Sample records for tree damage caused

  1. Evaluation of roadside greenbelt trees damage caused by strangler plants in Bogor

    NASA Astrophysics Data System (ADS)

    Danniswari, Dibyanti; Nasrullah, Nizar

    2017-10-01

    Certain plants are called stranglers (hemiepiphyte) because they grow on host trees and slowly choking the host, which often results in the host’s death. The existence of strangler plants on roadside greenbelt trees is quite common in Bogor, but they may cause tree’s failure and threaten users’ safety. To prevent such hazard, evaluation of roadside greenbelt trees damage caused by strangler plants is important. This study was directed to analyse the vegetation of strangler plants in Bogor, to assess the damage caused by stranglers, and to compose strangled trees maintenance recommendations. This study was conducted in March to May 2014 by doing survey at five major roads in Bogor, which were Jalan Ahmad Yani, Jalan Sudirman, Jalan Pemuda, Jalan Semeru, and Jalan Juanda. The results showed that strangler species found in Bogor are Ficus benjamina, Ficus glauca, Ficus elastica, and Schefflera actinophylla. The most common species in Bogor is F. benjamina. Host trees that tend to be preferred by strangler plants are trees with large trunk, many branches, and medium to high height. The maintenance for every strangled tree is different according to the damage level, mild to severe damage could be treated by strangler root cutting to tree logging, respectively.

  2. Control of deer damage with chemical repellents in regenerating hardwood stands

    Treesearch

    Brian J. MacGowan; Larry Severeid; Fred, Jr. Skemp

    2004-01-01

    Wildlife damage can be a major problem in natural tree regeneration or tree plantings. In the North Central Hardwoods region, white-tailed deer (Odocoileus virginianus) are a significant cause of damage to hardwood seedlings. We evaluated the use of a combination of chemical repellents (Hinder®, Tree Guard®, chicken eggs, and...

  3. Recovery of young ponderosa pines damaged by herbicide spraying

    Treesearch

    Jay R. Bentley; David A. Blakeman; Stanley B. Carpenter

    1971-01-01

    Foliage injury and over-all tree damage to ponderosa pine plantations from aerial sprays of 2,4,5-T in 1965 were evaluated. Damage in 1966 was compared to tree growth from 1966 to 1968. The herbicide treatment caused above-normal damage to young trees when applied in September in a year with above-average summer precipitation and freezing weather soon after treatment....

  4. Descriptive study of damage caused by the rhinoceros beetle, Oryctes agamemnon, and its influence on date palm oases of Rjim Maatoug, Tunisia.

    PubMed

    Soltani, Rasmi; Lkbel, Chaieb; Habib Ben Hamouda, Med

    2008-01-01

    Oryctes agamemnon (Burmeister 1847) (Coleoptera, Scarabaeidae) was accidentally introduced in the southwestern oases of Tunisia (Tozeur) around 1980 and spread to the Rjim Maatoug region. In these areas O. agamemnon was specific to date palm trees causing severe damage that can result in potential danger due to collapse of the tree. This study was conducted from April 2004 to March 2006 in 4 sites in the region of Rjim Maatoug. Different levels of palm tree attack were determined, ovioposition sites were identified, and pest damage was described in detail to specify their relative importance and to indicate factors governing palm tree attack. Eggs were individually oviposited in the attacked parts. Dead parts of palm trees were the main target of O. agamemnon including the respiratory roots, tough, trunk bark, dry petiole and the periphery of the crown. The crown itself was not attacked. Feeding by larvae caused significant damage. The biggest danger occurred when heavy attacks of larvae invaded the respiratory roots at the level of the soil, and secondarily on the periphery of the crown, which can result in fungal diseases. Several cases of Deglet Nour date palm tree collapse were caused by this pest in Rjim Maatoug. Attacks on other parts of the tree were without danger for the palm tree. In the absence of pest management, application of a quarantine program combined with field cultivation techniques could help farmers significantly decrease attack of O. agamemnon on palm trees.

  5. Descriptive Study of Damage Caused by the Rhinoceros Beetle, Oryctes agamemnon, and Its Influence on Date Palm Oases of Rjim Maatoug, Tunisia

    PubMed Central

    Soltani, Rasmi; lkbel, Chaieb; Habib Ben Hamouda, Med

    2008-01-01

    Oryctes agamemnon (Burmeister 1847) (Coleoptera, Scarabaeidae) was accidentally introduced in the southwestern oases of Tunisia (Tozeur) around 1980 and spread to the Rjim Maatoug region. In these areas O. agamemnon was specific to date palm trees causing severe damage that can result in potential danger due to collapse of the tree. This study was conducted from April 2004 to March 2006 in 4 sites in the region of Rjim Maatoug. Different levels of palm tree attack were determined, ovioposition sites were identified, and pest damage was described in detail to specify their relative importance and to indicate factors governing palm tree attack. Eggs were individually oviposited in the attacked parts. Dead parts of palm trees were the main target of O. agamemnon including the respiratory roots, tough, trunk bark, dry petiole and the periphery of the crown. The crown itself was not attacked. Feeding by larvae caused significant damage. The biggest danger occurred when heavy attacks of larvae invaded the respiratory roots at the level of the soil, and secondarily on the periphery of the crown, which can result in fungal diseases. Several cases of Deglet Nour date palm tree collapse were caused by this pest in Rjim Maatoug. Attacks on other parts of the tree were without danger for the palm tree. In the absence of pest management, application of a quarantine program combined with field cultivation techniques could help farmers significantly decrease attack of O. agamemnon on palm trees. PMID:20302545

  6. Logging damage to residual trees following commercial harvesting to different overstory retention levels in a mature hardwood stand in Tennessee

    Treesearch

    Wayne K. Clatterbuck

    2006-01-01

    Partial cutting in mature hardwood stands often causes physical damage to residual stems through felling and skidding resulting in a decline in bole quality and subsequent loss of tree value. This study assessed the logging damage to residual trees following commercial harvesting in a fully stocked, mature oak-hickory stand cut to three overstory basal area retention...

  7. Logging damage to residual trees following partial cutting in a green ash-sugarberry stand in the Mississippi Delta

    Treesearch

    James S. Meadows

    1993-01-01

    Partial cutting in bottomland hardwoods to control stand density and species composition sometimes results in logging damage to the lower bole and/or roots of residual trees. If severe, logging damage may lead to a decline in tree vigor, which may subsequently stimulate the production of epicormic branches, causing a decrease in bole quality and an eventual loss in...

  8. Logging Damage to Residual Trees Following Partial Cutting in a Green Ash-Sugarberry Stand in the Mississippi Delta

    Treesearch

    James S. Meadows

    1993-01-01

    Partial cutting in bottomland hardwoods to control stand density and species composition sometimes results in logging damage to the lower bole and/or roots of residual trees. If severe, logging damage may lead to a decline in tree vigor, which may subsequently stimulate the production of epicormic branches, causing a decrease in bole quality and an eventual loss in...

  9. Risk Assessment for the Southern Pine Beetle

    Treesearch

    Andrew Birt

    2011-01-01

    The southern pine beetle (SPB) causes significant damage (tree mortality) to pine forests. Although this tree mortality has characteristic temporal and spatial patterns, the precise location and timing of damage is to some extent unpredictable. Consequently, although forest managers are able to identify stands that are predisposed to SPB damage, they are unable to...

  10. Accidents caused by hazardous trees on California forest recreation sites

    Treesearch

    Lee A. Paine

    1966-01-01

    From 1959 to early 1966, tree failures caused an average of more than two injuries or deaths per year on forest recreation sites in California. Annual property damage is estimated at $25,100. Conifers accounted for three of every four accidents reported; pines and true firs were involved in 6 of every 10 incidents involving property damage, and in 9 of every 10...

  11. Comparison of exclusion and imidacloprid for reduction of oviposition damage to young trees by periodical cicadas (Hemiptera: Cicadidae).

    PubMed

    Ahern, Robert G; Frank, Steven D; Raupp, Michael J

    2005-12-01

    Insecticides are traditionally used to control periodical cicadas (Homoptera: Cicadidae) and to reduce associated injury caused by oviposition. However, research has shown that conventional insecticides have low or variable season-long efficacy in reducing injury caused by cicadas. New systemic neonicotinoid insecticides provide excellent levels of control against a variety of sucking insects. We compared the efficacy of a neonicotinoid insecticide, imidacloprid, and a nonchemical control measure, netting, to reduce cicada injury. Netted trees sustained very little injury, whereas unprotected trees were heavily damaged. Fewer eggnests, scars, and flags were observed on trees treated with imidacloprid compared with unprotected trees; however, the hatching of cicada eggs was unaffected by imidacloprid.

  12. Environmental impacts of forest road construction on mountainous terrain.

    PubMed

    Caliskan, Erhan

    2013-03-15

    Forest roads are the base infrastructure foundation of forestry operations. These roads entail a complex engineering effort because they can cause substantial environmental damage to forests and include a high-cost construction. This study was carried out in four sample sites of Giresun, Trabzon(2) and Artvin Forest Directorate, which is in the Black Sea region of Turkey. The areas have both steep terrain (30-50% gradient) and very steep terrain (51-80% gradient). Bulldozers and hydraulic excavators were determined to be the main machines for forest road construction, causing environmental damage and cross sections in mountainous areas.As a result of this study, the percent damage to forests was determined as follows: on steep terrain, 21% of trees were damaged by excavators and 33% of trees were damaged by bulldozers during forest road construction, and on very steep terrain, 27% of trees were damaged by excavators and 44% of trees were damaged by bulldozers during forest road construction. It was also determined that on steep terrain, when excavators were used, 12.23% less forest area was destroyed compared with when bulldozers were used and 16.13% less area was destroyed by excavators on very steep terrain. In order to reduce the environmental damage on the forest ecosystem, especially in steep terrains, hydraulic excavators should replace bulldozers in forest road construction activities.

  13. Seedling mortality in Hawaiian rain forest: The role of small-scale physical disturbance

    USGS Publications Warehouse

    Drake, D.R.; Pratt, L.W.

    2001-01-01

    Most montane rain forests on the island of Hawaii consist of a closed canopy formed by Cibotium spp. tree ferns beneath an open canopy of emergent Metrosideros polymorpha trees. We used artificial seedlings to assess the extent to which physical disturbance caused by the senescing fronds of tree ferns and the activities of feral pigs might limit tree regeneration. Artificial seedlings were established terrestrially (N = 300) or epiphytically (N = 300) on tree fern stems. Half of the seedlings on each substrate were in an exclosure lacking feral pigs and half were in forest with pigs present. After one year, the percentage of seedlings damaged was significantly greater among terrestrial seedlings (25.7%) than epiphytic seedlings (11.3%). Significantly more terrestrial seedlings were damaged in the presence of pigs (31.3%) than in the absence of pigs (20.0%). Senescing fronds of tree ferns were responsible for 60.3 percent of the damaged seedlings. Physical disturbance is potentially a major cause of seedling mortality and may reduce the expected half-life of a seedling cohort to less than two years.

  14. Estimation on rubber tree disturbance caused by typhoon Damery (200518) with Landsat and MODIS data in Hainan Island of China

    NASA Astrophysics Data System (ADS)

    Tan, Chenyan; Fang, Weihua; Li, Jian

    2016-04-01

    In 2005, Typhoon Damery (200518) caused severe damage to the rubber trees in Hainan Island with its destructive winds and rainfall. Selection of proper vegetation indices using multi-source remote sensing data is critical to the assessment of forest disturbance and damage loss for this event. In this study, we will compare the performance of seven vegetation indices derived from MODIS and Landsat TM imageries prior to and after typhoon Damery, in order to select an optimal index for identifying rubber tree disturbance. The indices to be compared are normalized difference vegetation index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Infrared Index (NDII), Enhanced vegetation index (EVI), Leaf area index (LAI), forest z-score (IFZ), and Disturbance Index (DI). The ground truth data of rubber tree damage collected through field investigation was used to verify and compare the results. Our preliminary result for the area with ground-truth data shows that DI has the most significant performance for disturbance detection for this typhoon event. This index DI is then applied to all the areas in Hainan Island hit by Darmey to evaluate the overall forest damage severity. At last, rubber tree damage severity is analyzed with other typhoon hazard factors such as wind, topography, soil and precipitation.

  15. Animal damage to conifers on national forests in the Pacific Northwest region.

    Treesearch

    Glenn L. Crouch

    1969-01-01

    Animal damage to conifers is a timely topic in the Pacific Northwest. Foresters in this Region are increasingly concerned and perplexed by damage caused by animals to natural and planted seedlings and larger growing stock. Nearly every animal inhabiting for st land is believed to injure seedlings and small trees to some degree. Mice girdle small trees, and bears girdle...

  16. Environmental impacts of forest road construction on mountainous terrain

    PubMed Central

    2013-01-01

    Forest roads are the base infrastructure foundation of forestry operations. These roads entail a complex engineering effort because they can cause substantial environmental damage to forests and include a high-cost construction. This study was carried out in four sample sites of Giresun, Trabzon(2) and Artvin Forest Directorate, which is in the Black Sea region of Turkey. The areas have both steep terrain (30-50% gradient) and very steep terrain (51-80% gradient). Bulldozers and hydraulic excavators were determined to be the main machines for forest road construction, causing environmental damage and cross sections in mountainous areas. As a result of this study, the percent damage to forests was determined as follows: on steep terrain, 21% of trees were damaged by excavators and 33% of trees were damaged by bulldozers during forest road construction, and on very steep terrain, 27% of trees were damaged by excavators and 44% of trees were damaged by bulldozers during forest road construction. It was also determined that on steep terrain, when excavators were used, 12.23% less forest area was destroyed compared with when bulldozers were used and 16.13% less area was destroyed by excavators on very steep terrain. In order to reduce the environmental damage on the forest ecosystem, especially in steep terrains, hydraulic excavators should replace bulldozers in forest road construction activities. PMID:23497078

  17. Seasonal occurrence and impact of Halyomorpha halys (Hemiptera: Pentatomidae) in tree fruit.

    PubMed

    Nielsen, Anne L; Hamilton, George C

    2009-06-01

    Halyomorpha halys is an introduced stink bug species from Asia that is spreading throughout the Mid-Atlantic United States. It is native to South Korea, Japan, and eastern China, where it is an occasional pest of tree fruit, including apple and pear. Cage experiments with adults placed on apple and peach during critical plant growth stages demonstrate that it can cause damage to developing fruit during mid- and late season growth periods and that feeding occurs on all regions of the fruit. Feeding that occurred during pit hardening/mid-season and final swell periods were apparent as damage at harvest, whereas feeding at shuck split/petal fall in peaches and apples caused fruit abscission. Tree fruit at two commercial farms were sampled weekly in 2006-2007 to determine H. halys seasonality. Low densities of nymphs in apple suggest that it is an unsuitable developmental host. Both nymphs and adults were found on pear fruits with peak populations occurring in early July and mid-August, the time when pit hardening/mid-season and swell period damage occurs. At both farms, stink bug damage was greater than 25% damaged fruit per tree. We attribute this to H. halys because population densities were significantly higher than native pentatomids at both locations in both beat samples and blacklight trap captures. The data presented here documents the potential for H. halys to cause damage in orchards throughout the Mid-Atlantic United States and shows the need for development of appropriate control strategies.

  18. Hurricane Andrew Damage in Relation to Wood Decay Fungi and Insects in Bottomland Hardwoods of the Atchafalaya Basin, Louisiana

    Treesearch

    Theodor D. Leininger; A. Dan Wilson; Donald G. Lester

    1997-01-01

    Hurricane Andrew caused damage to more than 780 sq.km of bottomland hardwood and cypress-tupelo forests in the Atchafalaya Basin of Louisiana in August 1992. Trees in bottomland hardwood sites were examined, in early May 1994, for signs and symptoms of wood decay fungi, and for insect damage, ostensibly present before the hurricane, which may have predisposed trees to...

  19. Twig Girdler, Oncideres Cingulata (Say), Attacks Terminals of Plantation-managed Pecans

    Treesearch

    Harvey E. Kennedy; J.D. Solomon; R.M. Krinard

    1981-01-01

    Sweet pecan, a prized species for use in fine furniture and paneling, is subject to branch and terminal damage by the pecan twig girdler that could cause deformities in the trees. In the young plantation studied, 55 percent of the trees in disked plots and 40 percent in mowed plots were damaged by the twig girdler, but only 19 percent in control plots were damaged....

  20. Geospatial relationships of tree species damage caused by Hurricane Katrina in south Mississippi

    Treesearch

    Mark W. Garrigues; Zhaofei Fan; David L. Evans; Scott D. Roberts; William H. Cooke III

    2012-01-01

    Hurricane Katrina generated substantial impacts on the forests and biological resources of the affected area in Mississippi. This study seeks to use classification tree analysis (CTA) to determine which variables are significant in predicting hurricane damage (shear or windthrow) in the Southeast Mississippi Institute for Forest Inventory District. Logistic regressions...

  1. Are pileated woodpeckers attracted to red-cockaded woodpecker cavity trees?

    Treesearch

    Daniel Saenz; Richard N. Conner; James R. McCormick

    2002-01-01

    Pileated Woodpeckers (Dryocopus pileatus) cause damage to Red-cockaded Woodpecker (Picoides borealis) cavity trees in the form of cavity enlargement or other excavations on the surface of the pine tree. However, it is not known whether Pileated Woodpeckers excavate more frequently on Red-cockaded Woodpecker cavity trees than on...

  2. Damage from wind and other causes in mixed white fir-red fir stands adjacent to clearcuttings

    Treesearch

    Donald T. Gordon

    1973-01-01

    Damage to timber surrounding clearcuttings and in one light selection cutting in mixed white fir-red fir stands was monitored for 6 years in northeastern California. In some years, bark beetles apparently killed more trees than did wind damage, but in two of the study years, severe wind storms caused much damage. One storm produced mainly break-age, apparently...

  3. HOW to Recognize Hazardous Defects in Trees

    Treesearch

    Minnesota Department of Natural Resources; USDA Forest Service

    1996-01-01

    Trees add to our enjoyment of outdoor experiences whether in forests, parks, or urban landscapes. Too often, we are unaware of the risks associated with defective trees, which can cause personal injury and property damage. Interest in hazard tree management has increased in recent years due to safety and liability concerns resulting from preventable accidents....

  4. Apple anthracnose canker life cycle and disease cycle

    USDA-ARS?s Scientific Manuscript database

    Apple anthracnose [caused by Neofabraea malicorticis (H.S. Jacks) anamorph Cryptosporiopsis curvispora (Peck)] is a fungal disease that impacts apple production. The pathogen produces cankers on trees as well as a rot on the fruit known as ‘Bull’s-eye rot’. The cankers cause severe damage to trees...

  5. Effects of a prescribed fire on oak woodland stand structure

    Treesearch

    Danny L. Fry

    2002-01-01

    Fire damage and tree characteristics of mixed deciduous oak woodlands were recorded after a prescription burn in the summer of 1999 on Mt. Hamilton Range, Santa Clara County, California. Trees were tagged and monitored to determine the effects of fire intensity on damage, recovery and survivorship. Fire-caused mortality was low; 2-year post-burn survey indicates that...

