single supramaximal effort by summating the contribution of the phosphagen and glycolytic pathways. When comparing the results of the supramaximal trials (i.e., placebo and taurine conditions) no differences were observed for high-intensity running TTE (237.70 ± 66.00 and 277.30 ± 40.64 s; p = 0.44) and MAODALT (55.77 ± 8.22 and 55.06 ± 7.89 mL·kg(-1); p = 0.61), which seem to indicate trivial and unclear differences using the magnitude-based inferences approach, respectively. In conclusion, acute 6 g taurine supplementation before exercise did not substantially improve high-intensity running performance and showed an unclear effect on MAODALT.
Jeong, Youngjae; Carleton, Stephanie M; Gentry, Bettina A; Yao, Xiaomei; Ferreira, J Andries; Salamango, Daniel J; Weis, MaryAnn; Oestreich, Arin K; Williams, Ashlee M; McCray, Marcus G; Eyre, David R; Brown, Marybeth; Wang, Yong; Phillips, Charlotte L
2015-10-01
Osteogenesis imperfecta (OI) is a heterogeneous heritable connective tissue disorder associated with reduced bone mineral density and skeletal fragility. Bone is inherently mechanosensitive, with bone strength being proportional to muscle mass and strength. Physically active healthy children accrue more bone than inactive children. Children with type I OI exhibit decreased exercise capacity and muscle strength compared with healthy peers. It is unknown whether this muscle weakness reflects decreased physical activity or a muscle pathology. In this study, we used heterozygous G610C OI model mice (+/G610C), which model both the genotype and phenotype of a large Amish OI kindred, to evaluate hindlimb muscle function and physical activity levels before evaluating the ability of +/G610C mice to undergo a treadmill exercise regimen. We found +/G610C mice hindlimb muscles do not exhibit compromised muscle function, and their activity levels were not reduced relative to wild-type mice. The +/G610C mice were also able to complete an 8-week treadmill regimen. Biomechanical integrity of control and exercised wild-type and +/G610C femora were analyzed by torsional loading to failure. The greatest skeletal gains in response to exercise were observed in stiffness and the shear modulus of elasticity with alterations in collagen content. Analysis of tibial cortical bone by Raman spectroscopy demonstrated similar crystallinity and mineral/matrix ratios regardless of sex, exercise, and genotype. Together, these findings demonstrate +/G610C OI mice have equivalent muscle function, activity levels, and ability to complete a weight-bearing exercise regimen as wild-type mice. The +/G610C mice exhibited increased femoral stiffness and decreased hydroxyproline with exercise, whereas other biomechanical parameters remain unaffected, suggesting a more rigorous exercise regimen or another exercise modality may be required to improve bone quality of OI mice. © 2015 American Society for Bone and Mineral Research.
Weisgerber, Michael; Danduran, Michael; Meurer, John; Hartmann, Kathryn; Berger, Stuart; Flores, Glenn
2009-07-01
To evaluate Cooper 12-minute run/walk test (CT12) as a one-time estimate of cardiorespiratory fitness and marker of fitness change compared with treadmill fitness testing in young children with persistent asthma. A cohort of urban children with asthma participated in the asthma and exercise program and a subset completed pre- and postintervention fitness testing. Treadmill fitness testing was conducted by an exercise physiologist in the fitness laboratory at an academic children's hospital. CT12 was conducted in a college recreation center gymnasium. Forty-five urban children with persistent asthma aged 7 to 14 years participated in exercise interventions. A subset of 19 children completed pre- and postintervention exercise testing. Participants completed a 9-week exercise program where they participated in either swimming or golf 3 days a week for 1 hour. A subset of participants completed fitness testing by 2 methods before and after program completion. CT12 results (meters), maximal oxygen consumption ((.)Vo2max) (mL x kg(-1) x min(-1)), and treadmill exercise time (minutes). CT12 and maximal oxygen consumption were moderately correlated (preintervention: 0.55, P = 0.003; postintervention: 0.48, P = 0.04) as one-time measures of fitness. Correlations of the tests as markers of change over time were poor and nonsignificant. In children with asthma, CT12 is a reasonable one-time estimate of fitness but a poor marker of fitness change over time.
Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise.
Pinho, Ricardo A; Andrades, Michael E; Oliveira, Marcos R; Pirola, Aline C; Zago, Morgana S; Silveira, Paulo C L; Dal-Pizzol, Felipe; Moreira, José Cláudio F
2006-10-01
The association between physical exercise and oxidative damage in the skeletal musculature has been the focus of many studies in literature, but the balance between superoxide dismutase and catalase activities and its relation to oxidative damage is not well established. Thus, the aim of the present study was to investigate the association between regular treadmill physical exercise, oxidative damage and antioxidant defenses in skeletal muscle of rats. Fifteen male Wistar rats (8-12 months) were randomly separated into two groups (trained n=9 and untrained n=6). Trained rats were treadmill-trained for 12 weeks in progressive exercise (velocity, time, and inclination). Training program consisted in a progressive exercise (10 m/min without inclination for 10 min/day). After 1 week the speed, time and inclination were gradually increased until 17 m/min at 10% for 50 min/day. After the training period animals were killed, and gastrocnemius and quadriceps were surgically removed to the determination of biochemical parameters. Lipid peroxidation, protein oxidative damage, catalase, superoxide dismutase and citrate synthase activities, and muscular glycogen content were measured in the isolated muscles. We demonstrated that there is a different modulation of CAT and SOD in skeletal muscle in trained rats when compared to untrained rats (increased SOD/CAT ratio). TBARS levels were significantly decreased and, in contrast, a significant increase in protein carbonylation was observed. These results suggest a non-described adaptation of skeletal muscle against exercise-induced oxidative stress.
Effects of harmane during treadmill exercise on spatial memory of restraint-stressed mice.
Nasehi, Mohammad; Shahini, Faezeh; Ebrahimi-Ghiri, Mohaddeseh; Azarbayjani, MohammadAli; Zarrindast, Mohammad-Reza
2018-06-08
Chronic stress induces hippocampal-dependent memory deficits, which can be counterbalanced with prolonged exercise. On the other hand, the β-carboline alkaloid harmane exerts potential in therapies for Alzheimer's and depression diseases and modulating neuronal responses to stress. The present study investigated the effect of chronic treatment of harmane alone or during treadmill running on spatial memory deficit in restraint-stressed mice. To examine spatial memory, adult male NMRI mice were subjected to the Y-maze. Intraperitoneal administration of harmane (0.6 mg/kg, once/ 48 h for 25 days) decreased the percentage of time in the novel arm and the number of novel arm visits, indicating a spatial memory deficit. A 9-day restraint stress (3 h/day) also produced spatial learning impairment. However, a 4-week regime of treadmill running (10 m/min for 30 min/day, 5 days/week) aggravated the stress impairing effect on spatial learning of 3-day stressed mice compared to exercise/non-stressed mice. Moreover, harmane (0.3 mg/kg) associated with exercise increased the number of novel arm visits in 9-day stressed mice compared to harmane/exercise/non-stressed or 9-day stressed group. It should be noted that none of these factors alone or in combination with each other had no effect on locomotor activity. Taken together, these data suggest that there is no interaction between harmane and exercise on spatial memory in stress condition. Copyright © 2018. Published by Elsevier Inc.
Adachi, H; Sakurai, S; Tanehata, M; Oshima, S; Taniguchi, K
2000-11-01
Blood viscosity (etaB) is low in athletes, but the effect of exercise training on etaB during endurance exercise at an anaerobic threshold (AT) intensity in non-athletes is not well known, although it is known that exercise training sometimes induces the hyperviscosity syndrome. Fourteen subjects were recruited and divided into 2 groups: those who trained at an AT intensity for 30 min/day, 3 times weekly for 1 year (Group T, n=8), and sedentary subjects (Group C, n=6). The test protocol consisted of a single 30-min treadmill exercise at each individual's AT intensity, which was determined in advance. The etaB, plasma viscosity (etaP), and hematocrit were measured just before and at the end of the treadmill exercise. The subjects were not allowed to drink any water before exercise. In the Group C subjects, the hematocrit and etaP increased significantly and the etaB tended to increase. However, in the Group T subjects, the hematocrit and etaP did not increase and the etaB decreased significantly. These data indicate that long-term exercise training attenuates the increase in blood viscosity during exercise.
Ribeiro, Tatiane Aparecida; Tófolo, Laize Peron; Martins, Isabela Peixoto; Pavanello, Audrei; de Oliveira, Júlio Cezar; Prates, Kelly Valério; Miranda, Rosiane Aparecida; da Silva Franco, Claudinéia Conationi; Gomes, Rodrigo Mello; Francisco, Flávio Andrade; Alves, Vander Silva; de Almeida, Douglas Lopes; Moreira, Veridiana Mota; Palma-Rigo, Kesia; Vieira, Elaine; Fabricio, Gabriel Sergio; da Silva Rodrigues, Marcos Ricardo; Rinaldi, Wilson; Malta, Ananda; de Freitas Mathias, Paulo Cezar
2017-08-09
Low intensity exercise during pregnancy and lactation may create a protective effect against the development of obesity in offspring exposed to overnutrition in early life. To test these hypotheses, pregnant rats were randomly assigned into 2 groups: Sedentary and Exercised, low intensity, on a rodent treadmill at 30% VO 2Max /30-minute/session/3x/week throughout pregnancy and the lactation. Male offspring were raised in small litters (SL, 3 pups/dam) and normal litters (NL, 9 pups/dam) as models of early overnutrition and normal feed, respectively. Exercised mothers showed low mesenteric fat pad stores and fasting glucose and improved glucose-insulin tolerance, VO 2max during lactation and sympathetic activity. Moreover, the breast milk contained elevated levels of insulin. In addition, SL of sedentary mothers presented metabolic dysfunction and glucose and insulin intolerance and were hyperglycemic and hyperinsulinemic in adulthood. SL of exercised mothers showed lower fat tissue accretion and improvements in glucose tolerance, insulin sensitivity, insulinemia and glycemia. The results suggest that maternal exercise during the perinatal period can have a possible reprogramming effect to prevent metabolic dysfunction in adult rat offspring exposed to early overnutrition, which may be associated with the improvement in maternal health caused by exercise.
THE EFFECT OF CAFFEINE SUPPLEMENTATION ON TRAINED INDIVIDUALS SUBJECTED TO MAXIMAL TREADMILL TEST.
Salicio, Viviane Martins Mana; Fett, Carlos Alexandre; Salicio, Marcos Adriano; Brandäo, Camila Fernanda Costa Cunha Moraes; Stoppiglia, Luiz Fabrizio; Fett, Waléria Christiane Rezende; Botelho, and Clovis
2017-01-01
Background: Intense physical training increases oxidative stress and inflammation, resulting into muscle and cellular damage. The aim of this study was to analyze the effect of caffeine supplementation on trained young individuals subjected to two treadmill maximal tests. Materials and Methods: It was a double-blind and crossover study comprising 24 active individuals within the age group 18-30 years. The comparisons were conducted: the effect of exercise (week 1 x 2) and caffeine intake (GC x GP) on thiobarbituric acid (TBARS), interleukin 6 (IL-6), interleukin 10 (IL-10) and superoxide dismutase (SOD) variables during pre-exercise time (30 min. after caffeine or placebo intake) and post-exercise (5 min after treadmill test). Results: The comparison between weeks 1 and 2 showed increase in the first week, in the following items: TBARS, IL-6 and IL-10 in the GC and GP groups. The comparison within the same week showed that GC individuals presented lower post-exercise TBARS values in the first and second weeks; IL- 6 presented higher post-exercise values in the GC group in both weeks. The paired analysis comparing pre- and post-exercise, with and without caffeine showed that IL-6 presented higher post-exercise values in the GC group. Conclusion: Caffeine used by athletes can decrease oxidative stress. The increased IL-6 suggest that this ergogenic supplement may stimulate muscle hypertrophy, since IL-6 has myokine effect. However, the caffeine effect on IL-6 level and muscle hypertrophy increase should be better investigated in future studies. PMID:28480382
Comparison of two progressive treadmill tests in patients with peripheral arterial disease.
Riebe, D; Patterson, R B; Braun, C M
2001-11-01
In a vascular rehabilitation program, 28% of our frail elderly patients are unable to be tested with traditional progressive exercise protocols at program entry due to the high (2.0 miles/h or 3.2 km/h) initial treadmill speeds. The purpose of this investigation was to compare a new progressive treadmill protocol which has a reduced initial speed (1.0 mile/h or 1.6 km/h) to an established protocol performed at 2.0 miles/h (3.2 km/h) to determine the comparability and reproducibility of the new protocol. Eleven patients with arterial claudication performed three symptom-limited exercise tests in random order. Two tests used the new protocol while the remaining trial used the established protocol. Claudication pain was measured using a 5-point scale. Oxygen consumption, heart rate, minute ventilation, respiratory exchange ratio and blood pressure at peak exercise were similar among the three trials. There were strong intraclass correlations for peak oxygen consumption (r = 0.97), onset of claudication (r = 0.96) and maximum walking time (r = 0.98) between the two trials using the new protocol. There was also a significant correlation between the new protocol and the established protocol for peak oxygen consumption (r = 0.90) and maximum walking time (r = 0.89). The new progressive treadmill protocol represents a valid, reliable protocol for patients with arterial claudication. This protocol may be useful for testing patients with a low functional capacity so that clinically appropriate exercise prescriptions can be established and the efficacy of treatments can be determined.
Piestrzeniewicz, Katarzyna; Navarro-Kuczborska, Natalia; Bolińska, Halina; Jegier, Anna; Maciejewski, Marek
2004-03-01
The aim of our study was to evaluate the impact of comprehensive 3-phases cardiac rehabilitation in patients aged up to 55 years after acute myocardial infarction treated with primary coronary intervention (PCI) of the infarction related artery on the cardiovascular status, modification of coronary risk factors, psychological and physical status and exercise tolerance. Out of 106 consecutive patients aged up to 55 years with acute myocardial infarction (AMI) with ST-segment elevation, treated with primary coronary intervention (PCI) of the infarction related artery 71 patients entered the study and were randomized either to the Study Group (GB) or to the Control Group (GK). 31 patients of GB underwent 3-phases cardiac rehabilitation program and 40 patients of GK did not participate in phase III of the program. At phase I of the rehabilitation and 6 months after myocardial infarction physical examination, echocardiography and treadmill exercise test were performed. At 6-months follow-up chest pain and symptoms of heart failure were significantly less common (p < 0.001) and a tendency for fewer new cardiac events and re-PCI was noted in GB. Self-evaluated, significantly greater improvement in the emotional and physical status as well as in physical activity (p < 0.001) was achieved in GB. In GB better exercise tolerance on treadmill exercise test, greater improvement in left ventricular ejection fraction (p < 0.05) and contractile index (p < 0.05) on echocardiography were observed. The effects of the secondary prevention in terms of smoking cessation and obesity were not satisfactory in both groups. 3-phases comprehensive cardiac rehabilitation in patients with AMI treated with PCI of the infarction related artery improves recovery at 6-month follow-up. It has a favorable impact on the anginal and heart failure symptoms, cardiac risk factors (especially physical activity, restrictive diet), psychological and physical status. It contributes towards maintaining a further event-free period. It improves selected cardiovascular parameters such as exercise tolerance, segmental and global left ventricular function.
Kim, Jaeeun; Yim, Jongeun
2017-11-13
BACKGROUND Handgrip strength and walking speed predict and influence cognitive function. We aimed to investigate an exercise protocol for improving handgrip strength and walking speed, applied to patients with chronic stroke who had cognitive function disorder. MATERIAL AND METHODS Twenty-nine patients with cognitive function disorder participated in this study, and were randomly divided into one of two groups: exercise group (n=14) and control group (n=15). Both groups underwent conventional physical therapy for 60 minutes per day. Additionally, the exercise group followed an exercise protocol for handgrip using the hand exerciser, power web exerciser, Digi-Flex (15 minutes); and treadmill-based weight loading training on their less-affected leg (15 minutes) using a sandbag for 30 minutes, three times per day, for six weeks. Outcomes, including cognitive function and gait ability, were measured before and after the training. RESULTS The Korean version of Montreal Cognitive Assessment (K-MoCA), Stroop test (both simple and interference), Trail Making-B, Timed Up and Go, and 10-Meter Walk tests (p<0.05) yielded improved results for the exercise group compared with the control group. Importantly, the K-MoCA, Timed Up and Go, and 10-Meter Walk test results were significantly different between the two groups (p<0.05). CONCLUSIONS The exercise protocol for improving handgrip strength and walking speed had positive effects on cognitive function in patients with chronic stroke.
Bailón, Raquel; Garatachea, Nuria; de la Iglesia, Ignacio; Casajús, Jose Antonio; Laguna, Pablo
2013-07-01
The analysis and interpretation of heart rate variability (HRV) during exercise is challenging not only because of the nonstationary nature of exercise, the time-varying mean heart rate, and the fact that respiratory frequency exceeds 0.4 Hz, but there are also other factors, such as the component centered at the pedaling frequency observed in maximal cycling tests, which may confuse the interpretation of HRV analysis. The objectives of this study are to test the hypothesis that a component centered at the running stride frequency (SF) appears in the HRV of subjects during maximal treadmill exercise testing, and to study its influence in the interpretation of the low-frequency (LF) and high-frequency (HF) components of HRV during exercise. The HRV of 23 subjects during maximal treadmill exercise testing is analyzed. The instantaneous power of different HRV components is computed from the smoothed pseudo-Wigner-Ville distribution of the modulating signal assumed to carry information from the autonomic nervous system, which is estimated based on the time-varying integral pulse frequency modulation model. Besides the LF and HF components, the appearance is revealed of a component centered at the running SF as well as its aliases. The power associated with the SF component and its aliases represents 22±7% (median±median absolute deviation) of the total HRV power in all the subjects. Normalized LF power decreases as the exercise intensity increases, while normalized HF power increases. The power associated with the SF does not change significantly with exercise intensity. Consideration of the running SF component and its aliases is very important in HRV analysis since stride frequency aliases may overlap with LF and HF components.
Gomes, Evelim L F D; Carvalho, Celso R F; Peixoto-Souza, Fabiana Sobral; Teixeira-Carvalho, Etiene Farah; Mendonça, Juliana Fernandes Barreto; Stirbulov, Roberto; Sampaio, Luciana Maria Malosá; Costa, Dirceu
2015-01-01
The aim of the present study was to determine whether aerobic exercise involving an active video game system improved asthma control, airway inflammation and exercise capacity in children with moderate to severe asthma. A randomized, controlled, single-blinded clinical trial was carried out. Thirty-six children with moderate to severe asthma were randomly allocated to either a video game group (VGG; N = 20) or a treadmill group (TG; n = 16). Both groups completed an eight-week supervised program with two weekly 40-minute sessions. Pre-training and post-training evaluations involved the Asthma Control Questionnaire, exhaled nitric oxide levels (FeNO), maximum exercise testing (Bruce protocol) and lung function. No differences between the VGG and TG were found at the baseline. Improvements occurred in both groups with regard to asthma control and exercise capacity. Moreover, a significant reduction in FeNO was found in the VGG (p < 0.05). Although the mean energy expenditure at rest and during exercise training was similar for both groups, the maximum energy expenditure was higher in the VGG. The present findings strongly suggest that aerobic training promoted by an active video game had a positive impact on children with asthma in terms of clinical control, improvement in their exercise capacity and a reduction in pulmonary inflammation. Clinicaltrials.gov NCT01438294.
Zaretsky, Dmitry V; Zaretskaia, Maria V; Durant, Pamela J; Rusyniak, Daniel E
2015-01-01
The contribution of exercise to hyperthermia mediated by MDMA is not known. We recently showed that inhibiting the dorsomedial hypothalamus (DMH) attenuated spontaneous locomotion and hyperthermia and prevented deaths in rats given MDMA in a warm environment. The goal of this study was to confirm that restoring locomotion through a treadmill would reverse these effects thereby confirming that locomotion mediated by the DMH contributes to MDMA-mediated hyperthermia. Rats were randomized to receive bilateral microinjections, into the region of the DMH, of muscimol (80 pmol/100nl) or artificial CSF followed by a systemic dose of either MDMA (7.5 mg/kg, i.v.) or saline. Immediately after the systemic injection, rats were placed on a motorized treadmill maintained at 32°C. Rats were exercised at a fixed speed (10 m/min) until their core temperature reached 41°C. Our results showed that a fixed exercise load abolished the decreases in temperature and mortality, seen previously with inhibition of the DMH in freely moving rats. Therefore, locomotion mediated by neurons in the DMH is critical to the development of hyperthermia from MDMA. PMID:25725382
Plasma cell-free mitochondrial DNA declines in response to prolonged moderate aerobic exercise.
Shockett, Penny E; Khanal, Januka; Sitaula, Alina; Oglesby, Christopher; Meachum, William A; Castracane, V Daniel; Kraemer, Robert R
2016-01-01
Increased plasma cell-free mitochondrial DNA (cf-mDNA), a damage-associated molecular pattern (DAMP) produced by cellular injury, contributes to neutrophil activation/inflammation in trauma patients and arises in cancer and autoimmunity. To further understand relationships between cf-mDNA released by tissue injury, inflammation, and health benefits of exercise, we examined cf-mDNA response to prolonged moderate aerobic exercise. Seven healthy moderately trained young men (age = 22.4 ± 1.2) completed a treadmill exercise trial for 90 min at 60% VO2 max and a resting control trial. Blood was sampled immediately prior to exercise (0 min = baseline), during (+18, +54 min), immediately after (+90 min), and after recovery (R40). Plasma was analyzed for cf-mDNA, IL-6, and lactate. A significant difference in cf-mDNA response was observed between exercise and control trials, with cf-mDNA levels reduced during exercise at +54 and +90 (with or without plasma volume shift correction). Declines in cf-mDNA were accompanied by increased lactate and followed by an increase in IL-6, suggesting a temporal association with muscle stress and inflammatory processes. Our novel finding of cf-mDNA decline with prolonged moderate treadmill exercise provides evidence for increased clearance from or reduced release of cf-mDNA into the blood with prolonged exercise. These studies contrast with previous investigations involving exhaustive short-term treadmill exercise, in which no change in cf-mDNA levels were reported, and contribute to our understanding of differences between exercise- and trauma-induced inflammation. We propose that transient declines in cf-mDNA may induce health benefits, by reducing systemic inflammation. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Pervaiz, Nabeel; Hoffman-Goetz, Laurie
2012-01-01
Exhaustive exercise induces apoptosis and oxidative stress in systemic organs and tissues and is associated with increased levels of pro-inflammatory cytokines. The effects of acute exercise on cytokine expression and apoptosis of immune cells in the central nervous system (CNS) have not been well characterized. We investigated the effects of a single bout of strenuous exercise on the expression of TNF-alpha, IL-6, and IL-beta, as well as the apoptotic status of cells in the hippocampus of healthy mice. To compare central vs. systemic differences, cytokine expression in the intestinal lymphocytes of a subset of mice were also assessed. Female C57BL/6 mice were divided into three groups: sedentary controls (NOTREAD) (n = 22), treadmill exercise with immediate sacrifice (TREAD-Imm) (n = 21), or treadmill exercise with sacrifice after 2 hours (TREAD-2h). TNF-alpha, IL-6, and IL-1beta expression in the hippocampus and intestinal lymphocytes were measured by Western blot analysis. Percentages of hippocampal cells undergoing apoptosis (Annexin+) or necrosis (Propidium Iodide+) were determined through flow cytometry. Plasma levels of 8-isoprostane and corticosterone were measured using commercially available EIA kits. Acute treadmill exercise led to significant decreases in TNF-alpha (p<0.05) and increases in IL-6 (p<0.05) expression in the hippocampus of healthy mice. No effects of acute exercise on the apoptotic status of hippocampal cells were observed. In intestinal lymphocytes, the exercise bout led to significant increases in TNF-alpha (p<0.05), IL-6 (p<0.05), and IL-1beta (p<0.05). Acute exercise was associated with a significant increase in both plasma 8-isoprostane (p<0.05) and corticosterone (p<0.05) levels. Acute exercise differentially affects the pattern ofpro-inflammatory cytokine expression in the hippocampus compared to intestinal lymphocytes and, further, does not induce apoptosis in hippocampal cells.
Wakata uses Treadmill Vibration Isolation and Stabilization (TVIS)
2009-03-22
ISS018-E-042662 (22 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station.
Emergency department-reported injuries associated with mechanical home exercise equipment in the USA
Graves, Janessa M; Iyer, Krithika R; Willis, Margaret M; Ebel, Beth E; Rivara, Frederick P; Vavilala, Monica S
2015-01-01
The goal of this study was to generate national estimates of injuries associated with mechanical home exercise equipment, and to describe these injuries across all ages. Emergency department (ED)-treated injuries associated with mechanical home exercise equipment were identified from 2007 to 2011 from the National Electronic Injury Surveillance System. Text narratives provided exercise equipment type (treadmill, elliptical, stationary bicycle, unspecified/other exercise machine). Approximately 70 302 (95% CI 59 086 to 81 519) mechanical exercise equipment-related injuries presented to US EDs nationally during 2007–2011, of which 66% were attributed to treadmills. Most injuries among children (≤4 years) were lacerations (34%) or soft tissue injuries (48%); among adults (≥25 years) injuries were often sprains/strains (30%). Injured older adults (≥65 years) had greater odds of being admitted, held for observation, or transferred to another hospital, compared with younger ages (OR: 2.58; 95% CI 1.45 to 4.60). Mechanical exercise equipment is a common cause of injury across ages. Injury awareness and prevention are important complements to active lifestyles. PMID:24061163
Exercise Testing Reveals Everyday Physical Challenges of Bariatric Surgery Candidates.
Creel, David B; Schuh, Leslie M; Newton, Robert L; Stote, Joseph J; Cacucci, Brenda M
2017-12-01
Few studies have quantified cardiorespiratory fitness among individuals seeking bariatric surgery. Treadmill testing allows researchers to determine exercise capacity through metabolic equivalents. These findings can assist clinicians in understanding patients' capabilities to carry out various activities of daily living. The purpose of this study was to determine exercise tolerance and the variables associated with fitness, among individuals seeking bariatric surgery. Bariatric surgery candidates completed submaximal treadmill testing and provided ratings of perceived exertion. Each participant also completed questionnaires related to history of exercise, mood, and perceived barriers/benefits of exercise. Over half of participants reported that exercise was "hard to very hard" before reaching 70% of heart rate reserve, and one-third of participants reported that exercise was "moderately hard" at less than 3 metabolic equivalents (light activity). Body mass index and age accounted for the majority of the variance in exercise tolerance, but athletic history, employment status, and perceived health benefits also contributed. Perceived benefit scores were higher than barrier scores. Categories commonly used to describe moderate-intensity exercise (3-6 metabolic equivalents) do not coincide with perceptions of intensity among many bariatric surgery candidates, especially those with a body mass index of 50 or more.
NASA Astrophysics Data System (ADS)
Boudreaux, R. D.; Metzger, C. E.; Macias, B. R.; Shirazi-Fard, Y.; Hogan, H. A.; Bloomfield, S. A.
2014-06-01
Astronauts on long duration missions continue to experience bone loss, as much as 1-2% each month, for up to 4.5 years after a mission. Mechanical loading of bone with exercise has been shown to increase bone formation, mass, and geometry. The aim of this study was to compare the efficacy of two exercise protocols during a period of reduced gravitational loading (1/6th body weight) in mice. Since muscle contractions via resistance exercise impart the largest physiological loads on the skeleton, we hypothesized that resistance training (via vertical tower climbing) would better protect against the deleterious musculoskeletal effects of reduced gravitational weight bearing when compared to endurance exercise (treadmill running). Young adult female BALB/cBYJ mice were randomly assigned to three groups: 1/6 g (G/6; n=6), 1/6 g with treadmill running (G/6+RUN; n=8), or 1/6 g with vertical tower climbing (G/6+CLB; n=9). Exercise was performed five times per week. Reduced weight bearing for 21 days was achieved through a novel harness suspension system. Treadmill velocity (12-20 m/min) and daily run time duration (32-51 min) increased incrementally throughout the study. Bone geometry and volumetric bone mineral density (vBMD) at proximal metaphysis and mid-diaphysis tibia were assessed by in vivo peripheral quantitative computed tomography (pQCT) on days 0 and 21 and standard dynamic histomorphometry was performed on undemineralized sections of the mid-diaphysis after tissue harvest. G/6 caused a significant decrease (P<0.001) in proximal tibia metaphysis total vBMD (-9.6%). These reductions of tibia metaphyseal vBMD in G/6 mice were mitigated in both G/6+RUN and G/6+CLB groups (P<0.05). After 21 days of G/6, we saw an absolute increase in tibia mid-diaphysis vBMD and in distal metaphysis femur vBMD in both G/6+RUN and G/6+CLB mice (P<0.05). Substantial increases in endocortical and periosteal mineralizing surface (MS/BS) at mid-diaphysis tibia in G/6+CLB demonstrate that bone formation can be increased even in the presence of reduced weight bearing. These data suggest that moderately vigorous endurance exercise and resistance training, through treadmill running or climb training mitigates decrements in vBMD during 21 days of reduced weight bearing. Consistent with our hypothesis, tower climb training, most pronounced in the tibia mid-diaphysis, provides a more potent osteogenic response compared to treadmill running.
Arnold, Jennifer C; Salvatore, Michael F
2014-08-22
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson's disease.
Taati, Majid; Moghaddasi, Mehrnoush; Esmaeili, Masoumeh; Pourkhodadad, Soheila; Nayebzadeh, Hassan
2014-10-31
While it is well known that exercise can improve cognitive performance, the underlying mechanisms are not fully understood. There is now evidence that histamine can modulate learning and memory in different types of behavioral tasks. The present study was designed to examine the possible role of central histamine H1 and H2 receptors in forced treadmill running-induced enhancement of learning and memory in rats. For this purpose the animals received intracerebroventricularly chlorpheniramine (H1 receptor blocker) and cimetidine (H2 receptor blocker) before each day of fifteen consecutive days of exercise. Then their learning and memory were tested on the water maze task using a four-trial-per-day for 4 consecutive days. A probe trial was performed after the last training day. Our data showed that cimetidine reversed the exercise-induced improvement in learning and memory in rats; however, this was not the case regarding chlorpheniramine. Our findings indicate that central histamine H2 receptors play an important role in mediating the beneficial effects of forced exercise on learning and memory. Copyright © 2014 Elsevier B.V. All rights reserved.
Emara, Hatem A; El-Gohary, Tarek M; Al-Johany, Ahmed A
2016-06-01
Suspension training and treadmill training are commonly used for promoting functional gross motor skills in children with cerebral palsy. The aim of this study was to compare the effect of body-weight suspension training versus treadmill training on gross motor functional skills. Assessor-blinded, randomized, controlled intervention study. Outpatient rehabilitation facility. Twenty children with spastic diplegia (7 boys and 13 girls) in the age ranged from 6 to 8 years old were randomly allocated into two equal groups. All children were assessed at baseline, after 18-session and after 36-session. During the twelve-week outpatient rehabilitation program, both groups received traditional therapeutic exercises. Additionally, one group received locomotor training using the treadmill while the other group received locomotor training using body-weight suspension through the dynamic spider cage. Assessment included dimensions "D" standing and "E" walking of the gross motor function measure, in addition to the 10-m Walking Test and the five times sit to stand test. Training was applied three times per week for twelve consecutive weeks. No significant difference was found in standing or walking ability for measurements taken at baseline or after 18-session of therapy. Measurements taken at 36-session showed that suspension training achieved significantly (P<0.05) higher average score than treadmill training for dimension D as well as for dimension E. No significant difference was found between suspension training and treadmill training regarding walking speed or sit to stand transitional skills. Body-weight suspension training is effective in improving walking and locomotor capabilities in children with spastic diplegia. After three month suspension training was superior to treadmill training. Body-weight suspension training promotes adequate postural stability, good balance control, and less exertion which facilitates efficient and safe gait.
Parazzi, Paloma Lopes Francisco; Marson, Fernando Augusto de Lima; Ribeiro, Maria Angela Gonçalves de Oliveira; de Almeida, Celize Cruz Bresciani; Martins, Luiz Cláudio; Paschoal, Ilma Aparecida; Toro, Adyleia Aparecida Dalbo Contrera; Schivinski, Camila Isabel Santos; Ribeiro, Jose Dirceu
2015-05-19
Exercise has been studied as a prognostic marker for patients with cystic fibrosis (CF), as well as a tool for improving their quality of life and analyzing lung disease. In this context, the aim of the present study was to evaluate and compare variables of lung functioning. Our data included: (i) volumetric capnography (VCAP) parameters: expiratory minute volume (VE), volume of exhaled carbon dioxide (VCO2), VE/VCO2, ratio of dead space to tidal volume (VD/VT), and end-tidal carbon dioxide (PetCO2); (ii) spirometry parameters: forced vital capacity (FVC), percent forced expiratory volume in the first second of the FVC (FEV1%), and FEV1/FVC%; and (iii) cardiorespiratory parameters: heart rate (HR), respiratory rate, oxygen saturation (SpO2), and Borg scale rating at rest and during exercise. The subjects comprised children, adolescents, and young adults aged 6-25 years with CF (CF group [CFG]) and without CF (control group [CG]). This was a clinical, prospective, controlled study involving 128 male and female patients (64 with CF) of a university hospital. All patients underwent treadmill exercise tests and provided informed consent after study approval by the institutional ethics committee. Linear regression, Kruskal-Wallis test, and Mann-Whitney test were performed to compare the CFG and CG. The α value was set at 0.05. Patients in the CFG showed significantly different VCAP values and spirometry variables throughout the exercise test. Before, during, and after exercise, several variables were different between the two groups; statistically significant differences were seen in the spirometry parameters, SpO2, HR, VCO2, VE/VCO2, PetCO2, and Borg scale rating. VCAP variables changed at each time point analyzed during the exercise test in both groups. VCAP can be used to analyze ventilatory parameters during exercise. All cardiorespiratory, spirometry, and VCAP variables differed between patients in the CFG and CG before, during, and after exercise.
Dockx, Kim; Alcock, Lisa; Bekkers, Esther; Ginis, Pieter; Reelick, Miriam; Pelosin, Elisa; Lagravinese, Giovanna; Hausdorff, Jeffrey M; Mirelman, Anat; Rochester, Lynn; Nieuwboer, Alice
2017-01-01
Virtual reality (VR) technology is a relatively new rehabilitation tool that can deliver a combination of cognitive and motor training for fall prevention. The attitudes of older people to such training are currently unclear. This study aimed to investigate: (1) the attitudes of fall-prone older people towards fall prevention exercise with and without VR; (2) attitudinal changes after intervention with and without VR; and (3) user satisfaction following fall prevention exercise with and without VR. A total of 281 fall-prone older people were randomly assigned to an experimental group receiving treadmill training augmented by VR (TT+VR, n = 144) or a control group receiving treadmill training alone (TT, n = 137). Two questionnaires were used to measure (1) attitudes towards fall prevention exercise with and without VR (AQ); and (2) user satisfaction (USQ). AQ was evaluated at baseline and after intervention. USQ was measured after intervention only. The AQ revealed that most participants had positive attitudes towards fall prevention exercise at baseline (82.2%) and after intervention (80.6%; p = 0.144). In contrast, only 53.6% were enthusiastic about fall prevention exercise with VR at baseline. These attitudes positively changed after intervention (83.1%; p < 0.001), and 99.2% indicated that they enjoyed TT+VR. Correlation analyses showed that postintervention attitudes were strongly related to user satisfaction (USQ: r = 0.503; p < 0.001). Older people's attitudes towards fall prevention exercise with VR were positively influenced by their experience. From the perspective of the user, VR is an attractive training mode, and thus improving service provision for older people is important. © 2017 S. Karger AG, Basel.
