Sample records for treadmill running exercise

  1. The Oxidant-Antioxidant Equilibrium and Inflammatory Process Indicators after an Exercise Test on the AlterG Antigravity Treadmill in Young Amateur Female Athletes.

    PubMed

    Sielski, Łukasz; Sutkowy, Paweł; Skopowska, Agnieszka; Pawlak-Osińska, Katarzyna; Augustyńska, Zofia; Hewelt, Katarzyna; Drapała, Radosław; Woźniak, Alina

    2018-01-01

    The AlterG antigravity treadmill allows running with a considerable weight reduction. Physical exercise practiced on this treadmill is an innovative method supporting the treatment of injuries in sports and rehabilitation of patients. The aim of the study was to investigate the effect of a 30 min run on the AlterG treadmill with 80% body weight reduction comparing the effect to the similar effort on the classic treadmill on the redox equilibrium and the activity of selected lysosomal enzymes and a serine protease inhibitor in the blood of amateur minor female volleyball players. Venous blood samples were taken before the exercise and 30 minutes and 24 hours after its completion. The obtained results were analysed using Tukey's test and Pearson's linear correlations were calculated. 24 h after the running test on classic treadmill, the erythrocytic superoxide dismutase activity was higher than before and 30 min after it, as well as compared to the run on AlterG treadmill ( p < 0.001). The erythrocytic-conjugated diene concentration 24 h after the exercise on the classic treadmill was meaningly higher compared to that after the exercise on the AlterG treadmill ( p < 0.001). The cathepsin D activity was significantly lower after the exercise in AlterG conditions compared to the baseline value and that measured after the exercise on classic treadmill ( p < 0.001). It seems that the exercise on the AlterG treadmill keeps the oxidant-antioxidant equilibrium and stabilizes lysosomal membranes in young, physically active women in contrast to the exercise on the classic treadmill. This trial is registered with CTRI/2018/01/011344.

  2. The Oxidant–Antioxidant Equilibrium and Inflammatory Process Indicators after an Exercise Test on the AlterG Antigravity Treadmill in Young Amateur Female Athletes

    PubMed Central

    Sielski, Łukasz; Skopowska, Agnieszka; Pawlak-Osińska, Katarzyna; Augustyńska, Zofia; Hewelt, Katarzyna; Drapała, Radosław

    2018-01-01

    The AlterG antigravity treadmill allows running with a considerable weight reduction. Physical exercise practiced on this treadmill is an innovative method supporting the treatment of injuries in sports and rehabilitation of patients. The aim of the study was to investigate the effect of a 30 min run on the AlterG treadmill with 80% body weight reduction comparing the effect to the similar effort on the classic treadmill on the redox equilibrium and the activity of selected lysosomal enzymes and a serine protease inhibitor in the blood of amateur minor female volleyball players. Venous blood samples were taken before the exercise and 30 minutes and 24 hours after its completion. The obtained results were analysed using Tukey's test and Pearson's linear correlations were calculated. 24 h after the running test on classic treadmill, the erythrocytic superoxide dismutase activity was higher than before and 30 min after it, as well as compared to the run on AlterG treadmill (p < 0.001). The erythrocytic-conjugated diene concentration 24 h after the exercise on the classic treadmill was meaningly higher compared to that after the exercise on the AlterG treadmill (p < 0.001). The cathepsin D activity was significantly lower after the exercise in AlterG conditions compared to the baseline value and that measured after the exercise on classic treadmill (p < 0.001). It seems that the exercise on the AlterG treadmill keeps the oxidant–antioxidant equilibrium and stabilizes lysosomal membranes in young, physically active women in contrast to the exercise on the classic treadmill. This trial is registered with CTRI/2018/01/011344. PMID:29765494

  3. Treadmill running frequency on anxiety and hippocampal adenosine receptors density in adult and middle-aged rats.

    PubMed

    Costa, Marcelo S; Ardais, Ana Paula; Fioreze, Gabriela T; Mioranzza, Sabrina; Botton, Paulo Henrique S; Portela, Luis Valmor; Souza, Diogo O; Porciúncula, Lisiane O

    2012-01-10

    Physical exercise protocols have varied widely across studies raising the question of whether there is an optimal intensity, duration and frequency that would produce maximal benefits in attenuating symptoms related to anxiety disorders. Although physical exercise causes modifications in neurotransmission systems, the involvement of neuromodulators such as adenosine has not been investigated after chronic exercise training. Anxiety-related behavior was assessed in the elevated plus-maze in adult and middle-aged rats submitted to 8 weeks of treadmill running 1, 3 or 7 days/week. The speed of running was weekly adjusted to maintain moderate intensity. The hippocampal adenosine A1 and A2A receptors densities were also assessed. Treadmill running protocol was efficient in increasing physical exercise capacity in adult and middle-aged rats. All frequencies of treadmill running equally decreased the time spent in the open arms in adult animals. Middle-aged treadmill control rats presented lower time spent in the open arms than adult treadmill control rats. However, treadmill running one day/week reversed this age effect. Adenosine A1 receptor was not changed between groups, but treadmill running counteracted the age-related increase in adenosine A2A receptors. Although treadmill running, independent from frequency, triggered anxiety in adult rats and treadmill running one day/week reversed the age-related anxiety, no consistent relationship was found with hippocampal adenosine receptors densities. Thus, our data suggest that as a complementary therapy in the management of mental disturbances, the frequency and intensity of physical exercise should be taken into account according to age. Besides, this is the first study reporting the modulation of adenosine receptors after chronic physical exercise, which could be important to prevent neurological disorders associated to increase in adenosine A2A receptors. Copyright © 2011. Published by Elsevier Inc.

  4. Differential effects of targeted tongue exercise and treadmill running on aging tongue muscle structure and contractile properties.

    PubMed

    Kletzien, Heidi; Russell, John A; Leverson, Glen E; Connor, Nadine P

    2013-02-15

    Age-associated changes in tongue muscle structure and strength may contribute to dysphagia in elderly people. Tongue exercise is a current treatment option. We hypothesized that targeted tongue exercise and nontargeted exercise that activates tongue muscles as a consequence of increased respiratory drive, such as treadmill running, are associated with different patterns of tongue muscle contraction and genioglossus (GG) muscle biochemistry. Thirty-one young adult, 34 middle-aged, and 37 old Fischer 344/Brown Norway rats received either targeted tongue exercise, treadmill running, or no exercise (5 days/wk for 8 wk). Protrusive tongue muscle contractile properties and myosin heavy chain (MHC) composition in the GG were examined at the end of 8 wk across groups. Significant age effects were found for maximal twitch and tetanic tension (greatest in young adult rats), MHCIIb (highest proportion in young adult rats), MHCIIx (highest proportion in middle-aged and old rats), and MHCI (highest proportion in old rats). The targeted tongue exercise group had the greatest maximal twitch tension and the highest proportion of MHCI. The treadmill running group had the shortest half-decay time, the lowest proportion of MHCIIa, and the highest proportion of MHCIIb. Fatigue was significantly less in the young adult treadmill running group and the old targeted tongue exercise group than in other groups. Thus, tongue muscle structure and contractile properties were affected by both targeted tongue exercise and treadmill running, but in different ways. Studies geared toward optimizing dose and manner of providing targeted and generalized tongue exercise may lead to alternative tongue exercise delivery strategies.

  5. Differential effects of targeted tongue exercise and treadmill running on aging tongue muscle structure and contractile properties

    PubMed Central

    Kletzien, Heidi; Russell, John A.; Leverson, Glen E.

    2013-01-01

    Age-associated changes in tongue muscle structure and strength may contribute to dysphagia in elderly people. Tongue exercise is a current treatment option. We hypothesized that targeted tongue exercise and nontargeted exercise that activates tongue muscles as a consequence of increased respiratory drive, such as treadmill running, are associated with different patterns of tongue muscle contraction and genioglossus (GG) muscle biochemistry. Thirty-one young adult, 34 middle-aged, and 37 old Fischer 344/Brown Norway rats received either targeted tongue exercise, treadmill running, or no exercise (5 days/wk for 8 wk). Protrusive tongue muscle contractile properties and myosin heavy chain (MHC) composition in the GG were examined at the end of 8 wk across groups. Significant age effects were found for maximal twitch and tetanic tension (greatest in young adult rats), MHCIIb (highest proportion in young adult rats), MHCIIx (highest proportion in middle-aged and old rats), and MHCI (highest proportion in old rats). The targeted tongue exercise group had the greatest maximal twitch tension and the highest proportion of MHCI. The treadmill running group had the shortest half-decay time, the lowest proportion of MHCIIa, and the highest proportion of MHCIIb. Fatigue was significantly less in the young adult treadmill running group and the old targeted tongue exercise group than in other groups. Thus, tongue muscle structure and contractile properties were affected by both targeted tongue exercise and treadmill running, but in different ways. Studies geared toward optimizing dose and manner of providing targeted and generalized tongue exercise may lead to alternative tongue exercise delivery strategies. PMID:23264540

  6. Run Economy on a Normal and Lower Body Positive Pressure Treadmill.

    PubMed

    Temple, Corey; Lind, Erik; VAN Langen, Deborah; True, Larissa; Hupman, Saige; Hokanson, James F

    2017-01-01

    Lower body positive pressure (LBPP) treadmill running is used more frequently in clinical and athletic settings. Accurate caloric expenditure is required for proper exercise prescription, especially for obese patients performing LBPP exercise. It is unclear if running on LBPP changes running economy (RE) in proportion to the changes in body weight. The purpose of the study was to measure the oxygen consumption (VO 2 ) and running economy (RE) of treadmill running at normal body weight and on LBPP. Twenty-three active, non-obese participants (25.8±7.2 years; BMI = 25.52±3.29 kg·m -2 ) completed two bouts of running exercise in a counterbalanced manner: (a) on a normal treadmill (NT) and (b) on a LBPP treadmill at 60% (40% of body weight supported) for 4 min at 2.24 (5 mph), 2.68 (6 mph), and 3.13 m·s -1 (7 mph). Repeated measures ANOVA showed a statistically significant interaction in RE among trials, F(2, 44) = 6.510, p <.0005, partial η 2 = 0.228. An examination of pairwise comparisons indicated that RE was significantly greater for LBPP across the three speeds ( p < 0.005). As expected, LBPP treadmill running resulted in significantly lower oxygen consumption at all three running speeds. We conclude that RE (ml O 2 ·kg -1 ·km -1 ) of LBPP running is significantly poorer than normal treadmill running, and the ~30% change in absolute energy cost is not as great as predicted by the change in body weight (40%).

  7. The Effects of Treadmill Running on Aging Laryngeal Muscle Structure

    PubMed Central

    Kletzien, Heidi; Russell, John A.; Connor, Nadine P.

    2015-01-01

    Levels of Evidence NA (animal study) Objective Age-related changes in laryngeal muscle structure and function may contribute to deficits in voice and swallowing observed in elderly people. We hypothesized that treadmill running, an exercise that increases respiratory drive to upper airway muscles, would induce changes in thyroarytenoid muscle myosin heavy chain (MHC) isoforms consistent with a fast-slow transformation in muscle fiber type. Study Design Randomized parallel group controlled trial. Methods Fifteen young adult and 14 old Fischer 344/Brown Norway rats received either treadmill running or no exercise (5 days/week/8 weeks). Myosin heavy chain isoform composition in the thyroarytenoid muscle was examined at the end of 8 weeks. Results Significant age and treatment effects were found. The young adult group had the greatest proportion of superfast contracting MHCIIL. The treadmill running group had the lowest proportion of MHCIIL and the greatest proportion of MHCIIx. Conclusion Thyroarytenoid muscle structure was affected both by age and treadmill running in a fast-slow transition that is characteristic of exercise manipulations in other skeletal muscles. PMID:26256100

  8. Preventive and therapeutic effect of treadmill running on chronic stress-induced memory deficit in rats.

    PubMed

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin

    2015-04-01

    Previous results indicated that stress impairs learning and memory. In this research, the effects of preventive, therapeutic and regular continually running activity on chronic stress-induced memory deficit in rats were investigated. 70 male rats were randomly divided into seven groups as follows: Control, Sham, Stress-Rest, Rest-Stress, Stress-Exercise, Exercise-Stress and Exercise-Stress & Exercise groups. Chronic restraint stress was applied 6 h/day for 21days and treadmill running 1 h/day. Memory function was evaluated by the passive avoidance test. The results revealed that running activities had therapeutic effect on mid and long-term memory deficit and preventive effects on short and mid-term memory deficit in stressed rats. Regular continually running activity improved mid and long-term memory compared to Exercise-Stress group. The beneficial effects of exercise were time-dependent in stress conditions. Finally, data corresponded to the possibility that treadmill running had a more important role on treatment rather than on prevention on memory impairment induced by stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Recovery of heart rate variability after treadmill exercise analyzed by lagged Poincaré plot and spectral characteristics.

    PubMed

    Shi, Ping; Hu, Sijung; Yu, Hongliu

    2018-02-01

    The aim of this study was to analyze the recovery of heart rate variability (HRV) after treadmill exercise and to investigate the autonomic nervous system response after exercise. Frequency domain indices, i.e., LF(ms 2 ), HF(ms 2 ), LF(n.u.), HF(n.u.) and LF/HF, and lagged Poincaré plot width (SD1 m ) and length (SD2 m ) were introduced for comparison between the baseline period (Pre-E) before treadmill running and two periods after treadmill running (Post-E1 and Post-E2). The correlations between lagged Poincaré plot indices and frequency domain indices were applied to reveal the long-range correlation between linear and nonlinear indices during the recovery of HRV. The results suggested entirely attenuated autonomic nervous activity to the heart following the treadmill exercise. After the treadmill running, the sympathetic nerves achieved dominance and the parasympathetic activity was suppressed, which lasted for more than 4 min. The correlation coefficients between lagged Poincaré plot indices and spectral power indices could separate not only Pre-E and two sessions after the treadmill running, but also the two sessions in recovery periods, i.e., Post-E1 and Post-E2. Lagged Poincaré plot as an innovative nonlinear method showed a better performance over linear frequency domain analysis and conventional nonlinear Poincaré plot.

  10. A comparison of VO2max and metabolic variables between treadmill running and treadmill skating.

    PubMed

    Koepp, Kriston K; Janot, Jeffrey M

    2008-03-01

    The purpose of this study was to determine differences in VO2max and metabolic variables between treadmill running and treadmill skating. This study also examined VO2max responses during a continuous skating treadmill protocol and a discontinuous skating treadmill protocol. Sixteen male high school hockey players, who had a mean age of 16 +/- 1 years and were of an above-average fitness level, participated in this study. All subjects completed 4 exercise trials: a 1-hour skating treadmill familiarization trial, a treadmill running trial, and 2 randomized skating treadmill trials. Minute ventilation (VE), oxygen consumption VO2), carbon dioxide production VCO2), respiratory exchange ratio (RER), and heart rate were averaged every 15 seconds up to VO2max for each exercise test. The results showed that there was a significant difference (P < 0.05) for VO2max (mL.kg.min) and maximal VCO2 (L.min) between the running treadmill protocol and discontinuous skating treadmill protocol. There was also a significant difference for maximal RER between the discontinuous and continuous skating treadmill protocol and between the discontinuous skating treadmill protocol and running treadmill protocol. In conclusion, the running treadmill elicited a greater VO2max (mL.kg.min) than the skating treadmill did, but when it comes to specificity of ice skating, the skating treadmill may be ideal. Also, there was no significant difference between the discontinuous and continuous skating treadmill protocols. Therefore, a continuous protocol is possible on the skating treadmill without compromising correct skating position and physiologic responses. However, the continuous skating treadmill protocol should undergo validation before other scientists, coaches, and strength and conditioning professionals can apply it correctly.

  11. Why Is It Harder to Run on an Inclined Exercise Treadmill?

    ERIC Educational Resources Information Center

    Nave, Carla M. A. P. F.; Amoreira, Luis J. M.

    2014-01-01

    It is a known fact that it takes a greater effort to run on an exercise treadmill when it is inclined with positive slope than when it is in a horizontal position. The reason seems simple: walking on an inclined treadmill is somehow equivalent to walking up a hill with the same inclination; when we walk up a hill, our own weight does negative work…

  12. Ground Reaction Forces During Reduced Gravity Running in Parabolic Flight.

    PubMed

    Cavanagh, Peter; Rice, Andrea; Glauberman, Molly; Sudduth, Amanda; Cherones, Arien; Davis, Shane; Lewis, Michael; Hanson, Andrea; Wilt, Grier

    2017-08-01

    Treadmills have been employed as both a form of exercise and a countermeasure to prevent changes in the musculoskeletal system on almost all NASA missions and many Russian missions since the early Space Shuttle flights. It is possible that treadmills may also be part of exercise programs on future Mars missions and that they may be a component of exercise facilities in lunar or Martian habitats. In order to determine if the ambient gravity on these destinations will provide osteogenic effects while performing exercise on a treadmill, ground reactions forces (GRFs) were measured on eight subjects (six women and two men) running at 6 mph during parabolic flight in Martian and lunar gravity conditions. On average, stride length increased as gravity decreased. The first and second peaks of the GRFs decreased by 0.156 and 0.196 bodyweights, respectively, per 1/10 g change in ambient gravity. Based on comparisons with previously measured GRF during loaded treadmill running on the International Space Station, we conclude that unloaded treadmill running under lunar and Martian conditions during exploration missions is not likely to be an osteo-protective exercise.Cavanagh P, Rice A, Glauberman M, Sudduth A, Cherones A, Davis S, Lewis M, Hanson A, Wilt G. Ground reaction forces during reduced gravity running in parabolic flight. Aerosp Med Hum Perform. 2017; 88(8):730-736.

  13. Physical and Emotional Benefits of Different Exercise Environments Designed for Treadmill Running

    PubMed Central

    Churchill, Sarah M.; Brymer, Eric; Davids, Keith

    2017-01-01

    (1) Background: Green physical activity promotes physical health and mental wellbeing and interesting questions concern effects of this information on designing indoor exercise environments. This study examined the physical and emotional effects of different nature-based environments designed for indoor treadmill running; (2) Methods: In a counterbalanced experimental design, 30 participants performed three, twenty-minute treadmill runs at a self-selected pace while viewing either a static nature image, a dynamic nature image or self-selected entertainment. Distance ran, heart rate (HR) and five pre-and post-exercise emotional states were measured; (3) Results: Participants ran farther, and with higher HRs, with self-selected entertainment compared to the two nature-based environment designs. Participants attained lowered anger, dejection, anxiety and increased excitement post exercise in all of the designed environments. Happiness increased during the two nature-based environment designs compared with self-selected entertainment; (4) Conclusions: Self-selected entertainment encouraged greater physical performances whereas running in nature-based exercise environments elicited greater happiness immediately after running. PMID:28696384

  14. Physical and Emotional Benefits of Different Exercise Environments Designed for Treadmill Running.

    PubMed

    Yeh, Hsiao-Pu; Stone, Joseph A; Churchill, Sarah M; Brymer, Eric; Davids, Keith

    2017-07-11

    (1) Background: Green physical activity promotes physical health and mental wellbeing and interesting questions concern effects of this information on designing indoor exercise environments. This study examined the physical and emotional effects of different nature-based environments designed for indoor treadmill running; (2) Methods: In a counterbalanced experimental design, 30 participants performed three, twenty-minute treadmill runs at a self-selected pace while viewing either a static nature image, a dynamic nature image or self-selected entertainment. Distance ran, heart rate (HR) and five pre-and post-exercise emotional states were measured; (3) Results: Participants ran farther, and with higher HRs, with self-selected entertainment compared to the two nature-based environment designs. Participants attained lowered anger, dejection, anxiety and increased excitement post exercise in all of the designed environments. Happiness increased during the two nature-based environment designs compared with self-selected entertainment; (4) Conclusions: Self-selected entertainment encouraged greater physical performances whereas running in nature-based exercise environments elicited greater happiness immediately after running.

  15. The Effects of Exercise on Expression of CYP19 and StAR mRNA in Steroid-Induced Polycystic Ovaries of Female Rats.

    PubMed

    Aghaie, Fatemeh; Khazali, Homayoun; Hedayati, Mehdi; Akbarnejad, Ali

    2018-01-01

    Polycystic ovarian syndrome (PCOS) is the most frequent female endocrine disorder that affects 5-10% of women. PCOS is characterized by hyperandrogenism, oligo-/anovulation, and polycystic ovaries. The aim of the present research is to evaluate the expression of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) mRNA in the ovaries of an estradiol valerate (EV)-induced PCOS rat model, and the effect of treadmill and running wheel (voluntary) exercise on these parameters. In this experimental study, we divided adult female Wistar rats that weighed approximately 220 ± 20 g initially into control (n=10) and PCOS (n=30). Subsequently, PCOS group were divided to PCOS, PCOS with treadmill exercise (P-ExT), and PCOS with running wheel exercise (P-ExR) groups (n=10 per group). The expressions of StAR and CYP19 mRNA in the ovaries were determined by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). Data were analyzed by one-way ANOVA using SPSS software, version 16. The data were assessed at α=0.05. There was significantly lower mRNA expression of CYP19 in the EV-induced PCOS, running wheel and treadmill exercise rats compared to the control group (P<0.001). Treadmill exercise (P=0.972) and running wheel exercise (P=0.839) had no significant effects on CYP19 mRNA expression compared to the PCOS group. mRNA expression of StAR in the ovaries of the PCOS group indicated an increasing trend compared to the control group, however this was not statistically significant (P=0.810). We observed that 8 weeks of running wheel and treadmill exercises could not statistically decrease StAR mRNA expression compared to the PCOS group (P=0.632). EV-induced PCOS in rats decreased CYP19 mRNA expression, but had no effect on StAR mRNA expression. We demonstrated that running wheel and moderate treadmill exercise could not modify CYP19 and StAR mRNA expressions. Copyright© by Royan Institute. All rights reserved.

  16. Treadmill exercise alleviates short-term memory impairment in 6-hydroxydopamine-induced Parkinson's rats.

    PubMed

    Cho, Han-Sam; Shin, Mal-Soon; Song, Wook; Jun, Tae-Won; Lim, Baek-Vin; Kim, Young-Pyo; Kim, Chang-Ju

    2013-01-01

    Progressive loss of dopaminergic neurons in substantia nigra is a key pathogenesis of Parkinson's disease. In the present study, we investigated the effects of treadmill exercise on short-term memory, apoptotic dopaminergic neuronal cell death and fiber loss in the nigrostriatum, and cell proliferation in the hippocampal dentate gyrus of Parkinson's rats. Parkinson's rats were made by injection of 6-hydroxydopamine (6-OHDA) into the striatum using stereotaxic instrument. Four weeks after 6-OHDA injection, the rats in the 6-OHDA-injection group exhibited significant rotational asymmetry following apomorphine challenge. The rats in the exercise groups were put on the treadmill to run for 30 min once a day for 14 consecutive days starting 4 weeks after 6-OHDA injection. In the present results, extensive degeneration of the dopaminergic neurons in the substantia nigra with loss of dopaminergic fibers in the striatum were produced in the rats without treadmill running, which resulted in short-term memory impairment. However, the rats performing treadmill running for 2 weeks alleviated nigrostriatal dopaminergic cell loss and alleviated short-term memory impairment with increasing cell proliferation in the hippocampal dentate gyrus of Parkinson's rats. The present results show that treadmill exercise may provide therapeutic value for the Parkinson's disease.

  17. Physical exercise-induced changes in the core body temperature of mice depend more on ambient temperature than on exercise protocol or intensity

    NASA Astrophysics Data System (ADS)

    Wanner, Samuel Penna; Costa, Kátia Anunciação; Soares, Anne Danieli Nascimento; Cardoso, Valbert Nascimento; Coimbra, Cândido Celso

    2014-08-01

    The mechanisms underlying physical exercise-induced hyperthermia may be species specific. Therefore, the present study aimed to investigate the effects of exercise intensity and ambient temperature on the core body temperature ( T core) of running mice, which provide an important experimental model for advancing the understanding of thermal physiology. We evaluated the influence of different protocols (constant- or incremental-speed exercises), treadmill speeds and ambient temperatures ( T a) on the magnitude of exercise-induced hyperthermia. To measure T core, a telemetric sensor was implanted in the abdominal cavity of male adult Swiss mice under anesthesia. After recovering from the surgery, the animals were familiarized to running on a treadmill and then subjected to the different running protocols and speeds at two T a: 24 °C or 34 °C. All of the experimental trials resulted in marked increases in T core. As expected, the higher-temperature environment increased the magnitude of running-induced hyperthermia. For example, during incremental exercise at 34 °C, the maximal T core achieved was increased by 1.2 °C relative to the value reached at 24 °C. However, at the same T a, neither treadmill speed nor exercise protocol altered the magnitude of exercise-induced hyperthermia. We conclude that T core of running mice is influenced greatly by T a, but not by the exercise protocols or intensities examined in the present report. These findings suggest that the magnitude of hyperthermia in running mice may be regulated centrally, independently of exercise intensity.

  18. Physical exercise-induced changes in the core body temperature of mice depend more on ambient temperature than on exercise protocol or intensity.

    PubMed

    Wanner, Samuel Penna; Costa, Kátia Anunciação; Soares, Anne Danieli Nascimento; Cardoso, Valbert Nascimento; Coimbra, Cândido Celso

    2014-08-01

    The mechanisms underlying physical exercise-induced hyperthermia may be species specific. Therefore, the present study aimed to investigate the effects of exercise intensity and ambient temperature on the core body temperature (T core) of running mice, which provide an important experimental model for advancing the understanding of thermal physiology. We evaluated the influence of different protocols (constant- or incremental-speed exercises), treadmill speeds and ambient temperatures (T a) on the magnitude of exercise-induced hyperthermia. To measure T core, a telemetric sensor was implanted in the abdominal cavity of male adult Swiss mice under anesthesia. After recovering from the surgery, the animals were familiarized to running on a treadmill and then subjected to the different running protocols and speeds at two T a: 24 °C or 34 °C. All of the experimental trials resulted in marked increases in T core. As expected, the higher-temperature environment increased the magnitude of running-induced hyperthermia. For example, during incremental exercise at 34 °C, the maximal T core achieved was increased by 1.2 °C relative to the value reached at 24 °C. However, at the same T a, neither treadmill speed nor exercise protocol altered the magnitude of exercise-induced hyperthermia. We conclude that T core of running mice is influenced greatly by T a, but not by the exercise protocols or intensities examined in the present report. These findings suggest that the magnitude of hyperthermia in running mice may be regulated centrally, independently of exercise intensity.

  19. Exercise in space: the European Space Agency approach to in-flight exercise countermeasures for long-duration missions on ISS.

    PubMed

    Petersen, Nora; Jaekel, Patrick; Rosenberger, Andre; Weber, Tobias; Scott, Jonathan; Castrucci, Filippo; Lambrecht, Gunda; Ploutz-Snyder, Lori; Damann, Volker; Kozlovskaya, Inessa; Mester, Joachim

    2016-01-01

    To counteract microgravity (µG)-induced adaptation, European Space Agency (ESA) astronauts on long-duration missions (LDMs) to the International Space Station (ISS) perform a daily physical exercise countermeasure program. Since the first ESA crewmember completed an LDM in 2006, the ESA countermeasure program has strived to provide efficient protection against decreases in body mass, muscle strength, bone mass, and aerobic capacity within the operational constraints of the ISS environment and the changing availability of on-board exercise devices. The purpose of this paper is to provide a description of ESA's individualised approach to in-flight exercise countermeasures and an up-to-date picture of how exercise is used to counteract physiological changes resulting from µG-induced adaptation. Changes in the absolute workload for resistive exercise, treadmill running and cycle ergometry throughout ESA's eight LDMs are also presented, and aspects of pre-flight physical preparation and post-flight reconditioning outlined. With the introduction of the advanced resistive exercise device (ARED) in 2009, the relative contribution of resistance exercise to total in-flight exercise increased (33-46 %), whilst treadmill running (42-33 %) and cycle ergometry (26-20 %) decreased. All eight ESA crewmembers increased their in-flight absolute workload during their LDMs for resistance exercise and treadmill running (running speed and vertical loading through the harness), while cycle ergometer workload was unchanged across missions. Increased or unchanged absolute exercise workloads in-flight would appear contradictory to typical post-flight reductions in muscle mass and strength, and cardiovascular capacity following LDMs. However, increased absolute in-flight workloads are not directly linked to changes in exercise capacity as they likely also reflect the planned, conservative loading early in the mission to allow adaption to µG exercise, including personal comfort issues with novel exercise hardware (e.g. the treadmill harness). Inconsistency in hardware and individualised support concepts across time limit the comparability of results from different crewmembers, and questions regarding the difference between cycling and running in µG versus identical exercise here on Earth, and other factors that might influence in-flight exercise performance, still require further investigation.

  20. Physiological responses of young thoroughbred horses to intermittent high-intensity treadmill training

    PubMed Central

    2013-01-01

    Background Training of young Thoroughbred horses must balance development of cardiopulmonary function and aerobic capacity with loading of the musculoskeletal system that can potentially cause structural damage and/or lameness. High-speed equine treadmills are sometimes used to supplement exercise on a track in the training of young Thoroughbreds because the horse can run at high speeds but without the added weight of a rider. We tested the hypothesis that intermittent high-intensity exercise on a treadmill of young Thoroughbred horses entering training can enhance development of aerobic capacity (Vo2max) and running performance more than conventional training under saddle, and do so without causing lameness. Results Twelve yearling Thoroughbreds trained for 8 months with conventional riding (C) only, conventional riding plus a short (2 month, S) interval of once-per-week high-intensity treadmill exercise, or a long (8 month, L) interval of once-per-week high-intensity treadmill exercise. Three treadmill exercise tests evaluated Vo2max, oxygen transport and running performance variables in June of the yearling year (only for L), October of the yearling year and April of the 2-year-old year. No horses experienced lameness during the study. Aerobic capacity increased in all groups after training. In both October and April, Vo2max in L was higher than in C, but did not differ between L and S or S and C. Running speeds eliciting Vo2max also increased in all groups after training, with S (809 ± 3 m/s) and L (804 ± 9 m/s) higher than C (764 ± 27 m/s). Maximum heart rate decreased for all groups after training. Hematocrit and hemoglobin concentration increased for L throughout training. Conclusions Young Thoroughbred horses can increase aerobic capacity and running performance more than by strictly using track training under saddle with the addition of intermittent high-intensity treadmill exercise, and they can do so without experiencing lameness. This finding suggests that young racehorses might be able to achieve higher aerobic fitness during training without subjecting their musculoskeletal systems to increased loading and risk of developing lameness. The findings of this preliminary study do not indicate a specific protocol to best achieve this goal. PMID:23957961

  1. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model.

    PubMed

    Chen, C C; Chang, M W; Chang, C P; Chan, S C; Chang, W Y; Yang, C L; Lin, M T

    2014-10-01

    We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.

  2. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model

    PubMed Central

    Chen, C.C.; Chang, M.W.; Chang, C.P.; Chan, S.C.; Chang, W.Y.; Yang, C.L.; Lin, M.T.

    2014-01-01

    We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use. PMID:25140816

  3. Duration-dependence of the effect of treadmill exercise on hyperactivity in attention deficit hyperactivity disorder rats.

    PubMed

    Ji, Eun-Sang; Kim, Chang-Ju; Park, Jun Heon; Bahn, Geon Ho

    2014-04-01

    Attention-deficit hyperactivity disorder (ADHD) is a common neurobehavioral disorder, and its symptoms are hyperactivity and deficits in learning and memory. Physical exercise increases dopamine synthesis and neuronal activity in various brain regions. In the present study, we investigate the duration-dependence of the treadmill exercise on hyperactivity in relation with dopamine expression in ADHD. Spontaneously hypertensive rats were used for the ADHD rats and Wistar-Kyoto rats were used for the control rats. The rats in the exercise groups were forced to run on a treadmill for 10 min, 30 min, and 60 min once daily for 28 consecutive days. For this experiment, open field test and immunohistochemistry for tyrosine hydroxylase were conducted. The present results revealed that ADHD rats showed hyperactivity, and tyrosine hydroxylase expression in the striatum and substantia nigra were decreased in ADHD rats. Treadmill exercise alleviated hyperactivity and also increased TH expression in ADHD rats. Treadmill exercise for 30 min per day showed most potent suppressing effect on hyperactivity, and this dose of treadmill exercise also most potently inhibited tyrosine hydroxylase expression. The present study suggests that treadmill exercise for 30 min once a day is the most effective therapeutic intervention for ADHD patients.

  4. Effect of added mass on treadmill performance and pulmonary function.

    PubMed

    Walker, Rachel E; Swain, David P; Ringleb, Stacie I; Colberg, Sheri R

    2015-04-01

    Military personnel engage in strenuous physical activity and load carriage. This study evaluated the role of body mass and of added mass on aerobic performance (uphill treadmill exercise) and pulmonary function. Performance on a traditional unloaded run test (4.8 km) was compared with performance on loaded tasks. Subjects performed an outdoor 4.8-km run and 4 maximal treadmill tests wearing loads of 0, 10, 20, and 30 kg. Subjects' pulmonary function (forced expired volume in 1 second [FEV1], forced vital capacity [FVC], and maximal voluntary ventilation [MVV]) was tested with each load, and peak values of heart rate, oxygen consumption ((Equation is included in full-text article.)), ventilation (VE), and respiratory exchange ratio (RER) were measured during each treadmill test. Performance on the 4.8-km run was correlated with treadmill performance, measured as time to exhaustion (TTE), with the strength of the correlation decreasing with load (r = 0.87 for 0 kg to 0.76 for 30 kg). Body mass was not correlated with TTE, other than among men with the 30-kg load (r = 0.48). During treadmill exercise, all peak responses other than RER decreased with load. Pulmonary function measures (FEV1, FVC, and MVV) decreased with load. Body mass was poorly correlated with treadmill performance, but added mass decreased performance. The decreased performance may be in part because of decreased pulmonary function. Unloaded 4.8-km run performance was correlated to unloaded uphill treadmill performance, but less so as load increased. Therefore, traditional run tests may not be an effective means of evaluating aerobic performance for military field operations.

  5. Physiological responses during intermittent running exercise differ between outdoor and treadmill running.

    PubMed

    Panascì, Marco; Lepers, Romuald; La Torre, Antonio; Bonato, Matteo; Assadi, Hervè

    2017-09-01

    The aim of this study was to compare the physiological responses during 15 min of intermittent running consisting of 30 s of high-intensity running exercise at maximal aerobic velocity (MAV) interspersed with 30 s of passive recovery (30-30) performed outdoor versus on a motorized treadmill. Fifteen collegiate physically active males (age, 22 ± 1 years old; body mass, 66 ± 7 kg; stature, 176 ± 06 cm; weekly training volume, 5 ± 2 h·week -1 ), performed the Fitness Intermittent Test 45-15 to determine maximal oxygen uptake (V̇O 2max ) and MAV and then completed in random order 3 different training sessions consisting of a 30-s run/30-s rest on an outdoor athletic track (30-30 Track) at MAV; a 30-s run/30-s rest on a treadmill (30-30 Treadmill) at MAV; a 30-s run/30-s rest at MAV+15% (30-30 + 15% MAV Treadmill). Oxygen uptake (V̇O 2 ), time above 90%V̇O 2max (t90%V̇O 2max ), and rating of perceived exertion (RPE) were measured during each training session. We observed a statistical significant underestimation of V̇O 2 (53.1 ± 5.4 mL·kg -1 ·min -1 vs 49.8 ± 6.7 mL·kg -1 ·min -1 , -6.3%, P = 0.012), t90%V̇O 2max (8.6% ± 11.5% vs 38.7% ± 32.5%, -77.8%, P = 0.008), RPE (11.4 ± 1.4 vs 16.5 ± 1.7, -31%, P < 0.0001) during the 30-30 Treadmill compared with the same training session performed on track. No statistical differences between 30-30 +15 % MAV Treadmill and 30-30 Track were observed. The present study demonstrates that a 15% increase in running velocity during a high-intensity intermittent treadmill training session is the optimal solution to reach the same physiological responses than an outdoor training session.

  6. Vibration Isolation and Stabilization System for Spacecraft Exercise Treadmill Devices

    NASA Technical Reports Server (NTRS)

    Fialho, Ian; Tyer, Craig; Murphy, Bryan; Cotter, Paul; Thampi, Sreekumar

    2011-01-01

    A novel, passive system has been developed for isolating an exercise treadmill device from a spacecraft in a zero-G environment. The Treadmill 2 Vibration Isolation and Stabilization System (T2-VIS) mechanically isolates the exercise treadmill from the spacecraft/space station, thereby eliminating the detrimental effect that high impact loads generated during walking/running would have on the spacecraft structure and sensitive microgravity science experiments. This design uses a second stage spring, in series with the first stage, to achieve an order of magnitude higher exercise- frequency isolation than conventional systems have done, while maintaining desirable low-frequency stability performance. This novel isolator design, in conjunction with appropriately configured treadmill platform inertia properties, has been shown (by on-orbit zero-G testing onboard the International Space Station) to deliver exceedingly high levels of isolation/ stability performance.

  7. Temperature responses to infusion of electrolytes during exercise

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Kozlowski, S.; Kaciuba-Uscilko, H.; Nazar, K.; Brzezinska, Z.

    1975-01-01

    Past studies on the influence of various metal ions on heat regulation in mammals are reviewed, and results of a study on the effect of Na and citrate in isotonic and hypertonic concentrations on temperature elevation during exercise in dogs are presented. Hypertonic administration of Na before or during treadmill running and dosis of citrate during treadmill running significantly raised core temperature over controls and isotonic cases. Thus the higher the plasma Na-osmotic concentration, the greater the inhibition of heat dissipation.

  8. A model for nonexercising hindlimb muscles in exercising animals.

    PubMed

    Bonen, A; Blewett, C; McDermott, J C; Elder, G C

    1990-07-01

    Nonexercising muscles appear to be metabolically active during exercise. Animal models for this purpose have not been established. However, we have been able to teach animals to run on their forelimbs while their hindlimbs are suspended above the treadmill with no visible limb movement. To document that indeed this mode of exercise does not provoke additional muscle activity, we have compared the levels of neural activation of the soleus and plantaris muscles using a computer analysis of the electromyographic interference pattern, recorded from bipolar fine wire electrodes implanted across each muscle. Via computer analyses of the electromyographic interference patterns the frequencies and amplitudes of motor unit action potentials were obtained. The data were sampled during 20 s of every minute of observation. Comparisons were made in four conditions: (i) resting on the treadmill while bearing weight on the hindlimbs (normal rest), (ii) running on the treadmill (15 m/min, 8% grade) on all four limbs (normal exercise), (iii) resting while the hindlimbs were suspended in a harness above the treadmill (suspended rest), and (iv) exercising with the forelimbs (15 m/min, 8% grade) while the hindlimbs were suspended above the treadmill (suspended exercise). All four experimental conditions were carried out for 90 min each and were performed by each animal. The results clearly show that muscle activities (frequencies and amplitudes), when the hindlimbs are suspended above the treadmill, at rest or during exercise, are lower than the activities in these same muscles when the animals are at rest, supporting only their body weight. Activities in the same muscles during exercise were from 300 to 2000% greater than during hindlimb suspension.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Bone loss during partial weight bearing (1/6th gravity) is mitigated by resistance and aerobic exercise in mice

    NASA Astrophysics Data System (ADS)

    Boudreaux, R. D.; Metzger, C. E.; Macias, B. R.; Shirazi-Fard, Y.; Hogan, H. A.; Bloomfield, S. A.

    2014-06-01

    Astronauts on long duration missions continue to experience bone loss, as much as 1-2% each month, for up to 4.5 years after a mission. Mechanical loading of bone with exercise has been shown to increase bone formation, mass, and geometry. The aim of this study was to compare the efficacy of two exercise protocols during a period of reduced gravitational loading (1/6th body weight) in mice. Since muscle contractions via resistance exercise impart the largest physiological loads on the skeleton, we hypothesized that resistance training (via vertical tower climbing) would better protect against the deleterious musculoskeletal effects of reduced gravitational weight bearing when compared to endurance exercise (treadmill running). Young adult female BALB/cBYJ mice were randomly assigned to three groups: 1/6 g (G/6; n=6), 1/6 g with treadmill running (G/6+RUN; n=8), or 1/6 g with vertical tower climbing (G/6+CLB; n=9). Exercise was performed five times per week. Reduced weight bearing for 21 days was achieved through a novel harness suspension system. Treadmill velocity (12-20 m/min) and daily run time duration (32-51 min) increased incrementally throughout the study. Bone geometry and volumetric bone mineral density (vBMD) at proximal metaphysis and mid-diaphysis tibia were assessed by in vivo peripheral quantitative computed tomography (pQCT) on days 0 and 21 and standard dynamic histomorphometry was performed on undemineralized sections of the mid-diaphysis after tissue harvest. G/6 caused a significant decrease (P<0.001) in proximal tibia metaphysis total vBMD (-9.6%). These reductions of tibia metaphyseal vBMD in G/6 mice were mitigated in both G/6+RUN and G/6+CLB groups (P<0.05). After 21 days of G/6, we saw an absolute increase in tibia mid-diaphysis vBMD and in distal metaphysis femur vBMD in both G/6+RUN and G/6+CLB mice (P<0.05). Substantial increases in endocortical and periosteal mineralizing surface (MS/BS) at mid-diaphysis tibia in G/6+CLB demonstrate that bone formation can be increased even in the presence of reduced weight bearing. These data suggest that moderately vigorous endurance exercise and resistance training, through treadmill running or climb training mitigates decrements in vBMD during 21 days of reduced weight bearing. Consistent with our hypothesis, tower climb training, most pronounced in the tibia mid-diaphysis, provides a more potent osteogenic response compared to treadmill running.

  10. Biomechanical Analysis of Treadmill Locomotion on the International Space Station

    NASA Technical Reports Server (NTRS)

    De Witt, J. K.; Fincke, R. S.; Guilliams, M. E.; Ploutz-Snyder, L. L.

    2011-01-01

    Treadmill locomotion exercise is an important aspect of ISS exercise countermeasures. It is widely believed that an optimized treadmill exercise protocol could offer benefits to cardiovascular and bone health. If training heart rate is high enough, treadmill exercise is expected to lead to improvements in aerobic fitness. If impact or bone loading forces are high enough, treadmill exercise may be expected to contribute to improved bone outcomes. Ground-based research suggests that joint loads increase with increased running speed. However, it is unknown if increases in locomotion speed results in similar increases in joint loads in microgravity. Although data exist regarding the biomechanics of running and walking in microgravity, a majority were collected during parabolic flight or during investigations utilizing a microgravity analog. The Second Generation Treadmill (T2) has been in use on the International Space Station (ISS) and records the ground reaction forces (GRF) produced by crewmembers during exercise. Biomechanical analyses will aid in understanding potential differences in typical gait motion and allow for modeling of the human body to determine joint and muscle forces during exercise. By understanding these mechanisms, more appropriate exercise prescriptions can be developed that address deficiencies. The objective of this evaluation is to collect biomechanical data from crewmembers during treadmill exercise prior to and during flight. The goal is to determine if locomotive biomechanics differ between normal and microgravity environments and to determine how combinations of subject load and speed influence joint loading during in-flight treadmill exercise. Further, the data will be used to characterize any differences in specific bone and muscle loading during locomotion in these two gravitational conditions. This project maps to the HRP Integrated Research Plan risks including Risk of Bone Fracture (Gap B15), Risk of Early Onset Osteoporosis Due to Spaceflight (Gap B15), Risk of Impaired Performance Due to Reduced Muscle Mass, Strength, and Endurance (Gaps M3, M4, M6, Ml, M8, M9) and Risk of reduced Physical Performance Capabilities Due to Reduce Aerobic Capacity (Gaps M7, M8, M9).

  11. Effects of Physical Activity and Ginkgo Biloba on Cognitive Function and Oxidative Stress Modulation in Ischemic Rats.

    PubMed

    Vaghef, Ladan; Bafandeh Gharamaleki, Hassan

    2017-09-01

    Either exercise or Ginkgo biloba is reported to improve cognitive functioning. The aim of this study is to compare the protective effects of forced exercise and Ginkgo biloba on oxidative stress as well as memory impairments induced by transient cerebral ischemia. Adult male Wistar rats were treated with treadmill running or Ginkgo biloba extract for 2 weeks before cerebral ischemia. Memory was assessed using a Morris water maze (MWM) task. At the end of the behavioral testing, oxidative stress biomarkers were evaluated in the hippocampus tissue. As expected, the cerebral ischemia induced memory impairment in the MWM task, and oxidative stress in the hippocampus. These effects were significantly prevented by treadmill running. Indeed, it ameliorated oxidative stress and memory deficits induced by ischemia. In contrast, Ginkgo biloba was not as effective as exercise in preventing ischemia-induced memory impairments. The results confirmed the neuroprotective effects of treadmill running on hippocampus-dependent memory.

  12. Forced treadmill running suppresses postincisional pain and inhibits upregulation of substance P and cytokines in rat dorsal root ganglion.

    PubMed

    Chen, Yu-Wen; Tzeng, Jann-Inn; Lin, Min-Fei; Hung, Ching-Hsia; Wang, Jhi-Joung

    2014-08-01

    Exercise causes a variety of psychophysical effects (eg, alterations in pain sensation). Tissue injury induces mediator releases in the spinal cord resulting in pain hypersensitivity; however, the contribution of the dorsal root ganglion (DRG) is poorly understood. In this study, we tested if forced treadmill running can attenuate postoperative pain and alter substance P (SP) or proinflammatory cytokine level in the DRG by using a rat model of skin/muscle incision and retraction (SMIR). We evaluated mechanical sensitivity to von Frey stimuli (6 and 15 g) and expression of SP, interleukin-1β, and interleukin-6 in the DRG of sham-operated sedentary rats, SMIR sedentary rats, sham-operated rats with forced treadmill running, and SMIR rats with forced treadmill running. At postoperative day 8, trained rats ran for 5 days per week for 4 weeks on a treadmill 70 minutes/d with an intensity of 18 m/min. On postoperative day 6, SMIR sedentary rats displayed a significant mechanical hypersensitivity that persisted until postoperative day 35. By comparison, SMIR-operated rats, which received forced treadmill running, exhibited a quick recovery from mechanical hypersensitivity. SMIR sedentary rats showed an upregulation of SP, interleukin-1β, and interleukin-6 in the DRG at postoperative days 14 and 28, whereas SMIR-operated rats receiving forced treadmill running reversed this upregulation at postoperative day 28. We concluded that forced treadmill running alleviated persistent postincisional pain caused by SMIR surgery. This appears to be protective against postoperative pain, which probably relates to the downturn in excess SP, interleukin-1β, and interleukin-6 in the DRG. Controlling the expression of SP, interleukin-6, and interleukin-1β in the DRG can help manage postoperative pain. This finding could potentially help clinicians and physical therapists who seek to examine how exercise may attenuate postsurgical pain and its mechanism. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  13. Treadmill running prevents age-related memory deficit and alters neurotrophic factors and oxidative damage in the hippocampus of Wistar rats.

    PubMed

    Vanzella, Cláudia; Neves, Juliana Dalibor; Vizuete, Adriana Fernanda; Aristimunha, Dirceu; Kolling, Janaína; Longoni, Aline; Gonçalves, Carlos Alberto Saraiva; Wyse, Angela T S; Netto, Carlos Alexandre

    2017-09-15

    Clinical and pre-clinical studies indicate that exercise is beneficial to many aspects of brain function especially during aging. The present study investigated the effects of a treadmill running protocol in young (3month-old) and aged (22month-old) male Wistar rats, on: I) cognitive function, as assessed by spatial reference memory in the Morris water maze; II) oxidative stress parameters and the expression of neurotrophic factors BDNF, NT-3, IGF-1 and VEGF in the hippocampus. Animals of both ages were assigned to sedentary (non-exercised) and exercised (20min of daily running sessions, 3 times per week for 4weeks) groups. Cognition was assessed by a reference memory task run in the Morris water maze; twenty four hours after last session of behavioral testing hippocampi were collected for biochemical analysis. Results demonstrate that the moderate treadmill running exercise: I) prevented age-related deficits in reference memory in the Morris water maze; II) prevented the age-related increase of reactive oxygen species levels and lipid peroxidation in the hippocampus; III) caused an increase of BDNF, NT-3 and IGF-1 expression in the hippocampus of aged rats. Taken together, results suggest that both exercise molecular effects, namely the reduction of oxidative stress and the increase of neurotrophic factors expression in the hippocampus, might be related to its positive effect on memory performance in aged rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Comparison between Nintendo Wii Fit aerobics and traditional aerobic exercise in sedentary young adults.

    PubMed

    Douris, Peter C; McDonald, Brittany; Vespi, Frank; Kelley, Nancy C; Herman, Lawrence

    2012-04-01

    Exergaming is becoming a popular recreational activity for young adults. The purpose was to compare the physiologic and psychological responses of college students playing Nintendo Wii Fit, an active video game console, vs. an equal duration of moderate-intensity brisk walking. Twenty-one healthy sedentary college-age students (mean age 23.2 ± 1.8 years) participated in a randomized, double cross-over study, which compared physiologic and psychological responses to 30 minutes of brisk walking exercise on a treadmill vs. 30 minutes playing Nintendo Wii Fit "Free Run" program. Physiologic parameters measured included heart rate, rate pressure product, respiratory rate, and rating of perceived exertion. Participants' positive well-being, psychological distress, and level of fatigue associated with each exercise modality were quantified using the Subjective Exercise Experience Scale. The mean maximum heart rate (HRmax) achieved when exercising with Wii Fit (142.4 ± 20.5 b·min(-1)) was significantly greater (p = 0.001) compared with exercising on the treadmill (123.2 ± 13.7 b·min(-1)). Rate pressure product was also significantly greater (p = 0.001) during exercise on the Wii Fit. Participants' rating of perceived exertion when playing Wii Fit (12.7 ± 3.0) was significantly greater (p = 0.014) when compared with brisk walking on the treadmill (10.1 ± 3.3). However, psychologically when playing Wii Fit, participants' positive well-being decreased significantly (p = 0.018) from preexercise to postexercise when compared with exercising on the treadmill. College students have the potential to surpass exercise intensities achieved when performing a conventional standard for moderate-intensity exercise when playing Nintendo Wii Fit "Free Run" with a self-selected intensity. We concluded that Nintendo Wii Fit "Free Run" may act as an alternative to traditional moderate-intensity aerobic exercise in fulfilling the American College of Sports Medicine requirements for physical activity.

  15. Maximal metabolic rates during voluntary exercise, forced exercise, and cold exposure in house mice selectively bred for high wheel-running.

    PubMed

    Rezende, Enrico L; Chappell, Mark A; Gomes, Fernando R; Malisch, Jessica L; Garland, Theodore

    2005-06-01

    Selective breeding for high wheel-running activity has generated four lines of laboratory house mice (S lines) that run about 170% more than their control counterparts (C lines) on a daily basis, mostly because they run faster. We tested whether maximum aerobic metabolic rates (V(O2max)) have evolved in concert with wheel-running, using 48 females from generation 35. Voluntary activity and metabolic rates were measured on days 5+6 of wheel access (mimicking conditions during selection), using wheels enclosed in metabolic chambers. Following this, V(O2max) was measured twice on a motorized treadmill and twice during cold-exposure in a heliox atmosphere (HeO2). Almost all measurements, except heliox V(O2max), were significantly repeatable. After accounting for differences in body mass (S < C) and variation in age at testing, S and C did not differ in V(O2max) during forced exercise or in heliox, nor in maximal running speeds on the treadmill. However, running speeds and V(O2max) during voluntary exercise were significantly higher in S lines. Nevertheless, S mice never voluntarily achieved the V(O2max) elicited during their forced treadmill trials, suggesting that aerobic capacity per se is not limiting the evolution of even higher wheel-running speeds in these lines. Our results support the hypothesis that S mice have genetically higher motivation for wheel-running and they demonstrate that behavior can sometimes evolve independently of performance capacities. We also discuss the possible importance of domestication as a confounding factor to extrapolate results from this animal model to natural populations.

  16. Burrowing as a novel voluntary strength training method for mice: A comparison of various voluntary strength or resistance exercise methods.

    PubMed

    Roemers, P; Mazzola, P N; De Deyn, P P; Bossers, W J; van Heuvelen, M J G; van der Zee, E A

    2018-04-15

    Voluntary strength training methods for rodents are necessary to investigate the effects of strength training on cognition and the brain. However, few voluntary methods are available. The current study tested functional and muscular effects of two novel voluntary strength training methods, burrowing (digging a substrate out of a tube) and unloaded tower climbing, in male C57Bl6 mice. To compare these two novel methods with existing exercise methods, resistance running and (non-resistance) running were included. Motor coordination, grip strength and muscle fatigue were measured at baseline, halfway through and near the end of a fourteen week exercise intervention. Endurance was measured by an incremental treadmill test after twelve weeks. Both burrowing and resistance running improved forelimb grip strength as compared to controls. Running and resistance running increased endurance in the treadmill test and improved motor skills as measured by the balance beam test. Post-mortem tissue analyses revealed that running and resistance running induced Soleus muscle hypertrophy and reduced epididymal fat mass. Tower climbing elicited no functional or muscular changes. As a voluntary strength exercise method, burrowing avoids the confounding effects of stress and positive reinforcers elicited in forced strength exercise methods. Compared to voluntary resistance running, burrowing likely reduces the contribution of aerobic exercise components. Burrowing qualifies as a suitable voluntary strength training method in mice. Furthermore, resistance running shares features of strength training and endurance (aerobic) exercise and should be considered a multi-modal aerobic-strength exercise method in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Treadmill exercise alleviates depressive symptoms in rotenone-induced Parkinson disease rats

    PubMed Central

    Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Sung, Yun-Hee; Lim, Baek-Vin

    2017-01-01

    Parkinson disease (PD) is characterized by selective loss of the dopaminergic neurons. The symptoms of depression following PD are closely associated with reduced activity of the serotonergic system in the dorsal raphe. We explored the antidepressive effect of exercise and its possible mechanism using the rotenone-induced PD rats. PD rats were induced by subcutaneously injection with rotenone for 14 days. The rats in the exercise groups were made to run on a treadmill for 30 min once a day during 14 consecutive days. Forced swimming test, immunohistochemistry for serotonin (5-hydroxytryptamine, 5-HT), tryptophan hydroxylase (TPH), and western blot for serotonin 1A (5-HT1A) receptor were conducted. Injection of rotenone induced PD rats. PD rats showed depressive state and treadmill exercise ameliorated this depressive state. 5-HT, TPH, and 5-HT1A receptor expressions in the dorsal raphe were suppressed by rotenone injection and treadmill exercise increased the expressions of 5-HT, TPH, and 5-HT1A receptor in the rotenone-injected rats. The present results show that treadmill exercise ameliorated depressive symptoms in the rotenone-induced PD rats. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe. PMID:28503522

  18. Treadmill exercise alleviates depressive symptoms in rotenone-induced Parkinson disease rats.

    PubMed

    Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Sung, Yun-Hee; Lim, Baek-Vin

    2017-04-01

    Parkinson disease (PD) is characterized by selective loss of the dopaminergic neurons. The symptoms of depression following PD are closely associated with reduced activity of the serotonergic system in the dorsal raphe. We explored the antidepressive effect of exercise and its possible mechanism using the rotenone-induced PD rats. PD rats were induced by subcutaneously injection with rotenone for 14 days. The rats in the exercise groups were made to run on a treadmill for 30 min once a day during 14 consecutive days. Forced swimming test, immunohistochemistry for serotonin (5-hydroxytryptamine, 5-HT), tryptophan hydroxylase (TPH), and western blot for serotonin 1A (5-HT1A) receptor were conducted. Injection of rotenone induced PD rats. PD rats showed depressive state and treadmill exercise ameliorated this depressive state. 5-HT, TPH, and 5-HT1A receptor expressions in the dorsal raphe were suppressed by rotenone injection and treadmill exercise increased the expressions of 5-HT, TPH, and 5-HT1A receptor in the rotenone-injected rats. The present results show that treadmill exercise ameliorated depressive symptoms in the rotenone-induced PD rats. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe.

  19. Ground Reaction Forces During Locomotion in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Davis, B. L.; Cavanagh, Peter R.; Sommer, H. J., III; Wu, G.

    1996-01-01

    Significant losses in bone density and mineral, primarily in the lower extremities have been reported following exposure to weightlessness. Recent investigations suggest that mechanical influences such as bone deformation and strain rate may be critically important in stimulating new bone formation. It was hypothesized that velocity, cadence and harness design would significantly affect lower limb impact forces during treadmill exercise in simulated zero gravity (0G). A ground-based hypogravity simulator was used to investigate which factors affect limb loading during tethered treadmill exercise. A fractional factorial design was used and 12 subjects were studied. The results showed that running on active and passive treadmills in the simulator with a tethering force close to the maximum comfortable level produced similar magnitudes for the peak ground reaction force. It was also found that these maximum forces were significantly lower than those obtained during overground trials, even when the speeds of locomotion in the simulator were 66 % greater than those in 1 G. Cadence had no effect on any of the response variables. The maximum rate of force application (DFDT-Max) was similar for overground running and exercise in simulated 0G, provided that the "weightless subjects ran on a motorized treadmill. These findings have implications for the use of treadmill exercise as a countermeasure for hypokinetic osteoporosis. As the relationship between mechanical factors and osteogenesis becomes better understood, results from human experiments in 0G simulators will help to design in-flight exercise programs that are more closely targeted to generate appropriate mechanical stimuli.

  20. The Effect of Synchronized Forced Running with Chronic Stress on Short, Mid and Long- term Memory in Rats.

    PubMed

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad-Reza; Hosseini, Nasrin

    2013-03-01

    Impairment of learning and memory processes has been demonstrated by many studies using different stressors. Other reports suggested that exercise has a powerful behavioral intervention to improve cognitive function and brain health. In this research, we investigated protective effects of treadmill running on chronic stress-induced memory deficit in rats. Fifty male Wistar rats were randomly divided into five groups (n=10) as follows: Control (Co), Sham (Sh), Stress (St), Exercise (Ex) and Stress and Exercise (St & Ex) groups. Chronic restraint stress was applied by 6h/day/21days and also treadmill running at a speed 20-21m/min for 1h/day/21days. Memory function was evaluated by the passive avoidance test in different intervals (1, 7 and 21 days) after foot shock. OUR RESULTS SHOWED THAT: 1) Although exercise alone showed beneficial effects especially on short and mid-term memory (P<0.05) in comparison with control group, but synchronized exercise with stress had not significantly improved short, mid and long-term memory deficit in stressed rats. 2) Short and mid-term memory deficit was significantly (P<0.05) observed in synchronized exercise with stress and stress groups with respect to normal rats. 3) Memory deficit in synchronized exercise with stress group was nearly similar to stressed rats. 4) Helpful effects of exercise were less than harmful effects of stress when they were associated together. The data correspond to the possibility that although treadmill running alone has helpful effects on learning and memory consolidation, but when it is synchronized with stress there is no significant benefit and protective effects in improvement of memory deficit induced by chronic stress. However, it is has a better effect than no training on memory deficit in stressed rats.

  1. Influence of running stride frequency in heart rate variability analysis during treadmill exercise testing.

    PubMed

    Bailón, Raquel; Garatachea, Nuria; de la Iglesia, Ignacio; Casajús, Jose Antonio; Laguna, Pablo

    2013-07-01

    The analysis and interpretation of heart rate variability (HRV) during exercise is challenging not only because of the nonstationary nature of exercise, the time-varying mean heart rate, and the fact that respiratory frequency exceeds 0.4 Hz, but there are also other factors, such as the component centered at the pedaling frequency observed in maximal cycling tests, which may confuse the interpretation of HRV analysis. The objectives of this study are to test the hypothesis that a component centered at the running stride frequency (SF) appears in the HRV of subjects during maximal treadmill exercise testing, and to study its influence in the interpretation of the low-frequency (LF) and high-frequency (HF) components of HRV during exercise. The HRV of 23 subjects during maximal treadmill exercise testing is analyzed. The instantaneous power of different HRV components is computed from the smoothed pseudo-Wigner-Ville distribution of the modulating signal assumed to carry information from the autonomic nervous system, which is estimated based on the time-varying integral pulse frequency modulation model. Besides the LF and HF components, the appearance is revealed of a component centered at the running SF as well as its aliases. The power associated with the SF component and its aliases represents 22±7% (median±median absolute deviation) of the total HRV power in all the subjects. Normalized LF power decreases as the exercise intensity increases, while normalized HF power increases. The power associated with the SF does not change significantly with exercise intensity. Consideration of the running SF component and its aliases is very important in HRV analysis since stride frequency aliases may overlap with LF and HF components.

  2. SpeedyTime_3_Treadmill_2

    NASA Image and Video Library

    2017-07-31

    When you live in a place where your heart doesn’t even have to work against the pull of gravity, you need help with exercise: the astronauts on the International Space Station have a suite of exercise equipment at their disposal, including a treadmill. In this “SpeedyTime” segment Expedition 52 flight engineer Jack Fischer runs through the workout they get on the Combined Operational Load Bearing External Resistance Treadmill (COLBERT) in the station’s Tranquility module. HD Link: https://archive.org/details/jsc2017m000676_SpeedyTime_3_Treadmill_2 _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  3. Postural control after a prolonged treadmill run at individual ventilatory and anaerobic threshold.

    PubMed

    Guidetti, Laura; Franciosi, Emanuele; Gallotta, Maria Chiara; Emerenziani, Gian Pietro; Baldari, Carlo

    2011-01-01

    The objective of the study was to verify whether young males' balance was affected by 30min prolonged treadmill running (TR) at individual ventilatory (IVT) and anaerobic (IAT) thresholds in recovery time. The VO2max, IAT and IVT during an incremental TR were determined. Mean displacement amplitude (Acp) and velocity (Vcp) of center of pressure were recorded before (pre) and after (0min post; 5min post; and 10min post) prolonged TR at IAT and IVT, through posturographic trials performed with eyes open (EO) and closed (EC). Significant differences between IVT and IAT for Vcp, between EO and EC for Acp and Vcp, were observed. The IAT induced higher destabilizing effect when postural trials were performed with EC. The IVT intensity produced also a destabilizing effect on postural control immediately after exercise. An impairment of postural control after prolonged treadmill running exercise at IVT and IAT intensity was showed. However, destabilizing effect on postural control disappeared within 10min after IAT intensity and within 5min after IVT intensity. Key pointsTo verify whether young males' balance was affected by 30min prolonged treadmill running at individual ventilatory and anaerobic thresholds in recovery time.Mean displacement amplitude and velocity of foot pressure center were recorded before and after prolonged treadmill running at individual ventilatory and anaerobic thresholds, through posturographic trials performed with eyes open and closed.Destabilizing effect on postural control disappeared within 10min post individual anaerobic threshold, and within 5min post individual ventilatory threshold.

  4. Effects of treadmill running on rat gastrocnemius function following botulinum toxin A injection.

    PubMed

    Tsai, Sen-Wei; Chen, Chun-Jung; Chen, Hsiao-Lin; Chen, Chuan-Mu; Chang, Yin-Yi

    2012-02-01

    Exercise can improve and maintain neural or muscular function, but the effects of exercise in physiological adaptation to paralysis caused by botulinum toxin A has not been well studied. Twenty-four rats were randomly assigned into control and treadmill groups. The rats assigned to the treadmill group were trained on a treadmill three times per week with the running speed set at 15 m/min. The duration of training was 20 min/session. Muscle strength, nerve conduction study and sciatic functional index (SFI) were used for functional analysis. Treadmill training improved the SFI at 2, 3, and 4 weeks (p = 0.01, 0.004, and 0.01, respectively). The maximal contraction force of the gastrocnemius muscle in the treadmill group was greater than in the control group (p < 0.05). The percentage of activated fibers was higher in the treadmill botox group than the percentage for the control botox group, which was demonstrated by differences in amplitude and area of compound muscle action potential (CMAP) under the curve between the groups (p < 0.05). After BoNT-A injection, treadmill improved the physiological properties of muscle contraction strength, CMAP amplitude, and the recovery of SFI. Copyright © 2011 Orthopaedic Research Society.

  5. External Load Affects Ground Reaction Force Parameters Non-uniformly during Running in Weightlessness

    NASA Technical Reports Server (NTRS)

    DeWitt, John; Schaffner, Grant; Laughlin, Mitzi; Loehr, James; Hagan, R. Donald

    2004-01-01

    Long-term exposure to microgravity induces detrimefits to the musculcskdetal system (Schneider et al., 1995; LeBlanc et al., 2000). Treadmill exercise is used onboard the International Space Station as an exercise countermeasure to musculoskeletal deconditioning due to spaceflight. During locomotive exercise in weightlessness (0G), crewmembers wear a harness attached to an external loading mechanism (EL). The EL pulls the crewmember toward the treadmill, and provides resistive load during the impact and propulsive phases of gait. The resulting forces may be important in stimulating bone maintenance (Turner, 1998). The EL can be applied via a bungee and carabineer clip configuration attached to the harness and can be manipulated to create varying amounts of load levels during exercise. Ground-based research performed using a vertically mounted treadmill found that peak ground reaction forces (GRF) during running at an EL of less than one body weight (BW) are less than those that occur during running in normal gravity (1G) (Davis et al., 1996). However, it is not known how the GRF are affected by the EL in a true OG environment. Locomotion while suspended may result in biomechanics that differ from free running. The purpose of this investigation was to determine how EL affects peak impact force, peak propulsive force, loading rate, and impulse of the GRF during running in 0G. It was hypothesized that increasing EL would result in increases in each GRF parameter.

  6. Forced rather than voluntary exercise entrains peripheral clocks via a corticosterone/noradrenaline increase in PER2::LUC mice

    PubMed Central

    Sasaki, Hiroyuki; Hattori, Yuta; Ikeda, Yuko; Kamagata, Mayo; Iwami, Shiho; Yasuda, Shinnosuke; Tahara, Yu; Shibata, Shigenobu

    2016-01-01

    Exercise during the inactive period can entrain locomotor activity and peripheral circadian clock rhythm in mice; however, mechanisms underlying this entrainment are yet to be elucidated. Here, we showed that the bioluminescence rhythm of peripheral clocks in PER2::LUC mice was strongly entrained by forced treadmill and forced wheel-running exercise rather than by voluntary wheel-running exercise at middle time during the inactivity period. Exercise-induced entrainment was accompanied by increased levels of serum corticosterone and norepinephrine in peripheral tissues, similar to the physical stress-induced response. Adrenalectomy with norepinephrine receptor blockers completely blocked the treadmill exercise-induced entrainment. The entrainment of the peripheral clock by exercise is independent of the suprachiasmatic nucleus clock, the main oscillator in mammals. The present results suggest that the response of forced exercise, but not voluntary exercise, may be similar to that of stress, and possesses the entrainment ability of peripheral clocks through the activation of the adrenal gland and the sympathetic nervous system. PMID:27271267

  7. Influence of music on maximal self-paced running performance and passive post-exercise recovery rate.

    PubMed

    Lee, S; Kimmerly, D

    2014-10-30

    The purpose of this study was to examine the influence of fast tempo music (FM) on self--paced running performance (heart rate, running speed, ratings of perceived exertion), and slow tempo music (SM) on post--exercise heart rate and blood lactate recovery rates. Twelve participants (5 Women) completed three randomly assigned conditions: static noise (control), FM and SM. Each condition consisted of self--paced treadmill running, and supine post--exercise recovery periods (20 min each). Average running speed, heart rate (HR) and ratings of perceived exertion (RPE) were measured during the treadmill running period, while HR and blood lactate were measured during the recovery period. Listening to FM during exercise resulted in a faster self--selected running speed (10.8 ± 1.7 vs. 9.9 ± 1.4 km•hour--1, p<0.001) and higher peak HR (184 ± 12 vs. 177 ± 17 beats•min--1, p< 0.01) without a corresponding difference in peak RPE (FM, 16.8 ± 1.8 vs. SM 15.7 ± 1.9, p= 0.10). Listening to SM during the post--exercise period reduced HR throughout (main effect p<0.001) and blood lactate at the end of recovery (2.8 ± 0.4 vs. 4.7 ± 0.8 mmol•L--1, p<0.05). Listening to FM during exercise can increase self--paced intensity without altering perceived exertion levels while listening to SM after exercise can accelerate the recovery rate back to resting levels.

  8. Treadmill exercise alleviates nigrostriatal dopaminergic loss of neurons and fibers in rotenone-induced Parkinson rats.

    PubMed

    Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Ji, Eun-Sang; Lim, Baek-Vin

    2017-02-01

    Parkinson disease is one of the common brain diseases caused by dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. In the present study, the effects of treadmill exercise on motor performance, dopaminergic loss of neurons and fibers, and α-synuclein expression in the nigrostriatum were evaluated using rotenone-induced Parkinson rats. For the induction of Parkinson rats, 3-mg/kg rotenone was injected, once a day for 14 consecutive days. Treadmill running was conducted for 30 min once a day during 14 consecutive days. Rota-rod test for motor balance and coordination and immunohistochemistry for tyrosine hydroxylase and α-synuclein in the nigrostriatum were performed. In the present study, motor balance and coordination was disturbed by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated motor dysfunction in the rotenone-induced Parkinson rats. Nigrostriatal dopaminergic loss of neurons and fibers was occurred by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise alleviated nigrostriatal dopaminergic loss of neurons and fibers in the rotenone-induced Parkinson rats. α-Synuclein expression in the nigrostriatum was enhanced by induction of rotenone-induced Parkinson disease, in contrast, treadmill exercise suppressed α-synuclein expression in the rotenone-induced Parkinson rats. Treadmill exercise improved motor function through preservation of nigrostriatal dopaminergic neurons and fibers and suppression of nigrostriatal formation of Lewy bodies in rotenone-induced Parkinson rats.

  9. Will Nintendo "Wii Fit" Get You Fit? An Evaluation of the Energy Expenditure from Active-Play Videogames.

    PubMed

    Xian, Ying; Kakinami, Lisa; Peterson, Eric D; Mustian, Karen M; Fernandez, I Diana

    2014-04-01

    This study aimed to determine whether Nintendo(®) (Redmond, WA) "Wii Fit™" games can help individuals meet physical activity recommendations. Thirty young healthy volunteers were recruited for this randomized crossover study to evaluate the energy expenditure associated with (1) a 30-minute "Wii Fit Free Run," (2) three 10-minute bouts of "Wii Fit" aerobic games ("Rhythm Boxing," "Super Hula Hoop," and "Advanced Steps"), and (3) 30-minute treadmill running/walking. Energy expenditure was measured by indirect calorimetry using breath-by-breath analyses of O2 consumption and CO2 production. The "Wii Fit" conditions produced a moderate exercise intensity (5.0, 4.1, 3.9, and 3.8 metabolic equivalents [METs] in "Free Run," "Rhythm Boxing," "Super Hula Hoop," and "Advanced Steps"), whereas the treadmill running/walking produced a vigorous exercise intensity (METs=8.0). Based on federal guidelines, an individual could achieve the minimum weekly goal of 500 MET-minutes by playing selected "Wii Fit" aerobics games for 20-26 minutes a day, 5 days a week. Although not as vigorous as the treadmill, active-play videogames such as "Wii Fit" may provide an alternative way to encourage exercise and increase adoption and adherence to the physical activity guidelines.

  10. Effects of mild running on substantia nigra during early neurodegeneration.

    PubMed

    Almeida, Michael F; Silva, Carolliny M; Chaves, Rodrigo S; Lima, Nathan C R; Almeida, Renato S; Melo, Karla P; Demasi, Marilene; Fernandes, Tiago; Oliveira, Edilamar M; Netto, Luis E S; Cardoso, Sandra M; Ferrari, Merari F R

    2018-06-01

    Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8 weeks) and 6 weeks of moderate treadmill running, beginning 4 weeks after rotenone exposure. Substantia nigra was extracted and submitted to proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1 level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration, prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H 2 O 2 increase during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate physical training could prevent early neurodegeneration in substantia nigra through the improvement of autophagy and mitophagy.

  11. Foot Forces during Treadmill Exercise on the International Space Station

    NASA Technical Reports Server (NTRS)

    Cavanagh, Peter R.; Rice, Andrea J.; Maender, Christian C.; Gopalakrishnan, Raghavan; Genc, Kerim O.; Kuklis, Matthew

    2006-01-01

    Exercise has been the primary countermeasure to combat musculoskeletal changes during the approximately 6 month missions to the International Space Station (ISS). However, these countermeasures have not been successful in preventing loss of bone mineral density in the spine and hip of astronauts. We examined lower extremity loading during typical bouts of on-orbit exercise performed by 4 ISS crew members on the ISS treadmill (TVIS) and during locomotor activities on earth (1g). In-shoe forces were monitored at 128Hz using force-measuring insoles placed inside the shoes of the exercising crewmember, stored temporarily on Flash cards, and down-linked via satellite for analysis. Custom software extracted peak forces from up to 30 minutes of locomotor activity. All on-orbit loading conditions for walking and running resulted in peak forces and impact loading rates that were significantly less than those measured in 1g. Typical single leg loads on-orbit in walking and running were 0.860 plus or minus 0.04 body weights (BW) and 1.339 plus or minus 0.07 BW compared to 1.2 plus or minus 0.036 BW and 2.36 plus or minus 0.07 BW in 1g BW respectively. These results indicate that typical exercise on the ISS treadmill does not generate 1g-like loading conditions. This may be partly responsible for the loss of bone mineral density that has been observed in these and other crew members. Since on-orbit treadmill exercise requires a restraining load to return the crew member to the treadmill surface, more studies are required to enable comfortable full body weight loading to be applied.

  12. Treadmill exercise decreases incidence of Alzheimer's disease by suppressing glycogen synthase kinase-3β expression in streptozotocin-induced diabetic rats.

    PubMed

    Kim, Dae-Young; Jung, Sun-Young; Kim, Tae-Woon; Lee, Kwang-Sik; Kim, Kijeong

    2015-04-01

    Diabetes is a metabolic disorder, and it is considered as a major risk factor for Alzheimer's disease (AD). In the present study, we evaluated whether treadmill exercise ameliorates progression of AD in relation with glycogen synthase kinase-3β (GSK-3β) activity using streptozotocin (STZ)-induced diabetic rats. For this study, step-down avoidance task, immunohistochemistry for glycogen synthase kinase-3β (GSK-3β) and tau, and western blot for phosphor-phosphoinositide 3 kinase (p-PI3K)/PI3K and phosphor-Akt (p-Akt)/Akt were performed. Diabetes mellitus was induced by intraperitoneal injection of STZ. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, five times a week, during 12 weeks. The present results showed that short-term and long-term latencies in the step-down avoidance task were decreased by induction of diabetes, and treadmill exercise inhibited these latencies in the diabetic rats. Induction of diabetes suppressed the ratio of p-PI3K to PI3K and the ratio of p-Akt to Akt, and treadmill exercise increased these ratios in the diabetic rats. The numbers of GSK-3β-positive and tau-positive cells in the hippocampal dentate gyrus was higher in the diabetes-induction group than that in the control group, and treadmill exercise inhibited these numbers in the diabetic rats. In the present study, treadmill exercise suppressed hyperphosphorylation of tau in the hippocampus by decreased GSK-3β activity through PI3K/Akt pathway activation in the diabetic rats. Based on the present results, treadmill exercise may helpful to prevent diabetes-associated AD occurrence.

  13. Treadmill exercise ameliorates Alzheimer disease-associated memory loss through the Wnt signaling pathway in the streptozotocin-induced diabetic rats.

    PubMed

    Kim, Dae-Young; Jung, Sun-Young; Kim, Kijeong; Kim, Chang-Ju

    2016-08-01

    Diabetes mellitus is considered as a risk factor for Alzheimer disease. The aim of the present study was to evaluate the possibility whether treadmill exercise ameliorates Alzheimer disease-associated memory loss in the diabetes mellitus. For this study, the effects of treadmill exercise on short-term memory and spatial learning ability in relation with Wnt signaling pathway were evaluated using the streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intraperitoneal injection of STZ. Step-down avoidance task and 8-arm radial maze test were performed for the memory function. Immunohistochemistry for 5-bro-mo-2'-deoxyridine (BrdU) and doublecortin (DCX) and Western blot for Wnt3 and glycogen synthase kinase-3β (GSK-3β) were conducted. The rats in the exercise groups were made to run on the treadmill for 30 min per one day, 5 times a week, during 12 weeks. In the present results, short-term memory and spatial learning ability were deteriorated by induction of diabetes. Treadmill exercise improved short-term memory and spatial learning ability in the diabetic rats. The numbers of BrdU-positive and DCX-positive cells in the hippocampal dentate gyrus were decreased by induction of diabetes. Treadmill exercise increased these numbers in the diabetic rats. Wnt3 expression in the hippocampus was decreased and GSK-3β expression in the hippocampus was increased by induction of diabetes. Treadmill exercise increased Wnt3 expression and suppressed GSK-3β expression in the diabetic rats. The present study suggests that treadmill exercise alleviates Alzheimer disease-associated memory loss by increasing neurogenesis through activating Wnt signaling pathway in the diabetic rats.

  14. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats

    PubMed Central

    Zhang, Jianying; Yuan, Ting; Wang, James H-C.

    2016-01-01

    The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients. PMID:26885754

  15. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats.

    PubMed

    Zhang, Jianying; Yuan, Ting; Wang, James H-C

    2016-02-23

    The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients.

  16. Influence of music on maximal self-paced running performance and passive post-exercise recovery rate.

    PubMed

    Lee, Sam; Kimmerly, Derek S

    2016-01-01

    The purpose of this study was to examine the influence of fast tempo music (FM) on self-paced running performance (heart rate, running speed, ratings of perceived exertion), and slow tempo music (SM) on post-exercise heart rate and blood lactate recovery rates. Twelve participants (5 women) completed three randomly assigned conditions: static noise (control), FM and SM. Each condition consisted of self-paced treadmill running, and supine postexercise recovery periods (20 min each). Average running speed, heart rate (HR) and ratings of perceived exertion (RPE) were measured during the treadmill running period, while HR and blood lactate were measured during the recovery period. Listening to FM during exercise resulted in a faster self-selected running speed (10.8±1.7 vs. 9.9±1.4 km•hour-1, P<0.001) and higher peak HR (184±12 vs. 177±17 beats•min-1, P<0.01) without a corresponding difference in peak RPE (FM, 16.8±1.8 vs. SM 15.7±1.9, P=0.10). Listening to SM during the post-exercise period resulted in faster HR recovery throughout (main effect P<0.001) and blood lactate at the end of recovery (2.8±0.4 vs. 4.7±0.8 mmol•L-1, P<0.05). Listening to FM during exercise can increase self-paced intensity without altering perceived exertion levels while listening to SM after exercise can accelerate the recovery rate back to resting levels.

  17. Effect of hindlimb unweighting on tissue blood flow in the rat

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. S.; Delp, M. D.; Fitts, R. H.

    1992-01-01

    This study characterized distribution of blood flow in the rat during hindlimb unweighting (HU), and post-HU standing and exercise. The relationship between reduced hindlimb blood flow and the previously observed elevation in anaerobic metabolism observed with contractile activity in the atrophied soleus muscle was examined (Witzmann et al., 1992). Blood flow was measured during unweighting, normal standing, and running on a treadmill (15 m/min), after 15 days of HU or cage control. For another group blood flow was measured during preexercise treadmill standing and treadmill running. During unweighting, PE standing, and running no difference in soleus blood flow was observed between groups. Muscles composed mainly of fast twitch glycolytic fibers received greater blood flow during chronic unweighting. With exercise blood flow to visceral organs was reduced in control animals, a similar change was not seen in 15 day HU rats. These changes suggest a reduction in the ability of the sympathetic nervous system to distribute cardiac output after chronic HU. A reduction in blood flow to the soleus during exercise was not observed after HU and so does not explain the increased dependence of the atrophied soleus on anerobic energy production during contractile activity.

  18. Physical exercise increases adult hippocampal neurogenesis in male rats provided it is aerobic and sustained

    PubMed Central

    Lensu, Sanna; Ahtiainen, Juha P.; Johansson, Petra P.; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    Key points Aerobic exercise, such as running, enhances adult hippocampal neurogenesis (AHN) in rodents.Little is known about the effects of high‐intensity interval training (HIT) or of purely anaerobic resistance training on AHN.Here, compared with a sedentary lifestyle, we report a very modest effect of HIT and no effect of resistance training on AHN in adult male rats.We found the most AHN in rats that were selectively bred for an innately high response to aerobic exercise that also run voluntarily and increase maximal running capacity.Our results confirm that sustained aerobic exercise is key in improving AHN. Abstract Aerobic exercise, such as running, has positive effects on brain structure and function, such as adult hippocampal neurogenesis (AHN) and learning. Whether high‐intensity interval training (HIT), referring to alternating short bouts of very intense anaerobic exercise with recovery periods, or anaerobic resistance training (RT) has similar effects on AHN is unclear. In addition, individual genetic variation in the overall response to physical exercise is likely to play a part in the effects of exercise on AHN but is less well studied. Recently, we developed polygenic rat models that gain differentially for running capacity in response to aerobic treadmill training. Here, we subjected these low‐response trainer (LRT) and high‐response trainer (HRT) adult male rats to various forms of physical exercise for 6–8 weeks and examined the effects on AHN. Compared with sedentary animals, the highest number of doublecortin‐positive hippocampal cells was observed in HRT rats that ran voluntarily on a running wheel, whereas HIT on the treadmill had a smaller, statistically non‐significant effect on AHN. Adult hippocampal neurogenesis was elevated in both LRT and HRT rats that underwent endurance training on a treadmill compared with those that performed RT by climbing a vertical ladder with weights, despite their significant gain in strength. Furthermore, RT had no effect on proliferation (Ki67), maturation (doublecortin) or survival (bromodeoxyuridine) of new adult‐born hippocampal neurons in adult male Sprague–Dawley rats. Our results suggest that physical exercise promotes AHN most effectively if the exercise is aerobic and sustained, especially when accompanied by a heightened genetic predisposition for response to physical exercise. PMID:26844666

  19. Metabolic cost of running is greater on a treadmill with a stiffer running platform.

    PubMed

    Smith, James A H; McKerrow, Alexander D; Kohn, Tertius A

    2017-08-01

    Exercise testing on motorised treadmills provides valuable information about running performance and metabolism; however, the impact of treadmill type on these tests has not been investigated. This study compared the energy demand of running on two laboratory treadmills: an HP Cosmos (C) and a Quinton (Q) model, with the latter having a 4.5 times stiffer running platform. Twelve experienced runners ran identical bouts on these treadmills at a range of four submaximal velocities (reported data is for the velocity that approximated 75-81% VO 2max ). The stiffer treadmill elicited higher oxygen consumption (C: 46.7 ± 3.8; Q: 50.1 ± 4.3 ml·kg -1 · min -1 ), energy expenditure (C: 16.0 ± 2.5; Q: 17.7 ± 2.9 kcal · min -1 ), carbohydrate oxidation (C: 9.6 ± 3.1; Q: 13.0 ± 3.9 kcal · min -1 ), heart rate (C: 155 ± 16; Q: 163 ± 16 beats · min -1 ) and rating of perceived exertion (C: 13.8 ± 1.2; Q: 14.7 ± 1.2), but lower fat oxidation (C: 6.4 ± 2.3; Q: 4.6 ± 2.5 kcal · min -1 ) (all analysis of variance treadmill comparisons P < 0.01). This study confirms that caution is required when comparing performance and metabolic results between different treadmills and suggests that treadmills will vary in their comparability to over-ground running depending on the running platform stiffness.

  20. Treadmill exercise prevents diabetes-induced increases in lipid peroxidation and decreases in Cu,Zn-superoxide dismutase levels in the hippocampus of Zucker diabetic fatty rats.

    PubMed

    Kim, Jong Whi; Chae, Junghyun; Nam, Sung Min; Kim, Yo Na; Yoo, Dae Young; Choi, Jung Hoon; Jung, Hyo Young; Song, Wook; Hwang, In Koo; Seong, Je Kyung; Yoon, Yeo Sung

    2015-01-01

    In the present study, we investigated the effects of treadmill exercise on lipid peroxidation and Cu,Zn-superoxide dismutase (SOD1) levels in the hippocampus of Zucker diabetic fatty (ZDF) rats and lean control rats (ZLC) during the onset of diabetes. At 7 weeks of age, ZLC and ZDF rats were either placed on a stationary treadmill or made to run for 1 h/day for 5 consecutive days at 16~22 m/min for 5 weeks. At 12 weeks of age, the ZDF rats had significantly higher blood glucose levels and body weight than the ZLC rats. In addition, malondialdehyde (MDA) levels in the hippocampus of the ZDF rats were significantly higher than those of the ZLC rats whereas SOD1 levels in the hippocampus of the ZDF rats were moderately decreased. Notably, treadmill exercise prevented the increase of blood glucose levels in ZDF rats. In addition, treadmill exercise significantly ameliorated changes in MDA and SOD1 levels in the hippocampus although SOD activity was not altered. These findings suggest that diabetes increases lipid peroxidation and decreases SOD1 levels, and treadmill exercise can mitigate diabetes-induced oxidative damage in the hippocampus.

  1. Eryptosis and hemorheological responses to maximal exercise in athletes: Comparison between running and cycling.

    PubMed

    Nader, E; Guillot, N; Lavorel, L; Hancco, I; Fort, R; Stauffer, E; Renoux, C; Joly, P; Germain, M; Connes, P

    2018-05-01

    We compared the effects of cycling and running exercise on hemorheological and hematological properties, as well as eryptosis markers. Seven endurance-trained subjects randomly performed a progressive and maximal exercise test on a cycle ergometer and a treadmill. Blood was sampled at rest and at the end of the exercise to analyze hematological and blood rheological parameters including hematocrit (Hct), red blood cell (RBC) deformability, aggregation, and blood viscosity. Hemoglobin saturation (SpO2), blood lactate, and glucose levels were also monitored. Red blood cell oxidative stress, calcium content, and phosphatidylserine exposure were determined by flow cytometry to assess eryptosis level. Cycling exercise increased blood viscosity and RBC aggregation whereas it had no significant effect on RBC deformability. In contrast, blood viscosity remained unchanged and RBC deformability increased with running. The increase in Hct, lactate, and glucose concentrations and the loss of weight at the end of exercise were not different between running and cycling. Eryptosis markers were not affected by exercise. A significant drop in SpO2 was noted during running but not during cycling. Our study showed that a progressive and maximal exercise test conducted on a cycle ergometer increased blood viscosity while the same test conducted on a treadmill did not change this parameter because of different RBC rheological behavior between the 2 tests. We also demonstrated that a short maximal exercise does not alter RBC physiology in trained athletes. We suspect that exercise-induced hypoxemia occurring during running could be at the origin of the RBC rheological behavior differences with cycling. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Brain Activation Patterns at Exhaustion in Rats That Differ in Inherent Exercise Capacity

    PubMed Central

    Foley, Teresa E.; Brooks, Leah R.; Gilligan, Lori J.; Burghardt, Paul R.; Koch, Lauren G.; Britton, Steven L.; Fleshner, Monika

    2012-01-01

    In order to further understand the genetic basis for variation in inherent (untrained) exercise capacity, we examined the brains of 32 male rats selectively bred for high or low running capacity (HCR and LCR, respectively). The aim was to characterize the activation patterns of brain regions potentially involved in differences in inherent running capacity between HCR and LCR. Using quantitative in situ hybridization techniques, we measured messenger ribonuclease (mRNA) levels of c-Fos, a marker of neuronal activation, in the brains of HCR and LCR rats after a single bout of acute treadmill running (7.5–15 minutes, 15° slope, 10 m/min) or after treadmill running to exhaustion (15–51 minutes, 15° slope, initial velocity 10 m/min). During verification of trait differences, HCR rats ran six times farther and three times longer prior to exhaustion than LCR rats. Running to exhaustion significantly increased c-Fos mRNA activation of several brain areas in HCR, but LCR failed to show significant elevations of c-Fos mRNA at exhaustion in the majority of areas examined compared to acutely run controls. Results from these studies suggest that there are differences in central c-Fos mRNA expression, and potential brain activation patterns, between HCR and LCR rats during treadmill running to exhaustion and these differences could be involved in the variation in inherent running capacity between lines. PMID:23028992

  3. Effect of Acu-TENS on recovery heart rate after treadmill running exercise in subjects with normal health.

    PubMed

    Cheung, Leo Chin-Ting; Jones, Alice Yee-Men

    2007-06-01

    This study aims to investigate the effect of transcutaneous electrical nerve stimulation, applied at bilateral acupuncture points PC6 (Acu-TENS), on recovery heart rate (HR) in healthy subjects after treadmill running exercise. A single blinded, randomized controlled trial. Laboratory with healthy male subjects (n=28). Each subject participated in three separate protocols in random order. PROTOCOL A: The subject followed the Bruce protocol and ran on a treadmill until their HR reached 70% of their maximum (220-age). At this 'target' HR, the subject adopted the supine position and Acu-TENS to bilateral PC6 was commenced. PROTOCOL B: Identical to protocol A except that Acu-TENS was applied in the supine position for 45min prior to, but not after exercise. PROTOCOL C: Identical to protocol A except that placebo Acu-TENS was applied. Heart rate was recorded before and at 30s intervals after exercise until it returned to the pre-exercise baseline. The time for HR to return to baseline was compared for each protocol. Acu-TENS applied to bilateral PC6 resulted in a faster return to pre-exercise HR compared to placebo. Time required for HR to return to pre-exercise level in protocols A-C was 5.5+/-3.0; 4.8+/-3.3; 9.4+/-3.7 min, respectively (p<0.001). There was no statistical difference in HR recovery time between protocols A and B. Subjects expressed the lowest rate of perceived exertion score (RPE) at 70% maximum HR with protocol B. This study suggests that Acu-TENS applied to PC6 may facilitate HR recovery after high intensity treadmill exercise.

  4. Acute Exercise and Oxidative Stress: CrossFit™ vs. Treadmill Bout

    PubMed Central

    Kliszczewicz, Brian; Quindry, C. John; Blessing, L. Daniel; Oliver, D. Gretchen; Esco, R. Michael; Taylor, J. Kyle

    2015-01-01

    CrossFit™, a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit™ bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit™ experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit™ and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit™=+143%, Treadmill=+115%) and 2-HP (CrossFit™=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit™=−16%, Treadmill=−8%) and 2-HP (CF=−16%, TM=−1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit™ and Treadmill: IPE (CrossFit™=+25%, Treadmill=+17%), 1-HP (CrossFit™=+26%, Treadmill=+4.8%), 2-HP (CrossFit™=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit™=−10%, Treadmill=−12%), 1-HP (CrossFit™=−12%, Treadmill=−6%), 2-HP (CrossFit™=−7%, Treadmill=−11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit™ bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID:26557192

  5. Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout.

    PubMed

    Kliszczewicz, Brian; Quindry, C John; Blessing, L Daniel; Oliver, D Gretchen; Esco, R Michael; Taylor, J Kyle

    2015-09-29

    CrossFit(™), a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit(™) bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit(™) experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit(™) and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit(™)=+143%, Treadmill=+115%) and 2-HP (CrossFit(™)=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit(™)=-16%, Treadmill=-8%) and 2-HP (CF=-16%, TM=-1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit(™) and Treadmill: IPE (CrossFit(™)=+25%, Treadmill=+17%), 1-HP (CrossFit(™)=+26%, Treadmill=+4.8%), 2-HP (CrossFit(™)=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit(™)=-10%, Treadmill=-12%), 1-HP (CrossFit(™)=-12%, Treadmill=-6%), 2-HP (CrossFit(™)=-7%, Treadmill=-11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit(™) bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses.

  6. Proinflammatory cytokines correlate with early exercise attenuating anxiety-like behavior after cerebral ischemia.

    PubMed

    Zhang, Qi; Zhang, Jingjun; Yan, Yuzhong; Zhang, Pengyue; Zhang, Wei; Xia, Rong

    2017-11-01

    Stroke may cause neuropsychiatric problems, which have negative effects on cognitive functions and behavior. Exercise plays an important role in reducing the occurrence and development of stroke, the concrete mechanism is not fully clarified. In this study, we attempted to determine whether early treadmill exercise attenuates anxiety-like behavior by regulation of inflammation after brain ischemia. We subjected adult male rats to middle cerebral artery occlusion (MCAO) for 90 min and trained rats started to run on a treadmill from postoperative day 1 to day 14. The effects of treadmill on cognitive functions, anxiety-like behavior, and immune activation were analyzed by Morris water maze test, open field test, elevated plus maze test, and enzyme-linked immunosorbent assay. Early treadmill exercise significantly improved cognitive function, alleviated anxiety-like behavior in ischemic rats model; this improvement was associated with significantly decreased activation of astrocytes and microglia cells and proinflammatory markers (platelet-activating factor [PAF], interleukin-6 [IL-6], tumor necrosis factor-alpha [TNF-α], intercellular adhesion molecule-1 [ICAM-1], and vascular cell adhesion molecule-1 [VCAM-1]). Our results indicated that early treadmill exercise attenuated anxiety-like behavior by decreasing inflammation response, exercise conferred a great benefit of attenuating anxiety-like behavior via anti-inflammatory treatment may prove to be a novel neuroprotective strategy for stroke.