  6. Quantifying the legacy of foliar winter injury on woody aboveground carbon sequestration of red spruce trees

    Treesearch

    Alexandra M. Kosiba; Paul G. Schaberg; Gary J. Hawley; Christopher F. Hansen

    2013-01-01

    Red spruce (Picea rubens Sarg.) decline has been quantitatively attributed to foliar winter injury caused by freezing damage. The results of this injury include foliar mortality, crown deterioration, and negative carbon (C) balances that can lead to tree health declines and eventual mortality. In 2003, a severe region-wide event damaged over 90% of...

  7. HOW to Diagnose Black Walnut Damage

    Treesearch

    Barbara C. Weber; Robert L. Anderson; William H. Hoffard

    Black walnut trees, like all other plants, are susceptible to a variety of injuries that reduce or destroy their usefulness. The first step in preventing or controlling these injuries is to identify their cause. Most damage is caused by disease, insects, birds, mammals, or weather. Presented here is a method for identifying the most common causes of injury to black...

  8. Insects and Related Pests of Trees, Shrubs, and Lawns. MP-25R.

    ERIC Educational Resources Information Center

    Spackman, Everett W.; Lawson, Fred A.

    This document discusses identification and control of the pests of trees and shrubs. The insects are grouped according to feeding habits and the type of damage caused to plants. Categories include the sucking insects and mites, leaf eating insects, pests attacking trunks and branches, and gall causing insects. (CS)

  9. Decision tree analysis of factors influencing rainfall-related building damage

    NASA Astrophysics Data System (ADS)

    Spekkers, M. H.; Kok, M.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.

    2014-04-01

    Flood damage prediction models are essential building blocks in flood risk assessments. Little research has been dedicated so far to damage of small-scale urban floods caused by heavy rainfall, while there is a need for reliable damage models for this flood type among insurers and water authorities. The aim of this paper is to investigate a wide range of damage-influencing factors and their relationships with rainfall-related damage, using decision tree analysis. For this, district-aggregated claim data from private property insurance companies in the Netherlands were analysed, for the period of 1998-2011. The databases include claims of water-related damage, for example, damages related to rainwater intrusion through roofs and pluvial flood water entering buildings at ground floor. Response variables being modelled are average claim size and claim frequency, per district per day. The set of predictors include rainfall-related variables derived from weather radar images, topographic variables from a digital terrain model, building-related variables and socioeconomic indicators of households. Analyses were made separately for property and content damage claim data. Results of decision tree analysis show that claim frequency is most strongly associated with maximum hourly rainfall intensity, followed by real estate value, ground floor area, household income, season (property data only), buildings age (property data only), ownership structure (content data only) and fraction of low-rise buildings (content data only). It was not possible to develop statistically acceptable trees for average claim size, which suggest that variability in average claim size is related to explanatory variables that cannot be defined at the district scale. Cross-validation results show that decision trees were able to predict 22-26% of variance in claim frequency, which is considerably better compared to results from global multiple regression models (11-18% of variance explained). Still, a large part of the variance in claim frequency is left unexplained, which is likely to be caused by variations in data at subdistrict scale and missing explanatory variables.

  10. Effects of prescribed burning on leaves and flowering Quercus garryana

    Treesearch

    David H. Peter; James K. Agee; Douglas G. Sprugel

    2011-01-01

    Many woodland understories are managed with prescribed fire. While prescribed burns intended to manipulate understory vegetation and fuels usually do not cause excessive tree mortality, sublethal canopy damage may occur and can affect tree vigor and reproductive output. We monitored Quercus garryana trees in western Washington, USA with multiple...

  11. 7 CFR 701.205 - Land eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and must, as determined by FSA: (1) Have existing tree cover or have had tree cover immediately before the natural disaster and be suitable for growing trees; (2) Have damage to natural resources caused by... (3) Be physically located in a county in which EFRP has been implemented. (b) Land is ineligible for...

  12. 7 CFR 701.205 - Land eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and must, as determined by FSA: (1) Have existing tree cover or have had tree cover immediately before the natural disaster and be suitable for growing trees; (2) Have damage to natural resources caused by... (3) Be physically located in a county in which EFRP has been implemented. (b) Land is ineligible for...

  13. 7 CFR 701.205 - Land eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and must, as determined by FSA: (1) Have existing tree cover or have had tree cover immediately before the natural disaster and be suitable for growing trees; (2) Have damage to natural resources caused by... (3) Be physically located in a county in which EFRP has been implemented. (b) Land is ineligible for...

  14. 7 CFR 701.205 - Land eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and must, as determined by FSA: (1) Have existing tree cover or have had tree cover immediately before the natural disaster and be suitable for growing trees; (2) Have damage to natural resources caused by... (3) Be physically located in a county in which EFRP has been implemented. (b) Land is ineligible for...

  15. An assessment of factors associated with damage to tree crowns from the 1987 wildfires in northern California

    Treesearch

    C. Phillip Weatherspoon; Carl N. Skinner

    1995-01-01

    Relationships between (1) degree of damage caused by the 1987 fires in northern California and (2) prior management activities, fuelbed characteristics, and site/stand factors were studied on the Hayfork Ranger District of the Shasta-Trinity National Forests. Postfire aerial photography was used to assess scorch and consumption of tree crowns (the selected measure of...

  16. Acute and long-term effects of irradiation on pine (Pinus silvestris) strands post-Chernobyl.

    PubMed

    Arkhipov, N P; Kuchma, N D; Askbrant, S; Pasternak, P S; Musica, V V

    1994-12-11

    The effect of ionizing irradiation on the viability of pine stands after the fallout from the damaged nuclear energy plant at Chernobyl (ChNPP) was shown within the territory of the 10-km zone. During the period 1986-1991, irradiated and damaged forest stands, so-called 'red forest', located in this area were systematically classified by observation. Mortality rate, re-establishment, development of tree canopies, reproduction anomalies and stand viability were shown to be dependent on absorbed irradiation dose, on the age of the stand and on forest composition. For pine stands in the acutely affected zone, doses of more than 60 Gy resulted in a massive mortality and no regeneration of pine trees since 1987. The injured trees had burned or had dried-up. The drying process was accelerated by a massive production of pathogenic insects invading the dying trees. Specifically, irradiation doses of 10-60 Gy, 1-10 Gy and 0.1-1 Gy caused high, medium and low injury to the forest stands, respectively. Doses of less than 0.1 Gy did not cause any visible damage to the trees. In 1987, repair processes were displayed by the tree canopies and practically the entire viability of the forest stands had recovered except for trees in the acute and highly affected zones. The young forest was reestablished in the same place as the perished trees and new pine saplings were planted on the reclaimed areas.

  17. Evaluation of a portable MOS electronic nose to detect root rots in shade tree species

    Treesearch

    Manuela Baietto; Letizia Pozzi; Alphus Dan Wilson; Daniele Bassi

    2013-01-01

    The early detection of wood decays in high-value standing trees is very important in urban areas because mitigating control measures must be implemented long before tree failures result in property damage or injuries to citizens. Adverse urban environments increase physiological stresses in trees, causing greater susceptibility to attacks by pathogenic decay fungi. The...

  18. Stormwise: Integrating arboriculture and silviculture to create storm-resilient roadside forests

    Treesearch

    Jeffrey S. Ward; Thomas E. Worthley; Thomas J. Degnan; Joseph P. Barsky

    2017-01-01

    The band of trees within 30 m of roads (i.e., roadside forests) is often left unmanaged during traditional forest management activities because of liability concerns about inadvertently causing a vehicular accident or damaging utility lines during harvests. The trees in these same neglected forests often cause extensive utility outages and road blockages during extreme...

  19. Gouty pitch midge damage to ponderosa pines planted on fertile and infertile soils in the western Sierra Nevada

    Treesearch

    George T. Ferrell; William D. Bedard; James L. Jenkinson

    1987-01-01

    Crown damage caused by gouty pitch midge (GPM) and its effects on tree growth were assessed in two 14-year-old ponderosa pine plantations, one on a shallow, infertile soil derived from serpentine and the other on a deeper, more fertile nonserpentine soil of marine parent material. Seed sources for each plantation were nearby indigenous stands on the same soils. Trees...

  20. Black twig borer...a tree killer in Hawaii

    Treesearch

    Robert E. Nelson; Clifton J. Davis

    1972-01-01

    The black twig borer (Xylosandrus compactus Eichhoff), first discovered in Hawaii in 1961, has become widespread on many host plants throughout the islands. Beetle infestations have caused heavy damage to trees but only recently have attacks been associated with death of apparently vigourous trees in forest stands. The beetle and its associated micro...

  1. Field data analysis of asphalt road paving damages caused by tree roots

    NASA Astrophysics Data System (ADS)

    Weissteiner, Clemens; Rauch, Hans Peter

    2015-04-01

    Tree root damages are a frequent problem along paved cycling paths and service roads of rivers and streams. Damages occur mostly on streets with thin asphalt layers and especially in the upper part of the pavement structure. The maintainers of these roads are faced with frequent and high annual repair costs in order to guarantee traffic safety and pleasant cycling conditions. The focus of this research project is to get an insight in the processes governing the growth of the tree roots in asphalt layers and to develop test methods to avoid rood penetration into the road structure. Tree vegetation has been analysed selectively along a 300 km long cycle and service path of the Danube River in the region of Austria. Tree characteristics, topographic as well as hydrologic conditions have been analysed at 119 spots with different asphalt damage intensities. On 5 spots additional investigations on the root growth characteristics where performed. First results underline a high potential damage of pioneer trees which are growing naturally along rivers. Mostly, local occurring fast growing tree species penetrated the road layer structure. In a few cases other tree species where as well responsible for road structure damages. The age respectively the size of the trees didn't seem to influence significantly the occurrence of asphalt damages. Road structure damages were found to appear unaffected by hydrologic or topographic conditions. However, results have to be interpreted with care as the investigations represent a temporally limited view of the problem situation. The investigations of the root growth characteristics proved that tree roots penetrate the road structure mostly between the gravel sublayer and the asphalt layer as the layers it selves don't allow a penetration because of their high compaction. Furthermore roots appear to be attracted by condensed water at the underside of the asphalt layer. Further steps of the research project imply testing of different compositions of gravel size mixtures as sublayer material. A coarse gravel size mixture allows the condensed water to drain in deeper layers and inhibits root growth because of mechanical impedance and air pruning of roots.

  2. Assessing the Cost of an Invasive Forest Pathogen: A Case Study with Oak Wilt

    NASA Astrophysics Data System (ADS)

    Haight, Robert G.; Homans, Frances R.; Horie, Tetsuya; Mehta, Shefali V.; Smith, David J.; Venette, Robert C.

    2011-03-01

    Economic assessment of damage caused by invasive alien species provides useful information to consider when determining whether management programs should be established, modified, or discontinued. We estimate the baseline economic damage from an invasive alien pathogen, Ceratocystis fagacearum, a fungus that causes oak wilt, which is a significant disease of oaks ( Quercus spp.) in the central United States. We focus on Anoka County, Minnesota, a 1,156 km2 mostly urban county in the Minneapolis-Saint Paul metropolitan region. We develop a landscape-level model of oak wilt spread that accounts for underground and overland pathogen transmission. We predict the economic damage of tree mortality from oak wilt spread in the absence of management during the period 2007-2016. Our metric of economic damage is removal cost, which is one component of the total economic loss from tree mortality. We estimate that Anoka County has 5.92 million oak trees and 885 active oak wilt pockets covering 5.47 km2 in 2007. The likelihood that landowners remove infected oaks varies by land use and ranges from 86% on developed land to 57% on forest land. Over the next decade, depending on the rates of oak wilt pocket establishment and expansion, 76-266 thousand trees will be infected with discounted removal cost of 18-60 million. Although our predictions of removal costs are substantial, they are lower bounds on the total economic loss from tree mortality because we do not estimate economic losses from reduced services and increased hazards. Our predictions suggest that there are significant economic benefits, in terms of damage reduction, from preventing new pocket establishment or slowing the radial growth of existing pockets.

  3. Red Pine Shoot Moth

    Treesearch

    John Hainze; David Hall

    The red pine shoot moth recently caused significant damage to red pine plantations in Minnesota, Wisconsin and Michigan. Trees of all ages have been attacked, but the most severe damage has occurred in 20-40 year old plantations growing on sandy soils.

  4. Morphological comparison of Fusarium species associated with Euwallacea ambrosia beetles

    USDA-ARS?s Scientific Manuscript database

    Tree damage caused by Euwallacea ambrosia beetles, including those of fruit trees, has become a severe problem worldwide. Euwallacea species cultivate Fusarium in their galleries as a source of nutrition. Concerning the ambrosia species of Fusarium, 12 phylogenetic species have been discovered based...

  5. Tree root intrusion in sewer systems: A review of extent and costs

    Treesearch

    T.B. Randrup; E.G. McPherson; L.R. Costello

    2001-01-01

    Interference between trees and sewer systems is likely to occur in old systems and in cracked pipes. Factors that contribute to damage include old pipes with joints, shallow pipes, small-dimension pipes, and fast-growing tree species. Because roots are reported to cause >50% of all sewer blockages, costs associated with root removal from sewers is substantial. In...

  6. Assessing the feasibility and profitability of cut-to-length harvests in eastern hardwoods

    Treesearch

    Chris B. LoDoux

    2002-01-01

    Cut-to-length (CTL) logging applications are becoming more popular in hardwood forests. CTL harvesting causes much less damage to the residual stand than conventional harvesting because logs and trees are not pulled through the stand and trees can be felled directionally.

  7. Visual aids for aerial observers on forest insect surveys.

    Treesearch

    A.T. Larsen

    1957-01-01

    Aerial surveys are widely used to detect, appraise, and map damage caused to forest trees by insects. The success of these surveys largely depends upon the ability of observers to distinguish differences in foliage color and tree condition. The observers' ability is influenced by several factors.

  8. On Wind Forces in the Forest-Edge Region During Extreme-Gust Passages and Their Implications for Damage Patterns

    NASA Astrophysics Data System (ADS)

    Gromke, Christof; Ruck, Bodo

    2018-03-01

    A damage pattern that is occasionally found after a period of strong winds shows an area of damaged trees inside a forest stand behind an intact stripe of trees directly at the windward edge. In an effort to understand the mechanism leading to this damage pattern, wind loading in the forest-edge region during passages of extreme gusts with different characteristics are investigated using a scaled forest model in the wind tunnel. The interaction of a transient extreme gust with the stationary atmospheric boundary layer (ABL) as a background flow at the forest edge leads to the formation of a vortex at the top of the canopy. This vortex intensifies when travelling downstream and subsequently deflects high-momentum air from above the canopy downwards resulting in increased wind loading on the tree crowns. Under such conditions, the decrease in wind loading in the streamwise direction can be relatively weak compared to stationary ABL approach flows. The resistance of trees with streamwise distance from the forest edge, however, is the result of adaptive growth to wind loading under stationary flow conditions and shows a rapid decline within two to three tree heights behind the windward edge. For some of the extreme gusts realized, an exceedance of the wind loading over the resistance of the trees is found at approximately three tree heights behind the forest edge, suggesting that the damage pattern described above can be caused by the interaction of a transient extreme gust with the stationary ABL flow.

  9. Tree-ring record of droughts and severe winter storms in the Ouachita Mountains since 1745

    Treesearch

    Douglas J. Stevenson; Thomas B. Lynch; James M. Guldin

    2015-01-01

    Severe winter storms cause serious damage to trees, timber, power lines, and transportation systems each year. In the Ouachita Mountains, historical records of these storms extend back only 117 years, and many of them are of low-quality or have missing data.

  10. Outbreaks of Yuzu Dieback in Goheung Area: Possible Causes Deduced from Weather Extremes.

    PubMed

    Kim, Kwang-Hyung; Kim, Gyoung Hee; Son, Kyeong In; Koh, Young Jin

    2015-09-01

    Starting in 2012, severe diebacks usually accompanied by abundant gum exudation have occurred on yuzu trees in Goheung-gun, Jeonnam Province, where severely affected trees were occasionally killed. On-farm surveys were conducted at 30 randomly-selected orchards located at Pungyang-myeon, Goheung-gun, and the resulting disease incidences were 18.5% and 39.6% for dieback and gumming symptoms, respectively. Black spots on branches and leaves also appeared on infected trees showing a typical dieback symptom. Morphological and molecular identifications of the isolated fungal organisms from lesions on the symptomatic leaves and branches revealed that they are identical to Phomopsis citri, known to cause gummosis. In order to find the reason for this sudden epidemic, we investigated the weather conditions that are exclusively distinct from previous years, hypothesizing that certain weather extremes might have caused the severe induction of pre-existing disease for yuzu. There were two extreme temperature drops beyond the yuzu's cold hardiness limit right after an abnormally-warm-temperature-rise during the winter of 2011-12, which could cause severe frost damage resulting in mechanical injuries and physiological weakness to the affected trees. Furthermore, there was an increased frequency of strong wind events, seven times in 2012 compared to only a few times in the previous years, that could also lead to extensive injuries on branches. In conclusion, we estimated that the possible damages by severe frost and frequent strong wind events during 2012 could cause the yuzu trees to be vulnerable to subsequent fungal infection by providing physical entries and increasing plant susceptibility to infections.

  11. Fault Analysis on Bevel Gear Teeth Surface Damage of Aeroengine

    NASA Astrophysics Data System (ADS)

    Cheng, Li; Chen, Lishun; Li, Silu; Liang, Tao

    2017-12-01

    Aiming at the trouble phenomenon for bevel gear teeth surface damage of Aero-engine, Fault Tree of bevel gear teeth surface damage was drawing by logical relations, the possible cause of trouble was analyzed, scanning electron-microscope, energy spectrum analysis, Metallographic examination, hardness measurement and other analysis means were adopted to investigate the spall gear tooth. The results showed that Material composition, Metallographic structure, Micro-hardness, Carburization depth of the fault bevel gear accord with technical requirements. Contact fatigue spall defect caused bevel gear teeth surface damage. The small magnitude of Interference of accessory gearbox install hole and driving bevel gear bearing seat was mainly caused. Improved measures were proposed, after proof, Thermoelement measures are effective.

  12. The mountain pine beetle: causes and consequences of an unprecedented outbreak

    Treesearch

    Allan L. Carroll

    2011-01-01

    The mountain pine beetle (Dendroctonus ponderosae) is native to the pine forests of western North America where it normally exists at very low densities, infesting only weakened or damaged trees. Under conditions conducive to survival, populations may erupt and spread over extensive landscapes, killing large numbers of healthy trees.

  13. 76 FR 50451 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... practical utility; (b) the accuracy of the agency's estimate of burden including the validity of the... the United States from Canada. Pine shoot beetle (PSB) is a pest of pine trees. It can cause damage in weak and dying trees where reproductive and immature stages of PSB occur, and in the new growth of...

  14. The effect of sample height on spray coverage in mature pecan trees

    USDA-ARS?s Scientific Manuscript database

    Pecan scab (caused by Fusicladium effusum) is the most damaging disease of pecan in the southeastern US. Large air-blast sprayers for orchards are used to apply fungicide to control the disease, but little quantitative information exists on the spray coverage achieved in the canopy of these trees. I...

