Sample records for tree based method

  1. Accurate Phylogenetic Tree Reconstruction from Quartets: A Heuristic Approach

    PubMed Central

    Reaz, Rezwana; Bayzid, Md. Shamsuzzoha; Rahman, M. Sohel

    2014-01-01

    Supertree methods construct trees on a set of taxa (species) combining many smaller trees on the overlapping subsets of the entire set of taxa. A ‘quartet’ is an unrooted tree over taxa, hence the quartet-based supertree methods combine many -taxon unrooted trees into a single and coherent tree over the complete set of taxa. Quartet-based phylogeny reconstruction methods have been receiving considerable attentions in the recent years. An accurate and efficient quartet-based method might be competitive with the current best phylogenetic tree reconstruction methods (such as maximum likelihood or Bayesian MCMC analyses), without being as computationally intensive. In this paper, we present a novel and highly accurate quartet-based phylogenetic tree reconstruction method. We performed an extensive experimental study to evaluate the accuracy and scalability of our approach on both simulated and biological datasets. PMID:25117474

  2. Anchoring quartet-based phylogenetic distances and applications to species tree reconstruction.

    PubMed

    Sayyari, Erfan; Mirarab, Siavash

    2016-11-11

    Inferring species trees from gene trees using the coalescent-based summary methods has been the subject of much attention, yet new scalable and accurate methods are needed. We introduce DISTIQUE, a new statistically consistent summary method for inferring species trees from gene trees under the coalescent model. We generalize our results to arbitrary phylogenetic inference problems; we show that two arbitrarily chosen leaves, called anchors, can be used to estimate relative distances between all other pairs of leaves by inferring relevant quartet trees. This results in a family of distance-based tree inference methods, with running times ranging between quadratic to quartic in the number of leaves. We show in simulated studies that DISTIQUE has comparable accuracy to leading coalescent-based summary methods and reduced running times.

  3. Benefit-based tree valuation

    Treesearch

    E.G. McPherson

    2007-01-01

    Benefit-based tree valuation provides alternative estimates of the fair and reasonable value of trees while illustrating the relative contribution of different benefit types. This study compared estimates of tree value obtained using cost- and benefit-based approaches. The cost-based approach used the Council of Landscape and Tree Appraisers trunk formula method, and...

  4. Inferring species trees from incongruent multi-copy gene trees using the Robinson-Foulds distance

    PubMed Central

    2013-01-01

    Background Constructing species trees from multi-copy gene trees remains a challenging problem in phylogenetics. One difficulty is that the underlying genes can be incongruent due to evolutionary processes such as gene duplication and loss, deep coalescence, or lateral gene transfer. Gene tree estimation errors may further exacerbate the difficulties of species tree estimation. Results We present a new approach for inferring species trees from incongruent multi-copy gene trees that is based on a generalization of the Robinson-Foulds (RF) distance measure to multi-labeled trees (mul-trees). We prove that it is NP-hard to compute the RF distance between two mul-trees; however, it is easy to calculate this distance between a mul-tree and a singly-labeled species tree. Motivated by this, we formulate the RF problem for mul-trees (MulRF) as follows: Given a collection of multi-copy gene trees, find a singly-labeled species tree that minimizes the total RF distance from the input mul-trees. We develop and implement a fast SPR-based heuristic algorithm for the NP-hard MulRF problem. We compare the performance of the MulRF method (available at http://genome.cs.iastate.edu/CBL/MulRF/) with several gene tree parsimony approaches using gene tree simulations that incorporate gene tree error, gene duplications and losses, and/or lateral transfer. The MulRF method produces more accurate species trees than gene tree parsimony approaches. We also demonstrate that the MulRF method infers in minutes a credible plant species tree from a collection of nearly 2,000 gene trees. Conclusions Our new phylogenetic inference method, based on a generalized RF distance, makes it possible to quickly estimate species trees from large genomic data sets. Since the MulRF method, unlike gene tree parsimony, is based on a generic tree distance measure, it is appealing for analyses of genomic data sets, in which many processes such as deep coalescence, recombination, gene duplication and losses as well as phylogenetic error may contribute to gene tree discord. In experiments, the MulRF method estimated species trees accurately and quickly, demonstrating MulRF as an efficient alternative approach for phylogenetic inference from large-scale genomic data sets. PMID:24180377

  5. Genes with minimal phylogenetic information are problematic for coalescent analyses when gene tree estimation is biased.

    PubMed

    Xi, Zhenxiang; Liu, Liang; Davis, Charles C

    2015-11-01

    The development and application of coalescent methods are undergoing rapid changes. One little explored area that bears on the application of gene-tree-based coalescent methods to species tree estimation is gene informativeness. Here, we investigate the accuracy of these coalescent methods when genes have minimal phylogenetic information, including the implementation of the multilocus bootstrap approach. Using simulated DNA sequences, we demonstrate that genes with minimal phylogenetic information can produce unreliable gene trees (i.e., high error in gene tree estimation), which may in turn reduce the accuracy of species tree estimation using gene-tree-based coalescent methods. We demonstrate that this problem can be alleviated by sampling more genes, as is commonly done in large-scale phylogenomic analyses. This applies even when these genes are minimally informative. If gene tree estimation is biased, however, gene-tree-based coalescent analyses will produce inconsistent results, which cannot be remedied by increasing the number of genes. In this case, it is not the gene-tree-based coalescent methods that are flawed, but rather the input data (i.e., estimated gene trees). Along these lines, the commonly used program PhyML has a tendency to infer one particular bifurcating topology even though it is best represented as a polytomy. We additionally corroborate these findings by analyzing the 183-locus mammal data set assembled by McCormack et al. (2012) using ultra-conserved elements (UCEs) and flanking DNA. Lastly, we demonstrate that when employing the multilocus bootstrap approach on this 183-locus data set, there is no strong conflict between species trees estimated from concatenation and gene-tree-based coalescent analyses, as has been previously suggested by Gatesy and Springer (2014). Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A method for locating potential tree-planting sites in urban areas: a case study of Los Angeles, USA

    Treesearch

    Chunxia Wua; Qingfu Xiaoa; Gregory E. McPherson

    2008-01-01

    A GIS-based method for locating potential tree-planting sites based on land cover data is introduced. Criteria were developed to identify locations that are spatially available for potential tree planting based on land cover, sufficient distance from impervious surfaces, a minimum amount of pervious surface, and no crown overlap with other trees. In an ArcGIS...

  7. EEG feature selection method based on decision tree.

    PubMed

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  8. Section-Based Tree Species Identification Using Airborne LIDAR Point Cloud

    NASA Astrophysics Data System (ADS)

    Yao, C.; Zhang, X.; Liu, H.

    2017-09-01

    The application of LiDAR data in forestry initially focused on mapping forest community, particularly and primarily intended for largescale forest management and planning. Then with the smaller footprint and higher sampling density LiDAR data available, detecting individual tree overstory, estimating crowns parameters and identifying tree species are demonstrated practicable. This paper proposes a section-based protocol of tree species identification taking palm tree as an example. Section-based method is to detect objects through certain profile among different direction, basically along X-axis or Y-axis. And this method improve the utilization of spatial information to generate accurate results. Firstly, separate the tree points from manmade-object points by decision-tree-based rules, and create Crown Height Mode (CHM) by subtracting the Digital Terrain Model (DTM) from the digital surface model (DSM). Then calculate and extract key points to locate individual trees, thus estimate specific tree parameters related to species information, such as crown height, crown radius, and cross point etc. Finally, with parameters we are able to identify certain tree species. Comparing to species information measured on ground, the portion correctly identified trees on all plots could reach up to 90.65 %. The identification result in this research demonstrate the ability to distinguish palm tree using LiDAR point cloud. Furthermore, with more prior knowledge, section-based method enable the process to classify trees into different classes.

  9. An introduction to tree-structured modeling with application to quality of life data.

    PubMed

    Su, Xiaogang; Azuero, Andres; Cho, June; Kvale, Elizabeth; Meneses, Karen M; McNees, M Patrick

    2011-01-01

    Investigators addressing nursing research are faced increasingly with the need to analyze data that involve variables of mixed types and are characterized by complex nonlinearity and interactions. Tree-based methods, also called recursive partitioning, are gaining popularity in various fields. In addition to efficiency and flexibility in handling multifaceted data, tree-based methods offer ease of interpretation. The aims of this study were to introduce tree-based methods, discuss their advantages and pitfalls in application, and describe their potential use in nursing research. In this article, (a) an introduction to tree-structured methods is presented, (b) the technique is illustrated via quality of life (QOL) data collected in the Breast Cancer Education Intervention study, and (c) implications for their potential use in nursing research are discussed. As illustrated by the QOL analysis example, tree methods generate interesting and easily understood findings that cannot be uncovered via traditional linear regression analysis. The expanding breadth and complexity of nursing research may entail the use of new tools to improve efficiency and gain new insights. In certain situations, tree-based methods offer an attractive approach that help address such needs.

  10. Development of a photogrammetric method of measuring tree taper outside bark

    Treesearch

    David R. Larsen

    2006-01-01

    A photogrammetric method is presented for measuring tree diameters outside bark using calibrated control ground-based digital photographs. The method was designed to rapidly collect tree taper information from subject trees for the development of tree taper equations. Software that is commercially available, but designed for a different purpose, can be readily adapted...

  11. Object-based methods for individual tree identification and tree species classification from high-spatial resolution imagery

    NASA Astrophysics Data System (ADS)

    Wang, Le

    2003-10-01

    Modern forest management poses an increasing need for detailed knowledge of forest information at different spatial scales. At the forest level, the information for tree species assemblage is desired whereas at or below the stand level, individual tree related information is preferred. Remote Sensing provides an effective tool to extract the above information at multiple spatial scales in the continuous time domain. To date, the increasing volume and readily availability of high-spatial-resolution data have lead to a much wider application of remotely sensed products. Nevertheless, to make effective use of the improving spatial resolution, conventional pixel-based classification methods are far from satisfactory. Correspondingly, developing object-based methods becomes a central challenge for researchers in the field of Remote Sensing. This thesis focuses on the development of methods for accurate individual tree identification and tree species classification. We develop a method in which individual tree crown boundaries and treetop locations are derived under a unified framework. We apply a two-stage approach with edge detection followed by marker-controlled watershed segmentation. Treetops are modeled from radiometry and geometry aspects. Specifically, treetops are assumed to be represented by local radiation maxima and to be located near the center of the tree-crown. As a result, a marker image was created from the derived treetop to guide a watershed segmentation to further differentiate overlapping trees and to produce a segmented image comprised of individual tree crowns. The image segmentation method developed achieves a promising result for a 256 x 256 CASI image. Then further effort is made to extend our methods to the multiscales which are constructed from a wavelet decomposition. A scale consistency and geometric consistency are designed to examine the gradients along the scale-space for the purpose of separating true crown boundary from unwanted textures occurring due to branches and twigs. As a result from the inverse wavelet transform, the tree crown boundary is enhanced while the unwanted textures are suppressed. Based on the enhanced image, an improvement is achieved when applying the two-stage methods to a high resolution aerial photograph. To improve tree species classification, we develop a new method to choose the optimal scale parameter with the aid of Bhattacharya Distance (BD), a well-known index of class separability in traditional pixel-based classification. The optimal scale parameter is then fed in the process of a region-growing-based segmentation as a break-off value. Our object classification achieves a better accuracy in separating tree species when compared to the conventional Maximum Likelihood Classification (MLC). In summary, we develop two object-based methods for identifying individual trees and classifying tree species from high-spatial resolution imagery. Both methods achieve promising results and will promote integration of Remote Sensing and GIS in forest applications.

  12. Weighted Statistical Binning: Enabling Statistically Consistent Genome-Scale Phylogenetic Analyses

    PubMed Central

    Bayzid, Md Shamsuzzoha; Mirarab, Siavash; Boussau, Bastien; Warnow, Tandy

    2015-01-01

    Because biological processes can result in different loci having different evolutionary histories, species tree estimation requires multiple loci from across multiple genomes. While many processes can result in discord between gene trees and species trees, incomplete lineage sorting (ILS), modeled by the multi-species coalescent, is considered to be a dominant cause for gene tree heterogeneity. Coalescent-based methods have been developed to estimate species trees, many of which operate by combining estimated gene trees, and so are called "summary methods". Because summary methods are generally fast (and much faster than more complicated coalescent-based methods that co-estimate gene trees and species trees), they have become very popular techniques for estimating species trees from multiple loci. However, recent studies have established that summary methods can have reduced accuracy in the presence of gene tree estimation error, and also that many biological datasets have substantial gene tree estimation error, so that summary methods may not be highly accurate in biologically realistic conditions. Mirarab et al. (Science 2014) presented the "statistical binning" technique to improve gene tree estimation in multi-locus analyses, and showed that it improved the accuracy of MP-EST, one of the most popular coalescent-based summary methods. Statistical binning, which uses a simple heuristic to evaluate "combinability" and then uses the larger sets of genes to re-calculate gene trees, has good empirical performance, but using statistical binning within a phylogenomic pipeline does not have the desirable property of being statistically consistent. We show that weighting the re-calculated gene trees by the bin sizes makes statistical binning statistically consistent under the multispecies coalescent, and maintains the good empirical performance. Thus, "weighted statistical binning" enables highly accurate genome-scale species tree estimation, and is also statistically consistent under the multi-species coalescent model. New data used in this study are available at DOI: http://dx.doi.org/10.6084/m9.figshare.1411146, and the software is available at https://github.com/smirarab/binning. PMID:26086579

  13. Species-richness of the Anopheles annulipes Complex (Diptera: Culicidae) Revealed by Tree and Model-Based Allozyme Clustering Analyses

    DTIC Science & Technology

    2007-01-01

    including tree- based methods such as the unweighted pair group method of analysis ( UPGMA ) and Neighbour-joining (NJ) (Saitou & Nei, 1987). By...based Bayesian approach and the tree-based UPGMA and NJ cluster- ing methods. The results obtained suggest that far more species occur in the An...unlikely that groups that differ by more than these levels are conspecific. Genetic distances were clustered using the UPGMA and NJ algorithms in MEGA

  14. Coalescent-based species tree inference from gene tree topologies under incomplete lineage sorting by maximum likelihood.

    PubMed

    Wu, Yufeng

    2012-03-01

    Incomplete lineage sorting can cause incongruence between the phylogenetic history of genes (the gene tree) and that of the species (the species tree), which can complicate the inference of phylogenies. In this article, I present a new coalescent-based algorithm for species tree inference with maximum likelihood. I first describe an improved method for computing the probability of a gene tree topology given a species tree, which is much faster than an existing algorithm by Degnan and Salter (2005). Based on this method, I develop a practical algorithm that takes a set of gene tree topologies and infers species trees with maximum likelihood. This algorithm searches for the best species tree by starting from initial species trees and performing heuristic search to obtain better trees with higher likelihood. This algorithm, called STELLS (which stands for Species Tree InfErence with Likelihood for Lineage Sorting), has been implemented in a program that is downloadable from the author's web page. The simulation results show that the STELLS algorithm is more accurate than an existing maximum likelihood method for many datasets, especially when there is noise in gene trees. I also show that the STELLS algorithm is efficient and can be applied to real biological datasets. © 2011 The Author. Evolution© 2011 The Society for the Study of Evolution.

  15. Voxel-Based 3-D Tree Modeling from Lidar Images for Extracting Tree Structual Information

    NASA Astrophysics Data System (ADS)

    Hosoi, F.

    2014-12-01

    Recently, lidar (light detection and ranging) has been used to extracting tree structural information. Portable scanning lidar systems can capture the complex shape of individual trees as a 3-D point-cloud image. 3-D tree models reproduced from the lidar-derived 3-D image can be used to estimate tree structural parameters. We have proposed the voxel-based 3-D modeling for extracting tree structural parameters. One of the tree parameters derived from the voxel modeling is leaf area density (LAD). We refer to the method as the voxel-based canopy profiling (VCP) method. In this method, several measurement points surrounding the canopy and optimally inclined laser beams are adopted for full laser beam illumination of whole canopy up to the internal. From obtained lidar image, the 3-D information is reproduced as the voxel attributes in the 3-D voxel array. Based on the voxel attributes, contact frequency of laser beams on leaves is computed and LAD in each horizontal layer is obtained. This method offered accurate LAD estimation for individual trees and woody canopy trees. For more accurate LAD estimation, the voxel model was constructed by combining airborne and portable ground-based lidar data. The profiles obtained by the two types of lidar complemented each other, thus eliminating blind regions and yielding more accurate LAD profiles than could be obtained by using each type of lidar alone. Based on the estimation results, we proposed an index named laser beam coverage index, Ω, which relates to the lidar's laser beam settings and a laser beam attenuation factor. It was shown that this index can be used for adjusting measurement set-up of lidar systems and also used for explaining the LAD estimation error using different types of lidar systems. Moreover, we proposed a method to estimate woody material volume as another application of the voxel tree modeling. In this method, voxel solid model of a target tree was produced from the lidar image, which is composed of consecutive voxels that filled the outer surface and the interior of the stem and large branches. From the model, the woody material volume of any part of the target tree can be directly calculated easily by counting the number of corresponding voxels and multiplying the result by the per-voxel volume.

  16. Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images

    NASA Astrophysics Data System (ADS)

    Ardila, Juan P.; Tolpekin, Valentyn A.; Bijker, Wietske; Stein, Alfred

    2011-11-01

    Identification of tree crowns from remote sensing requires detailed spectral information and submeter spatial resolution imagery. Traditional pixel-based classification techniques do not fully exploit the spatial and spectral characteristics of remote sensing datasets. We propose a contextual and probabilistic method for detection of tree crowns in urban areas using a Markov random field based super resolution mapping (SRM) approach in very high resolution images. Our method defines an objective energy function in terms of the conditional probabilities of panchromatic and multispectral images and it locally optimizes the labeling of tree crown pixels. Energy and model parameter values are estimated from multiple implementations of SRM in tuning areas and the method is applied in QuickBird images to produce a 0.6 m tree crown map in a city of The Netherlands. The SRM output shows an identification rate of 66% and commission and omission errors in small trees and shrub areas. The method outperforms tree crown identification results obtained with maximum likelihood, support vector machines and SRM at nominal resolution (2.4 m) approaches.

  17. Metabarcoding of marine nematodes – evaluation of reference datasets used in tree-based taxonomy assignment approach

    PubMed Central

    2016-01-01

    Abstract Background Metabarcoding is becoming a common tool used to assess and compare diversity of organisms in environmental samples. Identification of OTUs is one of the critical steps in the process and several taxonomy assignment methods were proposed to accomplish this task. This publication evaluates the quality of reference datasets, alongside with several alignment and phylogeny inference methods used in one of the taxonomy assignment methods, called tree-based approach. This approach assigns anonymous OTUs to taxonomic categories based on relative placements of OTUs and reference sequences on the cladogram and support that these placements receive. New information In tree-based taxonomy assignment approach, reliable identification of anonymous OTUs is based on their placement in monophyletic and highly supported clades together with identified reference taxa. Therefore, it requires high quality reference dataset to be used. Resolution of phylogenetic trees is strongly affected by the presence of erroneous sequences as well as alignment and phylogeny inference methods used in the process. Two preparation steps are essential for the successful application of tree-based taxonomy assignment approach. Curated collections of genetic information do include erroneous sequences. These sequences have detrimental effect on the resolution of cladograms used in tree-based approach. They must be identified and excluded from the reference dataset beforehand. Various combinations of multiple sequence alignment and phylogeny inference methods provide cladograms with different topology and bootstrap support. These combinations of methods need to be tested in order to determine the one that gives highest resolution for the particular reference dataset. Completing the above mentioned preparation steps is expected to decrease the number of unassigned OTUs and thus improve the results of the tree-based taxonomy assignment approach. PMID:27932919

  18. Metabarcoding of marine nematodes - evaluation of reference datasets used in tree-based taxonomy assignment approach.

    PubMed

    Holovachov, Oleksandr

    2016-01-01

    Metabarcoding is becoming a common tool used to assess and compare diversity of organisms in environmental samples. Identification of OTUs is one of the critical steps in the process and several taxonomy assignment methods were proposed to accomplish this task. This publication evaluates the quality of reference datasets, alongside with several alignment and phylogeny inference methods used in one of the taxonomy assignment methods, called tree-based approach. This approach assigns anonymous OTUs to taxonomic categories based on relative placements of OTUs and reference sequences on the cladogram and support that these placements receive. In tree-based taxonomy assignment approach, reliable identification of anonymous OTUs is based on their placement in monophyletic and highly supported clades together with identified reference taxa. Therefore, it requires high quality reference dataset to be used. Resolution of phylogenetic trees is strongly affected by the presence of erroneous sequences as well as alignment and phylogeny inference methods used in the process. Two preparation steps are essential for the successful application of tree-based taxonomy assignment approach. Curated collections of genetic information do include erroneous sequences. These sequences have detrimental effect on the resolution of cladograms used in tree-based approach. They must be identified and excluded from the reference dataset beforehand.Various combinations of multiple sequence alignment and phylogeny inference methods provide cladograms with different topology and bootstrap support. These combinations of methods need to be tested in order to determine the one that gives highest resolution for the particular reference dataset.Completing the above mentioned preparation steps is expected to decrease the number of unassigned OTUs and thus improve the results of the tree-based taxonomy assignment approach.

  19. Towards a formal genealogical classification of the Lezgian languages (North Caucasus): testing various phylogenetic methods on lexical data.

    PubMed

    Kassian, Alexei

    2015-01-01

    A lexicostatistical classification is proposed for 20 languages and dialects of the Lezgian group of the North Caucasian family, based on meticulously compiled 110-item wordlists, published as part of the Global Lexicostatistical Database project. The lexical data have been subsequently analyzed with the aid of the principal phylogenetic methods, both distance-based and character-based: Starling neighbor joining (StarlingNJ), Neighbor joining (NJ), Unweighted pair group method with arithmetic mean (UPGMA), Bayesian Markov chain Monte Carlo (MCMC), Unweighted maximum parsimony (UMP). Cognation indexes within the input matrix were marked by two different algorithms: traditional etymological approach and phonetic similarity, i.e., the automatic method of consonant classes (Levenshtein distances). Due to certain reasons (first of all, high lexicographic quality of the wordlists and a consensus about the Lezgian phylogeny among Caucasologists), the Lezgian database is a perfect testing area for appraisal of phylogenetic methods. For the etymology-based input matrix, all the phylogenetic methods, with the possible exception of UMP, have yielded trees that are sufficiently compatible with each other to generate a consensus phylogenetic tree of the Lezgian lects. The obtained consensus tree agrees with the traditional expert classification as well as some of the previously proposed formal classifications of this linguistic group. Contrary to theoretical expectations, the UMP method has suggested the least plausible tree of all. In the case of the phonetic similarity-based input matrix, the distance-based methods (StarlingNJ, NJ, UPGMA) have produced the trees that are rather close to the consensus etymology-based tree and the traditional expert classification, whereas the character-based methods (Bayesian MCMC, UMP) have yielded less likely topologies.

  20. Towards a Formal Genealogical Classification of the Lezgian Languages (North Caucasus): Testing Various Phylogenetic Methods on Lexical Data

    PubMed Central

    Kassian, Alexei

    2015-01-01

    A lexicostatistical classification is proposed for 20 languages and dialects of the Lezgian group of the North Caucasian family, based on meticulously compiled 110-item wordlists, published as part of the Global Lexicostatistical Database project. The lexical data have been subsequently analyzed with the aid of the principal phylogenetic methods, both distance-based and character-based: Starling neighbor joining (StarlingNJ), Neighbor joining (NJ), Unweighted pair group method with arithmetic mean (UPGMA), Bayesian Markov chain Monte Carlo (MCMC), Unweighted maximum parsimony (UMP). Cognation indexes within the input matrix were marked by two different algorithms: traditional etymological approach and phonetic similarity, i.e., the automatic method of consonant classes (Levenshtein distances). Due to certain reasons (first of all, high lexicographic quality of the wordlists and a consensus about the Lezgian phylogeny among Caucasologists), the Lezgian database is a perfect testing area for appraisal of phylogenetic methods. For the etymology-based input matrix, all the phylogenetic methods, with the possible exception of UMP, have yielded trees that are sufficiently compatible with each other to generate a consensus phylogenetic tree of the Lezgian lects. The obtained consensus tree agrees with the traditional expert classification as well as some of the previously proposed formal classifications of this linguistic group. Contrary to theoretical expectations, the UMP method has suggested the least plausible tree of all. In the case of the phonetic similarity-based input matrix, the distance-based methods (StarlingNJ, NJ, UPGMA) have produced the trees that are rather close to the consensus etymology-based tree and the traditional expert classification, whereas the character-based methods (Bayesian MCMC, UMP) have yielded less likely topologies. PMID:25719456

  1. Dendritic tree extraction from noisy maximum intensity projection images in C. elegans.

    PubMed

    Greenblum, Ayala; Sznitman, Raphael; Fua, Pascal; Arratia, Paulo E; Oren, Meital; Podbilewicz, Benjamin; Sznitman, Josué

    2014-06-12

    Maximum Intensity Projections (MIP) of neuronal dendritic trees obtained from confocal microscopy are frequently used to study the relationship between tree morphology and mechanosensory function in the model organism C. elegans. Extracting dendritic trees from noisy images remains however a strenuous process that has traditionally relied on manual approaches. Here, we focus on automated and reliable 2D segmentations of dendritic trees following a statistical learning framework. Our dendritic tree extraction (DTE) method uses small amounts of labelled training data on MIPs to learn noise models of texture-based features from the responses of tree structures and image background. Our strategy lies in evaluating statistical models of noise that account for both the variability generated from the imaging process and from the aggregation of information in the MIP images. These noisy models are then used within a probabilistic, or Bayesian framework to provide a coarse 2D dendritic tree segmentation. Finally, some post-processing is applied to refine the segmentations and provide skeletonized trees using a morphological thinning process. Following a Leave-One-Out Cross Validation (LOOCV) method for an MIP databse with available "ground truth" images, we demonstrate that our approach provides significant improvements in tree-structure segmentations over traditional intensity-based methods. Improvements for MIPs under various imaging conditions are both qualitative and quantitative, as measured from Receiver Operator Characteristic (ROC) curves and the yield and error rates in the final segmentations. In a final step, we demonstrate our DTE approach on previously unseen MIP samples including the extraction of skeletonized structures, and compare our method to a state-of-the art dendritic tree tracing software. Overall, our DTE method allows for robust dendritic tree segmentations in noisy MIPs, outperforming traditional intensity-based methods. Such approach provides a useable segmentation framework, ultimately delivering a speed-up for dendritic tree identification on the user end and a reliable first step towards further morphological characterizations of tree arborization.

  2. Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients.

    PubMed

    Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat

    2015-01-01

    Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.

  3. Individual tree crown delineation using localized contour tree method and airborne LiDAR data in coniferous forests

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Yu, Bailang; Wu, Qiusheng; Huang, Yan; Chen, Zuoqi; Wu, Jianping

    2016-10-01

    Individual tree crown delineation is of great importance for forest inventory and management. The increasing availability of high-resolution airborne light detection and ranging (LiDAR) data makes it possible to delineate the crown structure of individual trees and deduce their geometric properties with high accuracy. In this study, we developed an automated segmentation method that is able to fully utilize high-resolution LiDAR data for detecting, extracting, and characterizing individual tree crowns with a multitude of geometric and topological properties. The proposed approach captures topological structure of forest and quantifies topological relationships of tree crowns by using a graph theory-based localized contour tree method, and finally segments individual tree crowns by analogy of recognizing hills from a topographic map. This approach consists of five key technical components: (1) derivation of canopy height model from airborne LiDAR data; (2) generation of contours based on the canopy height model; (3) extraction of hierarchical structures of tree crowns using the localized contour tree method; (4) delineation of individual tree crowns by segmenting hierarchical crown structure; and (5) calculation of geometric and topological properties of individual trees. We applied our new method to the Medicine Bow National Forest in the southwest of Laramie, Wyoming and the HJ Andrews Experimental Forest in the central portion of the Cascade Range of Oregon, U.S. The results reveal that the overall accuracy of individual tree crown delineation for the two study areas achieved 94.21% and 75.07%, respectively. Our method holds great potential for segmenting individual tree crowns under various forest conditions. Furthermore, the geometric and topological attributes derived from our method provide comprehensive and essential information for forest management.

  4. Comparing Individual Tree Segmentation Based on High Resolution Multispectral Image and Lidar Data

    NASA Astrophysics Data System (ADS)

    Xiao, P.; Kelly, M.; Guo, Q.

    2014-12-01

    This study compares the use of high-resolution multispectral WorldView images and high density Lidar data for individual tree segmentation. The application focuses on coniferous and deciduous forests in the Sierra Nevada Mountains. The tree objects are obtained in two ways: a hybrid region-merging segmentation method with multispectral images, and a top-down and bottom-up region-growing method with Lidar data. The hybrid region-merging method is used to segment individual tree from multispectral images. It integrates the advantages of global-oriented and local-oriented region-merging strategies into a unified framework. The globally most-similar pair of regions is used to determine the starting point of a growing region. The merging iterations are constrained within the local vicinity, thus the segmentation is accelerated and can reflect the local context. The top-down region-growing method is adopted in coniferous forest to delineate individual tree from Lidar data. It exploits the spacing between the tops of trees to identify and group points into a single tree based on simple rules of proximity and likely tree shape. The bottom-up region-growing method based on the intensity and 3D structure of Lidar data is applied in deciduous forest. It segments tree trunks based on the intensity and topological relationships of the points, and then allocate other points to exact tree crowns according to distance. The accuracies for each method are evaluated with field survey data in several test sites, covering dense and sparse canopy. Three types of segmentation results are produced: true positive represents a correctly segmented individual tree, false negative represents a tree that is not detected and assigned to a nearby tree, and false positive represents that a point or pixel cluster is segmented as a tree that does not in fact exist. They respectively represent correct-, under-, and over-segmentation. Three types of index are compared for segmenting individual tree from multispectral image and Lidar data: recall, precision and F-score. This work explores the tradeoff between the expensive Lidar data and inexpensive multispectral image. The conclusion will guide the optimal data selection in different density canopy areas for individual tree segmentation, and contribute to the field of forest remote sensing.

  5. When do species-tree and concatenated estimates disagree? An empirical analysis with higher-level scincid lizard phylogeny.

    PubMed

    Lambert, Shea M; Reeder, Tod W; Wiens, John J

    2015-01-01

    Simulation studies suggest that coalescent-based species-tree methods are generally more accurate than concatenated analyses. However, these species-tree methods remain impractical for many large datasets. Thus, a critical but unresolved issue is when and why concatenated and coalescent species-tree estimates will differ. We predict such differences for branches in concatenated trees that are short, weakly supported, and have conflicting gene trees. We test these predictions in Scincidae, the largest lizard family, with data from 10 nuclear genes for 17 ingroup taxa and 44 genes for 12 taxa. We support our initial predictions, andsuggest that simply considering uncertainty in concatenated trees may sometimes encompass the differences between these methods. We also found that relaxed-clock concatenated trees can be surprisingly similar to the species-tree estimate. Remarkably, the coalescent species-tree estimates had slightly lower support values when based on many more genes (44 vs. 10) and a small (∼30%) reduction in taxon sampling. Thus, taxon sampling may be more important than gene sampling when applying species-tree methods to deep phylogenetic questions. Finally, our coalescent species-tree estimates tentatively support division of Scincidae into three monophyletic subfamilies, a result otherwise found only in concatenated analyses with extensive species sampling. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Tree crown mapping in managed woodlands (parklands) of semi-arid West Africa using WorldView-2 imagery and geographic object based image analysis.

    PubMed

    Karlson, Martin; Reese, Heather; Ostwald, Madelene

    2014-11-28

    Detailed information on tree cover structure is critical for research and monitoring programs targeting African woodlands, including agroforestry parklands. High spatial resolution satellite imagery represents a potentially effective alternative to field-based surveys, but requires the development of accurate methods to automate information extraction. This study presents a method for tree crown mapping based on Geographic Object Based Image Analysis (GEOBIA) that use spectral and geometric information to detect and delineate individual tree crowns and crown clusters. The method was implemented on a WorldView-2 image acquired over the parklands of Saponé, Burkina Faso, and rigorously evaluated against field reference data. The overall detection rate was 85.4% for individual tree crowns and crown clusters, with lower accuracies in areas with high tree density and dense understory vegetation. The overall delineation error (expressed as the difference between area of delineated object and crown area measured in the field) was 45.6% for individual tree crowns and 61.5% for crown clusters. Delineation accuracies were higher for medium (35-100 m(2)) and large (≥100 m(2)) trees compared to small (<35 m(2)) trees. The results indicate potential of GEOBIA and WorldView-2 imagery for tree crown mapping in parkland landscapes and similar woodland areas.

  7. Tree Crown Mapping in Managed Woodlands (Parklands) of Semi-Arid West Africa Using WorldView-2 Imagery and Geographic Object Based Image Analysis

    PubMed Central

    Karlson, Martin; Reese, Heather; Ostwald, Madelene

    2014-01-01

    Detailed information on tree cover structure is critical for research and monitoring programs targeting African woodlands, including agroforestry parklands. High spatial resolution satellite imagery represents a potentially effective alternative to field-based surveys, but requires the development of accurate methods to automate information extraction. This study presents a method for tree crown mapping based on Geographic Object Based Image Analysis (GEOBIA) that use spectral and geometric information to detect and delineate individual tree crowns and crown clusters. The method was implemented on a WorldView-2 image acquired over the parklands of Saponé, Burkina Faso, and rigorously evaluated against field reference data. The overall detection rate was 85.4% for individual tree crowns and crown clusters, with lower accuracies in areas with high tree density and dense understory vegetation. The overall delineation error (expressed as the difference between area of delineated object and crown area measured in the field) was 45.6% for individual tree crowns and 61.5% for crown clusters. Delineation accuracies were higher for medium (35–100 m2) and large (≥100 m2) trees compared to small (<35 m2) trees. The results indicate potential of GEOBIA and WorldView-2 imagery for tree crown mapping in parkland landscapes and similar woodland areas. PMID:25460815

  8. Two Improved Access Methods on Compact Binary (CB) Trees.

    ERIC Educational Resources Information Center

    Shishibori, Masami; Koyama, Masafumi; Okada, Makoto; Aoe, Jun-ichi

    2000-01-01

    Discusses information retrieval and the use of binary trees as a fast access method for search strategies such as hashing. Proposes new methods based on compact binary trees that provide faster access and more compact storage, explains the theoretical basis, and confirms the validity of the methods through empirical observations. (LRW)

  9. A fully resolved consensus between fully resolved phylogenetic trees.

    PubMed

    Quitzau, José Augusto Amgarten; Meidanis, João

    2006-03-31

    Nowadays, there are many phylogeny reconstruction methods, each with advantages and disadvantages. We explored the advantages of each method, putting together the common parts of trees constructed by several methods, by means of a consensus computation. A number of phylogenetic consensus methods are already known. Unfortunately, there is also a taboo concerning consensus methods, because most biologists see them mainly as comparators and not as phylogenetic tree constructors. We challenged this taboo by defining a consensus method that builds a fully resolved phylogenetic tree based on the most common parts of fully resolved trees in a given collection. We also generated results showing that this consensus is in a way a kind of "median" of the input trees; as such it can be closer to the correct tree in many situations.

  10. Simple method for direct crown base height estimation of individual conifer trees using airborne LiDAR data.

    PubMed

    Luo, Laiping; Zhai, Qiuping; Su, Yanjun; Ma, Qin; Kelly, Maggi; Guo, Qinghua

    2018-05-14

    Crown base height (CBH) is an essential tree biophysical parameter for many applications in forest management, forest fuel treatment, wildfire modeling, ecosystem modeling and global climate change studies. Accurate and automatic estimation of CBH for individual trees is still a challenging task. Airborne light detection and ranging (LiDAR) provides reliable and promising data for estimating CBH. Various methods have been developed to calculate CBH indirectly using regression-based means from airborne LiDAR data and field measurements. However, little attention has been paid to directly calculate CBH at the individual tree scale in mixed-species forests without field measurements. In this study, we propose a new method for directly estimating individual-tree CBH from airborne LiDAR data. Our method involves two main strategies: 1) removing noise and understory vegetation for each tree; and 2) estimating CBH by generating percentile ranking profile for each tree and using a spline curve to identify its inflection points. These two strategies lend our method the advantages of no requirement of field measurements and being efficient and effective in mixed-species forests. The proposed method was applied to a mixed conifer forest in the Sierra Nevada, California and was validated by field measurements. The results showed that our method can directly estimate CBH at individual tree level with a root-mean-squared error of 1.62 m, a coefficient of determination of 0.88 and a relative bias of 3.36%. Furthermore, we systematically analyzed the accuracies among different height groups and tree species by comparing with field measurements. Our results implied that taller trees had relatively higher uncertainties than shorter trees. Our findings also show that the accuracy for CBH estimation was the highest for black oak trees, with an RMSE of 0.52 m. The conifer species results were also good with uniformly high R 2 ranging from 0.82 to 0.93. In general, our method has demonstrated high accuracy for individual tree CBH estimation and strong potential for applications in mixed species over large areas.

  11. An Isometric Mapping Based Co-Location Decision Tree Algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Wei, J.; Zhou, X.; Zhang, R.; Huang, W.; Sha, H.; Chen, J.

    2018-05-01

    Decision tree (DT) induction has been widely used in different pattern classification. However, most traditional DTs have the disadvantage that they consider only non-spatial attributes (ie, spectral information) as a result of classifying pixels, which can result in objects being misclassified. Therefore, some researchers have proposed a co-location decision tree (Cl-DT) method, which combines co-location and decision tree to solve the above the above-mentioned traditional decision tree problems. Cl-DT overcomes the shortcomings of the existing DT algorithms, which create a node for each value of a given attribute, which has a higher accuracy than the existing decision tree approach. However, for non-linearly distributed data instances, the euclidean distance between instances does not reflect the true positional relationship between them. In order to overcome these shortcomings, this paper proposes an isometric mapping method based on Cl-DT (called, (Isomap-based Cl-DT), which is a method that combines heterogeneous and Cl-DT together. Because isometric mapping methods use geodetic distances instead of Euclidean distances between non-linearly distributed instances, the true distance between instances can be reflected. The experimental results and several comparative analyzes show that: (1) The extraction method of exposed carbonate rocks is of high accuracy. (2) The proposed method has many advantages, because the total number of nodes, the number of leaf nodes and the number of nodes are greatly reduced compared to Cl-DT. Therefore, the Isomap -based Cl-DT algorithm can construct a more accurate and faster decision tree.

  12. Decision tree and PCA-based fault diagnosis of rotating machinery

    NASA Astrophysics Data System (ADS)

    Sun, Weixiang; Chen, Jin; Li, Jiaqing

    2007-04-01

    After analysing the flaws of conventional fault diagnosis methods, data mining technology is introduced to fault diagnosis field, and a new method based on C4.5 decision tree and principal component analysis (PCA) is proposed. In this method, PCA is used to reduce features after data collection, preprocessing and feature extraction. Then, C4.5 is trained by using the samples to generate a decision tree model with diagnosis knowledge. At last the tree model is used to make diagnosis analysis. To validate the method proposed, six kinds of running states (normal or without any defect, unbalance, rotor radial rub, oil whirl, shaft crack and a simultaneous state of unbalance and radial rub), are simulated on Bently Rotor Kit RK4 to test C4.5 and PCA-based method and back-propagation neural network (BPNN). The result shows that C4.5 and PCA-based diagnosis method has higher accuracy and needs less training time than BPNN.

  13. Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.

    2013-02-01

    Combining randomization methods with ensemble prediction is emerging as an effective option to balance accuracy and computational efficiency in data-driven modeling. In this paper we investigate the prediction capability of extremely randomized trees (Extra-Trees), in terms of accuracy, explanation ability and computational efficiency, in a streamflow modeling exercise. Extra-Trees are a totally randomized tree-based ensemble method that (i) alleviates the poor generalization property and tendency to overfitting of traditional standalone decision trees (e.g. CART); (ii) is computationally very efficient; and, (iii) allows to infer the relative importance of the input variables, which might help in the ex-post physical interpretation of the model. The Extra-Trees potential is analyzed on two real-world case studies (Marina catchment (Singapore) and Canning River (Western Australia)) representing two different morphoclimatic contexts comparatively with other tree-based methods (CART and M5) and parametric data-driven approaches (ANNs and multiple linear regression). Results show that Extra-Trees perform comparatively well to the best of the benchmarks (i.e. M5) in both the watersheds, while outperforming the other approaches in terms of computational requirement when adopted on large datasets. In addition, the ranking of the input variable provided can be given a physically meaningful interpretation.

  14. Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.

    2013-07-01

    Combining randomization methods with ensemble prediction is emerging as an effective option to balance accuracy and computational efficiency in data-driven modelling. In this paper, we investigate the prediction capability of extremely randomized trees (Extra-Trees), in terms of accuracy, explanation ability and computational efficiency, in a streamflow modelling exercise. Extra-Trees are a totally randomized tree-based ensemble method that (i) alleviates the poor generalisation property and tendency to overfitting of traditional standalone decision trees (e.g. CART); (ii) is computationally efficient; and, (iii) allows to infer the relative importance of the input variables, which might help in the ex-post physical interpretation of the model. The Extra-Trees potential is analysed on two real-world case studies - Marina catchment (Singapore) and Canning River (Western Australia) - representing two different morphoclimatic contexts. The evaluation is performed against other tree-based methods (CART and M5) and parametric data-driven approaches (ANNs and multiple linear regression). Results show that Extra-Trees perform comparatively well to the best of the benchmarks (i.e. M5) in both the watersheds, while outperforming the other approaches in terms of computational requirement when adopted on large datasets. In addition, the ranking of the input variable provided can be given a physically meaningful interpretation.

  15. Tree Testing of Hierarchical Menu Structures for Health Applications

    PubMed Central

    Le, Thai; Chaudhuri, Shomir; Chung, Jane; Thompson, Hilaire J; Demiris, George

    2014-01-01

    To address the need for greater evidence-based evaluation of Health Information Technology (HIT) systems we introduce a method of usability testing termed tree testing. In a tree test, participants are presented with an abstract hierarchical tree of the system taxonomy and asked to navigate through the tree in completing representative tasks. We apply tree testing to a commercially available health application, demonstrating a use case and providing a comparison with more traditional in-person usability testing methods. Online tree tests (N=54) and in-person usability tests (N=15) were conducted from August to September 2013. Tree testing provided a method to quantitatively evaluate the information structure of a system using various navigational metrics including completion time, task accuracy, and path length. The results of the analyses compared favorably to the results seen from the traditional usability test. Tree testing provides a flexible, evidence-based approach for researchers to evaluate the information structure of HITs. In addition, remote tree testing provides a quick, flexible, and high volume method of acquiring feedback in a structured format that allows for quantitative comparisons. With the diverse nature and often large quantities of health information available, addressing issues of terminology and concept classifications during the early development process of a health information system will improve navigation through the system and save future resources. Tree testing is a usability method that can be used to quickly and easily assess information hierarchy of health information systems. PMID:24582924

  16. Regression trees for predicting mortality in patients with cardiovascular disease: What improvement is achieved by using ensemble-based methods?

    PubMed Central

    Austin, Peter C; Lee, Douglas S; Steyerberg, Ewout W; Tu, Jack V

    2012-01-01

    In biomedical research, the logistic regression model is the most commonly used method for predicting the probability of a binary outcome. While many clinical researchers have expressed an enthusiasm for regression trees, this method may have limited accuracy for predicting health outcomes. We aimed to evaluate the improvement that is achieved by using ensemble-based methods, including bootstrap aggregation (bagging) of regression trees, random forests, and boosted regression trees. We analyzed 30-day mortality in two large cohorts of patients hospitalized with either acute myocardial infarction (N = 16,230) or congestive heart failure (N = 15,848) in two distinct eras (1999–2001 and 2004–2005). We found that both the in-sample and out-of-sample prediction of ensemble methods offered substantial improvement in predicting cardiovascular mortality compared to conventional regression trees. However, conventional logistic regression models that incorporated restricted cubic smoothing splines had even better performance. We conclude that ensemble methods from the data mining and machine learning literature increase the predictive performance of regression trees, but may not lead to clear advantages over conventional logistic regression models for predicting short-term mortality in population-based samples of subjects with cardiovascular disease. PMID:22777999

  17. Improved Frame Mode Selection for AMR-WB+ Based on Decision Tree

    NASA Astrophysics Data System (ADS)

    Kim, Jong Kyu; Kim, Nam Soo

    In this letter, we propose a coding mode selection method for the AMR-WB+ audio coder based on a decision tree. In order to reduce computation while maintaining good performance, decision tree classifier is adopted with the closed loop mode selection results as the target classification labels. The size of the decision tree is controlled by pruning, so the proposed method does not increase the memory requirement significantly. Through an evaluation test on a database covering both speech and music materials, the proposed method is found to achieve a much better mode selection accuracy compared with the open loop mode selection module in the AMR-WB+.

  18. Harvesting tree biomass at the stand level to assess the accuracy of field and airborne biomass estimation in savannas.

    PubMed

    Colgan, Matthew S; Asner, Gregory P; Swemmer, Tony

    2013-07-01

    Tree biomass is an integrated measure of net growth and is critical for understanding, monitoring, and modeling ecosystem functions. Despite the importance of accurately measuring tree biomass, several fundamental barriers preclude direct measurement at large spatial scales, including the facts that trees must be felled to be weighed and that even modestly sized trees are challenging to maneuver once felled. Allometric methods allow for estimation of tree mass using structural characteristics, such as trunk diameter. Savanna trees present additional challenges, including limited available allometry and a prevalence of multiple stems per individual. Here we collected airborne lidar data over a semiarid savanna adjacent to the Kruger National Park, South Africa, and then harvested and weighed woody plant biomass at the plot scale to provide a standard against which field and airborne estimation methods could be compared. For an existing airborne lidar method, we found that half of the total error was due to averaging canopy height at the plot scale. This error was eliminated by instead measuring maximum height and crown area of individual trees from lidar data using an object-based method to identify individual tree crowns and estimate their biomass. The best object-based model approached the accuracy of field allometry at both the tree and plot levels, and it more than doubled the accuracy compared to existing airborne methods (17% vs. 44% deviation from harvested biomass). Allometric error accounted for less than one-third of the total residual error in airborne biomass estimates at the plot scale when using allometry with low bias. Airborne methods also gave more accurate predictions at the plot level than did field methods based on diameter-only allometry. These results provide a novel comparison of field and airborne biomass estimates using harvested plots and advance the role of lidar remote sensing in savanna ecosystems.

  19. Towards the harmonization between National Forest Inventory and Forest Condition Monitoring. Consistency of plot allocation and effect of tree selection methods on sample statistics in Italy.

    PubMed

    Gasparini, Patrizia; Di Cosmo, Lucio; Cenni, Enrico; Pompei, Enrico; Ferretti, Marco

    2013-07-01

    In the frame of a process aiming at harmonizing National Forest Inventory (NFI) and ICP Forests Level I Forest Condition Monitoring (FCM) in Italy, we investigated (a) the long-term consistency between FCM sample points (a subsample of the first NFI, 1985, NFI_1) and recent forest area estimates (after the second NFI, 2005, NFI_2) and (b) the effect of tree selection method (tree-based or plot-based) on sample composition and defoliation statistics. The two investigations were carried out on 261 and 252 FCM sites, respectively. Results show that some individual forest categories (larch and stone pine, Norway spruce, other coniferous, beech, temperate oaks and cork oak forests) are over-represented and others (hornbeam and hophornbeam, other deciduous broadleaved and holm oak forests) are under-represented in the FCM sample. This is probably due to a change in forest cover, which has increased by 1,559,200 ha from 1985 to 2005. In case of shift from a tree-based to a plot-based selection method, 3,130 (46.7%) of the original 6,703 sample trees will be abandoned, and 1,473 new trees will be selected. The balance between exclusion of former sample trees and inclusion of new ones will be particularly unfavourable for conifers (with only 16.4% of excluded trees replaced by new ones) and less for deciduous broadleaves (with 63.5% of excluded trees replaced). The total number of tree species surveyed will not be impacted, while the number of trees per species will, and the resulting (plot-based) sample composition will have a much larger frequency of deciduous broadleaved trees. The newly selected trees have-in general-smaller diameter at breast height (DBH) and defoliation scores. Given the larger rate of turnover, the deciduous broadleaved part of the sample will be more impacted. Our results suggest that both a revision of FCM network to account for forest area change and a plot-based approach to permit statistical inference and avoid bias in the tree sample composition in terms of DBH (and likely age and structure) are desirable in Italy. As the adoption of a plot-based approach will keep a large share of the trees formerly selected, direct tree-by-tree comparison will remain possible, thus limiting the impact on the time series comparability. In addition, the plot-based design will favour the integration with NFI_2.

  20. Non-monophyly and intricate morphological evolution within the avian family Cettiidae revealed by multilocus analysis of a taxonomically densely sampled dataset

    PubMed Central

    2011-01-01

    Background The avian family Cettiidae, including the genera Cettia, Urosphena, Tesia, Abroscopus and Tickellia and Orthotomus cucullatus, has recently been proposed based on analysis of a small number of loci and species. The close relationship of most of these taxa was unexpected, and called for a comprehensive study based on multiple loci and dense taxon sampling. In the present study, we infer the relationships of all except one of the species in this family using one mitochondrial and three nuclear loci. We use traditional gene tree methods (Bayesian inference, maximum likelihood bootstrapping, parsimony bootstrapping), as well as a recently developed Bayesian species tree approach (*BEAST) that accounts for lineage sorting processes that might produce discordance between gene trees. We also analyse mitochondrial DNA for a larger sample, comprising multiple individuals and a large number of subspecies of polytypic species. Results There are many topological incongruences among the single-locus trees, although none of these is strongly supported. The multi-locus tree inferred using concatenated sequences and the species tree agree well with each other, and are overall well resolved and well supported by the data. The main discrepancy between these trees concerns the most basal split. Both methods infer the genus Cettia to be highly non-monophyletic, as it is scattered across the entire family tree. Deep intraspecific divergences are revealed, and one or two species and one subspecies are inferred to be non-monophyletic (differences between methods). Conclusions The molecular phylogeny presented here is strongly inconsistent with the traditional, morphology-based classification. The remarkably high degree of non-monophyly in the genus Cettia is likely to be one of the most extraordinary examples of misconceived relationships in an avian genus. The phylogeny suggests instances of parallel evolution, as well as highly unequal rates of morphological divergence in different lineages. This complex morphological evolution apparently misled earlier taxonomists. These results underscore the well-known but still often neglected problem of basing classifications on overall morphological similarity. Based on the molecular data, a revised taxonomy is proposed. Although the traditional and species tree methods inferred much the same tree in the present study, the assumption by species tree methods that all species are monophyletic is a limitation in these methods, as some currently recognized species might have more complex histories. PMID:22142197

  1. The Tree Theme Method in psychosocial occupational therapy: a case study.

    PubMed

    Gunnarsson, A Birgitta; Jansson, Jan-Ake; Eklund, Mona

    2006-12-01

    This study aimed to describe the Tree Theme Method (TTM) as a method for intervention in psychosocial occupational therapy. The TTM is based on theories concerning creative activities and occupational storytelling and story making. In order to exemplify the method a case study of a treatment process with follow up was undertaken. The participant was a female client suffering from anxiety and depression. During an interview the client painted symbolic trees on five different occasions with specific variations of the tree theme: a tree symbolizing her present life, her childhood, adolescence, adulthood, and, finally, a tree representing her future. The trees were used as starting points for the client to tell her life story. The intention was that she would find new strategies for how to change her daily life. Three years later there was a follow up stage where the client painted new trees and told her story. Some life themes were identified. The TTM appears suitable for intervention in psychosocial occupational therapy. In future studies the TTM should be subjected to evaluation research based on several clients in order to develop a deeper understanding of the process and what kind of results changes in the TTM intervention may provide.

  2. Faults Discovery By Using Mined Data

    NASA Technical Reports Server (NTRS)

    Lee, Charles

    2005-01-01

    Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.

  3. Estimating uncertainty in respondent-driven sampling using a tree bootstrap method.

    PubMed

    Baraff, Aaron J; McCormick, Tyler H; Raftery, Adrian E

    2016-12-20

    Respondent-driven sampling (RDS) is a network-based form of chain-referral sampling used to estimate attributes of populations that are difficult to access using standard survey tools. Although it has grown quickly in popularity since its introduction, the statistical properties of RDS estimates remain elusive. In particular, the sampling variability of these estimates has been shown to be much higher than previously acknowledged, and even methods designed to account for RDS result in misleadingly narrow confidence intervals. In this paper, we introduce a tree bootstrap method for estimating uncertainty in RDS estimates based on resampling recruitment trees. We use simulations from known social networks to show that the tree bootstrap method not only outperforms existing methods but also captures the high variability of RDS, even in extreme cases with high design effects. We also apply the method to data from injecting drug users in Ukraine. Unlike other methods, the tree bootstrap depends only on the structure of the sampled recruitment trees, not on the attributes being measured on the respondents, so correlations between attributes can be estimated as well as variability. Our results suggest that it is possible to accurately assess the high level of uncertainty inherent in RDS.

  4. Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction.

    PubMed

    Mai, Uyen; Sayyari, Erfan; Mirarab, Siavash

    2017-01-01

    Phylogenetic trees inferred using commonly-used models of sequence evolution are unrooted, but the root position matters both for interpretation and downstream applications. This issue has been long recognized; however, whether the potential for discordance between the species tree and gene trees impacts methods of rooting a phylogenetic tree has not been extensively studied. In this paper, we introduce a new method of rooting a tree based on its branch length distribution; our method, which minimizes the variance of root to tip distances, is inspired by the traditional midpoint rerooting and is justified when deviations from the strict molecular clock are random. Like midpoint rerooting, the method can be implemented in a linear time algorithm. In extensive simulations that consider discordance between gene trees and the species tree, we show that the new method is more accurate than midpoint rerooting, but its relative accuracy compared to using outgroups to root gene trees depends on the size of the dataset and levels of deviations from the strict clock. We show high levels of error for all methods of rooting estimated gene trees due to factors that include effects of gene tree discordance, deviations from the clock, and gene tree estimation error. Our simulations, however, did not reveal significant differences between two equivalent methods for species tree estimation that use rooted and unrooted input, namely, STAR and NJst. Nevertheless, our results point to limitations of existing scalable rooting methods.

  5. Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction

    PubMed Central

    Sayyari, Erfan; Mirarab, Siavash

    2017-01-01

    Phylogenetic trees inferred using commonly-used models of sequence evolution are unrooted, but the root position matters both for interpretation and downstream applications. This issue has been long recognized; however, whether the potential for discordance between the species tree and gene trees impacts methods of rooting a phylogenetic tree has not been extensively studied. In this paper, we introduce a new method of rooting a tree based on its branch length distribution; our method, which minimizes the variance of root to tip distances, is inspired by the traditional midpoint rerooting and is justified when deviations from the strict molecular clock are random. Like midpoint rerooting, the method can be implemented in a linear time algorithm. In extensive simulations that consider discordance between gene trees and the species tree, we show that the new method is more accurate than midpoint rerooting, but its relative accuracy compared to using outgroups to root gene trees depends on the size of the dataset and levels of deviations from the strict clock. We show high levels of error for all methods of rooting estimated gene trees due to factors that include effects of gene tree discordance, deviations from the clock, and gene tree estimation error. Our simulations, however, did not reveal significant differences between two equivalent methods for species tree estimation that use rooted and unrooted input, namely, STAR and NJst. Nevertheless, our results point to limitations of existing scalable rooting methods. PMID:28800608

  6. Multi-focus image fusion based on area-based standard deviation in dual tree contourlet transform domain

    NASA Astrophysics Data System (ADS)

    Dong, Min; Dong, Chenghui; Guo, Miao; Wang, Zhe; Mu, Xiaomin

    2018-04-01

    Multiresolution-based methods, such as wavelet and Contourlet are usually used to image fusion. This work presents a new image fusion frame-work by utilizing area-based standard deviation in dual tree Contourlet trans-form domain. Firstly, the pre-registered source images are decomposed with dual tree Contourlet transform; low-pass and high-pass coefficients are obtained. Then, the low-pass bands are fused with weighted average based on area standard deviation rather than the simple "averaging" rule. While the high-pass bands are merged with the "max-absolute' fusion rule. Finally, the modified low-pass and high-pass coefficients are used to reconstruct the final fused image. The major advantage of the proposed fusion method over conventional fusion is the approximately shift invariance and multidirectional selectivity of dual tree Contourlet transform. The proposed method is compared with wavelet- , Contourletbased methods and other the state-of-the art methods on common used multi focus images. Experiments demonstrate that the proposed fusion framework is feasible and effective, and it performs better in both subjective and objective evaluation.

  7. DBH Prediction Using Allometry Described by Bivariate Copula Distribution

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Hou, Z.; Li, B.; Greenberg, J. A.

    2017-12-01

    Forest biomass mapping based on single tree detection from the airborne laser scanning (ALS) usually depends on an allometric equation that relates diameter at breast height (DBH) with per-tree aboveground biomass. The incapability of the ALS technology in directly measuring DBH leads to the need to predict DBH with other ALS-measured tree-level structural parameters. A copula-based method is proposed in the study to predict DBH with the ALS-measured tree height and crown diameter using a dataset measured in the Lassen National Forest in California. Instead of exploring an explicit mathematical equation that explains the underlying relationship between DBH and other structural parameters, the copula-based prediction method utilizes the dependency between cumulative distributions of these variables, and solves the DBH based on an assumption that for a single tree, the cumulative probability of each structural parameter is identical. Results show that compared with the bench-marking least-square linear regression and the k-MSN imputation, the copula-based method obtains better accuracy in the DBH for the Lassen National Forest. To assess the generalization of the proposed method, prediction uncertainty is quantified using bootstrapping techniques that examine the variability of the RMSE of the predicted DBH. We find that the copula distribution is reliable in describing the allometric relationship between tree-level structural parameters, and it contributes to the reduction of prediction uncertainty.

  8. Microarray-based Resequencing of Multiple Bacillus anthracis Isolates

    DTIC Science & Technology

    2004-12-17

    generated an Unweighted Pair Group Method Arithmetic Mean ( UPGMA ) tree (see methods [56]; Figure 3). The strains group together in a manner broadly similar...was created using DNADIST, plotted as a UPGMA tree using NEIGHBOR and the tree plotted using DRAWGRAM [56]. The B1 strain A0465 was used as an...distance matrix was created using DNADIST, plotted as a UPGMA tree using NEIGHBOR and the tree plotted using DRAWGRAM [57]. Additional data files The

  9. Identifying species of moths (Lepidoptera) from Baihua Mountain, Beijing, China, using DNA barcodes

    PubMed Central

    Liu, Xiao F; Yang, Cong H; Han, Hui L; Ward, Robert D; Zhang, Ai-bing

    2014-01-01

    DNA barcoding has become a promising means for the identification of organisms of all life-history stages. Currently, distance-based and tree-based methods are most widely used to define species boundaries and uncover cryptic species. However, there is no universal threshold of genetic distance values that can be used to distinguish taxonomic groups. Alternatively, DNA barcoding can deploy a “character-based” method, whereby species are identified through the discrete nucleotide substitutions. Our research focuses on the delimitation of moth species using DNA-barcoding methods. We analyzed 393 Lepidopteran specimens belonging to 80 morphologically recognized species with a standard cytochrome c oxidase subunit I (COI) sequencing approach, and deployed tree-based, distance-based, and diagnostic character-based methods to identify the taxa. The tree-based method divided the 393 specimens into 79 taxa (species), and the distance-based method divided them into 84 taxa (species). Although the diagnostic character-based method found only 39 so-identifiable species in the 80 species, with a reduction in sample size the accuracy rate substantially improved. For example, in the Arctiidae subset, all 12 species had diagnostics characteristics. Compared with traditional morphological method, molecular taxonomy performed well. All three methods enable the rapid delimitation of species, although they have different characteristics and different strengths. The tree-based and distance-based methods can be used for accurate species identification and biodiversity studies in large data sets, while the character-based method performs well in small data sets and can also be used as the foundation of species-specific biochips. PMID:25360280

  10. Distance-Based Phylogenetic Methods Around a Polytomy.

    PubMed

    Davidson, Ruth; Sullivant, Seth

    2014-01-01

    Distance-based phylogenetic algorithms attempt to solve the NP-hard least-squares phylogeny problem by mapping an arbitrary dissimilarity map representing biological data to a tree metric. The set of all dissimilarity maps is a Euclidean space properly containing the space of all tree metrics as a polyhedral fan. Outputs of distance-based tree reconstruction algorithms such as UPGMA and neighbor-joining are points in the maximal cones in the fan. Tree metrics with polytomies lie at the intersections of maximal cones. A phylogenetic algorithm divides the space of all dissimilarity maps into regions based upon which combinatorial tree is reconstructed by the algorithm. Comparison of phylogenetic methods can be done by comparing the geometry of these regions. We use polyhedral geometry to compare the local nature of the subdivisions induced by least-squares phylogeny, UPGMA, and neighbor-joining when the true tree has a single polytomy with exactly four neighbors. Our results suggest that in some circumstances, UPGMA and neighbor-joining poorly match least-squares phylogeny.

  11. Estimating parameters for tree basal area growth with a system of equations and seemingly unrelated regressions

    Treesearch

    Charles E. Rose; Thomas B. Lynch

    2001-01-01

    A method was developed for estimating parameters in an individual tree basal area growth model using a system of equations based on dbh rank classes. The estimation method developed is a compromise between an individual tree and a stand level basal area growth model that accounts for the correlation between trees within a plot by using seemingly unrelated regression (...

  12. Mof-Tree: A Spatial Access Method To Manipulate Multiple Overlapping Features.

    ERIC Educational Resources Information Center

    Manolopoulos, Yannis; Nardelli, Enrico; Papadopoulos, Apostolos; Proietti, Guido

    1997-01-01

    Investigates the manipulation of large sets of two-dimensional data representing multiple overlapping features, and presents a new access method, the MOF-tree. Analyzes storage requirements and time with respect to window query operations involving multiple features. Examines both the pointer-based and pointerless MOF-tree representations.…

  13. Automated Mobile System for Accurate Outdoor Tree Crop Enumeration Using an Uncalibrated Camera.

    PubMed

    Nguyen, Thuy Tuong; Slaughter, David C; Hanson, Bradley D; Barber, Andrew; Freitas, Amy; Robles, Daniel; Whelan, Erin

    2015-07-28

    This paper demonstrates an automated computer vision system for outdoor tree crop enumeration in a seedling nursery. The complete system incorporates both hardware components (including an embedded microcontroller, an odometry encoder, and an uncalibrated digital color camera) and software algorithms (including microcontroller algorithms and the proposed algorithm for tree crop enumeration) required to obtain robust performance in a natural outdoor environment. The enumeration system uses a three-step image analysis process based upon: (1) an orthographic plant projection method integrating a perspective transform with automatic parameter estimation; (2) a plant counting method based on projection histograms; and (3) a double-counting avoidance method based on a homography transform. Experimental results demonstrate the ability to count large numbers of plants automatically with no human effort. Results show that, for tree seedlings having a height up to 40 cm and a within-row tree spacing of approximately 10 cm, the algorithms successfully estimated the number of plants with an average accuracy of 95.2% for trees within a single image and 98% for counting of the whole plant population in a large sequence of images.

  14. Automated Mobile System for Accurate Outdoor Tree Crop Enumeration Using an Uncalibrated Camera

    PubMed Central

    Nguyen, Thuy Tuong; Slaughter, David C.; Hanson, Bradley D.; Barber, Andrew; Freitas, Amy; Robles, Daniel; Whelan, Erin

    2015-01-01

    This paper demonstrates an automated computer vision system for outdoor tree crop enumeration in a seedling nursery. The complete system incorporates both hardware components (including an embedded microcontroller, an odometry encoder, and an uncalibrated digital color camera) and software algorithms (including microcontroller algorithms and the proposed algorithm for tree crop enumeration) required to obtain robust performance in a natural outdoor environment. The enumeration system uses a three-step image analysis process based upon: (1) an orthographic plant projection method integrating a perspective transform with automatic parameter estimation; (2) a plant counting method based on projection histograms; and (3) a double-counting avoidance method based on a homography transform. Experimental results demonstrate the ability to count large numbers of plants automatically with no human effort. Results show that, for tree seedlings having a height up to 40 cm and a within-row tree spacing of approximately 10 cm, the algorithms successfully estimated the number of plants with an average accuracy of 95.2% for trees within a single image and 98% for counting of the whole plant population in a large sequence of images. PMID:26225982

  15. Research on complex 3D tree modeling based on L-system

    NASA Astrophysics Data System (ADS)

    Gang, Chen; Bin, Chen; Yuming, Liu; Hui, Li

    2018-03-01

    L-system as a fractal iterative system could simulate complex geometric patterns. Based on the field observation data of trees and knowledge of forestry experts, this paper extracted modeling constraint rules and obtained an L-system rules set. Using the self-developed L-system modeling software the L-system rule set was parsed to generate complex tree 3d models.The results showed that the geometrical modeling method based on l-system could be used to describe the morphological structure of complex trees and generate 3D tree models.

  16. Classification and Progression Based on CFS-GA and C5.0 Boost Decision Tree of TCM Zheng in Chronic Hepatitis B.

    PubMed

    Chen, Xiao Yu; Ma, Li Zhuang; Chu, Na; Zhou, Min; Hu, Yiyang

    2013-01-01

    Chronic hepatitis B (CHB) is a serious public health problem, and Traditional Chinese Medicine (TCM) plays an important role in the control and treatment for CHB. In the treatment of TCM, zheng discrimination is the most important step. In this paper, an approach based on CFS-GA (Correlation based Feature Selection and Genetic Algorithm) and C5.0 boost decision tree is used for zheng classification and progression in the TCM treatment of CHB. The CFS-GA performs better than the typical method of CFS. By CFS-GA, the acquired attribute subset is classified by C5.0 boost decision tree for TCM zheng classification of CHB, and C5.0 decision tree outperforms two typical decision trees of NBTree and REPTree on CFS-GA, CFS, and nonselection in comparison. Based on the critical indicators from C5.0 decision tree, important lab indicators in zheng progression are obtained by the method of stepwise discriminant analysis for expressing TCM zhengs in CHB, and alterations of the important indicators are also analyzed in zheng progression. In conclusion, all the three decision trees perform better on CFS-GA than on CFS and nonselection, and C5.0 decision tree outperforms the two typical decision trees both on attribute selection and nonselection.

  17. Method for estimating potential tree-grade distributions for northeastern forest species

    Treesearch

    Daniel A. Yaussy; Daniel A. Yaussy

    1993-01-01

    Generalized logistic regression was used to distribute trees into four potential tree grades for 20 northeastern species groups. The potential tree grade is defined as the tree grade based on the length and amount of clear cuttings and defects only, disregarding minimum grading diameter. The algorithms described use site index and tree diameter as the predictive...

  18. 3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles

    PubMed Central

    2015-01-01

    Detailed, precise, three-dimensional (3D) representations of individual trees are a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with precision has been constrained by technological and logistical limitations and cost. Traditional methods of forest biometrics provide only partial measurements and are labor intensive. Active remote technologies such as LiDAR operated from airborne platforms provide only partial crown reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this work we capitalized on recent improvements in the capabilities and availability of small unmanned aerial vehicles (UAVs), light and inexpensive cameras, and developed an affordable method for obtaining precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-moving UAVs that acquire images along predefined trajectories near and around targeted trees, and computer vision-based approaches that process the images to obtain detailed tree reconstructions. After we confirmed the potential of the methodology via simulation we evaluated several UAV platforms, strategies for image acquisition, and image processing algorithms. We present an original, step-by-step workflow which utilizes open source programs and original software. We anticipate that future development and applications of our method will improve our understanding of forest self-organization emerging from the competition among trees, and will lead to a refined generation of individual-tree-based forest models. PMID:26393926

  19. 3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles.

    PubMed

    Gatziolis, Demetrios; Lienard, Jean F; Vogs, Andre; Strigul, Nikolay S

    2015-01-01

    Detailed, precise, three-dimensional (3D) representations of individual trees are a prerequisite for an accurate assessment of tree competition, growth, and morphological plasticity. Until recently, our ability to measure the dimensionality, spatial arrangement, shape of trees, and shape of tree components with precision has been constrained by technological and logistical limitations and cost. Traditional methods of forest biometrics provide only partial measurements and are labor intensive. Active remote technologies such as LiDAR operated from airborne platforms provide only partial crown reconstructions. The use of terrestrial LiDAR is laborious, has portability limitations and high cost. In this work we capitalized on recent improvements in the capabilities and availability of small unmanned aerial vehicles (UAVs), light and inexpensive cameras, and developed an affordable method for obtaining precise and comprehensive 3D models of trees and small groups of trees. The method employs slow-moving UAVs that acquire images along predefined trajectories near and around targeted trees, and computer vision-based approaches that process the images to obtain detailed tree reconstructions. After we confirmed the potential of the methodology via simulation we evaluated several UAV platforms, strategies for image acquisition, and image processing algorithms. We present an original, step-by-step workflow which utilizes open source programs and original software. We anticipate that future development and applications of our method will improve our understanding of forest self-organization emerging from the competition among trees, and will lead to a refined generation of individual-tree-based forest models.

  20. Methods for estimating population density in data-limited areas: evaluating regression and tree-based models in Peru.

    PubMed

    Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William

    2014-01-01

    Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies.

  1. Methods for Estimating Population Density in Data-Limited Areas: Evaluating Regression and Tree-Based Models in Peru

    PubMed Central

    Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William

    2014-01-01

    Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies. PMID:24992657

  2. Looking for trees in the forest: summary tree from posterior samples

    PubMed Central

    2013-01-01

    Background Bayesian phylogenetic analysis generates a set of trees which are often condensed into a single tree representing the whole set. Many methods exist for selecting a representative topology for a set of unrooted trees, few exist for assigning branch lengths to a fixed topology, and even fewer for simultaneously setting the topology and branch lengths. However, there is very little research into locating a good representative for a set of rooted time trees like the ones obtained from a BEAST analysis. Results We empirically compare new and known methods for generating a summary tree. Some new methods are motivated by mathematical constructions such as tree metrics, while the rest employ tree concepts which work well in practice. These use more of the posterior than existing methods, which discard information not directly mapped to the chosen topology. Using results from a large number of simulations we assess the quality of a summary tree, measuring (a) how well it explains the sequence data under the model and (b) how close it is to the “truth”, i.e to the tree used to generate the sequences. Conclusions Our simulations indicate that no single method is “best”. Methods producing good divergence time estimates have poor branch lengths and lower model fit, and vice versa. Using the results presented here, a user can choose the appropriate method based on the purpose of the summary tree. PMID:24093883

  3. Looking for trees in the forest: summary tree from posterior samples.

    PubMed

    Heled, Joseph; Bouckaert, Remco R

    2013-10-04

    Bayesian phylogenetic analysis generates a set of trees which are often condensed into a single tree representing the whole set. Many methods exist for selecting a representative topology for a set of unrooted trees, few exist for assigning branch lengths to a fixed topology, and even fewer for simultaneously setting the topology and branch lengths. However, there is very little research into locating a good representative for a set of rooted time trees like the ones obtained from a BEAST analysis. We empirically compare new and known methods for generating a summary tree. Some new methods are motivated by mathematical constructions such as tree metrics, while the rest employ tree concepts which work well in practice. These use more of the posterior than existing methods, which discard information not directly mapped to the chosen topology. Using results from a large number of simulations we assess the quality of a summary tree, measuring (a) how well it explains the sequence data under the model and (b) how close it is to the "truth", i.e to the tree used to generate the sequences. Our simulations indicate that no single method is "best". Methods producing good divergence time estimates have poor branch lengths and lower model fit, and vice versa. Using the results presented here, a user can choose the appropriate method based on the purpose of the summary tree.

  4. Joint amalgamation of most parsimonious reconciled gene trees

    PubMed Central

    Scornavacca, Celine; Jacox, Edwin; Szöllősi, Gergely J.