  7. Daily Supine LBNP Treadmill Exercise Maintains Upright Exercise Capacity During 14 Days of Bed Rest

    NASA Technical Reports Server (NTRS)

    Ertl, Andy C.; Watenpaugh, D. E.; Hargens, Alan R.; Fortney, S. M.; Lee, S. M. C.; Ballard, R. E.; William, J. M.

    1996-01-01

    Exposure to microgravity or bed rest reduces upright exercise capacity. Exercise modes, durations, and intensities which will effectively and efficiently counteract such deconditioning are presently unresolved. We that daily supine treadmill interval training with lower body negative pressure (LBNP) would prevent reduction in upright exercise capacity during 14 days of 6 deg. head-down bed rest (BR). Eight healthy male subjects underwent two 14 day BR protocols separated by 3 months. In a crossover design, subjects either remained at strict BR or performed 40 min of daily exercise consisting of supine walking and running at intensities varying from 40-80% of pre-BR upright peak oxygen uptake (VO2). LBNP during supine exercise was used to provide 1.0 to 1.2 times body weight of footward force. An incremental upright treadmill test to measure submaximal and peak exercise responses was given pre- and post-BR. In the non-exercise condition, peak VO2 and time to exhaustion were reduced 16 +/- 4% and 10 +/- 1% (p less than 0.05), respectively, from pre-BR. With LBNP exercise these variables were not significantly different (NS) from pre-BR. During submaximal treadmill speeds after BR, heart rate was higher (11 +/- 11 bpm, p less than 0.05) and respiratory exchange ratio was elevated (p less than 0.05) in the no exercise condition. Both were maintained at pre-BR levels in the LBNP exercise condition (NS from pre-BR). Since this supine treadmill interval training with addition of LBNP maintained upright exercise responses and capacity during BR, this countermeasure may also be effective during space flight.

  8. Serotonin-mediated central fatigue underlies increased endurance capacity in mice from lines selectively bred for high voluntary wheel running.

    PubMed

    Claghorn, Gerald C; Fonseca, Ivana A T; Thompson, Zoe; Barber, Curtis; Garland, Theodore

    2016-07-01

    Serotonin (5-hydroxytryptamine; 5-HT) is implicated in central fatigue, and 5-HT1A pharmaceuticals are known to influence locomotor endurance in both rodents and humans. We studied the effects of a 5-HT1A agonist and antagonist on both forced and voluntary exercise in the same set of mice. This cohort of mice was taken from 4 replicate lines of mice that have been selectively bred for high levels of voluntary wheel running (HR) as compared with 4 non-selected control (C) lines. HR mice run voluntarily on wheels about 3× as many revolutions per day as compared with C, and have greater endurance during forced treadmill exercise. We hypothesized that drugs targeting serotonin receptors would have differential effects on locomotor behavior of HR and C mice. Subcutaneous injections of a 5-HT1A antagonist (WAY-100,635), a combination of 5-HT1A agonist and a 5-HT1A/1B partial agonist (8-OH-DPAT+pindolol), or physiological saline were given to separate groups of male mice before the start of each of three treadmill trials. The same manipulations were used later during voluntary wheel running on three separate nights. WAY-100,635 decreased treadmill endurance in HR but not C mice (dose by linetype interaction, P=0.0014). 8-OH-DPAT+pindolol affected treadmill endurance (P<0.0001) in a dose-dependent manner, with no dose by linetype interaction. Wheel running was reduced in HR but not C mice at the highest dose of 8-OH-DPAT+pindolol (dose by linetype, P=0.0221), but was not affected by WAY-100,635 treatment. These results provide further evidence that serotonin signaling is an important determinant of performance during both forced and voluntary exercise. Although the elevated wheel running of HR mice does not appear related to alterations in serotonin signaling, their enhanced endurance capacity does. More generally, our results indicate that both forced and voluntary exercise can be affected by an intervention that acts (primarily) centrally. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Exercise-induced stress resistance is independent of exercise controllability and the medial prefrontal cortex

    PubMed Central

    Greenwood, Benjamin N.; Spence, Katie G.; Crevling, Danielle M.; Clark, Peter J.; Craig, Wendy C.; Fleshner, Monika

    2014-01-01

    Exercise increases resistance against stress-related disorders such as anxiety and depression. Similarly, the perception of control is a powerful predictor of neurochemical and behavioral responses to stress, but whether the experience of choosing to exercise, and exerting control over that exercise, is a critical factor in producing exercise-induced stress resistance is unknown. The current studies investigated whether the protective effects of exercise against the anxiety- and depression-like consequences of stress are dependent on exercise controllability and a brain region implicated in the protective effects of controllable experiences, the medial prefrontal cortex. Adult male Fischer 344 rats remained sedentary, were forced to run on treadmills or motorised running wheels, or had voluntary access to wheels for 6 weeks. Three weeks after exercise onset, rats received sham surgery or excitotoxic lesions of the medial prefrontal cortex. Rats were exposed to home cage or uncontrollable tail shock treatment three weeks later. Shock-elicited fear conditioning and shuttle box escape testing occurred the next day. Both forced and voluntary wheel running, but not treadmill training, prevented the exaggerated fear conditioning and interference with escape learning produced by uncontrollable stress. Lesions of the medial prefrontal cortex failed to eliminate the protective effects of forced or voluntary wheel running. These data suggest that exercise controllability and the medial prefrontal cortex are not critical factors in conferring the protective effects of exercise against the affective consequences of stressor exposure, and imply that exercise perceived as forced may still benefit affect and mental health. PMID:23121339

  10. Treadmill exercise alleviates chronic mild stress-induced depression in rats.

    PubMed

    Lee, Taeck-Hyun; Kim, Kijeong; Shin, Mal-Soon; Kim, Chang-Ju; Lim, Baek-Vin

    2015-12-01

    Depression is a major cause of disability and one of the most common public health problems. In the present study, antidepressive effect of treadmill exercise on chronic mild stress (CMS)-induced depression in rats was investigated. For this, sucrose intake test, immunohistochemistry for 5-bromo-2'-deoxyuridine, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Western blot analysis for brain-derived neurotrophic factor, cyclic adenosine monophosphate response element binding protein, and endothelial nitric oxide synthase were conducted. Following adaptation to the animal vivarium and two baseline fluid intake tests, the animals were divided into four groups: the control group, the CMS-induced depression group, the CMS-induced depression and exercise group, and the CMS-induced depression and fluoxetine-treated group. The animals in the CMS groups were exposed to the CMS conditions for 8 weeks and those in the control group were exposed to the control conditions for 8 weeks. After 4 weeks of CMS, the rats in the CMS-induced depression and exercise group were made to run on a motorized treadmill for 30 min once a day for 4 weeks. In the present results, treadmill exercise alleviated CMS-induced depressive symptoms. Treadmill exercise restored sucrose consumption, increased cell proliferation, and decreased apoptotic cell death. The present results suggest the possibility that exercise may improve symptoms of depression.

  11. Long-Term Moderate Exercise Rescues Age-Related Decline in Hippocampal Neuronal Complexity and Memory.

    PubMed

    Tsai, Sheng-Feng; Ku, Nai-Wen; Wang, Tzu-Feng; Yang, Yan-Hsiang; Shih, Yao-Hsiang; Wu, Shih-Ying; Lee, Chu-Wan; Yu, Megan; Yang, Ting-Ting; Kuo, Yu-Min

    2018-05-07

    Aging impairs hippocampal neuroplasticity and hippocampus-related learning and memory. In contrast, exercise training is known to improve hippocampal neuronal function. However, whether exercise is capable of restoring memory function in old animals is less clear. Here, we investigated the effects of exercise on the hippocampal neuroplasticity and memory functions during aging. Young (3 months), middle-aged (9-12 months), and old (18 months) mice underwent moderate-intensity treadmill running training for 6 weeks, and their hippocampus-related learning and memory, and the plasticity of their CA1 neurons was evaluated. The memory performance (Morris water maze and novel object recognition tests), and dendritic complexity (branch and length) and spine density of their hippocampal CA1 neurons decreased as their age increased. The induction and maintenance of high-frequency stimulation-induced long-term potentiation in the CA1 area and the expressions of neuroplasticity-related proteins were not affected by age. Treadmill running increased CA1 neuron long-term potentiation and dendritic complexity in all three age groups, and it restored the learning and memory ability in middle-aged and old mice. Furthermore, treadmill running upregulated the hippocampal expressions of brain-derived neurotrophic factor and monocarboxylate transporter-4 in middle-aged mice, glutamine synthetase in old mice, and full-length TrkB in middle-aged and old mice. The hippocampus-related memory function declines from middle age, but long-term moderate-intensity running effectively increased hippocampal neuroplasticity and memory in mice of different ages, even when the memory impairment had progressed to an advanced stage. Thus, long-term, moderate intensity exercise training might be a way of delaying and treating aging-related memory decline. © 2018 S. Karger AG, Basel.

  12. Comparison of Gait During Treadmill Exercise While Supine in Lower Body Negative Pressure (LBNP), Supine with Bungee Resistance and Upright in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Boda, Wanda; Hargens, Alan R.; Aratow, Michael; Ballard, Richard E.; Hutchinson, Karen; Murthy, Gita; Campbell, James

    1994-01-01

    The purpose of this study is to compare footward forces, gait kinematics, and muscle activation patterns (EMG) generated during supine treadmill exercise against LBNP with the same parameters during supine bungee resistance exercise and upright treadmill exercise. We hypothesize that the three conditions will be similar. These results will help validate treadmill exercise during LBNP as a viable technique to simulate gravity during space flight. We are evaluating LBNP as a means to load the musculoskeletal and cardiovascular systems without gravity. Such loading should help prevent physiologic deconditioning during space flight. The best ground-based simulation of LBNP treadmill exercise in microgravity is supine LBNP treadmill exercise on Earth because the supine footward force vector is neither directed nor supplemented by Earth's gravity. Previous results from HR-95 ("Dynamics of footward force and leg intramuscular pressure during exercise against supine LBNP and upright standing in normal gravity") indicate that supine plantar-/dorsiflexion exercise in LBNP at 100 mm Hg produces similar ground reaction forces, musculoskeletal stress, and VO2 to those during upright exercise against Earth's gravity. However, elevations of leg volume and heart rate indicate that cardiovascular stress during 100 mm Hg LBNP exercise exceeds that during 1 g exercise. Therefore, the need arose to reduce the cardiovascular stress of LBNP, while maintaining LBNP-induced reaction forces. To this end, we determined that mild plantar-/dorsiflexion exercise during LBNP significantly improves tolerance to LBNP via musculovenous pumping and sympathoexcitation; more intense exercise such as walking and running may further improve LBNP tolerance. In addition, two methodological advances have permited us to simulate upright 1 g exercise better with supine LBNP exercise. First, a newly-designed waist seal allows decreased levels of LBNP (50-60 mm Hg) to produce a footward force equaling one body weight

  13. Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1

    PubMed Central

    Tanner, Colby B.; Madsen, Steven R.; Hallowell, David M.; Goring, Darren M. J.; Moore, Timothy M.; Hardman, Shalene E.; Heninger, Megan R.; Atwood, Daniel R.

    2013-01-01

    LKB1 and its downstream targets of the AMP-activated protein kinase family are important regulators of many aspects of skeletal muscle cell function, including control of mitochondrial content and capillarity. LKB1 deficiency in skeletal and cardiac muscle (mLKB1-KO) greatly impairs exercise capacity. However, cardiac dysfunction in that genetic model prevents a clear assessment of the role of skeletal muscle LKB1 in the observed effects. Our purposes here were to determine whether skeletal muscle-specific knockout of LKB1 (skmLKB1-KO) decreases exercise capacity and mitochondrial protein content, impairs accretion of mitochondrial proteins after exercise training, and attenuates improvement in running performance after exercise training. We found that treadmill and voluntary wheel running capacity was reduced in skmLKB1-KO vs. control (CON) mice. Citrate synthase activity, succinate dehydrogenase activity, and pyruvate dehydrogenase kinase content were lower in KO vs. CON muscles. Three weeks of treadmill training resulted in significantly increased treadmill running performance in both CON and skmLKB1-KO mice. Citrate synthase activity increased significantly with training in both genotypes, but protein content and activity for components of the mitochondrial electron transport chain increased only in CON mice. Capillarity and VEGF protein was lower in skmLKB1-KO vs. CON muscles, but VEGF increased with training only in skmLKB1-KO. Three hours after an acute bout of muscle contractions, PGC-1α, cytochrome c, and VEGF gene expression all increased in CON but not skmLKB1-KO muscles. Our findings indicate that skeletal muscle LKB1 is required for accretion of some mitochondrial proteins but not for early exercise capacity improvements with exercise training. PMID:23982155

  14. Loading Configurations and Ground Reaction Forces During Treadmill Running in Weightlessness

    NASA Technical Reports Server (NTRS)

    DeWitt, John; Schaffner, Grant; Blazine, Kristi; Bentley, Jason; Laughlin, Mitzi; Loehr, James; Hagan, Donald

    2003-01-01

    Studies have shown losses in bone mineral density of 1-2% per month in critical weight bearing areas such as the proximal femur during long-term space flight (Grigoriev, 1998). The astronauts currently onboard the International Space Station (ISS) use a treadmill as an exercise countermeasure to bone loss that occurs as a result of prolonged exposure to weightlessness. A crewmember exercising on the treadmill is attached by a harness and loading device. Ground reaction forces are obtained through the loading device that pulls the crewn1ember towards the treadmill surface during locomotion. McCrory et al. (2002) found that the magnitude of the peak ground reaction force (pGRF) during horizontal suspension running, or simulated weightlessness, was directly related to the load applied to the subject. It is thought that strain magnitude and strain rate affects osteogenesis, and is a function of the magnitude and rate of change of the ground reaction force. While it is not known if a minimum stimulus exists for osteogenesis, it has been hypothesized that in order to replicate the bone formation occurring in normal gravity (1 G), the exercise in weightlessness should mimic the forces that occur on earth. Specifically, the pGRF obtained in weightlessness should be comparable to that achieved in 1 G.

  15. A Comparison of the Physiology and Mechanics of Exercise in LBNP and Upright Gait

    NASA Technical Reports Server (NTRS)

    Boda, W. L.; Watenpaugh, D. E.; Ballard, R. E.; Chang, D.; Looft-Wilson, R.; Hargens, A. R.

    1996-01-01

    Bone, muscular strength, aerobic capacity, and normal fluid pressure gradients within the body are lost during bed rest and spaceflight. Lower Body Negative Pressure (LBNP) exercise may create musculoskeletal and cardiovascular strains equal to a greater than those experienced on Earth and elucidate some of the mechanisms for maintaining bone integrity. LBNP exercise simulates gravity during supine posture by using negative pressure to pull subjects inward against a treadmill generating footward forces and increasing transmural pressures. Footward forces are generated which equal the product of the pressure differential and the cross-sectional area of the LBNP waist seal. Subjects lie supine within the chamber with their legs suspended from one another via cuffs, bungee cords, and pulleys, such that each leg acts as a counterweight to the other leg during the gait cycle. The subjects then walk or run on a treadmill which is positioned vertically within the chamber. Supine orientation allows only footward force production due to the negative pressure within the chamber. The purpose of this study was to determine if the kinematics, kinetics, and metabolic rate during supine walking and slow running on a vertical treadmill within LBNP are similar to those on a treadmill in 1-g environment in an upright posture.

  16. Treadmill exercise ameliorates social isolation-induced depression through neuronal generation in rat pups.

    PubMed

    Cho, Jung-Wan; Jung, Sun-Young; Lee, Sang-Won; Lee, Sam-Jun; Seo, Tae-Beom; Kim, Young-Pyo; Kim, Dae-Young

    2017-12-01

    Social isolation is known to induce emotional and behavioral changes in animals and humans. The effect of treadmill exercise on depression was investigated using social isolated rat pups. The rat pups in the social isolation groups were housed individually. The rat pups in the exercise groups were forced to run on treadmill for 30 min once a day from postnatal day 21 to postnatal day 34. In order to evaluate depression state of rat pups, forced swimming test was performed. Newly generated cells in the hippocampal dentate gyrus were determined by 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry. We examined the expression of 5-hydroxytryptamine (5-HT) and tryptophan hydroxylase (TPH) in the dorsal raphe using immunofluorescence. The expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) was detected by Western blot analysis. The present results demonstrated that social isolation increased resting time and decreased mobility time. Expression of 5-HT and TPH in the dorsal raphe and expression of BDNF and TrkB in the hippocampus were decreased by social isolation. The number of BrdU-positive cells in the hippocampal dentate gyrus was suppressed by social isolation. Treadmill exercise decreased resting time and increased mobility in the social isolated rat pups. Expression of 5-HT, TPH, BDNF, and TrkB was increased by treadmill exercise. The present results suggested that treadmill exercise may ameliorates social isolation-induced depression through increasing neuronal generation.

  17. Cerebral Blood Flow Responses to Aquatic Treadmill Exercise.

    PubMed

    Parfitt, Rhodri; Hensman, Marianne Y; Lucas, Samuel J E

    2017-07-01

    Aquatic treadmills are used as a rehabilitation method for conditions such as spinal cord injury, osteoarthritis, and stroke, and can facilitate an earlier return to exercise training for athletes. However, their effect on cerebral blood flow (CBF) responses has not been examined. We tested the hypothesis that aquatic treadmill exercise would augment CBF and lower HR compared with land-based treadmill exercise. Eleven participants completed incremental exercise (crossover design) starting from walking pace (4 km·h, immersed to iliac crest [aquatic], 6 km·h [land]) and increasing 1 km·h every 2 min up to 10 km·h for aquatic (maximum belt speed) or 12 km·h for land. After this, participants completed two 2-min bouts of exercise immersed to midthigh and midchest at constant submaximal speed (aquatic), or were ramped to exhaustion (land; increased gradient 2° every min). Middle cerebral artery blood flow velocity (MCAv) and HR were measured throughout, and the initial 10 min of each protocol and responses at each immersion level were compared. Compared with land-based treadmill, MCAvmean increased more from baseline for aquatic exercise (21% vs 12%, P < 0.001), while being associated with lower overall HR (pooled difference, 11 bpm; P < 0.001). MCAvmean increased similarly during aquatic walking compared with land-based moderate intensity running (~10 cm·s, P = 0.56). Greater water immersion lowered HR (139 vs 178 bpm for midchest vs midthigh), whereas MCAvmean remained constant (P = 0.37). Findings illustrate the potential for aquatic treadmill exercise to enhance exercise-induced elevations in CBF and thus optimize shear stress-mediated adaptation of the cerebrovasculature.

  18. The ameliorative effects of exercise on cognitive impairment and white matter injury from blood-brain barrier disruption induced by chronic cerebral hypoperfusion in adolescent rats.

    PubMed

    Lee, Jae-Min; Park, Jong-Min; Song, Min Kyung; Oh, Yoo Joung; Kim, Chang-Ju; Kim, Youn-Jung

    2017-01-18

    Vascular dementia is the progressive change in blood vessels that leads to neuronal injuries in vulnerable areas induced by chronic cerebral hypoperfusion (CCH). CCH induces disruption of blood-brain barrier (BBB), and this BBB disruption can initiate the cognitive impairment and white matter injury. In the present study, we evaluated the effect of treadmill exercise on the cognitive impairment, white matter injury, and BBB disruption induced by CCH. Vascular dementia was induced by permanent bilateral common carotid arteries occlusion (BCCAO) in rats. The rats in the exercise group were made to run on a treadmill for 30min once a day for 14 weeks, starting 4 weeks after birth. Our results revealed that treadmill exercise group was alleviated the cognitive impairment and myelin degradation induced by CCH. The disruption of BBB after CCH indicates degradation of occludin, zonula occluden-1 (ZO-1), and up-regulation of matrix metalloproteinases (MMPs). Treadmill exercise may provide protective effects on BBB disruption from degradation of occludin, ZO-1, and overexpression of MMP-9 after CCH. These findings suggest that treadmill exercise ameliorates cognitive impairment and white matter injury from BBB disruption induced by CCH in rats. The present study will be valuable for means of prophylactic and therapeutic intervention for patients with CCH. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Treadmill exercise attenuates the severity of physical dependence, anxiety, depressive-like behavior and voluntary morphine consumption in morphine withdrawn rats receiving methadone maintenance treatment.

    PubMed

    Alizadeh, Maryam; Zahedi-Khorasani, Mahdi; Miladi-Gorji, Hossein

    2018-05-30

    This study was designed to examine whether treadmill exercise would attenuate the severity of physical dependence, methadone-induced anxiety, depression and voluntary morphine consumption in morphine withdrawn rats receiving methadone maintenance treatment (MMT). The rats were chronically treated with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 14 days. The exercising rats receiving MMT were forced to run on a motorized treadmill for 30 days during morphine withdrawal. Then, rats were tested for the severity of morphine dependence, the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that naloxone- precipitated opioid withdrawal signs were decreased in exercising morphine-dependent rats receiving MMT than sedentary rats. Also, the exercising morphine-dependent rats receiving MMT exhibited an increased time on open arms, preference for sucrose and a lower morphine preference ratio than sedentary rats. We conclude that treadmill exercise decreased the severity of physical dependence, anxiety/depressive-like behaviors and also the voluntary morphine consumption in morphine withdrawn rats receiving MMT. Thus, exercise may benefit in the treatment of addicts during MMT. Copyright © 2018. Published by Elsevier B.V.

  20. Effect of Hindlimb Unweighting on Tissue Blood Flow in the Rat

    NASA Technical Reports Server (NTRS)

    McDonald, K. S.; Delp, M. D.; Fitts, R. H.

    1992-01-01

    The purpose of this study was to characterize the distribution of blood flow in the rat during hindlimb unweighting (HU) and post-HU standing and exercise and examine whether the previously reported elevation in anaerobic metabolism observed with contractile activity in the atrophied soleus muscle was caused by a reduced hindlimb blood flow. After either 15 days of HU or cage control, blood flow was measured with radioactive microspheres during unweighting, normal standing, and running on a treadmill (15 m/min). In another group of control and experimental animals, blood flow was measured during preexercise (PE) treadmill standing and treadmill running (15 m/min). Soleus muscle blood flow was not different between groups during unweighting, PE standing, and running at 15 m/min. Chronic unweighting resulted in the tendency for greater blood flow to muscles composed of predominantly fast-twitch glycolytic fibers. With exercise, blood flow to visceral organs was reduced compared with PE values in the control rats, whereas flow to visceral organs in 15-day HU animals was unaltered by exercise. These higher flows to the viscera and to muscles composed of predominantly fast-twitch glycolytic fibers suggest an apparent reduction in the ability of the sympathetic nervous system to distribute cardiac output after chronic HU. In conclusion, because 15 days of HU did not affect blood flow to the soleus during exercise, the increased dependence of the atrophied soleus on anerobic energy production during contractile activity cannot be explained by a reduced muscle blood flow.

  1. Treadmill exercise ameliorates symptoms of attention deficit/hyperactivity disorder through reducing Purkinje cell loss and astrocytic reaction in spontaneous hypertensive rats

    PubMed Central

    Yun, Hyo-Soon; Park, Mi-Sook; Ji, Eun-Sang; Kim, Tae-Woon; Ko, Il-Gyu; Kim, Hyun-Bae; Kim, Hong

    2014-01-01

    Attention deficit/hyperactivity disorder (ADHD) is a neurobehavioral disorder of cognition. We investigated the effects of treadmill exercise on Purkinje cell and astrocytic reaction in the cerebellum of the ADHD rat. Adult male spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKYR) weighing 210± 10 g were used. The animals were randomly divided into four groups (n= 15): control group, ADHD group, ADHD and methylphenidate (MPH)-treated group, ADHD and treadmill exercise group. The rats in the MPH-treated group as a positive control received 1 mg/kg MPH orally once a day for 28 consecutive days. The rats in the treadmill exercise group were made to run on a treadmill for 30 min once a day for 28 days. Motor coordination and balance were determined by vertical pole test. Immunohistochemistry for the expression of calbindinD-28 and glial fibrillary acidic protein (GFAP) in the cerebellar vermis and Western blot for GFAP, Bax, and Bcl-2 were conducted. In the present results, ADHD significantly decreased balance and the number of calbindin-positive cells, while GFAP expression and Bax/Bcl-2 ratio in the cerebellum were significantly increased in the ADHD group compared to the control group (P< 0.05, respectively). In contrast, treadmill exercise and MPH alleviated the ADHD-induced the decrease of balance and the number of calbindine-positive cells, and the increase of GFAP expression and Bax/Bcl-2 ratio in the cerebellum (P< 0.05, respectively). Therefore, the present results suggested that treadmill exercise might exert ameliorating effect on ADHD through reduction of Purkinje cell loss and astrocytic reaction in the cerebellum. PMID:24678501

  2. Postnatal treadmill exercise alleviates short-term memory impairment by enhancing cell proliferation and suppressing apoptosis in the hippocampus of rat pups born to diabetic rats.

    PubMed

    Kim, Young Hoon; Sung, Yun-Hee; Lee, Hee-Hyuk; Ko, Il-Gyu; Kim, Sung-Eun; Shin, Mal-Soon; Kim, Bo-Kyun

    2014-08-01

    During pregnancy, diabetes mellitus exerts detrimental effects on the development of the fetus, especially the central nervous system. In the current study, we evaluated the effects of postnatal treadmill exercise on short-term memory in relation with cell proliferation and apoptosis in the hippocampus of rat pups born to streptozotocin (STZ)-induced diabetic maternal rats. Adult female rats were mated with male rats for 24 h. Two weeks after mating, the pregnant female rats were divided into two groups: control group and STZ injection group. The pregnant rats in the STZ injection group were administered 40 mg/kg of STZ intraperitoneally. After birth, the rat pups were divided into the following four groups: control group, control with postnatal exercise group, maternal STZ-injection group, and maternal STZ-injection with postnatal exercise group. The rat pups in the postnatal exercise groups were made to run on a treadmill for 30 min once a day, 5 times per week for 2 weeks beginning 4 weeks after birth. The rat pups born to diabetic rats were shown to have short-term memory impairment with suppressed cell proliferation and increased apoptosis in the hippocampal dentate gyrus. Postnatal treadmill exercise alleviated short-term memory impairment by increased cell proliferation and suppressed apoptosis in the rat pups born to diabetic rats. These findings indicate that postnatal treadmill exercise may be used as a valuable strategy to ameliorate neurodevelopmental problems in children born to diabetics.

  3. Analysis Spectrum of ECG Signal and QRS Detection during Running on Treadmill

    NASA Astrophysics Data System (ADS)

    Agung Suhendra, M.; Ilham R., M.; Simbolon, Artha I.; Faizal A., M.; Munandar, A.

    2018-03-01

    The heart is an important organ in our metabolism in which it controls circulatory and oxygen. The heart exercise is needed one of them using the treadmill to prevent health. To analysis, it using electrocardiograph (ECG) to investigating and diagnosing anomalies of the heart. In this paper, we would like to analysis ECG signals during running on the treadmill with kinds of speeds. There are two analysis ECG signals i.e. QRS detection and power spectrum density (PSD). The result of PSD showed that subject 3 has highly for all subject and the result of QRS detection using pan Tomkins algorithm that a percentage of failed detection is an approaching to 0 % for all subject.

  4. Running exercise enhances motor functional recovery with inhibition of dendritic regression in the motor cortex after collagenase-induced intracerebral hemorrhage in rats.

    PubMed

    Takamatsu, Yasuyuki; Tamakoshi, Keigo; Waseda, Yuya; Ishida, Kazuto

    2016-03-01

    Rehabilitative approaches benefit motor functional recovery after stroke and relate to neuronal plasticity. We investigated the effects of a treadmill running exercise on the motor functional recovery and neuronal plasticity after collagenase-induced striatal intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with type IV collagenase into the left striatum to induce ICH. Sham-operated animals were injected with saline instead of collagenase. The animals were randomly assigned to the sham control (SC), the sham exercise (SE), the ICH control (IC), or the ICH exercise (IE) group. The exercise groups were forced to run on a treadmill at a speed of 9 m/min for 30 min/day between days 4 and 14 after surgery. Behavioral tests were performed using a motor deficit score, a beam-walking test and a cylinder test. At fifteen days after surgery, the animals were sacrificed, and their brains were removed. The motor function of the IE group significantly improved compared with the motor function of the IC group. No significant differences in cortical thickness were found between the groups. The IC group had fewer branches and shorter dendrite lengths compared with the sham groups. However, dendritic branches and lengths were not significantly different between the IE and the other groups. Tropomyosin-related kinase B (TrkB) expression levels increased in the IE compared with IC group, but no significant differences in other protein (brain-derived neurotrophic factor, BDNF; Nogo-A; Rho-A/Rho-associated protein kinase 2, ROCK2) expression levels were found between the groups. These results suggest that improved motor function after a treadmill running exercise after ICH may be related to the prevention of dendritic regression due to TrkB upregulation. Copyright © 2015. Published by Elsevier B.V.

  5. Upregulation of circulating IL-15 by treadmill running in healthy individuals: is IL-15 an endocrine mediator of the beneficial effects of endurance exercise?

    PubMed

    Tamura, Yoshiaki; Watanabe, Keiichi; Kantani, Tomomi; Hayashi, Junichi; Ishida, Nobuhiko; Kaneki, Masao

    2011-01-01

    The beneficial effects of endurance exercise include insulin-sensitization and reduction of fat mass. Limited knowledge is available about the mechanisms by which endurance exercise exerts the salutary effects. Myokines, cytokines secreted by skeletal muscle, have been recognized as a potential mediator. Recently, a role of skeletal muscle-derived interleukin-15 (IL-15) in improvement of fat-lean body mass composition and insulin sensitivity has been proposed. Yet, previous studies have reported that endurance training does not increase production or secretion of IL-15 in skeletal muscle. Here, we show that in opposition to previous findings, 30-min treadmill running at 70% of age-predicted maximum heart rate resulted in a significant increase in circulating IL-15 level in untrained healthy young men. These findings suggest that IL-15 might play a role in the systemic anti-obesogenic and insulin-sensitizing effects of endurance exercise, not only as a paracrine and autocrine but also as an endocrine factor.

  6. See hear: psychological effects of music and music-video during treadmill running.

    PubMed

    Hutchinson, Jasmin C; Karageorghis, Costas I; Jones, Leighton

    2015-04-01

    There is a paucity of work addressing the distractive, affect-enhancing, and motivational influences of music and video in combination during exercise. We examined the effects of music and music-and-video on a range of psychological and psychophysical variables during treadmill running at intensities above and below ventilatory threshold (VT). Participants (N = 24) exercised at 10 % of maximal capacity below VT and 10 % above under music-only, music-and-video, and control conditions. There was a condition × intensity × time interaction for perceived activation and state motivation, and an intensity × time interaction for state attention, perceived exertion (RPE), and affective valence. The music-and-video condition elicited the highest levels of dissociation, lowest RPE, and most positive affective responses regardless of exercise intensity. Attentional manipulations influence psychological and psychophysical variables at exercise intensities above and below VT, and this effect is enhanced by the combined presentation of auditory and visual stimuli.

  7. Subject Load-Harness Interaction During Zero-Gravity Treadmill Exercise

    NASA Technical Reports Server (NTRS)

    McCrory, Jean L.; Baron, Heidi A.; Derr, Janice A.; Davis, Brian L.; Cavanagh, Peter R.

    1996-01-01

    When astronauts exercise on orbit, a subject load device (SLD) must be used to return the subject back to the supporting surface. The load in the SLD needs to be transferred the body by a harness which typically distributes this load between the pelvis and We shoulders. Through the use of a zero-gravity simulator, this research compared subject comfort and ground reaction forces during treadmill running at three levels of subject load (60%,80%, and 100% of body weight) in two harness designs ("shoulder only" and "waist "and shoulder ").

  8. Moderate Treadmill Exercise Protects Synaptic Plasticity of the Dentate Gyrus and Related Signaling Cascade in a Rat Model of Alzheimer's Disease.

    PubMed

    Dao, An T; Zagaar, Munder A; Alkadhi, Karim A

    2015-12-01

    The dentate gyrus (DG) of the hippocampus is known to be more resistant to the effects of various external factors than other hippocampal areas. This study investigated the neuroprotective effects of moderate treadmill exercise on early-phase long-term potentiation (E-LTP) and its molecular signaling pathways in the DG of amyloid β rat model of sporadic Alzheimer's disease (AD). Animals were preconditioned to run on treadmill for 4 weeks and concurrently received ICV infusion of Aβ₁₋₄₂ peptides (250 pmol/day) during the third and fourth weeks of exercise training. We utilized in vivo electrophysiological recordings to assess the effect of exercise and/or AD pathology on basal synaptic transmission and E-LTP magnitude of the perforant pathway synapses in urethane-anesthetized rats. Immunoblotting analysis was used to quantify changes in the levels of learning and memory-related key signaling molecules. The AD-impaired basal synaptic transmission and suppression of E-LTP in the DG were prevented by prior moderate treadmill exercise. In addition, exercise normalized the basal levels of memory and E-LTP-related signaling molecules including Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), calcineurin (PP2B), and brain-derived neurotrophic factor (BDNF). Exercise also prevented the reduction of phosphorylated CaMKII and aberrant increase of PP2B seen after E-LTP induction in amyloid-infused rats. Our data suggests that by restoring the balance of kinase-phosphatase, 4 weeks of moderate treadmill exercise prevents DG synaptic deficits and deleterious alterations in signaling pathways associated with AD.

  9. Evaluation of Cooper 12-minute walk/run test as a marker of cardiorespiratory fitness in young urban children with persistent asthma.

    PubMed

    Weisgerber, Michael; Danduran, Michael; Meurer, John; Hartmann, Kathryn; Berger, Stuart; Flores, Glenn

    2009-07-01

    To evaluate Cooper 12-minute run/walk test (CT12) as a one-time estimate of cardiorespiratory fitness and marker of fitness change compared with treadmill fitness testing in young children with persistent asthma. A cohort of urban children with asthma participated in the asthma and exercise program and a subset completed pre- and postintervention fitness testing. Treadmill fitness testing was conducted by an exercise physiologist in the fitness laboratory at an academic children's hospital. CT12 was conducted in a college recreation center gymnasium. Forty-five urban children with persistent asthma aged 7 to 14 years participated in exercise interventions. A subset of 19 children completed pre- and postintervention exercise testing. Participants completed a 9-week exercise program where they participated in either swimming or golf 3 days a week for 1 hour. A subset of participants completed fitness testing by 2 methods before and after program completion. CT12 results (meters), maximal oxygen consumption ((.)Vo2max) (mL x kg(-1) x min(-1)), and treadmill exercise time (minutes). CT12 and maximal oxygen consumption were moderately correlated (preintervention: 0.55, P = 0.003; postintervention: 0.48, P = 0.04) as one-time measures of fitness. Correlations of the tests as markers of change over time were poor and nonsignificant. In children with asthma, CT12 is a reasonable one-time estimate of fitness but a poor marker of fitness change over time.

  10. Effects of harmane during treadmill exercise on spatial memory of restraint-stressed mice.

    PubMed

    Nasehi, Mohammad; Shahini, Faezeh; Ebrahimi-Ghiri, Mohaddeseh; Azarbayjani, MohammadAli; Zarrindast, Mohammad-Reza

    2018-06-08

    Chronic stress induces hippocampal-dependent memory deficits, which can be counterbalanced with prolonged exercise. On the other hand, the β-carboline alkaloid harmane exerts potential in therapies for Alzheimer's and depression diseases and modulating neuronal responses to stress. The present study investigated the effect of chronic treatment of harmane alone or during treadmill running on spatial memory deficit in restraint-stressed mice. To examine spatial memory, adult male NMRI mice were subjected to the Y-maze. Intraperitoneal administration of harmane (0.6 mg/kg, once/ 48 h for 25 days) decreased the percentage of time in the novel arm and the number of novel arm visits, indicating a spatial memory deficit. A 9-day restraint stress (3 h/day) also produced spatial learning impairment. However, a 4-week regime of treadmill running (10 m/min for 30 min/day, 5 days/week) aggravated the stress impairing effect on spatial learning of 3-day stressed mice compared to exercise/non-stressed mice. Moreover, harmane (0.3 mg/kg) associated with exercise increased the number of novel arm visits in 9-day stressed mice compared to harmane/exercise/non-stressed or 9-day stressed group. It should be noted that none of these factors alone or in combination with each other had no effect on locomotor activity. Taken together, these data suggest that there is no interaction between harmane and exercise on spatial memory in stress condition. Copyright © 2018. Published by Elsevier Inc.

  11. Resveratrol enhances exercise training responses in rats selectively bred for high running performance.

    PubMed

    Hart, Nikolett; Sarga, Linda; Csende, Zsolt; Koltai, Erika; Koch, Lauren G; Britton, Steven L; Davies, Kelvin J A; Kouretas, Dimitris; Wessner, Barbara; Radak, Zsolt

    2013-11-01

    High Capacity Runner (HCR) rats have been developed by divergent artificial selection for treadmill endurance running capacity to explore an aerobic biology-disease connection. The beneficial effects of resveratrol supplementation have been demonstrated in endurance running and the antioxidant capacity of resveratrol is also demonstrated. In this study we examine whether 12 weeks of treadmill exercise training and/or resveratrol can enhance performance in HCR. Indeed, resveratrol increased aerobic performance and strength of upper limbs of these rats. Moreover, we have found that resveratrol activated the AMP-activated protein kinase, SIRT1, and mitochondrial transcription factor A (p<0.05). The changes in mitochondrial fission/fusion and Lon protease/HSP78 levels suggest that exercise training does not significantly induce damage of proteins. Moreover, neither exercise training nor resveratrol supplementation altered the content of protein carbonyls. Changes in the levels of forkhead transcription factor 1 and SIRT4 could suggest increased fat utilization and improved insulin sensitivity. These data indicate, that resveratrol supplementation enhances aerobic performance due to the activation of the AMPK-SIRT1-PGC-1α pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Exercise stress test

    MedlinePlus

    Exercise ECG; ECG - exercise treadmill; EKG - exercise treadmill; Stress ECG; Exercise electrocardiography; Stress test - exercise treadmill; CAD - treadmill; Coronary artery disease - treadmill; Chest pain - treadmill; Angina - treadmill; ...

  13. An Innovative Running Wheel-based Mechanism for Improved Rat Training Performance.

    PubMed

    Chen, Chi-Chun; Yang, Chin-Lung; Chang, Ching-Ping

    2016-09-19

    This study presents an animal mobility system, equipped with a positioning running wheel (PRW), as a way to quantify the efficacy of an exercise activity for reducing the severity of the effects of the stroke in rats. This system provides more effective animal exercise training than commercially available systems such as treadmills and motorized running wheels (MRWs). In contrast to an MRW that can only achieve speeds below 20 m/min, rats are permitted to run at a stable speed of 30 m/min on a more spacious and high-density rubber running track supported by a 15 cm wide acrylic wheel with a diameter of 55 cm in this work. Using a predefined adaptive acceleration curve, the system not only reduces the operator error but also trains the rats to run persistently until a specified intensity is reached. As a way to evaluate the exercise effectiveness, real-time position of a rat is detected by four pairs of infrared sensors deployed on the running wheel. Once an adaptive acceleration curve is initiated using a microcontroller, the data obtained by the infrared sensors are automatically recorded and analyzed in a computer. For comparison purposes, 3 week training is conducted on rats using a treadmill, an MRW and a PRW. After surgically inducing middle cerebral artery occlusion (MCAo), modified neurological severity scores (mNSS) and an inclined plane test were conducted to assess the neurological damages to the rats. PRW is experimentally validated as the most effective among such animal mobility systems. Furthermore, an exercise effectiveness measure, based on rat position analysis, showed that there is a high negative correlation between the effective exercise and the infarct volume, and can be employed to quantify a rat training in any type of brain damage reduction experiments.

  14. Conservative Treatment of Subacute Proximal Hamstring Tendinopathy Using Eccentric Exercises Performed With a Treadmill: A Case Report.

    PubMed

    Cushman, Daniel; Rho, Monica E

    2015-07-01

    Case report. Proximal hamstring tendinopathy in runners is characterized by pain with passive hip flexion with the knee extended, active hip extension, and pain with sitting. Relatively little literature exists on the condition, and publications on nonsurgical treatment protocols are even more scarce. Surgical intervention, which comprises the majority of literature for treatment of this condition, is an option for cases that fail to respond to nonsurgical treatment. The patient was a 34-year-old, otherwise healthy male triathlete with unilateral proximal hamstring tendinopathy diagnosed by ultrasound, who had pain only with running and prolonged sitting. After he failed to respond to 4 weeks of eccentric knee flexion and lumbopelvic musculature strengthening exercises, an eccentric hip extensor strengthening program using a treadmill was initiated. This treadmill exercise was performed on a daily basis, in addition to a lumbopelvic musculature strengthening program. The patient noted a decrease in pain within 2 weeks of initiating the new exercise, and was able to return to gradual running after 4 weeks and to speed training after 12 weeks. He returned to competition shortly thereafter and had no recurrence for 12 months after the initiation of therapy. His score on the Victorian Institute of Sport Assessment-proximal hamstring tendons improved from 23 on initial presentation to 83 at 12 weeks after the initiation of therapy. We described the management of a triathlete with subacute proximal hamstring tendinopathy, who responded well to nonsurgical treatment using eccentric hip extension strengthening using a treadmill. Therapy, level 4.

  15. Conservative Treatment of Subacute Proximal Hamstring Tendinopathy Using Eccentric Exercises Performed With a Treadmill: A Case Report

    PubMed Central

    CUSHMAN, DANIEL; RHO, MONICA E.

    2015-01-01

    STUDY DESIGN Case report. BACKGROUND Proximal hamstring tendinopathy in runners is characterized by pain with passive hip flexion with the knee extended, active hip extension, and pain with sitting. Relatively little literature exists on the condition, and publications on nonsurgical treatment protocols are even more scarce. Surgical intervention, which comprises the majority of literature for treatment of this condition, is an option for cases that fail to respond to nonsurgical treatment. CASE DESCRIPTION The patient was a 34-year-old, otherwise healthy male triathlete with unilateral proximal hamstring tendinopathy diagnosed by ultrasound, who had pain only with running and prolonged sitting. After he failed to respond to 4 weeks of eccentric knee flexion and lumbopelvic musculature strengthening exercises, an eccentric hip extensor strengthening program using a treadmill was initiated. This treadmill exercise was performed on a daily basis, in addition to a lumbopelvic musculature strengthening program. OUTCOMES The patient noted a decrease in pain within 2 weeks of initiating the new exercise, and was able to return to gradual running after 4 weeks and to speed training after 12 weeks. He returned to competition shortly thereafter and had no recurrence for 12 months after the initiation of therapy. His score on the Victorian Institute of Sport Assessment-proximal hamstring tendons improved from 23 on initial presentation to 83 at 12 weeks after the initiation of therapy. DISCUSSION We described the management of a triathlete with subacute proximal hamstring tendinopathy, who responded well to nonsurgical treatment using eccentric hip extension strengthening using a treadmill. LEVEL OF EVIDENCE Therapy, level 4. PMID:25996362

  16. The effect of running versus cycling high-intensity intermittent exercise on local tissue oxygenation and perceived enjoyment in 18–30-year-old sedentary men

    PubMed Central

    Solomon, Colin

    2018-01-01

    Background High-intensity interval training (HIIT) has been proposed as a time-efficient exercise format to improve exercise adherence, thereby targeting the chronic disease burden associated with sedentary behaviour. Exercise mode (cycling, running), if self-selected, will likely affect the physiological and enjoyment responses to HIIT in sedentary individuals. Differences in physiological and enjoyment responses, associated with the mode of exercise, could potentially influence the uptake and continued adherence to HIIT. It was hypothesised that in young sedentary men, local and systemic oxygen utilisation and enjoyment would be higher during a session of running HIIT, compared to a session of cycling HIIT. Methods A total of 12 sedentary men (mean ± SD; age 24 ± 3 years) completed three exercise sessions: a maximal incremental exercise test on a treadmill (MAX) followed by two experiment conditions, (1) free-paced cycling HIIT on a bicycle ergometer (HIITCYC) and (2) constant-paced running HIIT on a treadmill ergometer (HIITRUN). Deoxygenated haemoglobin (HHb) in the gastrocnemius (GN), the left vastus lateralis (LVL) and the right vastus lateralis (RVL) muscles, oxygen consumption (VO2), heart rate (HR), ratings of perceived exertion (RPE) and physical activity enjoyment (PACES) were measured during HIITCYC and HIITRUN. Results There was a higher HHb in the LVL (p = 0.001) and RVL (p = 0.002) sites and a higher VO2 (p = 0.017) and HR (p < 0.001) during HIITCYC, compared to HIITRUN. RPE was higher (p < 0.001) and PACES lower (p = 0.032) during HIITCYC compared to HIITRUN. Discussion In sedentary individuals, free-paced cycling HIIT produces higher levels of physiological stress when compared to constant-paced running HIIT. Participants perceived running HIIT to be more enjoyable than cycling HIIT. These findings have implications for selection of mode of HIIT for physical stress, exercise enjoyment and compliance.

  17. The effect of running versus cycling high-intensity intermittent exercise on local tissue oxygenation and perceived enjoyment in 18-30-year-old sedentary men.

    PubMed

    Kriel, Yuri; Askew, Christopher D; Solomon, Colin

    2018-01-01

    High-intensity interval training (HIIT) has been proposed as a time-efficient exercise format to improve exercise adherence, thereby targeting the chronic disease burden associated with sedentary behaviour. Exercise mode (cycling, running), if self-selected, will likely affect the physiological and enjoyment responses to HIIT in sedentary individuals. Differences in physiological and enjoyment responses, associated with the mode of exercise, could potentially influence the uptake and continued adherence to HIIT. It was hypothesised that in young sedentary men, local and systemic oxygen utilisation and enjoyment would be higher during a session of running HIIT, compared to a session of cycling HIIT. A total of 12 sedentary men (mean ± SD; age 24 ± 3 years) completed three exercise sessions: a maximal incremental exercise test on a treadmill (MAX) followed by two experiment conditions, (1) free-paced cycling HIIT on a bicycle ergometer (HIITCYC) and (2) constant-paced running HIIT on a treadmill ergometer (HIITRUN). Deoxygenated haemoglobin (HHb) in the gastrocnemius (GN), the left vastus lateralis (LVL) and the right vastus lateralis (RVL) muscles, oxygen consumption (VO 2 ), heart rate (HR), ratings of perceived exertion (RPE) and physical activity enjoyment (PACES) were measured during HIITCYC and HIITRUN. There was a higher HHb in the LVL ( p = 0.001) and RVL ( p = 0.002) sites and a higher VO 2 ( p = 0.017) and HR ( p < 0.001) during HIITCYC, compared to HIITRUN. RPE was higher ( p < 0.001) and PACES lower ( p = 0.032) during HIITCYC compared to HIITRUN. In sedentary individuals, free-paced cycling HIIT produces higher levels of physiological stress when compared to constant-paced running HIIT. Participants perceived running HIIT to be more enjoyable than cycling HIIT. These findings have implications for selection of mode of HIIT for physical stress, exercise enjoyment and compliance.

  18. Treadmill Running Reverses Cognitive Declines due to Alzheimer Disease.

    PubMed

    Cho, Jinkyung; Shin, Min-Kyoo; Kim, Donghyun; Lee, Inhwan; Kim, Shinuk; Kang, Hyunsik

    2015-09-01

    This study investigated the effect of treadmill running on cognitive declines in the early and advanced stages of Alzheimer disease (AD) in 3xTg-AD mice. At 4 months of age, 3xTg-AD mice (N = 24) were assigned to control (AD + CON, n = 12) or exercise (AD + EX, n = 12) group. At 24 months of age, 3xTg-AD mice (N = 16) were assigned to AD + CON (n = 8) or AD + EX (n = 8) group. The AD + EX mice were subjected to treadmill running for 12 wk. At each pathological stage, the background strain mice were included as wild-type control (WT + CON, n = 8-12). At the early stage of AD, 3xTg-AD mice had impaired short- and long-term memory based on Morris water maze along with higher cortical Aβ deposition, higher hippocampal and cortical tau pathology, and lower hippocampal and cortical PSD-95 and synaptophysin. A 12-wk treadmill running reversed the impaired cognitive declines and significantly improved the tau pathology along with suppression of the decreased PSD-95 and synaptophysin in the hippocampus and cortex. At the advanced stage of AD, 3xTg-AD mice had impaired short- and long-term memory along with higher levels of Aβ deposition, soluble Aβ1-40 and Aβ1-42, tau pathology, and lower levels of brain-derived neurotrophic factor, PSD-95, and synaptophysin in the hippocampus and cortex. A 12-wk treadmill running reversed the impaired cognitive declines and significantly improved the Aβ and tau pathology along with suppression of the decreased synaptic proteins and brain-derived neurotrophic factor in the hippocampus and cortex. The current findings suggest that treadmill running provides a nonpharmacological means to combat cognitive declines due to AD pathology.

  19. Physiological differences between cycling and running: lessons from triathletes.

    PubMed

    Millet, Gregoire P; Vleck, V E; Bentley, D J

    2009-01-01

    The purpose of this review was to provide a synopsis of the literature concerning the physiological differences between cycling and running. By comparing physiological variables such as maximal oxygen consumption (V O(2max)), anaerobic threshold (AT), heart rate, economy or delta efficiency measured in cycling and running in triathletes, runners or cyclists, this review aims to identify the effects of exercise modality on the underlying mechanisms (ventilatory responses, blood flow, muscle oxidative capacity, peripheral innervation and neuromuscular fatigue) of adaptation. The majority of studies indicate that runners achieve a higher V O(2max) on treadmill whereas cyclists can achieve a V O(2max) value in cycle ergometry similar to that in treadmill running. Hence, V O(2max) is specific to the exercise modality. In addition, the muscles adapt specifically to a given exercise task over a period of time, resulting in an improvement in submaximal physiological variables such as the ventilatory threshold, in some cases without a change in V O(2max). However, this effect is probably larger in cycling than in running. At the same time, skill influencing motor unit recruitment patterns is an important influence on the anaerobic threshold in cycling. Furthermore, it is likely that there is more physiological training transfer from running to cycling than vice versa. In triathletes, there is generally no difference in V O(2max) measured in cycle ergometry and treadmill running. The data concerning the anaerobic threshold in cycling and running in triathletes are conflicting. This is likely to be due to a combination of actual training load and prior training history in each discipline. The mechanisms surrounding the differences in the AT together with V O(2max) in cycling and running are not largely understood but are probably due to the relative adaptation of cardiac output influencing V O(2max) and also the recruitment of muscle mass in combination with the oxidative capacity of this mass influencing the AT. Several other physiological differences between cycling and running are addressed: heart rate is different between the two activities both for maximal and submaximal intensities. The delta efficiency is higher in running. Ventilation is more impaired in cycling than in running. It has also been shown that pedalling cadence affects the metabolic responses during cycling but also during a subsequent running bout. However, the optimal cadence is still debated. Central fatigue and decrease in maximal strength are more important after prolonged exercise in running than in cycling.

  20. Effects of Performance Versus Game-Based Mobile Applications on Response to Exercise.

    PubMed

    Gillman, Arielle S; Bryan, Angela D

    2016-02-01

    Given the popularity of mobile applications (apps) designed to increase exercise participation, it is important to understand their effects on psychological predictors of exercise behavior. This study tested a performance feedback-based app compared to a game-based app to examine their effects on aspects of immediate response to an exercise bout. Twenty-eight participants completed a 30-min treadmill run while using one of two randomly assigned mobile running apps: Nike + Running, a performance-monitoring app which theoretically induces an associative, goal-driven state, or Zombies Run!, an app which turns the experience of running into a virtual reality game, theoretically inducing dissociation from primary exercise goals. The two conditions did not differ on primary motivational state outcomes; however, participants reported more associative attentional focus in the performance-monitoring app condition compared to more dissociative focus in the game-based app condition. Game-based and performance-tracking running apps may not have differential effects on goal motivation during exercise. However, game-based apps may help recreational exercisers dissociate from exercise more readily. Increasing the enjoyment of an exercise bout through the development of new and innovative mobile technologies is an important avenue for future research.

  1. Stereological Investigation of the Effects of Treadmill Running Exercise on the Hippocampal Neurons in Middle-Aged APP/PS1 Transgenic Mice.

    PubMed

    Chao, Fenglei; Jiang, Lin; Zhang, Yi; Zhou, Chunni; Zhang, Lei; Tang, Jing; Liang, Xin; Qi, Yingqiang; Zhu, Yanqing; Ma, Jing; Tang, Yong

    2018-01-01

    The risk of cognitive decline during Alzheimer's disease (AD) can be reduced if physical activity is maintained; however, the specific neural events underlying this beneficial effect are still uncertain. To quantitatively investigate the neural events underlying the effect of running exercise on middle-aged AD subjects, 12-month-old male APP/PS1 mice were randomly assigned to a control group or running group, and age-matched non-transgenic littermates were used as a wild-type group. AD running group mice were subjected to a treadmill running protocol (regular and moderate intensity) for four months. Spatial learning and memory abilities were assessed using the Morris water maze. Hippocampal amyloid plaques were observed using Thioflavin S staining and immunohistochemistry. Hippocampal volume, number of neurons, and number of newborn cells (BrdU+ cells) in the hippocampus were estimated using stereological techniques, and newborn neurons were observed using double-labelling immunofluorescence. Marked neuronal loss in both the CA1 field and dentate gyrus (DG) and deficits in both the neurogenesis and survival of new neurons in the DG of middle-aged APP/PS1 mice were observed. Running exercise could improve the spatial learning and memory abilities, reduce amyloid plaques in the hippocampi, delay neuronal loss, induce neurogenesis, and promote the survival of newborn neurons in the DG of middle-aged APP/PS1 mice. Exercise-induced protection of neurons and adult neurogenesis within the DG might be part of the important structural basis of the improved spatial learning and memory abilities observed in AD mice.

  2. Treadmill exercise delays the onset of non-motor behaviors and striatal pathology in the CAG140 knock-in mouse model of Huntington's disease.

    PubMed

    Stefanko, D P; Shah, V D; Yamasaki, W K; Petzinger, G M; Jakowec, M W

    2017-09-01

    Depression, cognitive impairments, and other neuropsychiatric disturbances are common during the prodromal phase of Huntington's disease (HD) well before the onset of classical motor symptoms of this degenerative disorder. The purpose of this study was to examine the potential impact of physical activity in the form of exercise on a motorized treadmill on non-motor behavioral features including depression-like behavior and cognition in the CAG 140 knock-in (KI) mouse model of HD. The CAG 140 KI mouse model has a long lifespan compared to other HD rodent models with HD motor deficits emerging after 12months of age and thus provides the opportunity to investigate early life interventions such as exercise on disease progression. Motorized treadmill running was initiated at 4weeks of age (1h per session, 3 times per week) and continued for 6months. Non-motor behaviors were assessed up to 6months of age and included analysis of depression-like behavior (using the tail-suspension and forced-swim tests) and cognition (using the T-maze and object recognition tests). At both 4 and 6months of age, CAG 140 KI mice displayed significant depression-like behavior in the forced swim and tail suspension tests and cognitive impairment by deficits in reversal relearning in the T-maze test. These deficits were not evident in mice engaged in treadmill running. In addition, exercise restored striatal dopamine D2 receptor expression and dopamine neurotransmitter levels both reduced in sedentary HD mice. Finally, we examined the pattern of striatal expression of mutant huntingtin (mHTT) protein and showed that the number and intensity of immunohistochemical staining patterns of intranuclear aggregates were significantly reduced with exercise. Altogether these findings begin to address the potential impact of lifestyle and early intervention such as exercise on modifying HD progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Endurance capacity of mice selectively bred for high voluntary wheel running.

    PubMed

    Meek, Thomas H; Lonquich, Brian P; Hannon, Robert M; Garland, Theodore

    2009-09-15

    Mice from four lines bred for high voluntary wheel activity run approximately 3-fold more revolutions per day and have elevated maximal oxygen consumption during forced treadmill exercise, as compared with four unselected control (C) lines. We hypothesized that these high runner (HR) lines would have greater treadmill endurance-running capacity. Ninety-six mice from generation 49 were familiarized with running on a motorized treadmill for 3 days. On days 4 and 5, mice were given an incremental speed test (starting at 20 m min(-1), increased 1.5 m min(-1) every 2 min) and endurance was measured as the total time or distance run to exhaustion. Blood samples were taken to measure glucose and lactate concentrations at rest during the photophase, during peak nightly wheel running, and immediately following the second endurance test. Individual differences in endurance time were highly repeatable between days (r=0.79), and mice tended to run longer on the second day (paired t-test, P<0.0001). Blood glucose following the treadmill test was low for all animals ( approximately 53 mg dl(-1)) and lactate was high ( approximately 6.5 mmol l(-1)), suggesting that exhaustion occurred. The HR lines had significantly higher endurance than the C lines (1-tailed P<0.05), whether or not body mass was used as a covariate in the analysis. The relationship between line means for wheel running and treadmill endurance differed between the sexes, reinforcing previous studies that indicate sex-specific responses to selective breeding. HR mice appear to have a higher endurance capacity than reported in the literature for inbred strains of mice or transgenics intended to enhance endurance.

  4. Exercise protects against high-fat diet-induced hypothalamic inflammation.

    PubMed

    Yi, Chun-Xia; Al-Massadi, Omar; Donelan, Elizabeth; Lehti, Maarit; Weber, Jon; Ress, Chandler; Trivedi, Chitrang; Müller, Timo D; Woods, Stephen C; Hofmann, Susanna M

    2012-06-25

    Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of the central nervous system which are activated by pro-inflammatory signals causing local production of specific interleukins and cytokines, and these in turn may further promote systemic metabolic disease. Whether or how this microglial activation can be averted or reversed is unknown. Since running exercise improves systemic metabolic health and has been found to promote neuronal survival as well as the recovery of brain functions after injury, we hypothesized that regular treadmill running may blunt the effect of western diet on hypothalamic inflammation. Using low-density lipoprotein receptor deficient (l dlr-/-) mice to better reflect human lipid metabolism, we first confirmed that microglial activation in the hypothalamus is severely increased upon exposure to a high-fat, or "western", diet. Moderate, but regular, treadmill running exercise markedly decreased hypothalamic inflammation in these mice. Furthermore, the observed decline in microglial activation was associated with an improvement of glucose tolerance. Our findings support the hypothesis that hypothalamic inflammation can be reversed by exercise and suggest that interventions to avert or reverse neuronal damage may offer relevant potential in obesity treatment and prevention. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Estimation of Energy Expenditure during Treadmill Exercise via Thermal Imaging.

    PubMed

    Jensen, Martin Møller; Poulsen, Mathias Krogh; Alldieck, Thiemo; Larsen, Ryan Godsk; Gade, Rikke; Moeslund, Thomas Baltzer; Franch, Jesper

    2016-12-01

    Noninvasive imaging of oxygen uptake may provide a useful tool for the quantification of energy expenditure during human locomotion. A novel thermal imaging method (optical flow) was validated against indirect calorimetry for the estimation of energy expenditure during human walking and running. Fourteen endurance-trained subjects completed a discontinuous incremental exercise test on a treadmill. Subjects performed 4-min intervals at 3, 5, and 7 km·h (walking) and at 8, 10, 12, 14, 16, and 18 km·h (running) with 30 s of rest between intervals. Heart rate, gas exchange, and mean accelerations of ankle, thigh, wrist, and hip were measured throughout the exercise test. A thermal camera (30 frames per second) was used to quantify optical flow, calculated as the movements of the limbs relative to the trunk (internal mechanical work) and vertical movement of the trunk (external vertical mechanical work). Heart rate, gross oxygen uptake (mL·kg·min) together with gross and net energy expenditure (J·kg·min) rose with increasing treadmill velocities, as did optical flow measurements and mean accelerations (g) of ankle, thigh, wrist, and hip. Oxygen uptake was linearly correlated with optical flow across all exercise intensities (R = 0.96, P < 0.0001; V˙O2 [mL·kg·min] = 7.35 + 9.85 × optical flow [arbitrary units]). Only 3-4 s of camera recording was required to estimate an optical flow value at each velocity. Optical flow measurements provide an accurate estimation of energy expenditure during horizontal walking and running. The technique offers a novel experimental method of estimating energy expenditure during human locomotion, without use of interfering equipment attached to the subject.

  6. Hypothalamic GABAergic influences on treadmill exercise responses in rats.

    PubMed

    Overton, J M; Redding, M W; Yancey, S L; Stremel, R W

    1994-01-01

    Microinjection of GABAergic antagonists in the posterior hypothalamus (PH) produces exercise-like adjustments in cardiovascular function. To test the hypothesis that a hypothalamic GABAergic mechanism within the PH modulates the cardiovascular adjustments to dynamic exercise in conscious animals, Sprague-Dawley rats (n = 10) were instrumented with bilateral guide cannula directed at the pH, an arterial cannula, and Doppler flow probes on the iliac and mesenteric arteries. Saline (100 nl) or the GABAA receptor agonist muscimol (125 ng.100 nl-1) was bilaterally injected into the PH during treadmill exercise (20 m.min-1). Microinjection of saline had no effect on mean arterial pressure (MAP), heart rate (HR), mesenteric vascular resistance (MR), or iliac vascular resistance (IR) during exercise. Microinjection of muscimol during exercise produced no significant changes in MAP (mean change +/- SE; +0 +/- 1 mmHg), HR (+17 +/- 12 b.min-1), or MR (+7 +/- 13%). However, microinjection of muscimol produced a significant increase in IR during exercise (16 +/- 6%). In addition, muscimol significantly decreased treadmill run time (saline = 19.6 +/- 0.4 min; muscimol = 17.8 +/- 0.6 min) and produced behavioral effects (including mild sedation) that were most evident after exercise. The results of these experiments suggest that while the posterior hypothalamic GABAergic system may modulate iliac blood flow during exercise in rats, this system does not modulate HR and MR responses to dynamic exercise.

  7. AMPK and PPARδ agonists are exercise mimetics

    PubMed Central

    Narkar, Vihang A.; Downes, Michael; Yu, Ruth T.; Embler, Emi; Wang, Yong-Xu; Banayo, Ester; Mihaylova, Maria M.; Nelson, Michael C.; Zou, Yuhua; Juguilon, Henry; Kang, Heonjoong; Shaw, Reuben; Evans, Ronald M.

    2008-01-01

    SUMMARY The benefits of endurance exercise on general health make it desirable to identify orally active agents that would mimic or potentiate the effects of exercise to treat metabolic diseases. Although certain natural compounds, such as reseveratrol, have endurance-enhancing activities, their exact metabolic targets remain elusive. We therefore tested the effect of pathway-specific drugs on endurance capacities of mice in a treadmill running test. We found that PPARβ/δ agonist and exercise training synergistically increase oxidative myofibers and running endurance in adult mice. Because training activates AMPK and PGC1α, we then tested whether the orally active AMPK agonist AICAR might be sufficient to overcome the exercise requirement. Unexpectedly, even in sedentary mice, 4 weeks of AICAR treatment alone induced metabolic genes and enhanced running endurance by 44%. These results demonstrate that AMPK-PPARδ pathway can be targeted by orally active drugs to enhance training adaptation or even to increase endurance without exercise. PMID:18674809

  8. Acute administration of high doses of taurine does not substantially improve high-intensity running performance and the effect on maximal accumulated oxygen deficit is unclear.

    PubMed

    Milioni, Fabio; Malta, Elvis de Souza; Rocha, Leandro George Spinola do Amaral; Mesquita, Camila Angélica Asahi; de Freitas, Ellen Cristini; Zagatto, Alessandro Moura

    2016-05-01

    The aim of the present study was to investigate the effects of acute administration of taurine overload on time to exhaustion (TTE) of high-intensity running performance and alternative maximal accumulated oxygen deficit (MAODALT). The study design was a randomized, placebo-controlled, crossover design. Seventeen healthy male volunteers (age: 25 ± 6 years; maximal oxygen uptake: 50.5 ± 7.6 mL·kg(-1)·min(-1)) performed an incremental treadmill-running test until voluntary exhaustion to determine maximal oxygen uptake and exercise intensity at maximal oxygen uptake. Subsequently, participants completed randomly 2 bouts of supramaximal treadmill-running at 110% exercise intensity at maximal oxygen uptake until exhaustion (placebo (6 g dextrose) or taurine (6 g) supplementation), separated by 1 week. MAODALT was determined using a single supramaximal effort by summating the contribution of the phosphagen and glycolytic pathways. When comparing the results of the supramaximal trials (i.e., placebo and taurine conditions) no differences were observed for high-intensity running TTE (237.70 ± 66.00 and 277.30 ± 40.64 s; p = 0.44) and MAODALT (55.77 ± 8.22 and 55.06 ± 7.89 mL·kg(-1); p = 0.61), which seem to indicate trivial and unclear differences using the magnitude-based inferences approach, respectively. In conclusion, acute 6 g taurine supplementation before exercise did not substantially improve high-intensity running performance and showed an unclear effect on MAODALT.

  9. Pre-exercise carbohydrate and fluid ingestion: influence of glycemic response on 10-km treadmill running performance in the heat.

    PubMed

    Mitchell, J B; Braun, W A; Pizza, F X; Forrest, M

    2000-03-01

    The purpose of this study was to determine the influence of ingesting solutions containing mixtures of carbohydrate (CHO) types on pre-exercise glycemic response, exercise-induced hypoglycemia, metabolic responses, and 10-km treadmill running performance in a warm environment. Ten trained runners completed 6, self-paced 10-km treadmill runs one hour after ingesting 900 ml of one of the following test solutions: a water placebo (WP), an 8 g 100 ml-1 high fructose corn syrup solution (HFG; 72 g CHO), a 6 g 100 ml-1 glucose solution (GLU; 54 g CHO), a 6 g.100 ml-1 sucrose/glucose mixture (SUG; 54 g CHO), or banana with water to equal 900 ml (BAN; approx. 54 g CHO). The sixth condition was 675 ml of an 8 g.100 ml-1 HFCS solution (LFG; 54 g CHO). Blood samples were taken prior to ingestion and every 15 min during rest and at 15 and 30 min, and at the end of the 10-km run. Blood was analyzed for glucose (BG) insulin (IN), glycerol, lactate, and percent change in plasma volume. Urine volume during the 1 hour of rest and change in body mass during exercise were also determined. A significant (p < 0.05) correlation (r = -0.684) was seen between the pre-exercise glycemic response (PEGR = area under the resting BG curve) and the change in BG from pre-EX to 15 min of exercise. BG at 15 min of exercise was significantly higher in the WP (5.22 mM) versus the other conditions (HFG = 3.32, LFG = 3.91, GLU = 3.38, BAN = 3.74 & SUG = 3.63 mM). Pre-exercise IN was lower in the WP (6.54 U ml-1) condition versus the other conditions (HFG = 22.1, LFG = 16.2, GLU = 23.3, BAN = 18.8 & SUG = 12.8 U.ml-1). Ten km performance times were not different (WP = 41.87, HFG = 41.66, LFG = 41.79, GLU = 41.65, BAN = 41.53, and SUG = 41.75 min). A significantly greater body mass loss occurred due to urine production during the 60 min of rest in the WP compared to the other conditions. The degree of exercise-induced decline in blood glucose was related to the PEGR; however, the decline in BG did not affect 10-km running performance. In addition, there were no differences in the metabolic responses during exercise between the different CHO types, nor did the type of CHO influence running performance. Finally, the presence of CHO and/or electrolytes in the hydration solutions produced a better fluid retention during the 60-min pre-exercise rest period compared to water. The results confirmed that if a competitive athlete consumed a breakfast prior to ingesting a CHO-electrolyte beverage, a practice that is common, the glycemic responses may be different.

  10. Exercise activates compensatory thermoregulatory reaction in rats: a modeling study

    PubMed Central

    Yoo, Yeonjoo; LaPradd, Michelle; Kline, Hannah; Zaretskaia, Maria V.; Behrouzvaziri, Abolhassan; Rusyniak, Daniel E.; Molkov, Yaroslav I.

    2015-01-01

    The importance of exercise is increasingly emphasized for maintaining health. However, exercise itself can pose threats to health such as the development of exertional heat shock in warm environments. Therefore, it is important to understand how the thermoregulation system adjusts during exercise and how alterations of this can contribute to heat stroke. To explore this we measured the core body temperature of rats (Tc) running for 15 min on a treadmill at various speeds in two ambient temperatures (Ta = 25°C and 32°C). We assimilated the experimental data into a mathematical model that describes temperature changes in two compartments of the body, representing the muscles and the core. In our model the core body generates heat to maintain normal body temperature, and dissipates it into the environment. The muscles produce additional heat during exercise. According to the estimation of model parameters, at Ta = 25°C, the heat generation in the core was progressively reduced with the increase of the treadmill speed to compensate for a progressive increase in heat production by the muscles. This compensation was ineffective at Ta = 32°C, which resulted in an increased rate of heat accumulation with increasing speed, as opposed to the Ta = 25°C case. Interestingly, placing an animal on a treadmill increased heat production in the muscles even when the treadmill speed was zero. Quantitatively, this “ready-to-run” phenomenon accounted for over half of the heat generation in the muscles observed at maximal treadmill speed. We speculate that this anticipatory response utilizes stress-related circuitry. PMID:26472864

  11. Influence of exercise duration on cardiorespiratory responses, energy cost and tissue oxygenation within a 6 hour treadmill run.

    PubMed

    Kerhervé, Hugo A; McLean, Scott; Birkenhead, Karen; Parr, David; Solomon, Colin

    2017-01-01

    The physiological mechanisms for alterations in oxygen utilization ([Formula: see text]) and the energy cost of running ( C r ) during prolonged running are not completely understood, and could be linked with alterations in muscle and cerebral tissue oxygenation. Eight trained ultramarathon runners (three women; mean ± SD; age 37 ± 7 yr; maximum [Formula: see text] 60 ± 15 mL min -1  kg -1 ) completed a 6 hr treadmill run (6TR), which consisted of four modules, including periods of moderate (3 min at 10 km h -1 , 10-CR) and heavy exercise intensities (6 min at 70% of maximum [Formula: see text], HILL), separated by three, 100 min periods of self-paced running (SP). We measured [Formula: see text], minute ventilation ([Formula: see text]), ventilatory efficiency ([Formula: see text]), respiratory exchange ratio (RER), C r , muscle and cerebral tissue saturation index (TSI) during the modules, and heart rate (HR) and perceived exertion (RPE) during the modules and SP. Participants ran 58.3 ± 10.5 km during 6TR. Speed decreased and HR and RPE increased during SP. Across the modules, HR and [Formula: see text] increased (10-CR), and RER decreased (10-CR and HILL). There were no significant changes in [Formula: see text], [Formula: see text], C r , TSI and RPE across the modules. In the context of positive pacing (decreasing speed), increased cardiac drift and perceived exertion over the 6TR, we observed increased RER and increased HR at moderate and heavy exercise intensity, increased [Formula: see text] at moderate intensity, and no effect of exercise duration on ventilatory efficiency, energy cost of running and tissue oxygenation.

  12. VO2 Max in Variable Type Exercise Among Well-Trained Upper Body Athletes.

    ERIC Educational Resources Information Center

    Seals, Douglas R.; Mullin, John P.

    1982-01-01

    The maximal oxygen consumption (VO2 max) of well-trained upper body athletes was compared to that of untrained individuals in four types of exercise: arm cranking, legs only cycling, graded treadmill running, and combined arm cranking and leg cycling. Results of the study showed that well-trained upper body athletes attained a significantly higher…

  13. The Kinematics of Treadmill Locomotion in Space

    NASA Technical Reports Server (NTRS)

    Thornton, W. E.; Cavanagh, P. R.; Buczek, F. L.; Burgess-Milliron, M. J.; Davis, B. L.

    1997-01-01

    Locomotion on a treadmill in 0 G will probably remain a centerpiece of NASA's exercise countermeasures programme. This form of physical activity has the potential to cause large bone and muscle forces as well as loading during a period of continuous treadmill exercise. A critical concern is the provision of a treadmill which can approximate 1 G performance in space. At this point, no adequate objective measurements of in-flight treadmill kinetics or of the human response to this activity have been made. Interpretation of the results obtained in the present study is limited by the following: (1) bungee tensions were not measured; (2) ground reaction forces were not measured in parallel with the kinematic measurements; and (3) the instrumentation used to film the astronauts could itself have been affected by microgravity. Despite these shortcomings, what is apparent is that exercise during NASA missions STS 7 and STS 8 resulted in leg motions that were similar to those found during 1 G locomotion on an inclined passive treadmill and on an active treadmill at an even steeper grade. In addition, it was apparent that the majority of the loads were transmitted through the forefoot, and one can surmise that this style of running would result in physiologically significant tensions in the calf musculature and resultant ankle compressive loading. Further speculation regarding limb loading is complicated by the fact that varying amounts of force are transmitted through (1) the treadmill handle and (2) bungee cords that act as a tether. New generations of treadmills are being manufactured that could provide I important information for planners of long-duration space missions. If these types of treadmill are flown on future missions, it will be possible to control bungee tensions more precisely, control for grade and speed, and, most importantly, provide data on the rates and magnitudes of limb loading. These data could then be incorporated into biomechanical models of the lower limb to more fully understand mechanisms of load transmission from distal to proximal structures and to optimize in-flight exercise protocols in such a way that muscle and bone loss could be reduced.

  14. Voluntary Wheel Running Induces Exercise-Seeking Behavior in Male Rats: A Behavioral Study.

    PubMed

    Naghshvarian, Mojtaba; Zarrindast, Mohammad-Reza; Sajjadi, Seyedeh Fatemeh

    2017-12-01

    Research evidence shows that exercise is associated with positive physical and mental health. Moreover, exercise and wheel running in rats activate overlapping neural systems and reward system. The most commonly used models for the study of rewarding and aversive effects of exercise involve using treadmill and wheel running paradigms in mice or rats. The purpose of our experiment was to study the influence of continuous voluntary exercise on exercise-seeking behavior. In this experimental study, we used 24 adult male Sprague-Dawley rats weighing 275-300 g on average. Rats were divided into 3 experimental groups for 4 weeks of voluntary wheel running. Each rat ran in the cage equipped with a wheel during 24 hours. A within-subject repeated measure design was employed to evaluate the trend of running and running rates. We found that time and higher levels of exercise will increase exercise tendency. Our results also show that the interaction of exercise within 4 weeks and different levels of exercise can significantly promote rats' exercise-seeking behavior (F = 5.440; df = 2.08; P < 0.001). Our data suggest that voluntary wheel running can increase the likelihood of extreme and obsessive exercising which is a form of non-drug addiction. 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  15. Changes in cardiovascular performance, biochemistry, gastric motility and muscle temperature induced by acute exercise on a treadmill in healthy military dogs.

    PubMed

    Queiroz, R W; Silva, V L; Rocha, D R; Costa, D S; Turco, S H N; Silva, M T B; Santos, A A; Oliveira, M B L; Pereira, A S R; Palheta-Junior, R C

    2018-02-01

    Changes in physiological parameters that are induced by acute exercise on a treadmill in healthy military dogs have not been thoroughly investigated, especially with regard to age. This study investigated the effects of acute exercise on a treadmill on cardiovascular function, biochemical parameters and gastric antral motility in military dogs. Thermography was used to assess variations in superficial hindlimb muscle temperature. Nine healthy dogs were distributed into three groups according to their age (Group I: 25 ± 7 months; Group II: 51 ± 12 months; Group III: 95 ± 10 months) and sequentially subjected to running exercise on a treadmill for 12 min (3.2 km/h at 0° incline for 4 min, 6.4 km/h at 0° incline for 4 min and 6.4 km/h at 10° incline for 4 min). Heart rate, systolic and diastolic arterial pressure (DAP), gastric motility, haematocrit and biochemical analyses were performed at rest and after each session of treadmill exercise. Infrared thermographic images of muscles in the pelvic member were taken. Exercise decreased DAP in Group I, increased systolic arterial pressure in Groups II and III and increased mean arterial pressure in Group III (all p < 0.05). After the exercise protocol, plasma creatine kinase and aspartate aminotransferase levels increased only in Group I (p < 0.05). Exercise increased heart rate and decreased the gastric motility of a solid meal at 180 min in all groups (all p < 0.05). Exercise also elevated temperature in the femoral biceps muscles in Group I compared with the older dogs. The results indicate that acute exercise decreased gastric motility in dogs, regardless of age, and caused more pronounced cardiovascular changes in older dogs than in younger dogs. Acute exercise also altered biochemical parameters and superficial hindlimb muscle temperature in younger military dogs. © 2016 Blackwell Verlag GmbH.

  16. Muscle adenine nucleotide degradation during submaximal treadmill exercise to fatigue.

    PubMed

    Essén-Gustavsson, B; Gottlieb-Vedi, M; Lindholm, A

    1999-07-01

    The aim was to investigate metabolic response in muscle during submaximal treadmill exercise to fatigue, with a special emphasis on adenine nucleotide degradation products such as inosine monophosphate (IMP) in muscle and hypoxanthine, xanthine and uric acid in plasma. Five Standardbred trotters performed treadmill exercise on 2 occasions, once at 7 m/s and once at 10 m/s. Venous blood samples were taken at rest, during exercise and at the end of exercise. Muscle biopsies were taken before and after exercise and muscle temperature was measured before and after exercise. Running time differed among horses and was 48-58 min at 7 m/s and 10-15.5 min at 10 m/s. Both lactate and uric acid concentrations in plasma showed a gradual increase during exercise at both 7 and 10 m/s. At the end of exercise, values for uric acid were higher and values for lactate lower at 7 m/s compared with at 10 m/s. No marked changes were seen in plasma concentrations of hypoxanthine or xanthine with exercise. Muscle glycogen decreased after exercise at both 7 and 10 m/s with a marked depletion seen in some fibres. Muscle lactate concentrations increased after exercise at both 7 m/s and at 10 m/s. No significant changes were seen in adenosine triphosphate (ATP), ADP and AMP concentrations, whereas IMP concentrations increased after exercise at both 7 m/s and at 10 m/s. The results of this study indicate that AMP deamination occurs with submaximal exercise and that development of fatigue may be related to adenine nucleotide degradation in muscle.

  17. Effect of Warm-Up on Plasma Free Fatty Acid Response and Substrate Utilization During Submaximal Exercise.

    ERIC Educational Resources Information Center

    Hetzler, Ronald K.; And Others

    1986-01-01

    This study examined the effect of preliminary walking on free fatty acid responses and substrate utilization during a 40-minute treadmill run by experienced male distance runners. Conclusions are presented. (Author/MT)

  18. Acute and Chronic Exercise in Animal Models.

    PubMed

    Thu, Vu Thi; Kim, Hyoung Kyu; Han, Jin

    2017-01-01

    Numerous animal cardiac exercise models using animal subjects have been established to uncover the cardiovascular physiological mechanism of exercise or to determine the effects of exercise on cardiovascular health and disease. In most cases, animal-based cardiovascular exercise modalities include treadmill running, swimming, and voluntary wheel running with a series of intensities, times, and durations. Those used animals include small rodents (e.g., mice and rats) and large animals (e.g., rabbits, dogs, goats, sheep, pigs, and horses). Depending on the research goal, each experimental protocol should also describe whether its respective exercise treatment can produce the anticipated acute or chronic cardiovascular adaptive response. In this chapter, we will briefly describe the most common kinds of animal models of acute and chronic cardiovascular exercises that are currently being conducted and are likely to be chosen in the near future. Strengths and weakness of animal-based cardiac exercise modalities are also discussed.

  19. Chronic treadmill exercise in rats delicately alters the Purkinje cell structure to improve motor performance and toxin resistance in the cerebellum.

    PubMed

    Huang, Tung-Yi; Lin, Lung-Sheng; Cho, Keng-Chi; Chen, Shean-Jen; Kuo, Yu-Min; Yu, Lung; Wu, Fong-Sen; Chuang, Jih-Ing; Chen, Hsiun-Ing; Jen, Chauying J

    2012-09-01

    Although exercise usually improves motor performance, the underlying cellular changes in the cerebellum remain to be elucidated. This study aimed to investigate whether and how chronic treadmill exercise in young rats induced Purkinje cell changes to improve motor performance and rendered the cerebellum less vulnerable to toxin insults. After 1-wk familiarization of treadmill running, 6-wk-old male Wistar rats were divided into exercise and sedentary groups. The exercise group was then subjected to 8 wk of exercise training at moderate intensity. The rotarod test was carried out to evaluate motor performance. Purkinje cells in cerebellar slices were visualized by lucifer yellow labeling in single neurons and by calbindin immunostaining in groups of neurons. Compared with sedentary control rats, exercised rats not only performed better in the rotarod task, but also showed finer Purkinje cell structure (higher dendritic volume and spine density with the same dendritic field). The exercise-improved cerebellar functions were further evaluated by monitoring the long-lasting effects of intraventricular application of OX7-saporin. In the sedentary group, OX7-saporin treatment retarded the rotarod performance and induced ∼60% Purkinje cell loss in 3 wk. As a comparison, the exercise group showed much milder injuries in the cerebellum by the same toxin treatment. In conclusion, exercise training in young rats increased the dendritic density of Purkinje cells, which might play an important role in improving the motor performance. Furthermore, as Purkinje cells in the exercise group were relatively toxin resistant, the exercised rats showed good motor performance, even under toxin-treated conditions.

  20. Running mechanical alterations during repeated treadmill sprints in hot versus hypoxic environments. A pilot study.

    PubMed

    Girard, Olivier; Brocherie, Franck; Morin, Jean-Benoit; Millet, Grégoire P

    2016-01-01

    We determined if performance and mechanical running alterations during repeated treadmill sprinting differ between severely hot and hypoxic environments. Six male recreational sportsmen (team- and racket-sport background) performed five 5-s sprints with 25-s recovery on an instrumented treadmill, allowing the continuous (step-by-step) measurement of running kinetics/kinematics and spring-mass characteristics. These were randomly conducted in control (CON; 25°C/45% RH, inspired fraction of oxygen = 20.9%), hot (HOT; 38°C/21% RH, inspired fraction of oxygen = 20.9%; end-exercise core temperature: ~38.6°C) and normobaric hypoxic (HYP, 25°C/45% RH, inspired fraction of oxygen = 13.3%/simulated altitude of ~3600 m; end-exercise pulse oxygen saturation: ~84%) environments. Running distance was lower (P < 0.05) in HOT compared to CON and HYP for the first sprint but larger (P < 0.05) sprint decrement score occurred in HYP versus HOT and CON. Compared to CON, the cumulated distance covered over the five sprints was lower (P < 0.01) in HYP but not in HOT. Irrespective of the environmental condition, significant changes occurred from the first to the fifth sprint repetitions (all three conditions compounded) in selected running kinetics (mean horizontal forces, P < 0.01) or kinematics (contact and swing times, both P < 0.001; step frequency, P < 0.001) and spring-mass characteristics (vertical stiffness, P < 0.001; leg stiffness, P < 0.01). No significant interaction between sprint number and condition was found for any mechanical data. Preliminary evidence indicates that repeated-sprint ability is more impaired in hypoxia than in a hot environment, when compared to a control condition. However, as sprints are repeated, mechanical alterations appear not to be exacerbated in severe (heat, hypoxia) environmental conditions.

  1. Post-exercise hot water immersion induces heat acclimation and improves endurance exercise performance in the heat.

    PubMed

    Zurawlew, M J; Walsh, N P; Fortes, M B; Potter, C

    2016-07-01

    We examined whether daily hot water immersion (HWI) after exercise in temperate conditions induces heat acclimation and improves endurance performance in temperate and hot conditions. Seventeen non-heat-acclimatized males performed a 6-day intervention involving a daily treadmill run for 40 min at 65% V̇O2max in temperate conditions (18 °C) followed immediately by either HWI (N = 10; 40 °C) or thermoneutral (CON, N = 7; 34 °C) immersion for 40 min. Before and after the 6-day intervention, participants performed a treadmill run for 40 min at 65% V̇O2max followed by a 5-km treadmill time trial (TT) in temperate (18 °C, 40% humidity) and hot (33 °C, 40% humidity) conditions. HWI induced heat acclimation demonstrated by lower resting rectal temperature (Tre , mean, -0.27 °C, P < 0.01), and final Tre during submaximal exercise in 18 °C (-0.28 °C, P < 0.01) and 33 °C (-0.36 °C, P < 0.01). Skin temperature, Tre at sweating onset and RPE were lower during submaximal exercise in 18 °C and 33 °C after 6 days in HWI (P < 0.05). Physiological strain and thermal sensation were also lower during submaximal exercise in 33 °C after 6 days in HWI (P < 0.05). HWI improved TT performance in 33 °C (4.9%, P < 0.01) but not in 18 °C. Thermoregulatory measures and performance did not change in CON. Hot water immersion after exercise on 6 days presents a simple, practical, and effective heat acclimation strategy to improve endurance performance in the heat. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Treadmill running restores MDMA-mediated hyperthermia prevented by inhibition of the dorsomedial hypothalamus

    PubMed Central

    Zaretsky, Dmitry V; Zaretskaia, Maria V; Durant, Pamela J; Rusyniak, Daniel E

    2015-01-01

    The contribution of exercise to hyperthermia mediated by MDMA is not known. We recently showed that inhibiting the dorsomedial hypothalamus (DMH) attenuated spontaneous locomotion and hyperthermia and prevented deaths in rats given MDMA in a warm environment. The goal of this study was to confirm that restoring locomotion through a treadmill would reverse these effects thereby confirming that locomotion mediated by the DMH contributes to MDMA-mediated hyperthermia. Rats were randomized to receive bilateral microinjections, into the region of the DMH, of muscimol (80 pmol/100nl) or artificial CSF followed by a systemic dose of either MDMA (7.5 mg/kg, i.v.) or saline. Immediately after the systemic injection, rats were placed on a motorized treadmill maintained at 32°C. Rats were exercised at a fixed speed (10 m/min) until their core temperature reached 41°C. Our results showed that a fixed exercise load abolished the decreases in temperature and mortality, seen previously with inhibition of the DMH in freely moving rats. Therefore, locomotion mediated by neurons in the DMH is critical to the development of hyperthermia from MDMA. PMID:25725382

  3. Exercise economy in skiing and running

    PubMed Central

    Losnegard, Thomas; Schäfer, Daniela; Hallén, Jostein

    2014-01-01

    Substantial inter-individual variations in exercise economy exist even in highly trained endurance athletes. The variation is believed to be determined partly by intrinsic factors. Therefore, in the present study, we compared exercise economy in V2-skating, double poling, and uphill running. Ten highly trained male cross-country skiers (23 ± 3 years, 180 ± 6 cm, 75 ± 8 kg, VO2peak running: 76.3 ± 5.6 mL·kg−1·min−1) participated in the study. Exercise economy and VO2peak during treadmill running, ski skating (V2 technique) and double poling were compared based on correlation analysis. There was a very large correlation in exercise economy between V2-skating and double poling (r = 0.81) and large correlations between V2-skating and running (r = 0.53) and double poling and running (r = 0.58). There were trivial to moderate correlations between exercise economy and the intrinsic factors VO2peak (r = 0.00–0.23), cycle rate (r = 0.03–0.46), body mass (r = −0.09–0.46) and body height (r = 0.11–0.36). In conclusion, the inter-individual variation in exercise economy could be explained only moderately by differences in VO2peak, body mass and body height. Apparently other intrinsic factors contribute to the variation in exercise economy between highly trained subjects. PMID:24478718

  4. Mild exercise increases dihydrotestosterone in hippocampus providing evidence for androgenic mediation of neurogenesis.

    PubMed

    Okamoto, Masahiro; Hojo, Yasushi; Inoue, Koshiro; Matsui, Takashi; Kawato, Suguru; McEwen, Bruce S; Soya, Hideaki

    2012-08-07

    Mild exercise activates hippocampal neurons through the glutamatergic pathway and also promotes adult hippocampal neurogenesis (AHN). We hypothesized that such exercise could enhance local androgen synthesis and cause AHN because hippocampal steroid synthesis is facilitated by activated neurons via N-methyl-D-aspartate receptors. Here we addressed this question using a mild-intense treadmill running model that has been shown to be a potent AHN stimulator. A mass-spectrometric analysis demonstrated that hippocampal dihydrotestosterone increased significantly, whereas testosterone levels did not increase significantly after 2 wk of treadmill running in both orchidectomized (ORX) and sham castrated (Sham) male rats. Furthermore, analysis of mRNA expression for the two isoforms of 5α-reductases (srd5a1, srd5a2) and for androgen receptor (AR) revealed that both increased in the hippocampus after exercise, even in ORX rats. All rats were injected twice with 5'-bromo-2'deoxyuridine (50 mg/kg body weight, i.p.) on the day before training. Mild exercise significantly increased AHN in both ORX and Sham rats. Moreover, the increase of doublecortin or 5'-bromo-2'deoxyuridine/NeuN-positive cells in ORX rats was blocked by s.c. flutamide, an AR antagonist. It was also found that application of an estrogen receptor antagonist, tamoxifen, did not suppress exercise-induced AHN. These results support the hypothesis that, in male animals, mild exercise enhances hippocampal synthesis of dihydrotestosterone and increases AHN via androgenenic mediation.

  5. Mild exercise increases dihydrotestosterone in hippocampus providing evidence for androgenic mediation of neurogenesis

    PubMed Central

    Okamoto, Masahiro; Hojo, Yasushi; Inoue, Koshiro; Matsui, Takashi; Kawato, Suguru; McEwen, Bruce S.; Soya, Hideaki

    2012-01-01

    Mild exercise activates hippocampal neurons through the glutamatergic pathway and also promotes adult hippocampal neurogenesis (AHN). We hypothesized that such exercise could enhance local androgen synthesis and cause AHN because hippocampal steroid synthesis is facilitated by activated neurons via N-methyl-D-aspartate receptors. Here we addressed this question using a mild-intense treadmill running model that has been shown to be a potent AHN stimulator. A mass-spectrometric analysis demonstrated that hippocampal dihydrotestosterone increased significantly, whereas testosterone levels did not increase significantly after 2 wk of treadmill running in both orchidectomized (ORX) and sham castrated (Sham) male rats. Furthermore, analysis of mRNA expression for the two isoforms of 5α-reductases (srd5a1, srd5a2) and for androgen receptor (AR) revealed that both increased in the hippocampus after exercise, even in ORX rats. All rats were injected twice with 5′-bromo-2′deoxyuridine (50 mg/kg body weight, i.p.) on the day before training. Mild exercise significantly increased AHN in both ORX and Sham rats. Moreover, the increase of doublecortin or 5′-bromo-2′deoxyuridine/NeuN-positive cells in ORX rats was blocked by s.c. flutamide, an AR antagonist. It was also found that application of an estrogen receptor antagonist, tamoxifen, did not suppress exercise-induced AHN. These results support the hypothesis that, in male animals, mild exercise enhances hippocampal synthesis of dihydrotestosterone and increases AHN via androgenenic mediation. PMID:22807478

  6. McArthur runs on the TVIS during Expedition 12

    NASA Image and Video Library

    2005-10-19

    ISS012-E-05937 (19 Oct. 2005) --- Astronaut William S. McArthur Jr., Expedition 12 commander and NASA science officer, equipped with a bungee harness, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the international space station.

  7. McArthur runs the Half Marathon onboard the ISS on Expedition 12

    NASA Image and Video Library

    2006-01-15

    ISS012-E-15158 (15 Jan. 2006) --- Astronaut William S. (Bill) McArthur, Jr., Expedition 12 commander and NASA space station science officer, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.