  15. Preliminary assessment of post-Haiyan mangrove damage and short-term recovery in Eastern Samar, central Philippines.

    PubMed

    Primavera, J H; Dela Cruz, M; Montilijao, C; Consunji, H; Dela Paz, M; Rollon, R N; Maranan, K; Samson, M S; Blanco, A

    2016-08-30

    Strong winds and storm surges from Typhoon Haiyan caused damage of US$12-15billion and >10,000 human casualties in central Philippines in November 2013. To validate a proposed government US$22million mangrove replanting program, mangrove damage and short-term recovery were surveyed in seven natural and planted mangrove sites in Eastern Samar province at 2.5month and 4.5month post-Haiyan. The preliminary assessment showed that natural mangroves (except for those directly hit by the storm) were recovering by means of tree sprouts and surviving seedlings and saplings compared to the devastated plantation. Likewise, tree mortality was higher in the plantation and natural forests hit by the storm surge, compared to more undamaged and partially damaged trees in natural mangroves. Hence the main recommendations to government are (1) to protect recovering mangroves by not releasing rehabilitation funds (that will inadvertently pay for clearing of live trees and for removal of seedlings), (2) to only plant in totally damaged sites (e.g., plantations), and (3) to only plant naturally dominant species, e.g., Sonneratia alba and Avicennia marina (instead of the popular Rhizophora apiculata, R. mucronata and R. stylosa). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Changes in Mauna Kea Dry Forest Structure 2000-2014

    USGS Publications Warehouse

    Banko, Paul C.; Brinck, Kevin W.

    2014-01-01

    Changes in the structure of the subalpine vegetation of Palila Critical Habitat on the southwestern slope of Mauna Kea Volcano, Hawai‘i, were analyzed using 12 metrics of change in māmane (Sophora chrysophylla) and naio (Myoporum sandwicense) trees surveyed on plots in 2000 and 2014. These two dominant species were analyzed separately, and changes in their structure indicated changes in the forest’s health. There was a significant increase in māmane minimum crown height (indicating a higher ungulate “browse line”), canopy area, canopy volume, percentage of trees with ungulate damage, and percentage of dead trees. No significant changes were observed in māmane maximum crown height, proportion of plots with trees, sapling density, proportion of plots with saplings, or the height distribution of trees. The only significant positive change was for māmane tree density. Significantly negative changes were observed for naio minimum crown height, tree height, canopy area, canopy volume, and percentage of dead trees. No significant changes were observed in naio tree density, proportion of plots with trees, proportion of plots with saplings, or percentage of trees with ungulate damage. Significantly positive changes were observed in naio sapling density and the height distribution of trees. There was also a significant increase in the proportion of māmane vs. naio trees in the survey area. The survey methods did not allow us to distinguish among potential factors driving these changes for metrics other than the percentage of trees with ungulate damage. Continued ungulate browsing and prolonged drought are likely the factors contributing most to the observed changes in vegetation, but tree disease or insect infestation of māmane, or naio, and competition from alien grasses and other weeds could also be causing or exacerbating the impacts to the forest. Although māmane tree density has increased since 2000, this study also demonstrates that efforts by managers to remove sheep (Ovis spp.) from Palila Critical Habitat have not overcome the ability of sheep to continue to damage māmane trees and impede restoration of the vegetation.

  17. Acoustic detection of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) and Oryctes elegans (Coleoptera: Scarabaeidae) in Phoenix dactylifera (Arecales: Arecacae) trees and offshoots in Saudi Arabian orchards

    USDA-ARS?s Scientific Manuscript database

    Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) larvae are cryptic, internal-tissue feeding pests of palm trees that are difficult to detect until after they have caused severe economic damage; consequently, infestations may remain undetected until they are widespread in an orchard....

  18. Recognizing and treating diseases in Caribbean trees

    Treesearch

    Deborah Jean Lodge

    2002-01-01

    Although the majority of tree problems in urban setting are not caused by disease organisms, there are some current and potential disease threats in the Caribbean. Symptoms are the expression of stress in the plant. Symptoms may appear to be identical in response to many different types of diseases and physical or chemical damage. It is therefore helpful to determine...

  19. No rest for the laurels: symbiotic invaders cause unprecedented damage to southern USA forests

    Treesearch

    M. A. Hughes; J. J. Riggins; F. H. Koch; A. I. Cognato; C. Anderson; J. P. Formby; T. J. Dreaden; R. C. Ploetz; J. A. Smith

    2017-01-01

    Laurel wilt is an extraordinarily destructive exotic tree disease in the southeastern United States that involves new-encounter hosts in the Lauraceae, an introduced vector (Xyleborus glabratus) and pathogen symbiont (Raffaelea lauricola). USDA Forest Service Forest Inventory and Analysis data were used to estimate that over 300 million trees of redbay (Persea borbonia...

  20. Aerial surveys for Swiss needle cast in Western Oregon.

    Treesearch

    A. Kanaskie; M. McWilliams; J. Prukop; D. Overhulser; K. Sprengel

    2002-01-01

    In the last decade, Swiss needle cast (SNC), caused by the native fungus Phaeocryptopus gaeumannii, has severely damaged Douglas-fir in the Coast Range of western Oregon. The primary impact of the pathogen on Douglas-fir (the only susceptible tree species) is premature loss of foliage, which results in significant reduction in tree growth. Recent...

  1. Field Suppression of the peachtree borer, Synanthedon exitiosa, using Steinernema carpocapsae: Effects of irrigation, a sprayable gel and application method

    USDA-ARS?s Scientific Manuscript database

    The peachtree borer, Synanthedon exitiosa, is a major pest of stone fruit trees in North America. In prior studies, the entomopathogenic nematode, S. carpocapsae, caused substantial reductions in S. exitiosa damage when applied by watering can to peach trees that were irrigated regularly. Here we ...

  2. Infestation Trends of Balsam Woolly Aphid in an Abies Alba Plantation in North Carolina

    Treesearch

    Gene D. Amman; Gerhard F. Fedde

    1971-01-01

    Infestations of the balsam woolly aphid, Adelges piceae (Ratz.), on European silver fir trees in a plantation were observed over a 7-year period. Infestations were usually light, but occasionally increased to heavy. Heavy infestations declined within 1 or 2 years without killing the trees or causing them apparent damage.

  3. Long-term population patterns of rodents and associated damage in German forestry.

    PubMed

    Imholt, Christian; Reil, Daniela; Plašil, Pavel; Rödiger, Kerstin; Jacob, Jens

    2017-02-01

    Several rodent species can damage forest trees, especially at young tree age in afforestation. Population outbreaks of field voles (Microtus agrestis L.) and bank voles (Myodes glareolus Schreber) in particular can cause losses. Analyses of long-term time series indicate good synchrony of population abundance in rodent species associated with damage in forestry. This synchrony could be related to the effect of beech (Fagus spec.) mast in the previous year on population growth rates of both species. In shorter time series from Eastern Germany, damage in forestry was mostly associated with autumn abundances of rodents. Environmental factors such as beech mast and snow cover did not explain additional variation in rodent damage to trees. Beech mast is a good indicator of long-term rodent abundance in Northern German afforestation areas. However, rodent damage to forestry in Central Germany did not seem to depend on environmental parameters other than rodent abundance at large scale. As a result, there is still uncertainty about the link between environmental predictors and rodent damage to forestry, and further experimental work is required to identify suitable environmental drivers and their interplay with other potential factors such as the local predator community. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Tolerance to insect defoliation: biocenotic aspects

    Treesearch

    Andrey A. Pleshanov; Victor I. Voronin; Elena S. Khlimankova; Valentina I. Epova

    1991-01-01

    Woody plant resistance to insect damage is of great importance in forest protection, and tree tolerance is an important element of this resistance. The compensating mechanisms responsible for tolerance are nonspecific as a rule and develop after damage has been caused by phytophagous animals or other unfavorable effects. Beyond that, plant tolerance depends on duration...

  5. How does tree age influence damage and recovery in forests impacted by freezing rain and snow?

    PubMed

    Zhu, LiRong; Zhou, Ting; Chen, BaoMing; Peng, ShaoLin

    2015-05-01

    The response and recovery mechanisms of forests to damage from freezing rain and snow events are a key topic in forest research and management. However, the relationship between the degree of damage and tree age, i.e., whether seedlings, young trees, or adult trees are most vulnerable, remains unclear and is rarely reported. We investigated the effect of tree age on the degrees of vegetation damage and subsequent recovery in three subtropical forest types-coniferous, mixed, and broad-leaved-in the Tianjing Mountains, South China, after a series of rare icy rain and freezing snow events in 2008. The results showed that damage and recovery rates were both dependent on tree age, with the proportion of damaged vegetation increasing with age (estimated by diameter at breast height, DBH) in all three forest types and gradually plateauing. Significant variation occurred among forest types. Young trees in the coniferous forest were more vulnerable than those in the broad-leaved forest. The type of damage also varied with tree age in different ways in the three forest types. The proportion of young seedlings that were uprooted (the most severe type of damage) was highest in the coniferous forest. In the mixed forest, young trees were significantly more likely to be uprooted than seedlings and adult trees, while in the broad-leaved forest, the proportion of uprooted adult trees was significantly higher than that of seedlings and young trees. There were also differences among forest types in how tree age affected damage recovery. In the coniferous forest, the recovery rate of trees with broken trunks or crowns (DBH > 2.5 cm) increased with tree age. However, in the mixed and broad-leaved forests, no obvious correlation between the recovery rate of trees with broken trunks or crowns and tree age was observed. Trees with severe root damage did not recover; they were uprooted and died. In these forests, vegetation damage and recovery showed tree age dependencies, which varied with tree shape, forest type, and damage type. Understanding this dependency will guide restoration after freezing rain and snow disturbances.

  6. Effects of disbudding on shoot mortality and stem deformity in black cherry

    Treesearch

    Charles O. Rexrode

    1979-01-01

    Insect damage was simulated by the removal of buds from black cherry trees to determine the effects on stem mortality and tree form. Black cherry was very sensitive to disbudding. All degrees of disbudding caused terminal deformities and stem deformity nearly always occurred after the terminal bud was destroyed. Shoot mortality usually occurred after half or more of...

  7. Diplodia Tip Blight and Canker of Pines (Pest Alert)

    Treesearch

    USDA Forest Service

    The fungus Diplodia pinea can cause serious damage to Austrian, ponderosa, red, Scots, mugo, jack, and white pine. Although it is considered a weak pathogen, it may successfully attack and kill trees. It may be more serious on trees growing out of their natural range or stressed by adverse climatic conditions or air pollution. Infection can occur as a result of hail...

  8. Forest health in a changing world: Effects of globalization and climate change on forest insect and pathogen impacts

    Treesearch

    T. D. Ramsfield; Barbara Bentz; M. Faccoli; H. Jactel; E. G. Brockerhoff

    2016-01-01

    Forests and trees throughout the world are increasingly affected by factors related to global change. Expanding international trade has facilitated invasions of numerous insects and pathogens into new regions. Many of these invasions have caused substantial forest damage, economic impacts and losses of ecosystem goods and services provided by trees. Climate...

  9. Drought and Winter Drying (Pest Alert)

    Treesearch

    USDA Forest Service

    Drought and winter drying have periodically caused major damage to trees. Drought reduces the amount of water available in the soil. In the case of winter drying, the water may be in the soil, but freezing of the soil makes the water unavailable to the tree. In both cases, more water is lost through transpiration than is available to the plant. Symptoms of drought and...

  10. Effects of the emerald ash borer invasion on four species of birds

    Treesearch

    Walter D. Koenig; Andrew M. Liebhold; David N. Bonter; Wesley M. Hochachka; Janis L. Dickinson

    2013-01-01

    The emerald ash borer (EAB) Agrilus planipennis, first detected in 2002 in the vicinity of Detroit, Michigan, USA, is one of the most recent in a long list of introduced insect pests that have caused serious damage to North American forest trees, in this case ash trees in the genus Fraxinus. We used data from Project FeederWatch, a...

  11. Red Oak Borer

    Treesearch

    D. E. Donley; R.E. Acciavatti

    1980-01-01

    The red oak borer, Enaphalodes rufulus (Haldeman)3, is an important member of the oak borer complex that permanently damages the wood of living oak trees and causes a decrease in lumber grade. The loss in grade can amount to 40 percent of the current tree value, which, at today's prices, is about $80 per thousand board feet for factory grade lumber in terms of...

  12. Mice cause severe damage to Virginia pine reproduction

    Treesearch

    Thomas W., Jr. Church

    1954-01-01

    Heavy damage to a young Virginia pine stand was noticed recently on the Beltsville Experimental Forest in Maryland. The injury was confined to pine trees that had come in on an abandoned field. This reproduction ranged from 1 to 10 feet in height and had an average density of 19,000 per acre. Andropogon was the predominant ground vegetation.

  13. European Pine Shoot Moth

    Treesearch

    William E. Miller; Arthur R. Hastings; John F. Wootten

    1961-01-01

    In the United States, the European pine shoot moth has caused much damage in young, plantations of red pine. It has been responsible for reduced planting of red pine in many areas. Although attacked trees rarely if ever die, their growth is inhibited and many are, deformed. Scotch pine and Austrian pine (Pinus nigra Arnold) are usually not so badly damaged. Swiss...

  14. Conophthorin from almond host plant and fungal spores and its ecological relation to navel orangeworm: a natural products chemist's perspective

    USDA-ARS?s Scientific Manuscript database

    The navel orangeworm (Amyelois transitella) is a major insect pest that brings about significant monetary damage to California tree nuts – almonds, pistachios, and walnuts. During their development, larvae of navel orangeworm feed upon the meat of these nuts causing physical damage and ultimately lo...

  15. Land Cover Mapping using GEOBIA to Estimate Loss of Salacca zalacca Trees in Landslide Area of Clapar, Madukara District of Banjarnegara

    NASA Astrophysics Data System (ADS)

    Permata, Anggi; Juniansah, Anwar; Nurcahyati, Eka; Dimas Afrizal, Mousafi; Adnan Shafry Untoro, Muhammad; Arifatha, Na'ima; Ramadhani Yudha Adiwijaya, Raden; Farda, Nur Mohammad

    2016-11-01

    Landslide is an unpredictable natural disaster which commonly happens in highslope area. Aerial photography in small format is one of acquisition method that can reach and obtain high resolution spatial data faster than other methods, and provide data such as orthomosaic and Digital Surface Model (DSM). The study area contained landslide area in Clapar, Madukara District of Banjarnegara. Aerial photographs of landslide area provided advantage in objects visibility. Object's characters such as shape, size, and texture were clearly seen, therefore GEOBIA (Geography Object Based Image Analysis) was compatible as method for classifying land cover in study area. Dissimilar with PPA (PerPixel Analyst) method that used spectral information as base object detection, GEOBIA could use spatial elements as classification basis to establish a land cover map with better accuracy. GEOBIA method used classification hierarchy to divide post disaster land cover into three main objects: vegetation, landslide/soil, and building. Those three were required to obtain more detailed information that can be used in estimating loss caused by landslide and establishing land cover map in landslide area. Estimating loss in landslide area related to damage in Salak (Salacca zalacca) plantations. This estimation towards quantity of Salak tree that were drifted away by landslide was calculated in assumption that every tree damaged by landslide had same age and production class with other tree that weren't damaged. Loss calculation was done by approximating quantity of damaged trees in landslide area with data of trees around area that were acquired from GEOBIA classification method.

  16. Forest insect conditions in the Northeast - 1954

    Treesearch

    W. E. Waters

    1955-01-01

    Forest insects continued to be a major cause of timber loss in the Northeast in 1954. A diversity of destructive pests caused these losses in different ways: by outright killing trees; by reducing growth; by reducing merchantable volume; and by reducing the quality of forest products. Some of the insects caused serious damage to woodlands that have high recreational...

  17. An Orange is an Orange

    ERIC Educational Resources Information Center

    Brown, Martin

    1975-01-01

    The citrus thrips is a small insect pest that causes some cosmetic damage, but seldom causes yield reduction, tree kills, or lower the nutritional value or eating quality of citrus fruits. In California however, economic and marketing factors have prompted the massive, unnecessary overuse of insecticides to kill this pest. (Author/MA)

  18. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration.

    PubMed

    Montwé, David; Isaac-Renton, Miriam; Hamann, Andreas; Spiecker, Heinrich

    2018-04-23

    With lengthening growing seasons but increased temperature variability under climate change, frost damage to plants may remain a risk and could be exacerbated by poleward planting of warm-adapted seed sources. Here, we study cold adaptation of tree populations in a wide-ranging coniferous species in western North America to inform limits to seed transfer. Using tree-ring signatures of cold damage from common garden trials designed to study genetic population differentiation, we find opposing geographic clines for spring frost and fall frost damage. Provenances from northern regions are sensitive to spring frosts, while the more productive provenances from central and southern regions are more susceptible to fall frosts. Transferring the southern, warm-adapted genotypes northward causes a significant loss of growth and a permanent rank change after a spring frost event. We conclude that cold adaptation should remain an important consideration when implementing seed transfers designed to mitigate harmful effects of climate change.

  19. Secondary sclerosing cholangitis in critically ill patients.

    PubMed

    Peña-Pérez, Carlos Alberto; Ponce-Medrano, Juan Alberto Díaz

    2018-01-01

    Primary sclerosing cholangitis (PSC) is a rare idiopathic condition with immunopathogenic mechanisms where there is chronic progressive destruction of the biliary tree. Secondary sclerosing cholangitis (SSC) is clinically comparable to PSC, but is caused by specific processes which directly damage the biliary tree; examples include recurrent pancreatitis, bile duct malignancy, congenital bile duct abnormalities. A new cause of SSC has been described during or following significant critical illness associated with severe respiratory insufficiency, vasopressor requirement, shock and sepsis. This condition rapidly progresses to cirrhosis, frequently requiring liver transplantation for definitive management. Copyright: © 2018 Permanyer.

  20. Soil and tree ring chemistry changes in an oak forest.

    Treesearch

    Quentin D. Read

    2009-01-01

    Changes in soil chemistry due to historic large-scale disturbances, e.g. pollution inputs, storm damage, and logging, have previously been shown to cause similar changes in the nutrient concentrations...

  1. Acid Rain: The Silent Environmental Threat.

    ERIC Educational Resources Information Center

    Zmud, Mia

    1992-01-01

    Describes the silent environmental threat posed by acid rain. Caused mainly by manmade pollutants, acid rain damages water and trees, decreases visibility, corrodes monuments, and threatens public health. The article includes guidelines for action. (SM)

  2. Effect of temperature and tree species on damage progression caused by whitespotted sawyer (Coleoptera: Cerambycidae) larvae in recently burned logs.