Kim, Min-Hee; Yoo, Won-Gyu
2014-06-01
[Purpose] This study investigated the effects of inclined treadmill walking on pelvic anterior tilt angle, hamstring muscle length, and back muscle endurance of seated workers with flat-back syndrome. [Subjects] Eight seated workers with flat-back syndrome who complained of low-back pain in the L3-5 region participated in this study. [Methods] The subjects performed a walking exercise on a 30° inclined treadmill. We measured the pelvic anterior tilt angle, hamstring muscle length, and back muscle endurance before and after inclined treadmill walking. [Results] Anterior pelvic tilt angle and active knee extension angle significantly increased after inclined treadmill walking. Trunk extensor and flexor muscle endurance times were also significantly increased compared to the baseline. [Conclusion] Inclined treadmill walking may be an effective approach for the prevention or treatment of low-back pain in flat-back syndrome.
Shah, Kshamata M.; Mueller, Michael J.
2012-01-01
BACKGROUND In people with diabetes and peripheral neuropathy (DM+PN), injury risk is not clearly known for weight bearing (WB) vs. non-weight bearing (NWB) exercise. In-shoe peak plantar pressures (PPP) often are used as a surrogate indicator of injury to the insensitive foot. OBJECTIVE Compare PPPs in people with DM+PN during selected WB and NWB exercises. METHODS 15 subjects with DM+PN participated. PPPs were recorded for the forefoot, midfoot, and heel during level walking and compared to; WB exercises - treadmill walking, heel and toe raises, sit to stands, stair climbing, single leg standing; and NWB exercises - stationary bicycling, balance ball exercise and plantar flexion exercise. RESULTS Compared to level walking; mean forefoot PPP during treadmill walking was 13% higher, but this difference was eliminated when walking speed was used as a covariate. Mean PPPs were similar or substantially lower for other exercises, except for higher forefoot PPP with heel raise exercises. CONCLUSIONS Slow progression and regular monitoring of insensitive feet are recommended for all exercises, but especially for heel raises, and increases in walking speed. The remaining WB and NWB exercises pose no greater risk to the insensitive foot due to increases in PPP compared to level walking. PMID:22677098
Feng, Xiaomei; Uchida, Yosuke; Koch, Lauren; Britton, Steve; Hu, Jun; Lutrin, David; Maze, Mervyn
2017-01-01
Postoperative cognitive decline (PCD) can affect in excess of 10% of surgical patients and can be considerably higher with risk factors including advanced age, perioperative infection, and metabolic conditions such as obesity and insulin resistance. To define underlying pathophysiologic processes, we used animal models including a rat model of metabolic syndrome generated by breeding for a trait of low aerobic exercise tolerance. After 35 generations, the low capacity runner (LCR) rats differ 10-fold in their aerobic exercise capacity from high capacity runner (HCR) rats. The LCR rats respond to surgical procedure with an abnormal phenotype consisting of exaggerated and persistent PCD and failure to resolve neuroinflammation. We determined whether preoperative exercise can rectify the abnormal surgical phenotype. Following institutional approval of the protocol each of male LCR and male HCR rats were randomly assigned to four groups and subjected to isoflurane anesthesia and tibia fracture with internal fixation (surgery) or anesthesia alone (sham surgery) and to a preoperative exercise regimen that involved walking for 10 km on a treadmill over 6 weeks (exercise) or being placed on a stationary treadmill (no exercise). Feces were collected before and after exercise for assessment of gut microbiome. Three days following surgery or sham surgery the rats were tested for ability to recall a contextual aversive stimulus in a trace fear conditioning paradigm. Thereafter some rats were euthanized and the hippocampus harvested for analysis of inflammatory mediators. At 3 months, the remainder of the rats were tested for memory recall by the probe test in a Morris Water Maze. Postoperatively, LCR rats exhibited exaggerated cognitive decline both at 3 days and at 3 months that was prevented by preoperative exercise. Similarly, LCR rats had excessive postoperative neuroinflammation that was normalized by preoperative exercise. Diversity of the gut microbiome in the LCR rats improved after exercise. Preoperative exercise eliminated the metabolic syndrome risk for the abnormal surgical phenotype and was associated with a more diverse gut microbiome. Prehabilitation with exercise should be considered as a possible intervention to prevent exaggerated and persistent PCD in high-risk settings.
Williams exercises on TVIS in Zvezda
2007-12-28
ISS014-E-10591 (28 Dec. 2006) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.
Volkov exercises on TVIS in Service Module
2011-11-08
ISS029-E-040701 (8 Nov. 2011) --- Russian cosmonaut Sergei Volkov, Expedition 29 flight engineer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.
Cardiovascular response during submaximal underwater treadmill exercise in stroke patients.
Yoo, Jeehyun; Lim, Kil-Byung; Lee, Hong-Jae; Kwon, Yong-Geol
2014-10-01
To evaluate the cardiovascular response during head-out water immersion, underwater treadmill gait, and land treadmill gait in stroke patients. Ten stroke patients were recruited for underwater and land treadmill gait sessions. Each session was 40 minutes long; 5 minutes for standing rest on land, 5 minutes for standing rest in water or on treadmill, 20 minutes for treadmill walking in water or on land, 5 minutes for standing rest in water or on treadmill, and 5 minutes for standing rest on land. Blood pressure (BP) and heart rate (HR) were measured during each session. In order to estimate the cardiovascular workload and myocardial oxygen demand, the rate pressure product (RPP) value was calculated by multiplying systolic BP (SBP) by HR. SBP, DBP, mean BP (mBP), and RPP decreased significantly after water immersion, but HR was unchanged. During underwater and land treadmill gait, SBP, mBP, DBP, RPP, and HR increased. However, the mean maximum increases in BP, HR and RPP of underwater treadmill walking were significantly lower than that of land treadmill walking. Stroke patients showed different cardiovascular responses during water immersion and underwater gait as opposed to standing and treadmill-walking on land. Water immersion and aquatic treadmill gait may reduce the workload of the cardiovascular system. This study suggested that underwater treadmill may be a safe and useful option for cardiovascular fitness and early ambulation in stroke rehabilitation.
EFFECTS OF DIFFERENT DURATION EXERCISE PROGRAMS IN CHILDREN WITH SEVERE BURNS
Clayton, Robert P.; Wurzer, Paul; Andersen, Clark R.; Mlcak, Ronald P.; Herndon, David N.; Suman, Oscar E.
2016-01-01
Introduction Burns lead to persistent and detrimental muscle breakdown and weakness. Standard treatment at our institution includes a voluntary 12-week rehabilitative exercise program to limit and reverse the effects of increased muscle catabolism. In the present work, we investigated if different durations of exercise, 6 or 12 weeks, produce comparable improvements in muscle strength, body composition, and cardiopulmonary fitness. Methods We prospectively enrolled and randomized patients with ≥30% total body surface area (TBSA) burned to receive 6- or 12-weeks of exercise rehabilitation. Patients were evaluated for muscle strength, oxygen consumption capacity, and lean body mass at discharge (n = 42) and post exercise. After 6 weeks (n = 18) or 12 weeks (n = 24) of exercise training, leg muscle strength was assessed as peak torque per body weight using a Biodex Isokinetic Dynamometer. Oxygen consumption capacity, measured as peak VO2, was studied using a standard treadmill-based test, and lean body mass was determined using dual-energy X-ray absorptiometry. Results Significant improvements in muscle strength, peak VO2, and lean body mass were seen after 6 weeks of exercise training (p<0.001), with only significant improvements in peak VO2 being seen after 6 weeks more of training. Conclusion These data suggest that a 6-week rehabilitative exercise program is sufficient for improving muscle strength, body composition, and cardiopulmonary fitness in pediatric burn patients. However, continuation of at- or near-home cardiopulmonary training following the 6 weeks of at-hospital rehabilitation may be useful. PMID:27908464
Cardiorespiratory responses during underwater and land treadmill exercise in college athletes.
Brubaker, Peter; Ozemek, Cemal; Gonzalez, Alimer; Wiley, Stephen; Collins, Gregory
2011-08-01
Underwater treadmill (UTM) exercise is being used with increased frequency for rehabilitation of injured athletes, yet there has been little research conducted on this modality. To determine the cardiorespiratory responses of UTM vs land treadmill (LTM) exercise, particularly with respect to the relationship between heart rate (HR) and oxygen consumption (VO2). This quantitative original research took place in sports medicine and athletic training facilities at Wake Forest University. 11 Wake Forest University student athletes (20.8 ± 0.6 y, 6 women and 5 men). All participants completed the UTM and LTM exercise-testing protocols in random order. After 5 min of standing rest, both UTM and LTM protocols had 4 stages of increasing belt speed (2.3, 4.9, 7.3, and 9.6 km/h) followed by 3 exercise stages at 9.6 km/h with increasing water-jet resistance (30%, 40%, and 50% of jet capacity) or inclines (1%, 2%, and 4% grade). A Cosmed K4b2 device with Polar monitor was used to collect HR, ventilation (Ve), tidal volume (TV), breathing frequency (Bf), and VO2 every minute. Ratings of perceived exertion (RPE) were also obtained each minute. There was no significant difference between UTM and LTM for VO2 at rest or during any stage of exercise except stage 3. Furthermore, there were no significant differences between UTM and LTM for HR, Ve, Bf, and RPE on any exercise stage. Linear regression of HR vs VO2, across all stages of exercise, indicates a similar relationship in these variables during UTM (r = .94, y = .269x - 10.86) and LTM (r = .95, y = .291x - 12.98). These data indicate that UTM and LTM exercise elicits similar cardiorespiratory responses and that HR can be used to guide appropriate exercise intensity for college athletes during UTM.
Effects on motor unit potentiation and ground reaction force from treadmill exercise
NASA Technical Reports Server (NTRS)
Elam, Reid P.
1989-01-01
This study was conducted to analyze the characteristics of motor unit potentiation (MUP) and ground reaction force (GRF) in treadmill exercise at the inclines of 0, 5.5 and 11 percent with conjuctive speeds of 7.5, 6, and 5 mph respectively. These speeds and corresponding inclines were set to provide equivalent physiological workloads at 12.5 METS. EMG recordings were taken from the rectus femoris and gastrocnemius of the right leg from 5 subjects. Simultaneous GRF recordings were obtained from a Delmar Avionic treadmill rigged with load cells. Measures for MUP and GRF were taken over a period containing 10 strides at steady pace. It was concluded that the gastrocnemius was more evident in EMG activity in all speed/incline settings over the rectus femoris, and that inclines from 5.5 to 11 percent produced greater GRF's over 0 percent. Recommendations for future studies was made.
Lyu, Xiafei; Li, Sheyu; Peng, Shifeng; Cai, Huimin; Liu, Guanjian; Ran, Xingwu
2016-05-01
Supervised treadmill exercise is the recommended therapy for peripheral arterial disease (PAD) patients with intermittent claudication (IC). However, most PAD patients do not exhibit typical symptoms of IC. The aim of the present study was to explore the efficacy and safety of intensive walking exercise in PAD patients with and without IC. The PubMed, Embase and Cochrane Library databases were systematically searched. Randomized controlled trials comparing the effects of intensive walking exercise with usual care in patients with PAD were included for systematic review and meta-analysis. Eighteen trials with 1200 patients were eligible for the present analysis. Compared with usual care, intensive walking exercise significantly improved the maximal walking distance (MWD), pain-free walking distance, and the 6-min walking distance in patients with PAD (P < 0.00001 for all). Subgroup analyses indicated that a lesser improvement in MWD was observed in the subgroup with more diabetes patients, and that the subgroup with better baseline walking ability exhibited greater improvement in walking performance. In addition, similar improvements in walking performance were observed for exercise programs of different durations and modalities. No significant difference was found in adverse events between the intensive walking and usual care groups (relative risk 0.84; 95% confidence interval 0.51, 1.39; P = 0.50). Regardless of exercise length and modality, regularly intensive walking exercise improves walking ability in PAD patients more than usual care. The presence of diabetes may attenuate the improvements in walking performance in patients with PAD following exercise. © 2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.
Gardner, Andrew W; Montgomery, Polly S; Afaq, Azhar
2007-07-01
This study compared the exercise performance of patients with peripheral arterial disease (PAD) who have different types of exertional leg pain. Patients with PAD were classified into one of four groups according to the San Diego Claudication Questionnaire: intermittent claudication (n = 406), atypical exertional leg pain causing patients to stop (n = 125), atypical exertional leg pain in which patients were able to continue walking (n = 81), and leg pain on exertion and rest (n = 103). Patients were assessed on the primary outcome measures of ankle-brachial index (ABI), treadmill exercise measures, and ischemic window. All patients experienced leg pain consistent with intermittent claudication during a standardized treadmill test. The mean (+/- SD) initial claudication distance (ICD) was similar (P = .642) among patients with intermittent claudication (168 +/- 160 meters), atypical exertional leg pain causing patients to stop (157 +/- 130 meters), atypical exertional leg pain in which patients were able to continue walking (180 +/- 149 meters), and leg pain on exertion and rest (151 +/- 136 meters). The absolute claudication distance (ACD) was similar (P = .648) in the four respective groups (382 +/- 232, 378 +/- 237, 400 +/- 245, and 369 +/- 236 meters). Similarly, the ischemic window, expressed as the area under the curve (AUC) after treadmill exercise, was similar (P = .863) in these groups (189 +/- 137, 208 +/- 183, 193 +/- 143, and 199 +/- 119 AUC). PAD patients with different types of exertional leg pain, all limited by intermittent claudication during a standardized treadmill test, were remarkably similar in ICD, ACD, and ischemic window. Thus, the presence of ambulatory symptoms should be of primary clinical concern in evaluating PAD patients regardless of whether they are consistent with classic intermittent claudication.
Kwan, Bethany M.; Bryan, Angela D.
2009-01-01
Problem: A positive affective response is associated with increased participation in voluntary exercise, but the mechanisms by which this occurs are not well known. Consistent with a Theory of Planned Behaviour perspective, we tested whether affective response to exercise leads to greater motivation in terms of attitudes, subjective norms, self-efficacy and intentions to exercise. We were also specifically interested in whether a positive affective response leads to more temporally stable intentions. Method: Participants (N = 127) self-reported Theory of Planned Behaviour constructs and exercise behavior at baseline and three months later, and provided reports of exercise-related affect during a 30-minute bout of moderate intensity treadmill exercise at baseline. Results: We show that participants who experience greater improvements in positive affect, negative affect and fatigue during exercise tended to report more positive attitudes, exercise self-efficacy and intentions to exercise three months later. Affective response was not predictive of subjective norms. As hypothesized, positive affective response was associated with more stable intentions over time. Conclusions: We conclude that a positive affective response to acute bouts of exercise can aid in building and sustaining exercise motivation over time. PMID:20161385
Han, Sang-Wan; Lee, Jeong-Woo
2018-06-01
[Purpose] This study aimed to investigate the effects of the therapeutic device combined with LED and microcurrent (MC) on muscle tone and stiffness in the calf muscle after its application during moderate aerobic exercise. [Subjects and Methods] Twenty healthy adult subjects were randomized to either the test group of the therapeutic device combined with LED and MC or the control group, and they walked on a 10%-sloped treadmill with a 5 km/hr speed for 30 minutes. Each of the subjects in the test group performed treadmill exercise with the therapeutic device attached to the edge of his or her calf muscle. After the exercise, the muscle tone and stiffness at the edge of the calf muscle were measured. [Results] With respect to the muscle tone, a statistically significant difference was found between the two groups only 5 minutes after the exercise. Concerning muscle stiffness, significant differences were shown between the two groups right after the exercise and 5 minutes after the exercise. [Conclusion] Integrated treatment with LED and MC on is considered helpful for lowering the muscle tone 5 minutes after the exercise, and for lowering the muscle stiffness right after the exercise and 5 minutes after the exercise.
Expert Systems In Medical Studies - A New Twist
NASA Astrophysics Data System (ADS)
Slagle, James R.; Long, John M.; Wick, Michael R.; Matts, John P.; Leon, Arthur S.
1986-03-01
The use of experts to evaluate large amounts of trial data results in increasingly expensive and time consuming research. We are investigating the role expert systems can play in reducing the time and expense of research projects. Current methods in large clinical studies for evaluating data are often crude and superficial. We have developed, for a large clinical trial, an expert system for analysis of treadmill exercise ECG test results. In the cases we are studying, a patient is given a treadmill exercise ECG test once a year for five years. Pairs of these exercise tests are then evaluated by cardiologists to determine the condition of the patient's heart. The results of our system show great promise for the use of expert systems in reducing the time and expense of large clinical trials.
Grisé, Kenneth N.; Olver, T. Dylan; McDonald, Matthew W.; Dey, Adwitia; Jiang, Mao; Lacefield, James C.; Shoemaker, J. Kevin; Noble, Earl G.; Melling, C. W. James
2016-01-01
Indices of cardiovascular autonomic neuropathy (CAN) in experimental models of Type 1 diabetes mellitus (T1DM) are often contrary to clinical data. Here, we investigated whether a relatable insulin-treated model of T1DM would induce deficits in cardiovascular (CV) autonomic function more reflective of clinical results and if exercise training could prevent those deficits. Sixty-four rats were divided into four groups: sedentary control (C), sedentary T1DM (D), control exercise (CX), or T1DM exercise (DX). Diabetes was induced via multiple low-dose injections of streptozotocin and blood glucose was maintained at moderate hyperglycemia (9–17 mM) through insulin supplementation. Exercise training consisted of daily treadmill running for 10 weeks. Compared to C, D had blunted baroreflex sensitivity, increased vascular sympathetic tone, increased serum neuropeptide Y (NPY), and decreased intrinsic heart rate. In contrast, DX differed from D in all measures of CAN (except NPY), including heart rate variability. These findings demonstrate that this T1DM model elicits deficits and exercise-mediated improvements to CV autonomic function which are reflective of clinical T1DM. PMID:26885531
Stoller, Oliver; de Bruin, Eling D; Schindelholz, Matthias; Schuster-Amft, Corina; de Bie, Rob A; Hunt, Kenneth J
2014-10-11
Exercise capacity is seriously reduced after stroke. While cardiopulmonary assessment and intervention strategies have been validated for the mildly and moderately impaired populations post-stroke, there is a lack of effective concepts for stroke survivors suffering from severe motor limitations. This study investigated the test-retest reliability and repeatability of cardiopulmonary exercise testing (CPET) using feedback-controlled robotics-assisted treadmill exercise (FC-RATE) in severely motor impaired individuals early after stroke. 20 subjects (age 44-84 years, <6 month post-stroke) with severe motor limitations (Functional Ambulatory Classification 0-2) were selected for consecutive constant load testing (CLT) and incremental exercise testing (IET) within a powered exoskeleton, synchronised with a treadmill and a body weight support system. A manual human-in-the-loop feedback system was used to guide individual work rate levels. Outcome variables focussed on standard cardiopulmonary performance parameters. Relative and absolute test-retest reliability were assessed by intraclass correlation coefficients (ICC), standard error of the measurement (SEM), and minimal detectable change (MDC). Mean difference, limits of agreement, and coefficient of variation (CoV) were estimated to assess repeatability. Peak performance parameters during IET yielded good to excellent relative reliability: absolute peak oxygen uptake (ICC =0.82), relative peak oxygen uptake (ICC =0.72), peak work rate (ICC =0.91), peak heart rate (ICC =0.80), absolute gas exchange threshold (ICC =0.91), relative gas exchange threshold (ICC =0.88), oxygen cost of work (ICC =0.87), oxygen pulse at peak oxygen uptake (ICC =0.92), ventilation rate versus carbon dioxide output slope (ICC =0.78). For these variables, SEM was 4-13%, MDC 12-36%, and CoV 0.10-0.36. CLT revealed high mean differences and insufficient test-retest reliability for all variables studied. This study presents first evidence on reliability and repeatability for CPET in severely motor impaired individuals early after stroke using a feedback-controlled robotics-assisted treadmill. The results demonstrate good to excellent test-retest reliability and appropriate repeatability for the most important peak cardiopulmonary performance parameters. These findings have important implications for the design and implementation of cardiovascular exercise interventions in severely impaired populations. Future research needs to develop advanced control strategies to enable the true limit of functional exercise capacity to be reached and to further assess test-retest reliability and repeatability in larger samples.
EXERCISE WITHIN LOWER BODY NEGATIVE PRESSURE AS AN ARTIFICIAL GRAVITY COUNTERMEASURE
NASA Technical Reports Server (NTRS)
Hargens, Alan R.; Lee, Stuart M. C.; Schneider, Suzanne M.; Boda, Wanda L.; Smith, Scott M.; Macias, Brandon R.; OLeary, Deborah D.; Meyer, R. Scott; Groppo, Eli R.; Cao, Peihong
2005-01-01
Current exercise systems for space, which attempt to maintain performance, are unable to generate cardiovascular and musculoskeletal loads similar to those on Earth [1, 2]. The purpose of our research is to evaluate the use of lower body negative pressure (LBNP) treadmill exercise to prevent deconditioning during simulated microgravity.
Hemodynamic Responses Associated with Post-exercise Hypotension in Normotensive Black Males.
ERIC Educational Resources Information Center
Headley, Samuel A.; And Others
The purpose of this study was to characterize the hemodynamic responses during recovery from moderate intensity exercise in young Black normotensive males. Nineteen normotensive men (age 24-26 years) walked continuously on a treadmill for 40 minutes at 50-60 percent heart rate reserve. Following exercise, blood pressure (by auscultation) and…
Causes of poor performance of horses during training, racing, or showing: 348 cases (1992-1996).
Martin, B B; Reef, V B; Parente, E J; Sage, A D
2000-02-15
To determine results for horses undergoing a high-speed treadmill examination, including videoendoscopy of the pharynx and larynx before and during exercise, echocardiography before and after exercise, and electrocardiography before, during, and after exercise, because of poor performance. Retrospective study. 348 horses. A definitive diagnosis was obtained for 256 (73.5%) horses. One hundred forty-eight horses had dynamic obstruction of the airway during exercise, 33 had clinically important cardiac arrhythmias alone, 22 had a combination of dynamic airway obstruction and clinically important cardiac arrhythmias, 19 had poor cardiac fractional shortening immediately after exercise, 10 had exertional rhabdomyolyis, 15 had clinically apparent lameness, and 9 had other disorders. Thirty-nine of the horses with dynamic obstruction of the airway during exercise had multiple airway abnormalities. Fifty-three horses also had subclinical myopathy Results suggest that a complete evaluation, including a high-speed treadmill examination, should be conducted in horses with poor performance, regardless or whether horses do or do not have a history of abnormal respiratory noises and particularly if the horses have grade-II or -III left laryngeal hemiplegia.
Colas-Ribas, Christophe; Signolet, Isabelle; Henni, Samir; Feuillloy, Mathieu; Gagnadoux, Frédéric; Abraham, Pierre
2016-10-01
The prevalence of pulmonary disease in patients with peripheral artery disease (PAD) has not been extensively studied. Recent evidence has shown that ∼20% of the patients have an atypical chest transcutaneous oxygen pressure (TcpO2) pattern during exercise, which suggests walking-induced hypoxemia. The main objectives of this study were to: (1) describe in a retrospective way the characteristics of the patients suffering from claudication, who attended a treadmill testing in our laboratory, (2) assess the prevalence of known or unknown pulmonary disease. The second aim of this study was to evaluate the impact of the therapeutic interventions on the walking capacities, after treatment, of the eventually detected pulmonary disorders.We retrospectively analyzed 1482 exercise TcpO2 test results. Patients that had no history of pulmonary disease, but either reported severe dyspnea or showed atypical profiles on their chest exercise-TcpO2, were advised to refer to the department of pneumology for additional investigations.In addition to the 166 patients with a history of pulmonary disease, 158 patients were suspected of unknown pulmonary disease from the result of their TcpO2 test. Many patients (n = 99/158, 62.7%) did not attend a pulmonologist visit. A pulmonary disease was established in 55 (93.2%) of the other 59 patients. Obstructive sleep apnea syndrome (OSAS) was the one and only diagnosis retained in 42/59 patients (71.2%). Among the 47 patients who had a second evaluation of their walking capacity on treadmill, 38 had treatment of the pulmonary disease found, vascular surgery treatment or a severe restricted diet, 9 had no treatment. Only the "treated" group showed a significant improvement in the maximal walking distance on treadmill between the 2 evaluations, 313 ± 251 m to 433 ± 317 m (P = 0.03).This retrospective pilot study underlines the high prevalence of both known and unknown pulmonary disease in patients whose primary complaint was lower limb claudication. Systematic screening and treatment of pulmonary disease in patients with claudication might be justified, to improve walking ability of such patients and possibly reduce or delay the requirement for revascularization. Prospective studies are required to confirm these preliminary results.
Manio, Mark Christian; Matsumura, Shigenobu; Inoue, Kazuo
2018-06-18
Diets containing fats of different proportions and types have been demonstrated to influence metabolism. These fats differ in long chain fatty acids (LCFAs) or medium chain fatty acids (MCFAs) content. In our laboratory using swimming as the training modality, MCFAs increased endurance attributed to increased activities of oxidative enzymes. How it affects whole-body metabolism remains unexplored. The present study investigated the metabolic, biochemical and genetic adaptations with treadmill running as the training modality. C57BL/6N mice were divided into untrained and trained groups and provided with low-fat (10% kcal from soybean oil), coconut oil (10% kcal from soybean oil, 20% kcal from coconut oil) or soybean oil (30% kcal from soybean oil) diet. Training was performed on a treadmill for 30 days. After recovery, whole-body metabolism at rest and during exercise, endurance, substrate metabolism, mitochondrial enzyme activities, and gene expression of training-adaptive genes in the muscle and liver were measured. At rest, medium-fat diets decreased respiratory exchange ratio (RER) (p < 0.05). Training increased RER in all diet groups without affecting oxygen consumption (p < 0.05). During exercise, diets had no overt effects on metabolism while training decreased oxygen consumption indicating decreased energy expenditure (p < 0.05). Coconut oil without training improved endurance based on work (p < 0.05). Training improved all endurance parameters without overt effects of diet (p < 0.05). Moreover, training increased the activities of mitochondrial enzymes likely related to the increased expression of estrogen related receptor (ERR) α and ERRβ (p < 0.05). Coconut oil inhibited peroxisome proliferator-activated receptor (PPAR) β/δ activation and glycogen accumulation in the muscle but activated PPARα in the liver in the trained state (p < 0.05). Substrate utilization data suggested that coconut oil and/or resulting ketone bodies spared glycogen utilization in the trained muscle during exercise thereby preserving endurance. Our data demonstrated the various roles of diet and fat types in training adaptation. Diets exerted different roles in PPAR activation and substrate handling in the context of endurance exercise training. However, the role of fat types in training adaptations is limited as training overwhelms and normalizes the effects of diet in the untrained state particularly on endurance performance, mitochondrial biogenesis, and ERR expression.
Solomon, Colin
2018-01-01
Background High-intensity interval training (HIIT) has been proposed as a time-efficient exercise format to improve exercise adherence, thereby targeting the chronic disease burden associated with sedentary behaviour. Exercise mode (cycling, running), if self-selected, will likely affect the physiological and enjoyment responses to HIIT in sedentary individuals. Differences in physiological and enjoyment responses, associated with the mode of exercise, could potentially influence the uptake and continued adherence to HIIT. It was hypothesised that in young sedentary men, local and systemic oxygen utilisation and enjoyment would be higher during a session of running HIIT, compared to a session of cycling HIIT. Methods A total of 12 sedentary men (mean ± SD; age 24 ± 3 years) completed three exercise sessions: a maximal incremental exercise test on a treadmill (MAX) followed by two experiment conditions, (1) free-paced cycling HIIT on a bicycle ergometer (HIITCYC) and (2) constant-paced running HIIT on a treadmill ergometer (HIITRUN). Deoxygenated haemoglobin (HHb) in the gastrocnemius (GN), the left vastus lateralis (LVL) and the right vastus lateralis (RVL) muscles, oxygen consumption (VO2), heart rate (HR), ratings of perceived exertion (RPE) and physical activity enjoyment (PACES) were measured during HIITCYC and HIITRUN. Results There was a higher HHb in the LVL (p = 0.001) and RVL (p = 0.002) sites and a higher VO2 (p = 0.017) and HR (p < 0.001) during HIITCYC, compared to HIITRUN. RPE was higher (p < 0.001) and PACES lower (p = 0.032) during HIITCYC compared to HIITRUN. Discussion In sedentary individuals, free-paced cycling HIIT produces higher levels of physiological stress when compared to constant-paced running HIIT. Participants perceived running HIIT to be more enjoyable than cycling HIIT. These findings have implications for selection of mode of HIIT for physical stress, exercise enjoyment and compliance.
Kriel, Yuri; Askew, Christopher D; Solomon, Colin
2018-01-01
High-intensity interval training (HIIT) has been proposed as a time-efficient exercise format to improve exercise adherence, thereby targeting the chronic disease burden associated with sedentary behaviour. Exercise mode (cycling, running), if self-selected, will likely affect the physiological and enjoyment responses to HIIT in sedentary individuals. Differences in physiological and enjoyment responses, associated with the mode of exercise, could potentially influence the uptake and continued adherence to HIIT. It was hypothesised that in young sedentary men, local and systemic oxygen utilisation and enjoyment would be higher during a session of running HIIT, compared to a session of cycling HIIT. A total of 12 sedentary men (mean ± SD; age 24 ± 3 years) completed three exercise sessions: a maximal incremental exercise test on a treadmill (MAX) followed by two experiment conditions, (1) free-paced cycling HIIT on a bicycle ergometer (HIITCYC) and (2) constant-paced running HIIT on a treadmill ergometer (HIITRUN). Deoxygenated haemoglobin (HHb) in the gastrocnemius (GN), the left vastus lateralis (LVL) and the right vastus lateralis (RVL) muscles, oxygen consumption (VO 2 ), heart rate (HR), ratings of perceived exertion (RPE) and physical activity enjoyment (PACES) were measured during HIITCYC and HIITRUN. There was a higher HHb in the LVL ( p = 0.001) and RVL ( p = 0.002) sites and a higher VO 2 ( p = 0.017) and HR ( p < 0.001) during HIITCYC, compared to HIITRUN. RPE was higher ( p < 0.001) and PACES lower ( p = 0.032) during HIITCYC compared to HIITRUN. In sedentary individuals, free-paced cycling HIIT produces higher levels of physiological stress when compared to constant-paced running HIIT. Participants perceived running HIIT to be more enjoyable than cycling HIIT. These findings have implications for selection of mode of HIIT for physical stress, exercise enjoyment and compliance.
Vanzella, Cláudia; Neves, Juliana Dalibor; Vizuete, Adriana Fernanda; Aristimunha, Dirceu; Kolling, Janaína; Longoni, Aline; Gonçalves, Carlos Alberto Saraiva; Wyse, Angela T S; Netto, Carlos Alexandre
2017-09-15
Clinical and pre-clinical studies indicate that exercise is beneficial to many aspects of brain function especially during aging. The present study investigated the effects of a treadmill running protocol in young (3month-old) and aged (22month-old) male Wistar rats, on: I) cognitive function, as assessed by spatial reference memory in the Morris water maze; II) oxidative stress parameters and the expression of neurotrophic factors BDNF, NT-3, IGF-1 and VEGF in the hippocampus. Animals of both ages were assigned to sedentary (non-exercised) and exercised (20min of daily running sessions, 3 times per week for 4weeks) groups. Cognition was assessed by a reference memory task run in the Morris water maze; twenty four hours after last session of behavioral testing hippocampi were collected for biochemical analysis. Results demonstrate that the moderate treadmill running exercise: I) prevented age-related deficits in reference memory in the Morris water maze; II) prevented the age-related increase of reactive oxygen species levels and lipid peroxidation in the hippocampus; III) caused an increase of BDNF, NT-3 and IGF-1 expression in the hippocampus of aged rats. Taken together, results suggest that both exercise molecular effects, namely the reduction of oxidative stress and the increase of neurotrophic factors expression in the hippocampus, might be related to its positive effect on memory performance in aged rats. Copyright © 2017 Elsevier B.V. All rights reserved.
Jones, K. D.; Burckhardt, C. S.; Deodhar, A. A.; Perrin, N. A.; Hanson, G. C.; Bennett, R. M.
2008-01-01
Objective A subset of fibromyalgia (FM) patients have a dysfunctional hypothalamic–pituitary–insulin-like growth factor 1 (IGF-1) axis, as evidenced by low serum levels of IGF-1 and a reduced growth hormone (GH) response to physiologic stimuli. There is evidence that pyridostigmine (PYD) improves the acute response of GH to exercise in FM patients. The purpose of this study was to evaluate the clinical effectiveness of 6 months of PYD and group exercise on FM symptoms. Methods FM patients were randomized to 1 of the following 4 groups: PYD plus exercise, PYD plus diet recall but no exercise, placebo plus exercise, and placebo plus diet recall but no exercise. The primary outcome measures were the visual analog scale (VAS) score for pain, tender point count, and total myalgic score. Secondary outcome measures were the total score on the Fibromyalgia Impact Questionnaire (FIQ) and FIQ VAS scores for individual symptoms (fatigue, poor sleep, stiffness, and anxiety), as well as quality of life (QOL) and physical fitness (lower body strength/endurance, upper and lower body flexibility, balance, and time on the treadmill). Results A total of 165 FM patients completed baseline measurements; 154 (93.3%) completed the study. The combination of PYD and exercise did not improve pain scores. PYD groups showed a significant improvement in sleep and anxiety in those who completed the study and in QOL in those who complied with the therapeutic regimen as compared with the placebo groups. Compared with the nonexercise groups, the 2 exercise groups demonstrated improvement in fatigue and fitness. PYD was generally well tolerated. Conclusion Neither the combination of PYD plus supervised exercise nor either treatment alone yielded improvement in most FM symptoms. However, PYD did improve anxiety and sleep, and exercise improved fatigue and fitness. We speculate that PYD may have improved vagal tone, thus benefiting sleep and anxiety; this notion warrants further study. PMID:18240245
Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin
2015-10-01
Evidence suggests that there are positive effects of exercise on learning and memory. Moreover, some studies have demonstrated that forced exercise plays the role of a stressor. This study was aimed at investigating the effects of different timing of exercise and exercise withdrawal on memory, and serum and hippocampal corticosterone (CORT) levels. Wistar rats were randomly divided into five groups: control, sham, exercise-rest (exercise withdrawal), rest-exercise (exercised group), and exercise-exercise (continuous exercise). Rats were forced to run on a treadmill for 1 h/day at a speed 20-21-m/min. Memory function was evaluated by the passive avoidance test in different intervals (1, 7 and 21 days) after foot shock. Findings showed that after the exercise withdrawal, short-term and mid-term memories, had significant enhancement compared to the control group, while the long-term memory did not present this result. In addition, the serum and hippocampal CORT levels were at the basal levels after the rest period in the exercise-rest group. In the rest-exercise group, exercise improved mid- and long-term memories, whereas continuous exercise improved all types short-, mid- and long-term memories, particularly the mid-term memory. Twenty-one and forty-two days of exercise significantly decreased the serum and hippocampal CORT levels. It seems that exercise for at least 21 days with no rest could affect biochemical factors in the brain. Also, regular continuous exercise plays an important role in memory function. Hence, the duration and withdraw of exercise are important factors for the neurobiological aspects of the memory responses.