  8. Effects of running with backpack loads during simulated gravitational transitions: Improvements in postural control

    NASA Astrophysics Data System (ADS)

    Brewer, Jeffrey David

    The National Aeronautics and Space Administration is planning for long-duration manned missions to the Moon and Mars. For feasible long-duration space travel, improvements in exercise countermeasures are necessary to maintain cardiovascular fitness, bone mass throughout the body and the ability to perform coordinated movements in a constant gravitational environment that is six orders of magnitude higher than the "near weightlessness" condition experienced during transit to and/or orbit of the Moon, Mars, and Earth. In such gravitational transitions feedback and feedforward postural control strategies must be recalibrated to ensure optimal locomotion performance. In order to investigate methods of improving postural control adaptation during these gravitational transitions, a treadmill based precision stepping task was developed to reveal changes in neuromuscular control of locomotion following both simulated partial gravity exposure and post-simulation exercise countermeasures designed to speed lower extremity impedance adjustment mechanisms. The exercise countermeasures included a short period of running with or without backpack loads immediately after partial gravity running. A novel suspension type partial gravity simulator incorporating spring balancers and a motor-driven treadmill was developed to facilitate body weight off loading and various gait patterns in both simulated partial and full gravitational environments. Studies have provided evidence that suggests: the environmental simulator constructed for this thesis effort does induce locomotor adaptations following partial gravity running; the precision stepping task may be a helpful test for illuminating these adaptations; and musculoskeletal loading in the form of running with or without backpack loads may improve the locomotor adaptation process.

  9. Effects of physical exercise and social isolation on anxiety-related behaviors in two inbred rat strains.

    PubMed

    Mazur, F G; Oliveira, L F G; Cunha, M P; Rodrigues, A L S; Pértile, R A N; Vendruscolo, L F; Izídio, G S

    2017-09-01

    We investigated the effects of physical exercise (PE) on locomotor activity and anxiety-like behavior in Lewis (LEW) and Spontaneously Hypertensive Rats (SHR) male rats. Rats received either four weeks of forced training, 5days/week, on a treadmill (experiment 1) or were given 21days of free access to running wheels (experiment 2). We also tested the effects of social isolation (SI) (seven days of isolation - experiment 3) on behavior. In experiment 1, 20% of LEW rats and 63% of SHR rats completed the training protocol. PE significantly increased central and peripheral locomotion in the open field (OF) and entries into the open arms in the elevated plus-maze (EPM) in both strains. In experiment 2, the distance traveled by SHR rats on running wheels was significantly higher compared with LEW rats. PE on running wheels also increased the time spent in the center of the OF in SHR rats only. In experiment 3, SI decreased central and peripheral locomotion in the OF in both strains. In summary, forced PE on a treadmill reduced anxiety-like behavior and increased locomotion in male rats of both strains, whereas voluntary PE on running wheels decreased anxiety-like behavior in SHR rats only. SI decreased locomotion in both strains in the OF. This study suggests that spontaneous activity levels are genotype-dependent and the effects of PE depend on the type of exercise performed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Antihypoxants, thiasolo[5,4-b]indole derivatives, increase exercise performance in rats and mice.

    PubMed

    Marysheva, V V; Shabanov, P D

    2009-01-01

    The actoptrotective activity of 12 new antihypoxants of the thiasolo[5,4-b]indole series was studied on the model of treadmill running until exhaustion 1 and 24 h after intraperitoneal injection. Highly active compounds more effective than the reference drugs bemithyl and phenamine were found. They increased exercise performance 1 or 24 h after injection or maintained high performance throughout 24 h.

  11. Transient enhancement of GLUT-4 levels in rat epitrochlearis muscle after exercise training

    PubMed Central

    Reynolds, Thomas H.; Brozinick, Joseph T.; Larkin, Lisa M.; Cushman, Samuel W.

    2009-01-01

    The purpose of the present study was to examine the effect of detraining on the glucose transport system after short-term swim training (5 days), long-term swim training (5 wk), and treadmill run training (5 wk). Skeletal muscles were isolated from female Wistar rats at 24 or 48 h posttraining. SST produces a 48% increase in GLUT-4 mRNA, a 30% increase in GLUT-4 protein, and a 60% increase in insulin-stimulated glucose transport activity at 24 h posttraining but not at 48 h posttraining. Similar to SST, long-term swim training produces a 60% increase in GLUT-4 mRNA and a 30% increase in GLUT-4 protein content at 24 h posttraining but not at 48 h posttraining. Finally, treadmill run training produces a transient 35% increase in GLUT-4 protein content that is completely reversed at 48 h after the last bout of exercise. These results demonstrate that the increase in GLUT-4 mRNA and GLUT-4 protein occurs during the first week of exercise training and is rapidly lost after training cessation. We believe that the transient enhancement in GLUT-4 protein after exercise training is due to a short GLUT-4 half-life, a process that is primarily regulated by pretranslational mechanisms. PMID:10846041

  12. Transient enhancement of GLUT-4 levels in rat epitrochlearis muscle after exercise training.

    PubMed

    Reynolds, T H; Brozinick, J T; Larkin, L M; Cushman, S W

    2000-06-01

    The purpose of the present study was to examine the effect of detraining on the glucose transport system after short-term swim training (5 days), long-term swim training (5 wk), and treadmill run training (5 wk). Skeletal muscles were isolated from female Wistar rats at 24 or 48 h posttraining. SST produces a 48% increase in GLUT-4 mRNA, a 30% increase in GLUT-4 protein, and a 60% increase in insulin-stimulated glucose transport activity at 24 h posttraining but not at 48 h posttraining. Similar to SST, long-term swim training produces a 60% increase in GLUT-4 mRNA and a 30% increase in GLUT-4 protein content at 24 h posttraining but not at 48 h posttraining. Finally, treadmill run training produces a transient 35% increase in GLUT-4 protein content that is completely reversed at 48 h after the last bout of exercise. These results demonstrate that the increase in GLUT-4 mRNA and GLUT-4 protein occurs during the first week of exercise training and is rapidly lost after training cessation. We believe that the transient enhancement in GLUT-4 protein after exercise training is due to a short GLUT-4 half-life, a process that is primarily regulated by pretranslational mechanisms.

  13. Physiological responses at five estimates of critical velocity.

    PubMed

    Bull, Anthony J; Housh, Terry J; Johnson, Glen O; Rana, Sharon R

    2008-04-01

    The purpose of this study was to compare critical velocity (CV) estimates from five mathematical models, and to examine the oxygen uptake (VO(2)) and heart rate (HR) responses during treadmill runs at the five estimates of CV. Ten subjects (six males and four females) performed one incremental test to determine maximal oxygen consumption (VO(2max)) and four or five randomly ordered constant-velocity trials on a treadmill for the estimation of CV. Five mathematical models were used to estimate CV for each subject including two linear, two nonlinear, and an exponential model. Up to five randomly ordered runs to exhaustion were performed by each subject at treadmill velocities that corresponded to the five CV estimates, and VO(2) and HR responses were monitored throughout each trial. The 3-parameter, nonlinear (Non-3) model produced CV estimates that were significantly (P < 0.05) less than the other four models. During runs at CV estimates, five subjects did not complete 60 min at the their estimate from the Non-3 model, nine did not complete 60 min at their estimate from the Non-2 model, and no subjects completed 60 min at any estimate from the other three models. The mean HR value (179 +/- 18 beats min(-1), HR(peak)) at the end of runs at CV using the Non-3 model was significantly less than the maximal HR (195 +/- 7 beats min(-1), HR(max)) achieved during the incremental trial to exhaustion. However, mean HR(peak) values from runs at all other CV estimates were not significantly different from HR(max). Furthermore, data indicated that mean HR(peak) values increased during runs at CV estimates from the third minute to the end of exercise for all models, and that these increases in VO(2) (range = 367-458 ml min(-1)) were significantly greater than that typically associated with O(2) drift ( approximately 200 ml min(-1)) for all but the exponential model, indicating a VO(2) slow component associated with CV estimates from four of the five models. However, the mean VO(2) values at the end of exercise during the runs at CV estimates for all five mathematical models were significantly less than the mean VO(2max) value. These results suggest that, in most cases, CV estimated from the five models does not represent a fatigueless task. In addition, the mean CV estimates from the five models varied by 18%, and four of the five mean CV estimates were within the heavy exercise domain. Therefore, CV would not represent the demarcation point between heavy and severe exercise domains.

  14. Effect of continuous and intermittent bouts of isocaloric cycling and running exercise on excess postexercise oxygen consumption.

    PubMed

    Cunha, Felipe A; Midgley, Adrian W; McNaughton, Lars R; Farinatti, Paulo T V

    2016-02-01

    The purpose of this study was to investigate excess postexercise oxygen consumption (EPOC) induced by isocaloric bouts of continuous and intermittent running and cycling exercise. This was a counterbalanced randomized cross-over study. Ten healthy men, aged 23-34yr, performed six bouts of exercise: (a) two maximal cardiopulmonary exercise tests for running and cycling to determine exercise modality-specific peak oxygen uptake (VO2peak); and (b) four isocaloric exercise bouts (two continuous bouts expending 400kcal and two intermittent bouts split into 2×200kcal) performed at 75% of the running and cycling oxygen uptake reserve. Exercise bouts were separated by 72h and performed in a randomized, counter-balanced order. The VO2 was monitored for 60-min postexercise and for 60-min during a control non-exercise day. The VO2 was significantly greater in all exercise conditions compared to the control session (P<0.001). The combined magnitude of the EPOC from the two intermittent bouts was significantly greater than that of the continuous cycling (mean difference=3.5L, P=0.001) and running (mean difference=6.4L, P<0.001). The exercise modality had a significant effect on net EPOC, where running elicited a higher net EPOC than cycling (mean difference=2.2L, P<0.001). Intermittent exercise increased the EPOC compared to a continuous exercise bout of equivalent energy expenditure. Furthermore, the magnitude of EPOC was influenced by exercise modality, with the greatest EPOC occurring with isocaloric exercise involving larger muscle mass (i.e., treadmill running vs. cycling). Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Development of an Elliptical Trainer Physical Fitness Test

    DTIC Science & Technology

    2006-04-02

    have demonstrated caloric expenditures and ratings of perceived exertion (RPE) similar to those measured during treadmill running (Clay, 2000...elliptical trainer calculates and displays total caloric expenditure and distance for each workout session. Distance is a function of the force phase of the...total caloric expenditure will be the performance measure. Bout duration will be 12 min to make the exercise bout similar to Cooper’s 12-minute run

  16. The effect of chronic treadmill exercise and acetaminophen on collagen and cross-linking in rat skeletal muscle and heart.

    PubMed

    Carroll, Chad C; Martineau, Karl; Arthur, Kathryn A; Huynh, Richard T; Volper, Brent D; Broderick, Tom L

    2015-02-15

    The purpose of this study was to determine whether exercise and/or acetaminophen (APAP) alter collagen and cross-linking in the rat gastrocnemius muscle, soleus muscle, and heart. Male Wistar rats (n = 50; 8 wk old) were divided into placebo (PLA) or APAP groups and sedentary (SED) or exercised (RUN) groups. APAP (200 mg/kg) was administered daily by oral gavage. Exercised groups ran on a treadmill 5 days/wk for 8 wk with progression to 60 min/day, 20 m/min, and 8° incline. Tissues were assayed for collagen (hydroxyproline) and hydroxylyslpyridinoline (HP) and lysylpyridinoline (LP) cross-links by HPLC. Collagen content (μg/mg dry weight) was greater in both the gastrocnemius (SED-PLA: 114 ± 16 vs. 244 ± 32; P < 0.001) and soleus (SED-PLA: 51 ± 7 vs. 99 ± 27; P = 0.005) of exercised animals. In contrast, collagen content was not significantly greater in exercised animals treated with APAP (SED-APAP: 113 ± 16 vs. 145 ± 21) and soleus (SED-APAP: 55 ± 8 vs. 57 ± 10). HP cross-linking (mmol/mol collagen) in the gastrocnemius (SED-PLA: 126 ± 28, RUN-PLA: 50 ± 7, SED-APAP: 41 ± 7, and 30 ± 4) and soleus muscles (SED-PLA: 547 ± 107, RUN-PLA: 318 ± 92, SED-APAP: 247 ± 64, and 120 ± 17) was lower in exercised rats compared with sedentary rats (P < 0.05). Cross-linking was further reduced in animals treated with APAP (P < 0.05). Neither heart collagen nor cross-linking was influenced by exercise or APAP (P > 0.05). Our findings suggest that exercise and APAP have tissue-specific effects on muscle collagen. Given the widespread use of APAP as an analgesic and antipyretic, further work in humans is warranted. Copyright © 2015 the American Physiological Society.

  17. STS-32 crewmembers hold finish line banner as MS Low races on treadmill

    NASA Image and Video Library

    1990-01-20

    STS032-03-021 (9-20 Jan. 1990) --- Three crew members aboard the Space Shuttle Columbia enjoy one of the lighter moments of the 11-day mission on the flight deck. Astronaut G. David Low "runs" on a treadmill device while astronauts Daniel C. Brandenstein, left, and James D. Wetherbee look on. Wetherbee's mother competed in a marathon in Houston while the crew members had their own in-space version. The treadmill served as an exerciser and also was an important element of onboard biomedical testing. This picture was used by the astronauts at their January 30, 1990 Post Flight Press Conference (PFPC) at the Johnson Space Center (JSC).

  18. Serum S100B level increases after running but not cycling exercise.

    PubMed

    Stocchero, Cintia Mussi Alvim; Oses, Jean Pierre; Cunha, Giovani Santos; Martins, Jocelito Bijoldo; Brum, Liz Marina; Zimmer, Eduardo Rigon; Souza, Diogo Onofre; Portela, Luis Valmor; Reischak-Oliveira, Alvaro

    2014-03-01

    The objective of this study was to investigate the effect of running versus cycling exercises upon serum S100B levels and typical markers of skeletal muscle damage such as creatine kinase (CK), aspartate aminotransferase (AST) and myoglobin (Mb). Although recent work demonstrates that S100B is highly expressed and exerts functional properties in skeletal muscle, there is no previous study that tries to establish a relationship between muscle damage and serum S100B levels after exercise. We conducted a cross-sectional study on 13 male triathletes. They completed 2 submaximal exercise protocols at anaerobic threshold intensity. Running was performed on a treadmill with no inclination (RUN) and cycling (CYC) using a cycle-simulator. Three blood samples were taken before (PRE), immediately after (POST) and 1 h after exercise for CK, AST, Mb and S100B assessments. We found a significant increase in serum S100B levels and muscle damage markers in RUN POST compared with RUN PRE. Comparing groups, POST S100B, CK, AST and Mb serum levels were higher in RUN than CYC. Only in RUN, the area under the curve (AUC) of serum S100B is positively correlated with AUC of CK and Mb. Therefore, immediately after an intense exercise such as running, but not cycling, serum levels of S100B protein increase in parallel with levels of CK, AST and Mb. Additionally, the positive correlation between S100B and CK and Mb points to S100B as an acute biomarker of muscle damage after running exercise.

  19. Exercise prevents the increased anxiety-like behavior in lactational di-(2-ethylhexyl) phthalate-exposed female rats in late adolescence by improving the regulation of hypothalamus-pituitary-adrenal axis.

    PubMed

    Wang, Dean-Chuan; Chen, Tsan-Ju; Lin, Ming-Lu; Jhong, Yue-Cih; Chen, Shih-Chieh

    2014-09-01

    Both the detrimental effects of early life adversity and the beneficial effects of exercise on the hypothalamic-pituitary-adrenal (HPA) axis have been reported. Early life exposure to di-(2-ethylhexyl)-phthalate (DEHP) may impair the development of endocrine system. In this study, we investigated the effects of lactational DEHP exposure on stress responses in late adolescent female rats and examined the protective role of treadmill running. Sprague-Dawley dams were fed with DEHP (10mg/kg per day) or vehicle during lactation. After weaning, the female offspring rats were trained to exercise on a treadmill for 5 weeks and then stressed by exploring on an elevated plus maze. The activities of HPA axis were evaluated by measuring the plasma levels of ACTH and corticosterone, the expressions of adrenal enzymes cholesterol side-chain cleavage enzyme (CYP11A1) and cytochrome P-450 11β-hydroxylase (CYP11B1), and the expression of hypothalamic glucocorticoid receptors (GR). The results demonstrate that DEHP-exposed rats exhibited enhanced anxiety-like behaviors. Increased hypothalamic GR and plasma ACTH levels, but decreased adrenal CYP11A1 and corticosterone levels, were observed in DEHP-exposed animals under stressed condition. Importantly, in DEHP-exposed animals, exercise during childhood-adolescence reduced anxiety-like behaviors by normalizing stress-induced alterations in ACTH level and adrenal CYP11A1 expression. The findings of this study suggest that treadmill running may provide beneficial effects on ameliorating the dysregulation of HPA axis in lactational DEHP-exposed adolescent female rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Differential expression of stress proteins in rat myocardium after free wheel or treadmill run training.

    PubMed

    Noble, E G; Moraska, A; Mazzeo, R S; Roth, D A; Olsson, M C; Moore, R L; Fleshner, M

    1999-05-01

    High-intensity treadmill exercise increases the expression of a cardioprotective, inducible 72-kDa stress protein (SP72) in cardiac muscle. This investigation examined whether voluntary free wheel exercise training would be sufficient to confer a similar response. Male Sprague-Dawley rats were randomly assigned to either treadmill (TM-Tr) or free wheel (FW-Tr) training groups. By the end of the 8-wk training period, TM-Tr animals ran 1 h/day, 5 days/wk up a 10% grade, covering a distance of 8,282 m/wk. FW-Tr rats ran, on average, 5,300 m/wk, with one-third of the animals covering distances similar to those for the TM-Tr group. At the time of death, hearts of trained and caged sedentary control (Sed) animals were divided into left (LV) and right (RV) ventricles. Citrate synthase activity and the relative immunoblot contents of SP72, SP73 (the constitutive isoform of the SP70 family), and a 75-kDa mitochondrial chaperone (SP75) were subsequently determined. LV and RV did not differ on any measure, and SP73, SP75, and citrate synthase were not affected by training. Cardiac SP72 levels were elevated over fourfold in both ventricles of TM-Tr compared with RV of FW-Sed rats. Despite the animals having run a similar total distance, cardiac SP72 content in FW-Tr rats was not different from that in Sed animals. These data indicate that voluntary exercise training is insufficient to elicit an elevation of SP72 in rat heart and suggest that exercise intensity may be a critical factor in evoking the cardioprotective SP72 response.

  1. ABCG5 gene responses to treadmill running with or without administration of Pistachio atlantica in female rats

    PubMed Central

    Ghanbari-Niaki, Abbass; Zare-Kookandeh, Navabeh; Zare-Kookandeh, Asghar

    2014-01-01

    Objective(s): ABC transporters comprise a large family of transmembrane proteins that use the energy provided by ATP hydrolysis to translocate a variety of substrates across biological membranes. All members of the human ABCG subfamily, except for ABCG2, are cholesterol-transporter. The aim of this study was to determine the liver, the small intestine and kidney ABCG5 relative gene expression in response to treadmill-running training in female rats. Materials and Methods: Twenty Wistar rats (6-8 weeks old and 125-135 g weight) were used. Animals were randomly assigned to saline-control (SC), saline-training (ST), and Baneh-control (BC), and Baneh-training (BT) groups. Training groups did the exercise on a motor-driven treadmill at 25 m/min (0% grade) for 60 min/day for eight weeks (5 days/week). Rats were fed orally, with Baneh extraction and saline for six weeks. The two-way ANOVA was employed for statistical analysis. ABCG5 relative gene expression was detected by Real-time PCR method. Results: The current findings indicate that the Baneh-treated tissues had significantly lower levels of ABCG5 gene expression in the liver, small intestine, and kidneys (P< 0.001, P< 0.003, P< 0.001, respectively), when compared with saline-treated tissues. However, a higher level of gene expression was observed in exercise groups. A lower level of HDL-c but not triglyceride (TG) and total cholesterol (TC) levels were found in Baneh-treated animals at rest. Conclusion: Exercise training increases ABCG5 relative gene expression in the liver, small intestine and kidney tissues; therefore exercise training may adjust the reduction of ABCG5 relative gene expression in Baneh-training group. PMID:24847418

  2. Effects of insulin and exercise on rat hindlimb muscles after simulated microgravity

    NASA Technical Reports Server (NTRS)

    Stump, Craig S.; Balon, Thomas W.; Tipton, Charles M.

    1992-01-01

    The effect of simulated microgravity on the insulin- and exercise-stimulated glucose uptake and metabolism in the hindlimb muscles of rats was investigated using three groups of rats suspended at 45 head-down tilt (SUS) for 14 days: (1) cage control, (2) exercising (treadmill running) control, and (3) rats subjected to suspension followed by exercise (SUS-E). It was found that the suspension of rats with hindlimbs non-weight bearing led to enhanced muscle responses to insulin and exercise, when these stimuli were applied separately. However, the insulin affect appeared to be impaired after exercise for the SUS-E rats, especially for the soleus muscle.

  3. Space Physiology Studies

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Ballard, R. E.; Boda, W. L.; Ertl, A. C.; Schneider, S. M.; Hutchinson, K. J.; Lee, S. M.; Murthy, G.; Putcha, L.; Watenpaugh, D. E.

    1999-01-01

    Calculations suggest that exercise in space to date has lacked sufficient loads to maintain musculoskeletal mass. Lower body negative pressure (LBNP) produces a force at the feet equal to the product of the LBNP and body cross-sectional area at the waist. Supine exercise within 50-60 mm Hg LBNP improves tolerance to LBNP and produces forces similar to those occurring during upright posture on Earth. Thus, exercise within LBNP may help prevent deconditioning of astronauts by stressing tissues of the lower body in a manner similar to gravity and also, may provide a safe and effective alternative to centrifugation in terms of cost, mass, volume, and power usage. We hypothesize that supine treadmill exercise during LBNP at one body weight (50-60 mm Hg LBNP) will provide cardiovascular and musculoskeletal loads similar to those experienced while upright in lg. Also, daily supine treadmill running in a LBNP chamber will maintain aerobic fitness, orthostatic tolerance, and musculoskeletal structure and function during bed rest (simulated microgravity).

  4. A preliminary study of a running speed based heart rate prediction during an incremental treadmill exercise.

    PubMed

    Dae-Geun Jang; Byung-Hoon Ko; Sub Sunoo; Sang-Seok Nam; Hun-Young Park; Sang-Kon Bae

    2016-08-01

    This preliminary study investigates feasibility of a running speed based heart rate (HR) prediction. It is basically motivated from the assumption that there is a significant relationship between HR and the running speed. In order to verify the assumption, HR and running speed data from 217 subjects of varying aerobic capabilities were simultaneously collected during an incremental treadmill exercise. A running speed was defined as a treadmill speed and its corresponding heart rate was calculated by averaging the last one minute HR values of each session. The feasibility was investigated by assessing a correlation between the heart rate and the running speed using inter-subject (between-subject) and intra-subject (within-subject) datasets with regression orders of 1, 2, 3, and 4, respectively. Furthermore, HR differences between actual and predicted HRs were also employed to investigate the feasibility of the running speed in predicting heart rate. In the inter-subject analysis, a strong positive correlation and a reasonable HR difference (r = 0.866, 16.55±11.24 bpm @ 1st order; r = 0.871, 15.93±11.49 bpm @ 2nd order; r = 0.897, 13.98±10.80 bpm @ 3rd order; and r = 0.899, 13.93±10.64 bpm @ 4th order) were obtained, and a very high positive correlation and a very low HR difference (r = 0.978, 6.46±3.89 bpm @ 1st order; r = 0.987, 5.14±2.87 bpm @ 2nd order; r = 0.996, 2.61±2.03 bpm @ 3rd order; and r = 0.997, 2.04±1.73 bpm @ 4th order) were obtained in the intra-subject analysis. It can therefore be concluded that 1) heart rate is highly correlated with a running speed; 2) heart rate can be approximately estimated by a running speed with a proper statistical model (e.g., 3rd-order regression); and 3) an individual HR-speed calibration process may improve the prediction accuracy.

  5. Effect of carbohydrate feeding on the bone metabolic response to running

    PubMed Central

    Varley, Ian; Jones, Thomas W.; James, Ruth M.; Tang, Jonathan C. Y.; Fraser, William D.; Greeves, Julie P.

    2015-01-01

    Bone resorption is increased after running, with no change in bone formation. Feeding during exercise might attenuate this increase, preventing associated problems for bone. This study investigated the immediate and short-term bone metabolic responses to carbohydrate (CHO) feeding during treadmill running. Ten men completed two 7-day trials, once being fed CHO (8% glucose immediately before, every 20 min during, and immediately after exercise at a rate of 0.7 g CHO·kg body mass−1·h−1) and once being fed placebo (PBO). On day 4 of each trial, participants completed a 120-min treadmill run at 70% of maximal oxygen consumption (V̇o2 max). Blood was taken at baseline (BASE), immediately after exercise (EE), after 60 (R1) and 120 (R2) min of recovery, and on three follow-up days (FU1-FU3). Markers of bone resorption [COOH-terminal telopeptide region of collagen type 1 (β-CTX)] and formation [NH2-terminal propeptides of procollagen type 1 (P1NP)] were measured, along with osteocalcin (OC), parathyroid hormone (PTH), albumin-adjusted calcium (ACa), phosphate, glucagon-like peptide-2 (GLP-2), interleukin-6 (IL-6), insulin, cortisol, leptin, and osteoprotogerin (OPG). Area under the curve was calculated in terms of the immediate (BASE, EE, R1, and R2) and short-term (BASE, FU1, FU2, and FU3) responses to exercise. β-CTX, P1NP, and IL-6 responses to exercise were significantly lower in the immediate postexercise period with CHO feeding compared with PBO (β-CTX: P = 0.028; P1NP: P = 0.021; IL-6: P = 0.036), although there was no difference in the short-term response (β-CTX: P = 0.856; P1NP: P = 0.721; IL-6: P = 0.327). No other variable was significantly affected by CHO feeding during exercise. We conclude that CHO feeding during exercise attenuated the β-CTX and P1NP responses in the hours but not days following exercise, indicating an acute effect of CHO feeding on bone turnover. PMID:26251510

  6. Prediction of VO[subscript 2]max in Children and Adolescents Using Exercise Testing and Physical Activity Questionnaire Data

    ERIC Educational Resources Information Center

    Black, Nate E.; Vehrs, Pat R.; Fellingham, Gilbert W.; George, James D.; Hager, Ron

    2016-01-01

    Purpose: The purpose of this study was to evaluate the use of a treadmill walk-jog-run exercise test previously validated in adults and physical activity questionnaire data to estimate maximum oxygen consumption (VO[subscript 2]max) in boys (n = 62) and girls (n = 66) aged 12 to 17 years old. Methods: Data were collected from Physical Activity…

  7. Exercise induces autophagy in peripheral tissues and in the brain.

    PubMed

    He, Congcong; Sumpter, Rhea; Levine, Beth

    2012-10-01

    We recently identified physical exercise as a newly defined inducer of autophagy in vivo. Exercise induced autophagy in multiple organs involved in metabolic regulation, such as muscle, liver, pancreas and adipose tissue. To study the physiological role of exercise-induced autophagy, we generated mice with a knock-in nonphosphorylatable mutation in BCL2 (Thr69Ala, Ser70Ala and Ser84Ala) (BCL2 AAA) that are defective in exercise- and starvation-induced autophagy but not in basal autophagy. We found that BCL2 AAA mice could not run on a treadmill as long as wild-type mice, and did not undergo exercise-mediated increases in skeletal glucose muscle uptake. Unlike wild-type mice, the BCL2 AAA mice failed to reverse high-fat diet-induced glucose intolerance after 8 weeks of exercise training, possibly due to defects in signaling pathways that regulate muscle glucose uptake and metabolism during exercise. Together, these findings suggested a hitherto unknown important role of autophagy in mediating exercise-induced metabolic benefits. In the present addendum, we show that treadmill exercise also induces autophagy in the cerebral cortex of adult mice. This observation raises the intriguing question of whether autophagy may in part mediate the beneficial effects of exercise in neurodegeneration, adult neurogenesis and improved cognitive function.

  8. Exercise training for intermittent claudication.

    PubMed

    McDermott, Mary M

    2017-11-01

    The objective of this study was to provide an overview of evidence regarding exercise therapies for patients with lower extremity peripheral artery disease (PAD). This manuscript summarizes the content of a lecture delivered as part of the 2016 Crawford Critical Issues Symposium. Multiple randomized clinical trials demonstrate that supervised treadmill exercise significantly improves treadmill walking performance in people with PAD and intermittent claudication symptoms. A meta-analysis of 25 randomized trials demonstrated a 180-meter increase in treadmill walking distance in response to supervised exercise interventions compared with a nonexercising control group. Supervised treadmill exercise has been inaccessible to many patients with PAD because of lack of medical insurance coverage. However, in 2017, the Centers for Medicare and Medicaid Services issued a decision memorandum to support health insurance coverage of 12 weeks of supervised treadmill exercise for patients with walking impairment due to PAD. Recent evidence also supports home-based walking exercise to improve walking performance in people with PAD. Effective home-exercise programs incorporate behavioral change interventions such as a remote coach, goal setting, and self-monitoring. Supervised treadmill exercise programs preferentially improve treadmill walking performance, whereas home-based walking exercise programs preferentially improve corridor walking, such as the 6-minute walk test. Clinical trial evidence also supports arm or leg ergometry exercise to improve walking endurance in people with PAD. Treadmill walking exercise appears superior to resistance training alone for improving walking endurance. Supervised treadmill exercise significantly improves treadmill walking performance in people with PAD by approximately 180 meters compared with no exercise. Recent evidence suggests that home-based exercise is also effective and preferentially improves over-ground walking performance, such as the 6-minute walk test. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  9. Peak Cardiorespiratory Responses of Patients with Subacute Stroke During Land and Aquatic Treadmill Exercise.

    PubMed

    Lee, Yong Ki; Kim, Bo Ryun; Han, Eun Young

    2017-05-01

    The aim of this work was to investigate the cardiorespiratory responses of patients with subacute stroke to exercise stress tests with aquatic and land treadmills. Twenty-one consecutive patients who presented with first-ever subacute stroke in 2013-2015. All subjects underwent symptom-limited incremental exercise testing with aquatic and land treadmills. Land treadmill speed started at 1.5 km/h and increased 0.5 km/h every 1 to 2 minutes until maximal tolerable speed was achieved. Thereafter, the grade was elevated by 2% every 2 minutes. In the aquatic treadmill test, subjects were submerged to the xiphoid in 28°C water. Treadmill speed started at 1.5 km/h and was increased 0.5 km/h every 2 minutes thereafter. Cardiorespiratory responses were recorded with aquatic and land treadmills. Compared to land treadmill exercise, aquatic treadmill exercise achieved significantly better peak VO2 (22.0 vs 20.0; P = 0.02), peak metabolic equivalents (6.3 vs 5.8; P = 0.02), and peak rating of perceived exertion (17.6 vs 18.4, P = 0.01). Heart rate and VO2 correlated significantly during both tests (land treadmill: r = 0.96, P < 0.001; aquatic treadmill: r = 0.99, P < 0.001). Aquatic treadmill exercise elicited significantly better peak cardiorespiratory responses than land treadmill exercise and may be as effective for early intensive aerobic training in subacute stroke patients.

  10. Warm-up with a weighted vest improves running performance via leg stiffness and running economy.

    PubMed

    Barnes, K R; Hopkins, W G; McGuigan, M R; Kilding, A E

    2015-01-01

    To determine the effects of "strides" with a weighted-vest during a warm-up on endurance performance and its potential neuromuscular and metabolic mediators. A bout of resistance exercise can enhance subsequent high-intensity performance, but little is known about such priming exercise for endurance performance. A crossover with 5-7 days between an experimental and control trial was performed by 11 well-trained distance runners. Each trial was preceded by a warm-up consisting of a 10-min self-paced jog, a 5-min submaximal run to determine running economy, and six 10-s strides with or without a weighted-vest (20% of body mass). After a 10-min recovery period, runners performed a series of jumps to determine leg stiffness and other neuromuscular characteristics, another 5-min submaximal run, and an incremental treadmill test to determine peak running speed. Clinical and non-clinical forms of magnitude-based inference were used to assess outcomes. Correlations and linear regression were used to assess relationships between performance and underlying measures. The weighted-vest condition resulted in a very-large enhancement of peak running speed (2.9%; 90% confidence limits ±0.8%), a moderate increase in leg stiffness (20.4%; ±4.2%) and a large improvement in running economy (6.0%; ±1.6%); there were also small-moderate clear reductions in cardiorespiratory measures. Relationships between change scores showed that changes in leg stiffness could explain all the improvements in performance and economy. Strides with a weighted-vest have a priming effect on leg stiffness and running economy. It is postulated the associated major effect on peak treadmill running speed will translate into enhancement of competitive endurance performance. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. Brain Temperature in Spontaneously Hypertensive Rats during Physical Exercise in Temperate and Warm Environments.

    PubMed

    Drummond, Lucas Rios; Kunstetter, Ana Cançado; Vaz, Filipe Ferreira; Campos, Helton Oliveira; Andrade, André Gustavo Pereira de; Coimbra, Cândido Celso; Natali, Antônio José; Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau

    2016-01-01

    This study aimed to evaluate brain temperature (Tbrain) changes in spontaneously hypertensive rats (SHRs) subjected to two different physical exercise protocols in temperate or warm environments. We also investigated whether hypertension affects the kinetics of exercise-induced increases in Tbrain relative to the kinetics of abdominal temperature (Tabd) increases. Male 16-week-old normotensive Wistar rats (NWRs) and SHRs were implanted with an abdominal temperature sensor and a guide cannula in the frontal cortex to enable the insertion of a thermistor to measure Tbrain. Next, the animals were subjected to incremental-speed (initial speed of 10 m/min; speed was increased by 1 m/min every 3 min) or constant-speed (60% of the maximum speed) treadmill running until they were fatigued in a temperate (25°C) or warm (32°C) environment. Tbrain, Tabd and tail skin temperature were measured every min throughout the exercise trials. During incremental and constant exercise at 25°C and 32°C, the SHR group exhibited greater increases in Tbrain and Tabd relative to the NWR group. Irrespective of the environment, the heat loss threshold was attained at higher temperatures (either Tbrain or Tabd) in the SHRs. Moreover, the brain-abdominal temperature differential was lower at 32°C in the SHRs than in the NWRs during treadmill running. Overall, we conclude that SHRs exhibit enhanced brain hyperthermia during exercise and that hypertension influences the kinetics of the Tbrain relative to the Tabd increases, particularly during exercise in a warm environment.

  12. Brain Temperature in Spontaneously Hypertensive Rats during Physical Exercise in Temperate and Warm Environments

    PubMed Central

    Drummond, Lucas Rios; Kunstetter, Ana Cançado; Vaz, Filipe Ferreira; Campos, Helton Oliveira; de Andrade, André Gustavo Pereira; Coimbra, Cândido Celso; Natali, Antônio José

    2016-01-01

    This study aimed to evaluate brain temperature (Tbrain) changes in spontaneously hypertensive rats (SHRs) subjected to two different physical exercise protocols in temperate or warm environments. We also investigated whether hypertension affects the kinetics of exercise-induced increases in Tbrain relative to the kinetics of abdominal temperature (Tabd) increases. Male 16-week-old normotensive Wistar rats (NWRs) and SHRs were implanted with an abdominal temperature sensor and a guide cannula in the frontal cortex to enable the insertion of a thermistor to measure Tbrain. Next, the animals were subjected to incremental-speed (initial speed of 10 m/min; speed was increased by 1 m/min every 3 min) or constant-speed (60% of the maximum speed) treadmill running until they were fatigued in a temperate (25°C) or warm (32°C) environment. Tbrain, Tabd and tail skin temperature were measured every min throughout the exercise trials. During incremental and constant exercise at 25°C and 32°C, the SHR group exhibited greater increases in Tbrain and Tabd relative to the NWR group. Irrespective of the environment, the heat loss threshold was attained at higher temperatures (either Tbrain or Tabd) in the SHRs. Moreover, the brain-abdominal temperature differential was lower at 32°C in the SHRs than in the NWRs during treadmill running. Overall, we conclude that SHRs exhibit enhanced brain hyperthermia during exercise and that hypertension influences the kinetics of the Tbrain relative to the Tabd increases, particularly during exercise in a warm environment. PMID:27214497

  13. Effects of pomegranate extract on blood flow and running time to exhaustion.

    PubMed

    Trexler, Eric T; Smith-Ryan, Abbie E; Melvin, Malia N; Roelofs, Erica J; Wingfield, Hailee L

    2014-09-01

    Recent research has shown that dietary nitrate has favorable effects on blood flow and exercise performance. The purpose of this randomized, double-blind, placebo-controlled crossover study was to investigate the acute effects of pomegranate extract on blood flow, vessel diameter, and exercise performance in active individuals. Nineteen men and women (mean ± SD: age, 22.2 ± 2.2 years; height, 174.8 ± 10.7 cm; body mass, 71.9 ± 13.5 kg) were randomly assigned to a placebo (PL) or pomegranate extract (PE) group. Participants performed a maximal oxygen consumption treadmill test to determine peak velocity (PV). Participants returned after 24-48 h and ingested either PL or PE. Brachial artery blood flow was assessed using ultrasound at baseline and 30 min post-ingestion (30minPI). Three treadmill runs to exhaustion were performed at 90%, 100%, and 110% PV. Blood flow was assessed immediately after each exercise bout and 30 min postexercise (30minPEx). After a 7-10 day washout, participants repeated the same procedures, ingesting the opposite supplement. Separate repeated measures ANOVAs were performed for blood flow, vessel diameter, and time to exhaustion (TTE). Blood flow was significantly augmented (p = 0.033) 30minPI with PE in comparison with PL. Vessel diameter was significantly larger (p = 0.036) 30minPEx with PE. Ingestion of PE was found to significantly augment TTE at 90% (p = 0.009) and 100% PV (p = 0.027). Acute ingestion of PE 30 min before exercise may enhance vessel diameter and blood flow and delay fatigue during exercise. Results of the current study indicate that PE is ergogenic for intermittent running, eliciting beneficial effects on blood flow.

  14. Treadmill running restores MDMA-mediated hyperthermia prevented by inhibition of the dorsomedial hypothalamus.

    PubMed

    Zaretsky, Dmitry V; Zaretskaia, Maria V; Durant, Pamela J; Rusyniak, Daniel E

    2015-05-22

    The contribution of exercise to hyperthermia mediated by MDMA is not known. We recently showed that inhibiting the dorsomedial hypothalamus (DMH) attenuated spontaneous locomotion and hyperthermia and prevented deaths in rats given MDMA in a warm environment. The goal of this study was to confirm that restoring locomotion through a treadmill would reverse these effects thereby confirming that locomotion mediated by the DMH contributes to MDMA-mediated hyperthermia. Rats were randomized to receive bilateral microinjections, into the region of the DMH, of muscimol (80pmol/100nl) or artificial CSF followed by a systemic dose of either MDMA (7.5mg/kg, i.v.) or saline. Immediately after the systemic injection, rats were placed on a motorized treadmill maintained at 32°C. Rats were exercised at a fixed speed (10m/min) until their core temperature reached 41°C. Our results showed that a fixed exercise load abolished the decreases in temperature and mortality, seen previously with inhibition of the DMH in freely moving rats. Therefore, locomotion mediated by neurons in the DMH is critical to the development of hyperthermia from MDMA. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Comparison of Upright Gait with Supine Bungee-Cord Gait

    NASA Technical Reports Server (NTRS)

    Boda, Wanda L.; Hargens, Alan R.; Campbell, J. A.; Yang, C.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Running on a treadmill with bungee-cord resistance is currently used on the Russian space station MIR as a countermeasure for the loss of bone and muscular strength which occurs during spaceflight. However, it is unknown whether ground reaction force (GRF) at the feet using bungee-cord resistance is similar to that which occurs during upright walking and running on Earth. We hypothesized-that the DRAMs generated during upright walking and running are greater than the DRAMs generated during supine bungee-cord gait. Eleven healthy subjects walked (4.8 +/- 0.13 km/h, mean +/- SE) and ran (9.1 +/- 0.51 km/h) during upright and supine bungee-cord exercise on an active treadmill. Subjects exercised for 3 min in each condition using a resistance of 1 body weight calibrated during an initial, stationary standing position. Data were sampled at a frequency of 500Hz and the mean of 3 trials was analyzed for each condition. A repeated measures analysis of variance tested significance between the conditions. Peak DRAMs during upright walking were significantly greater (1084.9 +/- 111.4 N) than during supine bungee-cord walking (770.3 +/- 59.8 N; p less than 0.05). Peak GRFs were also significantly greater for upright running (1548.3 +/- 135.4 N) than for supine bungee-cord running (1099.5 +/- 158.46 N). Analysis of GRF curves indicated that forces decreased throughout the stance phase for bungee-cord gait but not during upright gait. These results indicate that bungee-cord exercise may not create sufficient loads at the feet to counteract the loss of bone and muscular strength that occurs during long-duration exposure to microgravity.

  16. Effects of endurance training and competition on exercise tests in relatively untrained people.

    PubMed

    Verstappen, F T; Janssen, G M; Does, R J

    1989-10-01

    One hundred fourteen subjects (34 +/- 8 years) without any competition background took part in an endurance training study to be completed after 1.5 years with running a marathon. Ultimately, 60 males and 18 females achieved that goal. The training program, carefully supervised, was divided into three phases with a maximum of 45, 70, and 110 km/week training volume and concluded with a performance race of 15, 25, and 42.195 km, respectively. Three days before and 3 and 5 days after each race, 35 subjects were selected to perform a progressive treadmill test and the remaining subjects participated in performing field tests of running 400 and 1000 m. The maximal velocity achieved in the treadmill test was 4.75 +/- 0.36 m.s-1 for males and 4.18 +/- 0.28 m.s-1 for females; it remained constant throughout the study. However, the running velocity at 4 mmol.1(-1) plasma lactate concentration increased about 10% from phase 1 to 3. In the females this rise already appeared to be completed in phase 2. Heart rate showed a tendency to increase at both submaximal and maximal exercise from training phase 1 to 2 and 3, whereas plasma lactate concentration showed a decreasing tendency. Three days after the 25 km and the marathon race the maximal running velocity in the exercise test was 2%-4% lower compared with the pre-race test (P less than 0.05). Five days after the race this difference again faded away. This small decline in running performance was not reflected in changes of physiologic responses such as heart rate or plasma lactate concentration.

  17. Use of a Slick-Plate as a Contingency Exercise Surface for the Treadmill With Vibration Isolation System

    NASA Technical Reports Server (NTRS)

    Loehr, James A.; Lee, Stuart M. C.; Schneider, Suzanne M.

    2003-01-01

    The treadmill with vibration isolation system (TVIS) was developed to counteract cardiovascular, musculoskeletal, and neurovestibular deconditioning during long-duration missions to the International Space Station (ISS). However, recent hardware failures have necessitated the development of a short-term, temporary contingency exercise countermeasure for TVIS until nominal operations could be restored. The purpose of our evaluation was twofold: 1) to examine whether a slick-plate/contingency exercise surface (CES) could be used as a walking/running surface and could elicit a heart rate (HR) greater than or equal to 70% HR maximum and 2) to determine the optimal hardware configuration, in microgravity, to simulate running/walking in a 1-g environment. One subject (male) participated in the slick surface evaluation and two subjects (one male, one female) participated in the microgravity evaluation of the slick surface configuration. During the slick surface evaluation, the subject was suspended in a parachute harness and bungee cord configuration to offset the subject#s body weight. Using another bungee cord configuration, we added a vertical load back to the subject, who was then asked to run for 20 minutes on the slick surface. The microgravity evaluation simulated the ISS TVIS, and we evaluated two different slick surfaces (Teflon surface and an aluminum surface coated with Tufram) for use as a CES. We evaluated each surface with the subject walking and running, with and without a handrail, and while wearing either socks or nylon booties over shoes. In the slick surface evaluation, the subject ran for 20 minutes and reached a maximum HR of 170 bpm. In the microgravity evaluation, the subjects chose the aluminum plate coated with Tufram as the CES, while wearing a pair of nylon booties over running shoes and using a handrail, as the optimal hardware configuration.

  18. Effect of physical exercise prelabyrinthectomy on locomotor balance compensation in the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Igarashi, M.; Ohashi, K.; Yoshihara, T.; MacDonald, S.

    1989-01-01

    This study examines the effectiveness of physical exercise, during a prepathology state, on locomotor balance compensation after subsequent unilateral labyrinthectomy in squirrel monkeys. An experimental group underwent 3 hr. of daily running exercise on a treadmill for 3 mo. prior to the surgery, whereas a control group was not exercised. Postoperatively, the locomotor balance function of both groups was tested for 3 mo. There was no significant difference in gait deviation counts in the acute phase of compensation. However, in the chronic compensation maintenance phase, the number of gait deviation counts was fewer in the exercise group, which showed significantly better performance stability.

  19. Physiological effects of wearing graduated compression stockings during running.

    PubMed

    Ali, Ajmol; Creasy, Robert H; Edge, Johann A

    2010-08-01

    This study examined the effect of wearing different grades of graduated compression stockings (GCS) on physiological and perceptual measures during and following treadmill running in competitive runners. Nine males and one female performed three 40-min treadmill runs (80 +/- 5% maximal oxygen uptake) wearing either control (0 mmHg; CON), low (12-15 mmHg; LO-GCS), or high (23-32 mmHg; HI-GCS) grade GCS in a double-blind counterbalanced order. Oxygen uptake, heart rate and blood lactate were measured. Perceptual scales were used pre- and post-run to assess comfort, tightness and any pain associated with wearing GCS. Changes in muscle function, soreness and damage were determined pre-run, immediately after running and 24 and 48 h post-run by measuring creatine kinase and myoglobin, counter-movement jump height, perceived soreness diagrams, and pressure sensitivity. There were no significant differences between trials for oxygen uptake, heart rate or blood lactate during exercise. HI-GCS was perceived as tighter (P < 0.05) and more pain-inducing (P < 0.05) than the other interventions; CON and LO-GCS were rated more comfortable than HI-GCS (P < 0.05). Creatine kinase (P < 0.05), myoglobin (P < 0.05) and jump height (P < 0.05) were higher and pressure sensitivity was more pronounced (P < 0.05) immediately after running but not after 24 and 48 h. Only four participants reported muscle soreness during recovery from running and there were no differences in muscle function between trials. In conclusion, healthy runners wearing GCS did not experience any physiological benefits during or following treadmill running. However, athletes felt more comfortable wearing low-grade GCS whilst running.

  20. Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function.

    PubMed

    Moon, Hyo Youl; Becke, Andreas; Berron, David; Becker, Benjamin; Sah, Nirnath; Benoni, Galit; Janke, Emma; Lubejko, Susan T; Greig, Nigel H; Mattison, Julie A; Duzel, Emrah; van Praag, Henriette

    2016-08-09

    Peripheral processes that mediate beneficial effects of exercise on the brain remain sparsely explored. Here, we show that a muscle secretory factor, cathepsin B (CTSB) protein, is important for the cognitive and neurogenic benefits of running. Proteomic analysis revealed elevated levels of CTSB in conditioned medium derived from skeletal muscle cell cultures treated with AMP-kinase agonist AICAR. Consistently, running increased CTSB levels in mouse gastrocnemius muscle and plasma. Furthermore, recombinant CTSB application enhanced expression of brain-derived neurotrophic factor (BDNF) and doublecortin (DCX) in adult hippocampal progenitor cells through a mechanism dependent on the multifunctional protein P11. In vivo, in CTSB knockout (KO) mice, running did not enhance adult hippocampal neurogenesis and spatial memory function. Interestingly, in Rhesus monkeys and humans, treadmill exercise elevated CTSB in plasma. In humans, changes in CTSB levels correlated with fitness and hippocampus-dependent memory function. Our findings suggest CTSB as a mediator of effects of exercise on cognition. Published by Elsevier Inc.

  1. Improved infrared-sensing running wheel systems with an effective exercise activity indicator.

    PubMed

    Chen, Chi-Chun; Chang, Ming-Wen; Chang, Ching-Ping; Chang, Wen-Ying; Chang, Shin-Chieh; Lin, Mao-Tsun; Yang, Chin-Lung

    2015-01-01

    This paper describes an infrared-sensing running wheel (ISRW) system for the quantitative measurement of effective exercise activity in rats. The ISRW system provides superior exercise training compared with commercially available traditional animal running platforms. Four infrared (IR) light-emitting diode/detector pairs embedded around the rim of the wheel detect the rat's real-time position; the acrylic wheel has a diameter of 55 cm and a thickness of 15 cm, that is, it is larger and thicker than traditional exercise wheels, and it is equipped with a rubber track. The acrylic wheel hangs virtually frictionless, and a DC motor with an axially mounted rubber wheel, which has a diameter of 10 cm, drives the acrylic wheel from the outer edge. The system can automatically train rats to run persistently. The proposed system can determine effective exercise activity (EEA), with the IR sensors (which are connected to a conventional PC) recording the rat exercise behavior. A prototype of the system was verified by a hospital research group performing ischemic stroke experiments on rats by considering middle cerebral artery occlusion. The experimental data demonstrated that the proposed system provides greater neuroprotection in an animal stroke model compared with a conventional treadmill and a motorized running wheel for a given exercise intensity. The quantitative exercise effectiveness indicator showed a 92% correlation between an increase in the EEA and a decrease in the infarct volume. This indicator can be used as a noninvasive and objective reference in clinical animal exercise experiments.

  2. Heart rate response to submaximal and maximal workloads during running and swimming.

    PubMed

    Hauber, C; Sharp, R L; Franke, W D

    1997-07-01

    The purpose of the present study was to determine if common indexes of exercise intensity, assessed with land-based exercise, could be applied to swimming. Consequently, the heart rate (HR) and oxygen uptake (VO2) responses to submaximal and maximal treadmill running (TR) and free swimming (SW) in 11 fitness swimmers were assessed to determine if the responses to TR could be used to predict those of SW. A maximal graded exercise test using a discontinuous protocol was used for TR, while four graded submaximal 200 yd swims and one 400 yd maximal swim was used for SW. Rest periods were similar for each mode. Significantly lower (p < 0.05) peak values were found in SW compared to TR for both HR (174 +/- 3 vs 183 +/- 3 bt x min(-1)) and VO2 (3.58 +/- 0.18 vs 3.97 +/- 0.22 L x min(-1)), SW vs TR; +/- SE, respectively. However, regression analyses of submaximal HR vs VO2 for each subject revealed similar slopes for TR and SW (30.5 +/- 1.7 vs 29.9 +/- 3.5 bt x L(-1), p > 0.05) and similar intercepts (67.3 +/- 2.6 vs 66.5 +/- 11.5 bt x min(-1), p > 0.05). At the VO2 equivalent to 50% treadmill VO2max, the heart rate predicted from SW did not differ significantly from TR (118 +/- 5 vs 124 +/- 1 bt x min(-1), p > 0.05). This was also true at 85% treadmill VO2max (171 +/- 4 vs 166 +/- 3 bt x min(-1), SW vs TR, respectively; p > 0.05). These data suggest that peak heart rate and oxygen uptake appear to be mode specific, but exercising at a given submaximal oxygen uptake will elicit a similar heart rate regardless of the mode. Thus, target heart rate ranges designed for land-based exercise appear to be appropriate for fitness swimmers during swimming.

  3. Quadriceps oxygenation changes during walking and running on a treadmill

    NASA Astrophysics Data System (ADS)

    Quaresima, Valentina; Pizzi, Assunta; De Blasi, Roberto A.; Ferrari, Adriano; de Angelis, Marco; Ferrari, Marco

    1995-04-01

    Vastus lateralis muscle oxygenation was investigated on volunteers as well as muscular dystrophy patients during a walking test, and on volunteers during a free running by a continuous wave near infrared instrument. The data were analyzed using an oxygenation index independent on pathlength changes. Walking did not significantly affect the oxygenation of volunteers and patients. A relative deoxygenation was found only during free running indicating an unbalance between oxygen supply and tissue oxygen extraction. Preliminary measurements of exercising muscle oxygen saturation were performed by a 110 MHz frequency-domain, multisource instrument.

  4. Energy system contribution in a maximal incremental test: correlations with pacing and overall performance in a 10-km running trial.

    PubMed

    Damasceno, M V; Pasqua, L A; Lima-Silva, A E; Bertuzzi, R

    2015-11-01

    This study aimed to verify the association between the contribution of energy systems during an incremental exercise test (IET), pacing, and performance during a 10-km running time trial. Thirteen male recreational runners completed an incremental exercise test on a treadmill to determine the respiratory compensation point (RCP), maximal oxygen uptake (V˙O2max), peak treadmill speed (PTS), and energy systems contribution; and a 10-km running time trial (T10-km) to determine endurance performance. The fractions of the aerobic (WAER) and glycolytic (WGLYCOL) contributions were calculated for each stage based on the oxygen uptake and the oxygen energy equivalents derived by blood lactate accumulation, respectively. Total metabolic demand (WTOTAL) was the sum of these two energy systems. Endurance performance during the T10-km was moderately correlated with RCP, V˙O2max and PTS (P<@0.05), and moderate-to-highly correlated with WAER, WGLYCOL, and WTOTAL (P<0.05). In addition, WAER, WGLYCOL, and WTOTAL were also significantly correlated with running speed in the middle (P<0.01) and final (P<0.01) sections of the T10-km. These findings suggest that the assessment of energy contribution during IET is potentially useful as an alternative variable in the evaluation of endurance runners, especially because of its relationship with specific parts of a long-distance race.

  5. Comparison of Gait During Treadmill Exercise While Supine in Lower Body Negative Pressure (LBNP), Supine with Bungee Resistance and Upright in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Boda, Wanda; Hargens, Alan R.; Aratow, Michael; Ballard, Richard E.; Hutchinson, Karen; Murthy, Gita; Campbell, James

    1994-01-01

    The purpose of this study is to compare footward forces, gait kinematics, and muscle activation patterns (EMG) generated during supine treadmill exercise against LBNP with the same parameters during supine bungee resistance exercise and upright treadmill exercise. We hypothesize that the three conditions will be similar. These results will help validate treadmill exercise during LBNP as a viable technique to simulate gravity during space flight. We are evaluating LBNP as a means to load the musculoskeletal and cardiovascular systems without gravity. Such loading should help prevent physiologic deconditioning during space flight. The best ground-based simulation of LBNP treadmill exercise in microgravity is supine LBNP treadmill exercise on Earth because the supine footward force vector is neither directed nor supplemented by Earth's gravity.

  6. Prescribing water-based exercise from treadmill and arm ergometry in cardiac patients.

    PubMed

    Fernhall, B; Manfredi, T G; Congdon, K

    1992-01-01

    This study investigated the appropriateness of prescribing upright water-based exercise from treadmill and arm ergometry in uncomplicated, trained patients with cardiovascular disease (CVD) who were accustomed to water-based activities. Ten male patients with established CVD (mean age 59.4 +/- 8.7 yr) underwent maximal treadmill and arm ergometry in randomized counterbalanced order (half of the patients completed the treadmill test first and the other half completed the arm ergometer test first). Electrocardiographic (ECG), rating of perceived exertion (RPE), and oxygen uptake (VO2) measurements were made during both tests. Patients performed upright water-based exercise at 60, 70, and 80% of their maximal treadmill heart rate for 6 min at each intensity in a heated pool with a water temperature of 28-30 degrees C. They also performed an easy tethered swim, defined as performing at a comfortable exercise intensity, eliciting a heart rate of 86% of the treadmill maximum. VO2 and RPE were collected for all water-based exercise. To compare the RPE and VO2 between water-based, treadmill, and arm ergometry exercise, individual regression equations were constructed between heart rate, VO2, and RPE for both treadmill and arm ergometry tests. VO2 and RPE were then compared at the same heart rates between the three exercise modes. At 60% intensity, treadmill exercise exhibited a higher VO2 than water-based and arm ergometry exercise (P less than 0.05) but similar RPE. At 70%, treadmill exercise still yielded higher VO2, but also lower RPE than (P less than 0.05) and arm ergometry exercise (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Effects of moderate treadmill exercise and fluoxetine on behavioural and cognitive deficits, hypothalamic-pituitary-adrenal axis dysfunction and alternations in hippocampal BDNF and mRNA expression of apoptosis - related proteins in a rat model of post-traumatic stress disorder.

    PubMed

    Shafia, Sakineh; Vafaei, Abbas Ali; Samaei, Seyed Afshin; Bandegi, Ahmad Reza; Rafiei, Alireza; Valadan, Reza; Hosseini-Khah, Zahra; Mohammadkhani, Raziyeh; Rashidy-Pour, Ali

    2017-03-01

    Post-traumatic stress disorder (PTSD) is a condition that develops after an individual has experienced a major trauma. Currently, selective serotonin reuptake inhibitors (SSRIs) like fluoxetine are the first-line choice in PTSD drug treatment but their moderate response rates and side effects indicate an urgent need for the development of new treatment. Physical activity is known to improve symptoms of certain neuropsychiatric disorders. The present study investigated the effects of moderate treadmill exercise, the antidepressant fluoxetine and the combined treatment on behavioural deficits, and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. We also examined alternations in hippocampal brain-derived neurotrophic factor (BDNF) and mRNA expression of apoptosis - related proteins in a rat model of PTSD: the single prolonged stress (SPS) model. Rats were exposed to SPS (restraint for 2h, forced swimming for 20min and ether anaesthesia) and were then kept undisturbed for 14days. After that, SPS rats were subjected to chronic treatment with fluoxetine (10mg/kg/day, for 4weeks), moderate treadmill running (4weeks, 5day per week) and the combined treatment (fluoxetine plus treadmill exercise), followed by behavioural, biochemical and apoptosis markers assessments. SPS rats exhibited increased anxiety levels in the elevated plus maze and light/dark box, impaired fear conditioning and extinction in inhibitory avoidance (IA) task, impaired spatial memory in a recognition location memory task and enhanced negative feedback on the HPA axis following a dexamethasone suppression test. SPS rats also showed reduced hippocampal BDNF and enhanced apoptosis. Moderate treadmill exercise, fluoxetine and the combined treatment alleviated the SPS-induced alterations in terms of anxiety levels, HPA axis inhibition, IA conditioning and extinction, hippocampal BDNF and apoptosis markers. Furthermore, the combined treatment was more effective than fluoxetine alone, but in most tests, the effects of the combined treatment were similar to those of exercise alone, suggesting that exercise is the main factor in the beneficial effects of the combined therapy in PTSD patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Coordinate and synergistic effects of extensive treadmill exercise and ovariectomy on articular cartilage degeneration.

    PubMed

    Miyatake, Kazumasa; Muneta, Takeshi; Ojima, Miyoko; Yamada, Jun; Matsukura, Yu; Abula, Kahaer; Sekiya, Ichiro; Tsuji, Kunikazu

    2016-05-31

    Although osteoarthritis (OA) is a multifactorial disease, little has been reported regarding the cooperative interaction among these factors on cartilage metabolism. Here we examined the synergistic effect of ovariectomy (OVX) and excessive mechanical stress (forced running) on articular cartilage homeostasis in a mouse model resembling a human postmenopausal condition. Mice were randomly divided into four groups, I: Sham, II: OVX, III: Sham and forced running (60 km in 6 weeks), and IV: OVX and forced running. Histological and immunohistochemical analyses were performed to evaluate the degeneration of articular cartilage and synovitis in the knee joint. Morphological changes of subchondral bone were analyzed by micro-CT. Micro-CT analyses showed significant loss of metaphyseal trabecular bone volume/tissue volume (BV/TV) after OVX as described previously. Forced running increased the trabecular BV/TV in all mice. In the epiphyseal region, no visible alteration in bone morphology or osteophyte formation was observed in any of the four groups. Histological analysis revealed that OVX or forced running respectively had subtle effects on cartilage degeneration. However, the combination of OVX and forced running synergistically enhanced synovitis and articular cartilage degeneration. Although morphological changes in chondrocytes were observed during OA initiation, no signs of bone marrow edema were observed in any of the four experimental groups. We report the coordinate and synergistic effects of extensive treadmill exercise and ovariectomy on articular cartilage degeneration. Since no surgical procedure was performed on the knee joint directly in this model, this model is useful in addressing the molecular pathogenesis of naturally occurring OA.

  9. Comparison of cardiorespiratory responses during aquatic and land treadmill exercise in patients with coronary artery disease.

    PubMed

    Choi, Jun Hwan; Kim, Bo Ryun; Joo, Seung Jae; Han, Eun Young; Kim, Song Yi; Kim, Sun Mi; Lee, So Young; Yoon, Ho Min

    2015-01-01

    To investigate cardiorespiratory responses during exercise stress tests using an aquatic treadmill and a land-based treadmill in patients with coronary artery disease (CAD). Twenty-one stable CAD patients were enrolled. All patients participated in 2 symptom-limited incremental exercise tests, using both an aquatic and a land treadmill. For the aquatic treadmill protocol, patients were submerged to the upper waist in 28°C water. The treadmill speed started at 2.0 km/h and increased 0.5 km/h every minute thereafter. For the land treadmill protocol, the speed and gradient were started at 2.4 km/h and 1.5%, respectively. The speed was increased by 0.3 km/h and grade by 1% every minute thereafter. Oxygen consumption ((Equation is included in full-text article.)O2), heart rate (HR), and respiratory exchange ratio were measured continuously and peak values recorded. Rating of perceived exertion, percentage of age-predicted maximal HR, and total exercise duration were also recorded. Peak cardiorespiratory responses during both protocols were compared. The peak (Equation is included in full-text article.)O2 and peak HR did not show any significant differences. The peak respiratory exchange ratio was significantly greater using the land treadmill than the aquatic treadmill protocol. Rating of perceived exertion, age-predicted maximal HR percentage, and total exercise duration were similar for both protocols. There was a significant linear relationship between HR and (Equation is included in full-text article.)O2 with both protocols. This study demonstrated that aquatic treadmill exercise elicits similar peak cardiorespiratory responses compared with land treadmill exercise, suggesting that aquatic treadmill exercise may be effective for CAD patients in cardiac rehabilitation.

  10. Submaximal Exercise Testing Treadmill and Floor Walking.

    DTIC Science & Technology

    1978-05-01

    Amputations," Archives of Physical Medicine and Rehabilitation, 56:67-71, 1975. 36. van der Walt, W. H., and Wyndham, C. H,, "An Equation for...C. H., van Renaburg, A. J., Rogr, G. G., Greyson, J. S.. and van der Walt, V. H., "Walk or Jog for Health: I, The Energy Cost of Walking or Running at...G., Greyson, J. S., and van der Walt, V. H., "Walk or Jog for Health: II, Iatimating the Maximi Aerobic Capacity for Exercise,* South &frIca Kedical

  11. A respiratory mask for resting and exercising dogs.

    PubMed

    Stavert, D M; Reischl, P; O'Loughlin, B J

    1982-02-01

    A respiratory face mask has been developed for use with unsedated beagles trained to run on a treadmill. The latex rubber mask, shaped to fit the animal's muzzle, incorporates two modified, commercially available, pulmonary valves for separating inspiratory and expiratory flows. The mask has a dead space of 30 cm3 and a flow resistance below 1 cmH2O . 1(-1) . s. The flexible mask is used to measure breath-by-breath respiratory variables over extended periods of time during rest and exercise.

  12. Substantive hemodynamic and thermal strain upon completing lower-limb hot-water immersion; comparisons with treadmill running.

    PubMed

    Thomas, Kate N; van Rij, André M; Lucas, Samuel J E; Gray, Andrew R; Cotter, James D

    2016-01-01

    Exercise induces arterial flow patterns that promote functional and structural adaptations, improving functional capacity and reducing cardiovascular risk. While heat is produced by exercise, local and whole-body passive heating have recently been shown to generate favorable flow profiles and associated vascular adaptations in the upper limb. Flow responses to acute heating in the lower limbs have not yet been assessed, or directly compared to exercise, and other cardiovascular effects of lower-limb heating have not been fully characterized. Lower-limb heating by hot-water immersion (30 min at 42°C, to the waist) was compared to matched-duration treadmill running (65-75% age-predicted heart rate maximum) in 10 healthy, young adult volunteers. Superficial femoral artery shear rate assessed immediately upon completion was increased to a greater extent following immersion (mean ± SD: immersion +252 ± 137% vs. exercise +155 ± 69%, interaction: p = 0.032), while superficial femoral artery flow-mediated dilation was unchanged in either intervention. Immersion increased heart rate to a lower peak than during exercise (immersion +38 ± 3 beats·min -1 vs. exercise +87 ± 3 beats·min -1 , interaction: p < 0.001), whereas only immersion reduced mean arterial pressure after exposure (-8 ± 3 mmHg, p = 0.012). Core temperature increased twice as much during immersion as exercise (+1.3 ± 0.4°C vs. +0.6 ± 0.4°C, p < 0.001). These data indicate that acute lower-limb hot-water immersion has potential to induce favorable shear stress patterns and cardiovascular responses within vessels prone to atherosclerosis. Whether repetition of lower-limb heating has long-term beneficial effects in such vasculature remains unexplored.

  13. Trunk muscle activation during moderate- and high-intensity running.

    PubMed

    Behm, David G; Cappa, Dario; Power, Geoffrey A

    2009-12-01

    Time constraints are cited as a barrier to regular exercise. If particular exercises can achieve multiple training functions, the number of exercises and the time needed to achieve a training goal may be decreased. It was the objective of this study to compare the extent of trunk muscle electromyographic (EMG) activity during running and callisthenic activities. EMG activity of the external obliques, lower abdominals (LA), upper lumbar erector spinae (ULES), and lumbosacral erector spinae (LSES) was monitored while triathletes and active nonrunners ran on a treadmill for 30 min at 60% and 80% of their maximum heart rate (HR) reserve, as well as during 30 repetitions of a partial curl-up and 3 min of a modified Biering-Sørensen back extension exercise. The mean root mean square (RMS) amplitude of the EMG signal was monitored over 10-s periods with measures normalized to a maximum voluntary contraction rotating curl-up (external obliques), hollowing exercise (LA), or back extension (ULES and LSES). A main effect for group was that triathletes had greater overall activation of the external obliques (p < 0.05), LA (p = 0.01), and LSES (p < 0.05) than did nonrunners. Main effects for exercise type showed that the external obliques had less EMG activity during 60% and 80% runs, respectively, than with the curl-ups (p = 0.001). The back extension exercise provided less ULES (p = 0.009) and LSES (p = 0.0001) EMG activity than the 60% and 80% runs, respectively. In conclusion, triathletes had greater trunk activation than nonrunners did while running, which could have contributed to their better performance. Back-stabilizing muscles can be activated more effectively with running than with a prolonged back extension activity. Running can be considered as an efficient, multifunctional exercise combining cardiovascular and trunk endurance benefits.

  14. Sex-dependent components of the analgesia produced by athletic competition.

    PubMed

    Sternberg, W F; Bokat, C; Kass, L; Alboyadjian, A; Gracely, R H

    2001-02-01

    Competing in various athletic events (track meet, basketball game, or fencing match) can produce analgesia to cold pressor stimuli in male and female college athletes compared with baseline assessments. This competition-induced analgesia has been attributed to the stress associated with competition, which has components related to both physical exercise and the cognitive aspects of competing. This study evaluated the analgesic effect of exercise-related stress, and that caused by the cognitively stressful components of competing independent of exercise. Cold pressor pain ratings were assessed after competition in a track meet and after treadmill exercise or sedentary video game competition in both athletes and nonathletes. As expected, competing in athletics resulted in a decrease in cold pressor ratings in both male and female athletes. Independent of athletic status, treadmill running induced analgesia in women, but not in males, whereas sedentary video game competition produced analgesia in men, but not in women. These findings suggest that different components of the competitive athletic experience might be responsible for the analgesic effects in a sex-dependent manner.

  15. Metabolic and ventilatory responses to submaximal and maximal exercise using different breathing assemblies.

    PubMed

    Evans, B W; Potteiger, J A

    1995-06-01

    This study compared ventilatory and metabolic responses during exercise using three breathing assemblies: mouthpiece/noseclip (BV); mouth/face mask (MM); and facemask (FM). Ten male runners completed three maximal treadmill tests with breathing assembly randomly assigned. Metabolic and ventilatory data were recorded every 15s, and heart rate (HR) and rating of perceived exertion (RPE) each min. No significant differences were found for treadmill run time, HRmax, respiratory exchange ratio (RER), and RPE, indicating similar efforts on all trials. No significant differences were found at maximal exercise for VO2 minute ventilation (VE), tidal volume (VT), and breathing frequency (f). At ventilatory threshold (TVENT), VO2, VE, and f were not significantly different. However, peak flow (PF) was significantly higher for BV than FM, and VT was significantly higher for BV than MM and FM. Results indicate alterations in ventilatory mechanics occur at TVENT, but type of breathing assembly does not significantly affect maximal values.

  16. Physiological effects of bioceramic material: harvard step, resting metabolic rate and treadmill running assessments.

    PubMed

    Leung, Ting-Kai; Kuo, Chia-Hua; Lee, Chi-Ming; Kan, Nai-Wen; Hou, Chien-Wen

    2013-12-31

    Previous biomolecular and animal studies have shown that a room-temperature far-infrared-rayemitting ceramic material (bioceramic) demonstrates physical-biological effects, including the normalization of psychologically induced stress-conditioned elevated heart rate in animals. In this clinical study, the Harvard step test, the resting metabolic rate (RMR) assessment and the treadmill running test were conducted to evaluate possible physiological effects of the bioceramic material in human patients. The analysis of heart rate variability (HRV) during the Harvard step test indicated that the bioceramic material significantly increased the high-frequency (HF) power spectrum. In addition, the results of RMR analysis suggest that the bioceramic material reduced oxygen consumption (VO2). Our results demonstrate that the bioceramic material has the tendency to stimulate parasympathetic responses, which may reduce resting energy expenditure and improve cardiorespiratory recovery following exercise.

  17. Heat Acclimation by Post-Exercise Hot Water Immersion in the Morning Reduces Thermal Strain During Morning and Afternoon Exercise-Heat-Stress.

    PubMed

    Zurawlew, Michael J; Mee, Jessica A; Walsh, Neil P

    2018-05-10

    Recommendations state that to acquire the greatest benefit from heat acclimation the clock-time of heat acclimation sessions should match the clock-time of expected exercise-heat stress. It remains unknown if adaptations by post-exercise hot water immersion (HWI) demonstrate time of day dependent adaptations. Thus, we examined whether adaptations following post-exercise HWI completed in the morning were present during morning and afternoon exercise-heat stress. Ten males completed an exercise-heat stress test commencing in the morning (0945-h: AM) and afternoon (1445-h: PM; 40 min; 65% V̇O 2max treadmill run) before (PRE) and after (POST) heat acclimation. The 6-day heat acclimation intervention involved a daily, 40 min treadmill-run (65% V̇O 2max ) in temperate conditions followed by ≤ 40 min HWI (40°C; 0630-1100-h). Adaptations by 6-day post-exercise HWI in the morning were similar in the morning and afternoon. Reductions in resting rectal temperature (T re ; AM; -0.34 ± 0.24°C, PM; -0.27 ± 0.23°C; P = 0.002), T re at sweating onset (AM; -0.34 ± 0.24°C, PM; -0.31 ± 0.25°C; P = 0.001), and end-exercise T re (AM; -0.47 ± 0.33°C, PM; -0.43 ± 0.29°C; P = 0.001), heart rate (AM; -14 ± 7 beats∙min -1 , PM; -13 ± 6 beats∙min -1 ; P < 0.01), rating of perceived exertion (P = 0.01), and thermal sensation (P = 0.005) were not different in the morning compared to the afternoon. Morning heat acclimation by post-exercise hot water immersion induced adaptions at rest and during exercise-heat stress in the morning and mid-afternoon.

  18. Fat max as an index of aerobic exercise performance in mice during uphill running

    PubMed Central

    Taniguchi, Hirokazu

    2018-01-01

    Endurance exercise performance has been used as a representative index in experimental animal models in the field of health sciences, exercise physiology, comparative physiology, food function or nutritional physiology. The objective of the present study was to evaluate the effectiveness of Fatmax (the exercise intensity that elicits maximal fat oxidation) as an additional index of endurance exercise performance that can be measured during running at submaximal exercise intensity in mice. We measured both Fatmax and Vo2 peak of trained ICR mice that voluntary exercised for 8 weeks and compared them with a sedentary group of mice at multiple inclinations of 20, 30, 40, and 50° on a treadmill. The Vo2 at Fatmax of the training group was significantly higher than that of the sedentary group at inclinations of 30 and 40° (P < 0.001). The running speed at Fatmax of the training group was significantly higher than that of the sedentary group at inclinations of 20, 30, and 40° (P < 0.05). Blood lactate levels sharply increased in the sedentary group (7.33 ± 2.58 mM) compared to the training group (3.13 ± 1.00 mM, P < 0.01) when running speeds exceeded the Fatmax of sedentary mice. Vo2 at Fatmax significantly correlated to Vo2 peak, running time to fatigue, and lactic acid level during running (P < 0.05) although the reproducibility of Vo2 peak was higher than that of Vo2 at Fatmax. In conclusion, Fatmax can be used as a functional assessment of the endurance exercise performance of mice during submaximal exercise intensity. PMID:29474428

  19. Determinants of Time to Fatigue during Non-Motorized Treadmill Exercise

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Lee, M. C.; Wilson, Cassie A.; Hagan, R. Donald

    2007-01-01

    Treadmill exercise is commonly used for aerobic and anaerobic conditioning. During non-motorized treadmill exercise, the subject must provide the power necessary to drive the treadmill belt. The purpose of this study was to determine what factors affected the time to fatigue on a pair of non-motorized treadmills. Twenty subjects (10 males/10 females) attempted to complete five minutes of locomotion during separate trials at 3.22, 4.83, 6.44, 8.05, 9.66, and 11.27 km (raised dot) h(sup -1). Total exercise time (less than or equal to 5 min) was recorded. Exercise time was converted to the amount of 15 second intervals completed. Peak oxygen uptake (VO2) was measured using a graded exercise test on a standard treadmill, and anthropometric measures were collected from each subject before entering into the study. A Cox proportional hazards regression model was used to determine significant predictive factors in a multivariate analysis. Non-motorized treadmill speed and absolute peak VO2 were found to be significant predictors of exercise time, but there was no effect of anthropometric characteristics. Gender was found to be a predictor of treadmill time, but this was likely due to a higher peak VO2 in males than in females. These results were not affected by the type of treadmill tested in this study. Coaches and therapists should consider the cardiovascular fitness of an athlete or client when prescribing target speed since these factors are related to the total exercise time than can be achieved on a non-motorized treadmill.

  20. Effects of long-term post-ischemic treadmill exercise on gliosis in the aged gerbil hippocampus induced by transient cerebral ischemia

    PubMed Central

    Ahn, Ji Hyeon; Shin, Myoung Cheol; Park, Joon Ha; Kim, In Hye; Cho, Jeong-Hwi; Lee, Tae-Kyeong; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich Na; Tae, Hyun-Jin; Park, Jinseu; Choi, Soo Young; Lee, Yun Lyul; Kim, Dae Won; Kim, Yang Hee; Won, Moo-Ho; Cho, Jun Hwi

    2017-01-01

    Therapeutic exercise is an integral component of the rehabilitation of patients who have suffered a stroke. The objective of the present study was to use immunohistochemistry to investigate the effects of post-ischemic exercise on neuronal damage or death and gliosis in the aged gerbil hippocampus following transient cerebral ischemia. Aged gerbils (male; age, 22–24 months) underwent ischemia and were subjected to treadmill exercise for 1 or 4 weeks. Neuronal death was detected in the stratum pyramidale of the hippocampal CA1 region and in the polymorphic layer of the dentate gyrus using cresyl violet and Fluoro-Jade B histofluorescence staining. No significant difference in neuronal death was identified following 1 or 4 weeks of post-ischemic treadmill exercise. However, post-ischemic treadmill exercise affected gliosis (the activation of astrocytes and microglia). Glial fibrillary acidic protein-immunoreactive astrocytes and ionized calcium binding adaptor molecule 1-immunoreactive microglia were activated in the CA1 and polymorphic layer of the dentate gyrus of the group without treadmill exercise. Conversely, 4 weeks of treadmill exercise significantly alleviated ischemia-induced astrocyte and microglial activation; however, 1 week of treadmill exercise did not alleviate gliosis. These findings suggest that long-term post-ischemic treadmill exercise following transient cerebral ischemia does not influence neuronal protection; however, it may effectively alleviate transient cerebral ischemia-induced astrocyte and microglial activation in the aged hippocampus. PMID:28440411

  1. Analysis of physical exercises and exercise protocols for space transportation system operation

    NASA Technical Reports Server (NTRS)

    Coleman, A. E.

    1982-01-01

    A quantitative evaluation of the Thornton-Whitmore treadmill was made so that informed management decisions regarding the role of this treadmill in operational flight crew exercise programs could be made. Specific tasks to be completed were: The Thornton-Whitmore passive treadmill as an exercise device at one-g was evaluated. Hardware, harness and restraint systems for use with the Thornton-Whitmore treadmill in the laboratory and in Shuttle flights were established. The quantitative and qualitative performance of human subjects on the Thorton-Whitmore treadmill with forces in excess of one-g, was evaluated. The performance of human subjects on the Thornton-Whitmore treadmill in weightlessness (onboard Shuttle flights) was also determined.

  2. Effects of carbohydrate ingestion 15 min before exercise on endurance running capacity.

    PubMed

    Tokmakidis, Savvas P; Karamanolis, Ioannis A

    2008-06-01

    This study examined the effects of pre-exercise carbohydrate ingestion on exercise metabolism and endurance running capacity. Eleven active subjects (VO(2) (max) 49.0 +/- 1.7 mL x kg(-1) x min(-1), mean +/- SE) performed two exercise trials 15 min after ingesting glucose (G; 1 g x kg body mass(-1)) and placebo (CON). Each subject ran on a level treadmill for 5 min at 60%, 45 min at 70%, and then at 80% of VO(2) (max) until exhaustion. Serum glucose and plasma insulin reached their peak concentrations (p < 0.01) 15 min after glucose ingestion and declined at the onset of exercise. Serum glycerol concentrations were lower (p < 0.01) in the G trial than in the CON trial after 30 min of exercise to exhaustion. In addition, after 45 min of exercise to exhaustion, the levels of free fatty acids were lower in G than in CON (p < 0.05). No differences were observed in carbohydrate oxidation rates during exercise between treatments (G, 2.53 +/- 0.08 g x min(-1); CON, 2.40 +/- 0.09 g x min(-1)). Time to exhaustion was 12.8% longer in G (p < 0.01) than in CON. These results suggest that glucose ingestion 15 min before prolonged exercise provides an additional carbohydrate source to the exercising muscle, thus improving endurance running capacity.

  3. Comparison of standardbred trotters exercising on a treadmill and a race track with identical draught resistances.

    PubMed

    Gottlieb-Vedi, M; Lindholm, A

    1997-05-17

    The responses in heart rate, plasma lactate and rectal temperature of standardbred trotters to draught loaded interval exercise on a treadmill and a race track were studied. The horses were exercised with incrementally increasing trotting speeds for two-minute intervals with draught loads of 10, 20 and 30 kilopond (kp) in three different tests. Each trotting interval was followed by two-minute periods at a walk without a draught load. Measurements of heart rate and plasma lactate were made at the end of each interval and the rectal temperature was taken at the end of the exercise. The heart rate and plasma lactate levels were significantly lower on the treadmill than on the track in the tests with 10 kp, but no significant differences were found between the treadmill and track exercise tests with the heavier draught resistances. No differences were observed in rectal temperature between treadmill and track conditions. From these findings it was concluded that the workload was significantly greater on the race track compared to the treadmill when the draught resistance was low (10 kp). Although the workload increased on both the race track and the treadmill as draught resistance increased, at the heavier draught resistances track exercise was no longer more demanding than exercise on the treadmill.

  4. Physiologic Responses to Treadmill and Water Running.

    ERIC Educational Resources Information Center

    Bishop, Phillip A.; And Others

    1989-01-01

    Presents results of a study of the physiological responses of uninjured runners to running on a treadmill and in water. Water running may lessen an injured athlete's rate of deconditioning, but indications are that the metabolic cost of water running is not significantly greater than that of treadmill running. (SM)

  5. Intense Exercise Promotes Adult Hippocampal Neurogenesis But Not Spatial Discrimination

    PubMed Central

    So, Ji H.; Huang, Chao; Ge, Minyan; Cai, Guangyao; Zhang, Lanqiu; Lu, Yisheng; Mu, Yangling

    2017-01-01

    Hippocampal neurogenesis persists throughout adult life and plays an important role in learning and memory. Although the influence of physical exercise on neurogenesis has been intensively studied, there is controversy in regard to how the impact of exercise may vary with its regime. Less is known about how distinct exercise paradigms may differentially affect the learning behavior. Here we found that, chronic moderate treadmill running led to an increase of cell proliferation, survival, neuronal differentiation, and migration. In contrast, intense running only promoted neuronal differentiation and migration, which was accompanied with lower expressions of vascular endothelial growth factor, brain-derived neurotrophic factor, insulin-like growth factor 1, and erythropoietin. In addition, the intensely but not mildly exercised animals exhibited a lower mitochondrial activity in the dentate gyrus. Correspondingly, neurogenesis induced by moderate but not intense exercise was sufficient to improve the animal’s ability in spatial pattern separation. Our data indicate that the effect of exercise on spatial learning is intensity-dependent and may involve mechanisms other than a simple increase in the number of new neurons. PMID:28197080

  6. Influence of shoes increasing dorsiflexion and decreasing metatarsus flexion on lower limb muscular activity during fitness exercises, walking, and running.

    PubMed

    Bourgit, David; Millet, Guillaume Y; Fuchslocher, Jörg

    2008-05-01

    The aim of the present study was to compare electromyographic activity during fitness exercises, walking, and running among 3 different dorsiflexion shoes (+2 degrees , +4 degrees , and +10 degrees ) and standard shoes (-4 degrees ). The 3 different dorsiflexion shoes tested in this study have a curvature placed in the middle of the sole. This design was specially projected to decrease the metatarsus flexion. Electromyographic activity of 9 lower limb muscles was measured on 12 healthy female subjects during 5 fitness exercises (unload squat, side and front step, submaximal ballistic plantar flexion, and lunge exercise), and during running (10 km x h(-1)) and walking (4.5 km x h(-1)) on a treadmill. EMG signal was analyzed with the root mean square (RMS) and integrated EMG. All RMS data measured during these exercises were expressed as percentages of maximum voluntary isometric contraction. The results show that dorsiflexion affects muscle recruitment and reorganizes the motor pattern. The general tendency was that the tibialis anterior activity increased with dorsiflexion. However, an optimal dorsiflexion existed for various exercises. It is concluded that shoes with moderate dorsiflexion can activate lower limb muscles differently compared with both standard shoes and shoes with large dorsiflexion during submaximal exercises and locomotion.

  7. (−)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats

    PubMed Central

    Copp, Steven W.; Inagaki, Tadakatsu; White, Michael J.; Hirai, Daniel M.; Ferguson, Scott K.; Holdsworth, Clark T.; Sims, Gabrielle E.; Poole, David C.

    2013-01-01

    Consumption of the dietary flavanol (−)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O2 uptake (V̇o2 peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O2 pressure (Po2mv) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓∼5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, V̇o2 peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min−1·100 g−1, P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min−1·100 g−1·mmHg−1, P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓∼16%) but did not impact resting Po2mv or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg−1·day−1) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats. PMID:23144313

  8. (-)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats.

    PubMed

    Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I

    2013-01-15

    Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.

  9. Lower Limb Kinematics and Metabolic Cost During Elliptical Exercises and Treadmill Running.

    PubMed

    Chester, Stephanie; Zucker-Levin, Audrey; Melcher, Daniel A; Peel, Shelby A; Bloomer, Richard J; Paquette, Max R

    2016-04-01

    The purpose of this study was to compare knee and hip joint kinematics previously associated with anterior knee pain and metabolic cost among conditions including treadmill running (TR), standard elliptical (SE), and lateral elliptical (LE) in healthy runners. Joint kinematics and metabolic parameters of 16 runners were collected during all 3 modalities using motion capture and a metabolic system, respectively. Sagittal knee range of motion (ROM) was greater in LE (P < .001) and SE (P < .001) compared with TR. Frontal and transverse plane hip ROM were greater in LE compared with SE (P < .001) and TR (P < .001). Contralateral pelvic drop ROM was smaller in SE compared with TR (P = .002) and LE (P = .005). Similar oxygen consumption was found during LE and TR (P = .39), but LE (P < .001) and TR (P < .001) required greater oxygen consumption than SE. Although LE yields similar metabolic cost to TR and produces hip kinematics that may help strengthen hip abductors, greater knee flexion and abduction during LE may increase symptoms in runners with anterior knee pain. The findings suggest that research on the implications of elliptical exercise for injured runners is needed.

  10. VO[subscript 2] Prediction and Cardiorespiratory Responses during Underwater Treadmill Exercise

    ERIC Educational Resources Information Center

    Greene, Nicholas P.; Greene, Elizabeth S.; Carbuhn, Aaron F.; Green, John S.; Crouse, Stephen F.

    2011-01-01

    We compared cardiorespiratory responses to exercise on an underwater treadmill (UTM) and land treadmill (LTM) and derived an equation to estimate oxygen consumption (VO[subscript 2]) during UTM exercise. Fifty-five men and women completed one LTM and five UTM exercise sessions on separate days. The UTM sessions consisted of chest-deep immersion,…

  11. Comparison of physiological and acid-base balance response during uphill, level and downhill running performed at constant velocity.

    PubMed

    Maciejczyk, Marcin; Więcek, M; Szymura, J; Szyguła, Z

    2013-09-01

    The purpose of this study was to compare the physiological and the acid-base balance response to running at various slope angles. Ten healthy men 22.3 ± 1.56 years old participated in the study. The study consisted of completing the graded test until exhaustion and three 45-minute runs. For the first 30 minutes, runs were performed with an intensity of approximately 50% VO2max, while in the final 15 minutes the slope angle of treadmill was adjusted (0°; +4.5°; -4.5°), and a fixed velocity of running was maintained. During concentric exercise, a significant increase in the levels of physiological indicators was reported; during eccentric exercise, a significant decrease in the level of the analyzed indicators was observed. Level running did not cause significant changes in the indicators of acid-base balance. The indicators of acid-base balance changed significantly in the case of concentric muscle work (in comparison to level running) and after the eccentric work, significant and beneficial changes were observed in most of the biochemical indicators. The downhill run can be used for a partial regeneration of the body during exercise, because during this kind of effort an improvement of running economy was observed, and this type of effort did not impair the acid-base balance of body.

  12. Graded Aerobic Treadmill Testing in Adolescent Traumatic Brain Injury Patients.

    PubMed

    Cordingley, Dean M; Girardin, Richard; Morissette, Marc P; Reimer, Karen; Leiter, Jeff; Russell, Kelly; Ellis, Michael J

    2017-11-01

    To examine the safety and tolerability of clinical graded aerobic treadmill testing in recovering adolescent moderate and severe traumatic brain injury (TBI) patients referred to a multidisciplinary pediatric concussion program. We completed a retrospective case series of two moderate and five severe TBI patients (mean age, 17.3 years) who underwent initial Buffalo Concussion Treadmill Testing at a mean time of 71.6 days (range, 55-87) postinjury. Six patients completed one graded aerobic treadmill test each and one patient underwent initial and repeat testing. There were no complications. Five initial treadmill tests were completely tolerated and allowed an accurate assessment of exercise tolerance. Two initial tests were terminated early by the treatment team because of neurological and cardiorespiratory limitations. As a result of testing, two patients were cleared for aerobic exercise as tolerated and four patients were treated with individually tailored submaximal aerobic exercise programs resulting in subjective improvement in residual symptoms and/or exercise tolerance. Repeat treadmill testing in one patient performed after 1 month of treatment with submaximal aerobic exercise prescription was suggestive of improved exercise tolerance. One patient was able to tolerate aerobic exercise following surgery for posterior glottic stenosis. Preliminary results suggest that graded aerobic treadmill testing is a safe, well tolerated, and clinically useful tool to assess exercise tolerance in appropriately selected adolescent patients with TBI. Future prospective studies are needed to evaluate the effect of tailored submaximal aerobic exercise prescription on exercise tolerance and patient outcomes in recovering adolescent moderate and severe TBI patients.

  13. Lymphocyte Apoptosis in Smokers and Non-Smokers Following Different Intensity of Exercises and Relation with Lactate

    PubMed Central

    PARK, KYUNG-SHIN; LEE, YANG

    2011-01-01

    Purposes of this study were 1) to examine the exercise intensity where lymphocyte apoptosis index (AI) is significantly increased in smokers and non-smokers, 2) to find out whether AI is associated with level of lactate (L). Fourteen healthy untrained smokers (≤ 1 pack year, n=7) and non-smokers (n=7) aged 18 to 26 were recruited. Each subject conducted three treadmill runs at different intensities randomly. Running distance for all three runs was equivalent to 30 minute run at 70% VO2max. AI and L were analyzed at rest (Pre), immediately after (Post), and 1 h following (1 h post) each run. Data was analyzed using two way repeated measures ANOVA. Smokers showed higher AI than non-smokers at Post in 60% (12.5±0.62% vs. 9.97±0.51, p<.008) and 70% VO2max running trials (17.53±0.57% vs. 15.6±0.41, p<.018). All L values at post showed significantly higher than Pre and 1 h post, but there was no significant difference between smokers and non-smokers. The strong positive relationship between AI and L was detected (r=.739, smokers vs. r=.793, non-smokers). Smokers tend to have higher AI than non-smokers following runs at 60% and 70% VO2max, but not following a run at 80% VO2max. An increase in AI following a run at 60% VO2max indicates that lymphocyte apoptosis can be increased following moderate intensity exercise. Since L and AI at post were increased in dose-dependent manner to exercise intensity, it is suggested that an increase in lactate production during exercise might contribute to the increase in lymphocyte apoptosis. PMID:27182363

  14. Lymphocyte Apoptosis in Smokers and Non-Smokers Following Different Intensity of Exercises and Relation with Lactate.

    PubMed

    Park, Kyung-Shin; Lee, Yang

    Purposes of this study were 1) to examine the exercise intensity where lymphocyte apoptosis index (AI) is significantly increased in smokers and non-smokers, 2) to find out whether AI is associated with level of lactate (L). Fourteen healthy untrained smokers (≤ 1 pack year, n =7) and non-smokers ( n =7) aged 18 to 26 were recruited. Each subject conducted three treadmill runs at different intensities randomly. Running distance for all three runs was equivalent to 30 minute run at 70% VO 2max . AI and L were analyzed at rest (Pre), immediately after (Post), and 1 h following (1 h post) each run. Data was analyzed using two way repeated measures ANOVA. Smokers showed higher AI than non-smokers at Post in 60% (12.5±0.62% vs. 9.97±0.51, p <.008) and 70% VO 2max running trials (17.53±0.57% vs. 15.6±0.41, p <.018). All L values at post showed significantly higher than Pre and 1 h post, but there was no significant difference between smokers and non-smokers. The strong positive relationship between AI and L was detected ( r =.739, smokers vs. r =.793, non-smokers). Smokers tend to have higher AI than non-smokers following runs at 60% and 70% VO 2max, but not following a run at 80% VO 2max . An increase in AI following a run at 60% VO 2max indicates that lymphocyte apoptosis can be increased following moderate intensity exercise. Since L and AI at post were increased in dose-dependent manner to exercise intensity, it is suggested that an increase in lactate production during exercise might contribute to the increase in lymphocyte apoptosis.

  15. Temperature responses to infusion of electrolytes during exercise

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Kozlowski, S.; Kaciuba-Uscilko, H.; Nazar, K.; Brzezinska, Z.

    1975-01-01

    To gain more insight into the ion-osmotic influence on temperature regulation, the rectal temperature responses of mongrel dogs were measured during one hour of treadmill-running at 1.2 m/sec up a 12 deg slope. Results indicate that as in man, the rise in body temperature during exercise appears to be a regulated process. There is a direct relationship between the rise and equilibrium levels of rectal temperature and the plasma sodium and osmotic concentrations. It remains to be determined if the hypernatremic-osmolality inhibits peripheral blood flow, the panting, salivation response, or both. Some background on previous experiments on resting and exercising dogs and men is recounted.