    2015-01-01

    Motivation: Traditionally, gene phylogenies have been reconstructed solely on the basis of molecular sequences; this, however, often does not provide enough information to distinguish between statistically equivalent relationships. To address this problem, several recent methods have incorporated information on the species phylogeny in gene tree reconstruction, leading to dramatic improvements in accuracy. Although probabilistic methods are able to estimate all model parameters but are computationally expensive, parsimony methods—generally computationally more efficient—require a prior estimate of parameters and of the statistical support. Results: Here, we present the Tree Estimation using Reconciliation (TERA) algorithm, a parsimony based, species tree aware method for gene tree reconstruction based on a scoring scheme combining duplication, transfer and loss costs with an estimate of the sequence likelihood. TERA explores all reconciled gene trees that can be amalgamated from a sample of gene trees. Using a large scale simulated dataset, we demonstrate that TERA achieves the same accuracy as the corresponding probabilistic method while being faster, and outperforms other parsimony-based methods in both accuracy and speed. Running TERA on a set of 1099 homologous gene families from complete cyanobacterial genomes, we find that incorporating knowledge of the species tree results in a two thirds reduction in the number of apparent transfer events. Availability and implementation: The algorithm is implemented in our program TERA, which is freely available from http://mbb.univ-montp2.fr/MBB/download_sources/16__TERA. Contact: celine.scornavacca@univ-montp2.fr, ssolo@angel.elte.hu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25380957

  5. [Introduction and advantage analysis of the stepwise method for the construction of vascular trees].

    PubMed

    Zhang, Yan; Xie, Haiwei; Zhu, Kai

    2010-08-01

    A new method for constructing the model of vascular trees was proposed in this paper. By use of this method, the arterial trees in good agreement with the actual structure could be grown. In this process, all vessels in the vascular tree were divided into two groups: the conveying vessels, and the delivering branches. And different branches could be built by different ways. Firstly, the distributing rules of conveying vessels were ascertained by use of measurement data, and then the conveying vessels were constructed in accordance to the statistical rule and optimization criterion. Lastly, delivering branches were modeled by constrained constructive optimization (CCO) on the conveying vessel-trees which had already been generated. In order to compare the CCO method and stepwise method proposed here, two 3D arterial trees of human tongue were grown with their vascular tree having a special structure. Based on the corrosion casts of real arterial tree of human tongue, the data about the two trees constructed by different methods were compared and analyzed, including the averaged segment diameters at respective levels, the distribution and the diameters of the branches of first level at respective directions. The results show that the vascular tree built by stepwise method is more similar to the true arterial of human tongue when compared against the tree built by CCO method.

  6. [An object-based information extraction technology for dominant tree species group types].

    PubMed

    Tian, Tian; Fan, Wen-yi; Lu, Wei; Xiao, Xiang

    2015-06-01

    Information extraction for dominant tree group types is difficult in remote sensing image classification, howevers, the object-oriented classification method using high spatial resolution remote sensing data is a new method to realize the accurate type information extraction. In this paper, taking the Jiangle Forest Farm in Fujian Province as the research area, based on the Quickbird image data in 2013, the object-oriented method was adopted to identify the farmland, shrub-herbaceous plant, young afforested land, Pinus massoniana, Cunninghamia lanceolata and broad-leave tree types. Three types of classification factors including spectral, texture, and different vegetation indices were used to establish a class hierarchy. According to the different levels, membership functions and the decision tree classification rules were adopted. The results showed that the method based on the object-oriented method by using texture, spectrum and the vegetation indices achieved the classification accuracy of 91.3%, which was increased by 5.7% compared with that by only using the texture and spectrum.

  7. Phylogeny Reconstruction with Alignment-Free Method That Corrects for Horizontal Gene Transfer.

    PubMed

    Bromberg, Raquel; Grishin, Nick V; Otwinowski, Zbyszek

    2016-06-01

    Advances in sequencing have generated a large number of complete genomes. Traditionally, phylogenetic analysis relies on alignments of orthologs, but defining orthologs and separating them from paralogs is a complex task that may not always be suited to the large datasets of the future. An alternative to traditional, alignment-based approaches are whole-genome, alignment-free methods. These methods are scalable and require minimal manual intervention. We developed SlopeTree, a new alignment-free method that estimates evolutionary distances by measuring the decay of exact substring matches as a function of match length. SlopeTree corrects for horizontal gene transfer, for composition variation and low complexity sequences, and for branch-length nonlinearity caused by multiple mutations at the same site. We tested SlopeTree on 495 bacteria, 73 archaea, and 72 strains of Escherichia coli and Shigella. We compared our trees to the NCBI taxonomy, to trees based on concatenated alignments, and to trees produced by other alignment-free methods. The results were consistent with current knowledge about prokaryotic evolution. We assessed differences in tree topology over different methods and settings and found that the majority of bacteria and archaea have a core set of proteins that evolves by descent. In trees built from complete genomes rather than sets of core genes, we observed some grouping by phenotype rather than phylogeny, for instance with a cluster of sulfur-reducing thermophilic bacteria coming together irrespective of their phyla. The source-code for SlopeTree is available at: http://prodata.swmed.edu/download/pub/slopetree_v1/slopetree.tar.gz.

  8. Phylogeny Reconstruction with Alignment-Free Method That Corrects for Horizontal Gene Transfer

    PubMed Central

    Grishin, Nick V.; Otwinowski, Zbyszek

    2016-01-01

    Advances in sequencing have generated a large number of complete genomes. Traditionally, phylogenetic analysis relies on alignments of orthologs, but defining orthologs and separating them from paralogs is a complex task that may not always be suited to the large datasets of the future. An alternative to traditional, alignment-based approaches are whole-genome, alignment-free methods. These methods are scalable and require minimal manual intervention. We developed SlopeTree, a new alignment-free method that estimates evolutionary distances by measuring the decay of exact substring matches as a function of match length. SlopeTree corrects for horizontal gene transfer, for composition variation and low complexity sequences, and for branch-length nonlinearity caused by multiple mutations at the same site. We tested SlopeTree on 495 bacteria, 73 archaea, and 72 strains of Escherichia coli and Shigella. We compared our trees to the NCBI taxonomy, to trees based on concatenated alignments, and to trees produced by other alignment-free methods. The results were consistent with current knowledge about prokaryotic evolution. We assessed differences in tree topology over different methods and settings and found that the majority of bacteria and archaea have a core set of proteins that evolves by descent. In trees built from complete genomes rather than sets of core genes, we observed some grouping by phenotype rather than phylogeny, for instance with a cluster of sulfur-reducing thermophilic bacteria coming together irrespective of their phyla. The source-code for SlopeTree is available at: http://prodata.swmed.edu/download/pub/slopetree_v1/slopetree.tar.gz. PMID:27336403

  9. Imaging tree roots with borehole radar

    Treesearch

    John R. Butnor; Kurt H. Johnsen; Per Wikstrom; Tomas Lundmark; Sune Linder

    2006-01-01

    Ground-penetrating radar has been used to de-tect and map tree roots using surface-based antennas in reflection mode. On amenable soils these methods can accurately detect lateral tree roots. In some tree species (e.g. Pinus taeda, Pinus palustris), vertically orientated tap roots directly beneath the tree, comprise most of the root mass. It is...

  10. Obesity as a risk factor for developing functional limitation among older adults: A conditional inference tree analysis

    USDA-ARS?s Scientific Manuscript database

    Objective: To examine the risk factors of developing functional decline and make probabilistic predictions by using a tree-based method that allows higher order polynomials and interactions of the risk factors. Methods: The conditional inference tree analysis, a data mining approach, was used to con...

  11. Using methods from the data mining and machine learning literature for disease classification and prediction: A case study examining classification of heart failure sub-types

    PubMed Central

    Austin, Peter C.; Tu, Jack V.; Ho, Jennifer E.; Levy, Daniel; Lee, Douglas S.

    2014-01-01

    Objective Physicians classify patients into those with or without a specific disease. Furthermore, there is often interest in classifying patients according to disease etiology or subtype. Classification trees are frequently used to classify patients according to the presence or absence of a disease. However, classification trees can suffer from limited accuracy. In the data-mining and machine learning literature, alternate classification schemes have been developed. These include bootstrap aggregation (bagging), boosting, random forests, and support vector machines. Study design and Setting We compared the performance of these classification methods with those of conventional classification trees to classify patients with heart failure according to the following sub-types: heart failure with preserved ejection fraction (HFPEF) vs. heart failure with reduced ejection fraction (HFREF). We also compared the ability of these methods to predict the probability of the presence of HFPEF with that of conventional logistic regression. Results We found that modern, flexible tree-based methods from the data mining literature offer substantial improvement in prediction and classification of heart failure sub-type compared to conventional classification and regression trees. However, conventional logistic regression had superior performance for predicting the probability of the presence of HFPEF compared to the methods proposed in the data mining literature. Conclusion The use of tree-based methods offers superior performance over conventional classification and regression trees for predicting and classifying heart failure subtypes in a population-based sample of patients from Ontario. However, these methods do not offer substantial improvements over logistic regression for predicting the presence of HFPEF. PMID:23384592

  12. Phylogenetic Reconstruction and DNA Barcoding for Closely Related Pine Moth Species (Dendrolimus) in China with Multiple Gene Markers

    PubMed Central

    Dai, Qing-Yan; Gao, Qiang; Wu, Chun-Sheng; Chesters, Douglas; Zhu, Chao-Dong; Zhang, Ai-Bing

    2012-01-01

    Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests in China with a standard cytochrome c oxidase subunit I (COI) gene and two alternative internal transcribed spacer (ITS) genes (ITS1 and ITS2). Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML)/Neighbor-joining (NJ), “best close match” (BCM), Minimum distance (MD), and BP-based method (BP)), representing commonly used methodology (tree-based and non-tree based) in the field, were applied to both single-gene and multiple-gene analyses. Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used. On average, the COI barcode achieved a success rate of 94.10–97.40%, while ITS1 and ITS2 obtained a success rate of 64.70–81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success rate of species identification that takes both sequencing success and assignation success into account, since species identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall success rates with statistical significance. In addition, our results indicate that the most closely related species D. punctatus, D. tabulaeformis, and D. spectabilis, may be still in the process of incomplete lineage sorting, with occasional hybridizations occurring among them. PMID:22509245

  13. A configuration space of homologous proteins conserving mutual information and allowing a phylogeny inference based on pair-wise Z-score probabilities.

    PubMed

    Bastien, Olivier; Ortet, Philippe; Roy, Sylvaine; Maréchal, Eric

    2005-03-10

    Popular methods to reconstruct molecular phylogenies are based on multiple sequence alignments, in which addition or removal of data may change the resulting tree topology. We have sought a representation of homologous proteins that would conserve the information of pair-wise sequence alignments, respect probabilistic properties of Z-scores (Monte Carlo methods applied to pair-wise comparisons) and be the basis for a novel method of consistent and stable phylogenetic reconstruction. We have built up a spatial representation of protein sequences using concepts from particle physics (configuration space) and respecting a frame of constraints deduced from pair-wise alignment score properties in information theory. The obtained configuration space of homologous proteins (CSHP) allows the representation of real and shuffled sequences, and thereupon an expression of the TULIP theorem for Z-score probabilities. Based on the CSHP, we propose a phylogeny reconstruction using Z-scores. Deduced trees, called TULIP trees, are consistent with multiple-alignment based trees. Furthermore, the TULIP tree reconstruction method provides a solution for some previously reported incongruent results, such as the apicomplexan enolase phylogeny. The CSHP is a unified model that conserves mutual information between proteins in the way physical models conserve energy. Applications include the reconstruction of evolutionary consistent and robust trees, the topology of which is based on a spatial representation that is not reordered after addition or removal of sequences. The CSHP and its assigned phylogenetic topology, provide a powerful and easily updated representation for massive pair-wise genome comparisons based on Z-score computations.

  14. Metabolite identification through multiple kernel learning on fragmentation trees.

    PubMed

    Shen, Huibin; Dührkop, Kai; Böcker, Sebastian; Rousu, Juho

    2014-06-15

    Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various computational methods have been proposed for the identification of metabolites from tandem mass spectra. Fragmentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the metabolite identification on scoring of these fragmentation trees. Machine learning methods have been used to map mass spectra to molecular fingerprints; predicted fingerprints, in turn, can be used to score candidate molecular structures. Here, we combine fragmentation tree computations with kernel-based machine learning to predict molecular fingerprints and identify molecular structures. We introduce a family of kernels capturing the similarity of fragmentation trees, and combine these kernels using recently proposed multiple kernel learning approaches. Experiments on two large reference datasets show that the new methods significantly improve molecular fingerprint prediction accuracy. These improvements result in better metabolite identification, doubling the number of metabolites ranked at the top position of the candidates list. © The Author 2014. Published by Oxford University Press.

  15. CellTree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data.

    PubMed

    duVerle, David A; Yotsukura, Sohiya; Nomura, Seitaro; Aburatani, Hiroyuki; Tsuda, Koji

    2016-09-13

    Single-cell RNA sequencing is fast becoming one the standard method for gene expression measurement, providing unique insights into cellular processes. A number of methods, based on general dimensionality reduction techniques, have been suggested to help infer and visualise the underlying structure of cell populations from single-cell expression levels, yet their models generally lack proper biological grounding and struggle at identifying complex differentiation paths. Here we introduce cellTree: an R/Bioconductor package that uses a novel statistical approach, based on document analysis techniques, to produce tree structures outlining the hierarchical relationship between single-cell samples, while identifying latent groups of genes that can provide biological insights. With cellTree, we provide experimentalists with an easy-to-use tool, based on statistically and biologically-sound algorithms, to efficiently explore and visualise single-cell RNA data. The cellTree package is publicly available in the online Bionconductor repository at: http://bioconductor.org/packages/cellTree/ .

  16. Research on Robustness of Tree-based P2P Streaming

    NASA Astrophysics Data System (ADS)

    Chu, Chen; Yan, Jinyao; Ding, Kuangzheng; Wang, Xi

    Research on P2P streaming media is a hot topic in the area of Internet technology. It has emerged as a promising technique. This new paradigm brings a number of unique advantages such as scalability, resilience and also effectiveness in coping with dynamics and heterogeneity. However, There are also many problems in P2P streaming media systems using traditional tree-based topology such as the bandwidth limits between parents and child nodes; node's joining or leaving has a great effect on robustness of tree-based topology. This paper will introduce a method of measuring the robustness of tree-based topology: using network measurement, we observe and record the bandwidth between all the nodes, analyses the correlation between all the sibling flows, measure the robustness of tree-based topology. And the result shows that in the Tree-based topology, the different links which have similar routing paths would share the bandwidth bottleneck, reduce the robustness of the Tree-based topology.

  17. Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks.

    PubMed

    Oh, S June; Joung, Je-Gun; Chang, Jeong-Ho; Zhang, Byoung-Tak

    2006-06-06

    To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway structures using meta-level information rather than sequence information. This method may yield further information about biological evolution, such as the history of horizontal transfer of each gene, by studying the detailed structure of the phylogenetic tree constructed by the kernel-based method.

  18. Spectral analysis of white ash response to emerald ash borer infestations

    NASA Astrophysics Data System (ADS)

    Calandra, Laura

    The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) is an invasive insect that has killed over 50 million ash trees in the US. The goal of this research was to establish a method to identify ash trees infested with EAB using remote sensing techniques at the leaf-level and tree crown level. First, a field-based study at the leaf-level used the range of spectral bands from the WorldView-2 sensor to determine if there was a significant difference between EAB-infested white ash (Fraxinus americana) and healthy leaves. Binary logistic regression models were developed using individual and combinations of wavelengths; the most successful model included 545 and 950 nm bands. The second half of this research employed imagery to identify healthy and EAB-infested trees, comparing pixel- and object-based methods by applying an unsupervised classification approach and a tree crown delineation algorithm, respectively. The pixel-based models attained the highest overall accuracies.

  19. Mapping trees outside forests using high-resolution aerial imagery: a comparison of pixel- and object-based classification approaches.

    PubMed

    Meneguzzo, Dacia M; Liknes, Greg C; Nelson, Mark D

    2013-08-01

    Discrete trees and small groups of trees in nonforest settings are considered an essential resource around the world and are collectively referred to as trees outside forests (ToF). ToF provide important functions across the landscape, such as protecting soil and water resources, providing wildlife habitat, and improving farmstead energy efficiency and aesthetics. Despite the significance of ToF, forest and other natural resource inventory programs and geospatial land cover datasets that are available at a national scale do not include comprehensive information regarding ToF in the United States. Additional ground-based data collection and acquisition of specialized imagery to inventory these resources are expensive alternatives. As a potential solution, we identified two remote sensing-based approaches that use free high-resolution aerial imagery from the National Agriculture Imagery Program (NAIP) to map all tree cover in an agriculturally dominant landscape. We compared the results obtained using an unsupervised per-pixel classifier (independent component analysis-[ICA]) and an object-based image analysis (OBIA) procedure in Steele County, Minnesota, USA. Three types of accuracy assessments were used to evaluate how each method performed in terms of: (1) producing a county-level estimate of total tree-covered area, (2) correctly locating tree cover on the ground, and (3) how tree cover patch metrics computed from the classified outputs compared to those delineated by a human photo interpreter. Both approaches were found to be viable for mapping tree cover over a broad spatial extent and could serve to supplement ground-based inventory data. The ICA approach produced an estimate of total tree cover more similar to the photo-interpreted result, but the output from the OBIA method was more realistic in terms of describing the actual observed spatial pattern of tree cover.

  20. A multivariate model and statistical method for validating tree grade lumber yield equations

    Treesearch

    Donald W. Seegrist

    1975-01-01

    Lumber yields within lumber grades can be described by a multivariate linear model. A method for validating lumber yield prediction equations when there are several tree grades is presented. The method is based on multivariate simultaneous test procedures.

  1. A probability approach to sawtimber tree-value projections

    Treesearch

    Roger E. McCay; Paul S. DeBald; Paul S. DeBald

    1973-01-01

    The authors present a method for projecting hardwood sawtimber tree values, using tree-development probabilities based on continuous forest inventory (CFI) data and describe some ways to use the resulting value projections to assemble management-planning information.

  2. A new method of optimal capacitor switching based on minimum spanning tree theory in distribution systems

    NASA Astrophysics Data System (ADS)

    Li, H. W.; Pan, Z. Y.; Ren, Y. B.; Wang, J.; Gan, Y. L.; Zheng, Z. Z.; Wang, W.

    2018-03-01

    According to the radial operation characteristics in distribution systems, this paper proposes a new method based on minimum spanning trees method for optimal capacitor switching. Firstly, taking the minimal active power loss as objective function and not considering the capacity constraints of capacitors and source, this paper uses Prim algorithm among minimum spanning trees algorithms to get the power supply ranges of capacitors and source. Then with the capacity constraints of capacitors considered, capacitors are ranked by the method of breadth-first search. In term of the order from high to low of capacitor ranking, capacitor compensation capacity based on their power supply range is calculated. Finally, IEEE 69 bus system is adopted to test the accuracy and practicality of the proposed algorithm.

  3. Uncertain decision tree inductive inference

    NASA Astrophysics Data System (ADS)

    Zarban, L.; Jafari, S.; Fakhrahmad, S. M.

    2011-10-01

    Induction is the process of reasoning in which general rules are formulated based on limited observations of recurring phenomenal patterns. Decision tree learning is one of the most widely used and practical inductive methods, which represents the results in a tree scheme. Various decision tree algorithms have already been proposed such as CLS, ID3, Assistant C4.5, REPTree and Random Tree. These algorithms suffer from some major shortcomings. In this article, after discussing the main limitations of the existing methods, we introduce a new decision tree induction algorithm, which overcomes all the problems existing in its counterparts. The new method uses bit strings and maintains important information on them. This use of bit strings and logical operation on them causes high speed during the induction process. Therefore, it has several important features: it deals with inconsistencies in data, avoids overfitting and handles uncertainty. We also illustrate more advantages and the new features of the proposed method. The experimental results show the effectiveness of the method in comparison with other methods existing in the literature.

  4. A new method for locating changes in a tree reveals distinct nucleotide polymorphism vs. divergence patterns in mouse mitochondrial control region.

    PubMed

    Galtier, N; Boursot, P

    2000-03-01

    A new, model-based method was devised to locate nucleotide changes in a given phylogenetic tree. For each site, the posterior probability of any possible change in each branch of the tree is computed. This probabilistic method is a valuable alternative to the maximum parsimony method when base composition is skewed (i.e., different from 25% A, 25% C, 25% G, 25% T): computer simulations showed that parsimony misses more rare --> common than common --> rare changes, resulting in biased inferred change matrices, whereas the new method appeared unbiased. The probabilistic method was applied to the analysis of the mutation and substitution processes in the mitochondrial control region of mouse. Distinct change patterns were found at the polymorphism (within species) and divergence (between species) levels, rejecting the hypothesis of a neutral evolution of base composition in mitochondrial DNA.

  5. Diagnostics of Tree Diseases Caused by Phytophthora austrocedri Species.

    PubMed

    Mulholland, Vincent; Elliot, Matthew; Green, Sarah

    2015-01-01

    We present methods for the detection and quantification of four Phytophthora species which are pathogenic on trees; Phytophthora ramorum, Phytophthora kernoviae, Phytophthora lateralis, and Phytophthora austrocedri. Nucleic acid extraction methods are presented for phloem tissue from trees, soil, and pure cultures on agar plates. Real-time PCR methods are presented and include primer and probe sets for each species, general advice on real-time PCR setup and data analysis. A method for sequence-based identification, useful for pure cultures, is also included.

  6. Stem mortality in surface fires: Part II, experimental methods for characterizing the thermal response of tree stems to heating by fires

    Treesearch

    D. M. Jimenez; B. W. Butler; J. Reardon

    2003-01-01

    Current methods for predicting fire-induced plant mortality in shrubs and trees are largely empirical. These methods are not readily linked to duff burning, soil heating, and surface fire behavior models. In response to the need for a physics-based model of this process, a detailed model for predicting the temperature distribution through a tree stem as a function of...

  7. DEVELOPMENT OF A STRATEGY FOR SAMPLING TREE RINGS

    EPA Science Inventory

    A method for determining retrospective pollution levels has been investigated. This method relates arsenic concentration in tree rings to arsenic-in-air concentrations based qualitatively on arsenic emissions from a nearby smelter, corrected for climatological and meteorological ...

  8. Forest Resource Measurements by Combination of Terrestrial Laser Scanning and Drone Use

    NASA Astrophysics Data System (ADS)

    Cheung, K.; Katoh, M.; Horisawa, M.

    2017-10-01

    Using terrestrial laser scanning (TLS), forest attributes such as diameter at breast height (DBH) and tree location can be measured accurately. However, due to low penetration of laser pulses to tree tops, tree height measurements are typically underestimated. In this study, data acquired by TLS and drones were combined; DBH and tree locations were determined by TLS, and tree heights were measured by drone use. The average tree height error and root mean square error (RMSE) of tree height were 0.8 and 1.2 m, respectively, for the combined method, and -0.4 and 1.7 m using TLS alone. The tree height difference was compared using airborne laser scanning (ALS). Furthermore, a method to acquire 100 % tree detection rate based on TLS data is suggested in this study.

  9. Simulation-Based Evaluation of Hybridization Network Reconstruction Methods in the Presence of Incomplete Lineage Sorting

    PubMed Central

    Kamneva, Olga K; Rosenberg, Noah A

    2017-01-01

    Hybridization events generate reticulate species relationships, giving rise to species networks rather than species trees. We report a comparative study of consensus, maximum parsimony, and maximum likelihood methods of species network reconstruction using gene trees simulated assuming a known species history. We evaluate the role of the divergence time between species involved in a hybridization event, the relative contributions of the hybridizing species, and the error in gene tree estimation. When gene tree discordance is mostly due to hybridization and not due to incomplete lineage sorting (ILS), most of the methods can detect even highly skewed hybridization events between highly divergent species. For recent divergences between hybridizing species, when the influence of ILS is sufficiently high, likelihood methods outperform parsimony and consensus methods, which erroneously identify extra hybridizations. The more sophisticated likelihood methods, however, are affected by gene tree errors to a greater extent than are consensus and parsimony. PMID:28469378

  10. Non-unique key B-Tree implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ries, D.R.

    1980-12-23

    The B-Trees are an indexed method to allow fast retrieval and order preserving updates to a FRAMIS relation based on a designated set of keys in the relation. A B-Tree access method is being implemented to provide indexed and sequential (in index order) access to FRAMIS relations. The implementation modifies the basic B-Tree structure to correctly allow multiple key values and still maintain the balanced page fill property of B-Trees. The data structures of the B-Tree are presented first, including the FRAMIS solution to the duplicate key value problem. Then the access level routines and utilities are presented. These routinesmore » include the original B-Tree creation; searching the B-Tree; and inserting, deleting, and replacing tuples on the B-Tree. In conclusion, the uses of the B-Tree access structures at the semantic level to enhance the FRAMIS performance are discussed. 10 figures.« less

  11. A Voronoi interior adjacency-based approach for generating a contour tree

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Qiao, Chaofei; Zhao, Renliang

    2004-05-01

    A contour tree is a good graphical tool for representing the spatial relations of contour lines and has found many applications in map generalization, map annotation, terrain analysis, etc. A new approach for generating contour trees by introducing a Voronoi-based interior adjacency set concept is proposed in this paper. The immediate interior adjacency set is employed to identify all of the children contours of each contour without contour elevations. It has advantages over existing methods such as the point-in-polygon method and the region growing-based method. This new approach can be used for spatial data mining and knowledge discovering, such as the automatic extraction of terrain features and construction of multi-resolution digital elevation model.

  12. Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks.

    PubMed

    Joshi, Vinayak S; Reinhardt, Joseph M; Garvin, Mona K; Abramoff, Michael D

    2014-01-01

    The separation of the retinal vessel network into distinct arterial and venous vessel trees is of high interest. We propose an automated method for identification and separation of retinal vessel trees in a retinal color image by converting a vessel segmentation image into a vessel segment map and identifying the individual vessel trees by graph search. Orientation, width, and intensity of each vessel segment are utilized to find the optimal graph of vessel segments. The separated vessel trees are labeled as primary vessel or branches. We utilize the separated vessel trees for arterial-venous (AV) classification, based on the color properties of the vessels in each tree graph. We applied our approach to a dataset of 50 fundus images from 50 subjects. The proposed method resulted in an accuracy of 91.44% correctly classified vessel pixels as either artery or vein. The accuracy of correctly classified major vessel segments was 96.42%.

  13. Decision tree methods: applications for classification and prediction.

    PubMed

    Song, Yan-Yan; Lu, Ying

    2015-04-25

    Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.

  14. Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data

    PubMed Central

    Tang, Cuong Q; Humphreys, Aelys M; Fontaneto, Diego; Barraclough, Timothy G; Paradis, Emmanuel

    2014-01-01

    Coalescent-based species delimitation methods combine population genetic and phylogenetic theory to provide an objective means for delineating evolutionarily significant units of diversity. The generalised mixed Yule coalescent (GMYC) and the Poisson tree process (PTP) are methods that use ultrametric (GMYC or PTP) or non-ultrametric (PTP) gene trees as input, intended for use mostly with single-locus data such as DNA barcodes. Here, we assess how robust the GMYC and PTP are to different phylogenetic reconstruction and branch smoothing methods. We reconstruct over 400 ultrametric trees using up to 30 different combinations of phylogenetic and smoothing methods and perform over 2000 separate species delimitation analyses across 16 empirical data sets. We then assess how variable diversity estimates are, in terms of richness and identity, with respect to species delimitation, phylogenetic and smoothing methods. The PTP method generally generates diversity estimates that are more robust to different phylogenetic methods. The GMYC is more sensitive, but provides consistent estimates for BEAST trees. The lower consistency of GMYC estimates is likely a result of differences among gene trees introduced by the smoothing step. Unresolved nodes (real anomalies or methodological artefacts) affect both GMYC and PTP estimates, but have a greater effect on GMYC estimates. Branch smoothing is a difficult step and perhaps an underappreciated source of bias that may be widespread among studies of diversity and diversification. Nevertheless, careful choice of phylogenetic method does produce equivalent PTP and GMYC diversity estimates. We recommend simultaneous use of the PTP model with any model-based gene tree (e.g. RAxML) and GMYC approaches with BEAST trees for obtaining species hypotheses. PMID:25821577

  15. How different are the results acquired from mathematical and subjective methods in dendrogeomorphology? Insights from landslide movements

    NASA Astrophysics Data System (ADS)

    Šilhán, Karel

    2016-01-01

    Knowledge of past landslide activity is crucial for understanding landslide behaviour and for modelling potential future landslide occurrence. Dendrogeomorphic approaches represent the most precise methods of landslide dating (where trees annually create tree-rings in the timescale of up to several hundred years). Despite the advantages of these methods, many open questions remain. One of the less researched uncertainties, and the focus of this study, is the impact of two common methods of geomorphic signal extraction on the spatial and temporal results of landslide reconstruction. In total, 93 Norway spruce (Picea abies (L.) Karst.) trees were sampled at one landslide location dominated by block-type movements in the forefield of the Orlické hory Mts., Bohemian Massif. Landslide signals were examined by the classical subjective method based on reaction (compression) wood analysis and by a numerical method based on eccentric growth analysis. The chronology of landslide movements obtained by the mathematical method resulted in twice the number of events detected compared to the subjective method. This finding indicates that eccentric growth is a more accurate indicator for landslide movements than the classical analysis of reaction wood. The reconstructed spatial activity of landslide movements shows a similar distribution of recurrence intervals (Ri) for both methods. The differences (maximally 30% of the total Ri ranges) in results obtained by both methods may be caused by differences in the ability of trees to react to tilting of their stems by a specific growth response (reaction wood formation or eccentric growth). Finally, the ability of trees to record tilting events (by both growth responses) in their tree-ring series was analysed for different decades of tree life. The highest sensitivity to external tilting events occurred at tree ages from 70 to 80 years for reaction wood formation and from 80 to 90 years for eccentric growth response. This means that the ability of P. abies to record geomorphic signals varies with not only eccentric growth responses but also with age.

  16. Coalescent-Based Analyses of Genomic Sequence Data Provide a Robust Resolution of Phylogenetic Relationships among Major Groups of Gibbons

    PubMed Central

    Shi, Cheng-Min; Yang, Ziheng

    2018-01-01

    Abstract The phylogenetic relationships among extant gibbon species remain unresolved despite numerous efforts using morphological, behavorial, and genetic data and the sequencing of whole genomes. A major challenge in reconstructing the gibbon phylogeny is the radiative speciation process, which resulted in extremely short internal branches in the species phylogeny and extensive incomplete lineage sorting with extensive gene-tree heterogeneity across the genome. Here, we analyze two genomic-scale data sets, with ∼10,000 putative noncoding and exonic loci, respectively, to estimate the species tree for the major groups of gibbons. We used the Bayesian full-likelihood method bpp under the multispecies coalescent model, which naturally accommodates incomplete lineage sorting and uncertainties in the gene trees. For comparison, we included three heuristic coalescent-based methods (mp-est, SVDQuartets, and astral) as well as concatenation. From both data sets, we infer the phylogeny for the four extant gibbon genera to be (Hylobates, (Nomascus, (Hoolock, Symphalangus))). We used simulation guided by the real data to evaluate the accuracy of the methods used. Astral, while not as efficient as bpp, performed well in estimation of the species tree even in presence of excessive incomplete lineage sorting. Concatenation, mp-est and SVDQuartets were unreliable when the species tree contains very short internal branches. Likelihood ratio test of gene flow suggests a small amount of migration from Hylobates moloch to H. pileatus, while cross-genera migration is absent or rare. Our results highlight the utility of coalescent-based methods in addressing challenging species tree problems characterized by short internal branches and rampant gene tree-species tree discordance. PMID:29087487

  17. Compensatory value of urban trees in the United States

    Treesearch

    David J. Nowak; Daniel E. Crane; John F. Dwyer

    2002-01-01

    Understanding the value of an urban forest can give decision makers a better foundation for urban tree namagement. Based on tree-valuation methods of the Council of Tree and Landscape Appraisers and field data from eight cities, total compensatory value of tree populations in U.S. cities ranges from $101 million in Jersey City, New Jersey, to $6.2 billion in New York,...

  18. Bayesian additive decision trees of biomarker by treatment interactions for predictive biomarker detection and subgroup identification.

    PubMed

    Zhao, Yang; Zheng, Wei; Zhuo, Daisy Y; Lu, Yuefeng; Ma, Xiwen; Liu, Hengchang; Zeng, Zhen; Laird, Glen

    2017-10-11

    Personalized medicine, or tailored therapy, has been an active and important topic in recent medical research. Many methods have been proposed in the literature for predictive biomarker detection and subgroup identification. In this article, we propose a novel decision tree-based approach applicable in randomized clinical trials. We model the prognostic effects of the biomarkers using additive regression trees and the biomarker-by-treatment effect using a single regression tree. Bayesian approach is utilized to periodically revise the split variables and the split rules of the decision trees, which provides a better overall fitting. Gibbs sampler is implemented in the MCMC procedure, which updates the prognostic trees and the interaction tree separately. We use the posterior distribution of the interaction tree to construct the predictive scores of the biomarkers and to identify the subgroup where the treatment is superior to the control. Numerical simulations show that our proposed method performs well under various settings comparing to existing methods. We also demonstrate an application of our method in a real clinical trial.

  19. Determining Accuracy of Thermal Dissipation Methods-based Sap Flux in Japanese Cedar Trees

    NASA Astrophysics Data System (ADS)

    Su, Man-Ping; Shinohara, Yoshinori; Laplace, Sophie; Lin, Song-Jin; Kume, Tomonori

    2017-04-01

    Thermal dissipation method, one kind of sap flux measurement method that can estimate individual tree transpiration, have been widely used because of its low cost and uncomplicated operation. Although thermal dissipation method is widespread, the accuracy of this method is doubted recently because some tree species materials in previous studies were not suitable for its empirical formula from Granier due to difference of wood characteristics. In Taiwan, Cryptomeria japonica (Japanese cedar) is one of the dominant species in mountainous area, quantifying the transpiration of Japanese cedar trees is indispensable to understand water cycling there. However, no one have tested the accuracy of thermal dissipation methods-based sap flux for Japanese cedar trees in Taiwan. Thus, in this study we conducted calibration experiment using twelve Japanese cedar stem segments from six trees to investigate the accuracy of thermal dissipation methods-based sap flux in Japanese cedar trees in Taiwan. By pumping water from segment bottom to top and inserting probes into segments to collect data simultaneously, we compared sap flux densities calculated from real water uptakes (Fd_actual) and empirical formula (Fd_Granier). Exact sapwood area and sapwood depth of each sample were obtained from dying segment with safranin stain solution. Our results showed that Fd_Granier underestimated 39 % of Fd_actual across sap flux densities ranging from 10 to 150 (cm3m-2s-1); while applying sapwood depth corrected formula from Clearwater, Fd_Granier became accurately that only underestimated 0.01 % of Fd_actual. However, when sap flux densities ranging from 10 to 50 (cm3m-2s-1)which is similar with the field data of Japanese cedar trees in a mountainous area of Taiwan, Fd_Granier underestimated 51 % of Fd_actual, and underestimated 26 % with applying Clearwater sapwood depth corrected formula. These results suggested sapwood depth significantly impacted on the accuracy of thermal dissipation method; hence, careful determination of sapwood depth is the key for the accurate transpiration estimates. This study also apply the derived results to long-term field data in the mountainous area in Taiwan.

  20. Comparison of modeling methods to predict the spatial distribution of deep-sea coral and sponge in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Rooper, Christopher N.; Zimmermann, Mark; Prescott, Megan M.

    2017-08-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska's marine waters, and are associated with many different species of fishes and invertebrates. These ecosystems are vulnerable to the effects of commercial fishing activities and climate change. We compared four commonly used species distribution models (general linear models, generalized additive models, boosted regression trees and random forest models) and an ensemble model to predict the presence or absence and abundance of six groups of benthic invertebrate taxa in the Gulf of Alaska. All four model types performed adequately on training data for predicting presence and absence, with regression forest models having the best overall performance measured by the area under the receiver-operating-curve (AUC). The models also performed well on the test data for presence and absence with average AUCs ranging from 0.66 to 0.82. For the test data, ensemble models performed the best. For abundance data, there was an obvious demarcation in performance between the two regression-based methods (general linear models and generalized additive models), and the tree-based models. The boosted regression tree and random forest models out-performed the other models by a wide margin on both the training and testing data. However, there was a significant drop-off in performance for all models of invertebrate abundance ( 50%) when moving from the training data to the testing data. Ensemble model performance was between the tree-based and regression-based methods. The maps of predictions from the models for both presence and abundance agreed very well across model types, with an increase in variability in predictions for the abundance data. We conclude that where data conforms well to the modeled distribution (such as the presence-absence data and binomial distribution in this study), the four types of models will provide similar results, although the regression-type models may be more consistent with biological theory. For data with highly zero-inflated distributions and non-normal distributions such as the abundance data from this study, the tree-based methods performed better. Ensemble models that averaged predictions across the four model types, performed better than the GLM or GAM models but slightly poorer than the tree-based methods, suggesting ensemble models might be more robust to overfitting than tree methods, while mitigating some of the disadvantages in predictive performance of regression methods.

  1. SWPhylo - A Novel Tool for Phylogenomic Inferences by Comparison of Oligonucleotide Patterns and Integration of Genome-Based and Gene-Based Phylogenetic Trees.

    PubMed

    Yu, Xiaoyu; Reva, Oleg N

    2018-01-01

    Modern phylogenetic studies may benefit from the analysis of complete genome sequences of various microorganisms. Evolutionary inferences based on genome-scale analysis are believed to be more accurate than the gene-based alternative. However, the computational complexity of current phylogenomic procedures, inappropriateness of standard phylogenetic tools to process genome-wide data, and lack of reliable substitution models which correlates with alignment-free phylogenomic approaches deter microbiologists from using these opportunities. For example, the super-matrix and super-tree approaches of phylogenomics use multiple integrated genomic loci or individual gene-based trees to infer an overall consensus tree. However, these approaches potentially multiply errors of gene annotation and sequence alignment not mentioning the computational complexity and laboriousness of the methods. In this article, we demonstrate that the annotation- and alignment-free comparison of genome-wide tetranucleotide frequencies, termed oligonucleotide usage patterns (OUPs), allowed a fast and reliable inference of phylogenetic trees. These were congruent to the corresponding whole genome super-matrix trees in terms of tree topology when compared with other known approaches including 16S ribosomal RNA and GyrA protein sequence comparison, complete genome-based MAUVE, and CVTree methods. A Web-based program to perform the alignment-free OUP-based phylogenomic inferences was implemented at http://swphylo.bi.up.ac.za/. Applicability of the tool was tested on different taxa from subspecies to intergeneric levels. Distinguishing between closely related taxonomic units may be enforced by providing the program with alignments of marker protein sequences, eg, GyrA.

  2. SWPhylo – A Novel Tool for Phylogenomic Inferences by Comparison of Oligonucleotide Patterns and Integration of Genome-Based and Gene-Based Phylogenetic Trees

    PubMed Central

    Yu, Xiaoyu; Reva, Oleg N

    2018-01-01

    Modern phylogenetic studies may benefit from the analysis of complete genome sequences of various microorganisms. Evolutionary inferences based on genome-scale analysis are believed to be more accurate than the gene-based alternative. However, the computational complexity of current phylogenomic procedures, inappropriateness of standard phylogenetic tools to process genome-wide data, and lack of reliable substitution models which correlates with alignment-free phylogenomic approaches deter microbiologists from using these opportunities. For example, the super-matrix and super-tree approaches of phylogenomics use multiple integrated genomic loci or individual gene-based trees to infer an overall consensus tree. However, these approaches potentially multiply errors of gene annotation and sequence alignment not mentioning the computational complexity and laboriousness of the methods. In this article, we demonstrate that the annotation- and alignment-free comparison of genome-wide tetranucleotide frequencies, termed oligonucleotide usage patterns (OUPs), allowed a fast and reliable inference of phylogenetic trees. These were congruent to the corresponding whole genome super-matrix trees in terms of tree topology when compared with other known approaches including 16S ribosomal RNA and GyrA protein sequence comparison, complete genome-based MAUVE, and CVTree methods. A Web-based program to perform the alignment-free OUP-based phylogenomic inferences was implemented at http://swphylo.bi.up.ac.za/. Applicability of the tool was tested on different taxa from subspecies to intergeneric levels. Distinguishing between closely related taxonomic units may be enforced by providing the program with alignments of marker protein sequences, eg, GyrA. PMID:29511354

  3. Triplet supertree heuristics for the tree of life

    PubMed Central

    Lin, Harris T; Burleigh, J Gordon; Eulenstein, Oliver

    2009-01-01

    Background There is much interest in developing fast and accurate supertree methods to infer the tree of life. Supertree methods combine smaller input trees with overlapping sets of taxa to make a comprehensive phylogenetic tree that contains all of the taxa in the input trees. The intrinsically hard triplet supertree problem takes a collection of input species trees and seeks a species tree (supertree) that maximizes the number of triplet subtrees that it shares with the input trees. However, the utility of this supertree problem has been limited by a lack of efficient and effective heuristics. Results We introduce fast hill-climbing heuristics for the triplet supertree problem that perform a step-wise search of the tree space, where each step is guided by an exact solution to an instance of a local search problem. To realize time efficient heuristics we designed the first nontrivial algorithms for two standard search problems, which greatly improve on the time complexity to the best known (naïve) solutions by a factor of n and n2 (the number of taxa in the supertree). These algorithms enable large-scale supertree analyses based on the triplet supertree problem that were previously not possible. We implemented hill-climbing heuristics that are based on our new algorithms, and in analyses of two published supertree data sets, we demonstrate that our new heuristics outperform other standard supertree methods in maximizing the number of triplets shared with the input trees. Conclusion With our new heuristics, the triplet supertree problem is now computationally more tractable for large-scale supertree analyses, and it provides a potentially more accurate alternative to existing supertree methods. PMID:19208181

  4. Species Tree Inference Using a Mixture Model.

    PubMed

    Ullah, Ikram; Parviainen, Pekka; Lagergren, Jens

    2015-09-01

    Species tree reconstruction has been a subject of substantial research due to its central role across biology and medicine. A species tree is often reconstructed using a set of gene trees or by directly using sequence data. In either of these cases, one of the main confounding phenomena is the discordance between a species tree and a gene tree due to evolutionary events such as duplications and losses. Probabilistic methods can resolve the discordance by coestimating gene trees and the species tree but this approach poses a scalability problem for larger data sets. We present MixTreEM-DLRS: A two-phase approach for reconstructing a species tree in the presence of gene duplications and losses. In the first phase, MixTreEM, a novel structural expectation maximization algorithm based on a mixture model is used to reconstruct a set of candidate species trees, given sequence data for monocopy gene families from the genomes under study. In the second phase, PrIME-DLRS, a method based on the DLRS model (Åkerborg O, Sennblad B, Arvestad L, Lagergren J. 2009. Simultaneous Bayesian gene tree reconstruction and reconciliation analysis. Proc Natl Acad Sci U S A. 106(14):5714-5719), is used for selecting the best species tree. PrIME-DLRS can handle multicopy gene families since DLRS, apart from modeling sequence evolution, models gene duplication and loss using a gene evolution model (Arvestad L, Lagergren J, Sennblad B. 2009. The gene evolution model and computing its associated probabilities. J ACM. 56(2):1-44). We evaluate MixTreEM-DLRS using synthetic and biological data, and compare its performance with a recent genome-scale species tree reconstruction method PHYLDOG (Boussau B, Szöllősi GJ, Duret L, Gouy M, Tannier E, Daubin V. 2013. Genome-scale coestimation of species and gene trees. Genome Res. 23(2):323-330) as well as with a fast parsimony-based algorithm Duptree (Wehe A, Bansal MS, Burleigh JG, Eulenstein O. 2008. Duptree: a program for large-scale phylogenetic analyses using gene tree parsimony. Bioinformatics 24(13):1540-1541). Our method is competitive with PHYLDOG in terms of accuracy and runs significantly faster and our method outperforms Duptree in accuracy. The analysis constituted by MixTreEM without DLRS may also be used for selecting the target species tree, yielding a fast and yet accurate algorithm for larger data sets. MixTreEM is freely available at http://prime.scilifelab.se/mixtreem/. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Use ammate in notches for deadening trees only during the growing season

    Treesearch

    W. E. McQuilkin

    1955-01-01

    One of the commonly recommended methods for deadening weed and cull trees for timber-stand improvement is by use of ammate crystals in ax notches or cups spaced about 6 inches apart around the base of the tree.

  6. The weakest t-norm based intuitionistic fuzzy fault-tree analysis to evaluate system reliability.

    PubMed

    Kumar, Mohit; Yadav, Shiv Prasad

    2012-07-01

    In this paper, a new approach of intuitionistic fuzzy fault-tree analysis is proposed to evaluate system reliability and to find the most critical system component that affects the system reliability. Here weakest t-norm based intuitionistic fuzzy fault tree analysis is presented to calculate fault interval of system components from integrating expert's knowledge and experience in terms of providing the possibility of failure of bottom events. It applies fault-tree analysis, α-cut of intuitionistic fuzzy set and T(ω) (the weakest t-norm) based arithmetic operations on triangular intuitionistic fuzzy sets to obtain fault interval and reliability interval of the system. This paper also modifies Tanaka et al.'s fuzzy fault-tree definition. In numerical verification, a malfunction of weapon system "automatic gun" is presented as a numerical example. The result of the proposed method is compared with the listing approaches of reliability analysis methods. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Decision Tree based Prediction and Rule Induction for Groundwater Trichloroethene (TCE) Pollution Vulnerability

    NASA Astrophysics Data System (ADS)

    Park, J.; Yoo, K.

    2013-12-01

    For groundwater resource conservation, it is important to accurately assess groundwater pollution sensitivity or vulnerability. In this work, we attempted to use data mining approach to assess groundwater pollution vulnerability in a TCE (trichloroethylene) contaminated Korean industrial site. The conventional DRASTIC method failed to describe TCE sensitivity data with a poor correlation with hydrogeological properties. Among the different data mining methods such as Artificial Neural Network (ANN), Multiple Logistic Regression (MLR), Case Base Reasoning (CBR), and Decision Tree (DT), the accuracy and consistency of Decision Tree (DT) was the best. According to the following tree analyses with the optimal DT model, the failure of the conventional DRASTIC method in fitting with TCE sensitivity data may be due to the use of inaccurate weight values of hydrogeological parameters for the study site. These findings provide a proof of concept that DT based data mining approach can be used in predicting and rule induction of groundwater TCE sensitivity without pre-existing information on weights of hydrogeological properties.

  8. Topological leakage detection and freeze-and-grow propagation for improved CT-based airway segmentation

    NASA Astrophysics Data System (ADS)

    Nadeem, Syed Ahmed; Hoffman, Eric A.; Sieren, Jered P.; Saha, Punam K.

    2018-03-01

    Numerous large multi-center studies are incorporating the use of computed tomography (CT)-based characterization of the lung parenchyma and bronchial tree to understand chronic obstructive pulmonary disease status and progression. To the best of our knowledge, there are no fully automated airway tree segmentation methods, free of the need for user review. A failure in even a fraction of segmentation results necessitates manual revision of all segmentation masks which is laborious considering the thousands of image data sets evaluated in large studies. In this paper, we present a novel CT-based airway tree segmentation algorithm using topological leakage detection and freeze-and-grow propagation. The method is fully automated requiring no manual inputs or post-segmentation editing. It uses simple intensity-based connectivity and a freeze-and-grow propagation algorithm to iteratively grow the airway tree starting from an initial seed inside the trachea. It begins with a conservative parameter and then, gradually shifts toward more generous parameter values. The method was applied on chest CT scans of fifteen subjects at total lung capacity. Airway segmentation results were qualitatively assessed and performed comparably to established airway segmentation method with no major visual leakages.

  9. Automatic extraction of tree crowns from aerial imagery in urban environment

    NASA Astrophysics Data System (ADS)

    Liu, Jiahang; Li, Deren; Qin, Xunwen; Yang, Jianfeng

    2006-10-01

    Traditionally, field-based investigation is the main method to investigate greenbelt in urban environment, which is costly and low updating frequency. In higher resolution image, the imagery structure and texture of tree canopy has great similarity in statistics despite the great difference in configurations of tree canopy, and their surface structures and textures of tree crown are very different from the other types. In this paper, we present an automatic method to detect tree crowns using high resolution image in urban environment without any apriori knowledge. Our method catches unique structure and texture of tree crown surface, use variance and mathematical expectation of defined image window to position the candidate canopy blocks coarsely, then analysis their inner structure and texture to refine these candidate blocks. The possible spans of all the feature parameters used in our method automatically generate from the small number of samples, and HOLE and its distribution as an important characteristics are introduced into refining processing. Also the isotropy of candidate image block and holes' distribution is integrated in our method. After introduction the theory of our method, aerial imageries were used ( with a resolution about 0.3m ) to test our method, and the results indicate that our method is an effective approach to automatically detect tree crown in urban environment.

  10. DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments.

    PubMed

    Kelly, Steven; Maini, Philip K

    2013-01-01

    The rapidly growing availability of genome information has created considerable demand for both fast and accurate phylogenetic inference algorithms. We present a novel method called DendroBLAST for reconstructing phylogenetic dendrograms/trees from protein sequences using BLAST. This method differs from other methods by incorporating a simple model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the inferred tree. Using realistic simulated sequence data we demonstrate that this method produces phylogenetic trees that are more accurate than other commonly-used distance based methods though not as accurate as maximum likelihood methods from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an approximate phylogeny of the Archaea that has both high precision and recall when compared to previously published analysis of the same dataset using conventional methods. Taken together these results demonstrate that approximate phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the DendroBLAST method is freely available for use at http://www.dendroblast.com/.

  11. Epidemic Reconstruction in a Phylogenetics Framework: Transmission Trees as Partitions of the Node Set

    PubMed Central

    Hall, Matthew; Woolhouse, Mark; Rambaut, Andrew

    2015-01-01

    The use of genetic data to reconstruct the transmission tree of infectious disease epidemics and outbreaks has been the subject of an increasing number of studies, but previous approaches have usually either made assumptions that are not fully compatible with phylogenetic inference, or, where they have based inference on a phylogeny, have employed a procedure that requires this tree to be fixed. At the same time, the coalescent-based models of the pathogen population that are employed in the methods usually used for time-resolved phylogeny reconstruction are a considerable simplification of epidemic process, as they assume that pathogen lineages mix freely. Here, we contribute a new method that is simultaneously a phylogeny reconstruction method for isolates taken from an epidemic, and a procedure for transmission tree reconstruction. We observe that, if one or more samples is taken from each host in an epidemic or outbreak and these are used to build a phylogeny, a transmission tree is equivalent to a partition of the set of nodes of this phylogeny, such that each partition element is a set of nodes that is connected in the full tree and contains all the tips corresponding to samples taken from one and only one host. We then implement a Monte Carlo Markov Chain (MCMC) procedure for simultaneous sampling from the spaces of both trees, utilising a newly-designed set of phylogenetic tree proposals that also respect node partitions. We calculate the posterior probability of these partitioned trees based on a model that acknowledges the population structure of an epidemic by employing an individual-based disease transmission model and a coalescent process taking place within each host. We demonstrate our method, first using simulated data, and then with sequences taken from the H7N7 avian influenza outbreak that occurred in the Netherlands in 2003. We show that it is superior to established coalescent methods for reconstructing the topology and node heights of the phylogeny and performs well for transmission tree reconstruction when the phylogeny is well-resolved by the genetic data, but caution that this will often not be the case in practice and that existing genetic and epidemiological data should be used to configure such analyses whenever possible. This method is available for use by the research community as part of BEAST, one of the most widely-used packages for reconstruction of dated phylogenies. PMID:26717515

  12. Tests with VHR images for the identification of olive trees and other fruit trees in the European Union

    NASA Astrophysics Data System (ADS)

    Masson, Josiane; Soille, Pierre; Mueller, Rick

    2004-10-01

    In the context of the Common Agricultural Policy (CAP) there is a strong interest of the European Commission for counting and individually locating fruit trees. An automatic counting algorithm developed by the JRC (OLICOUNT) was used in the past for olive trees only, on 1m black and white orthophotos but with limits in case of young trees or irregular groves. This study investigates the improvement of fruit tree identification using VHR images on a large set of data in three test sites, one in Creta (Greece; one in the south-east of France with a majority of olive trees and associated fruit trees, and the last one in Florida on citrus trees. OLICOUNT was compared with two other automatic tree counting, applications, one using the CRISP software on citrus trees and the other completely automatic based on regional minima (morphological image analysis). Additional investigation was undertaken to refine the methods. This paper describes the automatic methods and presents the results derived from the tests.

  13. Predicting tree species presence and basal area in Utah: A comparison of stochastic gradient boosting, generalized additive models, and tree-based methods

    Treesearch

    Gretchen G. Moisen; Elizabeth A. Freeman; Jock A. Blackard; Tracey S. Frescino; Niklaus E. Zimmermann; Thomas C. Edwards

    2006-01-01

    Many efforts are underway to produce broad-scale forest attribute maps by modelling forest class and structure variables collected in forest inventories as functions of satellite-based and biophysical information. Typically, variants of classification and regression trees implemented in Rulequest's© See5 and Cubist (for binary and continuous responses,...

  14. Merger of three modeling approaches to assess potential effects of climate change on trees in the eastern United States

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Stephen N. Matthews; Matthew P. Peters

    2010-01-01

    Climate change will likely cause impacts that are species specific and significant; modeling is critical to better understand potential changes in suitable habitat. We use empirical, abundance-based habitat models utilizing decision tree-based ensemble methods to explore potential changes of 134 tree species habitats in the eastern United States (http://www.nrs.fs.fed....

  15. Assessing and Correcting Topographic Effects on Forest Canopy Height Retrieval Using Airborne LiDAR Data

    PubMed Central

    Duan, Zhugeng; Zhao, Dan; Zeng, Yuan; Zhao, Yujin; Wu, Bingfang; Zhu, Jianjun

    2015-01-01

    Topography affects forest canopy height retrieval based on airborne Light Detection and Ranging (LiDAR) data a lot. This paper proposes a method for correcting deviations caused by topography based on individual tree crown segmentation. The point cloud of an individual tree was extracted according to crown boundaries of isolated individual trees from digital orthophoto maps (DOMs). Normalized canopy height was calculated by subtracting the elevation of centres of gravity from the elevation of point cloud. First, individual tree crown boundaries are obtained by carrying out segmentation on the DOM. Second, point clouds of the individual trees are extracted based on the boundaries. Third, precise DEM is derived from the point cloud which is classified by a multi-scale curvature classification algorithm. Finally, a height weighted correction method is applied to correct the topological effects. The method is applied to LiDAR data acquired in South China, and its effectiveness is tested using 41 field survey plots. The results show that the terrain impacts the canopy height of individual trees in that the downslope side of the tree trunk is elevated and the upslope side is depressed. This further affects the extraction of the location and crown of individual trees. A strong correlation was detected between the slope gradient and the proportions of returns with height differences more than 0.3, 0.5 and 0.8 m in the total returns, with coefficient of determination R2 of 0.83, 0.76, and 0.60 (n = 41), respectively. PMID:26016907

  16. Improving Cluster Analysis with Automatic Variable Selection Based on Trees

    DTIC Science & Technology

    2014-12-01

    regression trees Daisy DISsimilAritY PAM partitioning around medoids PMA penalized multivariate analysis SPC sparse principal components UPGMA unweighted...unweighted pair-group average method ( UPGMA ). This method measures dissimilarities between all objects in two clusters and takes the average value

  17. Economic analysis of the gypsy moth problem in the northeast: II. applied to residential property

    Treesearch

    Brian R. Payne; William B. White; Roger E. McCay; Robert R. McNichols

    1973-01-01

    Guidelines are presented for determining dollar losses in residential property values from tree mortality caused by the gypsy moth. The method is based on an earlier study in Amherst, Massachusetts, of the contribution of trees to property values. For each target area, the method requires data on property value, lot size, and number of trees 6 inches dbh and larger for...

  18. Crown-level tree species classification from AISA hyperspectral imagery using an innovative pixel-weighting approach

    NASA Astrophysics Data System (ADS)

    Liu, Haijian; Wu, Changshan

    2018-06-01

    Crown-level tree species classification is a challenging task due to the spectral similarity among different tree species. Shadow, underlying objects, and other materials within a crown may decrease the purity of extracted crown spectra and further reduce classification accuracy. To address this problem, an innovative pixel-weighting approach was developed for tree species classification at the crown level. The method utilized high density discrete LiDAR data for individual tree delineation and Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imagery for pure crown-scale spectra extraction. Specifically, three steps were included: 1) individual tree identification using LiDAR data, 2) pixel-weighted representative crown spectra calculation using hyperspectral imagery, with which pixel-based illuminated-leaf fractions estimated using a linear spectral mixture analysis (LSMA) were employed as weighted factors, and 3) representative spectra based tree species classification was performed through applying a support vector machine (SVM) approach. Analysis of results suggests that the developed pixel-weighting approach (OA = 82.12%, Kc = 0.74) performed better than treetop-based (OA = 70.86%, Kc = 0.58) and pixel-majority methods (OA = 72.26, Kc = 0.62) in terms of classification accuracy. McNemar tests indicated the differences in accuracy between pixel-weighting and treetop-based approaches as well as that between pixel-weighting and pixel-majority approaches were statistically significant.

  19. Mapping Urban Tree Canopy Coverage and Structure using Data Fusion of High Resolution Satellite Imagery and Aerial Lidar

    NASA Astrophysics Data System (ADS)

    Elmes, A.; Rogan, J.; Williams, C. A.; Martin, D. G.; Ratick, S.; Nowak, D.

    2015-12-01

    Urban tree canopy (UTC) coverage is a critical component of sustainable urban areas. Trees provide a number of important ecosystem services, including air pollution mitigation, water runoff control, and aesthetic and cultural values. Critically, urban trees also act to mitigate the urban heat island (UHI) effect by shading impervious surfaces and via evaporative cooling. The cooling effect of urban trees can be seen locally, with individual trees reducing home HVAC costs, and at a citywide scale, reducing the extent and magnitude of an urban areas UHI. In order to accurately model the ecosystem services of a given urban forest, it is essential to map in detail the condition and composition of these trees at a fine scale, capturing individual tree crowns and their vertical structure. This paper presents methods for delineating UTC and measuring canopy structure at fine spatial resolution (<1m). These metrics are essential for modeling the HVAC benefits from UTC for individual homes, and for assessing the ecosystem services for entire urban areas. Such maps have previously been made using a variety of methods, typically relying on high resolution aerial or satellite imagery. This paper seeks to contribute to this growing body of methods, relying on a data fusion method to combine the information contained in high resolution WorldView-3 satellite imagery and aerial lidar data using an object-based image classification approach. The study area, Worcester, MA, has recently undergone a large-scale tree removal and reforestation program, following a pest eradication effort. Therefore, the urban canopy in this location provides a wide mix of tree age class and functional type, ideal for illustrating the effectiveness of the proposed methods. Early results show that the object-based classifier is indeed capable of identifying individual tree crowns, while continued research will focus on extracting crown structural characteristics using lidar-derived metrics. Ultimately, the resulting fine resolution UTC map will be compared with previously created UTC maps of the same area but for earlier dates, producing a canopy change map corresponding to the Worcester area tree removal and replanting effort.

  20. Maximum parsimony, substitution model, and probability phylogenetic trees.

    PubMed

    Weng, J F; Thomas, D A; Mareels, I

    2011-01-01

    The problem of inferring phylogenies (phylogenetic trees) is one of the main problems in computational biology. There are three main methods for inferring phylogenies-Maximum Parsimony (MP), Distance Matrix (DM) and Maximum Likelihood (ML), of which the MP method is the most well-studied and popular method. In the MP method the optimization criterion is the number of substitutions of the nucleotides computed by the differences in the investigated nucleotide sequences. However, the MP method is often criticized as it only counts the substitutions observable at the current time and all the unobservable substitutions that really occur in the evolutionary history are omitted. In order to take into account the unobservable substitutions, some substitution models have been established and they are now widely used in the DM and ML methods but these substitution models cannot be used within the classical MP method. Recently the authors proposed a probability representation model for phylogenetic trees and the reconstructed trees in this model are called probability phylogenetic trees. One of the advantages of the probability representation model is that it can include a substitution model to infer phylogenetic trees based on the MP principle. In this paper we explain how to use a substitution model in the reconstruction of probability phylogenetic trees and show the advantage of this approach with examples.

  1. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data.

    PubMed

    Dalponte, Michele; Coomes, David A

    2016-10-01

    Forests are a major component of the global carbon cycle, and accurate estimation of forest carbon stocks and fluxes is important in the context of anthropogenic global change. Airborne laser scanning (ALS) data sets are increasingly recognized as outstanding data sources for high-fidelity mapping of carbon stocks at regional scales.We develop a tree-centric approach to carbon mapping, based on identifying individual tree crowns (ITCs) and species from airborne remote sensing data, from which individual tree carbon stocks are calculated. We identify ITCs from the laser scanning point cloud using a region-growing algorithm and identifying species from airborne hyperspectral data by machine learning. For each detected tree, we predict stem diameter from its height and crown-width estimate. From that point on, we use well-established approaches developed for field-based inventories: above-ground biomasses of trees are estimated using published allometries and summed within plots to estimate carbon density.We show this approach is highly reliable: tests in the Italian Alps demonstrated a close relationship between field- and ALS-based estimates of carbon stocks ( r 2  = 0·98). Small trees are invisible from the air, and a correction factor is required to accommodate this effect.An advantage of the tree-centric approach over existing area-based methods is that it can produce maps at any scale and is fundamentally based on field-based inventory methods, making it intuitive and transparent. Airborne laser scanning, hyperspectral sensing and computational power are all advancing rapidly, making it increasingly feasible to use ITC approaches for effective mapping of forest carbon density also inside wider carbon mapping programs like REDD++.

  2. Application of 2D graphic representation of protein sequence based on Huffman tree method.

    PubMed

    Qi, Zhao-Hui; Feng, Jun; Qi, Xiao-Qin; Li, Ling

    2012-05-01

    Based on Huffman tree method, we propose a new 2D graphic representation of protein sequence. This representation can completely avoid loss of information in the transfer of data from a protein sequence to its graphic representation. The method consists of two parts. One is about the 0-1 codes of 20 amino acids by Huffman tree with amino acid frequency. The amino acid frequency is defined as the statistical number of an amino acid in the analyzed protein sequences. The other is about the 2D graphic representation of protein sequence based on the 0-1 codes. Then the applications of the method on ten ND5 genes and seven Escherichia coli strains are presented in detail. The results show that the proposed model may provide us with some new sights to understand the evolution patterns determined from protein sequences and complete genomes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Nondestructive detection of decay in living trees

    Treesearch

    Bertil Larsson; Bengt Bengtsson; Mats Gustaffson

    2004-01-01

    We used a four-point resistivity method to detect wood decay in living trees. low-frequency alternating current was applied to the stem and the induced voltage measured between two points along the stem. The effective resistivity of the stem was estimated based on stem cross-sectional area. A comparison within a group of trees showed that trees with butt rot had an...

  4. A Three-Step Approach To Model Tree Mortality in the State of Georgia

    Treesearch

    Qingmin Meng; Chris J. Cieszewski; Roger C. Lowe; Michal Zasada

    2005-01-01

    Tree mortality is one of the most complex phenomena of forest growth and yield. Many types of factors affect tree mortality, which is considered difficult to predict. This study presents a new systematic approach to simulate tree mortality based on the integration of statistical models and geographical information systems. This method begins with variable preselection...

  5. Case-based explanation of non-case-based learning methods.

    PubMed Central

    Caruana, R.; Kangarloo, H.; Dionisio, J. D.; Sinha, U.; Johnson, D.

    1999-01-01

    We show how to generate case-based explanations for non-case-based learning methods such as artificial neural nets or decision trees. The method uses the trained model (e.g., the neural net or the decision tree) as a distance metric to determine which cases in the training set are most similar to the case that needs to be explained. This approach is well suited to medical domains, where it is important to understand predictions made by complex machine learning models, and where training and clinical practice makes users adept at case interpretation. PMID:10566351

  6. SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees.

    PubMed

    Liu, Kevin; Warnow, Tandy J; Holder, Mark T; Nelesen, Serita M; Yu, Jiaye; Stamatakis, Alexandros P; Linder, C Randal

    2012-01-01

    Highly accurate estimation of phylogenetic trees for large data sets is difficult, in part because multiple sequence alignments must be accurate for phylogeny estimation methods to be accurate. Coestimation of alignments and trees has been attempted but currently only SATé estimates reasonably accurate trees and alignments for large data sets in practical time frames (Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564). Here, we present a modification to the original SATé algorithm that improves upon SATé (which we now call SATé-I) in terms of speed and of phylogenetic and alignment accuracy. SATé-II uses a different divide-and-conquer strategy than SATé-I and so produces smaller more closely related subsets than SATé-I; as a result, SATé-II produces more accurate alignments and trees, can analyze larger data sets, and runs more efficiently than SATé-I. Generally, SATé is a metamethod that takes an existing multiple sequence alignment method as an input parameter and boosts the quality of that alignment method. SATé-II-boosted alignment methods are significantly more accurate than their unboosted versions, and trees based upon these improved alignments are more accurate than trees based upon the original alignments. Because SATé-I used maximum likelihood (ML) methods that treat gaps as missing data to estimate trees and because we found a correlation between the quality of tree/alignment pairs and ML scores, we explored the degree to which SATé's performance depends on using ML with gaps treated as missing data to determine the best tree/alignment pair. We present two lines of evidence that using ML with gaps treated as missing data to optimize the alignment and tree produces very poor results. First, we show that the optimization problem where a set of unaligned DNA sequences is given and the output is the tree and alignment of those sequences that maximize likelihood under the Jukes-Cantor model is uninformative in the worst possible sense. For all inputs, all trees optimize the likelihood score. Second, we show that a greedy heuristic that uses GTR+Gamma ML to optimize the alignment and the tree can produce very poor alignments and trees. Therefore, the excellent performance of SATé-II and SATé-I is not because ML is used as an optimization criterion for choosing the best tree/alignment pair but rather due to the particular divide-and-conquer realignment techniques employed.

  7. Pruning Rogue Taxa Improves Phylogenetic Accuracy: An Efficient Algorithm and Webservice

    PubMed Central

    Aberer, Andre J.; Krompass, Denis; Stamatakis, Alexandros

    2013-01-01

    Abstract The presence of rogue taxa (rogues) in a set of trees can frequently have a negative impact on the results of a bootstrap analysis (e.g., the overall support in consensus trees). We introduce an efficient graph-based algorithm for rogue taxon identification as well as an interactive webservice implementing this algorithm. Compared with our previous method, the new algorithm is up to 4 orders of magnitude faster, while returning qualitatively identical results. Because of this significant improvement in scalability, the new algorithm can now identify substantially more complex and compute-intensive rogue taxon constellations. On a large and diverse collection of real-world data sets, we show that our method yields better supported reduced/pruned consensus trees than any competing rogue taxon identification method. Using the parallel version of our open-source code, we successfully identified rogue taxa in a set of 100 trees with 116 334 taxa each. For simulated data sets, we show that when removing/pruning rogue taxa with our method from a tree set, we consistently obtain bootstrap consensus trees as well as maximum-likelihood trees that are topologically closer to the respective true trees. PMID:22962004

  8. Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice.

    PubMed

    Aberer, Andre J; Krompass, Denis; Stamatakis, Alexandros

    2013-01-01

    The presence of rogue taxa (rogues) in a set of trees can frequently have a negative impact on the results of a bootstrap analysis (e.g., the overall support in consensus trees). We introduce an efficient graph-based algorithm for rogue taxon identification as well as an interactive webservice implementing this algorithm. Compared with our previous method, the new algorithm is up to 4 orders of magnitude faster, while returning qualitatively identical results. Because of this significant improvement in scalability, the new algorithm can now identify substantially more complex and compute-intensive rogue taxon constellations. On a large and diverse collection of real-world data sets, we show that our method yields better supported reduced/pruned consensus trees than any competing rogue taxon identification method. Using the parallel version of our open-source code, we successfully identified rogue taxa in a set of 100 trees with 116 334 taxa each. For simulated data sets, we show that when removing/pruning rogue taxa with our method from a tree set, we consistently obtain bootstrap consensus trees as well as maximum-likelihood trees that are topologically closer to the respective true trees.

  9. Method of center localization for objects containing concentric arcs

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena G.; Shvets, Evgeny A.; Nikolaev, Dmitry P.

    2015-02-01

    This paper proposes a method for automatic center location of objects containing concentric arcs. The method utilizes structure tensor analysis and voting scheme optimized with Fast Hough Transform. Two applications of the proposed method are considered: (i) wheel tracking in video-based system for automatic vehicle classification and (ii) tree growth rings analysis on a tree cross cut image.

  10. A survival tree method for the analysis of discrete event times in clinical and epidemiological studies.

    PubMed

    Schmid, Matthias; Küchenhoff, Helmut; Hoerauf, Achim; Tutz, Gerhard

    2016-02-28

    Survival trees are a popular alternative to parametric survival modeling when there are interactions between the predictor variables or when the aim is to stratify patients into prognostic subgroups. A limitation of classical survival tree methodology is that most algorithms for tree construction are designed for continuous outcome variables. Hence, classical methods might not be appropriate if failure time data are measured on a discrete time scale (as is often the case in longitudinal studies where data are collected, e.g., quarterly or yearly). To address this issue, we develop a method for discrete survival tree construction. The proposed technique is based on the result that the likelihood of a discrete survival model is equivalent to the likelihood of a regression model for binary outcome data. Hence, we modify tree construction methods for binary outcomes such that they result in optimized partitions for the estimation of discrete hazard functions. By applying the proposed method to data from a randomized trial in patients with filarial lymphedema, we demonstrate how discrete survival trees can be used to identify clinically relevant patient groups with similar survival behavior. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Distribution and abundance of red tree voles in Oregon based on occurrence in pellets of northern spotted owls.

    Treesearch

    Eric D. Forsman; Robert G. Anthony; Cynthia J. Zabel

    2004-01-01

    Red tree voles are one of the least understood small mammals in the Pacific Northwest, because they live in the forest canopy and are difficult to sample using conventional trapping methods. We examined the distribution and relative abundance of tree voles in different regions of Oregon based on their occurrence in diets of northern spotted owls. We identified the...

  12. A tree canopy height delineation method based on Morphological Reconstruction—Open Crown Decomposition

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Jing, L.; Li, Y.; Tang, Y.; Li, H.; Lin, Q.

    2016-04-01

    For the purpose of forest management, high resolution LIDAR and optical remote sensing imageries are used for treetop detection, tree crown delineation, and classification. The purpose of this study is to develop a self-adjusted dominant scales calculation method and a new crown horizontal cutting method of tree canopy height model (CHM) to detect and delineate tree crowns from LIDAR, under the hypothesis that a treetop is radiometric or altitudinal maximum and tree crowns consist of multi-scale branches. The major concept of the method is to develop an automatic selecting strategy of feature scale on CHM, and a multi-scale morphological reconstruction-open crown decomposition (MRCD) to get morphological multi-scale features of CHM by: cutting CHM from treetop to the ground; analysing and refining the dominant multiple scales with differential horizontal profiles to get treetops; segmenting LiDAR CHM using watershed a segmentation approach marked with MRCD treetops. This method has solved the problems of false detection of CHM side-surface extracted by the traditional morphological opening canopy segment (MOCS) method. The novel MRCD delineates more accurate and quantitative multi-scale features of CHM, and enables more accurate detection and segmentation of treetops and crown. Besides, the MRCD method can also be extended to high optical remote sensing tree crown extraction. In an experiment on aerial LiDAR CHM of a forest of multi-scale tree crowns, the proposed method yielded high-quality tree crown maps.

  13. [Mahalanobis distance based hyperspectral characteristic discrimination of leaves of different desert tree species].

    PubMed

    Lin, Hai-jun; Zhang, Hui-fang; Gao, Ya-qi; Li, Xia; Yang, Fan; Zhou, Yan-fei

    2014-12-01

    The hyperspectral reflectance of Populus euphratica, Tamarix hispida, Haloxylon ammodendron and Calligonum mongolicum in the lower reaches of Tarim River and Turpan Desert Botanical Garden was measured by using the HR-768 field-portable spectroradiometer. The method of continuum removal, first derivative reflectance and second derivative reflectance were used to deal with the original spectral data of four tree species. The method of Mahalanobis Distance was used to select the bands with significant differences in the original spectral data and transform spectral data to identify the different tree species. The progressive discrimination analyses were used to test the selective bands used to identify different tree species. The results showed that The Mahalanobis Distance method was an effective method in feature band extraction. The bands for identifying different tree species were most near-infrared bands. The recognition accuracy of four methods was 85%, 93.8%, 92.4% and 95.5% respectively. Spectrum transform could improve the recognition accuracy. The recognition accuracy of different research objects and different spectrum transform methods were different. The research provided evidence for desert tree species classification, monitoring biodiversity and the analysis of area in desert by using large scale remote sensing method.

  14. Mapping and characterizing selected canopy tree species at the Angkor World Heritage site in Cambodia using aerial data.

    PubMed

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia's tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman's rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables.