Gomes, Evelim L. F. D.; Carvalho, Celso R. F.; Peixoto-Souza, Fabiana Sobral; Teixeira-Carvalho, Etiene Farah; Mendonça, Juliana Fernandes Barreto; Stirbulov, Roberto; Sampaio, Luciana Maria Malosá; Costa, Dirceu
2015-01-01
Objective The aim of the present study was to determine whether aerobic exercise involving an active video game system improved asthma control, airway inflammation and exercise capacity in children with moderate to severe asthma. Design A randomized, controlled, single-blinded clinical trial was carried out. Thirty-six children with moderate to severe asthma were randomly allocated to either a video game group (VGG; N = 20) or a treadmill group (TG; n = 16). Both groups completed an eight-week supervised program with two weekly 40-minute sessions. Pre-training and post-training evaluations involved the Asthma Control Questionnaire, exhaled nitric oxide levels (FeNO), maximum exercise testing (Bruce protocol) and lung function. Results No differences between the VGG and TG were found at the baseline. Improvements occurred in both groups with regard to asthma control and exercise capacity. Moreover, a significant reduction in FeNO was found in the VGG (p < 0.05). Although the mean energy expenditure at rest and during exercise training was similar for both groups, the maximum energy expenditure was higher in the VGG. Conclusion The present findings strongly suggest that aerobic training promoted by an active video game had a positive impact on children with asthma in terms of clinical control, improvementin their exercise capacity and a reductionin pulmonary inflammation. Trial Registration Clinicaltrials.gov NCT01438294 PMID:26301706
Wakata exercises on the COLBERT
2013-11-15
ISS038-E-002210 (14 Nov. 2013) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, equipped with a bungee harness, exercises on the Combined Operational Load Bearing External Resistance Treadmill (COLBERT) in the Tranquility node of the International Space Station.
FE Thirsk exercises on the TVIS in the SM
2009-11-11
ISS021-E-024162 (11 Nov. 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 21 flight engineer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.
2007-01-13
ISS014-E-11786 (13 Jan. 2007) --- Surrounded by hardware, astronaut Sunita L. Williams, Expedition 14 flight engineer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) (out of frame) in the Zvezda Service Module of the International Space Station.
2007-01-13
ISS014-E-11784 (13 Jan. 2007) --- Surrounded by hardware, astronaut Sunita L. Williams, Expedition 14 flight engineer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) (out of frame) in the Zvezda Service Module of the International Space Station.
Nunes, Rafael Amorim Belo; Barroso, Lúcia Pereira; Pereira, Alexandre da Costa; Krieger, José Eduardo; Mansur, Alfredo José
2014-01-01
Treadmill exercise test responses have been associated with cardiovascular prognosis in individuals without overt heart disease. Neurohumoral and nitric oxide responses may influence cardiovascular performance during exercise testing. Therefore, we evaluated associations between functional genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase, bradykinin receptor B2 and treadmill exercise test responses in men and women without overt heart disease. We enrolled 766 (417 women; 349 men) individuals without established heart disease from a check-up programme at the Heart Institute, University of São Paulo Medical School. Exercise capacity, chronotropic reserve, maximum heart-rate achieved, heart-rate recovery, exercise systolic blood pressure (SBP), exercise diastolic blood pressure (DBP) and SBP recovery were assessed during exercise testing. Genotypes for the α-adrenergic receptors ADRA1A Arg347Cys (rs1048101), ADRA2A 1780 C>T (rs553668), ADRA2B Del 301-303 (rs28365031), endothelial nitric synthase (eNOS) 786 T>C (rs2070744), eNOS Glu298Asp (rs1799983) and BK2R (rs5810761) polymorphisms were assessed by PCR and high-resolution melting analysis. Maximum SBP was associated with ADRA1A rs1048101 (p=0.008) and BK2R rs5810761 (p=0.008) polymorphisms in men and ADRA2A rs553668 (p=0.008) and ADRA2B rs28365031 (p=0.022) in women. Maximum DBP pressure was associated with ADRA2A rs553668 (p=0.002) and eNOS rs1799983 (p=0.015) polymorphisms in women. Exercise capacity was associated with eNOS rs2070744 polymorphisms in women (p=0.01) and with eNOS rs1799983 in men and women (p=0.038 and p=0.024). The findings suggest that genetic variants of α-adrenergic receptors and bradykinin B2 receptor may be involved with blood pressure responses during exercise tests. Genetic variants of endothelial nitric oxide synthase may be involved with exercise capacity and blood pressure responses during exercise tests. These responses may be gender-related.
Nunes, Rafael Amorim Belo; Barroso, Lúcia Pereira; Pereira, Alexandre da Costa; Krieger, José Eduardo; Mansur, Alfredo José
2014-01-01
Background Treadmill exercise test responses have been associated with cardiovascular prognosis in individuals without overt heart disease. Neurohumoral and nitric oxide responses may influence cardiovascular performance during exercise testing. Therefore, we evaluated associations between functional genetic polymorphisms of α-adrenergic receptors, endothelial nitric oxide synthase, bradykinin receptor B2 and treadmill exercise test responses in men and women without overt heart disease. Methods We enrolled 766 (417 women; 349 men) individuals without established heart disease from a check-up programme at the Heart Institute, University of São Paulo Medical School. Exercise capacity, chronotropic reserve, maximum heart-rate achieved, heart-rate recovery, exercise systolic blood pressure (SBP), exercise diastolic blood pressure (DBP) and SBP recovery were assessed during exercise testing. Genotypes for the α-adrenergic receptors ADRA1A Arg347Cys (rs1048101), ADRA2A 1780 C>T (rs553668), ADRA2B Del 301–303 (rs28365031), endothelial nitric synthase (eNOS) 786 T>C (rs2070744), eNOS Glu298Asp (rs1799983) and BK2R (rs5810761) polymorphisms were assessed by PCR and high-resolution melting analysis. Results Maximum SBP was associated with ADRA1A rs1048101 (p=0.008) and BK2R rs5810761 (p=0.008) polymorphisms in men and ADRA2A rs553668 (p=0.008) and ADRA2B rs28365031 (p=0.022) in women. Maximum DBP pressure was associated with ADRA2A rs553668 (p=0.002) and eNOS rs1799983 (p=0.015) polymorphisms in women. Exercise capacity was associated with eNOS rs2070744 polymorphisms in women (p=0.01) and with eNOS rs1799983 in men and women (p=0.038 and p=0.024). Conclusions The findings suggest that genetic variants of α-adrenergic receptors and bradykinin B2 receptor may be involved with blood pressure responses during exercise tests. Genetic variants of endothelial nitric oxide synthase may be involved with exercise capacity and blood pressure responses during exercise tests. These responses may be gender-related. PMID:25544888
Chen, Ching-Yi; Hsu, Hsiu-Ching; Lee, Bai-Chin; Lin, Hung-Ju; Chen, Ying-Hsien; Huang, Hui-Chun; Ho, Yi-Lwun; Chen, Ming-Fong
2010-04-01
To explore whether exercise can improve cardiac function in a post-myocardial infarction (MI) rabbit model and to determine contributing factors in the left ventricle (LV). Adult male New Zealand White rabbits (2.5-3 kg) underwent MI by ligation of the left anterior descending coronary artery. For 8 weeks after surgery, sham-operated, and post-MI rabbits were housed under sedentary conditions or assigned to a 4-week treadmill exercise protocol at a speed of 1.0 km/h for 30 min 5 days per week, then sacrificed. The non-infarcted region of the LV was harvested for further analysis. MI decreased left ventricular ejection fraction (LVEF) and increased thiobarbituric acid reactive substances (TBARS) generation in the LV. Exercise improved the cardiac function of MI rabbits. Left ventricular LC3II/LC3I (microtubule-associated protein light chain 3) in the MI group was 2.1-fold higher than that of the sham group, exercise significantly decreased LC3II/LC3I in the MI group. MI down-regulated the expression of heart-type fatty acid binding protein (h-FABP), and exercise up-regulated h-FABP. In addition, LVEF had a significantly positive correlation with h-FABP and a negative correlation with LC3II/LC3I. Exercise induced change in autophagic function and fatty acid utilization may contribute to the improvement in ventricular function in the infarcted heart.
Zaretsky, Dmitry V; Zaretskaia, Maria V; Durant, Pamela J; Rusyniak, Daniel E
2015-05-22
The contribution of exercise to hyperthermia mediated by MDMA is not known. We recently showed that inhibiting the dorsomedial hypothalamus (DMH) attenuated spontaneous locomotion and hyperthermia and prevented deaths in rats given MDMA in a warm environment. The goal of this study was to confirm that restoring locomotion through a treadmill would reverse these effects thereby confirming that locomotion mediated by the DMH contributes to MDMA-mediated hyperthermia. Rats were randomized to receive bilateral microinjections, into the region of the DMH, of muscimol (80pmol/100nl) or artificial CSF followed by a systemic dose of either MDMA (7.5mg/kg, i.v.) or saline. Immediately after the systemic injection, rats were placed on a motorized treadmill maintained at 32°C. Rats were exercised at a fixed speed (10m/min) until their core temperature reached 41°C. Our results showed that a fixed exercise load abolished the decreases in temperature and mortality, seen previously with inhibition of the DMH in freely moving rats. Therefore, locomotion mediated by neurons in the DMH is critical to the development of hyperthermia from MDMA. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of hindlimb unweighting on tissue blood flow in the rat
NASA Technical Reports Server (NTRS)
Mcdonald, K. S.; Delp, M. D.; Fitts, R. H.
1992-01-01
This study characterized distribution of blood flow in the rat during hindlimb unweighting (HU), and post-HU standing and exercise. The relationship between reduced hindlimb blood flow and the previously observed elevation in anaerobic metabolism observed with contractile activity in the atrophied soleus muscle was examined (Witzmann et al., 1992). Blood flow was measured during unweighting, normal standing, and running on a treadmill (15 m/min), after 15 days of HU or cage control. For another group blood flow was measured during preexercise treadmill standing and treadmill running. During unweighting, PE standing, and running no difference in soleus blood flow was observed between groups. Muscles composed mainly of fast twitch glycolytic fibers received greater blood flow during chronic unweighting. With exercise blood flow to visceral organs was reduced in control animals, a similar change was not seen in 15 day HU rats. These changes suggest a reduction in the ability of the sympathetic nervous system to distribute cardiac output after chronic HU. A reduction in blood flow to the soleus during exercise was not observed after HU and so does not explain the increased dependence of the atrophied soleus on anerobic energy production during contractile activity.
Stranahan, Alexis M; Martin, Bronwen; Maudsley, Stuart
2012-01-01
Physical activity has been correlated with a reduced incidence of cognitive decline and Alzheimer's disease in human populations. Although data from intervention-based randomized trials is scarce, there is some indication that exercise may confer protection against age-related deficits in cognitive function. Data from animal models suggests that exercise, in the form of voluntary wheel running, is associated with reduced amyloid deposition and enhanced clearance of amyloid beta, the major constituent of plaques in Alzheimer's disease. Treadmill exercise has also been shown to ameliorate the accumulation of phosphorylated tau, an essential component of neurofibrillary tangles in Alzheimer's models. A common therapeutic theme arising from studies of exercise-induced neuroprotection in human populations and in animal models involves reduced inflammation in the central nervous system. In this respect, physical activity may promote neuronal resilience by reducing inflammation.
Chen, Yu-Wen; Tzeng, Jann-Inn; Lin, Min-Fei; Hung, Ching-Hsia; Wang, Jhi-Joung
2014-08-01
Exercise causes a variety of psychophysical effects (eg, alterations in pain sensation). Tissue injury induces mediator releases in the spinal cord resulting in pain hypersensitivity; however, the contribution of the dorsal root ganglion (DRG) is poorly understood. In this study, we tested if forced treadmill running can attenuate postoperative pain and alter substance P (SP) or proinflammatory cytokine level in the DRG by using a rat model of skin/muscle incision and retraction (SMIR). We evaluated mechanical sensitivity to von Frey stimuli (6 and 15 g) and expression of SP, interleukin-1β, and interleukin-6 in the DRG of sham-operated sedentary rats, SMIR sedentary rats, sham-operated rats with forced treadmill running, and SMIR rats with forced treadmill running. At postoperative day 8, trained rats ran for 5 days per week for 4 weeks on a treadmill 70 minutes/d with an intensity of 18 m/min. On postoperative day 6, SMIR sedentary rats displayed a significant mechanical hypersensitivity that persisted until postoperative day 35. By comparison, SMIR-operated rats, which received forced treadmill running, exhibited a quick recovery from mechanical hypersensitivity. SMIR sedentary rats showed an upregulation of SP, interleukin-1β, and interleukin-6 in the DRG at postoperative days 14 and 28, whereas SMIR-operated rats receiving forced treadmill running reversed this upregulation at postoperative day 28. We concluded that forced treadmill running alleviated persistent postincisional pain caused by SMIR surgery. This appears to be protective against postoperative pain, which probably relates to the downturn in excess SP, interleukin-1β, and interleukin-6 in the DRG. Controlling the expression of SP, interleukin-6, and interleukin-1β in the DRG can help manage postoperative pain. This finding could potentially help clinicians and physical therapists who seek to examine how exercise may attenuate postsurgical pain and its mechanism. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.
Panascì, Marco; Lepers, Romuald; La Torre, Antonio; Bonato, Matteo; Assadi, Hervè
2017-09-01
The aim of this study was to compare the physiological responses during 15 min of intermittent running consisting of 30 s of high-intensity running exercise at maximal aerobic velocity (MAV) interspersed with 30 s of passive recovery (30-30) performed outdoor versus on a motorized treadmill. Fifteen collegiate physically active males (age, 22 ± 1 years old; body mass, 66 ± 7 kg; stature, 176 ± 06 cm; weekly training volume, 5 ± 2 h·week -1 ), performed the Fitness Intermittent Test 45-15 to determine maximal oxygen uptake (V̇O 2max ) and MAV and then completed in random order 3 different training sessions consisting of a 30-s run/30-s rest on an outdoor athletic track (30-30 Track) at MAV; a 30-s run/30-s rest on a treadmill (30-30 Treadmill) at MAV; a 30-s run/30-s rest at MAV+15% (30-30 + 15% MAV Treadmill). Oxygen uptake (V̇O 2 ), time above 90%V̇O 2max (t90%V̇O 2max ), and rating of perceived exertion (RPE) were measured during each training session. We observed a statistical significant underestimation of V̇O 2 (53.1 ± 5.4 mL·kg -1 ·min -1 vs 49.8 ± 6.7 mL·kg -1 ·min -1 , -6.3%, P = 0.012), t90%V̇O 2max (8.6% ± 11.5% vs 38.7% ± 32.5%, -77.8%, P = 0.008), RPE (11.4 ± 1.4 vs 16.5 ± 1.7, -31%, P < 0.0001) during the 30-30 Treadmill compared with the same training session performed on track. No statistical differences between 30-30 +15 % MAV Treadmill and 30-30 Track were observed. The present study demonstrates that a 15% increase in running velocity during a high-intensity intermittent treadmill training session is the optimal solution to reach the same physiological responses than an outdoor training session.
Phillips, Devin B; Ehnes, Cameron M; Welch, Bradley G; Lee, Lauren N; Simin, Irina; Petersen, Stewart R
2018-04-01
This study investigated physiological responses and performance during three separate exercise challenges (Parts I, II, and III) with wildland firefighting work clothing ensemble (boots and coveralls) and a 20.4 kg backpack in four conditions: U-EX (no pack, exercise clothing); L-EX (pack, exercise clothing); U-W (no pack, work clothing); and, L-W (pack and work clothing). Part I consisted of randomly-ordered graded exercise tests, on separate days, in U-EX, L-EX and L-W conditions. Part II consisted of randomly-ordered bouts of sub-maximal treadmill exercise in the four conditions. In Part III, subjects completed, in random-order on separate days, 4.83 km Pack Tests in L-EX or L-W conditions. In Part I, peak oxygen uptake was reduced (p < .05) in L-W. In Part II, mass-specific oxygen uptake was significantly higher in both work clothing conditions. In Part III, Pack Test time was slower (p < .05) in L-W. These results demonstrate the negative impact of work clothing and load carriage on physiological responses to exercise and performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Maejima, Hiroshi; Kanemura, Naohiko; Kokubun, Takanori; Murata, Kenji; Takayanagi, Kiyomi
2018-02-05
Aerobic exercise is known to increase expression of neurotrophins, particularly brain-derived neurotrophic factor (BDNF), in the hippocampus and to improve cognitive function. Exercise exerts neuroprotective effects in the hippocampus by inducing epigenetic changes, which play crucial roles in aging and neurodegenerative diseases. Specifically, the activity levels of histone acetyltransferases (HATs) and histone deacetylases (HDACs) regulate histone acetylation and modulate gene transcription. The objective of the present study was to assess the interactive effects of exercise and aging on cognitive function, expression of neurotrophins (BDNF and neurotrophin-4) and their receptors (tyrosine receptor kinase B and p75), and epigenetic regulations, including the activity of HATs and HADCs in the hippocampus. We used the senescence-accelerated mouse (SAM) model, specifically 13-month-old SAM resistant 1(SAMR1) and SAM prone 1 (SAMP1) lines. Mice were distributed into four groups based on accelerated senescence and exercise status. Mice in the exercise groups exercised on a treadmill for approximately 60min a day, 5days a week. Aerobic exercise for 4 weeks improved cognitive function, accompanied by an increase in BDNF expression and a decrease in p75 transcription in both SAMR1 and SAMP1. In addition, the exercise regimen activated both HAT and HDAC in the hippocampus. Therefore, the present study reveals that despite accelerated senescence, long-term exercise improved cognitive function, upregulated the expression of BDNF, and downregulated p75, a receptor involved in apoptotic signaling. Furthermore, long-term exercise enhanced activity of both HAT and HDAC, which may contribute to the transcriptional regulation underlying the improvement of cognitive function. Copyright © 2017 Elsevier B.V. All rights reserved.
Da Rocha, Emmanuel S; Kunzler, Marcos R; Bobbert, Maarten F; Duysens, Jacques; Carpes, Felipe P
2018-06-01
Walking is one of the preferred exercises among elderly, but could a prolonged walking increase gait variability, a risk factor for a fall in the elderly? Here we determine whether 30 min of treadmill walking increases coefficient of variation of gait in elderly. Because gait responses to exercise depend on fitness level, we included 15 sedentary and 15 active elderly. Sedentary participants preferred a lower gait speed and made smaller steps than the actives. Step length coefficient of variation decreased ~16.9% by the end of the exercise in both the groups. Stride length coefficient of variation decreased ~9% after 10 minutes of walking, and sedentary elderly showed a slightly larger step width coefficient of variation (~2%) at 10 min than active elderly. Active elderly showed higher walk ratio (step length/cadence) than sedentary in all times of walking, but the times did not differ in both the groups. In conclusion, treadmill gait kinematics differ between sedentary and active elderly, but changes over time are similar in sedentary and active elderly. As a practical implication, 30 min of walking might be a good strategy of exercise for elderly, independently of the fitness level, because it did not increase variability in step and stride kinematics, which is considered a risk of fall in this population.
Liu, Wenfeng; Chen, Gan; Li, Fanling; Tang, Changfa; Yin, Dazhong
2014-12-01
This study elucidated the role of CaN-NFAT signaling and neurotrophins on the transformation of myosin heavy chain isoforms in the rat soleus muscle fiber following aerobic exercise training. To do so, we examined the content and distribution of myosin heavy chain (MyHC) isoforms in the rat soleus muscle fiber, the activity of CaN and expression of NFATc1 in these fibers, and changes in the expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neutrophin-3 (NT-3) in the soleus and striatum following high-and medium-intensity aerobic treadmill training. Specific pathogen-free 2 month old male Sprague-Dawley (SD) rats were randomly divided into three groups: Control group (Con, n = 8), moderate-intensity aerobic exercise group (M-Ex, n = 8) and high-intensity aerobic exercise group (H-Ex, n = 8). We used ATPase staining to identify the muscle fiber type I and II, SDS-PAGE to separate and analyze the isoforms MyHCI, MyHCIIA, MyHCIIB and MyHCIIx, and performed western blots to determine the expression of NFATc1, NGF, BDNF and NT-3. CaN activity was measured using a colorimetric assay. In the soleus muscle, 8 weeks of moderate-intensity exercise can induce transformation of MyHC IIA and MyHC IIB to MyHC IIX and MyHC I (p < 0.01), while high-intensity treadmill exercise can induce transform MyHC IIx to MyHC IIB, MyHC IIA and MyHC I (p < 0.01). In comparison to the control group, CaN activity and NFATcl protein level were significantly increased in both the M-Ex and H-Ex groups (p < 0.05, p < 0.01), with a more pronounced upregulation in the M-Ex group (p < 0.05). Eight weeks of moderate- and high-intensity aerobic exercise induced the expression of NGF, BDNF and NT-3 in the soleus muscle and the striatum (p < 0.01), with the most significant increase in the H-Ex group (p < 0.01). In the rat soleus muscle, (1) CaN-NFATcl signaling contributes to the conversion of MyHC I isoform in response to moderate-intensity exercise; (2) Neurotrophins NGF, BDNF and NT-3 might play a role in the conversion of MyHC II isoform in response to high-intensity treadmill exercise. Key pointsEight weeks of moderate-intensity treadmill training induces the transformation MyHC IIA and MyHC IIB to MyHC IIX and MyHC I in the soleus muscles, while high-intensity exercise leads to transformation of MyHC IIX to MyHC IIA, MyHC IIB and MyHC I.MyHC I conversion in response to moderate-intensity aerobic exercise is mediated by calcineurin-NFATcl signaling.Eight weeks of moderate- and high-ntensity aerobic exercise induces the expression of NGF, BDNF and NT-3 in expression noted in rats subjected to high-intensity training. NGF and NT-3 expression in the striatum is lower than in the soleus muscle, while BDNF levels are similar. Neurotrophins may be involved in mediating MyHC II conversion in response to high-intensity aerobic exercise.
Excercise Within LBNP as an Artificial Gravity Countermeasure
NASA Technical Reports Server (NTRS)
Hargens, A. R.; Watenpaugh, D. E.; Lee, S. M. C.; Meyer, R. S.; Macias, B.; Tanaka, K.; Kimura, S.; Steinbach, G.; Groppo, E.; Khalili, N.;
2003-01-01
Previous exercise in space has lacked sufficient loads to maintain preflight cardiovascular and musculoskeletal mass and function. Lower body negative pressure (LBNP) produces a static force equivalent to one Earth body weight by each 52 mm Hg of LBNP during supine posture. LBNP also provides transmural blood pressures simulating upright exercise. Thus, this artificial-gravity concept may help maintain cardiovascular and musculoskeletal systems of crewmembers during prolonged exposure to microgravity. Currently available, bungee cord assisted, treadmill exercise is limited by harness discomfort, lower than normal loads, abnormal post-flight gait, and the absence of gravitational blood pressures within the vascular system. PURPOSE: This project evaluates a method to create artificial gravity using supine LBNP treadmill exercise to prevent loss of physiologic function in microgravity simulated by 30 days of bed rest. Identical twins were used as volunteers so that statistical power could be maximized. This countermeasure is being transitioned to space flight. CURRENT STATUS OF RESEARCH Methods: Six sets of identical twins (6 females and 14 males, 21-36 years) remained in 6 head-down tilt (HDT) bed rest for 30 days to simulate prolonged microgravity. Six subjects were randomly selected to exercise supine in an LBNP chamber for 40 minutes six days per week (EX group), while their twin brothers served as non-exercise controls (CON). Pressure within the exercise LBNP chamber was adjusted to increase load, hence increasing exercise intensity. During supine treadmill exercise, LBNP (52-63 mmHg) was applied to produce foot ward forces equivalent to those for upright running on Earth at 1.0-1.2 times body weight (BW) and subjects performed an interval exercise protocol (40-80% peak exercise capacity [VO2pk]). Five minutes of resting LBNP immediately followed each exercise session. Results: Orthostatic tolerance time decreased significantly after 30 days bed rest in the CON group, but was relatively maintained in the EX group. VO2pk was maintained in EX males, but not in CON males. Isokinetic knee strength (extension, peak torque) decreased significantly in CON males, but was preserved in EX males. The EX group had significantly higher spine muscle strength after bed rest than the CON group. The cross-sectional area of spinal muscle at L4/5 level decreased significantly in the CON group but not in the EX group. Urinary n-telopeptide excretion, an index of bone resorption, was increased during bed rest in CON, but not in EX subjects. This suggests protection by LBNP exercise against the increase in bone resorption typically seen in simulated and actual microgravity. Significant changes in bone mineral density (BMD) in the spine and ribs were observed in CON subjects, but not in EX subjects. Conclusions: Our treadmill exercise protocol within LBNP plus a short period of post-exercise LBNP maintains orthostatic responses, upright exercise capacity and other important physiologic parameters during bed rest. These results document the efficacy of our apparatus and exercise protocol for maintaining physiologic structure and function during long-duration microgravity as simulated by 30 days of HDT bed rest. FUTURE PLANS: More sets of female identical twins are needed to reach significance. The LBNP exercise chamber will be redesigned for flight.
Kotov Exercising on the TVIS during Expedition 15
2007-05-06
ISS015-E-07005 (6 May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.
Flight Engineer Donald R. Pettit exercises on the TVIS in the SM during Expedition Six
2003-03-20
ISS006-E-45265 (20 March 2003) --- Astronaut Donald R. Pettit, Expedition 6 NASA ISS science officer, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module on the International Space Station (ISS).
Kotov Exercising on the TVIS during Expedition 15
2007-05-06
ISS015-E-07003 (6 May 2007) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.
An Innovative Running Wheel-based Mechanism for Improved Rat Training Performance.
Chen, Chi-Chun; Yang, Chin-Lung; Chang, Ching-Ping
2016-09-19
This study presents an animal mobility system, equipped with a positioning running wheel (PRW), as a way to quantify the efficacy of an exercise activity for reducing the severity of the effects of the stroke in rats. This system provides more effective animal exercise training than commercially available systems such as treadmills and motorized running wheels (MRWs). In contrast to an MRW that can only achieve speeds below 20 m/min, rats are permitted to run at a stable speed of 30 m/min on a more spacious and high-density rubber running track supported by a 15 cm wide acrylic wheel with a diameter of 55 cm in this work. Using a predefined adaptive acceleration curve, the system not only reduces the operator error but also trains the rats to run persistently until a specified intensity is reached. As a way to evaluate the exercise effectiveness, real-time position of a rat is detected by four pairs of infrared sensors deployed on the running wheel. Once an adaptive acceleration curve is initiated using a microcontroller, the data obtained by the infrared sensors are automatically recorded and analyzed in a computer. For comparison purposes, 3 week training is conducted on rats using a treadmill, an MRW and a PRW. After surgically inducing middle cerebral artery occlusion (MCAo), modified neurological severity scores (mNSS) and an inclined plane test were conducted to assess the neurological damages to the rats. PRW is experimentally validated as the most effective among such animal mobility systems. Furthermore, an exercise effectiveness measure, based on rat position analysis, showed that there is a high negative correlation between the effective exercise and the infarct volume, and can be employed to quantify a rat training in any type of brain damage reduction experiments.
Leung, Ting-Kai; Kuo, Chia-Hua; Lee, Chi-Ming; Kan, Nai-Wen; Hou, Chien-Wen
2013-12-31
Previous biomolecular and animal studies have shown that a room-temperature far-infrared-rayemitting ceramic material (bioceramic) demonstrates physical-biological effects, including the normalization of psychologically induced stress-conditioned elevated heart rate in animals. In this clinical study, the Harvard step test, the resting metabolic rate (RMR) assessment and the treadmill running test were conducted to evaluate possible physiological effects of the bioceramic material in human patients. The analysis of heart rate variability (HRV) during the Harvard step test indicated that the bioceramic material significantly increased the high-frequency (HF) power spectrum. In addition, the results of RMR analysis suggest that the bioceramic material reduced oxygen consumption (VO2). Our results demonstrate that the bioceramic material has the tendency to stimulate parasympathetic responses, which may reduce resting energy expenditure and improve cardiorespiratory recovery following exercise.
Achiou, Zahra; Toumi, Hechmi; Touvier, Jérome; Boudenot, Arnaud; Uzbekov, Rustem; Ominsky, Michael S; Pallu, Stéphane; Lespessailles, Eric
2015-12-01
Glucocorticoids have a beneficial anti-inflammatory and immunosuppressive effect, but their use is associated with decreased bone formation, bone mass and bone quality, resulting in an elevated fracture risk. Exercise and sclerostin antibody (Scl-Ab) administration have both been shown to increase bone formation and bone mass, therefore the ability of these treatments to inhibit glucocorticoid-induced osteopenia alone or in combination were assessed in a rodent model. Adult (4 months-old) male Wistar rats were allocated to a control group (C) or one of 4 groups injected subcutaneously with methylprednisolone (5mg/kg/day, 5 days/week). Methylprednisolone treated rats were injected subcutaneously 2 days/week with vehicle (M) or Scl-Ab-VI (M+S: 25mg/kg/day) and were submitted or not to treadmill interval training exercise (1h/day, 5 days/week) for 9 weeks (M+E, M+E+S). Methylprednisolone treatment increased % fat mass and % apoptotic osteocytes, reduced whole body and femoral bone mineral content (BMC), reduced femoral bone mineral density (BMD) and osteocyte lacunae occupancy. This effect was associated with lower trabecular bone volume (BV/TV) at the distal femur. Exercise increased BV/TV, osteocyte lacunae occupancy, while reducing fat mass, the bone resorption marker NTx, and osteocyte apoptosis. Exercise did not affect BMC or cortical microarchitectural parameters. Scl-Ab increased the bone formation marker osteocalcin and prevented the deleterious effects of M on bone mass, further increasing BMC, BMD and BV/TV to levels above the C group. Scl-Ab increased femoral cortical bone parameters at distal part and midshaft. Scl-Ab prevented the decrease in osteocyte lacunae occupancy and the increase in osteocyte apoptosis induced by M. The addition of exercise to Scl-Ab treatment did not result in additional improvements in bone mass or bone strength parameters. These data suggest that although our exercise regimen did prevent some of the bone deleterious effects of glucocorticoid treatment, particularly in trabecular bone volume and osteocyte apoptosis, Scl-Ab treatment resulted in marked improvements in bone mass across the skeleton and in osteocyte viability, resulting in decreased bone fragility. Copyright © 2015 Elsevier Inc. All rights reserved.
Surgical Placement of Catheters for Long-term Cardiovascular Exercise Testing in Swine
van Duin, Richard W B; Verzijl, Annemarie; Reiss, Irwin K; Duncker, Dirk J; Merkus, Daphne
2016-01-01
This protocol describes the surgical procedure to chronically instrument swine and the procedure to exercise swine on a motor-driven treadmill. Early cardiopulmonary dysfunction is difficult to diagnose, particularly in animal models, as cardiopulmonary function is often measured invasively, requiring anesthesia. As many anesthetic agents are cardiodepressive, subtle changes in cardiovascular function may be masked. In contrast, chronic instrumentation allows for measurement of cardiopulmonary function in the awake state, so that measurements can be obtained under quiet resting conditions, without the effects of anesthesia and acute surgical trauma. Furthermore, when animals are properly trained, measurements can also be obtained during graded treadmill exercise. Flow probes are placed around the aorta or pulmonary artery for measurement of cardiac output and around the left anterior descending coronary artery for measurement of coronary blood flow. Fluid-filled catheters are implanted in the aorta, pulmonary artery, left atrium, left ventricle and right ventricle for pressure measurement and blood sampling. In addition, a 20 G catheter is positioned in the anterior interventricular vein to allow coronary venous blood sampling. After a week of recovery, swine are placed on a motor-driven treadmill, the catheters are connected to pressure and flow meters, and swine are subjected to a five-stage progressive exercise protocol, with each stage lasting 3 min. Hemodynamic signals are continuously recorded and blood samples are taken during the last 30 sec of each exercise stage. The major advantage of studying chronically instrumented animals is that it allows serial assessment of cardiopulmonary function, not only at rest but also during physical stress such as exercise. Moreover, cardiopulmonary function can be assessed repeatedly during disease development and during chronic treatment, thereby increasing statistical power and hence limiting the number of animals required for a study. PMID:26889804
Impaired chronotropic response to physical activities in heart failure patients.
Shen, Hong; Zhao, Jianrong; Zhou, Xiaohong; Li, Jingbo; Wan, Qing; Huang, Jing; Li, Hui; Wu, Liqun; Yang, Shungang; Wang, Ping
2017-05-25
While exercise-based cardiac rehabilitation has a beneficial effect on heart failure hospitalization and mortality, it is limited by the presence of chronotropic incompetence (CI) in some patients. This study explored the feasibility of using wearable devices to assess impaired chronotropic response in heart failure patients. Forty patients with heart failure (left ventricular ejection fraction, LVEF: 44.6 ± 5.8; age: 54.4 ± 11.7) received ECG Holter and accelerometer to monitor heart rate (HR) and physical activities during symptom-limited treadmill exercise testing, 6-min hall walk (6MHW), and 24-h daily living. CI was defined as maximal HR during peak exercise testing failing to reach 70% of age-predicted maximal HR (APMHR, 220 - age). The correlation between HR and physical activities in Holter-accelerometer recording was analyzed. Of 40 enrolled patients, 26 were able to perform treadmill exercise testing. Based on exercise test reports, 13 (50%) of 26 patients did not achieve at least 70% of APMHR (CI patients). CI patients achieved a lower % APMHR (62.0 ± 6.3%) than non-CI patients who achieved 72.0 ± 1.2% of APMHR (P < 0.0001). When Holter-accelerometer recording was used to assess chronotropic response, the percent APMHR achieved during 6MHW and physical activities was significantly lower in CI patients than in non-CI patients. CI patients had a significantly shorter 6MHW distance and less physical activity intensity than non-CI patients. The study found impaired chronotropic response in 50% of heart failure patients who took treadmill exercise testing. The wearable Holter-accelerometer recording could help to identify impaired chronotropic response to physical activities in heart failure patients. ClinicalTrials.gov ID NCT02358603 . Registered 16 May 2014.
Effects of different duration exercise programs in children with severe burns.