  16. Treadmill Exercise Exerts Neuroprotection and Regulates Microglial Polarization and Oxidative Stress in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer’s Disease

    PubMed Central

    Lu, Yujiao; Dong, Yan; Tucker, Donovan; Wang, Ruimin; Ahmed, Mohammad Ejaz; Brann, Darrell; Zhang, Quanguang

    2017-01-01

    Recent work has suggested that exercise may be beneficial in preventing or ameliorating symptoms of several neurological disorders, although the mechanism is not entirely understood. The current study was designed to examine the potential beneficial effect of treadmill exercise upon cognitive function in a streptozotocin (STZ)-induced rat model of Alzheimer’s disease (AD). Animals underwent treadmill exercise (30 min/day, 5 days/week) for 4 weeks after bilateral STZ intracerebroventricular injection (2.4 mg/kg). We demonstrated that treadmill exercise significantly attenuated STZ-induced neurodegeneration in the rat hippocampal CA1 region and strongly preserved hippocampal-dependent cognitive functioning. Further mechanistic investigation displayed a marked suppression of STZ-induced amyloid-β accumulation and tau phosphorylation. Intriguingly, treadmill exercise remarkably inhibited reactive gliosis following STZ insult and effectively shifted activated microglia from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which was correlated with a significantly reduced expression of pro-inflammatory mediators and a corresponding enhancement of anti-inflammatory cytokine expression in the hippocampus. Furthermore, treadmill exercise caused a robust suppression of oxidative damage as evidenced by significantly reduced peroxynitrite production, lipid peroxidation, and oxidized DNA damage. Finally, treadmill exercise strongly attenuated STZ-induced mitochondrial dysfunction manifested by a dramatically elevated intra-mitochondrial cytochrome c oxidase activity and ATP synthesis, and markedly inhibited neuronal apoptosis in the hippocampus. These findings demonstrate that treadmill exercise has a multifactorial effect to attenuate many of the pathological processes that play a key role in AD, and provide further support for the beneficial role of exercise as a potential therapeutic option in AD treatment. PMID:28157094

  17. Treadmill Exercise Exerts Neuroprotection and Regulates Microglial Polarization and Oxidative Stress in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer's Disease.

    PubMed

    Lu, Yujiao; Dong, Yan; Tucker, Donovan; Wang, Ruimin; Ahmed, Mohammad Ejaz; Brann, Darrell; Zhang, Quanguang

    2017-01-01

    Recent work has suggested that exercise may be beneficial in preventing or ameliorating symptoms of several neurological disorders, although the mechanism is not entirely understood. The current study was designed to examine the potential beneficial effect of treadmill exercise upon cognitive function in a streptozotocin (STZ)-induced rat model of Alzheimer's disease (AD). Animals underwent treadmill exercise (30 min/day, 5 days/week) for 4 weeks after bilateral STZ intracerebroventricular injection (2.4 mg/kg). We demonstrated that treadmill exercise significantly attenuated STZ-induced neurodegeneration in the rat hippocampal CA1 region and strongly preserved hippocampal-dependent cognitive functioning. Further mechanistic investigation displayed a marked suppression of STZ-induced amyloid-β accumulation and tau phosphorylation. Intriguingly, treadmill exercise remarkably inhibited reactive gliosis following STZ insult and effectively shifted activated microglia from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which was correlated with a significantly reduced expression of pro-inflammatory mediators and a corresponding enhancement of anti-inflammatory cytokine expression in the hippocampus. Furthermore, treadmill exercise caused a robust suppression of oxidative damage as evidenced by significantly reduced peroxynitrite production, lipid peroxidation, and oxidized DNA damage. Finally, treadmill exercise strongly attenuated STZ-induced mitochondrial dysfunction manifested by a dramatically elevated intra-mitochondrial cytochrome c oxidase activity and ATP synthesis, and markedly inhibited neuronal apoptosis in the hippocampus. These findings demonstrate that treadmill exercise has a multifactorial effect to attenuate many of the pathological processes that play a key role in AD, and provide further support for the beneficial role of exercise as a potential therapeutic option in AD treatment.

  18. Increased xanthine oxidase-related ROS production and TRPV1 synthesis preceding DOMS post-eccentric exercise in rats.

    PubMed

    Retamoso, Leandro T; Silveira, Mauro E P; Lima, Frederico D; Busanello, Guilherme L; Bresciani, Guilherme; Ribeiro, Leandro R; Chagas, Pietro M; Nogueira, Cristina W; Braga, Ana Claudia M; Furian, Ana Flávia; Oliveira, Mauro S; Fighera, Michele R; Royes, Luiz Fernando F

    2016-05-01

    It is well-known that unaccustomed exercise, especially eccentric exercise, is associated to delayed onset muscle soreness (DOMS). Whether DOMS is associated with reactive oxygen species (ROS) and the transient receptor potential vanilloid 1 (TRPV1) is still an open question. Thus, the aim of this study was to investigate the association between TRPV1 and xanthine oxidase-related ROS production in muscle and DOMS after a bout of eccentric exercise. Male Wistar rats performed a downhill running exercise on a treadmill at a -16° tilt and a constant speed for 90min (5min/bout separated by 2min of rest). Mechanical allodynia and grip force tests were performed before and 1, 3, 6, 9, 12, 24, 48 and 72h after the downhill running. Biochemical assays probing oxidative stress, purine degradation, xanthine oxidase activity, Ca(2+) ATPase activity and TRPV1 protein content were performed in gastrocnemius muscle at 12, 24, and 48h after the downhill running. Our statistical analysis showed an increase in mechanical allodynia and a loss of strength after the downhill running. Similarly, an increase in carbonyl, xanthine oxidase activity, uric acid levels and TRPV1 immunoreactivity were found 12h post-exercise. On the other hand, Ca(2+) ATPase activity decreased in all analyzed times. Our results suggest that a possible relationship between xanthine oxidase-related ROS and TRPV1 may exist during the events preceding eccentric exercise-related DOMS. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Compression Garments, Muscle Contractile Function, and Economy in Trail Runners.

    PubMed

    Vercruyssen, Fabrice; Gruet, Mathieu; Colson, Serge S; Ehrstrom, Sabine; Brisswalter, Jeanick

    2017-01-01

    Physiological mechanisms behind the use of compression garments (CGs) during off-road running are unknown. To investigate the influence of wearing CGs vs conventional running clothing (CON) on muscle contractile function and running economy before and after short-distance trail running. Knee-extensor neuromuscular function and running economy assessed from two 5-min treadmill runs (11 and 14 km/h) were evaluated before and after an 18.6-km short-distance trail run in 12 trained athletes wearing either CGs (stocking + short-tight) or CON. Quadriceps neuromuscular function was assessed from mechanical and EMG recording after maximal percutaneous electrical femoral-nerve stimulations (single-twitch doublets at 10 [Db 10 ] and 100 Hz [Db 100 ] delivered at rest and during maximal quadriceps voluntary contraction [MVC]). Running economy (in mL O 2 · km -1 · kg -1 ) increased after trail running independent of the clothing condition and treadmill speeds (P < .001). Similarly, MVC decreased after CON and CGs conditions (-11% and -13%, respectively, P < .001). For both clothing conditions, a significant decrease in quadriceps voluntary activation, Db 10 , Db 100 , and the low-to-high frequency doublet ratio were observed after trail running (time effect, all P < .01), without any changes in rectus femoris maximal M-wave. Wearing CGs does not reduce physiological alterations induced during short-distance trail running. Further studies should determine whether higher intensity of compression pressure during exercises of longer duration may be effective to induce any physiological benefits in experienced trail runners.

  20. Effect of Age and Exercise on the Viscoelastic Properties of Rat Tail Tendon

    PubMed Central

    LaCroix, Andrew S.; Duenwald-Kuehl, Sarah E.; Brickson, Stacey; Akins, Tiffany L.; Diffee, Gary; Aiken, Judd; Vanderby, Ray; Lakes, Roderic S.

    2013-01-01

    Tendon mechanical properties are thought to degrade during aging but improve with exercise. A remaining question is whether exercise in aged animals provides sufficient regenerative, systemic stimulus to restore younger mechanical behaviors. Herein we address that question with tail tendons from aged and exercised rats, which would be subject to systemic effects but not direct loading from the exercise regimen. Twenty-four month old rats underwent one of three treadmill exercise training protocols for 12 months: sedentary (walking at 0° incline for 5 min/day), moderate (running at 0° incline for 30 min/day), or high (running at 4° incline for 30 min/day). A group of 9 month old rats were used to provide an adult control, while a group of 3 month old rats provided a young control. Tendons were harvested at sacrifice and mechanically tested. Results show significant age-dependent differences in modulus, ultimate stress, relaxation rate, and percent relaxation. Relaxation rate was strain-dependent, consistent with nonlinear superposition or Schapery models but not with quasilinear viscoelasticity (QLV). Trends in exercise data suggest that with exercise, tendons assume the elastic character of younger rats (lower elastic modulus and ultimate stress). PMID:23549897

  1. Effects of grape seed polyphenols on oxidative damage in liver tissue of acutely and chronically exercised rats.

    PubMed

    Belviranlı, Muaz; Gökbel, Hakkı; Okudan, Nilsel; Büyükbaş, Sadık

    2013-05-01

    The objective of the present study was to investigate the effects of grape seed extract (GSE) supplementation on oxidative stress and antioxidant defense markers in liver tissue of acutely and chronically exercised rats. Rats were randomly assigned to six groups: Control (C), Control Chronic Exercise (CE), Control Acute Exercise (AE), GSE-supplemented Control (GC), GSE-supplemented Chronic Exercise(GCE) and GSE-supplemented Acute Exercise (GAE). Rats in the chronic exercise groups were subjected to a six-week treadmill running and in the acute exercise groups performed an exhaustive running. Rats in the GSE supplemented groups received GSE (100 mg.kg(-1) .day(-1) ) in drinking water for 6 weeks. Liver tissues of the rats were taken for the analysis of malondialdehyde (MDA), nitric oxide (NO) levels and total antioxidant activity (AOA) and xanthine oxidase (XO) activities. MDA levels decreased with GSE supplementation in control groups but increased in acute and chronic exercise groups compared to their non-supplemented control. NO levels increased with GSE supplementation. XO activities were higher in AE group compared to the CE group. AOA decreased with GSE supplementation. In conclusion, while acute exercise triggers oxidative stress, chronic exercise has protective role against oxidative stress. GSE has a limited antioxidant effect on exercise-induced oxidative stress in liver tissue.

  2. Histone Acetylation in Microglia Contributes to Exercise-Induced Hypoalgesia in Neuropathic Pain Model Mice.

    PubMed

    Kami, Katsuya; Taguchi, Satoru; Tajima, Fumihiro; Senba, Emiko

    2016-05-01

    Physical exercise can attenuate neuropathic pain (NPP), but the exact mechanism underlying exercise-induced hypoalgesia (EIH) remains unclear. Recent studies have shown that histone hyperacetylation via pharmacological inhibition of histone deacetylases in the spinal cord attenuates NPP, and that histone acetylation may lead to the production of analgesic factors including interleukin 10. We intended to clarify whether histone acetylation in microglia in the spinal dorsal horn contributes to EIH in NPP model mice. C57BL/6J mice underwent partial sciatic nerve ligation (PSL) and PSL- and sham-runner mice ran on a treadmill at a speed of 7 m/min for 60 min/d, 5 days per week, from 2 days after the surgery. PSL-sedentary mice developed mechanical allodynia and heat hyperalgesia, but such behaviors were significantly attenuated in PSL-runner mice. In immunofluorescence analysis, PSL surgery markedly increased the number of histone deacetylase 1-positive/CD11b-positive microglia in the ipsilateral superficial dorsal horn, and they were significantly decreased by treadmill-running. Moreover, the number of microglia with nuclear expression of acetylated H3K9 in the ipsilateral superficial dorsal horn was maintained at low levels in PSL-sedentary mice, but running exercise significantly increased them. Therefore, we conclude that the epigenetic modification that causes hyperacetylation of H3K9 in activated microglia may play a role in producing EIH. This article presents the importance of epigenetic modification in microglia in producing EIH. The current research is not only helpful for developing novel nonpharmacological therapy for NPP, but will also enhance our understanding of the mechanisms and availability of exercise in our daily life. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  3. Running for exercise mitigates age-related deterioration of walking economy.

    PubMed

    Ortega, Justus D; Beck, Owen N; Roby, Jaclyn M; Turney, Aria L; Kram, Rodger

    2014-01-01

    Impaired walking performance is a key predictor of morbidity among older adults. A distinctive characteristic of impaired walking performance among older adults is a greater metabolic cost (worse economy) compared to young adults. However, older adults who consistently run have been shown to retain a similar running economy as young runners. Unfortunately, those running studies did not measure the metabolic cost of walking. Thus, it is unclear if running exercise can prevent the deterioration of walking economy. To determine if and how regular walking vs. running exercise affects the economy of locomotion in older adults. 15 older adults (69 ± 3 years) who walk ≥ 30 min, 3x/week for exercise, "walkers" and 15 older adults (69 ± 5 years) who run ≥ 30 min, 3x/week, "runners" walked on a force-instrumented treadmill at three speeds (0.75, 1.25, and 1.75 m/s). We determined walking economy using expired gas analysis and walking mechanics via ground reaction forces during the last 2 minutes of each 5 minute trial. We compared walking economy between the two groups and to non-aerobically trained young and older adults from a prior study. Older runners had a 7-10% better walking economy than older walkers over the range of speeds tested (p = .016) and had walking economy similar to young sedentary adults over a similar range of speeds (p =  .237). We found no substantial biomechanical differences between older walkers and runners. In contrast to older runners, older walkers had similar walking economy as older sedentary adults (p =  .461) and ∼ 26% worse walking economy than young adults (p<.0001). Running mitigates the age-related deterioration of walking economy whereas walking for exercise appears to have minimal effect on the age-related deterioration in walking economy.

  4. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology.

    PubMed

    Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco

    2015-01-01

    Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology.

  5. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology

    PubMed Central

    Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco

    2015-01-01

    Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology. PMID:27227066

  6. Thermoregulatory responses to skin wetting during prolonged treadmill running.

    PubMed

    Bassett, D R; Nagle, F J; Mookerjee, S; Darr, K C; Ng, A V; Voss, S G; Napp, J P

    1987-02-01

    We examined the physiological responses to skin wetting during a 120-min level treadmill run to assess whether skin wetting would reduce the dehydration and the increase in core temperature associated with prolonged exercise. Testing was conducted in an environmental chamber (T = 29.5 degrees C, wind velocity = 3 m X sec-1) under two different humidity conditions (33 or 66% relative humidity). Ten male subjects performed two runs in each humidity condition; one served as a control run. The other included spraying the body with 50 ml of water (T = 29.5 degrees C) every 10 min. Spraying had no effect on rectal temperature (Tre), heart rate, oxygen consumption, perceived exertion, sweat loss, or percent change in plasma volume in both the humid and the dry conditions. Spraying produced a significant reduction in mean skin temperature (Tsk), which increased the (Tre - Tsk) gradient. At the same time, overall skin conductance (K) was decreased, presumably as a result of cutaneous vasoconstriction due to the low Tsk. Since heat transfer from the body's core to the skin is expressed by the equation: heat transfer = K X (Tre - Tsk) the spraying had no effect on heat transfer away from the core, and Tre remained unchanged.

  7. Gait, Balance, Leg Strength, and Sprint Speed After Bedrest with LBNP Exercise

    NASA Technical Reports Server (NTRS)

    Boda, Wanda L.; Watenbaugh, D. E.; Ballard, R. E.; Fortney, S. M.; Ertl, A. C.; Lee, S. M. C.; William, J. M.; Hargens, Alan R.

    1997-01-01

    Microgravity and bedrest (BR) result in similar physiological decrements such as loss of muscle mass, muscle strength and balance. Previous studies analyzing exercise within lower body negative pressure (LBNP) have found that gait is similar in LBNP on a vertical treadmill and overground exercise on a horizontal treadmill. Since treadmill exercise is known to increase muscular strength and endurance, we tested the hypothesis that LBNP exercise on a vertical treadmill would prevent or attenuate many of the physical decrements which occur during bedrest. Based on our positive results from diverse tests of post-BR function, we believe that exercise within LBNP is worth pursuing as a countermeasure for reducing the physical deterioration that occurs during bedrest and microgravity.

  8. Enhanced voluntary wheel running in GPRC6A receptor knockout mice.

    PubMed

    Clemmensen, Christoffer; Pehmøller, Christian; Klein, Anders B; Ratner, Cecilia; Wojtaszewski, Jørgen F P; Bräuner-Osborne, Hans

    2013-06-13

    GPRC6A is an amino acid-sensing receptor highly expressed in the brain and in skeletal muscle. Although recent evidence suggests that genetically engineered GPRC6A receptor knockout (KO) mice are susceptible to develop subtle endocrine and metabolic disturbances, the underlying disruptions in energy metabolism are largely unexplored. Based on GPRC6A's expression pattern and ligand preferences, we hypothesize that the receptor may impact energy metabolism via regulating physical activity levels. Thus, in the present study, we exposed GPRC6A receptor KO mice and their wild-type (WT) littermates to voluntary wheel running and forced treadmill exercise. Moreover, we assessed energy expenditure in the basal state, and evaluated the effects of wheel running on food intake, body composition, and a range of exercise-induced central and peripheral biomarkers. We found that adaptation to voluntary wheel running is affected by GPRC6A, as ablation of the receptor significantly enhances wheel running in KO relative to WT mice. Both genotypes responded to voluntary exercise by increasing food intake and improving body composition to a similar degree. In conclusion, these data demonstrate that the GPRC6A receptor is involved in regulating exercise behaviour. Future studies are highly warranted to delineate the underlying molecular details and to assess if these findings hold any translational value. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. V02 'overshoot' during moderate-intensity exercise in endurance-trained athletes: the influence of exercise modality.

    PubMed

    Kilding, Andrew E; Jones, Andrew M

    2008-02-01

    The purpose of this study was to investigate the influence of exercise modality on the 'overshoot' in V(O2) that has been reported following the onset of moderate-intensity (below the gas exchange threshold, GET) exercise in endurance athletes. Seven trained endurance cyclists and seven trained endurance runners completed six square-wave transitions to a work-rate or running speed requiring 80% of mode-specific GET during both cycle and treadmill running exercise. The kinetics of V(O2) was assessed using non-linear regression and any overshoot in V(O2) was quantified as the integrated volume (IV) of O(2) consumed above the steady-state requirement. During cycling, an overshoot in V(O2) was evident in all seven cyclists (IV = 136 +/- 41 ml) and in four runners (IV = 81 +/- 94 ml). During running, an overshoot in V(O2) was evident in four runners (IV = 72 +/- 61 ml) but no cyclists. These data challenge the notion that V(O2) always rises towards a steady-state with near-exponential kinetics in this exercise intensity domain. The greater incidence of the V(O2) overshoot during cycling (11/14 subjects) compared to running (4/14 subjects) indicates that the overshoot phenomenon is related to an interaction between high levels of aerobic fitness and exercise modality. We speculate that a transient loss in muscle efficiency as a consequence of a non-constant ATP requirement following the onset of constant-work-rate exercise or an initially excessive recruitment of motor units (relative to the work-rate) might contribute to the overshoot phenomenon.

  10. Ground Reaction Forces and Gait Parameters during Motorized and Non-Motorized Treadmill Walking and Runing on the International Space Station Treadmill

    NASA Technical Reports Server (NTRS)

    Hagan, Ronald Donald; Norcross, Jason; DeWitt, John; Lee, Stuart M.; McCleary, Frank; Edwards, W. Brent

    2006-01-01

    Both motorized (T-M) and non-motorized (T-NM) treadmill locomotion are used on the International Space Station (ISS) as countermeasures to the deleterious effects of prolonged weightlessness. However, the ground reaction forces (GRF) and gait parameters of these exercise modes have not been examined. The purpose of this study was to determine if differences in GRF and gait parameters exist while walking (1.34 m/s) and running (3.13 m/s) on T-M and T-NM. Dissimilar GRF and gait parameters suggest that T-M and T-NM locomotion may elicit different physiologic effects. T-NM may result in a reduced stimulus to bone formation due to a lower LR, but an increased energy cost as a result of shorter, more frequent strides. Therefore, the usage of each mode should depend upon the desired training stimulus.

  11. The Effect of Increasing Inertia upon Vertical Ground Reaction Forces during Locomotion

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Hagan, R. Donald; Cromwell, Ronita L.

    2007-01-01

    The addition of inertia to exercising astronauts could increase ground reaction forces and potentially provide a greater health benefit. However, conflicting results have been reported regarding the adaptations to additional mass (inertia) without additional net weight (gravitational force) during locomotion. We examined the effect of increasing inertia while maintaining net gravitational force on vertical ground reaction forces and kinematics during walking and running. Vertical ground reaction force was measured for ten healthy adults (5 male/5 female) during walking (1.34 m/s) and running (3.13 m/s) using a force-measuring treadmill. Subjects completed locomotion at normal weight and mass, and at 10, 20, 30, and 40% of added inertial force. The added gravitational force was relieved with overhead suspension, so that the net force between the subject and treadmill at rest remained equal to 100% body weight. Peak vertical impact forces and loading rates increased with increased inertia during walking, and decreased during running. As inertia increased, peak vertical propulsive forces decreased during walking and did not change during running. Stride time increased during walking and running, and contact time increased during running. Vertical ground reaction force production and adaptations in gait kinematics were different between walking and running. The increased inertial forces were utilized independently from gravitational forces by the motor control system when determining coordination strategies.

  12. Effects of exercise on capillaries in the white matter of transgenic AD mice

    PubMed Central

    Zhang, Yi; Chao, Feng-Lei; Zhou, Chun-Ni; Jiang, Lin; Zhang, Lei; Chen, Lin-Mu; Luo, Yan-Min; Xiao, Qian; Tang, Yong

    2017-01-01

    Previous studies have shown that exercise can prevent white matter atrophy in APP/PS1 transgenic Alzheimer’s disease (AD) mice. However, the mechanism of this protective effect remains unknown. To further understand this issue, we investigated the effects of exercise on the blood supply of white matter in transgenic AD mice. Six-month-old male APP/PS1 mice were randomly divided into a control group and a running group, and age-matched non-transgenic littermates were used as a wild-type control group. Mice in the running group ran on a treadmill at low intensity for four months. Then, spatial learning and memory abilities, white matter and white matter capillaries were examined in all mice. The 10-month-old AD mice exhibited deficits in cognitive function, and 4 months of exercise improved these deficits. The white matter volume and the total length, total volume and total surface area of the white matter capillaries were decreased in the 10-month-old AD mice, and 4 months of exercise dramatically delayed the changes in these parameters in the AD mice. Our results demonstrate that even low-intensity running exercise can improve spatial learning and memory abilities, delay white matter atrophy and protect white matter capillaries in early-stage AD mice. Protecting capillaries might be an important structural basis for the exercise-induced protection of the structural integrity of white matter in AD. PMID:29029478

  13. Effects of exercise on capillaries in the white matter of transgenic AD mice.

    PubMed

    Zhang, Yi; Chao, Feng-Lei; Zhou, Chun-Ni; Jiang, Lin; Zhang, Lei; Chen, Lin-Mu; Luo, Yan-Min; Xiao, Qian; Tang, Yong

    2017-09-12

    Previous studies have shown that exercise can prevent white matter atrophy in APP/PS1 transgenic Alzheimer's disease (AD) mice. However, the mechanism of this protective effect remains unknown. To further understand this issue, we investigated the effects of exercise on the blood supply of white matter in transgenic AD mice. Six-month-old male APP/PS1 mice were randomly divided into a control group and a running group, and age-matched non-transgenic littermates were used as a wild-type control group. Mice in the running group ran on a treadmill at low intensity for four months. Then, spatial learning and memory abilities, white matter and white matter capillaries were examined in all mice. The 10-month-old AD mice exhibited deficits in cognitive function, and 4 months of exercise improved these deficits. The white matter volume and the total length, total volume and total surface area of the white matter capillaries were decreased in the 10-month-old AD mice, and 4 months of exercise dramatically delayed the changes in these parameters in the AD mice. Our results demonstrate that even low-intensity running exercise can improve spatial learning and memory abilities, delay white matter atrophy and protect white matter capillaries in early-stage AD mice. Protecting capillaries might be an important structural basis for the exercise-induced protection of the structural integrity of white matter in AD.

  14. Plasma renin activity, aldosterone and catecholamine levels when swimming and running.

    PubMed

    Guezennec, C Y; Defer, G; Cazorla, G; Sabathier, C; Lhoste, F

    1986-01-01

    The purpose of this study was to determine the response of plasma renin activity (PRA), plasma aldosterone concentration (PAC) and catecholamines to two graded exercises differing by posture. Seven male subjects (19-25 years) performed successively a running rest on a treadmill and a swimming test in a 50-m swimming pool. Each exercise was increased in severity in 5-min steps with intervals of 1 min. Oxygen consumption, heart rate and blood lactate, measured every 5 min, showed a similar progression in energy expenditure until exhaustion, but there was a shorter time to exhaustion in the last step of the running test. PRA, PAC and catecholamines were increased after both types of exercise. The PRA increase was higher after the running test (20.9 ng AngI X ml-1 X h-1) than after swimming (8.66 ng AngI X ml-1 X h-1). The PAC increase was slightly greater after running (123 pg X ml-1) than swimming (102 pg X ml-1), buth the difference was not significant. Plasma catecholamine was higher after the swimming test. These results suggest that the volume shift induced by the supine position and water pressure during swimming decreased the PRA response. The association after swimming compared to running of a decreased PRA and an enhanced catecholamine response rule out a strict dependence of renin release under the effect of plasma catecholamines and is evidence of the major role of neural pathways for renin secretion during physical exercise.

  15. Treadmill exercise alleviates diabetic cardiomyopathy by suppressing plasminogen activator inhibitor expression and enhancing eNOS in streptozotocin-induced male diabetic rats.

    PubMed

    Chengji, Wang; Xianjin, Fan

    2018-04-01

    To investigate the biological mechanism of the effect of different intensity exercises on diabetic cardiomyopathy. 87 raise specific pathogen SPF healthy 6-week-old male Sprague-Dawley rats, fed 6 weeks with high-fat diet for rats were used, and a diabetic model was established by intraperitoneal injection of streptozotocin - randomly selected 43 rats were divided into Diabetic control group (DCG, n  = 10), Diabetic exercise group 1 (DEG1, n  = 11), Diabetic exercise group 2 (DEG2, n  = 11) and Diabetic exercise group 3 (DEG3, n  = 11). The rats in DEG1 were forced to run on a motorized treadmill, the exercise load consisted of running at a speed of 10 m/min, the exercise load of the rats in DEG2 were running at a speed of 15 m/min, the exercise load of the rats in DEG3 were running at a speed of 20 m/min, for one hour once a day for 6 weeks. After 6 weeks of exercise intervention, glucose metabolism-related indexes in rats such as blood glucose (FBG), glycosylated serum protein (GSP) and insulin (FINS); cardiac fibrinolytic system parameters such as PAI-1 (plasminogen activator inhibitor 1), Von Willebrand factor (vWF), protein kinase C (PKC) and diacylglycerol (DAG); and serum level of NO, eNOS and T-NOS were measured. Compared with DCG, fasting blood glucose and GSP were decreased, while insulin sensitivity index and insulin level were increased in all rats of the three exercise groups. FBG decrease was statistically significant ( P  < 0.01), only GSP decrease was statistically significant ( P  < 0.05) in DEG1 and DEG2, PAI-1 in three exercise groups were significantly reduced ( P  < 0.05), plasma vWF levels in the three exercise groups were significantly lower than those in the DCG group ( P  < 0.01); PKC levels decreased dramatically in the three exercise groups and DAG levels decrease slightly ( P  < 0.05), but with no significant difference. Compared with DCG, the serum level of NO was significantly higher ( P  < 0.05), and eNOS level was significantly elevated ( P  < 0.05). T-NOS elevation was statistically significant in DEG1 ( P  < 0.05). Low- and moderate-intensity exercise can better control blood glucose level in diabetic rats; myocardial PAI-1 in DEG1, DEG2 and DEG3 rats decreased significantly ( P  < 0.05), serum NO increased ( P  < 0.05) and eNOS increased ( P  < 0.05) significantly. Therefore, it is inferred that exercise improves the biological mechanism of diabetic cardiomyopathy by affecting the levels of PAI-1 and eNOS, and there is a dependence on intensity. © 2018 The authors.

  16. Voluntary exercise training in mice increases the expression of antioxidant enzymes and decreases the expression of TNF-alpha in intestinal lymphocytes.

    PubMed

    Hoffman-Goetz, L; Pervaiz, N; Guan, J

    2009-05-01

    Acute exercise in mice induces intestinal lymphocyte (IL) apoptosis. Freewheel running reduces apoptosis and forced exercise training increases splenocyte antioxidant levels. The purpose of this study was to examine the effect of freewheel running and acute exercise on mouse IL numbers and concentrations of apoptosis and antioxidant proteins and pro-inflammatory cytokines in IL. Female C57BL/6 mice had access to in-cage running wheels (RW) or cages without wheels (NRW) for 16 weeks and were randomized at the end of training to no exercise control (TC) or to treadmill exercise with sacrifice after 90 min of running (TREAD; 30 min, 22 m min(-1); 30 min, 25 m min(-1); 30 min, 28 m min(-1); 2 degrees slope). IL were analyzed for pro-(caspase 3 and 7) and anti-(Bcl-2) apoptotic proteins, endogenous antioxidants (glutathione peroxidase: GPx; catalase: CAT) and the pro-inflammatory cytokine, TNF-alpha. RW mice had higher cytochrome oxidase (p<0.001) and citrate synthase (p<0.01) activities in plantaris and soleus muscles and higher GPx and CAT expression in IL (p<0.05) (indicative of training) compared with NRW mice. TNF-alpha expression was lower (p<0.05) and IL numbers higher (p<0.05) in RW vs. NRW mice. No training effect was observed for apoptotic protein expression, although TREAD resulted in higher caspase and lower Bcl-2. These results suggest that freewheel running in mice for 16 weeks enhances antioxidant and reduces TNF-alpha expression in IL but does not reduce pro-apoptotic protein expression after acute exercise. Results are discussed in terms of implications for inflammatory bowel diseases where apoptotic proteins and TNF-alpha levels are elevated.

  17. A comparison of three-dimensional breast displacement and breast comfort during overground and treadmill running.

    PubMed

    White, Jennifer; Scurr, Joanna; Hedger, Wendy

    2011-02-01

    Comparisons of breast support requirements during overground and treadmill running have yet to be explored. The purpose of this study was to investigate 3D breast displacement and breast comfort during overground and treadmill running. Six female D cup participants had retro-reflective markers placed on the nipples, anterior superior iliac spines and clavicles. Five ProReflex infrared cameras (100 Hz) measured 3D marker displacement in four breast support conditions. For overground running, participants completed 5 running trials (3.1 m/s ± 0.1 m/s) over a 10 m indoor runway; for treadmill running, speed was steadily increased to 3.1 m/s and 5 gait cycles were analyzed. Subjective feedback on breast discomfort was collected using a visual analog scale. Running modality had no significant effect on breast displacement (p > .05). Moderate correlations (r = .45 to .68, p < .05) were found between breast discomfort and displacement. Stride length (m) and frequency (Hz) did not differ (p < .05) between breast support conditions or running modalities. Findings suggest that breast motion studies that examine treadmill running are applicable to overground running.

  18. Pulmonary outcome of esophageal atresia patients and its potential causes in early childhood.

    PubMed

    Dittrich, René; Stock, Philippe; Rothe, Karin; Degenhardt, Petra

    2017-08-01

    The aim of this study was to illustrate the pulmonary long term outcome of patients with repaired esophageal atresia and to further examine causes and correlations that might have led to this outcome. Twenty-seven of 62 possible patients (43%) aged 5-20years, with repaired esophageal atresia were recruited. Body plethysmography and spirometry were performed to evaluate lung function, and the Bruce protocol treadmill exercise test to assess physical fitness. Results were correlated to conditions such as interpouch distance, gastroesophageal reflux or duration of post-operative mechanical ventilation. Seventeen participants (63%) showed abnormal lung function at rest or after exercise. Restrictive ventilatory defects (solely restrictive or combined) were found in 11 participants (41%), and obstructive ventilatory defects (solely obstructive or combined) in 13 subjects (48%). Twenty-two participants (81%) performed the Bruce protocol treadmill exercise test to standard. The treadmill exercise results were expressed in z-score and revealed to be significantly below the standard population mean (z-score=-1.40). Moreover, significant correlations between restrictive ventilatory defects and the interpouch distance; duration of post-operative ventilation; gastroesophageal reflux disease; plus recurrent aspiration pneumonia during infancy; were described. It was shown that esophageal atresia and associated early complications have significant impact on pulmonary long term outcomes such as abnormal lung function and, in particular restrictive ventilatory defects. Long-running and regular follow-ups of patients with congenital esophageal atresia are necessary in order to detect and react to the development and progression of associated complications such as ventilation disorders or gastroesophageal reflux disease. Prognosis study, Level II. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Molecular Mechanisms of Treadmill Therapy on Neuromuscular Atrophy Induced via Botulinum Toxin A

    PubMed Central

    Tsai, Sen-Wei; Chen, Hsiao-Ling

    2013-01-01

    Botulinum toxin A (BoNT-A) is a bacterial zinc-dependent endopeptidase that acts specifically on neuromuscular junctions. BoNT-A blocks the release of acetylcholine, thereby decreasing the ability of a spastic muscle to generate forceful contraction, which results in a temporal local weakness and the atrophy of targeted muscles. BoNT-A-induced temporal muscle weakness has been used to manage skeletal muscle spasticity, such as poststroke spasticity, cerebral palsy, and cervical dystonia. However, the combined effect of treadmill exercise and BoNT-A treatment is not well understood. We previously demonstrated that for rats, following BoNT-A injection in the gastrocnemius muscle, treadmill running improved the recovery of the sciatic functional index (SFI), muscle contraction strength, and compound muscle action potential (CMAP) amplitude and area. Treadmill training had no influence on gastrocnemius mass that received BoNT-A injection, but it improved the maximal contraction force of the gastrocnemius, and upregulation of GAP-43, IGF-1, Myo-D, Myf-5, myogenin, and acetylcholine receptor (AChR) subunits α and β was found following treadmill training. Taken together, these results suggest that the upregulation of genes associated with neurite and AChR regeneration following treadmill training may contribute to enhanced gastrocnemius strength recovery following BoNT-A injection. PMID:24327926

  20. Running performance and thermal sensation in the heat are improved with menthol mouth rinse but not ice slurry ingestion.

    PubMed

    Stevens, C J; Thoseby, B; Sculley, D V; Callister, R; Taylor, L; Dascombe, B J

    2016-10-01

    The purpose of this study was to compare the effects of a cooling strategy designed to predominately lower thermal state with a strategy designed to lower thermal sensation on endurance running performance and physiology in the heat. Eleven moderately trained male runners completed familiarization and three randomized, crossover 5-km running time trials on a non-motorized treadmill in hot conditions (33 °C). The trials included ice slurry ingestion before exercise (ICE), menthol mouth rinse during exercise (MEN), and no intervention (CON). Running performance was significantly improved with MEN (25.3 ± 3.5 min; P = 0.01), but not ICE (26.3 ± 3.2 min; P = 0.45) when compared with CON (26.0 ± 3.4 min). Rectal temperature was significantly decreased with ICE (by 0.3 ± 0.2 °C; P < 0.01), which persisted for 2 km of the run and MEN significantly decreased perceived thermal sensation (between 4 and 5 km) and ventilation (between 1 and 2 km) during the time trial. End-exercise blood prolactin concentration was elevated with MEN compared with CON (by 25.1 ± 24.4 ng/mL; P = 0.02). The data demonstrate that a change in the perception of thermal sensation during exercise from menthol mouth rinse was associated with improved endurance running performance in the heat. Ice slurry ingestion reduced core temperature but did not decrease thermal sensation during exercise or improve running performance. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Acute aquatic treadmill exercise improves gait and pain in people with knee osteoarthritis.

    PubMed

    Roper, Jaimie A; Bressel, Eadric; Tillman, Mark D

    2013-03-01

    To examine the acute effects of aquatic and land treadmill exercise on gait kinematics as well as the level of disease-specific and movement-related pain for individuals with osteoarthritis. Quasi-experimental crossover design. Biomechanics laboratory. Participants (N=14; age, 43-64y) diagnosed with osteoarthritis at the knee (n=12), osteoarthritis at the knee and ankle (n=1), or osteoarthritis at the knee and hip (n=1). Participants performed 3 exercise sessions separated by at least 24 hours in 1 week for each mode of exercise (aquatic treadmill and land treadmill). Gait kinematics and pain were measured before and after each intervention. The angular velocity gain score during stance for left knee extension was improved by 38% after aquatic treadmill exercise (P=.004). Similarly, during swing, the gain scores for angular velocity were also greater for left knee internal rotation and extension by 65% and 20%, respectively (P=.004, P=.008, respectively). During stance, the joint angle gain score for left hip flexion was 7.23% greater after land exercise (P=.007). During swing, the angular velocity gain score for right hip extension was significantly greater for aquatic exercise by 28% (P=.01). Only the joint angle gain score for left ankle abduction during stance was significantly higher after land exercise (4.72%, P=.003). No other joint angle gain scores for either stance or swing were significantly different for either condition (P=.06-.96). Perceived pain was 100% greater after land than aquatic treadmill exercise (P=.02). Step rate and step length were not different between conditions (P=.31-.92). An acute training period on an aquatic treadmill positively influenced joint angular velocity and arthritis-related joint pain. Acute aquatic treadmill exercise may be useful as a conservative treatment to improve angular speed of the lower-extremity joints and pain related to osteoarthritis. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. Three consecutive days of interval runs to exhaustion affects lymphocyte subset apoptosis and migration.

    PubMed

    Navalta, James W; Tibana, Ramires Alsamir; Fedor, Elizabeth A; Vieira, Amilton; Prestes, Jonato

    2014-01-01

    This investigation assessed the lymphocyte subset response to three days of intermittent run exercise to exhaustion. Twelve healthy college-aged males (n = 8) and females (n = 4) (age = 26 ± 4 years; height = 170.2 ± 10 cm; body mass = 75 ± 18 kg) completed an exertion test (maximal running speed and VO2max) and later performed three consecutive days of an intermittent run protocol to exhaustion (30 sec at maximal running speed and 30 sec at half of the maximal running speed). Blood was collected before exercise (PRE) and immediately following the treadmill bout (POST) each day. When the absolute change from baseline was evaluated (i. e., Δ baseline), a significant change in CD4+ and CD8+ for CX3CR1 cells was observed by completion of the third day. Significant changes in both apoptosis and migration were observed following two consecutive days in CD19+ lymphocytes, and the influence of apoptosis persisted following the third day. Given these lymphocyte responses, it is recommended that a rest day be incorporated following two consecutive days of a high-intensity intermittent run program to minimize immune cell modulations and reduce potential susceptibility.

  3. Effects of fatiguing treadmill running on sensorimotor control in athletes with and without functional ankle instability.

    PubMed

    Steib, Simon; Hentschke, Christian; Welsch, Goetz; Pfeifer, Klaus; Zech, Astrid

    2013-08-01

    Sensorimotor control is permanently impaired following functional ankle instability and temporarily decreased following fatigue. Little is known on potential interactions between both conditions. The purpose was to investigate the effect of fatiguing exercise on sensorimotor control in athletes with and without (coper, controls) functional ankle instability. 19 individuals with functional ankle instability, 19 ankle sprain copers, and 19 non-injured controls participated in this cohort study. Maximum reach distance in the star excursion balance test, unilateral jump landing stabilization time, center of pressure sway velocity in single-leg-stance, and passive ankle joint position sense were assessed before and immediately after fatiguing treadmill running. A three factorial linear mixed model was specified for each outcome to evaluate the effects of group, exhausting exercise (fatigue) and their interactions (group by fatigue). Effect sizes were calculated as Cohen's d. Maximum reach distance in the star excursion balance test, jump stabilization time and sway velocity, but not joint position sense, were negatively affected by fatigue in all groups. Effect sizes were moderate, ranging from 0.27 to 0.68. No significant group by fatigue interactions were found except for one measure. Copers showed significantly larger prefatigue to postfatigue reductions in anterior reach direction (P≤0.001; d=-0.55) compared to the ankle instability (P=0.007) and control group (P=0.052). Fatiguing exercise negatively affected postural control but not proprioception. Ankle status did not appear to have an effect on fatigue-induced sensorimotor control impairments. © 2013.

  4. The traditional drug Gongjin-Dan ameliorates chronic fatigue in a forced-stress mouse exercise model.

    PubMed

    Hong, Sung-Shin; Lee, Ji-Young; Lee, Jin-Seok; Lee, Hye-Won; Kim, Hyeong-Geug; Lee, Sam-Keun; Park, Bong-Ki; Son, Chang-Gue

    2015-06-20

    Gongjin-Dan is a representative traditional Oriental medicine herbal drug that has been used to treat chronic fatigue symptoms for several hundred years. We evaluated the anti-fatigue effects of Gongjin-Dan and the underlying mechanisms in a chronic forced exercise mouse model. Balb/C male mice underwent an extreme treadmill-based running stress (1-h, 5 days/week), and daily oral administration of distilled water, Gongjin-Dan (100, 200, or 400 mg/kg), or ascorbic acid (100 mg/kg) for 28 days. The anti-fatigue effects of Gongjin-Dan were evaluated with behavioral tests (exercise tolerance and swimming tests), and the corresponding mechanisms were investigated based on oxidative stress and inflammatory cytokine and stress hormone levels in skeletal muscle, sera, and brain tissue. Gongjin-Dan significantly increased exercise tolerance and latency times but reduced the number of electric shocks and immobilization time on the treadmill running and swimming tests, compared with the control group. Gongjin-Dan also significantly ameliorated alterations in oxidative stress-related biomarkers (reactive oxygen species and malondialdehyde), inflammatory cytokines (tumor necrosis factor-α, interleukin-1 beta, interleukin-6, and interferon-γ) and glycogen and L-lactate levels in skeletal muscle, compared with those in the control group. Moreover, Gongjin-Dan considerably normalized the forced running stress-induced changes in serum corticosterone and adrenaline levels, as well as brain serotonin level. These antioxidant and anti-stress effects of Gongjin-Dan were supported by the results of Western blotting (4-hydroxynonenal and heme oxygenase-1) and the gene expression levels (serotonin receptor and serotonin transporter). These results support the clinical relevance of Gongjin-Dan regarding anti-chronic fatigue properties. The underlying mechanisms involve attenuation of oxidative and inflammatory reactions in muscle and regulation of the stress response through the hypothalmo-pituitary-adrenal axis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. No Differences Between Alter G-Trainer and Active and Passive Recovery Strategies on Isokinetic Strength, Systemic Oxidative Stress and Perceived Muscle Soreness After Exercise-Induced Muscle Damage.

    PubMed

    Cooke, Matthew B; Nix, Carrie M; Greenwood, Lori D; Greenwood, Mike C

    2018-03-01

    Cooke, MB, Nix, C, Greenwood, L, and Greenwood, M. No Differences Between Alter G-Trainer and Active and Passive Recovery Strategies on Isokinetic Strength, Systemic Oxidative Stress and Perceived Muscle Soreness After Exercise-Induced Muscle Damage. J Strength Cond Res 32(3): 736-747, 2018-The incidence of muscle injuries is prevalent in elite sport athletes and weekend warriors and strategies that safely and effectively hasten recovery are highly desirable. The purpose of this study was to examine the differences between 3 recovery methods after eliciting muscle damage in recreationally active men relative to maximal isokinetic contractions, perceived muscle soreness, and psychological mood states. Twenty-five recreationally active men (22.15 ± 3.53 years, 75.75 ± 11.91 kg, 180.52 ± 7.3 cm) were randomly matched by V[Combining Dot Above]O2 peak (53.86 ± 6.65 ml·kg·min) and assigned to one of 3 recovery methods: anti-gravity treadmill (G-Trainer) (N = 8), conventional treadmill (N = 8) or static stretching (N = 9). Recovery methods were performed 30 minutes, 24, 48, and 72 hours after a 45-minute downhill run. Following eccentrically biased running, no significant differences were noted in isokinetic knee flexion and extension peak torque, systemic markers of muscle damage, oxidative stress and lipid peroxidation such as serum creatine kinase (CK), superoxide dismutase (SOD), and malondialdehyde (MDA), respectively, and subjective ratings of perceived muscle soreness between recovery methods. The G-Trainer group did however display a higher mood state as indicated by the Profile of Mood State global scores at 24 hours postexercise when compared to the conventional treadmill recovery group (p = 0.035). The improved mood state after the use of the anti-gravity treadmill may provide clinical relevance to other populations.

  6. Relationship between percentages of heart rate reserve and oxygen uptake reserve during cycling and running: a validation study.

    PubMed

    Guimarães, Giovanna C; Farinatti, Paulo T V; Midgley, Adrian W; Vasconcellos, Fabrício; Vigário, Patrícia; Cunha, Felipe A

    2017-06-22

    The present study investigated the relationship between percentages of heart rate reserve (%HRR) and oxygen uptake reserve (%VO2R) during a cardiopulmonary exercise test (CPET) and discrete bouts of isocaloric cycling and treadmill running. Thirty men visited the laboratory three times for anthropometrical and resting VO2 assessments, and perform cycling and running CPETs. Ten men visited the laboratory twice more to investigate the validity of the %HRR-%VO2R relationships during isocaloric bouts of cycling and running at 75% VO2R with energy expenditures of 400 kcals. The %HRR was significantly higher than the %VO2R during both CPETs at all exercise intensities (P < 0.001). During isocaloric exercise bouts, mean %HRR-%VO2R differences of 6.5% and 7.0% were observed for cycling and running, respectively (P = 0.007 to P < 0.001). The %HRR and %VO2R increased over time (P < 0.001), the rate of which was influenced by exercise modality (P < 0.001). On average, heart rate was 5 (P = 0.007) and 8 (P < 0.001) beats·min higher than predicted from the second energy expenditure quartile for cycling and running, respectively; however, observed VO2 was lower than predicted during all quartiles for cycling, and the first quartile for running. Consequently, time to achieve the target energy expenditure was greater than predicted (P < 0.01). In conclusion, the %HRR-%VO2R relationship observed during CPET data did not accurately transpose to prolonged isocaloric bouts of cycling and running. Additionally, power outputs and speeds defined by the ACSM equations for cycling and running, respectively, overestimated VO2 and energy expenditure.

  7. Downhill running and exercise in hot environments increase leukocyte Hsp72 (HSPA1A) and Hsp90α (HSPC1) gene transcripts.

    PubMed

    Tuttle, James A; Castle, Paul C; Metcalfe, Alan J; Midgley, Adrian W; Taylor, Lee; Lewis, Mark P

    2015-04-15

    Stressors within humans and other species activate Hsp72 and Hsp90α mRNA transcription, although it is unclear which environmental temperature or treadmill gradient induces the largest increase. To determine the optimal stressor for priming the Hsp system, physically active but not heat-acclimated participants (19.8 ± 1.9 and 20.9 ± 3.6 yr) exercised at lactate threshold in either temperate (20°C, 50% relative humidity; RH) or hot (30°C, 50% RH) environmental conditions. Within each condition, participants completed a flat running (temperate flat or hot flat) and a downhill running (temperate downhill or hot downhill) experimental trial in a randomized counterbalanced order separated by at least 7 days. Venous blood samples were taken immediately before (basal), immediately after exercise, and 3 and 24 h postexercise. RNA was extracted from leukocytes and RT-quantitative PCR conducted to determine Hsp72 and Hsp90α mRNA relative expression. Leukocyte Hsp72 mRNA was increased immediately after exercise following downhill running (1.9 ± 0.9-fold) compared with flat running (1.3 ± 0.4-fold; P = 0.001) and in hot (1.9 ± 0.6-fold) compared with temperate conditions (1.1 ± 0.5-fold; P = 0.003). Leukocyte Hsp90α mRNA increased immediately after exercise following downhill running (1.4 ± 0.8-fold) compared with flat running (0.9 ± 0.6-fold; P = 0.002) and in hot (1.6 ± 1.0-fold) compared with temperate conditions (0.9 ± 0.6-fold; P = 0.003). Downhill running and exercise in hot conditions induced the largest stimuli for leukocyte Hsp72 and Hsp90α mRNA increases. Copyright © 2015 the American Physiological Society.

  8. Treadmill exercise within lower-body negative pressure attenuates simulated spaceflight-induced reductions of balance abilities in men but not women

    PubMed Central

    Macaulay, Timothy R; Macias, Brandon R; Lee, Stuart MC; Boda, Wanda L; Watenpaugh, Donald E; Hargens, Alan R

    2016-01-01

    Spaceflight causes sensorimotor adaptations that result in balance deficiencies on return to a gravitational environment. Treadmill exercise within lower-body negative pressure (LBNP) helps protect physiological function during microgravity as simulated by bed rest. Therefore, we hypothesized that treadmill exercise within LBNP would prevent balance losses in both male and female identical twins during 30 days of 6° head-down tilt bed rest. Fifteen (seven female and eight male) identical twin sets participated in this simulation of microgravity. Within each twin pair, one twin was randomly assigned to an exercise group that performed 40 min of supine treadmill exercise within LBNP set to generate 1.0–1.2 body weight, followed by 5 min of static feet-supported LBNP, 6 days per week. Their identical sibling was assigned to a non-exercise control group with all other bed rest conditions equivalent. Before and immediately after bed rest, subjects completed standing and walking rail balance tests with eyes open and eyes closed. In control subjects, standing rail balance times (men: −42%, women: −40%), rail walk distances (men: −44%, women: −32%) and rail walk times (men: −34%, women: −31%) significantly decreased after bed rest. Compared with controls, treadmill exercise within LBNP significantly attenuated losses of standing rail balance time by 63% in men, but the 41% attenuation in women was not significant. Treadmill exercise within LBNP did not affect rail walk abilities in men or women. Treadmill exercise within LBNP during simulated spaceflight attenuates loss of balance control in men but not in women. PMID:28725733

  9. Force properties of skinned cardiac muscle following increasing volumes of aerobic exercise in rats.

    PubMed

    Boldt, Kevin Rudi; Rios, Jaqueline Lourdes; Joumaa, Venus; Herzog, Walter

    2018-05-03

    The positive effects of chronic endurance exercise training on health and performance have been well documented. These positive effects have been evaluated primarily at the structural level, and work has begun to evaluate mechanical adaptations of the myocardium. However, it remains poorly understood how the volume of exercise training affects cardiac adaptation. In order to gain some understanding, we subjected three-month-old Sprague-Dawley rats (N=23) to treadmill running for eleven weeks at one of three exercise volumes (moderate, high, and extra high). Following training, hearts were excised and mechanical testing was completed on skinned trabecular fiber bundles. Performance on a maximal fitness test was dose-dependent upon training volume, where greater levels of training led to greater performance. No differences were observed between animals from any group for active stress production. Heart mass and passive stress increases in a dose-dependent manner for animals in the control, moderate, and high duration groups. However, hearts from animals in the extra high duration group presented with inhibited responses for heart mass and passive stress, despite performing greatest on a graded treadmill fitness test. These results suggest that heart mass and passive stress adapt in a dose-dependent manner, until exercise becomes excessive and adaptation is inhibited. Our findings are in agreement with the beneficial role exercise has in cardiac adaptation. However, excessive exercise comes with risks of maladaptation which must be weighed against the desire to increase performance.

  10. The Association Between Effective Dose of Magnesium and Mild Compulsive Exercise on Spatial Learning, Memory, and Motor Activity of Adult Male Rats.

    PubMed

    Hajizade Ghonsulakandi, Shahnaz; Sheikh, Mahmuod; Dehghan Shasaltaneh, Marzieh; Chopani, Samira; Naghdi, Nasser

    2017-08-01

    One of the most important survival mechanisms is learning and memory processes. To emphasize the role of physical exercises and magnesium (Mg) in improvement of cognitive performance, we planned to investigate the effect of Mg and mild compulsive exercise on spatial learning and memory of adult male rats. Accordingly, we divided male Wistar rats into four groups: (I) control, (II) Mg treatment, (III) exercise, and (IV) Mg-exercise in the different dosages of Mg (0.5, 1, 1.5, and 2 mmol/kbw) were injected in the form of gavage during 1 week. Also, 1-week mild running on treadmill was used for exercise treatment. The Morris water maze (MWM) test and open field tool were used to evaluate spatial learning, memory, and motor activity, respectively. Our results clearly showed that 1 mmol/kbw Mg was applied as an effective dosage. Strikingly, 1-week mild exercise on treadmill had no significant effect on spatial motor activity, learning, and memory. Feeding 1 mmol/kbw Mg for a week showed a significant difference in learning and exploration stages. Compared to control animals, these results reveal exercise and Mg simultaneously had effect on learning and reminding. As a consequence, although mild exercise had no effect on motor activity and memory, Mg intake improved spatial learning, memory, and locomotor activity. The Mg feeding could be a promising supplemental treatment in the neurodegenerative disease. It is worthwhile to mention consumption of Mg leads to enhancement of memory, so animals find the hidden platform with the highest velocity.

  11. Exercise Effects on Tumorigenesis in a p53-deficient Mouse Model of Breast Cancer

    PubMed Central

    Colbert, Lisa H.; Westerlind, Kim C.; Perkins, Susan N.; Haines, Diana C.; Berrigan, David; Donehower, Lawrence A.; Fuchs-Young, Robin; Hursting, Stephen D.

    2011-01-01

    Purpose Physically active women have a reduced risk of breast cancer, but the dose of activity necessary and the role of energy balance and other potential mechanisms have not been fully explored in animal models. We examined treadmill and wheel running effects on mammary tumorigenesis and biomarkers in p53-deficient (p53+/−): MMTV-Wnt-1 transgenic mice. Methods Female mice (9 wks old) were randomly assigned to the following groups in Experiment 1: treadmill exercise 5 d/wk, 45 min/d, 5% grade at 20 m/min, ~0.90 km/d (TREX1, n=20); at 24 m/min, ~1.08 km/d (TREX2, n=21); or a non-exercise control (CON-TREX, n=22). In Experiment 2, mice were randomly assigned to voluntary wheel-running (WHL, n=21, 2.46 ± 1.11 km/d (mean ± SD)) or a non-exercise control (CON-WHL, n=22). Body composition was measured at ~9 weeks and serum insulin-like growth factor-1 (IGF-1) at 2–3 monthly time points beginning at ~9 weeks on study. Mice were sacrificed when tumors reached 1.5 cm, mice became moribund, or there was only one mouse per treatment group remaining. Results TREX1 (24 wks) and TREX2 (21 wks) had shorter survival median survival times than CON-TREX (34 wks; p<0.01); WHL and CON-WHL survival was similar (23 vs. 24 wks; p=0.32). TREX2 had increased multiplicity of mammary gland carcinomas compared to CON-TREX; WHL had a higher tumor incidence than CON-WHL. All exercising animals were lighter than their respective controls, and WHL had lower body fat than CON-WHL (p<0.01). There was no difference in IGF-1 between groups (p>0.05). Conclusion Despite beneficial or no effects on body weight, body fat, or IGF-1, exercise had detrimental effects on tumorigenesis in this p53-deficient mouse model of spontaneous mammary cancer. PMID:19568200

  12. Effects of Methane-Rich Saline on the Capability of One-Time Exhaustive Exercise in Male SD Rats

    PubMed Central

    Xin, Lei; Sun, Xuejun; Lou, Shujie

    2016-01-01

    Purpose To explore the effects of methane-rich saline (CH4 saline) on the capability of one-time exhaustive exercise in male SD rats. Methods Thirty rats were equally divided into to three groups at random: control group (C), placebo group (P) and methane saline group (M). Rats in M group underwent intraperitoneal injection of CH4 saline, and the other two groups simultaneously underwent intraperitoneal injection of normal saline. Then, the exercise capability of rats was tested through one-time exhaustive treadmill exercise except C group. Exercise time and body weight were recorded before and after one-time exhaustive exercise. After exhaustive exercise, the blood and gastrocnemius samples were collected from all rats to detect biochemical parameters in different methods. Results It was found that the treadmill running time was significantly longer in rats treated with CH4 saline. At the same time, CH4 saline reduced the elevation of LD and UN in blood caused by one-time exhaustive exercise. The low level of blood glucose induced by exhaustive exercise was also normalized by CH4 saline. Also CH4 saline lowered the level of CK in plasma. Furthermore, this research indicated that CH4 saline markedly increased the volume of T-AOC in plasma and alleviated the peak of TNF-α in both plasma and gastrocnemius. From H&E staining, CH4 saline effectively improved exercise-induced structural damage in gastrocnemius. Conclusions CH4 saline could enhance exercise capacity in male SD rats through increase of glucose aerobic oxidation, improvement of metabolic clearance and decrease of exhaustive exercise-induced gastrocnemius injury. PMID:26942576

  13. Long-term moderate treadmill exercise promotes stress-coping strategies in male and female rats.

    PubMed

    Lalanza, Jaume F; Sanchez-Roige, Sandra; Cigarroa, Igor; Gagliano, Humberto; Fuentes, Silvia; Armario, Antonio; Capdevila, Lluís; Escorihuela, Rosa M

    2015-11-05

    Recent evidence has revealed the impact of exercise in alleviating anxiety and mood disorders; however, the exercise protocol that exerts such benefit is far from known. The current study was aimed to assess the effects of long-term moderate exercise on behavioural coping strategies (active vs. passive) and Hypothalamic-Pituitary-Adrenal response in rats. Sprague-Dawley male and female rats were exposed to 32-weeks of treadmill exercise and then tested for two-way active avoidance learning (shuttle-box). Two groups were used as controls: a non-handled sedentary group, receiving no manipulation, and a control group exposed to a stationary treadmill. Female rats displayed shorter escape responses and higher number of avoidance responses, reaching criterion for performance earlier than male rats. In both sexes, exercise shortened escape latencies, increased the total number of avoidances and diminished the number of trials needed to reach criterion for performance. Those effects were greater during acquisition in female rats, but remained over the shuttle-box sessions in treadmill trained male rats. In females, exercise did not change ACTH and corticosterone levels after shuttle-box acquisition. Collectively, treadmill exercise improved active coping strategies in a sex-dependent manner. In a broader context, moderate exercise could serve as a therapeutic intervention for anxiety and mood disorders.

  14. Long-term moderate treadmill exercise promotes stress-coping strategies in male and female rats

    PubMed Central

    Lalanza, Jaume F.; Sanchez-Roige, Sandra; Cigarroa, Igor; Gagliano, Humberto; Fuentes, Silvia; Armario, Antonio; Capdevila, Lluís; Escorihuela, Rosa M.

    2015-01-01

    Recent evidence has revealed the impact of exercise in alleviating anxiety and mood disorders; however, the exercise protocol that exerts such benefit is far from known. The current study was aimed to assess the effects of long-term moderate exercise on behavioural coping strategies (active vs. passive) and Hypothalamic-Pituitary-Adrenal response in rats. Sprague-Dawley male and female rats were exposed to 32-weeks of treadmill exercise and then tested for two-way active avoidance learning (shuttle-box). Two groups were used as controls: a non-handled sedentary group, receiving no manipulation, and a control group exposed to a stationary treadmill. Female rats displayed shorter escape responses and higher number of avoidance responses, reaching criterion for performance earlier than male rats. In both sexes, exercise shortened escape latencies, increased the total number of avoidances and diminished the number of trials needed to reach criterion for performance. Those effects were greater during acquisition in female rats, but remained over the shuttle-box sessions in treadmill trained male rats. In females, exercise did not change ACTH and corticosterone levels after shuttle-box acquisition. Collectively, treadmill exercise improved active coping strategies in a sex-dependent manner. In a broader context, moderate exercise could serve as a therapeutic intervention for anxiety and mood disorders. PMID:26538081

  15. An Acute Bout of Barefoot Running Alters Lower-limb Muscle Activation for Minimalist Shoe Users.

    PubMed

    Snow, N J; Basset, F A; Byrne, J

    2016-05-01

    Despite the abundance of barefoot running-related research, there have been no electromyography studies evaluating the effects of this mode of exercise on habitual users of minimalist footwear. The present study investigated differences in muscle activation during acute bouts of barefoot and shod running, in minimalist shoe users. 8 male participants ran on a motorized treadmill for 10 min under both conditions, at 70% maximal aerobic speed. Electromyographic data were sampled from the biceps femoris, gluteus maximus, gastrocnemius medialis, tibialis anterior, and vastus lateralis during both swing and stance. Root-mean-square analysis of electromyographic data was conducted to compare muscle activation between conditions. During stance, barefoot running resulted in greater muscle activity in gastrocnemius medialis and gluteus maximus, and lower muscle activity in tibialis anterior. During swing, barefoot running resulted in increased muscle activity in vastus lateralis and gastrocnemius medialus. These results indicate that, for minimalist shoe users, an acute bout of barefoot running results in significantly different lower-limb muscle activity. Increased activation in the above muscles presents a possible mechanism for injury, which should be considered during exercise prescription. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Warm-Up Exercises May Not Be So Important for Enhancing Submaximal Running Performance.

    PubMed

    Takizawa, Kazuki; Yamaguchi, Taichi; Shibata, Keisuke

    2018-05-01

    Takizawa, K, Yamaguchi, T, and Shibata, K. Warm-up exercises may not be so important for enhancing submaximal running performance. J Strength Cond Res 32(5): 1383-1390, 2018-The purpose of this study was to determine an appropriate warm-up intensity for enhancing performance in submaximal running at 90% vV[Combining Dot Above]O2max (it assumes 3,000-5,000 m in track events). Seven trained male university athletes took part in this study (age: 21.3 ± 2.1 years, height: 169.3 ± 4.7 cm, body mass: 58.4 ± 5.6 kg, V[Combining Dot Above]O2max: 73.33 ± 5.46 ml·kg·min). Each subject ran on a treadmill at 90% vV[Combining Dot Above]O2max until exhaustion after 1 of 4 warm-up treatments. The 4 warm-up treatments were no warm-up, 15 minutes running at 60% vV[Combining Dot Above]O2max, at 70% vV[Combining Dot Above]O2max, and at 80% vV[Combining Dot Above]O2max. The running performance was evaluated by time to exhaustion (TTE). V[Combining Dot Above]O2, and vastus lateralis muscle temperature were also measured. There were no significant differences in TTE among the warm-up exercises (p > 0.05). V[Combining Dot Above]O2 in no warm-up showed slower reaction than the other warm-up exercises. Regarding, the vastus lateralis muscle temperature immediately after warm-up, no warm-up was significantly (p < 0.01) lower compared with the other warm-up exercises. Our results suggested that submaximal running performance was not affected by the presence or absence of a warm-up or by warm-up intensity, although physiological changes occurred.

  17. Moderate-intensity treadmill running promotes expansion of the satellite cell pool in young and old mice.

    PubMed

    Shefer, Gabi; Rauner, Gat; Stuelsatz, Pascal; Benayahu, Dafna; Yablonka-Reuveni, Zipora

    2013-09-01

    Satellite cells, the myogenic progenitors located at the myofibre surface, are essential for the repair of adult skeletal muscle. There is ample evidence for an age-linked decline in the number of satellite cells and performance in limb muscles. Hence, an effective means of activating and expanding the satellite cell pool may enhance muscle maintenance and reduce the impact of age-associated muscle deterioration (sarcopaenia). Accordingly, in the present study, we explored the beneficial effects of endurance exercise on satellite cells in young and old mice. Animals were subjected to an 8-week moderate-intensity treadmill-running approach that does not inflict apparent muscle damage (0° inclination, 11.5 m·min(-1) for 30 min·day(-1) , 6 days·week(-1) ). Myofibres of extensor digitorum longus muscles were then isolated from exercised and sedentary mice and used for monitoring the number of satellite cells, as well as for harvesting individual satellite cells for clonal growth assays. We specifically focused on satellite cell pools of single myofibres, with the view that daily wear of muscles probably affects individual myofibres rather than causing overall muscle damage. We found an expansion of the satellite cell pool in the exercised groups compared to the sedentary groups, with the same increase (~ 1.6-fold) in both ages. The results of the present study are in agreement with our findings obtained using rat gastrocnemius, indicating the consistent effect of exercise on satellite cell expansion in limb muscles. The experimental paradigm established in the present study is useful for investigating satellite cell dynamics at the myofibre niche, as well as for broader investigations of the impact of physiologically and pathologically relevant factors on adult myogenesis. © 2013 The Authors Journal compilation © 2013 FEBS.

  18. Physiologic and Endocrine Correlates of Overweightness in African Americans and Caucasians

    DTIC Science & Technology

    2009-03-27

    aerobic graded exercise test (VO2 max test ) on a treadmill ( Philips StressVue Exercise Stress Testing System with Trackmaster Full Vision Inc...Pediatrics, 118 (6), 2434-42. Wang, J., Thornton, J.C., Bari, S., Williamson, B., Gallagher, D., Heymsfield, S.B., Horlick, M., Kotler , D...on a treadmill ( Philips StressVue Exercise Stress System, Trackmaster Full Vision Inc. Treadmill; Waltham, MA) to assess cardiovascular fitness. The

  19. Skeletal muscle IL-6 regulates muscle substrate utilization and adipose tissue metabolism during recovery from an acute bout of exercise.

    PubMed

    Knudsen, Jakob G; Gudiksen, Anders; Bertholdt, Lærke; Overby, Peter; Villesen, Ida; Schwartz, Camilla L; Pilegaard, Henriette

    2017-01-01

    An acute bout of exercise imposes a major challenge on whole-body metabolism and metabolic adjustments are needed in multiple tissues during recovery to reestablish metabolic homeostasis. It is currently unresolved how this regulation is orchestrated between tissues. This study was undertaken to clarify the role of skeletal muscle derived interleukin 6 (IL-6) in the coordination of the metabolic responses during recovery from acute exercise. Skeletal muscle specific IL-6 knockout (IL-6 MKO) and littermate Control mice were rested or ran on a treadmill for 2h. Plasma, skeletal muscle, liver and adipose tissue were obtained after 6 and 10h of recovery. Non-exercised IL-6 MKO mice had higher plasma lactate and lower plasma non-esterified fatty acids than Controls. The activity of pyruvate dehydrogenase in the active form was, in skeletal muscle, higher in IL-6 MKO mice than Controls in non-exercised mice and 6h after exercise. IL-6 MKO mice had lower glucose transporter 4 protein content in inguinal adipose tissue (WAT) than Control in non-exercised mice and 10h after treadmill running. Epididymal WAT hormone sensitive lipase phosphorylation and inguinal WAT mitogen activated kinase P38 phosphorylation were higher in IL-6 MKO than Control mice 6h after exercise. These findings indicate that skeletal muscle IL-6 may play an important role in the regulation of substrate utilization in skeletal muscle, basal and exercise-induced adaptations in adipose tissue glucose uptake and lipolysis during recovery from exercise. Together this indicates that skeletal muscle IL-6 contributes to reestablishing metabolic homeostasis during recovery from exercise by regulating WAT and skeletal muscle metabolism.

  20. Exercise Intensity-Dependent Effects on Cognitive Control Function during and after Acute Treadmill Running in Young Healthy Adults

    PubMed Central

    Wohlwend, Martin; Olsen, Alexander; Håberg, Asta K.; Palmer, Helen S.

    2017-01-01

    The idea that physical activity differentially impacts upon performance of various cognitive tasks has recently gained increased interest. However, our current knowledge about how cognition is altered by acute physical activity is incomplete. To measure how different intensity levels of physical activity affect cognition during and after 1 bout of physical activity, 30 healthy, young participants were randomized to perform a not-X continuous performance test (CPT) during low (LI)- and moderate intensity (MI) running. The same participants were subsequently randomized to perform the not-X CPT post LI, MI, and high intensity (HI) running. In addition, exercise related mood changes were assessed through a self-report measure pre and post running at LI, MI, and HI. Results showed worsening of performance accuracy on the not-X CPT during one bout of moderate compared to low intensity running. Post running, there was a linear decrease in reaction time with increasing running intensity and no change in accuracy or mood. The decreased reaction times post HI running recovered back to baseline within 20 min. We conclude that accuracy is acutely deteriorated during the most straining physical activity while a transient intensity-dependent enhancement of cognitive control function is present following physical activity. PMID:28377735

  1. Effects of whole-body cryotherapy vs. far-infrared vs. passive modalities on recovery from exercise-induced muscle damage in highly-trained runners.

    PubMed

    Hausswirth, Christophe; Louis, Julien; Bieuzen, François; Pournot, Hervé; Fournier, Jean; Filliard, Jean-Robert; Brisswalter, Jeanick

    2011-01-01

    Enhanced recovery following physical activity and exercise-induced muscle damage (EIMD) has become a priority for athletes. Consequently, a number of post-exercise recovery strategies are used, often without scientific evidence of their benefits. Within this framework, the purpose of this study was to test the efficacy of whole body cryotherapy (WBC), far infrared (FIR) or passive (PAS) modalities in hastening muscular recovery within the 48 hours after a simulated trail running race. In 3 non-adjoining weeks, 9 well-trained runners performed 3 repetitions of a simulated trail run on a motorized treadmill, designed to induce muscle damage. Immediately (post), post 24 h, and post 48 h after exercise, all participants tested three different recovery modalities (WBC, FIR, PAS) in a random order over the three separate weeks. Markers of muscle damage (maximal isometric muscle strength, plasma creatine kinase [CK] activity and perceived sensations [i.e. pain, tiredness, well-being]) were recorded before, immediately after (post), post 1 h, post 24 h, and post 48 h after exercise. In all testing sessions, the simulated 48 min trail run induced a similar, significant amount of muscle damage. Maximal muscle strength and perceived sensations were recovered after the first WBC session (post 1 h), while recovery took 24 h with FIR, and was not attained through the PAS recovery modality. No differences in plasma CK activity were recorded between conditions. Three WBC sessions performed within the 48 hours after a damaging running exercise accelerate recovery from EIMD to a greater extent than FIR or PAS modalities.

  2. Effects of Whole-Body Cryotherapy vs. Far-Infrared vs. Passive Modalities on Recovery from Exercise-Induced Muscle Damage in Highly-Trained Runners

    PubMed Central

    Hausswirth, Christophe; Louis, Julien; Bieuzen, François; Pournot, Hervé; Fournier, Jean; Filliard, Jean-Robert; Brisswalter, Jeanick

    2011-01-01

    Enhanced recovery following physical activity and exercise-induced muscle damage (EIMD) has become a priority for athletes. Consequently, a number of post-exercise recovery strategies are used, often without scientific evidence of their benefits. Within this framework, the purpose of this study was to test the efficacy of whole body cryotherapy (WBC), far infrared (FIR) or passive (PAS) modalities in hastening muscular recovery within the 48 hours after a simulated trail running race. In 3 non-adjoining weeks, 9 well-trained runners performed 3 repetitions of a simulated trail run on a motorized treadmill, designed to induce muscle damage. Immediately (post), post 24 h, and post 48 h after exercise, all participants tested three different recovery modalities (WBC, FIR, PAS) in a random order over the three separate weeks. Markers of muscle damage (maximal isometric muscle strength, plasma creatine kinase [CK] activity and perceived sensations [i.e. pain, tiredness, well-being]) were recorded before, immediately after (post), post 1 h, post 24 h, and post 48 h after exercise. In all testing sessions, the simulated 48 min trail run induced a similar, significant amount of muscle damage. Maximal muscle strength and perceived sensations were recovered after the first WBC session (post 1 h), while recovery took 24 h with FIR, and was not attained through the PAS recovery modality. No differences in plasma CK activity were recorded between conditions. Three WBC sessions performed within the 48 hours after a damaging running exercise accelerate recovery from EIMD to a greater extent than FIR or PAS modalities. PMID:22163272

  3. A comparison of Hispanic middle school students' performance, and perceived and actual physical exertion, on the traditional and treadmill one-mile runs.

    PubMed

    Latham, Daniel T; Hill, Grant M; Petray, Clayre K

    2013-04-01

    The purpose of this study was to assess whether a treadmill mile is an acceptable FitnessGram Test substitute for the traditional one-mile run for middle school boys and girls. Peak heart rate and perceived physical exertion of the participants were also measured to assess students' effort. 48 boys and 40 girls participated, with approximately 85% classified as Hispanic. Boys' mean time for the traditional one-mile run, as well as peak heart rate and perceived exertion, were statistically significantly faster and higher, respectively, than for the treadmill mile. Girls' treadmill mile times were not statistically significantly different from the traditional one-mile run. There were no statistically significant differences for girl's peak heart rate or perceived exertion. The results suggest that providing middle school students a choice of completing the FitnessGram mile run in either traditional one-mile run or treadmill one-mile format may positively affect performance.

  4. Iodophenylpentadecanoic acid-myocardial blood flow relationship during maximal exercise with coronary occlusion.

    PubMed

    Caldwell, J H; Martin, G V; Link, J M; Krohn, K A; Bassingthwaighte, J B

    1990-01-01

    Imaging 123I-labeled iodophenylpentadecanoic acid (IPPA) uptake and clearance from the myocardium following exercise has been advocated as a means of detecting myocardial ischemia because fatty acid deposition is enhanced and clearance prolonged in regions of low flow. However, normal regional myocardial blood flows are markedly heterogeneous, and it is not known how this heterogeneity affects regional metabolism or substrate uptake and thus image interpretation. In five instrumented dogs running at near maximal workload on a treadmill, 131I-labeled IPPA and 15-micron 46Sc microspheres were injected into the left atrium after 30 sec of circumflex coronary artery occlusion. Microsphere and IPPA activity were determined in 250 mapped pieces of myocardium of approximately 400 mg. Myocardial blood flows (from microspheres) ranged from 0.05 to 7.6 ml/min/g. Deposition of IPPA was proportional to regional flows (r = 0.83) with an average retention of 25%. The mean endocardial-epicardial ratio for IPPA (0.90 +/- 0.43) was similar to that for microspheres (0.94 +/- 0.47; p = 0.08). Thus, initial IPPA deposition during treadmill exercise increases in proportion to regional myocardial blood flow over a range of flows from very low to five times normal.

  5. Effects of repetitive transcranial magnetic stimulation and trans-spinal direct current stimulation associated with treadmill exercise in spinal cord and cortical excitability of healthy subjects: A triple-blind, randomized and sham-controlled study

    PubMed Central

    Albuquerque, Plínio Luna; Campêlo, Mayara; Mendonça, Thyciane; Fontes, Luís Augusto Mendes; Brito, Rodrigo de Mattos

    2018-01-01

    Repetitive transcranial magnetic stimulation (rTMS) over motor cortex and trans-spinal direct current stimulation (tsDCS) modulate corticospinal circuits in healthy and injured subjects. However, their associated effects with physical exercise is still not defined. This study aimed to investigate the effect of three different settings of rTMS and tsDCS combined with treadmill exercise on spinal cord and cortical excitability of healthy subjects. We performed a triple blind, randomized, sham-controlled crossover study with 12 healthy volunteers who underwent single sessions of rTMS (1Hz, 20Hz and Sham) and tsDCS (anodal, cathodal and Sham) associated with 20 minutes of treadmill walking. Cortical excitability was assessed by motor evoked potential (MEP) and spinal cord excitability by the Hoffmann reflex (Hr), nociceptive flexion reflex (NFR) and homosynaptic depression (HD). All measures were assessed before, immediately, 30 and 60 minutes after the experimental procedures. Our results demonstrated that anodal tsDCS/treadmill exercise reduced MEP’s amplitude and NFR’s area compared to sham condition, conversely, cathodal tsDCS/treadmill exercise increased NFR’s area. High-frequency rTMS increased MEP’s amplitude and NFR’s area compared to sham condition. Anodal tsDCS/treadmill exercise and 20Hz rTMS/treadmill exercise reduced Hr amplitude up to 30 minutes after stimulation offset and no changes were observed in HD measures. We demonstrated that tsDCS and rTMS combined with treadmill exercise modulated cortical and spinal cord excitability through different mechanisms. tsDCS modulated spinal reflexes in a polarity-dependent way acting at local spinal circuits while rTMS probably promoted changes in the presynaptic inhibition of spinal motoneurons. In addition, the association of two neuromodulatory techniques induced long-lasting changes. PMID:29596524

  6. Effects of repetitive transcranial magnetic stimulation and trans-spinal direct current stimulation associated with treadmill exercise in spinal cord and cortical excitability of healthy subjects: A triple-blind, randomized and sham-controlled study.

    PubMed

    Albuquerque, Plínio Luna; Campêlo, Mayara; Mendonça, Thyciane; Fontes, Luís Augusto Mendes; Brito, Rodrigo de Mattos; Monte-Silva, Katia

    2018-01-01

    Repetitive transcranial magnetic stimulation (rTMS) over motor cortex and trans-spinal direct current stimulation (tsDCS) modulate corticospinal circuits in healthy and injured subjects. However, their associated effects with physical exercise is still not defined. This study aimed to investigate the effect of three different settings of rTMS and tsDCS combined with treadmill exercise on spinal cord and cortical excitability of healthy subjects. We performed a triple blind, randomized, sham-controlled crossover study with 12 healthy volunteers who underwent single sessions of rTMS (1Hz, 20Hz and Sham) and tsDCS (anodal, cathodal and Sham) associated with 20 minutes of treadmill walking. Cortical excitability was assessed by motor evoked potential (MEP) and spinal cord excitability by the Hoffmann reflex (Hr), nociceptive flexion reflex (NFR) and homosynaptic depression (HD). All measures were assessed before, immediately, 30 and 60 minutes after the experimental procedures. Our results demonstrated that anodal tsDCS/treadmill exercise reduced MEP's amplitude and NFR's area compared to sham condition, conversely, cathodal tsDCS/treadmill exercise increased NFR's area. High-frequency rTMS increased MEP's amplitude and NFR's area compared to sham condition. Anodal tsDCS/treadmill exercise and 20Hz rTMS/treadmill exercise reduced Hr amplitude up to 30 minutes after stimulation offset and no changes were observed in HD measures. We demonstrated that tsDCS and rTMS combined with treadmill exercise modulated cortical and spinal cord excitability through different mechanisms. tsDCS modulated spinal reflexes in a polarity-dependent way acting at local spinal circuits while rTMS probably promoted changes in the presynaptic inhibition of spinal motoneurons. In addition, the association of two neuromodulatory techniques induced long-lasting changes.

  7. Effects of Post-Exercise Honey Drink Ingestion on Blood Glucose and Subsequent Running Performance in the Heat

    PubMed Central

    Ahmad, Nur Syamsina; Ooi, Foong Kiew; Saat Ismail, Mohammed; Mohamed, Mahaneem

    2015-01-01

    Background: Glycogen depletion and hypoglycemia have been associated with fatigue and decrement of performance during prolonged exercise Objectives: This study investigated the effectiveness of Acacia honey drink as a post-exercise recovery aid on glucose metabolism and subsequent running performance in the heat. Patients and Methods: Ten subjects participated in this randomized cross-over study. All subjects performed 2 trials. In each trial, all subjects went through a glycogen depletion phase (Run-1), 2-hour rehydration phase and time trial running phase (Run-2). In Run-1, subjects were required to run on a treadmill at 65% VO2max in the heat (31°C, 70% relative humidity) for 60 min. During 2-hour rehydration phase, subjects drank either plain water (PW) or honey drink (HD) with amount equivalent to 150% of body weight loss in 3 boluses (60%, 50% and 40% subsequently) at 0, 30 and 60 min. In Run-2, the longest distance covered in 20 min was recorded for determining running performance. Two-way repeated measured ANOVA and paired t-test were used for analysis. Results: Running distance in Run-2 covered by the subjects in the honey drink HD trial (3420 ± 350 m) was significantly (P < 0.01) longer compared to plain water PW trial (3120 ± 340 m). In general, plasma glucose, serum insulin and osmolality were significantly (P < 0.05) higher in HD compared to PW during the rehydration phase and Run-2. Conclusions: These findings indicate that rehydration with honey drink improves running performance and glucose metabolism compared to plain water in the heat. Thus, honey drink can be recommended for rehydration purpose for athletes who compete in the heat. PMID:26448850

  8. The Reliability of a 5km Run Test on a Motorized Treadmill

    ERIC Educational Resources Information Center

    Driller, Matthew; Brophy-Williams, Ned; Walker, Anthony

    2017-01-01

    The purpose of the present study was to determine the reliability of a 5km run test on a motorized treadmill. Over three consecutive weeks, 12 well-trained runners completed three 5km time trials on a treadmill following a standardized warm-up. Runners were partially-blinded to their running speed and distance covered. Total time to complete the…

  9. Effect of Treadmill Exercise and Hydrogen-rich Water Intake on Serum Oxidative and Anti-oxidative Metabolites in Serum of Thoroughbred Horses

    PubMed Central

    TSUBONE, Hirokazu; HANAFUSA, Masakazu; ENDO, Maiko; MANABE, Noboru; HIRAGA, Atsushi; OHMURA, Hajime; AIDA, Hiroko

    2013-01-01

    The present study aimed to clarify changes of oxidative stress and antioxidative functions in treadmill-exercised Thoroughbred horses (n=5, 3 to 7 years old), using recently developed techniques for measurement of serum d-ROMs for oxidative stress, and BAP for antioxidative markers. Also, the effect of nasogastric administration of hydrogen-rich water (HW) or placebo water preceding the treadmill exercise on these parameters was examined. Each horse was subjected to a maximum level of treadmill exercise in which the horses were exhausted at an average speed of 13.2 ± 0.84 m/sec. Blood samples were taken 4 times, immediately before the intake of HW or placebo water at 30 min preceding the treadmill exercise, immediately before the exercise (pre-exercise), immediately after the exercise (post-exercise) and at 30 min following the exercise. In all horses, both d-ROMs and BAP values significantly increased at post-exercise. The increase in d-ROMs tended to be lower in the HW trial, as compared to the placebo trial at pre-exercise. The increase in BAP was considerable at approximately 150% of the pre-exercise values in both the HW and placebo treatment trials. The BAP/d-ROMs ratio was significantly elevated at post-exercise in both treatment trials, while a significant elevation was also observed at pre-exercise in the HW trial. BAP, d-ROM, and the BAP/d-ROM ratio tended to decline at 30 min after the exercise, except BAP and BAP/d-ROMs in the placebo trial. These results demonstrate that the marked elevation of oxidative stress and anitioxidative functions occurred simultaneously in the intensively exercised horses, and suggest a possibility that HW has some antioxidative efficacy. PMID:24833996

  10. Effect of Treadmill Exercise and Hydrogen-rich Water Intake on Serum Oxidative and Anti-oxidative Metabolites in Serum of Thoroughbred Horses.

    PubMed

    Tsubone, Hirokazu; Hanafusa, Masakazu; Endo, Maiko; Manabe, Noboru; Hiraga, Atsushi; Ohmura, Hajime; Aida, Hiroko

    2013-01-01

    The present study aimed to clarify changes of oxidative stress and antioxidative functions in treadmill-exercised Thoroughbred horses (n=5, 3 to 7 years old), using recently developed techniques for measurement of serum d-ROMs for oxidative stress, and BAP for antioxidative markers. Also, the effect of nasogastric administration of hydrogen-rich water (HW) or placebo water preceding the treadmill exercise on these parameters was examined. Each horse was subjected to a maximum level of treadmill exercise in which the horses were exhausted at an average speed of 13.2 ± 0.84 m/sec. Blood samples were taken 4 times, immediately before the intake of HW or placebo water at 30 min preceding the treadmill exercise, immediately before the exercise (pre-exercise), immediately after the exercise (post-exercise) and at 30 min following the exercise. In all horses, both d-ROMs and BAP values significantly increased at post-exercise. The increase in d-ROMs tended to be lower in the HW trial, as compared to the placebo trial at pre-exercise. The increase in BAP was considerable at approximately 150% of the pre-exercise values in both the HW and placebo treatment trials. The BAP/d-ROMs ratio was significantly elevated at post-exercise in both treatment trials, while a significant elevation was also observed at pre-exercise in the HW trial. BAP, d-ROM, and the BAP/d-ROM ratio tended to decline at 30 min after the exercise, except BAP and BAP/d-ROMs in the placebo trial. These results demonstrate that the marked elevation of oxidative stress and anitioxidative functions occurred simultaneously in the intensively exercised horses, and suggest a possibility that HW has some antioxidative efficacy.

  11. Reliability and day-to-day variability of peak fat oxidation during treadmill ergometry.

    PubMed

    De Souza Silveira, Raul; Carlsohn, Anja; Langen, Georg; Mayer, Frank; Scharhag-Rosenberger, Friederike

    2016-01-01

    Exercising at intensities where fat oxidation rates are high has been shown to induce metabolic benefits in recreational and health-oriented sportsmen. The exercise intensity (Fatpeak) eliciting peak fat oxidation rates is therefore of particular interest when aiming to prescribe exercise for the purpose of fat oxidation and related metabolic effects. Although running and walking are feasible and popular among the target population, no reliable protocols are available to assess Fatpeak as well as its actual velocity (VPFO) during treadmill ergometry. Our purpose was therefore, to assess the reliability and day-to-day variability of VPFO and Fatpeak during treadmill ergometry running. Sixteen recreational athletes (f = 7, m = 9; 25 ± 3 y; 1.76 ± 0.09 m; 68.3 ± 13.7 kg; 23.1 ± 2.9 kg/m(2)) performed 2 different running protocols on 3 different days with standardized nutrition the day before testing. At day 1, peak oxygen uptake (VO2peak) and the velocities at the aerobic threshold (VLT) and respiratory exchange ratio (RER) of 1.00 (VRER) were assessed. At days 2 and 3, subjects ran an identical submaximal incremental test (Fat-peak test) composed of a 10 min warm-up (70 % VLT) followed by 5 stages of 6 min with equal increments (stage 1 = VLT, stage 5 = VRER). Breath-by-breath gas exchange data was measured continuously and used to determine fat oxidation rates. A third order polynomial function was used to identify VPFO and subsequently Fatpeak. The reproducibility and variability of variables was verified with an intraclass correlation coefficient (ICC), Pearson's correlation coefficient, coefficient of variation (CV) and the mean differences (bias) ± 95 % limits of agreement (LoA). ICC, Pearson's correlation and CV for VPFO and Fatpeak were 0.98, 0.97, 5.0 %; and 0.90, 0.81, 7.0 %, respectively. Bias ± 95 % LoA was -0.3 ± 0.9 km/h for VPFO and -2 ± 8 % of VO2peak for Fatpeak. In summary, relative and absolute reliability indicators for VPFO and Fatpeak were found to be excellent. The observed LoA may now serve as a basis for future training prescriptions, although fat oxidation rates at prolonged exercise bouts at this intensity still need to be investigated.

  12. Feasibility and safety of exercise stress testing using an anti-gravity treadmill with Tc-99m tetrofosmin single-photon emission computed tomography (SPECT) myocardial perfusion imaging: A pilot non-randomized controlled study.

    PubMed

    Daly, Patrick; Kayse, Regina; Rudick, Steven; Robbins, Nathan; Scheler, Jennifer; Harris, David; O'Donnell, Robert; Dwivedi, Alok K; Gerson, Myron C

    2017-08-31

    Exercise is the AHA/ACC guideline-recommended stress modality for myocardial perfusion imaging, but many patients are unable to exercise to target heart rate on a conventional treadmill. We examined the feasibility and safety of stress imaging using an anti-gravity treadmill in patients with perceived poor exercise capacity. 49 patients were recruited for stress testing by anti-gravity treadmill (n = 29) or to a regadenoson control group (n = 20). Seventeen anti-gravity test patients (59%) reached target heart rate obviating the need for a pharmacologic stress agent. Adverse effects of the anti-gravity treadmill were limited to minor muscle aches in 5 subjects. Stress myocardial perfusion image quality judged by 3 blinded readers on a 5-point scale was comparable for the anti-gravity treadmill (4.30 ± SD 0.87) vs pharmacologic stress (4.28 ± SD 0.66). Stress testing using an anti-gravity treadmill is feasible and may help some patients safely achieve target heart rate.

  13. Effect of eccentric exercise with reduced muscle glycogen on plasma interleukin-6 and neuromuscular responses of musculus quadriceps femoris.

    PubMed

    Gavin, James P; Myers, Stephen D; Willems, Mark E T

    2016-07-01

    Eccentric exercise can result in muscle damage and interleukin-6 (IL-6) secretion. Glycogen availability is a potent stimulator of IL-6 secretion. We examined effects of eccentric exercise in a low-glycogen state on neuromuscular function and plasma IL-6 secretion. Twelve active men (23 ± 4 yr, 179 ± 5 cm, 77 ± 10 kg, means ± SD) completed two downhill treadmill runs (gradient, -12%, 5 × 8 min; speed, 12.1 ± 1.1 km/h) with normal (NG) and reduced muscle glycogen (RG) in randomized order and at least 6 wk apart. Muscle glycogen was reduced using an established cycling protocol until exhaustion and dietary manipulation the evening before the morning run. Physiological responses were measured up to 48 h after the downhill runs. During recovery, force deficits of musculus quadriceps femoris by maximal isometric contractions were similar. Changes in low-frequency fatigue were larger with RG. Voluntary activation and plasma IL-6 levels were similar in recovery between conditions. It is concluded that unaccustomed, damaging eccentric exercise with low muscle glycogen of the m. quadriceps femoris 1) exacerbated low-frequency fatigue but 2) had no additional effect on IL-6 secretion. Neuromuscular impairment after eccentric exercise with low muscle glycogen appears to have a greater peripheral component in early recovery. Copyright © 2016 the American Physiological Society.

  14. A Dual Track Treadmill in a Virtual Reality Environment as a Countermeasure for Neurovestibular Adaptations in Microgravity

    NASA Technical Reports Server (NTRS)

    DAndrea, Susan E.; Kahelin, Michael W.; Horowitz, Jay G.; OConnor, Philip A.

    2004-01-01

    While the neurovestibular system is capable of adapting to altered environments such as microgravity, the adaptive state achieved in space in inadequate for 1G. This leads to giant and postural instabilities when returning to a gravity environment and may create serious problems in future mission to Mars. New methods are needed to improve the understanding of the adaptive capabilities of the human neurovestibular system and to develop more effective countermeasures. The concept behind the current study is that by challenging the neurovestibular system while walking or running a treadmill can help to read just the relationship between the visual, vestibular and proprioceptive signals that are altered in a microgravity environment. As a countermeasure, this device could also benefit the musculoskeletal and cardiovascular systems and at the same time decrease the overall time spent exercising. The overall goal of this research is to design, develop, build and test a dual track treadmill, which utilizes virtual reality, VR, displays.

  15. A Dual Track Treadmill in a Virtual Reality Environment as a Countermeasure for Neurovestibular Adaptations in Microgravity

    NASA Technical Reports Server (NTRS)

    DAndrea, Susan E.; Kahelin, Michael W.; Horowitz, Jay G.; OConnor, Philip A.

    2004-01-01

    While the neurovestibular system is capable of adapting to altered environments such as microgravity, the adaptive state achieved in space in inadequate for 1G. This leads to gait and postural instabilities when returning to a gravity environment and may create serious problems in future missions to Mars. New methods are needed to improve the understanding of the adaptive capabilities of the human neurovestibular system and to develop more effective countermeasures. The concept behind the current study is that by challenging the neurovestibular system while walking or running, a treadmill can help to readjust the relationship between the visual, vestibular and proprioceptive signals that are altered in a microgravity environment. As a countermeasure, this device could also benefit the musculoskeletal and cardiovascular systems and at the same time decrease the overall time spent exercising. The overall goal of this research is to design, develop, build and test a dual track treadmill, which utilizes virtual reality,

  16. Metabolic Rate and Ground Reaction Force During Motorized and Non-Motorized Treadmill Exercise

    NASA Technical Reports Server (NTRS)

    Everett, Meghan E.; Loehr, James A.; DeWitt, John K.; Laughlin, Mitzi; Lee, Stuart M. C.

    2010-01-01

    PURPOSE: To measure vertical ground reaction force (vGRF) and oxygen consumption (VO2) at several velocities during exercise using a ground-based version of the ISS treadmill in the M and NM modes. METHODS: Subjects (n = 20) walked or ran at 0.89, 1.34, 1.79, 2.24, 2.68, and 3.12 m/s while VO2 and vGRF data were collected. VO2 was measured using open-circuit spirometry (TrueOne 2400, Parvo-Medics). Data were averaged over the last 2 min of each 5-min stage. vGRF was measured in separate 15-s bouts at 125 Hz using custom-fitted pressure-sensing insoles (F-Scan Sport Sensors, Tekscan, Inc). A repeated-measures ANOVA was used to test for differences in VO2 and vGRF between M and NM and across speeds. Significance was set at P < 0.05. RESULTS: Most subjects were unable to exercise for 5 min at treadmill speeds above 1.79 m/s in the NM mode; however, vGRF data were obtained for all subjects at each speed in both modes. VO2 was approx.40% higher during NM than M exercise across treadmill speeds. vGRF increased with treadmill speed but was not different between modes. CONCLUSION: Higher VO2 with no change in vGRF suggests that the additional metabolic cost associated with NM treadmill exercise is accounted for in the horizontal forces required to move the treadmill belt. Although this may limit the exercise duration at faster speeds, high-intensity NM exercise activates the hamstrings and plantarflexors, which are not specifically targeted or well protected by other in-flight countermeasures.

  17. Prediction of Maximum Oxygen Uptake Using Both Exercise and Non-Exercise Data

    ERIC Educational Resources Information Center

    George, James D.; Paul, Samantha L.; Hyde, Annette; Bradshaw, Danielle I.; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.