  15. Mapping and Characterizing Selected Canopy Tree Species at the Angkor World Heritage Site in Cambodia Using Aerial Data

    PubMed Central

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia’s tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman’s rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables. PMID:25902148

  16. Heterogeneous Compression of Large Collections of Evolutionary Trees.

    PubMed

    Matthews, Suzanne J

    2015-01-01

    Compressing heterogeneous collections of trees is an open problem in computational phylogenetics. In a heterogeneous tree collection, each tree can contain a unique set of taxa. An ideal compression method would allow for the efficient archival of large tree collections and enable scientists to identify common evolutionary relationships over disparate analyses. In this paper, we extend TreeZip to compress heterogeneous collections of trees. TreeZip is the most efficient algorithm for compressing homogeneous tree collections. To the best of our knowledge, no other domain-based compression algorithm exists for large heterogeneous tree collections or enable their rapid analysis. Our experimental results indicate that TreeZip averages 89.03 percent (72.69 percent) space savings on unweighted (weighted) collections of trees when the level of heterogeneity in a collection is moderate. The organization of the TRZ file allows for efficient computations over heterogeneous data. For example, consensus trees can be computed in mere seconds. Lastly, combining the TreeZip compressed (TRZ) file with general-purpose compression yields average space savings of 97.34 percent (81.43 percent) on unweighted (weighted) collections of trees. Our results lead us to believe that TreeZip will prove invaluable in the efficient archival of tree collections, and enables scientists to develop novel methods for relating heterogeneous collections of trees.

  17. MASTtreedist: visualization of tree space based on maximum agreement subtree.

    PubMed

    Huang, Hong; Li, Yongji

    2013-01-01

    Phylogenetic tree construction process might produce many candidate trees as the "best estimates." As the number of constructed phylogenetic trees grows, the need to efficiently compare their topological or physical structures arises. One of the tree comparison's software tools, the Mesquite's Tree Set Viz module, allows the rapid and efficient visualization of the tree comparison distances using multidimensional scaling (MDS). Tree-distance measures, such as Robinson-Foulds (RF), for the topological distance among different trees have been implemented in Tree Set Viz. New and sophisticated measures such as Maximum Agreement Subtree (MAST) can be continuously built upon Tree Set Viz. MAST can detect the common substructures among trees and provide more precise information on the similarity of the trees, but it is NP-hard and difficult to implement. In this article, we present a practical tree-distance metric: MASTtreedist, a MAST-based comparison metric in Mesquite's Tree Set Viz module. In this metric, the efficient optimizations for the maximum weight clique problem are applied. The results suggest that the proposed method can efficiently compute the MAST distances among trees, and such tree topological differences can be translated as a scatter of points in two-dimensional (2D) space. We also provide statistical evaluation of provided measures with respect to RF-using experimental data sets. This new comparison module provides a new tree-tree pairwise comparison metric based on the differences of the number of MAST leaves among constructed phylogenetic trees. Such a new phylogenetic tree comparison metric improves the visualization of taxa differences by discriminating small divergences of subtree structures for phylogenetic tree reconstruction.

  18. Predicting membrane protein types using various decision tree classifiers based on various modes of general PseAAC for imbalanced datasets.

    PubMed

    Sankari, E Siva; Manimegalai, D

    2017-12-21

    Predicting membrane protein types is an important and challenging research area in bioinformatics and proteomics. Traditional biophysical methods are used to classify membrane protein types. Due to large exploration of uncharacterized protein sequences in databases, traditional methods are very time consuming, expensive and susceptible to errors. Hence, it is highly desirable to develop a robust, reliable, and efficient method to predict membrane protein types. Imbalanced datasets and large datasets are often handled well by decision tree classifiers. Since imbalanced datasets are taken, the performance of various decision tree classifiers such as Decision Tree (DT), Classification And Regression Tree (CART), C4.5, Random tree, REP (Reduced Error Pruning) tree, ensemble methods such as Adaboost, RUS (Random Under Sampling) boost, Rotation forest and Random forest are analysed. Among the various decision tree classifiers Random forest performs well in less time with good accuracy of 96.35%. Another inference is RUS boost decision tree classifier is able to classify one or two samples in the class with very less samples while the other classifiers such as DT, Adaboost, Rotation forest and Random forest are not sensitive for the classes with fewer samples. Also the performance of decision tree classifiers is compared with SVM (Support Vector Machine) and Naive Bayes classifier. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Comparison of Single and Multi-Scale Method for Leaf and Wood Points Classification from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Wei, Hongqiang; Zhou, Guiyun; Zhou, Junjie

    2018-04-01

    The classification of leaf and wood points is an essential preprocessing step for extracting inventory measurements and canopy characterization of trees from the terrestrial laser scanning (TLS) data. The geometry-based approach is one of the widely used classification method. In the geometry-based method, it is common practice to extract salient features at one single scale before the features are used for classification. It remains unclear how different scale(s) used affect the classification accuracy and efficiency. To assess the scale effect on the classification accuracy and efficiency, we extracted the single-scale and multi-scale salient features from the point clouds of two oak trees of different sizes and conducted the classification on leaf and wood. Our experimental results show that the balanced accuracy of the multi-scale method is higher than the average balanced accuracy of the single-scale method by about 10 % for both trees. The average speed-up ratio of single scale classifiers over multi-scale classifier for each tree is higher than 30.

  20. Automated identification and geometrical features extraction of individual trees from Mobile Laser Scanning data in Budapest

    NASA Astrophysics Data System (ADS)

    Koma, Zsófia; Székely, Balázs; Folly-Ritvay, Zoltán; Skobrák, Ferenc; Koenig, Kristina; Höfle, Bernhard

    2016-04-01

    Mobile Laser Scanning (MLS) is an evolving operational measurement technique for urban environment providing large amounts of high resolution information about trees, street features, pole-like objects on the street sides or near to motorways. In this study we investigate a robust segmentation method to extract the individual trees automatically in order to build an object-based tree database system. We focused on the large urban parks in Budapest (Margitsziget and Városliget; KARESZ project) which contained large diversity of different kind of tree species. The MLS data contained high density point cloud data with 1-8 cm mean absolute accuracy 80-100 meter distance from streets. The robust segmentation method contained following steps: The ground points are determined first. As a second step cylinders are fitted in vertical slice 1-1.5 meter relative height above ground, which is used to determine the potential location of each single trees trunk and cylinder-like object. Finally, residual values are calculated as deviation of each point from a vertically expanded fitted cylinder; these residual values are used to separate cylinder-like object from individual trees. After successful parameterization, the model parameters and the corresponding residual values of the fitted object are extracted and imported into the tree database. Additionally, geometric features are calculated for each segmented individual tree like crown base, crown width, crown length, diameter of trunk, volume of the individual trees. In case of incompletely scanned trees, the extraction of geometric features is based on fitted circles. The result of the study is a tree database containing detailed information about urban trees, which can be a valuable dataset for ecologist, city planners, planting and mapping purposes. Furthermore, the established database will be the initial point for classification trees into single species. MLS data used in this project had been measured in the framework of KARESZ project for whole Budapest. BSz contributed as an Alexander von Humboldt Research Fellow.

  1. FISHtrees 3.0: Tumor Phylogenetics Using a Ploidy Probe.

    PubMed

    Gertz, E Michael; Chowdhury, Salim Akhter; Lee, Woei-Jyh; Wangsa, Darawalee; Heselmeyer-Haddad, Kerstin; Ried, Thomas; Schwartz, Russell; Schäffer, Alejandro A

    2016-01-01

    Advances in fluorescence in situ hybridization (FISH) make it feasible to detect multiple copy-number changes in hundreds of cells of solid tumors. Studies using FISH, sequencing, and other technologies have revealed substantial intra-tumor heterogeneity. The evolution of subclones in tumors may be modeled by phylogenies. Tumors often harbor aneuploid or polyploid cell populations. Using a FISH probe to estimate changes in ploidy can guide the creation of trees that model changes in ploidy and individual gene copy-number variations. We present FISHtrees 3.0, which implements a ploidy-based tree building method based on mixed integer linear programming (MILP). The ploidy-based modeling in FISHtrees includes a new formulation of the problem of merging trees for changes of a single gene into trees modeling changes in multiple genes and the ploidy. When multiple samples are collected from each patient, varying over time or tumor regions, it is useful to evaluate similarities in tumor progression among the samples. Therefore, we further implemented in FISHtrees 3.0 a new method to build consensus graphs for multiple samples. We validate FISHtrees 3.0 on a simulated data and on FISH data from paired cases of cervical primary and metastatic tumors and on paired breast ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). Tests on simulated data show improved accuracy of the ploidy-based approach relative to prior ploidyless methods. Tests on real data further demonstrate novel insights these methods offer into tumor progression processes. Trees for DCIS samples are significantly less complex than trees for paired IDC samples. Consensus graphs show substantial divergence among most paired samples from both sets. Low consensus between DCIS and IDC trees may help explain the difficulty in finding biomarkers that predict which DCIS cases are at most risk to progress to IDC. The FISHtrees software is available at ftp://ftp.ncbi.nih.gov/pub/FISHtrees.

  2. FISHtrees 3.0: Tumor Phylogenetics Using a Ploidy Probe

    PubMed Central

    Chowdhury, Salim Akhter; Lee, Woei-Jyh; Wangsa, Darawalee; Heselmeyer-Haddad, Kerstin; Ried, Thomas; Schwartz, Russell; Schäffer, Alejandro A.

    2016-01-01

    Advances in fluorescence in situ hybridization (FISH) make it feasible to detect multiple copy-number changes in hundreds of cells of solid tumors. Studies using FISH, sequencing, and other technologies have revealed substantial intra-tumor heterogeneity. The evolution of subclones in tumors may be modeled by phylogenies. Tumors often harbor aneuploid or polyploid cell populations. Using a FISH probe to estimate changes in ploidy can guide the creation of trees that model changes in ploidy and individual gene copy-number variations. We present FISHtrees 3.0, which implements a ploidy-based tree building method based on mixed integer linear programming (MILP). The ploidy-based modeling in FISHtrees includes a new formulation of the problem of merging trees for changes of a single gene into trees modeling changes in multiple genes and the ploidy. When multiple samples are collected from each patient, varying over time or tumor regions, it is useful to evaluate similarities in tumor progression among the samples. Therefore, we further implemented in FISHtrees 3.0 a new method to build consensus graphs for multiple samples. We validate FISHtrees 3.0 on a simulated data and on FISH data from paired cases of cervical primary and metastatic tumors and on paired breast ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). Tests on simulated data show improved accuracy of the ploidy-based approach relative to prior ploidyless methods. Tests on real data further demonstrate novel insights these methods offer into tumor progression processes. Trees for DCIS samples are significantly less complex than trees for paired IDC samples. Consensus graphs show substantial divergence among most paired samples from both sets. Low consensus between DCIS and IDC trees may help explain the difficulty in finding biomarkers that predict which DCIS cases are at most risk to progress to IDC. The FISHtrees software is available at ftp://ftp.ncbi.nih.gov/pub/FISHtrees. PMID:27362268

  3. Computing and visualizing time-varying merge trees for high-dimensional data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oesterling, Patrick; Heine, Christian; Weber, Gunther H.

    2017-06-03

    We introduce a new method that identifies and tracks features in arbitrary dimensions using the merge tree -- a structure for identifying topological features based on thresholding in scalar fields. This method analyzes the evolution of features of the function by tracking changes in the merge tree and relates features by matching subtrees between consecutive time steps. Using the time-varying merge tree, we present a structural visualization of the changing function that illustrates both features and their temporal evolution. We demonstrate the utility of our approach by applying it to temporal cluster analysis of high-dimensional point clouds.

  4. Carbon Sequestration Estimation of Street Trees Based on Point Cloud from Vehicle-Borne Laser Scanning System

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Hu, Q.

    2017-09-01

    Continuous development of urban road traffic system requests higher standards of road ecological environment. Ecological benefits of street trees are getting more attention. Carbon sequestration of street trees refers to the carbon stocks of street trees, which can be a measurement for ecological benefits of street trees. Estimating carbon sequestration in a traditional way is costly and inefficient. In order to solve above problems, a carbon sequestration estimation approach for street trees based on 3D point cloud from vehicle-borne laser scanning system is proposed in this paper. The method can measure the geometric parameters of a street tree, including tree height, crown width, diameter at breast height (DBH), by processing and analyzing point cloud data of an individual tree. Four Chinese scholartree trees and four camphor trees are selected for experiment. The root mean square error (RMSE) of tree height is 0.11m for Chinese scholartree and 0.02m for camphor. Crown widths in X direction and Y direction, as well as the average crown width are calculated. And the RMSE of average crown width is 0.22m for Chinese scholartree and 0.10m for camphor. The last calculated parameter is DBH, the RMSE of DBH is 0.5cm for both Chinese scholartree and camphor. Combining the measured geometric parameters and an appropriate carbon sequestration calculation model, the individual tree's carbon sequestration will be estimated. The proposed method can help enlarge application range of vehicle-borne laser point cloud data, improve the efficiency of estimating carbon sequestration, construct urban ecological environment and manage landscape.

  5. Multi-level tree analysis of pulmonary artery/vein trees in non-contrast CT images

    NASA Astrophysics Data System (ADS)

    Gao, Zhiyun; Grout, Randall W.; Hoffman, Eric A.; Saha, Punam K.

    2012-02-01

    Diseases like pulmonary embolism and pulmonary hypertension are associated with vascular dystrophy. Identifying such pulmonary artery/vein (A/V) tree dystrophy in terms of quantitative measures via CT imaging significantly facilitates early detection of disease or a treatment monitoring process. A tree structure, consisting of nodes and connected arcs, linked to the volumetric representation allows multi-level geometric and volumetric analysis of A/V trees. Here, a new theory and method is presented to generate multi-level A/V tree representation of volumetric data and to compute quantitative measures of A/V tree geometry and topology at various tree hierarchies. The new method is primarily designed on arc skeleton computation followed by a tree construction based topologic and geometric analysis of the skeleton. The method starts with a volumetric A/V representation as input and generates its topologic and multi-level volumetric tree representations long with different multi-level morphometric measures. A new recursive merging and pruning algorithms are introduced to detect bad junctions and noisy branches often associated with digital geometric and topologic analysis. Also, a new notion of shortest axial path is introduced to improve the skeletal arc joining two junctions. The accuracy of the multi-level tree analysis algorithm has been evaluated using computer generated phantoms and pulmonary CT images of a pig vessel cast phantom while the reproducibility of method is evaluated using multi-user A/V separation of in vivo contrast-enhanced CT images of a pig lung at different respiratory volumes.

  6. Signal, Uncertainty, and Conflict in Phylogenomic Data for a Diverse Lineage of Microbial Eukaryotes (Diatoms, Bacillariophyta)

    PubMed Central

    Parks, Matthew B; Wickett, Norman J; Alverson, Andrew J

    2018-01-01

    Abstract Diatoms (Bacillariophyta) are a species-rich group of eukaryotic microbes diverse in morphology, ecology, and metabolism. Previous reconstructions of the diatom phylogeny based on one or a few genes have resulted in inconsistent resolution or low support for critical nodes. We applied phylogenetic paralog pruning techniques to a data set of 94 diatom genomes and transcriptomes to infer perennially difficult species relationships, using concatenation and summary-coalescent methods to reconstruct species trees from data sets spanning a wide range of thresholds for taxon and column occupancy in gene alignments. Conflicts between gene and species trees decreased with both increasing taxon occupancy and bootstrap cutoffs applied to gene trees. Concordance between gene and species trees was lowest for short internodes and increased logarithmically with increasing edge length, suggesting that incomplete lineage sorting disproportionately affects species tree inference at short internodes, which are a common feature of the diatom phylogeny. Although species tree topologies were largely consistent across many data treatments, concatenation methods appeared to outperform summary-coalescent methods for sparse alignments. Our results underscore that approaches to species-tree inference based on few loci are likely to be misled by unrepresentative sampling of gene histories, particularly in lineages that may have diversified rapidly. In addition, phylogenomic studies of diatoms, and potentially other hyperdiverse groups, should maximize the number of gene trees with high taxon occupancy, though there is clearly a limit to how many of these genes will be available. PMID:29040712

  7. Binary partition tree analysis based on region evolution and its application to tree simplification.

    PubMed

    Lu, Huihai; Woods, John C; Ghanbari, Mohammed

    2007-04-01

    Pyramid image representations via tree structures are recognized methods for region-based image analysis. Binary partition trees can be applied which document the merging process with small details found at the bottom levels and larger ones close to the root. Hindsight of the merging process is stored within the tree structure and provides the change histories of an image property from the leaf to the root node. In this work, the change histories are modelled by evolvement functions and their second order statistics are analyzed by using a knee function. Knee values show the reluctancy of each merge. We have systematically formulated these findings to provide a novel framework for binary partition tree analysis, where tree simplification is demonstrated. Based on an evolvement function, for each upward path in a tree, the tree node associated with the first reluctant merge is considered as a pruning candidate. The result is a simplified version providing a reduced solution space and still complying with the definition of a binary tree. The experiments show that image details are preserved whilst the number of nodes is dramatically reduced. An image filtering tool also results which preserves object boundaries and has applications for segmentation.

  8. Automatic determination of trunk diameter, crown base and height of scots pine (Pinus Sylvestris L.) Based on analysis of 3D point clouds gathered from multi-station terrestrial laser scanning. (Polish Title: Automatyczne okreslanie srednicy pnia, podstawy korony oraz wysokosci sosny zwyczajnej (Pinus Silvestris L.) Na podstawie analiz chmur punktow 3D pochodzacych z wielostanowiskowego naziemnego skanowania laserowego)

    NASA Astrophysics Data System (ADS)

    Ratajczak, M.; Wężyk, P.

    2015-12-01

    Rapid development of terrestrial laser scanning (TLS) in recent years resulted in its recognition and implementation in many industries, including forestry and nature conservation. The use of the 3D TLS point clouds in the process of inventory of trees and stands, as well as in the determination of their biometric features (trunk diameter, tree height, crown base, number of trunk shapes), trees and lumber size (volume of trees) is slowly becoming a practice. In addition to the measurement precision, the primary added value of TLS is the ability to automate the processing of the clouds of points 3D in the direction of the extraction of selected features of trees and stands. The paper presents the original software (GNOM) for the automatic measurement of selected features of trees, based on the cloud of points obtained by the ground laser scanner FARO. With the developed algorithms (GNOM), the location of tree trunks on the circular research surface was specified and the measurement was performed; the measurement covered the DBH (l: 1.3m), further diameters of tree trunks at different heights of the tree trunk, base of the tree crown and volume of the tree trunk (the selection measurement method), as well as the tree crown. Research works were performed in the territory of the Niepolomice Forest in an unmixed pine stand (Pinussylvestris L.) on the circular surface with a radius of 18 m, within which there were 16 pine trees (14 of them were cut down). It was characterized by a two-storey and even-aged construction (147 years old) and was devoid of undergrowth. Ground scanning was performed just before harvesting. The DBH of 16 pine trees was specified in a fully automatic way, using the algorithm GNOM with an accuracy of +2.1%, as compared to the reference measurement by the DBH measurement device. The medium, absolute measurement error in the cloud of points - using semi-automatic methods "PIXEL" (between points) and PIPE (fitting the cylinder) in the FARO Scene 5.x., showed the error, 3.5% and 5.0%,.respectively The reference height was assumed as the measurement performed by the tape on the cut tree. The average error of automatic determination of the tree height by the algorithm GNOM based on the TLS point clouds amounted to 6.3% and was slightly higher than when using the manual method of measurements on profiles in the TerraScan (Terrasolid; the error of 5.6%). The relatively high value of the error may be mainly related to the small number of points TLS in the upper parts of crowns. The crown height measurement showed the error of +9.5%. The reference in this case was the tape measurement performed already on the trunks of cut pine trees. Processing the clouds of points by the algorithms GNOM for 16 analyzed trees took no longer than 10 min. (37 sec. /tree). The paper mainly showed the TLS measurement innovation and its high precision in acquiring biometric data in forestry, and at the same time also the further need to increase the degree of automation of processing the clouds of points 3D from terrestrial laser scanning.

  9. Spatial and spatiotemporal pattern analysis of coconut lethal yellowing in Mozambique.

    PubMed

    Bonnot, F; de Franqueville, H; Lourenço, E

    2010-04-01

    Coconut lethal yellowing (LY) is caused by a phytoplasma and is a major threat for coconut production throughout its growing area. Incidence of LY was monitored visually on every coconut tree in six fields in Mozambique for 34 months. Disease progress curves were plotted and average monthly disease incidence was estimated. Spatial patterns of disease incidence were analyzed at six assessment times. Aggregation was tested by the coefficient of spatial autocorrelation of the beta-binomial distribution of diseased trees in quadrats. The binary power law was used as an assessment of overdispersion across the six fields. Spatial autocorrelation between symptomatic trees was measured by the BB join count statistic based on the number of pairs of diseased trees separated by a specific distance and orientation, and tested using permutation methods. Aggregation of symptomatic trees was detected in every field in both cumulative and new cases. Spatiotemporal patterns were analyzed with two methods. The proximity of symptomatic trees at two assessment times was investigated using the spatiotemporal BB join count statistic based on the number of pairs of trees separated by a specific distance and orientation and exhibiting the first symptoms of LY at the two times. The semivariogram of times of appearance of LY was calculated to characterize how the lag between times of appearance of LY was related to the distance between symptomatic trees. Both statistics were tested using permutation methods. A tendency for new cases to appear in the proximity of previously diseased trees and a spatially structured pattern of times of appearance of LY within clusters of diseased trees were detected, suggesting secondary spread of the disease.

  10. Lognormal Approximations of Fault Tree Uncertainty Distributions.

    PubMed

    El-Shanawany, Ashraf Ben; Ardron, Keith H; Walker, Simon P

    2018-01-26

    Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed-form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling-based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed-form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks's method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models. © 2018 Society for Risk Analysis.

  11. Designing efficient nitrous oxide sampling strategies in agroecosystems using simulation models

    NASA Astrophysics Data System (ADS)

    Saha, Debasish; Kemanian, Armen R.; Rau, Benjamin M.; Adler, Paul R.; Montes, Felipe

    2017-04-01

    Annual cumulative soil nitrous oxide (N2O) emissions calculated from discrete chamber-based flux measurements have unknown uncertainty. We used outputs from simulations obtained with an agroecosystem model to design sampling strategies that yield accurate cumulative N2O flux estimates with a known uncertainty level. Daily soil N2O fluxes were simulated for Ames, IA (corn-soybean rotation), College Station, TX (corn-vetch rotation), Fort Collins, CO (irrigated corn), and Pullman, WA (winter wheat), representing diverse agro-ecoregions of the United States. Fertilization source, rate, and timing were site-specific. These simulated fluxes surrogated daily measurements in the analysis. We ;sampled; the fluxes using a fixed interval (1-32 days) or a rule-based (decision tree-based) sampling method. Two types of decision trees were built: a high-input tree (HI) that included soil inorganic nitrogen (SIN) as a predictor variable, and a low-input tree (LI) that excluded SIN. Other predictor variables were identified with Random Forest. The decision trees were inverted to be used as rules for sampling a representative number of members from each terminal node. The uncertainty of the annual N2O flux estimation increased along with the fixed interval length. A 4- and 8-day fixed sampling interval was required at College Station and Ames, respectively, to yield ±20% accuracy in the flux estimate; a 12-day interval rendered the same accuracy at Fort Collins and Pullman. Both the HI and the LI rule-based methods provided the same accuracy as that of fixed interval method with up to a 60% reduction in sampling events, particularly at locations with greater temporal flux variability. For instance, at Ames, the HI rule-based and the fixed interval methods required 16 and 91 sampling events, respectively, to achieve the same absolute bias of 0.2 kg N ha-1 yr-1 in estimating cumulative N2O flux. These results suggest that using simulation models along with decision trees can reduce the cost and improve the accuracy of the estimations of cumulative N2O fluxes using the discrete chamber-based method.

  12. Predicting metabolic syndrome using decision tree and support vector machine methods.

    PubMed

    Karimi-Alavijeh, Farzaneh; Jalili, Saeed; Sadeghi, Masoumeh

    2016-05-01

    Metabolic syndrome which underlies the increased prevalence of cardiovascular disease and Type 2 diabetes is considered as a group of metabolic abnormalities including central obesity, hypertriglyceridemia, glucose intolerance, hypertension, and dyslipidemia. Recently, artificial intelligence based health-care systems are highly regarded because of its success in diagnosis, prediction, and choice of treatment. This study employs machine learning technics for predict the metabolic syndrome. This study aims to employ decision tree and support vector machine (SVM) to predict the 7-year incidence of metabolic syndrome. This research is a practical one in which data from 2107 participants of Isfahan Cohort Study has been utilized. The subjects without metabolic syndrome according to the ATPIII criteria were selected. The features that have been used in this data set include: gender, age, weight, body mass index, waist circumference, waist-to-hip ratio, hip circumference, physical activity, smoking, hypertension, antihypertensive medication use, systolic blood pressure (BP), diastolic BP, fasting blood sugar, 2-hour blood glucose, triglycerides (TGs), total cholesterol, low-density lipoprotein, high density lipoprotein-cholesterol, mean corpuscular volume, and mean corpuscular hemoglobin. Metabolic syndrome was diagnosed based on ATPIII criteria and two methods of decision tree and SVM were selected to predict the metabolic syndrome. The criteria of sensitivity, specificity and accuracy were used for validation. SVM and decision tree methods were examined according to the criteria of sensitivity, specificity and accuracy. Sensitivity, specificity and accuracy were 0.774 (0.758), 0.74 (0.72) and 0.757 (0.739) in SVM (decision tree) method. The results show that SVM method sensitivity, specificity and accuracy is more efficient than decision tree. The results of decision tree method show that the TG is the most important feature in predicting metabolic syndrome. According to this study, in cases where only the final result of the decision is regarded significant, SVM method can be used with acceptable accuracy in decision making medical issues. This method has not been implemented in the previous research.

  13. Land Cover Mapping using GEOBIA to Estimate Loss of Salacca zalacca Trees in Landslide Area of Clapar, Madukara District of Banjarnegara

    NASA Astrophysics Data System (ADS)

    Permata, Anggi; Juniansah, Anwar; Nurcahyati, Eka; Dimas Afrizal, Mousafi; Adnan Shafry Untoro, Muhammad; Arifatha, Na'ima; Ramadhani Yudha Adiwijaya, Raden; Farda, Nur Mohammad

    2016-11-01

    Landslide is an unpredictable natural disaster which commonly happens in highslope area. Aerial photography in small format is one of acquisition method that can reach and obtain high resolution spatial data faster than other methods, and provide data such as orthomosaic and Digital Surface Model (DSM). The study area contained landslide area in Clapar, Madukara District of Banjarnegara. Aerial photographs of landslide area provided advantage in objects visibility. Object's characters such as shape, size, and texture were clearly seen, therefore GEOBIA (Geography Object Based Image Analysis) was compatible as method for classifying land cover in study area. Dissimilar with PPA (PerPixel Analyst) method that used spectral information as base object detection, GEOBIA could use spatial elements as classification basis to establish a land cover map with better accuracy. GEOBIA method used classification hierarchy to divide post disaster land cover into three main objects: vegetation, landslide/soil, and building. Those three were required to obtain more detailed information that can be used in estimating loss caused by landslide and establishing land cover map in landslide area. Estimating loss in landslide area related to damage in Salak (Salacca zalacca) plantations. This estimation towards quantity of Salak tree that were drifted away by landslide was calculated in assumption that every tree damaged by landslide had same age and production class with other tree that weren't damaged. Loss calculation was done by approximating quantity of damaged trees in landslide area with data of trees around area that were acquired from GEOBIA classification method.

  14. Comparing minimum spanning trees of the Italian stock market using returns and volumes

    NASA Astrophysics Data System (ADS)

    Coletti, Paolo

    2016-12-01

    We have built the network of the top 100 Italian quoted companies in the decade 2001-2011 using four different methods, comparing the resulting minimum spanning trees for methods and industry sectors. Our starting method is based on Person's correlation of log-returns used by several other authors in the last decade. The second one is based on the correlation of symbolized log-returns, the third of log-returns and traded money and the fourth one uses a combination of log-returns with traded money. We show that some sectors correspond to the network's clusters while others are scattered, in particular the trading and apparel sectors. We analyze the different graph's measures for the four methods showing that the introduction of volumes induces larger distances and more homogeneous trees without big clusters.

  15. Investigation on electrical tree propagation in polyethylene based on etching method

    NASA Astrophysics Data System (ADS)

    Shi, Zexiang; Zhang, Xiaohong; Wang, Kun; Gao, Junguo; Guo, Ning

    2017-11-01

    To investigate the characteristic of electrical tree propagation in semi-crystalline polymers, the low-density polyethylene (LDPE) samples containing electrical trees are cut into slices by using ultramicrotome. Then the slice samples are etched by potassium permanganate etchant. Finally, the crystalline structure and the electrical tree propagation path in samples are observed by polarized light microscopy (PLM). According to the observation, the LDPE spherocrystal structure model is established on the basis of crystallization kinetics and morphology of polymers. And the electrical tree growth process in LDPE is discussed based on the free volume breakdown theory, the molecular chain relaxation theory, the electromechanical force theory, the thermal expansion effect and the space charge shielding effect.

  16. Estimating Starch Content in Roots of Deciduous Trees--A Visual Technique

    Treesearch

    Philip M. Wargo; Philip M. Wargo

    1975-01-01

    A visual technique for determining starch content in roots of forest trees, based onz iodine-staining of starch granules, was compared with a chemical method. Although the chemical method was more precise, roots could be sorted with the visual method into groups that are probably biologically important. The visual technique is simple and can be adapted for use in the...

  17. A procedure for selection on marking in hardwoods

    Treesearch

    George R., Jr. Trimble; Joseph J. Mendel; Richard A. Kennell

    1974-01-01

    This method of applying individual-tree selection silviculture to hardwood stands combines silvicultural considerations with financial maturity guidelines into a tree-marking system. To develop this system it was necessary to determine rates of return based on 4/4 lumber, for many of the important Appalachian species. Trees were viewed as capital investments that...

  18. Monitoring individual tree-based change with airborne lidar.

    PubMed

    Duncanson, Laura; Dubayah, Ralph

    2018-05-01

    Understanding the carbon flux of forests is critical for constraining the global carbon cycle and managing forests to mitigate climate change. Monitoring forest growth and mortality rates is critical to this effort, but has been limited in the past, with estimates relying primarily on field surveys. Advances in remote sensing enable the potential to monitor tree growth and mortality across landscapes. This work presents an approach to measure tree growth and loss using multidate lidar campaigns in a high-biomass forest in California, USA. Individual tree crowns were delineated in 2008 and again in 2013 using a 3D crown segmentation algorithm, with derived heights and crown radii extracted and used to estimate individual tree aboveground biomass. Tree growth, loss, and aboveground biomass were analyzed with respect to tree height and crown radius. Both tree growth and loss rates decrease with increasing tree height, following the expectation that trees slow in growth rate as they age. Additionally, our aboveground biomass analysis suggests that, while the system is a net source of aboveground carbon, these carbon dynamics are governed by size class with the largest sources coming from the loss of a relatively small number of large individuals. This study demonstrates that monitoring individual tree-based growth and loss can be conducted with multidate airborne lidar, but these methods remain relatively immature. Disparities between lidar acquisitions were particularly difficult to overcome and decreased the sample of trees analyzed for growth rate in this study to 21% of the full number of delineated crowns. However, this study illuminates the potential of airborne remote sensing for ecologically meaningful forest monitoring at an individual tree level. As methods continue to improve, airborne multidate lidar will enable a richer understanding of the drivers of tree growth, loss, and aboveground carbon flux.

  19. A hybrid 3D spatial access method based on quadtrees and R-trees for globe data

    NASA Astrophysics Data System (ADS)

    Gong, Jun; Ke, Shengnan; Li, Xiaomin; Qi, Shuhua

    2009-10-01

    3D spatial access method for globe data is very crucial technique for virtual earth. This paper presents a brand-new maintenance method to index 3d objects distributed on the whole surface of the earth, which integrates the 1:1,000,000- scale topographic map tiles, Quad-tree and R-tree. Furthermore, when traditional methods are extended into 3d space, the performance of spatial index deteriorates badly, for example 3D R-tree. In order to effectively solve this difficult problem, a new algorithm of dynamic R-tree is put forward, which includes two sub-procedures, namely node-choosing and node-split. In the node-choosing algorithm, a new strategy is adopted, not like the traditional mode which is from top to bottom, but firstly from bottom to top then from top to bottom. This strategy can effectively solve the negative influence of node overlap. In the node-split algorithm, 2-to-3 split mode substitutes the traditional 1-to-2 mode, which can better concern the shape and size of nodes. Because of the rational tree shape, this R-tree method can easily integrate the concept of LOD. Therefore, it will be later implemented in commercial DBMS and adopted in time-crucial 3d GIS system.

  20. Object based technique for delineating and mapping 15 tree species using VHR WorldView-2 imagery

    NASA Astrophysics Data System (ADS)

    Mustafa, Yaseen T.; Habeeb, Hindav N.

    2014-10-01

    Monitoring and analyzing forests and trees are required task to manage and establish a good plan for the forest sustainability. To achieve such a task, information and data collection of the trees are requested. The fastest way and relatively low cost technique is by using satellite remote sensing. In this study, we proposed an approach to identify and map 15 tree species in the Mangish sub-district, Kurdistan Region-Iraq. Image-objects (IOs) were used as the tree species mapping unit. This is achieved using the shadow index, normalized difference vegetation index and texture measurements. Four classification methods (Maximum Likelihood, Mahalanobis Distance, Neural Network, and Spectral Angel Mapper) were used to classify IOs using selected IO features derived from WorldView-2 imagery. Results showed that overall accuracy was increased 5-8% using the Neural Network method compared with other methods with a Kappa coefficient of 69%. This technique gives reasonable results of various tree species classifications by means of applying the Neural Network method with IOs techniques on WorldView-2 imagery.

  1. Reinforcement Learning Trees

    PubMed Central

    Zhu, Ruoqing; Zeng, Donglin; Kosorok, Michael R.

    2015-01-01

    In this paper, we introduce a new type of tree-based method, reinforcement learning trees (RLT), which exhibits significantly improved performance over traditional methods such as random forests (Breiman, 2001) under high-dimensional settings. The innovations are three-fold. First, the new method implements reinforcement learning at each selection of a splitting variable during the tree construction processes. By splitting on the variable that brings the greatest future improvement in later splits, rather than choosing the one with largest marginal effect from the immediate split, the constructed tree utilizes the available samples in a more efficient way. Moreover, such an approach enables linear combination cuts at little extra computational cost. Second, we propose a variable muting procedure that progressively eliminates noise variables during the construction of each individual tree. The muting procedure also takes advantage of reinforcement learning and prevents noise variables from being considered in the search for splitting rules, so that towards terminal nodes, where the sample size is small, the splitting rules are still constructed from only strong variables. Last, we investigate asymptotic properties of the proposed method under basic assumptions and discuss rationale in general settings. PMID:26903687

  2. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    PubMed

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-07

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  3. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  4. Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 2000-2014

    NASA Astrophysics Data System (ADS)

    Potapov, P.; Siddiqui, B. N.; Iqbal, Z.; Aziz, T.; Zzaman, B.; Islam, A.; Pickens, A.; Talero, Y.; Tyukavina, A.; Turubanova, S.; Hansen, M. C.

    2017-10-01

    A novel approach for satellite-based comprehensive national tree cover change assessment was developed and applied in Bangladesh, a country where trees outside of forests play an important role in the national economy and carbon sequestration. Tree cover change area was quantified using the integration of wall-to-wall Landsat-based mapping with a higher spatial resolution sample-based assessment. The total national tree canopy cover area was estimated as 3165 500 ± 186 600 ha in the year 2000, with trees outside forests making up 54% of total canopy cover. Total tree canopy cover increased by 135 700 (± 116 600) ha (4.3%) during the 2000-2014 time interval. Bangladesh exhibits a national tree cover dynamic where net change is rather small, but gross dynamics significant and variable by forest type. Despite the overall gain in tree cover, results revealed the ongoing clearing of natural forests, especially within the Chittagong hill tracts. While forests decreased their tree cover area by 83 600 ha, the trees outside forests (including tree plantations, village woodlots, and agroforestry) increased their canopy area by 219 300 ha. Our results demonstrated method capability to quantify tree canopy cover dynamics within a fine-scale agricultural landscape. Our approach for comprehensive monitoring of tree canopy cover may be recommended for operational implementation in Bangladesh and other countries with significant tree cover outside of forests.

  5. Comprehensive Phylogenetic Analysis of Bovine Non-aureus Staphylococci Species Based on Whole-Genome Sequencing

    PubMed Central

    Naushad, Sohail; Barkema, Herman W.; Luby, Christopher; Condas, Larissa A. Z.; Nobrega, Diego B.; Carson, Domonique A.; De Buck, Jeroen

    2016-01-01

    Non-aureus staphylococci (NAS), a heterogeneous group of a large number of species and subspecies, are the most frequently isolated pathogens from intramammary infections in dairy cattle. Phylogenetic relationships among bovine NAS species are controversial and have mostly been determined based on single-gene trees. Herein, we analyzed phylogeny of bovine NAS species using whole-genome sequencing (WGS) of 441 distinct isolates. In addition, evolutionary relationships among bovine NAS were estimated from multilocus data of 16S rRNA, hsp60, rpoB, sodA, and tuf genes and sequences from these and numerous other single genes/proteins. All phylogenies were created with FastTree, Maximum-Likelihood, Maximum-Parsimony, and Neighbor-Joining methods. Regardless of methodology, WGS-trees clearly separated bovine NAS species into five monophyletic coherent clades. Furthermore, there were consistent interspecies relationships within clades in all WGS phylogenetic reconstructions. Except for the Maximum-Parsimony tree, multilocus data analysis similarly produced five clades. There were large variations in determining clades and interspecies relationships in single gene/protein trees, under different methods of tree constructions, highlighting limitations of using single genes for determining bovine NAS phylogeny. However, based on WGS data, we established a robust phylogeny of bovine NAS species, unaffected by method or model of evolutionary reconstructions. Therefore, it is now possible to determine associations between phylogeny and many biological traits, such as virulence, antimicrobial resistance, environmental niche, geographical distribution, and host specificity. PMID:28066335

  6. Universal artifacts affect the branching of phylogenetic trees, not universal scaling laws.

    PubMed

    Altaba, Cristian R

    2009-01-01

    The superficial resemblance of phylogenetic trees to other branching structures allows searching for macroevolutionary patterns. However, such trees are just statistical inferences of particular historical events. Recent meta-analyses report finding regularities in the branching pattern of phylogenetic trees. But is this supported by evidence, or are such regularities just methodological artifacts? If so, is there any signal in a phylogeny? In order to evaluate the impact of polytomies and imbalance on tree shape, the distribution of all binary and polytomic trees of up to 7 taxa was assessed in tree-shape space. The relationship between the proportion of outgroups and the amount of imbalance introduced with them was assessed applying four different tree-building methods to 100 combinations from a set of 10 ingroup and 9 outgroup species, and performing covariance analyses. The relevance of this analysis was explored taking 61 published phylogenies, based on nucleic acid sequences and involving various taxa, taxonomic levels, and tree-building methods. All methods of phylogenetic inference are quite sensitive to the artifacts introduced by outgroups. However, published phylogenies appear to be subject to a rather effective, albeit rather intuitive control against such artifacts. The data and methods used to build phylogenetic trees are varied, so any meta-analysis is subject to pitfalls due to their uneven intrinsic merits, which translate into artifacts in tree shape. The binary branching pattern is an imposition of methods, and seldom reflects true relationships in intraspecific analyses, yielding artifactual polytomies in short trees. Above the species level, the departure of real trees from simplistic random models is caused at least by two natural factors--uneven speciation and extinction rates; and artifacts such as choice of taxa included in the analysis, and imbalance introduced by outgroups and basal paraphyletic taxa. This artifactual imbalance accounts for tree shape convergence of large trees. There is no evidence for any universal scaling in the tree of life. Instead, there is a need for improved methods of tree analysis that can be used to discriminate the noise due to outgroups from the phylogenetic signal within the taxon of interest, and to evaluate realistic models of evolution, correcting the retrospective perspective and explicitly recognizing extinction as a driving force. Artifacts are pervasive, and can only be overcome through understanding the structure and biological meaning of phylogenetic trees. Catalan Abstract in Translation S1.

  7. A new method for separating the climatic and biological trend components from tree ring series, with implications for paleoclimate reconstructions

    NASA Astrophysics Data System (ADS)

    Bouldin, J.

    2010-12-01

    In the reconstruction of past climates from tree rings multi-decadal to multi-centennial periods, one longstanding problem is the confounding of the natural biological growth trend of the tree with any existing long term trends in the climate. No existing analytical method is capable of resolving these two change components, so it remains unclear how accurate existing ring series standardizations are, and by implication, climate reconstructions based upon them. For example, dendrochronological at the ITRDB are typically standardized by detrending, at each site, each individual tree core, using a relatively stiff deterministic function such as a negative exponential curve or smoothing spline. Another approach, referred to as RCS (Regional Curve Standardization) attempts to solve some problems of the individual series detrending, by constructing a single growth curve from the aggregated cambial ages of the rings of the cores at a site (or collection of sites). This curve is presumed to represent the “ideal” or expected growth of the trees from which it is derived. Although an improvement in some respects, this method will be degraded in direct proportion to the lack of a mixture of tree sizes or ages throughout the span of the chronology. I present a new method of removing the biological curve from tree ring series, such that temporal changes better represent the environmental variation captured by the tree rings. The method institutes several new approaches, such as the correction for the estimated number of missed rings near the pith, and the use of tree size and ring area relationships instead of the traditional tree ages and ring widths. The most important innovation is a careful extraction of the existing information on the relationship between tree size (basal area) and ring area that exists within each single year of the chronology. This information is, by definition, not contaminated by temporal climatic changes, and so when removed, leaves the climatically caused, and random error components of the chronology. A sophisticated algorithm, based on pair-wise ring comparisons in which tree size is standardized both within and between years, forms the basis of the method. Evaluations of the method are underway with both simulated and actual (ITRDB) data, to evaluate the potentials and drawbacks of the method relative to existing methods. The ITRDB test data consists of a set of about 50 primarily high elevation sites from across western North America. Most of these sites show a pronounced 20th Century warming relative to earlier centuries, in accordance with current understanding, albeit at a non-global scale. A relative minority show cooling, occasionally strongly. Current and future work emphasizes evaluation of the method with varying, simulated data, and more thorough empirical evaluations of the method in situations where the type, and intensity, of the primary environmentally limiting factor varies (e.g temperature versus soil moisture limited sites).

  8. Binary tree eigen solver in finite element analysis

    NASA Technical Reports Server (NTRS)

    Akl, F. A.; Janetzke, D. C.; Kiraly, L. J.

    1993-01-01

    This paper presents a transputer-based binary tree eigensolver for the solution of the generalized eigenproblem in linear elastic finite element analysis. The algorithm is based on the method of recursive doubling, which parallel implementation of a number of associative operations on an arbitrary set having N elements is of the order of o(log2N), compared to (N-1) steps if implemented sequentially. The hardware used in the implementation of the binary tree consists of 32 transputers. The algorithm is written in OCCAM which is a high-level language developed with the transputers to address parallel programming constructs and to provide the communications between processors. The algorithm can be replicated to match the size of the binary tree transputer network. Parallel and sequential finite element analysis programs have been developed to solve for the set of the least-order eigenpairs using the modified subspace method. The speed-up obtained for a typical analysis problem indicates close agreement with the theoretical prediction given by the method of recursive doubling.

  9. Gene tree rooting methods give distributions that mimic the coalescent process.

    PubMed

    Tian, Yuan; Kubatko, Laura S

    2014-01-01

    Multi-locus phylogenetic inference is commonly carried out via models that incorporate the coalescent process to model the possibility that incomplete lineage sorting leads to incongruence between gene trees and the species tree. An interesting question that arises in this context is whether data "fit" the coalescent model. Previous work (Rosenfeld et al., 2012) has suggested that rooting of gene trees may account for variation in empirical data that has been previously attributed to the coalescent process. We examine this possibility using simulated data. We show that, in the case of four taxa, the distribution of gene trees observed from rooting estimated gene trees with either the molecular clock or with outgroup rooting can be closely matched by the distribution predicted by the coalescent model with specific choices of species tree branch lengths. We apply commonly-used coalescent-based methods of species tree inference to assess their performance in these situations. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Voxel classification based airway tree segmentation

    NASA Astrophysics Data System (ADS)

    Lo, Pechin; de Bruijne, Marleen

    2008-03-01

    This paper presents a voxel classification based method for segmenting the human airway tree in volumetric computed tomography (CT) images. In contrast to standard methods that use only voxel intensities, our method uses a more complex appearance model based on a set of local image appearance features and Kth nearest neighbor (KNN) classification. The optimal set of features for classification is selected automatically from a large set of features describing the local image structure at several scales. The use of multiple features enables the appearance model to differentiate between airway tree voxels and other voxels of similar intensities in the lung, thus making the segmentation robust to pathologies such as emphysema. The classifier is trained on imperfect segmentations that can easily be obtained using region growing with a manual threshold selection. Experiments show that the proposed method results in a more robust segmentation that can grow into the smaller airway branches without leaking into emphysematous areas, and is able to segment many branches that are not present in the training set.

  11. A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances.

    PubMed

    D'Ambrosio, Antonio; Heiser, Willem J

    2016-09-01

    Preference rankings usually depend on the characteristics of both the individuals judging a set of objects and the objects being judged. This topic has been handled in the literature with log-linear representations of the generalized Bradley-Terry model and, recently, with distance-based tree models for rankings. A limitation of these approaches is that they only work with full rankings or with a pre-specified pattern governing the presence of ties, and/or they are based on quite strict distributional assumptions. To overcome these limitations, we propose a new prediction tree method for ranking data that is totally distribution-free. It combines Kemeny's axiomatic approach to define a unique distance between rankings with the CART approach to find a stable prediction tree. Furthermore, our method is not limited by any particular design of the pattern of ties. The method is evaluated in an extensive full-factorial Monte Carlo study with a new simulation design.

  12. Lidar-based individual tree species classification using convolutional neural network

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Tomohiro; Ishii, Akira; Nakamura, Hiroyuki; Inoue, Tsuyoshi; Takamatsu, Hisashi

    2017-06-01

    Terrestrial lidar is commonly used for detailed documentation in the field of forest inventory investigation. Recent improvements of point cloud processing techniques enabled efficient and precise computation of an individual tree shape parameters, such as breast-height diameter, height, and volume. However, tree species are manually specified by skilled workers to date. Previous works for automatic tree species classification mainly focused on aerial or satellite images, and few works have been reported for classification techniques using ground-based sensor data. Several candidate sensors can be considered for classification, such as RGB or multi/hyper spectral cameras. Above all candidates, we use terrestrial lidar because it can obtain high resolution point cloud in the dark forest. We selected bark texture for the classification criteria, since they clearly represent unique characteristics of each tree and do not change their appearance under seasonable variation and aged deterioration. In this paper, we propose a new method for automatic individual tree species classification based on terrestrial lidar using Convolutional Neural Network (CNN). The key component is the creation step of a depth image which well describe the characteristics of each species from a point cloud. We focus on Japanese cedar and cypress which cover the large part of domestic forest. Our experimental results demonstrate the effectiveness of our proposed method.

  13. Clustering Tree-structured Data on Manifold

    PubMed Central

    Lu, Na; Miao, Hongyu

    2016-01-01

    Tree-structured data usually contain both topological and geometrical information, and are necessarily considered on manifold instead of Euclidean space for appropriate data parameterization and analysis. In this study, we propose a novel tree-structured data parameterization, called Topology-Attribute matrix (T-A matrix), so the data clustering task can be conducted on matrix manifold. We incorporate the structure constraints embedded in data into the non-negative matrix factorization method to determine meta-trees from the T-A matrix, and the signature vector of each single tree can then be extracted by meta-tree decomposition. The meta-tree space turns out to be a cone space, in which we explore the distance metric and implement the clustering algorithm based on the concepts like Fréchet mean. Finally, the T-A matrix based clustering (TAMBAC) framework is evaluated and compared using both simulated data and real retinal images to illus trate its efficiency and accuracy. PMID:26660696

  14. Alzheimer Classification Using a Minimum Spanning Tree of High-Order Functional Network on fMRI Dataset

    PubMed Central

    Guo, Hao; Liu, Lei; Chen, Junjie; Xu, Yong; Jie, Xiang

    2017-01-01

    Functional magnetic resonance imaging (fMRI) is one of the most useful methods to generate functional connectivity networks of the brain. However, conventional network generation methods ignore dynamic changes of functional connectivity between brain regions. Previous studies proposed constructing high-order functional connectivity networks that consider the time-varying characteristics of functional connectivity, and a clustering method was performed to decrease computational cost. However, random selection of the initial clustering centers and the number of clusters negatively affected classification accuracy, and the network lost neurological interpretability. Here we propose a novel method that introduces the minimum spanning tree method to high-order functional connectivity networks. As an unbiased method, the minimum spanning tree simplifies high-order network structure while preserving its core framework. The dynamic characteristics of time series are not lost with this approach, and the neurological interpretation of the network is guaranteed. Simultaneously, we propose a multi-parameter optimization framework that involves extracting discriminative features from the minimum spanning tree high-order functional connectivity networks. Compared with the conventional methods, our resting-state fMRI classification method based on minimum spanning tree high-order functional connectivity networks greatly improved the diagnostic accuracy for Alzheimer's disease. PMID:29249926

  15. A way forward for fire-caused tree mortality prediction: Modeling a physiological consequence of fire

    Treesearch

    Kathleen L. Kavanaugh; Matthew B. Dickinson; Anthony S. Bova

    2010-01-01

    Current operational methods for predicting tree mortality from fire injury are regression-based models that only indirectly consider underlying causes and, thus, have limited generality. A better understanding of the physiological consequences of tree heating and injury are needed to develop biophysical process models that can make predictions under changing or novel...

  16. Rapid Assessment of Tree Debris Following Urban Forest Ice Storms

    Treesearch

    Richard J. Hauer; Angela J. Hauer; Dudley R. Hartel; Jill R. Johnson

    2011-01-01

    This paper presents a rapid assessment method to estimate urban tree debris following an ice storm. Data were collected from 60 communities to quantify tree debris volumes, mostly from public rights-of-way, following ice storms based on community infrastructure, weather parameters, and urban forest structure. Ice thickness, area of a community, and street distance are...

  17. A new serial pooling method of shifted tree ring blocks to construct millennia long tree ring isotope chronologies with annual resolution.

    PubMed

    Boettger, Tatjana; Friedrich, Michael

    2009-03-01

    The study presents a new serial pooling method of shifted tree ring blocks for the building of isotope chronologies. This method combines the advantages of traditional 'serial' and 'intertree' pooling, and can be recommended for the construction of sub-regional long isotope chronologies with sufficient replication, and on annual resolution, especially for the case of extremely narrow tree rings. For Scots pines (Pinus sylvestris L., Khibiny Low Mountains, NW Russia) and Silver firs (Abies alba Mill., Franconia, Southern Germany), serial pooling of five consecutive tree rings seems appropriate because the species- and site-specific particularities lead to blurs of climate linkages in their tree rings for the period up to ca. five years back. An equivalent to a five-year running means that curve gained on the base annual data sets of single trees can be derived from the analysis of yearly shifted five-year blocks of consecutive tree rings, and therefore, with approximately 20% of the expense. Good coherence of delta(13)C- and delta(18)O-values between calculated means of annual total rings or late wood data and means of five-year blocks of consecutive total tree rings analysed experimentally on most similar material confirms this assumption.

  18. Classification of Parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/PCA features.

    PubMed

    Mudali, D; Teune, L K; Renken, R J; Leenders, K L; Roerdink, J B T M

    2015-01-01

    Medical imaging techniques like fluorodeoxyglucose positron emission tomography (FDG-PET) have been used to aid in the differential diagnosis of neurodegenerative brain diseases. In this study, the objective is to classify FDG-PET brain scans of subjects with Parkinsonian syndromes (Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy) compared to healthy controls. The scaled subprofile model/principal component analysis (SSM/PCA) method was applied to FDG-PET brain image data to obtain covariance patterns and corresponding subject scores. The latter were used as features for supervised classification by the C4.5 decision tree method. Leave-one-out cross validation was applied to determine classifier performance. We carried out a comparison with other types of classifiers. The big advantage of decision tree classification is that the results are easy to understand by humans. A visual representation of decision trees strongly supports the interpretation process, which is very important in the context of medical diagnosis. Further improvements are suggested based on enlarging the number of the training data, enhancing the decision tree method by bagging, and adding additional features based on (f)MRI data.

  19. Forest Stand Segmentation Using Airborne LIDAR Data and Very High Resolution Multispectral Imagery

    NASA Astrophysics Data System (ADS)

    Dechesne, Clément; Mallet, Clément; Le Bris, Arnaud; Gouet, Valérie; Hervieu, Alexandre

    2016-06-01

    Forest stands are the basic units for forest inventory and mapping. Stands are large forested areas (e.g., ≥ 2 ha) of homogeneous tree species composition. The accurate delineation of forest stands is usually performed by visual analysis of human operators on very high resolution (VHR) optical images. This work is highly time consuming and should be automated for scalability purposes. In this paper, a method based on the fusion of airborne laser scanning data (or lidar) and very high resolution multispectral imagery for automatic forest stand delineation and forest land-cover database update is proposed. The multispectral images give access to the tree species whereas 3D lidar point clouds provide geometric information on the trees. Therefore, multi-modal features are computed, both at pixel and object levels. The objects are individual trees extracted from lidar data. A supervised classification is performed at the object level on the computed features in order to coarsely discriminate the existing tree species in the area of interest. The analysis at tree level is particularly relevant since it significantly improves the tree species classification. A probability map is generated through the tree species classification and inserted with the pixel-based features map in an energetical framework. The proposed energy is then minimized using a standard graph-cut method (namely QPBO with α-expansion) in order to produce a segmentation map with a controlled level of details. Comparison with an existing forest land cover database shows that our method provides satisfactory results both in terms of stand labelling and delineation (matching ranges between 94% and 99%).

  20. A method for reconstructing the development of the sapwood area of balsam fir.

    PubMed

    Coyea, M R; Margolis, H A; Gagnon, R R

    1990-09-01

    Leaf area is commonly estimated as a function of sapwood area. However, because sapwood changes to heartwood over time, it has not previously been possible to reconstruct either the sapwood area or the leaf area of older trees into the past. In this study, we report a method for reconstructing the development of the sapwood area of dominant and codominant balsam fir (Abies balsamea (L.) Mill.). The technique is based on establishing a species-specific relationship between the number of annual growth rings in the sapwood area and tree age. Because the number of annual growth rings in the sapwood of balsam fir at a given age was found to be independent of site quality and stand density, the number of rings in sapwood (NRS) can be predicted from the age of a tree thus: NRS = 14.818 (1 - e(-0.031 age)), unweighted R(2) = 0.80, and NRS = 2.490 (1 - e(-0.038 age)), unweighted R(2) = 0.64, for measurements at breast height and at the base of the live crown, respectively. These nonlinear asymptotic regression models based only on age, were not improved by adding other tree variables such as diameter at breast height, diameter at the base of the live crown, total tree height or percent live crown.

  1. A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search Using k-Means Clustering and Triangle Inequality.

    PubMed

    Wang, Xueyi

    2012-02-08

    The k-nearest neighbors (k-NN) algorithm is a widely used machine learning method that finds nearest neighbors of a test object in a feature space. We present a new exact k-NN algorithm called kMkNN (k-Means for k-Nearest Neighbors) that uses the k-means clustering and the triangle inequality to accelerate the searching for nearest neighbors in a high dimensional space. The kMkNN algorithm has two stages. In the buildup stage, instead of using complex tree structures such as metric trees, kd-trees, or ball-tree, kMkNN uses a simple k-means clustering method to preprocess the training dataset. In the searching stage, given a query object, kMkNN finds nearest training objects starting from the nearest cluster to the query object and uses the triangle inequality to reduce the distance calculations. Experiments show that the performance of kMkNN is surprisingly good compared to the traditional k-NN algorithm and tree-based k-NN algorithms such as kd-trees and ball-trees. On a collection of 20 datasets with up to 10(6) records and 10(4) dimensions, kMkNN shows a 2-to 80-fold reduction of distance calculations and a 2- to 60-fold speedup over the traditional k-NN algorithm for 16 datasets. Furthermore, kMkNN performs significant better than a kd-tree based k-NN algorithm for all datasets and performs better than a ball-tree based k-NN algorithm for most datasets. The results show that kMkNN is effective for searching nearest neighbors in high dimensional spaces.

  2. Large-Scale Mixed Temperate Forest Mapping at the Single Tree Level using Airborne Laser Scanning

    NASA Astrophysics Data System (ADS)

    Scholl, V.; Morsdorf, F.; Ginzler, C.; Schaepman, M. E.

    2017-12-01

    Monitoring vegetation on a single tree level is critical to understand and model a variety of processes, functions, and changes in forest systems. Remote sensing technologies are increasingly utilized to complement and upscale the field-based measurements of forest inventories. Airborne laser scanning (ALS) systems provide valuable information in the vertical dimension for effective vegetation structure mapping. Although many algorithms exist to extract single tree segments from forest scans, they are often tuned to perform well in homogeneous coniferous or deciduous areas and are not successful in mixed forests. Other methods are too computationally expensive to apply operationally. The aim of this study was to develop a single tree detection workflow using leaf-off ALS data for the canton of Aargau in Switzerland. Aargau covers an area of over 1,400km2 and features mixed forests with various development stages and topography. Forest type was classified using random forests to guide local parameter selection. Canopy height model-based treetop maxima were detected and maintained based on the relationship between tree height and window size, used as a proxy to crown diameter. Watershed segmentation was used to generate crown polygons surrounding each maximum. The location, height, and crown dimensions of single trees were derived from the ALS returns within each polygon. Validation was performed through comparison with field measurements and extrapolated estimates from long-term monitoring plots of the Swiss National Forest Inventory within the framework of the Swiss Federal Institute for Forest, Snow, and Landscape Research. This method shows promise for robust, large-scale single tree detection in mixed forests. The single tree data will aid ecological studies as well as forest management practices. Figure description: Height-normalized ALS point cloud data (top) and resulting single tree segments (bottom) on the Laegeren mountain in Switzerland.

  3. Evaluation of growth disturbances of Picea abies (L.) Karst. to disturbances caused by landslide movements

    NASA Astrophysics Data System (ADS)

    Šilhán, Karel

    2017-01-01

    Dendrogeomorphic methods are frequently used in landslide analyses. Although methods of landslide dating based on tree rings are well developed, they still indicated many questions. The aim of this study was to evaluate the frequently used theoretical scheme based on the event-response relationship. Seventy-four individuals of Norway spruce (Picea abies (L.) Karst.) exhibiting visible external disturbance, were sampled on the Girová landslide (the largest historical flow-like landslide in the Czech Republic). This landslide reactivated in May 2010, and post-landslide tree growth responses were studied in detail. These growth responses were compared with the intensity and occurrence of visible external tree disturbance: tilted stems, damaged root systems, and decapitation. Twenty-nine trees (39.2%) died within one to four years following the 2010 landslide movement. The trees that died following the landslide movement were significantly younger and displayed significantly greater stem tilting than the live trees. Abrupt growth suppression was a more-frequent response among the dead trees, whereas growth release dominated among the live trees. Only two trees (2.7%) created no reaction wood in response to the landslide movement. Forty-four percent of the trees started to produce reaction wood structure after a delay, which generally spanned one year. Some eccentric growth was evident in the tree rings of the landslide year and was significant in the first years following the landslide movement. Missing rings were observed only on the upper sides of the stems, and no false tree rings were observed. The results confirm the general validity of event-response relationship, nevertheless this study points out the limitations and uncertainties of this generally accepted working scheme.

  4. Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed

    USGS Publications Warehouse

    Balk, Benjamin; Elder, Kelly

    2000-01-01

    We model the spatial distribution of snow across a mountain basin using an approach that combines binary decision tree and geostatistical techniques. In April 1997 and 1998, intensive snow surveys were conducted in the 6.9‐km2 Loch Vale watershed (LVWS), Rocky Mountain National Park, Colorado. Binary decision trees were used to model the large‐scale variations in snow depth, while the small‐scale variations were modeled through kriging interpolation methods. Binary decision trees related depth to the physically based independent variables of net solar radiation, elevation, slope, and vegetation cover type. These decision tree models explained 54–65% of the observed variance in the depth measurements. The tree‐based modeled depths were then subtracted from the measured depths, and the resulting residuals were spatially distributed across LVWS through kriging techniques. The kriged estimates of the residuals were added to the tree‐based modeled depths to produce a combined depth model. The combined depth estimates explained 60–85% of the variance in the measured depths. Snow densities were mapped across LVWS using regression analysis. Snow‐covered area was determined from high‐resolution aerial photographs. Combining the modeled depths and densities with a snow cover map produced estimates of the spatial distribution of snow water equivalence (SWE). This modeling approach offers improvement over previous methods of estimating SWE distribution in mountain basins.

  5. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparison with Other Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the averagemore » nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.« less

  6. A stepwise regression tree for nonlinear approximation: applications to estimating subpixel land cover

    USGS Publications Warehouse

    Huang, C.; Townshend, J.R.G.

    2003-01-01

    A stepwise regression tree (SRT) algorithm was developed for approximating complex nonlinear relationships. Based on the regression tree of Breiman et al . (BRT) and a stepwise linear regression (SLR) method, this algorithm represents an improvement over SLR in that it can approximate nonlinear relationships and over BRT in that it gives more realistic predictions. The applicability of this method to estimating subpixel forest was demonstrated using three test data sets, on all of which it gave more accurate predictions than SLR and BRT. SRT also generated more compact trees and performed better than or at least as well as BRT at all 10 equal forest proportion interval ranging from 0 to 100%. This method is appealing to estimating subpixel land cover over large areas.

  7. Three-Dimensions Segmentation of Pulmonary Vascular Trees for Low Dose CT Scans

    NASA Astrophysics Data System (ADS)

    Lai, Jun; Huang, Ying; Wang, Ying; Wang, Jun

    2016-12-01

    Due to the low contrast and the partial volume effects, providing an accurate and in vivo analysis for pulmonary vascular trees from low dose CT scans is a challenging task. This paper proposes an automatic integration segmentation approach for the vascular trees in low dose CT scans. It consists of the following steps: firstly, lung volumes are acquired by the knowledge based method from the CT scans, and then the data are smoothed by the 3D Gaussian filter; secondly, two or three seeds are gotten by the adaptive 2D segmentation and the maximum area selecting from different position scans; thirdly, each seed as the start voxel is inputted for a quick multi-seeds 3D region growing to get vascular trees; finally, the trees are refined by the smooth filter. Through skeleton analyzing for the vascular trees, the results show that the proposed method can provide much better and lower level vascular branches.

  8. Estimation of carbon storage based on individual tree detection in Pinus densiflora stands using a fusion of aerial photography and LiDAR data.

    PubMed

    Kim, So-Ra; Kwak, Doo-Ahn; Lee, Woo-Kyun; oLee, Woo-Kyun; Son, Yowhan; Bae, Sang-Won; Kim, Choonsig; Yoo, Seongjin

    2010-07-01

    The objective of this study was to estimate the carbon storage capacity of Pinus densiflora stands using remotely sensed data by combining digital aerial photography with light detection and ranging (LiDAR) data. A digital canopy model (DCM), generated from the LiDAR data, was combined with aerial photography for segmenting crowns of individual trees. To eliminate errors in over and under-segmentation, the combined image was smoothed using a Gaussian filtering method. The processed image was then segmented into individual trees using a marker-controlled watershed segmentation method. After measuring the crown area from the segmented individual trees, the individual tree diameter at breast height (DBH) was estimated using a regression function developed from the relationship observed between the field-measured DBH and crown area. The above ground biomass of individual trees could be calculated by an image-derived DBH using a regression function developed by the Korea Forest Research Institute. The carbon storage, based on individual trees, was estimated by simple multiplication using the carbon conversion index (0.5), as suggested in guidelines from the Intergovernmental Panel on Climate Change. The mean carbon storage per individual tree was estimated and then compared with the field-measured value. This study suggested that the biomass and carbon storage in a large forest area can be effectively estimated using aerial photographs and LiDAR data.

  9. A Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases

    PubMed Central

    Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting

    2014-01-01

    In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type. PMID:25051028

  10. A hybrid spatio-temporal data indexing method for trajectory databases.

    PubMed

    Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting

    2014-07-21

    In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type.

  11. Strategic conservation of orchard germplasm based on indigenous knowledge and genetic diversity: a case study of sour orange populations in China.

    PubMed

    Ming, Feng; Liu, Qi-Kun; Shi, Jin-Lei; Wang, Wei; Lu, Bao-Rong

    2009-01-01

    To effectively conserve sour orange (Citrus aurantium L.) germplasm on two islands at the estuary of the Yangtze River in China, we estimated genetic variation and relationships of the known parental trees and their proposed descendents (young trees) using the fingerprints of random amplified polymorphic DNA (RAPD). Results based on RAPD analyses showed considerable genetic diversity in the parental populations (H(e)=0.202). The overall populations including the parental and young trees showed slightly higher genetic diversity (H(e)=0.298) than the parents, with about 10% variation between populations. An unweighted pair group method with arithmetic mean analysis dendrogram based on cluster analysis of the Jaccard similarity among individuals demonstrated a more complicated relationship of the parental and young trees from the two islands, although the young trees showed a clear association with parental trees. This indicates a significant contribution of parental trees in establishing the sour orange populations on the two islands. According to farmers' knowledge, conservation of only one or two parental trees would be sufficient because they believed that the whole populations were generated from a single mother tree. However, this study suggests that preserving most parental trees and some selected young trees with distant genetic relationships should be an effective conservation strategy for sour orange germplasm on the two islands.

  12. Negative feedback adjustment challenges reconstruction study from tree rings: A study case of response of Populus euphratica to river discontinuous flow and ecological water conveyance.

    PubMed

    Ling, Hongbo; Zhang, Pei; Guo, Bin; Xu, Hailiang; Ye, Mao; Deng, Xiaoya

    2017-01-01

    Drought stress changes the relationship between the growth of tree rings and variations in ambient temperature. However, it is not clear how the growth of trees changes in response to drought of varying intensities, especially in arid areas. Therefore, Tree rings were studied for 6years in Populus euphratica to assess the impacts of abrupt changes in environment on tree rings using the theories and methods in dendrohydrology, ecology and phytophysiology. The width of tree rings increased by 8.7% after ecological water conveyance downstream of Tarim River compared to that when the river water had been cut off. However, during intermediate drought, as the depth of the groundwater increases, the downward trend in the tree rings was reversed because of changes in the physiology of the tree. Therefore, the growth of tree rings shows a negative feedback to intermediate drought stress, an observation that challenges the homogenization theory of tree ring reconstruction based on the traditional methods. Owing to the time lag, the cumulative effect and the negative feedback between the growth of tree rings and drought stress, the reconstruction of past environment by studying the patterns of tree rings is often inaccurate. Our research sets out to verify the hypothesis that intermediate drought stress results in a negative feedback adjustment and thus to answers two scientific questions: (1) How does the negative feedback adjustment promote the growth of tree rings as a result of intermediate drought stress? (2) How does the negative feedback adjustment lower the accuracy with which the past is reconstructed based on tree rings? This research not only enriches the connotations of intermediate disturbance hypothesis and reconstruction theory of tree rings, but also provides a scientific basis for the conservation of desert riparian forests worldwide. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Tree hazard control on recreation sites...estimating local budgets

    Treesearch

    Lee A. Paine

    1967-01-01

    Tree hazard control efforts on recreation sites are subject to budget and administrative restrictions. To make the most effective use of available control funds, priorities should be assigned to various classes of tree defects and a budget set up. With the method provided, local priorities are based on cost effectiveness. Some guide lines and a worksheet for planning a...

  14. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data.

    PubMed

    Lee, Tae-Ho; Guo, Hui; Wang, Xiyin; Kim, Changsoo; Paterson, Andrew H

    2014-02-26

    Phylogenetic trees are widely used for genetic and evolutionary studies in various organisms. Advanced sequencing technology has dramatically enriched data available for constructing phylogenetic trees based on single nucleotide polymorphisms (SNPs). However, massive SNP data makes it difficult to perform reliable analysis, and there has been no ready-to-use pipeline to generate phylogenetic trees from these data. We developed a new pipeline, SNPhylo, to construct phylogenetic trees based on large SNP datasets. The pipeline may enable users to construct a phylogenetic tree from three representative SNP data file formats. In addition, in order to increase reliability of a tree, the pipeline has steps such as removing low quality data and considering linkage disequilibrium. A maximum likelihood method for the inference of phylogeny is also adopted in generation of a tree in our pipeline. Using SNPhylo, users can easily produce a reliable phylogenetic tree from a large SNP data file. Thus, this pipeline can help a researcher focus more on interpretation of the results of analysis of voluminous data sets, rather than manipulations necessary to accomplish the analysis.

  15. MRL and SuperFine+MRL: new supertree methods

    PubMed Central

    2012-01-01

    Background Supertree methods combine trees on subsets of the full taxon set together to produce a tree on the entire set of taxa. Of the many supertree methods, the most popular is MRP (Matrix Representation with Parsimony), a method that operates by first encoding the input set of source trees by a large matrix (the "MRP matrix") over {0,1, ?}, and then running maximum parsimony heuristics on the MRP matrix. Experimental studies evaluating MRP in comparison to other supertree methods have established that for large datasets, MRP generally produces trees of equal or greater accuracy than other methods, and can run on larger datasets. A recent development in supertree methods is SuperFine+MRP, a method that combines MRP with a divide-and-conquer approach, and produces more accurate trees in less time than MRP. In this paper we consider a new approach for supertree estimation, called MRL (Matrix Representation with Likelihood). MRL begins with the same MRP matrix, but then analyzes the MRP matrix using heuristics (such as RAxML) for 2-state Maximum Likelihood. Results We compared MRP and SuperFine+MRP with MRL and SuperFine+MRL on simulated and biological datasets. We examined the MRP and MRL scores of each method on a wide range of datasets, as well as the resulting topological accuracy of the trees. Our experimental results show that MRL, coupled with a very good ML heuristic such as RAxML, produced more accurate trees than MRP, and MRL scores were more strongly correlated with topological accuracy than MRP scores. Conclusions SuperFine+MRP, when based upon a good MP heuristic, such as TNT, produces among the best scores for both MRP and MRL, and is generally faster and more topologically accurate than other supertree methods we tested. PMID:22280525

  16. Phylogenetic framework for coevolutionary studies: a compass for exploring jungles of tangled trees.

    PubMed

    Martínez-Aquino, Andrés

    2016-08-01

    Phylogenetics is used to detect past evolutionary events, from how species originated to how their ecological interactions with other species arose, which can mirror cophylogenetic patterns. Cophylogenetic reconstructions uncover past ecological relationships between taxa through inferred coevolutionary events on trees, for example, codivergence, duplication, host-switching, and loss. These events can be detected by cophylogenetic analyses based on nodes and the length and branching pattern of the phylogenetic trees of symbiotic associations, for example, host-parasite. In the past 2 decades, algorithms have been developed for cophylogetenic analyses and implemented in different software, for example, statistical congruence index and event-based methods. Based on the combination of these approaches, it is possible to integrate temporal information into cophylogenetical inference, such as estimates of lineage divergence times between 2 taxa, for example, hosts and parasites. Additionally, the advances in phylogenetic biogeography applying methods based on parametric process models and combined Bayesian approaches, can be useful for interpreting coevolutionary histories in a scenario of biogeographical area connectivity through time. This article briefly reviews the basics of parasitology and provides an overview of software packages in cophylogenetic methods. Thus, the objective here is to present a phylogenetic framework for coevolutionary studies, with special emphasis on groups of parasitic organisms. Researchers wishing to undertake phylogeny-based coevolutionary studies can use this review as a "compass" when "walking" through jungles of tangled phylogenetic trees.