    PubMed

    Bélanger, Sébastien; Bauce, Eric; Berthiaume, Richard; Long, Bernard; Labrie, Jacques; Daigle, Louis-Frédéric; Hébert, Christian

    2013-06-01

    The whitespotted sawyer, Monochamus scutellatus scutellatus (Say) (Coleoptera: Ce-rambycidae), is one of the most damaging wood-boring insects in recently burned boreal forests of North America. In Canada, salvage logging after wildfire contributes to maintaining the timber volume required by the forest industry, but larvae of this insect cause significant damage that reduces the economic value of lumber products. This study aimed to estimate damage progression as a function of temperature in recently burned black spruce (Picea mariana (Miller) Britton, Sterns, and Poggenburg) and jack pine (Pinus banksiana Lambert) trees. Using axial tomographic technology, we modeled subcortical development and gallery depth progression rates as functions of temperature for both tree species. Generally, these rates were slightly faster in black spruce than in jack pine logs. Eggs laid on logs kept at 12 degrees C did not hatch or larvae were unable to establish themselves under the bark because no larval development was observed. At 16 degrees C, larvae stayed under the bark for > 200 d before penetrating into the sapwood. At 20 degrees C, half of the larvae entered the sapwood after 30-50 d, but gallery depth progression stopped for approximately 70 d, suggesting that larvae went into diapause. The other half of the larvae entered the sapwood only after 100-200 d. At 24 and 28 degrees C, larvae entered the sapwood after 26-27 and 21 d, respectively. At 28 degrees C, gallery depth progressed at a rate of 1.44 mm/d. Temperature threshold for subcortical development was slightly lower in black spruce (12.9 degrees C) than in jack pine (14.6 degrees C) and it was 1 degrees C warmer for gallery depth progression for both tree species. These results indicate that significant damage may occur within a few months after fire during warm summers, particularly in black spruce, which highlights the importance of beginning postfire salvage logging as soon as possible to reduce economic losses.

  3. Semiochemicals to monitor insect pests – future opportunities for an effective host plant volatile blend to attract navel orangeworm in pistachio orchards

    USDA-ARS?s Scientific Manuscript database

    The navel orangeworm (Amyelois transitella) has been a major insect pest of California tree nut orchards for the past five decades. In particular, almond and pistachio orchards suffer major annual economic damage due to both physical and associated fungal damage caused by navel orangeworm larvae. Un...

  4. Physiological mechanisms of drought-induced tree die-off in relation to carbon, hydraulic and respiratory stress in a drought-tolerant woody plant.

    PubMed

    Saiki, Shin-Taro; Ishida, Atsushi; Yoshimura, Kenichi; Yazaki, Kenichi

    2017-06-07

    Drought-induced tree die-off related to climate change is occurring worldwide and affects the carbon stocks and biodiversity in forest ecosystems. Hydraulic failure and carbon starvation are two commonly proposed mechanisms for drought-induced tree die-off. Here, we show that inhibited branchlet respiration and soil-to-leaf hydraulic conductance, likely caused by cell damage, occur prior to hydraulic failure (xylem embolism) and carbon starvation (exhaustion of stored carbon in sapwood) in a drought-tolerant woody species, Rhaphiolepis wrightiana Maxim. The ratio of the total leaf area to the twig sap area was used as a health indicator after drought damage. Six adult trees with different levels of tree health and one dead adult tree were selected. Two individuals having the worst and second worst health among the six live trees died three months after our study was conducted. Soil-to-leaf hydraulic conductance and leaf gas exchange rates decreased linearly as tree health declined, whereas xylem cavitation and total non-structural carbon remained unchanged in the branchlets except in the dead and most unhealthy trees. Respiration rates and the number of living cells in the sapwood decreased linearly as tree health declined. This study is the first report on the importance of dehydration tolerance and respiration maintenance in living cells.

  5. Phenology and density of balsam twig aphid, Mindarus abietinus Koch (Homoptera: Aphididae) in relation to bud break, shoot damage, and value of fir Christmas trees.

    PubMed

    Fondren, K M; McCullough, D G

    2003-12-01

    The balsam twig aphid, Mindarus abietinus Koch (Homoptera: Aphididae), is a major insect pest of balsam and Fraser fir grown for Christmas trees. Our objectives in this study were to 1) monitor the phenology of A. abietinus in fir plantations; 2) assess relationships among M. abietinus density, tree phenology, and damage to tree foliage; and 3) develop an esthetic injury level for M. abietinus on Christmas trees. We monitored phenology of M. abietinus and fir trees on three commercial Christmas tree plantations in central and northern Lower Michigan for 3 yr (1999-2001). Phenology of M. abietinus fundatrices and sexuparae was strongly correlated with accumulated degree-days (DD) base 10 degrees C. Fundatrices matured by approximately 83 DD(10 degrees C) and sexuparae were first observed at approximately 83-111 DD(10 degrees C). Trees that broke bud approximately 1 wk later than other trees in the same field escaped M. abietinus damage and shoot expansion rate in spring was generally positively correlated with M. abietinus damage. Retail customers surveyed at a choose-and-cut Christmas plantation in 2 yr did not consistently differentiate between similarly sized trees with no, light, and moderate M. abietinus damage, but heavy damage (>50% damaged shoots) did affect customer perception. Similarly, when wholesale grades were assigned, the high quality Grade 1 trees had up to 40% shoot damage, whereas Grade 2 trees had 32-62% shoot damage. Two trees ranked as unsaleable had sparse canopies and distorted needles on 42% to almost 100% of the shoots.

  6. Effects of photochemical smog on lemons and navel oranges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, C.R.; Taylor, O.C.; Richards, B.L.

    1970-05-01

    Experiments were carried out on lemon and Navel orange trees to determine the kind and extent of damage caused by air pollution in the Los Angeles Basin. Trees were enclosed in filter-equipped greenhouses and compared with control trees which were exposed to ambient air. Yield of lemons was about one third more in filtered trees, and with oranges, the yield was about doubled. Fruit drop in oranges was a major problem associated with the exposure to ambient air pollution. Trees in ambient air were reduced in photosynthesis to 66% of filtered-air treatments. Fluoride, while present in the atmosphere was ofmore » minor importance to the health and performance of the trees. 2 tables.« less

  7. Quantification and identification of lightning damage in tropical forests.

    PubMed

    Yanoviak, Stephen P; Gora, Evan M; Burchfield, Jeffrey M; Bitzer, Phillip M; Detto, Matteo

    2017-07-01

    Accurate estimates of tree mortality are essential for the development of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although lightning kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of lightning-caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of lightning on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of lightning are impossible. We developed a combined electronic sensor/camera-based system for the location and characterization of lightning strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of lightning strikes. We used a preliminary version of this system to record and locate 18 lightning strikes to the forest over a 3-year period. Data from field surveys of known lightning strike locations (obtained from the camera system) enabled us to develop a protocol for reliable, ground-based identification of suspected lightning damage to tropical trees. In all cases, lightning damage was relatively inconspicuous; it would have been overlooked by ground-based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify lightning strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of lightning-damaged temperate trees were never observed in this study. Given the prevalence of communications towers worldwide, the lightning detection system described here could be implemented in diverse forest types. Data from multiple systems would provide an outstanding opportunity for comparative research on the ecological effects of lightning. Such comparative data are increasingly important given expected increases in lightning frequency with climatic change.

  8. Summary of taxa-specific research: 2. pathogens

    Treesearch

    Ned Klopfenstein; Brian Geils

    2009-01-01

    Damage caused by invasive forest pathogens is widely viewed as more severe, long-term, widespread, and difficult to restore than that caused by any other biological disturbance agent. In the last century, pathogens introduced into our native forests have threatened extinction of native tree species and critically degraded many different ecosystems across North America...

  9. Acoustic characteristics of Dynastid beetle stridulations

    USDA-ARS?s Scientific Manuscript database

    Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae: Dynastinae) causes economically important damage to ornamental and commercial coconut palm trees in the western Pacific region that could be mitigated significantly by early detection and treatment. Adults are difficult to detect visually, however...

  10. Black bear damage to lodgepole pine in central Oregon

    USGS Publications Warehouse

    Barnes, V.G.; Engeman, R.M.

    1995-01-01

    Black bear damage to 108 lodgepole pine trees was found in mixed conifer habitat in central Oregon. No trees of three other conifer species were injured. Eighty-nine percent of the damage occurred in the same year. Nearly 20% of the freshly damaged trees had bark removed from more than 75% of the circumference and, judging from the fate of trees damaged in prior years, probably succumbed.

  11. 7 CFR 1416.302 - Eligible crops and producers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... determine payment rates are as follows: Tier I—75 percent or greater crop loss and associated tree damage. Tier II—50 to 74 percent crop loss and associated tree damage/loss. Tier III—35 to 49 percent crop loss and associated tree damage/loss. Tier IV —15 percent and greater associated tree damage only. (2...

  12. 36 CFR 223.12 - Permission to cut, damage, or destroy trees without advertisement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... destroy trees without advertisement. 223.12 Section 223.12 Parks, Forests, and Public Property FOREST... § 223.12 Permission to cut, damage, or destroy trees without advertisement. Permission may be granted to cut, damage, or destroy trees, portions of trees, or other forest products on National Forest System...

  13. Bear damage to young Douglas-fir.

    Treesearch

    Thomas W. Childs; Norman P. Worthington

    1955-01-01

    Newly-formed sapwood of young conifers has probably been a food for bears since time immemorial, but damage to trees has only recently attracted the attention of foresters. In many localities, all stages of bear-caused wounds can be found, from fresh ones to those covered with callus, On a 3-acre clear-cut, made in 1950 in a rather open part of the 110-year-old stand...

  14. VAM populations in relation to grass invasion associated with forest decline.

    PubMed

    Vosatka, M; Cudlin, P; Mejstrik, V

    1991-01-01

    Spruce stands in Northern Bohemia forests, damaged to various degrees by industrial pollution, have shown establishment of grass cover following tree defoliation. Populations of vesicular-arbuscular mycorrhizal (VAM) fungi were studied under this grass cover in four permanent plots with spruce under different levels of pollution stress. Soil and root samples were collected in April and June within each plot as follows: (1) sites without grass, (2) sites with initial stages of grass invasion, and (3) sites with fully developed grass cover. In all plots, the highest number of propagules were recovered from samples taken from sites having full grass cover. Mycorrhizal infection of grass was highest in the plot with the severest pollution damage and lowest in the least damaged plot. The development of grass cover and VAM infection of grass increased with tree defoliation caused by air pollution.

  15. Detecting Forests Damaged by Pine Wilt Disease at the Individual Tree Level Using Airborne Laser Data and WORLDVIEW-2/3 Images Over Two Seasons

    NASA Astrophysics Data System (ADS)

    Takenaka, Y.; Katoh, M.; Deng, S.; Cheung, K.

    2017-10-01

    Pine wilt disease is caused by the pine wood nematode (Bursaphelenchus xylophilus) and Japanese pine sawyer (Monochamus alternatus). This study attempted to detect damaged pine trees at different levels using a combination of airborne laser scanning (ALS) data and high-resolution space-borne images. A canopy height model with a resolution of 50 cm derived from the ALS data was used for the delineation of tree crowns using the Individual Tree Detection method. Two pan-sharpened images were established using the ortho-rectified images. Next, we analyzed two kinds of intensity-hue-saturation (IHS) images and 18 remote sensing indices (RSI) derived from the pan-sharpened images. The mean and standard deviation of the 2 IHS images, 18 RSI, and 8 bands of the WV-2 and WV-3 images were extracted for each tree crown and were used to classify tree crowns using a support vector machine classifier. Individual tree crowns were assigned to one of nine classes: bare ground, Larix kaempferi, Cryptomeria japonica, Chamaecyparis obtusa, broadleaved trees, healthy pines, and damaged pines at slight, moderate, and heavy levels. The accuracy of the classifications using the WV-2 images ranged from 76.5 to 99.6 %, with an overall accuracy of 98.5 %. However, the accuracy of the classifications using the WV-3 images ranged from 40.4 to 95.4 %, with an overall accuracy of 72 %, which suggests poorer accuracy compared to those classes derived from the WV-2 images. This is because the WV-3 images were acquired in October 2016 from an area with low sun, at a low altitude.

  16. Image analysis of epicuticular damage to foliage caused by dry deposition of the air pollutant nitric acid.

    PubMed

    Padgett, Pamela E; Parry, Sally D; Bytnerowicz, Andrzej; Heath, Robert L

    2009-01-01

    Nitric acid vapor is produced by the same photochemical processes that produce ozone. In the laboratory, concentrated nitric acid is a strong acid and a powerful oxidant. In the environment, where the concentrations are much lower, it is an innocuous source of plant nitrogen. As an air pollutant, which mode of action does dry deposition of nitric acid follow? We investigated the effects of dry deposition of nitric acid on the foliage of four tree species native to the western United States. A novel controlled environment, fumigation system enabled a four-week exposure at concentrations consistent with ambient diurnal patterns. Scanning electron microscopy and automated image analysis revealed changes in the epicuticular wax layer during fumigation. Exposure to nitric acid resulted in a reproducible suite of damage symptoms that increased with increasing dose. Each tree species tested exhibited a unique set of damage features, including cracks, lesions, and conformation changes to epicuticular crystallite structures. Dry deposition of atmospheric nitric acid caused substantial perturbation to the epicuticular surface of all four tree species investigated, consistent with the chemical oxidation of epicuticular waxes. Automated image analysis eliminated many biases that can trouble microscopy studies. Trade names and commercial enterprises or products are mentioned solely for information. No endorsements by the U.S. Department of Agriculture are implied.

  17. HOW to Identify and Control Stem Rusts of Jack Pine

    Treesearch

    Kathryn Robbins; Dale K. Smeltzer; D. W. French

    Damage to jack pine caused by rust fungi includes growth reduction, cankers, death (by girdling or wind breakage), and creation of entryways for other fungi and insects. Seedlings and saplings are more seriously affected than older trees.

  18. HOW to Control Sapstreak Disease of Sugar Maple

    Treesearch

    Kenneth K. Jr. Kessler

    1978-01-01

    Sapstreak disease, caused by the fungus Ceratocystis coerulescens, is a serious threat to sugar maple forests. Although the disease is causing only minor damage at present, it has the potential to become an important problem. Sapstreak is a fatal disease; infected trees do not recover. In addition, timber salvage value is low because the wood is discolored.

  19. Recent advances in the control of oak wilt in the United States

    Treesearch

    Dan A. Wilson

    2005-01-01

    Oak wilt, caused by Ceratocystis fagacearum (T.W.Bretz) J. Hunt, is probably the most destructive disease of oak trees (Quercus species) in the United States, and is currently causing high morality at epiphytotic proportions in central Texas. The serious potential for damage pro,pted an increase in federal funding within the past...

  20. Assessing the tree health impacts of salt water flooding in coastal cities: A case study in New York City

    Treesearch

    Richard Hallett; Michelle L. Johnson; Nancy F. Sonti

    2018-01-01

    Hurricane Sandy was the second costliest hurricane in United States (U.S.) history. The category 2 storm hit New York City (NYC) on the evening of October 29, 2012, causing major flooding, wind damage, and loss of life. The New York City Department of Parks & Recreation (NYC Parks) documented over 20,000 fallen street trees due to the physical impact of wind...

  1. Tree injuries from mechanized logging

    Treesearch

    Richard M. Godman

    1992-01-01

    Small trees in even-aged northern hardwood stands suffer the most mechanical damage when stands are thinned for the first time. From 15 to 35 percent of the trees may be damaged; a quarter of the trees (but usually less than 20 per acre) can be seriously damaged by having at least 50 square inches of the cambium exposed. Bole damage is most common, followed by root and...

  2. Anchorage failure of young trees in sandy soils is prevented by a rigid central part of the root system with various designs

    PubMed Central

    Danquechin Dorval, Antoine; Meredieu, Céline; Danjon, Frédéric

    2016-01-01

    Background and Aims Storms can cause huge damage to European forests. Even pole-stage trees with 80-cm rooting depth can topple. Therefore, good anchorage is needed for trees to survive and grow up from an early age. We hypothesized that root architecture is a predominant factor determining anchorage failure caused by strong winds. Methods We sampled 48 seeded or planted Pinus pinaster trees of similar aerial size from four stands damaged by a major storm 3 years before. The trees were gathered into three classes: undamaged, leaning and heavily toppled. After uprooting and 3D digitizing of their full root architectures, we computed the mechanical characteristics of the main components of the root system from our morphological measurements. Key Results Variability in root architecture was quite large. A large main taproot, either short and thick or long and thin, and guyed by a large volume of deep roots, was the major component that prevented stem leaning. Greater shallow root flexural stiffness mainly at the end of the zone of rapid taper on the windward side also prevented leaning. Toppling in less than 90-cm-deep soil was avoided in trees with a stocky taproots or with a very big leeward shallow root. Toppled trees also had a lower relative root biomass – stump excluded – than straight trees. Conclusions It was mainly the flexural stiffness of the central part of the root system that secured anchorage, preventing a weak displacement of the stump. The distal part of the longest taproot and attached deep roots may be the only parts of the root system contributing to anchorage through their maximum tensile load. Several designs provided good anchorage, depending partly on available soil depth. Pole-stage trees are in-between the juvenile phase when they fail by toppling and the mature phase when they fail by uprooting. PMID:27456136

  3. Traditional cattle vs. introduced deer management in Chaco Serrano woodlands (Argentina): Analysis of environmental sustainability at increasing densities.

    PubMed

    Charro, José Luis; López-Sánchez, Aida; Perea, Ramón

    2018-01-15

    Wild ungulate populations have increased and expanded considerably in many regions, including austral woodlands and forests where deer (Cervus elaphus) have been introduced as an alternative management to traditional cattle grazing. In this study, we compared traditional cattle with introduced deer management at increasing deer densities in the "Chaco Serrano" woodlands of Argentina to assess their ecological sustainability. We used three ecological indicators (abundance of tree regeneration, woody plant diversity and browsing damage) as proxies for environmental sustainability in woody systems. Our results indicate that traditional cattle management, at stocking rates of ∼10 ind km -2 , was the most ecologically sustainable management since it allowed greater tree regeneration abundance, higher richness of woody species and lower browsing damage. Importantly, cattle management and deer management at low densities (10 ind km -2 ) showed no significant differences in species richness and abundance of seedlings, although deer caused greater browsing damage on saplings and juveniles. However, management regimes involving high deer densities (∼35 deer km 2 ) was highly unsustainable in comparison to low (∼10 deer km -2 ) and medium (∼20 deer km -2 ) densities, with 40% probability of unsustainable browsing as opposed to less than 5% probability at low and medium densities. In addition, high deer densities caused a strong reduction in tree regeneration, with a 19-30% reduction in the abundance of seedlings and young trees when compared to low deer densities. These results showed that the effect of increasing deer densities on woody plant conservation was not linear, with high deer densities causing a disproportional deleterious effect on tree regeneration and sustainable browsing. Our results suggest that traditional management at low densities or the use of introduced ungulates (deer breeding areas) at low-medium densities (<20 deer km -2 ) are compatible with woody vegetation conservation. However, further research is needed on plant palatability, animal habitat use (spatial heterogeneity) and species turnover and extinction (comparison to areas of low-null historical browsing) to better estimate environmental sustainability of Neotropical ungulate-dominated woodlands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Size and Placement of Metal Culverts Critical on Peatland Woods Roads

    Treesearch

    J.H. Stoeckeler

    1967-01-01

    Culverts too small in diameter or poorly placed were major causes of timber flooding and tree damage. Placement problems were poor culvert slope, poor hydraulic approach, lack of gravel bedding, and too little soil covering the culverts.