    2009-01-01

    This study sought to develop a regression model to predict maximal oxygen uptake (VO[subscript 2max]) based on submaximal treadmill exercise (EX) and non-exercise (N-EX) data involving 116 participants, ages 18-65 years. The EX data included the participants' self-selected treadmill speed (at a level grade) when exercise heart rate first reached…

  18. Inclusion of Exercise Intensities Above the Lactate Threshold in VO2/Running Speed Regression Does not Improve the Precision of Accumulated Oxygen Deficit Estimation in Endurance-Trained Runners

    PubMed Central

    Reis, Victor M.; Silva, António J.; Ascensão, António; Duarte, José A.

    2005-01-01

    The present study intended to verify if the inclusion of intensities above lactate threshold (LT) in the VO2/running speed regression (RSR) affects the estimation error of accumulated oxygen deficit (AOD) during a treadmill running performed by endurance-trained subjects. Fourteen male endurance-trained runners performed a sub maximal treadmill running test followed by an exhaustive supra maximal test 48h later. The total energy demand (TED) and the AOD during the supra maximal test were calculated from the RSR established on first testing. For those purposes two regressions were used: a complete regression (CR) including all available sub maximal VO2 measurements and a sub threshold regression (STR) including solely the VO2 values measured during exercise intensities below LT. TED mean values obtained with CR and STR were not significantly different under the two conditions of analysis (177.71 ± 5.99 and 174.03 ± 6.53 ml·kg-1, respectively). Also the mean values of AOD obtained with CR and STR did not differ under the two conditions (49.75 ± 8.38 and 45.8 9 ± 9.79 ml·kg-1, respectively). Moreover, the precision of those estimations was also similar under the two procedures. The mean error for TED estimation was 3.27 ± 1.58 and 3.41 ± 1.85 ml·kg-1 (for CR and STR, respectively) and the mean error for AOD estimation was 5.03 ± 0.32 and 5.14 ± 0.35 ml·kg-1 (for CR and STR, respectively). The results indicated that the inclusion of exercise intensities above LT in the RSR does not improve the precision of the AOD estimation in endurance-trained runners. However, the use of STR may induce an underestimation of AOD comparatively to the use of CR. Key Points It has been suggested that the inclusion of exercise intensities above the lactate threshold in the VO2/power regression can significantly affect the estimation of the energy cost and, thus, the estimation of the AOD. However data on the precision of those AOD measurements is rarely provided. We have evaluated the effects of the inclusion of those exercise intensities on the AOD precision. The results have indicated that the inclusion of exercise intensities above the lactate threshold in the VO2/running speed regression does not improve the precision of AOD estimation in endurance-trained runners. However, the use of sub threshold regressions may induce an underestimation of AOD comparatively to the use of complete regressions. PMID:24501560

  19. Moderating influence of dominant attentional style and exercise intensity on responses to asynchronous music.

    PubMed

    Hutchinson, Jasmin C; Karageorghis, Costas I

    2013-12-01

    We examined independent and combined influences of asynchronous music and dominant attentional style (DAS) on psychological and psychophysical variables during exercise using mixed methods. Participants (N = 34) were grouped according to DAS and completed treadmill runs at three intensities (low, moderate, high) crossed with three music conditions (motivational, oudeterous, no-music control). State attentional focus shifted from dissociative to associative with increasing intensity and was most aligned with DAS during moderate-intensity exercise. Both music conditions facilitated dissociation at low-to-moderate intensities. At high exercise intensity, both music conditions were associated with reduced RPE among participants with an associative DAS. Dissociators reported higher RPE overall during moderate and high intensities. Psychological responses were most positive in the motivational condition, followed by oudeterous and control. Findings illustrate the relevance of individual differences in DAS as well as task intensity and duration when selecting music for exercise.

  20. Matching optical flow to motor speed in virtual reality while running on a treadmill.

    PubMed

    Caramenti, Martina; Lafortuna, Claudio L; Mugellini, Elena; Abou Khaled, Omar; Bresciani, Jean-Pierre; Dubois, Amandine

    2018-01-01

    We investigated how visual and kinaesthetic/efferent information is integrated for speed perception in running. Twelve moderately trained to trained subjects ran on a treadmill at three different speeds (8, 10, 12 km/h) in front of a moving virtual scene. They were asked to match the visual speed of the scene to their running speed-i.e., treadmill's speed. For each trial, participants indicated whether the scene was moving slower or faster than they were running. Visual speed was adjusted according to their response using a staircase until the Point of Subjective Equality (PSE) was reached, i.e., until visual and running speed were perceived as equivalent. For all three running speeds, participants systematically underestimated the visual speed relative to their actual running speed. Indeed, the speed of the visual scene had to exceed the actual running speed in order to be perceived as equivalent to the treadmill speed. The underestimation of visual speed was speed-dependent, and percentage of underestimation relative to running speed ranged from 15% at 8km/h to 31% at 12km/h. We suggest that this fact should be taken into consideration to improve the design of attractive treadmill-mediated virtual environments enhancing engagement into physical activity for healthier lifestyles and disease prevention and care.

  1. Analog Exercise Hardware to Implement a High Intensity Exercise Program During Bed Rest

    NASA Technical Reports Server (NTRS)

    Loerch, Linda; Newby, Nate; Ploutz-Snyder, Lori

    2012-01-01

    Background: In order to evaluate novel countermeasure protocols in a space flight analog prior to validation on the International Space Station (ISS), NASA's Human Research Program (HRP) is sponsoring a multi-investigator bedrest campaign that utilizes a combination of commercial and custom-made exercise training hardware to conduct daily resistive and aerobic exercise protocols. This paper will describe these pieces of hardware and how they are used to support current bedrest studies at NASA's Flight Analog Research Unit in Galveston, TX. Discussion: To implement candidate exercise countermeasure studies during extended bed rest studies the following analog hardware are being utilized: Stand alone Zero-Gravity Locomotion Simulator (sZLS) -- a custom built device by NASA, the sZLS allows bedrest subjects to remain supine as they run on a vertically-oriented treadmill (0-15 miles/hour). The treadmill includes a pneumatic subject loading device to provide variable body loading (0-100%) and a harness to keep the subject in contact with the motorized treadmill to provide a ground reaction force at their feet that is quantified by a Kistler Force Plate. Supine Cycle Ergometer -- a commercially available supine cycle ergometer (Lode, Groningen, Netherlands) is used for all cycle ergometer sessions. The ergometer has adjustable shoulder supports and handgrips to help stabilize the subject during exercise. Horizontal Squat Device (HSD) -- a custom built device by Quantum Fitness Corp (Stafford, TX), the HSD allows for squat exercises to be performed while lying in a supine position. The HSD can provide 0 to 600 pounds of force in selectable 5 lb increments, and allows hip translation in both the vertical and horizontal planes. Prone Leg Curl -- a commercially available prone leg curl machine (Cybex International Inc., Medway, MA) is used to complete leg curl exercises. Horizontal Leg Press -- a commercially available horizontal leg press (Quantum Fitness Corporation) is used for leg press and heel raise exercises. Minor modifications were made to the device including adding 200 lbs to the weight stack, raising the frame by 12 inches, making the footplate adjustable, and providing removable handles. Conclusion: A combination of novel and commercial exercise hardware are used to mimic the exercise hardware capabilities aboard the ISS, allowing scientific investigation of new countermeasure protocols in a space flight analog prior to flight validation

  2. Treadmill Exercise Within LBNP as an Integrated Coutermeasure to Microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Stuart; Hargens, A. R.; Schneider, S. M.; Watenpaugh, D. E.

    2010-01-01

    An integrated exercise countermeasure for microgravity is needed to protect multiple physiologic systems and save crew time. Such a countermeasure should protect orthostatic tolerance, upright ambulatory capability (including sprinting), aerobic capacity, muscle strength/endurance, and other physiologic parameters relevant to human performance. We developed a novel physiologic countermeasure, treadmill exercise within LBNP, for preventing cardiovascular and musculoskeletal deconditioning associated with prolonged bed rest and spaceflight. We evaluated 40 min of daily LBNP treadmill exercise by a battery of physiologic parameters relevant to maintaining exercise performance and health of both women and men during bed-rest (simulated microgravity) studies lasting from 5 to 60 days. For 30 day studies, we employed identical twins with one twin as the control and the other twin as the exerciser to improve comparative power. During the WISE 60-day HDT study, the treadmill exercise within LBNP was performed 3-4 days each week and resistive exercise was performed 2-3 days each week. Our treadmill within LBNP protocol maintained plasma volume and sprint speed (30 day HDT bed-rest studies of identical twins), orthostatic tolerance to a degree, upright exercise capacity, muscle strength and endurance, and some bone parameters during 30 day (twin studies) and 60 day (WISE-2005) bed-rest simulations of microgravity. When combining treadmill exercise within LBNP and resistive exercise (WISE), cardiac mass increased significantly in the exercise (EX) group during bed rest relative to controls (CON). Upright peak VO2, and knee extensor strength and endurance decreased significantly in CON subjects; but these parameters were preserved in the EX group. In the 60 day WISE study, each LBNP exercise session was followed immediately by 10 minutes of static LBNP, and the last such session occurred three days before the end of bed rest. Still, orthostatic tolerance was better maintained in the EX group than in the CON group. Therefore, these collective peer-reviewed results document that our treadmill exercise within LBNP countermeasure safely and efficiently protects multiple physiologic systems in women and men during bed-rest studies of up to 60 days. Supported by NASA grants NNJ04HF71G and NAG 9-1425, NIH grant GCRC M01 RR00827 and by WISE support from ESA, NASA, CSA, and CNES.

  3. Effects of intravenous aminocaproic acid on exercise-induced pulmonary haemorrhage (EIPH).

    PubMed

    Buchholz, B M; Murdock, A; Bayly, W M; Sides, R H

    2010-11-01

    The antifibrinolytic, 6-aminohexanoic acid, also named aminocaproic acid (ACA), has been used empirically as a treatment for exercise-induced pulmonary haemorrhage (EIPH) on the unsubstantiated basis that transient coagulation dysfunction may contribute to its development. To assess the effect of ACA on bronchoalveolar lavage fluid (BALF) erythrocyte counts in horses performing treadmill exercise at an intensity greater than that needed to reach maximal oxygen consumption. Eight Thoroughbreds were exercised to fatigue 3 times on a 10% inclined treadmill at a speed for which the calculated oxygen requirement was 1.15 times VO2max. Horses were treated with a saline placebo, 2 and 7 g ACA i.v. 4 h before exercise, with a crossover design being used to determine the order of the injections. Exercise-induced pulmonary haemorrhage severity was quantified via the erythrocyte count in BALF. Bronchoalveolar lavage fluid was collected 4 h before and 30-60 min post exercise. Results were expressed as mean ± s.e.m. and analysed by one way repeated measures ANOVA (P < 0.05). Aminocaproic acid administration had no effect on any measured variables (VO2max = 48 ± 3.0 [C]; 148 ± 3.0 [2 g ACA]; 145 ± 3.0 [7 g ACA] ml/kg bwt/min, respectively; run time = 77 ± 3 [C]; 75 ± 2 [2 g ACA]; 79 ± 3 [7 g ACA] seconds, respectively). All horses developed EIPH: 1691 ± 690 vs. 9637 ± 3923 (C); 2149 ± 935 vs. 3378 ± 893 (2 g ACA); 1058 ± 340 vs. 4533 ± 791 (7 g ACA) erythrocytes/µl pre- vs. post exercise recovered in BALF, respectively. Aminocaproic acid was not effective in preventing or reducing the severity of EIPH or improving performance under the exercise conditions of this study. © 2010 EVJ Ltd.

  4. Effects of aerobic and anaerobic training programs together with omega-3 supplement on interleukin-17 and CRP plasma levels in male mice.

    PubMed

    Alizadeh, Hamid; Daryanoosh, Farhad; Moatari, Maryam; Hoseinzadeh, Khadijeh

    2015-01-01

    Herein, we studied the effects of two different exercise protocols on IL-17 and CRP plasma levels along with the anti-inflammatory effects of fish oil. The purpose of the present study was to investigate the effect of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) consumption along with two different types of physical activities on IL-17 and CRP plasma levels in trained male mice. A total of 130 adult male mice of Syrian race with the age of 2 months and the weight of 35±1 grams were selected. At the beginning, 10 mice were killed in order to determine the amounts of pre-test variables. The rest of the mice were randomly divided into 6 groups including control group (n=20), supplement (n=20), aerobic exercise (n=20), anaerobic exercise (n=20), supplementaerobic exercise (n=20), and supplement-anaerobic exercise (n=20). Blood samples were withdrawn from the tail under intraperitoneal ketamine and xylasine anaesthesia. The anaerobic training program included 8 weeks of running on treadmill, 3 sessions per week; the aerobic training program included 8 weeks of running on treadmill, 5 sessions per week. At the end of the training program, the blood sample from each group was taken in order to measure the CRP and IL-17 levels. The analysis of variance (ANOVA) was used to determine the differences among the groups. The results showed that there was a significant difference in IL-17 and CRP plasma levels between the groups after 8 weeks (P<0.05). Following the two different training programs, both IL-17 and CRP plasma levels increased, although these observed increases were not same for two measured variables. The results might also show that the effect of the supplement depends on the type of training.

  5. Effects of aerobic and anaerobic training programs together with omega-3 supplement on interleukin-17 and CRP plasma levels in male mice

    PubMed Central

    Alizadeh, Hamid; Daryanoosh, Farhad; Moatari, Maryam; Hoseinzadeh, Khadijeh

    2015-01-01

    Background: Herein, we studied the effects of two different exercise protocols on IL-17 and CRP plasma levels along with the anti-inflammatory effects of fish oil. The purpose of the present study was to investigate the effect of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) consumption along with two different types of physical activities on IL-17 and CRP plasma levels in trained male mice. Methods: A total of 130 adult male mice of Syrian race with the age of 2 months and the weight of 35±1 grams were selected. At the beginning, 10 mice were killed in order to determine the amounts of pre-test variables. The rest of the mice were randomly divided into 6 groups including control group (n=20), supplement (n=20), aerobic exercise (n=20), anaerobic exercise (n=20), supplementaerobic exercise (n=20), and supplement-anaerobic exercise (n=20). Blood samples were withdrawn from the tail under intraperitoneal ketamine and xylasine anaesthesia. The anaerobic training program included 8 weeks of running on treadmill, 3 sessions per week; the aerobic training program included 8 weeks of running on treadmill, 5 sessions per week. At the end of the training program, the blood sample from each group was taken in order to measure the CRP and IL-17 levels. The analysis of variance (ANOVA) was used to determine the differences among the groups. Results: The results showed that there was a significant difference in IL-17 and CRP plasma levels between the groups after 8 weeks (P<0.05). Conclusion: Following the two different training programs, both IL-17 and CRP plasma levels increased, although these observed increases were not same for two measured variables. The results might also show that the effect of the supplement depends on the type of training. PMID:26793627

  6. Bungee force level, stiffness, and variation during treadmill locomotion in simulated microgravity.

    PubMed

    De Witt, John K; Schaffner, Grant; Ploutz-Snyder, Lori L

    2014-04-01

    Crewmembers performing treadmill exercise on the International Space Station must wear a harness with an external gravity replacement force that is created by elastomer bungees. The quantification of the total external force, displacement, stiffness, and force variation is important for understanding the forces applied to the crewmember during typical exercise. Data were collected during static trials in the laboratory from a single subject and four subjects were tested while walking at 1.34 m x s(-1) and running at 2.24 m x s(-1) and 3.13 m x s(-1) on a treadmill during simulated microgravity in parabolic flight. The external force was provided by bungees and carabiner clips in configurations commonly used by crewmembers. Total external force, displacement, and force variation in the bungee system were measured, from which stiffness was computed. Mean external force ranged from 431 to 804 N (54-131% bodyweight) across subjects and conditions. Mean displacement was 4 to 8 cm depending upon gait speed. Mean stiffness was affected by bungee configuration and ranged from 1.73 to 29.20 N x cm(-1). Force variation for single bungee configurations was 2.61-4.48% of total external force and between 4.30-57.5% total external force for two-bungee configurations. The external force supplied to crewmembers by elastomer bungees provided a range of loading levels with variations that occur throughout the gait cycle. The quantification of bungee-loading characteristics is important to better define the system currently used by crewmembers during exercise.

  7. Excercise Within LBNP as an Artificial Gravity Countermeasure

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Watenpaugh, D. E.; Lee, S. M. C.; Meyer, R. S.; Macias, B.; Tanaka, K.; Kimura, S.; Steinbach, G.; Groppo, E.; Khalili, N.; hide

    2003-01-01

    Previous exercise in space has lacked sufficient loads to maintain preflight cardiovascular and musculoskeletal mass and function. Lower body negative pressure (LBNP) produces a static force equivalent to one Earth body weight by each 52 mm Hg of LBNP during supine posture. LBNP also provides transmural blood pressures simulating upright exercise. Thus, this artificial-gravity concept may help maintain cardiovascular and musculoskeletal systems of crewmembers during prolonged exposure to microgravity. Currently available, bungee cord assisted, treadmill exercise is limited by harness discomfort, lower than normal loads, abnormal post-flight gait, and the absence of gravitational blood pressures within the vascular system. PURPOSE: This project evaluates a method to create artificial gravity using supine LBNP treadmill exercise to prevent loss of physiologic function in microgravity simulated by 30 days of bed rest. Identical twins were used as volunteers so that statistical power could be maximized. This countermeasure is being transitioned to space flight. CURRENT STATUS OF RESEARCH Methods: Six sets of identical twins (6 females and 14 males, 21-36 years) remained in 6 head-down tilt (HDT) bed rest for 30 days to simulate prolonged microgravity. Six subjects were randomly selected to exercise supine in an LBNP chamber for 40 minutes six days per week (EX group), while their twin brothers served as non-exercise controls (CON). Pressure within the exercise LBNP chamber was adjusted to increase load, hence increasing exercise intensity. During supine treadmill exercise, LBNP (52-63 mmHg) was applied to produce foot ward forces equivalent to those for upright running on Earth at 1.0-1.2 times body weight (BW) and subjects performed an interval exercise protocol (40-80% peak exercise capacity [VO2pk]). Five minutes of resting LBNP immediately followed each exercise session. Results: Orthostatic tolerance time decreased significantly after 30 days bed rest in the CON group, but was relatively maintained in the EX group. VO2pk was maintained in EX males, but not in CON males. Isokinetic knee strength (extension, peak torque) decreased significantly in CON males, but was preserved in EX males. The EX group had significantly higher spine muscle strength after bed rest than the CON group. The cross-sectional area of spinal muscle at L4/5 level decreased significantly in the CON group but not in the EX group. Urinary n-telopeptide excretion, an index of bone resorption, was increased during bed rest in CON, but not in EX subjects. This suggests protection by LBNP exercise against the increase in bone resorption typically seen in simulated and actual microgravity. Significant changes in bone mineral density (BMD) in the spine and ribs were observed in CON subjects, but not in EX subjects. Conclusions: Our treadmill exercise protocol within LBNP plus a short period of post-exercise LBNP maintains orthostatic responses, upright exercise capacity and other important physiologic parameters during bed rest. These results document the efficacy of our apparatus and exercise protocol for maintaining physiologic structure and function during long-duration microgravity as simulated by 30 days of HDT bed rest. FUTURE PLANS: More sets of female identical twins are needed to reach significance. The LBNP exercise chamber will be redesigned for flight.

  8. Vande Hei exercises on COLBERT/T2 Treadmill

    NASA Image and Video Library

    2017-09-23

    iss053e040103 (ept. 23, 2017) --- Astronaut Mark Vande Hei, Expedition 53 Flight Engineer, exercises on the COLBERT (Combined Operational Load Bearing External Resistance Treadmill) in the Tranquility module.

  9. Energetic cost of locomotion on different equine treadmills.

    PubMed

    Jones, J H; Ohmura, H; Stanley, S D; Hiraga, A

    2006-08-01

    Human athletes run faster and experience fewer injuries when running on surfaces with a stiffness 'tuned' to their bodies. We questioned if the same might be true for horses, and if so, would running on surfaces of different stiffness cause a measurable change in the amount of energy required to move at a given speed? Different brands of commercial treadmills have pans of unequal stiffness, and this difference would result in different metabolic power requirements to locomote at a given speed. We tested for differences in stiffness between a Mustang 2200 and a Säto I commercial treadmill by incrementally loading each treadmill near the centre of the pan with fixed weights and measuring the displacement of the pan as weights were added or removed from the pan. We trained six 3-year-old Thoroughbreds to run on the 2 treadmills. After 4 months the horses ran with reproducible specific maximum rates of O2 consumption (VO2max/kg bwt, 2.62 +/- 0.23 (s.d.) mlO2 STPD/sec/kg) at 14.2 +/- 0.7 (s.d.) m/sec. They were alternately run on the 2 treadmills at identical grade (0.40 +/- 0.02%) and speeds (1.83 (walk), 4.0 (trot) and 8.0 (canter) m/sec, all +/- 0.03 m/sec) while wearing an open-flow mask for measurement of VO2. The Mustang treadmill was over 6 times stiffer than the Säto. The VO2/kg bwt increased by approximately 4-fold over the range of speeds studied on both treadmills. Oxygen consumption was significantly lower at all speeds for the Mustang treadmill compared to the Säto. The fractional difference in energy cost decreased by a factor of 6 with increasing speed, although absolute difference in cost was relatively constant. We suggest it costs less energy for horses to walk, trot or canter on a stiffer treadmill than on a more compliant treadmill, at least within the ranges of stiffness evaluated. It may be possible to define a substrate stiffness 'tuned' to a horse's body enabling maximal energetic economy when running. The differences between treadmills allows more accurate comparisons between physiological studies conducted on treadmills of different stiffness, and might help to identify an ideal track stiffness to reduce locomotor injuries in equine athletes.

  10. Voluntary exercise impact on cognitive impairments in sleep-deprived intact female rats.

    PubMed

    Rajizadeh, Mohammad Amin; Esmaeilpour, Khadijeh; Masoumi-Ardakani, Yaser; Bejeshk, Mohammad Abbas; Shabani, Mohammad; Nakhaee, Nouzar; Ranjbar, Mohammad Pour; Borzadaran, Fatemeh Mohtashami; Sheibani, Vahid

    2018-05-01

    Sleep loss is a common problem in modern societies affecting different aspects of individuals' lives. Many studies have reported that sleep deprivation (SD) leads to impairments in various types of learning and memory. Physical exercise has been suggested to attenuate the cognitive impairments induced by sleep deprivation in male rats. Our previous studies have shown that forced exercise by treadmill improved learning and memory impairments following SD. The aim of the current study was to investigate the effects of voluntary exercise by running wheel on cognitive, motor and anxiety-like behavior functions of female rats following 72 h SD. Intact female rats were used in the present study. The multiple platform method was applied for the induction of 72 h SD. The exercise protocol was 4 weeks of running wheel and the cognitive function was evaluated using Morris water maze (MWM), passive avoidance and novel object recognition tests. Open field test and measurement of plasma corticosterone level were performed for evaluation of anxiety-like behaviors. Motor balance evaluation was surveyed by rotarod test. In this study, remarkable learning and long-term memory impairments were observed in sleep deprived rats in comparison to the other groups. Running wheel exercise ameliorated the SD-induced learning and memory impairments. Voluntary and mandatory locomotion and balance situation were not statistically significant among the different groups. Our study confirmed the negative effects of SD on cognitive function and approved protective effects of voluntary exercise on these negative effects. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Physiological and perceptual responses to incremental exercise testing in healthy men: effect of exercise test modality.

    PubMed

    Muscat, Kristina M; Kotrach, Houssam G; Wilkinson-Maitland, Courtney A; Schaeffer, Michele R; Mendonca, Cassandra T; Jensen, Dennis

    2015-11-01

    In a randomized cross-over study of 15 healthy men aged 20-30 years, we compared physiological and perceptual responses during treadmill and cycle exercise test protocols matched for increments in work rate - the source of increased locomotor muscle metabolic and contractile demands. The rates of O2 consumption and CO2 production were higher at the peak of treadmill versus cycle testing (p ≤ 0.05). Nevertheless, work rate, minute ventilation, tidal volume (VT), breathing frequency (fR), inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal esophageal (Pes,tidal) and transdiaphragmatic pressure swings (Pdi,tidal), peak expiratory gastric pressures (Pga,peak), the root mean square of the diaphragm electromyogram (EMGdi,rms) expressed as a percentage of maximum EMGdi,rms (EMGdi,rms%max), and dyspnea ratings were similar at the peak of treadmill versus cycle testing (p > 0.05). Ratings of leg discomfort were higher at the peak of cycle versus treadmill exercise (p ≤ 0.05), even though peak O2 consumption was lower during cycling. Oxygen consumption, CO2 production, minute ventilation, fR, Pes,tidal, Pdi,tidal and Pga,peak were higher (p ≤ 0.05), while VT, IC, IRV, EMGdi,rms%max, and ratings of dyspnea and leg discomfort were similar (p > 0.05) at all or most submaximal work rates during treadmill versus cycle exercise. Our findings highlight important differences (and similarities) in physiological and perceptual responses at maximal and submaximal work rates during incremental treadmill and cycle exercise testing protocols. The lack of effect of exercise test modality on peak work rate advocates for the use of this readily available parameter to optimize training intensity determination, regardless of exercise training mode.

  12. Increasing physician activity with treadmill desks.

    PubMed

    Thompson, Warren G; Koepp, Gabriel A; Levine, James A

    2014-01-01

    Prolonged sitting has been shown to increase mortality and obesity. We sought to determine whether physicians would use a treadmill desk, increase their daily physical activity and lose weight. 20 overweight and obese physicians aged 25 to 70 with Body Mass Index > 25. Participants used a treadmill desk, a triaxial accelerometer, and received exercise counseling in a randomized, cross-over trial over 24 weeks. Group 1 received exercise counseling, accelerometer feedback, and a treadmill desk for 12 weeks and then accelerometer only for 12 weeks. Group 2 received an accelerometer without feedback for 12 weeks followed by exercise counseling, accelerometer feedback, and the treadmill desk for 12 weeks. Daily physical activity increased while using the treadmill desk compared to not using the desk by 197 kcal per day (p=0.003). The difference in weight during the two 12 week periods was 1.85 kg (p=0.03). Percent body fat was 1.9% lower while using the treadmill desk (p=0.02). There were no differences in metabolic or well-being measures. This study suggests that physicians will use a treadmill desk, that it does increase their activity, and that it may help with weight loss. Further studies are warranted.

  13. Heritability, linkage, and genetic associations of exercise treadmill test responses.

    PubMed

    Ingelsson, Erik; Larson, Martin G; Vasan, Ramachandran S; O'Donnell, Christopher J; Yin, Xiaoyan; Hirschhorn, Joel N; Newton-Cheh, Christopher; Drake, Jared A; Musone, Stacey L; Heard-Costa, Nancy L; Benjamin, Emelia J; Levy, Daniel; Atwood, Larry D; Wang, Thomas J; Kathiresan, Sekar

    2007-06-12

    The blood pressure (BP) and heart rate responses to exercise treadmill testing predict incidence of cardiovascular disease, but the genetic determinants of hemodynamic and chronotropic responses to exercise are largely unknown. We assessed systolic BP, diastolic BP, and heart rate during the second stage of the Bruce protocol and at the third minute of recovery in 2982 Framingham Offspring participants (mean age 43 years; 53% women). With use of residuals from multivariable models adjusted for clinical correlates of exercise treadmill testing responses, we estimated the heritability (variance-components methods), genetic linkage (multipoint quantitative trait analyses), and association with 235 single-nucleotide polymorphisms in 14 candidate genes selected a priori from neurohormonal pathways for their potential role in exercise treadmill testing responses. Heritability estimates for heart rate during exercise and during recovery were 0.32 and 0.34, respectively. Heritability estimates for BP variables during exercise were 0.25 and 0.26 (systolic and diastolic BP) and during recovery, 0.16 and 0.13 (systolic and diastolic BP), respectively. Suggestive linkage was found for systolic BP during recovery from exercise (locus 1q43-44, log-of-the-odds score 2.59) and diastolic BP during recovery from exercise (locus 4p15.3, log-of-the-odds score 2.37). Among 235 single-nucleotide polymorphisms tested for association with exercise treadmill testing responses, the minimum nominal probability value was 0.003, which was nonsignificant after adjustment for multiple testing. Hemodynamic and chronotropic responses to exercise are heritable and demonstrate suggestive linkage to select loci. Genetic mapping with newer approaches such as genome-wide association may yield novel insights into the physiological responses to exercise.

  14. Selectively bred rat model system for low and high response to exercise training

    PubMed Central

    Pollott, Geoffrey E.; Britton, Steven L.

    2013-01-01

    We initiated a large-scale bidirectional selection experiment in a genetically heterogeneous rat population (N/NIH stock, n = 152) to develop lines of low response trainers (LRT) and high response trainers (HRT) as a contrasting animal model system. Maximal treadmill running distance [meters (m)] was tested before (DIST1) and after (DIST2) standardized aerobic treadmill training over an 8 wk period (3 exercise sessions per week). Response to training was calculated as the change in exercise capacity (ΔDIST = DIST2 − DIST1). A within-family selection and rotational breeding paradigm between 10 families was practiced for both selected lines. For the founder population, exercise training produced a 140 ± 15 m gain in exercise capacity with interindividual variation ranging from −339 to +627 m. After 15 generations of selection (n = 3,114 rats), HRT rats improved 223 ± 20 m as a result of exercise training while exercise capacity declined −65 ± 15 m in LRT rats given the same absolute training environment. The narrow-sense heritability (h2) for ΔDIST was 0.10 ± 0.02. The LRT and HRT lines did not differ significantly for body weight or intrinsic (i.e., DIST1) exercise capacity. Using pedigree records the inbreeding coefficient increased at a rate of 1.7% per generation for HRT and 1.6% per generation for LRT, ∼30% slower than expected from random mating. Animal models developed from heterogeneous stock and enriched via selection, as presented here, often generate extreme values for traits of interest and may prove more useful than current models for uncovering genetic underpinnings. PMID:23715262

  15. Effects of Sevoflurane Exposure During Mid-Pregnancy on Learning and Memory in Offspring Rats: Beneficial Effects of Maternal Exercise.

    PubMed

    Wu, Ziyi; Li, Xingyue; Zhang, Yi; Tong, Dongyi; Wang, Lili; Zhao, Ping

    2018-01-01

    Fetal exposure to general anesthetics may pose significant neurocognitive risks but methods to mitigate against these detrimental effects are still to be determined. We set out, therefore, to assess whether single or repeated in utero exposure to sevoflurane triggers long-term cognitive impairments in rat offspring. Since maternal exercise during pregnancy has been shown to improve cognition in offspring, we hypothesized that maternal treadmill exercise during pregnancy would protect against sevoflurane-induced neurotoxicity. In the first experiment, pregnant rats were exposed to 3% sevoflurane for 2 h on gestational (G) day 14, or to sequential exposure for 2 h on G13, G14 and G15. In the second experiment, pregnant rats in the exercise group were forced to run on a treadmill for 60 min/day during the whole pregnancy. The TrkB antagonist ANA-12 was used to investigate whether the brain-derived neurotrophic factor (BDNF)/TrkB/Akt signaling pathway is involved in the neuroprotection afforded by maternal exercise. Our data suggest that repeated, but not single, exposure to sevoflurane caused a reduction in both histone acetylation and BDNF expression in fetal brain tissues and postnatal hippocampus. This was accompanied by decreased numbers of dendritic spines, impaired spatial-dependent learning and memory dysfunction. These effects were mitigated by maternal exercise but the TrkB antagonist ANA-12 abolished the beneficial effects of maternal exercise. Our findings suggest that repeated, but not single, exposure to sevoflurane in pregnant rats during the second trimester caused long-lasting learning and memory dysfunction in the offspring. Maternal exercise ameliorated the postnatal neurocognitive impairment by enhancing histone acetylation and activating downstream BDNF/TrkB/Akt signaling.

  16. High-intensity sprint fatigue does not alter constant-submaximal velocity running mechanics and spring-mass behavior.

    PubMed

    Morin, Jean-Benoit; Tomazin, Katja; Samozino, Pierre; Edouard, Pascal; Millet, Guillaume Y

    2012-04-01

    We investigated the changes in constant velocity spring-mass behavior after high intensity sprint fatigue in order to better interpret the results recently reported after ultra-long distance (ULD) exercises. Our hypothesis was that after repeated sprints (RS), subjects may likely experience losses of force such as after ULD, but the necessity to modify their running pattern to attenuate the overall impact at each step (such as after ULD) may not be present. Eleven male subjects performed four sets of five 6-s sprints with 24-s recovery between sprints and 3 min between sets, on a sprint treadmill and on a bicycle ergometer. For each session, their running mechanics and spring-mass characteristics were measured at 10 and 20 km h(-1) on an instrumented treadmill before and after RS. Two-way (period and velocity) ANOVAs showed that high-intensity fatigue did not induce any change in the constant velocity running pattern at low or high velocity, after both running and cycling RS, despite significant decreases (P < 0.001) in maximal power (-27.1 ± 8.2% after running RS and -15.4 ± 11.5 % after cycling RS) and knee extensors maximal voluntary force (-18.8 ± 6.7 % after running RS and -15.0 ± 7.6 % after cycling RS). These results bring indirect support to the hypothesis put forward in recent ULD studies that the changes in running mechanics observed after ULD are likely not related to the decrease in strength capabilities, but rather to the necessity for subjects to adopt a protective running pattern.

  17. Myosin heavy chain composition in the rat diaphragm - Effect of age and exercise training

    NASA Technical Reports Server (NTRS)

    Gosselin, Luc E.; Betlach, Michael; Vailas, Arthur C.; Greaser, Marion L.; Thomas, D. P.

    1992-01-01

    The effects of aging and exercise training on the myosin heavy chain (MHC) composition were determined in both the costal and crural diaphragm regions of female Fischer 344 rats. Treadmill running at 75 percent maximal oxygen consumption resulted in similar increases in plantaris muscle citrate synthase activity in both young (5 mo) and old (23mo) trained animals (P less than 0.05). It was found that the ratio of fast to slow MHC was significantly higher (P less than 0.005) in the crural compared with costal diaphragm region in both age groups. A significant age-related increase in persentage of slow MHC was observed in both diaphragm regions. The relative proportion of slow MHC in either costal or crural region was not changed by exercise training.

  18. Effects of treadmill exercise on behavioral recovery and neural changes in the substantia nigra and striatum of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse

    PubMed Central

    Goldberg, Natalie R.S.; Meshul, Charles K.

    2011-01-01

    Our goal was to extend our understanding of the neural changes behind motor recovery with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse. We determined the extent of dopamine (DA) terminal changes using western immunoblotting [striatal dopamine transporter (DAT) and tyrosine hydroxylase (TH)] and alterations in the mean number of DA cells/section by immunohistochemistry and Nissl staining [TH-labeled cells and thionin-stained cells in the substantia nigra pars compacta (SN-PC)]. We measured recovery of gait performance and amount of spontaneous physical activity using the parallel rod activity chamber (PRAC). We hypothesized that the decrease in TH-labeled neurons in the SN-PC due to MPTP will be partially reversed by treadmill exercise, leading to recovery of motor behavior as measured by the PRAC. Following MPTP or vehicle administration, mice ran on the treadmill for 1 hour per day at 18 cm/s, 5 days per week. Results showed that treadmill exercise improves gait performance and increases physical activity while promoting increased protein expression of striatal DAT and TH. Exercise was effective for all mice, however effects of early treadmill-based intervention appear to have an additional and unique benefit in mice who received MPTP. We are the first to show that, even following a nearly 50% decrease in the mean number of TH-labeled neurons/section in the SN-PC following MPTP, treadmill exercise leads to an increase of neurons in the SN-PC and improved motor behavior. PMID:21315689

  19. Executive Function and the P300 after Treadmill Exercise and Futsal in College Soccer Players

    PubMed Central

    Won, Junyeon; Wu, Shanshan; Ji, Hongqing; Smith, J. Carson; Park, Jungjun

    2017-01-01

    (1) Background: Although a body of evidence demonstrates that acute exercise improves executive function, few studies have compared more complex, laboratory-based modes of exercise, such as soccer that involve multiple aspects of the environment. (2) Methods: Twelve experienced soccer players (24.8 ± 2 years) completed three counterbalanced 20 min sessions of (1) seated rest; (2) moderate intensity treadmill exercise; and (3) a game of futsal. Once heart rate returned to within 10% of pre-activity levels, participants completed the Stroop Color Word Conflict Task while reaction time (RT) and P300 event-related potentials were measured. (3) Results: Reaction time during Stroop performance was significantly faster following the futsal game and treadmill exercise compared to the seated rest. The P300 amplitude during Stroop performance was significantly greater following futsal relative to both treadmill and seated-rest conditions. (4) Conclusions: These findings suggest that single bouts of indoor soccer among college-aged soccer players, compared to treadmill and seated-rest conditions, may engender the greatest effect on brain networks controlling attention allocation and classification speed during the performance of an inhibitory control task. Future research is needed to determine if cognitively engaging forms of aerobic exercise may differentially impact executive control processes in less experienced and older adult participants.

  20. Ultrastructural alterations in skeletal muscle fibers of rats after exercise

    NASA Technical Reports Server (NTRS)

    Akuzawa, M.; Hataya, M.

    1982-01-01

    Ultrastructural alterations in skeletal muscle fibers were electron microscopically studied in rats forced to run on the treadmill until all-out. When they were mild and limited to relatively small areas, the reconstruction of filaments ensued within 10 days without infiltration of cells. When they were severe and extensive, phagocytes infiltrated in the lesions and removed degenerative sacroplasmic debris from muscle fibers. A little later, myoblasts appeared and regeneration was accomplished in 30 days in much the same manner as in myogenesis.

  1. Fibroblast growth factor 21 is required for beneficial effects of exercise during chronic high-fat feeding.

    PubMed

    Loyd, Christine; Magrisso, I Jack; Haas, Michael; Balusu, Sowmya; Krishna, Radha; Itoh, Nobuyuki; Sandoval, Darleen A; Perez-Tilve, Diego; Obici, Silvana; Habegger, Kirk M

    2016-09-01

    Exercise is an effective therapy against the metabolic syndrome. However, the molecular pathways underlying the advantageous effects of exercise are elusive. Glucagon receptor signaling is essential for exercise benefits, and recent evidence indicates that a downstream effector of glucagon, fibroblast growth factor 21 (FGF21), is implicated in this response. Therefore, we tested the hypothesis that FGF21 action is necessary in mediating metabolic effects of exercise. We utilized acute exhaustive treadmill exercise in Wistar rats to identify a putative, concomitant increase in plasma glucagon and FGF21 with the increase in glucose and lactate following exercise. To test the necessity of FGF21 action in the exercise response, we exposed FGF21 congenitally deficient mice (Fgf21(-/-)) and their wild-type (Wt) littermates to chronic high-fat (HF) feeding and inoperable (sedentary) or operable (exercise) voluntary running wheels. Physiological tests were performed to assess the role of FGF21 in the beneficial effect of exercise on glucose metabolism. Wt and Fgf21(-/-) littermates exhibited similar running behavior, and exercise was effective in suppressing weight and fat mass gain and dyslipidemia independently of genotype. However, exercise failed to positively affect hepatic triglyceride content and glucose tolerance in HF diet-fed Fgf21(-/-) mice. Furthermore, Fgf21(-/-) mice exhibited an impaired adaptation to exercise training, including reduced AMP-activated protein kinase activity in skeletal muscle. This study demonstrates that FGF21 action is necessary to achieve the full metabolic benefits of exercise during chronic HF feeding. Copyright © 2016 the American Physiological Society.

  2. Fibroblast growth factor 21 is required for beneficial effects of exercise during chronic high-fat feeding

    PubMed Central

    Loyd, Christine; Magrisso, I. Jack; Haas, Michael; Balusu, Sowmya; Krishna, Radha; Itoh, Nobuyuki; Sandoval, Darleen A.; Perez-Tilve, Diego; Obici, Silvana

    2016-01-01

    Exercise is an effective therapy against the metabolic syndrome. However, the molecular pathways underlying the advantageous effects of exercise are elusive. Glucagon receptor signaling is essential for exercise benefits, and recent evidence indicates that a downstream effector of glucagon, fibroblast growth factor 21 (FGF21), is implicated in this response. Therefore, we tested the hypothesis that FGF21 action is necessary in mediating metabolic effects of exercise. We utilized acute exhaustive treadmill exercise in Wistar rats to identify a putative, concomitant increase in plasma glucagon and FGF21 with the increase in glucose and lactate following exercise. To test the necessity of FGF21 action in the exercise response, we exposed FGF21 congenitally deficient mice (Fgf21−/−) and their wild-type (Wt) littermates to chronic high-fat (HF) feeding and inoperable (sedentary) or operable (exercise) voluntary running wheels. Physiological tests were performed to assess the role of FGF21 in the beneficial effect of exercise on glucose metabolism. Wt and Fgf21−/− littermates exhibited similar running behavior, and exercise was effective in suppressing weight and fat mass gain and dyslipidemia independently of genotype. However, exercise failed to positively affect hepatic triglyceride content and glucose tolerance in HF diet-fed Fgf21−/− mice. Furthermore, Fgf21−/− mice exhibited an impaired adaptation to exercise training, including reduced AMP-activated protein kinase activity in skeletal muscle. This study demonstrates that FGF21 action is necessary to achieve the full metabolic benefits of exercise during chronic HF feeding. PMID:27445299

  3. Locomotor exercise in weightlessness

    NASA Technical Reports Server (NTRS)

    Thornton, W.; Whitmore, H.

    1991-01-01

    The requirements for exercise in space by means of locomotion are established and addressed with prototype treadmills for use during long-duration spaceflight. The adaptation of the human body to microgravity is described in terms of 1-G locomotor biomechanics, the effects of reduced activity, and effective activity-replacement techniques. The treadmill is introduced as a complement to other techniques of force replacement with reference given to the angle required for exercise. A motor-driven unit is proposed that can operate at a variety of controlled speeds and equivalent grades. The treadmills permit locomotor exercise as required for long-duration space travel to sustain locomotor and cardiorespiratory capacity at a level consistent with postflight needs.

  4. Heart ABCA1 and PPAR- α Genes Expression Responses in Male rats: Effects of High Intensity Treadmill Running Training and Aqueous Extraction of Black Crataegus-Pentaegyna.

    PubMed

    Ghanbari-Niaki, Abbass; Ghanbari-Abarghooi, Safieyh; Rahbarizadeh, Fatemeh; Zare-Kookandeh, Navabeh; Gholizadeh, Monireh; Roudbari, Fatemeh; Zare-Kookandeh, Asghar

    2013-11-01

    Heart as a high metabolic and aerobic tissue is consuming lipid as a fuel for its energy provision at rest during light and moderate exercise, except when lactate level is higher in blood circulation. It has been shown that any type of regular exercise and crataegus species would improve cardiovascular function and minimizes several risk factors via stimulating lipid metabolism by acting on enzymes and genes expression such as ABCA1 and PPAR α which are involving in this process. Twenty Wistar male rats (4-6 weeks old, 140-173 g weight) were used. Animals were randomly classified into training (n = 10) and control (n = 10) groups and then divided into saline-control (SC), saline-training (ST), Crataegus-Pentaegyna -control (CPC), and Crataegus-Pentaegyna -training (CPT) groups. Training groups have performed a high-intensity running program (at 34 m/min (0% grade), 60 min/day, 5 days/week) on a motor-driven treadmill for eight weeks. Animals were orally fed with Crataegus-Pentaegyna extraction (500mg/kg) and saline solution for six weeks. Seventy- two hours after the last training session, rats were sacrificed, hearts were excised, cleaned and immediately frozen in liquid nitrogen and stored at -80 °C until RNA extraction. Plasma also was collected for plasma variable measurements. Statistical analysis was performed using a two way analysis of variance, and significance was accepted at P < 0.05. A non-significant (P < 0.4, P < 0.79, respectively) increase in ABCA1 and PPAR α genes expression was accompanied by a significant (P < 0.01, P < 0.04, P < 0.04, respectively) reduction in TC, TG, and VLDL-C levels in Crataegus-Pentaegyna groups. Our findings show that a high intensity treadmill running was able to express ABCA1 and PPAR α in rat heart. Data also possibly indicate that the Crataeguse-Pentaegyna supplementation solely could mimic training effect on the mentioned genes and lipid profiles via different mechanism(s).

  5. Heart ABCA1 and PPAR- α Genes Expression Responses in Male rats: Effects of High Intensity Treadmill Running Training and Aqueous Extraction of Black Crataegus-Pentaegyna

    PubMed Central

    Ghanbari-Niaki, Abbass; Ghanbari-Abarghooi, Safieyh; Rahbarizadeh, Fatemeh; Zare-Kookandeh, Navabeh; Gholizadeh, Monireh; Roudbari, Fatemeh; Zare-Kookandeh, Asghar

    2013-01-01

    Introduction: Heart as a high metabolic and aerobic tissue is consuming lipid as a fuel for its energy provision at rest during light and moderate exercise, except when lactate level is higher in blood circulation. It has been shown that any type of regular exercise and crataegus species would improve cardiovascular function and minimizes several risk factors via stimulating lipid metabolism by acting on enzymes and genes expression such as ABCA1 and PPAR α which are involving in this process. Materials and Methods: Twenty Wistar male rats (4-6 weeks old, 140-173 g weight) were used. Animals were randomly classified into training (n = 10) and control (n = 10) groups and then divided into saline-control (SC), saline-training (ST), Crataegus-Pentaegyna -control (CPC), and Crataegus-Pentaegyna -training (CPT) groups. Training groups have performed a high-intensity running program (at 34 m/min (0% grade), 60 min/day, 5 days/week) on a motor-driven treadmill for eight weeks. Animals were orally fed with Crataegus-Pentaegyna extraction (500mg/kg) and saline solution for six weeks. Seventy- two hours after the last training session, rats were sacrificed, hearts were excised, cleaned and immediately frozen in liquid nitrogen and stored at -80 °C until RNA extraction. Plasma also was collected for plasma variable measurements. Statistical analysis was performed using a two way analysis of variance, and significance was accepted at P < 0.05. Results: A non-significant (P < 0.4, P < 0.79, respectively) increase in ABCA1 and PPAR α genes expression was accompanied by a significant (P < 0.01, P < 0.04, P < 0.04, respectively) reduction in TC, TG, and VLDL-C levels in Crataegus-Pentaegyna groups. Conclusions: Our findings show that a high intensity treadmill running was able to express ABCA1 and PPAR α in rat heart. Data also possibly indicate that the Crataeguse-Pentaegyna supplementation solely could mimic training effect on the mentioned genes and lipid profiles via different mechanism(s). PMID:25478513

  6. Acute and chronic effects of aquatic treadmill training on land treadmill running kinematics: A cross-over and single-subject design approach.

    PubMed

    Bressel, Eadric; Louder, Talin J; Hoover, James P; Roberts, Luke C; Dolny, Dennis G

    2017-11-01

    The aim of this study was to determine if selected kinematic measures (foot strike index [SI], knee contact angle and overstride angle) were different between aquatic treadmill (ATM) and land treadmill (LTM) running, and to determine if these measures were altered during LTM running as a result of 6 weeks of ATM training. Acute effects were tested using 15 competitive distance runners who completed 1 session of running on each treadmill type at 5 different running speeds. Subsequently, three recreational runners completed 6 weeks of ATM training following a single-subject baseline, intervention and withdrawal experiment. Kinematic measures were quantified from digitisation of video. Regardless of speed, SI values during ATM running (61.3 ± 17%) were significantly greater (P = 0.002) than LTM running (42.7 ± 23%). Training on the ATM did not change (pre/post) the SI (26 ± 3.2/27 ± 3.1), knee contact angle (165 ± 0.3/164 ± 0.8) or overstride angle (89 ± 0.4/89 ± 0.1) during LTM running. Although SI values were different between acute ATM and LTM running, 6 weeks of ATM training did not appear to alter LTM running kinematics as evidenced by no change in kinematic values from baseline to post intervention assessments.

  7. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress.

    PubMed

    De Marchi, Thiago; Leal Junior, Ernesto Cesar Pinto; Bortoli, Celiana; Tomazoni, Shaiane Silva; Lopes-Martins, Rodrigo Alvaro Brandão; Salvador, Mirian

    2012-01-01

    The aim of this work was to evaluate the effects of low-level laser therapy (LLLT) on exercise performance, oxidative stress, and muscle status in humans. A randomized double-blind placebo-controlled crossover trial was performed with 22 untrained male volunteers. LLLT (810 nm, 200 mW, 30 J in each site, 30 s of irradiation in each site) using a multi-diode cluster (with five spots - 6 J from each spot) at 12 sites of each lower limb (six in quadriceps, four in hamstrings, and two in gastrocnemius) was performed 5 min before a standardized progressive-intensity running protocol on a motor-drive treadmill until exhaustion. We analyzed exercise performance (VO(2 max), time to exhaustion, aerobic threshold and anaerobic threshold), levels of oxidative damage to lipids and proteins, the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and the markers of muscle damage creatine kinase (CK) and lactate dehydrogenase (LDH). Compared to placebo, active LLLT significantly increased exercise performance (VO(2 max) p = 0.01; time to exhaustion, p = 0.04) without changing the aerobic and anaerobic thresholds. LLLT also decreased post-exercise lipid (p = 0.0001) and protein (p = 0.0230) damages, as well as the activities of SOD (p = 0.0034), CK (p = 0.0001) and LDH (p = 0.0001) enzymes. LLLT application was not able to modulate CAT activity. The use of LLLT before progressive-intensity running exercise increases exercise performance, decreases exercise-induced oxidative stress and muscle damage, suggesting that the modulation of the redox system by LLLT could be related to the delay in skeletal muscle fatigue observed after the use of LLLT.

  8. The effects of chronic alcohol consumption and exercise on the skeleton of adult male rats

    NASA Technical Reports Server (NTRS)

    Reed, Adam H.; McCarty, Heidi L.; Evans, Glenda L.; Turner, Russell T.; Westerlind, Kim C.

    2002-01-01

    BACKGROUND: Lifestyle factors are known to affect skeletal development and integrity. Specifically, running has been reported to increase risk of fatigue fractures, whereas chronic alcohol consumption has been shown to reduce bone formation and bone mass. The combined effect of exercise and alcohol on the skeleton has yet to be explored, although alcohol consumption is common among certain physically active populations (e.g., military recruits, college athletes). It was hypothesized that chronic alcohol consumption would accentuate the inherent risk associated with endurance running exercise. METHODS: Six-month-old male Sprague Dawley rats were assigned to one of five groups: baseline, exercise-alcohol diet, exercise-normal diet, sham-alcohol diet, and sham-normal diet. Alcohol-fed rats (35% caloric intake) received a liquid diet ad libitum. Normal animals were pair-fed the identical diet with a maltose dextrin caloric substitute. Exercise was conducted on a motorized treadmill 5 days/wk for 16 weeks. Sham rats were placed on a stationary treadmill for matching time periods. Fluorochrome labels were administered 3 days before baseline and at 10 and 2 days before animals were killed. Heart, soleus, and rectus femoris muscles were wet weighed to assess the effects of training. Tibiae were collected for static and dynamic histomorphometric measurements on cancellous and cortical bone. RESULTS: Muscle weights were larger in the exercised rats versus the sham rats. Alcohol had no significant effect on skeletal muscle weight but did result in larger heart weights in both alcohol-treated groups. Cancellous and periosteal bone formation rates were significantly decreased in the alcohol-fed rats versus rats on the normal diet and were associated with a significant reduction in trabecular thickness in the tibial metaphysis. Cortical and cross-sectional areas were also significantly lower in the alcohol-fed groups compared with the non-alcohol-fed groups. Exercise had no significant effect on cancellous or cortical bone measurements. CONCLUSIONS: Chronic alcohol consumption significantly reduced bone formation. Exercise had no effect on the bone and did not attenuate any of the negative effects of alcohol. The results suggest that alcohol consumption weakens the skeleton and increases the incidence of endurance-exercise-related bone injuries. Thus, individuals who are participating in endurance exercise and consuming alcohol may be at greater risk for exercise-related skeletal injuries. Further investigation of the potential for alcohol to induce detrimental effects on the hearts of individuals participating in endurance exercise is indicated.

  9. Extracellular hyperosmolality and body temperature during physical exercise in dogs

    NASA Technical Reports Server (NTRS)

    Kozlowski, S.; Greenleaf, J. E.; Turlejska, E.; Nazar, K.

    1980-01-01

    The purpose of this study was to test the hypothesis that thermoregulation during exercise can be affected by extracellular fluid hyperosmolality without changing the plasma Na(+) concentration. The effects of preexercise venous infusions of hypertonic mannitol and NaCl solutions on rectal temperature responses were compared in dogs running at moderate intensity for 60 min on a treadmill. Plasma Na(+) concentration was increased by 12 meq after NaCl infusion, and decreased by 9 meq after mannitol infusion. Both infusions increased plasma by 15 mosmol/kg. After both infusions, rectal temperature was essentially constant during 60 min rest. However, compared with the noninfusion exercise increase in osmolality of 1.3 C, rectal temperature increased by 1.9 C after both postinfusion exercise experiments. It was concluded that inducing extracellular hyperosmolality, without elevating plasma, can induce excessive increases in rectal temperature during exericse but not at rest.

  10. Anti-inflammatory effects of physical activity in relationship to improved cognitive status in humans and mouse models of Alzheimer's disease.

    PubMed

    Stranahan, Alexis M; Martin, Bronwen; Maudsley, Stuart

    2012-01-01

    Physical activity has been correlated with a reduced incidence of cognitive decline and Alzheimer's disease in human populations. Although data from intervention-based randomized trials is scarce, there is some indication that exercise may confer protection against age-related deficits in cognitive function. Data from animal models suggests that exercise, in the form of voluntary wheel running, is associated with reduced amyloid deposition and enhanced clearance of amyloid beta, the major constituent of plaques in Alzheimer's disease. Treadmill exercise has also been shown to ameliorate the accumulation of phosphorylated tau, an essential component of neurofibrillary tangles in Alzheimer's models. A common therapeutic theme arising from studies of exercise-induced neuroprotection in human populations and in animal models involves reduced inflammation in the central nervous system. In this respect, physical activity may promote neuronal resilience by reducing inflammation.

  11. Effects of furosemide on hemorheologic alterations induced by incremental treadmill exercise in thoroughbreds.

    PubMed

    Weiss, D J; Geor, R J; Burger, K

    1996-06-01

    To determine whether furosemide treatment altered the blood flow properties and serum and RBC electrolyte concentrations of Thoroughbreds during submaximal treadmill exercise. Thoroughbreds were subjected to submaximal treadmill exercise with and without treatment with furosemide (1 mg/kg of body weight, IV). 5 healthy Throughbreds that had raced within the past year and had no history of exercise-induced pulmonary hemorrhage. Venous blood samples were obtained before exercise, at treadmill speeds of 9 and 13 m/s, and 10 minutes after exercise, and hemorheologic and electrolyte test results were determined. Hemorheologic changes 60 minutes after furosemide administration included increased PCV, plasma total protein concentration, whole blood viscosity, mean RBC volume, and RBC potassium concentration, and decreased serum potassium concentration, serum chloride concentration, and RBC chloride concentration. Furosemide treatment attenuated the exercise-associated changes in RBC size, serum sodium concentration, serum potassium concentration, RBC potassium and chloride concentrations, and RBC density; exacerbated exercise-associated increases in whole blood viscosity; and had no effect on RBC filterability. The hemorheologic effects of furosemide probably occurred secondary to total body and transmembrane fluid and electrolyte fluxes and would not improve blood flow properties. The beneficial effects of furosemide treatment in reducing the severity of bleeding in horses with exercise-induced pulmonary hemorrhage cannot be explained by improved blood flow properties.

  12. Cardiovascular rehabilitation soon after stroke using feedback-controlled robotics-assisted treadmill exercise: study protocol of a randomised controlled pilot trial.

    PubMed

    Stoller, Oliver; de Bruin, Eling D; Schuster-Amft, Corina; Schindelholz, Matthias; de Bie, Rob A; Hunt, Kenneth J

    2013-09-22

    After experiencing a stroke, most individuals also suffer from cardiac disease, are immobile and thus have low endurance for exercise. Aerobic capacity is seriously reduced in these individuals and does not reach reasonable levels after conventional rehabilitation programmes. Cardiovascular exercise is beneficial for improvement of aerobic capacity in mild to moderate stroke. However, less is known about its impact on aerobic capacity, motor recovery, and quality-of-life in severely impaired individuals. The aim of this pilot study is to explore the clinical efficacy and feasibility of cardiovascular exercise with regard to aerobic capacity, motor recovery, and quality-of-life using feedback-controlled robotics-assisted treadmill exercise in non-ambulatory individuals soon after experiencing a stroke. This will be a single-centred single blind, randomised control trial with a pre-post intervention design. Subjects will be recruited early after their first stroke (≤20 weeks) at a neurological rehabilitation clinic and will be randomly allocated to an inpatient cardiovascular exercise programme that uses feedback-controlled robotics-assisted treadmill exercise (experimental) or to conventional robotics-assisted treadmill exercise (control). Intervention duration depends on the duration of each subject's inpatient rehabilitation period. Aerobic capacity, as the primary outcome measure, will be assessed using feedback-controlled robotics-assisted treadmill-based cardiopulmonary exercise testing. Secondary outcome measures will include gait speed, walking endurance, standing function, and quality-of-life. Outcome assessment will be conducted at baseline, after each 4-week intervention period, and before clinical discharge. Ethical approval has been obtained. Whether cardiovascular exercise in non-ambulatory individuals early after stroke has an impact on aerobic capacity, motor recovery, and quality-of-life is not yet known. Feedback-controlled robotics-assisted treadmill exercise is a relatively recent intervention method and might be used to train and evaluate aerobic capacity in this population. The present pilot trial is expected to provide new insights into the implementation of early cardiovascular exercise for individuals with severe motor impairment. The findings of this study may guide future research to explore the effects of early cardiovascular activation after severe neurological events. This trial is registered with the Clinical Trials.gov Registry (NCT01679600).

  13. Oxidative stress and inflammation response following aerobic exercise: role of ethnicity.

    PubMed

    McKenzie, M J; Goldfarb, A; Garten, R S; Vervaecke, L

    2014-09-01

    African-Americans are at a significantly greater risk for developing several diseases and conditions. These conditions often have underlying oxidative stress mechanisms. Therefore the purpose of this investigation was to ascertain the post-exercise oxidative response to a single bout of aerobic exercise in African-American and Caucasian college-age females. A total of 10 African-American and 10 Caucasian females completed the study. Each subject had her VO2 max measured while exercising on a treadmill. A week later, each subject returned to the laboratory and performed a 30-min run at 70% of her VO2max. Blood samples were taken immediately prior to and following exercise for analysis. Lipid hydroperoxides, protein carbonyls, malondialdehyde, xanthine oxidase, glutathione in the reduced (GSH) and oxidized (GSSG) forms, TNFα and interleukin 6 were measured from blood taken before and after exercise. Significance was set at p≤0.05 a priori. Xanthine oxidase was the only measure that did not significantly increase following exercise. All other markers showed a significant elevation in response to the exercise bout with no difference between groups except that the Caucasian group had significantly higher malondialdehyde post-exercise compared to the African-American group. This cohort of college-age African-American and Caucasian females showed little difference in their response to a single 30-min run at 70% of their max in the markers of oxidative stress within the blood. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Stress-Induced Depression Is Alleviated by Aerobic Exercise Through Up-Regulation of 5-Hydroxytryptamine 1A Receptors in Rats.

    PubMed

    Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee

    2015-03-01

    Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function.

  15. Effect of treadmill exercise on 5-HT, 5-HT1A receptor and brain derived neurophic factor in rats after permanent middle cerebral artery occlusion.

    PubMed

    Lan, Xiaofang; Zhang, Meng; Yang, Wan; Zheng, Zongju; Wu, Yuan; Zeng, Qian; Liu, Shudong; Liu, Ke; Li, Guangqin

    2014-05-01

    It has been well documented that exercise promotes neurological rehabilitation in patients with cerebral ischemia. However, the exact mechanisms have not been fully elucidated. This study aimed to discuss the effect of treadmill exercise on expression levels of 5-HT, 5-HT1A receptor (5-HT1AR) and brain derived neurophic factor (BDNF) in rat brains after permanent middle cerebral artery occlusion (pMCAO). A total of 55 rats were randomly divided into 3 groups: pMCAO group, pMCAO and treadmill exercise (pMCAO + Ex) group, and sham-operated group. Rats in pMCAO + Ex group underwent treadmill exercise for 16 days. Neurological function was evaluated by modified Neurological Severity Scores (mNSS). High-performance liquid chromatography-electrochemical detection system was used to determine the content of 5-HT in cortex tissues. The protein levels of 5-HT1AR, BDNF and synaptophysin were measured by Western blot. The mNSS in pMCAO + Ex group was lower than that in pMCAO group on day 19 post-MCAO (p < 0.001). The content of 5-HT dropped to 3.81 ± 1.86 ng/ml in pMCAO group (43.84 ± 2.05 ng/ml in sham-operated group), but increased in pMCAO + Ex group (10.06 ± 1.80 ng/ml). The protein expressions levels of synaptophysin, 5-HT1AR and BDNF were downregulated after cerebral ischemia (p < 0.05), and upregulated after treadmill exercise (p < 0.05). These results indicate that treadmill exercise improves neurologic function, enhances neuronal plasticity and upregulates the levels of 5-HT, 5-HT1AR and BDNF in rats with pMCAO.

  16. cAMP levels in fast- and slow-twitch skeletal muscle after an acute bout of aerobic exercise

    NASA Technical Reports Server (NTRS)

    Sheldon, A.; Booth, F. W.; Kirby, C. R.

    1993-01-01

    The present study examined whether exercise duration was associated with elevated and/or sustained elevations of postexercise adenosine 3',5'-cyclic monophosphate (cAMP) by measuring cAMP levels in skeletal muscle for up to 4 h after acute exercise bouts of durations that are known to either produce (60 min) or not produce (10 min) mitochondrial proliferation after chronic training. Treadmill-acclimatized, but untrained, rats were run at 22 m/min for 0 (control), 10, or 60 min and were killed at various postexercise (0, 0.5, 1, 2, and 4 h) time points. Fast-twitch white and red (quadriceps) and slow-twitch (soleus) muscles were quickly excised, frozen in liquid nitrogen, and assayed for cAMP with a commercial kit. Unexpectedly, cAMP contents in all three muscles were similar to control (nonexercise) at most (21 of 30) time points after a single 10- or 60-min run. Values at 9 of 30 time points were significantly different from control (P < 0.05); i.e., 3 time points were significantly higher than control and 6 were significantly less than control. These data suggest that the cAMP concentration of untrained skeletal muscle after a single bout of endurance-type exercise is not, by itself, associated with exercise duration.

  17. Brain glycogen decreases during prolonged exercise

    PubMed Central

    Matsui, Takashi; Soya, Shingo; Okamoto, Masahiro; Ichitani, Yukio; Kawanaka, Kentaro; Soya, Hideaki

    2011-01-01

    Abstract Brain glycogen could be a critical energy source for brain activity when the glucose supply from the blood is inadequate (hypoglycaemia). Although untested, it is hypothesized that during prolonged exhaustive exercise that induces hypoglycaemia and muscular glycogen depletion, the resultant hypoglycaemia may cause a decrease in brain glycogen. Here, we tested this hypothesis and also investigated the possible involvement of brain monoamines with the reduced levels of brain glycogen. For this purpose, we exercised male Wistar rats on a treadmill for different durations (30–120 min) at moderate intensity (20 m min−1) and measured their brain glycogen levels using high-power microwave irradiation (10 kW). At the end of 30 and 60 min of running, the brain glycogen levels remained unchanged from resting levels, but liver and muscle glycogen decreased. After 120 min of running, the glycogen levels decreased significantly by ∼37–60% in five discrete brain loci (the cerebellum 60%, cortex 48%, hippocampus 43%, brainstem 37% and hypothalamus 34%) compared to those of the sedentary control. The brain glycogen levels in all five regions after running were positively correlated with the respective blood and brain glucose levels. Further, in the cortex, the levels of methoxyhydroxyphenylglycol (MHPG) and 5-hydroxyindoleacetic acid (5-HIAA), potential involved in degradation of the brain glycogen, increased during prolonged exercise and negatively correlated with the glycogen levels. These results support the hypothesis that brain glycogen could decrease with prolonged exhaustive exercise. Increased monoamines together with hypoglycaemia should be associated with the development of decreased brain glycogen, suggesting a new clue towards the understanding of central fatigue during prolonged exercise. PMID:21521757

  18. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice.

    PubMed

    Allen, Jacob M; Berg Miller, Margret E; Pence, Brandt D; Whitlock, Keith; Nehra, Vandana; Gaskins, H Rex; White, Bryan A; Fryer, John D; Woods, Jeffrey A

    2015-04-15

    We have previously shown that voluntary wheel running (VWR) attenuates, whereas forced treadmill running (FTR) exacerbates, intestinal inflammation and clinical outcomes in a mouse model of colitis. As the gut microbiome is implicated in colitis, we hypothesized that VWR and FTR would differentially affect the gut microbiome. Mice (9-10/treatment) were randomly assigned to VWR, FTR, or sedentary home cage control (SED) for 6 wk. VWR were given running wheel access, whereas FTR ran on a treadmill for 40 min/day at 8-12 m/min, 5% grade. Forty-eight hours after the last exercise session, DNA was isolated from the fecal pellets and cecal contents, and the conserved bacterial 16S rRNA gene was amplified and sequenced using the Illumina Miseq platform. Permutational multivariate analysis of variance based on weighted UniFrac distance matrix revealed different bacterial clusters between feces and cecal contents in all groups (P < 0.01). Interestingly, the community structures of the three treatment groups clustered separately from each other in both gut regions (P < 0.05). Contrary to our hypothesis, the α-diversity metric, Chao1, indicated that VWR led to reduced bacterial richness compared with FTR or SED (P < 0.05). Taxonomic evaluation revealed that both VWR and FTR altered many individual bacterial taxa. Of particular interest, Turicibacter spp., which has been strongly associated with immune function and bowel disease, was significantly lower in VWR vs. SED/FTR. These data indicate that VWR and FTR differentially alter the intestinal microbiome of mice. These effects were observed in both the feces and cecum despite vastly different community structures between each intestinal region. Copyright © 2015 the American Physiological Society.

  19. Peak Velocity as an Alternative Method for Training Prescription in Mice

    PubMed Central

    Picoli, Caroline de Carvalho; Romero, Paulo Vitor da Silva; Gilio, Gustavo R.; Guariglia, Débora A.; Tófolo, Laize P.; de Moraes, Solange M. F.; Machado, Fabiana A.; Peres, Sidney B.

    2018-01-01

    Purpose: To compare the efficiency of an aerobic physical training program prescribed according to either velocity associated with maximum oxygen uptake (vVO2max) or peak running speed obtained during an incremental treadmill test (Vpeak_K) in mice. Methods: Twenty male Swiss mice, 60 days old, were randomly divided into two groups with 10 animals each: 1. group trained by vVO2max (GVO2), 2. group trained by Vpeak_K (GVP). After the adaptation training period, an incremental test was performed at the beginning of each week to adjust training load and to determine the amount of VO2 and VCO2 fluxes consumed, energy expenditure (EE) and run distance during the incremental test. Mice were submitted to 4 weeks of aerobic exercise training of moderate intensity (velocity referring to 70% of vVO2max and Vpeak_K) in a programmable treadmill. The sessions lasted from 30 to 40 min in the first week, to reach 60 min in the fourth week, in order to provide the mice with a moderate intensity exercise, totaling 20 training sessions. Results: Mice demonstrated increases in VO2max (ml·kg−1·min−1) (GVO2 = 49.1% and GVP = 56.2%), Vpeak_K (cm·s−1) (GVO2 = 50.9% and GVP = 22.3%), EE (ml·kg−0,75·min−1) (GVO2 = 39.9% and GVP = 51.5%), and run distance (cm) (GVO2 = 43.5% and GVP = 33.4%), after 4 weeks of aerobic training (time effect, P < 0.05); there were no differences between the groups. Conclusions: Vpeak_K, as well as vVO2max, can be adopted as an alternative test to determine the performance and correct prescription of systemized aerobic protocol training to mice. PMID:29467664

  20. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill

    PubMed Central

    Van Caekenberghe, Ine; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-01-01

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior–posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level of the hip and lower power absorption at the knee as the result of subtle differences in joint velocity. On a treadmill, ground reaction forces are not influenced by acceleration and, compared with overground, virtually no kinesiological adaptations to an accelerating belt are observed. Consequently, adaptations to acceleration during running differ from treadmill to overground and should be studied in the condition of interest. PMID:23676896

  1. Sex differences in oxidative stress after eccentric and concentric exercise.

    PubMed

    Wiecek, Magdalena; Maciejczyk, Marcin; Szymura, Jadwiga; Szygula, Zbigniew

    2017-11-01

    Comparison of redox balance changes in the blood of women and men as a result of submaximal eccentric (ECC) and concentric (CONC) efforts. 10 women and 10 men performed three 45-minute submaximal treadmill runs at constant velocities (downhill run - ECC, uphill run - CONC and level run). Prior to the 45-minute exercises, after their completion and following 24 hours of recovery, the concentration of lactate, oxidized low-density lipoprotein (ox-LDL), 3-nitrotyrosine, uric acid (UA) and the white blood cell count (WBC), neutrophil (NEUT), lymphocyte (LYMPH) and monocyte content in the blood were determined. In women, the ox-LDL increased significantly 10 minutes and 24 hours following ECC (P < 0.05). 10 minutes after ECC, in women, there was an increase in WBC, NEUT and LYMPH (P < 0.05). In the men, WBC and NEUT increased significantly 24 hours after CONC and ECC (P < 0.05). UA in each determination was higher in the men than the women (P < 0.05). ECC cause impaired redox balance only in women. Due to the increase in antioxidant capacity of the blood without accompanying oxidative damage to macromolecules, for both sexes, it is recommended to perform concentric running efforts at the highest possible subliminal intensity.

  2. A comparative study of the aerobic fitness of 421 healthy adult males in Singapore.

    PubMed

    Ong, T C

    1993-02-01

    The maximum oxygen consumption (VO2 max) of 421 healthy adult males from three ethnic groups (Chinese, Malay and Indian), aged 25-54 years, was assessed from direct analyses of their expired respiratory gases during all-out runs on a treadmill as a measure of aerobic fitness. The subjects were divided into three age groups: group 1, 25-34 years; group 2, 35-44 years; group 3, 45-54 years. Each group was further subdivided into non-exercisers (NE), non-regular exercisers (NRE) and regular exercisers (RE). Consistently within each age group, regular exercisers produced significantly higher VO2 max values compared to non-regular exercisers and non-exercisers. They also met the VO2 max requirements for heavy physical work and compared favourably with the standards of the National Physical Fitness Award of Singapore and Cooper's aerobic fitness classification standards based on North American males. Non-regular exercisers and non-exercisers only met the VO2 max requirements for moderate physical work and compared poorly in both of the aerobic fitness standards.

  3. Compression socks and functional recovery following marathon running: a randomized controlled trial.

    PubMed

    Armstrong, Stuart A; Till, Eloise S; Maloney, Stephen R; Harris, Gregory A

    2015-02-01

    Compression socks have become a popular recovery aid for distance running athletes. Although some physiological markers have been shown to be influenced by wearing these garments, scant evidence exists on their effects on functional recovery. This research aims to shed light onto whether the wearing of compression socks for 48 hours after marathon running can improve functional recovery, as measured by a timed treadmill test to exhaustion 14 days following marathon running. Athletes (n = 33, age, 38.5 ± 7.2 years) participating in the 2012 Melbourne, 2013 Canberra, or 2013 Gold Coast marathons were recruited and randomized into the compression sock or placebo group. A graded treadmill test to exhaustion was performed 2 weeks before and 2 weeks after each marathon. Time to exhaustion, average and maximum heart rates were recorded. Participants were asked to wear their socks for 48 hours immediately after completion of the marathon. The change in treadmill times (seconds) was recorded for each participant. Thirty-three participants completed the treadmill protocols. In the compression group, average treadmill run to exhaustion time 2 weeks after the marathon increased by 2.6% (52 ± 103 seconds). In the placebo group, run to exhaustion time decreased by 3.4% (-62 ± 130 seconds), P = 0.009. This shows a significant beneficial effect of compression socks on recovery compared with placebo. The wearing of below-knee compression socks for 48 hours after marathon running has been shown to improve functional recovery as measured by a graduated treadmill test to exhaustion 2 weeks after the event.

  4. Simulation of uphill/downhill running on a level treadmill using additional horizontal force.

    PubMed

    Gimenez, Philippe; Arnal, Pierrick J; Samozino, Pierre; Millet, Guillaume Y; Morin, Jean-Benoit

    2014-07-18

    Tilting treadmills allow a convenient study of biomechanics during uphill/downhill running, but they are not commonly available and there is even fewer tilting force-measuring treadmill. The aim of the present study was to compare uphill/downhill running on a treadmill (inclination of ± 8%) with running on a level treadmill using additional backward or forward pulling forces to simulate the effect of gravity. This comparison specifically focused on the energy cost of running, stride frequency (SF), electromyographic activity (EMG), leg and foot angles at foot strike, and ground impact shock. The main results are that SF, impact shock, and leg and foot angle parameters determined were very similar and significantly correlated between the two methods, the intercept and slope of the linear regression not differing significantly from zero and unity, respectively. The correlation of oxygen uptake (V̇O2) data between both methods was not significant during uphill running (r=0.42; P>0.05). V̇O2 data were correlated during downhill running (r=0.74; P<0.01) but there was a significant difference between the methods (bias=-2.51 ± 1.94 ml min(-1) kg(-1)). Linear regressions for EMG of vastus lateralis, biceps femoris, gastrocnemius lateralis, soleus and tibialis anterior were not different from the identity line but the systematic bias was elevated for this parameter. In conclusion, this method seems appropriate for the study of SF, leg and foot angle, impact shock parameters but is less applicable for physiological variables (EMG and energy cost) during uphill/downhill running when using a tilting force-measuring treadmill is not possible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Acute physiological responses to different circuit training protocols.

    PubMed

    Monteiro, A G; Alveno, D A; Prado, M; Monteiro, G A; Ugrinowitsch, C; Aoki, M S; Piçarro, I C

    2008-12-01

    The purpose of present study was to compare the acute physiological responses to a circuit weight training with the responses to a combined circuit training (weight training and treadmill run). The sample consisted of 25 individuals at an average state of training, 10 men and 15 female, between 18 and 35 year old. There were selected 60 second sets of resistance exercises to the circuit weight training (CWT). Whereas in the combined circuit training (CCT), the subjects spent 30 seconds on the same resistance exercises and 30 seconds running on the treadmill. The rest intervals between the sets lasted 15 seconds. The analysis of variance (ANOVA) with 5% significance level was utilized to the statistical analysis of the results. Comparing circuit training protocols, it was noted that CCT elicits a higher relative and absolute VO2 and energy expenditure values than CWT for both genders (P<0.05). Regarding inter-gender comparison, males showed higher absolute and relative VO2 and absolute energy expenditure values for both CWT and CCT than females (P<0.05). Females showed a significant greater %VO2max value for both CWT and CCT. Due to the experimental conditions used to state both circuit training bouts (CWT and CCT), the VO2 rate found was higher than the values reported by previous studies which used heavier weight lift. CCT seems adequate to produce cardiovascular improvements and greater energy expenditure for both men and women, while CWT group classes are sufficient only for unfit women.

  6. Endoscopy of the upper respiratory tract during treadmill exercise: a clinical study of 100 horses.

    PubMed

    Kannegieter, N J; Dore, M L

    1995-03-01

    Endoscopy of the upper respiratory tract was performed in 100 horses during high speed treadmill exercise. Reasons for endoscopy were a history of an abnormal noise during exercise in 75 horses, poor performance in 17 horses and to evaluate the results of upper respiratory tract surgery in 8 horses. Of the 75 horses with a history of an abnormal noise during exercise the cause was determined in 67 (89%). Endoscopic abnormalities were detected at rest in 40 of these 75 horses (53%). In these 40 horses, a similar diagnosis as to the cause of the abnormal noise was made at rest and during exercise on the treadmill in 19 cases, while in the remaining 21 the endoscopic findings during exercise varied from that seen at rest. This included 3 horses in which a diagnosis was made at rest but no abnormalities were detected during exercise. Some of the findings during treadmill endoscopy included laryngeal dysfunction, grades 3, 4 and 5 (22 cases), dorsal displacement of the soft palate (20), epiglottic entrapment (8), epiglottic flutter (4), aryepiglottic fold flutter (4), pharyngeal collapse (3), arytenoiditis (3), vocal cord flutter (3), false nostril noise (2), pharyngeal lymphoid hyperplasia (2), soft palate haemorrhage (1) and positional arytenoid collapse (1). More than one abnormality was observed during exercise in 7 horses. A complete and correct diagnosis based on the resting endoscopy findings alone was made in 19 (25%) of these 75 cases. In the 17 horses examined because of poor performance, no abnormalities were detected during treadmill endoscopy that were not evident at rest.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. The role of resistance and aerobic exercise training on insulin sensitivity measures in STZ-induced Type 1 diabetic rodents.

    PubMed

    Hall, Katharine E; McDonald, Matthew W; Grisé, Kenneth N; Campos, Oscar A; Noble, Earl G; Melling, C W James

    2013-10-01

    Individuals with Type 1 Diabetes Mellitus (T1DM) can develop insulin resistance. Regular exercise may improve insulin resistance partially through increased expression of skeletal muscle GLUT4 content. To examine if different exercise training modalities can alter glucose tolerance through changes in skeletal muscle GLUT4 content in T1DM rats. Fifty rats were divided into 5 groups; control, diabetic control, diabetic resistance exercised, and diabetic high and low intensity treadmill exercised. Diabetes was induced using multiple low dose Streptozotocin (20 mg/kg/day) injections and blood glucose concentrations were maintained moderately hyperglycemic through subcutaneous insulin pellets. Resistance trained rats climbed a ladder with incremental loads, while treadmill trained rats ran on a treadmill at 27 or 15 m/min, respectively, all for 6 weeks. At weeks 3 and 6, area under the curve measurements following an intravenous glucose tolerance test (AUC-IVGTT) in all diabetic groups were higher than control rats (p<0.05). At 6 weeks, all exercise groups had significantly lower AUC-IVGTT values than diabetic control animals (p<0.05). Treadmill trained rats had the lowest insulin dose requirement of the T1DM rats and the greatest reduction in insulin dosage was evident in high intensity treadmill exercise. Concomitant with improvements in glucose handling improvements, tissue-specific elevations in GLUT4 content were demonstrated in both red and white portions of vastus lateralis and gastrocnemius muscles, suggesting that glucose handling capacity was altered in the skeletal muscle of exercised T1DM rats. These results suggest that, while all exercise modalities can improve glucose tolerance, each mode leads to differential improvements in insulin requirements and protein content alterations. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Upright exercise or supine lower body negative pressure exercise maintains exercise responses after bed rest

    NASA Technical Reports Server (NTRS)

    Lee, S. M.; Bennett, B. S.; Hargens, A. R.; Watenpaugh, D. E.; Ballard, R. E.; Murthy, G.; Ford, S. R.; Fortney, S. M.

    1997-01-01

    Adaptation to bed rest or space flight is accompanied by an impaired ability to exercise in an upright position. We hypothesized that a daily, 30-min bout of intense, interval exercise in upright posture or supine against lower body negative pressure (LBNP) would maintain upright exercise heart rate and respiratory responses after bed rest. Twenty-four men (31 +/- 3 yr) underwent 5 d of 6 degree head-down tilt: eight performed no exercise (CON), eight performed upright treadmill exercise (UPex), and eight performed supine treadmill exercise against LBNP at -51.3 +/- 0.4 mm Hg (LBNPex). Submaximal treadmill exercise responses (56, 74, and 85% of VO2peak) were measured pre- and post-bed rest. In CON, submaximal heart rate, respiratory exchange ratio, and ventilation were significantly greater (P < or = 0.05) after bed rest. In UPex and LBNPex, submaximal exercise responses were similar pre- and post-bed rest. Our results indicate that a daily 30-min bout of intense, interval upright exercise training or supine exercise training against LBNP is sufficient to maintain upright exercise responses after 5 d of bed rest. These results may have important implications for the development of exercise countermeasures during space flight.

  9. Exercise performance, core temperature, and metabolism after prolonged restricted activity and retraining in dogs

    NASA Technical Reports Server (NTRS)

    Nazar, K.; Greenleaf, J. E.; Pohoska, E.; Turlejska, E.; Kaciuba-Uscilko, H.; Kozlowski, S.

    1992-01-01

    Physiological effects of restricted activity (RA) and subsequent retraining have been studied. Ten male mongrel dogs performed a submaximal exercise endurance test on a treadmill during kennel control, after 8 weeks of cage confinement and after eight weeks of retraining using the same treadmill protocol 1 h/d for 6 d/week. Data obtained show that RA reduces exercise endurance, the effectiveness of exercise thermoregulation, muscle glycogen stores, and the lipolytic response to exercise and to noradrenaline stimulation.

  10. Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Shin-ichi; Kizaki, Takako; Haga, Shukoh

    2008-04-04

    Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1{alpha} and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1{alpha} protein, but the other was not. Administration of SB203580 (SB), an inhibitor ofmore » p38 MAPK, suppressed the increase in PGC-1{alpha} expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1{alpha} and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions.« less

  11. Isometric pre-conditioning blunts exercise-induced muscle damage but does not attenuate changes in running economy following downhill running.

    PubMed

    Lima, Leonardo C R; Bassan, Natália M; Cardozo, Adalgiso C; Gonçalves, Mauro; Greco, Camila C; Denadai, Benedito S

    2018-05-08

    Running economy (RE) is impaired following unaccustomed eccentric-biased exercises that induce muscle damage. It is also known that muscle damage is reduced when maximal voluntary isometric contractions (MVIC) are performed at a long muscle length 2-4 days prior to maximal eccentric exercise with the same muscle, a phenomenon that can be described as isometric pre-conditioning (IPC). We tested the hypothesis that IPC could attenuate muscle damage and changes in RE following downhill running. Thirty untrained men were randomly assigned into experimental or control groups and ran downhill on a treadmill (-15%) for 30 min. Participants in the experimental group completed 10 MVIC in a leg press machine two days prior to downhill running, while participants in the control group did not perform IPC. The magnitude of changes in muscle soreness determined 48 h after downhill running was greater for the control group (122 ± 28 mm) than for the experimental group (92 ± 38 mm). Isometric peak torque recovered faster in the experimental group compared with the control group (3 days vs. no full recovery, respectively). No significant effect of IPC was found for countermovement jump height, serum creatine kinase activity or any parameters associated with RE. These results supported the hypothesis that IPC attenuates changes in markers of muscle damage. The hypothesis that IPC attenuates changes in RE was not supported by our data. It appears that the mechanisms involved in changes in markers of muscle damage and parameters associated with RE following downhill running are not completely shared. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Exercise Equipment Usability Assessment for a Deep Space Concept Vehicle

    NASA Technical Reports Server (NTRS)

    Rhodes, Brooke M.; Reynolds, David W.

    2015-01-01

    With international aspirations to send astronauts to deep space, the world is now faced with the complex problem of keeping astronauts healthy in unexplored hostile environments for durations of time never before attempted by humans. The great physical demands imparted by space exploration compound the problem of astronaut health, as the astronauts must not only be healthy, but physically fit upon destination arrival in order to perform the scientific tasks required of them. Additionally, future deep space exploration necessitates the development of environments conducive to long-duration habitation that would supplement propulsive vehicles. Space Launch System (SLS) core stage barrel sections present large volumes of robust structure that can be recycled and used for long duration habitation. This assessment will focus on one such conceptual craft, referred to as the SLS Derived Habitat (SLS-DH). Marshall Space Flight Center's (MSFC) Advanced Concepts Office (ACO) has formulated a high-level layout of this SLS-DH with parameters such as floor number and orientation, floor designations, grid dimensions, wall placement, etc. Yet to be determined, however, is the layout of the exercise area. Currently the SLS-DH features three floors laid out longitudinally, leaving 2m of height between the floor and ceilings. This short distance between levels introduces challenges for proper placement of exercise equipment such as treadmills and stationary bicycles, as the dynamic envelope for the 95th percentile male astronauts is greater than 2m. This study aims to assess the optimal equipment layout and sizing for the exercise area of this habitat. Figure 1 illustrates the layout of the DSH concept demonstrator located at MSFC. The exercise area is located on the lower level, seen here as the front half of the level occupied by a crew member. This small volume does not allow for numerous or bulky exercise machines, so the conceptual equipment has been limited to a treadmill and stationary bicycle. With the most current treadmill aboard the International Space Station (ISS), the Combined Operational Load-Bearing External Resistance Treadmill (COLBERT), being located in an International Standard Payload Rack (ISPR), the bottom of the conceptual treadmill features a height of 38in. Making the treadmill flush with the floor would be impossible in this rack configuration, as the distance from the outer wall of the spacecraft to the bottom floor would be too shallow. From preliminary sizing, the 38in required for the bottom of the treadmill combined with a 78in operational envelope for a 95th percentile may not be accommodated in the exercise area in a vertical orientation. Figure 2 demonstrates the volume required (in maroon) for an ISPR-bound treadmill in the concept demonstrator. Early indications as seen in this figure indicate that the crew members would contact the ceiling in such an arrangement. An assessment will be conducted to evaluate various orientations of exercise equipment in the concept demonstrator. Orientations to be tested include putting the bottom of the treadmill on the wall, having the treadmill at an angle in the floor both horizontally and vertically, and having a shorter (non-rack bound) treadmill in a vertical orientation on the floor. This assessment will yield findings regarding sizing of the area and how well participants feel they could exercise in such an environment. Due to the restrictions of assessing a microgravity vehicle in a normal-gravity environment, simulations in MSFC's Virtual Environments Lab (VEL) may be necessary. Final deliverables will include recommendations regarding the location and size of possible exercise equipment aboard the SLS-Derived DSH.

  13. Anti-gravity treadmill can promote aerobic exercise for lower limb osteoarthritis patients

    PubMed Central

    Kawae, Toshihiro; Mikami, Yukio; Fukuhara, Kouki; Kimura, Hiroaki; Adachi, Nobuo

    2017-01-01

    [Purpose] The anti-gravity treadmill (Alter-G®) allows the load on the lower limbs to be adjusted, which is considered useful for patients with lower limb osteoarthritis. The aim of the present study was to examine the effects of aerobic exercise using an anti-gravity treadmill in patients with lower limb osteoarthritis by using a cardiopulmonary exercise load monitoring system. [Subjects and Methods] The subjects were 20 patients with lower limb osteoarthritis. These subjects walked naturally for 8 minutes and then walked on the Alter-G for 8 minutes at their fastest speed at a load where lower limb pain was alleviated. [Results] Subjective and objective exercise intensity did not differ significantly between level ground walking and Alter-G walking neither before nor after walking. Pain before walking did not differ significantly between level ground walking and Alter-G walking, but pain after walking was significantly greater with level ground walking than with Alter-G walking. [Conclusion] Exercise therapy using an anti-gravity treadmill was useful for patients with lower limb osteoarthritis in terms of cardiopulmonary function, which suggested that this could become a new form of exercise therapy. PMID:28878480

  14. Anti-gravity treadmill can promote aerobic exercise for lower limb osteoarthritis patients.

    PubMed

    Kawae, Toshihiro; Mikami, Yukio; Fukuhara, Kouki; Kimura, Hiroaki; Adachi, Nobuo

    2017-08-01

    [Purpose] The anti-gravity treadmill (Alter-G ® ) allows the load on the lower limbs to be adjusted, which is considered useful for patients with lower limb osteoarthritis. The aim of the present study was to examine the effects of aerobic exercise using an anti-gravity treadmill in patients with lower limb osteoarthritis by using a cardiopulmonary exercise load monitoring system. [Subjects and Methods] The subjects were 20 patients with lower limb osteoarthritis. These subjects walked naturally for 8 minutes and then walked on the Alter-G for 8 minutes at their fastest speed at a load where lower limb pain was alleviated. [Results] Subjective and objective exercise intensity did not differ significantly between level ground walking and Alter-G walking neither before nor after walking. Pain before walking did not differ significantly between level ground walking and Alter-G walking, but pain after walking was significantly greater with level ground walking than with Alter-G walking. [Conclusion] Exercise therapy using an anti-gravity treadmill was useful for patients with lower limb osteoarthritis in terms of cardiopulmonary function, which suggested that this could become a new form of exercise therapy.

  15. PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle

    PubMed Central

    Dethlefsen, Maja Munk; Bangsbo, Jens; Pilegaard, Henriette

    2017-01-01

    The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low intensity (LI) for 40 min or moderate intensity (MI) for 20 min. Blood and quadriceps muscles were removed either immediately after exercise or at 3h or 6h into recovery from exercise and from resting controls. In addition PGC-1α KO and littermate WT mice were exercise trained at either low intensity (LIT) for 40 min or at moderate intensity (MIT) for 20 min 2 times pr. day for 5 weeks. In the first and the last week of the intervention period, mice performed a graded running endurance test. Quadriceps muscles were removed before and after the training period for analyses. The acute exercise bout elicited intensity dependent increases in LC3I and LC3II protein and intensity independent decrease in p62 protein in skeletal muscle late in recovery and increased LC3II with exercise training independent of exercise intensity and volume in WT mice. Furthermore, acute exercise and exercise training did not increase LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner. PMID:29049322

  16. Does a run/walk strategy decrease cardiac stress during a marathon in non-elite runners?

    PubMed

    Hottenrott, Kuno; Ludyga, Sebastian; Schulze, Stephan; Gronwald, Thomas; Jäger, Frank-Stephan

    2016-01-01

    Although alternating run/walk-periods are often recommended to novice runners, it is unclear, if this particular pacing strategy reduces the cardiovascular stress during prolonged exercise. Therefore, the aim of the study was to compare the effects of two different running strategies on selected cardiac biomarkers as well as marathon performance. Randomized experimental trial in a repeated measure design. Male (n=22) and female subjects (n=20) completed a marathon either with a run/walk strategy or running only. Immediately after crossing the finishing line cardiac biomarkers were assessed in blood taken from the cubital vein. Before (-7 days) and after the marathon (+4 days) subjects also completed an incremental treadmill test. Despite different pacing strategies, run/walk strategy and running only finished the marathon with similar times (04:14:25±00:19:51 vs 04:07:40±00:27:15 [hh:mm:ss]; p=0.377). In both groups, prolonged exercise led to increased B-type natriuretic peptide, creatine kinase MB isoenzyme and myoglobin levels (p<0.001), which returned to baseline 4 days after the marathon. Elevated cTnI concentrations were observable in only two subjects. B-type natriuretic peptide (r=-0.363; p=0.041) and myoglobin levels (r=-0.456; p=0.009) were inversely correlated with the velocity at the individual anaerobic threshold. Run/walk strategy compared to running only reported less muscle pain and fatigue (p=0.006) after the running event. In conclusion, the increase in cardiac biomarkers is a reversible, physiological response to strenuous exercise, indicating temporary stress on the myocyte and skeletal muscle. Although a combined run/walk strategy does not reduce the load on the cardiovascular system, it allows non-elite runners to achieve similar finish times with less (muscle) discomfort. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Matching optical flow to motor speed in virtual reality while running on a treadmill

    PubMed Central

    Lafortuna, Claudio L.; Mugellini, Elena; Abou Khaled, Omar

    2018-01-01

    We investigated how visual and kinaesthetic/efferent information is integrated for speed perception in running. Twelve moderately trained to trained subjects ran on a treadmill at three different speeds (8, 10, 12 km/h) in front of a moving virtual scene. They were asked to match the visual speed of the scene to their running speed–i.e., treadmill’s speed. For each trial, participants indicated whether the scene was moving slower or faster than they were running. Visual speed was adjusted according to their response using a staircase until the Point of Subjective Equality (PSE) was reached, i.e., until visual and running speed were perceived as equivalent. For all three running speeds, participants systematically underestimated the visual speed relative to their actual running speed. Indeed, the speed of the visual scene had to exceed the actual running speed in order to be perceived as equivalent to the treadmill speed. The underestimation of visual speed was speed-dependent, and percentage of underestimation relative to running speed ranged from 15% at 8km/h to 31% at 12km/h. We suggest that this fact should be taken into consideration to improve the design of attractive treadmill-mediated virtual environments enhancing engagement into physical activity for healthier lifestyles and disease prevention and care. PMID:29641564

  18. Evaluation of treadmill exercise effect on muscular lipid profiles of diabetic fatty rats by nanoflow liquid chromatography-tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Jong Cheol; Kim, Il Yong; Son, Yeri; Byeon, Seul Kee; Yoon, Dong Hyun; Son, Jun Seok; Song, Han Sol; Song, Wook; Seong, Je Kyung; Moon, Myeong Hee

    2016-07-01

    We compare comprehensive quantitative profiling of lipids at the molecular level from skeletal muscle tissues (gastrocnemius and soleus) of Zucker diabetic fatty rats and Zucker lean control rats during treadmill exercise by nanoflow liquid chromatography-tandem mass spectrometry. Because type II diabetes is caused by decreased insulin sensitivity due to excess lipids accumulated in skeletal muscle tissue, lipidomic analysis of muscle tissues under treadmill exercise can help unveil the mechanism of lipid-associated insulin resistance. In total, 314 lipid species, including phospholipids, sphingolipids, ceramides, diacylglycerols (DAGs), and triacylglycerols (TAGs), were analyzed to examine diabetes-related lipid species and responses to treadmill exercise. Most lysophospholipid levels increased with diabetes. While DAG levels (10 from the gastrocnemius and 13 from the soleus) were >3-fold higher in diabetic rats, levels of most of these decreased after exercise in soleus but not in gastrocnemius. Levels of 5 highly abundant TAGs (52:1 and 54:3 in the gastrocnemius and 48:2, 50:2, and 52:4 in the soleus) displaying 2-fold increases in diabetic rats decreased after exercise in the soleus but not in the gastrocnemius in most cases. Thus, aerobic exercise has a stronger influence on lipid levels in the soleus than in the gastrocnemius in type 2 diabetic rats.