  17. Phylogenetic framework for coevolutionary studies: a compass for exploring jungles of tangled trees

    PubMed Central

    2016-01-01

    Abstract Phylogenetics is used to detect past evolutionary events, from how species originated to how their ecological interactions with other species arose, which can mirror cophylogenetic patterns. Cophylogenetic reconstructions uncover past ecological relationships between taxa through inferred coevolutionary events on trees, for example, codivergence, duplication, host-switching, and loss. These events can be detected by cophylogenetic analyses based on nodes and the length and branching pattern of the phylogenetic trees of symbiotic associations, for example, host–parasite. In the past 2 decades, algorithms have been developed for cophylogetenic analyses and implemented in different software, for example, statistical congruence index and event-based methods. Based on the combination of these approaches, it is possible to integrate temporal information into cophylogenetical inference, such as estimates of lineage divergence times between 2 taxa, for example, hosts and parasites. Additionally, the advances in phylogenetic biogeography applying methods based on parametric process models and combined Bayesian approaches, can be useful for interpreting coevolutionary histories in a scenario of biogeographical area connectivity through time. This article briefly reviews the basics of parasitology and provides an overview of software packages in cophylogenetic methods. Thus, the objective here is to present a phylogenetic framework for coevolutionary studies, with special emphasis on groups of parasitic organisms. Researchers wishing to undertake phylogeny-based coevolutionary studies can use this review as a “compass” when “walking” through jungles of tangled phylogenetic trees. PMID:29491928

  18. The Early Detection of the Emerald Ash Borer (EAB) Using Advanced Geospacial Technologies

    NASA Astrophysics Data System (ADS)

    Hu, B.; Li, J.; Wang, J.; Hall, B.

    2014-11-01

    The objectives of this study were to exploit Light Detection And Ranging (LiDAR) and very high spatial resolution (VHR) data and their synergy with hyperspectral imagery in the early detection of the EAB presence in trees within urban areas and to develop a framework to combine information extracted from multiple data sources. To achieve these, an object-oriented framework was developed to combine information derived from available data sets to characterize ash trees. Within this framework, individual trees were first extracted and then classified into different species based on their spectral information derived from hyperspectral imagery, spatial information from VHR imagery, and for each ash tree its health state and EAB infestation stage were determined based on hyperspectral imagery. The developed framework and methods were demonstrated to be effective according to the results obtained on two study sites in the city of Toronto, Ontario Canada. The individual tree delineation method provided satisfactory results with an overall accuracy of 78 % and 19 % commission and 23 % omission errors when used on the combined very high-spatial resolution imagery and LiDAR data. In terms of the identification of ash trees, given sufficient representative training data, our classification model was able to predict tree species with above 75 % overall accuracy, and mis-classification occurred mainly between ash and maple trees. The hypothesis that a strong correlation exists between general tree stress and EAB infestation was confirmed. Vegetation indices sensitive to leaf chlorophyll content derived from hyperspectral imagery can be used to predict the EAB infestation levels for each ash tree.

  19. A stochastic multiple imputation algorithm for missing covariate data in tree-structured survival analysis.

    PubMed

    Wallace, Meredith L; Anderson, Stewart J; Mazumdar, Sati

    2010-12-20

    Missing covariate data present a challenge to tree-structured methodology due to the fact that a single tree model, as opposed to an estimated parameter value, may be desired for use in a clinical setting. To address this problem, we suggest a multiple imputation algorithm that adds draws of stochastic error to a tree-based single imputation method presented by Conversano and Siciliano (Technical Report, University of Naples, 2003). Unlike previously proposed techniques for accommodating missing covariate data in tree-structured analyses, our methodology allows the modeling of complex and nonlinear covariate structures while still resulting in a single tree model. We perform a simulation study to evaluate our stochastic multiple imputation algorithm when covariate data are missing at random and compare it to other currently used methods. Our algorithm is advantageous for identifying the true underlying covariate structure when complex data and larger percentages of missing covariate observations are present. It is competitive with other current methods with respect to prediction accuracy. To illustrate our algorithm, we create a tree-structured survival model for predicting time to treatment response in older, depressed adults. Copyright © 2010 John Wiley & Sons, Ltd.

  20. Calibration of the Diameter Distribution Derived from the Area-based Approach with Individual Tree-based Diameter Estimates Using the Airborne Laser Scanning

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Hou, Z.; Maltamo, M.; Tokola, T.

    2015-12-01

    Diameter distributions of trees are important indicators of current forest stand structure and future dynamics. A new method was proposed in the study to combine the diameter distributions derived from the area-based approach (ABA) and the diameter distribution derived from the individual tree detection (ITD) in order to obtain more accurate forest stand attributes. Since dominant trees can be reliably detected and measured by the Lidar data via the ITD, the focus of the study is to retrieve the suppressed trees (trees that were missed by the ITD) from the ABA. Replacement and histogram matching were respectively employed at the plot level to retrieve the suppressed trees. Cut point was detected from the ITD-derived diameter distribution for each sample plot to distinguish dominant trees from the suppressed trees. The results showed that calibrated diameter distributions were more accurate in terms of error index and the entire growing stock estimates. Compared with the best performer between the ABA and the ITD, calibrated diameter distributions decreased the relative RMSE of the estimated entire growing stock, saw log and pulpwood fractions by 2.81%, 3.05% and 7.73% points respectively. Calibration improved the estimation of pulpwood fraction significantly, resulting in a negligible bias of the estimated entire growing stock.

  1. Structural attributes of individual trees for identifying homogeneous patches in a tropical rainforest

    NASA Astrophysics Data System (ADS)

    Alexander, Cici; Korstjens, Amanda H.; Hill, Ross A.

    2017-03-01

    Mapping and monitoring tropical rainforests and quantifying their carbon stocks are important, both for devising strategies for their conservation and mitigating the effects of climate change. Airborne Laser Scanning (ALS) has advantages over other remote sensing techniques for describing the three-dimensional structure of forests. This study identifies forest patches using ALS-based structural attributes in a tropical rainforest in Sumatra, Indonesia. A method to group trees with similar attributes into forest patches based on Thiessen polygons and k-medoids clustering is developed, combining the advantages of both raster and individual tree-based methods. The structural composition of the patches could be an indicator of habitat type and quality. The patches could also be a basis for developing allometric models for more accurate estimation of carbon stock than is currently possible with generalised models.

  2. Predicting Flowering Behavior and Exploring Its Genetic Determinism in an Apple Multi-family Population Based on Statistical Indices and Simplified Phenotyping.

    PubMed

    Durand, Jean-Baptiste; Allard, Alix; Guitton, Baptiste; van de Weg, Eric; Bink, Marco C A M; Costes, Evelyne

    2017-01-01

    Irregular flowering over years is commonly observed in fruit trees. The early prediction of tree behavior is highly desirable in breeding programmes. This study aims at performing such predictions, combining simplified phenotyping and statistics methods. Sequences of vegetative vs. floral annual shoots (AS) were observed along axes in trees belonging to five apple related full-sib families. Sequences were analyzed using Markovian and linear mixed models including year and site effects. Indices of flowering irregularity, periodicity and synchronicity were estimated, at tree and axis scales. They were used to predict tree behavior and detect QTL with a Bayesian pedigree-based analysis, using an integrated genetic map containing 6,849 SNPs. The combination of a Biennial Bearing Index (BBI) with an autoregressive coefficient (γ g ) efficiently predicted and classified the genotype behaviors, despite few misclassifications. Four QTLs common to BBIs and γ g and one for synchronicity were highlighted and revealed the complex genetic architecture of the traits. Irregularity resulted from high AS synchronism, whereas regularity resulted from either asynchronous locally alternating or continual regular AS flowering. A relevant and time-saving method, based on a posteriori sampling of axes and statistical indices is proposed, which is efficient to evaluate the tree breeding values for flowering regularity and could be transferred to other species.

  3. Methods for estimating aboveground biomass and its components for Douglas-fir and lodgepole pine trees

    Treesearch

    K.P. Poudel; H. Temesgen

    2016-01-01

    Estimating aboveground biomass and its components requires sound statistical formulation and evaluation. Using data collected from 55 destructively sampled trees in different parts of Oregon, we evaluated the performance of three groups of methods to estimate total aboveground biomass and (or) its components based on the bias and root mean squared error (RMSE) that...

  4. Risk Factors of Falls in Community-Dwelling Older Adults: Logistic Regression Tree Analysis

    ERIC Educational Resources Information Center

    Yamashita, Takashi; Noe, Douglas A.; Bailer, A. John

    2012-01-01

    Purpose of the Study: A novel logistic regression tree-based method was applied to identify fall risk factors and possible interaction effects of those risk factors. Design and Methods: A nationally representative sample of American older adults aged 65 years and older (N = 9,592) in the Health and Retirement Study 2004 and 2006 modules was used.…

  5. Binary recursive partitioning: background, methods, and application to psychology.

    PubMed

    Merkle, Edgar C; Shaffer, Victoria A

    2011-02-01

    Binary recursive partitioning (BRP) is a computationally intensive statistical method that can be used in situations where linear models are often used. Instead of imposing many assumptions to arrive at a tractable statistical model, BRP simply seeks to accurately predict a response variable based on values of predictor variables. The method outputs a decision tree depicting the predictor variables that were related to the response variable, along with the nature of the variables' relationships. No significance tests are involved, and the tree's 'goodness' is judged based on its predictive accuracy. In this paper, we describe BRP methods in a detailed manner and illustrate their use in psychological research. We also provide R code for carrying out the methods.

  6. The Impact of the Tree Prior on Molecular Dating of Data Sets Containing a Mixture of Inter- and Intraspecies Sampling.

    PubMed

    Ritchie, Andrew M; Lo, Nathan; Ho, Simon Y W

    2017-05-01

    In Bayesian phylogenetic analyses of genetic data, prior probability distributions need to be specified for the model parameters, including the tree. When Bayesian methods are used for molecular dating, available tree priors include those designed for species-level data, such as the pure-birth and birth-death priors, and coalescent-based priors designed for population-level data. However, molecular dating methods are frequently applied to data sets that include multiple individuals across multiple species. Such data sets violate the assumptions of both the speciation and coalescent-based tree priors, making it unclear which should be chosen and whether this choice can affect the estimation of node times. To investigate this problem, we used a simulation approach to produce data sets with different proportions of within- and between-species sampling under the multispecies coalescent model. These data sets were then analyzed under pure-birth, birth-death, constant-size coalescent, and skyline coalescent tree priors. We also explored the ability of Bayesian model testing to select the best-performing priors. We confirmed the applicability of our results to empirical data sets from cetaceans, phocids, and coregonid whitefish. Estimates of node times were generally robust to the choice of tree prior, but some combinations of tree priors and sampling schemes led to large differences in the age estimates. In particular, the pure-birth tree prior frequently led to inaccurate estimates for data sets containing a mixture of inter- and intraspecific sampling, whereas the birth-death and skyline coalescent priors produced stable results across all scenarios. Model testing provided an adequate means of rejecting inappropriate tree priors. Our results suggest that tree priors do not strongly affect Bayesian molecular dating results in most cases, even when severely misspecified. However, the choice of tree prior can be significant for the accuracy of dating results in the case of data sets with mixed inter- and intraspecies sampling. [Bayesian phylogenetic methods; model testing; molecular dating; node time; tree prior.]. © The authors 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  7. Applying species-tree analyses to deep phylogenetic histories: challenges and potential suggested from a survey of empirical phylogenetic studies.

    PubMed

    Lanier, Hayley C; Knowles, L Lacey

    2015-02-01

    Coalescent-based methods for species-tree estimation are becoming a dominant approach for reconstructing species histories from multi-locus data, with most of the studies examining these methodologies focused on recently diverged species. However, deeper phylogenies, such as the datasets that comprise many Tree of Life (ToL) studies, also exhibit gene-tree discordance. This discord may also arise from the stochastic sorting of gene lineages during the speciation process (i.e., reflecting the random coalescence of gene lineages in ancestral populations). It remains unknown whether guidelines regarding methodologies and numbers of loci established by simulation studies at shallow tree depths translate into accurate species relationships for deeper phylogenetic histories. We address this knowledge gap and specifically identify the challenges and limitations of species-tree methods that account for coalescent variance for deeper phylogenies. Using simulated data with characteristics informed by empirical studies, we evaluate both the accuracy of estimated species trees and the characteristics associated with recalcitrant nodes, with a specific focus on whether coalescent variance is generally responsible for the lack of resolution. By determining the proportion of coalescent genealogies that support a particular node, we demonstrate that (1) species-tree methods account for coalescent variance at deep nodes and (2) mutational variance - not gene-tree discord arising from the coalescent - posed the primary challenge for accurate reconstruction across the tree. For example, many nodes were accurately resolved despite predicted discord from the random coalescence of gene lineages and nodes with poor support were distributed across a range of depths (i.e., they were not restricted to a particular recent divergences). Given their broad taxonomic scope and large sampling of taxa, deep level phylogenies pose several potential methodological complications including difficulties with MCMC convergence and estimation of requisite population genetic parameters for coalescent-based approaches. Despite these difficulties, the findings generally support the utility of species-tree analyses for the estimation of species relationships throughout the ToL. We discuss strategies for successful application of species-tree approaches to deep phylogenies. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A laid-back trip through the Hennigian Forests

    PubMed Central

    2017-01-01

    Background This paper is a comment on the idea of matrix-free Cladistics. Demonstration of this idea’s efficiency is a major goal of the study. Within the proposed framework, the ordinary (phenetic) matrix is necessary only as “source” of Hennigian trees, not as a primary subject of the analysis. Switching from the matrix-based thinking to the matrix-free Cladistic approach clearly reveals that optimizations of the character-state changes are related not to the real processes, but to the form of the data representation. Methods We focused our study on the binary data. We wrote the simple ruby-based script FORESTER version 1.0 that helps represent a binary matrix as an array of the rooted trees (as a “Hennigian forest”). The binary representations of the genomic (DNA) data have been made by script 1001. The Average Consensus method as well as the standard Maximum Parsimony (MP) approach has been used to analyze the data. Principle findings The binary matrix may be easily re-written as a set of rooted trees (maximal relationships). The latter might be analyzed by the Average Consensus method. Paradoxically, this method, if applied to the Hennigian forests, in principle can help to identify clades despite the absence of the direct evidence from the primary data. Our approach may handle the clock- or non clock-like matrices, as well as the hypothetical, molecular or morphological data. Discussion Our proposal clearly differs from the numerous phenetic alignment-free techniques of the construction of the phylogenetic trees. Dealing with the relations, not with the actual “data” also distinguishes our approach from all optimization-based methods, if the optimization is defined as a way to reconstruct the sequences of the character-state changes on a tree, either the standard alignment-based techniques or the “direct” alignment-free procedure. We are not viewing our recent framework as an alternative to the three-taxon statement analysis (3TA), but there are two major differences between our recent proposal and the 3TA, as originally designed and implemented: (1) the 3TA deals with the three-taxon statements or minimal relationships. According to the logic of 3TA, the set of the minimal trees must be established as a binary matrix and used as an input for the parsimony program. In this paper, we operate directly with maximal relationships written just as trees, not as binary matrices, while also using the Average Consensus method instead of the MP analysis. The solely ‘reversal’-based groups can always be found by our method without the separate scoring of the putative reversals before analyses. PMID:28740753

  9. PhyloTreePruner: A Phylogenetic Tree-Based Approach for Selection of Orthologous Sequences for Phylogenomics.

    PubMed

    Kocot, Kevin M; Citarella, Mathew R; Moroz, Leonid L; Halanych, Kenneth M

    2013-01-01

    Molecular phylogenetics relies on accurate identification of orthologous sequences among the taxa of interest. Most orthology inference programs available for use in phylogenomics rely on small sets of pre-defined orthologs from model organisms or phenetic approaches such as all-versus-all sequence comparisons followed by Markov graph-based clustering. Such approaches have high sensitivity but may erroneously include paralogous sequences. We developed PhyloTreePruner, a software utility that uses a phylogenetic approach to refine orthology inferences made using phenetic methods. PhyloTreePruner checks single-gene trees for evidence of paralogy and generates a new alignment for each group containing only sequences inferred to be orthologs. Importantly, PhyloTreePruner takes into account support values on the tree and avoids unnecessarily deleting sequences in cases where a weakly supported tree topology incorrectly indicates paralogy. A test of PhyloTreePruner on a dataset generated from 11 completely sequenced arthropod genomes identified 2,027 orthologous groups sampled for all taxa. Phylogenetic analysis of the concatenated supermatrix yielded a generally well-supported topology that was consistent with the current understanding of arthropod phylogeny. PhyloTreePruner is freely available from http://sourceforge.net/projects/phylotreepruner/.

  10. Effectiveness of phylogenomic data and coalescent species-tree methods for resolving difficult nodes in the phylogeny of advanced snakes (Serpentes: Caenophidia).

    PubMed

    Pyron, R Alexander; Hendry, Catriona R; Chou, Vincent M; Lemmon, Emily M; Lemmon, Alan R; Burbrink, Frank T

    2014-12-01

    Next-generation genomic sequencing promises to quickly and cheaply resolve remaining contentious nodes in the Tree of Life, and facilitates species-tree estimation while taking into account stochastic genealogical discordance among loci. Recent methods for estimating species trees bypass full likelihood-based estimates of the multi-species coalescent, and approximate the true species-tree using simpler summary metrics. These methods converge on the true species-tree with sufficient genomic sampling, even in the anomaly zone. However, no studies have yet evaluated their efficacy on a large-scale phylogenomic dataset, and compared them to previous concatenation strategies. Here, we generate such a dataset for Caenophidian snakes, a group with >2500 species that contains several rapid radiations that were poorly resolved with fewer loci. We generate sequence data for 333 single-copy nuclear loci with ∼100% coverage (∼0% missing data) for 31 major lineages. We estimate phylogenies using neighbor joining, maximum parsimony, maximum likelihood, and three summary species-tree approaches (NJst, STAR, and MP-EST). All methods yield similar resolution and support for most nodes. However, not all methods support monophyly of Caenophidia, with Acrochordidae placed as the sister taxon to Pythonidae in some analyses. Thus, phylogenomic species-tree estimation may occasionally disagree with well-supported relationships from concatenated analyses of small numbers of nuclear or mitochondrial genes, a consideration for future studies. In contrast for at least two diverse, rapid radiations (Lamprophiidae and Colubridae), phylogenomic data and species-tree inference do little to improve resolution and support. Thus, certain nodes may lack strong signal, and larger datasets and more sophisticated analyses may still fail to resolve them. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The potential of turmeric (Curcuma xanthorrhiza) in agroforestry system based on silk tree (Albizia chinensis)

    NASA Astrophysics Data System (ADS)

    Purnomo, D.; Budiastuti, M. S.; Sakya, A. T.; Cholid, M. I.

    2018-03-01

    Turmeric (Curcuma xanthorrhiza Roxb.) is a traditional medicinal plant. In Indonesia, it is generally cultivated in village home gardens. Famers conducted very simpple cultivation method of turmeric, without specific maintenance and below varies tree. The experiment was conducted by cultivating turmeric below silk trees as in agroforetry system. The experiment was arranged split plot design, the first factor was three level of irradiation (turmeric monoculture/full irradiation, turmeric below silktree with pruning canopy, and turmeric below silk tree no pruning). The second factor was fertilizer NPK 15-15-15 with three levels of doses (100, 150, and 200 kg ha-1). Cultivating turmeric in agroforestry system based on silk tree which were one year old and not yet needed pruning, application of NPK 15-15-15 fertilizer 100 kg ha-1 was enough. The rhizome yield of turmeric 3 months age reaches 139 g per plant (fresh weight). Litter fall from a silk tree one year old in one year is 30 kg per tree per year.

  12. Improving ensemble decision tree performance using Adaboost and Bagging

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Rajib; Siraj, Fadzilah; Sainin, Mohd Shamrie

    2015-12-01

    Ensemble classifier systems are considered as one of the most promising in medical data classification and the performance of deceision tree classifier can be increased by the ensemble method as it is proven to be better than single classifiers. However, in a ensemble settings the performance depends on the selection of suitable base classifier. This research employed two prominent esemble s namely Adaboost and Bagging with base classifiers such as Random Forest, Random Tree, j48, j48grafts and Logistic Model Regression (LMT) that have been selected independently. The empirical study shows that the performance varries when different base classifiers are selected and even some places overfitting issue also been noted. The evidence shows that ensemble decision tree classfiers using Adaboost and Bagging improves the performance of selected medical data sets.

  13. Creating ensembles of decision trees through sampling

    DOEpatents

    Kamath, Chandrika; Cantu-Paz, Erick

    2005-08-30

    A system for decision tree ensembles that includes a module to read the data, a module to sort the data, a module to evaluate a potential split of the data according to some criterion using a random sample of the data, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method is based on statistical sampling techniques and includes the steps of reading the data; sorting the data; evaluating a potential split according to some criterion using a random sample of the data, splitting the data, and combining multiple decision trees in ensembles.

  14. Comparative seed-tree and selection harvesting costs in young-growth mixed-conifer stands

    Treesearch

    William A. Atkinson; Dale O. Hall

    1963-01-01

    Little difference was found between yarding and felling costs in seed-tree and selection harvest cuts. The volume per acre logged was 23,800 board feet on the seed-tree compartments and 10,600 board feet on the selection compartments. For a comparable operation with this range of volumes, cutting method decisions should be based on factors other than logging costs....

  15. An Extension of CART's Pruning Algorithm. Program Statistics Research Technical Report No. 91-11.

    ERIC Educational Resources Information Center

    Kim, Sung-Ho

    Among the computer-based methods used for the construction of trees such as AID, THAID, CART, and FACT, the only one that uses an algorithm that first grows a tree and then prunes the tree is CART. The pruning component of CART is analogous in spirit to the backward elimination approach in regression analysis. This idea provides a tool in…

  16. Comparison of Ordinal and Nominal Classification Trees to Predict Ordinal Expert-Based Occupational Exposure Estimates in a Case–Control Study

    PubMed Central

    Wheeler, David C.; Archer, Kellie J.; Burstyn, Igor; Yu, Kai; Stewart, Patricia A.; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Schwenn, Molly; Johnson, Alison; Armenti, Karla; Silverman, Debra T.; Friesen, Melissa C.

    2015-01-01

    Objectives: To evaluate occupational exposures in case–control studies, exposure assessors typically review each job individually to assign exposure estimates. This process lacks transparency and does not provide a mechanism for recreating the decision rules in other studies. In our previous work, nominal (unordered categorical) classification trees (CTs) generally successfully predicted expert-assessed ordinal exposure estimates (i.e. none, low, medium, high) derived from occupational questionnaire responses, but room for improvement remained. Our objective was to determine if using recently developed ordinal CTs would improve the performance of nominal trees in predicting ordinal occupational diesel exhaust exposure estimates in a case–control study. Methods: We used one nominal and four ordinal CT methods to predict expert-assessed probability, intensity, and frequency estimates of occupational diesel exhaust exposure (each categorized as none, low, medium, or high) derived from questionnaire responses for the 14983 jobs in the New England Bladder Cancer Study. To replicate the common use of a single tree, we applied each method to a single sample of 70% of the jobs, using 15% to test and 15% to validate each method. To characterize variability in performance, we conducted a resampling analysis that repeated the sample draws 100 times. We evaluated agreement between the tree predictions and expert estimates using Somers’ d, which measures differences in terms of ordinal association between predicted and observed scores and can be interpreted similarly to a correlation coefficient. Results: From the resampling analysis, compared with the nominal tree, an ordinal CT method that used a quadratic misclassification function and controlled tree size based on total misclassification cost had a slightly better predictive performance that was statistically significant for the frequency metric (Somers’ d: nominal tree = 0.61; ordinal tree = 0.63) and similar performance for the probability (nominal = 0.65; ordinal = 0.66) and intensity (nominal = 0.65; ordinal = 0.65) metrics. The best ordinal CT predicted fewer cases of large disagreement with the expert assessments (i.e. no exposure predicted for a job with high exposure and vice versa) compared with the nominal tree across all of the exposure metrics. For example, the percent of jobs with expert-assigned high intensity of exposure that the model predicted as no exposure was 29% for the nominal tree and 22% for the best ordinal tree. Conclusions: The overall agreements were similar across CT models; however, the use of ordinal models reduced the magnitude of the discrepancy when disagreements occurred. As the best performing model can vary by situation, researchers should consider evaluating multiple CT methods to maximize the predictive performance within their data. PMID:25433003

  17. Tree decomposition based fast search of RNA structures including pseudoknots in genomes.

    PubMed

    Song, Yinglei; Liu, Chunmei; Malmberg, Russell; Pan, Fangfang; Cai, Liming

    2005-01-01

    Searching genomes for RNA secondary structure with computational methods has become an important approach to the annotation of non-coding RNAs. However, due to the lack of efficient algorithms for accurate RNA structure-sequence alignment, computer programs capable of fast and effectively searching genomes for RNA secondary structures have not been available. In this paper, a novel RNA structure profiling model is introduced based on the notion of a conformational graph to specify the consensus structure of an RNA family. Tree decomposition yields a small tree width t for such conformation graphs (e.g., t = 2 for stem loops and only a slight increase for pseudo-knots). Within this modelling framework, the optimal alignment of a sequence to the structure model corresponds to finding a maximum valued isomorphic subgraph and consequently can be accomplished through dynamic programming on the tree decomposition of the conformational graph in time O(k(t)N(2)), where k is a small parameter; and N is the size of the projiled RNA structure. Experiments show that the application of the alignment algorithm to search in genomes yields the same search accuracy as methods based on a Covariance model with a significant reduction in computation time. In particular; very accurate searches of tmRNAs in bacteria genomes and of telomerase RNAs in yeast genomes can be accomplished in days, as opposed to months required by other methods. The tree decomposition based searching tool is free upon request and can be downloaded at our site h t t p ://w.uga.edu/RNA-informatics/software/index.php.

  18. Supertrees Based on the Subtree Prune-and-Regraft Distance

    PubMed Central

    Whidden, Christopher; Zeh, Norbert; Beiko, Robert G.

    2014-01-01

    Supertree methods reconcile a set of phylogenetic trees into a single structure that is often interpreted as a branching history of species. A key challenge is combining conflicting evolutionary histories that are due to artifacts of phylogenetic reconstruction and phenomena such as lateral gene transfer (LGT). Many supertree approaches use optimality criteria that do not reflect underlying processes, have known biases, and may be unduly influenced by LGT. We present the first method to construct supertrees by using the subtree prune-and-regraft (SPR) distance as an optimality criterion. Although calculating the rooted SPR distance between a pair of trees is NP-hard, our new maximum agreement forest-based methods can reconcile trees with hundreds of taxa and > 50 transfers in fractions of a second, which enables repeated calculations during the course of an iterative search. Our approach can accommodate trees in which uncertain relationships have been collapsed to multifurcating nodes. Using a series of benchmark datasets simulated under plausible rates of LGT, we show that SPR supertrees are more similar to correct species histories than supertrees based on parsimony or Robinson–Foulds distance criteria. We successfully constructed an SPR supertree from a phylogenomic dataset of 40,631 gene trees that covered 244 genomes representing several major bacterial phyla. Our SPR-based approach also allowed direct inference of highways of gene transfer between bacterial classes and genera. A Small number of these highways connect genera in different phyla and can highlight specific genes implicated in long-distance LGT. [Lateral gene transfer; matrix representation with parsimony; phylogenomics; prokaryotic phylogeny; Robinson–Foulds; subtree prune-and-regraft; supertrees.] PMID:24695589

  19. Water-Tree Modelling and Detection for Underground Cables

    NASA Astrophysics Data System (ADS)

    Chen, Qi

    In recent years, aging infrastructure has become a major concern for the power industry. Since its inception in early 20th century, the electrical system has been the cornerstone of an industrial society. Stable and uninterrupted delivery of electrical power is now a base necessity for the modern world. As the times march-on, however, the electrical infrastructure ages and there is the inevitable need to renew and replace the existing system. Unfortunately, due to time and financial constraints, many electrical systems today are forced to operate beyond their original design and power utilities must find ways to prolong the lifespan of older equipment. Thus, the concept of preventative maintenance arises. Preventative maintenance allows old equipment to operate longer and at better efficiency, but in order to implement preventative maintenance, the operators must know minute details of the electrical system, especially some of the harder to assess issues such water-tree. Water-tree induced insulation degradation is a problem typically associated with older cable systems. It is a very high impedance phenomenon and it is difficult to detect using traditional methods such as Tan-Delta or Partial Discharge. The proposed dissertation studies water-tree development in underground cables, potential methods to detect water-tree location and water-tree severity estimation. The dissertation begins by developing mathematical models of water-tree using finite element analysis. The method focuses on surface-originated vented tree, the most prominent type of water-tree fault in the field. Using the standard operation parameters of North American electrical systems, the water-tree boundary conditions are defined. By applying finite element analysis technique, the complex water-tree structure is broken down to homogeneous components. The result is a generalized representation of water-tree capacitance at different stages of development. The result from the finite element analysis is used to model water-tree in large system. Both empirical measurements and the mathematical model show that the impedance of early-stage water-tree is extremely large. As the result, traditional detection methods such Tan-Delta or Partial Discharge are not effective due to the excessively high accuracy requirement. A high-frequency pulse detection method is developed instead. The water-tree impedance is capacitive in nature and it can be reduced to manageable level by high-frequency inputs. The method is able to determine the location of early-stage water-tree in long-distance cables using economically feasible equipment. A pattern recognition method is developed to estimate the severity of water-tree using its pulse response from the high-frequency test method. The early-warning system for water-tree appearance is a tool developed to assist the practical implementation of the high-frequency pulse detection method. Although the equipment used by the detection method is economically feasible, it is still a specialized test and not designed for constant monitoring of the system. The test also place heavy stress on the cable and it is most effective when the cable is taken offline. As the result, utilities need a method to estimate the likelihood of water-tree presence before subjecting the cable to the specialized test. The early-warning system takes advantage of naturally occurring high-frequency events in the system and uses a deviation-comparison method to estimate the probability of water-tree presence on the cable. If the likelihood is high, then the utility can use the high-frequency pulse detection method to obtain accurate results. Specific pulse response patterns can be used to calculate the capacitance of water-tree. The calculated result, however, is subjected to margins of error due to limitations from the real system. There are both long-term and short-term methods to improve the accuracy. Computation algorithm improvement allows immediate improvement on accuracy of the capacitance estimation. The probability distribution of the calculation solution showed that improvements in waveform time-step measurement allow fundamental improves to the overall result.

  20. [Research advances in dendrochronology].

    PubMed

    Fang, Ke-Yan; Chen, Qiu-Yan; Liu, Chang-Zhi; Cao, Chun-Fu; Chen, Ya-Jun; Zhou, Fei-Fei

    2014-07-01

    Tree-ring studies in China have achieved great advances since the 1990s, particularly for the dendroclimatological studies which have made some influence around the world. However, because of the uneven development, limited attention has been currently paid on the other branches of dendrochronology. We herein briefly compared the advances of dendrochronology in China and of the world and presented suggestions on future dendrochronological studies. Large-scale tree-ring based climate reconstructions in China are highly needed by employing mathematical methods and a high quality tree-ring network of the ring-width, density, stable isotope and wood anatomy. Tree-ring based field climate reconstructions provide potentials on explorations of climate forcings during the reconstructed periods via climate diagnosis and process simulation.

  1. An iterative method for airway segmentation using multiscale leakage detection

    NASA Astrophysics Data System (ADS)

    Nadeem, Syed Ahmed; Jin, Dakai; Hoffman, Eric A.; Saha, Punam K.

    2017-02-01

    There are growing applications of quantitative computed tomography for assessment of pulmonary diseases by characterizing lung parenchyma as well as the bronchial tree. Many large multi-center studies incorporating lung imaging as a study component are interested in phenotypes relating airway branching patterns, wall-thickness, and other morphological measures. To our knowledge, there are no fully automated airway tree segmentation methods, free of the need for user review. Even when there are failures in a small fraction of segmentation results, the airway tree masks must be manually reviewed for all results which is laborious considering that several thousands of image data sets are evaluated in large studies. In this paper, we present a CT-based novel airway tree segmentation algorithm using iterative multi-scale leakage detection, freezing, and active seed detection. The method is fully automated requiring no manual inputs or post-segmentation editing. It uses simple intensity based connectivity and a new leakage detection algorithm to iteratively grow an airway tree starting from an initial seed inside the trachea. It begins with a conservative threshold and then, iteratively shifts toward generous values. The method was applied on chest CT scans of ten non-smoking subjects at total lung capacity and ten at functional residual capacity. Airway segmentation results were compared to an expert's manually edited segmentations. Branch level accuracy of the new segmentation method was examined along five standardized segmental airway paths (RB1, RB4, RB10, LB1, LB10) and two generations beyond these branches. The method successfully detected all branches up to two generations beyond these segmental bronchi with no visual leakages.

  2. Urban forest ecosystem analysis using fused airborne hyperspectral and lidar data

    NASA Astrophysics Data System (ADS)

    Alonzo, Mike Gerard

    Urban trees are strategically important in a city's effort to mitigate their carbon footprint, heat island effects, air pollution, and stormwater runoff. Currently, the most common method for quantifying urban forest structure and ecosystem function is through field plot sampling. However, taking intensive structural measurements on private properties throughout a city is difficult, and the outputs from sample inventories are not spatially explicit. The overarching goal of this dissertation is to develop methods for mapping urban forest structure and function using fused hyperspectral imagery and waveform lidar data at the individual tree crown scale. Urban forest ecosystem services estimated using the USDA Forest Service's i-Tree Eco (formerly UFORE) model are based largely on tree species and leaf area index (LAI). Accordingly, tree species were mapped in my Santa Barbara, California study area for 29 species comprising >80% of canopy. Crown-scale discriminant analysis methods were introduced for fusing Airborne Visible Infrared Imaging Spectrometry (AVIRIS) data with a suite of lidar structural metrics (e.g., tree height, crown porosity) to maximize classification accuracy in a complex environment. AVIRIS imagery was critical to achieving an overall species-level accuracy of 83.4% while lidar data was most useful for improving the discrimination of small and morphologically unique species. LAI was estimated at both the field-plot scale using laser penetration metrics and at the crown scale using allometry. Agreement of the former with photographic estimates of gap fraction and the latter with allometric estimates based on field measurements was examined. Results indicate that lidar may be used reasonably to measure LAI in an urban environment lacking in continuous canopy and characterized by high species diversity. Finally, urban ecosystem services such as carbon storage and building energy-use modification were analyzed through combination of aforementioned methods and the i-Tree Eco modeling framework. The remote sensing methods developed in this dissertation will allow researchers to more precisely constrain urban ecosystem spatial analyses and equip cities to better manage their urban forest resource.

  3. Identification of pests and diseases of Dalbergia hainanensis based on EVI time series and classification of decision tree

    NASA Astrophysics Data System (ADS)

    Luo, Qiu; Xin, Wu; Qiming, Xiong

    2017-06-01

    In the process of vegetation remote sensing information extraction, the problem of phenological features and low performance of remote sensing analysis algorithm is not considered. To solve this problem, the method of remote sensing vegetation information based on EVI time-series and the classification of decision-tree of multi-source branch similarity is promoted. Firstly, to improve the time-series stability of recognition accuracy, the seasonal feature of vegetation is extracted based on the fitting span range of time-series. Secondly, the decision-tree similarity is distinguished by adaptive selection path or probability parameter of component prediction. As an index, it is to evaluate the degree of task association, decide whether to perform migration of multi-source decision tree, and ensure the speed of migration. Finally, the accuracy of classification and recognition of pests and diseases can reach 87%--98% of commercial forest in Dalbergia hainanensis, which is significantly better than that of MODIS coverage accuracy of 80%--96% in this area. Therefore, the validity of the proposed method can be verified.

  4. Efficient Exploration of the Space of Reconciled Gene Trees

    PubMed Central

    Szöllősi, Gergely J.; Rosikiewicz, Wojciech; Boussau, Bastien; Tannier, Eric; Daubin, Vincent

    2013-01-01

    Gene trees record the combination of gene-level events, such as duplication, transfer and loss (DTL), and species-level events, such as speciation and extinction. Gene tree–species tree reconciliation methods model these processes by drawing gene trees into the species tree using a series of gene and species-level events. The reconstruction of gene trees based on sequence alone almost always involves choosing between statistically equivalent or weakly distinguishable relationships that could be much better resolved based on a putative species tree. To exploit this potential for accurate reconstruction of gene trees, the space of reconciled gene trees must be explored according to a joint model of sequence evolution and gene tree–species tree reconciliation. Here we present amalgamated likelihood estimation (ALE), a probabilistic approach to exhaustively explore all reconciled gene trees that can be amalgamated as a combination of clades observed in a sample of gene trees. We implement the ALE approach in the context of a reconciliation model (Szöllősi et al. 2013), which allows for the DTL of genes. We use ALE to efficiently approximate the sum of the joint likelihood over amalgamations and to find the reconciled gene tree that maximizes the joint likelihood among all such trees. We demonstrate using simulations that gene trees reconstructed using the joint likelihood are substantially more accurate than those reconstructed using sequence alone. Using realistic gene tree topologies, branch lengths, and alignment sizes, we demonstrate that ALE produces more accurate gene trees even if the model of sequence evolution is greatly simplified. Finally, examining 1099 gene families from 36 cyanobacterial genomes we find that joint likelihood-based inference results in a striking reduction in apparent phylogenetic discord, with respectively. 24%, 59%, and 46% reductions in the mean numbers of duplications, transfers, and losses per gene family. The open source implementation of ALE is available from https://github.com/ssolo/ALE.git. [amalgamation; gene tree reconciliation; gene tree reconstruction; lateral gene transfer; phylogeny.] PMID:23925510

  5. A P2P Botnet detection scheme based on decision tree and adaptive multilayer neural networks.

    PubMed

    Alauthaman, Mohammad; Aslam, Nauman; Zhang, Li; Alasem, Rafe; Hossain, M A

    2018-01-01

    In recent years, Botnets have been adopted as a popular method to carry and spread many malicious codes on the Internet. These malicious codes pave the way to execute many fraudulent activities including spam mail, distributed denial-of-service attacks and click fraud. While many Botnets are set up using centralized communication architecture, the peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay network for exchanging command and control data making their detection even more difficult. This work presents a method of P2P Bot detection based on an adaptive multilayer feed-forward neural network in cooperation with decision trees. A classification and regression tree is applied as a feature selection technique to select relevant features. With these features, a multilayer feed-forward neural network training model is created using a resilient back-propagation learning algorithm. A comparison of feature set selection based on the decision tree, principal component analysis and the ReliefF algorithm indicated that the neural network model with features selection based on decision tree has a better identification accuracy along with lower rates of false positives. The usefulness of the proposed approach is demonstrated by conducting experiments on real network traffic datasets. In these experiments, an average detection rate of 99.08 % with false positive rate of 0.75 % was observed.

  6. An alternative method for estimating crown characteristics of urban trees using digital photographs

    Treesearch

    Matthew F. Winn; Philip A. Araman

    2012-01-01

    The USDA Forest Service Forest Inventory and Analysis (FIA) program has concluded that statewide urban forest inventories are feasible based on a series of pilot studies initiated in 2001. However, much of the tree crown data collected during inventories are based on visual inspection and therefore highly subjective. In order to objectively determine the crown...

  7. VMCast: A VM-Assisted Stability Enhancing Solution for Tree-Based Overlay Multicast

    PubMed Central

    Gu, Weidong; Zhang, Xinchang; Gong, Bin; Zhang, Wei; Wang, Lu

    2015-01-01

    Tree-based overlay multicast is an effective group communication method for media streaming applications. However, a group member’s departure causes all of its descendants to be disconnected from the multicast tree for some time, which results in poor performance. The above problem is difficult to be addressed because overlay multicast tree is intrinsically instable. In this paper, we proposed a novel stability enhancing solution, VMCast, for tree-based overlay multicast. This solution uses two types of on-demand cloud virtual machines (VMs), i.e., multicast VMs (MVMs) and compensation VMs (CVMs). MVMs are used to disseminate the multicast data, whereas CVMs are used to offer streaming compensation. The used VMs in the same cloud datacenter constitute a VM cluster. Each VM cluster is responsible for a service domain (VMSD), and each group member belongs to a specific VMSD. The data source delivers the multicast data to MVMs through a reliable path, and MVMs further disseminate the data to group members along domain overlay multicast trees. The above approach structurally improves the stability of the overlay multicast tree. We further utilized CVM-based streaming compensation to enhance the stability of the data distribution in the VMSDs. VMCast can be used as an extension to existing tree-based overlay multicast solutions, to provide better services for media streaming applications. We applied VMCast to two application instances (i.e., HMTP and HCcast). The results show that it can obviously enhance the stability of the data distribution. PMID:26562152

  8. VMCast: A VM-Assisted Stability Enhancing Solution for Tree-Based Overlay Multicast.

    PubMed

    Gu, Weidong; Zhang, Xinchang; Gong, Bin; Zhang, Wei; Wang, Lu

    2015-01-01

    Tree-based overlay multicast is an effective group communication method for media streaming applications. However, a group member's departure causes all of its descendants to be disconnected from the multicast tree for some time, which results in poor performance. The above problem is difficult to be addressed because overlay multicast tree is intrinsically instable. In this paper, we proposed a novel stability enhancing solution, VMCast, for tree-based overlay multicast. This solution uses two types of on-demand cloud virtual machines (VMs), i.e., multicast VMs (MVMs) and compensation VMs (CVMs). MVMs are used to disseminate the multicast data, whereas CVMs are used to offer streaming compensation. The used VMs in the same cloud datacenter constitute a VM cluster. Each VM cluster is responsible for a service domain (VMSD), and each group member belongs to a specific VMSD. The data source delivers the multicast data to MVMs through a reliable path, and MVMs further disseminate the data to group members along domain overlay multicast trees. The above approach structurally improves the stability of the overlay multicast tree. We further utilized CVM-based streaming compensation to enhance the stability of the data distribution in the VMSDs. VMCast can be used as an extension to existing tree-based overlay multicast solutions, to provide better services for media streaming applications. We applied VMCast to two application instances (i.e., HMTP and HCcast). The results show that it can obviously enhance the stability of the data distribution.

  9. Tree and brush control for county road right-of-way.

    DOT National Transportation Integrated Search

    2002-10-01

    This manual summarizes the roadside tree and brush control methods used by all of Iowa's 99 : counties. It is based on interviews conducted in Spring 2002 with county engineers, roadside : managers and others. The target audience of this manual is th...

  10. Alternative methods of phylogenetic inference for the Patagonian lizard group Liolaemus elongatus-kriegi (Iguania: Liolaemini) based on mitochondrial and nuclear markers.

    PubMed

    Medina, Cintia Débora; Avila, Luciano Javier; Sites, Jack Walter; Santos, Juan; Morando, Mariana

    2018-03-01

    We present different approaches to a multi-locus phylogeny for the Liolaemus elongatus-kriegi group, including almost all species and recognized lineages. We sequenced two mitochondrial and five nuclear gene regions for 123 individuals from 35 taxa, and compared relationships resolved from concatenated and species tree methods. The L. elongatus-kriegi group was inferred as monophyletic in three of the five analyses (concatenated mitochondrial, concatenated mitochondrial + nuclear gene trees, and SVD quartet species tree). The mitochondrial gene tree resolved four haploclades, three corresponding to the previously recognized complexes: L. elongatus, L. kriegi and L. petrophilus complexes, and the L. punmahuida group. The BEAST species tree approach included the L. punmahuida group within the L. kriegi complex, but the SVD quartet method placed it as sister to the L. elongatus-kriegi group. BEAST inferred species of the L. elongatus and L. petrophilus complexes as one clade, while SVDquartet inferred these two complexes as monophyletic (although with no statistical support for the L. petrophilus complex). The species tree approach also included the L. punmahuida group as part of the L. elongatus-kriegi group. Our study provides detailed multilocus phylogenetic hypotheses for the L. elongatus-kriegi group, and we discuss possible reasons for differences in the concatenation and species tree methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A voxel-based technique to estimate the volume of trees from terrestrial laser scanner data

    NASA Astrophysics Data System (ADS)

    Bienert, A.; Hess, C.; Maas, H.-G.; von Oheimb, G.

    2014-06-01

    The precise determination of the volume of standing trees is very important for ecological and economical considerations in forestry. If terrestrial laser scanner data are available, a simple approach for volume determination is given by allocating points into a voxel structure and subsequently counting the filled voxels. Generally, this method will overestimate the volume. The paper presents an improved algorithm to estimate the wood volume of trees using a voxel-based method which will correct for the overestimation. After voxel space transformation, each voxel which contains points is reduced to the volume of its surrounding bounding box. In a next step, occluded (inner stem) voxels are identified by a neighbourhood analysis sweeping in the X and Y direction of each filled voxel. Finally, the wood volume of the tree is composed by the sum of the bounding box volumes of the outer voxels and the volume of all occluded inner voxels. Scan data sets from several young Norway maple trees (Acer platanoides) were used to analyse the algorithm. Therefore, the scanned trees as well as their representing point clouds were separated in different components (stem, branches) to make a meaningful comparison. Two reference measurements were performed for validation: A direct wood volume measurement by placing the tree components into a water tank, and a frustum calculation of small trunk segments by measuring the radii along the trunk. Overall, the results show slightly underestimated volumes (-0.3% for a probe of 13 trees) with a RMSE of 11.6% for the individual tree volume calculated with the new approach.

  12. Undergraduate Students’ Difficulties in Reading and Constructing Phylogenetic Tree

    NASA Astrophysics Data System (ADS)

    Sa'adah, S.; Tapilouw, F. S.; Hidayat, T.

    2017-02-01

    Representation is a very important communication tool to communicate scientific concepts. Biologists produce phylogenetic representation to express their understanding of evolutionary relationships. The phylogenetic tree is visual representation depict a hypothesis about the evolutionary relationship and widely used in the biological sciences. Phylogenetic tree currently growing for many disciplines in biology. Consequently, learning about phylogenetic tree become an important part of biological education and an interesting area for biology education research. However, research showed many students often struggle with interpreting the information that phylogenetic trees depict. The purpose of this study was to investigate undergraduate students’ difficulties in reading and constructing a phylogenetic tree. The method of this study is a descriptive method. In this study, we used questionnaires, interviews, multiple choice and open-ended questions, reflective journals and observations. The findings showed students experiencing difficulties, especially in constructing a phylogenetic tree. The students’ responds indicated that main reasons for difficulties in constructing a phylogenetic tree are difficult to placing taxa in a phylogenetic tree based on the data provided so that the phylogenetic tree constructed does not describe the actual evolutionary relationship (incorrect relatedness). Students also have difficulties in determining the sister group, character synapomorphy, autapomorphy from data provided (character table) and comparing among phylogenetic tree. According to them building the phylogenetic tree is more difficult than reading the phylogenetic tree. Finding this studies provide information to undergraduate instructor and students to overcome learning difficulties of reading and constructing phylogenetic tree.

  13. Tree-based solvers for adaptive mesh refinement code FLASH - I: gravity and optical depths

    NASA Astrophysics Data System (ADS)

    Wünsch, R.; Walch, S.; Dinnbier, F.; Whitworth, A.

    2018-04-01

    We describe an OctTree algorithm for the MPI parallel, adaptive mesh refinement code FLASH, which can be used to calculate the gas self-gravity, and also the angle-averaged local optical depth, for treating ambient diffuse radiation. The algorithm communicates to the different processors only those parts of the tree that are needed to perform the tree-walk locally. The advantage of this approach is a relatively low memory requirement, important in particular for the optical depth calculation, which needs to process information from many different directions. This feature also enables a general tree-based radiation transport algorithm that will be described in a subsequent paper, and delivers excellent scaling up to at least 1500 cores. Boundary conditions for gravity can be either isolated or periodic, and they can be specified in each direction independently, using a newly developed generalization of the Ewald method. The gravity calculation can be accelerated with the adaptive block update technique by partially re-using the solution from the previous time-step. Comparison with the FLASH internal multigrid gravity solver shows that tree-based methods provide a competitive alternative, particularly for problems with isolated or mixed boundary conditions. We evaluate several multipole acceptance criteria (MACs) and identify a relatively simple approximate partial error MAC which provides high accuracy at low computational cost. The optical depth estimates are found to agree very well with those of the RADMC-3D radiation transport code, with the tree-solver being much faster. Our algorithm is available in the standard release of the FLASH code in version 4.0 and later.

  14. Incorporating information on predicted solvent accessibility to the co-evolution-based study of protein interactions.

    PubMed

    Ochoa, David; García-Gutiérrez, Ponciano; Juan, David; Valencia, Alfonso; Pazos, Florencio

    2013-01-27

    A widespread family of methods for studying and predicting protein interactions using sequence information is based on co-evolution, quantified as similarity of phylogenetic trees. Part of the co-evolution observed between interacting proteins could be due to co-adaptation caused by inter-protein contacts. In this case, the co-evolution is expected to be more evident when evaluated on the surface of the proteins or the internal layers close to it. In this work we study the effect of incorporating information on predicted solvent accessibility to three methods for predicting protein interactions based on similarity of phylogenetic trees. We evaluate the performance of these methods in predicting different types of protein associations when trees based on positions with different characteristics of predicted accessibility are used as input. We found that predicted accessibility improves the results of two recent versions of the mirrortree methodology in predicting direct binary physical interactions, while it neither improves these methods, nor the original mirrortree method, in predicting other types of interactions. That improvement comes at no cost in terms of applicability since accessibility can be predicted for any sequence. We also found that predictions of protein-protein interactions are improved when multiple sequence alignments with a richer representation of sequences (including paralogs) are incorporated in the accessibility prediction.

  15. A fast bottom-up algorithm for computing the cut sets of noncoherent fault trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corynen, G.C.

    1987-11-01

    An efficient procedure for finding the cut sets of large fault trees has been developed. Designed to address coherent or noncoherent systems, dependent events, shared or common-cause events, the method - called SHORTCUT - is based on a fast algorithm for transforming a noncoherent tree into a quasi-coherent tree (COHERE), and on a new algorithm for reducing cut sets (SUBSET). To assure sufficient clarity and precision, the procedure is discussed in the language of simple sets, which is also developed in this report. Although the new method has not yet been fully implemented on the computer, we report theoretical worst-casemore » estimates of its computational complexity. 12 refs., 10 figs.« less

  16. An Assessment of Differences in Tree Cover Measurements between Landsat and Lidar-derived Products

    NASA Astrophysics Data System (ADS)

    Tang, H.; Song, X. P.; Armston, J.; Hancock, S.; Duncanson, L.; Zhao, F. A.; Schaaf, C.; Strahler, A. H.; Huang, C.; Hansen, M.; Goetz, S. J.; Dubayah, R.

    2016-12-01

    Tree cover is one of the most important canopy structural variables describe interactions between atmosphere and biosphere, and is also linked to the function and quality of ecosystem services. Large-area tree cover measurements are traditionally based on multispectral satellite imagery, and there are several global products available at high to medium spatial resolution (30m-1km). Recent developments in lidar remote sensing, including the upcoming Global Ecosystem Dynamics Investigation (GEDI) lidar, offers an alternative means to map tree cover over broad geographical extents. However, differences in the definition of tree cover and the retrieval method can result in large discrepancies between products derived from multispectral imagery and lidar data, and can potentially impact their further use in ecosystem modelling and above-ground biomass mapping. To separate the effects of cover definition and retrieval method, we first conducted a meta-analysis of several tree cover data sets across different biogeographic regions using three publicly available Landsat-based tree cover products (GLCF, NLCD and GLAD), and two waveform and discrete return airborne lidar products. We found that, whereas Landsat products had low-moderate agreements (up to 40% mean difference) on tree cover estimates particularly at the high end (e.g. >80%), airborne lidar can provide more accurate and consistent measurements (mean difference < 5%) when compared with field data. The differences among Landsat products were mainly due to low measurement accuracy and those among lidar products were caused by different definitions of tree cover (e.g. crown cover vs. fractional cover). We further recommended the use of lidar data as a complement or alternative to ultra-fine resolution images in training/validating Landsat-class images for large-area tree cover mapping.

  17. [RS estimation of inventory parameters and carbon storage of moso bamboo forest based on synergistic use of object-based image analysis and decision tree].

    PubMed

    Du, Hua Qiang; Sun, Xiao Yan; Han, Ning; Mao, Fang Jie

    2017-10-01

    By synergistically using the object-based image analysis (OBIA) and the classification and regression tree (CART) methods, the distribution information, the indexes (including diameter at breast, tree height, and crown closure), and the aboveground carbon storage (AGC) of moso bamboo forest in Shanchuan Town, Anji County, Zhejiang Province were investigated. The results showed that the moso bamboo forest could be accurately delineated by integrating the multi-scale ima ge segmentation in OBIA technique and CART, which connected the image objects at various scales, with a pretty good producer's accuracy of 89.1%. The investigation of indexes estimated by regression tree model that was constructed based on the features extracted from the image objects reached normal or better accuracy, in which the crown closure model archived the best estimating accuracy of 67.9%. The estimating accuracy of diameter at breast and tree height was relatively low, which was consistent with conclusion that estimating diameter at breast and tree height using optical remote sensing could not achieve satisfactory results. Estimation of AGC reached relatively high accuracy, and accuracy of the region of high value achieved above 80%.

  18. Estimating water use by sugar maple trees: considerations when using heat-pulse methods in trees with deep functional sapwood.

    PubMed

    Pausch, Roman C.; Grote, Edmund E.; Dawson, Todd E.

    2000-03-01

    Accurate estimates of sapwood properties (including radial depth of functional xylem and wood water content) are critical when using the heat pulse velocity (HPV) technique to estimate tree water use. Errors in estimating the volumetric water content (V(h)) of the sapwood, especially in tree species with a large proportion of sapwood, can cause significant errors in the calculations ofsap velocity and sap flow through tree boles. Scaling to the whole-stand level greatly inflates these errors. We determined the effects of season, tree size and radial wood depth on V(h) of wood cores removed from Acer saccharum Marsh. trees throughout 3 years in upstate New York. We also determined the effects of variation in V(h) on sap velocity and sap flow calculations based on HPV data collected from sap flow gauges inserted at four depths. In addition, we compared two modifications of Hatton's weighted average technique, the zero-step and zero-average methods, for determining sap velocity and sap flow at depths beyond those penetrated by the sap flow gauges. Parameter V(h) varied significantly with time of year (DOY), tree size (S), and radial wood depth (RD), and there were significant DOY x S and DOY x RD interactions. Use of a mean whole-tree V(h) value resulted in differences ranging from -6 to +47% for both sap velocity and sap flow for individual sapwood annuli compared with use of the V(h) value determined at the specific depth where a probe was placed. Whole-tree sap flow was 7% higher when calculated on the basis of the individual V(h) value compared with the mean whole-tree V(h) value. Calculated total sap flow for a tree with a DBH of 48.8 cm was 13 and 19% less using the zero-step and the zero-average velocity techniques, respectively, than the value obtained with Hatton's weighted average technique. Smaller differences among the three methods were observed for a tree with a DBH of 24.4 cm. We conclude that, for Acer saccharum: (1) mean V(h) changes significantly during the year and can range from nearly 50% during winter and early spring, to 20% during the growing season;(2) large trees have a significantly greater V(h) than small trees; (3) overall, V(h) decreases and then increases significantly with radial wood depth, suggesting that radial water movement and storage are highly dynamic; and (4) V(h) estimates can vary greatly and influence subsequent water use calculations depending on whether an average or an individual V(h) value for a wood core is used. For large diameter trees in which sapwood comprises a large fraction of total stem cross-sectional area (where sap flow gauges cannot be inserted across the entire cross-sectional area), the zero-average modification of Hatton's weighted average method reduces the potential for large errors in whole-tree and landscape water balance estimates based on the HPV method.

  19. On the Hosoya index of a family of deterministic recursive trees

    NASA Astrophysics Data System (ADS)

    Chen, Xufeng; Zhang, Jingyuan; Sun, Weigang

    2017-01-01

    In this paper, we calculate the Hosoya index in a family of deterministic recursive trees with a special feature that includes new nodes which are connected to existing nodes with a certain rule. We then obtain a recursive solution of the Hosoya index based on the operations of a determinant. The computational complexity of our proposed algorithm is O(log2 n) with n being the network size, which is lower than that of the existing numerical methods. Finally, we give a weighted tree shrinking method as a graphical interpretation of the recurrence formula for the Hosoya index.

  20. Comparing species tree estimation with large anchored phylogenomic and small Sanger-sequenced molecular datasets: an empirical study on Malagasy pseudoxyrhophiine snakes.

    PubMed

    Ruane, Sara; Raxworthy, Christopher J; Lemmon, Alan R; Lemmon, Emily Moriarty; Burbrink, Frank T

    2015-10-12

    Using molecular data generated by high throughput next generation sequencing (NGS) platforms to infer phylogeny is becoming common as costs go down and the ability to capture loci from across the genome goes up. While there is a general consensus that greater numbers of independent loci should result in more robust phylogenetic estimates, few studies have compared phylogenies resulting from smaller datasets for commonly used genetic markers with the large datasets captured using NGS. Here, we determine how a 5-locus Sanger dataset compares with a 377-locus anchored genomics dataset for understanding the evolutionary history of the pseudoxyrhophiine snake radiation centered in Madagascar. The Pseudoxyrhophiinae comprise ~86 % of Madagascar's serpent diversity, yet they are poorly known with respect to ecology, behavior, and systematics. Using the 377-locus NGS dataset and the summary statistics species-tree methods STAR and MP-EST, we estimated a well-supported species tree that provides new insights concerning intergeneric relationships for the pseudoxyrhophiines. We also compared how these and other methods performed with respect to estimating tree topology using datasets with varying numbers of loci. Using Sanger sequencing and an anchored phylogenomics approach, we sequenced datasets comprised of 5 and 377 loci, respectively, for 23 pseudoxyrhophiine taxa. For each dataset, we estimated phylogenies using both gene-tree (concatenation) and species-tree (STAR, MP-EST) approaches. We determined the similarity of resulting tree topologies from the different datasets using Robinson-Foulds distances. In addition, we examined how subsets of these data performed compared to the complete Sanger and anchored datasets for phylogenetic accuracy using the same tree inference methodologies, as well as the program *BEAST to determine if a full coalescent model for species tree estimation could generate robust results with fewer loci compared to the summary statistics species tree approaches. We also examined the individual gene trees in comparison to the 377-locus species tree using the program MetaTree. Using the full anchored dataset under a variety of methods gave us the same, well-supported phylogeny for pseudoxyrhophiines. The African pseudoxyrhophiine Duberria is the sister taxon to the Malagasy pseudoxyrhophiines genera, providing evidence for a monophyletic radiation in Madagascar. In addition, within Madagascar, the two major clades inferred correspond largely to the aglyphous and opisthoglyphous genera, suggesting that feeding specializations associated with tooth venom delivery may have played a major role in the early diversification of this radiation. The comparison of tree topologies from the concatenated and species-tree methods using different datasets indicated the 5-locus dataset cannot beused to infer a correct phylogeny for the pseudoxyrhophiines under any method tested here and that summary statistics methods require 50 or more loci to consistently recover the species-tree inferred using the complete anchored dataset. However, as few as 15 loci may infer the correct topology when using the full coalescent species tree method *BEAST. MetaTree analyses of each gene tree from the Sanger and anchored datasets found that none of the individual gene trees matched the 377-locus species tree, and that no gene trees were identical with respect to topology. Our results suggest that ≥50 loci may be necessary to confidently infer phylogenies when using summaryspecies-tree methods, but that the coalescent-based method *BEAST consistently recovers the same topology using only 15 loci. These results reinforce that datasets with small numbers of markers may result in misleading topologies, and further, that the method of inference used to generate a phylogeny also has a major influence on the number of loci necessary to infer robust species trees.

  1. Secure Multicast Tree Structure Generation Method for Directed Diffusion Using A* Algorithms

    NASA Astrophysics Data System (ADS)

    Kim, Jin Myoung; Lee, Hae Young; Cho, Tae Ho

    The application of wireless sensor networks to areas such as combat field surveillance, terrorist tracking, and highway traffic monitoring requires secure communication among the sensor nodes within the networks. Logical key hierarchy (LKH) is a tree based key management model which provides secure group communication. When a sensor node is added or evicted from the communication group, LKH updates the group key in order to ensure the security of the communications. In order to efficiently update the group key in directed diffusion, we propose a method for secure multicast tree structure generation, an extension to LKH that reduces the number of re-keying messages by considering the addition and eviction ratios of the history data. For the generation of the proposed key tree structure the A* algorithm is applied, in which the branching factor at each level can take on different value. The experiment results demonstrate the efficiency of the proposed key tree structure against the existing key tree structures of fixed branching factors.

  2. C-fuzzy variable-branch decision tree with storage and classification error rate constraints

    NASA Astrophysics Data System (ADS)

    Yang, Shiueng-Bien

    2009-10-01

    The C-fuzzy decision tree (CFDT), which is based on the fuzzy C-means algorithm, has recently been proposed. The CFDT is grown by selecting the nodes to be split according to its classification error rate. However, the CFDT design does not consider the classification time taken to classify the input vector. Thus, the CFDT can be improved. We propose a new C-fuzzy variable-branch decision tree (CFVBDT) with storage and classification error rate constraints. The design of the CFVBDT consists of two phases-growing and pruning. The CFVBDT is grown by selecting the nodes to be split according to the classification error rate and the classification time in the decision tree. Additionally, the pruning method selects the nodes to prune based on the storage requirement and the classification time of the CFVBDT. Furthermore, the number of branches of each internal node is variable in the CFVBDT. Experimental results indicate that the proposed CFVBDT outperforms the CFDT and other methods.

  3. Using tree diversity to compare phylogenetic heuristics.

    PubMed

    Sul, Seung-Jin; Matthews, Suzanne; Williams, Tiffani L

    2009-04-29

    Evolutionary trees are family trees that represent the relationships between a group of organisms. Phylogenetic heuristics are used to search stochastically for the best-scoring trees in tree space. Given that better tree scores are believed to be better approximations of the true phylogeny, traditional evaluation techniques have used tree scores to determine the heuristics that find the best scores in the fastest time. We develop new techniques to evaluate phylogenetic heuristics based on both tree scores and topologies to compare Pauprat and Rec-I-DCM3, two popular Maximum Parsimony search algorithms. Our results show that although Pauprat and Rec-I-DCM3 find the trees with the same best scores, topologically these trees are quite different. Furthermore, the Rec-I-DCM3 trees cluster distinctly from the Pauprat trees. In addition to our heatmap visualizations of using parsimony scores and the Robinson-Foulds distance to compare best-scoring trees found by the two heuristics, we also develop entropy-based methods to show the diversity of the trees found. Overall, Pauprat identifies more diverse trees than Rec-I-DCM3. Overall, our work shows that there is value to comparing heuristics beyond the parsimony scores that they find. Pauprat is a slower heuristic than Rec-I-DCM3. However, our work shows that there is tremendous value in using Pauprat to reconstruct trees-especially since it finds identical scoring but topologically distinct trees. Hence, instead of discounting Pauprat, effort should go in improving its implementation. Ultimately, improved performance measures lead to better phylogenetic heuristics and will result in better approximations of the true evolutionary history of the organisms of interest.

  4. Individual Tree Crown Delineation Using Multi-Wavelength Titan LIDAR Data

    NASA Astrophysics Data System (ADS)

    Naveed, F.; Hu, B.

    2017-10-01

    The inability to detect the Emerald Ash Borer (EAB) at an early stage has led to the enumerable loss of different species of ash trees. Due to the increasing risk being posed by the EAB, a robust and accurate method is needed for identifying Individual Tree Crowns (ITCs) that are at a risk of being infected or are already diseased. This paper attempts to outline an ITC delineation method that employs airborne multi-spectral Light Detection and Ranging (LiDAR) to accurately delineate tree crowns. The raw LiDAR data were initially pre-processed to generate the Digital Surface Models (DSM) and Digital Elevation Models (DEM) using an iterative progressive TIN (Triangulated Irregular Network) densification method. The DSM and DEM were consequently used for Canopy Height Model (CHM) generation, from which the structural information pertaining to the size and shape of the tree crowns was obtained. The structural information along with the spectral information was used to segment ITCs using a region growing algorithm. The availability of the multi-spectral LiDAR data allows for delineation of crowns that have otherwise homogenous structural characteristics and hence cannot be isolated from the CHM alone. This study exploits the spectral data to derive initial approximations of individual tree tops and consequently grow those regions based on the spectral constraints of the individual trees.

  5. Detection of Single Tree Stems in Forested Areas from High Density ALS Point Clouds Using 3d Shape Descriptors

    NASA Astrophysics Data System (ADS)

    Amiri, N.; Polewski, P.; Yao, W.; Krzystek, P.; Skidmore, A. K.

    2017-09-01

    Airborne Laser Scanning (ALS) is a widespread method for forest mapping and management purposes. While common ALS techniques provide valuable information about the forest canopy and intermediate layers, the point density near the ground may be poor due to dense overstory conditions. The current study highlights a new method for detecting stems of single trees in 3D point clouds obtained from high density ALS with a density of 300 points/m2. Compared to standard ALS data, due to lower flight height (150-200 m) this elevated point density leads to more laser reflections from tree stems. In this work, we propose a three-tiered method which works on the point, segment and object levels. First, for each point we calculate the likelihood that it belongs to a tree stem, derived from the radiometric and geometric features of its neighboring points. In the next step, we construct short stem segments based on high-probability stem points, and classify the segments by considering the distribution of points around them as well as their spatial orientation, which encodes the prior knowledge that trees are mainly vertically aligned due to gravity. Finally, we apply hierarchical clustering on the positively classified segments to obtain point sets corresponding to single stems, and perform ℓ1-based orthogonal distance regression to robustly fit lines through each stem point set. The ℓ1-based method is less sensitive to outliers compared to the least square approaches. From the fitted lines, the planimetric tree positions can then be derived. Experiments were performed on two plots from the Hochficht forest in Oberösterreich region located in Austria.We marked a total of 196 reference stems in the point clouds of both plots by visual interpretation. The evaluation of the automatically detected stems showed a classification precision of 0.86 and 0.85, respectively for Plot 1 and 2, with recall values of 0.7 and 0.67.

  6. A method for surface topography measurement using a new focus function based on dual-tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Li, Shimiao; Guo, Tong; Yuan, Lin; Chen, Jinping

    2018-01-01

    Surface topography measurement is an important tool widely used in many fields to determine the characteristics and functionality of a part or material. Among existing methods for this purpose, the focus variation method has proved high performance particularly in large slope scenarios. However, its performance depends largely on the effectiveness of focus function. This paper presents a method for surface topography measurement using a new focus measurement function based on dual-tree complex wavelet transform. Experiments are conducted on simulated defocused images to prove its high performance in comparison with other traditional approaches. The results showed that the new algorithm has better unimodality and sharpness. The method was also verified by measuring a MEMS micro resonator structure.

  7. Competitive code-based fast palmprint identification using a set of cover trees

    NASA Astrophysics Data System (ADS)

    Yue, Feng; Zuo, Wangmeng; Zhang, David; Wang, Kuanquan

    2009-06-01

    A palmprint identification system recognizes a query palmprint image by searching for its nearest neighbor from among all the templates in a database. When applied on a large-scale identification system, it is often necessary to speed up the nearest-neighbor searching process. We use competitive code, which has very fast feature extraction and matching speed, for palmprint identification. To speed up the identification process, we extend the cover tree method and propose to use a set of cover trees to facilitate the fast and accurate nearest-neighbor searching. We can use the cover tree method because, as we show, the angular distance used in competitive code can be decomposed into a set of metrics. Using the Hong Kong PolyU palmprint database (version 2) and a large-scale palmprint database, our experimental results show that the proposed method searches for nearest neighbors faster than brute force searching.

  8. [Health assessment of individual trees in natural Larix gmelinii forest in Great Xing' an Mountains of China].

    PubMed

    Zhu, Yu; Liu, Zhao-Gang; Jin, Guang-Ze

    2013-05-01

    To integrate the health assessment results of individual trees into the health assessment of subcompartment (or stand) scale could improve the accuracy of subcompartment (or stand) scale health assessment, and realize the coupling process between the individual tree scale and the subcompartment (or stand) scale, providing a theoretical basis for the realization of forest health management. Taking the natural Larix gmelinii forest in Great Xing' an Mountains as the object, a health assessment indicators system of individual trees was established, which included root state, canopy defoliation degree, crown transparency, crown overlap, crown dieback ratio, live crown ratio, crown skewness, and vertical competition index. The principal component analysis (PCA) was employed to eliminate the correlations, the entropy value method was adopted to confirm the weight of each indicator, and the health status of individual L. gmelinii was assessed by fuzzy synthetic evaluation (FSE) method. Based on the health assessment results, a prediction model of the individual tree health was established by discriminant analysis (DA) method. The results showed that the trees in sub-healthy gradation were up to 36.7%, and those in healthy gradation only reached 12.9%. The proportion of the trees in unhealthy gradation exceeded that of the trees in healthy gradation, occupying 21.1% of the total. The prediction accuracy of the established model was 86.3%. More rational and effective management measures should be taken to improve the tree health grade.

  9. The Early Detection of the Emerald Ash Borer (eab) Using Multi-Source Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Hu, B.; Naveed, F.; Tasneem, F.; Xing, C.

    2018-04-01

    The objectives of this study were to exploit the synergy of hyperspectral imagery, Light Detection And Ranging (LiDAR) and high spatial resolution data and their synergy in the early detection of the EAB (Emerald Ash Borer) presence in trees within urban areas and to develop a framework to combine information extracted from multiple data sources. To achieve these, an object-oriented framework was developed to combine information derived from available data sets to characterize ash trees. Within this framework, an advanced individual tree delineation method was developed to delineate individual trees using the combined high-spatial resolution worldview-3 imagery was used together with LiDAR data. Individual trees were then classified to ash and non-ash trees using spectral and spatial information. In order to characterize the health state of individual ash trees, leaves from ash trees with various health states were sampled and measured using a field spectrometer. Based on the field measurements, the best indices that sensitive to leaf chlorophyll content were selected. The developed framework and methods were tested using worldview-3, airborne LiDAR data over the Keele campus of York University Toronto Canada. Satisfactory results in terms of individual tree crown delineation, ash tree identification and characterization of the health state of individual ash trees. Quantitative evaluations is being carried out.

  10. Reconstruction of phylogenetic trees of prokaryotes using maximal common intervals.

    PubMed

    Heydari, Mahdi; Marashi, Sayed-Amir; Tusserkani, Ruzbeh; Sadeghi, Mehdi

    2014-10-01

    One of the fundamental problems in bioinformatics is phylogenetic tree reconstruction, which can be used for classifying living organisms into different taxonomic clades. The classical approach to this problem is based on a marker such as 16S ribosomal RNA. Since evolutionary events like genomic rearrangements are not included in reconstructions of phylogenetic trees based on single genes, much effort has been made to find other characteristics for phylogenetic reconstruction in recent years. With the increasing availability of completely sequenced genomes, gene order can be considered as a new solution for this problem. In the present work, we applied maximal common intervals (MCIs) in two or more genomes to infer their distance and to reconstruct their evolutionary relationship. Additionally, measures based on uncommon segments (UCS's), i.e., those genomic segments which are not detected as part of any of the MCIs, are also used for phylogenetic tree reconstruction. We applied these two types of measures for reconstructing the phylogenetic tree of 63 prokaryotes with known COG (clusters of orthologous groups) families. Similarity between the MCI-based (resp. UCS-based) reconstructed phylogenetic trees and the phylogenetic tree obtained from NCBI taxonomy browser is as high as 93.1% (resp. 94.9%). We show that in the case of this diverse dataset of prokaryotes, tree reconstruction based on MCI and UCS outperforms most of the currently available methods based on gene orders, including breakpoint distance and DCJ. We additionally tested our new measures on a dataset of 13 closely-related bacteria from the genus Prochlorococcus. In this case, distances like rearrangement distance, breakpoint distance and DCJ proved to be useful, while our new measures are still appropriate for phylogenetic reconstruction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Fuzzy pulmonary vessel segmentation in contrast enhanced CT data

    NASA Astrophysics Data System (ADS)

    Kaftan, Jens N.; Kiraly, Atilla P.; Bakai, Annemarie; Das, Marco; Novak, Carol L.; Aach, Til

    2008-03-01

    Pulmonary vascular tree segmentation has numerous applications in medical imaging and computer-aided diagnosis (CAD), including detection and visualization of pulmonary emboli (PE), improved lung nodule detection, and quantitative vessel analysis. We present a novel approach to pulmonary vessel segmentation based on a fuzzy segmentation concept, combining the strengths of both threshold and seed point based methods. The lungs of the original image are first segmented and a threshold-based approach identifies core vessel components with a high specificity. These components are then used to automatically identify reliable seed points for a fuzzy seed point based segmentation method, namely fuzzy connectedness. The output of the method consists of the probability of each voxel belonging to the vascular tree. Hence, our method provides the possibility to adjust the sensitivity/specificity of the segmentation result a posteriori according to application-specific requirements, through definition of a minimum vessel-probability required to classify a voxel as belonging to the vascular tree. The method has been evaluated on contrast-enhanced thoracic CT scans from clinical PE cases and demonstrates overall promising results. For quantitative validation we compare the segmentation results to randomly selected, semi-automatically segmented sub-volumes and present the resulting receiver operating characteristic (ROC) curves. Although we focus on contrast enhanced chest CT data, the method can be generalized to other regions of the body as well as to different imaging modalities.