Clayton, Robert P; Wurzer, Paul; Andersen, Clark R; Mlcak, Ronald P; Herndon, David N; Suman, Oscar E
2017-06-01
Burns lead to persistent and detrimental muscle breakdown and weakness. Standard treatment at our institution includes a voluntary 12-week rehabilitative exercise program to limit and reverse the effects of increased muscle catabolism. In the present work, we investigated if different durations of exercise, 6 or 12 weeks, produce comparable improvements in muscle strength, body composition, and cardiopulmonary fitness. We prospectively enrolled and randomized patients with ≥30% total body surface area (TBSA) burned to receive 6 or 12 weeks of exercise rehabilitation. Patients were evaluated for muscle strength, oxygen consumption capacity, and lean body mass at discharge (n=42) and after exercise. After 6 weeks (n=18) or 12 weeks (n=24) of exercise training, leg muscle strength was assessed as peak torque per body weight using a Biodex isokinetic dynamometer. Oxygen consumption capacity, measured as peak VO 2 , was studied using a standard treadmill-based test, and lean body mass was determined using dual-energy X-ray absorptiometry. Significant improvements in muscle strength, peak VO 2 , and lean body mass were seen after 6 weeks of exercise training (p<0.001), with only significant improvements in peak VO 2 being seen after 6 weeks more of training. These data suggest that a 6-week rehabilitative exercise program is sufficient for improving muscle strength, body composition, and cardiopulmonary fitness in pediatric burn patients. However, continuation of at- or near-home cardiopulmonary training following the 6 weeks of at-hospital rehabilitation may be useful. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Heat Production During Countermeasure Exercises Planned for the International Space Station
NASA Technical Reports Server (NTRS)
Rapley, Michael G.; Lee, Stuart M. C.; Guilliams, Mark E.; Greenisen, Michael C.; Schneider, Suzanne M.
2004-01-01
This investigation's purpose was to determine the amount of heat produced when performing aerobic and resistance exercises planned as part of the exercise countermeasures prescription for the ISS. These data will be used to determine thermal control requirements of the Node 1 and other modules where exercise hardware might reside. To determine heat production during resistive exercise, 6 subjects using the iRED performed 5 resistance exercises which form the core exercises of the current ISS resistive exercise countermeasures. Each exerciser performed a warm-up set at 50% effort, then 3 sets of increasing resistance. We measured oxygen consumption and work during each exercise. Heat loss was calculated as the difference between the gross energy expenditure (minus resting metabolism) and the work performed. To determine heat production during aerobic exercise, 14 subjects performed an interval, cycle exercise protocol and 7 subjects performed a continuous, treadmill protocol. Each 30-min. exercise is similar to exercises planned for ISS. Oxygen consumption monitored continuously during the exercises was used to calculate the gross energy expenditure. For cycle exercise, work performed was calculated based on the ergometer's resistance setting and pedaling frequency. For treadmill, total work was estimated by assuming 25% work efficiency and subtracting the calculated heat production and resting metabolic rate from the gross energy expenditure. This heat production needs to be considered when determining the location of exercise hardware on ISS and designing environmental control systems. These values reflect only the human subject s produced heat; heat produced by the exercise hardware also will contribute to the heat load.
Intense Exercise Promotes Adult Hippocampal Neurogenesis But Not Spatial Discrimination
So, Ji H.; Huang, Chao; Ge, Minyan; Cai, Guangyao; Zhang, Lanqiu; Lu, Yisheng; Mu, Yangling
2017-01-01
Hippocampal neurogenesis persists throughout adult life and plays an important role in learning and memory. Although the influence of physical exercise on neurogenesis has been intensively studied, there is controversy in regard to how the impact of exercise may vary with its regime. Less is known about how distinct exercise paradigms may differentially affect the learning behavior. Here we found that, chronic moderate treadmill running led to an increase of cell proliferation, survival, neuronal differentiation, and migration. In contrast, intense running only promoted neuronal differentiation and migration, which was accompanied with lower expressions of vascular endothelial growth factor, brain-derived neurotrophic factor, insulin-like growth factor 1, and erythropoietin. In addition, the intensely but not mildly exercised animals exhibited a lower mitochondrial activity in the dentate gyrus. Correspondingly, neurogenesis induced by moderate but not intense exercise was sufficient to improve the animal’s ability in spatial pattern separation. Our data indicate that the effect of exercise on spatial learning is intensity-dependent and may involve mechanisms other than a simple increase in the number of new neurons. PMID:28197080
Leelarungrayub, Donrawee; Saidee, Kunteera; Pothongsunun, Prapas; Pratanaphon, Sainetee; YanKai, Araya; Bloomer, Richard J
2011-07-01
This study evaluated the change in blood oxidative stress, blood interleukin-2, and physical performance following 6 weeks of moderate intensity and duration aerobic dance exercise in 24 sedentary women. Blood samples were collected at rest twice before (baseline) and after the 6-week intervention for analysis of protein hydroperoxide (PrOOH), malondialdehyde (MDA), total anti-oxidant capacity (TAC), and interleukin-2 (IL-2) levels. Maximal treadmill run time (Time(max)) and maximal oxygen consumption (VO(2max)) were also measured. All variables were statistically analyzed with a repeated measurement ANOVA and Tukey post hoc. No differences were noted in any variable during the baseline period (p > 0.05). After aerobic dance exercise, VO(2max), Time(max), TAC and IL-2 were significantly increased, whereas MDA levels were decreased significantly (p < 0.05). PrOOH did not change either between baseline measures or after exercise. It can be concluded that aerobic dance exercise at a moderate intensity and duration can improve physical fitness, decrease MDA, and increase TAC and IL-2 in previously sedentary women. Copyright © 2010 Elsevier Ltd. All rights reserved.
Fahimi, Atoossa; Baktir, Mehmet Akif; Moghadam, Sarah; Mojabi, Fatemeh S; Sumanth, Krithika; McNerney, M Windy; Ponnusamy, Ravikumar; Salehi, Ahmad
2017-05-01
While it has been known that physical activity can improve cognitive function and protect against neurodegeneration, the underlying mechanisms for these protective effects are yet to be fully elucidated. There is a large body of evidence indicating that physical exercise improves neurogenesis and maintenance of neurons. Yet, its possible effects on glial cells remain poorly understood. Here, we tested whether physical exercise in mice alters the expression of trophic factor-related genes and the status of astrocytes in the dentate gyrus of the hippocampus. In addition to a significant increase in Bdnf mRNA and protein levels, we found that 4 weeks of treadmill and running wheel exercise in mice, led to (1) a significant increase in synaptic load in the dentate gyrus, (2) alterations in astrocytic morphology, and (3) orientation of astrocytic projections towards dentate granule cells. Importantly, these changes were possibly linked to increased TrkB receptor levels in astrocytes. Our study suggests that astrocytes actively respond and could indeed mediate the positive effects of physical exercise on the central nervous system and potentially counter degenerative processes during aging and neurodegenerative disorders.
See hear: psychological effects of music and music-video during treadmill running.
Hutchinson, Jasmin C; Karageorghis, Costas I; Jones, Leighton
2015-04-01
There is a paucity of work addressing the distractive, affect-enhancing, and motivational influences of music and video in combination during exercise. We examined the effects of music and music-and-video on a range of psychological and psychophysical variables during treadmill running at intensities above and below ventilatory threshold (VT). Participants (N = 24) exercised at 10 % of maximal capacity below VT and 10 % above under music-only, music-and-video, and control conditions. There was a condition × intensity × time interaction for perceived activation and state motivation, and an intensity × time interaction for state attention, perceived exertion (RPE), and affective valence. The music-and-video condition elicited the highest levels of dissociation, lowest RPE, and most positive affective responses regardless of exercise intensity. Attentional manipulations influence psychological and psychophysical variables at exercise intensities above and below VT, and this effect is enhanced by the combined presentation of auditory and visual stimuli.
Veasey, R C; Gonzalez, J T; Kennedy, D O; Haskell, C F; Stevenson, E J
2013-09-01
The current study assessed the interactive effect of breakfast and exercise on cognition and mood. Twelve active males completed four trials; no breakfast-rest, breakfast-rest, no breakfast-exercise or breakfast-exercise in a randomized, cross-over design. The trials consisted of; breakfast or fast, a 2h rest, exercise (treadmill run) or equivalent rest, a chocolate milk drink, a 90 min rest and an ad libitum lunch. Cognitive performance and mood were recorded frequently throughout each trial. Data was analysed as pre-exercise/rest, during and immediately post exercise/rest and post-drink. No effects were found prior to consumption of the drink. Post-drink, fasting before exercise increased mental fatigue compared to consuming breakfast before exercise and fasting before rest. Tension increased when breakfast was consumed at rest and when exercise was undertaken fasted compared to omitting breakfast before rest. Breakfast before rest decreased rapid visual information processing task speed and impaired Stroop performance. Breakfast omission improved Four Choice Reaction Time performance. To conclude, breakfast before exercise appeared beneficial for post-exercise mood even when a post-exercise snack was consumed. Exercise reversed post-breakfast cognitive impairment in active males. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cassar, Andrew; Prasad, Megha; Rodriguez-Porcel, Martin; Reeder, Guy S; Karia, Darshak; DeMaria, Anthony N; Lerman, Amir
2014-03-01
To assess the safety and efficacy of extracorporeal shockwave myocardial revascularization (ESMR) therapy in treating patients with refractory angina pectoris. A single-arm multicenter prospective trial to assess safety and efficacy of the ESMR therapy in patients with refractory angina (class III/IV angina) was performed. Screening exercise treadmill tests and pharmacological single-photon emission computed tomography (SPECT) were performed for all patients to assess exercise capacity and ischemic burden. Patients were treated with 9 sessions of ESMR to ischemic areas over 9 weeks. Efficacy end points were exercise capacity by using treadmill test as well as ischemic burden on pharmacological SPECT at 4 months after the last ESMR treatment. Safety measures included electrocardiography, echocardiography, troponin, creatine kinase, and brain natriuretic peptide testing, and pain questionnaires. Fifteen patients with medically refractory angina and no revascularization options were enrolled. There was a statistically significant mean increase of 122.3±156.9 seconds (38% increase compared with baseline; P=.01) in exercise treadmill time from baseline (319.8±157.2 seconds) to last follow-up after the ESMR treatment (422.1±183.3 seconds). There was no improvement in the summed stress perfusion scores after pharmacologically induced stress SPECT at 4 months after the last ESMR treatment in comparison to that at screening; however, SPECT summed stress score revealed that untreated areas had greater progression in ischemic burden vs treated areas (3.69±6.2 vs 0.31±4.5; P=.03). There was no significant change in the mean summed echo score from baseline to posttreatment (0.4±5.1; P=.70). The ESMR therapy was performed safely without any adverse events in electrocardiography, echocardiography, troponins, creatine kinase, or brain natriuretic peptide. Pain during the ESMR treatment was minimal (a score of 0.5±1.2 to 1.1±1.2 out of 10). In this multicenter feasibility study, ESMR seems to be a safe and efficacious treatment for patients with refractory angina pectoris. However, larger sham-controlled trials will be required to confirm these findings. Copyright © 2014 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Yamashina, Yoshihiro; Yokoyama, Hisayo; Naghavi, Nooshin; Hirasawa, Yoshikazu; Takeda, Ryosuke; Ota, Akemi; Imai, Daiki; Miyagawa, Toshiaki; Okazaki, Kazunobu
2016-05-01
The purpose of the present study was to investigate the effect of walking in water on respiratory muscle fatigue compared with that of walking on land at the same exercise intensity. Ten healthy males participated in 40-min treadmill walking trials on land and in water at an intensity of 60% of peak oxygen consumption. Respiratory function and respiratory muscle strength were evaluated before and after walking trials. Inspiratory muscle strength and forced expiratory volume in 1 s were significantly decreased immediately after walking in water, and expiratory muscle strength was significantly decreased immediately and 5 min after walking in water compared with the baseline. The decreases of inspiratory and expiratory muscle strength were significantly greater compared with that after walking on land. In conclusion, greater inspiratory and expiratory muscle fatigue was induced by walking in water than by walking on land at the same exercise intensity in healthy young men.
Beneficial effects of exercise training in heart failure are lost in male diabetic rats.
Boudia, Dalila; Domergue, Valérie; Mateo, Philippe; Fazal, Loubina; Prud'homme, Mathilde; Prigent, Héloïse; Delcayre, Claude; Cohen-Solal, Alain; Garnier, Anne; Ventura-Clapier, Renée; Samuel, Jane-Lise
2017-12-01
Exercise training has been demonstrated to have beneficial effects in patients with heart failure (HF) or diabetes. However, it is unknown whether diabetic patients with HF will benefit from exercise training. Male Wistar rats were fed either a standard (Sham, n = 53) or high-fat, high-sucrose diet ( n = 66) for 6 mo. After 2 mo of diet, the rats were already diabetic. Rats were then randomly subjected to either myocardial infarction by coronary artery ligation (MI) or sham operation. Two months later, heart failure was documented by echocardiography and animals were randomly subjected to exercise training with treadmill for an additional 8 wk or remained sedentary. At the end, rats were euthanized and tissues were assayed by RT-PCR, immunoblotting, spectrophotometry, and immunohistology. MI induced a similar decrease in ejection fraction in diabetic and lean animals but a higher premature mortality in the diabetic group. Exercise for 8 wk resulted in a higher working power developed by MI animals with diabetes and improved glycaemia but not ejection fraction or pathological phenotype. In contrast, exercise improved the ejection fraction and increased adaptive hypertrophy after MI in the lean group. Trained diabetic rats with MI were nevertheless able to develop cardiomyocyte hypertrophy but without angiogenic responses. Exercise improved stress markers and cardiac energy metabolism in lean but not diabetic-MI rats. Hence, following HF, the benefits of exercise training on cardiac function are blunted in diabetic animals. In conclusion, exercise training only improved the myocardial profile of infarcted lean rats fed the standard diet. NEW & NOTEWORTHY Exercise training is beneficial in patients with heart failure (HF) or diabetes. However, less is known of the possible benefit of exercise training for HF patients with diabetes. Using a rat model where both diabetes and MI had been induced, we showed that 2 mo after MI, 8 wk of exercise training failed to improve cardiac function and metabolism in diabetic animals in contrast to lean animals.
Development of Training Programs to Optimize Planetary Ambulation
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Miller, C. A.; Brady, R.; Warren, L. E.; Rutley, T. M.; Kozlovskaya, I. B.
2007-01-01
Astronauts experience disturbances in functional mobility following their return to Earth due to adaptive responses that occur during exposure to the microgravity conditions of space flight. Despite significant time spent performing in-flight exercise routines, these training programs have not been able to mitigate postflight alterations in postural and locomotor function. Therefore, the goal of our two inter-related projects (NSBRI-ground based and ISS flight study, "Mobility") is to develop and test gait training programs that will serve to optimize functional mobility during the adaptation period immediately following space flight, thereby improving the safety and efficiency of planetary ambulation. The gait training program entails manipulating the sensory conditions of treadmill exercise to systematically challenge the balance and gait control system. This enhances the overall adaptability of locomotor function enabling rapid reorganization of gait control to respond to ambulation in different gravitational environments. To develop the training program, we are conducting a series of ground-based studies evaluating the training efficacy associated with variation in visual flow, body loading, and support surface stability during treadmill walking. We will also determine the optimal method to present training stimuli within and across training sessions to maximize both the efficacy and efficiency of the training procedure. Results indicate that variations in both visual flow and body unloading during treadmill walking leads to modification in locomotor control and can be used as effective training modalities. Additionally, the composition and timing of sensory challenges experienced during each training session has significant impact on the ability to rapidly reorganize locomotor function when exposed to a novel sensory environment. We have developed the capability of producing support surface variation during gait training by mounting a treadmill on a six-degree-of-freedom motion device. This hardware development will allow us to evaluate the efficacy of this type of training in conjunction with variation in visual flow and body unloading.
Cooke, Matthew B; Nix, Carrie M; Greenwood, Lori D; Greenwood, Mike C
2018-03-01
Cooke, MB, Nix, C, Greenwood, L, and Greenwood, M. No Differences Between Alter G-Trainer and Active and Passive Recovery Strategies on Isokinetic Strength, Systemic Oxidative Stress and Perceived Muscle Soreness After Exercise-Induced Muscle Damage. J Strength Cond Res 32(3): 736-747, 2018-The incidence of muscle injuries is prevalent in elite sport athletes and weekend warriors and strategies that safely and effectively hasten recovery are highly desirable. The purpose of this study was to examine the differences between 3 recovery methods after eliciting muscle damage in recreationally active men relative to maximal isokinetic contractions, perceived muscle soreness, and psychological mood states. Twenty-five recreationally active men (22.15 ± 3.53 years, 75.75 ± 11.91 kg, 180.52 ± 7.3 cm) were randomly matched by V[Combining Dot Above]O2 peak (53.86 ± 6.65 ml·kg·min) and assigned to one of 3 recovery methods: anti-gravity treadmill (G-Trainer) (N = 8), conventional treadmill (N = 8) or static stretching (N = 9). Recovery methods were performed 30 minutes, 24, 48, and 72 hours after a 45-minute downhill run. Following eccentrically biased running, no significant differences were noted in isokinetic knee flexion and extension peak torque, systemic markers of muscle damage, oxidative stress and lipid peroxidation such as serum creatine kinase (CK), superoxide dismutase (SOD), and malondialdehyde (MDA), respectively, and subjective ratings of perceived muscle soreness between recovery methods. The G-Trainer group did however display a higher mood state as indicated by the Profile of Mood State global scores at 24 hours postexercise when compared to the conventional treadmill recovery group (p = 0.035). The improved mood state after the use of the anti-gravity treadmill may provide clinical relevance to other populations.
Salgueiro, Rafael Barrera; Gerlinger-Romero, Frederico; Guimarães-Ferreira, Lucas; de Castro Barbosa, Thais; Nunes, Maria Tereza
2017-12-15
L-Arginine has emerged as an important supplement for athletes and non-athletes in order to improve performance. Arginine has been extensively used as substrate for nitric oxide synthesis, leading to increased vasodilatation and hormonal secretion. However, the chronic consumption of arginine has been shown to impair insulin sensitivity. In the present study, we aimed to evaluate whether chronic arginine supplementation associated with exercise training would have a beneficial impact on insulin sensitivity. We, therefore, treated Wistar rats for 4weeks with arginine, associated or not with exercise training (treadmill). We assessed the somatotropic activation, by evaluating growth hormone (GH) gene expression and protein content in the pituitary, as well is GH concentration in the serum. Additionally, we evaluate whole-body insulin sensitivity, by performing an insulin tolerance test. Skeletal muscle morpho-physiological parameters were also assessed. Insulin sensitivity was impaired in the arginine-treated rats. However, exercise training reversed the negative effects of arginine. Arginine and exercise training increased somatotropic axis function, muscle mass and body weight gain. The combination arginine and exercise training further decreased total fat mass. Our results confirm that chronic arginine supplementation leads to insulin resistance, which can be reversed in the association with exercise training. We provide further evidence that exercise training is an important tool to improve whole-body metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.
Tahamtan, Mahshid; Allahtavakoli, Mohammad; Abbasnejad, Mehdi; Roohbakhsh, Ali; Taghipour, Zahra; Taghavi, Mohsen; Khodadadi, Hassan; Shamsizadeh, Ali
2013-12-01
There is evidence that exercise decreases ischemia/reperfusion injury in rats. Since behavioral deficits are the main outcome in patients after stroke, our study was designed to investigate whether exercise preconditioning improves the acute behavioral functions and also brain inflammatory injury following cerebral ischemia. Male rats weighing 250-300 g were randomly allocated into five experimental groups. Exercise was performed on a treadmill 30min/day for 3 weeks. Ischemia was induced by 4-vessel occlusion method. Recognition memory was assessed by novel object recognition task (NORT) and step-through passive avoidance task. Sensorimotor function and motor movements were evaluated by adhesive removal test and ledged beam-walking test, respectively. Brain inflammatory injury was evaluated by histological assessment. In NORT, the discrimination ratio was decreased after ischemia (P < 0.05) and exercise preconditioning improved it in ischemic animals. In the passive avoidance test, a significant reduction in response latency was observed in the ischemic group. Exercise preconditioning significantly decreased the response latency in the ischemic rats (P < 0.001). In the adhesive removal test, latency to touch and remove the sticky labels from forepaw was increased following induction of ischemia (all P < 0.001) and exercise preconditioning decreased these indices compared to the ischemic group (all P < 0.001). In the ledged beam-walking test, the slip ratio was increased following ischemia (P < 0.05). In the ischemia group, marked neuronal injury in hippocampus was observed. These neuropathological changes were attenuated by exercise preconditioning (P < 0.001). Our results showed that exercise preconditioning improves behavioral functions and maintains more viable cells in the dorsal hippocampus of the ischemic brain.
The NASA-USPHS Health Evaluation and Enhancement Program
NASA Technical Reports Server (NTRS)
Durbeck, D. C.; Heinzelmann, F.; Moxley, R. T., III; Schacther, J.; Payne, G. H.; Limoncelli, D. D.; Fox, S. M., III; Arnoldi, L. B.
1972-01-01
An exercise program was initiated to assess the feasibility of an on the job health evaluation and enhancement program, as well as to identify the factors which influenced volunteering, adherence, and effectiveness of the program. The program was utilized by 237 of the 998 eligible Federal employees, with a mean attendance of 1.3 days per week. Those who volunteered perceived a need for increased physical activity, felt they had sufficient time to participate, and derived subjective as well as objective benefits. Significant improvements were found in heart rate response to the standard exercise test, body weight, skinfold measurements, and triglycerides. A consistent relationship was found between subjectively reported effects of the program on work, health habits, and behavior, and improvement in cardiovascular function, based on treadmill performance. Numerous personal and programmatic factors influencing volunteering and participation were identified.
Postural control after a prolonged treadmill run at individual ventilatory and anaerobic threshold.
Guidetti, Laura; Franciosi, Emanuele; Gallotta, Maria Chiara; Emerenziani, Gian Pietro; Baldari, Carlo
2011-01-01
The objective of the study was to verify whether young males' balance was affected by 30min prolonged treadmill running (TR) at individual ventilatory (IVT) and anaerobic (IAT) thresholds in recovery time. The VO2max, IAT and IVT during an incremental TR were determined. Mean displacement amplitude (Acp) and velocity (Vcp) of center of pressure were recorded before (pre) and after (0min post; 5min post; and 10min post) prolonged TR at IAT and IVT, through posturographic trials performed with eyes open (EO) and closed (EC). Significant differences between IVT and IAT for Vcp, between EO and EC for Acp and Vcp, were observed. The IAT induced higher destabilizing effect when postural trials were performed with EC. The IVT intensity produced also a destabilizing effect on postural control immediately after exercise. An impairment of postural control after prolonged treadmill running exercise at IVT and IAT intensity was showed. However, destabilizing effect on postural control disappeared within 10min after IAT intensity and within 5min after IVT intensity. Key pointsTo verify whether young males' balance was affected by 30min prolonged treadmill running at individual ventilatory and anaerobic thresholds in recovery time.Mean displacement amplitude and velocity of foot pressure center were recorded before and after prolonged treadmill running at individual ventilatory and anaerobic thresholds, through posturographic trials performed with eyes open and closed.Destabilizing effect on postural control disappeared within 10min post individual anaerobic threshold, and within 5min post individual ventilatory threshold.
Crowther, Robert G; Leicht, Anthony S; Spinks, Warwick L; Sangla, Kunwarjit; Quigley, Frank; Golledge, Jonathan
2012-01-01
The purpose of this study was to examine the effects of a 6-month exercise program on submaximal walking economy in individuals with peripheral arterial disease and intermittent claudication (PAD-IC). Participants (n = 16) were randomly allocated to either a control PAD-IC group (CPAD-IC, n = 6) which received standard medical therapy, or a treatment PAD-IC group (TPAD-IC; n = 10) which took part in a supervised exercise program. During a graded treadmill test, physiological responses, including oxygen consumption, were assessed to calculate walking economy during submaximal and maximal walking performance. Differences between groups at baseline and post-intervention were analyzed via Kruskal-Wallis tests. At baseline, CPAD-IC and TPAD-IC groups demonstrated similar walking performance and physiological responses. Postintervention, TPAD-IC patients demonstrated significantly lower oxygen consumption during the graded exercise test, and greater maximal walking performance compared to CPAD-IC. These preliminary results indicate that 6 months of regular exercise improves both submaximal walking economy and maximal walking performance, without significant changes in maximal walking economy. Enhanced walking economy may contribute to physiological efficiency, which in turn may improve walking performance as demonstrated by PAD-IC patients following regular exercise programs.
Mazur, Wojciech; Rivera, Jose M; Khoury, Alexander F; Basu, Abhijeet G; Perez-Verdia, Alejandro; Marks, Gary F; Chang, Su Min; Olmos, Leopoldo; Quiñones, Miguel A; Zoghbi, William A
2003-04-01
Exercise (Ex) echocardiography has been shown to have significant prognostic power, independent of other known predictors of risk from an Ex stress test. The purpose of this study was to evaluate a risk index, incorporating echocardiographic and conventional Ex variables, for a more comprehensive risk stratification and identification of a very low-risk group. Two consecutive, mutually exclusive populations referred for treadmill Ex echocardiography with the Bruce protocol were investigated: hypothesis-generating (388 patients; 268 males; age 55 +/- 13 years) and hypothesis-testing (105 patients; 61 males age: 54 +/- 14 years).Cardiac events included cardiac death, myocardial infarction, late revascularization (>90 days), hospital admission for unstable angina, and admission for heart failure. Mean follow-up in the hypothesis-generating population was 3.1 years. There were 38 cardiac events. Independent predictors of events by multivariate analysis were: Ex wall motion score index (odds ratio [OR] = 2.77/Unit; P <.001); ischemic S-T depression > or = 1 mm (OR = 2.84; P =.002); and treadmill time (OR = 0.87/min; P =.037). A risk index was generated on the basis of the multivariate Cox regression model as: risk index = 1.02 (Ex wall motion score index) + 1.04 (S-T change) - 0.14 (treadmill time). The validity of this index was tested in the hypothesis-testing population. Event rates at 3 years were lowest (0%) in the lower quartile of risk index (-1.22 to -0.47), highest (29.6%) in the upper quartile (+0.66 to +2.02), and intermediate (19.2% to 15.3%) in the intermediate quartiles. The OR of the risk index for predicting cardiac events was 2.94/Unit ([95% confidence interval: 1.4 to 6.2]; P =.0043). Echocardiographic and Ex parameters are independent powerful predictors of cardiac events after treadmill stress testing. A risk index can be derived with these parameters for a more comprehensive risk stratification with Ex echocardiography.
de Carvalho, Daniela Cristina Leite; Martins, Cristiane Luzia; Cardoso, Simone David; Cliquet, Alberto
2006-01-01
This work assessed the influence of treadmill gait training with neuromuscular electrical stimulation (NMES) on the metabolic and cardiorespiratory responses in quadriplegic subjects. The gait group (GG) (n=11) performed 6 months of treadmill training with 30-50% body weight support and with the help of physiotherapists, twice a week, allotting 20 min for each session. The control group (CG) (n=10), during the 6 months of training, did not perform any activity using NMES, performing instead conventional physiotherapy. Metabolic and cardiorespiratory responses (O(2) uptake [VO(2)], CO(2) production [VCO(2)], pulmonary ventilation (V(E)), heart rate [HR], and blood pressure [BP]) were measured on inclusion and after 6 months. For the GG, differences were found in all parameters after training (P<0.05), except for HR and diastolic BP. During gait, VO(2) (L/min) increased by 36%, VCO(2) (L/min) increased by 42.97%, V(E) (L/min) increased by 30.48%, and systolic BP (mm Hg) increased by 4.8%. For the CG, only VO(2) and VCO(2) (L/min) significantly increased at rest (30.82 and 16.39%, respectively) and during knee-extension exercise (26.29 and 17.37%, respectively). Treadmill gait with NMES was, therefore, more efficient toward increasing the aerobic capacity due to yielding higher metabolic and cardiovascular stresses.
Graves, Janessa M; Iyer, Krithika R; Willis, Margaret M; Ebel, Beth E; Rivara, Frederick P; Vavilala, Monica S
2014-08-01
The goal of this study was to generate national estimates of injuries associated with mechanical home exercise equipment, and to describe these injuries across all ages. Emergency department (ED)-treated injuries associated with mechanical home exercise equipment were identified from 2007 to 2011 from the National Electronic Injury Surveillance System. Text narratives provided exercise equipment type (treadmill, elliptical, stationary bicycle, unspecified/other exercise machine). Approximately 70 302 (95% CI 59 086 to 81 519) mechanical exercise equipment-related injuries presented to US EDs nationally during 2007-2011, of which 66% were attributed to treadmills. Most injuries among children (≤4 years) were lacerations (34%) or soft tissue injuries (48%); among adults (≥25 years) injuries were often sprains/strains (30%). Injured older adults (≥65 years) had greater odds of being admitted, held for observation, or transferred to another hospital, compared with younger ages (OR: 2.58; 95% CI 1.45 to 4.60). Mechanical exercise equipment is a common cause of injury across ages. Injury awareness and prevention are important complements to active lifestyles. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Nadeau, Stephen E; Wu, Samuel S; Dobkin, Bruce H; Azen, Stanley P; Rose, Dorian K; Tilson, Julie K; Cen, Steven Y; Duncan, Pamela W
2013-05-01
After inpatient stroke rehabilitation, many people still cannot participate in community activities because of limited walking ability. To compare the effectiveness of 2 conceptually different, early physical therapy (PT) interventions to usual care (UC) in improving walking 6 months after stroke. The locomotor experience applied post-stroke (LEAPS) study was a single-blind, randomized controlled trial conducted in 408 adults with disabling hemiparetic stroke. Participants were stratified at baseline (2 months) by impairment in walking speed: severe (<0.4 m/s) or moderate (0.4 to <0.8 m/s). Between 2 and 6 months, they received either only UC (n = 143) or UC plus 36 therapist-provided sessions of either (1) walking training on a treadmill using body-weight support and practice overground at clinics (locomotor training program [LTP], n = 139) or (2) impairment-based strength and balance exercise at home (home exercise program [HEP], n = 126). LTP participants were 18% more likely to transition to a higher functional walking level: severe to >0.4 m/s and moderate to >0.8 m/s than UC participants (95% confidence interval [CI] = 7%-29%), and HEP participants were 17% more likely to transition (95% CI = 5%-29%). Mean gain in walking speed in LTP participants was 0.13 m/s greater (95% CI = 0.09-0.18) and in HEP participants, 0.10 m/s greater (95% CI = 0.05-0.14) than in UC participants. Progressive PT, using either walking training on a treadmill and overground, conducted in a clinic, or strength and balance exercises conducted at home, was superior to UC in improving walking, regardless of severity of initial impairment.
Involvement of mesolimbic dopaminergic network in neuropathic pain relief by treadmill exercise
Wakaizumi, Kenta; Kondo, Takashige; Hamada, Yusuke; Narita, Michiko; Kawabe, Rui; Narita, Hiroki; Watanabe, Moe; Kato, Shigeki; Senba, Emiko; Kobayashi, Kazuto; Yamanaka, Akihiro
2016-01-01
Background Exercise alleviates pain and it is a central component of treatment strategy for chronic pain in clinical setting. However, little is known about mechanism of this exercise-induced hypoalgesia. The mesolimbic dopaminergic network plays a role in positive emotions to rewards including motivation and pleasure. Pain negatively modulates these emotions, but appropriate exercise is considered to activate the dopaminergic network. We investigated possible involvement of this network as a mechanism of exercise-induced hypoalgesia. Methods In the present study, we developed a protocol of treadmill exercise, which was able to recover pain threshold under partial sciatic nerve ligation in mice, and investigated involvement of the dopaminergic reward network in exercise-induced hypoalgesia. To temporally suppress a neural activation during exercise, a genetically modified inhibitory G-protein-coupled receptor, hM4Di, was specifically expressed on dopaminergic pathway from the ventral tegmental area to the nucleus accumbens. Results The chemogenetic-specific neural suppression by Gi-DREADD system dramatically offset the effect of exercise-induced hypoalgesia in transgenic mice with hM4Di expressed on the ventral tegmental area dopamine neurons. Additionally, anti-exercise-induced hypoalgesia effect was significantly observed under the suppression of neurons projecting out of the ventral tegmental area to the nucleus accumbens as well. Conclusion Our findings suggest that the dopaminergic pathway from the ventral tegmental area to the nucleus accumbens is involved in the anti-nociception under low-intensity exercise under a neuropathic pain-like state. PMID:27909152
SUN, Xiaolei; Fengbo, LI; Xinlong, MA; Jianxiong, MA; ZHAO, Bin; ZHANG, Yang; Yanjun, LI; Jianwei, LV; MENG, Xinmin
2015-01-01
Osteoporosis is a disease characterized by low bone mass and progressive destruction of bone microstructure, resulting in increased the risk of fracture. Previous studies have demonstrated the effect of naringin (NG) or treadmill exercise (EX) on osteoporosis, however, reports about effects of NG plus EX on osteoporosis are limited. This study was designed to investigate the impact of combined treatment with naringin and treadmill exercise on osteoporosis in ovariectomized (OVX) rats. Three months after bilateral ovariectomy, Seventy-five rats were randomly assigned to the following treatment groups: OVX, sham-operated (SHAM), NG, EX, or NG plus EX treatment. Treatments were administered for 60 days. Bone metabolism, bone mineral density, trabecular bone parameters, immunohistochemistry, and the bone strength were evaluated. Compared to the OVX groups, all treatments increased bone volume (BV/TV), trabecula number (Tb.N), trabecula thickness (Tb.Th), bone mineral density (BMD), and mechanical strength. NG + EX showed the strongest effects on BV/TV, Tb.Th, and biomechanical strength. Additionally, decreased C-terminal telopeptides of type I collagen (CTX-1) and enhanced osteocalcin (OCN) expression were observed in the NG + EX group. The present study demonstrates that the NG + EX may have a therapeutic advantage over each monotherapy for the treatment of osteoporosis. PMID:26260240
A Randomized Crossover Trial on Acute Stress-Related Physiological Responses to Mountain Hiking
Grafetstätter, Carina; Hartl, Arnulf; Kopp, Martin
2017-01-01
Green exercise, defined as physical activity in natural environments, might have positive effects on stress-related physiological measures. Little is known about the acute effects of green exercise bouts lasting longer than 60 min. Therefore, the aim of the present study was to analyze the acute effects of a three-hour green exercise intervention (mountain hiking) on stress-related physiological responses. Using a randomized crossover design, 42 healthy participants were exposed to three different conditions in a field-based experiment: outdoor mountain hiking, indoor treadmill walking, and sedentary control condition (three hours each). At baseline and at follow-up (five minutes after the condition), stress-related physiological responses (salivary cortisol, blood pressure, and heart rate variability) were measured. Salivary cortisol decreased in all conditions, but showed a larger decrease after both mountain hiking and treadmill walking compared to the sedentary control situation (partial η2 = 0.10). No differences were found between mountain hiking and treadmill walking in salivary cortisol. In heart rate variability and blood pressure, changes from baseline to follow-up did not significantly differ between the three conditions. The results indicate that three hours of hiking indoors or outdoors elicits positive effects on salivary cortisol concentration. Environmental effects seem to play a minor role in salivary cortisol, blood pressure, and heart rate variability. PMID:28800067
Xian, Ying; Kakinami, Lisa; Peterson, Eric D; Mustian, Karen M; Fernandez, I Diana
2014-04-01
This study aimed to determine whether Nintendo(®) (Redmond, WA) "Wii Fit™" games can help individuals meet physical activity recommendations. Thirty young healthy volunteers were recruited for this randomized crossover study to evaluate the energy expenditure associated with (1) a 30-minute "Wii Fit Free Run," (2) three 10-minute bouts of "Wii Fit" aerobic games ("Rhythm Boxing," "Super Hula Hoop," and "Advanced Steps"), and (3) 30-minute treadmill running/walking. Energy expenditure was measured by indirect calorimetry using breath-by-breath analyses of O2 consumption and CO2 production. The "Wii Fit" conditions produced a moderate exercise intensity (5.0, 4.1, 3.9, and 3.8 metabolic equivalents [METs] in "Free Run," "Rhythm Boxing," "Super Hula Hoop," and "Advanced Steps"), whereas the treadmill running/walking produced a vigorous exercise intensity (METs=8.0). Based on federal guidelines, an individual could achieve the minimum weekly goal of 500 MET-minutes by playing selected "Wii Fit" aerobics games for 20-26 minutes a day, 5 days a week. Although not as vigorous as the treadmill, active-play videogames such as "Wii Fit" may provide an alternative way to encourage exercise and increase adoption and adherence to the physical activity guidelines.