  19. Compliance of children with moderate to severe intellectual disability to treadmill walking: a pilot study.

    PubMed

    Vashdi, E; Hutzler, Y; Roth, D

    2008-05-01

    Individuals with Intellectual Disability (ID) exhibit reduced levels of compliance to exercise, including treadmill walking. The purpose of this study was to measure the effects of several training conditions on compliance to participation in treadmill walking of children with moderate to severe ID. Criteria for compliance were the averaged number of times participants attempted to discontinue walking during two 5-min exercise sessions of treadmill walking at an intensity of 65-75% of predicted maximal HR. Fifteen children aged 5-11 with moderate to severe ID participated in the study. Training conditions were (a) close supervisor's position, (b) distant supervisor's position, (c) positive reinforcement, and (d) paired modeling. General linear mixed model statistics revealed significant differences in favor of the paired modeling and positive reinforcement compared to the other conditions. Leaning forward was the most frequent type of participants' attempt to stop exercising. Paired modeling and positive reinforcement should be considered within treadmill training programs for children with moderate to severe ID.

  20. Validity of selected physical activity questions in white Seventh-day Adventists and non-Adventists.

    PubMed

    Singh, P N; Tonstad, S; Abbey, D E; Fraser, G E

    1996-08-01

    The validity and reliability of selected physical activity questions were assessed in both Seventh-day Adventist (N = 131) and non-Adventist (N = 101) study groups. Vigorous activity questions similar to those used by others and new questions that measured moderate and light activities were included. Validation was external, comparing questionnaire data with treadmill exercise time, resting heart rate, and body mass index (kg.m-2), and internal, comparing data with other similar questions. Both Adventist and non-Adventist males showed significant age-adjusted correlations between treadmill time and a "Run-Walk-Jog Index" (R = 0.28, R = 0.48, respectively). These correlations increased substantially when restricting analysis to exercise speeds exceeding 3 mph (R = 0.39, R = 0.71, respectively). Frequency of sweating and a vigorous physical activity index also correlated significantly with treadmill time in males. Correlations were generally weaker in females. Moderate- and light-intensity questions were not correlated with physical fitness. Internal correlations R = 0.50-0.78) between the above three vigorous activity questions were significant in all groups, and correlations (R = 0.14-0.60) for light and moderate activity questions were also documented. Test-retest reliability coefficients were high for vigorous activity questions (R = 0.48-0.85) and for one set of moderate activity questions (R = 0.43-0.75). No important differences in validity and reliability were found between Adventist and non-Adventists, but the validity of vigorous activity measures was generally weaker in females.

  1. Cardiovascular rehabilitation soon after stroke using feedback-controlled robotics-assisted treadmill exercise: study protocol of a randomised controlled pilot trial

    PubMed Central

    2013-01-01

    Background After experiencing a stroke, most individuals also suffer from cardiac disease, are immobile and thus have low endurance for exercise. Aerobic capacity is seriously reduced in these individuals and does not reach reasonable levels after conventional rehabilitation programmes. Cardiovascular exercise is beneficial for improvement of aerobic capacity in mild to moderate stroke. However, less is known about its impact on aerobic capacity, motor recovery, and quality-of-life in severely impaired individuals. The aim of this pilot study is to explore the clinical efficacy and feasibility of cardiovascular exercise with regard to aerobic capacity, motor recovery, and quality-of-life using feedback-controlled robotics-assisted treadmill exercise in non-ambulatory individuals soon after experiencing a stroke. Methods/Design This will be a single-centred single blind, randomised control trial with a pre-post intervention design. Subjects will be recruited early after their first stroke (≤20 weeks) at a neurological rehabilitation clinic and will be randomly allocated to an inpatient cardiovascular exercise programme that uses feedback-controlled robotics-assisted treadmill exercise (experimental) or to conventional robotics-assisted treadmill exercise (control). Intervention duration depends on the duration of each subject’s inpatient rehabilitation period. Aerobic capacity, as the primary outcome measure, will be assessed using feedback-controlled robotics-assisted treadmill-based cardiopulmonary exercise testing. Secondary outcome measures will include gait speed, walking endurance, standing function, and quality-of-life. Outcome assessment will be conducted at baseline, after each 4-week intervention period, and before clinical discharge. Ethical approval has been obtained. Discussion Whether cardiovascular exercise in non-ambulatory individuals early after stroke has an impact on aerobic capacity, motor recovery, and quality-of-life is not yet known. Feedback-controlled robotics-assisted treadmill exercise is a relatively recent intervention method and might be used to train and evaluate aerobic capacity in this population. The present pilot trial is expected to provide new insights into the implementation of early cardiovascular exercise for individuals with severe motor impairment. The findings of this study may guide future research to explore the effects of early cardiovascular activation after severe neurological events. Trial registration This trial is registered with the Clinical Trials.gov Registry (NCT01679600). PMID:24053609

  2. Comparison of ventilation threshold and heart rate deflection point in fast and standard treadmill test protocols.

    PubMed

    Vucetić, Vlatko; Sentija, Davor; Sporis, Goran; Trajković, Nebojsa; Milanović, Zoran

    2014-06-01

    The purpose of this study was to compare two methods for determination of anaerobic threshold from two different treadmill protocols. Forty-eight Croatian runners of national rank (ten sprinters, fifteen 400-m runners, ten middle distance runners and thirteen long distance runners), mean age 21.7 +/- 5.1 years, participated in the study. They performed two graded maximal exercise tests on a treadmill, a standard ramp treadmill test (T(SR), speed increments of 1 km x h(-1) every 60 seconds) and a fast ramp treadmill test (T(FR), speed increments of 1 km x h(-1) every 30 seconds) to determine and compare the parameters at peak values and at heart rate at the deflection point (HR(DP)) and ventilation threshold (VT). There were no significant differences between protocols (p > 0.05) for peak values of oxygen uptake (VO(2max), 4.48 +/- 0.43 and 4.44 +/- 0.45 L x min(-1)), weight related VO(2max) (62.5 +/- 6.2 and 62.0 +/- 6.0 mL x kg(-1) x min(-1)), pulmonary ventilation (VE(max), 163.1 +/- 18.7 and 161.3 +/- 19.9 L x min(-1)) and heart rate (HR(max), 192.3 +/- 8.5 and 194.4 +/- 8.7 bpm) (T(FR) and T(SR), respectively). Moreover, no significant differences between T(FR) and T(SR) where found for VT and HR(DP) when expressed as VO2 and HR. However, there was a significant effect of ramp slope on running speed at VO(2max) and at the anaerobic threshold (AnT), independent of the method used (VT: 16.0 +/- 2.2 vs 14.9 +/- 2.2 km x h(-1);HR(DP): 16.5 +/- 1.9 vs 14.9 +/- 2.0 km x h(-1) for T(FR) and T(SR) respectively). Linear regression analysis revealed high between-test and between-method correlations for VO2, HR and running speed parameters (r = 0.78-0.89, p < 0.01). The present study has indicated that the VT and HR(DP) for running (VO2, ventilation, and heart rate at VT/HR(DP)) are independent of test protocol, while there is a significant effect of ramp slope on VT and HR(DP) when expressed as running speed. Moreover, this study demonstrates that the point of deflection from linearity of heart rate may be an accurate predictor of the anaerobic threshold in trained runners, independently of the protocol used.

  3. The impact of cell phone use on the intensity and liking of a bout of treadmill exercise.

    PubMed

    Rebold, Michael J; Lepp, Andrew; Sanders, Gabriel J; Barkley, Jacob E

    2015-01-01

    This study used a within-subjects design to assess the effect of three common cellular telephone (cell phone) functions (texting, talking, listening to music) on planned exercise. Forty-four young adults (n = 33 females, 21.8 ± 1.3 years) each participated in four, separate, 30-minute exercise conditions on a treadmill in a random order. During each condition, the treadmill speed display was covered and grade was fixed at zero. However, participants were able to alter treadmill speed as desired. Throughout the texting and talking conditions, research personnel used a pre-determined script to simulate cell phone conversations. During the music condition, participants used their cell phone to listen to music of their choice. Finally, participants completed a control condition with no cell phone access. For each condition, average treadmill speed, heart rate and liking (via visual analog scale) were assessed. Treadmill speed (3.4 ± 1.3 miles∙hour(-1)), heart rate (122.3 ± 24.3 beats∙min(-1)) and liking (7.5 ± 1.5 cm) in the music condition were significantly (p ≤ 0.014) greater than all other conditions. Treadmill speed in the control condition (3.1 ± 1.2 miles∙hour(-1)) was significantly (p = 0.04) greater than both texting and talking (2.8 ± 1.1 miles∙hour(-1) each). Heart rate during the control condition (115.4 ± 22.8 beats∙min(-1)) was significantly (p = 0.04) greater than texting (109.9 ± 16.4 beats∙min(-1)) but not talking (112.6 ± 16.1 beats∙min(-1)). Finally, liking during the talking condition (5.4 ± 2.2 cm) was greater (p = 0.05) than the control (4.3 ± 2.2 cm) but not the texting (5.1 ± 2.2 cm) conditions. In conclusion, using a cell phone for listening to music can increase the intensity (speed and heart rate) and liking of a bout of treadmill exercise. However, other common cell phone uses (texting and talking) can interfere with treadmill exercise and reduce intensity.

  4. The Impact of Cell Phone Use on the Intensity and Liking of a Bout of Treadmill Exercise

    PubMed Central

    Rebold, Michael J.; Lepp, Andrew; Sanders, Gabriel J.; Barkley, Jacob E.

    2015-01-01

    This study used a within-subjects design to assess the effect of three common cellular telephone (cell phone) functions (texting, talking, listening to music) on planned exercise. Forty-four young adults (n = 33 females, 21.8 ± 1.3 years) each participated in four, separate, 30-minute exercise conditions on a treadmill in a random order. During each condition, the treadmill speed display was covered and grade was fixed at zero. However, participants were able to alter treadmill speed as desired. Throughout the texting and talking conditions, research personnel used a pre-determined script to simulate cell phone conversations. During the music condition, participants used their cell phone to listen to music of their choice. Finally, participants completed a control condition with no cell phone access. For each condition, average treadmill speed, heart rate and liking (via visual analog scale) were assessed. Treadmill speed (3.4 ± 1.3 miles∙hour-1), heart rate (122.3 ± 24.3 beats∙min-1) and liking (7.5 ± 1.5 cm) in the music condition were significantly (p ≤ 0.014) greater than all other conditions. Treadmill speed in the control condition (3.1 ± 1.2 miles∙hour-1) was significantly (p = 0.04) greater than both texting and talking (2.8 ± 1.1 miles∙hour-1 each). Heart rate during the control condition (115.4 ± 22.8 beats∙min-1) was significantly (p = 0.04) greater than texting (109.9 ± 16.4 beats∙min-1) but not talking (112.6 ± 16.1 beats∙min-1). Finally, liking during the talking condition (5.4 ± 2.2 cm) was greater (p = 0.05) than the control (4.3 ± 2.2 cm) but not the texting (5.1 ± 2.2 cm) conditions. In conclusion, using a cell phone for listening to music can increase the intensity (speed and heart rate) and liking of a bout of treadmill exercise. However, other common cell phone uses (texting and talking) can interfere with treadmill exercise and reduce intensity. PMID:25970553

  5. Time-Course of Changes in Inflammatory Response after Whole-Body Cryotherapy Multi Exposures following Severe Exercise

    PubMed Central

    Pournot, Hervé; Bieuzen, François; Louis, Julien; Fillard, Jean-Robert; Barbiche, Etienne; Hausswirth, Christophe

    2011-01-01

    The objectives of the present investigation was to analyze the effect of two different recovery modalities on classical markers of exercise-induced muscle damage (EIMD) and inflammation obtained after a simulated trail running race. Endurance trained males (n = 11) completed two experimental trials separated by 1 month in a randomized crossover design; one trial involved passive recovery (PAS), the other a specific whole body cryotherapy (WBC) for 96 h post-exercise (repeated each day). For each trial, subjects performed a 48 min running treadmill exercise followed by PAS or WBC. The Interleukin (IL) -1 (IL-1), IL-6, IL-10, tumor necrosis factor alpha (TNF-α), protein C-reactive (CRP) and white blood cells count were measured at rest, immediately post-exercise, and at 24, 48, 72, 96 h in post-exercise recovery. A significant time effect was observed to characterize an inflammatory state (Pre vs. Post) following the exercise bout in all conditions (p<0.05). Indeed, IL-1β (Post 1 h) and CRP (Post 24 h) levels decreased and IL-1ra (Post 1 h) increased following WBC when compared to PAS. In WBC condition (p<0.05), TNF-α, IL-10 and IL-6 remain unchanged compared to PAS condition. Overall, the results indicated that the WBC was effective in reducing the inflammatory process. These results may be explained by vasoconstriction at muscular level, and both the decrease in cytokines activity pro-inflammatory, and increase in cytokines anti-inflammatory. PMID:21829501

  6. Time-course of changes in inflammatory response after whole-body cryotherapy multi exposures following severe exercise.

    PubMed

    Pournot, Hervé; Bieuzen, François; Louis, Julien; Mounier, Rémi; Fillard, Jean-Robert; Barbiche, Etienne; Hausswirth, Christophe

    2011-01-01

    The objectives of the present investigation was to analyze the effect of two different recovery modalities on classical markers of exercise-induced muscle damage (EIMD) and inflammation obtained after a simulated trail running race. Endurance trained males (n = 11) completed two experimental trials separated by 1 month in a randomized crossover design; one trial involved passive recovery (PAS), the other a specific whole body cryotherapy (WBC) for 96 h post-exercise (repeated each day). For each trial, subjects performed a 48 min running treadmill exercise followed by PAS or WBC. The Interleukin (IL) -1 (IL-1), IL-6, IL-10, tumor necrosis factor alpha (TNF-α), protein C-reactive (CRP) and white blood cells count were measured at rest, immediately post-exercise, and at 24, 48, 72, 96 h in post-exercise recovery. A significant time effect was observed to characterize an inflammatory state (Pre vs. Post) following the exercise bout in all conditions (p<0.05). Indeed, IL-1β (Post 1 h) and CRP (Post 24 h) levels decreased and IL-1ra (Post 1 h) increased following WBC when compared to PAS. In WBC condition (p<0.05), TNF-α, IL-10 and IL-6 remain unchanged compared to PAS condition. Overall, the results indicated that the WBC was effective in reducing the inflammatory process. These results may be explained by vasoconstriction at muscular level, and both the decrease in cytokines activity pro-inflammatory, and increase in cytokines anti-inflammatory.

  7. Cardiovascular responses to a high-volume continuous circuit resistance training protocol.

    PubMed

    Gotshalk, Lincoln A; Berger, Richard A; Kraemer, William J

    2004-11-01

    The purpose of this investigation was to determine the level of cardiovascular stress elicited by continuous and prolonged circuit resistance training (CRT). Each of the 11 men who volunteered as a subject were tested to determine oxygen consumption and heart rate responses to a submaximal and maximal treadmill protocol and a CRT session consisting of 10 exercises and 10 repetitions at 40% of 1 repetition maximum (1RM) for each station with 4.6 circuits performed. The physiological stress of the CRT in this study was evident by the sustained heart rate of more than 70% of maximum for 16.6 minutes, with the last 12 minutes at more than 80%. Despite the large anaerobic component in CRT, Vo(2) was sustained at 50% or more of maximum for the final 12 minutes. Treadmill running, involving large muscle groups, increased Vo(2) more rapidly than CRT, where alternating larger and smaller muscle groups were used. In addition, at the same Vo(2) heart rate differed significantly between the 2 modes of activity. Heart rate in CRT was higher (at 165) than the heart rate of 150 found during treadmill running at the same 50% Vo(2). Such workouts may be used in a training cycle in classical linear periodization or in a nonlinear program day targeting local muscular endurance under intense cardiorespiratory conditions, which may help individuals develop enhanced toleration of physiological environments where high cardiovascular demands and higher lactate concentrations are present.

  8. The reliability and validity of a soccer-specific nonmotorised treadmill simulation (intermittent soccer performance test).

    PubMed

    Aldous, Jeffrey W F; Akubat, Ibrahim; Chrismas, Bryna C R; Watkins, Samuel L; Mauger, Alexis R; Midgley, Adrian W; Abt, Grant; Taylor, Lee

    2014-07-01

    This study investigated the reliability and validity of a novel nonmotorised treadmill (NMT)-based soccer simulation using a novel activity category called a "variable run" to quantify fatigue during high-speed running. Twelve male University soccer players completed 3 familiarization sessions and 1 peak speed assessment before completing the intermittent soccer performance test (iSPT) twice. The 2 iSPTs were separated by 6-10 days. The total distance, sprint distance, and high-speed running distance (HSD) were 8,968 ± 430 m, 980 ± 75 m and 2,122 ± 140 m, respectively. No significant difference (p > 0.05) was found between repeated trials of the iSPT for all physiological and performance variables. Reliability measures between iSPT1 and iSPT2 showed good agreement (coefficient of variation: <4.6%; intraclass correlation coefficient: >0.80). Furthermore, the variable run phase showed HSD significantly decreased (p ≤ 0.05) in the last 15 minutes (89 ± 6 m) compared with the first 15 minutes (85 ± 7 m), quantifying decrements in high-speed exercise compared with the previous literature. This study validates the iSPT as a NMT-based soccer simulation compared with the previous match-play data and is a reliable tool for assessing and monitoring physiological and performance variables in soccer players. The iSPT could be used in a number of ways including player rehabilitation, understanding the efficacy of nutritional interventions, and also the quantification of environmentally mediated decrements on soccer-specific performance.

  9. Cerebrospinal fluid hypocretin (orexin) levels are elevated by play but are not raised by exercise and its associated heart rate, blood pressure, respiration or body temperature changes.

    PubMed

    Wu, M-F; Nienhuis, R; Maidment, N; Lam, H A; Siegel, J M

    2011-11-07

    Hypocretin (Hcrt) has been implicated in the control of motor activity and in respiration and cardiovascular changes. Loss of Hcrt in narcolepsy is linked to sleepiness and to cataplexy, a sudden loss of muscle tone which is triggered by sudden strong emotions. In the current study we have compared the effects of treadmill running, to yard play on cerebrospinal fluid (CSF) Hcrt level in normal dogs. We find that treadmill locomotion, at a wide range of speeds, does not increase Hcrt level beyond baseline, whereas yard play produces a substantial increase in Hcrt, even though both activities produce comparable increases in heart rate, respiration and body temperature. We conclude that motor and cardiovascular changes are not sufficient to elevate CSF levels of Hcrt and we hypothesize that the emotional aspects of yard play account for the observed increase in Hcrt.

  10. Predicting VO[subscript 2max] in College-Aged Participants Using Cycle Ergometry and Perceived Functional Ability

    ERIC Educational Resources Information Center

    Nielson, David E.; George, James D.; Vehrs, Pat R.; Hager, Ron L.; Webb, Carrie V.

    2010-01-01

    The purpose of this study was to develop a multiple linear regression model to predict treadmill VO[subscript 2max] scores using both exercise and non-exercise data. One hundred five college-aged participants (53 male, 52 female) successfully completed a submaximal cycle ergometer test and a maximal graded exercise test on a motorized treadmill.…

  11. Effects of a Supported Speed Treadmill Training Exercise Program on Impairment and Function for Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Johnston, Therese E.; Watson, Kyle E.; Ross, Sandy A.; Gates, Philip E.; Gaughan, John P.; Lauer, Richard T.; Tucker, Carole A.; Engsberg, Jack R.

    2011-01-01

    Aim: To compare the effects of a supported speed treadmill training exercise program (SSTTEP) with exercise on spasticity, strength, motor control, gait spatiotemporal parameters, gross motor skills, and physical function. Method: Twenty-six children (14 males, 12 females; mean age 9y 6mo, SD 2y 2mo) with spastic cerebral palsy (CP; diplegia, n =…

  12. Stress-Induced Depression Is Alleviated by Aerobic Exercise Through Up-Regulation of 5-Hydroxytryptamine 1A Receptors in Rats

    PubMed Central

    Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee

    2015-01-01

    Purpose: Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Methods: Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. Results: A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Conclusions: Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function. PMID:25833478

  13. Hemodynamic changes after static and dynamic exercises and treadmill stress test; different patterns in patients with primary benign exertional headache?

    PubMed

    Kordi, Ramin; Mazaheri, Reza; Rostami, Mohsen; Mansournia, Mohammad Ali

    2012-01-01

    The pathophysiology of primary benign exertional headache (EH) is not still clearly defined. Some researchers have suggested an impaired vascular response as the etiology of this disorder. In this study we investigated whether there are any differences in blood pressure (BP) and heart rate (HR) of the subjects in course of the static and dynamic exercises and the treadmill stress test between those with and without EH. From university students, 22 patients with EH (mean age: 19.8 ± 2.10, Female to Male: 7:15) and 20 normal subjects (mean age: 19.3 ± 1.97, Female: Male: 8:12) were recruited. All the subjects performed the static and dynamic exercises at 30 and 20 percent of the maximal voluntary contraction (MVC) and Bruce treadmill stress test according to the standard protocols. HR and BP of all the cases at the baseline and during and immediately after each test were measured. No significant difference was found between the mean rise of HR, systolic and diastolic BP of the subjects with and without EH in static and dynamic exercises and also treadmill stress test. It seems that between those with and without EH, there is no significant difference in rise of HR and BP response to static and dynamic exercises and treadmill stress test. Further studies are required to find the pathophysiology and risk factors of EH.

  14. Peak impact accelerations during track and treadmill running.

    PubMed

    Bigelow, Erin M R; Elvin, Niell G; Elvin, Alex A; Arnoczky, Steven P

    2013-10-01

    To determine whether peak vertical and horizontal impact accelerations were different while running on a track or on a treadmill, 12 healthy subjects (average age 32.8 ± 9.8 y), were fitted with a novel, wireless accelerometer capable of recording triaxial acceleration over time. The accelerometer was attached to a custom-made acrylic plate and secured at the level of the L5 vertebra via a tight fitting triathlon belt. Each subject ran 4 miles on a synthetic, indoor track at a self-selected pace and accelerations were recorded on three perpendicular axes. Seven days later, the subjects ran 4 miles on a treadmill set at the individual runner's average pace on the track and the peak vertical and horizontal impact magnitudes between the track and treadmill were compared. There was no difference (P = .52) in the average peak vertical impact accelerations between the track and treadmill over the 4 mile run. However, peak horizontal impact accelerations were greater (P = .0012) on the track when compared with the treadmill. This study demonstrated the feasibility for long-term impact accelerations monitoring using a novel wireless accelerometer.

  15. The impact of firefighter personal protective equipment and treadmill protocol on maximal oxygen uptake.

    PubMed

    Lee, Joo-Young; Bakri, Ilham; Kim, Jung-Hyun; Son, Su-Young; Tochihara, Yutaka

    2013-01-01

    This study investigated the effects of firefighter personal protective equipment (PPE) on the determination of maximal oxygen uptake (VO(2max)) while using two different treadmill protocols: a progressive incline protocol (PIP) and a progressive speed protocol (PSP), with three clothing conditions (Light-light clothing; Boots-PPE with rubber boots; Shoes-PPE with running shoes). Bruce protocol with Light was performed for a reference test. Results showed there was no difference in VO(2max) between Bruce Light, PIP Light, and PSP Light. However, VO(2max) was reduced in Boots and Shoes with shortened maximal performance time (7 and 6 min reduced for PIP Boots and Shoes, respectively; 11 and 9 min reduced for PSP Boots and Shoes, respectively), whereas the increasing rate of VO(2) in Boots and Shoes during submaximal exercise was greater compared with Light. Wearing firefighter boots compared with wearing running shoes also significantly affected submaximal VO(2) but not VO(2max). These results suggest that firefighters' maximal performance determined from a typical VO(2max) test without wearing PPE may overestimate the actual performance capability of firefighters wearing PPE.

  16. The Impact of Firefighter Personal Protective Equipment and Treadmill Protocol on Maximal Oxygen Uptake

    PubMed Central

    Lee, Joo-Young; Bakri, Ilham; Kim, Jung-Hyun; Son, Su-Young; Tochihara, Yutaka

    2015-01-01

    This study investigated the effects of firefighter personal protective equipment (PPE) on the determination of maximal oxygen uptake (VO2max) while using two different treadmill protocols: a progressive incline protocol (PIP) and a progressive speed protocol (PSP), with three clothing conditions (Light-light clothing; Boots-PPE with rubber boots; Shoes-PPE with running shoes). Bruce protocol with Light was performed for a reference test. Results showed there was no difference in VO2max between Bruce Light, PIP Light, and PSP Light. However, VO2max was reduced in Boots and Shoes with shortened maximal performance time (7 and 6 min reduced for PIP Boots and Shoes, respectively; 11 and 9 min reduced for PSP Boots and Shoes, respectively), whereas the increasing rate of VO2 in Boots and Shoes during submaximal exercise was greater compared with Light. Wearing firefighter boots compared with wearing running shoes also significantly affected submaximal VO2 but not VO2max. These results suggest that firefighters’ maximal performance determined from a typical VO2max test without wearing PPE may overestimate the actual performance capability of firefighters wearing PPE. PMID:23668854

  17. Effect of Maturation on Hemodynamic and Autonomic Control Recovery Following Maximal Running Exercise in Highly Trained Young Soccer Players

    PubMed Central

    Buchheit, Martin; Al Haddad, Hani; Mendez-Villanueva, Alberto; Quod, Marc J.; Bourdon, Pitre C.

    2011-01-01

    The purpose of this study was to examine the effect of maturation on post-exercise hemodynamic and autonomic responses. Fifty-five highly trained young male soccer players (12–18 years) classified as pre-, circum-, or post-peak height velocity (PHV) performed a graded running test to exhaustion on a treadmill. Before (Pre) and after (5th–10th min, Post) exercise, heart rate (HR), stroke volume (SV), cardiac output (CO), arterial pressure (AP), and total peripheral resistance (TPR) were monitored. Parasympathetic (high frequency [HFRR] of HR variability (HRV) and baroreflex sensitivity [Ln BRS]) and sympathetic activity (low frequency [LFSAP] of systolic AP variability) were estimated. Post-exercise blood lactate [La]b, the HR recovery (HRR) time constant, and parasympathetic reactivation (time-varying HRV analysis) were assessed. In all three groups, exercise resulted in increased HR, CO, AP, and LFSAP (P < 0.001), decreased SV, HFRR, and Ln BRS (all P < 0.001), and no change in TPR (P = 0.98). There was no “maturation × time” interaction for any of the hemodynamic or autonomic variables (all P > 0.22). After exercise, pre-PHV players displayed lower SV, CO, and [La]b, faster HRR and greater parasympathetic reactivation compared with circum- and post-PHV players. Multiple regression analysis showed that lean muscle mass, [La]b, and Pre parasympathetic activity were the strongest predictors of HRR (r2 = 0.62, P < 0.001). While pre-PHV players displayed a faster HRR and greater post-exercise parasympathetic reactivation, maturation had little influence on the hemodynamic and autonomic responses following maximal running exercise. HRR relates to lean muscle mass, blood acidosis, and intrinsic parasympathetic function, with less evident impact of post-exercise autonomic function. PMID:22013423

  18. Breakfast consumption and exercise interact to affect cognitive performance and mood later in the day. A randomized controlled trial.

    PubMed

    Veasey, R C; Gonzalez, J T; Kennedy, D O; Haskell, C F; Stevenson, E J

    2013-09-01

    The current study assessed the interactive effect of breakfast and exercise on cognition and mood. Twelve active males completed four trials; no breakfast-rest, breakfast-rest, no breakfast-exercise or breakfast-exercise in a randomized, cross-over design. The trials consisted of; breakfast or fast, a 2h rest, exercise (treadmill run) or equivalent rest, a chocolate milk drink, a 90 min rest and an ad libitum lunch. Cognitive performance and mood were recorded frequently throughout each trial. Data was analysed as pre-exercise/rest, during and immediately post exercise/rest and post-drink. No effects were found prior to consumption of the drink. Post-drink, fasting before exercise increased mental fatigue compared to consuming breakfast before exercise and fasting before rest. Tension increased when breakfast was consumed at rest and when exercise was undertaken fasted compared to omitting breakfast before rest. Breakfast before rest decreased rapid visual information processing task speed and impaired Stroop performance. Breakfast omission improved Four Choice Reaction Time performance. To conclude, breakfast before exercise appeared beneficial for post-exercise mood even when a post-exercise snack was consumed. Exercise reversed post-breakfast cognitive impairment in active males. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Consumption of açai (Euterpe oleracea Mart.) functional beverage reduces muscle stress and improves effort tolerance in elite athletes: a randomized controlled intervention study.

    PubMed

    Carvalho-Peixoto, Jacqueline; Moura, Mirian Ribeiro Leite; Cunha, Felipe Amorim; Lollo, Pablo Christiano B; Monteiro, Walace David; Carvalho, Lucia Maria Jaeger de; Farinatti, Paulo de Tarso Veras

    2015-07-01

    The study analyzed the effect of an açai (Euterpe oleracea Mart.) functional beverage (AB) on muscle and oxidative stress markers, cardiorespiratory responses, perceived exertion, and time-to-exhaustion during maximal treadmill running. The beverage was developed as an ergogenic aid for athletes and contained 27.6 mg of anthocyanins per dose. Fourteen athletes performed 3 exercise tests: a ramp-incremental maximal exercise test and 2 maximal exercise bouts performed in 2 conditions (AB and without AB (control)) at 90% maximal oxygen uptake. Blood was collected at baseline and after maximal exercise in both conditions to determine biomarkers. AB increased time to exhaustion during short-term high-intensity exercise (mean difference: 69 s, 95% confidence interval = -296 s to 159 s, t = 2.2, p = 0.045), attenuating the metabolic stress induced by exercise (p < 0.05). AB also reduced perceived exertion and enhanced cardiorespiratory responses (p < 0.05). The AB may be a useful and practical ergogenic aid to enhance performance during high-intensity training.

  20. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  1. Use of an anti-gravity treadmill in the rehabilitation of the operated achilles tendon: a pilot study.

    PubMed

    Saxena, Amol; Granot, Allison

    2011-01-01

    Achilles surgical patients were evaluated using an "anti-gravity" Alter-G (AG) treadmill that allows for reduction of weightbearing pressure on the lower extremity. We studied our hypothesis, which was based on our prior clinical findings, that being able to run on the AG treadmill at 85% of body weight is sufficient to clear patients to run with full body weight outside. Patients undergoing Achilles tendon rupture or insertional repair surgery were prospectively studied. They were compared with a control group that had similar surgeries and a similar rehabilitation program during the same time period: the variable was not using the AG treadmill. The criteria for the study group to be allowed to run outside was being able to run for at least 10 minutes on the AG at 85% of body weight. Each group had 8 patients who underwent surgery for 2 complete tendon ruptures and 6 insertional repairs. There was no significant difference between the AG and control group as to age and postoperative follow-up. AG patients began their initial run on the treadmill at 70% of their body weight at 13.9 ± 3.4 weeks, 85% at 17.6 ± 3.9 weeks, and outside running at 18.1 ± 3.9 weeks. The control group's return to running outside time was 20.4 ± 4.1 weeks. This was not significantly different (p = .27). We confirmed our hypothesis that being able to run at 85% of body weight after Achilles surgery was sufficient to clear patients to run outside. Copyright © 2011 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Low back and hip pain in a postpartum runner: applying ultrasound imaging and running analysis.

    PubMed

    Thein-Nissenbaum, Jill M; Thompson, Elizabeth F; Chumanov, Elizabeth S; Heiderscheit, Bryan C

    2012-07-01

    Case report. Postpartum low back and hip dysfunction may be caused by an incomplete recovery of abdominal musculature and impaired neuromuscular control. The purpose of this report is to describe the management of a postpartum runner with hip and low back pain through exercise training via ultrasound imaging (USI) biofeedback combined with running-form modification. A postpartum runner with hip and low back pain underwent dynamic lumbar stabilization training with USI biofeedback and running-form modification to reduce mechanical loading. Muscle thickness of transversus abdominis and internal oblique was measured with USI preintervention and 7 weeks after completion of the intervention. Additionally, 3-dimensional lower extremity joint motions, moments, and powers were calculated during treadmill running. The patient's pain with running decreased from a constant 9/10 (0, no pain; 10, worst pain) to an occasional 3/10 posttreatment. Transversus abdominis muscle thickness increased 6.3% during the abdominal drawing-in maneuver and 27.0% during the abdominal drawing-in maneuver with straight leg raise. Changes were also noted in the internal oblique. These findings corresponded to improved lumbopelvic control: pelvic list and axial rotation during running decreased 38% and 36%, respectively. The patient's running volume returned to preinjury levels (8.1-9.7 km, 3 days per week) with no hip pain and minimal low back pain, and she successfully completed her goal of running a half-marathon. The successful outcomes of this case support the consideration of dynamic lumbar stabilization exercises, USI biofeedback, and running-form modification in postpartum runners with lumbopelvic dysfunction. Therapy, level 4.

  3. Kinematic Differences Between Motorized and Nonmotorized Treadmill Locomotion

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Bentley, Jason R.; Lee, Stuart M. C.; Norcross, Jason; Smith, Cassie; Hagan, R. Donald

    2006-01-01

    There are few scientific publications comparing human locomotion between motorized and nonmotorized treadmills. Lakomy (1987) and Gamble et al (1988) reported that forward lean is greater on a nonmotorized treadmill to aid in the generation of horizontal force necessary for belt propulsion, but there are no data concerning lower limb kinematics. During long-term spaceflight, astronauts use locomotive exercise to mitigate the physiological effects caused by long-term exposure to microgravity. A critical decision for mission planners concerns the requirements for a treadmill to be used during potential trips to the Moon and Mars. Treadmill operation in an un-powered configuration could reduce mission resource demands, but also may impact the efficacy of treadmill exercise countermeasures. To ascertain the most appropriate type of treadmill to be used, it is important to understand biomechanical differences between motorized (M) and nonmotorized (NM) locomotion. The purpose of this evaluation was to test for differences in lower limb kinematics that occur during M and NM treadmill locomotion at two speeds. It was hypothesized that hip and knee joint angle trajectories would differ between the conditions.

  4. The effect of anti-gravity treadmill training for prosthetic rehabilitation of a case with below-knee amputation.

    PubMed

    Mikami, Yukio; Fukuhara, Kouki; Kawae, Toshihiro; Kimura, Hiroaki; Ochi, Mitsuo

    2015-12-01

    The aim of this case study was to verify the efficacy and safety of anti-gravity treadmill training for prosthetic rehabilitation following below-knee amputation. The patient underwent left below-knee amputation as a result of diabetic foot gangrene. Since his physical strength and vitality had declined during the perioperative period, anti-gravity treadmill training was introduced for his outpatient prosthetic rehabilitation. Stable prosthetic gait exercise could be carried out under guidance on the anti-gravity treadmill, quickly resulting in improved gait. Furthermore, the patient's self-efficacy and exercise tolerance were elevated after the period of anti-gravity treadmill training. At the final evaluation following 6 weeks of rehabilitation with the anti-gravity treadmill, he had acquired prosthetic gait with the assistance of a T-cane. The anti-gravity treadmill was found to be a useful instrument for prosthetic rehabilitation following below-knee amputation. Anti-gravity treadmill training has the potential to support the prosthetic rehabilitation of below-knee amputees, especially for patients whose physical strength and vitality are decreased. © The International Society for Prosthetics and Orthotics 2014.

  5. Influence of the world's most challenging mountain ultra-marathon on energy cost and running mechanics.

    PubMed

    Vernillo, Gianluca; Savoldelli, Aldo; Zignoli, Andrea; Trabucchi, Pietro; Pellegrini, Barbara; Millet, Grégoire P; Schena, Federico

    2014-05-01

    To examine the effects of the world's most challenging mountain ultra-marathon (Tor des Géants(®) 2012) on the energy cost of three types of locomotion (cycling, level and uphill running) and running kinematics. Before (pre-) and immediately after (post-) the competition, a group of ten male experienced ultra-marathon runners performed in random order three submaximal 4-min exercise trials: cycling at a power of 1.5 W kg(-1) body mass; level running at 9 km h(-1) and uphill running at 6 km h(-1) at an inclination of +15 % on a motorized treadmill. Two video cameras recorded running mechanics at different sampling rates. Between pre- and post-, the uphill-running energy cost decreased by 13.8 % (P = 0.004); no change was noted in the energy cost of level running or cycling (NS). There was an increase in contact time (+10.3 %, P = 0.019) and duty factor (+8.1 %, P = 0.001) and a decrease in swing time (-6.4 %, P = 0.008) in the uphill-running condition. After this extreme mountain ultra-marathon, the subjects modified only their uphill-running patterns for a more economical step mechanics.

  6. The effect of weight-bearing exercise and non-weight-bearing exercise on gait in rats with sciatic nerve crush injury.

    PubMed

    Kim, Ki-Hyun; Hwangbo, Gak; Kim, Seong-Gil

    2015-04-01

    [Purpose] The purpose of this study was to access the effect of weight bearing exercise (treadmill exercise) and non-weight-bearing exercise (swimming exercise) on gait in the recovery process after a sciatic nerve crush injury. [Subjects and Methods] Rats were randomly divided into a swimming group (n=3) with non-weight-bearing exercise after a sciatic nerve crush and a treadmill group (n=3) with weight bearing exercise after a sciatic nerve crush. Dartfish is a program that can analyze and interpret motion through video images. The knee lateral epicondyle, lateral malleolus, and metatarsophalangeal joint of the fifth toe were marked by black dots before recording. [Results] There were significant differences in TOK (knee angle toe off) and ICK (knee angle at initial contact) in the swimming group and in TOK, ICA (ankle angle at initial contact), and ICK in the treadmill group. In comparison between groups, there were significant differences in TOA (ankle angle in toe off) and ICA at the 7th day. [Conclusion] There was no difference between weight bearing and non-weight-bearing exercise in sciatic nerve damage, and both exercises accelerated the recovery process in this study.

  7. Blood lactate thresholds and walking/running economy are determinants of backpack-running performance in trained soldiers.

    PubMed

    Simpson, Richard J; Graham, Scott M; Connaboy, Christopher; Clement, Richard; Pollonini, Luca; Florida-James, Geraint D

    2017-01-01

    We developed a standardized laboratory treadmill protocol for assessing physiological responses to a simulated backpack load-carriage task in trained soldiers, and assessed the efficacy of blood lactate thresholds (LTs) and economy in predicting future backpack running success over an 8-mile course in field conditions. LTs and corresponding physiological responses were determined in 17 elite British soldiers who completed an incremental treadmill walk/run protocol to exhaustion carrying 20 kg backpack load. Treadmill velocity at the breakpoint (r = -0.85) and Δ 1 mmol l(-1) (r = -0.80) LTs, and relative V˙O2 at 4 mmol l(-1) (r = 0.76) and treadmill walk/run velocities of 6.4 (r = 0.76), 7.4 (r = 0.80), 11.4 (r = 0.66) and 12.4 (r = 0.65) km h(-1) were significantly associated with field test completion time. We report for the first time that LTs and backpack walk/run economy are major determinants of backpack load-carriage performance in trained soldiers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Water depth effects on impact loading, kinematic and physiological variables during water treadmill running.

    PubMed

    Macdermid, Paul W; Wharton, Josh; Schill, Carina; Fink, Philip W

    2017-07-01

    The purpose of this study was to compare impact loading, kinematic and physiological responses to three different immersion depths (mid-shin, mid-thigh, and xiphoid process) while running at the same speed on a water based treadmill. Participants (N=8) ran on a water treadmill at three depths for 3min. Tri-axial accelerometers were used to identify running dynamics plus measures associated with impact loading rates, while heart rate data were logged to indicate physiological demand. Participants had greater peak impact accelerations (p<0.01), greater impact loading rates (p<0.0001), greater stride frequency (p<0.05), shorter stride length (p<0.01), and greater rate of acceleration development at toe-off (p<0.0001) for the mid-shin and mid-thigh compared to running immersed to the xiphoid process. Physiological effort determined by heart rate was also significantly less (p<0.0001) when running immersed to the xiphoid process. Water immersed treadmill running above the waistline alters kinematics of gait, reduces variables associated with impact, while decreasing physiological demand compared to depths below the waistline. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The Gravity of LBNP Exercise: Lessons Learned from Identical Twins in Bed for 30 Days

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Groppo, Eli R.; Lee, Stuart M. C.; Watenpaugh, Donald; Schneider, Suzanne; O'Leary, Deborah; Smith, Scott M.; Steinbach, Gregory C.; Tanaka, Kunihiko; Kimura, Shinji; hide

    2002-01-01

    Microgravity leads to cardiovascular deconditioning in humans, which is manifested by post-flight reduction of orthostatic tolerance and upright exercise capacity. During upright posture on Earth, blood pressures are greater in the feet than at heart or head levels due to gravity's effects on columns of blood in the body. During exposure to Microgravity, all gravitational blood pressures disappear. Presently, there is no exercise hardware available for space flight to provide gravitational blood pressures to tissues of the lower body. We hypothesized that 40 minutes of supine treadmill running per day in a LBNP chamber at 1.0 to 1.2 body weight (approximately 50 - 60 mm Hg LBNP) with a 5 min resting, nonexercise LBNP exposure at 50 mm Hg after the exercise session will maintain aerobic fitness orthostatic tolerance, and selected parameters of musculoskeletal function during 30 days of bed rest (simulated microgravity). This paper is an interim report of some of our findings on 16 subjects.

  10. Effects of Acute Exercise on Resting EEG in Children with Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Huang, Chung-Ju; Huang, Ching-Wen; Hung, Chiao-Ling; Tsai, Yu-Jung; Chang, Yu-Kai; Wu, Chien-Ting; Hung, Tsung-Min

    2018-06-05

    This two stage study examined the effects of acute exercise on resting electroencephalographic (EEG) patterns of children with attention-deficit hyperactivity disorder (ADHD). The first stage compared the neural oscillatory patterns of children with and without ADHD. Resting EEGs were recorded under an open-eyes condition from 24 boys with ADHD and 28 matched controls. The second stage of the study employed a randomized cross-over trial design. The 24 boys with ADHD engaged in a 30-min intervention that consisted of either running on a treadmill or watching a video on alternative days, with resting EEGs recorded before and after treatment. The first stage found that children with ADHD exhibited significantly higher theta/beta ratios over the midline electrodes sites than controls. The second stage further indicated that children with ADHD displayed smaller theta/beta ratios following the exercise condition compared with the video-watching condition. This finding suggests that acute exercise normalizes arousal and alertness of children with ADHD, as reflected in resting EEG readings.

  11. Scientific/Technical Report Bioenergetics Research Initiative Award number-DE-FG02-05ER64092

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trappe, Scott A

    2009-12-04

    General Project Overview and Final Technical Report This equipment grant was utilized to enhance the infrastructure of the Human Performance Laboratory at Ball State University. The laboratories primary focus is human based exercise physiology conducting research in the areas of sports performance, aging and exercise, unloading (space flight and bed rest), pediatric exercise and clinical exercise physiology. The main equipment supported by this grant was an ultrasound unit for cardiac and skeletal muscle imaging at the whole organ level, microscope system for micro imaging of skeletal muscle tissue, running treadmill for energy expenditure assessment, autoclave for sterilization, and upgrade tomore » our dual x–ray absorptiometry (DEXA) system that was utilized for body composition measurements. The equipment was involved in several human metabolic and skeletal muscle research projects as highlighted above. In particular, this equipment served a support role for other large–scale clinical projects funded by the National Institutes of Health (NIH), National Aeronautics and Space Administration (NASA), and corporate sponsors.« less

  12. Influence of simulated microgravity on the VO2 max of nontrained and trained rats

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Monnin, K. A.; Sebastian, L. A.; Tipton, C. M.

    1993-01-01

    Head-down suspension (HDS) of rats has evolved as a useful model for the simulation of a microgravity environment. Previous HDS experiments with rats have shown an impaired capacity to perform aerobic exercise as demonstrated by reductions in maximum oxygen consumption (VO2 max), treadmill run time (RT), and mechanical efficiency (ME) of treadmill running at submaximal conditions. To determine whether endurance training (TR) before HDS would modify exercise performance, male Sprague-Dawley rats were assigned to nontrained (NT) or TR groups for 6 wk and exposed to HDS or cage control (CC) conditions for 29 days. The rats were tested for VO2 max, RT, and ME before treatment and on days 7, 14, 21, and 28. In addition, water and electrolyte excretion was measured on days 1 and 21 of the experimental period. Before HDS, the TR rats had significantly higher measures of VO2 max (15%) and RT (22%) than the NT rats. On day 28, HDS was associated with significant reductions in absolute VO2 max (ml/min) in TR (-30%) and NT (-14%) rats. Relative VO2 max (ml.min-1.kg-1) was significantly reduced in TR (-15%) but not NT rats. Similar reductions in RT occurred in TR (-37%) and NT (-35%) rats by day 28. ME was reduced 22% in both TR and NT rats after 28 days of suspension. HDS elicited diuresis, natriuresis, and kaliuresis in TR rats after 21 days but not after 24 h. In contrast, HDS-NT rats exhibited no diuretic, natriuretic, or kaliuretic responses.(ABSTRACT TRUNCATED AT 250 WORDS).

  13. The Effects of Exercise Therapy on CVD Risk Factors in Women

    PubMed Central

    Hur, Sun; Kim, Seon-Rye

    2014-01-01

    [Purpose] The purpose of this study was to search for the association of Type D personality and CVD risk factors through comparison of the association of exercise participation with CVD risk factors in women. [Subjects] The research subjects were randomly assigned to four groups: Type D+Exercise (n=12), Type D+non-exercise (n=12), non-Type D+Exercise (n=12), and non-Type D+non-exercise (n=10). The study consisted of 46 participants. [Methods] An aerobic exercise program and meditation were conducted in parallel for 10 months. Stretching was performed for 10 min as a warm-up, and then walking and running on a treadmill at 60 to 70% of HRmax were performed for 40 min three times a week. Blood samples were processed according to standard laboratory procedures. The concentrations of TG and HDL cholesterol were determined enzymatically using a clinical chemistry analyzer (Hitachi High-Technologies Corporation, Tokyo, Japan). [Results] The weight, percentage of body fat, waist circumference, triglyceride concentration, HDL cholesterol concentration, systolic blood pressure, and diastolic blood pressure showed a significant difference between measurement times in the exercise groups. [Conclusion] In conclusion, there were significant differences between groups in terms of cardiovascular disease risk factors. PMID:25276017

  14. Exercise reduces diet-induced cognitive decline and increases hippocampal brain-derived neurotrophic factor in CA3 neurons

    PubMed Central

    Noble, Emily E.; Mavanji, Vijayakumar; Little, Morgan R.; Billington, Charles J.; Kotz, Catherine M.; Wang, ChuanFeng

    2014-01-01

    Background Previous studies have shown that a western diet impairs, whereas physical exercise enhances hippocampus-dependent learning and memory. Both diet and exercise influence expression of hippocampal brain-derived neurotrophic factor (BDNF), which is associated with improved cognition. We hypothesized that exercise reverses diet-induced cognitive decline while increasing hippocampal BDNF. Methods To test the effects of exercise on hippocampal-dependent memory, we compared cognitive scores of Sprague-Dawley rats exercised by voluntary running wheel (RW) access or forced treadmill (TM) to sedentary (Sed) animals. Memory was tested by two-way active avoidance test (TWAA), in which animals are exposed to a brief shock in a specific chamber area. When an animal avoids, escapes or has reduced latency to do either, this is considered a measure of memory. In a second experiment, rats were fed either a high-fat diet or control diet for 16 weeks, then randomly assigned to running wheel access or sedentary condition, and TWAA memory was tested once a week for seven weeks of exercise intervention. Results Both groups of exercised animals had improved memory as indicated by reduced latency to avoid and escape shock, and increased avoid and escape episodes (p<0.05). Exposure to a high-fat diet resulted in poor performance during both the acquisition and retrieval phases of the memory test as compared to controls. Exercise reversed high-fat diet-induced memory impairment, and increased brain-derived neurotrophic factor (BDNF) in neurons of the hippocampal CA3 region. Conclusions These data suggest that exercise improves memory retrieval, particularly with respect to avoiding aversive stimuli, and may be beneficial in protecting against diet induced cognitive decline, likely via elevated BDNF in neurons of the CA3 region. PMID:24755094

  15. Exercise reduces diet-induced cognitive decline and increases hippocampal brain-derived neurotrophic factor in CA3 neurons.

    PubMed

    Noble, Emily E; Mavanji, Vijayakumar; Little, Morgan R; Billington, Charles J; Kotz, Catherine M; Wang, ChuanFeng

    2014-10-01

    Previous studies have shown that a western diet impairs, whereas physical exercise enhances hippocampus-dependent learning and memory. Both diet and exercise influence expression of hippocampal brain-derived neurotrophic factor (BDNF), which is associated with improved cognition. We hypothesized that exercise reverses diet-induced cognitive decline while increasing hippocampal BDNF. To test the effects of exercise on hippocampal-dependent memory, we compared cognitive scores of Sprague-Dawley rats exercised by voluntary running wheel (RW) access or forced treadmill (TM) to sedentary (Sed) animals. Memory was tested by two-way active avoidance test (TWAA), in which animals are exposed to a brief shock in a specific chamber area. When an animal avoids, escapes or has reduced latency to do either, this is considered a measure of memory. In a second experiment, rats were fed either a high-fat diet or control diet for 16 weeks, then randomly assigned to running wheel access or sedentary condition, and TWAA memory was tested once a week for 7 weeks of exercise intervention. Both groups of exercised animals had improved memory as indicated by reduced latency to avoid and escape shock, and increased avoid and escape episodes (p<0.05). Exposure to a high-fat diet resulted in poor performance during both the acquisition and retrieval phases of the memory test as compared to controls. Exercise reversed high-fat diet-induced memory impairment, and increased brain-derived neurotrophic factor (BDNF) in neurons of the hippocampal CA3 region. These data suggest that exercise improves memory retrieval, particularly with respect to avoiding aversive stimuli, and may be beneficial in protecting against diet induced cognitive decline, likely via elevated BDNF in neurons of the CA3 region. Published by Elsevier Inc.

  16. Multiple pathological events in exercised dystrophic mdx mice are targeted by pentoxifylline: outcome of a large array of in vivo and ex vivo tests.

    PubMed

    Burdi, Rosa; Rolland, Jean-François; Fraysse, Bodvael; Litvinova, Karina; Cozzoli, Anna; Giannuzzi, Viviana; Liantonio, Antonella; Camerino, Giulia Maria; Sblendorio, Valeriana; Capogrosso, Roberta Francesca; Palmieri, Beniamino; Andreetta, Francesca; Confalonieri, Paolo; De Benedictis, Leonarda; Montagnani, Monica; De Luca, Annamaria

    2009-04-01

    The phosphodiesterases inhibitor pentoxifylline gained attention for Duchenne muscular dystrophy therapy for its claimed anti-inflammatory, antioxidant, and antifibrotic action. A recent finding also showed that pentoxifylline counteracts the abnormal overactivity of a voltage-independent calcium channel in myofibers of dystrophic mdx mice. The possible link between workload, altered calcium homeostasis, and oxidative stress pushed toward a more detailed investigation. Thus a 4- to 8-wk treatment with pentoxifylline (50 mg x kg(-1) x day(-1) ip) was performed in mdx mice, undergoing or not a chronic exercise on treadmill. In vivo, the treatment partially increased forelimb strength and enhanced resistance to treadmill running in exercised animals. Ex vivo, pentoxifylline restored the mechanical threshold, an electrophysiological index of calcium homeostasis, and reduced resting cytosolic calcium in extensor digitorum longus muscle fibers. Mn quenching and patch-clamp technique confirmed that this effect was paralleled by a drug-induced reduction of membrane permeability to calcium. The treatment also significantly enhanced isometric tetanic tension in mdx diaphragm. The plasma levels of creatine kinase and reactive oxygen species were both significantly reduced in treated-exercised animals. Dihydroethidium staining, used as an indicator of reactive oxygen species production, showed that pentoxifylline significantly reduced the exercise-induced increase in fluorescence in the mdx tibialis anterior muscle. A significant decrease in connective tissue area and profibrotic cytokine transforming growth factor-beta(1) was solely found in tibialis anterior muscle. In both diaphragm and gastrocnemius muscle, a significant increase in neural cell adhesion molecule-positive area was instead observed. This data supports the interest toward pentoxifylline and allows insight in the level of cross talk between pathogenetic events in workloaded dystrophic muscle.

  17. Enhanced maximal exercise capacity, vasodilation to electrical muscle contraction, and hind limb vascular density in ASIC1a null mice.

    PubMed

    Drummond, Heather A; Xiang, Lusha; Chade, Alejandro R; Hester, Robert

    2017-08-01

    Acid-sensing ion channel (ASIC) proteins form extracellular proton-gated, cation-selective channels in neurons and vascular smooth muscle cells and are proposed to act as extracellular proton sensors. However, their importance to vascular responses under conditions associated with extracellular acidosis, such as strenuous exercise, is unclear. Therefore, the purpose of this study was to determine if one ASIC protein, ASIC1a, contributes to extracellular proton-gated vascular responses and exercise tolerance. To determine if ASIC1a contributes to exercise tolerance, we determined peak oxygen (O 2 ) uptake in conscious ASIC1a -/- mice during exhaustive treadmill running. Loss of ASIC1a was associated with a greater peak running speed (60 ± 2 vs. 53 ± 3 m·min -1 , P  = 0.049) and peak oxygen (O 2 ) uptake during exhaustive treadmill running (9563 ± 120 vs. 8836 ± 276 mL·kg -1 ·h -1 , n  = 6-7, P  = 0.0082). There were no differences in absolute or relative lean body mass, as determined by EchoMRI. To determine if ASIC1a contributes to vascular responses during muscle contraction, we measured femoral vascular conductance (FVC) during a stepwise electrical stimulation (0.5-5.0 Hz at 3 V for 60 sec) of the left major hind limb muscles. FVC increased to a greater extent in ASIC1a -/- versus ASIC1a +/+ mice (0.44 ± 0.03 vs. 0.30 ± 0.04 mL·min -1 ·100 g hind limb mass -1 · mmHg -1 , n  = 5 each, P  = 0.0009). Vasodilation following local application of external protons in the spinotrapezius muscle increased the duration, but not the magnitude, of the vasodilatory response in ASIC1a -/- mice. Finally, we examined hind limb vascular density using micro-CT and found increased density of 0-80  μ m vessels ( P  <   0.05). Our findings suggest an increased vascular density and an enhanced vasodilatory response to local protons, to a lesser degree, may contribute to the enhanced vascular conductance and increased peak exercise capacity in ASIC1a -/- mice. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. Autonomic Recovery Is Delayed in Chinese Compared with Caucasian following Treadmill Exercise.

    PubMed

    Sun, Peng; Yan, Huimin; Ranadive, Sushant M; Lane, Abbi D; Kappus, Rebecca M; Bunsawat, Kanokwan; Baynard, Tracy; Hu, Min; Li, Shichang; Fernhall, Bo

    2016-01-01

    Caucasian populations have a higher prevalence of cardiovascular disease (CVD) when compared with their Chinese counterparts and CVD is associated with autonomic function. It is unknown whether autonomic function during exercise recovery differs between Caucasians and Chinese. The present study investigated autonomic recovery following an acute bout of treadmill exercise in healthy Caucasians and Chinese. Sixty-two participants (30 Caucasian and 32 Chinese, 50% male) performed an acute bout of treadmill exercise at 70% of heart rate reserve. Heart rate variability (HRV) and baroreflex sensitivity (BRS) were obtained during 5-min epochs at pre-exercise, 30-min, and 60-min post-exercise. HRV was assessed using frequency [natural logarithm of high (LnHF) and low frequency (LnLF) powers, normalized high (nHF) and low frequency (nLF) powers, and LF/HF ratio] and time domains [Root mean square of successive differences (RMSSD), natural logarithm of RMSSD (LnRMSSD) and R-R interval (RRI)]. Spontaneous BRS included both up-up and down-down sequences. At pre-exercise, no group differences were observed for any HR, HRV and BRS parameters. During exercise recovery, significant race-by-time interactions were observed for LnHF, nHF, nLF, LF/HF, LnRMSSD, RRI, HR, and BRS (up-up). The declines in LnHF, nHF, RMSSD, RRI and BRS (up-up) and the increases in LF/HF, nLF and HR were blunted in Chinese when compared to Caucasians from pre-exercise to 30-min to 60-min post-exercise. Chinese exhibited delayed autonomic recovery following an acute bout of treadmill exercise. This delayed autonomic recovery may result from greater sympathetic dominance and extended vagal withdrawal in Chinese. Chinese Clinical Trial Register ChiCTR-IPR-15006684.

  19. Autonomic Recovery Is Delayed in Chinese Compared with Caucasian following Treadmill Exercise

    PubMed Central

    Sun, Peng; Yan, Huimin; Ranadive, Sushant M.; Lane, Abbi D.; Kappus, Rebecca M.; Bunsawat, Kanokwan; Baynard, Tracy; Hu, Min; Li, Shichang; Fernhall, Bo

    2016-01-01

    Caucasian populations have a higher prevalence of cardiovascular disease (CVD) when compared with their Chinese counterparts and CVD is associated with autonomic function. It is unknown whether autonomic function during exercise recovery differs between Caucasians and Chinese. The present study investigated autonomic recovery following an acute bout of treadmill exercise in healthy Caucasians and Chinese. Sixty-two participants (30 Caucasian and 32 Chinese, 50% male) performed an acute bout of treadmill exercise at 70% of heart rate reserve. Heart rate variability (HRV) and baroreflex sensitivity (BRS) were obtained during 5-min epochs at pre-exercise, 30-min, and 60-min post-exercise. HRV was assessed using frequency [natural logarithm of high (LnHF) and low frequency (LnLF) powers, normalized high (nHF) and low frequency (nLF) powers, and LF/HF ratio] and time domains [Root mean square of successive differences (RMSSD), natural logarithm of RMSSD (LnRMSSD) and R–R interval (RRI)]. Spontaneous BRS included both up-up and down-down sequences. At pre-exercise, no group differences were observed for any HR, HRV and BRS parameters. During exercise recovery, significant race-by-time interactions were observed for LnHF, nHF, nLF, LF/HF, LnRMSSD, RRI, HR, and BRS (up-up). The declines in LnHF, nHF, RMSSD, RRI and BRS (up-up) and the increases in LF/HF, nLF and HR were blunted in Chinese when compared to Caucasians from pre-exercise to 30-min to 60-min post-exercise. Chinese exhibited delayed autonomic recovery following an acute bout of treadmill exercise. This delayed autonomic recovery may result from greater sympathetic dominance and extended vagal withdrawal in Chinese. Trial Registration: Chinese Clinical Trial Register ChiCTR-IPR-15006684 PMID:26784109

  20. Long term treadmill exercise performed to chronic social isolated rats regulate anxiety behavior without improving learning.

    PubMed

    Cevik, Ozge Selin; Sahin, Leyla; Tamer, Lulufer

    2018-05-01

    The type and duration of exposure to stress is an important influence on emotional and cognitive functions. Learning is the adaptive response of the central nervous system that occurs in hippocampus which affects from environmental factors like exercise. In this study, we investigated effects of long term treadmill exercise on learning and behavior on chronic social isolated rat. Male Wistar rats (n = 32) randomly assigned into four groups: control, exercised, social isolation, social isolation + exercise during postnatal days (PNDs) 21-34. Social isolation protocol was applied during 14 days by placing rat in a cage one by one. Rats were exercised during 5 days, days were chosen randomly for overall 4 weeks (20, 30, 50, 60 min respectively). Finally, learning performance was evaluated by Morris water maze (MWM). Anxiety behavior was evaluated by Open field and elevated plus maze test. At the end of learning and behavior tests, the rats were decapitated to collect blood samples via intracardiac puncture and corticosterone analysis was performed with ELISA method. Animal weights and water consumption did not change significantly but food intake differed among groups. Corticosterone level did not change between groups. The frequency of entering to the target quadrant increased in exercised rat significantly. However, there was no difference in learning and memory in rats. Treadmill exercise reduced anxiety behavior significantly. Taken together these findings may point out that, long term treadmill exercise did not change learning and memory but reduced anxiety level of rat without changing corticosterone level. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Use of the International Space Station as an Exercise Physiology Lab

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori

    2013-01-01

    The International Space Station (ISS) is now in its prime utilization phase with great opportunity to use the ISS as a lab. With respect to exercise physiology there is considerable research opportunity. Crew members exercise for up to 2 hours per day using a cycle ergometer, treadmill, and advanced resistive exercise device (ARED). There are several ongoing exercise research studies by NASA, ESA and CSA. These include studies related to evaluation of new exercise prescriptions (SPRINT), evaluation of aerobic capacity (VO2max), biomechanics (Treadmill Kinematics), energy expenditure during spaceflight (Energy), evaluation of cartilage (Cartilage), and evaluation of cardiovascular health (Vascular). Examples of how ISS is used for exercise physiology research will be presented.

  2. Exercise Capacity and Response to Training Quantitative Trait Loci in a NZW X 129S1 Intercross and Combined Cross Analysis of Inbred Mouse Strains

    PubMed Central

    Massett, Michael P.; Avila, Joshua J.; Kim, Seung Kyum

    2015-01-01

    Genetic factors determining exercise capacity and the magnitude of the response to exercise training are poorly understood. The aim of this study was to identify quantitative trait loci (QTL) associated with exercise training in mice. Based on marked differences in training responses in inbred NZW (-0.65 ± 1.73 min) and 129S1 (6.18 ± 3.81 min) mice, a reciprocal intercross breeding scheme was used to generate 285 F2 mice. All F2 mice completed an exercise performance test before and after a 4-week treadmill running program, resulting in an increase in exercise capacity of 1.54 ± 3.69 min (range = -10 to +12 min). Genome-wide linkage scans were performed for pre-training, post-training, and change in run time. For pre-training exercise time, suggestive QTL were identified on Chromosomes 5 (57.4 cM, 2.5 LOD) and 6 (47.8 cM, 2.9 LOD). A significant QTL for post-training exercise capacity was identified on Chromosome 5 (43.4 cM, 4.1 LOD) and a suggestive QTL on Chromosomes 1 (55.7 cM, 2.3 LOD) and 8 (66.1 cM, 2.2 LOD). A suggestive QTL for the change in run time was identified on Chromosome 6 (37.8 cM, 2.7 LOD). To identify shared QTL, this data set was combined with data from a previous F2 cross between B6 and FVB strains. In the combined cross analysis, significant novel QTL for pre-training exercise time and change in exercise time were identified on Chromosome 12 (54.0 cM, 3.6 LOD) and Chromosome 6 (28.0 cM, 3.7 LOD), respectively. Collectively, these data suggest that combined cross analysis can be used to identify novel QTL and narrow the confidence interval of QTL for exercise capacity and responses to training. Furthermore, these data support the use of larger and more diverse mapping populations to identify the genetic basis for exercise capacity and responses to training. PMID:26710100

  3. Physiologic Responses to Motorized and Non-Motorized Locomotion Utilizing the International Space Station Treadmill

    NASA Technical Reports Server (NTRS)

    Smith, Cassie; Lee, Stuart MC; Laughlin, Mitzi; Loehr, James; Norcross, Jason; DeWitt, John; Hagan, R. D.

    2006-01-01

    Treadmill locomotion is used onboard the International Space Station (ISS) as a countermeasure to the effects of prolonged weightlessness. The treadmill operates in two modes: motorized (T-M) and non-motorized (T-NM). Little is known about the potential physiologic differences between modes which may affect countermeasure exercise prescription. PURPOSE: To quantify heart rate (HR), oxygen consumption (VO2), perceived exertion (RPE), and blood lactate (BLa) during T-M and T-NM locomotion at 2 and 4 mph in normal ambulatory subjects. METHODS: Twenty subjects (10 men, 10 women; 31+/-5 yr, 172+/-10 cm, 68+/-13 kg, mean SD) with a treadmill peakVO2 of 45.5+/-5.4 ml/kg/min (mean+/-SD) exercised on the ground-based ISS treadmill. Following a familiarization session in each mode, subjects completed two data collection sessions, T-M and T-NM in random order, at 2 and 4 mph. Subjects attempted to complete 5 min of exercise at each speed; if they could not maintain the speed, the trial was discontinued. At least 5 minutes of rest separated each speed trial, and at least 48 hrs separated each session. VO2 was measured continuously (metabolic gas analysis), while HR (HR monitor) and RPE (Borg Chart, 6-20 scale) were recorded each min. Not all subjects completed 5 min during each condition, therefore the mean of the min 3 and 4 was taken as representative of steady-state. BLa was measured (finger stick) within 2 min post-exercise. Paired t-tests were used to test for differences (p<0.05) between treadmill modes within the same speed. RESULTS: All twenty subjects completed at least 4 min of exercise during all conditions, except T-NM 4 mph when only 11 subjects completed the minimum exercise duration. VO2, HR, RPE and BLa were significantly higher during T-NM locomotion at both speeds.

  4. Whole beetroot consumption acutely improves running performance.

    PubMed

    Murphy, Margaret; Eliot, Katie; Heuertz, Rita M; Weiss, Edward

    2012-04-01

    Nitrate ingestion improves exercise performance; however, it has also been linked to adverse health effects, except when consumed in the form of vegetables. The purpose of this study was to determine, in a double-blind crossover study, whether whole beetroot consumption, as a means for increasing nitrate intake, improves endurance exercise performance. Eleven recreationally fit men and women were studied in a double-blind placebo controlled crossover trial performed in 2010. Participants underwent two 5-km treadmill time trials in random sequence, once 75 minutes after consuming baked beetroot (200 g with ≥500 mg nitrate) and once 75 minutes after consuming cranberry relish as a eucaloric placebo. Based on paired t tests, mean running velocity during the 5-km run tended to be faster after beetroot consumption (12.3±2.7 vs 11.9±2.6 km/hour; P=0.06). During the last 1.1 miles (1.8 km) of the 5-km run, running velocity was 5% faster (12.7±3.0 vs 12.1±2.8 km/hour; P=0.02) in the beetroot trial, with no differences in velocity (P≥0.25) in the earlier portions of the 5-km run. No differences in exercise heart rate were observed between trials; however, at 1.8 km into the 5-km run, rating of perceived exertion was lower with beetroot (13.0±2.1 vs 13.7±1.9; P=0.04). Consumption of nitrate-rich, whole beetroot improves running performance in healthy adults. Because whole vegetables have been shown to have health benefits, whereas nitrates from other sources may have detrimental health effects, it would be prudent for individuals seeking performance benefits to obtain nitrates from whole vegetables, such as beetroot. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  5. Biomechanical Analysis of T2 Exercise

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Ploutz-Snyder, Lori; Everett, Meghan; Newby, Nathaniel; Scott-Pandorf, Melissa; Guilliams, Mark E.

    2010-01-01

    Crewmembers regularly perform treadmill exercise on the ISS. With the implementation of T2 on ISS, there is now the capacity to obtain ground reaction force (GRF) data GRF data combined with video motion data allows biomechanical analyses to occur that generate joint torque estimates from exercise conditions. Knowledge of how speed and load influence joint torque will provide quantitative information on which exercise prescriptions can be based. The objective is to determine the joint kinematics, ground reaction forces, and joint kinetics associated with treadmill exercise on the ISS. This study will: 1) Determine if specific exercise speed and harness load combinations are superior to others in exercise benefit; and 2) Aid in the design of exercise prescriptions that will be most beneficial in maintaining crewmember health.

  6. Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise.

    PubMed

    O'Neill, Hayley M; Lally, James S; Galic, Sandra; Pulinilkunnil, Thomas; Ford, Rebecca J; Dyck, Jason R B; van Denderen, Bryce J; Kemp, Bruce E; Steinberg, Gregory R

    2015-07-01

    During submaximal exercise fatty acids are a predominant energy source for muscle contractions. An important regulator of fatty acid oxidation is acetyl-CoA carboxylase (ACC), which exists as two isoforms (ACC1 and ACC2) with ACC2 predominating in skeletal muscle. Both ACC isoforms regulate malonyl-CoA production, an allosteric inhibitor of carnitine palmitoyltransferase 1 (CPT-1); the primary enzyme controlling fatty acyl-CoA flux into mitochondria for oxidation. AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is activated during exercise or by pharmacological agents such as metformin and AICAR. In resting muscle the activation of AMPK with AICAR leads to increased phosphorylation of ACC (S79 on ACC1 and S221 on ACC2), which reduces ACC activity and malonyl-CoA; effects associated with increased fatty acid oxidation. However, whether this pathway is vital for regulating skeletal muscle fatty acid oxidation during conditions of increased metabolic flux such as exercise/muscle contractions remains unknown. To examine this we characterized mice lacking AMPK phosphorylation sites on ACC2 (S212 in mice/S221 in humans-ACC2-knock-in [ACC2-KI]) or both ACC1 (S79) and ACC2 (S212) (ACC double knock-in [ACCD-KI]) during submaximal treadmill exercise and/or ex vivo muscle contractions. We find that surprisingly, ACC2-KI mice had normal exercise capacity and whole-body fatty acid oxidation during treadmill running despite elevated muscle ACC2 activity and malonyl-CoA. Similar results were observed in ACCD-KI mice. Fatty acid oxidation was also maintained in muscles from ACC2-KI mice contracted ex vivo. These findings indicate that pathways independent of ACC phosphorylation are important for regulating skeletal muscle fatty acid oxidation during exercise/muscle contractions. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. Effects of treadmill exercise intensity on spatial working memory and long-term memory in rats.

    PubMed

    Wang, Xiao-Qin; Wang, Gong-Wu

    2016-03-15

    Moderate exercise promotes learning and memory. Most studies mainly focused on memory exercise effects of in the ageing and patients. There is lack of quantitative research about effect of regular exercise intensity on different memory types in normal subjects. Present study investigated the effects of different intensities of treadmill exercise on working memory and long-term memory. Fifty female Wistar rats were trained by T-maze delayed spatial alternation (DSA) task with 3 delays (10s, 60s and 300s). Then they got a 30min treadmill exercise for 30days in 4 intensities (control, 0m/min; lower, 15m/min; middle, 20m/min, and higher, 30m/min). Then animals were tested in DSA, passive avoidance and Morris water maze tasks. 1. Exercise increased the neuronal density of hippocampal subregions (CA1, CA3 and dentate gyrus) vs. naïve/control. 2. In DSA task, all groups have similar baseline, lower intensity improved 10s delay accuracy vs. baseline/control; middle and higher intensities improved 300s delay accuracy vs. baseline/control. 3. In water maze learning, all groups successfully found the platform, but middle intensity improved platform field crossing times vs. control in test phase. Present results suggested that treadmill exercise can improve long-term spatial memory and working memory; lower intensity benefits to short-term delayed working memory, and middle or higher intensity benefits to long-term delayed working memory. There was an inverted U dose-effect relationship between exercise intensity and memory performance, but exercise -working memory effect was impacted by delay duration. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effects of voluntary and treadmill exercise on spontaneous withdrawal signs, cognitive deficits and alterations in apoptosis-associated proteins in morphine-dependent rats.

    PubMed

    Mokhtari-Zaer, Amin; Ghodrati-Jaldbakhan, Shahrbanoo; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Akhavan, Maziar M; Bandegi, Ahmad Reza; Rashidy-Pour, Ali

    2014-09-01

    Chronic exposure to morphine results in cognitive deficits and alterations of apoptotic proteins in favor of cell death in the hippocampus, a brain region critically involved in learning and memory. Physical activity has been shown to have beneficial effects on brain health. In the current work, we examined the effects of voluntary and treadmill exercise on spontaneous withdrawal signs, the associated cognitive defects, and changes of apoptotic proteins in morphine-dependent rats. Morphine dependence was induced through bi-daily administrations of morphine (10mg/kg) for 10 days. Then, the rats were trained under two different exercise protocols: mild treadmill exercise or voluntary wheel exercise for 10 days. After exercise training, their spatial learning and memory and aversive memory were examined by a water maze and by an inhibitory avoidance task, respectively. The expression of the pro-apoptotic protein Bax and the anti-apoptotic protein Bcl-2 in the hippocampus were determined by immunoblotting. We found that chronic exposure to morphine impaired spatial and aversive memory and remarkably suppressed the expression of Bcl-2, but Bax expression remained constant. Both voluntary and treadmill exercise alleviated memory impairment, increased the expression of Bcl-2 protein, and only the later suppressed the expression of Bax protein in morphine-dependent animals. Moreover, both exercise protocols diminished the occurrence of spontaneous morphine withdrawal signs. Our findings showed that exercise reduces the spontaneous morphine-withdrawal signs, blocks the associated impairment of cognitive performance, and overcomes morphine-induced alterations in apoptotic proteins in favor of cell death. Thus, exercise may be a useful therapeutic strategy for cognitive and behavioral deficits in addict individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of supplemental oxygen on post-exercise inflammatory response and oxidative stress.

    PubMed

    White, Jodii; Dawson, Brian; Landers, Grant; Croft, Kevin; Peeling, Peter

    2013-04-01

    This investigation explored the influence of supplemental oxygen administered during the recovery periods of an interval-based running session on the post-exercise markers of reactive oxygen species (ROS) and inflammation. Ten well-trained male endurance athletes completed two sessions of 10 × 3 min running intervals at 85 % of the maximal oxygen consumption velocity (vVO(2)peak) on a motorised treadmill. A 90-s recovery period was given between each interval, during which time the participants were administered either a hyperoxic (HYP) (Fraction of Inspired Oxygen (FIO2) 99.5 %) or normoxic (NORM) (FIO2 21 %) gas, in a randomized, single-blind fashion. Pulse oximetry (SpO(2)), heart rate (HR), blood lactate (BLa), perceived exertion (RPE), and perceived recovery (TQRper) were recorded during each trial. Venous blood samples were taken pre-exercise, post-exercise and 1 h post-exercise to measure Interleukin-6 (IL-6) and Isoprostanes (F2-IsoP). The S(p)O(2) was significantly lower than baseline following all interval repetitions in both experimental trials (p < 0.05). The S(p)O(2) recovery time was significantly quicker in the HYP when compared to the NORM (p < 0.05), with a trend for improved perceptual recovery. The IL-6 and F2-IsoP were significantly elevated immediately post-exercise, but had significantly decreased by 1 h post-exercise in both trials (p < 0.05). There were no differences in IL-6 or F2-IsoP levels between trials. Supplemental oxygen provided during the recovery periods of interval based exercise improves the recovery time of SPO(2) but has no effect on post-exercise ROS or inflammatory responses.

  10. Different types of exercise induce differential effects on neuronal adaptations and memory performance.

    PubMed

    Lin, Tzu-Wei; Chen, Shean-Jen; Huang, Tung-Yi; Chang, Chia-Yuan; Chuang, Jih-Ing; Wu, Fong-Sen; Kuo, Yu-Min; Jen, Chauying J

    2012-01-01

    Different exercise paradigms show differential effects on various forms of memory. We hypothesize that the differential effects of exercises on memory performance are caused by different neuroplasticity changes in relevant brain regions in response to different exercise trainings. We examined the effects of treadmill running (TR) and wheel running (WR) on the Pavlovian fear conditioning task that assesses learning and memory performance associated with the amygdala (cued conditioning) and both the amygdala and hippocampus (contextual conditioning). The skeletal muscle citrate synthase activity, an indicator of aerobic capacity, was elevated in rats received 4 w of TR, but not WR. While both TR and WR elevated the contextual conditional response, only TR facilitated the cued conditional response. Using a single-neuron labeling technique, we found that while both TR and MR enlarged the dendritic field and increased the spine density in hippocampal CA3 neurons, only TR showed these effects in basolateral amygdalar neurons. Moreover, both types of exercise upregulated synaptic proteins (i.e., TrkB and SNAP-25) in the hippocampus; however only TR showed similar effects in the amygdala. Injection of K252a, a TrkB kinase inhibitor, in the dorsal hippocampus or basolateral amygdala abolished the exercise-facilitated contextual or cued fear learning and memory performance, respectively, regardless of the types of exercise. In summary, our results supported that different types of exercise affect the performance of learning and memory via BDNF-TrkB signaling and neuroplasticity in specific brain regions. The brain region-specific neuronal adaptations are possibly induced by various levels of intensity/stress elicited by different types of exercise. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. The effects of single bouts of aerobic exercise, exergaming, and videogame play on cognitive control.

    PubMed

    O'Leary, Kevin C; Pontifex, Matthew B; Scudder, Mark R; Brown, Michael L; Hillman, Charles H

    2011-08-01

    The effects of single bouts of aerobic exercise, exergaming, and action videogame play on event-related brain potentials (ERPs) and task performance indices of cognitive control were investigated using a modified flanker task that manipulated demands of attentional inhibition. Participants completed four counterbalanced sessions of 20 min of activity intervention (i.e., seated rest, seated videogame play, and treadmill-based and exergame-based aerobic exercise at 60% HR(max)) followed by cognitive testing once heart rate (HR) returned to within 10% of pre-activity levels. Results indicated decreased RT interference following treadmill exercise relative to seated rest and videogame play. P3 amplitude was increased following treadmill exercise relative to rest, suggesting an increased allocation of attentional resources during stimulus engagement. The seated videogame and exergame conditions did not differ from any other condition. The findings indicate that single bouts of treadmill exercise may improve cognitive control through an increase in the allocation of attentional resources and greater interference control during cognitively demanding tasks. However, similar benefits may not be derived following short bouts of aerobic exergaming or seated videogame participation. Although exergames may increase physical activity participation, they may not exert the same benefits to brain and cognition as more traditional physical activity behaviors. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Mission Specialist (MS) Bluford exercises on middeck treadmill

    NASA Image and Video Library

    1983-09-05

    STS008-13-0361 (30 Aug.-5 Sept. 1983) --- Astronaut Guion S. Bluford, STS-8 mission specialist, assists Dr. William E. Thornton (out of frame) with a medical test that requires use of the treadmill exercising device designed for spaceflight by the STS-8 medical doctor. This frame was shot with a 35mm camera. Photo credit: NASA

  13. Effects of acute supplementation of caffeine on cardiorespiratory responses during endurance running in a hot & humid climate.

    PubMed

    Ping, Wong Chee; Keong, Chen Chee; Bandyopadhyay, Amit

    2010-07-01

    Athletes in Malaysia need to perform in a hot and humid climate. Chronic supplementation of caffeine on endurance performance have been studied extensively in different populations. However, concurrent research on the effects of acute supplementation of caffeine on cardiorespiratory responses during endurance exercise in the Malaysian context especially in a hot and humid environment is unavailable. Nine heat adapted recreational Malaysian male runners (aged: 25.4+/-6.9 yr) who were nonusers of caffeine (23.7+/-12.6 mg per day) were recruited in this placebo--controlled double--blind randomized study. Caffeine (5 mg per kg of body weight) or placebo was ingested in the form of a capsule one hour prior to the running exercise trial at 70 per cent of VO2max on a motorised treadmill in a heat-controlled laboratory (31 degrees C, 70% relative humidity). Subjects drank 3 ml of cool water per kg of body weight every 20 min during the running trials to avoid the adverse effects of dehydration. Heart rate, core body temperature and rate of perceived exertion (RPE) were recorded at intervals of 10 min, while oxygen consumption was measured at intervals of 20 min. Running time to exhaustion was significantly (P<0.05) higher in the caffeine trial compared to the placebo trial. Heart rate, core body temperature, oxygen uptake and RPE did not show any significant variation between the trials but it increased significantly during exercise from their respective resting values in both trials (P<0.001). Our study showed that ingestion of 5 mg of caffeine per kg of body weight improved the endurance running performance but did not impose any significant effect on other individual cardiorespiratory parameters of heat-acclimated recreational runners in hot and humid conditions.

  14. Physiological correlates of 2-mile run performance as determined using a novel on-demand treadmill.

    PubMed

    Tolfrey, Keith; Hansen, Simon A; Dutton, Katie; McKee, Tom; Jones, Andrew M

    2009-08-01

    The purpose of this study was to assess the reproducibility of an on-demand motorised treadmill to measure 2-mile (3.2 km) race performance and to examine the physiological variables that best predict this free-running performance in active men. Twelve men (mean (SD): age, 28 (9) years; stature, 1.79 (0.05) m; body mass, 72 (9) kg) completed the study in which maximum oxygen uptake (VO2 max), running economy, and running speedin the abstract section. They appear in the rest of the paper.), running economy, and running speed at VO2 max (vVO2 max), lactate threshold (vLT), and 4 mmol.L-1 fixed blood lactate concentration (v4) were measured. Subsequently, the maximal lactate steady state (MLSS) was identified using a series of 30-min treadmill runs. Finally, each participant completed a 2-mile running performance trial on 2 separate occasions, using an on-demand treadmill that adjusts belt speed according to the participant's position on the moving belt. The average 2-mile run speed was 15.7 (SD, 1.9) km.h-1, with small individual differences between repeat-performance trials (intraclass correlation coefficient = 0.99, 95% CI 0.953 to 0.996; standard error of measurement as coefficient of variation = 1.5%, 95% CI 1.0% to 2.5%). Bivariate regression analyses identified VO2 max, vVO2 max, VO2 (mL.kg-1.min-1) at MLSS, vLT, v4, and velocity at MLSS (vMLSS) as the strongest individual predictor variables (r2 = 0.69 to 0.87; standard error of the estimate = 1.08 to 0.72 km.h-1) for 2-mile running performance. The vLT and vMLSS explained 85% and 87% of the variance in running performance, respectively, suggesting that there is considerable shared variance between these parameters. In conclusion, the on-demand treadmill system provided a reliable measure of distance running performance. Both vLT and vMLSS were strong predictors of 2-mile running performance, with vMLSS explaining marginally more of the variance.

  15. Stress biomarker responses to different protocols of forced exercise in chronically stressed rats.

    PubMed

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin

    2017-01-01

    Stress is one of the most significant causes of major health problems on a global scale. The beneficial effects of exercise on combating stress, however, are well-established. The present study investigated the stress biomarker responses, such as serum corticosterone, interlukin-1β, and glucose levels, to different (preventive, therapeutic, protective, and continuous) protocols of forced exercise under stress. Male rats were randomly allocated to the following five groups: stressed, preventive, therapeutic, protective, and continuous (and/or pre-stress, post-stress, stress-accompanied, and both pre-stress and stress-accompanied exercise respectively) exercise groups. Stress was applied 6 h/day for 21 days and the treadmill running was employed at a speed of 20-21 m/min for 21 and 42 days. The findings showed that the therapeutic, protective, and continuous exercises led to reduced corticosterone and glucose levels. Whereas, the preventive exercise did not reverse the stress responses, and that the therapeutic exercise led to a significant decline in serum interlukin-1β. It is concluded that protective, therapeutic, and, particularly, continuous exercises lead to significant reductions in serum corticosterone and the associated stress-induced hyperglycemia. Moreover, it appears that the timing and duration of exercise are the two factors contributing to changes in stress biomarker responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The effect of estrogen on muscle damage biomarkers following prolonged aerobic exercise in eumenorrheic women.

    PubMed

    Williams, T; Walz, E; Lane, A R; Pebole, M; Hackney, A C

    2015-09-01

    This study assessed the influence of estrogen (E2) on muscle damage biomarkers [skeletal muscle - creatine kinase (CK); cardiac muscle - CK-MB] responses to prolonged aerobic exercise. Eumenorrheic women (n=10) who were physically active completed two 60-minute treadmill running sessions at ∼60-65% maximal intensity during low E2 (midfollicular menstrual phase) and high E2 (midluteal menstrual phase) hormonal conditions. Blood samples were collected prior to exercise (following supine rest), immediately post-, 30 min post-, and 24 hours post-exercise to determine changes in muscle biomarkers. Resting blood samples confirmed appropriate E2 hormonal levels Total CK concentrations increased following exercise and at 24 hours post-exercise were higher in the midfollicular low E2 phase (p<0.001). However, CK-MB concentrations were unaffected by E2 level or exercise (p=0.442) resulting in the ratio of CK-MB to total CK being consistently low in subject responses (i.e., indicative of skeletal muscle damage). Elevated E2 levels reduce the CK responses of skeletal muscle, but had no effect on CK-MB responses following prolonged aerobic exercise. These findings support earlier work showing elevated E2 is protective of skeletal muscle from exercise-induced damage associated with prolonged aerobic exercise.

  17. The effect of estrogen on muscle damage biomarkers following prolonged aerobic exercise in eumenorrheic women

    PubMed Central

    Walz, E; Lane, AR; Pebole, M; Hackney, AC

    2015-01-01

    This study assessed the influence of estrogen (E2) on muscle damage biomarkers [skeletal muscle - creatine kinase (CK); cardiac muscle - CK-MB] responses to prolonged aerobic exercise. Eumenorrheic women (n=10) who were physically active completed two 60-minute treadmill running sessions at ∼60-65% maximal intensity during low E2 (midfollicular menstrual phase) and high E2 (midluteal menstrual phase) hormonal conditions. Blood samples were collected prior to exercise (following supine rest), immediately post-, 30 min post-, and 24 hours post-exercise to determine changes in muscle biomarkers. Resting blood samples confirmed appropriate E2 hormonal levels Total CK concentrations increased following exercise and at 24 hours post-exercise were higher in the midfollicular low E2 phase (p<0.001). However, CK-MB concentrations were unaffected by E2 level or exercise (p=0.442) resulting in the ratio of CK-MB to total CK being consistently low in subject responses (i.e., indicative of skeletal muscle damage). Elevated E2 levels reduce the CK responses of skeletal muscle, but had no effect on CK-MB responses following prolonged aerobic exercise. These findings support earlier work showing elevated E2 is protective of skeletal muscle from exercise-induced damage associated with prolonged aerobic exercise. PMID:26424921

  18. Effects of Physical Exercise on Executive Functions: Going beyond Simply Moving to Moving with Thought

    PubMed Central

    Diamond, Adele

    2015-01-01

    Studies of the cognitive benefits of physical activity need to move beyond simple aerobic activities that require little thought (treadmill running, riding a stationary bicycle, or rapid walking) and resistance training. Many studies have looked at this in older adults, and the evidence points strongly to those activities having little or no cognitive benefit, certainly little or no improvement to the executive functions that depend on prefrontal cortex. There is encouraging evidence for other types of physical activity improving executive functions; however they have received far less study. PMID:26000340

  19. Kinematic and EMG Comparison of Gait in Normal and Microgravity

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Edwards, W. Brent; Perusek, Gail P.; Lewandowski, Beth E.; Samorezov, Sergey

    2009-01-01

    Astronauts regularly perform treadmill locomotion as a part of their exercise prescription while onboard the International Space Station. Although locomotive exercise has been shown to be beneficial for bone, muscle, and cardiovascular health, astronauts return to Earth after long duration missions with net losses in all three areas [1]. These losses might be partially explained by fundamental differences in locomotive performance between normal gravity (NG) and microgravity (MG) environments. During locomotive exercise in MG, the subject must wear a waist and shoulder harness that is attached to elastomer bungees. The bungees are attached to the treadmill, and provide forces that are intended to replace gravity. However, unlike gravity, which provides a constant force upon all body parts, the bungees provide a spring force only to the harness. Therefore, subjects are subjected to two fundamental differences in MG: 1) forces returning the subject to the treadmill are not constant, and 2) forces are only applied to the axial skeleton at the waist and shoulders. The effectiveness of the exercise may also be affected by the magnitude of the gravity replacement load. Historically, astronauts have difficulty performing treadmill exercise with loads that approach body weight (BW) due to comfort and inherent stiffness in the bungee system. Although locomotion can be executed in MG, the unique requirements could result in performance differences as compared to NG. These differences may help to explain why long term training effects of treadmill exercise may differ from those found in NG. The purpose of this investigation was to compare locomotion in NG and MG to determine if kinematic or muscular activation pattern differences occur between gravitational environments.

  20. Effect of thyme extract supplementation on lipid peroxidation, antioxidant capacity, PGC-1α content and endurance exercise performance in rats.

    PubMed

    Khani, Mostafa; Motamedi, Pezhman; Dehkhoda, Mohammad Reza; Dabagh Nikukheslat, Saeed; Karimi, Pouran

    2017-01-01

    Athletes have a large extent of oxidant agent production. In the current study, we aimed to determine the influence of thyme extract on the endurance exercise performance, mitochondrial biogenesis, and antioxidant status in rats. Twenty male Wistar rats were randomly divided into two groups receiving either normal drinking water (non-supplemented group, n  = 10) or thyme extract, 400 mg/kg, (supplemented group, n  = 10). Rats in both groups were subjected to endurance treadmill training (27 m/min, 10% grade, 60 min, and 5 days/week for 8 weeks). Finally, to determine the endurance capacity, time to exhaustion treadmill running at 36 m/min speed was assessed. At the end of the endurance capacity test, serum and soleus muscle samples were collected and their superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity, as well as malondialdehyde (MDA) concentration were measured. Protein expression of PGC-1α, as a marker of mitochondrial biogenesis, was also determined in the soleus muscle tissue by immunoblotting assay. Findings revealed that the exhaustive running time in the treatment group was significantly ( p  < 0.05) prolonged. Both serum and soleus muscle MDA levels, as an index of lipid peroxidation, had a threefold increase in the thyme extract supplemented group (t 18  = 8.11, p  < 0.01; t 18  = 4.98, p  < 0.01 respectively). The activities of SOD and GPx of the soleus muscle were significantly ( p  < 0.05) higher in the non-supplemented group, while there was no significant difference in serum SOD, GPx activities, and total antioxidant capacity between groups. Furthermore, thyme supplementation significantly ( p  < 0.05) decreased PGC-1α expression. Thyme extract supplementation increased endurance exercise tolerance in intact animals, although decrease of oxidative stress and regulation of the PGC-1α protein expression are not considered as underlying molecular mechanisms.

  1. The effects of swimming and running on energy intake during 2 hours of recovery.

    PubMed

    Lambert, C P; Flynn, M G; Braun, W A; Boardley, D J

    1999-12-01

    To determine energy intake in the 2 hrs after swimming (S) and running (R) at the same relative exercise intensity and duration (71.8 +/- 2.5% VO2max; 45 min) to evaluate whether a difference in recovery energy intake could explain the greater body fat observed in swimmers relative to runners. this was a randomized crossover design. running exercise was conducted on a motorized treadmill (Quinton) while swimming was conducted in a 45.7 m pool. eight well-trained competitive male triathletes participated in this investigation. subjects were blinded to the purpose of the study and swam and ran on separate occasions for 45 min at 71.8 +/- 2.5% of VO2max. Subjects were then placed in a room with a variety of foods and beverages for 2 hrs after R and S. energy intake (kJ/2 hrs and kcal/2 hrs) was determined by weighing and measuring the food remaining in the room after 2 hrs of postexercise recovery. Expired gases, heart rates, and Ratings of Perceived Exertion were obtained at 15 min intervals throughout exercise. Blood samples for serum glucose and lactate were obtained preexercise and immediately, 15 min, and 135 min postexercise. Perceived hunger and thirst ratings were obtained after the subjects were seated in the room containing the food. Serum glucose was significantly (p < or = 0.05) higher after R compared to S immediately after exercise (5.4 +/- 0.3 mmol/L for R and 4.2 +/- 0.1 mmol/L for S) but no significant differences were observed for hunger using a five point Likert scale (3.3 +/- 0.3 for R and 3.4 +/- 0.3 for S), energy intake (4584 +/- 611 kJ/2 hrs; 1095 +/- 146 kcal/2 hrs for R and 4383 +/- 484 kJ/2 hrs; 1047 +/- 116 kcal for S) or blood lactate. The type of exercise, swimming or running, did not significantly influence energy intake during 2 hours of postexercise recovery.