  12. Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees.

    PubMed

    Kück, Patrick; Meusemann, Karen; Dambach, Johannes; Thormann, Birthe; von Reumont, Björn M; Wägele, Johann W; Misof, Bernhard

    2010-03-31

    Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine application of alignment masking. In this study, we compared the effects on tree reconstructions of the most commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain threshold which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of parameter space and therefore more objective. ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The sliding window approach was less sensitive to different alignments of identical data sets and performed equally well on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets. Correspondingly, Neighbor-Net analyses showed the most decrease in conflict. Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking should routinely be used to improve tree reconstructions. Parametric methods of alignment profiling can be easily extended to more complex likelihood based models of sequence evolution which opens the possibility of further improvements.

  13. dCITE: Measuring Necessary Cladistic Information Can Help You Reduce Polytomy Artefacts in Trees.

    PubMed

    Wise, Michael J

    2016-01-01

    Biologists regularly create phylogenetic trees to better understand the evolutionary origins of their species of interest, and often use genomes as their data source. However, as more and more incomplete genomes are published, in many cases it may not be possible to compute genome-based phylogenetic trees due to large gaps in the assembled sequences. In addition, comparison of complete genomes may not even be desirable due to the presence of horizontally acquired and homologous genes. A decision must therefore be made about which gene, or gene combinations, should be used to compute a tree. Deflated Cladistic Information based on Total Entropy (dCITE) is proposed as an easily computed metric for measuring the cladistic information in multiple sequence alignments representing a range of taxa, without the need to first compute the corresponding trees. dCITE scores can be used to rank candidate genes or decide whether input sequences provide insufficient cladistic information, making artefactual polytomies more likely. The dCITE method can be applied to protein, nucleotide or encoded phenotypic data, so can be used to select which data-type is most appropriate, given the choice. In a series of experiments the dCITE method was compared with related measures. Then, as a practical demonstration, the ideas developed in the paper were applied to a dataset representing species from the order Campylobacterales; trees based on sequence combinations, selected on the basis of their dCITE scores, were compared with a tree constructed to mimic Multi-Locus Sequence Typing (MLST) combinations of fragments. We see that the greater the dCITE score the more likely it is that the computed phylogenetic tree will be free of artefactual polytomies. Secondly, cladistic information saturates, beyond which little additional cladistic information can be obtained by adding additional sequences. Finally, sequences with high cladistic information produce more consistent trees for the same taxa.

  14. dCITE: Measuring Necessary Cladistic Information Can Help You Reduce Polytomy Artefacts in Trees

    PubMed Central

    2016-01-01

    Biologists regularly create phylogenetic trees to better understand the evolutionary origins of their species of interest, and often use genomes as their data source. However, as more and more incomplete genomes are published, in many cases it may not be possible to compute genome-based phylogenetic trees due to large gaps in the assembled sequences. In addition, comparison of complete genomes may not even be desirable due to the presence of horizontally acquired and homologous genes. A decision must therefore be made about which gene, or gene combinations, should be used to compute a tree. Deflated Cladistic Information based on Total Entropy (dCITE) is proposed as an easily computed metric for measuring the cladistic information in multiple sequence alignments representing a range of taxa, without the need to first compute the corresponding trees. dCITE scores can be used to rank candidate genes or decide whether input sequences provide insufficient cladistic information, making artefactual polytomies more likely. The dCITE method can be applied to protein, nucleotide or encoded phenotypic data, so can be used to select which data-type is most appropriate, given the choice. In a series of experiments the dCITE method was compared with related measures. Then, as a practical demonstration, the ideas developed in the paper were applied to a dataset representing species from the order Campylobacterales; trees based on sequence combinations, selected on the basis of their dCITE scores, were compared with a tree constructed to mimic Multi-Locus Sequence Typing (MLST) combinations of fragments. We see that the greater the dCITE score the more likely it is that the computed phylogenetic tree will be free of artefactual polytomies. Secondly, cladistic information saturates, beyond which little additional cladistic information can be obtained by adding additional sequences. Finally, sequences with high cladistic information produce more consistent trees for the same taxa. PMID:27898695

  15. Combining a generic process-based productivity model classification method to predict the presence and absence species in the Pacific Northwest, U.S.A

    Treesearch

    Nicholas C. Coops; Richard H. Waring; Todd A. Schroeder

    2009-01-01

    Although long-lived tree species experience considerable environmental variation over their life spans, their geographical distributions reflect sensitivity mainly to mean monthly climatic conditions.We introduce an approach that incorporates a physiologically based growth model to illustrate how a half-dozen tree species differ in their responses to monthly variation...

  16. Integrated management of little spruce sawfly (Pristiphora abietina): design pattern

    Treesearch

    J. Holusa; K. Drapela

    2003-01-01

    This paper presents the design of a regulation model of the little spruce sawfly that is based on monitoring of defoliation. This method is based on the assessment of the percentage of defoliation of each whorl from ca. 100+ trees, beginning from the top and using four classes of defoliation. The critical value influencing the height of current increment of trees is...

  17. Tree leaves extraction in natural images: comparative study of preprocessing tools and segmentation methods.

    PubMed

    Grand-Brochier, Manuel; Vacavant, Antoine; Cerutti, Guillaume; Kurtz, Camille; Weber, Jonathan; Tougne, Laure

    2015-05-01

    In this paper, we propose a comparative study of various segmentation methods applied to the extraction of tree leaves from natural images. This study follows the design of a mobile application, developed by Cerutti et al. (published in ReVeS Participation--Tree Species Classification Using Random Forests and Botanical Features. CLEF 2012), to highlight the impact of the choices made for segmentation aspects. All the tests are based on a database of 232 images of tree leaves depicted on natural background from smartphones acquisitions. We also propose to study the improvements, in terms of performance, using preprocessing tools, such as the interaction between the user and the application through an input stroke, as well as the use of color distance maps. The results presented in this paper shows that the method developed by Cerutti et al. (denoted Guided Active Contour), obtains the best score for almost all observation criteria. Finally, we detail our online benchmark composed of 14 unsupervised methods and 6 supervised ones.

  18. A self-trained classification technique for producing 30 m percent-water maps from Landsat data

    USGS Publications Warehouse

    Rover, Jennifer R.; Wylie, Bruce K.; Ji, Lei

    2010-01-01

    Small bodies of water can be mapped with moderate-resolution satellite data using methods where water is mapped as subpixel fractions using field measurements or high-resolution images as training datasets. A new method, developed from a regression-tree technique, uses a 30 m Landsat image for training the regression tree that, in turn, is applied to the same image to map subpixel water. The self-trained method was evaluated by comparing the percent-water map with three other maps generated from established percent-water mapping methods: (1) a regression-tree model trained with a 5 m SPOT 5 image, (2) a regression-tree model based on endmembers and (3) a linear unmixing classification technique. The results suggest that subpixel water fractions can be accurately estimated when high-resolution satellite data or intensively interpreted training datasets are not available, which increases our ability to map small water bodies or small changes in lake size at a regional scale.

  19. Real-Time Interactive Tree Animation.

    PubMed

    Quigley, Ed; Yu, Yue; Huang, Jingwei; Lin, Winnie; Fedkiw, Ronald

    2018-05-01

    We present a novel method for posing and animating botanical tree models interactively in real time. Unlike other state of the art methods which tend to produce trees that are overly flexible, bending and deforming as if they were underwater plants, our approach allows for arbitrarily high stiffness while still maintaining real-time frame rates without spurious artifacts, even on quite large trees with over ten thousand branches. This is accomplished by using an articulated rigid body model with as-stiff-as-desired rotational springs in conjunction with our newly proposed simulation technique, which is motivated both by position based dynamics and the typical algorithms for articulated rigid bodies. The efficiency of our algorithm allows us to pose and animate trees with millions of branches or alternatively simulate a small forest comprised of many highly detailed trees. Even using only a single CPU core, we can simulate ten thousand branches in real time while still maintaining quite crisp user interactivity. This has allowed us to incorporate our framework into a commodity game engine to run interactively even on a low-budget tablet. We show that our method is amenable to the incorporation of a large variety of desirable effects such as wind, leaves, fictitious forces, collisions, fracture, etc.

  20. Of woods and webs: possible alternatives to the tree of life for studying genomic fluidity in E. coli.

    PubMed

    Beauregard-Racine, Julie; Bicep, Cédric; Schliep, Klaus; Lopez, Philippe; Lapointe, François-Joseph; Bapteste, Eric

    2011-07-20

    We introduce several forest-based and network-based methods for exploring microbial evolution, and apply them to the study of thousands of genes from 30 strains of E. coli. This case study illustrates how additional analyses could offer fast heuristic alternatives to standard tree of life (TOL) approaches. We use gene networks to identify genes with atypical modes of evolution, and genome networks to characterize the evolution of genetic partnerships between E. coli and mobile genetic elements. We develop a novel polychromatic quartet method to capture patterns of recombination within E. coli, to update the clanistic toolkit, and to search for the impact of lateral gene transfer and of pathogenicity on gene evolution in two large forests of trees bearing E. coli. We unravel high rates of lateral gene transfer involving E. coli (about 40% of the trees under study), and show that both core genes and shell genes of E. coli are affected by non-tree-like evolutionary processes. We show that pathogenic lifestyle impacted the structure of 30% of the gene trees, and that pathogenic strains are more likely to transfer genes with one another than with non-pathogenic strains. In addition, we propose five groups of genes as candidate mobile modules of pathogenicity. We also present strong evidence for recent lateral gene transfer between E. coli and mobile genetic elements. Depending on which evolutionary questions biologists want to address (i.e. the identification of modules, genetic partnerships, recombination, lateral gene transfer, or genes with atypical evolutionary modes, etc.), forest-based and network-based methods are preferable to the reconstruction of a single tree, because they provide insights and produce hypotheses about the dynamics of genome evolution, rather than the relative branching order of species and lineages. Such a methodological pluralism - the use of woods and webs - is to be encouraged to analyse the evolutionary processes at play in microbial evolution.This manuscript was reviewed by: Ford Doolittle, Tal Pupko, Richard Burian, James McInerney, Didier Raoult, and Yan Boucher.

  1. False discovery rate control incorporating phylogenetic tree increases detection power in microbiome-wide multiple testing.

    PubMed

    Xiao, Jian; Cao, Hongyuan; Chen, Jun

    2017-09-15

    Next generation sequencing technologies have enabled the study of the human microbiome through direct sequencing of microbial DNA, resulting in an enormous amount of microbiome sequencing data. One unique characteristic of microbiome data is the phylogenetic tree that relates all the bacterial species. Closely related bacterial species have a tendency to exhibit a similar relationship with the environment or disease. Thus, incorporating the phylogenetic tree information can potentially improve the detection power for microbiome-wide association studies, where hundreds or thousands of tests are conducted simultaneously to identify bacterial species associated with a phenotype of interest. Despite much progress in multiple testing procedures such as false discovery rate (FDR) control, methods that take into account the phylogenetic tree are largely limited. We propose a new FDR control procedure that incorporates the prior structure information and apply it to microbiome data. The proposed procedure is based on a hierarchical model, where a structure-based prior distribution is designed to utilize the phylogenetic tree. By borrowing information from neighboring bacterial species, we are able to improve the statistical power of detecting associated bacterial species while controlling the FDR at desired levels. When the phylogenetic tree is mis-specified or non-informative, our procedure achieves a similar power as traditional procedures that do not take into account the tree structure. We demonstrate the performance of our method through extensive simulations and real microbiome datasets. We identified far more alcohol-drinking associated bacterial species than traditional methods. R package StructFDR is available from CRAN. chen.jun2@mayo.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. Decision tree-based method for integrating gene expression, demographic, and clinical data to determine disease endotypes

    PubMed Central

    2013-01-01

    Background Complex diseases are often difficult to diagnose, treat and study due to the multi-factorial nature of the underlying etiology. Large data sets are now widely available that can be used to define novel, mechanistically distinct disease subtypes (endotypes) in a completely data-driven manner. However, significant challenges exist with regard to how to segregate individuals into suitable subtypes of the disease and understand the distinct biological mechanisms of each when the goal is to maximize the discovery potential of these data sets. Results A multi-step decision tree-based method is described for defining endotypes based on gene expression, clinical covariates, and disease indicators using childhood asthma as a case study. We attempted to use alternative approaches such as the Student’s t-test, single data domain clustering and the Modk-prototypes algorithm, which incorporates multiple data domains into a single analysis and none performed as well as the novel multi-step decision tree method. This new method gave the best segregation of asthmatics and non-asthmatics, and it provides easy access to all genes and clinical covariates that distinguish the groups. Conclusions The multi-step decision tree method described here will lead to better understanding of complex disease in general by allowing purely data-driven disease endotypes to facilitate the discovery of new mechanisms underlying these diseases. This application should be considered a complement to ongoing efforts to better define and diagnose known endotypes. When coupled with existing methods developed to determine the genetics of gene expression, these methods provide a mechanism for linking genetics and exposomics data and thereby accounting for both major determinants of disease. PMID:24188919

  3. Automatic Classification of Trees from Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Sirmacek, B.; Lindenbergh, R.

    2015-08-01

    Development of laser scanning technologies has promoted tree monitoring studies to a new level, as the laser scanning point clouds enable accurate 3D measurements in a fast and environmental friendly manner. In this paper, we introduce a probability matrix computation based algorithm for automatically classifying laser scanning point clouds into 'tree' and 'non-tree' classes. Our method uses the 3D coordinates of the laser scanning points as input and generates a new point cloud which holds a label for each point indicating if it belongs to the 'tree' or 'non-tree' class. To do so, a grid surface is assigned to the lowest height level of the point cloud. The grids are filled with probability values which are calculated by checking the point density above the grid. Since the tree trunk locations appear with very high values in the probability matrix, selecting the local maxima of the grid surface help to detect the tree trunks. Further points are assigned to tree trunks if they appear in the close proximity of trunks. Since heavy mathematical computations (such as point cloud organization, detailed shape 3D detection methods, graph network generation) are not required, the proposed algorithm works very fast compared to the existing methods. The tree classification results are found reliable even on point clouds of cities containing many different objects. As the most significant weakness, false detection of light poles, traffic signs and other objects close to trees cannot be prevented. Nevertheless, the experimental results on mobile and airborne laser scanning point clouds indicate the possible usage of the algorithm as an important step for tree growth observation, tree counting and similar applications. While the laser scanning point cloud is giving opportunity to classify even very small trees, accuracy of the results is reduced in the low point density areas further away than the scanning location. These advantages and disadvantages of two laser scanning point cloud sources are discussed in detail.

  4. Testing efficacy of distance and tree-based methods for DNA barcoding of grasses (Poaceae tribe Poeae) in Australia

    PubMed Central

    Walsh, Neville G.; Cantrill, David J.; Holmes, Gareth D.; Murphy, Daniel J.

    2017-01-01

    In Australia, Poaceae tribe Poeae are represented by 19 genera and 99 species, including economically and environmentally important native and introduced pasture grasses [e.g. Poa (Tussock-grasses) and Lolium (Ryegrasses)]. We used this tribe, which are well characterised in regards to morphological diversity and evolutionary relationships, to test the efficacy of DNA barcoding methods. A reference library was generated that included 93.9% of species in Australia (408 individuals, x¯ = 3.7 individuals per species). Molecular data were generated for official plant barcoding markers (rbcL, matK) and the nuclear ribosomal internal transcribed spacer (ITS) region. We investigated accuracy of specimen identifications using distance- (nearest neighbour, best-close match, and threshold identification) and tree-based (maximum likelihood, Bayesian inference) methods and applied species discovery methods (automatic barcode gap discovery, Poisson tree processes) based on molecular data to assess congruence with recognised species. Across all methods, success rate for specimen identification of genera was high (87.5–99.5%) and of species was low (25.6–44.6%). Distance- and tree-based methods were equally ineffective in providing accurate identifications for specimens to species rank (26.1–44.6% and 25.6–31.3%, respectively). The ITS marker achieved the highest success rate for specimen identification at both generic and species ranks across the majority of methods. For distance-based analyses the best-close match method provided the greatest accuracy for identification of individuals with a high percentage of “correct” (97.6%) and a low percentage of “incorrect” (0.3%) generic identifications, based on the ITS marker. For tribe Poeae, and likely for other grass lineages, sequence data in the standard DNA barcode markers are not variable enough for accurate identification of specimens to species rank. For recently diverged grass species similar challenges are encountered in the application of genetic and morphological data to species delimitations, with taxonomic signal limited by extensive infra-specific variation and shared polymorphisms among species in both data types. PMID:29084279

  5. Testing efficacy of distance and tree-based methods for DNA barcoding of grasses (Poaceae tribe Poeae) in Australia.

    PubMed

    Birch, Joanne L; Walsh, Neville G; Cantrill, David J; Holmes, Gareth D; Murphy, Daniel J

    2017-01-01

    In Australia, Poaceae tribe Poeae are represented by 19 genera and 99 species, including economically and environmentally important native and introduced pasture grasses [e.g. Poa (Tussock-grasses) and Lolium (Ryegrasses)]. We used this tribe, which are well characterised in regards to morphological diversity and evolutionary relationships, to test the efficacy of DNA barcoding methods. A reference library was generated that included 93.9% of species in Australia (408 individuals, [Formula: see text] = 3.7 individuals per species). Molecular data were generated for official plant barcoding markers (rbcL, matK) and the nuclear ribosomal internal transcribed spacer (ITS) region. We investigated accuracy of specimen identifications using distance- (nearest neighbour, best-close match, and threshold identification) and tree-based (maximum likelihood, Bayesian inference) methods and applied species discovery methods (automatic barcode gap discovery, Poisson tree processes) based on molecular data to assess congruence with recognised species. Across all methods, success rate for specimen identification of genera was high (87.5-99.5%) and of species was low (25.6-44.6%). Distance- and tree-based methods were equally ineffective in providing accurate identifications for specimens to species rank (26.1-44.6% and 25.6-31.3%, respectively). The ITS marker achieved the highest success rate for specimen identification at both generic and species ranks across the majority of methods. For distance-based analyses the best-close match method provided the greatest accuracy for identification of individuals with a high percentage of "correct" (97.6%) and a low percentage of "incorrect" (0.3%) generic identifications, based on the ITS marker. For tribe Poeae, and likely for other grass lineages, sequence data in the standard DNA barcode markers are not variable enough for accurate identification of specimens to species rank. For recently diverged grass species similar challenges are encountered in the application of genetic and morphological data to species delimitations, with taxonomic signal limited by extensive infra-specific variation and shared polymorphisms among species in both data types.

  6. Soft context clustering for F0 modeling in HMM-based speech synthesis

    NASA Astrophysics Data System (ADS)

    Khorram, Soheil; Sameti, Hossein; King, Simon

    2015-12-01

    This paper proposes the use of a new binary decision tree, which we call a soft decision tree, to improve generalization performance compared to the conventional `hard' decision tree method that is used to cluster context-dependent model parameters in statistical parametric speech synthesis. We apply the method to improve the modeling of fundamental frequency, which is an important factor in synthesizing natural-sounding high-quality speech. Conventionally, hard decision tree-clustered hidden Markov models (HMMs) are used, in which each model parameter is assigned to a single leaf node. However, this `divide-and-conquer' approach leads to data sparsity, with the consequence that it suffers from poor generalization, meaning that it is unable to accurately predict parameters for models of unseen contexts: the hard decision tree is a weak function approximator. To alleviate this, we propose the soft decision tree, which is a binary decision tree with soft decisions at the internal nodes. In this soft clustering method, internal nodes select both their children with certain membership degrees; therefore, each node can be viewed as a fuzzy set with a context-dependent membership function. The soft decision tree improves model generalization and provides a superior function approximator because it is able to assign each context to several overlapped leaves. In order to use such a soft decision tree to predict the parameters of the HMM output probability distribution, we derive the smoothest (maximum entropy) distribution which captures all partial first-order moments and a global second-order moment of the training samples. Employing such a soft decision tree architecture with maximum entropy distributions, a novel speech synthesis system is trained using maximum likelihood (ML) parameter re-estimation and synthesis is achieved via maximum output probability parameter generation. In addition, a soft decision tree construction algorithm optimizing a log-likelihood measure is developed. Both subjective and objective evaluations were conducted and indicate a considerable improvement over the conventional method.

  7. [Advances in studies on the structure of farmland shelterbelt ecosystem].

    PubMed

    Li, Chunping; Guan, Wenbin; Fan, Zhiping; Su, Fanxin; Wang, Xilin

    2003-11-01

    The ecological function of farmland shelterbelt system is determined by its structure. The spatio-temporal structure is a key aspect in related researches, which is very necessary to study the integrity, stability and durability of shelterbelt modules. In this article, the researches on the structure of farmland shelterbelt ecosystem were reviewed from the four scales of tree structure, shelterbelt structure, shelterbelts network and landscape structure. The principles, methods and productions of each scale were summarized, and the prospects were also discussed. Dynamic simulation of tree growth process in shelterbelts could be conducted by the theory of form and quality structure of tree and by fractal graphics, which were helpful to study the mechanism of individual trees and belts based on photosynthetic and transpiration mechanism of individual trees. The mechanism model of shelterbelt porosity should be conducted, so that, the sustainable yield model of shelterbelt management could be established, and the optimized model of shelterbelt networks with multi-special and multi-hierarchical structure could also be formed. Evaluating the reasonability, stability and durability of shelterbelt landscape based on the theories and methods of landscape ecology was an important task in the future studies.

  8. PoMo: An Allele Frequency-Based Approach for Species Tree Estimation

    PubMed Central

    De Maio, Nicola; Schrempf, Dominik; Kosiol, Carolin

    2015-01-01

    Incomplete lineage sorting can cause incongruencies of the overall species-level phylogenetic tree with the phylogenetic trees for individual genes or genomic segments. If these incongruencies are not accounted for, it is possible to incur several biases in species tree estimation. Here, we present a simple maximum likelihood approach that accounts for ancestral variation and incomplete lineage sorting. We use a POlymorphisms-aware phylogenetic MOdel (PoMo) that we have recently shown to efficiently estimate mutation rates and fixation biases from within and between-species variation data. We extend this model to perform efficient estimation of species trees. We test the performance of PoMo in several different scenarios of incomplete lineage sorting using simulations and compare it with existing methods both in accuracy and computational speed. In contrast to other approaches, our model does not use coalescent theory but is allele frequency based. We show that PoMo is well suited for genome-wide species tree estimation and that on such data it is more accurate than previous approaches. PMID:26209413

  9. ETE: a python Environment for Tree Exploration.

    PubMed

    Huerta-Cepas, Jaime; Dopazo, Joaquín; Gabaldón, Toni

    2010-01-13

    Many bioinformatics analyses, ranging from gene clustering to phylogenetics, produce hierarchical trees as their main result. These are used to represent the relationships among different biological entities, thus facilitating their analysis and interpretation. A number of standalone programs are available that focus on tree visualization or that perform specific analyses on them. However, such applications are rarely suitable for large-scale surveys, in which a higher level of automation is required. Currently, many genome-wide analyses rely on tree-like data representation and hence there is a growing need for scalable tools to handle tree structures at large scale. Here we present the Environment for Tree Exploration (ETE), a python programming toolkit that assists in the automated manipulation, analysis and visualization of hierarchical trees. ETE libraries provide a broad set of tree handling options as well as specific methods to analyze phylogenetic and clustering trees. Among other features, ETE allows for the independent analysis of tree partitions, has support for the extended newick format, provides an integrated node annotation system and permits to link trees to external data such as multiple sequence alignments or numerical arrays. In addition, ETE implements a number of built-in analytical tools, including phylogeny-based orthology prediction and cluster validation techniques. Finally, ETE's programmable tree drawing engine can be used to automate the graphical rendering of trees with customized node-specific visualizations. ETE provides a complete set of methods to manipulate tree data structures that extends current functionality in other bioinformatic toolkits of a more general purpose. ETE is free software and can be downloaded from http://ete.cgenomics.org.

  10. ETE: a python Environment for Tree Exploration

    PubMed Central

    2010-01-01

    Background Many bioinformatics analyses, ranging from gene clustering to phylogenetics, produce hierarchical trees as their main result. These are used to represent the relationships among different biological entities, thus facilitating their analysis and interpretation. A number of standalone programs are available that focus on tree visualization or that perform specific analyses on them. However, such applications are rarely suitable for large-scale surveys, in which a higher level of automation is required. Currently, many genome-wide analyses rely on tree-like data representation and hence there is a growing need for scalable tools to handle tree structures at large scale. Results Here we present the Environment for Tree Exploration (ETE), a python programming toolkit that assists in the automated manipulation, analysis and visualization of hierarchical trees. ETE libraries provide a broad set of tree handling options as well as specific methods to analyze phylogenetic and clustering trees. Among other features, ETE allows for the independent analysis of tree partitions, has support for the extended newick format, provides an integrated node annotation system and permits to link trees to external data such as multiple sequence alignments or numerical arrays. In addition, ETE implements a number of built-in analytical tools, including phylogeny-based orthology prediction and cluster validation techniques. Finally, ETE's programmable tree drawing engine can be used to automate the graphical rendering of trees with customized node-specific visualizations. Conclusions ETE provides a complete set of methods to manipulate tree data structures that extends current functionality in other bioinformatic toolkits of a more general purpose. ETE is free software and can be downloaded from http://ete.cgenomics.org. PMID:20070885

  11. Parallel object-oriented decision tree system

    DOEpatents

    Kamath,; Chandrika, Cantu-Paz [Dublin, CA; Erick, [Oakland, CA

    2006-02-28

    A data mining decision tree system that uncovers patterns, associations, anomalies, and other statistically significant structures in data by reading and displaying data files, extracting relevant features for each of the objects, and using a method of recognizing patterns among the objects based upon object features through a decision tree that reads the data, sorts the data if necessary, determines the best manner to split the data into subsets according to some criterion, and splits the data.

  12. Sequence comparison alignment-free approach based on suffix tree and L-words frequency.

    PubMed

    Soares, Inês; Goios, Ana; Amorim, António

    2012-01-01

    The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions). In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L-L-words--in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.

  13. Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data.

    PubMed

    Zhang, Peng; Li, Houqiang; Wang, Honghui; Wong, Stephen T C; Zhou, Xiaobo

    2011-01-01

    Peak detection is one of the most important steps in mass spectrometry (MS) analysis. However, the detection result is greatly affected by severe spectrum variations. Unfortunately, most current peak detection methods are neither flexible enough to revise false detection results nor robust enough to resist spectrum variations. To improve flexibility, we introduce peak tree to represent the peak information in MS spectra. Each tree node is a peak judgment on a range of scales, and each tree decomposition, as a set of nodes, is a candidate peak detection result. To improve robustness, we combine peak detection and common peak alignment into a closed-loop framework, which finds the optimal decomposition via both peak intensity and common peak information. The common peak information is derived and loopily refined from the density clustering of the latest peak detection result. Finally, we present an improved ant colony optimization biomarker selection method to build a whole MS analysis system. Experiment shows that our peak detection method can better resist spectrum variations and provide higher sensitivity and lower false detection rates than conventional methods. The benefits from our peak-tree-based system for MS disease analysis are also proved on real SELDI data.

  14. Inferring gene regression networks with model trees

    PubMed Central

    2010-01-01

    Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database) is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear regressions to separate areas of the search space favoring to infer localized similarities over a more global similarity. Furthermore, experimental results show the good performance of REGNET. PMID:20950452

  15. Applied Swarm-based medicine: collecting decision trees for patterns of algorithms analysis.

    PubMed

    Panje, Cédric M; Glatzer, Markus; von Rappard, Joscha; Rothermundt, Christian; Hundsberger, Thomas; Zumstein, Valentin; Plasswilm, Ludwig; Putora, Paul Martin

    2017-08-16

    The objective consensus methodology has recently been applied in consensus finding in several studies on medical decision-making among clinical experts or guidelines. The main advantages of this method are an automated analysis and comparison of treatment algorithms of the participating centers which can be performed anonymously. Based on the experience from completed consensus analyses, the main steps for the successful implementation of the objective consensus methodology were identified and discussed among the main investigators. The following steps for the successful collection and conversion of decision trees were identified and defined in detail: problem definition, population selection, draft input collection, tree conversion, criteria adaptation, problem re-evaluation, results distribution and refinement, tree finalisation, and analysis. This manuscript provides information on the main steps for successful collection of decision trees and summarizes important aspects at each point of the analysis.

  16. Drug Adverse Event Detection in Health Plan Data Using the Gamma Poisson Shrinker and Comparison to the Tree-based Scan Statistic

    PubMed Central

    Brown, Jeffrey S.; Petronis, Kenneth R.; Bate, Andrew; Zhang, Fang; Dashevsky, Inna; Kulldorff, Martin; Avery, Taliser R.; Davis, Robert L.; Chan, K. Arnold; Andrade, Susan E.; Boudreau, Denise; Gunter, Margaret J.; Herrinton, Lisa; Pawloski, Pamala A.; Raebel, Marsha A.; Roblin, Douglas; Smith, David; Reynolds, Robert

    2013-01-01

    Background: Drug adverse event (AE) signal detection using the Gamma Poisson Shrinker (GPS) is commonly applied in spontaneous reporting. AE signal detection using large observational health plan databases can expand medication safety surveillance. Methods: Using data from nine health plans, we conducted a pilot study to evaluate the implementation and findings of the GPS approach for two antifungal drugs, terbinafine and itraconazole, and two diabetes drugs, pioglitazone and rosiglitazone. We evaluated 1676 diagnosis codes grouped into 183 different clinical concepts and four levels of granularity. Several signaling thresholds were assessed. GPS results were compared to findings from a companion study using the identical analytic dataset but an alternative statistical method—the tree-based scan statistic (TreeScan). Results: We identified 71 statistical signals across two signaling thresholds and two methods, including closely-related signals of overlapping diagnosis definitions. Initial review found that most signals represented known adverse drug reactions or confounding. About 31% of signals met the highest signaling threshold. Conclusions: The GPS method was successfully applied to observational health plan data in a distributed data environment as a drug safety data mining method. There was substantial concordance between the GPS and TreeScan approaches. Key method implementation decisions relate to defining exposures and outcomes and informed choice of signaling thresholds. PMID:24300404

  17. Is the extremely rare Iberian endemic plant species Castrilanthemum debeauxii (Compositae, Anthemideae) a 'living fossil'? Evidence from a multi-locus species tree reconstruction.

    PubMed

    Tomasello, Salvatore; Álvarez, Inés; Vargas, Pablo; Oberprieler, Christoph

    2015-01-01

    The present study provides results of multi-species coalescent species tree analyses of DNA sequences sampled from multiple nuclear and plastid regions to infer the phylogenetic relationships among the members of the subtribe Leucanthemopsidinae (Compositae, Anthemideae), to which besides the annual Castrilanthemum debeauxii (Degen, Hervier & É.Rev.) Vogt & Oberp., one of the rarest flowering plant species of the Iberian Peninsula, two other unispecific genera (Hymenostemma, Prolongoa), and the polyploidy complex of the genus Leucanthemopsis belong. Based on sequence information from two single- to low-copy nuclear regions (C16, D35, characterised by Chapman et al. (2007)), the multi-copy region of the nrDNA internal transcribed spacer regions ITS1 and ITS2, and two intergenic spacer regions of the cpDNA gene trees were reconstructed using Bayesian inference methods. For the reconstruction of a multi-locus species tree we applied three different methods: (a) analysis of concatenated sequences using Bayesian inference (MrBayes), (b) a tree reconciliation approach by minimizing the number of deep coalescences (PhyloNet), and (c) a coalescent-based species-tree method in a Bayesian framework ((∗)BEAST). All three species tree reconstruction methods unequivocally support the close relationship of the subtribe with the hitherto unclassified genus Phalacrocarpum, the sister-group relationship of Castrilanthemum with the three remaining genera of the subtribe, and the further sister-group relationship of the clade of Hymenostemma+Prolongoa with a monophyletic genus Leucanthemopsis. Dating of the (∗)BEAST phylogeny supports the long-lasting (Early Miocene, 15-22Ma) taxonomical independence and the switch from the plesiomorphic perennial to the apomorphic annual life-form assumed for the Castrilanthemum lineage that may have occurred not earlier than in the Pliocene (3Ma) when the establishment of a Mediterranean climate with summer droughts triggered evolution towards annuality. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Novel ID-based anti-collision approach for RFID

    NASA Astrophysics Data System (ADS)

    Zhang, De-Gan; Li, Wen-Bin

    2016-09-01

    Novel correlation ID-based (CID) anti-collision approach for RFID under the banner of the Internet of Things (IOT) has been presented in this paper. The key insights are as follows: according to the deterministic algorithms which are based on the binary search tree, we propose a method to increase the association between tags so that tags can initiatively send their own ID under certain trigger conditions, at the same time, we present a multi-tree search method for querying. When the number of tags is small, by replacing the actual ID with the temporary ID, it can greatly reduce the number of times that the reader reads and writes to tag's ID. Active tags send data to the reader by the way of modulation binary pulses. When applying this method to the uncertain ALOHA algorithms, the reader can determine the locations of the empty slots according to the position of the binary pulse, so it can avoid the decrease in efficiency which is caused by reading empty slots when reading slots. Theory and experiment show that this method can greatly improve the recognition efficiency of the system when applied to either the search tree or the ALOHA anti-collision algorithms.

  19. A Distance Measure for Genome Phylogenetic Analysis

    NASA Astrophysics Data System (ADS)

    Cao, Minh Duc; Allison, Lloyd; Dix, Trevor

    Phylogenetic analyses of species based on single genes or parts of the genomes are often inconsistent because of factors such as variable rates of evolution and horizontal gene transfer. The availability of more and more sequenced genomes allows phylogeny construction from complete genomes that is less sensitive to such inconsistency. For such long sequences, construction methods like maximum parsimony and maximum likelihood are often not possible due to their intensive computational requirement. Another class of tree construction methods, namely distance-based methods, require a measure of distances between any two genomes. Some measures such as evolutionary edit distance of gene order and gene content are computational expensive or do not perform well when the gene content of the organisms are similar. This study presents an information theoretic measure of genetic distances between genomes based on the biological compression algorithm expert model. We demonstrate that our distance measure can be applied to reconstruct the consensus phylogenetic tree of a number of Plasmodium parasites from their genomes, the statistical bias of which would mislead conventional analysis methods. Our approach is also used to successfully construct a plausible evolutionary tree for the γ-Proteobacteria group whose genomes are known to contain many horizontally transferred genes.

  20. Development of a New Decision Tree to Rapidly Screen Chemical Estrogenic Activities of Xenopus laevis.

    PubMed

    Wang, Ting; Li, Weiying; Zheng, Xiaofeng; Lin, Zhifen; Kong, Deyang

    2014-02-01

    During the last past decades, there is an increasing number of studies about estrogenic activities of the environmental pollutants on amphibians and many determination methods have been proposed. However, these determination methods are time-consuming and expensive, and a rapid and simple method to screen and test the chemicals for estrogenic activities to amphibians is therefore imperative. Herein is proposed a new decision tree formulated not only with physicochemical parameters but also a biological parameter that was successfully used to screen estrogenic activities of the chemicals on amphibians. The biological parameter, CDOCKER interaction energy (Ebinding ) between chemicals and the target proteins was calculated based on the method of molecular docking, and it was used to revise the decision tree formulated by Hong only with physicochemical parameters for screening estrogenic activity of chemicals in rat. According to the correlation between Ebinding of rat and Xenopus laevis, a new decision tree for estrogenic activities in Xenopus laevis is finally proposed. Then it was validated by using the randomly 8 chemicals which can be frequently exposed to Xenopus laevis, and the agreement between the results from the new decision tree and the ones from experiments is generally satisfactory. Consequently, the new decision tree can be used to screen the estrogenic activities of the chemicals, and combinational use of the Ebinding and classical physicochemical parameters can greatly improves Hong's decision tree. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. From Curves to Trees: A Tree-like Shapes Distance Using the Elastic Shape Analysis Framework.

    PubMed

    Mottini, A; Descombes, X; Besse, F

    2015-04-01

    Trees are a special type of graph that can be found in various disciplines. In the field of biomedical imaging, trees have been widely studied as they can be used to describe structures such as neurons, blood vessels and lung airways. It has been shown that the morphological characteristics of these structures can provide information on their function aiding the characterization of pathological states. Therefore, it is important to develop methods that analyze their shape and quantify differences between their structures. In this paper, we present a method for the comparison of tree-like shapes that takes into account both topological and geometrical information. This method, which is based on the Elastic Shape Analysis Framework, also computes the mean shape of a population of trees. As a first application, we have considered the comparison of axon morphology. The performance of our method has been evaluated on two sets of images. For the first set of images, we considered four different populations of neurons from different animals and brain sections from the NeuroMorpho.org open database. The second set was composed of a database of 3D confocal microscopy images of three populations of axonal trees (normal and two types of mutations) of the same type of neurons. We have calculated the inter and intra class distances between the populations and embedded the distance in a classification scheme. We have compared the performance of our method against three other state of the art algorithms, and results showed that the proposed method better distinguishes between the populations. Furthermore, we present the mean shape of each population. These shapes present a more complete picture of the morphological characteristics of each population, compared to the average value of certain predefined features.

  2. Oxygen Distributions—Evaluation of Computational Methods, Using a Stochastic Model for Large Tumour Vasculature, to Elucidate the Importance of Considering a Complete Vascular Network

    PubMed Central

    Bernhardt, Peter

    2016-01-01

    Purpose To develop a general model that utilises a stochastic method to generate a vessel tree based on experimental data, and an associated irregular, macroscopic tumour. These will be used to evaluate two different methods for computing oxygen distribution. Methods A vessel tree structure, and an associated tumour of 127 cm3, were generated, using a stochastic method and Bresenham’s line algorithm to develop trees on two different scales and fusing them together. The vessel dimensions were adjusted through convolution and thresholding and each vessel voxel was assigned an oxygen value. Diffusion and consumption were modelled using a Green’s function approach together with Michaelis-Menten kinetics. The computations were performed using a combined tree method (CTM) and an individual tree method (ITM). Five tumour sub-sections were compared, to evaluate the methods. Results The oxygen distributions of the same tissue samples, using different methods of computation, were considerably less similar (root mean square deviation, RMSD≈0.02) than the distributions of different samples using CTM (0.001< RMSD<0.01). The deviations of ITM from CTM increase with lower oxygen values, resulting in ITM severely underestimating the level of hypoxia in the tumour. Kolmogorov Smirnov (KS) tests showed that millimetre-scale samples may not represent the whole. Conclusions The stochastic model managed to capture the heterogeneous nature of hypoxic fractions and, even though the simplified computation did not considerably alter the oxygen distribution, it leads to an evident underestimation of tumour hypoxia, and thereby radioresistance. For a trustworthy computation of tumour oxygenation, the interaction between adjacent microvessel trees must not be neglected, why evaluation should be made using high resolution and the CTM, applied to the entire tumour. PMID:27861529

  3. Decision-Tree, Rule-Based, and Random Forest Classification of High-Resolution Multispectral Imagery for Wetland Mapping and Inventory

    EPA Science Inventory

    Efforts are increasingly being made to classify the world’s wetland resources, an important ecosystem and habitat that is diminishing in abundance. There are multiple remote sensing classification methods, including a suite of nonparametric classifiers such as decision-tree...

  4. Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods

    NASA Astrophysics Data System (ADS)

    Helama, S.; Lindholm, M.; Timonen, M.; Eronen, M.

    2004-12-01

    Tree-ring standardization methods were compared. Traditional methods along with the recently introduced approaches of regional curve standardization (RCS) and power-transformation (PT) were included. The difficulty in removing non-climatic variation (noise) while simultaneously preserving the low-frequency variability in the tree-ring series was emphasized. The potential risk of obtaining inflated index values was analysed by comparing methods to extract tree-ring indices from the standardization curve. The material for the tree-ring series, previously used in several palaeoclimate predictions, came from living and dead wood of high-latitude Scots pine in northernmost Europe. This material provided a useful example of a long composite tree-ring chronology with the typical strengths and weaknesses of such data, particularly in the context of standardization. PT stabilized the heteroscedastic variation in the original tree-ring series more efficiently than any other standardization practice expected to preserve the low-frequency variability. RCS showed great potential in preserving variability in tree-ring series at centennial time scales; however, this method requires a homogeneous sample for reliable signal estimation. It is not recommended to derive indices by subtraction without first stabilizing the variance in the case of series of forest-limit tree-ring data. Index calculation by division did not seem to produce inflated chronology values for the past one and a half centuries of the chronology (where mean sample cambial age is high). On the other hand, potential bias of high RCS chronology values was observed during the period of anomalously low mean sample cambial age. An alternative technique for chronology construction was proposed based on series age decomposition, where indices in the young vigorously behaving part of each series are extracted from the curve by division and in the mature part by subtraction. Because of their specific nature, the dendrochronological data here should not be generalized to all tree-ring records. The examples presented should be used as guidelines for detecting potential sources of bias and as illustrations of the usefulness of tree-ring records as palaeoclimate indicators.

  5. How Hierarchical Topics Evolve in Large Text Corpora.

    PubMed

    Cui, Weiwei; Liu, Shixia; Wu, Zhuofeng; Wei, Hao

    2014-12-01

    Using a sequence of topic trees to organize documents is a popular way to represent hierarchical and evolving topics in text corpora. However, following evolving topics in the context of topic trees remains difficult for users. To address this issue, we present an interactive visual text analysis approach to allow users to progressively explore and analyze the complex evolutionary patterns of hierarchical topics. The key idea behind our approach is to exploit a tree cut to approximate each tree and allow users to interactively modify the tree cuts based on their interests. In particular, we propose an incremental evolutionary tree cut algorithm with the goal of balancing 1) the fitness of each tree cut and the smoothness between adjacent tree cuts; 2) the historical and new information related to user interests. A time-based visualization is designed to illustrate the evolving topics over time. To preserve the mental map, we develop a stable layout algorithm. As a result, our approach can quickly guide users to progressively gain profound insights into evolving hierarchical topics. We evaluate the effectiveness of the proposed method on Amazon's Mechanical Turk and real-world news data. The results show that users are able to successfully analyze evolving topics in text data.

  6. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.

    PubMed

    Meng, Qier; Kitasaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Ueno, Junji; Mori, Kensaku

    2017-02-01

    Airway segmentation plays an important role in analyzing chest computed tomography (CT) volumes for computerized lung cancer detection, emphysema diagnosis and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3D airway tree structure from a CT volume is quite a challenging task. Several researchers have proposed automated airway segmentation algorithms basically based on region growing and machine learning techniques. However, these methods fail to detect the peripheral bronchial branches, which results in a large amount of leakage. This paper presents a novel approach for more accurate extraction of the complex airway tree. This proposed segmentation method is composed of three steps. First, Hessian analysis is utilized to enhance the tube-like structure in CT volumes; then, an adaptive multiscale cavity enhancement filter is employed to detect the cavity-like structure with different radii. In the second step, support vector machine learning will be utilized to remove the false positive (FP) regions from the result obtained in the previous step. Finally, the graph-cut algorithm is used to refine the candidate voxels to form an integrated airway tree. A test dataset including 50 standard-dose chest CT volumes was used for evaluating our proposed method. The average extraction rate was about 79.1 % with the significantly decreased FP rate. A new method of airway segmentation based on local intensity structure and machine learning technique was developed. The method was shown to be feasible for airway segmentation in a computer-aided diagnosis system for a lung and bronchoscope guidance system.

  7. Assessing visual green effects of individual urban trees using airborne Lidar data.

    PubMed

    Chen, Ziyue; Xu, Bing; Gao, Bingbo

    2015-12-01

    Urban trees benefit people's daily life in terms of air quality, local climate, recreation and aesthetics. Among these functions, a growing number of studies have been conducted to understand the relationship between residents' preference towards local environments and visual green effects of urban greenery. However, except for on-site photography, there are few quantitative methods to calculate green visibility, especially tree green visibility, from viewers' perspectives. To fill this research gap, a case study was conducted in the city of Cambridge, which has a diversity of tree species, sizes and shapes. Firstly, a photograph-based survey was conducted to approximate the actual value of visual green effects of individual urban trees. In addition, small footprint airborne Lidar (Light detection and ranging) data was employed to measure the size and shape of individual trees. Next, correlations between visual tree green effects and tree structural parameters were examined. Through experiments and gradual refinement, a regression model with satisfactory R2 and limited large errors is proposed. Considering the diversity of sample trees and the result of cross-validation, this model has the potential to be applied to other study sites. This research provides urban planners and decision makers with an innovative method to analyse and evaluate landscape patterns in terms of tree greenness. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Rooting the archaebacterial tree: the pivotal role of Thermococcus celer in archaebacterial evolution

    NASA Technical Reports Server (NTRS)

    Achenbach-Richter, L.; Gupta, R.; Zillig, W.; Woese, C. R.

    1988-01-01

    The sequence of the 16S ribosomal RNA gene from the archaebacterium Thermococcus celer shows the organism to be related to the methanogenic archaebacteria rather than to its phenotypic counterparts, the extremely thermophilic archaebacteria. This conclusion turns on the position of the root of the archaebacterial phylogenetic tree, however. The problems encountered in rooting this tree are analyzed in detail. Under conditions that suppress evolutionary noise both the parsimony and evolutionary distance methods yield a root location (using a number of eubacterial or eukaryotic outgroup sequences) that is consistent with that determined by an "internal rooting" method, based upon an (approximate) determination of relative evolutionary rates.

  9. Comparing ensemble learning methods based on decision tree classifiers for protein fold recognition.

    PubMed

    Bardsiri, Mahshid Khatibi; Eftekhari, Mahdi

    2014-01-01

    In this paper, some methods for ensemble learning of protein fold recognition based on a decision tree (DT) are compared and contrasted against each other over three datasets taken from the literature. According to previously reported studies, the features of the datasets are divided into some groups. Then, for each of these groups, three ensemble classifiers, namely, random forest, rotation forest and AdaBoost.M1 are employed. Also, some fusion methods are introduced for combining the ensemble classifiers obtained in the previous step. After this step, three classifiers are produced based on the combination of classifiers of types random forest, rotation forest and AdaBoost.M1. Finally, the three different classifiers achieved are combined to make an overall classifier. Experimental results show that the overall classifier obtained by the genetic algorithm (GA) weighting fusion method, is the best one in comparison to previously applied methods in terms of classification accuracy.

  10. Tracing footprints of environmental events in tree ring chemistry using neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Sahin, Dagistan

    The aim of this study is to identify environmental effects on tree-ring chemistry. It is known that industrial pollution, volcanic eruptions, dust storms, acid rain and similar events can cause substantial changes in soil chemistry. Establishing whether a particular group of trees is sensitive to these changes in soil environment and registers them in the elemental chemistry of contemporary growth rings is the over-riding goal of any Dendrochemistry research. In this study, elemental concentrations were measured in tree-ring samples of absolutely dated eleven modern forest trees, grown in the Mediterranean region, Turkey, collected and dated by the Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology laboratory at Cornell University. Correlations between measured elemental concentrations in the tree-ring samples were analyzed using statistical tests to answer two questions. Does the current concentration of a particular element depend on any other element within the tree? And, are there any elements showing correlated abnormal concentration changes across the majority of the trees? Based on the detailed analysis results, the low mobility of sodium and bromine, positive correlations between calcium, zinc and manganese, positive correlations between trace elements lanthanum, samarium, antimony, and gold within tree-rings were recognized. Moreover, zinc, lanthanum, samarium and bromine showed strong, positive correlations among the trees and were identified as possible environmental signature elements. New Dendrochemistry information found in this study would be also useful in explaining tree physiology and elemental chemistry in Pinus nigra species grown in Turkey. Elemental concentrations in tree-ring samples were measured using Neutron Activation Analysis (NAA) at the Pennsylvania State University Radiation Science and Engineering Center (RSEC). Through this study, advanced methodologies for methodological, computational and experimental NAA were developed to ensure an acceptable accuracy and certainty in the elemental concentration measurements in tree-ring samples. Two independent analysis methods of NAA were used; the well known k-zero method and a novel method developed in this study, called the Multi-isotope Iterative Westcott (MIW) method. The MIW method uses reaction rate probabilities for a group of isotopes, which can be calculated by a neutronic simulation or measured by experimentation, and determines the representative values for the neutron flux and neutron flux characterization parameters based on Westcott convention. Elemental concentration calculations for standard reference material and tree-ring samples were then performed using the MIW and k-zero analysis methods of the NAA and the results were cross verified. In the computational part of this study, a detailed burnup coupled neutronic simulation was developed to analyze real-time neutronic changes in a TRIGA Mark III reactor core, in this study, the Penn State Breazeale Reactor (PSBR) core. To the best of the author`s knowledge, this is the first burnup coupled neutronic simulation with realistic time steps and full fuel temperature profile for a TRIGA reactor using Monte Carlo Utility for Reactor Evolutions (MURE) code and Monte Carlo Neutral-Particle Code (MCNP) coupling. High fidelity and flexibility in the simulation was aimed to replicate the real core operation through the day. This approach resulted in an enhanced accuracy in neutronic representation of the PSBR core with respect to previous neutronic simulation models for the PSBR core. An important contribution was made in the NAA experimentation practices employed in Dendrochemistry studies at the RSEC. Automated laboratory control and analysis software for NAA measurements in the RSEC Radionuclide Applications Laboratory was developed. Detailed laboratory procedures were written in this study comprising preparation, handling and measurements of tree-ring samples in the Radionuclide Applications Laboratory.

  11. Enabling the use of hereditary information from pedigree tools in medical knowledge-based systems.

    PubMed

    Gay, Pablo; López, Beatriz; Plà, Albert; Saperas, Jordi; Pous, Carles

    2013-08-01

    The use of family information is a key issue to deal with inheritance illnesses. This kind of information use to come in the form of pedigree files, which contain structured information as tree or graphs, which explains the family relationships. Knowledge-based systems should incorporate the information gathered by pedigree tools to assess medical decision making. In this paper, we propose a method to achieve such a goal, which consists on the definition of new indicators, and methods and rules to compute them from family trees. The method is illustrated with several case studies. We provide information about its implementation and integration on a case-based reasoning tool. The method has been experimentally tested with breast cancer diagnosis data. The results show the feasibility of our methodology. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection

    DTIC Science & Technology

    2009-11-01

    imaging using two distinct methods7-15: mathematically based models defined by geometric primitives and voxelized models derived from real human...trees to complete them. We also plan to add further detail by defining the Cooper’s ligaments using geometrical NURBS surfaces. Realistic...generated model for the coronary arterial tree based on multislice CT and morphometric data," Medical Imaging 2006: Physics of Medical Imaging 6142

  13. A novel transferable individual tree crown delineation model based on Fishing Net Dragging and boundary classification

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Im, Jungho; Quackenbush, Lindi J.

    2015-12-01

    This study provides a novel approach to individual tree crown delineation (ITCD) using airborne Light Detection and Ranging (LiDAR) data in dense natural forests using two main steps: crown boundary refinement based on a proposed Fishing Net Dragging (FiND) method, and segment merging based on boundary classification. FiND starts with approximate tree crown boundaries derived using a traditional watershed method with Gaussian filtering and refines these boundaries using an algorithm that mimics how a fisherman drags a fishing net. Random forest machine learning is then used to classify boundary segments into two classes: boundaries between trees and boundaries between branches that belong to a single tree. Three groups of LiDAR-derived features-two from the pseudo waveform generated along with crown boundaries and one from a canopy height model (CHM)-were used in the classification. The proposed ITCD approach was tested using LiDAR data collected over a mountainous region in the Adirondack Park, NY, USA. Overall accuracy of boundary classification was 82.4%. Features derived from the CHM were generally more important in the classification than the features extracted from the pseudo waveform. A comprehensive accuracy assessment scheme for ITCD was also introduced by considering both area of crown overlap and crown centroids. Accuracy assessment using this new scheme shows the proposed ITCD achieved 74% and 78% as overall accuracy, respectively, for deciduous and mixed forest.

  14. Polynomial Supertree Methods Revisited

    PubMed Central

    Brinkmeyer, Malte; Griebel, Thasso; Böcker, Sebastian

    2011-01-01

    Supertree methods allow to reconstruct large phylogenetic trees by combining smaller trees with overlapping leaf sets into one, more comprehensive supertree. The most commonly used supertree method, matrix representation with parsimony (MRP), produces accurate supertrees but is rather slow due to the underlying hard optimization problem. In this paper, we present an extensive simulation study comparing the performance of MRP and the polynomial supertree methods MinCut Supertree, Modified MinCut Supertree, Build-with-distances, PhySIC, PhySIC_IST, and super distance matrix. We consider both quality and resolution of the reconstructed supertrees. Our findings illustrate the tradeoff between accuracy and running time in supertree construction, as well as the pros and cons of voting- and veto-based supertree approaches. Based on our results, we make some general suggestions for supertree methods yet to come. PMID:22229028

  15. [Compatible biomass models of natural spruce (Picea asperata)].

    PubMed

    Wang, Jin Chi; Deng, Hua Feng; Huang, Guo Sheng; Wang, Xue Jun; Zhang, Lu

    2017-10-01

    By using nonlinear measurement error method, the compatible tree volume and above ground biomass equations were established based on the volume and biomass data of 150 sampling trees of natural spruce (Picea asperata). Two approaches, controlling directly under total aboveground biomass and controlling jointly from level to level, were used to design the compatible system for the total aboveground biomass and the biomass of four components (stem, bark, branch and foliage), and the total ground biomass could be estimated independently or estimated simultaneously in the system. The results showed that the R 2 of the one variable and bivariate compatible tree volume and aboveground biomass equations were all above 0.85, and the maximum value reached 0.99. The prediction effect of the volume equations could be improved significantly when tree height was included as predictor, while it was not significant in biomass estimation. For the compatible biomass systems, the one variable model based on controlling jointly from level to level was better than the model using controlling directly under total above ground biomass, but the bivariate models of the two methods were similar. Comparing the imitative effects of the one variable and bivariate compatible biomass models, the results showed that the increase of explainable variables could significantly improve the fitness of branch and foliage biomass, but had little effect on other components. Besides, there was almost no difference between the two methods of estimation based on the comparison.

  16. Predictive models for subtypes of autism spectrum disorder based on single-nucleotide polymorphisms and magnetic resonance imaging.

    PubMed

    Jiao, Y; Chen, R; Ke, X; Cheng, L; Chu, K; Lu, Z; Herskovits, E H

    2011-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder, of which Asperger syndrome and high-functioning autism are subtypes. Our goal is: 1) to determine whether a diagnostic model based on single-nucleotide polymorphisms (SNPs), brain regional thickness measurements, or brain regional volume measurements can distinguish Asperger syndrome from high-functioning autism; and 2) to compare the SNP, thickness, and volume-based diagnostic models. Our study included 18 children with ASD: 13 subjects with high-functioning autism and 5 subjects with Asperger syndrome. For each child, we obtained 25 SNPs for 8 ASD-related genes; we also computed regional cortical thicknesses and volumes for 66 brain structures, based on structural magnetic resonance (MR) examination. To generate diagnostic models, we employed five machine-learning techniques: decision stump, alternating decision trees, multi-class alternating decision trees, logistic model trees, and support vector machines. For SNP-based classification, three decision-tree-based models performed better than the other two machine-learning models. The performance metrics for three decision-tree-based models were similar: decision stump was modestly better than the other two methods, with accuracy = 90%, sensitivity = 0.95 and specificity = 0.75. All thickness and volume-based diagnostic models performed poorly. The SNP-based diagnostic models were superior to those based on thickness and volume. For SNP-based classification, rs878960 in GABRB3 (gamma-aminobutyric acid A receptor, beta 3) was selected by all tree-based models. Our analysis demonstrated that SNP-based classification was more accurate than morphometry-based classification in ASD subtype classification. Also, we found that one SNP--rs878960 in GABRB3--distinguishes Asperger syndrome from high-functioning autism.

  17. A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis

    PubMed Central

    De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan

    2016-01-01

    Background and Aims Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Methods Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Key Results Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. Conclusions A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. PMID:27107414

  18. Thin-layer chromatographic identification of Chinese propolis using chemometric fingerprinting.

    PubMed

    Tang, Tie-xin; Guo, Wei-yan; Xu, Ye; Zhang, Si-ming; Xu, Xin-jun; Wang, Dong-mei; Zhao, Zhi-min; Zhu, Long-ping; Yang, De-po

    2014-01-01

    Poplar tree gum has a similar chemical composition and appearance to Chinese propolis (bee glue) and has been widely used as a counterfeit propolis because Chinese propolis is typically the poplar-type propolis, the chemical composition of which is determined mainly by the resin of poplar trees. The discrimination of Chinese propolis from poplar tree gum is a challenging task. To develop a rapid thin-layer chromatographic (TLC) identification method using chemometric fingerprinting to discriminate Chinese propolis from poplar tree gum. A new TLC method using a combination of ammonia and hydrogen peroxide vapours as the visualisation reagent was developed to characterise the chemical profile of Chinese propolis. Three separate people performed TLC on eight Chinese propolis samples and three poplar tree gum samples of varying origins. Five chemometric methods, including similarity analysis, hierarchical clustering, k-means clustering, neural network and support vector machine, were compared for use in classifying the samples based on their densitograms obtained from the TLC chromatograms via image analysis. Hierarchical clustering, neural network and support vector machine analyses achieved a correct classification rate of 100% in classifying the samples. A strategy for TLC identification of Chinese propolis using chemometric fingerprinting was proposed and it provided accurate sample classification. The study has shown that the TLC identification method using chemometric fingerprinting is a rapid, low-cost method for the discrimination of Chinese propolis from poplar tree gum and may be used for the quality control of Chinese propolis. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems

    PubMed Central

    2015-01-01

    We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement. PMID:25844072

  20. The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis.

    PubMed

    Koziol, James A; Feng, Anne C; Jia, Zhenyu; Wang, Yipeng; Goodison, Seven; McClelland, Michael; Mercola, Dan

    2009-01-01

    Classification and regression trees have long been used for cancer diagnosis and prognosis. Nevertheless, instability and variable selection bias, as well as overfitting, are well-known problems of tree-based methods. In this article, we investigate whether ensemble tree classifiers can ameliorate these difficulties, using data from two recent studies of radical prostatectomy in prostate cancer. Using time to progression following prostatectomy as the relevant clinical endpoint, we found that ensemble tree classifiers robustly and reproducibly identified three subgroups of patients in the two clinical datasets: non-progressors, early progressors and late progressors. Moreover, the consensus classifications were independent predictors of time to progression compared to known clinical prognostic factors.

  1. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution

    PubMed Central

    Kendall, Michelle; Colijn, Caroline

    2016-01-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. Key words: phylogenetics, evolution, tree metrics, genetics, sequencing. PMID:27343287

  2. Decision trees in epidemiological research.

    PubMed

    Venkatasubramaniam, Ashwini; Wolfson, Julian; Mitchell, Nathan; Barnes, Timothy; JaKa, Meghan; French, Simone

    2017-01-01

    In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods. We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART) technique and the newer Conditional Inference tree (CTree) technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees. Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.

  3. Oxygen Distributions-Evaluation of Computational Methods, Using a Stochastic Model for Large Tumour Vasculature, to Elucidate the Importance of Considering a Complete Vascular Network.

    PubMed

    Lagerlöf, Jakob H; Bernhardt, Peter

    2016-01-01

    To develop a general model that utilises a stochastic method to generate a vessel tree based on experimental data, and an associated irregular, macroscopic tumour. These will be used to evaluate two different methods for computing oxygen distribution. A vessel tree structure, and an associated tumour of 127 cm3, were generated, using a stochastic method and Bresenham's line algorithm to develop trees on two different scales and fusing them together. The vessel dimensions were adjusted through convolution and thresholding and each vessel voxel was assigned an oxygen value. Diffusion and consumption were modelled using a Green's function approach together with Michaelis-Menten kinetics. The computations were performed using a combined tree method (CTM) and an individual tree method (ITM). Five tumour sub-sections were compared, to evaluate the methods. The oxygen distributions of the same tissue samples, using different methods of computation, were considerably less similar (root mean square deviation, RMSD≈0.02) than the distributions of different samples using CTM (0.001< RMSD<0.01). The deviations of ITM from CTM increase with lower oxygen values, resulting in ITM severely underestimating the level of hypoxia in the tumour. Kolmogorov Smirnov (KS) tests showed that millimetre-scale samples may not represent the whole. The stochastic model managed to capture the heterogeneous nature of hypoxic fractions and, even though the simplified computation did not considerably alter the oxygen distribution, it leads to an evident underestimation of tumour hypoxia, and thereby radioresistance. For a trustworthy computation of tumour oxygenation, the interaction between adjacent microvessel trees must not be neglected, why evaluation should be made using high resolution and the CTM, applied to the entire tumour.

  4. RNA-Seq based phylogeny recapitulates previous phylogeny of the genus Flaveria (Asteraceae) with some modifications.

    PubMed

    Lyu, Ming-Ju Amy; Gowik, Udo; Kelly, Steve; Covshoff, Sarah; Mallmann, Julia; Westhoff, Peter; Hibberd, Julian M; Stata, Matt; Sage, Rowan F; Lu, Haorong; Wei, Xiaofeng; Wong, Gane Ka-Shu; Zhu, Xin-Guang

    2015-06-18

    The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the genus Flaveria contains 21 of the 23 known Flaveria species and has been previously constructed using a combination of morphological data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnL-F). Here we developed a new strategy to update the phylogenetic tree of 16 Flaveria species based on RNA-Seq data. The updated phylogeny is largely congruent with the previously published tree but with some modifications. We propose that the data collection method provided in this study can be used as a generic method for phylogenetic tree reconstruction if the target species has no genomic information. We also showed that a "F. pringlei" genotype recently used in a number of labs may be a hybrid between F. pringlei (C3) and F. angustifolia (C3-C4). We propose that the new strategy of obtaining phylogenetic sequences outlined in this study can be used to construct robust trees in a larger number of taxa. The updated Flaveria phylogenetic tree also supports a hypothesis of stepwise and parallel evolution of C4 photosynthesis in the Flavaria clade.

  5. Systematic Model-in-the-Loop Test of Embedded Control Systems

    NASA Astrophysics Data System (ADS)

    Krupp, Alexander; Müller, Wolfgang

    Current model-based development processes offer new opportunities for verification automation, e.g., in automotive development. The duty of functional verification is the detection of design flaws. Current functional verification approaches exhibit a major gap between requirement definition and formal property definition, especially when analog signals are involved. Besides lack of methodical support for natural language formalization, there does not exist a standardized and accepted means for formal property definition as a target for verification planning. This article addresses several shortcomings of embedded system verification. An Enhanced Classification Tree Method is developed based on the established Classification Tree Method for Embeded Systems CTM/ES which applies a hardware verification language to define a verification environment.

  6. Tree-growth analyses to estimate tree species' drought tolerance.

    PubMed

    Eilmann, Britta; Rigling, Andreas

    2012-02-01

    Climate change is challenging forestry management and practices. Among other things, tree species with the ability to cope with more extreme climate conditions have to be identified. However, while environmental factors may severely limit tree growth or even cause tree death, assessing a tree species' potential for surviving future aggravated environmental conditions is rather demanding. The aim of this study was to find a tree-ring-based method suitable for identifying very drought-tolerant species, particularly potential substitute species for Scots pine (Pinus sylvestris L.) in Valais. In this inner-Alpine valley, Scots pine used to be the dominating species for dry forests, but today it suffers from high drought-induced mortality. We investigate the growth response of two native tree species, Scots pine and European larch (Larix decidua Mill.), and two non-native species, black pine (Pinus nigra Arnold) and Douglas fir (Pseudotsuga menziesii Mirb. var. menziesii), to drought. This involved analysing how the radial increment of these species responded to increasing water shortage (abandonment of irrigation) and to increasingly frequent drought years. Black pine and Douglas fir are able to cope with drought better than Scots pine and larch, as they show relatively high radial growth even after irrigation has been stopped and a plastic growth response to drought years. European larch does not seem to be able to cope with these dry conditions as it lacks the ability to recover from drought years. The analysis of trees' short-term response to extreme climate events seems to be the most promising and suitable method for detecting how tolerant a tree species is towards drought. However, combining all the methods used in this study provides a complete picture of how water shortage could limit species.

  7. [Spectral navigation technology and its application in positioning the fruits of fruit trees].

    PubMed

    Yu, Xiao-Lei; Zhao, Zhi-Min

    2010-03-01

    An innovative technology of spectral navigation is presented in the present paper. This new method adopts reflectance spectra of fruits, leaves and branches as one of the key navigation parameters and positions the fruits of fruit trees relying on the diversity of spectral characteristics. The research results show that the distinct smoothness as effect is available in the spectrum of leaves of fruit trees. On the other hand, gradual increasing as the trend is an important feature in the spectrum of branches of fruit trees while the spectrum of fruit fluctuates. In addition, the peak diversity of reflectance rate between fruits and leaves of fruit trees is reached at 850 nm of wavelength. So the limit value can be designed at this wavelength in order to distinguish fruits and leaves. The method introduced here can not only quickly distinguish fruits, leaves and branches, but also avoid the effects of surroundings. Compared with the traditional navigation systems based on machine vision, there are still some special and unique features in the field of positioning the fruits of fruit trees using spectral navigation technology.

  8. MASSAHAKE whole tree harvesting method for pulp raw-material and fuel -- R&D in 1993--1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asplund, D.A.; Ahonen, M.A.

    1993-12-31

    In Finland biofuels and hydropower are the only indigenous fuels available. Peat, wood and wood derived fuels form about 18% of total primary energy requirement. The largest wood and wood fuel user in Finland is wood processing industry, paper, pulp, sawmills. Due to silvicultural activities the growth of forests has developed an instant need for first thinnings. This need is about 12% of total stem wood growth. With conventional harvesting methods this would produce about 8 mill. m{sup 3} pulp raw material and 2 mill. m{sup 3} wood fuel. By using integrated harvesting methods about 12 mill. m{sup 3} pulpmore » raw material and 8 mill. m{sup 3} (about 1, 3 mill. toe) fuel could be produced. At the moment, there is no economically profitable method for harvesting first thinning trees for industrial use or energy production. Hence, there are a few ongoing research projects aiming at solving the question of integrated harvesting. MASSAHAKE chip purification method has been under R&D since 1987. Research with continuous experimental line (capacity 5--10 loose-m{sup 3}) has been done in 1991 and 1992. The research has concentrated on pine whole tree chip treatment, but preliminary tests with birch whole tree chips has been done. The experiment line will be modified for birth whole tree chips during 1993. Based on the research results more than 60% of the whole tree chips can be separated to pulp raw material with < 1% bark content. This amount is 1.5--2 times more than with present technology. The yield of fuel fraction is 2--4 times higher compared to present methods. Fuel fraction is homogeneous and could be used in most furnaces for energy production. By replacing fossil fuels with wood fuel in energy production it is possible to reduce CO{sub 2}-emissions significantly. This paper presents the wood fuel research areas in Finland and technical potential of MASSAHAKE-method including the plant for building a demonstration plant based on this technology.« less

  9. Application of Infrared and Raman Spectroscopy for the Identification of Disease Resistant Trees.

    PubMed

    Conrad, Anna O; Bonello, Pierluigi

    2015-01-01

    New approaches for identifying disease resistant trees are needed as the incidence of diseases caused by non-native and invasive pathogens increases. These approaches must be rapid, reliable, cost-effective, and should have the potential to be adapted for high-throughput screening or phenotyping. Within the context of trees and tree diseases, we summarize vibrational spectroscopic and chemometric methods that have been used to distinguish between groups of trees which vary in disease susceptibility or other important characteristics based on chemical fingerprint data. We also provide specific examples from the literature of where these approaches have been used successfully. Finally, we discuss future application of these approaches for wide-scale screening and phenotyping efforts aimed at identifying disease resistant trees and managing forest diseases.

  10. Efficient multifeature index structures for music data retrieval

    NASA Astrophysics Data System (ADS)

    Lee, Wegin; Chen, Arbee L. P.

    1999-12-01

    In this paper, we propose four index structures for music data retrieval. Based on suffix trees, we develop two index structures called combined suffix tree and independent suffix trees. These methods still show shortcomings for some search functions. Hence we develop another index, called Twin Suffix Trees, to overcome these problems. However, the Twin Suffix Trees lack of scalability when the amount of music data becomes large. Therefore we propose the fourth index, called Grid-Twin Suffix Trees, to provide scalability and flexibility for a large amount of music data. For each index, we can use different search functions, like exact search and approximate search, on different music features, like melody, rhythm or both. We compare the performance of the different search functions applied on each index structure by a series of experiments.

  11. Combined self-learning based single-image super-resolution and dual-tree complex wavelet transform denoising for medical images

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Ye, Xujiong; Slabaugh, Greg; Keegan, Jennifer; Mohiaddin, Raad; Firmin, David

    2016-03-01

    In this paper, we propose a novel self-learning based single-image super-resolution (SR) method, which is coupled with dual-tree complex wavelet transform (DTCWT) based denoising to better recover high-resolution (HR) medical images. Unlike previous methods, this self-learning based SR approach enables us to reconstruct HR medical images from a single low-resolution (LR) image without extra training on HR image datasets in advance. The relationships between the given image and its scaled down versions are modeled using support vector regression with sparse coding and dictionary learning, without explicitly assuming reoccurrence or self-similarity across image scales. In addition, we perform DTCWT based denoising to initialize the HR images at each scale instead of simple bicubic interpolation. We evaluate our method on a variety of medical images. Both quantitative and qualitative results show that the proposed approach outperforms bicubic interpolation and state-of-the-art single-image SR methods while effectively removing noise.

  12. Phase synchronization based on a Dual-Tree Complex Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Ferreira, Maria Teodora; Domingues, Margarete Oliveira; Macau, Elbert E. N.

    2016-11-01

    In this work, we show the applicability of our Discrete Complex Wavelet Approach (DCWA) to verify the phenomenon of phase synchronization transition in two coupled chaotic Lorenz systems. DCWA is based on the phase assignment from complex wavelet coefficients obtained by using a Dual-Tree Complex Wavelet Transform (DT-CWT). We analyzed two coupled chaotic Lorenz systems, aiming to detect the transition from non-phase synchronization to phase synchronization. In addition, we check how good is the method in detecting periods of 2π phase-slips. In all experiments, DCWA is compared with classical phase detection methods such as the ones based on arctangent and Hilbert transform showing a much better performance.

  13. Credibilistic multi-period portfolio optimization based on scenario tree

    NASA Astrophysics Data System (ADS)

    Mohebbi, Negin; Najafi, Amir Abbas

    2018-02-01

    In this paper, we consider a multi-period fuzzy portfolio optimization model with considering transaction costs and the possibility of risk-free investment. We formulate a bi-objective mean-VaR portfolio selection model based on the integration of fuzzy credibility theory and scenario tree in order to dealing with the markets uncertainty. The scenario tree is also a proper method for modeling multi-period portfolio problems since the length and continuity of their horizon. We take the return and risk as well cardinality, threshold, class, and liquidity constraints into consideration for further compliance of the model with reality. Then, an interactive dynamic programming method, which is based on a two-phase fuzzy interactive approach, is employed to solve the proposed model. In order to verify the proposed model, we present an empirical application in NYSE under different circumstances. The results show that the consideration of data uncertainty and other real-world assumptions lead to more practical and efficient solutions.

  14. [Difference of water relationships of poplar trees in Zhangbei County, Hebei, China based on stable isotope and thermal dissipation method].

    PubMed

    Miao, Bo; Meng, Ping; Zhang, Jin Song; He, Fang Jie; Sun, Shou Jia

    2017-07-18

    The water sources and transpiration of poplar trees in Zhangbei County were measured using stable hydrogen isotope and thermal dissipation method. The differences in water relationships between dieback and non-dieback poplar trees were analyzed. The results showed that the dieback trees mainly used shallow water from 0-30 cm soil layer during growing season while the non-dieback trees mainly used water from 30-80 cm soil layer. There was a significant difference in water source between them. The non-dieback trees used more water from middle and deep soil layers than that of the dieback trees during the dry season. The percentage of poplar trees using water from 0-30 cm soil layer increased in wet season, and the increase of dieback trees was higher than that of non-dieback trees. The contributions of water from 30-180 cm soil layer of dieback and non-dieback trees both decreased in wet season. The sap flow rate of non-dieback trees was higher than that of dieback trees. There was a similar variation tend of sap flow rate between dieback and non-dieback trees in different weather conditions, but the start time of sap flow of non-dieback trees was earlier than that of dieback trees. Correlation analysis showed that the sap flow rate of either dieback or non-dieback poplar trees strongly related to soil temperature, wind speed, photosynthetically active radiation, relative humidity and air temperature. The sap flow rate of die-back poplar trees strongly negatively related to soil temperature and relative humidity, and strongly positively related to the other factors. The sap flow rate of non-dieback poplar trees only strongly negatively related to relative humidity but positively related to the other factors. The results revealed transpiration of both poplar trees was easily affected by environmental factors. The water consumption of dieback trees was less than non-dieback trees because the cumulative sap flow amount of dieback trees was lower. Reduced transpiration of dieback trees couldn't help to prevent poplar forest declining due to shallow water source.