Carvalho-Peixoto, Jacqueline; Moura, Mirian Ribeiro Leite; Cunha, Felipe Amorim; Lollo, Pablo Christiano B; Monteiro, Walace David; Carvalho, Lucia Maria Jaeger de; Farinatti, Paulo de Tarso Veras
2015-07-01
The study analyzed the effect of an açai (Euterpe oleracea Mart.) functional beverage (AB) on muscle and oxidative stress markers, cardiorespiratory responses, perceived exertion, and time-to-exhaustion during maximal treadmill running. The beverage was developed as an ergogenic aid for athletes and contained 27.6 mg of anthocyanins per dose. Fourteen athletes performed 3 exercise tests: a ramp-incremental maximal exercise test and 2 maximal exercise bouts performed in 2 conditions (AB and without AB (control)) at 90% maximal oxygen uptake. Blood was collected at baseline and after maximal exercise in both conditions to determine biomarkers. AB increased time to exhaustion during short-term high-intensity exercise (mean difference: 69 s, 95% confidence interval = -296 s to 159 s, t = 2.2, p = 0.045), attenuating the metabolic stress induced by exercise (p < 0.05). AB also reduced perceived exertion and enhanced cardiorespiratory responses (p < 0.05). The AB may be a useful and practical ergogenic aid to enhance performance during high-intensity training.
Diamond, Adele
2015-01-01
Studies of the cognitive benefits of physical activity need to move beyond simple aerobic activities that require little thought (treadmill running, riding a stationary bicycle, or rapid walking) and resistance training. Many studies have looked at this in older adults, and the evidence points strongly to those activities having little or no cognitive benefit, certainly little or no improvement to the executive functions that depend on prefrontal cortex. There is encouraging evidence for other types of physical activity improving executive functions; however they have received far less study. PMID:26000340
NASA Technical Reports Server (NTRS)
DeWitt, John; Schaffner, Grant; Laughlin, Mitzi; Loehr, James; Hagan, R. Donald
2004-01-01
Long-term exposure to microgravity induces detrimefits to the musculcskdetal system (Schneider et al., 1995; LeBlanc et al., 2000). Treadmill exercise is used onboard the International Space Station as an exercise countermeasure to musculoskeletal deconditioning due to spaceflight. During locomotive exercise in weightlessness (0G), crewmembers wear a harness attached to an external loading mechanism (EL). The EL pulls the crewmember toward the treadmill, and provides resistive load during the impact and propulsive phases of gait. The resulting forces may be important in stimulating bone maintenance (Turner, 1998). The EL can be applied via a bungee and carabineer clip configuration attached to the harness and can be manipulated to create varying amounts of load levels during exercise. Ground-based research performed using a vertically mounted treadmill found that peak ground reaction forces (GRF) during running at an EL of less than one body weight (BW) are less than those that occur during running in normal gravity (1G) (Davis et al., 1996). However, it is not known how the GRF are affected by the EL in a true OG environment. Locomotion while suspended may result in biomechanics that differ from free running. The purpose of this investigation was to determine how EL affects peak impact force, peak propulsive force, loading rate, and impulse of the GRF during running in 0G. It was hypothesized that increasing EL would result in increases in each GRF parameter.
The effect of childhood obesity on cardiac functions.
Üner, Abdurrahman; Doğan, Murat; Epcacan, Zerrin; Epçaçan, Serdar
2014-03-01
Obesity is a metabolic disorder defined as excessive accumulation of body fat, which is made up of genetic, environmental, and hormonal factors and has various social, psychological, and medical complications. Childhood obesity is a major indicator of adult obesity. The aim of this study is to evaluate the cardiac functions via electrocardiography (ECG), echocardiography (ECHO), and treadmill test in childhood obesity. A patient group consisting of 30 obese children and a control group consisting of 30 non-obese children were included in the study. The age range was between 8 and 17 years. Anthropometric measurements, physical examination, ECG, ECHO, and treadmill test were done in all patients. P-wave dispersion (PD) was found to be statistically significantly high in obese patients. In ECHO analysis, we found that end-diastolic diameter, end-systolic diameter, left ventricle posterior wall thickness, and interventricular septum were significantly greater in obese children. In treadmill test, exercise capacity was found to be significantly lower and the hemodynamic response to exercise was found to be defective in obese children. Various cardiac structural and functional changes occur in childhood obesity and this condition includes important cardiovascular risks. PD, left ventricle end-systolic and end-diastolic diameter, left ventricle posterior wall thickness, interventricular septum thickness, exercise capacity, and hemodynamic and ECG measurements during exercise testing are useful tests to determine cardiac dysfunctions and potential arrhythmias even in early stages of childhood obesity. Early recognition and taking precautions for obesity during childhood is very important to intercept complications that will occur in adulthood.
Effect of Hindlimb Unweighting on Tissue Blood Flow in the Rat
NASA Technical Reports Server (NTRS)
McDonald, K. S.; Delp, M. D.; Fitts, R. H.
1992-01-01
The purpose of this study was to characterize the distribution of blood flow in the rat during hindlimb unweighting (HU) and post-HU standing and exercise and examine whether the previously reported elevation in anaerobic metabolism observed with contractile activity in the atrophied soleus muscle was caused by a reduced hindlimb blood flow. After either 15 days of HU or cage control, blood flow was measured with radioactive microspheres during unweighting, normal standing, and running on a treadmill (15 m/min). In another group of control and experimental animals, blood flow was measured during preexercise (PE) treadmill standing and treadmill running (15 m/min). Soleus muscle blood flow was not different between groups during unweighting, PE standing, and running at 15 m/min. Chronic unweighting resulted in the tendency for greater blood flow to muscles composed of predominantly fast-twitch glycolytic fibers. With exercise, blood flow to visceral organs was reduced compared with PE values in the control rats, whereas flow to visceral organs in 15-day HU animals was unaltered by exercise. These higher flows to the viscera and to muscles composed of predominantly fast-twitch glycolytic fibers suggest an apparent reduction in the ability of the sympathetic nervous system to distribute cardiac output after chronic HU. In conclusion, because 15 days of HU did not affect blood flow to the soleus during exercise, the increased dependence of the atrophied soleus on anerobic energy production during contractile activity cannot be explained by a reduced muscle blood flow.
Brown, Gregory A; Cook, Chad M; Krueger, Ryan D; Heelan, Kate A
2010-06-01
Treadmills (TM) and elliptical devices (EL) are popular forms of exercise equipment. The differences in the training stimulus presented by TM or EL are unknown. The purpose of this investigation was to evaluate oxygen consumption, energy expenditure, and heart rate on a TM or EL when persons exercise at the same perceived level of exertion. After measuring peak oxygen uptake (VO2peak) in 9 male and 9 female untrained college-aged participants, the subjects performed 2 separate 15-minute submaximal exercise tests on the TM and EL at a rating of perceived exertion (RPE) of 12-13. VO2peak was higher (p<0.05) in the males (48.6+/-1.5 vs. 45.2+/-1.6 ml/kg/min) than the females (41.7+/-1.8 vs. 38.8+/-2.2 ml/kg/min) for both TM and EL (means+/-standard error of the mean; for TM vs. EL respectively), but there were no differences in the measured VO2peak between TM or EL. During submaximal exercise there were no differences in RPE between TM and EL. Total oxygen consumption was higher (p<0.05) in males (30.8+/-2.2 vs. 34.9+/-2.2 L) than females (24.1+/-1.8 vs. 26.9+/-1.7 L) but did not differ between TM and EL. Energy expenditure was not different between TM (569+/-110 J) or EL (636+/-120 kJ). Heart rate was higher (p<0.05) on the EL (164+/-16 beats/min) compared to the TM (145+/-15 beats/min). When subjects exercise at the same RPE on TM or EL, oxygen consumption and energy expenditure are similar in spite of a higher heart rate on the EL. These data indicate that during cross training or noncompetition-specific exercise, an elliptical device is an acceptable alternative to a treadmill.
The effects of locomotor-respiratory coupling on the pattern of breathing in horses.
Lafortuna, C L; Reinach, E; Saibene, F
1996-01-01
1. To investigate the effect of locomotor activity on the pattern of breathing in quadrupeds, ventilatory response was studied in four healthy horses during horizontal and inclined (7%) treadmill exercise at different velocities (1.4-6.9 m s(-1)) and during chemical stimulation with a rebreathing method. Stride frequency (f(s)) and locomotor-respiratory coupling (LRC) were also simultaneously determined by means of video recordings synchronized with respiratory events. 2. Tidal volume (V(T)) was positively correlated with pulmonary ventilation (V(E)) but significantly different linear regression equations were found between the experimental conditions (P < 0.0001), since the chemical hyperventilation was mainly due to increases in V(T), whereas the major contribution to exercise hyperpnoea came from changes in respiratory frequency (f(R)). 3. The average f(R) at each exercise level was not significantly different from f(S), although there was not always a tight 1:1 LRC. At constant speeds, f(S) was independent of the treadmill slope and hence the greater V(E) during inclined exercise was due to increased V(T). 4. At any ventilatory level, the differences in breathing patterns between locomotion and rebreathing or locomotion at different slopes derived from different set points of the inspiratory off-switch mechanism. 5. The percentage of single breaths entrained with locomotor rhythm rose progressively and significantly with treadmill speed (P < 0.0001) up to a 1:1 LRC and was significantly affected by treadmill slope (P < 0.001). 6. A LRC of 1:1 was systematically observed at canter (10 out of 10 trials) and sometimes at trot (5 out of 14) and it entailed (i) a 4- to 5-fold reduction in both V(T) and f(R) variability, and (ii) a gait-specific phase locking of inspiratory onset during the locomotor cycle. 7. It is concluded that different patterns of breathing are employed during locomotion and rebreathing due to the interference between locomotor and respiratory functions, which may play a role in the optimization and control of exercise ventilation in horses. PMID:9019552
Volitional Control of Heart Rate During Exercise Stress.
ERIC Educational Resources Information Center
LeFevers, Victoria A.
Thirty five volunteer college women were divided into three groups to determine if heart rate could be conditioned instrumentally and lowered during exercise stress on the treadmill. The three groups were a) experimental group I, 15 subjects who received instrumental conditioning with visual feedback; b) instrumental group II, 9 subjects who…
Abd El-Kader, Shehab M; Al-Jiffri, Osama H
2016-12-01
Alzheimer's disease has a destructive drawbacks on the patient and his/her entire family as this disease badly af fects the behavior, cognition and abilities to do activities of daily living (ADL). The physical and mental benefits of exercise are widely known but seldom available to persons suffering from Alzheimer's disease. The aim of this study was to measure quality of life, systemic inflammation and psychological well-being response to aerobic exercises in Alzheimer's. Forty Alzheimer elderly subjects were enrolled in two groups; the first group received treadmill aerobic exercise, while the second group was considered as a control group and received no training intervention for two months. Assessment of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), Rosenberg Self-Esteem Scale (RSES),Beck Depression Inventory (BDI), Profile of Mood States(POMS) and SF-36 health quality of life (SF-36 HRQL) were taken before and at the end of the study. There was a 25.2%, 19.4%, 23.5%, 21.3%, 17.7% , 11.7%, 12.5% and 10.1 % reduction in mean values of TNF-α, IL-6, BDI, POMS, health transition SF-36 subscale, bodily pain SF-36 subscale, role functioning: emotional SF-36 subscale and mental health SF-36 subscale respectively in addition to 15.7%, 13.1%, 12.6%, 11.1%, 13.2% and 11.2 % increase in mean values of RSES, physical functioning SF-36 subscale, role functioning:physical SF-36 subscale, general health SF-36 subscale, Vitality SF-36 subscale and Social functioning SF-36 subscale respectively in group (A) received aerobic exercise training, so that there was a significant reduction in the mean values of TNF-α, IL-6, BDI & POMS and increase in the mean values of SF-36 HRQL subscale scores, RSES in group (A) as a result of aerobic exercise training, while the results of group (B) who received no training intervention were not significant. Also, there were significant differences between mean levels of the investigated parameters in group (A) and group (B) at the end of the study (P<0.05). Treadmill walking exercise training is an effective treatment policy to improve quality of life, systemic inflammation and psychological wellbeing in Alzheimer's.
Effect of Age and Exercise on the Viscoelastic Properties of Rat Tail Tendon
LaCroix, Andrew S.; Duenwald-Kuehl, Sarah E.; Brickson, Stacey; Akins, Tiffany L.; Diffee, Gary; Aiken, Judd; Vanderby, Ray; Lakes, Roderic S.
2013-01-01
Tendon mechanical properties are thought to degrade during aging but improve with exercise. A remaining question is whether exercise in aged animals provides sufficient regenerative, systemic stimulus to restore younger mechanical behaviors. Herein we address that question with tail tendons from aged and exercised rats, which would be subject to systemic effects but not direct loading from the exercise regimen. Twenty-four month old rats underwent one of three treadmill exercise training protocols for 12 months: sedentary (walking at 0° incline for 5 min/day), moderate (running at 0° incline for 30 min/day), or high (running at 4° incline for 30 min/day). A group of 9 month old rats were used to provide an adult control, while a group of 3 month old rats provided a young control. Tendons were harvested at sacrifice and mechanically tested. Results show significant age-dependent differences in modulus, ultimate stress, relaxation rate, and percent relaxation. Relaxation rate was strain-dependent, consistent with nonlinear superposition or Schapery models but not with quasilinear viscoelasticity (QLV). Trends in exercise data suggest that with exercise, tendons assume the elastic character of younger rats (lower elastic modulus and ultimate stress). PMID:23549897
Jae, Sae Young; Franklin, Barry A; Choo, Jina; Choi, Yoon-Ho; Fernhall, Bo
2015-11-01
The purpose of this study was to evaluate receiver operating characteristic curves to identify optimal cutoff values of exercise systolic blood pressure (SBP) using both peak SBP and relative SBP (peak SBP minus resting SBP) as predictors of future hypertension (HTN). Participants were 3,742 healthy normotensive men who underwent symptom-limited treadmill testing at baseline. Incident HTN was defined as SBP/diastolic blood pressure greater than 140/90 mm Hg and/or diagnosed HTN by a physician. During an average 5-year follow-up, 364 (9.7%) new cases of HTN were observed. The most discriminatory cutoff values for peak SBP and relative SBP for predicting incident HTN were 181 mm Hg (areas under the curve (AUC) = 0.644, sensitivity = 54%, and specificity = 69%) and 52 mm Hg (AUC = 0.549, sensitivity = 64.3%, and specificity = 44.6%), respectively. Participants with peak SBP greater than 181 mm Hg and relative SBP greater than 52 mm Hg had 1.54-fold (95% CI: 1.23-1.93) and 1.44-fold (95% CI: 1.16-1.80) risks of developing HTN after adjusting for potential confounding variables. When these 2 variables were entered simultaneously into the Cox proportional hazards regression model with adjustment for potential confounding variables, only peak SBP (relative risk: 1.39, 95% CI: 1.02-1.89) was a predictor of the development of HTN. The most accurate discriminators for peak and relative SBP during treadmill exercise testing to predict incident HTN were greater than 181 and 52 mm Hg, respectively, in normotensive men. A peak SBP greater than 181 mm Hg during treadmill exercise testing may provide a useful predictor for the development of HTN in clinical practice. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Astronaut Hammond gets microgravity exercise on rowing machine
1994-09-10
STS064-09-026 (9-20 Sept. 1994) --- Astronaut L. Blaine Hammond, STS-64 pilot, gets microgravity exercise on the rowing machine. This area of the space shuttle Discovery's middeck was also used for the treadmill exercising device. Blaine and five other NASA astronauts spent almost 11 days in Earth orbit in support of the mission. Photo credit: NASA or National Aeronautics and Space Administration
Oh, Seung-Lyul; Chang, Hyukki; Kim, Hee-Jae; Kim, Yong-An; Kim, Dong-Sik; Ho, Seong-Hyun; Kim, Seon-Hee; Song, Wook
2013-04-15
In the present study, we determined the effects of HX108-CS (mixed extract of Schisandra chinensis and Chaenomeles sinensis) supplementation on lactate accumulation and endurance capacity. Furthermore, we examined CK (creatine kinase), LDH (lactate dehydrogenase) activity to determine whether the HX108-CS affected markers of skeletal muscle injury in vivo and in vitro. Exercise capacity was measured by an exhaustive swimming test using ICR mice divided into four groups; one group received distilled water (DW) (Control group, n = 10), and the other groups received three different dosages of HX108-CS (10, 50 and 100 mg/kg, n = 10 per group) solution in water orally. Then, for the time-dependent measurements of blood lactate, CK, and LDH, Sprague-Dawley rats were divided into two groups; one received DW (Control group, n = 10), and the other group received HX108-CS (100 mg/kg, n = 10) solution in the same way as mice. Before the exercise test, the animals were given either DW or HX108-CS for 2 weeks. High-intensity treadmill exercise was performed for 30 minutes. Blood samples were collected and analyzed during and after exercise. For the in vitro experiment, C2C12 cells were treated with HX108-CS to examine its effect on lactate production, CK, and LDH activity. Blood lactate concentration was significantly lowered immediately after treadmill exercise in HX108-CS group; however, there were no significant differences in activities of CK and LDH between HX108-CS and control during treadmill exercise and recovery phase. Furthermore, treatment with 100 mg/kg of HX108-CS led to a significant increase in the time to exhaustion in swimming test, and concurrently blood lactate concentration was significantly decreased in 50 and 100 mg/kg treated group. Moreover, our results of in vitro experiment showed that HX108-CS suppressed lactate production, CK, and LDH activity in a dose-dependent manner. These results suggest that supplementation with HX108-CS may enhance exercise capacity by lowering lactate accumulation. This may in part be related to an amelioration of skeletal muscle injury.
Supino, Phyllis G.; Borer, Jeffrey S.; Schuleri, Karlheinz; Gupta, Anuj; Hochreiter, Clare; Kligfield, Paul; Herrold, Edmund McM.; Preibisz, Jacek J.
2007-01-01
In many heart diseases, exercise treadmill testing(ETT) has useful functional correlates and/or prognostic value. However, its predictive value in mitral regurgitation(MR) is undefined. To determine whether ETT descriptors predict death or indications for mitral valve surgery among patients with MR, we prospectively followed, for 7±3 endpoint-free years, a cohort of 38 patients with chronic severe nonischemic MR who underwent modified Bruce ETT; all lacked surgical indications at study entry. Their baseline exercise descriptors also were compared with those from 46 patients with severe MR who, at entry, already had reached surgical indications. Endpoints during follow-up among the cohort included sudden death(n=1), heart failure symptoms(n=2), atrial fibrillation(n=4), LVEF<60%(n=2), LV systolic dimensions(IDs)≥45 mm(n=12) and LVIDs>40mm(n=11), LVEF<60%+LVIDs 45 mm(n=3), and heart failure+LVIDs 45mm+LVEF<60%(n=1). In univariate analysis, exercise duration(p=.004), chronotropic response(p=.007), percent predicted peak heart rate(p=.01) and heart rate recovery(p<.02) predicted events; in multivariate analysis, only exercise duration was predictive(p<.02). Average annual event risk was 5-fold lower(4.62%) with exercise duration≥15 minutes vs. <15 minutes(average annual risk=23.48%, p=.004). Relative risks among patients with and without exercise-inducible ST segment depression were comparable(≤1.3[NS]) whether defined at entry and/or during follow-up. Exercise duration, but not prevalence of exercise-inducible ST segment depression, was lower(p<.001) among patients with surgical indications at entry vs. initially endpoint-free patients. In conclusion, among asymptomatic patients with chronic severe nonischemic MR and no objective criteria for operation, progression to surgical indications generally is rapid. However, those with excellent exercise tolerance have a relatively benign course. Exercise-inducible ST segment depression has no prognostic value in this population. We followed, for 7±3 endpoint-free years, 38 patients with chronic severe nonischemic mitral regurgitation (MR) who underwent modified Bruce exercise treadmill testing (ETT) to determine whether ETT descriptors predict death or indications for mitral valve surgery. At study entry, all lacked surgical indications. Exercise duration independently predicted subsequent events; event risks among patients with and without exercise-inducible ST segment depression were comparable. We conclude that among asymptomatic patients with chronic severe nonischemic MR and no objective criteria for operation, those with excellent exercise tolerance have a relatively benign course. Exercise-inducible ST segment depression has no prognostic value in this population. PMID:17920370
κ-opioid receptor is involved in the cardioprotection induced by exercise training
Li, Juan; Tian, Fei; Feng, Na; Fan, Rong; Jia, Min; Guo, Haitao; Cheng, Liang; Liu, Jincheng; Chen, Wensheng; Pei, Jianming
2017-01-01
The present study was designed to test the hypothesis that exercise training elicited a cardioprotective effect against ischemia and reperfusion (I/R) via the κ-opioid receptor (κ-OR)-mediated signaling pathway. Rats were randomly divided into four groups: the control group, the moderate intensity exercise (ME) group, the high intensity exercise (HE) group, and the acute exercise (AE) group. For the exercise training protocols, the rats were subjected to one week of adaptive treadmill training, while from the second week, the ME and HE groups were subjected to eight weeks of exercise training, and the AE group was subjected to three days of adaptive treadmill training and one day of vigorous exercise. After these protocols, the three exercise training groups were divided into different treatment groups, and the rats were subjected to 30 min of ischemia and 120 min of reperfusion. Changes in infarct size and serum cTnT (cardiac troponin T) caused by I/R were reduced by exercise training. Moreover, cardiac dysfunction caused by I/R was also alleviated by exercise training. These effects of exercise training were reversed by nor-BNI (a selective κ-OR antagonist), Compound C (a selective AMPK inhibitor), Akt inhibitor and L-NAME (a non-selective eNOS inhibitor). Expression of κ-OR and phosphorylation of AMPK, Akt and eNOS were significantly increased in the ME, HE and AE groups. These findings demonstrated that the cardioprotective effect of exercise training is possibly mediated by the κ-OR-AMPK-Akt-eNOS signaling pathway. PMID:28301473
Shono, Tomoki; Masumoto, Kenji; Fujishima, Kazutaka; Hotta, Noboru; Ogaki, Tetsuro; Adachi, Takahiro
2007-11-01
This study sought to determine the characteristics of gait patterns and muscle activity in the lower extremities of elderly women during underwater treadmill walking against water flow. Eight female subjects (61.4+/-3.9 y) performed underwater and land treadmill walking at varying exercise intensities and velocities. During underwater walking (water level at the xiphoid process) using the Flowmill, which has a treadmill at the base of a water flume, the simultaneous belt and water flow velocities were set to 20, 30 and 4 m.min(-1). Land walking velocities were set to 40, 60 and 80 m.min(-1). Oxygen uptake and heart rate were measured during both walking exercises. Maximum and minimum knee joint angles, and mean angular velocities of knee extension and knee flexion in the swing phase were calculated using two-dimensional motion analysis. Electromyograms were recorded using bipolar surface electrodes for five muscles: the tibialis anterior (TA), medial gastrocnemius (MG), vastus medialis (VM), rectus femoris (RF) and biceps femoris (BF). At the same exercise intensity level, cadence was almost half that on land. Step length did not differ significantly because velocity was halved. Compared to land walking, the maximum and minimum knee joint angles were significantly smaller and the mean angular velocity of knee extension was significantly lower. Knee extension in the swing phase was limited by water resistance. While the muscle activity levels of TA, VM and BF were almost the same as during land walking, those of MG and RF were lower. At the same velocity, exercise intensity was significantly higher than during land walking, cadence was significantly lower, and step length significantly larger. The knee joint showed significantly smaller maximum and minimum angles, and the mean angular velocity of knee flexion was significantly larger. The muscle activity levels of TA, VM, and BF increased significantly in comparison with land walking, although those of MG and RF did not significantly differ. Given our findings, it appears that buoyancy, lower cadence, and a moving floor influenced the muscle activity level of MG and RF at the same exercise intensity level and at the same velocity. These results show promise of becoming the basic data of choice for underwater walking exercise prescription.
Impact of Oral Ubiquinol on Blood Oxidative Stress and Exercise Performance
Bloomer, Richard J.; Canale, Robert E.; McCarthy, Cameron G.; Farney, Tyler M.
2012-01-01
Coenzyme Q10 (CoQ10) plays an important role in bioenergetic processes and has antioxidant activity. Fifteen exercise-trained individuals (10 men and 5 women; 30–65 years) received reduced CoQ10 (Kaneka QH ubiquinol; 300 mg per day) or a placebo for four weeks in a random order, double blind, cross-over design (3 week washout). After each four-week period, a graded exercise treadmill test and a repeated cycle sprint test were performed (separated by 48 hours). Blood samples were collected before and immediately following both exercise tests and analyzed for lactate, malondialdehyde, and hydrogen peroxide. Resting blood samples were analyzed for CoQ10 (ubiquinone and ubiquinol) profile before and after each treatment period. Treatment with CoQ10 resulted in a significant increase in total blood CoQ10 (138%; P = 0.02) and reduced blood CoQ10 (168%; P = 0.02), but did not improve exercise performance (with the exception of selected individuals) or impact oxidative stress. The relationship between the percentage change in total blood CoQ10 and the cycle sprint total work (R2 = 0.6009) was noted to be moderate to strong. We conclude that treatment with CoQ10 in healthy, exercise-trained subjects increases total and reduced blood CoQ10, but this increase does not translate into improved exercise performance or decreased oxidative stress. PMID:22966414
Effects of exercise on capillaries in the white matter of transgenic AD mice
Zhang, Yi; Chao, Feng-Lei; Zhou, Chun-Ni; Jiang, Lin; Zhang, Lei; Chen, Lin-Mu; Luo, Yan-Min; Xiao, Qian; Tang, Yong
2017-01-01
Previous studies have shown that exercise can prevent white matter atrophy in APP/PS1 transgenic Alzheimer’s disease (AD) mice. However, the mechanism of this protective effect remains unknown. To further understand this issue, we investigated the effects of exercise on the blood supply of white matter in transgenic AD mice. Six-month-old male APP/PS1 mice were randomly divided into a control group and a running group, and age-matched non-transgenic littermates were used as a wild-type control group. Mice in the running group ran on a treadmill at low intensity for four months. Then, spatial learning and memory abilities, white matter and white matter capillaries were examined in all mice. The 10-month-old AD mice exhibited deficits in cognitive function, and 4 months of exercise improved these deficits. The white matter volume and the total length, total volume and total surface area of the white matter capillaries were decreased in the 10-month-old AD mice, and 4 months of exercise dramatically delayed the changes in these parameters in the AD mice. Our results demonstrate that even low-intensity running exercise can improve spatial learning and memory abilities, delay white matter atrophy and protect white matter capillaries in early-stage AD mice. Protecting capillaries might be an important structural basis for the exercise-induced protection of the structural integrity of white matter in AD. PMID:29029478
Effects of exercise on capillaries in the white matter of transgenic AD mice.
Zhang, Yi; Chao, Feng-Lei; Zhou, Chun-Ni; Jiang, Lin; Zhang, Lei; Chen, Lin-Mu; Luo, Yan-Min; Xiao, Qian; Tang, Yong
2017-09-12
Previous studies have shown that exercise can prevent white matter atrophy in APP/PS1 transgenic Alzheimer's disease (AD) mice. However, the mechanism of this protective effect remains unknown. To further understand this issue, we investigated the effects of exercise on the blood supply of white matter in transgenic AD mice. Six-month-old male APP/PS1 mice were randomly divided into a control group and a running group, and age-matched non-transgenic littermates were used as a wild-type control group. Mice in the running group ran on a treadmill at low intensity for four months. Then, spatial learning and memory abilities, white matter and white matter capillaries were examined in all mice. The 10-month-old AD mice exhibited deficits in cognitive function, and 4 months of exercise improved these deficits. The white matter volume and the total length, total volume and total surface area of the white matter capillaries were decreased in the 10-month-old AD mice, and 4 months of exercise dramatically delayed the changes in these parameters in the AD mice. Our results demonstrate that even low-intensity running exercise can improve spatial learning and memory abilities, delay white matter atrophy and protect white matter capillaries in early-stage AD mice. Protecting capillaries might be an important structural basis for the exercise-induced protection of the structural integrity of white matter in AD.
Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes
2013-01-01
Background and Purpose Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Experimental Approach Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Key Results Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O2− production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Conclusions and Implications Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. PMID:22994554
Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes
2013-02-01
Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O(2) (-) production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
Noble, Emily E.; Mavanji, Vijayakumar; Little, Morgan R.; Billington, Charles J.; Kotz, Catherine M.; Wang, ChuanFeng
2014-01-01
Background Previous studies have shown that a western diet impairs, whereas physical exercise enhances hippocampus-dependent learning and memory. Both diet and exercise influence expression of hippocampal brain-derived neurotrophic factor (BDNF), which is associated with improved cognition. We hypothesized that exercise reverses diet-induced cognitive decline while increasing hippocampal BDNF. Methods To test the effects of exercise on hippocampal-dependent memory, we compared cognitive scores of Sprague-Dawley rats exercised by voluntary running wheel (RW) access or forced treadmill (TM) to sedentary (Sed) animals. Memory was tested by two-way active avoidance test (TWAA), in which animals are exposed to a brief shock in a specific chamber area. When an animal avoids, escapes or has reduced latency to do either, this is considered a measure of memory. In a second experiment, rats were fed either a high-fat diet or control diet for 16 weeks, then randomly assigned to running wheel access or sedentary condition, and TWAA memory was tested once a week for seven weeks of exercise intervention. Results Both groups of exercised animals had improved memory as indicated by reduced latency to avoid and escape shock, and increased avoid and escape episodes (p<0.05). Exposure to a high-fat diet resulted in poor performance during both the acquisition and retrieval phases of the memory test as compared to controls. Exercise reversed high-fat diet-induced memory impairment, and increased brain-derived neurotrophic factor (BDNF) in neurons of the hippocampal CA3 region. Conclusions These data suggest that exercise improves memory retrieval, particularly with respect to avoiding aversive stimuli, and may be beneficial in protecting against diet induced cognitive decline, likely via elevated BDNF in neurons of the CA3 region. PMID:24755094
Noble, Emily E; Mavanji, Vijayakumar; Little, Morgan R; Billington, Charles J; Kotz, Catherine M; Wang, ChuanFeng
2014-10-01
Previous studies have shown that a western diet impairs, whereas physical exercise enhances hippocampus-dependent learning and memory. Both diet and exercise influence expression of hippocampal brain-derived neurotrophic factor (BDNF), which is associated with improved cognition. We hypothesized that exercise reverses diet-induced cognitive decline while increasing hippocampal BDNF. To test the effects of exercise on hippocampal-dependent memory, we compared cognitive scores of Sprague-Dawley rats exercised by voluntary running wheel (RW) access or forced treadmill (TM) to sedentary (Sed) animals. Memory was tested by two-way active avoidance test (TWAA), in which animals are exposed to a brief shock in a specific chamber area. When an animal avoids, escapes or has reduced latency to do either, this is considered a measure of memory. In a second experiment, rats were fed either a high-fat diet or control diet for 16 weeks, then randomly assigned to running wheel access or sedentary condition, and TWAA memory was tested once a week for 7 weeks of exercise intervention. Both groups of exercised animals had improved memory as indicated by reduced latency to avoid and escape shock, and increased avoid and escape episodes (p<0.05). Exposure to a high-fat diet resulted in poor performance during both the acquisition and retrieval phases of the memory test as compared to controls. Exercise reversed high-fat diet-induced memory impairment, and increased brain-derived neurotrophic factor (BDNF) in neurons of the hippocampal CA3 region. These data suggest that exercise improves memory retrieval, particularly with respect to avoiding aversive stimuli, and may be beneficial in protecting against diet induced cognitive decline, likely via elevated BDNF in neurons of the CA3 region. Published by Elsevier Inc.
Beltrame, Thomas; Villar, Rodrigo; Hughson, Richard L
2017-09-01
Previous studies in children and older adults demonstrated faster oxygen uptake (V̇O 2 ) kinetics in males compared with females, but young healthy adults have not been studied. We hypothesized that young men would have faster aerobic system dynamics in response to the onset of exercise than women. Interactions between oxygen supply and utilization were characterized by the dynamics of V̇O 2 , deoxyhemoglobin (HHb), tissue saturation index (TSI), cardiac output (Q̇), and calculated arteriovenous O 2 difference (a-vO 2 diff ) in women and men. Eighteen healthy active young women and men (9 of each sex) with similar aerobic fitness levels volunteered for this study. Participants performed an incremental cardiopulmonary treadmill exercise test and 3 moderate-intensity treadmill exercise tests (at 80% V̇O 2 of gas exchange threshold). Data related to the moderate exercise were submitted to exponential data modelling to obtain parameters related to the aerobic system dynamics. The time constants of V̇O 2 , a-vO 2 diff , HHb, and TSI (30 ± 6, 29 ± 1, 16 ± 1, and 15 ± 2 s, respectively) in women were statistically (p < 0.05) faster than the time constants in men (42 ± 10, 49 ± 21, 19 ± 3, and 20 ± 4 s, respectively). Although Q̇ dynamics were not statistically different (p = 0.06) between groups, there was a trend to slower Q̇ dynamics in men corresponding with the slower V̇O 2 kinetics. These results indicated that the peripheral and pulmonary oxygen extraction dynamics were remarkably faster in women. Thus, contrary to the hypothesis, V̇O 2 dynamics measured at the mouth at the onset of submaximal treadmill walking were faster in women compared with men.