  5. Canker Rots in Southern Hardwoods

    Treesearch

    F.I. McCracken

    1978-01-01

    Canker-rot fungi cause serious degrade and cull in southern hardwoods, especially the red oaks. Heartwood decay is the most serious form of damage, but the fungi also kill the cambium and decay the sapwood for as much as 3 feet (.91 m) above and below the entrance point into the tree. The ability of these fungi to kill the cambium and cause cankers distinguishes them...

  6. Presence of natural genetic resistance in Fraxinus excelsior (Oleraceae) to Chalara fraxinea (Ascomycota): an emerging infectious disease

    PubMed Central

    McKinney, L V; Nielsen, L R; Hansen, J K; Kjær, E D

    2011-01-01

    Fraxinus excelsior, common ash native to Europe, is threatened by a recently identified pathogenic fungus Chalara fraxinea, which causes extensive damage on ash trees across Europe. In Denmark, most stands are severely affected leaving many trees with dead crowns. However, single trees show notably fewer symptoms. In this study, the impact of the emerging infectious disease on native Danish ash trees is assessed by estimating presence of inherent resistance in natural populations. Disease symptoms were assessed from 2007 to 2009 at two different sites with grafted ramets of 39 selected clones representing native F. excelsior trees. A strong genetic variation in susceptibility to C. fraxinea infections was observed. No genetic or geographic structure can explain the differences, but strong genetic correlations to leaf senescence were observed. The results suggest that a small fraction of trees in the Danish population of ash possess substantial resistance against the damage. Though this fraction is probably too low to avoid population collapse in most natural or managed ash forests, the observed presence of putative resistance against the emerging infectious disease in natural stands is likely to be of evolutionary importance. This provides prospects of future maintenance of the species through natural or artificial selection in favour of remaining healthy individuals. PMID:20823903

  7. Low Herbivory among Targeted Reforestation Sites in the Andean Highlands of Southern Ecuador

    PubMed Central

    Adams, Marc-Oliver; Fiedler, Konrad

    2016-01-01

    Insect herbivory constitutes an important constraint in the viability and management of targeted reforestation sites. Focusing on young experimental stands at about 2000 m elevation in southern Ecuador, we examined foliar damage over one season as a function of tree species and habitat. Native tree species (Successional hardwood: Cedrela montana and Tabebuia chrysantha; fast-growing pioneer: Heliocarpus americanus) have been planted among prevailing local landcover types (abandoned pasture, secondary shrub vegetation, and a Pinus patula plantation) in 2003/4. Plantation trees were compared to conspecifics in the spontaneous undergrowth of adjacent undisturbed rainforest matched for height and foliar volume. Specifically, we tested the hypotheses that H. americanus as a pioneer species suffers more herbivory compared to the two successional tree species, and that damage is inversely related to habitat complexity. Overall leaf damage caused by folivorous insects (excluding leafcutter ants) was low. Average leaf loss was highest among T. chrysantha (7.50% ± 0.19 SE of leaf area), followed by H. americanus (4.67% ± 0.18 SE) and C. montana (3.18% ± 0.15 SE). Contrary to expectations, leaf area loss was highest among trees in closed-canopy natural rainforest, followed by pine plantation, pasture, and secondary shrub sites. Harvesting activity of leafcutter ants (Acromyrmex sp.) was strongly biased towards T. chrysantha growing in open habitat (mean pasture: 2.5%; shrub: 10.5%) where it could result in considerable damage (> 90.0%). Insect folivory is unlikely to pose a barrier for reforestation in the tropical Andean mountain forest zone at present, but leafcutter ants may become problematic if local temperatures increase in the wake of global warming. PMID:26963395

  8. Low Herbivory among Targeted Reforestation Sites in the Andean Highlands of Southern Ecuador.

    PubMed

    Adams, Marc-Oliver; Fiedler, Konrad

    2016-01-01

    Insect herbivory constitutes an important constraint in the viability and management of targeted reforestation sites. Focusing on young experimental stands at about 2000 m elevation in southern Ecuador, we examined foliar damage over one season as a function of tree species and habitat. Native tree species (Successional hardwood: Cedrela montana and Tabebuia chrysantha; fast-growing pioneer: Heliocarpus americanus) have been planted among prevailing local landcover types (abandoned pasture, secondary shrub vegetation, and a Pinus patula plantation) in 2003/4. Plantation trees were compared to conspecifics in the spontaneous undergrowth of adjacent undisturbed rainforest matched for height and foliar volume. Specifically, we tested the hypotheses that H. americanus as a pioneer species suffers more herbivory compared to the two successional tree species, and that damage is inversely related to habitat complexity. Overall leaf damage caused by folivorous insects (excluding leafcutter ants) was low. Average leaf loss was highest among T. chrysantha (7.50% ± 0.19 SE of leaf area), followed by H. americanus (4.67% ± 0.18 SE) and C. montana (3.18% ± 0.15 SE). Contrary to expectations, leaf area loss was highest among trees in closed-canopy natural rainforest, followed by pine plantation, pasture, and secondary shrub sites. Harvesting activity of leafcutter ants (Acromyrmex sp.) was strongly biased towards T. chrysantha growing in open habitat (mean pasture: 2.5%; shrub: 10.5%) where it could result in considerable damage (> 90.0%). Insect folivory is unlikely to pose a barrier for reforestation in the tropical Andean mountain forest zone at present, but leafcutter ants may become problematic if local temperatures increase in the wake of global warming.

  9. The effects of strawberry tree water leaf extract, arbutin and hydroquinone on haematological parameters and levels of primary DNA damage in white blood cells of rats.

    PubMed

    Jurica, Karlo; Brčić Karačonji, Irena; Kopjar, Nevenka; Shek-Vugrovečki, Ana; Cikač, Tihana; Benković, Vesna

    2018-04-06

    Strawberry tree (Arbutus unedo L., Ericaceae) leaves represent a potent source of biologically active compounds and have been used for a long to relieve symptoms of various health impairments and diseases. Two major compounds related to their beneficial activities in animals and humans are arbutin and hydroquinone. To establish potential benefit/risk ratio associated with daily oral administration of strawberry tree water leaf extract, arbutin and hydroquinone in doses expected to be non-toxic. We performed a 14-day and a 28-day study on male and female Lewis rats and evaluated main haematological parameters and the effects of treatments on the levels of primary DNA damage in white blood cells (WBC) using the alkaline comet assay. Our findings suggest no significant changes in the haematological parameters following prolonged exposure to strawberry tree water leaf extract, arbutin, and hydroquinone. However, hydroquinone causes increased, and extract as well as arbutin decreased WBC count in male rats compared to control after 14 days of treatment. DNA damage measured in WBC of rats treated with all compounds was below 10% of the DNA in the comet tail, which indicates low genotoxicity. The genotoxic potential of strawberry water leaf extract was within acceptable limits and reflected effects of a complex chemical composition upon DNA. We also observed slight gender- and exposure time- related differences in primary DNA damage in the leucocytes of control and treated rats. Future studies should investigate which doses of strawberry tree water leaf extract would be most promising for the potential use as a substitute for bearberry leaves for treatment of urinary infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Carbohydrate reserves in Acer saccharum trees damaged during the January 1998 ice storm in northern New York

    Treesearch

    B.L. Wong; L.J. Staats; A.S. Burfeind; K.L. Baggett; A.H. Rye; A.H. Rye

    2005-01-01

    To assess the effect of the ice storm of January 1998 on sugar maple (Acer saccharum Marsh.) tree health, starch, and soluble sugars in twigs from two damaged sugarbushes (younger: trees 50-100 years old, and older: trees approximately 200 years old) in northern New York were measured throughout the leafless phase (September 1998 - May 1999). Trees severely damaged by...

  11. Mailing microscope slides

    USDA-ARS?s Scientific Manuscript database

    Many insects feed agriculturally important crops, trees, and ornamental plants and cause millions of dollars of damage annually. Identification for some of these require the preparation of a microscope slide for examination. There are times when a microscope slide may need to be sent away to a speci...

  12. Leafhopper control in filed-grown red maples with systemic insecticides

    USDA-ARS?s Scientific Manuscript database

    Red maple, a popular landscape tree, can be susceptible to foliar damage caused by potato leafhopper feeding. Typical potato leafhopper injury includes distorted leaf tissue and reduced shoot growth. This research identified systemic neonicotinoid insecticides, Allectus and Discus, which controlled...

  13. A conceptual framework: redefining forest soil's critical acid loads under a changing climate.

    PubMed

    McNulty, Steven G; Boggs, Johnny L

    2010-06-01

    Federal agencies of several nations have or are currently developing guidelines for critical forest soil acid loads. These guidelines are used to establish regulations designed to maintain atmospheric acid inputs below levels shown to damage forests and streams. Traditionally, when the critical soil acid load exceeds the amount of acid that the ecosystem can absorb, it is believed to potentially impair forest health. The excess over the critical soil acid load is termed the exceedance, and the larger the exceedance, the greater the risk of ecosystem damage. This definition of critical soil acid load applies to exposure of the soil to a single, long-term pollutant (i.e., acidic deposition). However, ecosystems can be simultaneously under multiple ecosystem stresses and a single critical soil acid load level may not accurately reflect ecosystem health risk when subjected to multiple, episodic environmental stress. For example, the Appalachian Mountains of western North Carolina receive some of the highest rates of acidic deposition in the eastern United States, but these levels are considered to be below the critical acid load (CAL) that would cause forest damage. However, the area experienced a moderate three-year drought from 1999 to 2002, and in 2001 red spruce (Picea rubens Sarg.) trees in the area began to die in large numbers. The initial survey indicated that the affected trees were killed by the southern pine beetle (Dendroctonus frontalis Zimm.). This insect is not normally successful at colonizing these tree species because the trees produce large amounts of oleoresin that exclude the boring beetles. Subsequent investigations revealed that long-term acid deposition may have altered red spruce forest structure and function. There is some evidence that elevated acid deposition (particularly nitrogen) reduced tree water uptake potential, oleoresin production, and caused the trees to become more susceptible to insect colonization during the drought period. While the ecosystem was not in exceedance of the CAL, long-term nitrogen deposition pre-disposed the forest to other ecological stress. In combination, insects, drought, and nitrogen ultimately combined to cause the observed forest mortality. If any one of these factors were not present, the trees would likely not have died. This paper presents a conceptual framework of the ecosystem consequences of these interactions as well as limited plot level data to support this concept. Future assessments of the use of CAL studies need to account for multiple stress impacts to better understand ecosystem response. Published by Elsevier Ltd.

  14. Certified and uncertified logging concessions compared in Gabon: changes in stand structure, tree species, and biomass.

    PubMed

    Medjibe, V P; Putz, Francis E; Romero, Claudia

    2013-03-01

    Forest management certification is assumed to promote sustainable forest management, but there is little field-based evidence to support this claim. To help fill this gap, we compared a Forest Stewardship Council (FSC)-certified with an adjacent uncertified, conventionally logged concession (CL) in Gabon on the basis of logging damage, above-ground biomass (AGB), and tree species diversity and composition. Before logging, we marked, mapped, and measured all trees >10 cm dbh in 20 and twelve 1-ha permanent plots in the FSC and CL areas, respectively. Soil and tree damage due to felling, skidding, and road-related activities was then assessed 2-3 months after the 508 ha FSC study area and the 200 ha CL study area were selectively logged at respective intensities of 5.7 m(3)/ha (0.39 trees/ha) and 11.4 m(3)/ha (0.76 trees/ha). For each tree felled, averages of 9.1 and 20.9 other trees were damaged in the FSC and CL plots, respectively; when expressed as the impacts per timber volume extracted, the values did not differ between the two treatments. Skid trails covered 2.9 % more of the CL surface, but skid trail length per unit timber volume extracted was not greater. Logging roads were wider in the CL than FSC site and disturbed 4.7 % more of the surface. Overall, logging caused declines in AGB of 7.1 and 13.4 % at the FSC and CL sites, respectively. Changes in tree species composition were small but greater for the CL site. Based on these findings and in light of the pseudoreplicated study design with less-than perfect counterfactual, we cautiously conclude that certification yields environmental benefits even after accounting for differences in logging intensities.

  15. Long-term benefits to the growth of ponderosa pines from controlling southwestern pine tip moth (Lepidoptera: Tortricidae) and weeds.

    PubMed

    Wagner, Michael R; Chen, Zhong

    2004-12-01

    The southwestern pine tip moth, Rhyacionia neomexicana (Dyar) (Lepidoptera: Tortricidae), is a native forest pest that attacks seedlings and saplings of ponderosa pine, Pinus ponderosa Dougl. ex Laws, in the southwestern United States. Repeated attacks can cause severe deformation of host trees and significant long-term growth loss. Alternatively, effective control of R. neomexicana, vegetative competition, or both in young pine plantations may increase survival and growth of trees for many years after treatments are applied. We test the null hypothesis that 4 yr of R. neomexicana and weed control with insecticide, weeding, and insecticide plus weeding would not have any residual effect on survival and growth of trees in ponderosa pine plantation in northern Arizona 14 yr post-treatment, when the trees were 18 yr old. Both insecticide and weeding treatment increased tree growth and reduced the incidence of southwestern pine tip moth damage compared with the control. However, weeding alone also significantly increased tree survival, whereas insecticide alone did not. The insecticide plus weeding treatment had the greatest tree growth and survival, and the lowest rate of tip moth damage. Based on these results, we rejected our null hypothesis and concluded that there were detectable increases in the survival and growth of ponderosa pines 14 yr after treatments applied to control R. neomexicana and weeds.

  16. Pear thrips damage and impact on the Vermont sugarmaker

    Treesearch

    Daniel B. Crocker

    1991-01-01

    I am a sugarmaker from southern Vermont. I became a sugarmaker because I wanted to establish a long-term project on my property from which I could make a living. The trees on my land are very healthy, as evidenced by the high volume of syrup I am able to produce. I have noticed the thrips damage for a number of years, but didn't know the cause until 1987. I would...

  17. Pileated woodpecker damage to red-cockaded woodpecker cavity trees in eastern Texas

    Treesearch

    Daniel Saenz; Richard N. Conner; Clifford E. Shackelford; D. Craig Rudolph

    1998-01-01

    The authors surveyed all known red-cockaded woodpecker (Picoides borealis) cavity trees (n = 514) in the Angelina National Forest in eastern Texas for pileated woodpecker (Dryocopus pileatus) damage. They compared the frequency of pileated woodpecker damage to red-cockaded woodpecker cavity trees in longleaf pine (Pinus palustris) habitat to damage in loblolly (P....

  18. Advances in automated nut sorting

    USDA-ARS?s Scientific Manuscript database

    Nuts in general, and tree nuts in particular, are a high value crop in many countries. Products with defects, contamination, insects or fungal damage can cause serious losses to producers, so almost all products are subjected to some level of sorting to remove these undesirable products. This chap...

  19. Identification of a nucleopolyhedrovirus in winter moth populations from Massachusetts

    Treesearch

    John P. Burand; Anna Welch; Woojin Kim; Vince D' Amico; Joseph S. Elkinton

    2011-01-01

    The winter moth, Operophtera brumata, originally from Europe, has recently invaded eastern Massachusetts. This insect has caused widespread defoliation of many deciduous tree species and severely damaged a variety of crop plants in the infested area including apple, strawberry, and especially blueberry.

  20. Photosynthetic response to low sink demand after fruit removal in relation to photoinhibition and photoprotection in peach trees.

    PubMed

    Duan, Wei; Fan, Pei G; Wang, Li J; Li, Wei D; Yan, Shu T; Li, Shao H

    2008-01-01

    Diurnal variations in photosynthesis, chlorophyll fluorescence, xanthophyll cycle, antioxidant enzymes and antioxidant metabolism in leaves in response to low sink demand caused by fruit removal (-fruit) were studied in 'Zaojiubao' peach (Prunus persica (L.) Batch) trees during the final stage of rapid fruit growth. Compared with the retained fruit treatment (+fruit), the -fruit treatment resulted in a significantly lower photosynthetic rate, stomatal conductance and transpiration rate, but generally higher internal CO(2) concentration, leaf-to-air vapor pressure difference and leaf temperature. The low photosynthetic rate in the -fruit trees paralleled reductions in maximal efficiency of photosystem II (PSII) photochemistry and carboxylation efficiency. The midday depression in photosynthetic rate in response to low sink demand resulting from fruit removal was mainly caused by non-stomatal limitation. Fruit removal resulted in lower quantum efficiency of PSII as a result of both a decrease in the efficiency of excitation capture by open PSII reaction centers and an increase in closure of PSII reaction centers. Both xanthophyll-dependent thermal dissipation and the antioxidant system were up-regulated providing protection from photo-oxidative damage to leaves during low sink demand. Compared with the leaves of +fruit trees, leaves of -fruit trees had a larger xanthophyll cycle pool size and a higher de-epoxidation state, as well as significantly higher activities of antioxidant enzymes, including superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase and a higher reduction state of ascorbate and glutathione. However, the -fruit treatment resulted in higher hydrogen peroxide and malondialdehyde concentrations compared with the +fruit treatment, indicating photo-oxidative damage.

  1. Winter in the Ouachitas--a severe winter storm signature in Pinus echinata in the Ouachita Mountains of Oklahoma and Arkansas, USA

    Treesearch

    Douglas J. Stevenson; Thomas B. Lynch; Pradip Saud; Robert Heineman; Randal Holeman; Dennis Wilson; Keith Anderson; Chris Cerny; James M. Guldin

    2016-01-01

    Each year severe winter storms (≈ice storms) damage trees throughout the southern USA. Arkansas and Oklahoma have a history of severe winter storms. To extend that history back beyond the reach of written records, a distinctive tree ring pattern or signature is needed. Storm-caused breakage, branch loss and bending stress provide that signature. We found a severe storm...