  15. Computational path planner for product assembly in complex environments

    NASA Astrophysics Data System (ADS)

    Shang, Wei; Liu, Jianhua; Ning, Ruxin; Liu, Mi

    2013-03-01

    Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.

  16. A multiplex PCR-based method for the detection and early identification of wood rotting fungi in standing trees.

    PubMed

    Guglielmo, F; Bergemann, S E; Gonthier, P; Nicolotti, G; Garbelotto, M

    2007-11-01

    The goal of this research was the development of a PCR-based assay to identify important decay fungi from wood of hardwood tree species in northern temperate regions. Eleven taxon-specific primers were designed for PCR amplification of either nuclear or mitochondrial ribosomal DNA regions of Armillaria spp., Ganoderma spp., Hericium spp., Hypoxylon thouarsianum var. thouarsianum, Inonotus/Phellinus-group, Laetiporus spp., Perenniporia fraxinea, Pleurotus spp., Schizophyllum spp., Stereum spp. and Trametes spp. Multiplex PCR reactions were developed and optimized to detect fungal DNA and identify each taxon with a sensitivity of at least 1 pg of target DNA in the template. This assay correctly identified the agents of decay in 82% of tested wood samples. The development and optimization of multiplex PCRs allowed for reliable identification of wood rotting fungi directly from wood. Early detection of wood decay fungi is crucial for assessment of tree stability in urban landscapes. Furthermore, this method may prove useful for prediction of the severity and the evolution of decay in standing trees.

  17. Parallel adaptive wavelet collocation method for PDEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nejadmalayeri, Alireza, E-mail: Alireza.Nejadmalayeri@gmail.com; Vezolainen, Alexei, E-mail: Alexei.Vezolainen@Colorado.edu; Brown-Dymkoski, Eric, E-mail: Eric.Browndymkoski@Colorado.edu

    2015-10-01

    A parallel adaptive wavelet collocation method for solving a large class of Partial Differential Equations is presented. The parallelization is achieved by developing an asynchronous parallel wavelet transform, which allows one to perform parallel wavelet transform and derivative calculations with only one data synchronization at the highest level of resolution. The data are stored using tree-like structure with tree roots starting at a priori defined level of resolution. Both static and dynamic domain partitioning approaches are developed. For the dynamic domain partitioning, trees are considered to be the minimum quanta of data to be migrated between the processes. This allowsmore » fully automated and efficient handling of non-simply connected partitioning of a computational domain. Dynamic load balancing is achieved via domain repartitioning during the grid adaptation step and reassigning trees to the appropriate processes to ensure approximately the same number of grid points on each process. The parallel efficiency of the approach is discussed based on parallel adaptive wavelet-based Coherent Vortex Simulations of homogeneous turbulence with linear forcing at effective non-adaptive resolutions up to 2048{sup 3} using as many as 2048 CPU cores.« less

  18. Detection of Tree Crowns Based on Reclassification Using Aerial Images and LIDAR Data

    NASA Astrophysics Data System (ADS)

    Talebi, S.; Zarea, A.; Sadeghian, S.; Arefi, H.

    2013-09-01

    Tree detection using aerial sensors in early decades was focused by many researchers in different fields including Remote Sensing and Photogrammetry. This paper is intended to detect trees in complex city areas using aerial imagery and laser scanning data. Our methodology is a hierarchal unsupervised method consists of some primitive operations. This method could be divided into three sections, in which, first section uses aerial imagery and both second and third sections use laser scanners data. In the first section a vegetation cover mask is created in both sunny and shadowed areas. In the second section Rate of Slope Change (RSC) is used to eliminate grasses. In the third section a Digital Terrain Model (DTM) is obtained from LiDAR data. By using DTM and Digital Surface Model (DSM) we would get to Normalized Digital Surface Model (nDSM). Then objects which are lower than a specific height are eliminated. Now there are three result layers from three sections. At the end multiplication operation is used to get final result layer. This layer will be smoothed by morphological operations. The result layer is sent to WG III/4 to evaluate. The evaluation result shows that our method has a good rank in comparing to other participants' methods in ISPRS WG III/4, when assessed in terms of 5 indices including area base completeness, area base correctness, object base completeness, object base correctness and boundary RMS. With regarding of being unsupervised and automatic, this method is improvable and could be integrate with other methods to get best results.

  19. Mirroring co-evolving trees in the light of their topologies.

    PubMed

    Hajirasouliha, Iman; Schönhuth, Alexander; de Juan, David; Valencia, Alfonso; Sahinalp, S Cenk

    2012-05-01

    Determining the interaction partners among protein/domain families poses hard computational problems, in particular in the presence of paralogous proteins. Available approaches aim to identify interaction partners among protein/domain families through maximizing the similarity between trimmed versions of their phylogenetic trees. Since maximization of any natural similarity score is computationally difficult, many approaches employ heuristics to evaluate the distance matrices corresponding to the tree topologies in question. In this article, we devise an efficient deterministic algorithm which directly maximizes the similarity between two leaf labeled trees with edge lengths, obtaining a score-optimal alignment of the two trees in question. Our algorithm is significantly faster than those methods based on distance matrix comparison: 1 min on a single processor versus 730 h on a supercomputer. Furthermore, we outperform the current state-of-the-art exhaustive search approach in terms of precision, while incurring acceptable losses in recall. A C implementation of the method demonstrated in this article is available at http://compbio.cs.sfu.ca/mirrort.htm

  20. A practical approximation algorithm for solving massive instances of hybridization number for binary and nonbinary trees.

    PubMed

    van Iersel, Leo; Kelk, Steven; Lekić, Nela; Scornavacca, Celine

    2014-05-05

    Reticulate events play an important role in determining evolutionary relationships. The problem of computing the minimum number of such events to explain discordance between two phylogenetic trees is a hard computational problem. Even for binary trees, exact solvers struggle to solve instances with reticulation number larger than 40-50. Here we present CycleKiller and NonbinaryCycleKiller, the first methods to produce solutions verifiably close to optimality for instances with hundreds or even thousands of reticulations. Using simulations, we demonstrate that these algorithms run quickly for large and difficult instances, producing solutions that are very close to optimality. As a spin-off from our simulations we also present TerminusEst, which is the fastest exact method currently available that can handle nonbinary trees: this is used to measure the accuracy of the NonbinaryCycleKiller algorithm. All three methods are based on extensions of previous theoretical work (SIDMA 26(4):1635-1656, TCBB 10(1):18-25, SIDMA 28(1):49-66) and are publicly available. We also apply our methods to real data.

  1. A Fast Framework for Abrupt Change Detection Based on Binary Search Trees and Kolmogorov Statistic

    PubMed Central

    Qi, Jin-Peng; Qi, Jie; Zhang, Qing

    2016-01-01

    Change-Point (CP) detection has attracted considerable attention in the fields of data mining and statistics; it is very meaningful to discuss how to quickly and efficiently detect abrupt change from large-scale bioelectric signals. Currently, most of the existing methods, like Kolmogorov-Smirnov (KS) statistic and so forth, are time-consuming, especially for large-scale datasets. In this paper, we propose a fast framework for abrupt change detection based on binary search trees (BSTs) and a modified KS statistic, named BSTKS (binary search trees and Kolmogorov statistic). In this method, first, two binary search trees, termed as BSTcA and BSTcD, are constructed by multilevel Haar Wavelet Transform (HWT); second, three search criteria are introduced in terms of the statistic and variance fluctuations in the diagnosed time series; last, an optimal search path is detected from the root to leaf nodes of two BSTs. The studies on both the synthetic time series samples and the real electroencephalograph (EEG) recordings indicate that the proposed BSTKS can detect abrupt change more quickly and efficiently than KS, t-statistic (t), and Singular-Spectrum Analyses (SSA) methods, with the shortest computation time, the highest hit rate, the smallest error, and the highest accuracy out of four methods. This study suggests that the proposed BSTKS is very helpful for useful information inspection on all kinds of bioelectric time series signals. PMID:27413364

  2. A Fast Framework for Abrupt Change Detection Based on Binary Search Trees and Kolmogorov Statistic.

    PubMed

    Qi, Jin-Peng; Qi, Jie; Zhang, Qing

    2016-01-01

    Change-Point (CP) detection has attracted considerable attention in the fields of data mining and statistics; it is very meaningful to discuss how to quickly and efficiently detect abrupt change from large-scale bioelectric signals. Currently, most of the existing methods, like Kolmogorov-Smirnov (KS) statistic and so forth, are time-consuming, especially for large-scale datasets. In this paper, we propose a fast framework for abrupt change detection based on binary search trees (BSTs) and a modified KS statistic, named BSTKS (binary search trees and Kolmogorov statistic). In this method, first, two binary search trees, termed as BSTcA and BSTcD, are constructed by multilevel Haar Wavelet Transform (HWT); second, three search criteria are introduced in terms of the statistic and variance fluctuations in the diagnosed time series; last, an optimal search path is detected from the root to leaf nodes of two BSTs. The studies on both the synthetic time series samples and the real electroencephalograph (EEG) recordings indicate that the proposed BSTKS can detect abrupt change more quickly and efficiently than KS, t-statistic (t), and Singular-Spectrum Analyses (SSA) methods, with the shortest computation time, the highest hit rate, the smallest error, and the highest accuracy out of four methods. This study suggests that the proposed BSTKS is very helpful for useful information inspection on all kinds of bioelectric time series signals.

  3. Extraction of decision rules via imprecise probabilities

    NASA Astrophysics Data System (ADS)

    Abellán, Joaquín; López, Griselda; Garach, Laura; Castellano, Javier G.

    2017-05-01

    Data analysis techniques can be applied to discover important relations among features. This is the main objective of the Information Root Node Variation (IRNV) technique, a new method to extract knowledge from data via decision trees. The decision trees used by the original method were built using classic split criteria. The performance of new split criteria based on imprecise probabilities and uncertainty measures, called credal split criteria, differs significantly from the performance obtained using the classic criteria. This paper extends the IRNV method using two credal split criteria: one based on a mathematical parametric model, and other one based on a non-parametric model. The performance of the method is analyzed using a case study of traffic accident data to identify patterns related to the severity of an accident. We found that a larger number of rules is generated, significantly supplementing the information obtained using the classic split criteria.

  4. FluReF, an automated flu virus reassortment finder based on phylogenetic trees.

    PubMed

    Yurovsky, Alisa; Moret, Bernard M E

    2011-01-01

    Reassortments are events in the evolution of the genome of influenza (flu), whereby segments of the genome are exchanged between different strains. As reassortments have been implicated in major human pandemics of the last century, their identification has become a health priority. While such identification can be done "by hand" on a small dataset, researchers and health authorities are building up enormous databases of genomic sequences for every flu strain, so that it is imperative to develop automated identification methods. However, current methods are limited to pairwise segment comparisons. We present FluReF, a fully automated flu virus reassortment finder. FluReF is inspired by the visual approach to reassortment identification and uses the reconstructed phylogenetic trees of the individual segments and of the full genome. We also present a simple flu evolution simulator, based on the current, source-sink, hypothesis for flu cycles. On synthetic datasets produced by our simulator, FluReF, tuned for a 0% false positive rate, yielded false negative rates of less than 10%. FluReF corroborated two new reassortments identified by visual analysis of 75 Human H3N2 New York flu strains from 2005-2008 and gave partial verification of reassortments found using another bioinformatics method. FluReF finds reassortments by a bottom-up search of the full-genome and segment-based phylogenetic trees for candidate clades--groups of one or more sampled viruses that are separated from the other variants from the same season. Candidate clades in each tree are tested to guarantee confidence values, using the lengths of key edges as well as other tree parameters; clades with reassortments must have validated incongruencies among segment trees. FluReF demonstrates robustness of prediction for geographically and temporally expanded datasets, and is not limited to finding reassortments with previously collected sequences. The complete source code is available from http://lcbb.epfl.ch/software.html.

  5. Targeting legume loci: A comparison of three methods for target enrichment bait design in Leguminosae phylogenomics.

    PubMed

    Vatanparast, Mohammad; Powell, Adrian; Doyle, Jeff J; Egan, Ashley N

    2018-03-01

    The development of pipelines for locus discovery has spurred the use of target enrichment for plant phylogenomics. However, few studies have compared pipelines from locus discovery and bait design, through validation, to tree inference. We compared three methods within Leguminosae (Fabaceae) and present a workflow for future efforts. Using 30 transcriptomes, we compared Hyb-Seq, MarkerMiner, and the Yang and Smith (Y&S) pipelines for locus discovery, validated 7501 baits targeting 507 loci across 25 genera via Illumina sequencing, and inferred gene and species trees via concatenation- and coalescent-based methods. Hyb-Seq discovered loci with the longest mean length. MarkerMiner discovered the most conserved loci with the least flagged as paralogous. Y&S offered the most parsimony-informative sites and putative orthologs. Target recovery averaged 93% across taxa. We optimized our targeted locus set based on a workflow designed to minimize paralog/ortholog conflation and thus present 423 loci for legume phylogenomics. Methods differed across criteria important for phylogenetic marker development. We recommend Hyb-Seq as a method that may be useful for most phylogenomic projects. Our targeted locus set is a resource for future, community-driven efforts to reconstruct the legume tree of life.

  6. Automated segmentation of hepatic vessel trees in non-contrast x-ray CT images

    NASA Astrophysics Data System (ADS)

    Kawajiri, Suguru; Zhou, Xiangrong; Zhang, Xuejin; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kondo, Hiroshi; Kanematsu, Masayuki; Hoshi, Hiroaki

    2007-03-01

    Hepatic vessel trees are the key structures in the liver. Knowledge of the hepatic vessel trees is important for liver surgery planning and hepatic disease diagnosis such as portal hypertension. However, hepatic vessels cannot be easily distinguished from other liver tissues in non-contrast CT images. Automated segmentation of hepatic vessels in non-contrast CT images is a challenging issue. In this paper, an approach for automated segmentation of hepatic vessels trees in non-contrast X-ray CT images is proposed. Enhancement of hepatic vessels is performed using two techniques: (1) histogram transformation based on a Gaussian window function; (2) multi-scale line filtering based on eigenvalues of Hessian matrix. After the enhancement of hepatic vessels, candidate of hepatic vessels are extracted by thresholding. Small connected regions of size less than 100 voxels are considered as false-positives and are removed from the process. This approach is applied to 20 cases of non-contrast CT images. Hepatic vessel trees segmented from the contrast-enhanced CT images of the same patient are used as the ground truth in evaluating the performance of the proposed segmentation method. Results show that the proposed method can enhance and segment the hepatic vessel regions in non-contrast CT images correctly.

  7. Is the “ecological and economic approach for the restoration of collapsed gullies” in Southern China really economic?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chengchao; Zhang, Yaoqi; Xu, Yecheng

    Collapsed gully erosion constantly plagues the sustainability of rural areas in China. To control collapsed gully erosion, an ecological and economic approach, which uses tree plantation to gain economic benefits and control soil erosion, has been widely applied by local governments in Southern China. However, little is known about the economic feasibility of this new method. The objective of this study was to determine the effectiveness and economic benefits of the new method. Based on a case study in Changting County, Southeast China, two farms were selected to represent a timber tree plantation and a fruit tree plantation, respectively. Themore » Annual Capital Capitalization Method and Return on Investment (ROI) were selected to conduct cost-benefit analysis. In contrast to previous studies, we found that the new approach was far from economic. The value of the newly-built forestland in Sanzhou Village and Tufang Village is 2738 RMB ha -1 and 5477 RMB ha -1, respectively, which are extremely lower than the costs of ecological restoration. Meanwhile, the annual ROI is –3.60% and –8.90%, respectively, which is negative and also far poorer than the average value of forestry in China. The costs of conservation were substantially over the related economic benefits, and the investors would suffer from greater loss if they invested more in the conservation. Low-cost terraces with timber trees had less economic loss compared with the costly terraces with fruit tree plantation. Moreover, the cost efficiency of the new approaches in soil conservation was also greatly poorer than the conventional method. The costs of conserving one ton soil per year for conventional method, new method for planting timber trees, and planting fruit trees were 164 RMB, 696 RMB, and 11,664 RMB, respectively. Therefore, the new collapsed gully erosion control methods are uneconomic and unsuitable to be widely carried out in China in the near future.« less

  8. Is the “ecological and economic approach for the restoration of collapsed gullies” in Southern China really economic?

    DOE PAGES

    Wang, Chengchao; Zhang, Yaoqi; Xu, Yecheng; ...

    2015-07-31

    Collapsed gully erosion constantly plagues the sustainability of rural areas in China. To control collapsed gully erosion, an ecological and economic approach, which uses tree plantation to gain economic benefits and control soil erosion, has been widely applied by local governments in Southern China. However, little is known about the economic feasibility of this new method. The objective of this study was to determine the effectiveness and economic benefits of the new method. Based on a case study in Changting County, Southeast China, two farms were selected to represent a timber tree plantation and a fruit tree plantation, respectively. Themore » Annual Capital Capitalization Method and Return on Investment (ROI) were selected to conduct cost-benefit analysis. In contrast to previous studies, we found that the new approach was far from economic. The value of the newly-built forestland in Sanzhou Village and Tufang Village is 2738 RMB ha -1 and 5477 RMB ha -1, respectively, which are extremely lower than the costs of ecological restoration. Meanwhile, the annual ROI is –3.60% and –8.90%, respectively, which is negative and also far poorer than the average value of forestry in China. The costs of conservation were substantially over the related economic benefits, and the investors would suffer from greater loss if they invested more in the conservation. Low-cost terraces with timber trees had less economic loss compared with the costly terraces with fruit tree plantation. Moreover, the cost efficiency of the new approaches in soil conservation was also greatly poorer than the conventional method. The costs of conserving one ton soil per year for conventional method, new method for planting timber trees, and planting fruit trees were 164 RMB, 696 RMB, and 11,664 RMB, respectively. Therefore, the new collapsed gully erosion control methods are uneconomic and unsuitable to be widely carried out in China in the near future.« less

  9. Genomics-assisted breeding in fruit trees.

    PubMed

    Iwata, Hiroyoshi; Minamikawa, Mai F; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding.

  10. Genomics-assisted breeding in fruit trees

    PubMed Central

    Iwata, Hiroyoshi; Minamikawa, Mai F.; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding. PMID:27069395

  11. Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds

    NASA Astrophysics Data System (ADS)

    Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun

    2017-08-01

    Airborne LiDAR point cloud representing a forest contains 3D data, from which vertical stand structure even of understory layers can be derived. This paper presents a tree segmentation approach for multi-story stands that stratifies the point cloud to canopy layers and segments individual tree crowns within each layer using a digital surface model based tree segmentation method. The novelty of the approach is the stratification procedure that separates the point cloud to an overstory and multiple understory tree canopy layers by analyzing vertical distributions of LiDAR points within overlapping locales. The procedure does not make a priori assumptions about the shape and size of the tree crowns and can, independent of the tree segmentation method, be utilized to vertically stratify tree crowns of forest canopies. We applied the proposed approach to the University of Kentucky Robinson Forest - a natural deciduous forest with complex and highly variable terrain and vegetation structure. The segmentation results showed that using the stratification procedure strongly improved detecting understory trees (from 46% to 68%) at the cost of introducing a fair number of over-segmented understory trees (increased from 1% to 16%), while barely affecting the overall segmentation quality of overstory trees. Results of vertical stratification of the canopy showed that the point density of understory canopy layers were suboptimal for performing a reasonable tree segmentation, suggesting that acquiring denser LiDAR point clouds would allow more improvements in segmenting understory trees. As shown by inspecting correlations of the results with forest structure, the segmentation approach is applicable to a variety of forest types.

  12. Accounting for Uncertainty in Gene Tree Estimation: Summary-Coalescent Species Tree Inference in a Challenging Radiation of Australian Lizards.

    PubMed

    Blom, Mozes P K; Bragg, Jason G; Potter, Sally; Moritz, Craig

    2017-05-01

    Accurate gene tree inference is an important aspect of species tree estimation in a summary-coalescent framework. Yet, in empirical studies, inferred gene trees differ in accuracy due to stochastic variation in phylogenetic signal between targeted loci. Empiricists should, therefore, examine the consistency of species tree inference, while accounting for the observed heterogeneity in gene tree resolution of phylogenomic data sets. Here, we assess the impact of gene tree estimation error on summary-coalescent species tree inference by screening ${\\sim}2000$ exonic loci based on gene tree resolution prior to phylogenetic inference. We focus on a phylogenetically challenging radiation of Australian lizards (genus Cryptoblepharus, Scincidae) and explore effects on topology and support. We identify a well-supported topology based on all loci and find that a relatively small number of high-resolution gene trees can be sufficient to converge on the same topology. Adding gene trees with decreasing resolution produced a generally consistent topology, and increased confidence for specific bipartitions that were poorly supported when using a small number of informative loci. This corroborates coalescent-based simulation studies that have highlighted the need for a large number of loci to confidently resolve challenging relationships and refutes the notion that low-resolution gene trees introduce phylogenetic noise. Further, our study also highlights the value of quantifying changes in nodal support across locus subsets of increasing size (but decreasing gene tree resolution). Such detailed analyses can reveal anomalous fluctuations in support at some nodes, suggesting the possibility of model violation. By characterizing the heterogeneity in phylogenetic signal among loci, we can account for uncertainty in gene tree estimation and assess its effect on the consistency of the species tree estimate. We suggest that the evaluation of gene tree resolution should be incorporated in the analysis of empirical phylogenomic data sets. This will ultimately increase our confidence in species tree estimation using summary-coalescent methods and enable us to exploit genomic data for phylogenetic inference. [Coalescence; concatenation; Cryptoblepharus; exon capture; gene tree; phylogenomics; species tree.]. © The authors 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  13. Fragment-based prediction of skin sensitization using recursive partitioning

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Zheng, Mingyue; Wang, Yong; Shen, Qiancheng; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian

    2011-09-01

    Skin sensitization is an important toxic endpoint in the risk assessment of chemicals. In this paper, structure-activity relationships analysis was performed on the skin sensitization potential of 357 compounds with local lymph node assay data. Structural fragments were extracted by GASTON (GrAph/Sequence/Tree extractiON) from the training set. Eight fragments with accuracy significantly higher than 0.73 ( p < 0.1) were retained to make up an indicator descriptor fragment. The fragment descriptor and eight other physicochemical descriptors closely related to the endpoint were calculated to construct the recursive partitioning tree (RP tree) for classification. The balanced accuracy of the training set, test set I, and test set II in the leave-one-out model were 0.846, 0.800, and 0.809, respectively. The results highlight that fragment-based RP tree is a preferable method for identifying skin sensitizers. Moreover, the selected fragments provide useful structural information for exploring sensitization mechanisms, and RP tree creates a graphic tree to identify the most important properties associated with skin sensitization. They can provide some guidance for designing of drugs with lower sensitization level.

  14. [Prediction of regional soil quality based on mutual information theory integrated with decision tree algorithm].

    PubMed

    Lin, Fen-Fang; Wang, Ke; Yang, Ning; Yan, Shi-Guang; Zheng, Xin-Yu

    2012-02-01

    In this paper, some main factors such as soil type, land use pattern, lithology type, topography, road, and industry type that affect soil quality were used to precisely obtain the spatial distribution characteristics of regional soil quality, mutual information theory was adopted to select the main environmental factors, and decision tree algorithm See 5.0 was applied to predict the grade of regional soil quality. The main factors affecting regional soil quality were soil type, land use, lithology type, distance to town, distance to water area, altitude, distance to road, and distance to industrial land. The prediction accuracy of the decision tree model with the variables selected by mutual information was obviously higher than that of the model with all variables, and, for the former model, whether of decision tree or of decision rule, its prediction accuracy was all higher than 80%. Based on the continuous and categorical data, the method of mutual information theory integrated with decision tree could not only reduce the number of input parameters for decision tree algorithm, but also predict and assess regional soil quality effectively.

  15. A new tool for post-AGB SED classification

    NASA Astrophysics Data System (ADS)

    Bendjoya, P.; Suarez, O.; Galluccio, L.; Michel, O.

    We present the results of an unsupervised classification method applied on a set of 344 spectral energy distributions (SED) of post-AGB stars extracted from the Torun catalogue of Galactic post-AGB stars. This method aims to find a new unbiased method for post-AGB star classification based on the information contained in the IR region of the SED (fluxes, IR excess, colours). We used the data from IRAS and MSX satellites, and from the 2MASS survey. We applied a classification method based on the construction of the dataset of a minimal spanning tree (MST) with the Prim's algorithm. In order to build this tree, different metrics have been tested on both flux and color indices. Our method is able to classify the set of 344 post-AGB stars in 9 distinct groups according to their SEDs.

  16. Not seeing the forest for the trees: size of the minimum spanning trees (MSTs) forest and branch significance in MST-based phylogenetic analysis.

    PubMed

    Teixeira, Andreia Sofia; Monteiro, Pedro T; Carriço, João A; Ramirez, Mário; Francisco, Alexandre P

    2015-01-01

    Trees, including minimum spanning trees (MSTs), are commonly used in phylogenetic studies. But, for the research community, it may be unclear that the presented tree is just a hypothesis, chosen from among many possible alternatives. In this scenario, it is important to quantify our confidence in both the trees and the branches/edges included in such trees. In this paper, we address this problem for MSTs by introducing a new edge betweenness metric for undirected and weighted graphs. This spanning edge betweenness metric is defined as the fraction of equivalent MSTs where a given edge is present. The metric provides a per edge statistic that is similar to that of the bootstrap approach frequently used in phylogenetics to support the grouping of taxa. We provide methods for the exact computation of this metric based on the well known Kirchhoff's matrix tree theorem. Moreover, we implement and make available a module for the PHYLOViZ software and evaluate the proposed metric concerning both effectiveness and computational performance. Analysis of trees generated using multilocus sequence typing data (MLST) and the goeBURST algorithm revealed that the space of possible MSTs in real data sets is extremely large. Selection of the edge to be represented using bootstrap could lead to unreliable results since alternative edges are present in the same fraction of equivalent MSTs. The choice of the MST to be presented, results from criteria implemented in the algorithm that must be based in biologically plausible models.

  17. The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis

    PubMed Central

    Koziol, James A.; Feng, Anne C.; Jia, Zhenyu; Wang, Yipeng; Goodison, Seven; McClelland, Michael; Mercola, Dan

    2009-01-01

    Motivation: Classification and regression trees have long been used for cancer diagnosis and prognosis. Nevertheless, instability and variable selection bias, as well as overfitting, are well-known problems of tree-based methods. In this article, we investigate whether ensemble tree classifiers can ameliorate these difficulties, using data from two recent studies of radical prostatectomy in prostate cancer. Results: Using time to progression following prostatectomy as the relevant clinical endpoint, we found that ensemble tree classifiers robustly and reproducibly identified three subgroups of patients in the two clinical datasets: non-progressors, early progressors and late progressors. Moreover, the consensus classifications were independent predictors of time to progression compared to known clinical prognostic factors. Contact: dmercola@uci.edu PMID:18628288

  18. Decision tree modeling using R.

    PubMed

    Zhang, Zhongheng

    2016-08-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.

  19. Construction of a Species-Level Tree of Life for the Insects and Utility in Taxonomic Profiling

    PubMed Central

    Chesters, Douglas

    2017-01-01

    Abstract Although comprehensive phylogenies have proven an invaluable tool in ecology and evolution, their construction is made increasingly challenging both by the scale and structure of publically available sequences. The distinct partition between gene-rich (genomic) and species-rich (DNA barcode) data is a feature of data that has been largely overlooked, yet presents a key obstacle to scaling supermatrix analysis. I present a phyloinformatics framework for draft construction of a species-level phylogeny of insects (Class Insecta). Matrix-building requires separately optimized pipelines for nuclear transcriptomic, mitochondrial genomic, and species-rich markers, whereas tree-building requires hierarchical inference in order to capture species-breadth while retaining deep-level resolution. The phylogeny of insects contains 49,358 species, 13,865 genera, 760 families. Deep-level splits largely reflected previous findings for sections of the tree that are data rich or unambiguous, such as inter-ordinal Endopterygota and Dictyoptera, the recently evolved and relatively homogeneous Lepidoptera, Hymenoptera, Brachycera (Diptera), and Cucujiformia (Coleoptera). However, analysis of bias, matrix construction and gene-tree variation suggests confidence in some relationships (such as in Polyneoptera) is less than has been indicated by the matrix bootstrap method. To assess the utility of the insect tree as a tool in query profiling several tree-based taxonomic assignment methods are compared. Using test data sets with existing taxonomic annotations, a tendency is observed for greater accuracy of species-level assignments where using a fixed comprehensive tree of life in contrast to methods generating smaller de novo reference trees. Described herein is a solution to the discrepancy in the way data are fit into supermatrices. The resulting tree facilitates wider studies of insect diversification and application of advanced descriptions of diversity in community studies, among other presumed applications. PMID:27798407

  20. The information extraction of Gannan citrus orchard based on the GF-1 remote sensing image

    NASA Astrophysics Data System (ADS)

    Wang, S.; Chen, Y. L.

    2017-02-01

    The production of Gannan oranges is the largest in China, which occupied an important part in the world. The extraction of citrus orchard quickly and effectively has important significance for fruit pathogen defense, fruit production and industrial planning. The traditional spectra extraction method of citrus orchard based on pixel has a lower classification accuracy, difficult to avoid the “pepper phenomenon”. In the influence of noise, the phenomenon that different spectrums of objects have the same spectrum is graveness. Taking Xunwu County citrus fruit planting area of Ganzhou as the research object, aiming at the disadvantage of the lower accuracy of the traditional method based on image element classification method, a decision tree classification method based on object-oriented rule set is proposed. Firstly, multi-scale segmentation is performed on the GF-1 remote sensing image data of the study area. Subsequently the sample objects are selected for statistical analysis of spectral features and geometric features. Finally, combined with the concept of decision tree classification, a variety of empirical values of single band threshold, NDVI, band combination and object geometry characteristics are used hierarchically to execute the information extraction of the research area, and multi-scale segmentation and hierarchical decision tree classification is implemented. The classification results are verified with the confusion matrix, and the overall Kappa index is 87.91%.

  1. Analytical method for the evaluation of the outdoor air contamination by emerging pollutants using tree leaves as bioindicators.

    PubMed

    Barroso, Pedro José; Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2018-01-01

    In this work, an analytical method, based on sonication-assisted extraction, clean-up by dispersive solid-phase extraction and determination by liquid chromatography-tandem mass spectrometry, has been developed and validated for the simultaneous determination of 15 emerging pollutants in leaves from four ornamental tree species. Target compounds include perfluorinated organic compounds, plasticizers, surfactants, brominated flame retardant, and preservatives. The method was optimized using Box-Behnken statistical experimental design with response surface methodology and validated in terms of recovery, accuracy, precision, and method detection and quantification limits. Quantification of target compounds was carried out using matrix-matched calibration curves. The highest recoveries were achieved for the perfluorinated organic compounds (mean values up to 87%) and preservatives (up to 88%). The lowest recoveries were achieved for plasticizers (51%) and brominated flame retardant (63%). Method detection and quantification limits were in the ranges 0.01-0.09 ng/g dry matter (dm) and 0.02-0.30 ng/g dm, respectively, for most of the target compounds. The method was successfully applied to the determination of the target compounds on leaves from four tree species used as urban ornamental trees (Citrus aurantium, Celtis australis, Platanus hispanica, and Jacaranda mimosifolia). Graphical abstract Analytical method for the biomonitorization of emerging pollutants in outdoor air.

  2. A single-probe heat pulse method for estimating sap velocity in trees.

    PubMed

    López-Bernal, Álvaro; Testi, Luca; Villalobos, Francisco J

    2017-10-01

    Available sap flow methods are still far from being simple, cheap and reliable enough to be used beyond very specific research purposes. This study presents and tests a new single-probe heat pulse (SPHP) method for monitoring sap velocity in trees using a single-probe sensor, rather than the multi-probe arrangements used up to now. Based on the fundamental conduction-convection principles of heat transport in sapwood, convective velocity (V h ) is estimated from the temperature increase in the heater after the application of a heat pulse (ΔT). The method was validated against measurements performed with the compensation heat pulse (CHP) technique in field trees of six different species. To do so, a dedicated three-probe sensor capable of simultaneously applying both methods was produced and used. Experimental measurements in the six species showed an excellent agreement between SPHP and CHP outputs for moderate to high flow rates, confirming the applicability of the method. In relation to other sap flow methods, SPHP presents several significant advantages: it requires low power inputs, it uses technically simpler and potentially cheaper instrumentation, the physical damage to the tree is minimal and artefacts caused by incorrect probe spacing and alignment are removed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Deduction of probable events of lateral gene transfer through comparison of phylogenetic trees by recursive consolidation and rearrangement

    PubMed Central

    MacLeod, Dave; Charlebois, Robert L; Doolittle, Ford; Bapteste, Eric

    2005-01-01

    Background When organismal phylogenies based on sequences of single marker genes are poorly resolved, a logical approach is to add more markers, on the assumption that weak but congruent phylogenetic signal will be reinforced in such multigene trees. Such approaches are valid only when the several markers indeed have identical phylogenies, an issue which many multigene methods (such as the use of concatenated gene sequences or the assembly of supertrees) do not directly address. Indeed, even when the true history is a mixture of vertical descent for some genes and lateral gene transfer (LGT) for others, such methods produce unique topologies. Results We have developed software that aims to extract evidence for vertical and lateral inheritance from a set of gene trees compared against an arbitrary reference tree. This evidence is then displayed as a synthesis showing support over the tree for vertical inheritance, overlaid with explicit lateral gene transfer (LGT) events inferred to have occurred over the history of the tree. Like splits-tree methods, one can thus identify nodes at which conflict occurs. Additionally one can make reasonable inferences about vertical and lateral signal, assigning putative donors and recipients. Conclusion A tool such as ours can serve to explore the reticulated dimensionality of molecular evolution, by dissecting vertical and lateral inheritance at high resolution. By this, we mean that individual nodes can be examined not only for congruence, but also for coherence in light of LGT. We assert that our tools will facilitate the comparison of phylogenetic trees, and the interpretation of conflicting data. PMID:15819979

  4. snpTree--a web-server to identify and construct SNP trees from whole genome sequence data.

    PubMed

    Leekitcharoenphon, Pimlapas; Kaas, Rolf S; Thomsen, Martin Christen Frølund; Friis, Carsten; Rasmussen, Simon; Aarestrup, Frank M

    2012-01-01

    The advances and decreasing economical cost of whole genome sequencing (WGS), will soon make this technology available for routine infectious disease epidemiology. In epidemiological studies, outbreak isolates have very little diversity and require extensive genomic analysis to differentiate and classify isolates. One of the successfully and broadly used methods is analysis of single nucletide polymorphisms (SNPs). Currently, there are different tools and methods to identify SNPs including various options and cut-off values. Furthermore, all current methods require bioinformatic skills. Thus, we lack a standard and simple automatic tool to determine SNPs and construct phylogenetic tree from WGS data. Here we introduce snpTree, a server for online-automatic SNPs analysis. This tool is composed of different SNPs analysis suites, perl and python scripts. snpTree can identify SNPs and construct phylogenetic trees from WGS as well as from assembled genomes or contigs. WGS data in fastq format are aligned to reference genomes by BWA while contigs in fasta format are processed by Nucmer. SNPs are concatenated based on position on reference genome and a tree is constructed from concatenated SNPs using FastTree and a perl script. The online server was implemented by HTML, Java and python script.The server was evaluated using four published bacterial WGS data sets (V. cholerae, S. aureus CC398, S. Typhimurium and M. tuberculosis). The evaluation results for the first three cases was consistent and concordant for both raw reads and assembled genomes. In the latter case the original publication involved extensive filtering of SNPs, which could not be repeated using snpTree. The snpTree server is an easy to use option for rapid standardised and automatic SNP analysis in epidemiological studies also for users with limited bioinformatic experience. The web server is freely accessible at http://www.cbs.dtu.dk/services/snpTree-1.0/.

  5. Local durian (Durio zibethinus murr.) exploration for potentially superior tree as parents in Ngrambe District, Ngawi

    NASA Astrophysics Data System (ADS)

    Yuniastuti, E.; Anggita, A.; Nandariyah; Sukaya

    2018-03-01

    The characteristics durian based on specific area gives a wide diversity of phenotype. This research objective was to build an inventory of the local durian of Ngrambe as well as to obtain potentially superior local durian as prospective parent trees. The research was conducted in Ngrambe sub-district, on October 2015 until April 2016 using the explorative descriptive method. The determination of sample point used the non-probability method of snowball sampling type. Primary data include the morphology of plant characters, trunks, leaves, flower, fruits and seeds and their superiority. The data of the research were analyzed using SIMQUAL (Similarity for Qualitative) function based on the DICE coefficient on NTSYS v.2.02. The data cluster and dendrogram analyses were determined by Unweighted Pair-Group Arithmetic Average (UPGMA) method. The result of DICE coefficient analyses of 58 local durian accession based on the phenotypic character of vegetative organs ranged from 0.84-1.0. The phenotypic character of the vegetative and generative organ from 3 local durian accession superior potential ranged from 0.7 to 0.8. In conclusion, the accession of local durian which were Miyem and Rusmiyati have advantage and potential as prospective parent trees.

  6. High-resolution tree canopy mapping for New York City using LIDAR and object-based image analysis

    NASA Astrophysics Data System (ADS)

    MacFaden, Sean W.; O'Neil-Dunne, Jarlath P. M.; Royar, Anna R.; Lu, Jacqueline W. T.; Rundle, Andrew G.

    2012-01-01

    Urban tree canopy is widely believed to have myriad environmental, social, and human-health benefits, but a lack of precise canopy estimates has hindered quantification of these benefits in many municipalities. This problem was addressed for New York City using object-based image analysis (OBIA) to develop a comprehensive land-cover map, including tree canopy to the scale of individual trees. Mapping was performed using a rule-based expert system that relied primarily on high-resolution LIDAR, specifically its capacity for evaluating the height and texture of aboveground features. Multispectral imagery was also used, but shadowing and varying temporal conditions limited its utility. Contextual analysis was a key part of classification, distinguishing trees according to their physical and spectral properties as well as their relationships to adjacent, nonvegetated features. The automated product was extensively reviewed and edited via manual interpretation, and overall per-pixel accuracy of the final map was 96%. Although manual editing had only a marginal effect on accuracy despite requiring a majority of project effort, it maximized aesthetic quality and ensured the capture of small, isolated trees. Converting high-resolution LIDAR and imagery into usable information is a nontrivial exercise, requiring significant processing time and labor, but an expert system-based combination of OBIA and manual review was an effective method for fine-scale canopy mapping in a complex urban environment.

  7. a Gross Error Elimination Method for Point Cloud Data Based on Kd-Tree

    NASA Astrophysics Data System (ADS)

    Kang, Q.; Huang, G.; Yang, S.

    2018-04-01

    Point cloud data has been one type of widely used data sources in the field of remote sensing. Key steps of point cloud data's pro-processing focus on gross error elimination and quality control. Owing to the volume feature of point could data, existed gross error elimination methods need spend massive memory both in space and time. This paper employed a new method which based on Kd-tree algorithm to construct, k-nearest neighbor algorithm to search, settled appropriate threshold to determine with result turns out a judgement that whether target point is or not an outlier. Experimental results show that, our proposed algorithm will help to delete gross error in point cloud data and facilitate to decrease memory consumption, improve efficiency.

  8. Exploiting the wavelet structure in compressed sensing MRI.

    PubMed

    Chen, Chen; Huang, Junzhou

    2014-12-01

    Sparsity has been widely utilized in magnetic resonance imaging (MRI) to reduce k-space sampling. According to structured sparsity theories, fewer measurements are required for tree sparse data than the data only with standard sparsity. Intuitively, more accurate image reconstruction can be achieved with the same number of measurements by exploiting the wavelet tree structure in MRI. A novel algorithm is proposed in this article to reconstruct MR images from undersampled k-space data. In contrast to conventional compressed sensing MRI (CS-MRI) that only relies on the sparsity of MR images in wavelet or gradient domain, we exploit the wavelet tree structure to improve CS-MRI. This tree-based CS-MRI problem is decomposed into three simpler subproblems then each of the subproblems can be efficiently solved by an iterative scheme. Simulations and in vivo experiments demonstrate the significant improvement of the proposed method compared to conventional CS-MRI algorithms, and the feasibleness on MR data compared to existing tree-based imaging algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Phylogenetic search through partial tree mixing

    PubMed Central

    2012-01-01

    Background Recent advances in sequencing technology have created large data sets upon which phylogenetic inference can be performed. Current research is limited by the prohibitive time necessary to perform tree search on a reasonable number of individuals. This research develops new phylogenetic algorithms that can operate on tens of thousands of species in a reasonable amount of time through several innovative search techniques. Results When compared to popular phylogenetic search algorithms, better trees are found much more quickly for large data sets. These algorithms are incorporated in the PSODA application available at http://dna.cs.byu.edu/psoda Conclusions The use of Partial Tree Mixing in a partition based tree space allows the algorithm to quickly converge on near optimal tree regions. These regions can then be searched in a methodical way to determine the overall optimal phylogenetic solution. PMID:23320449

  10. A biologically-based individual tree model for managing the longleaf pine ecosystem

    Treesearch

    Rick Smith; Greg Somers

    1998-01-01

    Duration: 1995-present Objective: Develop a longleaf pine dynamics model and simulation system to define desirable ecosystem management practices in existing and future longleaf pine stands. Methods: Naturally-regenerated longleaf pine trees are being destructively sampled to measure their recent growth and dynamics. Soils and climate data will be combined with the...

  11. Which Types of Leadership Styles Do Followers Prefer? A Decision Tree Approach

    ERIC Educational Resources Information Center

    Salehzadeh, Reza

    2017-01-01

    Purpose: The purpose of this paper is to propose a new method to find the appropriate leadership styles based on the followers' preferences using the decision tree technique. Design/methodology/approach: Statistical population includes the students of the University of Isfahan. In total, 750 questionnaires were distributed; out of which, 680…

  12. Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR

    Treesearch

    Gregory P. Asner; David E. Knapp; Ty Kennedy-Bodoin; Matthew O. Jones; Roberta E. Martin; Joseph Boardman; Flint Hughes

    2008-01-01

    Remote sensing of invasive species is a critical component of conservation and management efforts, but reliable methods for the detection of invaders have not been widely established. In Hawaiian forests, we recently found that invasive trees often have hyperspectral signatures unique from that of native trees, but mapping based on spectral reflectance properties alone...

  13. Phylogeny of the cycads based on multiple single copy nuclear genes: congruence of concatenation and species tree inference methods

    USDA-ARS?s Scientific Manuscript database

    Despite a recent new classification, a stable tree of life for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study we apply five single copy nuclear genes (SCNGs) to the phylogeny of the order Cycadales. We specifically aim to evaluate seve...

  14. Additive nonlinear biomass equations: A likelihood-based approach

    Treesearch

    David L. R. Affleck; Ulises Dieguez-Aranda

    2016-01-01

    Since Parresol’s (Can. J. For. Res. 31:865-878, 2001) seminal article on the topic, it has become standard to develop nonlinear tree biomass equations to ensure compatibility among total and component predictions and to fit these equations using multistep generalized least-squares methods. In particular, many studies have specified equations for total tree...

  15. The verification of lightning location accuracy in Finland deduced from lightning strikes to trees

    NASA Astrophysics Data System (ADS)

    Mäkelä, Antti; Mäkelä, Jakke; Haapalainen, Jussi; Porjo, Niko

    2016-05-01

    We present a new method to determine the ground truth and accuracy of lightning location systems (LLS), using natural lightning strikes to trees. Observations of strikes to trees are being collected with a Web-based survey tool at the Finnish Meteorological Institute. Since the Finnish thunderstorms tend to have on average a low flash rate, it is often possible to identify from the LLS data unambiguously the stroke that caused damage to a given tree. The coordinates of the tree are then the ground truth for that stroke. The technique has clear advantages over other methods used to determine the ground truth. Instrumented towers and rocket launches measure upward-propagating lightning. Video and audio records, even with triangulation, are rarely capable of high accuracy. We present data for 36 quality-controlled tree strikes in the years 2007-2008. We show that the average inaccuracy of the lightning location network for that period was 600 m. In addition, we show that the 50% confidence ellipse calculated by the lightning location network and used operationally for describing the location accuracy is physically meaningful: half of all the strikes were located within the uncertainty ellipse of the nearest recorded stroke. Using tree strike data thus allows not only the accuracy of the LLS to be estimated but also the reliability of the uncertainty ellipse. To our knowledge, this method has not been attempted before for natural lightning.

  16. Estimating phylogenetic trees from genome-scale data.

    PubMed

    Liu, Liang; Xi, Zhenxiang; Wu, Shaoyuan; Davis, Charles C; Edwards, Scott V

    2015-12-01

    The heterogeneity of signals in the genomes of diverse organisms poses challenges for traditional phylogenetic analysis. Phylogenetic methods known as "species tree" methods have been proposed to directly address one important source of gene tree heterogeneity, namely the incomplete lineage sorting that occurs when evolving lineages radiate rapidly, resulting in a diversity of gene trees from a single underlying species tree. Here we review theory and empirical examples that help clarify conflicts between species tree and concatenation methods, and misconceptions in the literature about the performance of species tree methods. Considering concatenation as a special case of the multispecies coalescent model helps explain differences in the behavior of the two methods on phylogenomic data sets. Recent work suggests that species tree methods are more robust than concatenation approaches to some of the classic challenges of phylogenetic analysis, including rapidly evolving sites in DNA sequences and long-branch attraction. We show that approaches, such as binning, designed to augment the signal in species tree analyses can distort the distribution of gene trees and are inconsistent. Computationally efficient species tree methods incorporating biological realism are a key to phylogenetic analysis of whole-genome data. © 2015 New York Academy of Sciences.

  17. A method of building of decision trees based on data from wearable device during a rehabilitation of patients with tibia fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupriyanov, M. S., E-mail: mikhail.kupriyanov@gmail.com; Shukeilo, E. Y., E-mail: eyshukeylo@gmail.com; Shichkina, J. A., E-mail: strange.y@mail.ru

    2015-11-17

    Nowadays technologies which are used in traumatology are a combination of mechanical, electronic, calculating and programming tools. Relevance of development of mobile applications for an expeditious data processing which are received from medical devices (in particular, wearable devices), and formulation of management decisions increases. Using of a mathematical method of building of decision trees for an assessment of a patient’s health condition using data from a wearable device considers in this article.

  18. A method of building of decision trees based on data from wearable device during a rehabilitation of patients with tibia fractures

    NASA Astrophysics Data System (ADS)

    Kupriyanov, M. S.; Shukeilo, E. Y.; Shichkina, J. A.

    2015-11-01

    Nowadays technologies which are used in traumatology are a combination of mechanical, electronic, calculating and programming tools. Relevance of development of mobile applications for an expeditious data processing which are received from medical devices (in particular, wearable devices), and formulation of management decisions increases. Using of a mathematical method of building of decision trees for an assessment of a patient's health condition using data from a wearable device considers in this article.

  19. Classification of the Gabon SAR Mosaic Using a Wavelet Based Rule Classifier

    NASA Technical Reports Server (NTRS)

    Simard, Marc; Saatchi, Sasan; DeGrandi, Gianfranco

    2000-01-01

    A method is developed for semi-automated classification of SAR images of the tropical forest. Information is extracted using the wavelet transform (WT). The transform allows for extraction of structural information in the image as a function of scale. In order to classify the SAR image, a Desicion Tree Classifier is used. The method of pruning is used to optimize classification rate versus tree size. The results give explicit insight on the type of information useful for a given class.

  20. Probabilistic atlas based labeling of the cerebral vessel tree

    NASA Astrophysics Data System (ADS)

    Van de Giessen, Martijn; Janssen, Jasper P.; Brouwer, Patrick A.; Reiber, Johan H. C.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke

    2015-03-01

    Preoperative imaging of the cerebral vessel tree is essential for planning therapy on intracranial stenoses and aneurysms. Usually, a magnetic resonance angiography (MRA) or computed tomography angiography (CTA) is acquired from which the cerebral vessel tree is segmented. Accurate analysis is helped by the labeling of the cerebral vessels, but labeling is non-trivial due to anatomical topological variability and missing branches due to acquisition issues. In recent literature, labeling the cerebral vasculature around the Circle of Willis has mainly been approached as a graph-based problem. The most successful method, however, requires the definition of all possible permutations of missing vessels, which limits application to subsets of the tree and ignores spatial information about the vessel locations. This research aims to perform labeling using probabilistic atlases that model spatial vessel and label likelihoods. A cerebral vessel tree is aligned to a probabilistic atlas and subsequently each vessel is labeled by computing the maximum label likelihood per segment from label-specific atlases. The proposed method was validated on 25 segmented cerebral vessel trees. Labeling accuracies were close to 100% for large vessels, but dropped to 50-60% for small vessels that were only present in less than 50% of the set. With this work we showed that using solely spatial information of the vessel labels, vessel segments from stable vessels (>50% presence) were reliably classified. This spatial information will form the basis for a future labeling strategy with a very loose topological model.

  1. [Study on extraction method of Panax notoginseng plots in Wenshan of Yunnan province based on decision tree model].

    PubMed

    Shi, Ting-Ting; Zhang, Xiao-Bo; Guo, Lan-Ping; Huang, Lu-Qi

    2017-11-01

    The herbs used as the material for traditional Chinese medicine are always planted in the mountainous area where the natural environment is suitable. As the mountain terrain is complex and the distribution of planting plots is scattered, the traditional survey method is difficult to obtain accurate planting area. It is of great significance to provide decision support for the conservation and utilization of traditional Chinese medicine resources by studying the method of extraction of Chinese herbal medicine planting area based on remote sensing and realizing the dynamic monitoring and reserve estimation of Chinese herbal medicines. In this paper, taking the Panax notoginseng plots in Wenshan prefecture of Yunnan province as an example, the China-made GF-1multispectral remote sensing images with a 16 m×16 m resolution were obtained. Then, the time series that can reflect the difference of spectrum of P. notoginseng shed and the background objects were selected to the maximum extent, and the decision tree model of extraction the of P. notoginseng plots was constructed according to the spectral characteristics of the surface features. The results showed that the remote sensing classification method based on the decision tree model could extract P. notoginseng plots in the study area effectively. The method can provide technical support for extraction of P. notoginseng plots at county level. Copyright© by the Chinese Pharmaceutical Association.

  2. Method for indexing and retrieving manufacturing-specific digital imagery based on image content

    DOEpatents

    Ferrell, Regina K.; Karnowski, Thomas P.; Tobin, Jr., Kenneth W.

    2004-06-15

    A method for indexing and retrieving manufacturing-specific digital images based on image content comprises three steps. First, at least one feature vector can be extracted from a manufacturing-specific digital image stored in an image database. In particular, each extracted feature vector corresponds to a particular characteristic of the manufacturing-specific digital image, for instance, a digital image modality and overall characteristic, a substrate/background characteristic, and an anomaly/defect characteristic. Notably, the extracting step includes generating a defect mask using a detection process. Second, using an unsupervised clustering method, each extracted feature vector can be indexed in a hierarchical search tree. Third, a manufacturing-specific digital image associated with a feature vector stored in the hierarchicial search tree can be retrieved, wherein the manufacturing-specific digital image has image content comparably related to the image content of the query image. More particularly, can include two data reductions, the first performed based upon a query vector extracted from a query image. Subsequently, a user can select relevant images resulting from the first data reduction. From the selection, a prototype vector can be calculated, from which a second-level data reduction can be performed. The second-level data reduction can result in a subset of feature vectors comparable to the prototype vector, and further comparable to the query vector. An additional fourth step can include managing the hierarchical search tree by substituting a vector average for several redundant feature vectors encapsulated by nodes in the hierarchical search tree.

  3. Estimating babassu palm density using automatic palm tree detection with very high spatial resolution satellite images.

    PubMed

    Dos Santos, Alessio Moreira; Mitja, Danielle; Delaître, Eric; Demagistri, Laurent; de Souza Miranda, Izildinha; Libourel, Thérèse; Petit, Michel

    2017-05-15

    High spatial resolution images as well as image processing and object detection algorithms are recent technologies that aid the study of biodiversity and commercial plantations of forest species. This paper seeks to contribute knowledge regarding the use of these technologies by studying randomly dispersed native palm tree. Here, we analyze the automatic detection of large circular crown (LCC) palm tree using a high spatial resolution panchromatic GeoEye image (0.50 m) taken on the area of a community of small agricultural farms in the Brazilian Amazon. We also propose auxiliary methods to estimate the density of the LCC palm tree Attalea speciosa (babassu) based on the detection results. We used the "Compt-palm" algorithm based on the detection of palm tree shadows in open areas via mathematical morphology techniques and the spatial information was validated using field methods (i.e. structural census and georeferencing). The algorithm recognized individuals in life stages 5 and 6, and the extraction percentage, branching factor and quality percentage factors were used to evaluate its performance. A principal components analysis showed that the structure of the studied species differs from other species. Approximately 96% of the babassu individuals in stage 6 were detected. These individuals had significantly smaller stipes than the undetected ones. In turn, 60% of the stage 5 babassu individuals were detected, showing significantly a different total height and a different number of leaves from the undetected ones. Our calculations regarding resource availability indicate that 6870 ha contained 25,015 adult babassu palm tree, with an annual potential productivity of 27.4 t of almond oil. The detection of LCC palm tree and the implementation of auxiliary field methods to estimate babassu density is an important first step to monitor this industry resource that is extremely important to the Brazilian economy and thousands of families over a large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Efficacy of Consensus Tree Methods for Summarizing Phylogenetic Relationships from a Posterior Sample of Trees Estimated from Morphological Data.

    PubMed

    O'Reilly, Joseph E; Donoghue, Philip C J

    2018-03-01

    Consensus trees are required to summarize trees obtained through MCMC sampling of a posterior distribution, providing an overview of the distribution of estimated parameters such as topology, branch lengths, and divergence times. Numerous consensus tree construction methods are available, each presenting a different interpretation of the tree sample. The rise of morphological clock and sampled-ancestor methods of divergence time estimation, in which times and topology are coestimated, has increased the popularity of the maximum clade credibility (MCC) consensus tree method. The MCC method assumes that the sampled, fully resolved topology with the highest clade credibility is an adequate summary of the most probable clades, with parameter estimates from compatible sampled trees used to obtain the marginal distributions of parameters such as clade ages and branch lengths. Using both simulated and empirical data, we demonstrate that MCC trees, and trees constructed using the similar maximum a posteriori (MAP) method, often include poorly supported and incorrect clades when summarizing diffuse posterior samples of trees. We demonstrate that the paucity of information in morphological data sets contributes to the inability of MCC and MAP trees to accurately summarise of the posterior distribution. Conversely, majority-rule consensus (MRC) trees represent a lower proportion of incorrect nodes when summarizing the same posterior samples of trees. Thus, we advocate the use of MRC trees, in place of MCC or MAP trees, in attempts to summarize the results of Bayesian phylogenetic analyses of morphological data.

  5. The Efficacy of Consensus Tree Methods for Summarizing Phylogenetic Relationships from a Posterior Sample of Trees Estimated from Morphological Data

    PubMed Central

    O’Reilly, Joseph E; Donoghue, Philip C J

    2018-01-01

    Abstract Consensus trees are required to summarize trees obtained through MCMC sampling of a posterior distribution, providing an overview of the distribution of estimated parameters such as topology, branch lengths, and divergence times. Numerous consensus tree construction methods are available, each presenting a different interpretation of the tree sample. The rise of morphological clock and sampled-ancestor methods of divergence time estimation, in which times and topology are coestimated, has increased the popularity of the maximum clade credibility (MCC) consensus tree method. The MCC method assumes that the sampled, fully resolved topology with the highest clade credibility is an adequate summary of the most probable clades, with parameter estimates from compatible sampled trees used to obtain the marginal distributions of parameters such as clade ages and branch lengths. Using both simulated and empirical data, we demonstrate that MCC trees, and trees constructed using the similar maximum a posteriori (MAP) method, often include poorly supported and incorrect clades when summarizing diffuse posterior samples of trees. We demonstrate that the paucity of information in morphological data sets contributes to the inability of MCC and MAP trees to accurately summarise of the posterior distribution. Conversely, majority-rule consensus (MRC) trees represent a lower proportion of incorrect nodes when summarizing the same posterior samples of trees. Thus, we advocate the use of MRC trees, in place of MCC or MAP trees, in attempts to summarize the results of Bayesian phylogenetic analyses of morphological data. PMID:29106675

  6. Genome-wide comparative analysis of phylogenetic trees: the prokaryotic forest of life.

    PubMed

    Puigbò, Pere; Wolf, Yuri I; Koonin, Eugene V

    2012-01-01

    Genome-wide comparison of phylogenetic trees is becoming an increasingly common approach in evolutionary genomics, and a variety of approaches for such comparison have been developed. In this article, we present several methods for comparative analysis of large numbers of phylogenetic trees. To compare phylogenetic trees taking into account the bootstrap support for each internal branch, the Boot-Split Distance (BSD) method is introduced as an extension of the previously developed Split Distance method for tree comparison. The BSD method implements the straightforward idea that comparison of phylogenetic trees can be made more robust by treating tree splits differentially depending on the bootstrap support. Approaches are also introduced for detecting tree-like and net-like evolutionary trends in the phylogenetic Forest of Life (FOL), i.e., the entirety of the phylogenetic trees for conserved genes of prokaryotes. The principal method employed for this purpose includes mapping quartets of species onto trees to calculate the support of each quartet topology and so to quantify the tree and net contributions to the distances between species. We describe the application of these methods to analyze the FOL and the results obtained with these methods. These results support the concept of the Tree of Life (TOL) as a central evolutionary trend in the FOL as opposed to the traditional view of the TOL as a "species tree."

  7. Optimizing Use of Girdled Ash Trees for Management of Low-Density Emerald Ash Borer (Coleoptera: Buprestidae) Populations.

    PubMed

    Siegert, Nathan W; McCullough, Deborah G; Poland, Therese M; Heyd, Robert L

    2017-06-01

    Effective survey methods to detect and monitor recently established, low-density infestations of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), remain a high priority because they provide land managers and property owners with time to implement tactics to slow emerald ash borer population growth and the progression of ash mortality. We evaluated options for using girdled ash (Fraxinus spp.) trees for emerald ash borer detection and management in a low-density infestation in a forested area with abundant green ash (F. pennsylvanica). Across replicated 4-ha plots, we compared detection efficiency of 4 versus 16 evenly distributed girdled ash trees and between clusters of 3 versus 12 girdled trees. We also examined within-tree larval distribution in 208 girdled and nongirdled trees and assessed adult emerald ash borer emergence from detection trees felled 11 mo after girdling and left on site. Overall, current-year larvae were present in 85-97% of girdled trees and 57-72% of nongirdled trees, and larval density was 2-5 times greater on girdled than nongirdled trees. Low-density emerald ash borer infestations were readily detected with four girdled trees per 4-ha, and 3-tree clusters were as effective as 12-tree clusters. Larval densities were greatest 0.5 ± 0.4 m below the base of the canopy in girdled trees and 1.3 ± 0.7 m above the canopy base in nongirdled trees. Relatively few adult emerald ash borer emerged from trees felled 11 mo after girdling and left on site through the following summer, suggesting removal or destruction of girdled ash trees may be unnecessary. This could potentially reduce survey costs, particularly in forested areas with poor accessibility. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  8. A comparison of genomic selection models across time in interior spruce (Picea engelmannii × glauca) using unordered SNP imputation methods

    PubMed Central

    Ratcliffe, B; El-Dien, O G; Klápště, J; Porth, I; Chen, C; Jaquish, B; El-Kassaby, Y A

    2015-01-01

    Genomic selection (GS) potentially offers an unparalleled advantage over traditional pedigree-based selection (TS) methods by reducing the time commitment required to carry out a single cycle of tree improvement. This quality is particularly appealing to tree breeders, where lengthy improvement cycles are the norm. We explored the prospect of implementing GS for interior spruce (Picea engelmannii × glauca) utilizing a genotyped population of 769 trees belonging to 25 open-pollinated families. A series of repeated tree height measurements through ages 3–40 years permitted the testing of GS methods temporally. The genotyping-by-sequencing (GBS) platform was used for single nucleotide polymorphism (SNP) discovery in conjunction with three unordered imputation methods applied to a data set with 60% missing information. Further, three diverse GS models were evaluated based on predictive accuracy (PA), and their marker effects. Moderate levels of PA (0.31–0.55) were observed and were of sufficient capacity to deliver improved selection response over TS. Additionally, PA varied substantially through time accordingly with spatial competition among trees. As expected, temporal PA was well correlated with age-age genetic correlation (r=0.99), and decreased substantially with increasing difference in age between the training and validation populations (0.04–0.47). Moreover, our imputation comparisons indicate that k-nearest neighbor and singular value decomposition yielded a greater number of SNPs and gave higher predictive accuracies than imputing with the mean. Furthermore, the ridge regression (rrBLUP) and BayesCπ (BCπ) models both yielded equal, and better PA than the generalized ridge regression heteroscedastic effect model for the traits evaluated. PMID:26126540

  9. A comparison of genomic selection models across time in interior spruce (Picea engelmannii × glauca) using unordered SNP imputation methods.

    PubMed

    Ratcliffe, B; El-Dien, O G; Klápště, J; Porth, I; Chen, C; Jaquish, B; El-Kassaby, Y A

    2015-12-01

    Genomic selection (GS) potentially offers an unparalleled advantage over traditional pedigree-based selection (TS) methods by reducing the time commitment required to carry out a single cycle of tree improvement. This quality is particularly appealing to tree breeders, where lengthy improvement cycles are the norm. We explored the prospect of implementing GS for interior spruce (Picea engelmannii × glauca) utilizing a genotyped population of 769 trees belonging to 25 open-pollinated families. A series of repeated tree height measurements through ages 3-40 years permitted the testing of GS methods temporally. The genotyping-by-sequencing (GBS) platform was used for single nucleotide polymorphism (SNP) discovery in conjunction with three unordered imputation methods applied to a data set with 60% missing information. Further, three diverse GS models were evaluated based on predictive accuracy (PA), and their marker effects. Moderate levels of PA (0.31-0.55) were observed and were of sufficient capacity to deliver improved selection response over TS. Additionally, PA varied substantially through time accordingly with spatial competition among trees. As expected, temporal PA was well correlated with age-age genetic correlation (r=0.99), and decreased substantially with increasing difference in age between the training and validation populations (0.04-0.47). Moreover, our imputation comparisons indicate that k-nearest neighbor and singular value decomposition yielded a greater number of SNPs and gave higher predictive accuracies than imputing with the mean. Furthermore, the ridge regression (rrBLUP) and BayesCπ (BCπ) models both yielded equal, and better PA than the generalized ridge regression heteroscedastic effect model for the traits evaluated.

  10. Basal jawed vertebrate phylogeny inferred from multiple nuclear DNA-coded genes

    PubMed Central

    Kikugawa, Kanae; Katoh, Kazutaka; Kuraku, Shigehiro; Sakurai, Hiroshi; Ishida, Osamu; Iwabe, Naoyuki; Miyata, Takashi

    2004-01-01

    Background Phylogenetic analyses of jawed vertebrates based on mitochondrial sequences often result in confusing inferences which are obviously inconsistent with generally accepted trees. In particular, in a hypothesis by Rasmussen and Arnason based on mitochondrial trees, cartilaginous fishes have a terminal position in a paraphyletic cluster of bony fishes. No previous analysis based on nuclear DNA-coded genes could significantly reject the mitochondrial trees of jawed vertebrates. Results We have cloned and sequenced seven nuclear DNA-coded genes from 13 vertebrate species. These sequences, together with sequences available from databases including 13 jawed vertebrates from eight major groups (cartilaginous fishes, bichir, chondrosteans, gar, bowfin, teleost fishes, lungfishes and tetrapods) and an outgroup (a cyclostome and a lancelet), have been subjected to phylogenetic analyses based on the maximum likelihood method. Conclusion Cartilaginous fishes have been inferred to be basal to other jawed vertebrates, which is consistent with the generally accepted view. The minimum log-likelihood difference between the maximum likelihood tree and trees not supporting the basal position of cartilaginous fishes is 18.3 ± 13.1. The hypothesis by Rasmussen and Arnason has been significantly rejected with the minimum log-likelihood difference of 123 ± 23.3. Our tree has also shown that living holosteans, comprising bowfin and gar, form a monophyletic group which is the sister group to teleost fishes. This is consistent with a formerly prevalent view of vertebrate classification, although inconsistent with both of the current morphology-based and mitochondrial sequence-based trees. Furthermore, the bichir has been shown to be the basal ray-finned fish. Tetrapods and lungfish have formed a monophyletic cluster in the tree inferred from the concatenated alignment, being consistent with the currently prevalent view. It also remains possible that tetrapods are more closely related to ray-finned fishes than to lungfishes. PMID:15070407

  11. Enumerating all maximal frequent subtrees in collections of phylogenetic trees

    PubMed Central

    2014-01-01

    Background A common problem in phylogenetic analysis is to identify frequent patterns in a collection of phylogenetic trees. The goal is, roughly, to find a subset of the species (taxa) on which all or some significant subset of the trees agree. One popular method to do so is through maximum agreement subtrees (MASTs). MASTs are also used, among other things, as a metric for comparing phylogenetic trees, computing congruence indices and to identify horizontal gene transfer events. Results We give algorithms and experimental results for two approaches to identify common patterns in a collection of phylogenetic trees, one based on agreement subtrees, called maximal agreement subtrees, the other on frequent subtrees, called maximal frequent subtrees. These approaches can return subtrees on larger sets of taxa than MASTs, and can reveal new common phylogenetic relationships not present in either MASTs or the majority rule tree (a popular consensus method). Our current implementation is available on the web at https://code.google.com/p/mfst-miner/. Conclusions Our computational results confirm that maximal agreement subtrees and all maximal frequent subtrees can reveal a more complete phylogenetic picture of the common patterns in collections of phylogenetic trees than maximum agreement subtrees; they are also often more resolved than the majority rule tree. Further, our experiments show that enumerating maximal frequent subtrees is considerably more practical than enumerating ordinary (not necessarily maximal) frequent subtrees. PMID:25061474

  12. Enumerating all maximal frequent subtrees in collections of phylogenetic trees.

    PubMed

    Deepak, Akshay; Fernández-Baca, David

    2014-01-01

    A common problem in phylogenetic analysis is to identify frequent patterns in a collection of phylogenetic trees. The goal is, roughly, to find a subset of the species (taxa) on which all or some significant subset of the trees agree. One popular method to do so is through maximum agreement subtrees (MASTs). MASTs are also used, among other things, as a metric for comparing phylogenetic trees, computing congruence indices and to identify horizontal gene transfer events. We give algorithms and experimental results for two approaches to identify common patterns in a collection of phylogenetic trees, one based on agreement subtrees, called maximal agreement subtrees, the other on frequent subtrees, called maximal frequent subtrees. These approaches can return subtrees on larger sets of taxa than MASTs, and can reveal new common phylogenetic relationships not present in either MASTs or the majority rule tree (a popular consensus method). Our current implementation is available on the web at https://code.google.com/p/mfst-miner/. Our computational results confirm that maximal agreement subtrees and all maximal frequent subtrees can reveal a more complete phylogenetic picture of the common patterns in collections of phylogenetic trees than maximum agreement subtrees; they are also often more resolved than the majority rule tree. Further, our experiments show that enumerating maximal frequent subtrees is considerably more practical than enumerating ordinary (not necessarily maximal) frequent subtrees.

  13. Venous tree separation in the liver: graph partitioning using a non-ising model.

    PubMed

    O'Donnell, Thomas; Kaftan, Jens N; Schuh, Andreas; Tietjen, Christian; Soza, Grzegorz; Aach, Til

    2011-01-01

    Entangled tree-like vascular systems are commonly found in the body (e.g., in the peripheries and lungs). Separation of these systems in medical images may be formulated as a graph partitioning problem given an imperfect segmentation and specification of the tree roots. In this work, we show that the ubiquitous Ising-model approaches (e.g., Graph Cuts, Random Walker) are not appropriate for tackling this problem and propose a novel method based on recursive minimal paths for doing so. To motivate our method, we focus on the intertwined portal and hepatic venous systems in the liver. Separation of these systems is critical for liver intervention planning, in particular when resection is involved. We apply our method to 34 clinical datasets, each containing well over a hundred vessel branches, demonstrating its effectiveness.

  14. An artifact caused by undersampling optimal trees in supermatrix analyses of locally sampled characters.

    PubMed

    Simmons, Mark P; Goloboff, Pablo A

    2013-10-01

    Empirical and simulated examples are used to demonstrate an artifact caused by undersampling optimal trees in data matrices that consist mostly or entirely of locally sampled (as opposed to globally, for most or all terminals) characters. The artifact is that unsupported clades consisting entirely of terminals scored for the same locally sampled partition may be resolved and assigned high resampling support-despite their being properly unsupported (i.e., not resolved in the strict consensus of all optimal trees). This artifact occurs despite application of random-addition sequences for stepwise terminal addition. The artifact is not necessarily obviated with thorough conventional branch swapping methods (even tree-bisection-reconnection) when just a single tree is held, as is sometimes implemented in parsimony bootstrap pseudoreplicates, and in every GARLI, PhyML, and RAxML pseudoreplicate and search for the most likely tree for the matrix as a whole. Hence GARLI, RAxML, and PhyML-based likelihood results require extra scrutiny, particularly when they provide high resolution and support for clades that are entirely unsupported by methods that perform more thorough searches, as in most parsimony analyses. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Genetic diversity analysis of tree peony germplasm using iPBS markers.

    PubMed

    Duan, Y B; Guo, D L; Guo, L L; Wei, D F; Hou, X G

    2015-07-06

    We examined the genetic diversity of 10 wild species (populations) and 55 varieties of tree peony using inter-primer binding site (iPBS) markers. From a total of 36 iPBS primers, 16 were selected based on polymorphic amplification. The number of bands amplified by each primer ranged from 9 to 19, with an average of 12.88 bands per primer. The length of bands ranged from 100 to 2000 bp, concentrated at 200 to 1800 bp. Sixteen primers amplified 206 bands in total, of which 173 bands were polymorphic with a polymorphism ratio of 83.98%. Each primer amplified 10.81 polymorphic bands on average. The data were then used to construct a phylogenetic tree using unweighted pair group method with arithmetic mean methods. Clustering analysis showed that the genetic relationships among the varieties were not only related to the genetic background or geographic origin, but also to the flowering phase, flower color, and flower type. Our data also indicated that iPBS markers were useful tools for classifying tree peony germplasms and for tree peony breeding, and the specific bands were helpful for molecular identification of tree peony varieties.

  16. An information-based network approach for protein classification

    PubMed Central

    Wan, Xiaogeng; Zhao, Xin; Yau, Stephen S. T.

    2017-01-01

    Protein classification is one of the critical problems in bioinformatics. Early studies used geometric distances and polygenetic-tree to classify proteins. These methods use binary trees to present protein classification. In this paper, we propose a new protein classification method, whereby theories of information and networks are used to classify the multivariate relationships of proteins. In this study, protein universe is modeled as an undirected network, where proteins are classified according to their connections. Our method is unsupervised, multivariate, and alignment-free. It can be applied to the classification of both protein sequences and structures. Nine examples are used to demonstrate the efficiency of our new method. PMID:28350835

  17. Phylogeny of the cycads based on multiple single-copy nuclear genes: congruence of concatenated parsimony, likelihood and species tree inference methods.

    PubMed

    Salas-Leiva, Dayana E; Meerow, Alan W; Calonje, Michael; Griffith, M Patrick; Francisco-Ortega, Javier; Nakamura, Kyoko; Stevenson, Dennis W; Lewis, Carl E; Namoff, Sandra

    2013-11-01

    Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree-species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera. DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree-species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted. Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (Macrozamia-Lepidozamia-Encephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia. A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae.