Brown, Jennifer A; Derksen, Frederik J; Stick, John A; Hartmann, William M; Robinson, N Edward
2005-01-01
To report the effect of unilateral laser vocal cordectomy on respiratory noise and airway function in horses with experimentally induced laryngeal hemiplegia (LH). Experimental study. Six Standardbred horses without upper airway abnormalities at rest or during high-speed treadmill exercise. Respiratory sounds and inspiratory trans-upper airway pressure (P(Ui)) were measured before (baseline) and 14 days after induction of LH by left recurrent laryngeal neurectomy, and again 30, 60, 90, and 120 days after endoscopically assisted laser cordectomy of the left vocal cord. Data were collected with the horses exercising on a treadmill at a speed producing maximum heart rate (HR(max)). In horses exercising at HR(max), induction of LH caused a significant increase in P(Ui), sound level (SL), and the sound intensity of formant 2 (F(2)) and 3 (F(3)). The sound intensity of formant 1 (F(1)) was unaffected by induction of LH. Laser vocal cordectomy had no effect on SL, or on the sound intensity of F(1) and F(3). At 30, 60, 90, and 120 days after surgery, P(Ui) and the sound intensity of F(2) were significantly reduced, but these variables remained significantly different from baseline values. Unilateral laser vocal cordectomy did not effectively improve upper airway noise in horses with LH. The procedure decreased upper airway obstruction to the same degree as bilateral ventriculocordectomy. Currently, laser vocal cordectomy cannot be recommended for the treatment of upper airway noise in horses with LH.
Improving balance skills in patients who had stroke through virtual reality treadmill training.
Yang, Saiwei; Hwang, Wei-Hsung; Tsai, Yi-Ching; Liu, Fu-Kang; Hsieh, Lin-Fen; Chern, Jen-Suh
2011-12-01
The aim of this study was to evaluate the effects of virtual reality (VR) treadmill training on the balance skills of patients who have had a stroke. A total of 14 patients with strokes were recruited and randomly assigned to receive VR treadmill or traditional treadmill training. The outcome measures that were included for the study were center of pressure (COP) sway excursion, COP maximum sway in anterior-posterior direction, COP maximum sway in medial-lateral direction, COP sway area, bilateral limb-loading symmetric index, the sway excursion values for the paretic foot (sway excursion/P), paretic limb stance time (stance time/P), number of steps of the paretic limb (number of steps/P), and contact area of the paretic foot (contact A/P) during quiet stance, sit-to-stand transfer, and level walking. There were no significant improvements in COP-related measures and symmetric index during the quiet stance, either in the VR treadmill or traditional treadmill training group (P > 0.05). However, the difference between groups after training in COP maximum sway in medial-lateral direction during the quiet stance was significant (P = 0.038). Traditional treadmill training failed to improve sit-to-stand performance, whereas VR treadmill training improved symmetric index (P = 0.028) and sway excursion (P = 0.046) significantly during sit-to-stand transfer. The changes of symmetric index between groups were markedly different (P = 0.045). Finally, both groups improved significantly in stance time/P, but only VR treadmill training increased contact A/P (P = 0.034) after training during level walking. The difference between groups during level walking was not significant. Neither traditional treadmill nor VR treadmill training had any effect on balance skill during quiet stance, but VR treadmill training improved balance skill in the medial-lateral direction better than traditional training did. VR treadmill training also improved balance skill during sit-to-stand transfers and the involvement of paretic limb in level walking more than the traditional one did.
NASA Technical Reports Server (NTRS)
Nazar, K.; Greenleaf, J. E.; Philpott, D.; Pohoska, E.; Olszewska, K.; Kaciuba-Uscilko, H.
1991-01-01
The effect of exhaustive treadmill exercise on ultrastructural changes in the quadriceps femoris muscle was studied in 7 normal, healthy dogs, before and after restricted activity (RA), and following a subsequent 2 month treadmill exercise retraining period for the 5 mo group. Mean time to exhaustion in the 2 mo group decreased from 177 + or - 22 min before to 90 + or - 32 min after RA. Retraining increased tolerance to 219 + or - 73 min; 24 pct. above the before RA and 143 pct. above the after RA time. After RA exhaustion time in the 5 mo group was 25 and 45 min. Before RA, pre-exercise muscle structure was normal and post exercise there was only slight swelling of mitochondria. After RA, pre-exercise, numerous glycogen granules and lipid droplets appeared in the muscle fibers, mitochondria were smaller, and sarcoplasmic reticulum channels widened; post exercise these changes were accentuated and some areas were devoid of glycogen, and there was fiber degradation. After 5 mo RA pre-exercise there were more pronounced changes; mitochondria were very small and dense, there were many lipid droplets, myofibrils were often separated, and the fibers appeared edematous and degenerating; post exercise the sarcoplasmic reticulum was swollen, no glycogen was present, and there was marked swelling and deformation of mitochondria. After retraining, both pre-exercise and post exercise there was still evidence of fiber degeneration. Thus, susceptibility of active skeletal muscle structures and subcellular elements, e.g., mitochondria, to the action of damaging factors occurring during exhaustive exercise is enhanced considerably by prolonged disuse.
Greenwood, Benjamin N.; Spence, Katie G.; Crevling, Danielle M.; Clark, Peter J.; Craig, Wendy C.; Fleshner, Monika
2014-01-01
Exercise increases resistance against stress-related disorders such as anxiety and depression. Similarly, the perception of control is a powerful predictor of neurochemical and behavioral responses to stress, but whether the experience of choosing to exercise, and exerting control over that exercise, is a critical factor in producing exercise-induced stress resistance is unknown. The current studies investigated whether the protective effects of exercise against the anxiety- and depression-like consequences of stress are dependent on exercise controllability and a brain region implicated in the protective effects of controllable experiences, the medial prefrontal cortex. Adult male Fischer 344 rats remained sedentary, were forced to run on treadmills or motorised running wheels, or had voluntary access to wheels for 6 weeks. Three weeks after exercise onset, rats received sham surgery or excitotoxic lesions of the medial prefrontal cortex. Rats were exposed to home cage or uncontrollable tail shock treatment three weeks later. Shock-elicited fear conditioning and shuttle box escape testing occurred the next day. Both forced and voluntary wheel running, but not treadmill training, prevented the exaggerated fear conditioning and interference with escape learning produced by uncontrollable stress. Lesions of the medial prefrontal cortex failed to eliminate the protective effects of forced or voluntary wheel running. These data suggest that exercise controllability and the medial prefrontal cortex are not critical factors in conferring the protective effects of exercise against the affective consequences of stressor exposure, and imply that exercise perceived as forced may still benefit affect and mental health. PMID:23121339
Armbrust, Wineke; Bos, G J F Joyce; Wulffraat, Nico M; van Brussel, Marco; Cappon, Jeannette; Dijkstra, Pieter U; Geertzen, Jan H B; Legger, G Elizabeth; van Rossum, Marion A J; Sauer, Pieter J J; Lelieveld, Otto T H M
2017-07-01
To determine the effects of Rheumates@Work, an internet-based program supplemented with 4 group sessions, aimed at improving physical activity, exercise capacity, health-related quality of life (HRQoL), and participation in children with juvenile idiopathic arthritis. Patients were recruited from 3 pediatric rheumatology centers in The Netherlands for an observer-blinded, randomized controlled multicenter trial. Physical activity level, time spent in rest, light, and moderate-to-vigorous physical activity (MVPA) were recorded in a diary and with an accelerometer, before intervention, after intervention, and at followup after 3 and 12 months (intervention group only). Exercise capacity was assessed using the Bruce treadmill protocol, HRQoL was assessed with the Pediatric Quality of Life Inventory generic core scale, and participation in school and in physical education classes were assessed by questionnaire. The intervention group consisted of 28 children, and there were 21 children in the control group. MVPA , exercise capacity, and participating in school and physical education classes improved significantly in the intervention group. HRQoL improved in the control group. No significant differences were found between groups. The effect of Rheumates@Work on physical activity and exercise capacity lasted during the 12 months of followup. Improvements in physical activity were significantly better for the cohort starting in winter compared to the summer cohort. Rheumates@Work had a positive, albeit small, effect on physical activity, exercise capacity, and participation in school and physical education class in the intervention group. Improvements lasted for 12 months. Participants who started in winter showed the most improvement. Rheumates@Work had no effect on HRQoL. © 2016, American College of Rheumatology.
Analog Exercise Hardware to Implement a High Intensity Exercise Program During Bed Rest
NASA Technical Reports Server (NTRS)
Loerch, Linda; Newby, Nate; Ploutz-Snyder, Lori
2012-01-01
Background: In order to evaluate novel countermeasure protocols in a space flight analog prior to validation on the International Space Station (ISS), NASA's Human Research Program (HRP) is sponsoring a multi-investigator bedrest campaign that utilizes a combination of commercial and custom-made exercise training hardware to conduct daily resistive and aerobic exercise protocols. This paper will describe these pieces of hardware and how they are used to support current bedrest studies at NASA's Flight Analog Research Unit in Galveston, TX. Discussion: To implement candidate exercise countermeasure studies during extended bed rest studies the following analog hardware are being utilized: Stand alone Zero-Gravity Locomotion Simulator (sZLS) -- a custom built device by NASA, the sZLS allows bedrest subjects to remain supine as they run on a vertically-oriented treadmill (0-15 miles/hour). The treadmill includes a pneumatic subject loading device to provide variable body loading (0-100%) and a harness to keep the subject in contact with the motorized treadmill to provide a ground reaction force at their feet that is quantified by a Kistler Force Plate. Supine Cycle Ergometer -- a commercially available supine cycle ergometer (Lode, Groningen, Netherlands) is used for all cycle ergometer sessions. The ergometer has adjustable shoulder supports and handgrips to help stabilize the subject during exercise. Horizontal Squat Device (HSD) -- a custom built device by Quantum Fitness Corp (Stafford, TX), the HSD allows for squat exercises to be performed while lying in a supine position. The HSD can provide 0 to 600 pounds of force in selectable 5 lb increments, and allows hip translation in both the vertical and horizontal planes. Prone Leg Curl -- a commercially available prone leg curl machine (Cybex International Inc., Medway, MA) is used to complete leg curl exercises. Horizontal Leg Press -- a commercially available horizontal leg press (Quantum Fitness Corporation) is used for leg press and heel raise exercises. Minor modifications were made to the device including adding 200 lbs to the weight stack, raising the frame by 12 inches, making the footplate adjustable, and providing removable handles. Conclusion: A combination of novel and commercial exercise hardware are used to mimic the exercise hardware capabilities aboard the ISS, allowing scientific investigation of new countermeasure protocols in a space flight analog prior to flight validation
Calogiuri, Giovanna; Litleskare, Sigbjørn; Fagerheim, Kaia A.; Rydgren, Tore L.; Brambilla, Elena; Thurston, Miranda
2018-01-01
By combining physical activity and exposure to nature, green exercise can provide additional health benefits compared to physical activity alone. Immersive Virtual Environments (IVE) have emerged as a potentially valuable supplement to environmental and behavioral research, and might also provide new approaches to green exercise promotion. However, it is unknown to what extent green exercise in IVE can provide psychophysiological responses similar to those experienced in real natural environments. In this study, 26 healthy adults underwent three experimental conditions: nature walk, sitting-IVE, and treadmill-IVE. The nature walk took place on a paved trail along a large river. In the IVE conditions, the participants wore a head-mounted display with headphones reproducing a 360° video and audio of the nature walk, either sitting on a chair or walking on a manually driven treadmill. Measurements included environmental perceptions (presence and perceived environmental restorativeness – PER), physical engagement (walking speed, heart rate, and perceived exertion), and affective responses (enjoyment and affect). Additionally, qualitative information was collected through open-ended questions. The participants rated the IVEs with satisfactory levels of ‘being there’ and ‘sense of reality,’ but also reported discomforts such as ‘flatness,’ ‘movement lag’ and ‘cyber sickness.’ With equivalent heart rate and walking speed, participants reported higher perceived exertion in the IVEs than in the nature walk. The nature walk was associated with high enjoyment and enhanced affect. However, despite equivalent ratings of PER in the nature walk and in the IVEs, the latter were perceived as less enjoyable and gave rise to a poorer affect. Presence and PER did not differ between the two IVEs, although in the treadmill-IVE the negative affective responses had slightly smaller magnitude than in the sitting-IVE. In both the IVEs, the negative affective responses were mainly associated with cyber sickness, whereas PER was positively associated with enjoyment. From the qualitative analysis, it emerged that poor postural control and lack of a holistic sensory experience can also hinder immersion in the IVE. The results indicate that IVE technology might in future be a useful instrument in green exercise research and promotion, but only if image quality and cyber sickness can be addressed. PMID:29410635
Cardio-respiratory fitness of young and older active and sedentary men.
Steinhaus, L A; Dustman, R E; Ruhling, R O; Emmerson, R Y; Johnson, S C; Shearer, D E; Shigeoka, J W; Bonekat, W H
1988-01-01
Physiological profiles are described for 30 healthy young (20-31 years) and 30 healthy older (50-62 years) men. Half of the individuals in each group reported that during the previous five years they participated frequently in strenuous physical exercises; the other half reported sedentary lifestyles. A treadmill exercise test was used to determine maximal aerobic power (VO2 max). Heart rate and blood pressure were measured during rest, maximal exercise and recovery. The active older men demonstrated significantly lower resting heart rates, lower resting systolic and diastolic blood pressures, higher VO2 max, lower maximal exercise diastolic blood pressure and lower recovery heart rates than the age-matched sedentary men. Compared with the young sedentary men, the older active men had lower resting heart rates and higher VO2 max, walked longer on the treadmill, had lower recovery heart rates and weighed less. Older active men also had higher VO2 max levels than young sedentary men. In summary, physiological profiles of the older active men more closely resembled profiles of active men who were 30 years younger than those of older sedentary men. These results emphasize the range of benefits associated with exercise. PMID:3228686
Potential benefits of maximal exercise just prior to return from weightlessness
NASA Technical Reports Server (NTRS)
Convertino, Victor A.
1987-01-01
The purpose of this study was to determine whether performance of a single maximal bout of exercise during weightlessness within hours of return to earth would enhance recovery of aerobic fitness and physical work capacities under a 1G environment. Ten healthy men were subjected to a 10-d bedrest period in the 6-deg headdown position. A graded maximal supine cycle ergometer test was performed before and at the end of bedrest to simulate exercise during weightlessness. Following 3 h of resumption of the upright posture, a second maximal exercise test was performed on a treadmill to measure work capacity under conditions of 1G. Compared to before bedrest, peak oxygen consumption, V(O2), decreased by 8.7 percent and peak heart rate (HR) increased by 5.6 percent in the supine cycle test at the end of bedrest. However, there were no significant changes in peak V(O2) and peak HR in the upright treadmill test following bedrest. These data suggest that one bout of maximal leg exercise prior to return from 10 d of weightlessness may be adequate to restore preflight aerobic fitness and physical work capacity.
Mahe, Guillaume; Abraham, Pierre; Zeenny, Maya; Bruneau, Antoine; Vielle, Bruno; Leftheriotis, Georges
2010-04-01
The predefined duration to arbitrarily stop the tests during constant-load treadmill exercise is a subject of debate and widely variable in the literature. We hypothesized that the upper and lower limits for predefined durations of constant-load 3.2 km/hour 10% grade tests could be derived from the distribution of walking distances observed on a treadmill in a population of subjects referred for claudication or from the optimal cutoff point distance on a treadmill to confirm a limitation self-reported by history. We conducted a retrospective analysis using a referral center, institutional practice, and ambulatory patients. We studied 1290 patients (86% male), 62.1 +/- 11.2 years of age, 169 +/- 8 cm height, 75.7 +/- 14.2 kg weight. Patients performed a standard constant-load treadmill test: 3.2 km hour(-1), 10% slope, maximized to 1000 meters (approximately 20 minutes). We analyzed the maximal walking distance self-reported (MWD(SR)) by history and the maximal walking distance measured on the treadmill (MWD(TT)). Patients reporting MWD(SR) >or=1000 meters were considered unlimited by history. Only 197 patients (15.3%) completed the 20-minute treadmill test. Among the 504 patients who did not stop before 250 meters, 47.8% stopped within the next 250 meters (were unable to walk 500 meters). This proportion falls to 7.5% among the 213 patients who did not stop before 750 meters. When the final goal was to estimate whether the treadmill test can discriminate patients with or without limitation by history, area under the receiver operating characteristic (ROC) curve was 0.809 +/- 0.016 (95% confidence interval [CI], 0.778-0.841; P < .0001), the best diagnostic performance was attained for an MWD(TT) of 299 meters (approximately 6.15 minutes). In patients undergoing constant-load treadmill exercise with a protocol of 3.2 km hour(-1) and 10% slope: a predefined duration of 7 minutes could be proposed as a lower limit for the predefined duration of the tests specifically if one aims at confirming the limitation by history with treadmill testing. Owing to the low risk that patients that could walk 750 meters (approximately 15 minutes) will have to stop in the next 250 meters, 15 minutes seems a reasonable upper limit for the predefined test duration in clinical routine.
Exercise induces cortical plasticity after neonatal spinal cord injury in the rat
Kao, T; Shumsky, JS; Murray, M; Moxon, KA
2009-01-01
Exercise-induced cortical plasticity is associated with improved functional outcome after brain or nerve injury. Exercise also improves functional outcomes after spinal cord injury, but its effects on cortical plasticity are not known. The goal of this investigation was to study the effect of moderate exercise (treadmill locomotion, 3 min/day, 5days/week) on the somatotopic organization of forelimb and hindlimb somatosensory cortex (SI) after neonatal thoracic transection. We used adult rats spinalized as neonates because some of these animals develop weight-supported stepping and, therefore, the relationship between cortical plasticity and stepping could also be examined. Acute, single-neuron mapping was used to determine the percentage of cortical cells responding to cutaneous forelimb stimulation in normal, spinalized, and exercised spinalized rats. Multiple single neuron recording from arrays of chronically implanted microwires examined the magnitude of response of these cells in normal and exercised spinalized rats. Our results show that exercise not only increased the percentage of responding cells in the hindlimb SI, but also increased the magnitude of the response of these cells. This increase in response magnitude was correlated with behavioral outcome measures. In the forelimb SI, neonatal transection reduced the percentage of responding cells to forelimb stimulation but exercise reversed this loss. This restoration in the percentage of responding cells after exercise was accompanied by an increase in their response magnitude. Therefore, the increase in responsiveness of hindlimb SI to forelimb stimulation after neonatal transection and exercise may be due, in part, to the effect of exercise on the forelimb SI. PMID:19515923
Doorey, Andrew; Denenberg, Barry; Sagar, Vidya; Hanna, Tracy; Newman, Jack; Stone, Peter H
2011-09-01
Mental stress increases cardiovascular morbidity and mortality. Although laboratory mental stress often causes less myocardial ischemia than exercise stress (ES), it is unclear whether mental stress is intrinsically different or differences are due to less hemodynamic stress with mental stress. We sought to evaluate the hemodynamic and ischemic response to intense realistic mental stress created by modern flight simulators and compare this response to that of exercise treadmill testing and conventional laboratory mental stress (CMS) testing in pilots with coronary disease. Sixteen airline pilots with angiographically documented coronary disease and documented myocardial ischemia during ES were studied using maximal treadmill ES, CMS, and aviation mental stress (AMS) testing. AMS testing was done in a sophisticated simulator using multiple system failures as stressors. Treadmill ES testing resulted in the highest heart rate, but AMS caused a higher blood pressure response than CMS. Maximal rate-pressure product was not significantly different between ES and AMS (25,646 vs 23,347, p = 0.08), although these were higher than CMS (16,336, p <0.0001). Despite similar hemodynamic stress induced by ES and AMS, AMS resulted in significantly less ST-segment depression and nuclear ischemia than ES. Differences in induction of ischemia by mental stress compared to ES do not appear to be due to the creation of less hemodynamic stress. In conclusion, even with equivalent hemodynamic stress, intense realistic mental stress induced by flight simulators results in significantly less myocardial ischemia than ES as measured by ST-segment depression and nuclear ischemia. Copyright © 2011 Elsevier Inc. All rights reserved.
Tang, Zhiping; Wang, Yujun; Zhu, Xiaoyan; Ni, Xin; Lu, Jianqiang
2016-01-01
Exercise could be a therapeutic approach for cardiovascular dysfunction induced by estrogen deficiency. Our previous study has shown that estrogen maintains cystathionine-γ-lyase (CSE) expression and inhibits oxidative stress in the myocardium of female rats. In the present study, we investigated whether exercise improves CSE expression and oxidative stress status and ameliorates isoproterenol (ISO)-induced cardiac damage in ovariectomized (OVX) rats. The results showed that treadmill training restored the ovariectomy-induced reduction of CSE and estrogen receptor (ER)α and decrease of total antioxidant capacity (T-AOC) and increase of malondialdehyde (MDA). The level of CSE was positively correlated to T-AOC and ERα while inversely correlated to MDA. OVX rats showed increases in the serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH) and the percentage of TUNEL staining in myocardium upon ISO insult compared to sham rats. Exercise training significantly reduced the serum levels of LDH and CK and the percentage of TUNEL staining in myocardium upon ISO insult in OVX rats. In cultured cardiomyocytes, ISO treatment decreased cell viability and increased LDH release, while overexpression of CSE increased cell viability and decreased LDH release in the cells upon ISO insult. The results suggest that exercise training improves the oxidative stress status and ameliorates the cardiac damage induced by oxidative stress in OVX rats. The improvement of oxidative stress status by exercise might be at least partially due to upregulation of CSE/H2S signaling.
Dimeo, F; Schwartz, S; Wesel, N; Voigt, A; Thiel, E
2008-08-01
Fatigue is a relevant problem of cancer patients during and after treatment. Several studies have shown that exercise can improve quality of life and functional status of cancer patients undergoing chemo- or radiotherapy. However, there is a lack of information about the effects of this intervention on persistent cancer-related fatigue. Therefore, we assessed the effects of an exercise program on cancer-related fatigue after treatment. A consecutive series of 32 cancer patients with mild to severe persistent fatigue [scores on the Brief Fatigue Inventory (BFI) > 25] participated in a 3-week exercise program consisting of endurance (30 min walking on a treadmill) and resistance/coordination exercises for the major muscle groups. Fatigue, mood, and anxiety were assessed with questionnaires and physical performance with a stress test before and after the program. At the end of the program, we observed a significant increase of physical performance (workload at the anaerobic threshold pre 61 +/- 26 W, post 78 +/- 31 W, P < 0.0001) and reduction of global fatigue (Functional Assessment of Cancer Therapy: pre 45.7 +/- 13.4, post 52.6 +/- 12.4, P < 0.0001; BFI: pre 37.9 +/- 18.3, post 31.2 +/-17.1, P < 0.001). However, no significant improvement of cognitive fatigue or reduction of anxiety was observed. A 3-week exercise program leads to a substantial improvement of physical performance and reduction of mental and physical fatigue in cancer patients after treatment. However, this intervention does not affect depression, anxiety, or cognitive fatigue.
Effect of different musical tempo on post-exercise recovery in young adults.
Savitha, D; Mallikarjuna, Reddy N; Rao, Chythra
2010-01-01
The role of music in increasing the exercise performance is well recognised. There is very little information about effect of music on time taken for post exercise recovery. We examined the effect of music and different musical tempo on post exercise recovery time, following treadmill work. 30 volunteers (15 male, 15 female) subjected to isotonic exercise (submaximal treadmill work) on three consecutive days. They were allowed to rest in silence on the first day, rest by hearing slow music on second day and rest with fast music on third day. Parameters such as Pulse rate, blood pressure, rating of perceived exertion (RPE) were measured at predetermined intervals. Repeated measures ANOVA test showed that with slow music, recovery time of systolic blood pressure (SBP) (7.9 +/- 2.5), diastolic blood pressure (DBP) (5.5 +/- 3.4) pulse rate recovery (PR) (8.0 +/- 2.3) and recovery from exertion (RPE) (7.7 +/- 2.5) were significantly faster when compared to both no music and fast music. The individual music preference made no significant difference in the relaxation time. The study concluded that music hastens post exercise recovery and slow music has greater relaxation effect than fast or no music, recovery time being independent of the gender and individual music preference.
Lopez-Alegria exercises in the Zvezda Service module
2006-11-05
ISS014-E-07115 (2 Nov. 2006) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station. In this close-up view, the TVIS is out of frame.
Sex-dependent components of the analgesia produced by athletic competition.
Sternberg, W F; Bokat, C; Kass, L; Alboyadjian, A; Gracely, R H
2001-02-01
Competing in various athletic events (track meet, basketball game, or fencing match) can produce analgesia to cold pressor stimuli in male and female college athletes compared with baseline assessments. This competition-induced analgesia has been attributed to the stress associated with competition, which has components related to both physical exercise and the cognitive aspects of competing. This study evaluated the analgesic effect of exercise-related stress, and that caused by the cognitively stressful components of competing independent of exercise. Cold pressor pain ratings were assessed after competition in a track meet and after treadmill exercise or sedentary video game competition in both athletes and nonathletes. As expected, competing in athletics resulted in a decrease in cold pressor ratings in both male and female athletes. Independent of athletic status, treadmill running induced analgesia in women, but not in males, whereas sedentary video game competition produced analgesia in men, but not in women. These findings suggest that different components of the competitive athletic experience might be responsible for the analgesic effects in a sex-dependent manner.
The Biomechanics of Exercise Countermeasures
NASA Technical Reports Server (NTRS)
Cavanagh, Peter R.; Arnold, Steven; Derr, Janice; Sharkey, Neil; Wu, Ge
1999-01-01
The Penn State Zero-gravity Simulator (PSZS) is a device developed by the Center for Locomotion Studies (CELOS) to enable ground studies of exercise countermeasures for the bone loss that has been shown to occur during long-term exposure to zero gravity (0G). The PSZS simulates 0G exercise by providing a suspension system that holds an individual in a horizontal (supine) position above the floor in order to enable exercise on a wall-mounted treadmill. Due to this orientation, exercise performed in the PSZS is free of the force of -ravity in the direction that would normally contribute to ground reaction forces. In order for movements to be more similar to those in 0G, a constant force suspension of each segment (equal to the segment weight) is provided regardless of limb position. During the preliminary development of the PSZS, CELOS researchers also designed an optional gravity-replacement simulation feature for the PSZS. This feature was a prototype tethering system that consisted of a spring tension system to pull an exercising individual toward the treadmill. The immediate application of the tethering system was to be the provision of gravity-replacement loading so that exercise in 0G- and 1G-loading conditions could be compared, and the PSZS could then be used to evaluate exercise countermeasures for bone loss during space flight. This tethering system would also be a model for the further refinement of gravity-replacement systems provided for astronaut usage while performing prescribed exercise countermeasures for bone loss during long-term space flights.
Chomsky, D B; Lang, C C; Rayos, G; Wilson, J R
1997-08-01
Patients with heart failure frequently have elevated intracardiac diastolic pressures but no clinical evidence of excess fluid retention. We speculated that such pressure elevations may indicate subclinical fluid retention and that removal of this fluid could improve exercise intolerance. To test this hypothesis, we studied 10 patients with right atrial pressure > or = 8 mm Hg but without rales, edema, or apparent jugular venous distension. Right-sided heart catheterization was performed, after which patients underwent maximal treadmill cardiopulmonary testing. Patients were then hospitalized and underwent maximal diuresis, after which exercise was repeated. Before diuresis, right atrial pressure averaged 16 +/- 5 mm Hg (+/-standard deviation), pulmonary capillary wedge pressure 30 +/- 6 mm Hg, and peak exercise Vo2 11.2 +/- 2.3 ml/min/ kg. Patients underwent diuresis of 4.5 +/- 2.2 kg over 4 +/- 2 days to a resting right atrial pressure of 6 +/- 4 and wedge pressure of 19 +/- 7 mm Hg. After diuresis, all patients reported overall symptomatic improvement. Maximal exercise duration increased significantly from 9.2 +/- 4.2 to 12.5 +/- 4.7 minutes. At matched peak workloads, significant improvements were also seen in minute ventilation (45 +/- 12 to 35 +/- 9 L/min), lactate levels (42 +/- 16 to 29 +/- 9 mg/dl), and Borg dyspnea scores (15 +/- 3 to 12 +/- 4) (all p < 0.05). Invasive hemodynamic monitoring allows the identification of excess fluid retention in patients with heart failure when there are no clinical signs of fluid overload. Removal of this subclinical excess fluid improves exercise performance and exertional dyspnea.
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Davis-Street, Janis E.; Fesperman, J. Vernell; Calkins, D. S.; Bawa, Maneesh; Macias, Brandon R.; Meyer, R. Scott; Hargens, Alan R.
2003-01-01
Counteracting bone loss is required for future space exploration. We evaluated the ability of treadmill exercise in a LBNP chamber to counteract bone loss in a 30-day bed rest study. Eight pairs of identical twins were randomly assigned to sedentary control or exercise groups. Exercise within LBNP decreased the bone resorption caused by bed rest and may provide a countermeasure for spaceflight. INTRODUCTION: Bone loss is one of the greatest physiological challenges for extended-duration space missions. The ability of exercise to counteract weightlessness-induced bone loss has been studied extensively, but to date, it has proven ineffective. We evaluated the effectiveness of a combination of two countermeasures-treadmill exercise while inside a lower body negative pressure (LBNP) chamber-on bone loss during a 30-day bed rest study. MATERIALS AND METHODS: Eight pairs of identical twins were randomized into sedentary (SED) or exercise/LBNP (EX/LBNP) groups. Blood and urine samples were collected before, several times during, and after the 30-day bed rest period. These samples were analyzed for markers of bone and calcium metabolism. Repeated measures ANOVA was used to determine statistical significance. Because identical twins were used, both time and group were treated as repeated variables. RESULTS: Markers of bone resorption were increased during bed rest in samples from sedentary subjects, including the collagen cross-links and serum and urinary calcium concentrations. For N-telopeptide and deoxypyridinoline, there were significant (p < 0.05) interactions between group (SED versus EX/LBNP) and phase of the study (sample collection point). Pyridinium cross-links were increased above pre-bed rest levels in both groups, but the EX/LBNP group had a smaller increase than the SED group. Markers of bone formation were unchanged by bed rest in both groups. CONCLUSIONS: These data show that this weight-bearing exercise combined with LBNP ameliorates some of the negative effects of simulated weightlessness on bone metabolism. This protocol may pave the way to counteracting bone loss during spaceflight and may provide valuable information about normal and abnormal bone physiology here on Earth.
Hamlyn-Williams, Charlotte C; Tempest, Gavin; Coombs, Sarah; Parfitt, Gaynor
2015-01-01
Recent research suggests that the Feeling Scale (FS) can be used as a method of exercise intensity regulation to maintain a positive affective response during exercise. However, research to date has been carried out in laboratories and is not representative of natural exercise environments. The purpose of this study was to evaluate whether sedentary women can self-regulate their exercise intensity using the FS to experience positive affective responses in a gym environment using their own choice of exercise mode; cycling or treadmill. Fourteen females (24.9 years ± 5.2; height 166.7 ± 5.7 cm; mass 66.3 ± 13.4 kg; BMI 24.1 ± 5.5)) completed a submaximal exercise test and each individual's ventilatory threshold ([Formula: see text]) was identified. Following this, three 20 min gym-based exercise trials, either on a bike or treadmill were performed at an intensity that was self-selected and perceived to correspond to the FS value of +3 (good). Oxygen uptake, heart rate (HR) and ratings of perceived exertion (RPE) were measured during exercise at the participants chosen intensity. Results indicated that on average participants worked close to their [Formula: see text] and increased their exercise intensity during the 20-min session. Participants worked physiologically harder during cycling exercise. Consistency of oxygen uptake, HR and RPE across the exercise trials was high. The data indicate that previously sedentary women can use the FS in an ecological setting to regulate their exercise intensity and that regulating intensity to feel 'good' should lead to individuals exercising at an intensity that would result in cardiovascular gains if maintained.
Kocur, Piotr; Deskur-Smielecka, Ewa; Wilk, Malgorzata; Dylewicz, Piotr
2009-11-01
To investigate the effects of Nordic Walking training supplemental to a standard, early rehabilitation programme on exercise capacity and physical fitness in men after an acute coronary syndrome. A controlled trial. Cardiac rehabilitation service of a provincial hospital. Eighty men 2-3 weeks after an acute coronary syndrome, with good exercise tolerance. Three-week, inpatient cardiac rehabilitation programme (control group) supplemented with Nordic Walking (Nordic Walking group), or with traditional walking training (walking training group). Exercise capacity was assessed as peak energy cost (in metabolic equivalents) in symptom-limited treadmill exercise test, and physical fitness with the Fullerton Functional Fitness Test. Exercise capacity after the rehabilitation programme was higher in the Nordic Walking group than in the control group (10.8 +/- 1.8 versus 9.2 +/- 2.2 metabolic equivalents, P =0.025). The improvement in exercise capacity in the Nordic Walking group was higher than in the control group (1.8 +/- 1.5 versus 0.7 +/- 1.4 metabolic equivalents, P =0.002). In contrast to the control group, the results of all components of the Fullerton test improved in the Nordic Walking and walking training groups. After the programme, lower body endurance, and dynamic balance were significantly better in the Nordic Walking group in comparison with the walking training and control groups, and upper body endurance was significantly better in the Nordic Walking and walking training groups than in the control group. Nordic Walking may improve exercise capacity, lower body endurance and coordination of movements in patients with good exercise tolerance participating in early, short-term rehabilitation after an acute coronary syndrome.
Endurance exercise in a rat model of metabolic syndrome.
Cameron, Isabelle; Alam, Mohammad Ashraful; Wang, Jianxiong; Brown, Lindsay
2012-11-01
We have measured the responses to endurance exercise training on body composition and glucose regulation, as well as cardiovascular and liver structure and function in rats fed a high carbohydrate and high fat (HCHF) diet as a model of human metabolic syndrome. Male Wistar rats (9-10 weeks old) were randomly allocated into corn starch (CS) or HCHF diet groups for 16 weeks; half of each group were exercised on a treadmill for 20, 25, and then 30 min/day, 5 days/week, during the last 8 weeks of the protocol. Metabolic, cardiovascular, and liver parameters were monitored. The HCHF diet induced symptoms of metabolic syndrome, including obesity, dyslipidemia, impaired glucose tolerance, and increased systolic blood pressure associated with the development of cardiovascular remodeling and nonalcoholic steatohepatitis. Exercise in HCHF rats decreased body mass, abdominal fat pads and circumference, blood glucose concentrations, plasma lipid profiles, systolic blood pressure, left ventricular diastolic stiffness, collagen deposition and inflammatory cell infiltration in the left ventricle, improved aortic contractile and relaxation responses, and decreased liver mass and hepatic fat accumulation. This study demonstrates that endurance exercise is effective in this rat model of diet-induced metabolic syndrome in improving body composition and glucose regulation, as well as cardiovascular and liver structure and function.