  2. Rodent Damage to Natural and Replanted Mountain Forest Regeneration

    PubMed Central

    Heroldová, Marta; Bryja, Josef; Jánová, Eva; Suchomel, Josef; Homolka, Miloslav

    2012-01-01

    Impact of small rodents on mountain forest regeneration was studied in National Nature Reserve in the Beskydy Mountains (Czech Republic). A considerable amount of bark damage was found on young trees (20%) in spring after the peak abundance of field voles (Microtus agrestis) in combination with long winter with heavy snowfall. In contrast, little damage to young trees was noted under high densities of bank voles (Myodes glareolus) with a lower snow cover the following winter. The bark of deciduous trees was more attractive to voles (22% damaged) than conifers (8%). Young trees growing in open and grassy localities suffered more damage from voles than those under canopy of forest stands (χ 2 = 44.04, P < 0.001). Natural regeneration in Nature Reserve was less damaged compared to planted trees (χ 2 = 55.89, P < 0.001). The main factors influencing the impact of rodent species on tree regeneration were open, grassy habitat conditions, higher abundance of vole species, tree species preferences- and snow-cover condition. Under these conditions, the impact of rodents on forest regeneration can be predicted. Foresters should prefer natural regeneration to the artificial plantings. PMID:22666163

  3. Radiofrequency radiation injures trees around mobile phone base stations.

    PubMed

    Waldmann-Selsam, Cornelia; Balmori-de la Puente, Alfonso; Breunig, Helmut; Balmori, Alfonso

    2016-12-01

    In the last two decades, the deployment of phone masts around the world has taken place and, for many years, there has been a discussion in the scientific community about the possible environmental impact from mobile phone base stations. Trees have several advantages over animals as experimental subjects and the aim of this study was to verify whether there is a connection between unusual (generally unilateral) tree damage and radiofrequency exposure. To achieve this, a detailed long-term (2006-2015) field monitoring study was performed in the cities of Bamberg and Hallstadt (Germany). During monitoring, observations and photographic recordings of unusual or unexplainable tree damage were taken, alongside the measurement of electromagnetic radiation. In 2015 measurements of RF-EMF (Radiofrequency Electromagnetic Fields) were carried out. A polygon spanning both cities was chosen as the study site, where 144 measurements of the radiofrequency of electromagnetic fields were taken at a height of 1.5m in streets and parks at different locations. By interpolation of the 144 measurement points, we were able to compile an electromagnetic map of the power flux density in Bamberg and Hallstadt. We selected 60 damaged trees, in addition to 30 randomly selected trees and 30 trees in low radiation areas (n=120) in this polygon. The measurements of all trees revealed significant differences between the damaged side facing a phone mast and the opposite side, as well as differences between the exposed side of damaged trees and all other groups of trees in both sides. Thus, we found that side differences in measured values of power flux density corresponded to side differences in damage. The 30 selected trees in low radiation areas (no visual contact to any phone mast and power flux density under 50μW/m 2 ) showed no damage. Statistical analysis demonstrated that electromagnetic radiation from mobile phone masts is harmful for trees. These results are consistent with the fact that damage afflicted on trees by mobile phone towers usually start on one side, extending to the whole tree over time. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Herbivores and pathogens on Alnus viridis subsp. fruticosa in interior Alaska: effects of leaf, tree, and neighbour characteristics on damage levels

    Treesearch

    Christa P.H. Mulder; Bitty A. Roy; Sabine Gusewell

    2008-01-01

    Parasite damage strongly affects dynamics of boreal forests. Damage levels may be affected by climate change, either directly or indirectly through changes in properties of host trees. We examined how herbivore and pathogen damage in Alnus viridis subsp. fruticosa (Rupr.) Nym. depend on leaf morphology and chemistry, tree size...

  5. Tree Species Composition and Harvest Intensity Affect Herbivore Density and Leaf Damage on Beech, Fagus sylvatica, in Different Landscape Contexts

    PubMed Central

    Mangels, Jule; Blüthgen, Nico; Frank, Kevin; Grassein, Fabrice; Hilpert, Andrea; Mody, Karsten

    2015-01-01

    Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores. PMID:25938417

  6. 36 CFR 223.12 - Permission to cut, damage, or destroy trees without advertisement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... destroy trees without advertisement. 223.12 Section 223.12 Parks, Forests, and Public Property FOREST... trees without advertisement. Permission may be granted to cut, damage, or destroy trees, portions of trees, or other forest products on National Forest System lands without advertisement when necessary for...

  7. 36 CFR 223.12 - Permission to cut, damage, or destroy trees without advertisement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... destroy trees without advertisement. 223.12 Section 223.12 Parks, Forests, and Public Property FOREST... trees without advertisement. Permission may be granted to cut, damage, or destroy trees, portions of trees, or other forest products on National Forest System lands without advertisement when necessary for...

  8. 36 CFR 223.12 - Permission to cut, damage, or destroy trees without advertisement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... destroy trees without advertisement. 223.12 Section 223.12 Parks, Forests, and Public Property FOREST... trees without advertisement. Permission may be granted to cut, damage, or destroy trees, portions of trees, or other forest products on National Forest System lands without advertisement when necessary for...

  9. 36 CFR 223.12 - Permission to cut, damage, or destroy trees without advertisement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... destroy trees without advertisement. 223.12 Section 223.12 Parks, Forests, and Public Property FOREST... trees without advertisement. Permission may be granted to cut, damage, or destroy trees, portions of trees, or other forest products on National Forest System lands without advertisement when necessary for...

  10. Sphaeropsis Shoot Blight

    Treesearch

    Jill Pokorny

    1998-01-01

    Sphaeropsis shoot blight, formerly called Diplodia shoot blight, is worldwide in distribution and can infect many conifer hosts. Although many pine species are reported hosts, this disease causes severe damage only to trees that are predisposed by unfavorable environmental conditions. Non-native, exotic pine species growing outside their natural range are especially...

  11. Plant-microbe relationship that influences an insect pest of Califronia tree nuts

    USDA-ARS?s Scientific Manuscript database

    California produces a large portion of the worldwide supply of pistachios. The navel orangeworm is considered a major insect pest of California pistachios, and causes significant damage to pistachio kernels in addition to introducing aflatoxigenic fungi. Despite the development of semiochemical-base...

  12. Developing the california fresh fig industry

    USDA-ARS?s Scientific Manuscript database

    The fig (Ficus carica), one of the first cultivated trees in the world, is grown in most of the of the world’s moderate climates. However, fresh figs are highly sensitive to physical damage, and susceptible to postharvest infections which cause high losses during marketing. Preharvest orchard and po...

  13. Behavior and Characteristics of Sap-Feeding North Island kākā (Nestor meridionalis septentrionalis) in Wellington, New Zealand

    PubMed Central

    Charles, Kerry E.; Linklater, Wayne L.

    2013-01-01

    Simple Summary Understanding the behavior of problem animal species assists in understanding and mitigating problems caused by wildlife in urban landscapes. The kākā, a threatened New Zealand native parrot, causes damage to trees while feeding on sap. Through observations of sap foraging kākā in Wellington City, this study builds on the limited knowledge of sap feeding and tests hypotheses about the age and sex of sap feeding birds. We found that sap feeding likely occurs in both sexes and across age groups, and that sap feeding birds also utilize supplementary food. This study suggests that sap is an important food source for kākā and that further provision of supplementary food is unlikely to reduce sap feeding and associated tree damage. Abstract The North Island kākā (Nestor meridionalis septentrionalis), a threatened New Zealand native parrot, was successfully reintroduced to an urban sanctuary in Wellington, New Zealand. Conflict has recently begun to emerge with Wellington City residents due to tree damage caused by kākā sap foraging. Little is known about sap foraging behavior of kākā, and this study aimed to gain a greater understanding of this behavior, and to test hypotheses that sap feeding is predominantly a female activity and that one technique, forming transverse gouges through bark, may be restricted to adult kākā. We used instantaneous scan sampling to record the behavior of kākā during 25 60–100 minute observation periods at Anderson Park, Wellington Botanic Garden, and during 13 opportunistic observations of sap feeding kākā in Wellington City. Forty-one observations of sap feeding were made of 21 individually-identified birds. Sap feeding birds were predominantly young and, based on estimated sex, females were no more likely to sap feed than males (exact binomial test p = 0.868). Twenty of the 21 identified sap feeding kākā utilized supplementary feeding stations at Zealandia-Karori Wildlife Sanctuary. Kākā were observed defending sap feeding sites from tui (Prosthemadera novaeseelandiae) and conspecifics. Sap appears to be an important resource for kākā across sexes and life stages, and provision of supplementary food is unlikely to reduce sap feeding and tree damage in Wellington City. PMID:26479536

  14. The study and analysis of the mating behavior and sound production of male cicada Psalmocharias alhageos (Kol.) (Homoptera:Cicadidae) to make disruption in mating.

    PubMed

    Zamanian, H; Mehdipour, M; Ghaemi, N

    2008-09-01

    Psalmocharias alhageos is an important pest of vine in most parts of Iran, Afghanistan, Pakistan, southern areas of Russia, Turkey and Iraq. This cicada is spread in most provinces in Iran such as Esfahan, Hamedan, Qazvin, Markazi, Lorestan, Qom, Kerman, Tehran and Kordestan. In addition to vine, this insect damages some other fruit trees, such as apple, sour cherry, quince, peach, pomegranate and pear trees and some non-fruit trees, namely white poplar, ash, elm, eglantine, silk and black poplar trees. The nymphs of cicada damage the trees by feeding on root, adult insects on young bud and by oviposition under branch barks. Nourishing root by nymph leads to the weakness of the tree and hinder its growth. The high density oviposition of adult insects inside young barks causes withering of branches. The resulted damage on vine products is 40% which is one of the most important factors in product reduction in vineyard. This research was conducted in Takestan in Qazvin. It was conducted for the first time to study the behaviors of the mates of this vine cicada in order to manage it. Two systems were used to record the sound of male cicada called analog voice-recorder and digital voice recorder. To analyze the recorded sound of the male cicada we used of spectrum analyzer, digital storage oscilloscope and protens 7 computer softwares. We could call the attention of natural enemies an disturb the male insect's attracting sound by producing natural and artificial sound in the range of 1-6 kHz in two different ripeness status of the fruits and could prevent mating and oviposition of female cicadas.

  15. Fault tree analysis of most common rolling bearing tribological failures

    NASA Astrophysics Data System (ADS)

    Vencl, Aleksandar; Gašić, Vlada; Stojanović, Blaža

    2017-02-01

    Wear as a tribological process has a major influence on the reliability and life of rolling bearings. Field examinations of bearing failures due to wear indicate possible causes and point to the necessary measurements for wear reduction or elimination. Wear itself is a very complex process initiated by the action of different mechanisms, and can be manifested by different wear types which are often related. However, the dominant type of wear can be approximately determined. The paper presents the classification of most common bearing damages according to the dominant wear type, i.e. abrasive wear, adhesive wear, surface fatigue wear, erosive wear, fretting wear and corrosive wear. The wear types are correlated with the terms used in ISO 15243 standard. Each wear type is illustrated with an appropriate photograph, and for each wear type, appropriate description of causes and manifestations is presented. Possible causes of rolling bearing failure are used for the fault tree analysis (FTA). It was performed to determine the root causes for bearing failures. The constructed fault tree diagram for rolling bearing failure can be useful tool for maintenance engineers.

  16. Growth-Form Characteristics of Ancient Rocky Mountain Bristlecone Pines (Pinus aristata), Colorado

    USGS Publications Warehouse

    Brunstein, F. Craig

    2006-01-01

    This report describes and illustrates growth-form characteristics of Rocky Mountain bristlecone pines (Pinus aristata) at several sites in the Rocky Mountains in Colorado. Most of this study concentrates on 1,000- to 2,500-year-old bristlecone pines; however, the report also describes some of the growth-form characteristics of younger trees (about 20 to less than 1,000 years old) in order to show the continuous changes in tree form from youth to old age. To better describe the trees in this study, some tree-structure nomenclature is introduced and a growth-form classification system is provided. Other topics include the relationship of the trees to their substrate and the potential changes in the growth forms of some bristlecone pines due to damage caused by fire, porcupines, impacts from tumbling boulders, and lightning strikes.

  17. An experimental demonstration of stem damage as a predictor of fire-caused mortality for ponderosa pine

    USGS Publications Warehouse

    van Mantgem, P.; Schwartz, M.

    2004-01-01

    We subjected 159 small ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) to treatments designed to test the relative importance of stem damage as a predictor of postfire mortality. The treatments consisted of a group with the basal bark artificially thinned, a second group with fuels removed from the base of the stem, and an untreated control. Following prescribed burning, crown scorch severity was equivalent among the groups. Postfire mortality was significantly less frequent in the fuels removal group than in the bark removal and control groups. No model of mortality for the fuels removal group was possible, because dead trees constituted <4% of subject trees. Mortality in the bark removal group was best predicted by crown scorch and stem scorch severity, whereas death in the control group was predicted by crown scorch severity and bark thickness. The relative lack of mortality in the fuels removal group and the increased sensitivity to stem damage in the bark removal group suggest that stem damage is a critical determinant of postfire mortality for small ponderosa pine.

  18. [Temperature conditions of the formation of frost damages in conifer trees in the high latitudes of Western Siberia].

    PubMed

    Gurskaia, M A

    2014-01-01

    Frost damage to the bottom of the stem at a height of 0.2 m and at the height of the position of the thermometer in the weather station (2 m) and higher in the Siberian spruce (Picea obovata Ledeb.) and Siberian larch (Larix sibirica Ledeb.) growing at the northern limits of their natural habitat were studied in order to reveal the upper threshold temperature conditions of their formation. Possible causes of differences in the distribution of frost damage in the stem of the spruce and larch are discussed.

  19. Anchorage failure of young trees in sandy soils is prevented by a rigid central part of the root system with various designs.

    PubMed

    Danquechin Dorval, Antoine; Meredieu, Céline; Danjon, Frédéric

    2016-07-25

    Storms can cause huge damage to European forests. Even pole-stage trees with 80-cm rooting depth can topple. Therefore, good anchorage is needed for trees to survive and grow up from an early age. We hypothesized that root architecture is a predominant factor determining anchorage failure caused by strong winds. We sampled 48 seeded or planted Pinus pinaster trees of similar aerial size from four stands damaged by a major storm 3 years before. The trees were gathered into three classes: undamaged, leaning and heavily toppled. After uprooting and 3D digitizing of their full root architectures, we computed the mechanical characteristics of the main components of the root system from our morphological measurements. Variability in root architecture was quite large. A large main taproot, either short and thick or long and thin, and guyed by a large volume of deep roots, was the major component that prevented stem leaning. Greater shallow root flexural stiffness mainly at the end of the zone of rapid taper on the windward side also prevented leaning. Toppling in less than 90-cm-deep soil was avoided in trees with a stocky taproots or with a very big leeward shallow root. Toppled trees also had a lower relative root biomass - stump excluded - than straight trees. It was mainly the flexural stiffness of the central part of the root system that secured anchorage, preventing a weak displacement of the stump. The distal part of the longest taproot and attached deep roots may be the only parts of the root system contributing to anchorage through their maximum tensile load. Several designs provided good anchorage, depending partly on available soil depth. Pole-stage trees are in-between the juvenile phase when they fail by toppling and the mature phase when they fail by uprooting. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. 78 FR 21590 - Coconino National Forest; Arizona; Flagstaff Watershed Protection Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... also cause extensive damage to private municipal property should a high-intensity wildfire occur in... would be necessarily to implement the proposed activities. Treatments would include mechanical and hand thinning as well as prescribed fire on approximately 8,810 acres. Mechanical tree thinning would occur...

  1. Fire and bark beetle interactions

    Treesearch

    Ken Gibson; Jose F. Negron

    2009-01-01

    Bark beetle populations are at outbreak conditions in many parts of the western United States and causing extensive tree mortality. Bark beetles interact with other disturbance agents in forest ecosystems, one of the primary being fires. In order to implement appropriate post-fire management of fire-damaged ecosystems, we need a better understanding of...

  2. Insect damage to oaks

    Treesearch

    Charles O. Rexrode

    1971-01-01

    In terms of mortality caused by insects, defoliators are the most serious enemies of oaks at the present time. An oak leaf tier, Croesia semipurprana, is one of the principal defoliators of trees in the red oak group. Oak leaf rollers, primarily Archips semiferana, have been responsible for widespread mortality in white and...

  3. A Role for Intercept Traps in the Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae) IPM Strategy at Ornamental Nurseries

    USDA-ARS?s Scientific Manuscript database

    Invasive ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) cause significant damage to ornamental nursery tree crops throughout the Eastern U. S. Depending on surrounding habitat, some nurseries can undergo large influxes of ambrosia beetles from the forest to susceptible nursery stock. Eth...

  4. Monitoring the Attack Incidences and Damage Caused by the Almond Bark Beetle, Scolytus amygdali, in Almond Orchards

    PubMed Central

    Cuthbertson, Andrew G. S.; Braham, Mohamed

    2018-01-01

    The almond bark beetle, Scolytus amygdali Geurin-Meneville, is responsible for significant loss of fruit production in almond orchards throughout the world. Here, we studied the damage and the incidences of S. amygdali attack on two different scales: (1) at the level of a single tree; and (2) in an entire orchard. Our results revealed no differences in attack level among four orientations (east, west, south and north sides) for the whole tree. However, the bark that was facing west side in the direction of the prevailing wind was found to be the most suitable for females to initiate attack in Stratum S2. Attack distribution remains the same among different strata (strata is vertical divisions of the tree from the ground to the uppermost twigs with ~40 cm intervals). More than 50% of attack was observed in the trunk of the tree and upper strata. However, multiplication rate (number of emerged adults/maternal gallery) varies significantly between strata. In addition, we studied attack intensity (holes produced by beetle per tree) comparing it to tree morphology (flowers, leaves and circumferences) and gum deposit. Our results revealed a positive correlation between attack intensity and gum deposits, and a negative correlation between attack intensity and tree morphology. This revealed that gum on the tree was an indicator for attack intensity. A positive correlation between attack intensity and the circumference of the tree revealed that older trees were more susceptible to S. amygdali attack. These results, while preliminary, aim to help in the monitoring of S. amygdali populations before deciding to apply any control measures. PMID:29301271

  5. Evidence of floods on the Potomac River from anatomical abnormalities in the wood of flood-plain trees

    USGS Publications Warehouse

    Yanosky, Thomas M.

    1983-01-01

    Ash trees along the Potomac River flood plain near Washington, D.C., were studied to determine changes in wood anatomy related to flood damage, and anomalous growth was compared to flood records for April 15 to August 31, 1930-79. Collectively, anatomical evidence was detected for 33 of the 34 growing-season floods during the study period. Evidence of 12 floods prior to 1930 was also noted, including catastrophic ones in 1889 and 1924. Trees damaged after the transition from earlywood to latewood growth typically formed ' flood rings ' of enlarged vessels within the latewood zone. Trees damaged near the beginning of the growth year developed flood rings within, or contiguous with, the earlywood. Both patterns are assumed to have developed when flood-damaged trees produced a second crop of leaves. Trees damaged by high-magnitude floods developed well formed flood rings along the entire height and around the entire circumference of the stem. Small floods were generally associated wtih diffuse or discontinuous anomalies restricted to stem apices. Frequency of flood rings was positively related to flood magnitude, and time of flood generation during the tree-growth season was estimated from the radial position of anomalous growth relative to annual ring width. Reconstructing tree heights in a year of flood-ring formation gives a minimum stage estimate along local stream reaches. Some trees provided evidence of numerous floods. Those with the greatest number of flood rings grew on frequently flooded surfaces subject to flood-flow velocities of at least 1 m/s, and more typically greater than 2 m/s. Tree size, more than age, was related to flood-ring formation. Trees kept small by frequent flood damage had more flood rings than taller trees of comparable age. (USGS)

  6. Tree Species Richness Promotes Invertebrate Herbivory on Congeneric Native and Exotic Tree Saplings in a Young Diversity Experiment.

    PubMed

    Wein, Annika; Bauhus, Jürgen; Bilodeau-Gauthier, Simon; Scherer-Lorenzen, Michael; Nock, Charles; Staab, Michael

    2016-01-01

    Tree diversity in forests is an important driver of ecological processes including herbivory. Empirical evidence suggests both negative and positive effects of tree diversity on herbivory, which can be, respectively, attributed to associational resistance or associational susceptibility. Tree diversity experiments allow testing for associational effects, but evidence regarding which pattern predominates is mixed. Furthermore, it is unknown if herbivory on tree species of native vs. exotic origin is influenced by changing tree diversity in a similar way, or if exotic tree species escape natural enemies, resulting in lower damage that is unrelated to tree diversity. To address these questions, we established a young tree diversity experiment in temperate southwestern Germany that uses high planting density (49 trees per plot; plot size 13 m2). The species pool consists of six congeneric species pairs of European and North American origin (12 species in total) planted in monocultures and mixtures (1, 2, 4, 6 species). We assessed leaf damage by leaf-chewing insects on more than 5,000 saplings of six broadleaved tree species. Plot-level tree species richness increased leaf damage, which more than doubled from monocultures to six-species mixtures, strongly supporting associational susceptibility. However, leaf damage among congeneric native and exotic species pairs was similar. There were marked differences in patterns of leaf damage across tree genera, and only the genera likely having a predominately generalist herbivore community showed associational susceptibility, irrespective of the geographical origin of a tree species. In conclusion, an increase in tree species richness in young temperate forests may result in associational susceptibility to feeding by generalist herbivores.