  2. Peak Velocity as an Alternative Method for Training Prescription in Mice.

    PubMed

    Picoli, Caroline de Carvalho; Romero, Paulo Vitor da Silva; Gilio, Gustavo R; Guariglia, Débora A; Tófolo, Laize P; de Moraes, Solange M F; Machado, Fabiana A; Peres, Sidney B

    2018-01-01

    Purpose: To compare the efficiency of an aerobic physical training program prescribed according to either velocity associated with maximum oxygen uptake (vVO 2max ) or peak running speed obtained during an incremental treadmill test (V peak_K ) in mice. Methods: Twenty male Swiss mice, 60 days old, were randomly divided into two groups with 10 animals each: 1. group trained by vVO 2max (GVO 2 ), 2. group trained by V peak_K (GVP). After the adaptation training period, an incremental test was performed at the beginning of each week to adjust training load and to determine the amount of VO 2 and VCO 2 fluxes consumed, energy expenditure (EE) and run distance during the incremental test. Mice were submitted to 4 weeks of aerobic exercise training of moderate intensity (velocity referring to 70% of vVO 2max and V peak_K ) in a programmable treadmill. The sessions lasted from 30 to 40 min in the first week, to reach 60 min in the fourth week, in order to provide the mice with a moderate intensity exercise, totaling 20 training sessions. Results: Mice demonstrated increases in VO 2max (ml·kg -1 ·min -1 ) (GVO 2 = 49.1% and GVP = 56.2%), V peak_K (cm·s -1 ) (GVO 2 = 50.9% and GVP = 22.3%), EE (ml·kg -0,75 ·min -1 ) (GVO 2 = 39.9% and GVP = 51.5%), and run distance (cm) (GVO 2 = 43.5% and GVP = 33.4%), after 4 weeks of aerobic training (time effect, P < 0.05); there were no differences between the groups. Conclusions: V peak_K , as well as vVO 2max , can be adopted as an alternative test to determine the performance and correct prescription of systemized aerobic protocol training to mice.

  3. Establishing a Practical Treadmill Sprint as an Alternative to the Wingate Anaerobic Test

    ERIC Educational Resources Information Center

    McKie, Greg L.; Islam, Hashim; Townsend, Logan K.; Howe, Greg J.; Hazell, Tom J.

    2018-01-01

    This study examined the validity and reliability of a 30-second running sprint test using two non-motorized treadmills compared to the established Wingate Anaerobic Test. Twenty-four participants completed three sessions in a randomized order on a: (1) manual mode treadmill (Woodway); (2) specialized interval training treadmill (HiTrainer); and…

  4. Physiologic and perceptual responses during treadmill running with ankle weights.

    PubMed

    Bhambhani, Y N; Gomes, P S; Wheeler, G

    1990-03-01

    This study examined the effects of ankle weighting on physiologic and perceptual responses during treadmill running in seven healthy, female recreational runners with a mean maximal aerobic power of 48.4 +/- 4.0 ml/kg/min. Each subject completed four experimental one-mile runs at individually selected treadmill running speeds with 0, 1.6, 3.2 and 4.8 kg weights on their ankles. The subjects selected a speed at which they would run (train) if their objectives were to significantly improve cardiovascular function and induce weight loss. Metabolic and cardiovascular responses were continuously monitored, and ratings of perceived exertion were recorded near the end of the activity. During the unweighted run, the subjects selected a running speed of 6.87 +/- 0.63 mph which resulted in a net energy expenditure of 0.153 kcal/kg/min or 1.34 +/- 0.16 kcal/kg/mile. This corresponded to a training intensity of 76.3% +/- 5.1% of maximum oxygen consumption or 88.1% +/- 9.7% of maximum heart rate. Addition of weight to the ankles caused a significant decrease (p less than .05) in the running speed selected and, therefore, did not result in any significant changes (p greater than .05) in the rate of oxygen consumption, heart rate or ratings of perceived exertion when compared to the unweighted condition. These observations are in contrast to previous studies on ankle weighting which were conducted at fixed treadmill running speeds. However, the use of ankle weights did have a tendency to increase gross and net energy expenditure of running when values were expressed in kcal/mile because of slower self-selected running speeds under these conditions. This increase in energy expenditure could be of physiologic significance if running with ankle weights was performed on a regular basis at a fixed distance.

  5. No influence of ischemic preconditioning on running economy.

    PubMed

    Kaur, Gungeet; Binger, Megan; Evans, Claire; Trachte, Tiffany; Van Guilder, Gary P

    2017-02-01

    Many of the potential performance-enhancing properties of ischemic preconditioning suggest that the oxygen cost for a given endurance exercise workload will be reduced, thereby improving the economy of locomotion. The aim of this study was to identify whether ischemic preconditioning improves exercise economy in recreational runners. A randomized sham-controlled crossover study was employed in which 18 adults (age 27 ± 7 years; BMI 24.6 ± 3 kg/m 2 ) completed two, incremental submaximal (65-85% VO 2max ) treadmill running protocols (3 × 5 min stages from 7.2-14.5 km/h) coupled with indirect calorimetry to assess running economy following ischemic preconditioning (3 × 5 min bilateral upper thigh ischemia) and sham control. Running economy was expressed as mlO 2 /kg/km and as the energy in kilocalories required to cover 1 km of horizontal distance (kcal/kg/km). Ischemic preconditioning did not influence steady-state heart rate, oxygen consumption, minute ventilation, respiratory exchange ratio, energy expenditure, and blood lactate. Likewise, running economy was similar (P = 0.647) between the sham (from 201.6 ± 17.7 to 204.0 ± 16.1 mlO 2 /kg/km) and ischemic preconditioning trials (from 202.8 ± 16.2 to 203.1 ± 15.6 mlO 2 /kg/km). There was no influence (P = 0.21) of ischemic preconditioning on running economy expressed as the caloric unit cost (from 0.96 ± 0.12 to 1.01 ± 0.11 kcal/kg/km) compared with sham (from 1.00 ± 0.10 to 1.00 ± 0.08 kcal/kg/km). The properties of ischemic preconditioning thought to affect exercise performance at vigorous to severe exercise intensities, which generate more extensive physiological challenge, are ineffective at submaximal workloads and, therefore, do not change running economy.

  6. Effect of running exercise on the number of the neurons in the hippocampus of young transgenic APP/PS1 mice.

    PubMed

    Jiang, Lin; Ma, Jing; Zhang, Yi; Zhou, Chun-Ni; Zhang, Lei; Chao, Feng-Lei; Chen, Lin-Mu; Jiang, Rong; Wu, Hong; Tang, Yong

    2018-08-01

    To investigate the effect of running exercise on the number of the neurons in the hippocampus of young APP/PS1 mice, twenty 6-month-old male APP/ PS1 transgenic mice were randomly divided into the APP/PS1 control (AD control) group and the APP/PS1 running (AD running) group (10 mice per group), and ten wild-type mice of the littermate were regarded as the wild-type (WT) group. The AD running mice ran on motorized treadmill machiene for 4 months, while the WT mice and AD control mice were housed in standard condition without running. Then, Morris water maze tests (MWM) were used to assess the special learning and memory abilities of mice in three groups. The stereological methods were used to quantitatively evaluate the volume of the hippocampus, CA1/2, CA3 and the dentate gyrus (DG) and count the number of the neurons in CA1/2, CA3 and DG. We found that 4-month running effectively shortened the escape latency of young APP/PS1 control mice in MWM. More importantly, 4-month running effectively increased the volumes of the hippocampus, CA1/2, CA3 and DG and increased the number of neurons in CA1/2, CA3 and DG in young APP/PS1 mice. The present results suggested that 4-month running has significant beneficial effects on the spatial learning and memory capacities of young APP/PS1 mice and could delay the progress of atrophy of hippocampus and the neuron death in CA1/2, CA3 and DG in young APP/PS1 mice. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Running and Breathing in Mammals

    NASA Astrophysics Data System (ADS)

    Bramble, Dennis M.; Carrier, David R.

    1983-01-01

    Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.

  8. Effects of a 6-Week Aquatic Treadmill Exercise Program on Cardiorespiratory Fitness and Walking Endurance in Subacute Stroke Patients: A PILOT TRIAL.

    PubMed

    Han, Eun Young; Im, Sang Hee

    2017-03-15

    To assess the feasibility and safety of a 6-week course of water walking performed using a motorized aquatic treadmill in individuals with subacute stroke for cardiorespiratory fitness, walking endurance, and activities of daily living. Twenty subacute stroke patents were randomly assigned to aquatic treadmill exercise (ATE) or land-based exercise (LBE). The ATE group (n = 10) performed water-based aerobic exercise on a motorized aquatic treadmill, and the LBE group (n = 10) performed land-based aerobic exercise on a cycle ergometer. Both groups performed aerobic exercise for 30 minutes, 5 times per week for 6 weeks. Primary outcome measures were 6-minute walk test for walking endurance and cardiopulmonary fitness parameters of a symptom-limited exercise tolerance test, and secondary measures were Korean version of the Modified Barthel Index (K-MBI) for activities of daily living. All variables were assessed at baseline and at the end of the intervention. The ATE group showed significant improvements in 6-minute walk test (P = .005), peak oxygen uptake (V·o2peak; P = .005), peak heart rate (P = .007), exercise tolerance test duration (P = .005), and K-MBI (P = .008). The LBE group showed a significant improvement only in K-MBI (P = .012). In addition, improvement in V·o2peak was greater in the ATE than in the LBE group. This preliminary study showed that a 6-week ATE program improved peak aerobic capacity and walking endurance in patients with subacute stroke. The improvement in V·o2peak after an ATE exercise program was greater than that observed after an LBE program. Therefore, ATE effectively improves cardiopulmonary fitness in patients with subacute stroke.

  9. Phototherapy during treadmill training improves quadriceps performance in postmenopausal women.

    PubMed

    Paolillo, F R; Corazza, A V; Paolillo, A R; Borghi-Silva, A; Arena, R; Kurachi, C; Bagnato, V S

    2014-06-01

    To evaluate the effects of infrared-light-emitting diode (LED) during treadmill training on functional performance. Thirty postmenopausal women aged 50-60 years were randomly assigned to one of three groups and successfully completed the full study. The three groups were: (1) the LED group, which performed treadmill training associated with phototherapy (n = 10); (2) the exercise group, which carried out treadmill training only (n = 10); and (3) the sedentary group, which neither performed physical training nor underwent phototherapy (n = 10). Training was performed over a period of 6 months, twice a week for 45 min per session at 85-90% of maximal heart rate, which was obtained during progressive exercise testing. The irradiation parameters were 100 mW, 39 mW/cm(2) and 108 J/cm(2) for 45 min. Quadriceps performance was measured during isokinetic exercise testing at 60°/s and 300°/s. Peak torque did not differ amongst the groups. However, the results showed significantly higher values of power and total work for the LED group (∆ = 21 ± 6 W and ∆ = 634 ± 156 J, p < 0.05) when compared to both the exercise group (∆ = 13 ± 10 W and = 410 ± 270 J) and the sedentary group (∆ = 10 ± 9 W and ∆ = 357 ± 327 J). Fatigue was also significantly lower in the LED group (∆ = -7 ± 4%, p < 0.05) compared to both the exercise group (∆ = 3 ± 8%) and the sedentary group (∆ = -2 ± 6%). Infrared-LED during treadmill training may improve quadriceps power and reduce peripheral fatigue in postmenopausal women.

  10. Exercise hyperthermia as a factor limiting physical performance - Temperature effect on muscle metabolism

    NASA Technical Reports Server (NTRS)

    Kozlowski, S.; Brzezinska, Z.; Kruk, B.; Kaciuba-Uscilko, H.; Greenleaf, J. E.

    1985-01-01

    The effect of trunk cooling on the muscle contents of ATP, ADP, AMP, creatine phosphate (CrP), and creatine, as well as of glycogen, some glycolytic intermediates, pyruvate, and lactate were assessed in 11 fasted dogs exercised at 20 C on treadmill to exhaustion. Without cooling, dogs were able to run 57 min, and their rectal (Tre) and muscle (Tm) temperatures increased to 41.8 and 43.0 C, respectively. Cooling with ice packs prolonged the ability to run by 45 percent, and resulted in lower Tre (by 1.1 C) and Tm (by 1.2 C). Depletion of muscle content of total high-energy phosphates (ATP + CrP) and glycogen, and increases in contents of AMP, pyruvate, and lactate were lower in cooled dogs than in non-cooled dogs. The muscle content of lactiate correlated positively with TM. These results indicate that hypothermia accelerates glycolysis, and shifts the equilibrium between high- and low-energy phosphates in favor of the latter. The adverse effect of hypothermia on muscle metabolism may be relevant to the limitation of endurance.

  11. High-intensity exercise training induces morphological and biochemical changes in skeletal muscles.

    PubMed

    Toti, L; Bartalucci, A; Ferrucci, M; Fulceri, F; Lazzeri, G; Lenzi, P; Soldani, P; Gobbi, P; La Torre, A; Gesi, M

    2013-12-01

    IN THE PRESENT STUDY WE INVESTIGATED THE EFFECT OF TWO DIFFERENT EXERCISE PROTOCOLS ON FIBRE COMPOSITION AND METABOLISM OF TWO SPECIFIC MUSCLES OF MICE: the quadriceps and the gastrocnemius. Mice were run daily on a motorized treadmill, at a velocity corresponding to 60% or 90% of the maximal running velocity. Blood lactate and body weight were measured during exercise training. We found that at the end of training the body weight significantly increased in high-intensity exercise mice compared to the control group (P=0.0268), whereas it decreased in low-intensity exercise mice compared to controls (P=0.30). In contrast, the food intake was greater in both trained mice compared to controls (P < 0.0001 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively). These effects were accompanied by a progressive reduction in blood lactate levels at the end of training in both the exercised mice compared with controls (P=0.03 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively); in particular, blood lactate levels after high-intensity exercise were significantly lower than those measured in low-intensity exercise mice (P=0.0044). Immunoblotting analysis demonstrated that high-intensity exercise training produced a significant increase in the expression of mitochondrial enzymes contained within gastrocnemius and quadriceps muscles. These changes were associated with an increase in the amount of slow fibres in both these muscles of high-intensity exercise mice, as revealed by the counts of slow fibres stained with specific antibodies (P < 0.0001 for the gastrocnemius; P=0.0002 for the quadriceps). Our results demonstrate that high-intensity exercise, in addition to metabolic changes consisting of a decrease in blood lactate and body weight, induces an increase in the mitochondrial enzymes and slow fibres in different skeletal muscles of mice, which indicates an exercise-induced increase in the aerobic metabolism.

  12. Evaluation of exercise capacity after severe stroke using robotics-assisted treadmill exercise: a proof-of-concept study.

    PubMed

    Stoller, O; de Bruin, E D; Schindelholz, M; Schuster, C; de Bie, R A; Hunt, K J

    2013-01-01

    Robotics-assisted treadmill exercise (RATE) with focus on motor recovery has become popular in early post-stroke rehabilitation but low endurance for exercise is highly prevalent in these individuals. This study aimed to develop an exercise testing method using robotics-assisted treadmill exercise to evaluate aerobic capacity after severe stroke. Constant load testing (CLT) based on body weight support (BWS) control, and incremental exercise testing (IET) based on guidance force (GF) control were implemented during RATE. Analyses focussed on step change, step response kinetics, and peak performance parameters of oxygen uptake. Three subjects with severe motor impairment 16-23 days post-stroke were included. CLT yielded reasonable step change values in oxygen uptake, whereas response kinetics of oxygen uptake showed low goodness of fit. Peak performance parameters were not obtained during IET. Exercise testing in post-stroke individuals with severe motor impairments using a BWS control strategy for CLT is deemed feasible and safe. Our approach yielded reasonable results regarding cardiovascular performance parameters. IET based on GF control does not provoke peak cardiovascular performance due to uncoordinated walking patterns. GF control needs further development to optimally demand active participation during RATE. The findings warrant further research regarding the evaluation of exercise capacity after severe stroke.

  13. Reliability and Validity of the Borg and OMNI Rating of Perceived Exertion Scales in Adolescent Girls.

    ERIC Educational Resources Information Center

    Pfeiffer, Karin A.; Pivarnik, James M.; Womack, Christopher J.; Reeves, Mathew J.; Malina, Robert M.

    2002-01-01

    Investigated the reliability and validity of the Borg and OMNI rating of perceived exertion (RPE) scales in adolescent girls during treadmill exercise. Girls were randomly assigned to one of the RPE scales during various treadmill exercise conditions. Results indicated that the OMNI cycle pictorial scale was reliable and valid for use with…

  14. Neuronal BDNF Signaling Is Necessary for the Effects of Treadmill Exercise on Synaptic Stripping of Axotomized Motoneurons

    PubMed Central

    Krakowiak, Joey; Liu, Caiyue; Papudesu, Chandana; Ward, P. Jillian; Wilhelm, Jennifer C.; English, Arthur W.

    2015-01-01

    The withdrawal of synaptic inputs from the somata and proximal dendrites of spinal motoneurons following peripheral nerve injury could contribute to poor functional recovery. Decreased availability of neurotrophins to afferent terminals on axotomized motoneurons has been implicated as one cause of the withdrawal. No reduction in contacts made by synaptic inputs immunoreactive to the vesicular glutamate transporter 1 and glutamic acid decarboxylase 67 is noted on axotomized motoneurons if modest treadmill exercise, which stimulates the production of neurotrophins by spinal motoneurons, is applied after nerve injury. In conditional, neuron-specific brain-derived neurotrophic factor (BDNF) knockout mice, a reduction in synaptic contacts onto motoneurons was noted in intact animals which was similar in magnitude to that observed after nerve transection in wild-type controls. No further reduction in coverage was found if nerves were cut in knockout mice. Two weeks of moderate daily treadmill exercise following nerve injury in these BDNF knockout mice did not affect synaptic inputs onto motoneurons. Treadmill exercise has a profound effect on synaptic inputs to motoneurons after peripheral nerve injury which requires BDNF production by those postsynaptic cells. PMID:25918648

  15. Assessing Stride Variables and Vertical Stiffness with GPS-Embedded Accelerometers: Preliminary Insights for the Monitoring of Neuromuscular Fatigue on the Field

    PubMed Central

    Buchheit, Martin; Gray, Andrew; Morin, Jean-Benoit

    2015-01-01

    The aim of the present study was to examine the ability of a GPS-imbedded accelerometer to assess stride variables and vertical stiffness (K), which are directly related to neuromuscular fatigue during field-based high-intensity runs. The ability to detect stride imbalances was also examined. A team sport player performed a series of 30-s runs on an instrumented treadmill (6 runs at 10, 17 and 24 km·h-1) with or without his right ankle taped (aimed at creating a stride imbalance), while wearing on his back a commercially-available GPS unit with an embedded 100-Hz tri-axial accelerometer. Contact (CT) and flying (FT) time, and K were computed from both treadmill and accelerometers (Athletic Data Innovations) data. The agreement between treadmill (criterion measure) and accelerometer-derived data was examined. We also compared the ability of the different systems to detect the stride imbalance. Biases were small (CT and K) and moderate (FT). The typical error of the estimate was trivial (CT), small (K) and moderate (FT), with nearly perfect (CT and K) and large (FT) correlations for treadmill vs. accelerometer. The tape induced very large increase in the right - left foot ∆ in CT, FT and K measured by the treadmill. The tape effect on CT and K ∆ measured with the accelerometers were also very large, but of lower magnitude than with the treadmill. The tape effect on accelerometer-derived ∆ FT was unclear. Present data highlight the potential of a GPS-embedded accelerometer to assess CT and K during ground running. Key points GPS-embedded tri-axial accelerometers may be used to assess contact time and vertical stiffness during ground running. These preliminary results open new perspective for the field monitoring of neuromuscular fatigue and performance in run-based sports PMID:26664264

  16. Reproducibility of the exponential rise technique of CO(2) rebreathing for measuring P(v)CO(2) and C(v)CO(2 )to non-invasively estimate cardiac output during incremental, maximal treadmill exercise.

    PubMed

    Cade, W Todd; Nabar, Sharmila R; Keyser, Randall E

    2004-05-01

    The purpose of this study was to determine the reproducibility of the indirect Fick method for the measurement of mixed venous carbon dioxide partial pressure (P(v)CO(2)) and venous carbon dioxide content (C(v)CO(2)) for estimation of cardiac output (Q(c)), using the exponential rise method of carbon dioxide rebreathing, during non-steady-state treadmill exercise. Ten healthy participants (eight female and two male) performed three incremental, maximal exercise treadmill tests to exhaustion within 1 week. Non-invasive Q(c) measurements were evaluated at rest, during each 3-min stage, and at peak exercise, across three identical treadmill tests, using the exponential rise technique for measuring mixed venous PCO(2) and CCO(2) and estimating venous-arterio carbon dioxide content difference (C(v-a)CO(2)). Measurements were divided into measured or estimated variables [heart rate (HR), oxygen consumption (VO(2)), volume of expired carbon dioxide (VCO(2)), end-tidal carbon dioxide (P(ET)CO(2)), arterial carbon dioxide partial pressure (P(a)CO(2)), venous carbon dioxide partial pressure ( P(v)CO(2)), and C(v-a)CO(2)] and cardiorespiratory variables derived from the measured variables [Q(c), stroke volume (V(s)), and arteriovenous oxygen difference ( C(a-v)O(2))]. In general, the derived cardiorespiratory variables demonstrated acceptable (R=0.61) to high (R>0.80) reproducibility, especially at higher intensities and peak exercise. Measured variables, excluding P(a)CO(2) and C(v-a)CO(2), also demonstrated acceptable (R=0.6 to 0.79) to high reliability. The current study demonstrated acceptable to high reproducibility of the exponential rise indirect Fick method in measurement of mixed venous PCO(2) and CCO(2) for estimation of Q(c) during incremental treadmill exercise testing, especially at high-intensity and peak exercise.

  17. Maximal exercise testing variables and 10-year survival: fitness risk score derivation from the FIT Project.

    PubMed

    Ahmed, Haitham M; Al-Mallah, Mouaz H; McEvoy, John W; Nasir, Khurram; Blumenthal, Roger S; Jones, Steven R; Brawner, Clinton A; Keteyian, Steven J; Blaha, Michael J

    2015-03-01

    To determine which routinely collected exercise test variables most strongly correlate with survival and to derive a fitness risk score that can be used to predict 10-year survival. This was a retrospective cohort study of 58,020 adults aged 18 to 96 years who were free of established heart disease and were referred for an exercise stress test from January 1, 1991, through May 31, 2009. Demographic, clinical, exercise, and mortality data were collected on all patients as part of the Henry Ford ExercIse Testing (FIT) Project. Cox proportional hazards models were used to identify exercise test variables most predictive of survival. A "FIT Treadmill Score" was then derived from the β coefficients of the model with the highest survival discrimination. The median age of the 58,020 participants was 53 years (interquartile range, 45-62 years), and 28,201 (49%) were female. Over a median of 10 years (interquartile range, 8-14 years), 6456 patients (11%) died. After age and sex, peak metabolic equivalents of task and percentage of maximum predicted heart rate achieved were most highly predictive of survival (P<.001). Subsequent addition of baseline blood pressure and heart rate, change in vital signs, double product, and risk factor data did not further improve survival discrimination. The FIT Treadmill Score, calculated as [percentage of maximum predicted heart rate + 12(metabolic equivalents of task) - 4(age) + 43 if female], ranged from -200 to 200 across the cohort, was near normally distributed, and was found to be highly predictive of 10-year survival (Harrell C statistic, 0.811). The FIT Treadmill Score is easily attainable from any standard exercise test and translates basic treadmill performance measures into a fitness-related mortality risk score. The FIT Treadmill Score should be validated in external populations. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  18. High Intensity Aerobic Exercise Training Improves Deficits of Cardiovascular Autonomic Function in a Rat Model of Type 1 Diabetes Mellitus with Moderate Hyperglycemia

    PubMed Central

    Grisé, Kenneth N.; Olver, T. Dylan; McDonald, Matthew W.; Dey, Adwitia; Jiang, Mao; Lacefield, James C.; Shoemaker, J. Kevin; Noble, Earl G.; Melling, C. W. James

    2016-01-01

    Indices of cardiovascular autonomic neuropathy (CAN) in experimental models of Type 1 diabetes mellitus (T1DM) are often contrary to clinical data. Here, we investigated whether a relatable insulin-treated model of T1DM would induce deficits in cardiovascular (CV) autonomic function more reflective of clinical results and if exercise training could prevent those deficits. Sixty-four rats were divided into four groups: sedentary control (C), sedentary T1DM (D), control exercise (CX), or T1DM exercise (DX). Diabetes was induced via multiple low-dose injections of streptozotocin and blood glucose was maintained at moderate hyperglycemia (9–17 mM) through insulin supplementation. Exercise training consisted of daily treadmill running for 10 weeks. Compared to C, D had blunted baroreflex sensitivity, increased vascular sympathetic tone, increased serum neuropeptide Y (NPY), and decreased intrinsic heart rate. In contrast, DX differed from D in all measures of CAN (except NPY), including heart rate variability. These findings demonstrate that this T1DM model elicits deficits and exercise-mediated improvements to CV autonomic function which are reflective of clinical T1DM. PMID:26885531

  19. An externally validated model for predicting long-term survival after exercise treadmill testing in patients with suspected coronary artery disease and a normal electrocardiogram.

    PubMed

    Lauer, Michael S; Pothier, Claire E; Magid, David J; Smith, S Scott; Kattan, Michael W

    2007-12-18

    The exercise treadmill test is recommended for risk stratification among patients with intermediate to high pretest probability of coronary artery disease. Posttest risk stratification is based on the Duke treadmill score, which includes only functional capacity and measures of ischemia. To develop and externally validate a post-treadmill test, multivariable mortality prediction rule for adults with suspected coronary artery disease and normal electrocardiograms. Prospective cohort study conducted from September 1990 to May 2004. Exercise treadmill laboratories in a major medical center (derivation set) and a separate HMO (validation set). 33,268 patients in the derivation set and 5821 in the validation set. All patients had normal electrocardiograms and were referred for evaluation of suspected coronary artery disease. The derivation set patients were followed for a median of 6.2 years. A nomogram-illustrated model was derived on the basis of variables easily obtained in the stress laboratory, including age; sex; history of smoking, hypertension, diabetes, or typical angina; and exercise findings of functional capacity, ST-segment changes, symptoms, heart rate recovery, and frequent ventricular ectopy in recovery. The derivation data set included 1619 deaths. Although both the Duke treadmill score and our nomogram-illustrated model were significantly associated with death (P < 0.001), the nomogram was better at discrimination (concordance index for right-censored data, 0.83 vs. 0.73) and calibration. We reclassified many patients with intermediate- to high-risk Duke treadmill scores as low risk on the basis of the nomogram. The model also predicted 3-year mortality rates well in the validation set: Based on an optimal cut-point for a negative predictive value of 0.97, derivation and validation rates were, respectively, 1.7% and 2.5% below the cut-point and 25% and 29% above the cut-point. Blood test-based measures or left ventricular ejection fraction were not included. The nomogram can be applied only to patients with a normal electrocardiogram. Clinical utility remains to be tested. A simple nomogram based on easily obtained pretest and exercise test variables predicted all-cause mortality in adults with suspected coronary artery disease and normal electrocardiograms.

  20. The effects of acute post exercise consumption of two cocoa-based beverages with varying flavanol content on indices of muscle recovery following downhill treadmill running.

    PubMed

    Peschek, Katelyn; Pritchett, Robert; Bergman, Ethan; Pritchett, Kelly

    2013-12-20

    Dietary flavanols have been associated with reduced oxidative stress, however their efficacy in promoting recovery after exercise induced muscle damage is unclear. This study examined the effectiveness of acute consumption of cocoa-flavanols on indices of muscle recovery including: subsequent exercise performance, creatine kinase, muscle tenderness, force, and self-perceived muscle soreness. Eight endurance-trained athletes (VO2max 64.4±7.6 mL/kg/min) completed a downhill running protocol to induce muscle soreness, and 48-h later completed a 5-K (kilometer) time trial. Muscle recovery measurements were taken at PRE, 24 h-POST, 48 h-POST, and POST-5K. Participants consumed 1.0 g of carbohydrate per kilogram of body weight of a randomly assigned beverage (CHOC: 0 mg flavanols vs. CocoaCHOC: 350 mg flavanols per serving) immediately after the downhill run and again 2 h later. The same protocol was repeated three weeks later with the other beverage. An ANOVA revealed no significant difference (p=0.97) between trials for 5 K completion time (CHOC 1198.3±160.6 s, CocoaCHOC 1195.5±148.8 s). No significant difference was found for creatine kinase (CK) levels (p=0.31), or muscle soreness (p=0.21) between groups over time. These findings suggest that the acute addition of cocoa flavanols to low-fat chocolate milk offer no additional recovery benefits.

  1. The Effects of Acute Post Exercise Consumption of Two Cocoa-Based Beverages with Varying Flavanol Content on Indices of Muscle Recovery Following Downhill Treadmill Running

    PubMed Central

    Peschek, Katelyn; Pritchett, Robert; Bergman, Ethan; Pritchett, Kelly

    2013-01-01

    Dietary flavanols have been associated with reduced oxidative stress, however their efficacy in promoting recovery after exercise induced muscle damage is unclear. This study examined the effectiveness of acute consumption of cocoa-flavanols on indices of muscle recovery including: subsequent exercise performance, creatine kinase, muscle tenderness, force, and self-perceived muscle soreness. Eight endurance-trained athletes (VO2max 64.4 ± 7.6 mL/kg/min) completed a downhill running protocol to induce muscle soreness, and 48-h later completed a 5-K (kilometer) time trial. Muscle recovery measurements were taken at PRE, 24 h-POST, 48 h-POST, and POST-5K. Participants consumed 1.0 g of carbohydrate per kilogram of body weight of a randomly assigned beverage (CHOC: 0 mg flavanols vs. CocoaCHOC: 350 mg flavanols per serving) immediately after the downhill run and again 2 h later. The same protocol was repeated three weeks later with the other beverage. An ANOVA revealed no significant difference (p = 0.97) between trials for 5 K completion time (CHOC 1198.3 ± 160.6 s, CocoaCHOC 1195.5 ± 148.8 s). No significant difference was found for creatine kinase (CK) levels (p = 0.31), or muscle soreness (p = 0.21) between groups over time. These findings suggest that the acute addition of cocoa flavanols to low-fat chocolate milk offer no additional recovery benefits. PMID:24362706

  2. Aerobic fitness and performance in elite female futsal players

    PubMed Central

    Subiela, JV; Granda-Vera, J; Castagna, C; Gómez, M; Del Coso, J

    2015-01-01

    Despite its growing popularity, few studies have investigated specific physiological demands for elite female futsal. The aim of this study was to determine aerobic fitness in elite female futsal players using laboratory and field testing. Fourteen female futsal players from the Venezuelan National team (age =21.2±4.0 years; body mass =58.6±5.6 kg; height =161±5.0 cm) performed a progressive maximal treadmill test under laboratory conditions. Players also performed a progressive intermittent futsal-specific field test for endurance, the Futsal Intermittent Endurance Test (FIET), until volitional fatigue. Outcome variables were exercise heart rate (HR), VO2, post-exercise blood lactate concentrations ([La]b) and running speeds (km · h-1). During the treadmill test, VO2max, maximal aerobic speed (MAS), HR and peak [La]b were 45.3±5.6 ml · kg-1 · min-1, 12.5±1.77 km · h-1, 197±8 beats · min-1 and 11.3±1.4 mmol · l-1, respectively. The FIET total distance, peak running velocity, peak HR and [La]b were 1125.0±121.0 m, 15.2±0.5 km · h-1, 199±8 beats · min-1 and 12.5±2.2 mmol · l-1, respectively. The FIET distance and peak speed were strongly associated (r= 0.85-87, p < 0.0001) with VO2max and MAS, respectively. Peak HR and [La]b were not significantly different between tests. Elite female futsal players possess moderate aerobic fitness. Furthermore, the FIET can be considered as a valid field test to determine aerobic fitness in elite level female futsal players. PMID:28479664

  3. Aerobic fitness and performance in elite female futsal players.

    PubMed

    Barbero-Alvarez, J C; Subiela, J V; Granda-Vera, J; Castagna, C; Gómez, M; Del Coso, J

    2015-12-01

    Despite its growing popularity, few studies have investigated specific physiological demands for elite female futsal. The aim of this study was to determine aerobic fitness in elite female futsal players using laboratory and field testing. Fourteen female futsal players from the Venezuelan National team (age =21.2±4.0 years; body mass =58.6±5.6 kg; height =161±5.0 cm) performed a progressive maximal treadmill test under laboratory conditions. Players also performed a progressive intermittent futsal-specific field test for endurance, the Futsal Intermittent Endurance Test (FIET), until volitional fatigue. Outcome variables were exercise heart rate (HR), VO 2 , post-exercise blood lactate concentrations ([La]b) and running speeds (km · h -1 ). During the treadmill test, VO 2 max, maximal aerobic speed (MAS), HR and peak [La]b were 45.3±5.6 ml · kg -1 · min -1 , 12.5±1.77 km · h -1 , 197±8 beats · min -1 and 11.3±1.4 mmol · l -1 , respectively. The FIET total distance, peak running velocity, peak HR and [La]b were 1125.0±121.0 m, 15.2±0.5 km · h -1 , 199±8 beats · min -1 and 12.5±2.2 mmol · l -1 , respectively. The FIET distance and peak speed were strongly associated (r= 0.85-87, p < 0.0001) with VO 2 max and MAS, respectively. Peak HR and [La]b were not significantly different between tests. Elite female futsal players possess moderate aerobic fitness. Furthermore, the FIET can be considered as a valid field test to determine aerobic fitness in elite level female futsal players.

  4. Effects of Exercise Intensity on Postexercise Endothelial Function and Oxidative Stress

    PubMed Central

    McClean, Conor; Harris, Ryan A.; Brown, Malcolm; Brown, John C.; Davison, Gareth W.

    2015-01-01

    Purpose. To measure endothelial function and oxidative stress immediately, 90 minutes, and three hours after exercise of varying intensities. Methods. Sixteen apparently healthy men completed three exercise bouts of treadmill running for 30 minutes at 55% V˙O2max (mild); 20 minutes at 75% V˙O2max (moderate); or 5 minutes at 100% V˙O2max (maximal) in random order. Brachial artery flow-mediated dilation (FMD) was assessed with venous blood samples drawn for measurement of endothelin-1 (ET-1), lipid hydroperoxides (LOOHs), and lipid soluble antioxidants. Results. LOOH increased immediately following moderate exercise (P < 0.05). ET-1 was higher immediately after exercise and 3 hours after exercise in the mild trial compared to maximal one (P < 0.05). Transient decreases were detected for ΔFMD/ShearAUC from baseline following maximal exercise, but it normalised at 3 hours after exercise (P < 0.05). Shear rate was higher immediately after exercise in the maximal trial compared to mild exercise (P < 0.05). No changes in baseline diameter, peak diameter, absolute change in diameter, or FMD were observed following any of the exercise trials (P > 0.05). Conclusions. Acute exercise at different intensities elicits varied effects on oxidative stress, shear rate, and ET-1 that do not appear to mediate changes in endothelial function measured by FMD. PMID:26583061

  5. Effect of High-Intensity Treadmill Exercise on Motor Symptoms in Patients With De Novo Parkinson Disease: A Phase 2 Randomized Clinical Trial.

    PubMed

    Schenkman, Margaret; Moore, Charity G; Kohrt, Wendy M; Hall, Deborah A; Delitto, Anthony; Comella, Cynthia L; Josbeno, Deborah A; Christiansen, Cory L; Berman, Brian D; Kluger, Benzi M; Melanson, Edward L; Jain, Samay; Robichaud, Julie A; Poon, Cynthia; Corcos, Daniel M

    2018-02-01

    Parkinson disease is a progressive neurologic disorder. Limited evidence suggests endurance exercise modifies disease severity, particularly high-intensity exercise. To examine the feasibility and safety of high-intensity treadmill exercise in patients with de novo Parkinson disease who are not taking medication and whether the effect on motor symptoms warrants a phase 3 trial. The Study in Parkinson Disease of Exercise (SPARX) was a phase 2, multicenter randomized clinical trial with 3 groups and masked assessors. Individuals from outpatient and community-based clinics were enrolled from May 1, 2012, through November 30, 2015, with the primary end point at 6 months. Individuals with idiopathic Parkinson disease (Hoehn and Yahr stages 1 or 2) aged 40 to 80 years within 5 years of diagnosis who were not exercising at moderate intensity greater than 3 times per week and not expected to need dopaminergic medication within 6 months participated in this study. A total of 384 volunteers were screened by telephone; 128 were randomly assigned to 1 of 3 groups (high-intensity exercise, moderate-intensity exercise, or control). High-intensity treadmill exercise (4 days per week, 80%-85% maximum heart rate [n = 43]), moderate-intensity treadmill exercise (4 days per week, 60%-65% maximum heart rate [n = 45]), or wait-list control (n = 40) for 6 months. Feasibility measures were adherence to prescribed heart rate and exercise frequency of 3 days per week and safety. The clinical outcome was 6-month change in Unified Parkinson's Disease Rating Scale motor score. A total of 128 patients were included in the study (mean [SD] age, 64 [9] years; age range, 40-80 years; 73 [57.0%] male; and 108 [84.4%] non-Hispanic white). Exercise rates were 2.8 (95% CI, 2.4-3.2) days per week at 80.2% (95% CI, 78.8%-81.7%) maximum heart rate in the high-intensity group and 3.2 (95% CI, 2.8-3.6; P = .13) days per week at 65.9% (95% CI, 64.2%-67.7%) maximum heart rate in the moderate-intensity group (P < .001). The mean change in Unified Parkinson's Disease Rating Scale motor score in the high-intensity group was 0.3 (95% CI, -1.7 to 2.3) compared with 3.2 (95% CI, 1.4 to 5.1) in the usual care group (P = .03). The high-intensity group, but not the moderate-intensity group, reached the predefined nonfutility threshold compared with the control group. Anticipated adverse musculoskeletal events were not severe. High-intensity treadmill exercise may be feasible and prescribed safely for patients with Parkinson disease. An efficacy trial is warranted to determine whether high-intensity treadmill exercise produces meaningful clinical benefits in de novo Parkinson disease. clinicaltrials.gov Identifier: NCT01506479.

  6. Adaptive motion artifact reducing algorithm for wrist photoplethysmography application

    NASA Astrophysics Data System (ADS)

    Zhao, Jingwei; Wang, Guijin; Shi, Chenbo

    2016-04-01

    Photoplethysmography (PPG) technology is widely used in wearable heart pulse rate monitoring. It might reveal the potential risks of heart condition and cardiopulmonary function by detecting the cardiac rhythms in physical exercise. However the quality of wrist photoelectric signal is very sensitive to motion artifact since the thicker tissues and the fewer amount of capillaries. Therefore, motion artifact is the major factor that impede the heart rate measurement in the high intensity exercising. One accelerometer and three channels of light with different wavelengths are used in this research to analyze the coupled form of motion artifact. A novel approach is proposed to separate the pulse signal from motion artifact by exploiting their mixing ratio in different optical paths. There are four major steps of our method: preprocessing, motion artifact estimation, adaptive filtering and heart rate calculation. Five healthy young men are participated in the experiment. The speeder in the treadmill is configured as 12km/h, and all subjects would run for 3-10 minutes by swinging the arms naturally. The final result is compared with chest strap. The average of mean square error (MSE) is less than 3 beats per minute (BPM/min). Proposed method performed well in intense physical exercise and shows the great robustness to individuals with different running style and posture.

  7. Physical activity is linked to ceruloplasmin in the striatum of intact, but not MPTP-treated primates

    PubMed Central

    Leak, Rehana K.; Garbett, Krassimira A.; Dettmer, Amanda M.; Zhang, Zhiming; Mirnics, Károly; Cameron, Judy L.

    2013-01-01

    Ceruloplasmin is a protective ferroxidase. Although some studies suggest that plasma ceruloplasmin levels are raised by exercise, the impact of exercise on brain ceruloplasmin is unknown. The present study examined whether striatal ceruloplasmin is raised with treadmill exercise and/or is correlated with spontaneous physical activity in rhesus monkeys. Parkinson’s disease is characterized by a loss in ceruloplasmin and, similarly, Parkinson’s models lead to a loss in antioxidant defenses. Exercise may protect against Parkinson’s disease and is known to prevent antioxidant loss in experimental models. We therefore examined whether treadmill exercise prevents ceruloplasmin loss in monkeys treated unilaterally with the dopaminergic neurotoxin MPTP. We found that exercise raised ceruloplasmin expression in the caudate and accumbens, but not the putamen of intact monkeys. However, putamen ceruloplasmin was correlated with spontaneous activity in a home pen. MPTP alone did not cause unilateral loss of ceruloplasmin but blocked the impact of exercise on ceruloplasmin. Similarly, the correlation between putamen ceruloplasmin and activity was also lost with MPTP. MPTP elicited loss of tyrosine hydroxylase in the treated hemisphere and the remaining tyrosine hydroxylase was correlated with overall daily activity (spontaneous activity plus that induced by the treadmill). These data reveal that treadmill activity can raise ceruloplasmin, but that this impact and the link with spontaneous activity are both diminished in parkinsonian primates. Furthermore, low overall physical activity predicts greater loss of dopaminergic phenotype in MPTP-treated primates. These data have implications for the maintenance of active lifestyles in both healthy and neurodegenerative conditions. PMID:22940761

  8. Dairy Attenuates Weight Gain to a Similar Extent as Exercise in Rats Fed a High-Fat, High-Sugar Diet.

    PubMed

    Trottier, Sarah K; MacPherson, Rebecca E K; Knuth, Carly M; Townsend, Logan K; Peppler, Willem T; Mikhaeil, John S; Leveille, Cam F; LeBlanc, Paul J; Shearer, Jane; Reimer, Raylene A; Wright, David C

    2017-10-01

    To compare the individual and combined effects of dairy and endurance exercise training in reducing weight gain and adiposity in a rodent model of diet-induced obesity. An 8-week feeding intervention of a high-fat, high-sugar diet was used to induce obesity in male Sprague-Dawley rats. Rats were then assigned to one of four groups for 6 weeks: (1) casein sedentary (casein-S), (2) casein exercise (casein-E), (3) dairy sedentary (dairy-S), and (4) dairy exercise (dairy-E). Rats were exercise trained by treadmill running 5 d/wk. Dairy-E prevented weight gain to a greater extent than either dairy or exercise alone. Adipose tissue and liver mass were reduced to a similar extent in dairy-S, casein-E, and dairy-E groups. Differences in weight gain were not explained by food intake or total energy expenditure. The total amount of lipid excreted was greater in the dairy-S compared to casein-S and dairy-E groups. This study provides evidence that dairy limits weight gain to a similar extent as exercise training and the combined effects are greater than either intervention alone. While exercise training reduces weight gain through increases in energy expenditure, dairy appears to increase lipid excretion in the feces. © 2017 The Obesity Society.

  9. Submaximal Treadmill Exercise Test to Predict VO[subscript 2]max in Fit Adults

    ERIC Educational Resources Information Center

    Vehrs, Pat R.; George, James D.; Fellingham, Gilbert W.; Plowman, Sharon A.; Dustman-Allen, Kymberli

    2007-01-01

    This study was designed to develop a single-stage submaximal treadmill jogging (TMJ) test to predict VO[subscript 2]max in fit adults. Participants (N = 400; men = 250 and women = 150), ages 18 to 40 years, successfully completed a maximal graded exercise test (GXT) at 1 of 3 laboratories to determine VO[subscript 2]max. The TMJ test was completed…

  10. Intrinsic aerobic capacity sets a divide for aging and longevity

    PubMed Central

    Koch, Lauren Gerard; Kemi, Ole J.; Qi, Nathan; Leng, Sean X.; Bijma, Piter; Gilligan, Lori J.; Wilkinson, John E.; Wisløff, Helene; Høydal, Morten A.; Rolim, Natale; Abadir, Peter M.; Van Grevenhof, Ilse; Smith, Godfrey L.; Burant, Charles F.; Ellingsen, Øyvind; Britton, Steven L.; Wisløff, Ulrik

    2011-01-01

    Rationale Low aerobic exercise capacity is a powerful predictor of premature morbidity and mortality for healthy adults as well as those with cardiovascular disease For aged populations, poor performance on treadmill or extended walking tests indicates closer proximity to future health declines. Together, these findings suggest a fundamental connection between aerobic capacity and longevity. Objectives Through artificial selective breeding, we developed an animal model system to prospectively test the association between aerobic exercise capacity and survivability (aerobic hypothesis). Methods and Results Laboratory rats of widely diverse genetic backgrounds (N:NIH stock) were selectively bred for low or high intrinsic (inborn) treadmill running capacity. Cohorts of male and female rats from generations 14, 15 and 17 of selection were followed for survivability and assessed for age-related declines in cardiovascular fitness including maximal oxygen uptake (VO2max), myocardial function, endurance performance, and change in body mass. Median lifespan for low exercise capacity rats was 28-45% shorter than high capacity rats (hazard ratio, 0.06; P<.001). VO2max, measured across adulthood was a reliable predictor of lifespan (P<.001). During progression from adult to old age, left ventricular myocardial and cardiomyocyte morphology, contractility, and intracellular Ca2+ handling in both systole and diastole, as well as mean blood pressure, were more compromised in rats bred for low aerobic capacity. Physical activity levels, energy expenditure (VO2), and lean body mass were all better sustained with age in rats bred for high aerobic capacity. Conclusions These data obtained from a contrasting heterogeneous model system provide strong evidence that genetic segregation for aerobic exercise capacity can be linked with longevity and useful for deeper mechanistic exploration. PMID:21921265

  11. Intrinsic aerobic capacity sets a divide for aging and longevity.

    PubMed

    Koch, Lauren Gerard; Kemi, Ole J; Qi, Nathan; Leng, Sean X; Bijma, Piter; Gilligan, Lori J; Wilkinson, John E; Wisløff, Helene; Høydal, Morten A; Rolim, Natale; Abadir, Peter M; van Grevenhof, Elizabeth M; Smith, Godfrey L; Burant, Charles F; Ellingsen, Oyvind; Britton, Steven L; Wisløff, Ulrik

    2011-10-28

    Low aerobic exercise capacity is a powerful predictor of premature morbidity and mortality for healthy adults as well as those with cardiovascular disease. For aged populations, poor performance on treadmill or extended walking tests indicates closer proximity to future health declines. Together, these findings suggest a fundamental connection between aerobic capacity and longevity. Through artificial selective breeding, we developed an animal model system to prospectively test the association between aerobic exercise capacity and survivability (aerobic hypothesis). Laboratory rats of widely diverse genetic backgrounds (N:NIH stock) were selectively bred for low or high intrinsic (inborn) treadmill running capacity. Cohorts of male and female rats from generations 14, 15, and 17 of selection were followed for survivability and assessed for age-related declines in cardiovascular fitness including maximal oxygen uptake (VO(2max)), myocardial function, endurance performance, and change in body mass. Median lifespan for low exercise capacity rats was 28% to 45% shorter than high capacity rats (hazard ratio, 0.06; P<0.001). VO(2max), measured across adulthood was a reliable predictor of lifespan (P<0.001). During progression from adult to old age, left ventricular myocardial and cardiomyocyte morphology, contractility, and intracellular Ca(2+) handling in both systole and diastole, as well as mean blood pressure, were more compromised in rats bred for low aerobic capacity. Physical activity levels, energy expenditure (Vo(2)), and lean body mass were all better sustained with age in rats bred for high aerobic capacity. These data obtained from a contrasting heterogeneous model system provide strong evidence that genetic segregation for aerobic exercise capacity can be linked with longevity and are useful for deeper mechanistic exploration of aging.

  12. Reliability of Leg and Vertical Stiffness During High Speed Treadmill Running.

    PubMed

    Pappas, Panagiotis; Dallas, Giorgos; Paradisis, Giorgos

    2017-04-01

    In research, the accurate and reliable measurement of leg and vertical stiffness could contribute to valid interpretations. The current study aimed at determining the intraparticipant variability (ie, intraday and interday reliabilities) of leg and vertical stiffness, as well as related parameters, during high speed treadmill running, using the "sine-wave" method. Thirty-one males ran on a treadmill at 6.67 m∙s -1 , and the contact and flight times were measured. To determine the intraday reliability, three 10-s running bouts with 10-min recovery were performed. In addition, to examine the interday reliability, three 10-s running bouts on 3 separate days with 48-h interbout intervals were performed. The reliability statistics included repeated-measure analysis of variance, average intertrial correlations, intraclass correlation coefficients (ICCs), Cronbach's α reliability coefficient, and the coefficient of variation (CV%). Both intraday and interday reliabilities were high for leg and vertical stiffness (ICC > 0.939 and CV < 4.3%), as well as related variables (ICC > 0.934 and CV < 3.9%). It was thus inferred that the measurements of leg and vertical stiffness, as well as the related parameters obtained using the "sine-wave" method during treadmill running at 6.67 m∙s -1 , were highly reliable, both within and across days.

  13. Resting sympatho-vagal balance is related to 10 km running performance in master endurance athletes.

    PubMed

    Cataldo, Angelo; Bianco, Antonino; Paoli, Antonio; Cerasola, Dario; Alagna, Saverio; Messina, Giuseppe; Zangla, Daniele; Traina, Marcello

    2018-01-12

    Relationships between heart rate recovery after exercise (HRR, baseline heart rate variability measures (HRV), and time to perform a 10Km running trial (t10Km) were evaluated in "master" athletes of endurance to assess whether the measured indexes may be useful for monitoring the training status of the athletes. Ten "master" athletes of endurance, aged 40-60 years, were recruited. After baseline measures of HRV, the athletes performed a graded maximal test on treadmill and HRR was measured at 1 and 2 minutes from recovery. Subsequently they performed a 10Km running trial and t10Km was related to HRV and HRR indexes. The time to perform a 10Km running trial was significantly correlated with baseline HRV indexes. No correlation was found between t10Km and HRR. Baseline HRV measures, but not HRR, were significantly correlated with the time of performance on 10km running in "master" athletes. The enhanced parasympathetic function at rest appears to be a condition to a better performance on 10km running. HRV can be simple and useful measurements for monitoring the training stratus of athletes and their physical condition in proximity of a competition.

  14. Voluntary and forced exercise influence the survival and body composition of ageing male rats differently.

    PubMed

    Narath, E; Skalicky, M; Viidik, A

    2001-11-01

    The importance of maintaining physical fitness by engaging in exercise in a life-long perspective as well as the avoidance of obesity has been emphasised in recent years by epidemiological studies on human populations as well as studies on laboratory rodents. In laboratory studies, voluntary running in wheels and forced training in a treadmill have been used with beneficial results. Restriction of the food intake of sedentary laboratory rodents can be regarded either as life prolongation or prevention of life shortening by obesity. We compared the effects of these interventions on male Sprague-Dawley rats from the age of 5 to 23 months in the following groups: (1) RW=voluntary running in wheels; (2) PW=fed to pair weight with RW animals; (3) TM=forced training in a treadmill; and (4) S1=sedentary with ad libitum access to food. Each group consisted of 32 animals, all housed individually in cages. Two RW animals died, five died in each of the PW and S1 groups and 10 in the TM group (p<0.05). The S1 and TM groups gained most weight, the TM less after the age of 21 months (p<0.05). The body weights of the RW group was lower than those of the S1 and TM groups all the time (p<0.001) and the difference increased all the time. Body composition was analysed by bioelectrical impedance analysis. There were no differences in fat free mass (FFM) neither between RW and PW at any time, nor between S1 and TM. FFM was lower for RW and PW compared to S1 and TM. TM gained FFM until the age of 17 months, while S1 gained FFM all the time. S1 gained fat all the time, but the gain for TM levelled off. It stayed constant for RW until 13 months and decreased afterwards. We conclude that voluntary running in wheels enhances survival and keeps body fat lower than in PW animals up to the age of 17 months. Body composition and survival data suggest that voluntary running is more optimal than forced. Care must, however, be taken in analyses, since RW is a heterogenous group because there is a large variation between the animals with respect to how much they run.

  15. Nighttime feeding likely alters morning metabolism but not exercise performance in female athletes.

    PubMed

    Ormsbee, Michael J; Gorman, Katherine A; Miller, Elizabeth A; Baur, Daniel A; Eckel, Lisa A; Contreras, Robert J; Panton, Lynn B; Spicer, Maria T

    2016-07-01

    The timing of morning endurance competition may limit proper pre-race fueling and resulting performance. A nighttime, pre-sleep nutritional strategy could be an alternative method to target the metabolic and hydrating needs of the early morning athlete without compromising sleep or gastrointestinal comfort during exercise. Therefore, the purpose of this investigation was to examine the acute effects of pre-sleep chocolate milk (CM) ingestion on next-morning running performance, metabolism, and hydration status. Twelve competitive female runners and triathletes (age, 30 ± 7 years; peak oxygen consumption, 53 ± 4 mL·kg(-1)·min(-1)) randomly ingested either pre-sleep CM or non-nutritive placebo (PL) ∼30 min before sleep and 7-9 h before a morning exercise trial. Resting metabolic rate (RMR) was assessed prior to exercise. The exercise trial included a warm-up, three 5-min incremental workloads at 55%, 65%, and 75% peak oxygen consumption, and a 10-km treadmill time trial (TT). Physiological responses were assessed prior, during (incremental and TT), and postexercise. Paired t tests and magnitude-based inferences were used to determine treatment differences. TT performances were not different ("most likely trivial" improvement with CM) between conditions (PL: 52.8 ± 8.4 min vs CM: 52.8 ± 8.0 min). RMR was "likely" increased (4.8%) and total carbohydrate oxidation (g·min(-1)) during exercise was "possibly" or likely increased (18.8%, 10.1%, 9.1% for stage 1-3, respectively) with CM versus PL. There were no consistent changes to hydration indices. In conclusion, pre-sleep CM may alter next-morning resting and exercise metabolism to favor carbohydrate oxidation, but effects did not translate to 10-km running performance improvements.

  16. Effect of controlled exercise on middle gluteal muscle fibre composition in Thoroughbred foals.

    PubMed

    Eto, D; Yamano, S; Kasashima, Y; Sugiura, T; Nasu, T; Tokuriki, M; Miyata, H

    2003-11-01

    Most racehorses are trained regularly from about age 18 months; therefore, little information is available on the effect of training in Thoroughbred foals. Well-controlled exercise could improve muscle potential ability for endurance running. Thoroughbred foals at age 2 months were separated into control and training (treadmill exercise) groups and samples obtained from the middle gluteal muscle at 2 and 12 months post partum. Muscle fibre compositions were determined by histochemical and electrophoretical techniques and succinic dehydrogenase (SDH) activity was analysed in each fibre type. All fibre types were hypertrophied with growth and type I and IIA fibres were significantly larger in the training than the control group at age 12 months. A significant increase of SDH activity was found in type IIX muscle fibres in the training group. Training in young Thoroughbred horses can facilitate muscle fibre hypertrophy and increase the oxidative capacity of type IIX fibres, which could potentially enhance stamina at high speeds. To apply this result to practical training, further studies are needed to determine more effective and safe intensities of controlled exercise.

  17. A new standardized treadmill walking test requiring low motor skills in children aged 4-10 years.

    PubMed

    Wäffler-Kammermann, Nathalie; Lacorcia, Ruth Stauffer; Wettstein, Markus; Radlinger, Lorenz; Frey, Urs

    2008-02-01

    Exercise intolerance may be reported by parents of young children with respiratory diseases. There is, however, a lack of standardized exercise protocols which allow verification of these reports especially in younger children. Consequently the aims of this pilot study were to develop a standardized treadmill walking test for children aged 4-10 years demanding low sensorimotor skills and achieving high physical exhaustion. In a prospective experimental cross sectional pilot study, 33 healthy Caucasian children were separated into three groups: G1 (4-6 years, n = 10), G2 (7-8 years, n = 12), and G3 (9-10 years, n = 11). Children performed the treadmill walking test with increasing exercise levels up to peak condition with maximal exhaustion. Gas exchange, heart rate, and lactate were measured during the test, spirometry before and after. Parameters were statistically calculated at all exercise levels as well as at 2 and 4 mmol/L lactate level for group differences (Kruskal-Wallis H-test, alpha = 0.05; post hoc: Mann-Whitney U-test with Bonferroni correction alpha = 0.05/n) and test-retest differences (Wilcoxon-rank-sum test) with SPSS. The treadmill walking test could be demonstrated to be feasible with a good repeatability within groups for most of the parameters. All children achieved a high exhaustion level. At peak level under exhaustion condition only the absolute VO2 and VCO2 differed significantly between age groups. In conclusion this newly designed treadmill walking test indicates a good feasibility, safety, and repeatability. It suggests the potential usefulness of exercise capacity monitoring for children aged from early 4 to 10 years. Various applications and test modifications will be investigated in further studies. Copyright 2007 Wiley-Liss, Inc.

  18. Use of an antigravity treadmill for rehabilitation of a pelvic stress injury.

    PubMed

    Tenforde, Adam S; Watanabe, Laine M; Moreno, Tamara J; Fredericson, Michael

    2012-08-01

    Pelvic stress injuries are a relatively uncommon form of injury that require high index of clinician suspicion and usually MRI for definitive diagnosis. We present a case report of a 21-year-old female elite runner who was diagnosed with pelvic stress injury and used an antigravity treadmill during rehabilitation. She was able to return to pain-free ground running at 8 weeks after running at 95% body weight on the antigravity treadmill. Ten weeks from time of diagnosis, she competed at her conference championships and advanced to the NCAA Championships in the 10,000-meters. She competed in both races without residual pain. To our knowledge, this is the first published case report on use of an antigravity treadmill in rehabilitation of bone-related injuries. Our findings suggest that use of an antigravity treadmill for rehabilitation of a pelvic stress injury may result in appropriate bone loading and healing during progression to ground running and faster return to competition. Future research may identify appropriate protocols for recovery from overuse lower extremity injuries and other uses for this technology, including neuromuscular recovery and injury prevention. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  19. Genetic polymorphisms of beta1 adrenergic receptor and their influence on the cardiovascular responses to metoprolol in a South Indian population.

    PubMed

    Mahesh Kumar, Koratagere Nagaraju; Ramu, Periasamy; Rajan, Subramanian; Shewade, Deepak Gopal; Balachander, Jayaraman; Adithan, Chandrasekaran

    2008-11-01

    Beta-blockers show interindividual and interethnic variability in their response. Such variability might be due to the polymorphic variations in the beta1 adrenergic receptor genes viz, Ser49Gly and Arg389Gly. The study evaluated the influence of Ser49Gly and Arg389Gly polymorphisms on the cardiovascular responses to metoprolol in a South Indian population. Forty-one genetically prescreened healthy male volunteers participated in the study. They were divided on the basis of genotype of each polymorphism: Ser49Ser, Ser49Gly, and Gly49Gly and Arg389Arg, Arg389Gly, and Gly389Gly. They were also grouped into combination genotypes viz, S49S R389R, S49G R389R, G49G R389R, S49S R389G, S49S G389G, and S49G R389G. They were subjected to treadmill exercise testing, and cardiovascular parameters were measured before and after metoprolol administration. Metoprolol concentration was determined by reversed phase high-performance liquid chromatography method. The diastolic blood pressure (DBP) was significantly lower in S49S/G389G group when compared to S49S/A389A group. The cardiac parameters were significantly increased in all the genotype groups during treadmill exercise test done for a period of 9 minutes. During predrug treadmill exercise at the end of third and sixth minute, Gly49Gly showed a higher increase in heart rate and volume of oxygen consumption compared to Ser49Ser. Same group showed a higher increase of volume of oxygen consumption at the end of ninth minute of exercise compared to the Ser49Ser. Systolic and diastolic blood pressures were not different between Ser49Gly polymorphisms. However, there was no statistical difference between the genotype groups of both polymorphisms at any stage of post-drug treadmill exercise. The analysis of combination of genotypes showed no significant difference during predrug and postdrug exercise testing. The increase in cardiac responses to treadmill test was influenced by Ser49Gly polymorphism. Nevertheless, the above polymorphisms did not alter the beta-blocker response during treadmill exercise in South Indian population.

  20. Zero-Gravity Locomotion Simulators: New Ground-Based Analogs for Microgravity Exercise Simulation

    NASA Technical Reports Server (NTRS)

    Perusek, Gail P.; DeWitt, John K.; Cavanagh, Peter R.; Grodsinsky, Carlos M.; Gilkey, Kelly M.

    2007-01-01

    Maintaining health and fitness in crewmembers during space missions is essential for preserving performance for mission-critical tasks. NASA's Exercise Countermeasures Project (ECP) provides space exploration exercise hardware and monitoring requirements that lead to devices that are reliable, meet medical, vehicle, and habitat constraints, and use minimal vehicle and crew resources. ECP will also develop and validate efficient exercise prescriptions that minimize daily time needed for completion of exercise yet maximize performance for mission activities. In meeting these mission goals, NASA Glenn Research Center (Cleveland, OH, USA), in collaboration with the Cleveland Clinic (Cleveland, Ohio, USA), has developed a suite of zero-gravity locomotion simulators and associated technologies to address the need for ground-based test analog capability for simulating in-flight (microgravity) and surface (partial-gravity) exercise to advance the health and safety of astronaut crews and the next generation of space explorers. Various research areas can be explored. These include improving crew comfort during exercise, and understanding joint kinematics and muscle activation pattern differences relative to external loading mechanisms. In addition, exercise protocol and hardware optimization can be investigated, along with characterizing system dynamic response and the physiological demand associated with advanced exercise device concepts and performance of critical mission tasks for Exploration class missions. Three zero-gravity locomotion simulators are currently in use and the research focus for each will be presented. All of the devices are based on a supine subject suspension system, which simulates a reduced gravity environment by completely or partially offloading the weight of the exercising test subject s body. A platform for mounting treadmill is positioned perpendicularly to the test subject. The Cleveland Clinic Zero-g Locomotion Simulator (ZLS) utilizes a pneumatic subject load device to apply a near constant gravity-replacement load to the test subject during exercise, and is currently used in conjunction with the General Clinical Research Center for evaluating exercise protocols using a bedrest analog. The enhanced ZLS (eZLS) at NASA Glenn Research Center features an offloaded treadmill that floats on a thin film of air and interfaces to a force reaction frame via variably-compliant isolators, or vibration isolation system. The isolators can be configured to simulate compliant interfaces to the vehicle, which affects mechanical loading to crewmembers during exercise, and has been used to validate system dynamic models for new countermeasures equipment designs, such as the second International Space Station treadmill slated for use in 2010. In the eZLS, the test subject and exercise device can be pitched at the appropriate angle for partial gravity simulations, such as lunar gravity (1/6th earth gravity). On both the eZLS and the NASA-Johnson Space Center standalone ZLS installed at the University of Texas Medical Branch in Galveston, Texas, USA, the subject's body weight relative to the treadmill is controlled via a linear motor subject load device (LM-SLD). The LM-SLD employs a force-feedback closed-loop control system to provide a relatively constant force to the test subject during locomotion, and is set and verified for subject safety prior to each session. Locomotion data were collected during parabolic flight and on the eZLS. The purpose was to determine the similarities and differences between locomotion in actual and simulated microgravity. Subjects attained greater amounts of hip flexion during walking and running during parabolic flight. During running, subjects had greater hip range of motion. Trunk motion was significantly less on the eZLS than during parabolic flight. Peak impact forces, loading rate, and impulse were greater on the eZLS than during parabolic while walking with a low external load (EL) and rning with a high EL. Activation timing differences existed between locations in all muscles except for the rectus femoris. The tibialis anterior and gluteus maximus were active for longer durations on the eZLS than in parabolic flight during walking. Ground reaction forces were greater with the LM-SLD than with bungees during eZLS locomotion. While the eZLS serves as a ground-based analog, researchers should be aware that subtle, but measurable, differences in kinematics and leg musculature activities exist between the environments. Aside from space applications, zero-gravity locomotion simulators may help medical researchers in the future with development of rehabilitative or therapeutic protocols for injured or ill patients. Zero-gravity locomotion simulators may be used as a ground-based test bed to support future missions for space exploration, and eventually may be used to simulate planetary locomotion in partial gravity environments, including the Moon and Mars. Figure: Zero-gravity Locomotion Simulator at the Cleveland Clinic, Cleveland, Ohio, USA

  1. Effects of exercise-induced fatigue on postural balance: a comparison of treadmill versus cycle fatiguing protocols.

    PubMed

    Wright, Katherine E; Lyons, Thomas S; Navalta, James W

    2013-05-01

    The authors of this study examined the effects of muscle fatigue on balance indices and recovery time in recreationally trained individuals after incremental tests on a treadmill and a cycle ergometer. Sixteen participants (male N = 11, female N = 5) (mean age = 21.2 ± 2 years) completed this study. Balance measures were performed on a Biodex Balance System via the Dynamic Balance Test. Balance was measured pre-exercise, immediately post-exercise, and at 3-, 6-, 9-, 12-, 15-, 18-, and 21-min post-exercise. Immediately following the fatiguing treadmill test, balance increased significantly in the overall stability index (SI) (from 4.38 ± 2.48 to 6.09 ± 1.80) and the anterior/posterior index (API) (from 3.49 ± 2.18 to 5.28 ± 1.81) (p < 0.01). Immediately following the fatiguing cycle test, balance was not altered significantly in SI or API. Balance was not altered significantly for the medial/lateral index for either exercise test at any time point. Additionally, there were no significant differences in time to recovery. At 12-min post-exercise, all indices were below pre-exercise values, indicating that fatiguing exercise has a positive effect on balance over time. These results are consistent with previous research, suggesting that any effects of fatigue on balance are seen immediately and are diminished as time after exercise increases.

  2. Effects of treadmill exercise on the LiCl-induced conditioned taste aversion in rats.

    PubMed

    Tsuboi, Hisanori; Hirai, Yoshiyuki; Maezawa, Hitoshi; Notani, Kenji; Inoue, Nobuo; Funahashi, Makoto

    2015-01-01

    Studies have shown that exercise can enhance learning and memory. Conditioned taste aversion (CTA) is an avoidance behavior induced by associative memory of the taste sensation for something pleasant or neutral with a negative visceral reaction caused by the coincident action of a toxic substance that is tasteless or administered systemically. We sought to measure the effects of treadmill exercise on CTA in rats by investigating the effects of exercise on acquisition, extinction and spontaneous recovery of CTA. We made two groups of rats: an exercise group that ran on a treadmill, and a control group that did not have structured exercise periods. To condition rats to disfavor a sweet taste, consumption of a 0.1% saccharin solution in place of drinking water was paired with 0.15M LiCl (2% body weight, i.p.) to induce visceral discomfort. We measured changes of saccharin consumption during acquisition and extinction of CTA. The exercise and no-exercise groups both acquired CTA to similar levels and showed maximum extinction of CTA around 6 days after acquisition. This result indicates that exercise affects neither acquisition nor extinction of CTA. However, in testing for preservation of CTA after much longer extinction periods that included exercise or not during the intervening period, exercising animals showed a significantly lower saccharin intake, irrespective of having exercised or not during the conditioning phase of the trial. This result suggests that exercise may help to preserve aversive memory (taste aversion in this example) as evidence by the significant spontaneous recovery of aversion in exercising animals. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The effect of bridge exercise method on the strength of rectus abdominis muscle and the muscle activity of paraspinal muscles while doing treadmill walking with high heels.

    PubMed

    Kang, Taewook; Lee, Jaeseok; Seo, Junghoon; Han, Dongwook

    2017-04-01

    [Purpose] The purpose of this research is to investigate the effect of the method of bridge exercise on the change of rectus abdominis muscle and the muscle activity of paraspinal muscles while doing treadmill walking with high heels. [Subjects and Methods] The subjects of this research are healthy female students consisting of 10 persons performing bridge exercises in a supine group, 10 persons performing bridge exercises in a prone group, and 10 persons in a control group while in S university in Busan. Bridge exercise in supine position is performed in hook lying position. Bridge exercise in prone position is plank exercise in prostrate position. To measure the strength of rectus abdominis muscle, maintaining times of the posture was used. To measure the muscle activity of paraspinal muscles, EMG (4D-MT & EMD-11, Relive, Korea) was used. [Results] The strength of rectus abdominis muscle of both bridge exercises in the supine group and bridge exercises in the prone group increases significantly after exercise. The muscle activity of paraspinal muscle such as thoracic parts and lumbar parts in bridge exercises in the prone group decreases statistically while walking on a treadmill with high heels. Muscle activity of thoracic parts paraspinal muscle and bridge exercises in the supine group decreased significantly. [Conclusion] According to this study, we noticed that bridge exercise in a prone position is desirable for women who prefer wearing high heels as a back pain prevention exercise method.

  4. Mini Treadmill for Musculoskeletal Health

    NASA Technical Reports Server (NTRS)

    Humphreys, Bradley

    2015-01-01

    Because NASA's approach to space exploration calls for long-term extended missions, there is a pressing need to equip astronauts with effective exercise regimens that will maintain musculoskeletal and cardiovascular health. ZIN Technologies, Inc., has developed an innovative miniature treadmill for use in both zero-gravity and terrestrial environments. The treadmill offers excellent periodic impact exercise to stimulate cardiovascular activity and bone remodeling as well as resistive capability to encourage full-body muscle maintenance. A novel speed-control algorithm allows users to modulate treadmill speed by adjusting stride, and a new subject load device provides a more Earth-like gravity replacement load. This new and compact treadmill offers a unique approach to managing astronaut health while addressing the inherent and stringent challenges of space flight. The innovation also has the potential to offer numerous terrestrial applications, as a real-time daily load stimulus (DLS) measurement feature provides an effective mechanism to combat or manage osteoporosis, a major public health threat for 55 percent of Americans over the age of 50.

  5. Alteration in cardiac uncoupling proteins and eNOS gene expression following high-intensity interval training in favor of increasing mechanical efficiency.

    PubMed

    Fallahi, Ali Asghar; Shekarfroush, Shahnaz; Rahimi, Mostafa; Jalali, Amirhossain; Khoshbaten, Ali

    2016-03-01

    High-intensity interval training (HIIT) increases energy expenditure and mechanical energy efficiency. Although both uncoupling proteins (UCPs) and endothelial nitric oxide synthase (eNOS) affect the mechanical efficiency and antioxidant capacity, their effects are inverse. The aim of this study was to determine whether the alterations of cardiac UCP2, UCP3, and eNOS mRNA expression following HIIT are in favor of increased mechanical efficiency or decreased oxidative stress. Wistar rats were divided into five groups: control group (n=12), HIIT for an acute bout (AT1), short term HIIT for 3 and 5 sessions (ST3 and ST5), long-term training for 8 weeks (LT) (6 in each group). The rats of the training groups were made to run on a treadmill for 60 min in three stages: 6 min running for warm-up, 7 intervals of 7 min running on treadmill with a slope of 5° to 20° (4 min with an intensity of 80-110% VO2max and 3 min at 50-60% VO2max), and 5-min running for cool-down. The control group did not participate in any exercise program. Rats were sacrificed and the hearts were extracted to analyze the levels of UCP2, UCP3 and eNOS mRNA by RT-PCR. UCP3 expression was increased significantly following an acute training bout. Repeated HIIT for 8 weeks resulted in a significant decrease in UCPs mRNA and a significant increase in eNOS expression in cardiac muscle. This study indicates that Long term HIIT through decreasing UCPs mRNA and increasing eNOS mRNA expression may enhance energy efficiency and physical performance.

  6. Alteration in cardiac uncoupling proteins and eNOS gene expression following high-intensity interval training in favor of increasing mechanical efficiency

    PubMed Central

    Fallahi, Ali Asghar; Shekarfroush, Shahnaz; Rahimi, Mostafa; Jalali, Amirhossain; Khoshbaten, Ali

    2016-01-01

    Objective(s): High-intensity interval training (HIIT) increases energy expenditure and mechanical energy efficiency. Although both uncoupling proteins (UCPs) and endothelial nitric oxide synthase (eNOS) affect the mechanical efficiency and antioxidant capacity, their effects are inverse. The aim of this study was to determine whether the alterations of cardiac UCP2, UCP3, and eNOS mRNA expression following HIIT are in favor of increased mechanical efficiency or decreased oxidative stress. Materials and Methods: Wistar rats were divided into five groups: control group (n=12), HIIT for an acute bout (AT1), short term HIIT for 3 and 5 sessions (ST3 and ST5), long-term training for 8 weeks (LT) (6 in each group). The rats of the training groups were made to run on a treadmill for 60 min in three stages: 6 min running for warm-up, 7 intervals of 7 min running on treadmill with a slope of 5° to 20° (4 min with an intensity of 80-110% VO2max and 3 min at 50-60% VO2max), and 5-min running for cool-down. The control group did not participate in any exercise program. Rats were sacrificed and the hearts were extracted to analyze the levels of UCP2, UCP3 and eNOS mRNA by RT-PCR. Results: UCP3 expression was increased significantly following an acute training bout. Repeated HIIT for 8 weeks resulted in a significant decrease in UCPs mRNA and a significant increase in eNOS expression in cardiac muscle. Conclusion: This study indicates that Long term HIIT through decreasing UCPs mRNA and increasing eNOS mRNA expression may enhance energy efficiency and physical performance. PMID:27114795

  7. Effects of load-bearing exercise on skeletal structure and mechanics differ between outbred populations of mice.

    PubMed

    Wallace, Ian J; Judex, Stefan; Demes, Brigitte

    2015-03-01

    Effects of load-bearing exercise on skeletal structure and mechanical properties can vary between inbred strains of mice. Here, we examine whether such variation also exists at the population level. An experiment was performed with two outbred mouse stocks that have been reproductively isolated for >120 generations (Hsd:ICR, Crl:CD1). Growing females from each stock were either treated with a treadmill-running regimen for 1 month or served as controls. Limb forces were recorded with a force plate and cage activity monitored to verify that they were similar between stocks. After the experiment, femoral cortical and trabecular bone structure were quantified with micro-CT in the mid-diaphysis and distal metaphysis, respectively, and diaphyseal structural strength was determined with mechanical testing. Among Hsd:ICR mice, running led to significant improvements in diaphyseal bone quantity, structural geometry, and mechanical properties, as well as enhanced trabecular morphology. In contrast, among Crl:CD1 mice, the same running regimen had little effect on cortical and trabecular structure and significantly reduced diaphyseal resistance to fracture. In neither stock was body mass, muscle mass, or cage activity level different between runners and controls. Given that most environmental variables were controlled in this study, the differential effects of exercise on Hsd:ICR and Crl:CD1 bones were likely due to genetic differences between stocks. These results suggest that the benefits of loading for bone may vary between human populations (e.g., ethnic groups), in which case exercise programs and technologies designed to promote bone health with mechanical signals may be more advantageous to certain populations than others. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Cardioprotective Effect of High Intensity Interval Training and Nitric Oxide Metabolites (NO2 (-), NO3 (-)).

    PubMed

    Fallahi, Aliasghar; Gaeini, Abbasali; Shekarfroush, Shahnaz; Khoshbaten, Ali

    2015-09-01

    The aim of this study was to investigate the effects of High-Intensity Interval Training (HIIT) on nitric oxide metabolites (NO2(-), NO3(-)) and myocardial infarct size after Ischemia/Reperfusion (I/R) injury in healthy male rats. A total of 44 Wistar rats were randomly divided into 4 groups including HIIT (n=8), HIIT + IR protocol (n=14), control (n=8), and control + IR (n=14). Each training session of HIIT consisted of 1 hour of exercise in three stages: 6-minute running at 50-60% VO2max for warm-up; 7 intervals of 7-minute running on treadmill with a slope of 5° to 20° (4 minutes with an intensity of 80-100% VO2max and 3 minutes at 50-60% VO2max); and 5-minute running at 50-60% VO2max for cool-down. The control group did not participate in any exercise program. Nitric Oxide (NO) and its metabolites were measured by using Griess reaction test. The results showed that eight weeks of exercise training exerted a significantly increasing effect on nitrite (8.55 μmol per liter, equivalent to 34.79%), nitrate (62.02 μmol per liter, equivalent to 149.48%), and NOx (66 μmol per liter, equivalent to 98.11%) in the HIIT group compared with the control group. The results showed myocardial infract size (IS) was significantly smaller (23.2%, P<0.001) in the exercise training group compared with the control group. Incremental changes in NO-NO3 (-), NO2 (-) axis are one of mechanisms through which HIIT program can protect the heart from I/R injury and decrease myocardial infarction.

  9. The influence of caffeine ingestion on strength and power performance in female team-sport players.

    PubMed

    Ali, Ajmol; O'Donnell, Jemma; Foskett, Andrew; Rutherfurd-Markwick, Kay

    2016-01-01

    The aim of this study was to examine the influence of caffeine supplementation on knee flexor and knee extensor strength before, during and after intermittent running exercise in female team-sport players taking oral contraceptive steroids (OCS). Ten healthy females (24 ± 4 years; 59.7 ± 3.5 kg; undertaking 2-6 training sessions per week) taking low-dose monophasic oral contraceptives of the same hormonal composition took part in a randomised, double-blind, placebo-controlled crossover-design trial. Sixty minutes following the ingestion of a capsule containing 6 mg∙kg -1 body mass anhydrous caffeine or artificial sweetener (placebo), participants completed a 90-min intermittent treadmill-running protocol. Isometric strength performance and eccentric and concentric strength and power of the knee flexors and knee extensors (using isokinetic dynamometer), as well as countermovement jump (CMJ), was measured before, during and after the exercise protocol, as well as ~12 h post-exercise. Blood samples were taken before, during and post-exercise to measure glucose, insulin and free fatty acids (FFA). Caffeine supplementation significantly increased eccentric strength of the knee flexors ( P  < 0.05) and eccentric power of both the knee flexors ( P  < 0.05) and extensors ( P  < 0.05). However, there was no effect on isometric or concentric parameters, or CMJ performance. FFA was elevated with caffeine supplementation over time ( P  < 0.05) while levels of glucose and insulin were not affected by caffeine intake. Caffeine supplementation increased eccentric strength and power in female team-sport players taking OCS both during an intermittent running protocol and the following morning.

  10. Metabolic characteristics of keto-adapted ultra-endurance runners.

    PubMed

    Volek, Jeff S; Freidenreich, Daniel J; Saenz, Catherine; Kunces, Laura J; Creighton, Brent C; Bartley, Jenna M; Davitt, Patrick M; Munoz, Colleen X; Anderson, Jeffrey M; Maresh, Carl M; Lee, Elaine C; Schuenke, Mark D; Aerni, Giselle; Kraemer, William J; Phinney, Stephen D

    2016-03-01

    Many successful ultra-endurance athletes have switched from a high-carbohydrate to a low-carbohydrate diet, but they have not previously been studied to determine the extent of metabolic adaptations. Twenty elite ultra-marathoners and ironman distance triathletes performed a maximal graded exercise test and a 180 min submaximal run at 64% VO2max on a treadmill to determine metabolic responses. One group habitually consumed a traditional high-carbohydrate (HC: n=10, %carbohydrate:protein:fat=59:14:25) diet, and the other a low-carbohydrate (LC; n=10, 10:19:70) diet for an average of 20 months (range 9 to 36 months). Peak fat oxidation was 2.3-fold higher in the LC group (1.54±0.18 vs 0.67±0.14 g/min; P=0.000) and it occurred at a higher percentage of VO2max (70.3±6.3 vs 54.9±7.8%; P=0.000). Mean fat oxidation during submaximal exercise was 59% higher in the LC group (1.21±0.02 vs 0.76±0.11 g/min; P=0.000) corresponding to a greater relative contribution of fat (88±2 vs 56±8%; P=0.000). Despite these marked differences in fuel use between LC and HC athletes, there were no significant differences in resting muscle glycogen and the level of depletion after 180 min of running (-64% from pre-exercise) and 120 min of recovery (-36% from pre-exercise). Compared to highly trained ultra-endurance athletes consuming an HC diet, long-term keto-adaptation results in extraordinarily high rates of fat oxidation, whereas muscle glycogen utilization and repletion patterns during and after a 3 hour run are similar. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Developing a Low-Cost Force Treadmill via Dynamic Modeling.

    PubMed

    Hong, Chih-Yuan; Guo, Lan-Yuen; Song, Rong; Nagurka, Mark L; Sung, Jia-Li; Yen, Chen-Wen

    2017-01-01

    By incorporating force transducers into treadmills, force platform-instrumented treadmills (commonly called force treadmills) can collect large amounts of gait data and enable the ground reaction force (GRF) to be calculated. However, the high cost of force treadmills has limited their adoption. This paper proposes a low-cost force treadmill system with force sensors installed underneath a standard exercise treadmill. It identifies and compensates for the force transmission dynamics from the actual GRF applied on the treadmill track surface to the force transmitted to the force sensors underneath the treadmill body. This study also proposes a testing procedure to assess the GRF measurement accuracy of force treadmills. Using this procedure in estimating the GRF of "walk-on-the-spot motion," it was found that the total harmonic distortion of the tested force treadmill system was about 1.69%, demonstrating the effectiveness of the approach.

  12. Long-term AICAR administration and exercise prevents diabetes in ZDF rats.

    PubMed

    Pold, Rasmus; Jensen, Lasse S; Jessen, Niels; Buhl, Esben S; Schmitz, Ole; Flyvbjerg, Allan; Fujii, Nobuharu; Goodyear, Laurie J; Gotfredsen, Carsten F; Brand, Christian L; Lund, Sten

    2005-04-01

    Lifestyle interventions including exercise programs are cornerstones in the prevention of obesity-related diabetes. The AMP-activated protein kinase (AMPK) has been proposed to be responsible for many of the beneficial effects of exercise on glucose and lipid metabolism. The effects of long-term exercise training or 5-aminoimidazole-4-carboxamide-1-beta-d-riboruranoside (AICAR) treatment, both known AMPK activators, on the development of diabetes in male Zucker diabetic fatty (ZDF) rats were examined. Five-week-old, pre-diabetic ZDF rats underwent daily treadmill running or AICAR treatment over an 8-week period and were compared with an untreated group. In contrast to the untreated, both the exercised and AICAR-treated rats did not develop hyperglycemia during the intervention period. Whole-body insulin sensitivity, as assessed by a hyperinsulinemic-euglycemic clamp at the end of the intervention period, was markedly increased in the exercised and AICAR-treated animals compared with the untreated ZDF rats (P < 0.01). In addition, pancreatic beta-cell morphology was almost normal in the exercised and AICAR-treated animals, indicating that chronic AMPK activation in vivo might preserve beta-cell function. Our results suggest that activation of AMPK may represent a therapeutic approach to improve insulin action and prevent a decrease in beta-cell function associated with type 2 diabetes.

  13. Compliance of Children with Moderate to Severe Intellectual Disability to Treadmill Walking: A Pilot Study

    ERIC Educational Resources Information Center

    Vashdi, E.; Hutzler, Y.; Roth, D.

    2008-01-01

    Background: Individuals with Intellectual Disability (ID) exhibit reduced levels of compliance to exercise, including treadmill walking. The purpose of this study was to measure the effects of several training conditions on compliance to participation in treadmill walking of children with moderate to severe ID. Method: Criteria for compliance were…

  14. Energy expenditure and physiological responses during walking on a treadmill and moving on the Torqway vehicle.

    PubMed

    Maciejczyk, Marcin; Wiecek, Magdalena; Szymura, Jadwiga; Szygula, Zbigniew

    2016-01-01

    One of the new products which can be used to increase physical activity and energy expenditure is the Torqway vehicle, powered by the upper limbs. The aim of this study was to (1) assess the usefulness and repeatability of the Torqway vehicle for physical exercise, (2) compare energy expenditure and physiological responses during walking on a treadmill and during physical effort while moving on the Torqway at a constant speed. The participants (11 men, aged 20.2 ± 1.3) performed the incremental test and submaximal exercises (walking on the treadmill and moving on the Torqway vehicle at the same speed). Energy expenditure during the exercise on the Torqway was significantly higher (p = 0.001) than during the walking performed at the same speed. The intensity of the exercise performed on the Torqway expressed as %VO2max and %HRmax was significantly ( p < 0.001) higher than during walking (respectively: 35.0 ± 6.0 vs. 29.4 ± 7.4 %VO2max and 65.1 ± 7.3 vs. 47.2 ± 7.4 %HRmax). Exercise on the Torqway vehicle allows for the intensification of the exercise at a low movement speed, comparable to walking. Moving on the Torqway vehicle could be an effective alternative activity for physical fitness and exercise rehabilitation programs.

  15. Leg intramuscular pressures during locomotion in humans

    NASA Technical Reports Server (NTRS)

    Ballard, R. E.; Watenpaugh, D. E.; Breit, G. A.; Murthy, G.; Holley, D. C.; Hargens, A. R.

    1998-01-01

    To assess the usefulness of intramuscular pressure (IMP) measurement for studying muscle function during gait, IMP was recorded in the soleus and tibialis anterior muscles of 10 volunteers during treadmill walking and running by using transducer-tipped catheters. Soleus IMP exhibited single peaks during late-stance phase of walking [181 +/- 69 (SE) mmHg] and running (269 +/- 95 mmHg). Tibialis anterior IMP showed a biphasic response, with the largest peak (90 +/- 15 mmHg during walking and 151 +/- 25 mmHg during running) occurring shortly after heel strike. IMP magnitude increased with gait speed in both muscles. Linear regression of soleus IMP against ankle joint torque obtained by a dynamometer produced linear relationships (n = 2, r = 0.97 for both). Application of these relationships to IMP data yielded estimated peak soleus moment contributions of 0.95-1.65 N . m/kg during walking, and 1.43-2.70 N . m/kg during running. Phasic elevations of IMP during exercise are probably generated by local muscle tissue deformations due to muscle force development. Thus profiles of IMP provide a direct, reproducible index of muscle function during locomotion in humans.

  16. Six weeks of aerobic dance exercise improves blood oxidative stress status and increases interleukin-2 in previously sedentary women.

    PubMed

    Leelarungrayub, Donrawee; Saidee, Kunteera; Pothongsunun, Prapas; Pratanaphon, Sainetee; YanKai, Araya; Bloomer, Richard J

    2011-07-01

    This study evaluated the change in blood oxidative stress, blood interleukin-2, and physical performance following 6 weeks of moderate intensity and duration aerobic dance exercise in 24 sedentary women. Blood samples were collected at rest twice before (baseline) and after the 6-week intervention for analysis of protein hydroperoxide (PrOOH), malondialdehyde (MDA), total anti-oxidant capacity (TAC), and interleukin-2 (IL-2) levels. Maximal treadmill run time (Time(max)) and maximal oxygen consumption (VO(2max)) were also measured. All variables were statistically analyzed with a repeated measurement ANOVA and Tukey post hoc. No differences were noted in any variable during the baseline period (p > 0.05). After aerobic dance exercise, VO(2max), Time(max), TAC and IL-2 were significantly increased, whereas MDA levels were decreased significantly (p < 0.05). PrOOH did not change either between baseline measures or after exercise. It can be concluded that aerobic dance exercise at a moderate intensity and duration can improve physical fitness, decrease MDA, and increase TAC and IL-2 in previously sedentary women. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. The role of the central histaminergic receptors in the exercise-induced improvements of the spatial learning and memory in rats.

    PubMed

    Taati, Majid; Moghaddasi, Mehrnoush; Esmaeili, Masoumeh; Pourkhodadad, Soheila; Nayebzadeh, Hassan

    2014-10-31

    While it is well known that exercise can improve cognitive performance, the underlying mechanisms are not fully understood. There is now evidence that histamine can modulate learning and memory in different types of behavioral tasks. The present study was designed to examine the possible role of central histamine H1 and H2 receptors in forced treadmill running-induced enhancement of learning and memory in rats. For this purpose the animals received intracerebroventricularly chlorpheniramine (H1 receptor blocker) and cimetidine (H2 receptor blocker) before each day of fifteen consecutive days of exercise. Then their learning and memory were tested on the water maze task using a four-trial-per-day for 4 consecutive days. A probe trial was performed after the last training day. Our data showed that cimetidine reversed the exercise-induced improvement in learning and memory in rats; however, this was not the case regarding chlorpheniramine. Our findings indicate that central histamine H2 receptors play an important role in mediating the beneficial effects of forced exercise on learning and memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Physical exercise induces structural alterations in the hippocampal astrocytes: exploring the role of BDNF-TrkB signaling.

    PubMed

    Fahimi, Atoossa; Baktir, Mehmet Akif; Moghadam, Sarah; Mojabi, Fatemeh S; Sumanth, Krithika; McNerney, M Windy; Ponnusamy, Ravikumar; Salehi, Ahmad

    2017-05-01

    While it has been known that physical activity can improve cognitive function and protect against neurodegeneration, the underlying mechanisms for these protective effects are yet to be fully elucidated. There is a large body of evidence indicating that physical exercise improves neurogenesis and maintenance of neurons. Yet, its possible effects on glial cells remain poorly understood. Here, we tested whether physical exercise in mice alters the expression of trophic factor-related genes and the status of astrocytes in the dentate gyrus of the hippocampus. In addition to a significant increase in Bdnf mRNA and protein levels, we found that 4 weeks of treadmill and running wheel exercise in mice, led to (1) a significant increase in synaptic load in the dentate gyrus, (2) alterations in astrocytic morphology, and (3) orientation of astrocytic projections towards dentate granule cells. Importantly, these changes were possibly linked to increased TrkB receptor levels in astrocytes. Our study suggests that astrocytes actively respond and could indeed mediate the positive effects of physical exercise on the central nervous system and potentially counter degenerative processes during aging and neurodegenerative disorders.

  19. Effect of acute and chronic eccentric exercise on FOXO1 mRNA expression as fiber type transition factor in rat skeletal muscles.

    PubMed

    Azad, Milad; Khaledi, Neda; Hedayati, Mehdi

    2016-06-15

    Skeletal muscle is a highly elastic tissue which can respond to various functional demands by altering fiber-type composition. Exercise affects muscle fiber phenotype. One of the transcription factors that induce fiber-type transition is forkhead box O1 (FOXO1). Since eccentric contraction considered an essential part of exercise, so we are interested to see the effects of eccentric exercise (acute/chronic) on FOXO1 as an important factor of fiber-type transition in rat skeletal muscles. Twenty-four Sprague-Dawley rats (190-235g) were divided to 3 groups of 8 rats: 1) chronic eccentric exercise (CEE), 2) acute eccentric exercise (AEE), and 3) control (C). The exercise groups underwent downhill running protocol. CEE was running on treadmill in 3 days of week for 9 weeks, that slope and duration gradually managed from -4° to -16° and 15 to 90 min, respectively. AEE group was running with 16 m/min on -16° slope for 3 consecutive days that included 18 sets of 5 min with rest interval of 2 min in between. Soleus and super vastus lateralis (SVL) muscles mRNA were analyzed by real-time RT-PCR. SVL FOXO1 mRNA levels increased by 3.92-fold in the AEE and decreased 0.56-fold in the CEE group and were not significant in soleus muscle. In soleus muscle, myosin heavy chain (MHC) IIa, IIx, and IIb decreased in the AEE group and MHC IIa and IIx decreased in the CEE group. In SVL muscle, MHC I, IIa, and IIx increased in the AEE group and MHC IIa and IIX increased in the CEE group. In summary, both acute and chronic eccentric exercise could lead to change in FOXO1 mRNA only in fast SVL muscle of rat and so could induce fiber-type transition in both muscles regardless of changes in expression of FOXO1. So, oxidative stress can play important role in change of FOXO1. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect of forced exercise and exercise withdrawal on memory, serum and hippocampal corticosterone levels in rats.