Wakaizumi, Kenta; Kondo, Takashige; Hamada, Yusuke; Narita, Michiko; Kawabe, Rui; Narita, Hiroki; Watanabe, Moe; Kato, Shigeki; Senba, Emiko; Kobayashi, Kazuto; Kuzumaki, Naoko; Yamanaka, Akihiro; Morisaki, Hiroshi; Narita, Minoru
2016-01-01
Exercise alleviates pain and it is a central component of treatment strategy for chronic pain in clinical setting. However, little is known about mechanism of this exercise-induced hypoalgesia. The mesolimbic dopaminergic network plays a role in positive emotions to rewards including motivation and pleasure. Pain negatively modulates these emotions, but appropriate exercise is considered to activate the dopaminergic network. We investigated possible involvement of this network as a mechanism of exercise-induced hypoalgesia. In the present study, we developed a protocol of treadmill exercise, which was able to recover pain threshold under partial sciatic nerve ligation in mice, and investigated involvement of the dopaminergic reward network in exercise-induced hypoalgesia. To temporally suppress a neural activation during exercise, a genetically modified inhibitory G-protein-coupled receptor, hM4Di, was specifically expressed on dopaminergic pathway from the ventral tegmental area to the nucleus accumbens. The chemogenetic-specific neural suppression by Gi-DREADD system dramatically offset the effect of exercise-induced hypoalgesia in transgenic mice with hM4Di expressed on the ventral tegmental area dopamine neurons. Additionally, anti-exercise-induced hypoalgesia effect was significantly observed under the suppression of neurons projecting out of the ventral tegmental area to the nucleus accumbens as well. Our findings suggest that the dopaminergic pathway from the ventral tegmental area to the nucleus accumbens is involved in the anti-nociception under low-intensity exercise under a neuropathic pain-like state. © The Author(s) 2016.
Gudiksen, Anders; Schwartz, Camilla Lindgren; Bertholdt, Lærke; Joensen, Ella; Knudsen, Jakob G; Pilegaard, Henriette
2016-01-01
Pyruvate dehydrogenase (PDH) plays a key role in the regulation of skeletal muscle substrate utilization. IL-6 is produced in skeletal muscle during exercise in a duration dependent manner and has been reported to increase whole body fatty acid oxidation, muscle glucose uptake and decrease PDHa activity in skeletal muscle of fed mice. The aim of the present study was to examine whether muscle IL-6 contributes to exercise-induced PDH regulation in skeletal muscle. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) completed a single bout of treadmill exercise for 10, 60 or 120 min, with rested mice of each genotype serving as basal controls. The respiratory exchange ratio (RER) was overall higher (P<0.05) in IL-6 MKO than control mice during the 120 min of treadmill exercise, while RER decreased during exercise independent of genotype. AMPK and ACC phosphorylation also increased with exercise independent of genotype. PDHa activity was in control mice higher (P<0.05) at 10 and 60 min of exercise than at rest but remained unchanged in IL-6 MKO mice. In addition, PDHa activity was higher (P<0.05) in IL-6 MKO than control mice at rest and 60 min of exercise. Neither PDH phosphorylation nor acetylation could explain the genotype differences in PDHa activity. Together, this provides evidence that skeletal muscle IL-6 contributes to the regulation of PDH at rest and during prolonged exercise and suggests that muscle IL-6 normally dampens carbohydrate utilization during prolonged exercise via effects on PDH.
Zwart, Sara R; Hargens, Alan R; Lee, Stuart M C; Macias, Brandon R; Watenpaugh, Donald E; Tse, Kevin; Smith, Scott M
2007-02-01
Supine weight-bearing exercise within lower body negative pressure (LBNP) alleviates some of the skeletal deconditioning induced by simulated weightlessness in men. We examined this potential beneficial effect in women. Because dietary acid load affected the degree of bone resorption in men during bed rest, we also investigated this variable in women. Subjects were 7 pairs of female identical twins assigned at random to 2 groups, sedentary bed rest (control) or bed rest with supine treadmill exercise within LBNP. Dietary intake was controlled and monitored. Urinary calcium and markers of bone resorption were measured before bed rest and on bed rest days 5/6, 12/13, 19/20, and 26/27. Bone mineral content was assessed by dual-energy X-ray absorptiometry before and after bed rest. Data were analyzed by repeated-measures two-way analysis of variance. Pearson correlation coefficients were used to define the relationships between diet and markers of bone metabolism and to estimate heritability of markers. During bed rest, all markers of bone resorption and urinary calcium and phosphorus increased (P<0.001); parathyroid hormone (P=0.06), bone-specific alkaline phosphatase (P=0.06), and 1,25-dihydroxyvitamin D (P=0.09) tended to decrease. LBNP exercise tended to mitigate bone density loss. The ratio of dietary animal protein to potassium was positively correlated with urinary calcium excretion for all weeks of bed rest in the control group, but only during weeks 1 and 3 in the exercise group. Pre-bed rest data suggested that many markers of bone metabolism have strong genetic determinants. Treadmill exercise within LBNP had less of a protective effect on bone resorption during bed rest in women than previously published results had shown for its effect in men, but the same trends were observed for both sexes. Dietary acid load of these female subjects was significantly correlated with calcium excretion but not with other bone resorption markers.
Chen, Jia-Xu; Zhao, Xin; Yue, Guang-Xin; Wang, Zhu-Feng
2007-02-01
This study was designed to investigate the effect of acute and chronic high-intensity treadmill exercise on changes in plasma lactate and brain neuropeptide (NPY), leucine-enkephalin (L-ENK), and dynorphin A(1-13) (DYN A(1-13)). Avidin-biotin complex (ABC) immunohistochemistry and image pattern analysis were used to observe the effect of chronic (total 7 weeks) and acute treadmill exercise (an initial speed of 15 m min(-1) gradually increased to 35 m min(-1) with 0 degrees, 20-25 min per day duration) on the changes of NPY, L-ENK, and DYN A(1-13) in different areas of rat brain. Plasma lactate was also measured in response to such exercise. Compared with preexercise control (P < 0.01), plasma lactate concentration significantly increased in the immediate postexercise; but it returned to the normal level soon after the 30 min postexercise. The content of NPY in paraventricular (PVN), dorsomedial (DMN), and ventromedial (VMN) hypothalamic nuclei continued to increase in 0, 30, and 180 min postexercise compared with preexercise control (P < 0.01). The content of L-ENK in caudate-putamen (CPu) significantly increased in the immediate postexercise compared with preexercise control (P < 0.01), but it gradually returned to the normal level after the 180 min postexercise. However, the content of DYN A(1-13) in PVN rose substantially only in 30 min postexercise in comparison with the preexercise control (P < 0.01). Thus, different changes of NPY, L-ENK, and DYN A(1-13) in response to such high-intensity exercise depend on the brain region and the time examined, especially, the contents of NPY in different brain regions continuously remain at a high level after such high-intensity exercise. And this high level might reduce energy expenditure and thus contribute to the stimulation of brain NPY neurons.
de Souza E Silva, Christina G; Kaminsky, Leonard A; Arena, Ross; Christle, Jeffrey W; Araújo, Claudio Gil S; Lima, Ricardo M; Ashley, Euan A; Myers, Jonathan
2018-05-01
Background Maximal oxygen uptake (VO 2 max) is a powerful predictor of health outcomes. Valid and portable reference values are integral to interpreting measured VO 2 max; however, available reference standards lack validation and are specific to exercise mode. This study was undertaken to develop and validate a single equation for normal standards for VO 2 max for the treadmill or cycle ergometer in men and women. Methods Healthy individuals ( N = 10,881; 67.8% men, 20-85 years) who performed a maximal cardiopulmonary exercise test on either a treadmill or a cycle ergometer were studied. Of these, 7617 and 3264 individuals were randomly selected for development and validation of the equation, respectively. A Brazilian sample (1619 individuals) constituted a second validation cohort. The prediction equation was determined using multiple regression analysis, and comparisons were made with the widely-used Wasserman and European equations. Results Age, sex, weight, height and exercise mode were significant predictors of VO 2 max. The regression equation was: VO 2 max (ml kg -1 min -1 ) = 45.2 - 0.35*Age - 10.9*Sex (male = 1; female = 2) - 0.15*Weight (pounds) + 0.68*Height (inches) - 0.46*Exercise Mode (treadmill = 1; bike = 2) ( R = 0.79, R 2 = 0.62, standard error of the estimate = 6.6 ml kg -1 min -1 ). Percentage predicted VO 2 max for the US and Brazilian validation cohorts were 102.8% and 95.8%, respectively. The new equation performed better than traditional equations, particularly among women and individuals ≥60 years old. Conclusion A combined equation was developed for normal standards for VO 2 max for different exercise modes derived from a US national registry. The equation provided a lower average error between measured and predicted VO 2 max than traditional equations even when applied to an independent cohort. Additional studies are needed to determine its portability.
Zwart, Sara R.; Hargens, Alan R.; Lee, Stuart M. C.; Macias, Brandon R.; Watenpaugh, Donald E.; Tse, Kevin; Smith, Scott M.
2007-01-01
Supine weight-bearing exercise within lower body negative pressure (LBNP) alleviates some of the skeletal deconditioning induced by simulated weightlessness in men. We examined the potential beneficial effect in women. Because dietary acid load affected the degree of bone resorption in men during bed rest, we also investigated this variable in women. Subjects were 7 pairs of female identical twins assigned at random to 2 groups, sedentary bed rest (control) or bed rest with supine treadmill exercise within LBNP. Dietary intake was controlled and monitored. Urinary calcium and markers of bone resorption were measured before bed rest (BR) and on BR days 5/6, 12/13, 19/20, and 26/27. Bone mineral content was assessed by dual-energy X-ray absorptiometry before and after bed rest. Data were analyzed by repeated measures two-way analysis of variance. Pearson correlation coefficients were used to define the relationships between diet and markers of bone metabolism, and to estimate heritability of markers. During bed rest, all markers of bone resorption and urinary calcium and phosphorus increased (P < 0.001); parathyroid hormone (P = 0.06), bone-specific alkaline phosphatase (P = 0.06), and 1,25-dihydroxyvitamin D (P = 0.09) tended to decrease. LBNP exercise tended to mitigate bone density loss. The ratio of dietary animal protein to potassium was positively correlated with urinary calcium excretion for all weeks of bed rest in the control group, but only during weeks 1 and 3 for the exercise group. Pre-bed rest data suggested that many markers of bone metabolism have strong genetic determinants. Treadmill exercise within LBNP had less of a protective effect on bone resorption during bed rest in women than previously-published results had shown for its effect in men, but the same trends were observed for both sexes. Dietary acid load of these female subjects was significantly correlated with calcium excretion but not with other bone resorption markers. PMID:17070743
Variable Accuracy of Wearable Heart Rate Monitors during Aerobic Exercise.
Gillinov, Stephen; Etiwy, Muhammad; Wang, Robert; Blackburn, Gordon; Phelan, Dermot; Gillinov, A Marc; Houghtaling, Penny; Javadikasgari, Hoda; Desai, Milind Y
2017-08-01
Athletes and members of the public increasingly rely on wearable HR monitors to guide physical activity and training. The accuracy of newer, optically based monitors is unconfirmed. We sought to assess the accuracy of five optically based HR monitors during various types of aerobic exercise. Fifty healthy adult volunteers (mean ± SD age = 38 ± 12 yr, 54% female) completed exercise protocols on a treadmill, a stationary bicycle, and an elliptical trainer (±arm movement). Each participant underwent HR monitoring with an electrocardiogaphic chest strap monitor (Polar H7), forearm monitor (Scosche Rhythm+), and two randomly assigned wrist-worn HR monitors (Apple Watch, Fitbit Blaze, Garmin Forerunner 235, and TomTom Spark Cardio), one on each wrist. For each exercise type, HR was recorded at rest, light, moderate, and vigorous intensity. Agreement between HR measurements was assessed using Lin's concordance correlation coefficient (rc). Across all exercise conditions, the chest strap monitor (Polar H7) had the best agreement with ECG (rc = 0.996) followed by the Apple Watch (rc = 0.92), the TomTom Spark (rc = 0.83), and the Garmin Forerunner (rc = 0.81). Scosche Rhythm+ and Fitbit Blaze were less accurate (rc = 0.75 and rc = 0.67, respectively). On treadmill, all devices performed well (rc = 0.88-0.93) except the Fitbit Blaze (rc = 0.76). While bicycling, only the Garmin, Apple Watch, and Scosche Rhythm+ had acceptable agreement (rc > 0.80). On the elliptical trainer without arm levers, only the Apple Watch was accurate (rc = 0.94). None of the devices was accurate during elliptical trainer use with arm levers (all rc < 0.80). The accuracy of wearable, optically based HR monitors varies with exercise type and is greatest on the treadmill and lowest on elliptical trainer. Electrode-containing chest monitors should be used when accurate HR measurement is imperative.
Lipolytic signaling in response to acute exercise is altered in female mice following ovariectomy
Wohlers, Lindsay M.; Jackson, Kathryn C.; Spangenburg, Espen E.
2011-01-01
Impaired ovarian function alters lipid metabolism, ultimately resulting in increased visceral fat mass. Currently, we have a poor understanding of alterations in signaling events regulating lipolysis after ovarian function declines. The purpose of this study was to determine if cellular mechanisms regulating lipolysis are altered in mice after ovariectomy (OVX) and if OVX mice exhibit impaired lipolytic signaling when stimulated by acute exercise. SHAM and OVX mice were divided into two groups: control (SHAM cont; OVX cont) or acute treadmill exercise (SHAM ex; OVX ex). The omental/mesenteric (O/M) fat mass of all OVX mice was significantly greater than the SHAM mice. Serum glycerol and blood glucose levels were significantly elevated in OVX cont compared to SHAM cont. Treadmill exercise increased serum glycerol levels only in SHAM mice, with no exercise-induced change detected in OVX mice. NEFA levels were significantly elevated by acute exercise in the SHAM and OVX groups. In O/M fat from both OVX groups there were significant increases in cytosolic ATGL and PLIN2 in the fat cake fraction with concurrent reductions in PLIN1 in the fat cake compared to SHAM. Further, exercise induced significant increases in HSL Ser660 phosphorylation in SHAM mice, but not OVX mice. This suggests that reduced ovarian function has significant effects on critical lipolytic cell signaling mechanisms in O/M adipose tissue. PMID:21815195
Pulmonary outcome of esophageal atresia patients and its potential causes in early childhood.
Dittrich, René; Stock, Philippe; Rothe, Karin; Degenhardt, Petra
2017-08-01
The aim of this study was to illustrate the pulmonary long term outcome of patients with repaired esophageal atresia and to further examine causes and correlations that might have led to this outcome. Twenty-seven of 62 possible patients (43%) aged 5-20years, with repaired esophageal atresia were recruited. Body plethysmography and spirometry were performed to evaluate lung function, and the Bruce protocol treadmill exercise test to assess physical fitness. Results were correlated to conditions such as interpouch distance, gastroesophageal reflux or duration of post-operative mechanical ventilation. Seventeen participants (63%) showed abnormal lung function at rest or after exercise. Restrictive ventilatory defects (solely restrictive or combined) were found in 11 participants (41%), and obstructive ventilatory defects (solely obstructive or combined) in 13 subjects (48%). Twenty-two participants (81%) performed the Bruce protocol treadmill exercise test to standard. The treadmill exercise results were expressed in z-score and revealed to be significantly below the standard population mean (z-score=-1.40). Moreover, significant correlations between restrictive ventilatory defects and the interpouch distance; duration of post-operative ventilation; gastroesophageal reflux disease; plus recurrent aspiration pneumonia during infancy; were described. It was shown that esophageal atresia and associated early complications have significant impact on pulmonary long term outcomes such as abnormal lung function and, in particular restrictive ventilatory defects. Long-running and regular follow-ups of patients with congenital esophageal atresia are necessary in order to detect and react to the development and progression of associated complications such as ventilation disorders or gastroesophageal reflux disease. Prognosis study, Level II. Copyright © 2016 Elsevier Inc. All rights reserved.
Nytrøen, K; Rustad, L A; Aukrust, P; Ueland, T; Hallén, J; Holm, I; Rolid, K; Lekva, T; Fiane, A E; Amlie, J P; Aakhus, S; Gullestad, L
2012-11-01
Heart transplant (HTx) recipients usually have reduced exercise capacity with reported VO(2peak) levels of 50-70% predicted value. Our hypothesis was that high-intensity interval training (HIIT) is an applicable and safe form of exercise in HTx recipients and that it would markedly improve VO(2peak.) Secondarily, we wanted to evaluate central and peripheral mechanisms behind a potential VO(2peak) increase. Forty-eight clinically stable HTx recipients >18 years old and 1-8 years after HTx underwent maximal exercise testing on a treadmill and were randomized to either exercise group (a 1-year HIIT-program) or control group (usual care). The mean ± SD age was 51 ± 16 years, 71% were male and time from HTx was 4.1 ± 2.2 years. The mean VO(2peak) difference between groups at follow-up was 3.6 [2.0, 5.2] mL/kg/min (p < 0.001). The exercise group had 89.0 ± 17.5% of predicted VO(2peak) versus 82.5 ± 20.0 in the control group (p < 0.001). There were no changes in cardiac function measured by echocardiography. We have demonstrated that a long-term, partly supervised and community-based HIIT-program is an applicable, effective and safe way to improve VO(2peak) , muscular exercise capacity and general health in HTx recipients. The results indicate that HIIT should be more frequently used among stable HTx recipients in the future. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.
Exercise reverses metabolic syndrome in high-fat diet-induced obese rats.
Touati, Sabeur; Meziri, Fayçal; Devaux, Sylvie; Berthelot, Alain; Touyz, Rhian M; Laurant, Pascal
2011-03-01
Chronic consumption of a high-fat diet induces obesity. We investigated whether exercise would reverse the cardiometabolic disorders associated with obesity without it being necessary to change from a high- to normal-fat diet. Sprague-Dawley rats were placed on a high-fat (HFD) or control diet (CD) for 12 wk. HFD rats were then divided into four groups: sedentary HFD (HFD-S), exercise trained (motor treadmill for 12 wk) HFD (HFD-Ex), modified diet (HFD to CD; HF/CD-S), and exercise trained with modified diet (HF/CD-Ex). Cardiovascular risk parameters associated with metabolic syndrome were measured, and contents of aortic Akt, phospho-Akt at Ser (473), total endothelial nitric oxide synthase (eNOS), and phospho-eNOS at Ser (1177) were determined by Western blotting. Chronic consumption of HFD induced a metabolic syndrome. Exercise and dietary modifications reduced adiposity, improved glucose and insulin levels and plasma lipid profile, and exerted an antihypertensive effect. Exercise was more effective than dietary modification in improving plasma levels of thiobarbituric acid-reacting substance and in correcting the endothelium-dependent relaxation to acetylcholine and insulin. Furthermore, independent of the diet used, exercise increased Akt and eNOS phosphorylation. Metabolic syndrome induced by HFD is reversed by exercise and diet modification. It is demonstrated that exercise training induces these beneficial effects without the requirement for dietary modification, and these beneficial effects may be mediated by shear stress-induced Akt/eNOS pathway activation. Thus, exercise may be an effective strategy to reverse almost all the atherosclerotic risk factors linked to obesity, particularly in the vasculature.
Miranda, Eduardo Foschini; Tomazoni, Shaiane Silva; de Paiva, Paulo Roberto Vicente; Pinto, Henrique Dantas; Smith, Denis; Santos, Larissa Aline; de Tarso Camillo de Carvalho, Paulo; Leal-Junior, Ernesto Cesar Pinto
2018-05-01
Photobiomodulation therapy (PBMT) employing low-level laser therapy (LLLT) and/or light emitting diode therapy (LEDT) has emerged as an electrophysical intervention that could be associated with aerobic training to enhance beneficial effects of aerobic exercise. However, the best moment to perform irradiation with PBMT in aerobic training has not been elucidated. The aim of this study was to assess the effects of PBMT applied before and/or after each training session and to evaluate outcomes of the endurance-training program associated with PBMT. Seventy-seven healthy volunteers completed the treadmill-training protocol performed for 12 weeks, with 3 sessions per week. PBMT was performed before and/or after each training session (17 sites on each lower limb, using a cluster of 12 diodes: 4 × 905 nm super-pulsed laser diodes, 4 × 875 nm infrared LEDs, and 4 × 640 nm red LEDs, dose of 30 J per site). Volunteers were randomized in four groups according to the treatment they would receive before and after each training session: PBMT before + PBMT after, PBMT before + placebo after, placebo before + PBMT after, and placebo before + placebo after. Assessments were performed before the start of the protocol and after 4, 8, and 12 weeks of training. Primary outcome was time until exhaustion; secondary outcome measures were oxygen uptake and body fat. PBMT applied before and after aerobic exercise training sessions (PBMT before + PBMT after group) significantly increased (p < 0.05) the percentage of change of time until exhaustion and oxygen uptake compared to the group treated with placebo before and after aerobic exercise training sessions (placebo before + placebo after group) at 4th, 8th, and 12th week. PBMT applied before and after aerobic exercise training sessions (PBMT before + PBMT after group) also significantly improved (p < 0.05) the percentage of change of body fat compared to the group treated with placebo before and after aerobic exercise training sessions (placebo before + placebo after group) at 8th and 12th week. PBMT applied before and after sessions of aerobic training during 12 weeks can increase the time-to-exhaustion and oxygen uptake and also decrease the body fat in healthy volunteers when compared to placebo irradiation before and after exercise sessions. Our outcomes show that PBMT applied before and after endurance-training exercise sessions lead to improvement of endurance three times faster than exercise only.
Gillingham, Melanie B.; Scott, Bradley; Elliott, Diane; Harding, Cary O.
2009-01-01
Exercise induced rhabdomyolysis is a complication of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (TFP) deficiency that frequently leads to exercise avoidance. Dietary therapy for most subjects includes medium-chain triglyceride (MCT) supplementation but analysis of diet records indicates that the majority of patients consume oral MCT only with breakfast and at bedtime. We hypothesized that MCT immediately prior to exercise would provide an alternative fuel source during that bout of exercise and improve exercise tolerance in children with LCHAD deficiency. Nine subjects completed two 45 min moderate intensity (60–70% predicted maximum heart rate (HR)) treadmill exercise tests. Subjects were given 4 oz of orange juice alone or orange juice and 0.5 g MCT per kg lean body mass, 20 min prior to exercise in a randomized cross-over design. ECG and respiratory gas exchange including respiratory quotient (RQ) were monitored. Blood levels of acylcarnitines, creatine kinase, lactate, and β-hydroxybutyrate were measured prior to and immediately after exercise, and again following 20min rest. Creatine kinase and lactate levels did not change with exercise. There was no significant difference in RQ between the two exercise tests but there was a decrease in steady-state HR following MCT supplementation. Cumulative long-chain 3-hydroxyacylcarnitines were 30% lower and β-hydroxybutyrate was three-fold higher after the MCT-pretreated exercise test compared to the test with orange juice alone. Coordinating MCT supplementation with periods of increased activity may improve the metabolic control of children with LCHAD and TFP deficiency following exercise. PMID:16876451
A functional murine model of hindlimb demand ischemia.
Peck, Michael A; Crawford, Robert S; Abularrage, Christopher J; Patel, Virendra I; Conrad, Mark F; Yoo, Jin Hyung; Watkins, Michael T; Albadawi, Hassan
2010-05-01
To date, murine models of treadmill exercise have been used to study general exercise physiology and angiogenesis in ischemic hindlimbs. The purpose of these experiments was to develop a murine model of demand ischemia in an ischemic limb to mimic claudication in humans. The primary goal was to determine whether treadmill exercise reflected a hemodynamic picture which might be consistent with the hyperemic response observed in humans. Aged hypercholesterolemic ApoE null mice (ApoE(-/-), n = 13) were subjected to femoral artery ligation (FAL) and allowed to recover from the acute ischemic response. Peripheral perfusion of the hindlimbs at rest was determined by serial evaluation using laser Doppler imaging (LDI) on days 0, 7, and 14 following FAL. During the experiments, mice were also assessed on an established five-point clinical ischemic score, which assessed the degree of digital amputation, necrosis, and cyanosis compared to the nonischemic contralateral limb. After stabilization of the LDI ratio (ischemic limb flux/contralateral nonischemic limb flux) and clinical ischemic score, mice underwent 2 days of treadmill training (10 min at 10 m/min, incline of 10 degrees ) followed by 60 min of daily treadmill exercise (13 m/min, incline of 10 degrees ) through day 25. An evaluation of preexercise and postexercise perfusion using LDI was performed on two separate occasions following the onset of daily exercise. During the immediate 15 min postexercise evaluation, LDI scanning was obtained in quadruplicate, to allow identification of peak flux ratios. Statistical analysis included unpaired t-tests and analysis of variance. After FAL, the LDI flux ratio reached a nadir between days 1 and 2, then stabilized by day 14 and remained stable through day 25. The clinical ischemic score stabilized at day 7 and remained stable throughout the rest of the experiment. Based on stabilization of both the clinical ischemic score and LDI ratio, exercise training began on day 15. The peak 15 min postexercise LDI ratio increased significantly compared to the preexercise ratio on day 17 (0.48 +/- 0.04 vs. 0.34 +/- 0.04, p < 0.05) and day 25 (0.37 +/- 0.03 vs. 0.27 +/- 0.03, p < 0.01). Within 2 hr of exercise, the LDI ratio returned to preexercise levels on both days 17 and 25. Clinical and hemodynamic stabilization of limb perfusion is evident by 14 days after FAL. FAL followed by demand ischemia results in a reversible relative hyperemic response similar to that observed in exercising human claudicants. A murine model of FAL associated with demand ischemia may be useful to evaluate the metabolic, inflammatory, and flow-related changes associated with claudication in humans. Copyright 2010 Annals of Vascular Surgery Inc. All rights reserved.
Chua, Karen S G; Chee, Johnny; Wong, Chin J; Lim, Pang H; Lim, Wei S; Hoo, Chuan M; Ong, Wai S; Shen, Mira L; Yu, Wei S
2015-01-01
Impairments in walking speed and capacity are common problems after stroke which may benefit from treadmill training. However, standard treadmills, are unable to adapt to the slower walking speeds of stroke survivors and are unable to automate training progression. This study tests a Variable Automated Speed and Sensing Treadmill (VASST) using a standard clinical protocol. VASST is a semi-automated treadmill with multiple sensors and micro controllers, including wireless control to reposition a fall-prevention harness, variable pre-programmed exercise parameters and laser beam foot sensors positioned on the belt to detect subject's foot positions. An open-label study with assessor blinding was conducted in 10 community-dwelling chronic hemiplegic patients who could ambulate at least 0.1 m/s. Interventions included physiotherapist-supervised training on VASST for 60 min three times per week for 4 weeks (total 12 h). Outcome measures of gait speed, quantity, balance, and adverse events were assessed at baseline, 2, 4, and 8 weeks. Ten subjects (8 males, mean age 55.5 years, 2.1 years post stroke) completed VASST training. Mean 10-m walk test speed was 0.69 m/s (SD = 0.29) and mean 6-min walk test distance was 178.3 m (84.0). After 4 weeks of training, 70% had significant positive gains in gait speed (0.06 m/s, SD = 0.08 m/s, P = 0.037); and 90% improved in walking distance. (54.3 m, SD = 30.9 m, P = 0.005). There were no adverse events. This preliminary study demonstrates the initial feasibility and short-term efficacy of VASST for walking speed and distance for people with chronic post-stroke hemiplegia.
Samiei, Niloufar; Tajmirriahi, Marzieh; Rafati, Ali; Pasebani, Yeganeh; Rezaei, Yousef; Hosseini, Saeid
2018-02-01
The restrictive mitral valve annuloplasty (RMA) is the treatment of choice for degenerative mitral regurgitation (MR), but postoperative functional mitral stenosis remains a matter of debate. In this study, we sought to determine the impact of mitral stenosis on the functional capacity of patients. In a cross-sectional study, 32 patients with degenerative MR who underwent RMA using a complete ring were evaluated. All participants performed treadmill exercise test and underwent echocardiographic examinations before and after exercise. The patients' mean age was 50.1 ± 12.5 years. After a mean follow-up of 14.1 ± 5.9 months (6-32 months), the number of patients with a mitral valve peak gradient >7.5 mm Hg, a mitral valve mean gradient >3 mm Hg, and a pulmonary arterial pressure (PAP) ≥25 mm Hg at rest were 50%, 40.6%, and 62.5%, respectively. 13 patients (40.6%) had incomplete treadmill exercise test. All hemodynamic parameters were higher at peak exercise compared with at rest levels (all P < .05). The PAP at rest and at peak exercise as well as peak transmitral gradient at peak exercise were higher in patients with incomplete exercise compared with complete exercise test (all P < .05). The PAP at rest (a sensitivity and a specificity of 84.6% and 52.6%, respectively; area under the curve [AUC] = .755) and at peak exercise (a sensitivity and a specificity of 100% and 47.4%, respectively; AUC = .755) discriminated incomplete exercise test. The RMA for degenerative MR was associated with a functional stenosis and the PAP at rest and at peak exercise discriminated low exercise capacity. © 2017, Wiley Periodicals, Inc.
Hill, M W; Oxford, S W; Duncan, M J; Price, M J
2015-01-01
Older adults are increasingly being encouraged to exercise but this may lead to muscle fatigue, which can adversely affect postural stability. Few studies have investigated the effects of upper body exercise on postural sway in groups at risk of falling, such as the elderly. The purpose of this study was to compare the effects arm crank ergometry (ACE), cycle ergometry (CE) and treadmill walking (TM) on postural sway in healthy older females. In addition, this study sought to determine the time necessary to recover postural control after exercise. A total of nine healthy older females participated in this study. Participants stood on a force platform to assess postural sway which was measured by displacement of the centre of pressure before and after six separate exercise trials. Each participant completed three incremental exercise tests to 85% of individual's theoretical maximal heart rate (HRMAX) for ACE, CE and TM. Subsequent tests involved 20-min of ACE, CE and TM exercise at a relative workload corresponding to 50% of each individual's predetermined heart rate reserve (HRE). Post fatigue effects and postural control recovery were measured at different times after exercise (1, 3, 5, 10, 15 and 30-min). None of the participants exhibited impaired postural stability after ACE. In contrast, CE and TM elicited significant post exercise balance impairments, which lasted for ∼ 10 min post exercise. We provide evidence of an exercise mode which does not elicit post exercise balance impairments. Older adults should exercise caution immediately following exercise engaging the lower limbs to avoid fall risk. Copyright © 2014 Elsevier B.V. All rights reserved.
Livock, Holly; Barnes, Joel D; Pouliot, Catherine; LeBlanc, Allana G; Saunders, Travis J; Tremblay, Mark S; Prud'homme, Denis; Chaput, Jean-Philippe
2018-08-01
Watching television or listening to music while exercising can serve as motivating factors, making it more pleasant to exercise for some people. However, it is unknown whether these stimuli influence food intake and/or physical activity energy expenditure (PAEE) for the remainder of the day, potentially impacting energy balance and weight control. We examined the effects of watching television or listening to music while exercising on post-exercise energy intake and expenditure. Our study was a randomized crossover design, in which 24 male adolescents (mean age: 14.9 ± 1.1 years) completed three 30-min experimental conditions consisting of walking/jogging on a treadmill at 60% of heart rate reserve while (1) watching television; (2) listening to music; or (3) exercising with no other stimulus (control). An ad libitum lunch was offered immediately after the experimental conditions, and a dietary record was used to assess food intake for the remainder of the day. An Actical accelerometer was used to estimate PAEE until bedtime. The primary outcome measure was post-exercise energy intake and expenditure (kJ). We found that exercising while watching television or listening to music did not significantly affect post-exercise energy intake or energy expenditure. Exercising on a treadmill was found to be significantly more enjoyable while watching television than with no stimulus present. Ratings of perceived exertion were not significantly different between conditions. Overall, our results suggest that watching television or listening to music while exercising does not impact post-exercise energy intake or expenditure in male adolescents, which may have positive implications for adolescents who may need additional motivation to participate in physical activity. Copyright © 2018 Elsevier Ltd. All rights reserved.
STS-32 crewmembers hold finish line banner as MS Low races on treadmill
1990-01-20
STS032-03-021 (9-20 Jan. 1990) --- Three crew members aboard the Space Shuttle Columbia enjoy one of the lighter moments of the 11-day mission on the flight deck. Astronaut G. David Low "runs" on a treadmill device while astronauts Daniel C. Brandenstein, left, and James D. Wetherbee look on. Wetherbee's mother competed in a marathon in Houston while the crew members had their own in-space version. The treadmill served as an exerciser and also was an important element of onboard biomedical testing. This picture was used by the astronauts at their January 30, 1990 Post Flight Press Conference (PFPC) at the Johnson Space Center (JSC).
Analysis Spectrum of ECG Signal and QRS Detection during Running on Treadmill
NASA Astrophysics Data System (ADS)
Agung Suhendra, M.; Ilham R., M.; Simbolon, Artha I.; Faizal A., M.; Munandar, A.
2018-03-01
The heart is an important organ in our metabolism in which it controls circulatory and oxygen. The heart exercise is needed one of them using the treadmill to prevent health. To analysis, it using electrocardiograph (ECG) to investigating and diagnosing anomalies of the heart. In this paper, we would like to analysis ECG signals during running on the treadmill with kinds of speeds. There are two analysis ECG signals i.e. QRS detection and power spectrum density (PSD). The result of PSD showed that subject 3 has highly for all subject and the result of QRS detection using pan Tomkins algorithm that a percentage of failed detection is an approaching to 0 % for all subject.
Benelli, Piero; Colasanti, Franca; Ditroilo, Massimiliano; Cuesta-Vargas, Antonio; Gatta, Giorgio; Giacomini, Francesco; Lucertini, Francesco
2014-01-01
Non-motorised underwater treadmills are commonly used in fitness activities. However, no studies have examined physiological and biomechanical responses of walking on non-motorised treadmills at different intensities and depths. Fifteen middle-aged healthy women underwent two underwater walking tests at two different depths, immersed either up to the xiphoid process (deep water) or the iliac crest (shallow water), at 100, 110, 120, 130 step-per-minute (spm). Oxygen consumption (VO2), heart rate (HR), blood lactate concentration, perceived exertion and step length were determined. Compared to deep water, walking in shallow water exhibited, at all intensities, significantly higher VO2 (+13.5%, on average) and HR (+8.1%, on average) responses. Water depth did not influence lactate concentration, whereas perceived exertion was higher in shallow compared to deep water, solely at 120 (+40%) and 130 (+39.4%) spm. Average step length was reduced as the intensity increased (from 100 to 130 spm), irrespective of water depth. Expressed as a percentage of maximum, average VO2 and HR were: 64-76% of peak VO2 and 71-90% of maximum HR, respectively at both water depths. Accordingly, this form of exercise can be included in the "vigorous" range of exercise intensity, at any of the step frequencies used in this study.
Tally, Zachary; Boetefuer, Laura; Kauk, Courtney; Perez, Gabriela; Schrand, Lorraine; Hoder, Jeffrey
2017-10-01
Physical activity and exercise interventions are useful in facilitating the functional recovery of those with chronic stroke and, routinely, are gait-specific. While treadmill training has proven useful in gait performance recovery post-stroke, its efficacy on balance dysfunction has not been systematically reviewed. The purpose of this systematic review was to determine the effect of treadmill training (TT) interventions on balance dysfunction in individuals with chronic stroke. A systematic literature search of PubMed, EMBASE, and CINAHL was performed. Eligible randomized controlled trials were published between 2007 and 2016. Selected trials investigated TT interventions in persons with chronic stroke and implemented at least one objective balance measure. Methodological quality was assessed using PEDro criteria. Eight studies met eligibility criteria and were included in the qualitative analysis. Studies differed in TT implementation and use of adjunctive treatments; however, all trials demonstrated improvements in balance measures that were as effective, if not more so, than conventional physical therapy treatments, including targeted balance training. This review recognized moderate evidence in favor of TT interventions in balance and stroke rehabilitation programs. With TT, intensity may be a more critical factor than specificity and may offer additional carryover to recovery parameters of postural control and balance, beyond gait performance. It is recommended that clinicians utilizing TT incorporate objective measures of balance to assess the potential for skill transference and improvements in balance. Higher quality studies and additional research are needed to denote critical parameters by which improvements in balance may be optimized.