  7. STS-27R OV-104 Orbiter TPS damage review team, volume 1

    NASA Technical Reports Server (NTRS)

    Thomas, John W. (Compiler)

    1989-01-01

    Following the return to earth on December 2, 1988, of Orbiter OV-104, Atlantis, it was observed that there was substantial Thermal Protection System (TPS) tile damage present on the lower right fuselage and wing. Damage sites were more numerous than on previous flights and conversely, there was almost no damage present on Atlantis' left side. A review team investigated the cause beginning with a detailed inspection of the Atlantis TPS damage, and a review of related inspection reports to establish an indepth anomaly definition. An exhaustive data review followed. A fault tree and several failure scenarios were developed. Finally, the failure scenarios were categorized as either not possible, possible but not probable, or probable. This and other information gained during the review formed the basis for the team's findings and recommendations. The team concluded that the most probable cause of the severe STS-27R Orbiter tile damage is that the ablative insulating material covering the RH SRB Nose Cap dislodged and struck the Orbiter tile near 85 seconds into flight and possibly that debris from other sources, including repaired insulation and missing joint cork, caused minor tile damage. Findings are presented, and recommendations that are believed pertinent to minimizing the potential for inflight debris are described.

  8. An overview of natural hazard impacts to railways and urban transportation systems

    NASA Astrophysics Data System (ADS)

    Bíl, Michal; Nezval, Vojtěch; Bílová, Martina; Andrášik, Richard; Kubeček, Jan

    2017-04-01

    We present an overview and two case studies of natural hazard impacts on rail transportation systems in the Czech Republic. Flooding, landsliding, heavy snowfall, windstorms and glaze (black ice) are the most common natural processes which occur in this region. Whereas flooding and landsliding usually cause direct damage to the transportation infrastructure, other hazards predominantly cause indirect losses. Railway and urban tramline networks are almost fully dependent on electricity which is provided by a system of overhead lines (electric lines above the tracks). These lines are extremely susceptible to formation of glaze which blocks conduction of electric current. A December 2014 glaze event caused significant indirect losses in the largest Czech cities and railways due to the above-mentioned process. Details of this event will be provided during the presentation. Windstorms usually cause tree falls which can affect overhead lines and physically block railway tracks. Approximately 30 % of the Czech railway network is closer than 50 m from the nearest forest. This presents significant potential for transport interruption due to falling trees. Complicated legal relations among the owners of the plots of land along railways, the environment (full-grown trees and related habitat), and the railway administrator are behind many traffic interruptions due to falling trees. We have registered 2040 tree falls between 2012 and 2015 on the railway network. A model of the fallen tree hazard was created for the entire Czech railway network. Both above-mentioned case studies provide illustrative examples of the increased fragility of the modern transportation systems which fully rely on electricity. Natural processes with a low destructive power are thereby able to cause network wide service cut-offs.

  9. Distribution, Pest Status and Fungal Associates of Euwallacea nr. fornicatus in Florida Avocado Groves

    PubMed Central

    Carrillo, Daniel; Cruz, Luisa F.; Kendra, Paul E.; Narvaez, Teresa I.; Montgomery, Wayne S.; Monterroso, Armando; De Grave, Charlotte; Cooperband, Miriam F.

    2016-01-01

    Members of a complex of cryptic species, that correspond morphologically to the ambrosia beetle Euwallacea fornicatus (Eichhoff) (Coleoptera: Curculionidae: Scolytinae), were recently found attacking avocado (Persea americana Mill.) in Israel and California. In early 2016, an outbreak of another member of this species complex was detected infesting approximately 1500 avocado trees in an avocado orchard at Homestead, Florida. An area-wide survey was conducted in commercial avocado groves of Miami-Dade County, Florida to determine the distribution and abundance of E. nr. fornicatus, to identify different populations of E. nr. fornicatus and their fungal associates, and to assess the extent of damage to avocado trees. Ewallacea nr. fornicatus were captured in 31 of the 33 sampled sites. A sample of 35 beetles from six different locations was identified as E. nr. fornicatus sp. #2, which is genetically distinct from the species causing damage in California and Israel. Eleven fungal associates were identified: an unknown Fusarium sp., AF-8, AF-6, Graphium euwallaceae, Acremonium sp. Acremonium morum, Acremonium masseei, Elaphocordyceps sp. and three yeast species. The unknown Fusarium isolates were the most abundant and frequently found fungus species associated with adult beetles and lesions surrounding the beetle galleries. In addition to fungal associates, three bacteria species were found associated with adult E. nr. fornicatus. Visual inspections detected significant damage in only two orchards. A large number of beetles were captured in locations with no apparent damage on the avocado trees suggesting that E. nr. fornicatus are associated with other host(s) outside the groves or with dead trees or branches inside the groves. More research is needed to determine the potential threat E. nr. fornicatus and its fungal associates pose to the avocado industry and agricultural and natural ecosystems in Florida. PMID:27754408

  10. Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhillon, Braham; Feau, Nicolas; Aerts, Andrea L.

    Some of the most damaging tree diseases are caused by pathogens that induce cankers, a stem deformation often lethal. To investigate the cause of this adaptation, we sequenced the genomes of poplar pathogens that do and do not cause cankers. We found a unique cluster of genes that produce secondary metabolites and are co-activated when the canker pathogen is grown on poplar wood and leaves. The gene genealogy is discordant with the species phylogeny, showing a signature of horizontal transfer from fungi associated with wood decay. Furthermore, genes encoding hemicellulose-degrading enzymes are up-regulated on poplar wood chips, with some havingmore » been acquired horizontally. In conclusion, we propose that adaptation to colonize poplar woody stems is the result of acquisition of these genes.« less

  11. Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen

    DOE PAGES

    Dhillon, Braham; Feau, Nicolas; Aerts, Andrea L.; ...

    2015-03-02

    Some of the most damaging tree diseases are caused by pathogens that induce cankers, a stem deformation often lethal. To investigate the cause of this adaptation, we sequenced the genomes of poplar pathogens that do and do not cause cankers. We found a unique cluster of genes that produce secondary metabolites and are co-activated when the canker pathogen is grown on poplar wood and leaves. The gene genealogy is discordant with the species phylogeny, showing a signature of horizontal transfer from fungi associated with wood decay. Furthermore, genes encoding hemicellulose-degrading enzymes are up-regulated on poplar wood chips, with some havingmore » been acquired horizontally. In conclusion, we propose that adaptation to colonize poplar woody stems is the result of acquisition of these genes.« less

  12. Chemical Relationship On Detection Of Ganoderma Disease On Oil Palm Tree System

    NASA Astrophysics Data System (ADS)

    Imran, S. N. M.; Baharudin, F.; Ali, M. F.; Rahiman, M. H. F.

    2018-04-01

    Detection of fungal disease is the major issues in agricultural management and production. This disease would attack the plantation area and damaging the based root or the stem tissue of the trees. In oil palm industry, Basal Stem Rot (BSR) is the major disease in Malaysia that caused by a fungal named Ganoderma Boninense species. Since agricultural areas in Malaysia are the great factors that contribute in the economic sector, therefore the prevention and controlling this disease situation are needed to reduce the extent of the infection. These plant diseases are mostly being caused by the inflectional disease form such as viruses, viroids, bacteria, protozoa and even parasitic plants. It also could included mites and vertebrate or small insects that consume the plant tissues. Studies focused more on the breeding and relationship of the disease in the stumps, roots and soil system if oil palm trees by identifying the heavy metal; Phosphorus, copper, Iron, Manganese, Potassium and Zinc characteristic. Samples were taken from various types of physical appearance of the trees. It shows the relationship of the fungal disease breeding between oil palm trees and the heavy metals does affect the tree’s system.

  13. Tree mortality predicted from drought-induced vascular damage

    USGS Publications Warehouse

    Anderegg, William R.L.; Flint, Alan L.; Huang, Cho-ying; Flint, Lorraine E.; Berry, Joseph A.; Davis, Frank W.; Sperry, John S.; Field, Christopher B.

    2015-01-01

    The projected responses of forest ecosystems to warming and drying associated with twenty-first-century climate change vary widely from resiliency to widespread tree mortality1, 2, 3. Current vegetation models lack the ability to account for mortality of overstorey trees during extreme drought owing to uncertainties in mechanisms and thresholds causing mortality4, 5. Here we assess the causes of tree mortality, using field measurements of branch hydraulic conductivity during ongoing mortality in Populus tremuloides in the southwestern United States and a detailed plant hydraulics model. We identify a lethal plant water stress threshold that corresponds with a loss of vascular transport capacity from air entry into the xylem. We then use this hydraulic-based threshold to simulate forest dieback during historical drought, and compare predictions against three independent mortality data sets. The hydraulic threshold predicted with 75% accuracy regional patterns of tree mortality as found in field plots and mortality maps derived from Landsat imagery. In a high-emissions scenario, climate models project that drought stress will exceed the observed mortality threshold in the southwestern United States by the 2050s. Our approach provides a powerful and tractable way of incorporating tree mortality into vegetation models to resolve uncertainty over the fate of forest ecosystems in a changing climate.

  14. Identification and Control of Common Insect Pests of Ornamental Shrubs and Trees.

    ERIC Educational Resources Information Center

    Gesell, Stanley G.

    This agriculture extension service publication from Pennsylvania State University introduces the identification and control of common ornamental insect pests. For each of the insects or insect groups (i.e. aphids) identified in this publication, information on host plants, pest description, and damage caused by the pest is given. Also a calendar…

  15. PCR multiplexes discriminate Fusarium symbionts of invasive Euwallacea ambrosia beetles that inflict damage on numerous tree species throughout the United States

    USDA-ARS?s Scientific Manuscript database

    Asian Euwallacea ambrosia beetles vector Fusarium mutualists. The ambrosial fusaria are all members of the Ambrosia Fusarium Clade (AFC) within the Fusarium solani species complex (FSSC). Several Euwallacea-Fusarium mutualists have been introduced into non-native regions and have caused varying degr...

  16. Collateral damage: fire and Phytophthora ramorum interact to increase mortality in coast redwood

    Treesearch

    Margaret R. Metz; J. Morgan Varner; Kerri M. Frangioso; Ross K. Meentemeyer; David M. Rizzo

    2013-01-01

    Invading species can alter ecosystems by impacting the frequency, severity, and consequences of endemic disturbance regimes (Mack and D'Antonio 1998). Phytophthora ramorum, the causal agent of the emergent disease sudden oak death (SOD), is an invasive pathogen causing widespread tree mortality in coastal forests of California and Oregon. In...

  17. A synonymic revision of the Prunus-infesting aphid genus Hyalopterus Koch 1854 (Hemiptera: Aphididae)

    USDA-ARS?s Scientific Manuscript database

    The three species of Hyalopterus Koch cause economic damage to various stone fruit trees of the genus Prunus L., H. pruni (Geoffroy), H. amygdali (Blanchard), and H. persikonus Miller et al. Although the third species was established recently, it has been suggested that one of the twelve older synon...

  18. Diaphorina citri (Hemiptera: Liviidae) responses to microcontroller-buzzer communication signals of potential use in vibration traps

    USDA-ARS?s Scientific Manuscript database

    Monitoring of Diaphorina citri Kuwayama populations is an important component of efforts to reduce damage caused by huanglongbing, a devastating disease it vectors in citrus groves. Currently, D. citri is monitored primarily by unbaited sticky traps or visual inspection of trees. A potentially more ...

  19. Invasive plant species in hardwood tree plantations

    Treesearch

    Rochelle R. Beasley; Paula M. Pijut

    2010-01-01

    Invasive plants are species that can grow and spread aggressively, mature quickly, and invade an ecosystem causing economic and environmental damage. Invasive plants usually invade disturbed areas, but can also colonize small areas quickly, and may spread and dominate large areas in a few short years. Invasive plant species displace native or desirable forest...

  20. Lodgepole Pine Dwarf Mistletoe

    Treesearch

    Frank G. Hawksworth; Oscar J. Dooling

    1984-01-01

    Lodgepole pine dwarf mistletoe (Arceuthobium americanum Nutt. ex Engelm.) is a native, parasitic, seed plant that occurs essentially throughout the range of lodgepole pine in North America. It is the most damaging disease agent in lodgepole pine, causing severe growth loss and increased tree mortality. Surveys in the Rocky Mountains show that the parasite is found in...

  1. Helping your woodland adapt to climate change

    Treesearch

    Tracey Saxby; Marcus Griswold; Caroline Wicks

    2013-01-01

    Your woods are always changing and adapting as they grow and mature, or regrow after agricultural abandonment, natural disturbances, or harvesting activities. Events like storms, droughts, insect and disease outbreaks, or other stressors can damage trees or slow their growth. A changing climate may make your woods more susceptible to the problems these events can cause...

  2. Logging damage using an individual tree selection practice in Appalachian hardwood stands

    Treesearch

    Neil I. Lamson; H. Clay Smith; Gary W. Miller

    1985-01-01

    Four West Virginia hardwood stands, managed using individual-tree selection for the past 30 years, were examined after the third and, in one instance, the fourth periodic harvest to determine the severity of logging damage. On existing skid roads, trees were removed with a rubber-tired skidder or a crawler tractor with a rubber-tired arch. Logging damage reduced...

  3. Vernal freeze damage and genetic variation alter tree growth, chemistry, and insect interactions.

    PubMed

    Rubert-Nason, Kennedy F; Couture, John J; Gryzmala, Elizabeth A; Townsend, Philip A; Lindroth, Richard L

    2017-11-01

    Anticipated consequences of climate change in temperate regions include early spring warmup punctuated by intermittent hard freezes. Warm weather accelerates leaf flush in perennial woody species, potentially exposing vulnerable young tissues to damaging frosts. We employed a 2 × 6 randomized factorial design to examine how the interplay of vernal (springtime) freeze damage and genetic variation in a hardwood species (Populus tremuloides) influences tree growth, phytochemistry, and interactions with an insect herbivore (Chaitophorus stevensis). Acute effects of freezing included defoliation and mortality. Surviving trees exhibited reduced growth and altered biomass distribution. Reflushed leaves on these trees had lower mass per area, lower lignin concentrations, and higher nitrogen concentrations, altered chemical defence profiles, and supported faster aphid population growth. Many effects varied among plant genotypes and were related with herbivore performance. This study suggests that a single damaging vernal freeze event can alter tree-insect interactions through effects on plant growth and chemistry. Differential responses of various genotypes to freeze damage suggest that more frequent vernal freeze events could also influence natural selection, favouring trees with greater freeze hardiness, and more resistance or tolerance to herbivores following damage. © 2017 John Wiley & Sons Ltd.

  4. Forest Health Monitoring in Massachusetts, 1996-1999

    Treesearch

    Northeastern Research Station

    2002-01-01

    Massachusetts has mature forests dominated by hardwood species. Most of the trees are healthy, with full crowns (low transparency, high density), little dieback and little damage. Red maple trees made up almost one quarter of the trees and had slightly higher amounts of dieback, thinner crowns, and more damage than other common tree species.

  5. Supersonic air jets preserve tree roots in underground pipeline installation

    Treesearch

    Rob Gross; Michelle Julene

    2002-01-01

    Tree roots are often damaged during construction projects, particularly during trenching operations for pipeline installation. Although mechanical soil excavation using heavy equipment, such as an excavator or backhoe is considered the fastest the most economical method, it damages and destroys tree roots and can lead to unintentional tree loss, poor public relations,...

  6. Recon Study Hurricane Agnes.

    DTIC Science & Technology

    1972-10-01

    planting of new trees , evaluations be made to determine what species of tree best will withstand the conditions of that area Such trees as the willow...beyond 2 years) effects. The following factors were surveyed "by this study : geological characteristics, soil erosion & sedimentation, tree damage...Erosion and Sedimentations Tree Damage 14 Wildlife and Related Habitat 17 Fishlife and Related Habitat 22 Water Quality 27 Recreation Impact 32

  7. Simulation of Tsunami Resistance of a Pinus Thunbergii tree in Coastal Forest in Japan

    NASA Astrophysics Data System (ADS)

    Nanko, K.; Suzuki, S.; Noguchi, H.; Hagino, H.

    2015-12-01

    Forests reduce fluid force of tsunami, whereas extreme tsunami sometimes breaks down the forest trees. It is difficult to estimate the interactive relationship between the fluid and the trees because fluid deform tree architecture and deformed tree changes flow field. Dynamic tree deformation and fluid behavior should be clarified by fluid-structure interaction analysis. For the initial step, we have developed dynamic simulation of tree sway and breakage caused by tsunami based on a vibrating system with multiple degrees of freedom. The target specie of the simulation was Japanese black pine (pinus thunbergii), which is major specie in the coastal forest to secure livelihood area from the damage by blown sand and salt in Japanese coastal area. For the simulation, a tree was segmented into 0.2 m long circular truncated cones. Turning moment induced by tsunami and self-weight was calculated at each segment bottom. Tree deformation was computed on multi-degree-of-freedom vibration equation. Tree sway was simulated by iterative calculation of the tree deformation with time step 0.05 second with temporally varied flow velocity of tsunami. From the calculation of bending stress and turning moment at tree base, we estimated resistance of a Pinus thunbergii tree from tsunami against tree breakage.

  8. Coptoborus ochromactonus, n. sp. (Coleoptera: Curculionidae: Scolytinae), an emerging pest of cultivated balsa (Malvales: Malvaceae) in Ecuador.

    PubMed

    Stilwell, Abby R; Smith, Sarah M; Cognato, Anthony I; Martinez, Malena; Flowers, R Wills

    2014-04-01

    A new species of xyleborine ambrosia beetle has been found to attack balsa, Ochroma pyramidale (Cavanilles ex Lamarck) Urban, in Ecuador. Coptoborus ochromactonus Smith & Cognato is described and its biology is reported. Large-scale surveys were conducted between 2006 and 2009, and observational studies were carried out between 2010 and 2013 in Ecuadorian commercial plantations to determine life history and host preference characteristics. C. ochromactonus attacked balsa between 1.5 and 3 yr in age. Successful attacks were more prevalent in smaller diameter trees and unhealthy trees. In general, attacks and beetle-caused mortality were more prevalent during the dry summer months when trees were under more moisture and light stress. Fungal mycelia were consistently observed coating beetle galleries and are likely the true damaging agent to balsa trees.