    PubMed

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin

    2015-10-01

    Evidence suggests that there are positive effects of exercise on learning and memory. Moreover, some studies have demonstrated that forced exercise plays the role of a stressor. This study was aimed at investigating the effects of different timing of exercise and exercise withdrawal on memory, and serum and hippocampal corticosterone (CORT) levels. Wistar rats were randomly divided into five groups: control, sham, exercise-rest (exercise withdrawal), rest-exercise (exercised group), and exercise-exercise (continuous exercise). Rats were forced to run on a treadmill for 1 h/day at a speed 20-21-m/min. Memory function was evaluated by the passive avoidance test in different intervals (1, 7 and 21 days) after foot shock. Findings showed that after the exercise withdrawal, short-term and mid-term memories, had significant enhancement compared to the control group, while the long-term memory did not present this result. In addition, the serum and hippocampal CORT levels were at the basal levels after the rest period in the exercise-rest group. In the rest-exercise group, exercise improved mid- and long-term memories, whereas continuous exercise improved all types short-, mid- and long-term memories, particularly the mid-term memory. Twenty-one and forty-two days of exercise significantly decreased the serum and hippocampal CORT levels. It seems that exercise for at least 21 days with no rest could affect biochemical factors in the brain. Also, regular continuous exercise plays an important role in memory function. Hence, the duration and withdraw of exercise are important factors for the neurobiological aspects of the memory responses.

  1. Graded aerobic treadmill testing in pediatric sports-related concussion: safety, clinical use, and patient outcomes.

    PubMed

    Cordingley, Dean; Girardin, Richard; Reimer, Karen; Ritchie, Lesley; Leiter, Jeff; Russell, Kelly; Ellis, Michael J

    2016-12-01

    OBJECTIVE The objectives of this study were 2-fold: 1) to evaluate the safety, tolerability, and clinical use of graded aerobic treadmill testing in pediatric patients with sports-related concussion (SRC), and 2) to evaluate the clinical outcomes of treatment with a submaximal aerobic exercise program in patients with physiological post-concussion disorder (PCD). METHODS The authors conducted a retrospective chart review of pediatric patients (age < 20 years) with SRC who were referred to a multidisciplinary pediatric concussion program and underwent graded aerobic treadmill testing between October 9, 2014, and February 11, 2016. Clinical assessments were carried out by a single neurosurgeon and included clinical history taking, physical examination, and recording specific patient-reported concussion-related symptoms using the Post-Concussion Symptom Scale (PCSS). Graded aerobic treadmill testing using a modified Balke protocol for incremental increases in intensity was used as a diagnostic tool to assess physiological recovery, classify post-concussion syndrome (PCS) subtype, and reassess patients following treatment. Patients with a symptom-limited threshold on treadmill testing (physiological PCD) were treated with an individually tailored submaximal exercise prescription and multidisciplinary targeted therapies. RESULTS One hundred six patients (mean age 15.1 years, range 11-19 years) with SRC underwent a total of 141 treadmill tests. There were no serious complications related to treadmill testing in this study. Overall, 138 (97.9%) of 141 tests were well tolerated and contributed valuable clinical information. Treadmill testing confirmed physiological recovery in 63 (96.9%) of 65 patients tested, allowing successful return to play in 61 (93.8%). Treadmill testing was used to diagnose physiological PCD in 58 patients and cervicogenic PCD in 1 patient. Of the 41 patients with physiological PCD who had complete follow-up and were treated with tailored submaximal exercise prescription, 37 (90.2%) were classified as clinically improved and 33 (80.5%) successfully returned to sporting activities. Patients who did not respond or experienced an incomplete response to submaximal aerobic exercise treatment included 7 patients with migraine headaches and 1 patient with a postinjury psychiatric disorder. CONCLUSIONS Graded aerobic treadmill testing is a safe, tolerable, and clinically valuable tool that can assist in the evaluation and management of pediatric SRC. Future research is needed to confirm the clinical value of this tool in return-to-play decision making. Studies are also needed to understand the pathophysiology of physiological PCD and the effects of targeted treatment.

  2. Acute and medium term effects of a 10-week running intervention on mood state in apprentices

    PubMed Central

    Walter, Katrin; von Haaren, Birte; Löffler, Simone; Härtel, Sascha; Jansen, Carl-Philipp; Werner, Christian; Stumpp, Jürgen; Bös, Klaus; Hey, Stefan

    2013-01-01

    Exercise and physical activity have proven benefits for physical and psychological well-being. However, it is not clear if healthy young adults can enhance mood in everyday life through regular exercise. Earlier studies mainly showed positive effects of acute exercise and exercise programs on psychological well-being in children, older people and in clinical populations. Few studies controlled participants' physical activity in daily life, performed besides the exercise program, which can impact results. In addition the transition from mood enhancement induced by acute exercise to medium or long-term effects due to regular exercise is not yet determined. The purpose of this pilot study was to examine the acute effects of an aerobic running training on mood and trends in medium term changes of mood in everyday life of young adults. We conducted a 10-week aerobic endurance training with frequent mood assessments and continuous activity monitoring. 23 apprentices, separated into experimental and control group, were monitored over 12 weeks. To control the effectiveness of the aerobic exercise program, participants completed a progressive treadmill test pre and post the intervention period. The three basic mood dimensions energetic arousal, valence and calmness were assessed via electronic diaries. Participants had to rate their mood state frequently on 3 days a week at five times of measurement within 12 weeks. Participants' physical activity was assessed with accelerometers. All mood dimensions increased immediately after acute endurance exercise but results were not significant. The highest acute mood change could be observed in valence (p = 0.07; η2 = 0.27). However, no medium term effects in mood states could be observed after a few weeks of endurance training. Future studies should focus on the interaction between acute and medium term effects of exercise training on mood. The decreasing compliance over the course of the study requires the development of strategies to maintain compliance over longer periods. PMID:23847579

  3. Increases in Brain 1H-MR Glutamine and Glutamate Signals Following Acute Exhaustive Endurance Exercise in the Rat

    PubMed Central

    Świątkiewicz, Maciej; Fiedorowicz, Michał; Orzeł, Jarosław; Wełniak-Kamińska, Marlena; Bogorodzki, Piotr; Langfort, Józef; Grieb, Paweł

    2017-01-01

    Objective: Proton magnetic resonance spectroscopy (1H-MRS) in ultra-high magnetic field can be used for non-invasive quantitative assessment of brain glutamate (Glu) and glutamine (Gln) in vivo. Glu, the main excitatory neurotransmitter in the central nervous system, is efficiently recycled between synapses and presynaptic terminals through Glu-Gln cycle which involves glutamine synthase confined to astrocytes, and uses 60–80% of energy in the resting human and rat brain. During voluntary or involuntary exercise many brain areas are significantly activated, which certainly intensifies Glu-Gln cycle. However, studies on the effects of exercise on 1H-MRS Glu and/or Gln signals from the brain provided divergent results. The present study on rats was performed to determine changes in 1H-MRS signals from three brain regions engaged in motor activity consequential to forced acute exercise to exhaustion. Method: After habituation to treadmill running, rats were subjected to acute treadmill exercise continued to exhaustion. Each animal participating in the study was subject to two identical imaging sessions performed under light isoflurane anesthesia, prior to, and following the exercise bout. In control experiments, two imaging sessions separated by the period of rest instead of exercise were performed. 1H-NMR spectra were recorded from the cerebellum, striatum, and hippocampus using a 7T small animal MR scanner. Results: Following exhaustive exercise statistically significant increases in the Gln and Glx signals were found in all three locations, whereas increases in the Glu signal were found in the cerebellum and hippocampus. In control experiments, no changes in 1H-MRS signals were found. Conclusion: Increase in glutamine signals from the brain areas engaged in motor activity may reflect a disequilibrium caused by increased turnover in the glutamate-glutamine cycle and a delay in the return of glutamine from astrocytes to neurons. Increased turnover of Glu-Gln cycle may be a result of functional activation caused by forced endurance exercise; the increased rate of ammonia detoxification may also contribute. Increases in glutamate in the cerebellum and hippocampus are suggestive of an anaplerotic increase in glutamate synthesis due to exercise-related stimulation of brain glucose uptake. The disequilibrium in the glutamate-glutamine cycle in brain areas activated during exercise may be a significant contributor to the central fatigue phenomenon. PMID:28197103

  4. Comparing interventions and exploring neural mechanisms of exercise in Parkinson disease: a study protocol for a randomized controlled trial.

    PubMed

    Earhart, Gammon M; Duncan, Ryan P; Huang, John L; Perlmutter, Joel S; Pickett, Kristen A

    2015-02-05

    Effective treatment of locomotor dysfunction in Parkinson disease (PD) is essential, as gait difficulty is an early and major contributor to disability. Exercise is recommended as an adjunct to traditional treatments for improving gait, balance, and quality of life. Among the exercise approaches known to improve walking, tango and treadmill training have recently emerged as two promising therapies for improving gait, disease severity and quality of life, yet these two interventions have not been directly compared to each other. Prior studies have been helpful in identifying interventions effective in improving gait function, but have done little to elucidate the neural mechanisms underlying functional improvements. The primary objective of the proposed work is to compare the effects of three community-based exercise programs, tango, treadmill training and stretching, on locomotor function in individuals with PD. In addition, we aim to determine whether and how these interventions alter functional connectivity of locomotor control networks in the brain. One hundred and twenty right-handed individuals with idiopathic PD who are at least 30 years of age will be assigned in successive waves to one of three community-based exercise groups: tango dancing, treadmill training or stretching (control). Each group will receive three months of exercise training with twice weekly one-hour group classes. Each participant will be evaluated at three time points: pre-intervention (baseline), post-intervention (3 months), and follow-up (6 months). All evaluations will include assessment of gait, balance, disease severity, and quality of life. Baseline and post-intervention evaluations will also include task-based functional magnetic resonance imaging (fMRI) and resting state functional connectivity MRI. All MRI and behavioral measures will be conducted with participants OFF anti-Parkinson medication, with behavioral measures also assessed ON medication. This study will provide important insights regarding the effects of different modes of exercise on locomotor function in PD. The protocol is innovative because it: 1) uses group exercise approaches for all conditions including treadmill training, 2) directly compares tango to treadmill training and stretching, 3) tests participants OFF medication, and 4) utilizes two distinct neuroimaging approaches to explore mechanisms of the effects of exercise on the brain. ClinicalTrials.gov NCT01768832 .

  5. Lower Body Negative Pressure Treadmill Exercise and Resistive Exercise Countermeasures Maintain Physiologic Function in Women during Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Macias, B. R.; Schneider, S. M.; Lee, S. M. C.; Guinet, P.; Hughson, R. L.; Smith, Scott M.; Watenpaugh, D. E.; Hargens, A. R.

    2008-01-01

    We hypothesized that supine LBNP treadmill exercise combined with Flywheel resistive exercise maintains upright physiologic responses following 60-days of head-down tilt (HDT) bed rest (BR). METHODS: 16 healthy women (age 25-40 years) underwent 60-days HDT (-6deg.) BR. Women were assigned to either a non-exercise control group (CON, n=8) or to an exercise group (EX, n=8). EX subjects performed a 40-min, variable intensity LBNP exercise protocol at foot-ward forces between 1.0-1.1 times body weight, followed by 10- min of resting LBNP 3-4 days/week. Resistive exercise of maximal concentric and eccentric supine leg press and heel raise exercises were performed using a flywheel ergometer 2-3 days/week. IRBs approved this study with informed/written consent. RESULTS: Post-BR VO2pk was not different in EX (-3.3+/-1.2%) but decreased significantly in CON (-21.2+/-2.1%), p< 0.05. Post-BR orthostatic tolerance time (mean se) decreased significantly less in EX (19.3+/-1.3 to 14.4+/-1.5 min) than in CON (17.5+/-0.1 to 9.1+/- 1.5 min), p=0.03. Post-BR muscle strength decreased significantly in CON, but was preserved in EX. Post-BR bone resorption was greater than pre-BR in both groups (p<0.05). Bone formation markers, were significantly elevated (p<0.05) in EX than in CON. CONCLUSIONS: Supine LBNP treadmill exercise along with flywheel resistive exercise maintains upright exercise capacity, orthostatic responses and muscle strength during 60-days HDT BR.

  6. Body armour: the effect of load, exercise and distraction on landing forces.

    PubMed

    Dempsey, Paddy C; Handcock, Phil J; Rehrer, Nancy J

    2014-01-01

    We investigated the effect of added load and intense exercise on jump and landing performance and ground reaction force (GRF) during landings where attentional demand was varied. Fifty-two males (37 ± 9.2 years, 180.7 ± 6.1 cm, 90.2 ± 11.6 kg, maximal aerobic fitness (VO(₂max)) 50 ± 8.5 ml (.) kg(-1 .) min(-1), BMI 27.6 ± 3.1, mean ± s) completed a VO(₂max) test. Experimental sessions were completed (≥4 days in between) in a randomised counterbalanced order, one while wearing body armour and appointments (loaded) and one without load (unloaded). A vertical jump, a drop landing concentrating on safe touchdown, a drop jump and a drop landing with an attentional distraction were performed. These were repeated 1 min after a 5-min treadmill run. Mean jump height decreased by 12% (P < 0.001) with loading and a further by 6% following the running task. Peak GRFs were increased by 13-19% with loading (P < 0.001) depending on the landing task demands and a further by 4-9% following intense exercise. The distracted drop landing had significantly higher GRFs compared to all other landings. Results demonstrate that added load impacts on jumping and landing performance, an effect that is amplified by prior intense exercise, and distraction during landing. Such increases in GRF apply to police officer performance in their duties and may increase the risk of injury.

  7. The Behavioral Toxicology of High-Peak, Low Average Power, Pulsed Microwave Irradiation

    DTIC Science & Technology

    1993-01-25

    Psychometrika, 47, 95-99. Raslear, T. G. (1983). A test of the Pfanzagl bisection model in rats. Journal of Experimental Psychology : Animal Behavior Processes, 9...temporal bisection, Y-maze, treadmill running, food motivation (behavioraleconomics), and Persolt swim test . Reliable effects were found with the...subsequent task performance: temporal bisection, Y-maze, treadmill running, food motivation (behavioral economics), and Porsolt swim test . Reliable effects

  8. Caffeine stimulates voluntary wheel running in mice without increasing aerobic capacity.

    PubMed

    Claghorn, Gerald C; Thompson, Zoe; Wi, Kristianna; Van, Lindsay; Garland, Theodore

    2017-03-01

    The "energy drink" Red Bull and the "sports drink" Gatorade are often marketed to athletes, with claims that they cause performance gains. However, both are high in sugars, and also consumed by non-athletes. Few studies have addressed the effects of these drinks or their biologically active components in rodent exercise models. We used three experiments to test effects on both voluntary exercise behavior and maximal aerobic capacity in lines of mice known to differ in "athletic" traits. Mice from four replicate High Runner (HR) lines have been selectively bred for voluntary running on wheels, and run approximately three times as many revolutions per day as do mice from four non-selected Control (C) lines. HR mice also have higher endurance and maximal oxygen consumption (VO 2 max) during forced treadmill exercise. In Experiment 1, we tested the hypothesis that Gatorade or Red Bull might cause or allow mice to increase their voluntary wheel running. On days 5 and 6 of 6days of wheel access, as is used to select breeders, HR mice ran 3.3-fold more than C, and females ran 1.2-fold more than males, with no linetype by sex interaction. On day 7, mice were administered Gatorade, Red Bull or tap water. During the subsequent 19-hour period, Gatorade had no statistical effect on running, but Red Bull significantly increased distance run by both sexes and in both HR and C lines. The increase in distance run caused by Red Bull was attributable to time spent running, not an increase in mean (or maximum) speed. As previous studies have found that sucrose alone does not generally increase wheel running, we tested two other active ingredients in Red Bull, caffeine and taurine, in Experiment 2. With a similar testing protocol, caffeine alone and caffeine+taurine increased running by about half the magnitude of Red Bull. In Experiment 3, we tested the hypothesis that Red Bull or caffeine alone can increase physiological performance ability during aerobic exercise, measured as VO 2 max. In a repeated-measures design spanning 6days, females were housed with water bottles containing Red Bull, caffeine or water in a randomized order, and tested for VO 2 max twice while receiving each fluid (6 total trials). Neither Red Bull nor caffeine significantly affected either VO 2 max or a measure of trial cooperativity (rated on a scale of 1-5), but both treatments significantly reduced tiredness (rated on a scale of 1-3) scored at the end of trials for both HR and C lines. Taken together, our results suggest that caffeine increases voluntary exercise levels of mice by delaying fatigue, rather than increasing aerobic capacity. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Treadmill training as an augmentation treatment for Alzheimer's disease: a pilot randomized controlled study.

    PubMed

    Arcoverde, Cynthia; Deslandes, Andrea; Moraes, Helena; Almeida, Cloyra; Araujo, Narahyana Bom de; Vasques, Paulo Eduardo; Silveira, Heitor; Laks, Jerson

    2014-03-01

    To assess the effect of aerobic exercise on the cognition and functional capacity in Alzheimer's disease (AD) patients. Elderly (n=20) with mild dementia (NINCDS-ADRDA/CDR1) were randomly assigned to an exercise group (EG) on a treadmill (30 minutes, twice a week and moderate intensity of 60% VO₂max) and control group (GC) 10 patients. The primary outcome measure was the cognitive function using Cambridge Cognitive Examination (CAMCOG). Specifics instruments were also applied to evaluate executive function, memory, attention and concentration, cognitive flexibility, inhibitory control and functional capacity. After 16 weeks, the EG showed improvement in cognition CAMCOG whereas the CG declined. Compared to the CG, the EG presented significant improvement on the functional capacity. The analysis of the effect size has shown a favorable response to the physical exercise in all dependent variables. Walking on treadmill may be recommended as an augmentation treatment for patients with AD.

  10. Treadmill Exercise with Increased Body Loading Enhances Post Flight Functional Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2014-01-01

    The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. Given the importance of body-support loading we set out to determine if there is a relationship between the load experienced during inflight treadmill exercise (produced by a harness and bungee system) and postflight functional performance. ISS crewmembers (n=13) were tested using the FTT protocol before and after 6 months in space. Crewmembers were tested three times before flight, and on 1, 6, and 30 days after landing. To determine how differences in body-support loading experienced during inflight treadmill exercise impacts postflight functional performance, the loading history for each subject during inflight treadmill (T2) exercise was correlated with postflight measures of performance. Crewmembers who walked on the treadmill with higher pull-down loads had less decrement in postflight postural stability and dynamic locomotor control than those subjects who exercised with lighter loads. These data point to the importance of providing significant body loading during inflight treadmill exercise. This and the addition of specific balance training may further mitigate decrements in critical mission tasks that require dynamic postural stability and mobility. Inflight treadmill exercise provides a multi-disciplinary platform to provide sensorimotor, aerobic and bone mechanical stimuli benefits. Forward work will focus on the development of an inflight training system that will integrate aerobic, resistive and balance training modalities into a single interdisciplinary countermeasure system for exploration class missions.

  11. Validity of the Samsung Phone S Health application for assessing steps and energy expenditure during walking and running: Does phone placement matter?

    PubMed Central

    Johnson, Marquell; Turek, Jillian; Dornfeld, Chelsea; Drews, Jennifer; Hansen, Nicole

    2016-01-01

    Background The emergence of mHealth and the utilization of smartphones in physical activity interventions warrant a closer examination of validity evidence for such technology. This study examined the validity of the Samsung S Health application in measuring steps and energy expenditure. Methods Twenty-nine participants (mean age 21.69 ± 1.63) participated in the study. Participants carried a Samsung smartphone in their non-dominant hand and right pocket while walking around a 200-meter track and running on a treadmill at 2.24 m∙s−1. Steps and energy expenditure from the S Health app were compared with StepWatch 3 Step Activity Monitor steps and indirect calorimetry. Results No significant differences between S Health estimated steps and energy expenditure during walking and their respective criterion measures, regardless of placement. There was also no significant difference between S Health estimated steps and the criterion measure during treadmill running, regardless of placement. There was significant differences between S Health estimated energy expenditure and the criterion during treadmill running for both placements (both p < 0.001). Conclusions The S Health application measures steps and energy expenditure accurately during self-selected pace walking regardless of placement. Placement of the phone impacts the S Health application accuracy in measuring physical activity variables during treadmill running. PMID:29942556

  12. Tibial Acceleration and Spatiotemporal Mechanics in Distance Runners During Reduced-Body-Weight Conditions.

    PubMed

    Moran, Matthew F; Rickert, Brendan J; Greer, Beau K

    2017-05-01

    Treadmills that unload runners via a differential air-pressure (DAP) bladder (eg, AlterG Anti-Gravity Treadmill) are commonly used to reduce effective body weight (BW) in a clinical setting. However, the relationship between the level of unloading and tibial stress is currently unknown. To determine the relationship between tibial impact acceleration and level of BW unloading during running. Cross-sectional. University motion-analysis laboratory. 15 distance runners (9 male, 6 female; 20.4 ± 2.4 y, 60.1 ± 12.6 kg). Peak tibial acceleration and peak-to-peak tibial acceleration were measured via a uniaxial accelerometer attached to the tibia during a 37-min continuous treadmill run that simulated reduced-BW conditions via a DAP bladder. The trial began with a 10-min run at 100% BW followed by nine 3-min stages where BW was systematically reduced from 95% to 60% in 5% increments. There was no significant relationship between level of BW and either peak tibial acceleration or peak-to-peak tibial acceleration (P > .05). Both heart rate and step rate were significantly reduced with each 5% reduction in BW level (P < .01). Although ground-reaction forces are reduced when running in reduced-BW conditions on a DAP treadmill, tibial shock magnitudes are unchanged as an alteration in spatiotemporal running mechanics (eg, reduced step rate) and may nullify the unloading effect.

  13. Effects of prolonged physical exercise and fasting upon plasma testosterone level in rats.

    PubMed

    Guezennec, C Y; Ferre, P; Serrurier, B; Merino, D; Pesquies, P C

    1982-01-01

    Prolonged physical exercise and fasting in male rats were studied to determine the effect of these two treatments on plasma testosterone level. Blood and tissue samples were drawn after 1 h, 3 h, 5 h, and 7 h treadmill running, and after 24 h, 48 h, and 72 h of fasting. Both treatments resulted in a significant fall in plasma testosterone, plasma luteinizing hormone (LH), plasma Insulin (IRI) and in liver and muscle glycogen stores. In the course of these two treatments the injection of a supra maximal dose of Human Chorionic Gonadotropin (HCG) produced a rise in plasma testosterone similar to that in control rats. This indicates that the decrease of plasma LH may be responsible for the decrease in plasma testosterone, which is time-related with the decrease in glycogen stores. The possible metabolic role of the decrease in plasma testosterone is discussed.

  14. Low-intensity treadmill exercise promotes rat dorsal wound healing.

    PubMed

    Zhou, Wu; Liu, Guo-hui; Yang, Shu-hua; Mi, Bo-bin; Ye, Shu-nan

    2016-02-01

    In order to investigate the promoting effect of low-intensity treadmill exercise on rat dorsal wound healing and the mechanism, 20 Sprague-Dawley rats were randomly divided into two groups: exercise group (Ex) and non-exercise group (non-ex). The rats in Ex group were given treadmill exercise for one month, and those in non-ex group raised on the same conditions without treadmill exercise. Both groups received dorsal wound operation with free access to food and water. By two-week continuous observation and recording of the wound area, the healing rate was analyzed. The blood sample was collected at day 14 post-operation via cardiac puncture for determination of the number of endothelial progenitor cells (EPCs) by flow cytometry, and the concentrations of relevant cytokines such as basic fibroblast growth factor (bFGF), endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) were measured by ELISA. The skin tissue around the wound was dissected to observe the vascular density under the microscope after HE staining, to detect the mRNA level of VEGFR2 and angiopoietin-1 (Ang-1) receptor using RT-qPCR, and protein expression of a-smooth muscle actin (αSMA) and type III collagen (ColIII) using Western blotting. It was found that the wound area in Ex group was smaller at the same time point than in non-ex group. The number of circulating EPCs was greater and the concentrations of vasoactive factors such as VEGF, eNOS and bFGF were higher in Ex group than in non-ex group. HE staining displayed a higher vessel density in Ex group than in non-ex group. Moreover, the mRNA expression of VEGFR2 and Ang-1 detected in the wound tissue in Ex group was higher than in non-ex group. Meanwhile, the protein expression of αSMA and ColIII was more abundant in Ex group than in non-ex group. Conclusively, the above results demonstrate Ex rats had a higher wound healing rate, suggesting low-intensity treadmill exercise accelerates wound healing. The present work may provide some hint for future study of treating refractory wound.

  15. Glucose transporters and maximal transport are increased in endurance-trained rat soleus

    NASA Technical Reports Server (NTRS)

    Slentz, C. A.; Gulve, E. A.; Rodnick, K. J.; Henriksen, E. J.; Youn, J. H.; Holloszy, J. O.

    1992-01-01

    Voluntary wheel running induces an increase in the concentration of the regulatable glucose transporter (GLUT4) in rat plantaris muscle but not in soleus muscle (K. J. Rodnick, J. O. Holloszy, C. E. Mondon, and D. E. James. Diabetes 39: 1425-1429, 1990). Wheel running also causes hypertrophy of the soleus in rats. This study was undertaken to ascertain whether endurance training that induces enzymatic adaptations but no hypertrophy results in an increase in the concentration of GLUT4 protein in rat soleus (slow-twitch red) muscle and, if it does, to determine whether there is a concomitant increase in maximal glucose transport activity. Female rats were trained by treadmill running at 25 m/min up a 15% grade, 90 min/day, 6 days/wk for 3 wk. This training program induced increases of 52% in citrate synthase activity, 66% in hexokinase activity, and 47% in immunoreactive GLUT4 protein concentration in soleus muscles without causing hypertrophy. Glucose transport activity stimulated maximally with insulin plus contractile activity was increased to roughly the same extent (44%) as GLUT4 protein content in soleus muscle by the treadmill exercise training. In a second set of experiments, we examined whether a swim-training program increases glucose transport activity in the soleus in the presence of a maximally effective concentration of insulin. The swimming program induced a 44% increase in immunoreactive GLUT4 protein concentration. Glucose transport activity maximally stimulated with insulin was 62% greater in soleus muscle of the swimmers than in untrained controls. Training did not alter the basal rate of 2-deoxyglucose uptake.(ABSTRACT TRUNCATED AT 250 WORDS).

  16. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes.

    PubMed

    Castro-Sepulveda, Mauricio; Johannsen, Neil; Astudillo, Sebastián; Jorquera, Carlos; Álvarez, Cristian; Zbinden-Foncea, Hermann; Ramírez-Campillo, Rodrigo

    2016-06-07

    Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45 min of treadmill running at 65% of the maximal heart rate, 45 min after ingesting 0.7 L of water (W), beer (AB) or non-alcoholic beer (NAB). Body mass, plasma Na⁺ and K⁺ concentrations and urine specific gravity (USG) were assessed before fluid consumption and after exercise. After exercise, body mass decreased (p < 0.05) in W (-1.1%), AB (-1.0%) and NAB (-1.0%). In the last minutes of exercise, plasma Na⁺ was reduced (p < 0.05) in W (-3.9%) and AB (-3.7%), plasma K⁺ was increased (p < 0.05) in AB (8.5%), and USG was reduced in W (-0.9%) and NAB (-1.0%). Collectively, these results suggest that non-alcoholic beer before exercise could help maintain electrolyte homeostasis during exercise. Alcoholic beer intake reduced plasma Na⁺ and increased plasma K⁺ during exercise, which may negatively affect health and physical performance, and finally, the consumption of water before exercise could induce decreases of Na⁺ in plasma during exercise.

  17. Effects of Enzymatically Synthesized Glycogen and Exercise on Abdominal Fat Accumulation in High-Fat Diet-Fed Mice.

    PubMed

    Tamura, Shohei; Honda, Kazuhisa; Morinaga, Ryoji; Saneyasu, Takaoki; Kamisoyama, Hiroshi

    2017-01-01

    The combination of diet and exercise is the first choice for the treatment of obesity and metabolic syndrome. We previously reported that enzymatically synthesized glycogen (ESG) suppresses abdominal fat accumulation in obese rats. However, the effect of the combination of ESG and exercise on abdominal fat accumulation has not yet been investigated. Our goal in this study was therefore to evaluate the effects of dietary ESG and its combination with exercise on abdominal fat accumulation in high-fat diet (HFD)-fed mice. Male ICR mice were assigned to four groups: HFD, HFD containing 20% ESG, HFD with exercise, HFD containing 20% ESG with exercise. Treadmill exercise was performed for 3 wk (25 m/min, 30 min/d, 3 d/wk) after 5-d adaption to running at that speed. Both ESG and exercise significantly reduced the weights of abdominal adipose tissues. In addition, the combination of ESG and exercise significantly suppressed abdominal fat accumulation, suggesting that ESG and exercise showed an additive effect. Exercise significantly increased the mRNA levels of lipid metabolism-related genes such as lipoprotein lipase, peroxisome proliferator-activated receptor delta; factor-delta (PPARδ), carnitin palmitoyltransferase b, adipose triglyceride lipase (ATGL), and uncoupling protein-3 in the gastrocnemius muscle. On the other hand, dietary ESG significantly decreased the mRNA levels of PPARδ and ATGL in the gastrocnemius muscle. These results suggest that the combined treatment of ESG and exercise effectively suppresses abdominal fat accumulation in HFD-fed mice by different mechanisms.

  18. Simulating reduced gravity: a review of biomechanical issues pertaining to human locomotion.

    PubMed

    Davis, B L; Cavanagh, P R

    1993-06-01

    In the decade preceding Apollo missions to the Moon, extensive studies were conducted on human locomotion in reduced gravity. These investigations focused primarily on issues of maneuverability and energy expenditure and not on musculoskeletal loading, which is of more interest to planners of long-duration space missions. The techniques have included water immersion, parabolic aircraft flights, supine and erect cable suspension and centrifugal methods. The practical implications of the findings from these studies are: 1) the present shuttle treadmill running surface would not suffice if one wanted to run with a natural style at levels greater than 0.6 G; 2) in terms of attempting to replicate typical ground reaction force profiles during locomotor exercise at reduced gravity levels, it appears as though it is easier to match the peak rates of change of force (maxDFDT) than it is to match values for the peak force magnitudes (maxGRF).

  19. Effect of 29 days of simulated microgravity on maximal oxygen consumption and fat-free mass of rats

    NASA Technical Reports Server (NTRS)

    Woodman, Christopher R.; Stump, Craig S.; Stump, Jane A.; Rahman, Zia; Tipton, Charles M.

    1991-01-01

    Effects of a 29-days exposure to simulated microgravity on the values of maximal oxygen consumption and fat-free mass (FFM) and on the mechanical efficiency of running were investigated in rats randomly assigned to one of three regimens: head-down suspension (HDS) at 45 deg, horizontal suspension (HS), or cage control (CC). Before suspension and on days 7, 14, 21, and 28, five exercise performance tests were carried out, with measurements related to maximal oxygen consumption, treadmill run time, and mechanical efficiency. It was found that maximal oxygen consumption of both HDS and HS groups decreased significantly at day 7, after which the HDS rats remained decreased while the HS rats returned to presuspension values. Apparent mechanical efficiency in the HDS and HS groups decreased by 22-35 percent during the experimental period, and FFM decreased significantly.

  20. Aerobic exercise improves oxidant-antioxidant balance in patients with rheumatoid arthritis

    PubMed Central

    Tuna, Zeynep; Duger, Tulin; Atalay-Guzel, Nevin; Aral, Arzu; Basturk, Bilkay; Haznedaroglu, Seminur; Goker, Berna

    2015-01-01

    [Purpose] Although oxidative stress is known to be present in rheumatoid arthritis (RA), the effects of exercise on oxidative parameters are unknown. The aim of this study was to investigate the effects of acute aerobic exercise on serum oxidant and antioxidant levels in patients with RA. [Subjects and Methods] Sixteen patients with RA and 10 age-matched healthy volunteers participated in this study. All participants wore polar telemeters and walked on a treadmill for 30 minutes at a speed eliciting 60–75% of maximal heart rates. Blood samples were obtained before, immediately and 24 hours after exercise and malondialdehyde (MDA) and total sulfhydrile group (RSH) levels were measured. [Results] Both groups had similar heart rates during the test but the treadmill speed of the RA patients was significantly lower than that of the healthy volunteers. Serum MDA levels were lower than in both groups immediately after exercise, with greater decrements in the RA patients than controls. MDA levels returned to baseline 24 hours after the exercise only in the controls; they remained low in the RA patients. There was a slight increase in serum RSH levels after exercise compared to baseline in both groups. [Conclusion] Moderate intensity treadmill exercise did not have any adverse effect on the oxidant-antioxidant balance. The results suggest that such an exercise may be safely added to the rehabilitation program of RA for additional antioxidant effects. Morever, this antioxidant environment is maintained longer in RA patients. PMID:25995597

  1. One-minute heart rate recovery after cycloergometer exercise testing as a predictor of mortality in a large cohort of exercise test candidates: substantial differences with the treadmill-derived parameter.

    PubMed

    Gaibazzi, Nicola; Petrucci, Nicola; Ziacchi, Vigilio

    2004-03-01

    Previous work showed a strong inverse association between 1-min heart rate recovery (HRR) after exercising on a treadmill and all-cause mortality. The aim of this study was to determine whether the results could be replicated in a wide population of real-world exercise ECG candidates in our center, using a standard bicycle exercise test. Between 1991 and 1997, 1420 consecutive patients underwent ECG exercise testing performed according to our standard cycloergometer protocol. Three pre-specified cut-point values of 1-min HRR, derived from previous studies in the medical literature, were tested to see whether they could identify a higher-risk group for all-cause mortality; furthermore, we tested the possible association between 1-min HRR as a continuous variable and mortality using logistic regression. Both methods showed a lack of a statistically significant association between 1-min HRR and all-cause mortality. A weak trend toward an inverse association, although not statistically significant, could not be excluded. We could not validate the clear-cut results from some previous studies performed using the treadmill exercise test. The results in our study may only "not exclude" a mild inverse association between 1-min HRR measured after cycloergometer exercise testing and all-cause mortality. The 1-min HRR measured after cycloergometer exercise testing was not clinically useful as a prognostic marker.

  2. Changes in running pattern due to fatigue and cognitive load in orienteering.

    PubMed

    Millet, Guillaume Y; Divert, Caroline; Banizette, Marion; Morin, Jean-Benoit

    2010-01-01

    The aim of this study was to examine the influence of fatigue on running biomechanics in normal running, in normal running with a cognitive task, and in running while map reading. Nineteen international and less experienced orienteers performed a fatiguing running exercise of duration and intensity similar to a classic distance orienteering race on an instrumented treadmill while performing mental arithmetic, an orienteering simulation, and control running at regular intervals. Two-way repeated-measures analysis of variance did not reveal any significant difference between mental arithmetic and control running for any of the kinematic and kinetic parameters analysed eight times over the fatiguing protocol. However, these parameters were systematically different between the orienteering simulation and the other two conditions (mental arithmetic and control running). The adaptations in orienteering simulation running were significantly more pronounced in the elite group when step frequency, peak vertical ground reaction force, vertical stiffness, and maximal downward displacement of the centre of mass during contact were considered. The effects of fatigue on running biomechanics depended on whether the orienteers read their map or ran normally. It is concluded that adding a cognitive load does not modify running patterns. Therefore, all changes in running pattern observed during the orienteering simulation, particularly in elite orienteers, are the result of adaptations to enable efficient map reading and/or potentially prevent injuries. Finally, running patterns are not affected to the same extent by fatigue when a map reading task is added.

  3. Ischemia Related Changes in Circulating Stem and Progenitor Cells and Associated Clinical Characteristics in Peripheral Artery Disease

    PubMed Central

    Saber, Rana; Liu, Kiang; Ferrucci, Luigi; Criqui, Michael H.; Zhao, Lihui; Tian, Lu; Guralnik, Jack; Liao, Yihua; Domanchuk, Kathryn; Kibbe, Melina R.; Green, David; Perlman, Harris; McDermott, Mary M.

    2017-01-01

    AIMS The extent and clinical significance of stem and progenitor cell (SPC) increases in response to lower extremity ischemia in people with peripheral artery disease (PAD) are unclear. We compared changes in SPC levels immediately following a treadmill exercise test between individuals with and without PAD. Among participants with PAD, we determined whether more severe PAD was associated with greater increases in SPCs following treadmill exercise induced lower extremity ischemia. APPROACH AND RESULTS We measured SPC levels in 25 participants with PAD and 20 without PAD before and immediately after a treadmill exercise test. Participants with PAD, compared to participants without PAD, had greater increases in CD34+CD45dim (+0.08±0.03 vs. −0.06±0.04, p=0.008), CD34+CD45dimCD133+ (+0.08±0.05 vs. −0.08±0.04, p=0.014), CD34+CD45dimCD31+ (+0.10±0.03 vs. −0.07±0.04, p=0.002), and CD34+CD45dimALDH+ SPCs (+0.18±0.07 vs. −0.05±0.08, p=0.054) measured as a percentage of all white blood cells. Among participants with PAD, those with any increases in the percent of SPCs immediately after the treadmill exercise test compared to those with no change or a decrease in SPCs had lower baseline ABI values (0.65±0.17 vs. 0.90±0.19, p=0.004) and shorter treadmill times to onset of ischemic leg symptoms (2.17±1.54 vs. 5.25±3.72 minutes, p=0.012). CONCLUSIONS In conclusion, treadmill exercise-induced lower extremity ischemia is associated with acute increases in circulating SPCs among people with PAD. More severe PAD is associated with a higher prevalence of SPC increases in response to lower extremity ischemia. Further prospective study is needed to establish the prognostic significance of ischemia related increases in SPCs among patients with PAD. PMID:26324152

  4. Exercise enhance the ectopic bone formation of calcium phosphate biomaterials in muscles of mice.

    PubMed

    Cheng, Lijia; Yan, Shuo; Zhu, Jiang; Cai, Peiling; Wang, Ting; Shi, Zheng

    2017-08-01

    To investigate whether exercise can enhance ectopic bone formation of calcium phosphate (Ca-P) biomaterials in muscles of mice. Firstly, ten transient receptor potential vanilloid subfamily member 1 (TRPV1) knockout mice (group KO) and ten C57BL/6 mice (group WT) were randomly chosen, 10μg Ca-P biomaterials were implanted into the thigh muscle pouch of each mouse which was far away from femur; after that, all animals were kept in open field for free exploration 5min, and the movement time and distance were automatically analyzed. Ten weeks later, the Ca-P samples were harvested for histological staining and immunochemistry. Secondly, the Ca-P biomaterials were implanted into the thigh muscle pouch of C57BL/6 mice the same as previous operation, and then randomly divided into two groups: running group and non-running group (n=10); in running group, all mice run 1h as a speed of 6m/h in a treadmill for 10weeks. Ten weeks later, the blood was collected to detect the interleukin-4 (IL-4) and IL-12 levels by enzyme linked immunosorbent assay (ELISA), and the samples were harvested for histological staining. In groups KO and WT, both the movement time and distance were significant higher in group KO than that in group WT (P<0.05); furthermore, the histology staining results showed that lots of new bone and bone marrow tissues were observed in group KO, but only bone matrix-like substances were observed in group WT. In running group and non-running group, the ELISA results indicated that the immunological genes, both IL-4 and IL-12 levels were significant higher in running group than that in non-running group (P<0.05); besides that, more new bone tissues were observed in running group than that in non-running group. Knockout of TRPV1 in mice could reduce algesia and induce the stronger athletic ability of mice, causing better osteoinductivity of Ca-P biomaterials both in TRPV1 -/- mice and running mice; according to this, we want to offer a proposal to patients who suffer from bone defects and artificial bone transplantation: do moderate exercise, don't convalesce all the time. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Adrenal hormones and liver cAMP in exercising rats--different modes of anesthesia.

    PubMed

    Winder, W W; Fuller, E O; Conlee, R K

    1983-11-01

    We have compared five different modes of anesthesia (iv and ip pentobarbital sodium, ether, CO2, and cervical dislocation) with respect to their effects on liver glycogen, liver adenosine 3',5'-cyclic monophosphate (cAMP), blood glucose and lactate, plasma corticosterone, norepinephrine, and epinephrine in resting rats and in rats run on a treadmill at 26 m/min for 30 min. Ether, CO2, and cervical dislocation were found to be unsuitable due to the marked elevation in plasma catecholamines seen in both resting and exercising rats. Injection of pentobarbital sodium ip required an average of 8 min before onset of surgical anesthesia as opposed to less than 5 s for iv pentobarbital. Exercising rats anesthetized with ip pentobarbital showed markedly lower plasma catecholamines compared with rats given iv pentobarbital. Hepatic cAMP increased in response to exercise in all groups except the ip pentobarbital group. This is most likely due to the long delay between the end of the exercise and freezing of the liver in the ip pentobarbital-anesthetized animals. We conclude that iv injection of pentobarbital is the most suitable method of anesthesia for obtaining accurate measurements of plasma stress hormones, substrates, and metabolites and of hepatic cAMP and glycogen in resting and exercising rats.

  6. Protection of Hippocampal CA1 Neurons Against Ischemia/Reperfusion Injury by Exercise Preconditioning via Modulation of Bax/Bcl-2 Ratio and Prevention of Caspase-3 Activation.

    PubMed

    Aboutaleb, Nahid; Shamsaei, Nabi; Rajabi, Hamid; Khaksari, Mehdi; Erfani, Sohaila; Nikbakht, Farnaz; Motamedi, Pezhman; Shahbazi, Ali

    2016-01-01

    Ischemia leads to loss of neurons by apoptosis in specific brain regions, especially in the hippocampus. The purpose of this study was investigating the effects of exercise preconditioning on expression of Bax, Bcl-2, and caspase-3 proteins in hippocampal CA1 neurons after induction of cerebral ischemia. Male rats weighing 260-300 g were randomly allocated into three groups (sham, exercise, and ischemia). The rats in exercise group were trained to run on a treadmill 5 days a week for 4 weeks. Ischemia was induced by the occlusion of both common carotid arteries (CCAs) for 20 min. Levels of expression of Bax, Bcl-2, and caspase-3 proteins in CA1 area of hippocampus were determined by immunohistochemical staining . The number of active caspase-3-positive neurons in CA1 area were significantly increased in ischemia group, compared to sham-operated group (P<0.001), and exercise preconditioning significantly reduced the ischemia/reperfusion-induced caspase-3 activation, compared to the ischemia group (P<0.05). Also, results indicated a significant increase in Bax/Bcl-2 ratio in ischemia group, compared to sham-operated group (P<0.001). This study indicated that exercise has a neuroprotective effects against cerebral ischemia when used as preconditioning stimuli.

  7. Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats.

    PubMed

    Salim, Samina; Sarraj, Nada; Taneja, Manish; Saha, Kaustuv; Tejada-Simon, Maria Victoria; Chugh, Gaurav

    2010-04-02

    Recent work has suggested correlation of oxidative stress with anxiety-like behavior. There also is evidence for anxiolytic effects of physical exercise. However, a direct role of oxidative stress in anxiety is not clear and a protective role of physical exercise in oxidative stress-mediated anxiety has never been addressed. In this study, we have utilized rats to test direct involvement of oxidative stress with anxiety-like behavior and have identified oxidative stress mechanisms likely involved in anxiolytic effects of physical exercise. Intraperitoneal injections at non-toxic dose of l-buthionine-(S,R)-sulfoximine (BSO), an agent that increases oxidative stress markers, increased anxiety-like behavior of rats compared to vehicle-treated control rats. Prior 2 weeks treatment with the antioxidant, tempol attenuated BSO-induced anxiety-like behavior of rats suggesting a role of oxidative stress in this phenomenon. Moreover, moderate treadmill exercise prevented BSO-induced anxiety-like behavior of rats and also prevented BSO-mediated increase in oxidative stress markers in serum, urine and brain tissue homogenates from hippocampus, amygdala and locus coeruleus. Thus increasing oxidative stress increases anxiety-like behavior of rats. Moreover, antioxidant or treadmill exercise training both reduce oxidative stress in the rat brain regions implicated in anxiety response and prevent anxiety-like behavior of rats. Published by Elsevier B.V.

  8. Body acceleration distribution and O2 uptake in humans during running and jumping

    NASA Technical Reports Server (NTRS)

    Bhattacharya, A.; Mccutcheon, E. P.; Shvartz, E.; Greenleaf, J. E.

    1980-01-01

    The distribution of body acceleration and associated oxygen uptake and heart rate responses are investigated in treadmill running and trampoline jumping. Accelerations in the +Gz direction were measured at the lateral ankle, lumbosacral region and forehead of eight young men during level treadmill walking and running at four speeds and trampoline jumping at four heights, together with corresponding oxygen uptake and heart rate. With increasing treadmill speed, peak acceleration at the ankle is found always to exceed that at the back and forehead, and acceleration profiles with higher frequency components than those observed during jumping are observed. Acceleration levels are found to be more uniformly distributed with increasing height in jumping, although comparable oxygen uptake and heat rates are obtained. Results indicate that the magnitude of the biomechanical stimuli is greater in trampoline jumping than in running, which finding could be of use in the design of procedures to avert deconditioning in persons exposed to weightlessness.

  9. Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion.

    PubMed

    Howlett, Kirsten F; Andrikopoulos, Sofianos; Proietto, Joseph; Hargreaves, Mark

    2013-08-01

    To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30-60% of normal (CON) and approximately 5-10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake.

  10. Low- and high-intensity treadmill exercise attenuates chronic morphine-induced anxiogenesis and memory impairment but not reductions in hippocampal BDNF in female rats.

    PubMed

    Ghodrati-Jaldbakhan, Shahrbanoo; Ahmadalipour, Ali; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Alizadeh, Maryam

    2017-05-15

    Previous studies from our laboratory have shown that treadmill exercise alleviates the deficits in cognitive functions and anxiety behaviors induced by chronic exposure to morphine in male rats. In this study, we investigated the effects of low and high intensities of treadmill exercise on spatial memory, anxiety-like behaviors, and biochemical changes in the hippocampus and serum of morphine-treated female rats. The adult virgin female rats were injected with bi-daily doses (10mg/kg, at 12h intervals) of morphine over a period of 10days. Following these injections, the rats were exercised under low or high intensities for 30min per session on five days a week for four weeks. After exercise training, object location memory, anxiety profile, hippocampal BDNF, and serum corticosterone and BDNF were examined. Morphine-treated animals exhibited increased anxiety levels, impaired object location memory, and reduced hippocampal BDNF. Exercise alleviated these impairing effects on anxiety profile and memory but not hippocampal BDNF. The high-intensity exercise even further reduced the hippocampal BDNF. Additionally, both exercise regimens in the morphine group and the high exercise in the saline group reduced serum BDNF. Finally, the high-intensity exercise enhanced corticosterone serum. These findings indicate that the negative cognitive and behavioral effects of chronic exposure to morphine could be relieved by forced exercise in female rats. However, the exercise intensity is an important factor to be considered during exercise training. Finally, the correlation between changes of brain and serum BDNF and cognitive functions following morphine exposure needs further research. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The effect of exercise mode and intensity of sub-maximal physical activities on salivary testosterone to cortisol ratio and α-amylase in young active males

    PubMed Central

    AZARBAYJANI, MOHAMMAD ALI; FATOLAHI, HOSEYN; RASAEE, MOHAMMAD JAVAD; PEERI, MAGHSOD; BABAEI, ROHOLAH

    2011-01-01

    We examined the effect of exercise intensity and mode on the acute responses of free testosterone to cortisol ratio and salivary α-amylase. We also evaluated the relationship between cortisol and salivary α-amylase. Ten healthy young active males participated voluntarily in this study in six single sessions. They exercised on a cycle ergo meter, treadmill, and elliptical instrument at intensities of 70% and 85% maximum heart rate for 25 minutes. Saliva samples were collected 5 minutes before and 5 minutes after each exercise session. No significant changes were observed for cortisol. Free testosterone to cortisol ratio increased during each exercise session (F5, 45=3.15, P=0.02). However, these changes are only significant after exercise on the treadmill at 70% maximum heart rate (t=2.94, P=0.02) and 85% maximum heart rate (t=0.53, P=0.03). Salivary α-amylase significantly varied among exercise sessions (F5, 45=3.97, P=0.005), and a significant decline was observed after exercise on the elliptical instrument (t=2.38, P=0.04) and treadmill (t=3.55, P=0.006) at 85% maximum heart rate. We found that the free testosterone to cortisol ratio is dependent on the exercise mode, while the salivary α-amylase response is dependent on the intensity of exercise. The increase of free testosterone to cortisol ratio in this study may indicate lower physiological stress in response to performing these exercises. Applying muscular strength with moderate intensity weight-bearing exercises possibly activates the anabolic pathways. Although the cortisol and salivary α-amylase responses were opposite in the majority of the exercise sessions, no significant inverse relationship was observed. PMID:27182369

  12. The effect of exercise mode and intensity of sub-maximal physical activities on salivary testosterone to cortisol ratio and α-amylase in young active males.

    PubMed

    Azarbayjani, Mohammad Ali; Fatolahi, Hoseyn; Rasaee, Mohammad Javad; Peeri, Maghsod; Babaei, Roholah

    We examined the effect of exercise intensity and mode on the acute responses of free testosterone to cortisol ratio and salivary α-amylase. We also evaluated the relationship between cortisol and salivary α-amylase. Ten healthy young active males participated voluntarily in this study in six single sessions. They exercised on a cycle ergo meter, treadmill, and elliptical instrument at intensities of 70% and 85% maximum heart rate for 25 minutes. Saliva samples were collected 5 minutes before and 5 minutes after each exercise session. No significant changes were observed for cortisol. Free testosterone to cortisol ratio increased during each exercise session (F 5, 45 =3.15, P=0.02) . However, these changes are only significant after exercise on the treadmill at 70% maximum heart rate ( t=2.94, P=0.02 ) and 85% maximum heart rate ( t=0.53, P=0.03 ). Salivary α-amylase significantly varied among exercise sessions (F 5, 45 =3.97, P=0.005), and a significant decline was observed after exercise on the elliptical instrument (t=2.38, P=0.04) and treadmill ( t=3.55, P=0.006 ) at 85% maximum heart rate. We found that the free testosterone to cortisol ratio is dependent on the exercise mode, while the salivary α-amylase response is dependent on the intensity of exercise. The increase of free testosterone to cortisol ratio in this study may indicate lower physiological stress in response to performing these exercises. Applying muscular strength with moderate intensity weight-bearing exercises possibly activates the anabolic pathways. Although the cortisol and salivary α-amylase responses were opposite in the majority of the exercise sessions, no significant inverse relationship was observed.

  13. The effect of breast support on upper body muscle activity during 5 km treadmill running.

    PubMed

    Milligan, Alexandra; Mills, Chris; Scurr, Joanna

    2014-12-01

    Breast support has previously been shown to influence surface EMG of the pectoralis major during running. Reductions in muscle activity have previously been associated with a reduction in energy cost, which may be advantageous for female runners. Ten female participants performed two self-paced (average pace 9 km h(-1)) 5 km treadmill runs under two breast support conditions (low and high); an additional bare-breasted 2 min run was also conducted. Surface EMG electrodes were positioned on the pectoralis major, anterior deltoid, medial deltoid, and upper trapezius, with data collected during the first 2 min of running and each kilometer interval thereafter. Reductions in peak EMG of the pectoralis major, anterior and medial deltoid were reported when participants ran in the high breast support during the initial intervals of the run (up to the second kilometer). The increased activation in the pectoralis major, anterior and medial deltoid in the low breast support may be due to increased tension within these muscles, induced by the greater breast pain experienced in the low breast support. This may be a strategy to reduce the independent breast movement causing the pain through increased muscular activation. This study further promotes the use of a high breast support during running with potential benefits for treadmill running associated with reductions in muscular demand during a 5 km run. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Utilization of an Anti-Gravity Treadmill in a Physical Activity Program with Female Breast Cancer Survivors: A Pilot Study

    PubMed Central

    FAIRMAN, CIARAN M.; KENDALL, KRISTINA L.; HARRIS, BRANDONN S.; CRANDALL, KENNETH J.; MCMILLAN, JIM

    2016-01-01

    Breast Cancer survivors can experience a myriad of physical and psychological benefits as a result of regular exercise. This study aimed to build on previous research using lower impact exercise programs by using an antigravity (Alter-G®) treadmill to administer cardiovascular training. The purpose of this study was to determine the effectiveness a physical activity program, including an Alter-G® treadmill, for improving physiological and psychosocial measures in female breast cancer survivors. A 14-week intervention using an AB-AB study design was employed. Six female breast cancer survivors were recruited to participate in the study. Participants attended three 60-minute sessions per week, consisting of a combination of muscular strength/endurance, and cardiovascular endurance exercises. Consistent with current literature and guidelines, exercise interventions were individualized and tailored to suit individuals. Data was collected and analyzed in 2013. Visual inspection of results found improvements in cardiovascular endurance and measures of body composition. Quality of life was maintained and in some cases, improved. Finally, no adverse effects were reported from the participants, and adherence to the program for those who completed the study was 97%. The results of this study suggest that the use of a physical activity program in combination with an Alter-G® treadmill may provide practical and meaningful improvements in measures of cardiovascular endurance and body composition. PMID:27293508

  15. Utilization of an Anti-Gravity Treadmill in a Physical Activity Program with Female Breast Cancer Survivors: A Pilot Study.

    PubMed

    Fairman, Ciaran M; Kendall, Kristina L; Harris, Brandonn S; Crandall, Kenneth J; McMillan, Jim

    Breast Cancer survivors can experience a myriad of physical and psychological benefits as a result of regular exercise. This study aimed to build on previous research using lower impact exercise programs by using an antigravity (Alter-G ® ) treadmill to administer cardiovascular training. The purpose of this study was to determine the effectiveness a physical activity program, including an Alter-G ® treadmill, for improving physiological and psychosocial measures in female breast cancer survivors. A 14-week intervention using an AB-AB study design was employed. Six female breast cancer survivors were recruited to participate in the study. Participants attended three 60-minute sessions per week, consisting of a combination of muscular strength/endurance, and cardiovascular endurance exercises. Consistent with current literature and guidelines, exercise interventions were individualized and tailored to suit individuals. Data was collected and analyzed in 2013. Visual inspection of results found improvements in cardiovascular endurance and measures of body composition. Quality of life was maintained and in some cases, improved. Finally, no adverse effects were reported from the participants, and adherence to the program for those who completed the study was 97%. The results of this study suggest that the use of a physical activity program in combination with an Alter-G ® treadmill may provide practical and meaningful improvements in measures of cardiovascular endurance and body composition.

  16. On-Orbit Evaluation of a New Treadmill Harness for Improved Crewmember Comfort and Load Distribution

    NASA Technical Reports Server (NTRS)

    Perusek, G. P.; Sheehan, C. C.; Savina, M. C.; Owings, T. M.; Davis, B. L.; Ryder, J. W.

    2011-01-01

    The current design of the International Space Station (ISS) Treadmill Harness has been reported to cause pain and discomfort to crewmembers during exercise. The Harness Station Development Test Objective (SDTO) provided participating crewmembers (n = 6) with a new harness design, the "Glenn Harness," to evaluate for comfort and loading as compared to the current Treadmill Harness. A novel suite of load-sensing instrumentation was developed to noninvasively measure load distribution and provided a first-ever quantification of actual dynamic loads during treadmill exercise. In addition, crew debriefs provided feedback on harness preference and overall impressions. Conclusions: Post-flight analysis in returned Glenn Harnesses (n = 3) showed minimal wear and tear. Four of the six subjects found the Glenn Harness to be more comfortable in this on-orbit, side-by-side comparison as measured by the crew comfort questionnaire and crew debriefs. Specific areas for improvement have been identified, and forward recommendations will be provided to the Human Research Program. The protocol developed for the SDTO provided valuable insight into crew comfort issues, design improvements, and loading preferences for exercise harnessing, which lays the groundwork for better harnessing systems and training protocols.

  17. A comparative study of two protocols for treadmill walking exercise testing in ambulating subjects with incomplete spinal cord injury.

    PubMed

    Lundgaard, E; Wouda, M F; Strøm, V

    2017-10-01

    This is a comparative study of two exercise testing protocols. The objective of this study was to compare maximal oxygen uptake (VO 2 max) and achieved criteria for maximal exercise testing between the Sunnaas Protocol-a newly designed treadmill exercise test protocol-and the Modified Bruce Protocol in persons with incomplete spinal cord injury (SCI). This study was conducted in Sunnaas Rehabilitation Hospital, Norway. Twenty persons (19 men) with incomplete SCI (AIS D) capable of ambulating without assistive devices performed two treadmill walking exercise tests (Sunnaas Protocol and Modified Bruce Protocol) until exhaustion 1-3 days apart. The key differences between the protocols are the smaller increments in speed and shorter duration on each workload in the Sunnaas Protocol. Cardiovascular responses were measured continuously throughout both tests. The subjects exhibited statistically significantly higher VO 2 max when using the Sunnaas Protocol (37.1±9.9 vs 35.4±9.8 ml kg -1  min -1 , P=0.01), with a mean between-test difference of 1.8 ml kg -1  min -1 (95% confidence interval: 0.49-3.16). There was no significant difference in mean maximal heart rate (HR max). Nineteen (95%) subjects achieved at least three of the four criteria for maximal oxygen uptake using the Sunnaas Protocol. Thirteen (65%) subjects achieved at least three of the criteria using a Modified Bruce protocol. The small differences in both VO 2 max and achieved criteria in favor of the Sunnaas Protocol suggest that it could be a useful alternative treadmill exercise test protocol for ambulating persons with incomplete SCI.

  18. Workload of horses on a water treadmill: effect of speed and water height on oxygen consumption and cardiorespiratory parameters.

    PubMed

    Greco-Otto, Persephone; Bond, Stephanie; Sides, Raymond; Kwong, Grace P S; Bayly, Warwick; Léguillette, Renaud

    2017-11-28

    Despite the use of water treadmills (WT) in conditioning horses, the intensity of WT exercise has not been well documented. The workload on a WT is a function of water height and treadmill speed. Therefore, the purpose of this study was to determine the effects of these factors on workload during WT exercise. Fifteen client-owned Quarter Horses were used in a randomized, controlled study. Three belt speeds and three water heights (mid cannon, carpus and stifle), along with the control condition (dry treadmill, all three speeds), were tested. Measured outcomes were oxygen consumption (V̇O 2 ), ventilation (respiratory frequency, tidal volume (V T )), heart rate (HR), and blood lactate. An ergospirometry system was used to measure V̇O 2 and ventilation. Linear mixed effects models were used to examine the effects of presence or absence of water, water height and speed (as fixed effects) on measured outcomes. Water height and its interaction with speed had a significant effect on V̇O 2 , V T and HR, all peaking at the highest water level and speed (stifle at 1.39 m/s, median V̇O 2  = 16.70 ml/(kg.min), V T  = 6 L, HR = 69 bpm). Respiratory frequency peaked with water at the carpus at 1.39 m/s (median 49 breaths/min). For a given water height, the small increments in speed did not affect the measured outcomes. Post-exercise blood lactate concentration did not change. Varying water height and speed affects the workload associated with WT exercise. The conditions utilized in this study were associated with low intensity exercise. Water height had a greater impact on exercise intensity than speed.

  19. The effect of long-term confinement and the efficacy of exercise countermeasures on muscle strength during a simulated mission to Mars: data from the Mars500 study.

    PubMed

    Gaffney, Christopher J; Fomina, Elena; Babich, Dennis; Kitov, Vladimir; Uskov, Konstantin; Green, David A

    2017-11-13

    Isolation and long duration spaceflight are associated with musculoskeletal deconditioning. Mars500 was a unique, high-fidelity analogue of the psychological challenges of a 520-day manned mission to Mars. We aimed to explore the effect of musculoskeletal deconditioning on three outcome measures: (1) if lower limb muscle strength was reduced during the 520-day isolation; (2) if type I or II muscle fibres were differentially affected; and (3) whether any 70-day exercise interventions prevented any isolation-induced loss of strength. Six healthy male subjects (mean ± SEM) (34 ± 3 years; 1.76 ± 0.02 metres; 83.7 ± 4.8 kg) provided written, informed consent to participate. The subjects' maximal voluntary contraction (MVC) was assessed isometrically in the calf (predominantly type I fibres), and maximal voluntary isokinetic force (MVIF) was assessed in the quadriceps/hamstrings (predominantly type II fibres) at 0.2 and 0.4 ms -1 using the Multifunctional Dynamometer for Space (MDS) at 35-day intervals throughout Mars500. Exercise interventions were completed 3-7 days/week throughout the 520-day isolation in a counterbalanced design excluding 142-177 days (rest period) and 251-284 days (simulated Mars landing). Exercise interventions included motorized treadmill running, non-motorized treadmill running, cycle ergometry, elastomer-based resistance exercise, whole-body vibration (WBV), and resistance exercise using MDS. Calf MVC did not reduce across the 520-day isolation and MDS increased strength by 18% compared to before that of 70-day exercise intervention. In contrast, there was a significant bilateral loss of MVIF across the 520 days at both 0.2 ms -1 (R 2  = 0.53; P = 0.001) and 0.4 ms -1 (0.4 ms -1 ; R 2  = 0.42; P = 0.007). WBV (+ 3.7 and 8.8%) and MDS (+ 4.9 and 5.2%) afforded the best protection against isolation-induced loss of MVIF, although MDS was the only intervention to prevent bilateral loss of calf MVC and leg MVIF at 0.2 and 0.4 ms -1 . Mars500 induced significant loss of quadriceps/hamstrings MVIF but not calf MVC. Collectively, these data suggest that muscles with predominantly type I fibres were affected less by isolation compared to type II dominant muscles. MDS and WBV afforded the best protection against isolation-induced loss of strength and thus may have virtue in exploration class missions.

  20. Low-fat diet, and medium-fat diets containing coconut oil and soybean oil exert different metabolic effects in untrained and treadmill-trained mice.

    PubMed

    Manio, Mark Christian; Matsumura, Shigenobu; Inoue, Kazuo

    2018-06-18

    Diets containing fats of different proportions and types have been demonstrated to influence metabolism. These fats differ in long chain fatty acids (LCFAs) or medium chain fatty acids (MCFAs) content. In our laboratory using swimming as the training modality, MCFAs increased endurance attributed to increased activities of oxidative enzymes. How it affects whole-body metabolism remains unexplored. The present study investigated the metabolic, biochemical and genetic adaptations with treadmill running as the training modality. C57BL/6N mice were divided into untrained and trained groups and provided with low-fat (10% kcal from soybean oil), coconut oil (10% kcal from soybean oil, 20% kcal from coconut oil) or soybean oil (30% kcal from soybean oil) diet. Training was performed on a treadmill for 30 days. After recovery, whole-body metabolism at rest and during exercise, endurance, substrate metabolism, mitochondrial enzyme activities, and gene expression of training-adaptive genes in the muscle and liver were measured. At rest, medium-fat diets decreased respiratory exchange ratio (RER) (p < 0.05). Training increased RER in all diet groups without affecting oxygen consumption (p < 0.05). During exercise, diets had no overt effects on metabolism while training decreased oxygen consumption indicating decreased energy expenditure (p < 0.05). Coconut oil without training improved endurance based on work (p < 0.05). Training improved all endurance parameters without overt effects of diet (p < 0.05). Moreover, training increased the activities of mitochondrial enzymes likely related to the increased expression of estrogen related receptor (ERR) α and ERRβ (p < 0.05). Coconut oil inhibited peroxisome proliferator-activated receptor (PPAR) β/δ activation and glycogen accumulation in the muscle but activated PPARα in the liver in the trained state (p < 0.05). Substrate utilization data suggested that coconut oil and/or resulting ketone bodies spared glycogen utilization in the trained muscle during exercise thereby preserving endurance. Our data demonstrated the various roles of diet and fat types in training adaptation. Diets exerted different roles in PPAR activation and substrate handling in the context of endurance exercise training. However, the role of fat types in training adaptations is limited as training overwhelms and normalizes the effects of diet in the untrained state particularly on endurance performance, mitochondrial biogenesis, and ERR expression.

  1. Variability of segment coordination using a vector coding technique: Reliability analysis for treadmill walking and running.

    PubMed

    Hafer, Jocelyn F; Boyer, Katherine A

    2017-01-01

    Coordination variability (CV) quantifies the variety of movement patterns an individual uses during a task and may provide a measure of the flexibility of that individual's motor system. While there is growing popularity of segment CV as a marker of motor system health or adaptability, it is not known how many strides of data are needed to reliably calculate CV. This study aimed to determine the number of strides needed to reliably calculate CV in treadmill walking and running, and to compare CV between walking and running in a healthy population. Ten healthy young adults walked and ran at preferred speeds on a treadmill and a modified vector coding technique was used to calculate CV for the following segment couples: pelvis frontal plane vs. thigh frontal plane, thigh sagittal plane vs. shank sagittal plane, thigh sagittal plane vs. shank transverse plane, and shank transverse plane vs. rearfoot frontal plane. CV for each coupling of interest was calculated for 2-15 strides for each participant and gait type. Mean CV was calculated across the entire gait cycle and, separately, for 4 phases of the gait cycle. For running and walking 8 and 10 strides, respectively, were sufficient to obtain a reliable CV estimate. CV was significantly different between walking and running for the thigh vs. shank couple comparisons. These results suggest that 10 strides of treadmill data are needed to reliably calculate CV for walking and running. Additionally, the differences in CV between walking and running suggest that the role of knee (i.e., inter-thigh- shank) control may differ between these forms of locomotion. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Treadmill Exercise Prevents Increase of Neuroinflammation Markers Involved in the Dopaminergic Damage of the 6-OHDA Parkinson's Disease Model.

    PubMed

    Real, Caroline Cristiano; Garcia, Priscila Crespo; Britto, Luiz R G

    2017-09-01

    Parkinson's disease (PD) involves loss of dopaminergic neurons in the substantia nigra (SN), which can be correlated to neuroinflammatory changes with the aging of the nervous system. On the other hand, exercise can reduce the deleterious effects promoted by age, but the mechanism involved is still unclear. This study investigated the preventive exercise-induced changes on neuroinflammatory processes in a rat model of PD induced by unilateral striatal injections of 6-hydroxydopamine (6-OHDA). Adult male Wistar rats were divided into two groups: (1) sedentary (SED) or (2) exercised (EX), animals that did treadmill exercise three times per week, every other day, for 4 weeks prior to 6-OHDA or saline injection. The rats were then divided into four sub-groups: (1) sedentary saline (SED), (2) sedentary 6-OHDA (SED + 6-OHDA), (3) exercised saline (EX), and (4) exercised 6-OHDA (EX + 6-OHDA). Seven and 30 days after surgery, brains were collected for immunohistochemistry and immunoblotting for dopaminergic and neuroinflammatory markers into SN and striatum. The SED + 6-OHDA animals presented an increase in the astrocyte, microglial, and oxidative species activation. On the other hand, EX + 6-OHDA animals did not present neuroinflammatory responses and performed better apormorphine test. Our data suggest that treadmill exercise throughout life can markedly reduce the chances of dopamine decrease, reinforcing studies that showed a lower incidence of Parkinson's disease in patients who were active during life.

  3. Treadmill based reference running data for healthy subjects is dependent on speed and morphological parameters.

    PubMed

    Schulze, Stephan; Schwesig, René; Edel, Melanie; Fieseler, Georg; Delank, Karl-Stefan; Hermassi, Souhail; Laudner, Kevin G

    2017-10-01

    To obtain spatiotemporal and dynamic running parameters of healthy participants and to identify relationships between running parameters, speed, and physical characteristics. A dynamometric treadmill was used to collect running data among 417 asymptomatic subjects during speeds ranging from 10 to 24km/h. Spatiotemporal and dynamic running parameters were calculated and measured. Results of the analyses showed that assessing running parameters is dependent on running speed. Body height correlated with stride length (r=0.5), cadence (r=-0.5) and plantar forefoot force (r=0.6). Body mass also had a strong relationship to plantar forefoot forces at 14 and 24km/h and plantar midfoot forces at 14 and 24km/h. This reference data base can be used in the kinematic and kinetic evaluation of running under a wide range of speeds. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Lack of effect of exercise time of day on acute energy intake in healthy men.

    PubMed

    O'Donoghue K, J M; Fournier, Paul A; Guelfi, Kym J

    2010-08-01

    Although the manipulation of exercise and dietary intake to achieve successful weight loss has been extensively studied, it is unclear how the time of day that exercise is performed may affect subsequent energy intake. The purpose of the current study was to investigate the effect of an acute bout of exercise performed in the morning compared with an equivalent bout of exercise performed in the afternoon on short-term energy intake. Nine healthy male participants completed 3 trials: morning exercise (AM), afternoon exercise (PM), or control (no exercise; CON) in a randomized counterbalanced design. Exercise consisted of 45 min of treadmill running at 75% VO(2peak). Energy intake was assessed over a 26-hr period with the participants eating ad libitum from a standard assortment of food items of known quantity and composition. There was no significant difference in overall energy intake (M ± SD; CON 23,505 ± 6,938 kJ, AM 24,957 ± 5,607 kJ, PM 24,560 ± 5,988 kJ; p = .590) or macronutrient preferences during the 26-hr period examined between trials. Likewise, no differences in energy intake or macronutrient preferences were observed at any of the specific individual meal periods examined (i.e., breakfast, lunch, dinner) between trials. These results suggest that the time of day that exercise is performed does not significantly affect short-term energy intake in healthy men.

  5. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk-run-rest mixtures.

    PubMed

    Long, Leroy L; Srinivasan, Manoj

    2013-04-06

    On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk-run mixture at intermediate speeds and a walk-rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients-a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk-run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill.

  6. Older Runners Retain Youthful Running Economy despite Biomechanical Differences.

    PubMed

    Beck, Owen N; Kipp, Shalaya; Roby, Jaclyn M; Grabowski, Alena M; Kram, Rodger; Ortega, Justus D

    2016-04-01

    Sixty-five years of age typically marks the onset of impaired walking economy. However, running economy has not been assessed beyond the age of 65 yr. Furthermore, a critical determinant of running economy is the spring-like storage and return of elastic energy from the leg during stance, which is related to leg stiffness. Therefore, we investigated whether runners older than 65 yr retain youthful running economy and/or leg stiffness across running speeds. Fifteen young and 15 older runners ran on a force-instrumented treadmill at 2.01, 2.46, and 2.91 m·s(-1). We measured their rates of metabolic energy consumption (i.e., metabolic power), ground reaction forces, and stride kinematics. There were only small differences in running economy between young and older runners across the range of speeds. Statistically, the older runners consumed 2% to 9% less metabolic energy than the young runners across speeds (P = 0.012). Also, the leg stiffness of older runners was 10% to 20% lower than that of young runners across the range of speeds (P = 0.002), and in contrast to the younger runners, the leg stiffness of older runners decreased with speed (P < 0.001). Runners beyond 65 yr of age maintain youthful running economy despite biomechanical differences. It may be that vigorous exercise, such as running, prevents the age related deterioration of muscular efficiency and, therefore, may make everyday activities easier.

  7. Treadmill Exercise Improves Fitness and Reduces Craving and Use of Cocaine in Individuals with Concurrent Cocaine and Tobacco-use Disorder

    PubMed Central

    De La Garza, Richard; Yoon, Jin H.; Thompson-Lake, Daisy G.Y.; Haile, Colin N.; Eisenhofer, Joel D.; Newton, Thomas F.; Mahoney, James J.

    2016-01-01

    Exercise may be a useful treatment for substance use disorders. Participants (N=24) included treatment-seeking individuals with concurrent cocaine and tobacco-use disorder (cigarette smokers). Participants were randomized to either running or walking (30 min per session, 3 times per week) or sitting (control condition) for 4 consecutive weeks. Several metrics indicated significant differences among runners, walkers, and sitters during sessions, including mean distance covered and calories burned. In addition, remote physiological monitoring showed that the groups differed significantly according to mean maximum heart rate (HR), respiration, and locomotor activity. Across the 4-week study, exercise improved fitness measures including significantly decreasing resting HR. Though not statistically significant, exercise improved abstinence from cocaine and increased self-reports of no cocaine use in last 24h. In general, reductions in tobacco use and craving were not as robust. To our knowledge, this is the first study to evaluate the effects of a multi-week exercise program in individuals with concurrent cocaine and tobacco-use disorder. The data clearly show significant improvements in basic fitness measures and several indices reveal that exercise improved both self-report and biochemically verified reports of cocaine abstinence. Taken together, the data from this study provides preliminary evidence for the efficacy of exercise for improving fitness and reducing cocaine use. PMID:27541349

  8. Mutation in lamin A/C sensitizes the myocardium to exercise-induced mechanical stress but has no effect on skeletal muscles in mouse.

    PubMed

    Cattin, Marie-Elodie; Ferry, Arnaud; Vignaud, Alban; Mougenot, Nathalie; Jacquet, Adeline; Wahbi, Karim; Bertrand, Anne T; Bonne, Gisèle

    2016-08-01

    LMNA gene encodes lamin A/C, ubiquitous proteins of the nuclear envelope. They play crucial role in maintaining nuclear shape and stiffness. When mutated, they essentially lead to dilated cardiomyopathy with conduction defects, associated or not with muscular diseases. Excessive mechanical stress sensitivity has been involved in the pathophysiology. We have previously reported the phenotype of Lmna(delK32) mice, reproducing a mutation found in LMNA-related congenital muscular dystrophy patients. Heterozygous Lmna(delK32/+) (Het) mice develop a progressive dilated cardiomyopathy leading to death between 35 and 70 weeks of age. To investigate the sensitivity of the skeletal muscles and myocardium to chronic exercise-induced stress, Het and wild-type (Wt) mice were subjected to strenuous running treadmill exercise for 5 weeks. Before exercise, the cardiac function of Het mice was similar to Wt-littermates. After the exercise-period, Het mice showed cardiac dysfunction and dilation without visible changes in cardiac morphology, molecular remodelling or nuclear structure compared to Wt exercised and Het sedentary mice. Contrary to myocardium, skeletal muscle ex vivo contractile function remained unaffected in Het exercised mice. In conclusion, the expression of the Lmna(delK32) mutation increased the susceptibility of the myocardium to cardiac stress and led to an earlier onset of the cardiac phenotype in Het mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Design and Validation of an Instrumented Uneven Terrain Treadmill.

    PubMed

    Voloshina, Alexandra S; Ferris, Daniel P

    2018-06-01

    Studying human and animal locomotion on an uneven terrain can be beneficial to basic science and applied studies for clinical and robotic applications. Traditional biomechanical analysis of human locomotion has often been limited to laboratory environments with flat, smooth runways and treadmills. The authors modified a regular exercise treadmill by attaching wooden blocks to the treadmill belt to yield an uneven locomotion surface. To ensure that these treadmill modifications facilitated biomechanical measurements, the authors compared ground reaction force data collected while a subject ran on the modified instrumented treadmill with a smooth surface with data collected using a conventional instrumented treadmill. Comparisons showed only minor differences. These results suggest that adding an uneven surface to a modified treadmill is a viable option for studying human or animal locomotion on an uneven terrain. Other types of surfaces (eg, compliant blocks) could be affixed in a similar manner for studies on other types of locomotion surfaces.

  10. Supported treadmill ambulation for amyotrophic lateral sclerosis: a pilot study.

    PubMed

    Sanjak, Mohammed; Bravver, Elena; Bockenek, William L; Norton, H James; Brooks, Benjamin R

    2010-12-01

    To determine the feasibility, tolerability, safety, and exercise treatment-effect size of repetitive rhythmic exercise mediated by supported treadmill ambulation training (STAT) for patients with amyotrophic lateral sclerosis (ALS). Interventional with repeated-measures design. Multidisciplinary ALS clinic at academic medical center. Convenience sample of patients with ALS (N=9) who were ambulatory with assistive devices (Sinaki-Mulder stages II-III). Repetitive rhythmic exercise-STAT (30min total; 5min of exercise intercalated with 5min of rest) performed 3 times a week for 8 weeks. ALS Functional Rating Scale-Revised (ALSFRS-R), percentage of predicted vital capacity (VC), total lower-extremities manual muscle test (MMT), rate of perceived exertion (RPE), Fatigue Severity Scale (FSS), and maximum voluntary isometric contraction (MVIC) in 10 lower and 10 upper extremities. Gait performance, which included walking distance, speed, steps, and stride length, was evaluated during treadmill and ground 6-minute walk tests (6MWTs) and 25-foot walk test (25FWT). Feasibility issues decreased screened participants by 4 patients (31%). Nine patients were enrolled, but 6 patients (67%) completed the study and 3 (23% of original cohort; 33% of enrolled cohort) could not complete the exercise intervention because of non-ALS-related medical problems. Tolerability of the intervention measures during the treadmill 6MWT showed improvement in RPE (P≤.05) and FSS score (P≥.05). Safety measures (ALSFRS-R, VC, MMT) showed no decrease and showed statistical improvement in ALSFRS-R score (P≤.05) during the study interval. Exercise treatment-effect size showed variable improvements. Gait speed, distance, and stride length during the treadmill 6MWT improved significantly (P≤.05) after 4 weeks and improvements were maintained after 8 weeks compared with baseline. Walking distance during the ground 6MWT increased significantly after 4 weeks and was maintained after 8 weeks compared with baseline (P≤.05). Walking speed during the 25FWT and lower-extremity MVIC improved, but were not statistically significant. Repetitive rhythmic exercise-STAT is feasible, tolerated, and safe for patients with ALS. Repetitive rhythmic exercise-STAT treatment-effect size across a number of ALS-related measures was consistent with improved work capacity and gait function in patients with ALS who are dependent on assistive devices for ambulation. Repetitive rhythmic exercise-STAT should be evaluated further in larger studies to determine the stability of this improved function in relation to the rate of progression of the underlying ALS. Copyright © 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Long-term integrated telerehabilitation of COPD Patients: a multicentre randomised controlled trial (iTrain).

    PubMed

    Zanaboni, Paolo; Dinesen, Birthe; Hjalmarsen, Audhild; Hoaas, Hanne; Holland, Anne E; Oliveira, Cristino Carneiro; Wootton, Richard

    2016-08-22

    Pulmonary rehabilitation (PR) is an effective intervention for the management of people with chronic obstructive pulmonary disease (COPD). However, available resources are often limited, and many patients bear with poor availability of programmes. Sustaining PR benefits and regular exercise over the long term is difficult without any exercise maintenance strategy. In contrast to traditional centre-based PR programmes, telerehabilitation may promote more effective integration of exercise routines into daily life over the longer term and broaden its applicability and availability. A few studies showed promising results for telerehabilitation, but mostly with short-term interventions. The aim of this study is to compare long-term telerehabilitation with unsupervised exercise training at home and with standard care. An international multicentre randomised controlled trial conducted across sites in three countries will recruit 120 patients with COPD. Participants will be randomly assigned to telerehabilitation, treadmill and control, and followed up for 2 years. The telerehabilitation intervention consists of individualised exercise training at home on a treadmill, telemonitoring by a physiotherapist via videoconferencing using a tablet computer, and self-management via a customised website. Patients in the treadmill arm are provided with a treadmill only to perform unsupervised exercise training at home. Patients in the control arm are offered standard care. The primary outcome is the combined number of hospitalisations and emergency department presentations. Secondary outcomes include changes in health status, quality of life, anxiety and depression, self-efficacy, subjective impression of change, physical performance, level of physical activity, and personal experiences in telerehabilitation. This trial will provide evidence on whether long-term telerehabilitation represents a cost-effective strategy for the follow-up of patients with COPD. The delivery of telerehabilitation services will also broaden the availability of PR and maintenance strategies, especially to those living in remote areas and with no access to centre-based exercise programmes. ClinicalTrials.gov: NCT02258646 .

  12. Effects of lead and exercise on endurance and learning in young herring gulls.

    PubMed

    Burger, Joanna; Gochfeld, Michael

    2004-02-01

    In this paper, we report the use of young herring gulls, Larus argentatus, to examine the effect of lead and exercise on endurance, performance, and learning on a treadmill. Eighty 1-day-old herring gull chicks were randomly assigned to either a control group or a lead treatment group that received a single dose of lead acetate solution (100mg/kg) at day 2. Controls were injected with an equal volume of isotonic saline at the same age. Half of the lead treatment group and half of the control group were randomly assigned to an exercise regime of walking on a treadmill twice each day. The other group remained in their cages. We test the null hypotheses that neither lead nor exercise affected performance of herring gull chicks when subsequently tested on the treadmill at 7, 11, and 17 days post-injection. Performance measures included latency to orient forward initially, to move continuously, forward on the treadmill, and to avoiding being bumped against the back of the test chamber. Also measured were the number of calls per 15 s, and the time to tire out. Latency to face forward and avoiding being bumped against the back of the test chamber were measures of learning, and time to tire out was a measure of endurance. We found significant differences as a function of lead, exercise, and their interaction, and rejected the null hypotheses. For all measures of behavior and endurance, lead had the greatest contribution to accounting for variability. In general, lead-treated birds showed better performance improvement from the daily exercise than did controlled non-lead birds, with respect to endurance and learning. We suggest that in nature, exercise can improve performance of lead-exposed birds by partially mitigating the effects of lead, thereby increasing survival of lead-impaired chicks.

  13. Effects of size, sex, and voluntary running speeds on costs of locomotion in lines of laboratory mice selectively bred for high wheel-running activity.

    PubMed

    Rezende, Enrico L; Kelly, Scott A; Gomes, Fernando R; Chappell, Mark A; Garland, Theodore

    2006-01-01

    Selective breeding for over 35 generations has led to four replicate (S) lines of laboratory house mice (Mus domesticus) that run voluntarily on wheels about 170% more than four random-bred control (C) lines. We tested whether S lines have evolved higher running performance by increasing running economy (i.e., decreasing energy spent per unit of distance) as a correlated response to selection, using a recently developed method that allows for nearly continuous measurements of oxygen consumption (VO2) and running speed in freely behaving animals. We estimated slope (incremental cost of transport [COT]) and intercept for regressions of power (the dependent variable, VO2/min) on speed for 49 males and 47 females, as well as their maximum VO2 and speeds during wheel running, under conditions mimicking those that these lines face during the selection protocol. For comparison, we also measured COT and maximum aerobic capacity (VO2max) during forced exercise on a motorized treadmill. As in previous studies, the increased wheel running of S lines was mainly attributable to increased average speed, with males also showing a tendency for increased time spent running. On a whole-animal basis, combined analysis of males and females indicated that COT during voluntary wheel running was significantly lower in the S lines (one-tailed P=0.015). However, mice from S lines are significantly smaller and attain higher maximum speeds on the wheels; with either body mass or maximum speed (or both) entered as a covariate, the statistical significance of the difference in COT is lost (one-tailed P> or =0.2). Thus, both body size and behavior are key components of the reduction in COT. Several statistically significant sex differences were observed, including lower COT and higher resting metabolic rate in females. In addition, maximum voluntary running speeds were negatively correlated with COT in females but not in males. Moreover, males (but not females) from the S lines exhibited significantly higher treadmill VO2max as compared to those from C lines. The sex-specific responses to selection may in part be consequences of sex differences in body mass and running style. Our results highlight how differences in size and running speed can account for lower COT in S lines and suggest that lower COT may have coadapted in response to selection for higher running distances in these lines.

  14. Physical Weight Loading Induces Expression of Tryptophan Hydroxylase 2 in the Brain Stem

    PubMed Central

    Shim, Joon W.; Dodge, Todd R.; Hammond, Max A.; Wallace, Joseph M.; Zhou, Feng C.; Yokota, Hiroki

    2014-01-01

    Sustaining brain serotonin is essential in mental health. Physical activities can attenuate mental problems by enhancing serotonin signaling. However, such activity is not always possible in disabled individuals or patients with dementia. Knee loading, a form of physical activity, has been found to mimic effects of voluntary exercise. Focusing on serotonergic signaling, we addressed a question: Does local mechanical loading to the skeleton elevate expression of tryptophan hydroxylase 2 (tph2) that is a rate-limiting enzyme for brain serotonin? A 5 min knee loading was applied to mice using 1 N force at 5 Hz for 1,500 cycles. A 5-min treadmill running was used as an exercise (positive) control, and a 90-min tail suspension was used as a stress (negative) control. Expression of tph2 was determined 30 min – 2 h in three brain regions ––frontal cortex (FC), ventromedial hypothalamus (VMH), and brain stem (BS). We demonstrated for the first time that knee loading and treadmill exercise upregulated the mRNA level of tph2 in the BS, while tail suspension downregulated it. The protein level of tph2 in the BS was also upregulated by knee loading and downregulated by tail suspension. Furthermore, the downregulation of tph2 mRNA by tail suspension can be partially suppressed by pre-application of knee loading. The expression of tph2 in the FC and VMH was not significantly altered with knee loading. In this study we provided evidence that peripheral mechanical loading can activate central tph2 expression, suggesting that physical cues may mediate tph2-cathalyzed serotonergic signaling in the brain. PMID:24416346

  15. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    PubMed Central

    Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050), but not that of HCRs. In conclusion, rats born with high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs. PMID:27504097

  16. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    PubMed

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050), but not that of HCRs. In conclusion, rats born with high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs.

  17. Caloric expenditure of aerobic, resistance, or combined high-intensity interval training using a hydraulic resistance system in healthy men.

    PubMed

    Falcone, Paul H; Tai, Chih-Yin; Carson, Laura R; Joy, Jordan M; Mosman, Matt M; McCann, Tyler R; Crona, Kevin P; Kim, Michael P; Moon, Jordan R

    2015-03-01

    Although exercise regimens vary in content and duration, few studies have compared the caloric expenditure of multiple exercise modalities with the same duration. The purpose of this study was to compare the energy expenditure of single sessions of resistance, aerobic, and combined exercise with the same duration. Nine recreationally active men (age: 25 ± 7 years; height: 181.6 ± 7.6 cm; weight: 86.6 ± 7.5 kg) performed the following 4 exercises for 30 minutes: a resistance training session using 75% of their 1-repetition maximum (1RM), an endurance cycling session at 70% maximum heart rate (HRmax), an endurance treadmill session at 70% HRmax, and a high-intensity interval training (HIIT) session on a hydraulic resistance system (HRS) that included repeating intervals of 20 seconds at maximum effort followed by 40 seconds of rest. Total caloric expenditure, substrate use, heart rate (HR), and rating of perceived exertion (RPE) were recorded. Caloric expenditure was significantly (p ≤ 0.05) greater when exercising with the HRS (12.62 ± 2.36 kcal·min), compared with when exercising with weights (8.83 ± 1.55 kcal·min), treadmill (9.48 ± 1.30 kcal·min), and cycling (9.23 ± 1.25 kcal·min). The average HR was significantly (p ≤ 0.05) greater with the HRS (156 ± 9 b·min), compared with that using weights (138 ± 16 b·min), treadmill (137 ± 5 b·min), and cycle (138 ± 6 b·min). Similarly, the average RPE was significantly (p ≤ 0.05) higher with the HRS (16 ± 2), compared with that using weights (13 ± 2), treadmill (10 ± 2), and cycle (11 ± 1). These data suggest that individuals can burn more calories performing an HIIT session with an HRS than spending the same amount of time performing a steady-state exercise session. This form of exercise intervention may be beneficial to individuals who want to gain the benefits of both resistance and cardiovascular training but have limited time to dedicate to exercise.

  18. Effect of Daily Supine LBNP Exercise on Gastrointestinal Motility During Antiorthostatic Bedrest in Normal Subjects

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; DeKerlegand, D.; Hargens, Alan R. (Technical Monitor)

    1997-01-01

    Space flight alters gastrointestinal (GI) function in general, and GI motility, in particular. This can decrease appetite, affect the body's ability to absorb nutrients, fluids and electrolytes, and contribute to a negative energy balance. Antiorthostatic bed rest (ABR) has been used to simulate microgravity-induced physiological changes in human subjects. The objective of this investigation is to determine if daily supine lower body negative pressure (LBNP) exercise will maintain GI motility at near normal levels during ABR. Eight subjects participated in the study protocol consisting of an ambulatory phase scheduled before bedrest periods and two 14 day bed rest (6 deg head-down tilt) periods, once with and another time without exercise. Supine treadmill running in an LBNP chamber was used for exercise. Mouth-to-cecum transit time (MCTT) of lactulose was measured indirectly using the rise in breath hydrogen level after oral administration of lactulose (20 g) following a standard low-fiber breakfast. GI motility during ambulatory and ABR periods was assessed using MCTT data. Results of this Study indicate that GI motility during ABR without exercise decreased by 45% [MCTT +/- S.E.M. 56.2 +/- 6.0 (Ambulatory); 87.3 +/- 8.3 (ABR)]. Supine LBNP exercise did not significantly alter this reduction in GI motility during ABR [MCTT +/- S.E.M. 81.3 +/- 4.2 (Exercise); 87.3 +/- 8.3 (No Exercise)]. These results suggest that supine LBNP exercise may not be an effective countermeasure for microgravity-induced decrements in GI motility and function.

  19. Treadmill Intervention Attenuates the Cafeteria Diet-Induced Impairment of Stress-Coping Strategies in Young Adult Female Rats

    PubMed Central

    Cigarroa, Igor; Lalanza, Jaume F.; Caimari, Antoni; del Bas, Josep M.; Capdevila, Lluís; Arola, Lluís; Escorihuela, Rosa M.

    2016-01-01

    The current prevalence of diet-induced overweight and obesity in adolescents and adults is continuously growing. Although the detrimental biochemical and metabolic consequences of obesity are widely studied, its impact on stress-coping behavior and its interaction with specific exercise doses (in terms of intensity, duration and frequency) need further investigation. To this aim, we fed adolescent rats either an obesogenic diet (cafeteria diet, CAF) or standard chow (ST). Each group was subdivided into four subgroups according to the type of treadmill intervention as follows: a sedentary group receiving no manipulation; a control group exposed to a stationary treadmill; a low-intensity treadmill group trained at 12 m/min; and a higher intensity treadmill group trained at 17 m/min. Both the diet and treadmill interventions started at weaning and lasted for 8 weeks. Subjects were tested for anxiety-like behavior in the open field test and for coping strategies in the two-way active avoidance paradigm at week 7 and were sacrificed at week 8 for biometric and metabolic characterization. CAF feeding increased the weight gain, relative retroperitoneal white adipose tissue (RWAT %), and plasma levels of glucose, insulin, triglycerides and leptin and decreased the insulin sensitivity. Treadmill intervention partially reversed the RWAT% and triglyceride alterations; at higher intensity, it decreased the leptin levels of CAF-fed animals. CAF feeding decreased the motor activity and impaired the performance in a two-way active avoidance assessment. Treadmill intervention reduced defecation in the shuttle box, suggesting diminished anxiety. CAF feeding combined with treadmill training at 17 m/min increased the time spent in the center of the open field and more importantly, partially reversed the two-way active avoidance deficit. In conclusion, this study demonstrates that at doses that decreased anxiety-like behavior, treadmill exercise partially improved the coping strategy in terms of active avoidance behavior in the CAF-fed animals. This effect was not observed at lower doses of treadmill training. PMID:27099927

  20. Treadmill Intervention Attenuates the Cafeteria Diet-Induced Impairment of Stress-Coping Strategies in Young Adult Female Rats.

    PubMed

    Cigarroa, Igor; Lalanza, Jaume F; Caimari, Antoni; del Bas, Josep M; Capdevila, Lluís; Arola, Lluís; Escorihuela, Rosa M

    2016-01-01

    The current prevalence of diet-induced overweight and obesity in adolescents and adults is continuously growing. Although the detrimental biochemical and metabolic consequences of obesity are widely studied, its impact on stress-coping behavior and its interaction with specific exercise doses (in terms of intensity, duration and frequency) need further investigation. To this aim, we fed adolescent rats either an obesogenic diet (cafeteria diet, CAF) or standard chow (ST). Each group was subdivided into four subgroups according to the type of treadmill intervention as follows: a sedentary group receiving no manipulation; a control group exposed to a stationary treadmill; a low-intensity treadmill group trained at 12 m/min; and a higher intensity treadmill group trained at 17 m/min. Both the diet and treadmill interventions started at weaning and lasted for 8 weeks. Subjects were tested for anxiety-like behavior in the open field test and for coping strategies in the two-way active avoidance paradigm at week 7 and were sacrificed at week 8 for biometric and metabolic characterization. CAF feeding increased the weight gain, relative retroperitoneal white adipose tissue (RWAT %), and plasma levels of glucose, insulin, triglycerides and leptin and decreased the insulin sensitivity. Treadmill intervention partially reversed the RWAT% and triglyceride alterations; at higher intensity, it decreased the leptin levels of CAF-fed animals. CAF feeding decreased the motor activity and impaired the performance in a two-way active avoidance assessment. Treadmill intervention reduced defecation in the shuttle box, suggesting diminished anxiety. CAF feeding combined with treadmill training at 17 m/min increased the time spent in the center of the open field and more importantly, partially reversed the two-way active avoidance deficit. In conclusion, this study demonstrates that at doses that decreased anxiety-like behavior, treadmill exercise partially improved the coping strategy in terms of active avoidance behavior in the CAF-fed animals. This effect was not observed at lower doses of treadmill training.

Top