Holt, Jacquelyn A; Macias, Brandon R; Schneider, Suzanne M; Watenpaugh, Donald E; Lee, Stuart M C; Chang, Douglas G; Hargens, Alan R
2016-05-15
Microgravity-induced lumbar paraspinal muscle deconditioning may contribute to back pain commonly experienced by astronauts and may increase the risk of postflight injury. We hypothesized that a combined resistive and aerobic exercise countermeasure protocol that included spinal loading would mitigate lumbar paraspinal muscle deconditioning during 60 days of bed rest in women. Sixteen women underwent 60-day, 6° head-down-tilt bed rest (BR) and were randomized into control and exercise groups. During bed rest the control group performed no exercise. The exercise group performed supine treadmill exercise within lower body negative pressure (LBNP) for 3-4 days/wk and flywheel resistive exercise for 2-3 days/wk. Paraspinal muscle cross-sectional area (CSA) was measured using a lumbar spine MRI sequence before and after BR. In addition, isokinetic spinal flexion and extension strengths were measured before and after BR. Data are presented as means ± SD. Total lumbar paraspinal muscle CSA decreased significantly more in controls (10.9 ± 3.4%) than in exercisers (4.3 ± 3.4%; P < 0.05). The erector spinae was the primary contributor (76%) to total lumbar paraspinal muscle loss. Moreover, exercise attenuated isokinetic spinal extension loss (-4.3 ± 4.5%), compared with controls (-16.6 ± 11.2%; P < 0.05). In conclusion, LBNP treadmill and flywheel resistive exercises during simulated microgravity mitigate decrements in lumbar paraspinal muscle structure and spine function. Therefore spaceflight exercise countermeasures that attempt to reproduce spinal loads experienced on Earth may mitigate spinal deconditioning during long-duration space travel.
Frith, Emily; Loprinzi, Paul D.
2018-01-01
Background: We evaluated the differential influence of preferred versus imposed media selections on distinct hedonic responses to an acute bout of treadmill walking. Methods: Twenty university students were recruited for this [160 person-visit] laboratory experiment, which employed a within-subject, counter-balanced design. Participants were exposed to 8 experimental conditions, including (1) Exercise Only, (2) Texting Only, (3) Preferred Phone Call, (4) Imposed Phone Call, (5) Preferred Music Playlist, (6) Imposed Music Playlist, (7)Preferred Video and (8) Imposed Video. During each visit (except Texting Only), participants completed a 10-minute bout of walking on the treadmill at a self-selected pace. Walking speed was identical for all experimental conditions. Before, at the midpoint of exercise, and post-exercise, participants completed the Feeling Scale (FS) and the Felt Arousal Scale (FAS) to measure acute hedonic response. The Affective Circumplex Scale was administered pre-exercise and post-exercise. Results: Significant pre-post change scores were observed for happy (Imposed Call: P=0.05;Preferred Music: P=0.02; Imposed Video: P=0.03), excited (Exercise Only: P=0.001; PreferredVideo: P=0.01; Imposed Video: P=0.03), sad (Preferred Music: P=0.05), anxious (ExerciseOnly: P=0.05; Preferred Video: P=0.01), and fatigue (Exercise Only: P=0.03; Imposed Video:P=0.002). For the FS all change scores were statistically significant from pre-to-mid and pre-topost (P<0.05). Conclusion: This experiment provides strong evidence that entertaining media platforms substantively influences hedonic responses to exercise. Implications of these findings are discussed. PMID:29744306
Frith, Emily; Loprinzi, Paul D
2018-01-01
Background: We evaluated the differential influence of preferred versus imposed media selections on distinct hedonic responses to an acute bout of treadmill walking. Methods: Twenty university students were recruited for this [160 person-visit] laboratory experiment, which employed a within-subject, counter-balanced design. Participants were exposed to 8 experimental conditions, including (1) Exercise Only, (2) Texting Only, (3) Preferred Phone Call, (4) Imposed Phone Call, (5) Preferred Music Playlist, (6) Imposed Music Playlist, (7)Preferred Video and (8) Imposed Video. During each visit (except Texting Only), participants completed a 10-minute bout of walking on the treadmill at a self-selected pace. Walking speed was identical for all experimental conditions. Before, at the midpoint of exercise, and post-exercise, participants completed the Feeling Scale (FS) and the Felt Arousal Scale (FAS) to measure acute hedonic response. The Affective Circumplex Scale was administered pre-exercise and post-exercise. Results: Significant pre-post change scores were observed for happy (Imposed Call: P=0.05;Preferred Music: P=0.02; Imposed Video: P=0.03), excited (Exercise Only: P=0.001; PreferredVideo: P=0.01; Imposed Video: P=0.03), sad (Preferred Music: P=0.05), anxious (ExerciseOnly: P=0.05; Preferred Video: P=0.01), and fatigue (Exercise Only: P=0.03; Imposed Video:P=0.002). For the FS all change scores were statistically significant from pre-to-mid and pre-topost (P<0.05). Conclusion: This experiment provides strong evidence that entertaining media platforms substantively influences hedonic responses to exercise. Implications of these findings are discussed.
Ikeda, Satoshi; Ohwatashi, Akihiko; Harada, Katsuhiro; Kamikawa, Yurie; Yoshida, Akira
2013-01-01
The use of novel rehabilitative approaches for effecting functional recovery following stroke is controversial. Effects of different but effective rehabilitative interventions in the hemiplegic patient are not clear. We studied the effects of different rehabilitative approaches on functional recovery in the rat photochecmical cerebral infarction model. Twenty-four male Wistar rats aged 8 weeks were used. The cranial bone was exposed under deep anesthesia. Rose bengal (20 mg/kg) was injected intravenously, and the sensorimotor area of the cerebral cortex was irradiated transcranially for 20 min with a light beam of 533-nm wavelength. Animals were divided into 3 groups. In the simple-exercise group, treadmill exercise was performed for 20 min every day. In the expected for acquisition movement-training group, beam-walking exercise was done for 20 min daily. The control group was left to recover without additional intervention. Hindlimb function was evaluated with the beam-walking test. Following cerebral infarction, dysfunction of the contralateral extremities was observed. Functional recovery was observed earlier in the expected for acquisition training group than in the other groups. Although rats in the treadmill group recovered more quickly than controls, the beam-walking group had the shortest overall recovery time. Exercise facilitated functional recovery in the rat hemiplegic model, and expected for acquisition exercise was more effective than simple exercise. These findings are considered to have important implications for the future development of clinical rehabilitation programs.
Evans, B W; Potteiger, J A
1995-06-01
This study compared ventilatory and metabolic responses during exercise using three breathing assemblies: mouthpiece/noseclip (BV); mouth/face mask (MM); and facemask (FM). Ten male runners completed three maximal treadmill tests with breathing assembly randomly assigned. Metabolic and ventilatory data were recorded every 15s, and heart rate (HR) and rating of perceived exertion (RPE) each min. No significant differences were found for treadmill run time, HRmax, respiratory exchange ratio (RER), and RPE, indicating similar efforts on all trials. No significant differences were found at maximal exercise for VO2 minute ventilation (VE), tidal volume (VT), and breathing frequency (f). At ventilatory threshold (TVENT), VO2, VE, and f were not significantly different. However, peak flow (PF) was significantly higher for BV than FM, and VT was significantly higher for BV than MM and FM. Results indicate alterations in ventilatory mechanics occur at TVENT, but type of breathing assembly does not significantly affect maximal values.
A Comparison of Exercise and Meditation in Reducing Physiological Response to Stress.
ERIC Educational Resources Information Center
Sime, Wesley E.
The purpose of this investigation was to compare the effects of brief treadmill exercise and meditation with a placebo-control treatment for reduction in several physiological and psychological measures of stress, anxiety, and tension before and after a written final examination in 48 high-test anxiety subjects. The subjects, 24 men and 24 women,…
Effect of Age and Other Factors on Maximal Heart Rate.
ERIC Educational Resources Information Center
Londeree, Ben R.; Moeschberger, Melvin L.
1982-01-01
To reduce confusion regarding reported effects of age on maximal exercise heart rate, a comprehensive review of the relevant English literature was conducted. Data on maximal heart rate after exercising with a bicycle, a treadmill, and after swimming were analyzed with regard to physical fitness and to age, sex, and racial differences. (Authors/PP)
Bourlai, Thirimachos; Pryor, Riana R; Suyama, Joe; Reis, Steven E; Hostler, David
2012-01-01
Monitoring core body temperature to identify heat stress in first responders and in individuals participating in mass gatherings (e.g., marathons) is difficult. This study utilized high-sensitivity thermal imaging technology to predict the core temperature of human subjects at a distance while performing simulated field operations wearing thermal protective garments. Six male subjects participating in a study of precooling prior to exertion in wildland firefighter thermal protective clothing had thermal images of the face captured with a high-resolution thermal imaging camera concomitant with measures of core and skin temperature before, during, and after treadmill exercise in a heated room. Correlations and measures of agreement between core temperature and thermal imaging-based temperature were performed. The subjects walked an average (± standard deviation) of 42.6 (±5.9) minutes and a distance of 4.2 (±0.6) km on the treadmill. Mean heart rate at the end of exercise was 152 (±33) bpm and core body temperature at the end of exercise was 38.3°C (±0.7°C). A visual relationship and a strong correlation between core temperature and thermal imaging of the face were identified in all subjects, with the closest relationship and best agreement occurring during exercise. The Bland-Altman test of agreement during exercise revealed the majority of measurement pairs to be within two standard deviations of the measured temperature. High-resolution thermal imaging in the middle-wave infrared spectrum (3-5 μm) can be used to accurately estimate core body temperature during exertion in a hot room while participants are wearing wildland firefighting garments. Although this technology is promising, it must be refined. Using alternative measurement sites such as the skin over the carotid artery, using multiple measurement sites, or adding pulse detection may improve the estimation of body temperature by thermal imagery.
Psychobiological Responses to Aerobic Exercise in Individuals With Posttraumatic Stress Disorder.
Crombie, Kevin M; Brellenthin, Angelique G; Hillard, Cecilia J; Koltyn, Kelli F
2018-02-01
Previous reports have shown improvements in mood and increases in endocannabinoids in healthy adults following a session of aerobic exercise, but it is unclear whether adults with posttraumatic stress disorder (PTSD) experience similar responses. The purpose of this study was to examine psychobiological responses (plasma endocannabinoids [eCBs], mood, and pain) to aerobic exercise in a sample of adults with a diagnosis of PTSD (n = 12) and healthy controls (n = 12). Participants engaged in an aerobic exercise session in which they ran on a treadmill for 30 min at a moderate intensity (70 to 75% maximum heart rate [MHR]). Results indicated improvements in mood states and reductions in pain for both groups following exercise, ds = 0.19 to 1.53. Circulating concentrations of N-arachidonylethanolamine (AEA), 2-arachidonoylglycerol (2-AG), and oleoylethanolamide (OEA) significantly increased (ps = .000 to .050) following the aerobic exercise session for both groups. There were no significant time, group, or interaction effects (ps = .062 to .846) for palmitoylethanolamide (PEA) and 2-oleoylglycerol (2-OG). Although eCBs increased significantly for both groups, within-group effect size calculations indicated the healthy controls experienced a greater magnitude of change for AEA when compared with adults with PTSD, d = 1.21 and d = 0.45, respectively; as well as for 2-AG, d = 0.43 and d = 0.21, respectively. The findings from this study indicated that adults with and without PTSD reported significant mood improvements following 30 min of moderate-intensity aerobic exercise. In addition, the endocannabinoid system was activated in adults with and without PTSD, although effect sizes suggest that adults with PTSD may have a blunted endocannabinoid response to exercise. Copyright © 2018 International Society for Traumatic Stress Studies.
A study of exercise modality and physical self-esteem in breast cancer survivors.
Musanti, Rita
2012-02-01
This study, theoretically based on the Exercise Self-Esteem Model, EXSEM, examined effects of exercise modality on physical and global self-esteem (PSE, GSE) in breast cancer survivors. The EXSEM posits GSE at the apex with PSE feeding into GSE. PSE has three subdomains: physical condition (PC), attractive body (AB), and physical strength (PS). The goals were to compare the effect of combination modality versus single-modality exercise on PSE and GSE and to explore the relationship between exercise modality and the subdomains of PSE. Survivors were randomly allocated to flexibility (F), aerobic (A), resistance (R), or aerobic plus resistance (AR), 12-wk, individualized, home-based exercise program. Pre/posttesting included submaximal treadmill test, six-repetition maximum chest press and leg press, YMCA bench press, shoulder/hip flexibility, and bioelectric impedance analysis body composition. Esteem measures were the Physical Self-Perception Profile and the Rosenberg Self-Esteem Scale. Forty-two women completed the study (F = 12, A = 10, R = 9, and AR = 11). Fitness improvements congruent with exercise modality were seen in all groups. PSE and GSE outcomes did not reveal a greater effect from the combination modality program, AR, compared with the single-modality programs A and R. The relationships between the single-modality groups and the subdomains of PC, PS, and AB were supported in the R group (PS and AB increased) and were partially supported in the A group (PC, not AB, increased). A single-modality R program significantly improved all domains of PSE, and participation in the A program improved the PC subdomain. The combination exercise program did not enhance PSE greater than the single-modality programs. EXSEM was a useful framework for exploring esteem in breast cancer survivors.
Parazzi, Paloma L F; Marson, Fernando A L; Ribeiro, Maria A G O; Schivinski, Camila I S; Ribeiro, José D
2017-11-29
Volumetric capnography provides the standard CO 2 elimination by the volume expired per respiratory cycle and is a measure to assess pulmonary involvement. Thus, the objective of this study was to evaluate the respiratory dynamics of healthy control subjects and those with cystic fibrosis in a submaximal exercise protocol for six minutes on the treadmill, using volumetric capnography parameters (slope 3 [Slp3], Slp3/tidal volume [Slp3/TV], and slope 2 [Slp2]). This was a cross-sectional study with 128 subjects (cystic fibrosis, 64 subjects; controls, 64 subjects]. Participants underwent volumetric capnography before, during, and after six minutes on the treadmill. Statistical analysis was performed using the Friedman, Mann-Whitney, and Kruskal-Wallis tests, considering age and sex. An alpha=0.05 was considered. Six minutes on the treadmill evaluation: in cystic fibrosis, volumetric capnography parameters were different before, during, and after six minutes on the treadmill; the same was observed for the controls, except for Slp2. Regarding age, an Slp3 difference was observed in cystic fibrosis patients regardless of age, at all moments, and in controls for age≥12 years; a difference in Slp3/TV was observed in cystic fibrosis and controls, regardless of age; and an Slp2 difference in the cystic fibrosis, regardless of age. Regarding sex, Slp3 and Slp3/TV differences were observed in cystic fibrosis regardless of sex, and in controls in male participants; an Slp2 difference was observed in the cystic fibrosis and female participants. The analysis between groups (cystic fibrosis and controls) indicated that Slp3 and Slp3/TV has identified the CF, regardless of age and sex, while the Slp2 showed the CF considering age. Cystic fibrosis showed greater values of the parameters before, during, and after exercise, even when stratified by age and sex, which may indicate ventilation inhomogeneity in the peripheral pathways in the cystic fibrosis. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Schneider, Stefan; Abeln, Vera; Popova, Julia; Fomina, Elena; Jacubowski, Amrei; Meeusen, Romain; Strüder, Heiko K
2013-01-01
With respect to the plans of national and internationals space agencies to send people to Mars or Moon, long-term isolation studies are performed to learn about the psycho-physiological and psycho-social limitations of such missions. From June 3rd 2010 to November 4th 2011 six participants lived under totally isolated and confined conditions in the MARS500 habitat located in Moscow. Despite the possibility to mimic the condition of space travel, this study allowed for experimental conditions under very reliable and traceable conditions. As exercise is widely discussed to have a positive impact on neuro-cognitive performance, this study aimed to test the effect of different exercise protocol (endurance/strength orientated) on brain cortical activity and cognitive performance. Brain cortical activity was recorded using a 16 channel EEG before and after exercise across the 520 days of confinement. Cognitive performance was assessed using three commercially available brain games. Following the theory of transient hypofrontality, results show a significant decrease of frontal brain cortical activity after exercise (p<.05) which was most expressed after endurance orientated protocols. Cognitive performance was improved following running sessions on an active treadmill (p<.05). Results let us assume that not exercise per se acts as a neuro-enhancer. It is more likely that a general defocusing caused by an immersion into exercise is necessary to improve cognitive performance. Copyright © 2012 Elsevier B.V. All rights reserved.
2013-01-01
Background In the present study, we determined the effects of HX108-CS (mixed extract of Schisandra chinensis and Chaenomeles sinensis) supplementation on lactate accumulation and endurance capacity. Furthermore, we examined CK (creatine kinase), LDH (lactate dehydrogenase) activity to determine whether the HX108-CS affected markers of skeletal muscle injury in vivo and in vitro. Methods Exercise capacity was measured by an exhaustive swimming test using ICR mice divided into four groups; one group received distilled water (DW) (Control group, n = 10), and the other groups received three different dosages of HX108-CS (10, 50 and 100 mg/kg, n = 10 per group) solution in water orally. Then, for the time-dependent measurements of blood lactate, CK, and LDH, Sprague–Dawley rats were divided into two groups; one received DW (Control group, n = 10), and the other group received HX108-CS (100 mg/kg, n = 10) solution in the same way as mice. Before the exercise test, the animals were given either DW or HX108-CS for 2 weeks. High-intensity treadmill exercise was performed for 30 minutes. Blood samples were collected and analyzed during and after exercise. For the in vitro experiment, C2C12 cells were treated with HX108-CS to examine its effect on lactate production, CK, and LDH activity. Results Blood lactate concentration was significantly lowered immediately after treadmill exercise in HX108-CS group; however, there were no significant differences in activities of CK and LDH between HX108-CS and control during treadmill exercise and recovery phase. Furthermore, treatment with 100 mg/kg of HX108-CS led to a significant increase in the time to exhaustion in swimming test, and concurrently blood lactate concentration was significantly decreased in 50 and 100 mg/kg treated group. Moreover, our results of in vitro experiment showed that HX108-CS suppressed lactate production, CK, and LDH activity in a dose-dependent manner. Conclusions These results suggest that supplementation with HX108-CS may enhance exercise capacity by lowering lactate accumulation. This may in part be related to an amelioration of skeletal muscle injury. PMID:23587302
Community-based walking exercise for peripheral artery disease: An exploratory pilot study
Mays, Ryan J; Hiatt, William R; Casserly, Ivan P; Rogers, R Kevin; Main, Deborah S; Kohrt, Wendy M; Ho, P Michael; Regensteiner, Judith G
2016-01-01
Supervised walking exercise is an effective treatment to improve walking ability of patients with peripheral artery disease (PAD), but few exercise programs in community settings have been effective. The aim of this study was to determine the efficacy of a community-based walking exercise program with training, monitoring, and coaching (TMC) components to improve exercise performance and patient-reported outcomes in PAD patients. This was a randomized, controlled trial including PAD patients who previously received peripheral endovascular therapy or presented with stable claudication. Patients randomized (n=25) to the intervention group received a comprehensive community-based walking exercise program with elements of TMC over 14 weeks. Patients in the control group did not receive treatment beyond standard advice to walk. The primary outcome in the intent-to-treat (ITT) analyses was peak walking time (PWT) on a graded treadmill. Secondary outcomes included claudication onset time (COT) and patient-reported outcomes assessed via the Walking Impairment Questionnaire (WIQ). Intervention group patients (n=10) did not significantly improve PWT when compared with the control group patients (n=10) (mean±standard error: +2.1±0.7 vs. 0.0±0.7 min, p=0.052). Changes in COT and WIQ scores were greater for intervention patients compared with control patients (COT: +1.6±0.8 vs. −0.6±0.7 min, p=0.045; WIQ: +18.3±4.2 vs. −4.6±4.2%, p=0.001). This pilot using a walking program with TMC and an ITT analyses did not improve the primary outcome in PAD patients. Other walking performance and patient self-reported outcomes were improved following exercise in community settings. Further study is needed to determine whether this intervention improves outcomes in a trial employing a larger sample size. PMID:25755148
Kahn, Susan R.; Shrier, Ian; Shapiro, Stan; Houweling, Adrielle H.; Hirsch, Andrew M.; Reid, Robert D.; Kearon, Clive; Rabhi, Khalil; Rodger, Marc A.; Kovacs, Michael J.; Anderson, David R.; Wells, Philip S.
2011-01-01
Background Exercise training may have the potential to improve post-thrombotic syndrome, a frequent, chronic complication of deep venous thrombosis. We conducted a randomized controlled two-centre pilot trial to assess the feasibility of a multicentre-based evaluation of a six-month exercise training program to treat post-thrombotic syndrome and to obtain preliminary data on the effectiveness of such a program. Methods Patients were randomized to receive exercise training (a six-month trainer-supervised program) or control treatment (an education session with monthly phone follow-ups). Levels of eligibility, consent, adherence and retention were used as indicators of study feasibility. Primary outcomes were change from baseline to six months in venous disease-specific quality of life (as measured using the Venous Insufficiency Epidemiological and Economic Study Quality of Life [VEINES-QOL] questionnaire) and severity of post-thrombotic syndrome (as measured by scores on the Villalta scale) in the exercise training group versus the control group, assessed by t tests. Secondary outcomes were change in generic quality of life (as measured using the Short-Form Health Survey-36 [SF-36] questionnaire), category of severity of post-thrombotic syndrome, leg strength, leg flexibility and time on treadmill. Results Of 95 patients with post-thrombotic syndrome, 69 were eligible, 43 consented and were randomized, and 39 completed the study. Exercise training was associated with improvement in VEINES-QOL scores (exercise training mean change 6.0, standard deviation [SD] 5.1 v. control mean change 1.4, SD 7.2; difference 4.6, 95% CI 0.54 to 8.7; p = 0.027) and improvement in scores on the Villalta scale (exercise training mean change −3.6, SD 3.7 v. control mean change −1.6, SD 4.3; difference −2.0, 95% CI −4.6 to 0.6; p = 0.14). Most secondary outcomes also showed greater improvement in the exercise training group. Interpretation Exercise training may improve post-thrombotic syndrome. It would be feasible to definitively evaluate exercise training as a treatment for post-thrombotic syndrome in a large multicentre trial. PMID:21098066
Piucco, Tatiane; Soares, Rogério; Diefenthaeler, Fernando; Millet, Guillaume; Murias, Juan
2017-11-15
this study aimed to compare the oxygen uptake (V̇O 2 ) kinetics during skating on a treadmill and skating on a slide board and discuss potential mechanisms that might control the V̇O 2 kinetics responses during skating. breath-by-breath pulmonary V̇O 2 and near-infrared spectroscopy-derived muscle deoxygenation ([HHbMb]) were monitored continuously in 12 well-trained young long track speed skaters. On-transient V̇O 2 and [HHbMb] responses to skating on a treadmill and skating on a slide board at 80% of the estimated gas exchange threshold were fitted as mono-exponential function. The signals were time aligned, and the individual [HHbMb]-to-V̇O 2 ratio was calculated as the average value from 20-120 s after exercise starts. the time constants for the adjustment of phase II V̇O 2 (τ V̇O 2 ) and [HHbMb] (τ[HHbMb]) were low and similar between slide board vs. treadmill skating (18.1 ± 3.4 vs. 18.9 ± 3.6 for τ V̇O 2 and 12.6 ± 4.0 vs. 12.4 ± 4.0 s for τ[HHbMb]). The [HHbMb]/V̇O 2 ratio was not different from 1.0 (p > 0.05) in both conditions. the fast V̇O 2 kinetics during skating suggest that chronical adaptation to skating might overcome any possible restriction in leg blood flow during low intensity exercise. The [HHbMb]/V̇O 2 ratio values also suggest a good matching of O 2 delivery to O 2 utilization in trained speed skaters. The similar τ V̇O 2 and τ [HHbMb] values between slide board and treadmill further reinforce the validity of using a slide board for skating testing and training purposes.
Energy expenditure during rest and treadmill gait training in quadriplegic subjects.
de Carvalho, D C L; Cliquet, A
2005-11-01
The analysis of oxygen uptake (VO(2)) and energy consumption in quadriplegics after 6 months of treadmill gait with neuromuscular electrical stimulation (NMES). To compare metabolic responses in quadriplegics after 6 months of treadmill training, with NMES (30-50% body weight relief), with quadriplegics who did not perform gait. Ambulatory of University Hospital, Brazil. Quadriplegics were separated into gait and control groups (CGs). On inclusion, all subjects performed VO(2) test. In the gait group (GG) (n=11), the protocol consisted of 8 min of rest, 10 min of treadmill walking using NMES and 10 min of recovery. In the CG (n=10), testing consisted of 8 min rest, 15 min of quadriceps endurance exercise in sitting position with NMES and 10 min recovery. VO(2), carbon dioxide production (VCO(2)) and energy consumption were measured. The GG performed 6 months of treadmill training, using NMES, for 20 min, twice a week. The CG did not practice any activity with NMES, performing conventional physiotherapy only; the CG was stimulated only during the cardiorespiratory test. All parameters increased significantly for the GG: 36% for VO(2) (l/min), 43% for VCO(2) (l/min) and 32.5% for energy consumption (J/kg/s). For the CG, during knee extension exercise, VO(2) increased without changes in the energy consumption (P<0.05); smaller values were obtained for all parameters when compared to those obtained during gait. Quadriplegic gait was efficient towards increasing VO(2) and energy consumption, which can decrease the risk of cardiovascular diseases. Spinal Cord (2005) 43, 658-663. doi:10.1038/sj.sc.3101776; published online 21 June 2005.
Veeranki, Sudhakar; Givvimani, Srikanth; Kundu, Sourav; Metreveli, Naira; Pushpakumar, Sathnur; Tyagi, Suresh C
2016-03-01
Although the cardiovascular benefits of exercise are well known, exercise induced effects and mechanisms in prevention of cardiomyopathy are less clear during obesity associated type-2 diabetes. The current study assessed the impact of moderate intensity exercise on diabetic cardiomyopathy by examining cardiac function and structure and mitochondrial function. Obese-diabetic (db/db), and lean control (db/+) mice, were subjected to a 5 week, 300 m run on a tread-mill for 5 days/week at the speeds of 10-11 m/min. Various physiological parameters were recorded and the heart function was evaluated with M-mode echocardiography. Contraction parameters and calcium transits were examined on isolated cardiomyocytes. At the molecular level: connexin 43 and 37 (Cx43 and 37) levels, mitochondrial biogenesis regulators: Mfn2 and Drp-1 levels, mitochondrial trans-membrane potential and cytochrome c leakage were assessed through western blotting immunohistochemistry and flow cytometry. Ability of exercise to reverse oxygen consumption rate (OCR), tissue ATP levels, and cardiac fibrosis were also determined. The exercise regimen was able to prevent diabetic cardiac functional deficiencies: ejection fraction (EF) and fractional shortening (FS). Improvements in contraction velocity and contraction maximum were noted with the isolated cardiomyocytes. Restoration of interstitial and micro-vessels associated Cx43 levels and improved gap junction intercellular communication (GJIC) were observed. The decline in the Mfn2/Drp-1 ratio in the db/db mice hearts was prevented after exercise. The exercise regimen further attenuated transmembrane potential decline and cytochrome c leakage. These corrections further led to improvements in OCR and tissue ATP levels and reduction in cardiac fibrosis. Moderate intensity exercise produced significant cardiovascular benefits by improving mitochondrial function through restoration of Cx43 networks and mitochondrial trans-membrane potential and prevention of excessive mitochondrial fission. Copyright © 2016 Elsevier Ltd. All rights reserved.
Is balance exercise training as effective as aerobic exercise training in fibromyalgia syndrome?
Duruturk, Neslihan; Tuzun, Emine Handan; Culhaoglu, Belde
2015-05-01
The aim was to compare the effect of aerobic and balance exercises on pain severity, myalgic score, quality of life, exercise capacity and balance in fibromyalgia syndrome (FMS). A total of 33 females diagnosed with FMS by the American College of Rheumatology criteria were recruited in this randomised controlled study and allocated to aerobic exercise (AE) or balance exercise (BE) groups. Exercises were performed three times a week, for 6 weeks on a treadmill or with a Tetrax interactive balance system (TIBS). Outcome measures were characterised by myalgic score, visual analogue scale, Fibromyalgia Impact Questionnaire (FIQ), exercise testing, Timed Up-Go (TUG) and TIBS measurements. Comparisons from baseline to 6 weeks were evaluated using Wilcoxon test. Mann-Whitney U test was used to compare differences between groups. Effect sizes were also calculated. Improvements in pain, myalgic score and FIQ were found in both groups (p < 0.05). While comparing groups, myalgic score was significant (p = 0.02, d = -1.77), the value was higher in AE. Exercise duration, Borg scale, resting blood pressures (RBP) and maximal heart rate were significant in AE. In BE, Borg scale, exercise duration was significant (p < 0.05). While comparing groups, diastolic RBP (p = 0.04, d = -0.92), exercise duration (p = 0.00, d = -1.64) were significant, with higher values in AE. TUG significantly changed in groups (p < 0.05, d ≥ -1.22). Stability scores, eyes open while standing on elastic pads (p = 0.00, d = -0.98) and head back (p = 0.03, d = -0.74), were significant, with higher values in BE. This study showed that BE provided some improvements in FMS, but AE training led to greater gains. BE training should be included in comprehensive programs.
Exaggerated gonadotropin response to luteinizing hormone-releasing hormone in amenorrheic runners.
Yahiro, J; Glass, A R; Fears, W B; Ferguson, E W; Vigersky, R A
1987-03-01
Most studies of exercise-induced amenorrhea have compared amenorrheic athletes (usually runners) with sedentary control subjects. Such comparisons will identify hormonal changes that develop as a result of exercise training but cannot determine which of these changes play a role in causing amenorrhea. To obviate this problem, we assessed reproductive hormone status in a group of five amenorrheic runners and compared them to a group of six eumenorrheic runners matched for body fatness, training intensity, and exercise performance. Compared to the eumenorrheic runners, the amenorrheic runners had lower serum estradiol concentrations, similar basal serum luteinizing hormone and follicle-stimulating hormone concentrations, and exaggerated responses of serum gonadotropins after administration of luteinizing hormone-releasing hormone (100 micrograms intravenous bolus). Serum prolactin levels, both basally and after thyrotropin-releasing hormone administration (500 micrograms intravenous bolus) or treadmill exercise, was similar in the two groups, as were serum thyroid function tests (including thyrotropin response to thyrotropin-releasing hormone). Changes in serum cortisol levels after short-term treadmill exercise were similar in both groups, and serum testosterone levels increased after exercise only in the eumenorrheic group. In neither group did such exercise change serum luteinizing hormone, follicle-stimulating hormone, or thyrotropin levels. We concluded that exercise-induced amenorrhea is not solely related to the development of increased prolactin output after exercise training. The exaggerated gonadotropin response to luteinizing hormone-releasing hormone seen in amenorrheic runners in comparison with matched eumenorrheic runners is consistent with a hypothalamic etiology for the menstrual dysfunction, analogous to that previously described in "stress-induced" or "psychogenic" amenorrhea.
Knudsen, Jakob G; Gudiksen, Anders; Bertholdt, Lærke; Overby, Peter; Villesen, Ida; Schwartz, Camilla L; Pilegaard, Henriette
2017-01-01
An acute bout of exercise imposes a major challenge on whole-body metabolism and metabolic adjustments are needed in multiple tissues during recovery to reestablish metabolic homeostasis. It is currently unresolved how this regulation is orchestrated between tissues. This study was undertaken to clarify the role of skeletal muscle derived interleukin 6 (IL-6) in the coordination of the metabolic responses during recovery from acute exercise. Skeletal muscle specific IL-6 knockout (IL-6 MKO) and littermate Control mice were rested or ran on a treadmill for 2h. Plasma, skeletal muscle, liver and adipose tissue were obtained after 6 and 10h of recovery. Non-exercised IL-6 MKO mice had higher plasma lactate and lower plasma non-esterified fatty acids than Controls. The activity of pyruvate dehydrogenase in the active form was, in skeletal muscle, higher in IL-6 MKO mice than Controls in non-exercised mice and 6h after exercise. IL-6 MKO mice had lower glucose transporter 4 protein content in inguinal adipose tissue (WAT) than Control in non-exercised mice and 10h after treadmill running. Epididymal WAT hormone sensitive lipase phosphorylation and inguinal WAT mitogen activated kinase P38 phosphorylation were higher in IL-6 MKO than Control mice 6h after exercise. These findings indicate that skeletal muscle IL-6 may play an important role in the regulation of substrate utilization in skeletal muscle, basal and exercise-induced adaptations in adipose tissue glucose uptake and lipolysis during recovery from exercise. Together this indicates that skeletal muscle IL-6 contributes to reestablishing metabolic homeostasis during recovery from exercise by regulating WAT and skeletal muscle metabolism.
Simmonds, Michael J; Sabapathy, Surendran; Serre, Kevin R; Haseler, Luke J; Gass, Gregory C; Marshall-Gradisnik, Sonya M; Minahan, Clare L
2016-11-25
The purpose of the present study was to investigate the effects of regular treadmill walking on plasma factors that increase low-shear blood viscosity and red blood cell aggregation in older women with type 2 diabetes. Eighteen women with type 2 diabetes (age: 69±3 yr; body mass index: 30.5±5.0 kg⋅m-2) performed 12-wk of 120 min⋅wk-1 of supervised treadmill walking at an intensity equivalent to the gas-exchange threshold. Peak exercise values, anthropometry and blood indices of diabetic status, markers of inflammation, and plasma fibrinogen were analysed during a 6-wk pre-training 'control' period, and then after 6 and 12-wk of regular walking. Regular walking significantly increased peak oxygen uptake (p = 0.01). Body mass, waist to hip ratio, and glycaemic control did not change. Systolic and diastolic blood pressures decreased by 8.5% (p < 0.01) and 7.2% (p < 0.01) respectively, cholesterol to high-density lipoprotein (HDL) ratio decreased by 9.6% (p = 0.01), and HDL concentration significantly increased (p = 0.01). While 12 wk of regular walking did not significantly alter plasma concentrations of interleukin-6 (IL-6), tumour necrosis factor-α, or C-reactive protein, plasma fibrinogen concentration decreased by 6.9% (p < 0.01) and plasma interleukin-10 (IL-10) concentration increased from 1.15±0.32 to 1.62±0.22 mmol⋅L-1 (p < 0.04). Improved plasma inflammatory profile and decreased plasma fibrinogen concentration is induced by regular walking, independent of glycaemic control. These factors may mediate the improved haemorheology associated with exercise training in metabolic disorders.