  18. A parsimonious tree-grow method for haplotype inference.

    PubMed

    Li, Zhenping; Zhou, Wenfeng; Zhang, Xiang-Sun; Chen, Luonan

    2005-09-01

    Haplotype information has become increasingly important in analyzing fine-scale molecular genetics data, such as disease genes mapping and drug design. Parsimony haplotyping is one of haplotyping problems belonging to NP-hard class. In this paper, we aim to develop a novel algorithm for the haplotype inference problem with the parsimony criterion, based on a parsimonious tree-grow method (PTG). PTG is a heuristic algorithm that can find the minimum number of distinct haplotypes based on the criterion of keeping all genotypes resolved during tree-grow process. In addition, a block-partitioning method is also proposed to improve the computational efficiency. We show that the proposed approach is not only effective with a high accuracy, but also very efficient with the computational complexity in the order of O(m2n) time for n single nucleotide polymorphism sites in m individual genotypes. The software is available upon request from the authors, or from http://zhangroup.aporc.org/bioinfo/ptg/ chen@elec.osaka-sandai.ac.jp Supporting materials is available from http://zhangroup.aporc.org/bioinfo/ptg/bti572supplementary.pdf

  19. A novel knowledge-based system for interpreting complex engineering drawings: theory, representation, and implementation.

    PubMed

    Lu, Tong; Tai, Chiew-Lan; Yang, Huafei; Cai, Shijie

    2009-08-01

    We present a novel knowledge-based system to automatically convert real-life engineering drawings to content-oriented high-level descriptions. The proposed method essentially turns the complex interpretation process into two parts: knowledge representation and knowledge-based interpretation. We propose a new hierarchical descriptor-based knowledge representation method to organize the various types of engineering objects and their complex high-level relations. The descriptors are defined using an Extended Backus Naur Form (EBNF), facilitating modification and maintenance. When interpreting a set of related engineering drawings, the knowledge-based interpretation system first constructs an EBNF-tree from the knowledge representation file, then searches for potential engineering objects guided by a depth-first order of the nodes in the EBNF-tree. Experimental results and comparisons with other interpretation systems demonstrate that our knowledge-based system is accurate and robust for high-level interpretation of complex real-life engineering projects.

  20. A Hybrid Key Management Scheme for WSNs Based on PPBR and a Tree-Based Path Key Establishment Method

    PubMed Central

    Zhang, Ying; Liang, Jixing; Zheng, Bingxin; Chen, Wei

    2016-01-01

    With the development of wireless sensor networks (WSNs), in most application scenarios traditional WSNs with static sink nodes will be gradually replaced by Mobile Sinks (MSs), and the corresponding application requires a secure communication environment. Current key management researches pay less attention to the security of sensor networks with MS. This paper proposes a hybrid key management schemes based on a Polynomial Pool-based key pre-distribution and Basic Random key pre-distribution (PPBR) to be used in WSNs with MS. The scheme takes full advantages of these two kinds of methods to improve the cracking difficulty of the key system. The storage effectiveness and the network resilience can be significantly enhanced as well. The tree-based path key establishment method is introduced to effectively solve the problem of communication link connectivity. Simulation clearly shows that the proposed scheme performs better in terms of network resilience, connectivity and storage effectiveness compared to other widely used schemes. PMID:27070624

  1. Detectability of the emerald ash borer (Coleoptera: Buprestidae) in asymptomatic urban trees by using branch samples.

    PubMed

    Ryall, Krista L; Fidgen, Jeffrey G; Turgeon, Jean J

    2011-06-01

    The emerald ash borer, Agrilus planipennis Fairmaire, is an exotic invasive insect causing extensive mortality to ash trees, Fraxinus spp., in Canada and the United States. Detection of incipient populations of this pest is difficult because of its cryptic life stages and a multiyear time lag between initial attack and the appearance of signs or symptoms of infestation. We sampled branches from open-grown urban ash trees to develop a sample unit suitable for detecting low density A. planipennis infestation before any signs or symptoms are evident. The sample unit that maximized detection rates consisted of one 50-cm-long piece from the base of a branch ≥6 cm diameter in the midcrown. The optimal sample size was two such branches per tree. This sampling method detected ≈75% of asymptomatic trees known to be infested by using more intensive sampling and ≈3 times more trees than sampling one-fourth of the circumference of the trunk at breast height. The method is less conspicuous and esthetically damaging to a tree than the removal of bark from the main stem or the use of trap trees, and could be incorporated into routine sanitation or maintenance of city-owned trees to identify and delineate infested areas. This research indicates that branch sampling greatly reduces false negatives associated with visual surveys and window sampling at breast height. Detection of A. planipennis-infested asymptomatic trees through branch sampling in urban centers would provide landowners and urban foresters with more time to develop and implement management tactics.

  2. [The Application of the Fault Tree Analysis Method in Medical Equipment Maintenance].

    PubMed

    Liu, Hongbin

    2015-11-01

    In this paper, the traditional fault tree analysis method is presented, detailed instructions for its application characteristics in medical instrument maintenance is made. It is made significant changes when the traditional fault tree analysis method is introduced into the medical instrument maintenance: gave up the logic symbolic, logic analysis and calculation, gave up its complicated programs, and only keep its image and practical fault tree diagram, and the fault tree diagram there are also differences: the fault tree is no longer a logical tree but the thinking tree in troubleshooting, the definition of the fault tree's nodes is different, the composition of the fault tree's branches is also different.

  3. A dual growing method for the automatic extraction of individual trees from mobile laser scanning data

    NASA Astrophysics Data System (ADS)

    Li, Lin; Li, Dalin; Zhu, Haihong; Li, You

    2016-10-01

    Street trees interlaced with other objects in cluttered point clouds of urban scenes inhibit the automatic extraction of individual trees. This paper proposes a method for the automatic extraction of individual trees from mobile laser scanning data, according to the general constitution of trees. Two components of each individual tree - a trunk and a crown can be extracted by the dual growing method. This method consists of coarse classification, through which most of artifacts are removed; the automatic selection of appropriate seeds for individual trees, by which the common manual initial setting is avoided; a dual growing process that separates one tree from others by circumscribing a trunk in an adaptive growing radius and segmenting a crown in constrained growing regions; and a refining process that draws a singular trunk from the interlaced other objects. The method is verified by two datasets with over 98% completeness and over 96% correctness. The low mean absolute percentage errors in capturing the morphological parameters of individual trees indicate that this method can output individual trees with high precision.

  4. A new fast method for inferring multiple consensus trees using k-medoids.

    PubMed

    Tahiri, Nadia; Willems, Matthieu; Makarenkov, Vladimir

    2018-04-05

    Gene trees carry important information about specific evolutionary patterns which characterize the evolution of the corresponding gene families. However, a reliable species consensus tree cannot be inferred from a multiple sequence alignment of a single gene family or from the concatenation of alignments corresponding to gene families having different evolutionary histories. These evolutionary histories can be quite different due to horizontal transfer events or to ancient gene duplications which cause the emergence of paralogs within a genome. Many methods have been proposed to infer a single consensus tree from a collection of gene trees. Still, the application of these tree merging methods can lead to the loss of specific evolutionary patterns which characterize some gene families or some groups of gene families. Thus, the problem of inferring multiple consensus trees from a given set of gene trees becomes relevant. We describe a new fast method for inferring multiple consensus trees from a given set of phylogenetic trees (i.e. additive trees or X-trees) defined on the same set of species (i.e. objects or taxa). The traditional consensus approach yields a single consensus tree. We use the popular k-medoids partitioning algorithm to divide a given set of trees into several clusters of trees. We propose novel versions of the well-known Silhouette and Caliński-Harabasz cluster validity indices that are adapted for tree clustering with k-medoids. The efficiency of the new method was assessed using both synthetic and real data, such as a well-known phylogenetic dataset consisting of 47 gene trees inferred for 14 archaeal organisms. The method described here allows inference of multiple consensus trees from a given set of gene trees. It can be used to identify groups of gene trees having similar intragroup and different intergroup evolutionary histories. The main advantage of our method is that it is much faster than the existing tree clustering approaches, while providing similar or better clustering results in most cases. This makes it particularly well suited for the analysis of large genomic and phylogenetic datasets.

  5. Block-Based Connected-Component Labeling Algorithm Using Binary Decision Trees

    PubMed Central

    Chang, Wan-Yu; Chiu, Chung-Cheng; Yang, Jia-Horng

    2015-01-01

    In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based scan mask. We analyze the advantages of a sequential raster scan for the block-based scan mask, and integrate the block-connected relationships using two different procedures with binary decision trees to reduce unnecessary memory access. This greatly simplifies the pixel locations of the block-based scan mask. Furthermore, our algorithm significantly reduces the number of leaf nodes and depth levels required in the binary decision tree. We analyze the labeling performance of the proposed algorithm alongside that of other labeling algorithms using high-resolution images and foreground images. The experimental results from synthetic and real image datasets demonstrate that the proposed algorithm is faster than other methods. PMID:26393597

  6. GENOME-WIDE COMPARATIVE ANALYSIS OF PHYLOGENETIC TREES: THE PROKARYOTIC FOREST OF LIFE

    PubMed Central

    Puigbò, Pere; Wolf, Yuri I.; Koonin, Eugene V.

    2013-01-01

    Genome-wide comparison of phylogenetic trees is becoming an increasingly common approach in evolutionary genomics, and a variety of approaches for such comparison have been developed. In this article we present several methods for comparative analysis of large numbers of phylogenetic trees. To compare phylogenetic trees taking into account the bootstrap support for each internal branch, the Boot-Split Distance (BSD) method is introduced as an extension of the previously developed Split Distance (SD) method for tree comparison. The BSD method implements the straightforward idea that comparison of phylogenetic trees can be made more robust by treating tree splits differentially depending on the bootstrap support. Approaches are also introduced for detecting tree-like and net-like evolutionary trends in the phylogenetic Forest of Life (FOL), i.e., the entirety of the phylogenetic trees for conserved genes of prokaryotes. The principal method employed for this purpose includes mapping quartets of species onto trees to calculate the support of each quartet topology and so to quantify the tree and net contributions to the distances between species. We describe the applications methods used to analyze the FOL and the results obtained with these methods. These results support the concept of the Tree of Life (TOL) as a central evolutionary trend in the FOL as opposed to the traditional view of the TOL as a ‘species tree’. PMID:22399455

  7. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution.

    PubMed

    Kendall, Michelle; Colijn, Caroline

    2016-10-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. phylogenetics, evolution, tree metrics, genetics, sequencing. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Construction of a Species-Level Tree of Life for the Insects and Utility in Taxonomic Profiling.

    PubMed

    Chesters, Douglas

    2017-05-01

    Although comprehensive phylogenies have proven an invaluable tool in ecology and evolution, their construction is made increasingly challenging both by the scale and structure of publically available sequences. The distinct partition between gene-rich (genomic) and species-rich (DNA barcode) data is a feature of data that has been largely overlooked, yet presents a key obstacle to scaling supermatrix analysis. I present a phyloinformatics framework for draft construction of a species-level phylogeny of insects (Class Insecta). Matrix-building requires separately optimized pipelines for nuclear transcriptomic, mitochondrial genomic, and species-rich markers, whereas tree-building requires hierarchical inference in order to capture species-breadth while retaining deep-level resolution. The phylogeny of insects contains 49,358 species, 13,865 genera, 760 families. Deep-level splits largely reflected previous findings for sections of the tree that are data rich or unambiguous, such as inter-ordinal Endopterygota and Dictyoptera, the recently evolved and relatively homogeneous Lepidoptera, Hymenoptera, Brachycera (Diptera), and Cucujiformia (Coleoptera). However, analysis of bias, matrix construction and gene-tree variation suggests confidence in some relationships (such as in Polyneoptera) is less than has been indicated by the matrix bootstrap method. To assess the utility of the insect tree as a tool in query profiling several tree-based taxonomic assignment methods are compared. Using test data sets with existing taxonomic annotations, a tendency is observed for greater accuracy of species-level assignments where using a fixed comprehensive tree of life in contrast to methods generating smaller de novo reference trees. Described herein is a solution to the discrepancy in the way data are fit into supermatrices. The resulting tree facilitates wider studies of insect diversification and application of advanced descriptions of diversity in community studies, among other presumed applications. [Data integration; data mining; insects; phylogenomics; phyloinformatics; tree of life.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery

    NASA Astrophysics Data System (ADS)

    Zarco-Tejada, P. J.; Hornero, A.; Hernández-Clemente, R.; Beck, P. S. A.

    2018-03-01

    The operational monitoring of forest decline requires the development of remote sensing methods that are sensitive to the spatiotemporal variations of pigment degradation and canopy defoliation. In this context, the red-edge spectral region (RESR) was proposed in the past due to its combined sensitivity to chlorophyll content and leaf area variation. In this study, the temporal dimension of the RESR was evaluated as a function of forest decline using a radiative transfer method with the PROSPECT and 3D FLIGHT models. These models were used to generate synthetic pine stands simulating decline and recovery processes over time and explore the temporal rate of change of the red-edge chlorophyll index (CI) as compared to the trajectories obtained for the structure-related Normalized Difference Vegetation Index (NDVI). The temporal trend method proposed here consisted of using synthetic spectra to calculate the theoretical boundaries of the subspace for healthy and declining pine trees in the temporal domain, defined by CItime=n/CItime=n+1 vs. NDVItime=n/NDVItime=n+1. Within these boundaries, trees undergoing decline and recovery processes showed different trajectories through this subspace. The method was then validated using three high-resolution airborne hyperspectral images acquired at 40 cm resolution and 260 spectral bands of 6.5 nm full-width half-maximum (FWHM) over a forest with widespread tree decline, along with field-based monitoring of chlorosis and defoliation (i.e., 'decline' status) in 663 trees between the years 2015 and 2016. The temporal rate of change of chlorophyll vs. structural indices, based on reflectance spectra extracted from the hyperspectral images, was different for trees undergoing decline, and aligned towards the decline baseline established using the radiative transfer models. By contrast, healthy trees over time aligned towards the theoretically obtained healthy baseline. The applicability of this temporal trend method to the red-edge bands of the MultiSpectral Imager (MSI) instrument on board Sentinel-2a for operational forest status monitoring was also explored by comparing the temporal rate of change of the Sentinel-2-derived CI over areas with declining and healthy trees. Results demonstrated that the Sentinel-2a red-edge region was sensitive to the temporal dimension of forest condition, as the relationships obtained for pixels in healthy condition deviated from those of pixels undergoing decline.

  10. Assessing alternative measures of tree canopy cover: Photo-interpreted NAIP and ground-based estimates

    Treesearch

    Chris Toney; Greg Liknes; Andy Lister; Dacia Meneguzzo

    2012-01-01

    In preparation for the development of the National Land Cover Database (NLCD) 2011 tree canopy cover layer, a pilot project for research and method development was completed in 2010 by the USDA Forest Service Forest Inventory and Analysis (FIA) program and Remote Sensing Applications Center (RSAC).This paper explores one of several topics investigated during the NLCD...

  11. A ground-based method of assessing urban forest structure and ecosystem services

    Treesearch

    David J. Nowak; Daniel E. Crane; Jack C. Stevens; Robert E. Hoehn; Jeffrey T. Walton; Jerry Bond

    2008-01-01

    To properly manage urban forests, it is essential to have data on this important resource. An efficient means to obtain this information is to randomly sample urban areas. To help assess the urban forest structure (e.g., number of trees, species composition, tree sizes, health) and several functions (e.g., air pollution removal, carbon storage and sequestration), the...

  12. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree

    PubMed Central

    2010-01-01

    Background Likelihood-based phylogenetic inference is generally considered to be the most reliable classification method for unknown sequences. However, traditional likelihood-based phylogenetic methods cannot be applied to large volumes of short reads from next-generation sequencing due to computational complexity issues and lack of phylogenetic signal. "Phylogenetic placement," where a reference tree is fixed and the unknown query sequences are placed onto the tree via a reference alignment, is a way to bring the inferential power offered by likelihood-based approaches to large data sets. Results This paper introduces pplacer, a software package for phylogenetic placement and subsequent visualization. The algorithm can place twenty thousand short reads on a reference tree of one thousand taxa per hour per processor, has essentially linear time and memory complexity in the number of reference taxa, and is easy to run in parallel. Pplacer features calculation of the posterior probability of a placement on an edge, which is a statistically rigorous way of quantifying uncertainty on an edge-by-edge basis. It also can inform the user of the positional uncertainty for query sequences by calculating expected distance between placement locations, which is crucial in the estimation of uncertainty with a well-sampled reference tree. The software provides visualizations using branch thickness and color to represent number of placements and their uncertainty. A simulation study using reads generated from 631 COG alignments shows a high level of accuracy for phylogenetic placement over a wide range of alignment diversity, and the power of edge uncertainty estimates to measure placement confidence. Conclusions Pplacer enables efficient phylogenetic placement and subsequent visualization, making likelihood-based phylogenetics methodology practical for large collections of reads; it is freely available as source code, binaries, and a web service. PMID:21034504

  13. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project.

    PubMed

    Alghamdi, Manal; Al-Mallah, Mouaz; Keteyian, Steven; Brawner, Clinton; Ehrman, Jonathan; Sakr, Sherif

    2017-01-01

    Machine learning is becoming a popular and important approach in the field of medical research. In this study, we investigate the relative performance of various machine learning methods such as Decision Tree, Naïve Bayes, Logistic Regression, Logistic Model Tree and Random Forests for predicting incident diabetes using medical records of cardiorespiratory fitness. In addition, we apply different techniques to uncover potential predictors of diabetes. This FIT project study used data of 32,555 patients who are free of any known coronary artery disease or heart failure who underwent clinician-referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 5-year follow-up. At the completion of the fifth year, 5,099 of those patients have developed diabetes. The dataset contained 62 attributes classified into four categories: demographic characteristics, disease history, medication use history, and stress test vital signs. We developed an Ensembling-based predictive model using 13 attributes that were selected based on their clinical importance, Multiple Linear Regression, and Information Gain Ranking methods. The negative effect of the imbalance class of the constructed model was handled by Synthetic Minority Oversampling Technique (SMOTE). The overall performance of the predictive model classifier was improved by the Ensemble machine learning approach using the Vote method with three Decision Trees (Naïve Bayes Tree, Random Forest, and Logistic Model Tree) and achieved high accuracy of prediction (AUC = 0.92). The study shows the potential of ensembling and SMOTE approaches for predicting incident diabetes using cardiorespiratory fitness data.

  14. Classifying dysmorphic syndromes by using artificial neural network based hierarchical decision tree.

    PubMed

    Özdemir, Merve Erkınay; Telatar, Ziya; Eroğul, Osman; Tunca, Yusuf

    2018-05-01

    Dysmorphic syndromes have different facial malformations. These malformations are significant to an early diagnosis of dysmorphic syndromes and contain distinctive information for face recognition. In this study we define the certain features of each syndrome by considering facial malformations and classify Fragile X, Hurler, Prader Willi, Down, Wolf Hirschhorn syndromes and healthy groups automatically. The reference points are marked on the face images and ratios between the points' distances are taken into consideration as features. We suggest a neural network based hierarchical decision tree structure in order to classify the syndrome types. We also implement k-nearest neighbor (k-NN) and artificial neural network (ANN) classifiers to compare classification accuracy with our hierarchical decision tree. The classification accuracy is 50, 73 and 86.7% with k-NN, ANN and hierarchical decision tree methods, respectively. Then, the same images are shown to a clinical expert who achieve a recognition rate of 46.7%. We develop an efficient system to recognize different syndrome types automatically in a simple, non-invasive imaging data, which is independent from the patient's age, sex and race at high accuracy. The promising results indicate that our method can be used for pre-diagnosis of the dysmorphic syndromes by clinical experts.

  15. Towards improving searches for optimal phylogenies.

    PubMed

    Ford, Eric; St John, Katherine; Wheeler, Ward C

    2015-01-01

    Finding the optimal evolutionary history for a set of taxa is a challenging computational problem, even when restricting possible solutions to be "tree-like" and focusing on the maximum-parsimony optimality criterion. This has led to much work on using heuristic tree searches to find approximate solutions. We present an approach for finding exact optimal solutions that employs and complements the current heuristic methods for finding optimal trees. Given a set of taxa and a set of aligned sequences of characters, there may be subsets of characters that are compatible, and for each such subset there is an associated (possibly partially resolved) phylogeny with edges corresponding to each character state change. These perfect phylogenies serve as anchor trees for our constrained search space. We show that, for sequences with compatible sites, the parsimony score of any tree [Formula: see text] is at least the parsimony score of the anchor trees plus the number of inferred changes between [Formula: see text] and the anchor trees. As the maximum-parsimony optimality score is additive, the sum of the lower bounds on compatible character partitions provides a lower bound on the complete alignment of characters. This yields a region in the space of trees within which the best tree is guaranteed to be found; limiting the search for the optimal tree to this region can significantly reduce the number of trees that must be examined in a search of the space of trees. We analyze this method empirically using four different biological data sets as well as surveying 400 data sets from the TreeBASE repository, demonstrating the effectiveness of our technique in reducing the number of steps in exact heuristic searches for trees under the maximum-parsimony optimality criterion. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. The effect of different distance measures in detecting outliers using clustering-based algorithm for circular regression model

    NASA Astrophysics Data System (ADS)

    Di, Nur Faraidah Muhammad; Satari, Siti Zanariah

    2017-05-01

    Outlier detection in linear data sets has been done vigorously but only a small amount of work has been done for outlier detection in circular data. In this study, we proposed multiple outliers detection in circular regression models based on the clustering algorithm. Clustering technique basically utilizes distance measure to define distance between various data points. Here, we introduce the similarity distance based on Euclidean distance for circular model and obtain a cluster tree using the single linkage clustering algorithm. Then, a stopping rule for the cluster tree based on the mean direction and circular standard deviation of the tree height is proposed. We classify the cluster group that exceeds the stopping rule as potential outlier. Our aim is to demonstrate the effectiveness of proposed algorithms with the similarity distances in detecting the outliers. It is found that the proposed methods are performed well and applicable for circular regression model.

  17. Derivative Trade Optimizing Model Utilizing GP Based on Behavioral Finance Theory

    NASA Astrophysics Data System (ADS)

    Matsumura, Koki; Kawamoto, Masaru

    This paper proposed a new technique which makes the strategy trees for the derivative (option) trading investment decision based on the behavioral finance theory and optimizes it using evolutionary computation, in order to achieve high profitability. The strategy tree uses a technical analysis based on a statistical, experienced technique for the investment decision. The trading model is represented by various technical indexes, and the strategy tree is optimized by the genetic programming(GP) which is one of the evolutionary computations. Moreover, this paper proposed a method using the prospect theory based on the behavioral finance theory to set psychological bias for profit and deficit and attempted to select the appropriate strike price of option for the higher investment efficiency. As a result, this technique produced a good result and found the effectiveness of this trading model by the optimized dealings strategy.

  18. Development of a diagnostic decision tree for obstructive pulmonary diseases based on real-life data

    PubMed Central

    in ’t Veen, Johannes C.C.M.; Dekhuijzen, P.N. Richard; van Heijst, Ellen; Kocks, Janwillem W.H.; Muilwijk-Kroes, Jacqueline B.; Chavannes, Niels H.; van der Molen, Thys

    2016-01-01

    The aim of this study was to develop and explore the diagnostic accuracy of a decision tree derived from a large real-life primary care population. Data from 9297 primary care patients (45% male, mean age 53±17 years) with suspicion of an obstructive pulmonary disease was derived from an asthma/chronic obstructive pulmonary disease (COPD) service where patients were assessed using spirometry, the Asthma Control Questionnaire, the Clinical COPD Questionnaire, history data and medication use. All patients were diagnosed through the Internet by a pulmonologist. The Chi-squared Automatic Interaction Detection method was used to build the decision tree. The tree was externally validated in another real-life primary care population (n=3215). Our tree correctly diagnosed 79% of the asthma patients, 85% of the COPD patients and 32% of the asthma–COPD overlap syndrome (ACOS) patients. External validation showed a comparable pattern (correct: asthma 78%, COPD 83%, ACOS 24%). Our decision tree is considered to be promising because it was based on real-life primary care patients with a specialist's diagnosis. In most patients the diagnosis could be correctly predicted. Predicting ACOS, however, remained a challenge. The total decision tree can be implemented in computer-assisted diagnostic systems for individual patients. A simplified version of this tree can be used in daily clinical practice as a desk tool. PMID:27730177

  19. Tree stability under wind: simulating uprooting with root breakage using a finite element method

    PubMed Central

    Yang, Ming; Défossez, Pauline; Danjon, Frédéric; Fourcaud, Thierry

    2014-01-01

    Background and Aims Windstorms are the major natural hazard affecting European forests, causing tree damage and timber losses. Modelling tree anchorage mechanisms has progressed with advances in plant architectural modelling, but it is still limited in terms of estimation of anchorage strength. This paper aims to provide a new model for root anchorage, including the successive breakage of roots during uprooting. Methods The model was based on the finite element method. The breakage of individual roots was taken into account using a failure law derived from previous work carried out on fibre metal laminates. Soil mechanical plasticity was considered using the Mohr–Coulomb failure criterion. The mechanical model for roots was implemented in the numerical code ABAQUS using beam elements embedded in a soil block meshed with 3-D solid elements. The model was tested by simulating tree-pulling experiments previously carried out on a tree of Pinus pinaster (maritime pine). Soil mechanical parameters were obtained from laboratory tests. Root system architecture was digitized and imported into ABAQUS while root material properties were estimated from the literature. Key Results Numerical simulations of tree-pulling tests exhibited realistic successive root breakages during uprooting, which could be seen in the resulting response curves. Broken roots could be visually located within the root system at any stage of the simulations. The model allowed estimation of anchorage strength in terms of the critical turning moment and accumulated energy, which were in good agreement with in situ measurements. Conclusions This study provides the first model of tree anchorage strength for P. pinaster derived from the mechanical strength of individual roots. The generic nature of the model permits its further application to other tree species and soil conditions. PMID:25006178

  20. Gene-Tree Reconciliation with MUL-Trees to Resolve Polyploidy Events.

    PubMed

    Gregg, W C Thomas; Ather, S Hussain; Hahn, Matthew W

    2017-11-01

    Polyploidy can have a huge impact on the evolution of species, and it is a common occurrence, especially in plants. The two types of polyploids-autopolyploids and allopolyploids-differ in the level of divergence between the genes that are brought together in the new polyploid lineage. Because allopolyploids are formed via hybridization, the homoeologous copies of genes within them are at least as divergent as orthologs in the parental species that came together to form them. This means that common methods for estimating the parental lineages of allopolyploidy events are not accurate, and can lead to incorrect inferences about the number of gene duplications and losses. Here, we have adapted an algorithm for topology-based gene-tree reconciliation to work with multi-labeled trees (MUL-trees). By definition, MUL-trees have some tips with identical labels, which makes them a natural representation of the genomes of polyploids. Using this new reconciliation algorithm we can: accurately place allopolyploidy events on a phylogeny, identify the parental lineages that hybridized to form allopolyploids, distinguish between allo-, auto-, and (in most cases) no polyploidy, and correctly count the number of duplications and losses in a set of gene trees. We validate our method using gene trees simulated with and without polyploidy, and revisit the history of polyploidy in data from the clades including both baker's yeast and bread wheat. Our re-analysis of the yeast data confirms the allopolyploid origin and parental lineages previously identified for this group. The method presented here should find wide use in the growing number of genomes from species with a history of polyploidy. [Polyploidy; reconciliation; whole-genome duplication.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. New Splitting Criteria for Decision Trees in Stationary Data Streams.

    PubMed

    Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Rutkowski, Leszek; Duda, Piotr; Jaworski, Maciej

    2018-06-01

    The most popular tools for stream data mining are based on decision trees. In previous 15 years, all designed methods, headed by the very fast decision tree algorithm, relayed on Hoeffding's inequality and hundreds of researchers followed this scheme. Recently, we have demonstrated that although the Hoeffding decision trees are an effective tool for dealing with stream data, they are a purely heuristic procedure; for example, classical decision trees such as ID3 or CART cannot be adopted to data stream mining using Hoeffding's inequality. Therefore, there is an urgent need to develop new algorithms, which are both mathematically justified and characterized by good performance. In this paper, we address this problem by developing a family of new splitting criteria for classification in stationary data streams and investigating their probabilistic properties. The new criteria, derived using appropriate statistical tools, are based on the misclassification error and the Gini index impurity measures. The general division of splitting criteria into two types is proposed. Attributes chosen based on type- splitting criteria guarantee, with high probability, the highest expected value of split measure. Type- criteria ensure that the chosen attribute is the same, with high probability, as it would be chosen based on the whole infinite data stream. Moreover, in this paper, two hybrid splitting criteria are proposed, which are the combinations of single criteria based on the misclassification error and Gini index.

  2. What controls stemflow? A LiDAR-based investigation of individual tree canopy structure, neighborhood conditions, and meteorological factors

    NASA Astrophysics Data System (ADS)

    Yankine, S. A.; Van Stan, J. T., II; Mesta, D. C.; Côté, J. F.; Hildebrandt, A.; Friesen, J.; Maldonado, G.

    2017-12-01

    Stemflow is a pointed hydrologic flux at the base of tree stems that has been linked to a host of biogeochemical processes in vegetated landscapes. Much work has been done to examine controls over stemflow water yield, finding three major factors: individual tree canopy structure, meteorological variables, and neighborhood conditions. However, the authors are unaware of any study to directly quantify all factors using a combination of terrestrial LiDAR and micrometeorological monitoring methods. This study directly quantifies individual Pinus palustris tree canopy characteristics (trunk volume and angle, branch volume and angle from 1st-to-3rd order, bark roughness, and height), 10-m radius neighborhood properties (number of trees, mean diameter and height, mean distance from study tree, and canopy overlap), and above-canopy storm conditions (magnitude, intensity, mean/max wind speed, and vapor pressure deficit) directly at the site. Stemflow production was 1% of rainfall, ranging from 0.3-59 L per storm from individual trees. Preliminary findings from storms (5-176 mm in magnitude) indicate that all individual tree characteristics, besides bark roughness, have little influence on stemflow generation. Bark roughness altered stemflow generation by affecting trunk water storage (0.1-0.7 mm) and wet trunk evaporation rates (0.005-0.03 mm/h). The strongest influence over stemflow generation from individual trees was the interaction between neighborhood characteristics and meteorological conditions (primarily rainfall amount and, secondarily, rainfall intensity).

  3. TreeVector: scalable, interactive, phylogenetic trees for the web.

    PubMed

    Pethica, Ralph; Barker, Gary; Kovacs, Tim; Gough, Julian

    2010-01-28

    Phylogenetic trees are complex data forms that need to be graphically displayed to be human-readable. Traditional techniques of plotting phylogenetic trees focus on rendering a single static image, but increases in the production of biological data and large-scale analyses demand scalable, browsable, and interactive trees. We introduce TreeVector, a Scalable Vector Graphics-and Java-based method that allows trees to be integrated and viewed seamlessly in standard web browsers with no extra software required, and can be modified and linked using standard web technologies. There are now many bioinformatics servers and databases with a range of dynamic processes and updates to cope with the increasing volume of data. TreeVector is designed as a framework to integrate with these processes and produce user-customized phylogenies automatically. We also address the strengths of phylogenetic trees as part of a linked-in browsing process rather than an end graphic for print. TreeVector is fast and easy to use and is available to download precompiled, but is also open source. It can also be run from the web server listed below or the user's own web server. It has already been deployed on two recognized and widely used database Web sites.

  4. Coalescent methods for estimating phylogenetic trees.

    PubMed

    Liu, Liang; Yu, Lili; Kubatko, Laura; Pearl, Dennis K; Edwards, Scott V

    2009-10-01

    We review recent models to estimate phylogenetic trees under the multispecies coalescent. Although the distinction between gene trees and species trees has come to the fore of phylogenetics, only recently have methods been developed that explicitly estimate species trees. Of the several factors that can cause gene tree heterogeneity and discordance with the species tree, deep coalescence due to random genetic drift in branches of the species tree has been modeled most thoroughly. Bayesian approaches to estimating species trees utilizes two likelihood functions, one of which has been widely used in traditional phylogenetics and involves the model of nucleotide substitution, and the second of which is less familiar to phylogeneticists and involves the probability distribution of gene trees given a species tree. Other recent parametric and nonparametric methods for estimating species trees involve parsimony criteria, summary statistics, supertree and consensus methods. Species tree approaches are an appropriate goal for systematics, appear to work well in some cases where concatenation can be misleading, and suggest that sampling many independent loci will be paramount. Such methods can also be challenging to implement because of the complexity of the models and computational time. In addition, further elaboration of the simplest of coalescent models will be required to incorporate commonly known issues such as deviation from the molecular clock, gene flow and other genetic forces.

  5. The application of remote sensing image sea ice monitoring method in Bohai Bay based on C4.5 decision tree algorithm

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Song, Wei

    2018-02-01

    In The Paper, the remote sensing monitoring of sea ice problem was turned into a classification problem in data mining. Based on the statistic of the related band data of HJ1B remote sensing images, the main bands of HJ1B images related with the reflectance of seawater and sea ice were found. On the basis, the decision tree rules for sea ice monitoring were constructed by the related bands found above, and then the rules were applied to Liaodong Bay area seriously covered by sea ice for sea ice monitoring. The result proved that the method is effective.

  6. Feasibility of nuclear ribosomal region ITS1 over ITS2 in barcoding taxonomically challenging genera of subtribe Cassiinae (Fabaceae).

    PubMed

    Mishra, Priyanka; Kumar, Amit; Rodrigues, Vereena; Shukla, Ashutosh K; Sundaresan, Velusamy

    2016-01-01

    The internal transcribed spacer (ITS) region is situated between 18S and 26S in a polycistronic rRNA precursor transcript. It had been proved to be the most commonly sequenced region across plant species to resolve phylogenetic relationships ranging from shallow to deep taxonomic levels. Despite several taxonomical revisions in Cassiinae, a stable phylogeny remains elusive at the molecular level, particularly concerning the delineation of species in the genera Cassia, Senna and Chamaecrista . This study addresses the comparative potential of ITS datasets (ITS1, ITS2 and concatenated) in resolving the underlying morphological disparity in the highly complex genera, to assess their discriminatory power as potential barcode candidates in Cassiinae. A combination of experimental data and an in-silico approach based on threshold genetic distances, sequence similarity based and hierarchical tree-based methods was performed to decipher the discriminating power of ITS datasets on 18 different species of Cassiinae complex. Lab-generated s equences were compared against those available in the GenBank using BLAST and were aligned through MUSCLE 3.8.31 and analysed in PAUP 4.0 and BEAST1.8 using parsimony ratchet, maximum likelihood and Bayesian inference (BI) methods of gene and species tree reconciliation with bootstrapping. DNA barcoding gap was realized based on the Kimura two-parameter distance model (K2P) in TaxonDNA and MEGA. Based on the K2P distance, significant divergences between the inter- and intra-specific genetic distances were observed, while the presence of a DNA barcoding gap was obvious. The ITS1 region efficiently identified 81.63% and 90% of species using TaxonDNA and BI methods, respectively. The PWG-distance method based on simple pairwise matching indicated the significance of ITS1 whereby highest number of variable (210) and informative sites (206) were obtained. The BI tree-based methods outperformed the similarity-based methods producing well-resolved phylogenetic trees with many nodes well supported by bootstrap analyses. The reticulated phylogenetic hypothesis using the ITS1 region mainly supported the relationship between the species of Cassiinae established by traditional morphological methods. The ITS1 region showed a higher discrimination power and desirable characteristics as compared to ITS2 and ITS1 + 2, thereby concluding to be the locus of choice. Considering the complexity of the group and the underlying biological ambiguities, the results presented here are encouraging for developing DNA barcoding as a useful tool for resolving taxonomical challenges in corroboration with morphological framework.

  7. Does Gene Tree Discordance Explain the Mismatch between Macroevolutionary Models and Empirical Patterns of Tree Shape and Branching Times?

    PubMed Central

    Stadler, Tanja; Degnan, James H.; Rosenberg, Noah A.

    2016-01-01

    Classic null models for speciation and extinction give rise to phylogenies that differ in distribution from empirical phylogenies. In particular, empirical phylogenies are less balanced and have branching times closer to the root compared to phylogenies predicted by common null models. This difference might be due to null models of the speciation and extinction process being too simplistic, or due to the empirical datasets not being representative of random phylogenies. A third possibility arises because phylogenetic reconstruction methods often infer gene trees rather than species trees, producing an incongruity between models that predict species tree patterns and empirical analyses that consider gene trees. We investigate the extent to which the difference between gene trees and species trees under a combined birth–death and multispecies coalescent model can explain the difference in empirical trees and birth–death species trees. We simulate gene trees embedded in simulated species trees and investigate their difference with respect to tree balance and branching times. We observe that the gene trees are less balanced and typically have branching times closer to the root than the species trees. Empirical trees from TreeBase are also less balanced than our simulated species trees, and model gene trees can explain an imbalance increase of up to 8% compared to species trees. However, we see a much larger imbalance increase in empirical trees, about 100%, meaning that additional features must also be causing imbalance in empirical trees. This simulation study highlights the necessity of revisiting the assumptions made in phylogenetic analyses, as these assumptions, such as equating the gene tree with the species tree, might lead to a biased conclusion. PMID:26968785

  8. UV-laser-based microscopic dissection of tree rings - a novel sampling tool for δ(13) C and δ(18) O studies.

    PubMed

    Schollaen, Karina; Heinrich, Ingo; Helle, Gerhard

    2014-02-01

    UV-laser-based microscopic systems were utilized to dissect and sample organic tissue for stable isotope measurements from thin wood cross-sections. We tested UV-laser-based microscopic tissue dissection in practice for high-resolution isotopic analyses (δ(13) C/δ(18) O) on thin cross-sections from different tree species. The method allows serial isolation of tissue of any shape and from millimetre down to micrometre scales. On-screen pre-defined areas of interest were automatically dissected and collected for mass spectrometric analysis. Three examples of high-resolution isotopic analyses revealed that: in comparison to δ(13) C of xylem cells, woody ray parenchyma of deciduous trees have the same year-to-year variability, but reveal offsets that are opposite in sign depending on whether wholewood or cellulose is considered; high-resolution tree-ring δ(18) O profiles of Indonesian teak reflect monsoonal rainfall patterns and are sensitive to rainfall extremes caused by ENSO; and seasonal moisture signals in intra-tree-ring δ(18) O of white pine are weighted by nonlinear intra-annual growth dynamics. The applications demonstrate that the use of UV-laser-based microscopic dissection allows for sampling plant tissue at ultrahigh resolution and unprecedented precision. This new technique facilitates sampling for stable isotope analysis of anatomical plant traits like combined tree eco-physiological, wood anatomical and dendroclimatological studies. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  9. Improving the flash flood frequency analysis applying dendrogeomorphological evidences

    NASA Astrophysics Data System (ADS)

    Ruiz-Villanueva, V.; Ballesteros, J. A.; Bodoque, J. M.; Stoffel, M.; Bollschweiler, M.; Díez-Herrero, A.

    2009-09-01

    Flash floods are one of the natural hazards that cause major damages worldwide. Especially in Mediterranean areas they provoke high economic losses every year. In mountain areas with high stream gradients, floods events are characterized by extremely high flow and debris transport rates. Flash flood analysis in mountain areas presents specific scientific challenges. On one hand, there is a lack of information on precipitation and discharge due to a lack of spatially well distributed gauge stations with long records. On the other hand, gauge stations may not record correctly during extreme events when they are damaged or the discharge exceeds the recordable level. In this case, no systematic data allows improvement of the understanding of the spatial and temporal occurrence of the process. Since historic documentation is normally scarce or even completely missing in mountain areas, tree-ring analysis can provide an alternative approach. Flash floods may influence trees in different ways: (1) tilting of the stem through the unilateral pressure of the flowing mass or individual boulders; (2) root exposure through erosion of the banks; (3) injuries and scars caused by boulders and wood transported in the flow; (4) decapitation of the stem and resulting candelabra growth through the severe impact of boulders; (5) stem burial through deposition of material. The trees react to these disturbances with specific growth changes such as abrupt change of the yearly increment and anatomical changes like reaction wood or callus tissue. In this study, we sampled 90 cross sections and 265 increment cores of trees heavily affected by past flash floods in order to date past events and to reconstruct recurrence intervals in two torrent channels located in the Spanish Central System. The first study site is located along the Pelayo River, a torrent in natural conditions. Based on the external disturbances of trees and their geomorphological position, 114 Pinus pinaster (Ait.) influenced by flash flood events were sampled using an increment borer. For each tree sampled, additional information were recorded including the geographical position (GPS measure), the geomorphological situation based on a detailed geomorphological map, the social position within neighbouring trees, a description of the external disturbances and information on tree diameter, tree height and the position of the cores extracted. 265 cores were collected. In the laboratory, the 265 samples were analyzed using the standard methods: surface preparation, counting of tree rings as well as measuring of ring widths using a digital LINTAB positioning table and TSAP 4.6 software. Increment curves of the disturbed trees were then crossdated with a reference chronology in order to correct faulty tree-ring series derived from disturbed samples and to determine initiation of abrupt growth suppression or release. The age of the trees in this field site is between 50 and 100 years old. In the field most of the trees were tilted (93 %) and showed exposed roots (64 %). In the laboratory, growth suppressions were detected in 165 samples. Based on the number of trees showing disturbances, the intensity of the disturbance and the spatial distribution of the trees in the field, seven well represented events were dated for the last 50 years: 2005, 2000, 1996, 1976, 1973, 1966 and 1963. The second field site was a reach of 2 km length along the Arenal River, where the stream is channelized. Here stumps from previously felled trees could be analyzed directly in the field. 100 Alnus glutinosa (L.) Gaertn. and Fraxinus angustifolia (Vahl.) cross sections were investigated in order to date internal wounds. Different carpenter tools, sanding paper and magnifying glasses were used to count tree rings and to date the wounds in the field. In addition to the dating in the field, 22 cross sections were sampled and analyzed in the laboratory using the standard methods. The age of the trees ranges between 30 and 50 years. Based on the injuries dated in the field and in the laboratory, and based on the location of the trees, 8 main events were dated for the last 30 years: 2005, 2003, 2000, 1998, 1997, 1995, 1993 and 1978. Additional results are in progress, such as the amount of rainfall responsible for the triggering of the events, estimation of the magnitude, and the influence of the channelization in the case of the Arenal River. The strength of Dendrogeomorphology in flood analysis has been demonstrated, especially in areas where the lack of historical documents, rainfall and flow data limits the use of traditional methods.

  10. Analyzing contentious relationships and outlier genes in phylogenomics.

    PubMed

    Walker, Joseph F; Brown, Joseph W; Smith, Stephen A

    2018-06-08

    Recent studies have demonstrated that conflict is common among gene trees in phylogenomic studies, and that less than one percent of genes may ultimately drive species tree inference in supermatrix analyses. Here, we examined two datasets where supermatrix and coalescent-based species trees conflict. We identified two highly influential "outlier" genes in each dataset. When removed from each dataset, the inferred supermatrix trees matched the topologies obtained from coalescent analyses. We also demonstrate that, while the outlier genes in the vertebrate dataset have been shown in a previous study to be the result of errors in orthology detection, the outlier genes from a plant dataset did not exhibit any obvious systematic error and therefore may be the result of some biological process yet to be determined. While topological comparisons among a small set of alternate topologies can be helpful in discovering outlier genes, they can be limited in several ways, such as assuming all genes share the same topology. Coalescent species tree methods relax this assumption but do not explicitly facilitate the examination of specific edges. Coalescent methods often also assume that conflict is the result of incomplete lineage sorting (ILS). Here we explored a framework that allows for quickly examining alternative edges and support for large phylogenomic datasets that does not assume a single topology for all genes. For both datasets, these analyses provided detailed results confirming the support for coalescent-based topologies. This framework suggests that we can improve our understanding of the underlying signal in phylogenomic datasets by asking more targeted edge-based questions.

  11. Development of a model of the coronary arterial tree for the 4D XCAT phantom

    NASA Astrophysics Data System (ADS)

    Fung, George S. K.; Segars, W. Paul; Gullberg, Grant T.; Tsui, Benjamin M. W.

    2011-09-01

    A detailed three-dimensional (3D) model of the coronary artery tree with cardiac motion has great potential for applications in a wide variety of medical imaging research areas. In this work, we first developed a computer-generated 3D model of the coronary arterial tree for the heart in the extended cardiac-torso (XCAT) phantom, thereby creating a realistic computer model of the human anatomy. The coronary arterial tree model was based on two datasets: (1) a gated cardiac dual-source computed tomography (CT) angiographic dataset obtained from a normal human subject and (2) statistical morphometric data of porcine hearts. The initial proximal segments of the vasculature and the anatomical details of the boundaries of the ventricles were defined by segmenting the CT data. An iterative rule-based generation method was developed and applied to extend the coronary arterial tree beyond the initial proximal segments. The algorithm was governed by three factors: (1) statistical morphometric measurements of the connectivity, lengths and diameters of the arterial segments; (2) avoidance forces from other vessel segments and the boundaries of the myocardium, and (3) optimality principles which minimize the drag force at the bifurcations of the generated tree. Using this algorithm, the 3D computational model of the largest six orders of the coronary arterial tree was generated, which spread across the myocardium of the left and right ventricles. The 3D coronary arterial tree model was then extended to 4D to simulate different cardiac phases by deforming the original 3D model according to the motion vector map of the 4D cardiac model of the XCAT phantom at the corresponding phases. As a result, a detailed and realistic 4D model of the coronary arterial tree was developed for the XCAT phantom by imposing constraints of anatomical and physiological characteristics of the coronary vasculature. This new 4D coronary artery tree model provides a unique simulation tool that can be used in the development and evaluation of instrumentation and methods for imaging normal and pathological hearts with myocardial perfusion defects.

  12. Backward Channel Protection Based on Randomized Tree-Walking Algorithm and Its Analysis for Securing RFID Tag Information and Privacy

    NASA Astrophysics Data System (ADS)

    Choi, Wonjoon; Yoon, Myungchul; Roh, Byeong-Hee

    Eavesdropping on backward channels in RFID environments may cause severe privacy problems because it means the exposure of personal information related to tags that each person has. However, most existing RFID tag security schemes are focused on the forward channel protections. In this paper, we propose a simple but effective method to solve the backward channel eavesdropping problem based on Randomized-tree walking algorithm for securing tag ID information and privacy in RFID-based applications. In order to show the efficiency of the proposed scheme, we derive two performance models for the cases when CRC is used and not used. It is shown that the proposed method can lower the probability of eavesdropping on backward channels near to ‘0.’

  13. Wavelet compression of multichannel ECG data by enhanced set partitioning in hierarchical trees algorithm.

    PubMed

    Sharifahmadian, Ershad

    2006-01-01

    The set partitioning in hierarchical trees (SPIHT) algorithm is very effective and computationally simple technique for image and signal compression. Here the author modified the algorithm which provides even better performance than the SPIHT algorithm. The enhanced set partitioning in hierarchical trees (ESPIHT) algorithm has performance faster than the SPIHT algorithm. In addition, the proposed algorithm reduces the number of bits in a bit stream which is stored or transmitted. I applied it to compression of multichannel ECG data. Also, I presented a specific procedure based on the modified algorithm for more efficient compression of multichannel ECG data. This method employed on selected records from the MIT-BIH arrhythmia database. According to experiments, the proposed method attained the significant results regarding compression of multichannel ECG data. Furthermore, in order to compress one signal which is stored for a long time, the proposed multichannel compression method can be utilized efficiently.

  14. Multi-terminal pipe routing by Steiner minimal tree and particle swarm optimisation

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Wang, Chengen

    2012-08-01

    Computer-aided design of pipe routing is of fundamental importance for complex equipments' developments. In this article, non-rectilinear branch pipe routing with multiple terminals that can be formulated as a Euclidean Steiner Minimal Tree with Obstacles (ESMTO) problem is studied in the context of an aeroengine-integrated design engineering. Unlike the traditional methods that connect pipe terminals sequentially, this article presents a new branch pipe routing algorithm based on the Steiner tree theory. The article begins with a new algorithm for solving the ESMTO problem by using particle swarm optimisation (PSO), and then extends the method to the surface cases by using geodesics to meet the requirements of routing non-rectilinear pipes on the surfaces of aeroengines. Subsequently, the adaptive region strategy and the basic visibility graph method are adopted to increase the computation efficiency. Numeral computations show that the proposed routing algorithm can find satisfactory routing layouts while running in polynomial time.

  15. Accurate airway centerline extraction based on topological thinning using graph-theoretic analysis.

    PubMed

    Bian, Zijian; Tan, Wenjun; Yang, Jinzhu; Liu, Jiren; Zhao, Dazhe

    2014-01-01

    The quantitative analysis of the airway tree is of critical importance in the CT-based diagnosis and treatment of popular pulmonary diseases. The extraction of airway centerline is a precursor to identify airway hierarchical structure, measure geometrical parameters, and guide visualized detection. Traditional methods suffer from extra branches and circles due to incomplete segmentation results, which induce false analysis in applications. This paper proposed an automatic and robust centerline extraction method for airway tree. First, the centerline is located based on the topological thinning method; border voxels are deleted symmetrically to preserve topological and geometrical properties iteratively. Second, the structural information is generated using graph-theoretic analysis. Then inaccurate circles are removed with a distance weighting strategy, and extra branches are pruned according to clinical anatomic knowledge. The centerline region without false appendices is eventually determined after the described phases. Experimental results show that the proposed method identifies more than 96% branches and keep consistency across different cases and achieves superior circle-free structure and centrality.

  16. Logic Learning Machine and standard supervised methods for Hodgkin's lymphoma prognosis using gene expression data and clinical variables.

    PubMed

    Parodi, Stefano; Manneschi, Chiara; Verda, Damiano; Ferrari, Enrico; Muselli, Marco

    2018-03-01

    This study evaluates the performance of a set of machine learning techniques in predicting the prognosis of Hodgkin's lymphoma using clinical factors and gene expression data. Analysed samples from 130 Hodgkin's lymphoma patients included a small set of clinical variables and more than 54,000 gene features. Machine learning classifiers included three black-box algorithms ( k-nearest neighbour, Artificial Neural Network, and Support Vector Machine) and two methods based on intelligible rules (Decision Tree and the innovative Logic Learning Machine method). Support Vector Machine clearly outperformed any of the other methods. Among the two rule-based algorithms, Logic Learning Machine performed better and identified a set of simple intelligible rules based on a combination of clinical variables and gene expressions. Decision Tree identified a non-coding gene ( XIST) involved in the early phases of X chromosome inactivation that was overexpressed in females and in non-relapsed patients. XIST expression might be responsible for the better prognosis of female Hodgkin's lymphoma patients.

  17. High resolution tree-ring based spatial reconstructions of snow avalanche activity in Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Pederson, Gregory T.; Reardon, Blase; Caruso, C.J.; Fagre, Daniel B.

    2006-01-01

    Effective design of avalanche hazard mitigation measures requires long-term records of natural avalanche frequency and extent. Such records are also vital for determining whether natural avalanche frequency and extent vary over time due to climatic or biophysical changes. Where historic records are lacking, an accepted substitute is a chronology developed from tree-ring responses to avalanche-induced damage. This study evaluates a method for using tree-ring chronologies to provide spatially explicit differentiations of avalanche frequency and temporally explicit records of avalanche extent that are often lacking. The study area - part of John F. Stevens Canyon on the southern border of Glacier National Park – is within a heavily used railroad and highway corridor with two dozen active avalanche paths. Using a spatially geo-referenced network of avalanche-damaged trees (n=109) from a single path, we reconstructed a 96-year tree-ring based chronology of avalanche extent and frequency. Comparison of the chronology with historic records revealed that trees recorded all known events as well as the same number of previously unidentified events. Kriging methods provided spatially explicit estimates of avalanche return periods. Estimated return periods for the entire avalanche path averaged 3.2 years. Within this path, return intervals ranged from ~2.3 yrs in the lower track, to ~9-11 yrs and ~12 to >25 yrs in the runout zone, where the railroad and highway are located. For avalanche professionals, engineers, and transportation managers this technique proves a powerful tool in landscape risk assessment and decision making.

  18. Attribution of Disturbances Causing Tree Mortality for the Continental U.S.

    NASA Astrophysics Data System (ADS)

    Wang, M.; Xu, C.; Allen, C. D.; McDowell, N. G.

    2016-12-01

    Broad-scale tree mortality has been frequently reported and documented to increase with warming climate and human activities. However, there is so far no general method to quantify the relative contributions of different disturbances on observed broad-scale tree mortality. In this study, we presented a framework to investigate the contribution of various disturbances causing tree mortality for 2000-2014 in the continental US. Our work is based on the high-resolution forest-loss data developed by Hansen et al. (2013). Firstly, fire-driven mortality was determined using the data from Monitoring Trends in Burn Severity (MTBS) project. Secondly, a landscape-pattern-recognition approach focusing on the differences of boundary complexity caused by natural and anthropogenic disturbances was developed to attribute harvest-driven mortality patches. Then, a drought threshold was determined through conducting an intensive literature survey for attribution of drought-driven mortality. Our results showed that we can correctly attribute 85% harvest-driven mortality as compared to Forest Inventory and Analysis (FIA) data. Based on Evaporative Stress Index (ESI), our literature survey suggests that most mortality events happened at extreme drought (37.7%), then severe (31.4%) and moderate (23.4%) drought. In total, 92.6% of drought-induced mortality events observed during 2000-2014 occurred at drought conditions of moderate or worse with corresponding ESI values ranging from -0.9 -2.49. Therefore, -0.9 will be used as the threshold to attribute drought-driven tree mortality. Overall, these results imply a great potential for using these methods to identify and attribute disturbances driving tree death at broad spatial scales.

  19. Decision Tree Repository and Rule Set Based Mingjiang River Estuarine Wetlands Classifaction

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Li, X.; Xiao, W.

    2018-05-01

    The increasing urbanization and industrialization have led to wetland losses in estuarine area of Mingjiang River over past three decades. There has been increasing attention given to produce wetland inventories using remote sensing and GIS technology. Due to inconsistency training site and training sample, traditionally pixel-based image classification methods can't achieve a comparable result within different organizations. Meanwhile, object-oriented image classification technique shows grate potential to solve this problem and Landsat moderate resolution remote sensing images are widely used to fulfill this requirement. Firstly, the standardized atmospheric correct, spectrally high fidelity texture feature enhancement was conducted before implementing the object-oriented wetland classification method in eCognition. Secondly, we performed the multi-scale segmentation procedure, taking the scale, hue, shape, compactness and smoothness of the image into account to get the appropriate parameters, using the top and down region merge algorithm from single pixel level, the optimal texture segmentation scale for different types of features is confirmed. Then, the segmented object is used as the classification unit to calculate the spectral information such as Mean value, Maximum value, Minimum value, Brightness value and the Normalized value. The Area, length, Tightness and the Shape rule of the image object Spatial features and texture features such as Mean, Variance and Entropy of image objects are used as classification features of training samples. Based on the reference images and the sampling points of on-the-spot investigation, typical training samples are selected uniformly and randomly for each type of ground objects. The spectral, texture and spatial characteristics of each type of feature in each feature layer corresponding to the range of values are used to create the decision tree repository. Finally, with the help of high resolution reference images, the random sampling method is used to conduct the field investigation, achieve an overall accuracy of 90.31 %, and the Kappa coefficient is 0.88. The classification method based on decision tree threshold values and rule set developed by the repository, outperforms the results obtained from the traditional methodology. Our decision tree repository and rule set based object-oriented classification technique was an effective method for producing comparable and consistency wetlands data set.

  20. 3D Visualization of Machine Learning Algorithms with Astronomical Data

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2016-01-01

    We present innovative machine learning (ML) methods using unsupervised clustering with minimum spanning trees (MSTs) to study 3D astronomical catalogs. Utilizing Python code to build trees based on galaxy catalogs, we can render the results with the visualization suite Blender to produce interactive 360 degree panoramic videos. The catalogs and their ML results can be explored in a 3D space using mobile devices, tablets or desktop browsers. We compare the statistics of the MST results to a number of machine learning methods relating to optimization and efficiency.

  1. Spray deposition from ground-based applications of carbaryl to protect individual trees from bark beetle attack.

    PubMed

    Fettig, Christopher J; Munson, A Steven; McKelvey, Stephen R; Bush, Parshall B; Borys, Robert R

    2008-01-01

    Bark beetles (Coleoptera: Curculionidae, Scolytinae) are recognized as the most important tree mortality agent in western coniferous forests. A common method of protecting trees from bark beetle attack is to saturate the tree bole with carbaryl (1-naphthyl methylcarbamate) using a hydraulic sprayer. In this study, we evaluate the amount of carbaryl drift (ground deposition) occurring at four distances from the tree bole (7.6, 15.2, 22.9, and 38.1 m) during conventional spray applications for protecting individual lodgepole pine (Pinus contorta Dougl. ex Loud.) from mountain pine beetle (Dendroctonus ponderosae Hopkins) attack and Engelmann spruce (Picea engelmannii Parry ex Engelm.) from spruce beetle (D. rufipennis [Kirby]) attack. Mean deposition (carbaryl + alpha-naphthol) did not differ significantly among treatments (nozzle orifices) at any distance from the tree bole. Values ranged from 0.04 +/- 0.02 mg carbaryl m(-2) at 38.1 m to 13.30 +/- 2.54 mg carbaryl m(-2) at 7.6 m. Overall, distance from the tree bole significantly affected the amount of deposition. Deposition was greatest 7.6 m from the tree bole and quickly declined as distance from the tree bole increased. Approximately 97% of total spray deposition occurred within 15.2 m of the tree bole. Application efficiency (i.e., percentage of insecticide applied that is retained on trees) ranged from 80.9 to 87.2%. Based on review of the literature, this amount of drift poses little threat to adjacent aquatic environments. No-spray buffers of 7.6 m should be sufficient to protect freshwater fish, amphibians, crustaceans, bivalves, and most aquatic insects. Buffers >22.9 m appear sufficient to protect the most sensitive aquatic insects (Plecoptera).

  2. Obesity as a risk factor for developing functional limitation among older adults: A conditional inference tree analysis.

    PubMed

    Cheng, Feon W; Gao, Xiang; Bao, Le; Mitchell, Diane C; Wood, Craig; Sliwinski, Martin J; Smiciklas-Wright, Helen; Still, Christopher D; Rolston, David D K; Jensen, Gordon L

    2017-07-01

    To examine the risk factors of developing functional decline and make probabilistic predictions by using a tree-based method that allows higher order polynomials and interactions of the risk factors. The conditional inference tree analysis, a data mining approach, was used to construct a risk stratification algorithm for developing functional limitation based on BMI and other potential risk factors for disability in 1,951 older adults without functional limitations at baseline (baseline age 73.1 ± 4.2 y). We also analyzed the data with multivariate stepwise logistic regression and compared the two approaches (e.g., cross-validation). Over a mean of 9.2 ± 1.7 years of follow-up, 221 individuals developed functional limitation. Higher BMI, age, and comorbidity were consistently identified as significant risk factors for functional decline using both methods. Based on these factors, individuals were stratified into four risk groups via the conditional inference tree analysis. Compared to the low-risk group, all other groups had a significantly higher risk of developing functional limitation. The odds ratio comparing two extreme categories was 9.09 (95% confidence interval: 4.68, 17.6). Higher BMI, age, and comorbid disease were consistently identified as significant risk factors for functional decline among older individuals across all approaches and analyses. © 2017 The Obesity Society.

  3. a Novel Approach of Indexing and Retrieving Spatial Polygons for Efficient Spatial Region Queries

    NASA Astrophysics Data System (ADS)

    Zhao, J. H.; Wang, X. Z.; Wang, F. Y.; Shen, Z. H.; Zhou, Y. C.; Wang, Y. L.

    2017-10-01

    Spatial region queries are more and more widely used in web-based applications. Mechanisms to provide efficient query processing over geospatial data are essential. However, due to the massive geospatial data volume, heavy geometric computation, and high access concurrency, it is difficult to get response in real time. Spatial indexes are usually used in this situation. In this paper, based on k-d tree, we introduce a distributed KD-Tree (DKD-Tree) suitbable for polygon data, and a two-step query algorithm. The spatial index construction is recursive and iterative, and the query is an in memory process. Both the index and query methods can be processed in parallel, and are implemented based on HDFS, Spark and Redis. Experiments on a large volume of Remote Sensing images metadata have been carried out, and the advantages of our method are investigated by comparing with spatial region queries executed on PostgreSQL and PostGIS. Results show that our approach not only greatly improves the efficiency of spatial region query, but also has good scalability, Moreover, the two-step spatial range query algorithm can also save cluster resources to support a large number of concurrent queries. Therefore, this method is very useful when building large geographic information systems.

  4. A review on machine learning principles for multi-view biological data integration.

    PubMed

    Li, Yifeng; Wu, Fang-Xiang; Ngom, Alioune

    2018-03-01

    Driven by high-throughput sequencing techniques, modern genomic and clinical studies are in a strong need of integrative machine learning models for better use of vast volumes of heterogeneous information in the deep understanding of biological systems and the development of predictive models. How data from multiple sources (called multi-view data) are incorporated in a learning system is a key step for successful analysis. In this article, we provide a comprehensive review on omics and clinical data integration techniques, from a machine learning perspective, for various analyses such as prediction, clustering, dimension reduction and association. We shall show that Bayesian models are able to use prior information and model measurements with various distributions; tree-based methods can either build a tree with all features or collectively make a final decision based on trees learned from each view; kernel methods fuse the similarity matrices learned from individual views together for a final similarity matrix or learning model; network-based fusion methods are capable of inferring direct and indirect associations in a heterogeneous network; matrix factorization models have potential to learn interactions among features from different views; and a range of deep neural networks can be integrated in multi-modal learning for capturing the complex mechanism of biological systems.

  5. Distributed smoothed tree kernel for protein-protein interaction extraction from the biomedical literature

    PubMed Central

    Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar

    2017-01-01

    Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems. PMID:29099838

  6. Distributed smoothed tree kernel for protein-protein interaction extraction from the biomedical literature.

    PubMed

    Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar

    2017-01-01

    Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems.

  7. Accuracy Assessment of Crown Delineation Methods for the Individual Trees Using LIDAR Data

    NASA Astrophysics Data System (ADS)

    Chang, K. T.; Lin, C.; Lin, Y. C.; Liu, J. K.

    2016-06-01

    Forest canopy density and height are used as variables in a number of environmental applications, including the estimation of biomass, forest extent and condition, and biodiversity. The airborne Light Detection and Ranging (LiDAR) is very useful to estimate forest canopy parameters according to the generated canopy height models (CHMs). The purpose of this work is to introduce an algorithm to delineate crown parameters, e.g. tree height and crown radii based on the generated rasterized CHMs. And accuracy assessment for the extraction of volumetric parameters of a single tree is also performed via manual measurement using corresponding aerial photo pairs. A LiDAR dataset of a golf course acquired by Leica ALS70-HP is used in this study. Two algorithms, i.e. a traditional one with the subtraction of a digital elevation model (DEM) from a digital surface model (DSM), and a pit-free approach are conducted to generate the CHMs firstly. Then two algorithms, a multilevel morphological active-contour (MMAC) and a variable window filter (VWF), are implemented and used in this study for individual tree delineation. Finally, experimental results of two automatic estimation methods for individual trees can be evaluated with manually measured stand-level parameters, i.e. tree height and crown diameter. The resulting CHM generated by a simple subtraction is full of empty pixels (called "pits") that will give vital impact on subsequent analysis for individual tree delineation. The experimental results indicated that if more individual trees can be extracted, tree crown shape will became more completely in the CHM data after the pit-free process.

  8. Complexity of major UK companies between 2006 and 2010: Hierarchical structure method approach

    NASA Astrophysics Data System (ADS)

    Ulusoy, Tolga; Keskin, Mustafa; Shirvani, Ayoub; Deviren, Bayram; Kantar, Ersin; Çaǧrı Dönmez, Cem

    2012-11-01

    This study reports on topology of the top 40 UK companies that have been analysed for predictive verification of markets for the period 2006-2010, applying the concept of minimal spanning tree and hierarchical tree (HT) analysis. Construction of the minimal spanning tree (MST) and the hierarchical tree (HT) is confined to a brief description of the methodology and a definition of the correlation function between a pair of companies based on the London Stock Exchange (LSE) index in order to quantify synchronization between the companies. A derivation of hierarchical organization and the construction of minimal-spanning and hierarchical trees for the 2006-2008 and 2008-2010 periods have been used and the results validate the predictive verification of applied semantics. The trees are known as useful tools to perceive and detect the global structure, taxonomy and hierarchy in financial data. From these trees, two different clusters of companies in 2006 were detected. They also show three clusters in 2008 and two between 2008 and 2010, according to their proximity. The clusters match each other as regards their common production activities or their strong interrelationship. The key companies are generally given by major economic activities as expected. This work gives a comparative approach between MST and HT methods from statistical physics and information theory with analysis of financial markets that may give new valuable and useful information of the financial market dynamics.

  9. Automatic Centerline Extraction of Coverd Roads by Surrounding Objects from High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Kamangir, H.; Momeni, M.; Satari, M.

    2017-09-01

    This paper presents an automatic method to extract road centerline networks from high and very high resolution satellite images. The present paper addresses the automated extraction roads covered with multiple natural and artificial objects such as trees, vehicles and either shadows of buildings or trees. In order to have a precise road extraction, this method implements three stages including: classification of images based on maximum likelihood algorithm to categorize images into interested classes, modification process on classified images by connected component and morphological operators to extract pixels of desired objects by removing undesirable pixels of each class, and finally line extraction based on RANSAC algorithm. In order to evaluate performance of the proposed method, the generated results are compared with ground truth road map as a reference. The evaluation performance of the proposed method using representative test images show completeness values ranging between 77% and 93%.

  10. The Inference of Gene Trees with Species Trees

    PubMed Central

    Szöllősi, Gergely J.; Tannier, Eric; Daubin, Vincent; Boussau, Bastien

    2015-01-01

    This article reviews the various models that have been used to describe the relationships between gene trees and species trees. Molecular phylogeny has focused mainly on improving models for the reconstruction of gene trees based on sequence alignments. Yet, most phylogeneticists seek to reveal the history of species. Although the histories of genes and species are tightly linked, they are seldom identical, because genes duplicate, are lost or horizontally transferred, and because alleles can coexist in populations for periods that may span several speciation events. Building models describing the relationship between gene and species trees can thus improve the reconstruction of gene trees when a species tree is known, and vice versa. Several approaches have been proposed to solve the problem in one direction or the other, but in general neither gene trees nor species trees are known. Only a few studies have attempted to jointly infer gene trees and species trees. These models account for gene duplication and loss, transfer or incomplete lineage sorting. Some of them consider several types of events together, but none exists currently that considers the full repertoire of processes that generate gene trees along the species tree. Simulations as well as empirical studies on genomic data show that combining gene tree–species tree models with models of sequence evolution improves gene tree reconstruction. In turn, these better gene trees provide a more reliable basis for studying genome evolution or reconstructing ancestral chromosomes and ancestral gene sequences. We predict that gene tree–species tree methods that can deal with genomic data sets will be instrumental to advancing our understanding of genomic evolution. PMID:25070970

  11. Forest Tree Species Distribution Mapping Using Landsat Satellite Imagery and Topographic Variables with the Maximum Entropy Method in Mongolia

    NASA Astrophysics Data System (ADS)

    Hao Chiang, Shou; Valdez, Miguel; Chen, Chi-Farn

    2016-06-01

    Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled with terrain variables produced better result, with the higher overall accuracy and kappa coefficient than first experiment. The results indicate that the Maximum Entropy method is an applicable, and to classify tree species using satellite imagery data coupled with terrain information can improve the classification of tree species in the study area.

  12. Dynamic Load Balancing Based on Constrained K-D Tree Decomposition for Parallel Particle Tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru

    Particle tracing is a fundamental technique in flow field data visualization. In this work, we present a novel dynamic load balancing method for parallel particle tracing. Specifically, we employ a constrained k-d tree decomposition approach to dynamically redistribute tasks among processes. Each process is initially assigned a regularly partitioned block along with duplicated ghost layer under the memory limit. During particle tracing, the k-d tree decomposition is dynamically performed by constraining the cutting planes in the overlap range of duplicated data. This ensures that each process is reassigned particles as even as possible, and on the other hand the newmore » assigned particles for a process always locate in its block. Result shows good load balance and high efficiency of our method.« less

  13. Ring profiler: a new method for estimating tree-ring density for improved estimates of carbon storage

    Treesearch

    David W. Vahey; C. Tim Scott; J.Y. Zhu; Kenneth E. Skog

    2012-01-01

    Methods for estimating present and future carbon storage in trees and forests rely on measurements or estimates of tree volume or volume growth multiplied by specific gravity. Wood density can vary by tree ring and height in a tree. If data on density by tree ring could be obtained and linked to tree size and stand characteristics, it would be possible to more...

  14. Accurate reconstruction in digital holographic microscopy using Fresnel dual-tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Zhang, Xiangchao; Yuan, He; Zhang, Hao; Xu, Min

    2018-02-01

    Digital holography is a promising measurement method in the fields of bio-medicine and micro-electronics. But the captured images of digital holography are severely polluted by the speckle noise because of optical scattering and diffraction. Via analyzing the properties of Fresnel diffraction and the topographies of micro-structures, a novel reconstruction method based on the dual-tree complex wavelet transform (DT-CWT) is proposed. This algorithm is shiftinvariant and capable of obtaining sparse representations for the diffracted signals of salient features, thus it is well suited for multiresolution processing of the interferometric holograms of directional morphologies. An explicit representation of orthogonal Fresnel DT-CWT bases and a specific filtering method are developed. This method can effectively remove the speckle noise without destroying the salient features. Finally, the proposed reconstruction method is compared with the conventional Fresnel diffraction integration and Fresnel wavelet transform with compressive sensing methods to validate its remarkable superiority on the aspects of topography reconstruction and speckle removal.

  15. Study on Cloud Security Based on Trust Spanning Tree Protocol

    NASA Astrophysics Data System (ADS)

    Lai, Yingxu; Liu, Zenghui; Pan, Qiuyue; Liu, Jing

    2015-09-01

    Attacks executed on Spanning Tree Protocol (STP) expose the weakness of link layer protocols and put the higher layers in jeopardy. Although the problems have been studied for many years and various solutions have been proposed, many security issues remain. To enhance the security and credibility of layer-2 network, we propose a trust-based spanning tree protocol aiming at achieving a higher credibility of LAN switch with a simple and lightweight authentication mechanism. If correctly implemented in each trusted switch, the authentication of trust-based STP can guarantee the credibility of topology information that is announced to other switch in the LAN. To verify the enforcement of the trusted protocol, we present a new trust evaluation method of the STP using a specification-based state model. We implement a prototype of trust-based STP to investigate its practicality. Experiment shows that the trusted protocol can achieve security goals and effectively avoid STP attacks with a lower computation overhead and good convergence performance.

  16. TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees.

    PubMed

    Mai, Uyen; Mirarab, Siavash

    2018-05-08

    Sequence data used in reconstructing phylogenetic trees may include various sources of error. Typically errors are detected at the sequence level, but when missed, the erroneous sequences often appear as unexpectedly long branches in the inferred phylogeny. We propose an automatic method to detect such errors. We build a phylogeny including all the data then detect sequences that artificially inflate the tree diameter. We formulate an optimization problem, called the k-shrink problem, that seeks to find k leaves that could be removed to maximally reduce the tree diameter. We present an algorithm to find the exact solution for this problem in polynomial time. We then use several statistical tests to find outlier species that have an unexpectedly high impact on the tree diameter. These tests can use a single tree or a set of related gene trees and can also adjust to species-specific patterns of branch length. The resulting method is called TreeShrink. We test our method on six phylogenomic biological datasets and an HIV dataset and show that the method successfully detects and removes long branches. TreeShrink removes sequences more conservatively than rogue taxon removal and often reduces gene tree discordance more than rogue taxon removal once the amount of filtering is controlled. TreeShrink is an effective method for detecting sequences that lead to unrealistically long branch lengths in phylogenetic trees. The tool is publicly available at https://github.com/uym2/TreeShrink .

  17. An improved spatial contour tree constructed method

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Zhang, Ling; Guilbert, Eric; Long, Yi

    2018-05-01

    Contours are important data to delineate the landform on a map. A contour tree provides an object-oriented description of landforms and can be used to enrich the topological information. The traditional contour tree is used to store topological relationships between contours in a hierarchical structure and allows for the identification of eminences and depressions as sets of nested contours. This research proposes an improved contour tree so-called spatial contour tree that contains not only the topological but also the geometric information. It can be regarded as a terrain skeleton in 3-dimention, and it is established based on the spatial nodes of contours which have the latitude, longitude and elevation information. The spatial contour tree is built by connecting spatial nodes from low to high elevation for a positive landform, and from high to low elevation for a negative landform to form a hierarchical structure. The connection between two spatial nodes can provide the real distance and direction as a Euclidean vector in 3-dimention. In this paper, the construction method is tested in the experiment, and the results are discussed. The proposed hierarchical structure is in 3-demintion and can show the skeleton inside a terrain. The structure, where all nodes have geo-information, can be used to distinguish different landforms and applied for contour generalization with consideration of geographic characteristics.

  18. Quantitative 3D reconstruction of airway and pulmonary vascular trees using HRCT

    NASA Astrophysics Data System (ADS)

    Wood, Susan A.; Hoford, John D.; Hoffman, Eric A.; Zerhouni, Elias A.; Mitzner, Wayne A.

    1993-07-01

    Accurate quantitative measurements of airway and vascular dimensions are essential to evaluate function in the normal and diseased lung. In this report, a novel method is described for three-dimensional extraction and analysis of pulmonary tree structures using data from High Resolution Computed Tomography (HRCT). Serially scanned two-dimensional slices of the lower left lobe of isolated dog lungs were stacked to create a volume of data. Airway and vascular trees were three-dimensionally extracted using a three dimensional seeded region growing algorithm based on difference in CT number between wall and lumen. To obtain quantitative data, we reduced each tree to its central axis. From the central axis, branch length is measured as the distance between two successive branch points, branch angle is measured as the angle produced by two daughter branches, and cross sectional area is measured from a plane perpendicular to the central axis point. Data derived from these methods can be used to localize and quantify structural differences both during changing physiologic conditions and in pathologic lungs.

  19. Evaluation of Four Methods for Predicting Carbon Stocks of Korean Pine Plantations in Heilongjiang Province, China

    PubMed Central

    Gao, Huilin; Dong, Lihu; Li, Fengri; Zhang, Lianjun

    2015-01-01

    A total of 89 trees of Korean pine (Pinus koraiensis) were destructively sampled from the plantations in Heilongjiang Province, P.R. China. The sample trees were measured and calculated for the biomass and carbon stocks of tree components (i.e., stem, branch, foliage and root). Both compatible biomass and carbon stock models were developed with the total biomass and total carbon stocks as the constraints, respectively. Four methods were used to evaluate the carbon stocks of tree components. The first method predicted carbon stocks directly by the compatible carbon stocks models (Method 1). The other three methods indirectly predicted the carbon stocks in two steps: (1) estimating the biomass by the compatible biomass models, and (2) multiplying the estimated biomass by three different carbon conversion factors (i.e., carbon conversion factor 0.5 (Method 2), average carbon concentration of the sample trees (Method 3), and average carbon concentration of each tree component (Method 4)). The prediction errors of estimating the carbon stocks were compared and tested for the differences between the four methods. The results showed that the compatible biomass and carbon models with tree diameter (D) as the sole independent variable performed well so that Method 1 was the best method for predicting the carbon stocks of tree components and total. There were significant differences among the four methods for the carbon stock of stem. Method 2 produced the largest error, especially for stem and total. Methods 3 and Method 4 were slightly worse than Method 1, but the differences were not statistically significant. In practice, the indirect method using the mean carbon concentration of individual trees was sufficient to obtain accurate carbon stocks estimation if carbon stocks models are not available. PMID:26659257

  20. Towards an Optimized Method of Olive Tree Crown Volume Measurement

    PubMed Central

    Miranda-Fuentes, Antonio; Llorens, Jordi; Gamarra-Diezma, Juan L.; Gil-Ribes, Jesús A.; Gil, Emilio

    2015-01-01

    Accurate crown characterization of large isolated olive trees is vital for adjusting spray doses in three-dimensional crop agriculture. Among the many methodologies available, laser sensors have proved to be the most reliable and accurate. However, their operation is time consuming and requires specialist knowledge and so a simpler crown characterization method is required. To this end, three methods were evaluated and compared with LiDAR measurements to determine their accuracy: Vertical Crown Projected Area method (VCPA), Ellipsoid Volume method (VE) and Tree Silhouette Volume method (VTS). Trials were performed in three different kinds of olive tree plantations: intensive, adapted one-trunked traditional and traditional. In total, 55 trees were characterized. Results show that all three methods are appropriate to estimate the crown volume, reaching high coefficients of determination: R2 = 0.783, 0.843 and 0.824 for VCPA, VE and VTS, respectively. However, discrepancies arise when evaluating tree plantations separately, especially for traditional trees. Here, correlations between LiDAR volume and other parameters showed that the Mean Vector calculated for VCPA method showed the highest correlation for traditional trees, thus its use in traditional plantations is highly recommended. PMID:25658396

  1. Visualizing phylogenetic tree landscapes.

    PubMed

    Wilgenbusch, James C; Huang, Wen; Gallivan, Kyle A

    2017-02-02

    Genomic-scale sequence alignments are increasingly used to infer phylogenies in order to better understand the processes and patterns of evolution. Different partitions within these new alignments (e.g., genes, codon positions, and structural features) often favor hundreds if not thousands of competing phylogenies. Summarizing and comparing phylogenies obtained from multi-source data sets using current consensus tree methods discards valuable information and can disguise potential methodological problems. Discovery of efficient and accurate dimensionality reduction methods used to display at once in 2- or 3- dimensions the relationship among these competing phylogenies will help practitioners diagnose the limits of current evolutionary models and potential problems with phylogenetic reconstruction methods when analyzing large multi-source data sets. We introduce several dimensionality reduction methods to visualize in 2- and 3-dimensions the relationship among competing phylogenies obtained from gene partitions found in three mid- to large-size mitochondrial genome alignments. We test the performance of these dimensionality reduction methods by applying several goodness-of-fit measures. The intrinsic dimensionality of each data set is also estimated to determine whether projections in 2- and 3-dimensions can be expected to reveal meaningful relationships among trees from different data partitions. Several new approaches to aid in the comparison of different phylogenetic landscapes are presented. Curvilinear Components Analysis (CCA) and a stochastic gradient decent (SGD) optimization method give the best representation of the original tree-to-tree distance matrix for each of the three- mitochondrial genome alignments and greatly outperformed the method currently used to visualize tree landscapes. The CCA + SGD method converged at least as fast as previously applied methods for visualizing tree landscapes. We demonstrate for all three mtDNA alignments that 3D projections significantly increase the fit between the tree-to-tree distances and can facilitate the interpretation of the relationship among phylogenetic trees. We demonstrate that the choice of dimensionality reduction method can significantly influence the spatial relationship among a large set of competing phylogenetic trees. We highlight the importance of selecting a dimensionality reduction method to visualize large multi-locus phylogenetic landscapes and demonstrate that 3D projections of mitochondrial tree landscapes better capture the relationship among the trees being compared.

  2. Simulation of land use change in the three gorges reservoir area based on CART-CA

    NASA Astrophysics Data System (ADS)

    Yuan, Min

    2018-05-01

    This study proposes a new method to simulate spatiotemporal complex multiple land uses by using classification and regression tree algorithm (CART) based CA model. In this model, we use classification and regression tree algorithm to calculate land class conversion probability, and combine neighborhood factor, random factor to extract cellular transformation rules. The overall Kappa coefficient is 0.8014 and the overall accuracy is 0.8821 in the land dynamic simulation results of the three gorges reservoir area from 2000 to 2010, and the simulation results are satisfactory.

  3. Inference of Epidemiological Dynamics Based on Simulated Phylogenies Using Birth-Death and Coalescent Models

    PubMed Central

    Boskova, Veronika; Bonhoeffer, Sebastian; Stadler, Tanja

    2014-01-01

    Quantifying epidemiological dynamics is crucial for understanding and forecasting the spread of an epidemic. The coalescent and the birth-death model are used interchangeably to infer epidemiological parameters from the genealogical relationships of the pathogen population under study, which in turn are inferred from the pathogen genetic sequencing data. To compare the performance of these widely applied models, we performed a simulation study. We simulated phylogenetic trees under the constant rate birth-death model and the coalescent model with a deterministic exponentially growing infected population. For each tree, we re-estimated the epidemiological parameters using both a birth-death and a coalescent based method, implemented as an MCMC procedure in BEAST v2.0. In our analyses that estimate the growth rate of an epidemic based on simulated birth-death trees, the point estimates such as the maximum a posteriori/maximum likelihood estimates are not very different. However, the estimates of uncertainty are very different. The birth-death model had a higher coverage than the coalescent model, i.e. contained the true value in the highest posterior density (HPD) interval more often (2–13% vs. 31–75% error). The coverage of the coalescent decreases with decreasing basic reproductive ratio and increasing sampling probability of infecteds. We hypothesize that the biases in the coalescent are due to the assumption of deterministic rather than stochastic population size changes. Both methods performed reasonably well when analyzing trees simulated under the coalescent. The methods can also identify other key epidemiological parameters as long as one of the parameters is fixed to its true value. In summary, when using genetic data to estimate epidemic dynamics, our results suggest that the birth-death method will be less sensitive to population fluctuations of early outbreaks than the coalescent method that assumes a deterministic exponentially growing infected population. PMID:25375100

  4. Tree Data (TD)

    Treesearch

    Robert E. Keane

    2006-01-01

    The Tree Data (TD) methods are used to sample individual live and dead trees on a fixed-area plot to estimate tree density, size, and age class distributions before and after fire in order to assess tree survival and mortality rates. This method can also be used to sample individual shrubs if they are over 4.5 ft tall. When trees are larger than the user-specified...

  5. Risk Analysis of Earth-Rock Dam Failures Based on Fuzzy Event Tree Method

    PubMed Central

    Fu, Xiao; Gu, Chong-Shi; Su, Huai-Zhi; Qin, Xiang-Nan

    2018-01-01

    Earth-rock dams make up a large proportion of the dams in China, and their failures can induce great risks. In this paper, the risks associated with earth-rock dam failure are analyzed from two aspects: the probability of a dam failure and the resulting life loss. An event tree analysis method based on fuzzy set theory is proposed to calculate the dam failure probability. The life loss associated with dam failure is summarized and refined to be suitable for Chinese dams from previous studies. The proposed method and model are applied to one reservoir dam in Jiangxi province. Both engineering and non-engineering measures are proposed to reduce the risk. The risk analysis of the dam failure has essential significance for reducing dam failure probability and improving dam risk management level. PMID:29710824

  6. Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia.

    PubMed

    Henrard, S; Speybroeck, N; Hermans, C

    2015-11-01

    Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.

  7. Development of hybrid genetic-algorithm-based neural networks using regression trees for modeling air quality inside a public transportation bus.

    PubMed

    Kadiyala, Akhil; Kaur, Devinder; Kumar, Ashok

    2013-02-01

    The present study developed a novel approach to modeling indoor air quality (IAQ) of a public transportation bus by the development of hybrid genetic-algorithm-based neural networks (also known as evolutionary neural networks) with input variables optimized from using the regression trees, referred as the GART approach. This study validated the applicability of the GART modeling approach in solving complex nonlinear systems by accurately predicting the monitored contaminants of carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), sulfur dioxide (SO2), 0.3-0.4 microm sized particle numbers, 0.4-0.5 microm sized particle numbers, particulate matter (PM) concentrations less than 1.0 microm (PM10), and PM concentrations less than 2.5 microm (PM2.5) inside a public transportation bus operating on 20% grade biodiesel in Toledo, OH. First, the important variables affecting each monitored in-bus contaminant were determined using regression trees. Second, the analysis of variance was used as a complimentary sensitivity analysis to the regression tree results to determine a subset of statistically significant variables affecting each monitored in-bus contaminant. Finally, the identified subsets of statistically significant variables were used as inputs to develop three artificial neural network (ANN) models. The models developed were regression tree-based back-propagation network (BPN-RT), regression tree-based radial basis function network (RBFN-RT), and GART models. Performance measures were used to validate the predictive capacity of the developed IAQ models. The results from this approach were compared with the results obtained from using a theoretical approach and a generalized practicable approach to modeling IAQ that included the consideration of additional independent variables when developing the aforementioned ANN models. The hybrid GART models were able to capture majority of the variance in the monitored in-bus contaminants. The genetic-algorithm-based neural network IAQ models outperformed the traditional ANN methods of the back-propagation and the radial basis function networks. The novelty of this research is the development of a novel approach to modeling vehicular indoor air quality by integration of the advanced methods of genetic algorithms, regression trees, and the analysis of variance for the monitored in-vehicle gaseous and particulate matter contaminants, and comparing the results obtained from using the developed approach with conventional artificial intelligence techniques of back propagation networks and radial basis function networks. This study validated the newly developed approach using holdout and threefold cross-validation methods. These results are of great interest to scientists, researchers, and the public in understanding the various aspects of modeling an indoor microenvironment. This methodology can easily be extended to other fields of study also.

  8. Multiple data sources improve DNA-based mark-recapture population estimates of grizzly bears.

    PubMed

    Boulanger, John; Kendall, Katherine C; Stetz, Jeffrey B; Roon, David A; Waits, Lisette P; Paetkau, David

    2008-04-01

    A fundamental challenge to estimating population size with mark-recapture methods is heterogeneous capture probabilities and subsequent bias of population estimates. Confronting this problem usually requires substantial sampling effort that can be difficult to achieve for some species, such as carnivores. We developed a methodology that uses two data sources to deal with heterogeneity and applied this to DNA mark-recapture data from grizzly bears (Ursus arctos). We improved population estimates by incorporating additional DNA "captures" of grizzly bears obtained by collecting hair from unbaited bear rub trees concurrently with baited, grid-based, hair snag sampling. We consider a Lincoln-Petersen estimator with hair snag captures as the initial session and rub tree captures as the recapture session and develop an estimator in program MARK that treats hair snag and rub tree samples as successive sessions. Using empirical data from a large-scale project in the greater Glacier National Park, Montana, USA, area and simulation modeling we evaluate these methods and compare the results to hair-snag-only estimates. Empirical results indicate that, compared with hair-snag-only data, the joint hair-snag-rub-tree methods produce similar but more precise estimates if capture and recapture rates are reasonably high for both methods. Simulation results suggest that estimators are potentially affected by correlation of capture probabilities between sample types in the presence of heterogeneity. Overall, closed population Huggins-Pledger estimators showed the highest precision and were most robust to sparse data, heterogeneity, and capture probability correlation among sampling types. Results also indicate that these estimators can be used when a segment of the population has zero capture probability for one of the methods. We propose that this general methodology may be useful for other species in which mark-recapture data are available from multiple sources.

  9. Review: Evaluation of Foot-and-Mouth Disease Control Using Fault Tree Analysis.

    PubMed

    Isoda, N; Kadohira, M; Sekiguchi, S; Schuppers, M; Stärk, K D C

    2015-06-01

    An outbreak of foot-and-mouth disease (FMD) causes huge economic losses and animal welfare problems. Although much can be learnt from past FMD outbreaks, several countries are not satisfied with their degree of contingency planning and aiming at more assurance that their control measures will be effective. The purpose of the present article was to develop a generic fault tree framework for the control of an FMD outbreak as a basis for systematic improvement and refinement of control activities and general preparedness. Fault trees are typically used in engineering to document pathways that can lead to an undesired event, that is, ineffective FMD control. The fault tree method allows risk managers to identify immature parts of the control system and to analyse the events or steps that will most probably delay rapid and effective disease control during a real outbreak. The present developed fault tree is generic and can be tailored to fit the specific needs of countries. For instance, the specific fault tree for the 2001 FMD outbreak in the UK was refined based on control weaknesses discussed in peer-reviewed articles. Furthermore, the specific fault tree based on the 2001 outbreak was applied to the subsequent FMD outbreak in 2007 to assess the refinement of control measures following the earlier, major outbreak. The FMD fault tree can assist risk managers to develop more refined and adequate control activities against FMD outbreaks and to find optimum strategies for rapid control. Further application using the current tree will be one of the basic measures for FMD control worldwide. © 2013 Blackwell Verlag GmbH.

  10. Performance Analysis of a Pole and Tree Trunk Detection Method for Mobile Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Lehtomäki, M.; Jaakkola, A.; Hyyppä, J.; Kukko, A.; Kaartinen, H.

    2011-09-01

    Dense point clouds can be collected efficiently from large areas using mobile laser scanning (MLS) technology. Accurate MLS data can be used for detailed 3D modelling of the road surface and objects around it. The 3D models can be utilised, for example, in street planning and maintenance and noise modelling. Utility poles, traffic signs, and lamp posts can be considered an important part of road infrastructure. Poles and trees stand out from the environment and should be included in realistic 3D models. Detection of narrow vertical objects, such as poles and tree trunks, from MLS data was studied. MLS produces huge amounts of data and, therefore, processing methods should be as automatic as possible and for the methods to be practical, the algorithms should run in an acceptable time. The automatic pole detection method tested in this study is based on first finding point clusters that are good candidates for poles and then separating poles and tree trunks from other clusters using features calculated from the clusters and by applying a mask that acts as a model of a pole. The method achieved detection rates of 77.7% and 69.7% in the field tests while 81.0% and 86.5% of the detected targets were correct. Pole-like targets that were surrounded by other objects, such as tree trunks that were inside branches, were the most difficult to detect. Most of the false detections came from wall structures, which could be corrected in further processing.

  11. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms.

    PubMed

    Speiser, Daniel I; Pankey, M Sabrina; Zaharoff, Alexander K; Battelle, Barbara A; Bracken-Grissom, Heather D; Breinholt, Jesse W; Bybee, Seth M; Cronin, Thomas W; Garm, Anders; Lindgren, Annie R; Patel, Nipam H; Porter, Megan L; Protas, Meredith E; Rivera, Ajna S; Serb, Jeanne M; Zigler, Kirk S; Crandall, Keith A; Oakley, Todd H

    2014-11-19

    Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.

  12. IDHEAS – A NEW APPROACH FOR HUMAN RELIABILITY ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. W. Parry; J.A Forester; V.N. Dang

    2013-09-01

    This paper describes a method, IDHEAS (Integrated Decision-Tree Human Event Analysis System) that has been developed jointly by the US NRC and EPRI as an improved approach to Human Reliability Analysis (HRA) that is based on an understanding of the cognitive mechanisms and performance influencing factors (PIFs) that affect operator responses. The paper describes the various elements of the method, namely the performance of a detailed cognitive task analysis that is documented in a crew response tree (CRT), and the development of the associated time-line to identify the critical tasks, i.e. those whose failure results in a human failure eventmore » (HFE), and an approach to quantification that is based on explanations of why the HFE might occur.« less

  13. Resolving Evolutionary Relationships in Closely Related Species with Whole-Genome Sequencing Data

    PubMed Central

    Nater, Alexander; Burri, Reto; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans

    2015-01-01

    Using genetic data to resolve the evolutionary relationships of species is of major interest in evolutionary and systematic biology. However, reconstructing the sequence of speciation events, the so-called species tree, in closely related and potentially hybridizing species is very challenging. Processes such as incomplete lineage sorting and interspecific gene flow result in local gene genealogies that differ in their topology from the species tree, and analyses of few loci with a single sequence per species are likely to produce conflicting or even misleading results. To study these phenomena on a full phylogenomic scale, we use whole-genome sequence data from 200 individuals of four black-and-white flycatcher species with so far unresolved phylogenetic relationships to infer gene tree topologies and visualize genome-wide patterns of gene tree incongruence. Using phylogenetic analysis in nonoverlapping 10-kb windows, we show that gene tree topologies are extremely diverse and change on a very small physical scale. Moreover, we find strong evidence for gene flow among flycatcher species, with distinct patterns of reduced introgression on the Z chromosome. To resolve species relationships on the background of widespread gene tree incongruence, we used four complementary coalescent-based methods for species tree reconstruction, including complex modeling approaches that incorporate post-divergence gene flow among species. This allowed us to infer the most likely species tree with high confidence. Based on this finding, we show that regions of reduced effective population size, which have been suggested as particularly useful for species tree inference, can produce positively misleading species tree topologies. Our findings disclose the pitfalls of using loci potentially under selection as phylogenetic markers and highlight the potential of modeling approaches to disentangle species relationships in systems with large effective population sizes and post-divergence gene flow. PMID:26187295

  14. On Tree-Based Phylogenetic Networks.

    PubMed

    Zhang, Louxin

    2016-07-01

    A large class of phylogenetic networks can be obtained from trees by the addition of horizontal edges between the tree edges. These networks are called tree-based networks. We present a simple necessary and sufficient condition for tree-based networks and prove that a universal tree-based network exists for any number of taxa that contains as its base every phylogenetic tree on the same set of taxa. This answers two problems posted by Francis and Steel recently. A byproduct is a computer program for generating random binary phylogenetic networks under the uniform distribution model.

  15. Method and system for dynamic probabilistic risk assessment

    NASA Technical Reports Server (NTRS)

    Dugan, Joanne Bechta (Inventor); Xu, Hong (Inventor)

    2013-01-01

    The DEFT methodology, system and computer readable medium extends the applicability of the PRA (Probabilistic Risk Assessment) methodology to computer-based systems, by allowing DFT (Dynamic Fault Tree) nodes as pivot nodes in the Event Tree (ET) model. DEFT includes a mathematical model and solution algorithm, supports all common PRA analysis functions and cutsets. Additional capabilities enabled by the DFT include modularization, phased mission analysis, sequence dependencies, and imperfect coverage.

  16. Environmental influences on tree and stand increment, proceedings of the mensuration, growth and yield instruments and methods in forest mensuration workshop

    Treesearch

    Dale S. Solomon; Thomas B. Brann

    1986-01-01

    An international conference on Environmental Influences on Tree and Stand Increment was held at the University of New Hampshire, Durham, New Hampshire, USA between September 23 and 27, 1985. The meeting included recommendations from a previous I.U.F.R.O. meeting in Vienna, Austria. Demands for forest resources are increasing but the forest land base is constantly...

  17. Resolving the tips of the tree of life: How much mitochondrialdata doe we need?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonett, Ronald M.; Macey, J. Robert; Boore, Jeffrey L.

    2005-04-29

    Mitochondrial (mt) DNA sequences are used extensively to reconstruct evolutionary relationships among recently diverged animals,and have constituted the most widely used markers for species- and generic-level relationships for the last decade or more. However, most studies to date have employed relatively small portions of the mt-genome. In contrast, complete mt-genomes primarily have been used to investigate deep divergences, including several studies of the amount of mt sequence necessary to recover ancient relationships. We sequenced and analyzed 24 complete mt-genomes from a group of salamander species exhibiting divergences typical of those in many species-level studies. We present the first comprehensive investigationmore » of the amount of mt sequence data necessary to consistently recover the mt-genome tree at this level, using parsimony and Bayesian methods. Both methods of phylogenetic analysis revealed extremely similar results. A surprising number of well supported, yet conflicting, relationships were found in trees based on fragments less than {approx}2000 nucleotides (nt), typical of the vast majority of the thousands of mt-based studies published to date. Large amounts of data (11,500+ nt) were necessary to consistently recover the whole mt-genome tree. Some relationships consistently were recovered with fragments of all sizes, but many nodes required the majority of the mt-genome to stabilize, particularly those associated with short internal branches. Although moderate amounts of data (2000-3000 nt) were adequate to recover mt-based relationships for which most nodes were congruent with the whole mt-genome tree, many thousands of nucleotides were necessary to resolve rapid bursts of evolution. Recent advances in genomics are making collection of large amounts of sequence data highly feasible, and our results provide the basis for comparative studies of other closely related groups to optimize mt sequence sampling and phylogenetic resolution at the ''tips'' of the Tree of Life.« less

  18. Seeing the wood for the trees: a forest of methods for optimization and omic-network integration in metabolic modelling.

    PubMed

    Vijayakumar, Supreeta; Conway, Max; Lió, Pietro; Angione, Claudio

    2017-05-30

    Metabolic modelling has entered a mature phase with dozens of methods and software implementations available to the practitioner and the theoretician. It is not easy for a modeller to be able to see the wood (or the forest) for the trees. Driven by this analogy, we here present a 'forest' of principal methods used for constraint-based modelling in systems biology. This provides a tree-based view of methods available to prospective modellers, also available in interactive version at http://modellingmetabolism.net, where it will be kept updated with new methods after the publication of the present manuscript. Our updated classification of existing methods and tools highlights the most promising in the different branches, with the aim to develop a vision of how existing methods could hybridize and become more complex. We then provide the first hands-on tutorial for multi-objective optimization of metabolic models in R. We finally discuss the implementation of multi-view machine learning approaches in poly-omic integration. Throughout this work, we demonstrate the optimization of trade-offs between multiple metabolic objectives, with a focus on omic data integration through machine learning. We anticipate that the combination of a survey, a perspective on multi-view machine learning and a step-by-step R tutorial should be of interest for both the beginner and the advanced user. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. From learning taxonomies to phylogenetic learning: integration of 16S rRNA gene data into FAME-based bacterial classification.

    PubMed

    Slabbinck, Bram; Waegeman, Willem; Dawyndt, Peter; De Vos, Paul; De Baets, Bernard

    2010-01-30

    Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial species. Summarized, by phylogenetic learning we are able to situate and evaluate FAME-based bacterial species classification in a more informative context.

  20. From learning taxonomies to phylogenetic learning: Integration of 16S rRNA gene data into FAME-based bacterial classification

    PubMed Central

    2010-01-01

    Background Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. Results In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. Conclusions FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial species. Summarized, by phylogenetic learning we are able to situate and evaluate FAME-based bacterial species classification in a more informative context. PMID:20113515

  1. On the Accuracy of Language Trees

    PubMed Central

    Pompei, Simone; Loreto, Vittorio; Tria, Francesca

    2011-01-01

    Historical linguistics aims at inferring the most likely language phylogenetic tree starting from information concerning the evolutionary relatedness of languages. The available information are typically lists of homologous (lexical, phonological, syntactic) features or characters for many different languages: a set of parallel corpora whose compilation represents a paramount achievement in linguistics. From this perspective the reconstruction of language trees is an example of inverse problems: starting from present, incomplete and often noisy, information, one aims at inferring the most likely past evolutionary history. A fundamental issue in inverse problems is the evaluation of the inference made. A standard way of dealing with this question is to generate data with artificial models in order to have full access to the evolutionary process one is going to infer. This procedure presents an intrinsic limitation: when dealing with real data sets, one typically does not know which model of evolution is the most suitable for them. A possible way out is to compare algorithmic inference with expert classifications. This is the point of view we take here by conducting a thorough survey of the accuracy of reconstruction methods as compared with the Ethnologue expert classifications. We focus in particular on state-of-the-art distance-based methods for phylogeny reconstruction using worldwide linguistic databases. In order to assess the accuracy of the inferred trees we introduce and characterize two generalizations of standard definitions of distances between trees. Based on these scores we quantify the relative performances of the distance-based algorithms considered. Further we quantify how the completeness and the coverage of the available databases affect the accuracy of the reconstruction. Finally we draw some conclusions about where the accuracy of the reconstructions in historical linguistics stands and about the leading directions to improve it. PMID:21674034

  2. Statistical Methods in Ai: Rare Event Learning Using Associative Rules and Higher-Order Statistics

    NASA Astrophysics Data System (ADS)

    Iyer, V.; Shetty, S.; Iyengar, S. S.

    2015-07-01

    Rare event learning has not been actively researched since lately due to the unavailability of algorithms which deal with big samples. The research addresses spatio-temporal streams from multi-resolution sensors to find actionable items from a perspective of real-time algorithms. This computing framework is independent of the number of input samples, application domain, labelled or label-less streams. A sampling overlap algorithm such as Brooks-Iyengar is used for dealing with noisy sensor streams. We extend the existing noise pre-processing algorithms using Data-Cleaning trees. Pre-processing using ensemble of trees using bagging and multi-target regression showed robustness to random noise and missing data. As spatio-temporal streams are highly statistically correlated, we prove that a temporal window based sampling from sensor data streams converges after n samples using Hoeffding bounds. Which can be used for fast prediction of new samples in real-time. The Data-cleaning tree model uses a nonparametric node splitting technique, which can be learned in an iterative way which scales linearly in memory consumption for any size input stream. The improved task based ensemble extraction is compared with non-linear computation models using various SVM kernels for speed and accuracy. We show using empirical datasets the explicit rule learning computation is linear in time and is only dependent on the number of leafs present in the tree ensemble. The use of unpruned trees (t) in our proposed ensemble always yields minimum number (m) of leafs keeping pre-processing computation to n × t log m compared to N2 for Gram Matrix. We also show that the task based feature induction yields higher Qualify of Data (QoD) in the feature space compared to kernel methods using Gram Matrix.

  3. A recursive method for calculating the total number of spanning trees and its applications in self-similar small-world scale-free network models

    NASA Astrophysics Data System (ADS)

    Ma, Fei; Su, Jing; Yao, Bing

    2018-05-01

    The problem of determining and calculating the number of spanning trees of any finite graph (model) is a great challenge, and has been studied in various fields, such as discrete applied mathematics, theoretical computer science, physics, chemistry and the like. In this paper, firstly, thank to lots of real-life systems and artificial networks built by all kinds of functions and combinations among some simpler and smaller elements (components), we discuss some helpful network-operation, including link-operation and merge-operation, to design more realistic and complicated network models. Secondly, we present a method for computing the total number of spanning trees. As an accessible example, we apply this method to space of trees and cycles respectively, and our results suggest that it is indeed a better one for such models. In order to reflect more widely practical applications and potentially theoretical significance, we study the enumerating method in some existing scale-free network models. On the other hand, we set up a class of new models displaying scale-free feature, that is to say, following P(k) k-γ, where γ is the degree exponent. Based on detailed calculation, the degree exponent γ of our deterministic scale-free models satisfies γ > 3. In the rest of our discussions, we not only calculate analytically the solutions of average path length, which indicates our models have small-world property being prevailing in amounts of complex systems, but also derive the number of spanning trees by means of the recursive method described in this paper, which clarifies our method is convenient to research these models.

  4. Random Forest-Based Recognition of Isolated Sign Language Subwords Using Data from Accelerometers and Surface Electromyographic Sensors.

    PubMed

    Su, Ruiliang; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-01-14

    Sign language recognition (SLR) has been widely used for communication amongst the hearing-impaired and non-verbal community. This paper proposes an accurate and robust SLR framework using an improved decision tree as the base classifier of random forests. This framework was used to recognize Chinese sign language subwords using recordings from a pair of portable devices worn on both arms consisting of accelerometers (ACC) and surface electromyography (sEMG) sensors. The experimental results demonstrated the validity of the proposed random forest-based method for recognition of Chinese sign language (CSL) subwords. With the proposed method, 98.25% average accuracy was obtained for the classification of a list of 121 frequently used CSL subwords. Moreover, the random forests method demonstrated a superior performance in resisting the impact of bad training samples. When the proportion of bad samples in the training set reached 50%, the recognition error rate of the random forest-based method was only 10.67%, while that of a single decision tree adopted in our previous work was almost 27.5%. Our study offers a practical way of realizing a robust and wearable EMG-ACC-based SLR systems.

  5. 15N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods

    PubMed Central

    van der Sleen, Peter; Vlam, Mart; Groenendijk, Peter; Anten, Niels P. R.; Bongers, Frans; Bunyavejchewin, Sarayudh; Hietz, Peter; Pons, Thijs L.; Zuidema, Pieter A.

    2015-01-01

    Anthropogenic nitrogen deposition is currently causing a more than twofold increase of reactive nitrogen input over large areas in the tropics. Elevated 15N abundance (δ15N) in the growth rings of some tropical trees has been hypothesized to reflect an increased leaching of 15N-depleted nitrate from the soil, following anthropogenic nitrogen deposition over the last decades. To find further evidence for altered nitrogen cycling in tropical forests, we measured long-term δ15N values in trees from Bolivia, Cameroon, and Thailand. We used two different sampling methods. In the first, wood samples were taken in a conventional way: from the pith to the bark across the stem of 28 large trees (the “radial” method). In the second, δ15N values were compared across a fixed diameter (the “fixed-diameter” method). We sampled 400 trees that differed widely in size, but measured δ15N in the stem around the same diameter (20 cm dbh) in all trees. As a result, the growth rings formed around this diameter differed in age and allowed a comparison of δ15N values over time with an explicit control for potential size-effects on δ15N values. We found a significant increase of tree-ring δ15N across the stem radius of large trees from Bolivia and Cameroon, but no change in tree-ring δ15N values over time was found in any of the study sites when controlling for tree size. This suggests that radial trends of δ15N values within trees reflect tree ontogeny (size development). However, for the trees from Cameroon and Thailand, a low statistical power in the fixed-diameter method prevents to conclude this with high certainty. For the trees from Bolivia, statistical power in the fixed-diameter method was high, showing that the temporal trend in tree-ring δ15N values in the radial method is primarily caused by tree ontogeny and unlikely by a change in nitrogen cycling. We therefore stress to account for tree size before tree-ring δ15N values can be properly interpreted. PMID:25914707

  6. (15)N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods.

    PubMed

    van der Sleen, Peter; Vlam, Mart; Groenendijk, Peter; Anten, Niels P R; Bongers, Frans; Bunyavejchewin, Sarayudh; Hietz, Peter; Pons, Thijs L; Zuidema, Pieter A

    2015-01-01

    Anthropogenic nitrogen deposition is currently causing a more than twofold increase of reactive nitrogen input over large areas in the tropics. Elevated (15)N abundance (δ(15)N) in the growth rings of some tropical trees has been hypothesized to reflect an increased leaching of (15)N-depleted nitrate from the soil, following anthropogenic nitrogen deposition over the last decades. To find further evidence for altered nitrogen cycling in tropical forests, we measured long-term δ(15)N values in trees from Bolivia, Cameroon, and Thailand. We used two different sampling methods. In the first, wood samples were taken in a conventional way: from the pith to the bark across the stem of 28 large trees (the "radial" method). In the second, δ(15)N values were compared across a fixed diameter (the "fixed-diameter" method). We sampled 400 trees that differed widely in size, but measured δ(15)N in the stem around the same diameter (20 cm dbh) in all trees. As a result, the growth rings formed around this diameter differed in age and allowed a comparison of δ(15)N values over time with an explicit control for potential size-effects on δ(15)N values. We found a significant increase of tree-ring δ(15)N across the stem radius of large trees from Bolivia and Cameroon, but no change in tree-ring δ(15)N values over time was found in any of the study sites when controlling for tree size. This suggests that radial trends of δ(15)N values within trees reflect tree ontogeny (size development). However, for the trees from Cameroon and Thailand, a low statistical power in the fixed-diameter method prevents to conclude this with high certainty. For the trees from Bolivia, statistical power in the fixed-diameter method was high, showing that the temporal trend in tree-ring δ(15)N values in the radial method is primarily caused by tree ontogeny and unlikely by a change in nitrogen cycling. We therefore stress to account for tree size before tree-ring δ(15)N values can be properly interpreted.

  7. New substitution models for rooting phylogenetic trees.

    PubMed

    Williams, Tom A; Heaps, Sarah E; Cherlin, Svetlana; Nye, Tom M W; Boys, Richard J; Embley, T Martin

    2015-09-26

    The root of a phylogenetic tree is fundamental to its biological interpretation, but standard substitution models do not provide any information on its position. Here, we describe two recently developed models that relax the usual assumptions of stationarity and reversibility, thereby facilitating root inference without the need for an outgroup. We compare the performance of these models on a classic test case for phylogenetic methods, before considering two highly topical questions in evolutionary biology: the deep structure of the tree of life and the root of the archaeal radiation. We show that all three alignments contain meaningful rooting information that can be harnessed by these new models, thus complementing and extending previous work based on outgroup rooting. In particular, our analyses exclude the root of the tree of life from the eukaryotes or Archaea, placing it on the bacterial stem or within the Bacteria. They also exclude the root of the archaeal radiation from several major clades, consistent with analyses using other rooting methods. Overall, our results demonstrate the utility of non-reversible and non-stationary models for rooting phylogenetic trees, and identify areas where further progress can be made. © 2015 The Authors.

  8. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].

    PubMed

    Liu, Feng; Tan, Chang; Lei, Pi-Feng

    2014-11-01

    Taking Wugang forest farm in Xuefeng Mountain as the research object, using the airborne light detection and ranging (LiDAR) data under leaf-on condition and field data of concomitant plots, this paper assessed the ability of using LiDAR technology to estimate aboveground biomass of the mid-subtropical forest. A semi-automated individual tree LiDAR cloud point segmentation was obtained by using condition random fields and optimization methods. Spatial structure, waveform characteristics and topography were calculated as LiDAR metrics from the segmented objects. Then statistical models between aboveground biomass from field data and these LiDAR metrics were built. The individual tree recognition rates were 93%, 86% and 60% for coniferous, broadleaf and mixed forests, respectively. The adjusted coefficients of determination (R(2)adj) and the root mean squared errors (RMSE) for the three types of forest were 0.83, 0.81 and 0.74, and 28.22, 29.79 and 32.31 t · hm(-2), respectively. The estimation capability of model based on canopy geometric volume, tree percentile height, slope and waveform characteristics was much better than that of traditional regression model based on tree height. Therefore, LiDAR metrics from individual tree could facilitate better performance in biomass estimation.

  9. Comparative study of biodegradability prediction of chemicals using decision trees, functional trees, and logistic regression.

    PubMed

    Chen, Guangchao; Li, Xuehua; Chen, Jingwen; Zhang, Ya-Nan; Peijnenburg, Willie J G M

    2014-12-01

    Biodegradation is the principal environmental dissipation process of chemicals. As such, it is a dominant factor determining the persistence and fate of organic chemicals in the environment, and is therefore of critical importance to chemical management and regulation. In the present study, the authors developed in silico methods assessing biodegradability based on a large heterogeneous set of 825 organic compounds, using the techniques of the C4.5 decision tree, the functional inner regression tree, and logistic regression. External validation was subsequently carried out by 2 independent test sets of 777 and 27 chemicals. As a result, the functional inner regression tree exhibited the best predictability with predictive accuracies of 81.5% and 81.0%, respectively, on the training set (825 chemicals) and test set I (777 chemicals). Performance of the developed models on the 2 test sets was subsequently compared with that of the Estimation Program Interface (EPI) Suite Biowin 5 and Biowin 6 models, which also showed a better predictability of the functional inner regression tree model. The model built in the present study exhibits a reasonable predictability compared with existing models while possessing a transparent algorithm. Interpretation of the mechanisms of biodegradation was also carried out based on the models developed. © 2014 SETAC.

  10. Determination of incoming solar radiation in major tree species in Turkey.

    PubMed

    Yilmaz, Osman Yalcin; Sevgi, Orhan; Koc, Ayhan

    2012-07-01

    Light requirements and spatial distribution of major forest tree species in Turkey hasn't been analyzed yet. Continuous surface solar radiation data, especially at mountainous-forested areas, are needed to put forward this relationship between forest tree species and solar radiation. To achieve this, GIS-based modeling of solar radiation is one of the methods used in rangelands to estimate continuous surface solar radiation. Therefore, mean monthly and annual total global solar radiation maps of whole Turkey were computed spatially using GRASS GIS software "r.sun" model under clear-sky (cloudless) conditions. 147498 pure forest stand point-based data were used in the study for calculating mean global solar radiation values of all the major forest tree species of Turkey. Beech had the lowest annual mean total global solar radiation value of 1654.87 kWh m(-2), whereas juniper had the highest value of 1928.89 kWh m(-2). The rank order of tree species according to the mean monthly and annual total global solar radiation values, using a confidence level of p < 0.05, was as follows: Beech < Spruce < Fir species < Oak species < Scotch pine < Red pine < Cedar < Juniper. The monthly and annual solar radiation values of sites and light requirements of forest trees ranked similarly.

  11. New Data Pre-processing on Assessing of Obstructive Sleep Apnea Syndrome: Line Based Normalization Method (LBNM)

    NASA Astrophysics Data System (ADS)

    Akdemir, Bayram; Güneş, Salih; Yosunkaya, Şebnem

    Sleep disorders are a very common unawareness illness among public. Obstructive Sleep Apnea Syndrome (OSAS) is characterized with decreased oxygen saturation level and repetitive upper respiratory tract obstruction episodes during full night sleep. In the present study, we have proposed a novel data normalization method called Line Based Normalization Method (LBNM) to evaluate OSAS using real data set obtained from Polysomnography device as a diagnostic tool in patients and clinically suspected of suffering OSAS. Here, we have combined the LBNM and classification methods comprising C4.5 decision tree classifier and Artificial Neural Network (ANN) to diagnose the OSAS. Firstly, each clinical feature in OSAS dataset is scaled by LBNM method in the range of [0,1]. Secondly, normalized OSAS dataset is classified using different classifier algorithms including C4.5 decision tree classifier and ANN, respectively. The proposed normalization method was compared with min-max normalization, z-score normalization, and decimal scaling methods existing in literature on the diagnosis of OSAS. LBNM has produced very promising results on the assessing of OSAS. Also, this method could be applied to other biomedical datasets.

  12. Application of preprocessing filtering on Decision Tree C4.5 and rough set theory

    NASA Astrophysics Data System (ADS)

    Chan, Joseph C. C.; Lin, Tsau Y.

    2001-03-01

    This paper compares two artificial intelligence methods: the Decision Tree C4.5 and Rough Set Theory on the stock market data. The Decision Tree C4.5 is reviewed with the Rough Set Theory. An enhanced window application is developed to facilitate the pre-processing filtering by introducing the feature (attribute) transformations, which allows users to input formulas and create new attributes. Also, the application produces three varieties of data set with delaying, averaging, and summation. The results prove the improvement of pre-processing by applying feature (attribute) transformations on Decision Tree C4.5. Moreover, the comparison between Decision Tree C4.5 and Rough Set Theory is based on the clarity, automation, accuracy, dimensionality, raw data, and speed, which is supported by the rules sets generated by both algorithms on three different sets of data.

  13. Reconstructing the spatial pattern of trees from routine stand examination measurements

    USGS Publications Warehouse

    Hanus, M.L.; Hann, D.W.; Marshall, D.D.

    1998-01-01

    Reconstruction of the spatial pattern of trees is important for the accurate visual display of unmapped stands. The proposed process for generating the spatial pattern is a nonsimple sequential inhibition process, with the inhibition zone proportionate to the scaled maximum crown width of an open-grown tree of the same species and same diameter at breast height as the subject tree. The results of this coordinate generation procedure are compared with mapped stem data from nine natural stands of Douglas-fir at two ages by the use of a transformed Ripley's K(d) function. The results of this comparison indicate that the proposed method, based on complete tree lists, successfully replicated the spatial patterns of the trees in all nine stands at both ages and over the range of distances examined. On the basis of these findings and the procedure's ability to model effects through time, the nonsimple sequential inhibition process has been chosen to generate tree coordinates in the VIZ4ST computer program for displaying forest stand structure in naturally regenerated young Douglas-fir stands. For. Sci.

  14. Modeling Tree Growth Taking into Account Carbon Source and Sink Limitations.

    PubMed

    Hayat, Amaury; Hacket-Pain, Andrew J; Pretzsch, Hans; Rademacher, Tim T; Friend, Andrew D

    2017-01-01

    Increasing CO 2 concentrations are strongly controlled by the behavior of established forests, which are believed to be a major current sink of atmospheric CO 2 . There are many models which predict forest responses to environmental changes but they are almost exclusively carbon source (i.e., photosynthesis) driven. Here we present a model for an individual tree that takes into account the intrinsic limits of meristems and cellular growth rates, as well as control mechanisms within the tree that influence its diameter and height growth over time. This new framework is built on process-based understanding combined with differential equations solved by numerical method. Our aim is to construct a model framework of tree growth for replacing current formulations in Dynamic Global Vegetation Models, and so address the issue of the terrestrial carbon sink. Our approach was successfully tested for stands of beech trees in two different sites representing part of a long-term forest yield experiment in Germany. This model provides new insights into tree growth and limits to tree height, and addresses limitations of previous models with respect to sink-limited growth.

  15. A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time.

    PubMed

    Martínez-Martínez, F; Rupérez-Moreno, M J; Martínez-Sober, M; Solves-Llorens, J A; Lorente, D; Serrano-López, A J; Martínez-Sanchis, S; Monserrat, C; Martín-Guerrero, J D

    2017-11-01

    This work presents a data-driven method to simulate, in real-time, the biomechanical behavior of the breast tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed up multimodal registration algorithms. Ten real breasts were used for this work. Their deformation due to the displacement of two compression plates was simulated off-line using the finite element (FE) method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict in real-time the deformation of the breast tissues during the compression. The models were a decision tree and two tree-based ensemble methods (extremely randomized trees and random forest). Two different experimental setups were designed to validate and study the performance of these models under different conditions. The mean 3D Euclidean distance between nodes predicted by the models and those extracted from the FE simulations was calculated to assess the performance of the models in the validation set. The experiments proved that extremely randomized trees performed better than the other two models. The mean error committed by the three models in the prediction of the nodal displacements was under 2 mm, a threshold usually set for clinical applications. The time needed for breast compression prediction is sufficiently short to allow its use in real-time (<0.2 s). Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A short note on the use of the red-black tree in Cartesian adaptive mesh refinement algorithms

    NASA Astrophysics Data System (ADS)

    Hasbestan, Jaber J.; Senocak, Inanc

    2017-12-01

    Mesh adaptivity is an indispensable capability to tackle multiphysics problems with large disparity in time and length scales. With the availability of powerful supercomputers, there is a pressing need to extend time-proven computational techniques to extreme-scale problems. Cartesian adaptive mesh refinement (AMR) is one such method that enables simulation of multiscale, multiphysics problems. AMR is based on construction of octrees. Originally, an explicit tree data structure was used to generate and manipulate an adaptive Cartesian mesh. At least eight pointers are required in an explicit approach to construct an octree. Parent-child relationships are then used to traverse the tree. An explicit octree, however, is expensive in terms of memory usage and the time it takes to traverse the tree to access a specific node. For these reasons, implicit pointerless methods have been pioneered within the computer graphics community, motivated by applications requiring interactivity and realistic three dimensional visualization. Lewiner et al. [1] provides a concise review of pointerless approaches to generate an octree. Use of a hash table and Z-order curve are two key concepts in pointerless methods that we briefly discuss next.

  17. Method for 3D noncontact measurements of cut trees package area

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Vizilter, Yuri V.

    2001-02-01

    Progress in imaging sensors and computers create the background for numerous 3D imaging application for wide variety of manufacturing activity. Many demands for automated precise measurements are in wood branch of industry. One of them is the accurate volume definition for cut trees carried on the truck. The key point for volume estimation is determination of the front area of the cut tree package. To eliminate slow and inaccurate manual measurements being now in practice the experimental system for automated non-contact wood measurements is developed. The system includes two non-metric CCD video cameras, PC as central processing unit, frame grabbers and original software for image processing and 3D measurements. The proposed method of measurement is based on capturing the stereo pair of front of trees package and performing the image orthotranformation into the front plane. This technique allows to process transformed image for circle shapes recognition and calculating their area. The metric characteristics of the system are provided by special camera calibration procedure. The paper presents the developed method of 3D measurements, describes the hardware used for image acquisition and the software realized the developed algorithms, gives the productivity and precision characteristics of the system.

  18. Prevalence and Determinants of Preterm Birth in Tehran, Iran: A Comparison between Logistic Regression and Decision Tree Methods.

    PubMed

    Amini, Payam; Maroufizadeh, Saman; Samani, Reza Omani; Hamidi, Omid; Sepidarkish, Mahdi

    2017-06-01

    Preterm birth (PTB) is a leading cause of neonatal death and the second biggest cause of death in children under five years of age. The objective of this study was to determine the prevalence of PTB and its associated factors using logistic regression and decision tree classification methods. This cross-sectional study was conducted on 4,415 pregnant women in Tehran, Iran, from July 6-21, 2015. Data were collected by a researcher-developed questionnaire through interviews with mothers and review of their medical records. To evaluate the accuracy of the logistic regression and decision tree methods, several indices such as sensitivity, specificity, and the area under the curve were used. The PTB rate was 5.5% in this study. The logistic regression outperformed the decision tree for the classification of PTB based on risk factors. Logistic regression showed that multiple pregnancies, mothers with preeclampsia, and those who conceived with assisted reproductive technology had an increased risk for PTB ( p < 0.05). Identifying and training mothers at risk as well as improving prenatal care may reduce the PTB rate. We also recommend that statisticians utilize the logistic regression model for the classification of risk groups for PTB.

  19. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery.

    PubMed

    Zarco-Tejada, P J; Hornero, A; Hernández-Clemente, R; Beck, P S A

    2018-03-01

    The operational monitoring of forest decline requires the development of remote sensing methods that are sensitive to the spatiotemporal variations of pigment degradation and canopy defoliation. In this context, the red-edge spectral region (RESR) was proposed in the past due to its combined sensitivity to chlorophyll content and leaf area variation. In this study, the temporal dimension of the RESR was evaluated as a function of forest decline using a radiative transfer method with the PROSPECT and 3D FLIGHT models. These models were used to generate synthetic pine stands simulating decline and recovery processes over time and explore the temporal rate of change of the red-edge chlorophyll index (CI) as compared to the trajectories obtained for the structure-related Normalized Difference Vegetation Index (NDVI). The temporal trend method proposed here consisted of using synthetic spectra to calculate the theoretical boundaries of the subspace for healthy and declining pine trees in the temporal domain, defined by CI time=n /CI time=n+1 vs. NDVI time=n /NDVI time=n+1 . Within these boundaries, trees undergoing decline and recovery processes showed different trajectories through this subspace. The method was then validated using three high-resolution airborne hyperspectral images acquired at 40 cm resolution and 260 spectral bands of 6.5 nm full-width half-maximum (FWHM) over a forest with widespread tree decline, along with field-based monitoring of chlorosis and defoliation (i.e., 'decline' status) in 663 trees between the years 2015 and 2016. The temporal rate of change of chlorophyll vs. structural indices, based on reflectance spectra extracted from the hyperspectral images, was different for trees undergoing decline, and aligned towards the decline baseline established using the radiative transfer models. By contrast, healthy trees over time aligned towards the theoretically obtained healthy baseline . The applicability of this temporal trend method to the red-edge bands of the MultiSpectral Imager (MSI) instrument on board Sentinel-2a for operational forest status monitoring was also explored by comparing the temporal rate of change of the Sentinel-2-derived CI over areas with declining and healthy trees. Results demonstrated that the Sentinel-2a red-edge region was sensitive to the temporal dimension of forest condition, as the relationships obtained for pixels in healthy condition deviated from those of pixels undergoing decline.

  20. Development of a spatial analysis method using ground-based repeat photography to detect changes in the alpine treeline ecotone, Glacier National Park, Montana, U.S.A.

    USGS Publications Warehouse

    Roush, W.; Munroe, Jeffrey S.; Fagre, D.B.

    2007-01-01

    Repeat photography is a powerful tool for detection of landscape change over decadal timescales. Here a novel method is presented that applies spatial analysis software to digital photo-pairs, allowing vegetation change to be categorized and quantified. This method is applied to 12 sites within the alpine treeline ecotone of Glacier National Park, Montana, and is used to examine vegetation changes over timescales ranging from 71 to 93 years. Tree cover at the treeline ecotone increased in 10 out of the 12 photo-pairs (mean increase of 60%). Establishment occurred at all sites, infilling occurred at 11 sites. To demonstrate the utility of this method, patterns of tree establishment at treeline are described and the possible causes of changes within the treeline ecotone are discussed. Local factors undoubtedly affect the magnitude and type of the observed changes, however the ubiquity of the increase in tree cover implies a common forcing mechanism. Mean minimum summer temperatures have increased by 1.5??C over the past century and, coupled with variations in the amount of early spring snow water equivalent, likely account for much of the increase in tree cover at the treeline ecotone. Lastly, shortcomings of this method are presented along with possible solutions and areas for future research. ?? 2007 Regents of the University of Colorado.

  1. Automated method for the identification and analysis of vascular tree structures in retinal vessel network

    NASA Astrophysics Data System (ADS)

    Joshi, Vinayak S.; Garvin, Mona K.; Reinhardt, Joseph M.; Abramoff, Michael D.

    2011-03-01

    Structural analysis of retinal vessel network has so far served in the diagnosis of retinopathies and systemic diseases. The retinopathies are known to affect the morphologic properties of retinal vessels such as course, shape, caliber, and tortuosity. Whether the arteries and the veins respond to these changes together or in tandem has always been a topic of discussion. However the diseases such as diabetic retinopathy and retinopathy of prematurity have been diagnosed with the morphologic changes specific either to arteries or to veins. Thus a method describing the separation of retinal vessel trees imaged in a two dimensional color fundus image may assist in artery-vein classification and quantitative assessment of morphologic changes particular to arteries or veins. We propose a method based on mathematical morphology and graph search to identify and label the retinal vessel trees, which provides a structural mapping of vessel network in terms of each individual primary vessel, its branches and spatial positions of branching and cross-over points. The method was evaluated on a dataset of 15 fundus images resulting into an accuracy of 92.87 % correctly assigned vessel pixels when compared with the manual labeling of separated vessel trees. Accordingly, the structural mapping method performs well and we are currently investigating its potential in evaluating the characteristic properties specific to arteries or veins.

  2. Deriving pathway maps from automated text analysis using a grammar-based approach.

    PubMed

    Olsson, Björn; Gawronska, Barbara; Erlendsson, Björn

    2006-04-01

    We demonstrate how automated text analysis can be used to support the large-scale analysis of metabolic and regulatory pathways by deriving pathway maps from textual descriptions found in the scientific literature. The main assumption is that correct syntactic analysis combined with domain-specific heuristics provides a good basis for relation extraction. Our method uses an algorithm that searches through the syntactic trees produced by a parser based on a Referent Grammar formalism, identifies relations mentioned in the sentence, and classifies them with respect to their semantic class and epistemic status (facts, counterfactuals, hypotheses). The semantic categories used in the classification are based on the relation set used in KEGG (Kyoto Encyclopedia of Genes and Genomes), so that pathway maps using KEGG notation can be automatically generated. We present the current version of the relation extraction algorithm and an evaluation based on a corpus of abstracts obtained from PubMed. The results indicate that the method is able to combine a reasonable coverage with high accuracy. We found that 61% of all sentences were parsed, and 97% of the parse trees were judged to be correct. The extraction algorithm was tested on a sample of 300 parse trees and was found to produce correct extractions in 90.5% of the cases.

  3. Event Classification and Identification Based on the Characteristic Ellipsoid of Phasor Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jian; Diao, Ruisheng; Makarov, Yuri V.

    2011-09-23

    In this paper, a method to classify and identify power system events based on the characteristic ellipsoid of phasor measurement is presented. The decision tree technique is used to perform the event classification and identification. Event types, event locations and clearance times are identified by decision trees based on the indices of the characteristic ellipsoid. A sufficiently large number of transient events were simulated on the New England 10-machine 39-bus system based on different system configurations. Transient simulations taking into account different event types, clearance times and various locations are conducted to simulate phasor measurement. Bus voltage magnitudes and recordedmore » reactive and active power flows are used to build the characteristic ellipsoid. The volume, eccentricity, center and projection of the longest axis in the parameter space coordinates of the characteristic ellipsoids are used to classify and identify events. Results demonstrate that the characteristic ellipsoid and the decision tree are capable to detect the event type, location, and clearance time with very high accuracy.« less

  4. [Estimation of vegetation carbon storage and density of forests at tree layer in Tibet, China.

    PubMed

    Liu, Shu Qin; Xia, Chao Zong; Feng, Wei; Zhang, Ke Bin; Ma, Li; Liu, Jian Kang

    2017-10-01

    The estimation of vegetation carbon storage and density of forests at tree layer in Tibet Autonomous Region was calculated based on the eighth forest inventory data using the biomass inventory method, as well as other attributes like tree trunk density and carbon content of different species. The results showed that the total carbon storage at tree layer in Tibet forest ecosystem was 1.067×10 9 t and the average carbon density was 72.49 t·hm -2 . The carbon storage at tree layer of different stands was in the order of arbor forest > scattered wood > sparse forest > alluvial tree. The carbon storage of different forest types at tree layer were in the order of shelterbelt > special purpose forest > timber forest > firewood forest. The proportion of the first mentioned two was 88.5%, and the average carbon density of different forest types at tree layer was 88.09 t·hm -2 . The carbon sto-rage and its distribution area at tree layer in different forest groups were in the same order, followed by mature forest > over mature forest > near mature forest > middle aged forest > young forest. The carbon storage in mature forests accounted for 50% of the total carbon storage at tree layer in diffe-rent forest groups. The carbon storage at tree layer in different forest groups increased first and then decreased with the increase of stand ages.

  5. Gis-Based Multi-Criteria Decision Analysis for Forest Fire Risk Mapping

    NASA Astrophysics Data System (ADS)

    Akay, A. E.; Erdoğan, A.

    2017-11-01

    The forested areas along the coastal zone of the Mediterranean region in Turkey are classified as first-degree fire sensitive areas. Forest fires are major environmental disaster that affects the sustainability of forest ecosystems. Besides, forest fires result in important economic losses and even threaten human lives. Thus, it is critical to determine the forested areas with fire risks and thereby minimize the damages on forest resources by taking necessary precaution measures in these areas. The risk of forest fire can be assessed based on various factors such as forest vegetation structures (tree species, crown closure, tree stage), topographic features (slope and aspect), and climatic parameters (temperature, wind). In this study, GIS-based Multi-Criteria Decision Analysis (MCDA) method was used to generate forest fire risk map. The study was implemented in the forested areas within Yayla Forest Enterprise Chiefs at Dursunbey Forest Enterprise Directorate which is classified as first degree fire sensitive area. In the solution process, "extAhp 2.0" plug-in running Analytic Hierarchy Process (AHP) method in ArcGIS 10.4.1 was used to categorize study area under five fire risk classes: extreme risk, high risk, moderate risk, and low risk. The results indicated that 23.81 % of the area was of extreme risk, while 25.81 % was of high risk. The result indicated that the most effective criterion was tree species, followed by tree stages. The aspect had the least effective criterion on forest fire risk. It was revealed that GIS techniques integrated with MCDA methods are effective tools to quickly estimate forest fire risk at low cost. The integration of these factors into GIS can be very useful to determine forested areas with high fire risk and also to plan forestry management after fire.

  6. A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery.

    PubMed

    Siddiqui, Fasahat Ullah; Teng, Shyh Wei; Awrangjeb, Mohammad; Lu, Guojun

    2016-07-19

    Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics.

  7. A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery

    PubMed Central

    Siddiqui, Fasahat Ullah; Teng, Shyh Wei; Awrangjeb, Mohammad; Lu, Guojun

    2016-01-01

    Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics. PMID:27447631

  8. Drought variation of western Chinese Loess Plateau since 1568 and its linkages with droughts in western North America

    NASA Astrophysics Data System (ADS)

    Fang, Keyan; Guo, Zhengtang; Chen, Deliang; Linderholm, Hans W.; Li, Jinbao; Zhou, Feifei; Guo, Guoyang; Dong, Zhipeng; Li, Yingjun

    2017-12-01

    Understanding long-term drought variations in the past can help to evaluate ongoing and future hydroclimate change in the arid western Chinese Loess Plateau (WCLP), a region with increasing demand for water resources due to the increasing population and socioeconomic activities. Here we present a new tree-ring chronology inform the WCLP, which shows coherent interannual variations with tree-ring chronologies from 7 neighboring areas across the WCLP, suggesting a common regional climate control over tree growth. However, considerable differences are observed among their interdecadal variations, which are likely due to growth disturbances at interdecadal timescales. To deal with this issue, we use a frequency based method to develop a composite tree-ring chronology from 401 tree-ring series from these 8 sites, which shows more pronounced interdecadal variability than a chronology developed using traditional methods. The composite tree-ring chronology is used to reconstruct the annual precipitation from previous August to current July from 1568 to 2012, extending about 50 years longer than the previous longest tree-ring reconstruction from the region. The driest epoch of our reconstruction is found in the 1920s-1930s, which matches well with droughts recorded in historical documents. Over the past four centuries, a strong resemblance between drought variability in the WCLP and western North America (WNA) is evident on multidecadal timescales, but this relationship breaks down on timescales shorter than about 50 years.

  9. Phylogenic inference using alignment-free methods for applications in microbial community surveys using 16s rRNA gene

    PubMed Central

    2017-01-01

    The diversity of microbiota is best explored by understanding the phylogenetic structure of the microbial communities. Traditionally, sequence alignment has been used for phylogenetic inference. However, alignment-based approaches come with significant challenges and limitations when massive amounts of data are analyzed. In the recent decade, alignment-free approaches have enabled genome-scale phylogenetic inference. Here we evaluate three alignment-free methods: ACS, CVTree, and Kr for phylogenetic inference with 16s rRNA gene data. We use a taxonomic gold standard to compare the accuracy of alignment-free phylogenetic inference with that of common microbiome-wide phylogenetic inference pipelines based on PyNAST and MUSCLE alignments with FastTree and RAxML. We re-simulate fecal communities from Human Microbiome Project data to evaluate the performance of the methods on datasets with properties of real data. Our comparisons show that alignment-free methods are not inferior to alignment-based methods in giving accurate and robust phylogenic trees. Moreover, consensus ensembles of alignment-free phylogenies are superior to those built from alignment-based methods in their ability to highlight community differences in low power settings. In addition, the overall running times of alignment-based and alignment-free phylogenetic inference are comparable. Taken together our empirical results suggest that alignment-free methods provide a viable approach for microbiome-wide phylogenetic inference. PMID:29136663

  10. Bacterial whole genome-based phylogeny: construction of a new benchmarking dataset and assessment of some existing methods.

    PubMed

    Ahrenfeldt, Johanne; Skaarup, Carina; Hasman, Henrik; Pedersen, Anders Gorm; Aarestrup, Frank Møller; Lund, Ole

    2017-01-05

    Whole genome sequencing (WGS) is increasingly used in diagnostics and surveillance of infectious diseases. A major application for WGS is to use the data for identifying outbreak clusters, and there is therefore a need for methods that can accurately and efficiently infer phylogenies from sequencing reads. In the present study we describe a new dataset that we have created for the purpose of benchmarking such WGS-based methods for epidemiological data, and also present an analysis where we use the data to compare the performance of some current methods. Our aim was to create a benchmark data set that mimics sequencing data of the sort that might be collected during an outbreak of an infectious disease. This was achieved by letting an E. coli hypermutator strain grow in the lab for 8 consecutive days, each day splitting the culture in two while also collecting samples for sequencing. The result is a data set consisting of 101 whole genome sequences with known phylogenetic relationship. Among the sequenced samples 51 correspond to internal nodes in the phylogeny because they are ancestral, while the remaining 50 correspond to leaves. We also used the newly created data set to compare three different online available methods that infer phylogenies from whole-genome sequencing reads: NDtree, CSI Phylogeny and REALPHY. One complication when comparing the output of these methods with the known phylogeny is that phylogenetic methods typically build trees where all observed sequences are placed as leafs, even though some of them are in fact ancestral. We therefore devised a method for post processing the inferred trees by collapsing short branches (thus relocating some leafs to internal nodes), and also present two new measures of tree similarity that takes into account the identity of both internal and leaf nodes. Based on this analysis we find that, among the investigated methods, CSI Phylogeny had the best performance, correctly identifying 73% of all branches in the tree and 71% of all clades. We have made all data from this experiment (raw sequencing reads, consensus whole-genome sequences, as well as descriptions of the known phylogeny in a variety of formats) publicly available, with the hope that other groups may find this data useful for benchmarking and exploring the performance of epidemiological methods. All data is freely available at: https://cge.cbs.dtu.dk/services/evolution_data.php .

  11. Acoustic evaluation of wood quality in standing trees. Part I, Acoustic wave behavior

    Treesearch

    Xiping Wang; Robert J. Ross; Peter Carter

    2007-01-01

    Acoustic wave velocities in standing trees or live softwood species were measured by the time-of-flight (TOF) method. Tree velocities were compared with acoustic velocities measured in corresponding butt logs through a resonance acoustic method. The experimental data showed a skewed relationship between tree and log acoustic measurements. For most trees tested,...

  12. Automated methods of tree boundary extraction and foliage transparency estimation from digital imagery

    Treesearch

    Sang-Mook Lee; Neil A. Clark; Philip A. Araman

    2003-01-01

    Foliage transparency in trees is an important indicator for forest health assessment. This paper helps advance transparency measurement research by presenting methods of automatic tree boundary extraction and foliage transparency estimation from digital images taken from the ground of open grown trees.Extraction of proper boundaries of tree crowns is the...

  13. An analysis of methods for the selection of trees from wild stands

    Treesearch

    F. Thomas Ledig

    1976-01-01

    The commonly applied comparison-tree method of selection is analyzed as a form of within-family selection. If environmental variarion among comparison- and select-tree groups, c2, is a relatively small proportion (17 percent or less with 5 comparison trees) of the total variation, comparison-tree selection will result in less...

  14. Integrating semantic information into multiple kernels for protein-protein interaction extraction from biomedical literatures.

    PubMed

    Li, Lishuang; Zhang, Panpan; Zheng, Tianfu; Zhang, Hongying; Jiang, Zhenchao; Huang, Degen

    2014-01-01

    Protein-Protein Interaction (PPI) extraction is an important task in the biomedical information extraction. Presently, many machine learning methods for PPI extraction have achieved promising results. However, the performance is still not satisfactory. One reason is that the semantic resources were basically ignored. In this paper, we propose a multiple-kernel learning-based approach to extract PPIs, combining the feature-based kernel, tree kernel and semantic kernel. Particularly, we extend the shortest path-enclosed tree kernel (SPT) by a dynamic extended strategy to retrieve the richer syntactic information. Our semantic kernel calculates the protein-protein pair similarity and the context similarity based on two semantic resources: WordNet and Medical Subject Heading (MeSH). We evaluate our method with Support Vector Machine (SVM) and achieve an F-score of 69.40% and an AUC of 92.00%, which show that our method outperforms most of the state-of-the-art systems by integrating semantic information.

  15. An islanding detection methodology combining decision trees and Sandia frequency shift for inverter-based distributed generations

    DOE PAGES

    Azim, Riyasat; Li, Fangxing; Xue, Yaosuo; ...

    2017-07-14

    Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less

  16. An islanding detection methodology combining decision trees and Sandia frequency shift for inverter-based distributed generations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azim, Riyasat; Li, Fangxing; Xue, Yaosuo

    Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less

  17. Patterns of thinking about phylogenetic trees: A study of student learning and the potential of tree thinking to improve comprehension of biological concepts

    NASA Astrophysics Data System (ADS)

    Naegle, Erin

    Evolution education is a critical yet challenging component of teaching and learning biology. There is frequently an emphasis on natural selection when teaching about evolution and conducting educational research. A full understanding of evolution, however, integrates evolutionary processes, such as natural selection, with the resulting evolutionary patterns, such as species divergence. Phylogenetic trees are models of evolutionary patterns. The perspective gained from understanding biology through phylogenetic analyses is referred to as tree thinking. Due to the increasing prevalence of tree thinking in biology, understanding how to read phylogenetic trees is an important skill for students to learn. Interpreting graphics is not an intuitive process, as graphical representations are semiotic objects. This is certainly true concerning phylogenetic tree interpretation. Previous research and anecdotal evidence report that students struggle to correctly interpret trees. The objective of this research was to describe and investigate the rationale underpinning the prior knowledge of introductory biology students' tree thinking Understanding prior knowledge is valuable as prior knowledge influences future learning. In Chapter 1, qualitative methods such as semi-structured interviews were used to explore patterns of student rationale in regard to tree thinking. Seven common tree thinking misconceptions are described: (1) Equating the degree of trait similarity with the extent of relatedness, (2) Environmental change is a necessary prerequisite to evolution, (3) Essentialism of species, (4) Evolution is inherently progressive, (5) Evolution is a linear process, (6) Not all species are related, and (7) Trees portray evolution through the hybridization of species. These misconceptions are based in students' incomplete or incorrect understanding of evolution. These misconceptions are often reinforced by the misapplication of cultural conventions to make sense of trees. Chapter 2 explores the construction, validity, and reliability of a tree thinking concept inventory. Concept inventories are research based instruments that diagnose faulty reasoning among students. Such inventories are tools for improving teaching and learning of concepts. Test scores indicate that tree thinking misconceptions are held by novice and intermediate biology students. Finally, Chapter 3 presents a tree thinking rubric. The rubric aids teachers in selecting and improving introductory tree thinking learning exercises that address students' tree thinking misconceptions.

  18. A research of selected textural features for detection of asbestos-cement roofing sheets using orthoimages

    NASA Astrophysics Data System (ADS)

    Książek, Judyta

    2015-10-01

    At present, there has been a great interest in the development of texture based image classification methods in many different areas. This study presents the results of research carried out to assess the usefulness of selected textural features for detection of asbestos-cement roofs in orthophotomap classification. Two different orthophotomaps of southern Poland (with ground resolution: 5 cm and 25 cm) were used. On both orthoimages representative samples for two classes: asbestos-cement roofing sheets and other roofing materials were selected. Estimation of texture analysis usefulness was conducted using machine learning methods based on decision trees (C5.0 algorithm). For this purpose, various sets of texture parameters were calculated in MaZda software. During the calculation of decision trees different numbers of texture parameters groups were considered. In order to obtain the best settings for decision trees models cross-validation was performed. Decision trees models with the lowest mean classification error were selected. The accuracy of the classification was held based on validation data sets, which were not used for the classification learning. For 5 cm ground resolution samples, the lowest mean classification error was 15.6%. The lowest mean classification error in the case of 25 cm ground resolution was 20.0%. The obtained results confirm potential usefulness of the texture parameter image processing for detection of asbestos-cement roofing sheets. In order to improve the accuracy another extended study should be considered in which additional textural features as well as spectral characteristics should be analyzed.

  19. Policy Tree Optimization for Adaptive Management of Water Resources Systems

    NASA Astrophysics Data System (ADS)

    Herman, J. D.; Giuliani, M.

    2016-12-01

    Water resources systems must cope with irreducible uncertainty in supply and demand, requiring policy alternatives capable of adapting to a range of possible future scenarios. Recent studies have developed adaptive policies based on "signposts" or "tipping points", which are threshold values of indicator variables that signal a change in policy. However, there remains a need for a general method to optimize the choice of indicators and their threshold values in a way that is easily interpretable for decision makers. Here we propose a conceptual framework and computational algorithm to design adaptive policies as a tree structure (i.e., a hierarchical set of logical rules) using a simulation-optimization approach based on genetic programming. We demonstrate the approach using Folsom Reservoir, California as a case study, in which operating policies must balance the risk of both floods and droughts. Given a set of feature variables, such as reservoir level, inflow observations and forecasts, and time of year, the resulting policy defines the conditions under which flood control and water supply hedging operations should be triggered. Importantly, the tree-based rule sets are easy to interpret for decision making, and can be compared to historical operating policies to understand the adaptations needed under possible climate change scenarios. Several remaining challenges are discussed, including the empirical convergence properties of the method, and extensions to irreversible decisions such as infrastructure. Policy tree optimization, and corresponding open-source software, provide a generalizable, interpretable approach to designing adaptive policies under uncertainty for water resources systems.

  20. An empirical evaluation of two-stage species tree inference strategies using a multilocus dataset from North American pines

    PubMed Central

    2014-01-01

    Background As it becomes increasingly possible to obtain DNA sequences of orthologous genes from diverse sets of taxa, species trees are frequently being inferred from multilocus data. However, the behavior of many methods for performing this inference has remained largely unexplored. Some methods have been proven to be consistent given certain evolutionary models, whereas others rely on criteria that, although appropriate for many parameter values, have peculiar zones of the parameter space in which they fail to converge on the correct estimate as data sets increase in size. Results Here, using North American pines, we empirically evaluate the behavior of 24 strategies for species tree inference using three alternative outgroups (72 strategies total). The data consist of 120 individuals sampled in eight ingroup species from subsection Strobus and three outgroup species from subsection Gerardianae, spanning ∼47 kilobases of sequence at 121 loci. Each “strategy” for inferring species trees consists of three features: a species tree construction method, a gene tree inference method, and a choice of outgroup. We use multivariate analysis techniques such as principal components analysis and hierarchical clustering to identify tree characteristics that are robustly observed across strategies, as well as to identify groups of strategies that produce trees with similar features. We find that strategies that construct species trees using only topological information cluster together and that strategies that use additional non-topological information (e.g., branch lengths) also cluster together. Strategies that utilize more than one individual within a species to infer gene trees tend to produce estimates of species trees that contain clades present in trees estimated by other strategies. Strategies that use the minimize-deep-coalescences criterion to construct species trees tend to produce species tree estimates that contain clades that are not present in trees estimated by the Concatenation, RTC, SMRT, STAR, and STEAC methods, and that in general are more balanced than those inferred by these other strategies. Conclusions When constructing a species tree from a multilocus set of sequences, our observations provide a basis for interpreting differences in species tree estimates obtained via different approaches that have a two-stage structure in common, one step for gene tree estimation and a second step for species tree estimation. The methods explored here employ a number of distinct features of the data, and our analysis suggests that recovery of the same results from multiple methods that tend to differ in their patterns of inference can be a valuable tool for obtaining reliable estimates. PMID:24678701

Top