  9. Probability of Damage to Sidewalks and Curbs by Street Trees in the Tropics

    Treesearch

    John K. Francis; Bernard R. Parresol; Juana Marin de Patino

    1996-01-01

    For 75 trees each of 12 species growing along streets in San Juan, Puerto Rico and Merida, Mexico, diameter at breast height and distance to sidewalk or curb was measured and damage (cracking or raising) was evaluated. Logistic analysis was used to construct a model to predict probability of damage to sidewalk or curb. Distance to the pavement, diameter of the tree,...

  10. Predicting the economic costs and property value losses attributed to sudden oak death damage in California (2010-2020).

    PubMed

    Kovacs, Kent; Václavík, Tomáš; Haight, Robert G; Pang, Arwin; Cunniffe, Nik J; Gilligan, Christopher A; Meentemeyer, Ross K

    2011-04-01

    Phytophthora ramorum, cause of sudden oak death, is a quarantined, non-native, invasive forest pathogen resulting in substantial mortality in coastal live oak (Quercus agrifolia) and several other related tree species on the Pacific Coast of the United States. We estimate the discounted cost of oak treatment, removal, and replacement on developed land in California communities using simulations of P. ramorum spread and infection risk over the next decade (2010-2020). An estimated 734 thousand oak trees occur on developed land in communities in the analysis area. The simulations predict an expanding sudden oak death (SOD) infestation that will likely encompass most of northwestern California and warrant treatment, removal, and replacement of more than 10 thousand oak trees with discounted cost of $7.5 million. In addition, we estimate the discounted property losses to single family homes of $135 million. Expanding the land base to include developed land outside as well as inside communities doubles the estimates of the number of oak trees killed and the associated costs and losses. The predicted costs and property value losses are substantial, but many of the damages in urban areas (e.g. potential losses from increased fire and safety risks of the dead trees and the loss of ecosystem service values) are not included. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. The vapor activity of oregano, perilla, tea tree, lavender, clove, and geranium oils against a Trichophyton mentagrophytes in a closed box.

    PubMed

    Inouye, Shigeharu; Nishiyama, Yayoi; Uchida, Katsuhisa; Hasumi, Yayoi; Yamaguchi, Hideyo; Abe, Shigeru

    2006-12-01

    The vapor activity of six essential oils against a Trichophyton mentagrophytes was examined using a closed box. The antifungal activity was determined from colony size, which was correlated with the inoculum size. As judged from the minimum inhibitory dose and the minimum fungicidal dose determined after vapor exposure for 24 h, the vapor activity of the six essential oils was ranked in the following order: oregano > clove, perilla > geranium, lavender, tea tree. The vapors of oregano, perilla, tea tree, and lavender oils killed the mycelia by short exposure, for 3 h, but the vapors of clove and geranium oils were only active after overnight exposure. The vapor of oregano and other oils induced lysis of the mycelia. Morphological examination by scanning electron microscope (SEM) revealed that the cell membrane and cell wall were damaged in a dose- and time-dependent manner by the action of oregano vapor, causing rupture and peeling of the cell wall, with small bulges coming from the cell membrane. The vapor activity increased after 24 h, but mycelial accumulation of the active oil constituents was maximized around 15 h, and then decreased in parallel with the decrease of vapor concentration. This suggested that the active constituent accumulated on the fungal cells around 15 h caused irreversible damage, which eventually led to cellular death.

  12. Properties of wood from ice-storm damaged loblolly pine trees

    Treesearch

    David W. Patterson; Jonathan Hartly

    2007-01-01

    Fifty-sex trees were harvested to determine the properties of the wood produced by ice-storm damaged trees. There were 12 trees each for three classes of bend: () to 15. 16 to 30. and more than 30 degrees from the vertical. Also. 10 trees were selected for each of two classes of crown loss: 20 percent or less and more than 20 percent loss. Samples were taken from three...

  13. Tree-centered spot firing - a technique for prescribed burning beneath standing trees.

    Treesearch

    C. Phillip Weatherspoon; George A. Almond; Carl N. Skinner

    1989-01-01

    Prescribed burning beneath standing trees normally requires efforts to protect residual trees from excessive fire damage. Damage to both crowns and boles is strongly influenced by flame length, a fire characteristic functionally related to fireline intensity (Albini 1976). In a good prescribed burn, therefore, the prescription specifies desired or maximum flame lengths...

  14. The 2008 South China Freeze and its Impact on the Forests

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Ai, C.; Wang, Y.; Li, Z.; Cao, Y.; Wang, X.

    2008-12-01

    An unprecedented calamity caused by snow and freezing rain occurred in South China in 2008. This freeze was closely related to the La Nina phenomenon according to a report from the World Meteorological Organization. The freeze stroke 19 provinces in China, and damaged forests of 19.33 million ha with a standing volume loss of 371 million m3. It is estimated that the direct economic loss in the form of destroyed forests is over $8 billion. The indirect loss in the form of impaired ecological functions, such as water and soil conservation, water resources conservancy, biodiversity and forest carbon pool etc is enormous. The calamity of snow and freezing rain affected the structure and function of forest ecosystems. The snow load and freezing rain caused mechanical damage to the trees, with the species of Pinus massoniana, Cunninghamia lanceolata, Pinus elliottii and Phyllostachys pubescens etc. being the most seriously affected. The cold weather could also cause the physiological hurt to the trees. The change of the biotic components leads to the change of abiotic components in the ecosystems. The sunlight under the canopy was intensified due to the opening up of the canopy. The air temperature in the forest, the nutrient and microorganism in soil, the litterfall dynamic were also affected. The alteration of the forest ecosystem structure brought in the alteration of its functions. The damage of the ecosystem structure weakened the capacity of the water and soil conservation, water resources conservancy and reduced the biodiversity in forest ecosystems. Forest gaps allow more sunlight into the freeze-damaged ecosystem, inducing the invasion of more masculine species. The direction and progress of the community succession was therefore altered. At the same time, the freeze made a great impact on the stability and health of the forest ecosystem, increasing the potential risk of outbreak of forest fire and plant diseases/insect pests. Some suggestions on the rebuilding and recovery of damaged forest were given in this paper.

  15. Perimortem fractures in Lucy suggest mortality from fall out of tall tree.

    PubMed

    Kappelman, John; Ketcham, Richard A; Pearce, Stephen; Todd, Lawrence; Akins, Wiley; Colbert, Matthew W; Feseha, Mulugeta; Maisano, Jessica A; Witzel, Adrienne

    2016-09-22

    The Pliocene fossil 'Lucy' (Australopithecus afarensis) was discovered in the Afar region of Ethiopia in 1974 and is among the oldest and most complete fossil hominin skeletons discovered. Here we propose, on the basis of close study of her skeleton, that her cause of death was a vertical deceleration event or impact following a fall from considerable height that produced compressive and hinge (greenstick) fractures in multiple skeletal elements. Impacts that are so severe as to cause concomitant fractures usually also damage internal organs; together, these injuries are hypothesized to have caused her death. Lucy has been at the centre of a vigorous debate about the role, if any, of arboreal locomotion in early human evolution. It is therefore ironic that her death can be attributed to injuries resulting from a fall, probably out of a tall tree, thus offering unusual evidence for the presence of arborealism in this species.

  16. Host resistance screening for balsam woolly adelgid: early results from 12 fir species

    Treesearch

    Leslie Newton; Fred Hain; John. Frampton

    2011-01-01

    Nearly all Fraser fir (Abies fraseri) Christmas trees produced in North Carolina need to be treated one or more times during their 5- to 10-year rotation to prevent or lessen damage caused by the exotic balsam woolly adelgid (BWA) (Adelges piceae Ratz.). These pesticide applications result in an annual cost to the industry...

  17. Bioclimatic models estimate areas with suitable climate for Armillaria spp. in Wyoming

    Treesearch

    James T. Blodgett; John W. Hanna; Eric W. I. Pitman; Sara M. Ashiglar; John E. Lundquist; Mee-Sook Kim; Amy L. Ross-Davis; Ned B. Klopfenstein

    2015-01-01

    Armillaria species range from beneficial saprobes to damaging root pathogens, and their ecological roles and impacts vary with environment and host. Armillaria solidipes [pending vote to conserve A. ostoyae . (Redhead et al. 2011 )] is known as an aggressive pathogen of conifers and causes tree mortality and significant growth loss in Wyoming and throughout...

  18. Predicting the economic costs and property value losses attributed to sudden oak death damage in California (2010-2020)

    Treesearch

    Kent Kovacs; Tomas Václavík; Robert G. Haight; Arwin Pang; Nik J. Cunniffe; Christopher A. Gilligan; Ross K. Meentemeyer

    2011-01-01

    Phytophthora ramorum, cause of sudden oak death, is a quarantined, non-native, invasive forest pathogen resulting in substantial mortality in coastal live oak (Quercus agrifolia) and several other related tree species on the Pacific Coast of the United States. We estimate the discounted cost of oak treatment, removal, and...

  19. Anatomical and cellular responses of Pinus monticola stem tissues to invasion by Cronartium ribicola

    Treesearch

    J. W. Hudgins; G. I . McDonald; P. J. Zambino; N. B. Klopfenstein; V. R. Franceschi

    2005-01-01

    White pine blister rust (Cronartium ribicola) causes extensive damage to white pines and their associated ecosystems across North America. The anatomical and cellular characteristics of C. ribicola colonization in Pinus monticola branch and stem tissues were studied as a basis for understanding host tree reactions that may be related to resistance. Samples examined...

  20. A natural history of Cronartium ribicola

    Treesearch

    Brian W. Geils; Detlev R. Vogler

    2011-01-01

    Cronartium ribicola is a fungal pathogen that causes a blister rust disease of white pines, Ribes, and other hosts in the genera Castilleja and Pedicularis. Although blister rust can damage white pine trees and stands, the severity and significance of these impacts vary with time, place, and management. We use a natural history approach to describe the history, biology...

  1. Qualitative survey of five beech damaging Coleoptera (Scolytidae and Lymexylonidae) in Wallonia (Southern Belgium)

    Treesearch

    Jean-Marc Henin; Olivier Huart; Phillipe Lejeune; Jacques Rondeux

    2003-01-01

    In 2000 and 2001, Trypodendron domesticum L. and T. signatum (F.) (Col.: Scolytidae) were one of the main causes of the depreciation of more than 1,600,000 m³ of standing beech trees, Fagus sylvatica L., in Wallonia (Southern Belgium). In 2001, a survey aiming at assessing the range of those indigenous...

  2. Insects attacking black walnut in the midwestern United States

    Treesearch

    Steven Katovich

    2004-01-01

    Black walnut has only a handful of insects that would be considered significant pests. Of the leaf feeders, the walnut caterpillar is the most likely to cause significant defoliation and damage to trees. However, severe infestations are infrequent and tend to be restricted to small geographic areas. Two other commonly encountered defoliators are the yellow necked...

  3. Influence of cultural practices on edaphic factors related to root disease in Pinus nursery seedlings

    Treesearch

    J Juzwik; K. M. Gust; R. R. Allmaras

    1999-01-01

    Conifer seedlings grown in bare-root nurseries are frequently damaged and destroyed by soil-borne pathogenic fungi that cause root rot. Relationships between nursery cultural practices, soils characteristics, and populations of potential pathogens in the soil were examined in three bare-root tree nurseries in the midwestern USA. Soil-borne populations of ...

  4. Oak Wilt

    Treesearch

    Charles O. Rexrode; Daniel Brown

    1983-01-01

    Oak wilt, caused by the fungus Ceratocystis fagacearum (Bretz) Hunt, kills oak trees. It has been found in 21 States, with considerable damage occurring in the Midwest. It was first recognized as an important disease in 1944 in Wisconsin where, in localized areas (less than 100 acres (40.4 ha)), over half the oaks have been killed. Surveys in eight Wisconsin counties...

  5. A classifying method analysis on the number of returns for given pulse of post-earthquake airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Wang, Jinxia; Dou, Aixia; Wang, Xiaoqing; Huang, Shusong; Yuan, Xiaoxiang

    2016-11-01

    Compared to remote sensing image, post-earthquake airborne Light Detection And Ranging (LiDAR) point cloud data contains a high-precision three-dimensional information on earthquake disaster which can improve the accuracy of the identification of destroy buildings. However after the earthquake, the damaged buildings showed so many different characteristics that we can't distinguish currently between trees and damaged buildings points by the most commonly used method of pre-processing. In this study, we analyse the number of returns for given pulse of trees and damaged buildings point cloud and explore methods to distinguish currently between trees and damaged buildings points. We propose a new method by searching for a certain number of neighbourhood space and calculate the ratio(R) of points whose number of returns for given pulse greater than 1 of the neighbourhood points to separate trees from buildings. In this study, we select some point clouds of typical undamaged building, collapsed building and tree as samples from airborne LiDAR point cloud data which got after 2010 earthquake in Haiti MW7.0 by the way of human-computer interaction. Testing to get the Rvalue to distinguish between trees and buildings and apply the R-value to test testing areas. The experiment results show that the proposed method in this study can distinguish between building (undamaged and damaged building) points and tree points effectively but be limited in area where buildings various, damaged complex and trees dense, so this method will be improved necessarily.

  6. Tree damage from skyline logging in a western larch/Douglas-fir stand

    Treesearch

    Robert E. Benson; Michael J. Gonsior

    1981-01-01

    Damage to shelterwood leave trees and to understory trees in shelterwood and clearcut logging units logged with skyline yarders was measured, and related to stand conditions, harvesting specifications, and yarding system-terrain interactions. About 23 percent of the marked leave trees in the shelterwood units were killed in logging, and about 10 percent had moderate to...

  7. Particulate pollutants are capable to 'degrade' epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.).

    PubMed

    Burkhardt, Juergen; Pariyar, Shyam

    2014-01-01

    Air pollution causes the amorphous appearance of epicuticular waxes in conifers, usually called wax 'degradation' or 'erosion', which is often correlated with tree damage symptoms, e.g., winter desiccation. Previous investigations concentrated on wax chemistry, with little success. Here, we address the hypothesis that both 'wax degradation' and decreasing drought tolerance of trees may result from physical factors following the deposition of salt particles onto the needles. Pine seedlings were sprayed with dry aerosols or 50 mM solutions of different salts. The needles underwent humidity changes within an environmental scanning electron microscope, causing salt expansion on the surface and into the epistomatal chambers. The development of amorphous wax appearance by deliquescent salts covering tubular wax fibrils was demonstrated. The minimum epidermal conductance of the sprayed pine seedlings increased. Aerosol deposition potentially 'degrades' waxes and decreases tree drought tolerance. These effects have not been adequately considered thus far in air pollution research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Reliability analysis of the solar array based on Fault Tree Analysis

    NASA Astrophysics Data System (ADS)

    Jianing, Wu; Shaoze, Yan

    2011-07-01

    The solar array is an important device used in the spacecraft, which influences the quality of in-orbit operation of the spacecraft and even the launches. This paper analyzes the reliability of the mechanical system and certifies the most vital subsystem of the solar array. The fault tree analysis (FTA) model is established according to the operating process of the mechanical system based on DFH-3 satellite; the logical expression of the top event is obtained by Boolean algebra and the reliability of the solar array is calculated. The conclusion shows that the hinges are the most vital links between the solar arrays. By analyzing the structure importance(SI) of the hinge's FTA model, some fatal causes, including faults of the seal, insufficient torque of the locking spring, temperature in space, and friction force, can be identified. Damage is the initial stage of the fault, so limiting damage is significant to prevent faults. Furthermore, recommendations for improving reliability associated with damage limitation are discussed, which can be used for the redesigning of the solar array and the reliability growth planning.

  9. Wilderness Campers' Perception and Evaluation of Campsite Impacts.

    ERIC Educational Resources Information Center

    Farrell, Tracy; Hall, Troy E.; White, Dave D.

    2001-01-01

    Interviewed campers regarding their perceptions of impacts to vegetation, soil, and trees, comparing campers' measurements of vegetation loss, mineral soil exposure, tree damage, and site size with managers' evaluations. Most campers noticed vegetation impacts, and about half noticed soil impacts and tree damage. Most commented positively about…

  10. Logging damage in thinned, young-growth true fir stands in California and recommendations for prevention.

    Treesearch

    Paul E. Aho; Gary Fiddler; Mike. Srago

    1983-01-01

    Logging-damage surveys and tree-dissection studies were made in commercially thinned, naturally established young-growth true fir stands in the Lassen National Forest in northern California. Significant damage occurred to residual trees in stands logged by conventional methods. Logging damage was substantially lower in stands thinned using techniques designed to reduce...

  11. Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate.

    PubMed

    Neuner, Susanne; Albrecht, Axel; Cullmann, Dominik; Engels, Friedrich; Griess, Verena C; Hahn, W Andreas; Hanewinkel, Marc; Härtl, Fabian; Kölling, Christian; Staupendahl, Kai; Knoke, Thomas

    2015-02-01

    Shifts in tree species distributions caused by climatic change are expected to cause severe losses in the economic value of European forestland. However, this projection disregards potential adaptation options such as tree species conversion, shorter production periods, or establishment of mixed species forests. The effect of tree species mixture has, as yet, not been quantitatively investigated for its potential to mitigate future increases in production risks. For the first time, we use survival time analysis to assess the effects of climate, species mixture and soil condition on survival probabilities for Norway spruce and European beech. Accelerated Failure Time (AFT) models based on an extensive dataset of almost 65,000 trees from the European Forest Damage Survey (FDS)--part of the European-wide Level I monitoring network--predicted a 24% decrease in survival probability for Norway spruce in pure stands at age 120 when unfavorable changes in climate conditions were assumed. Increasing species admixture greatly reduced the negative effects of unfavorable climate conditions, resulting in a decline in survival probabilities of only 7%. We conclude that future studies of forest management under climate change as well as forest policy measures need to take this, as yet unconsidered, strongly advantageous effect of tree species mixture into account. © 2014 John Wiley & Sons Ltd.

  12. Monitoring of Freezing Dynamics in Trees: A Simple Phase Shift Causes Complexity1[OPEN

    PubMed Central

    Charra-Vaskou, Katline

    2017-01-01

    During winter, trees have to cope with harsh conditions, including extreme freeze-thaw stress. This study focused on ice nucleation and propagation, related water shifts and xylem cavitation, as well as cell damage and was based on in situ monitoring of xylem (thermocouples) and surface temperatures (infrared imaging), ultrasonic emissions, and dendrometer analysis. Field experiments during late winter on Picea abies growing at the alpine timberline revealed three distinct freezing patterns: (1) from the top of the tree toward the base, (2) from thin branches toward the main stem’s top and base, and (3) from the base toward the top. Infrared imaging showed freezing within branches from their base toward distal parts. Such complex freezing causes dynamic and heterogenous patterns in water potential and probably in cavitation. This study highlights the interaction between environmental conditions upon freezing and thawing and demonstrates the enormous complexity of freezing processes in trees. Diameter shrinkage, which indicated water fluxes within the stem, and acoustic emission analysis, which indicated cavitation events near the ice front upon freezing, were both related to minimum temperature and, upon thawing, related to vapor pressure deficit and soil temperature. These complex patterns, emphasizing the common mechanisms between frost and drought stress, shed new light on winter tree physiology. PMID:28242655

  13. Root starch in defoliated sugar maples following thrips damage

    Treesearch

    Barbara S. Burns

    1991-01-01

    Sugar maple root starch evaluations were done in 1987 and 1988 as a service to Vermont sugarmakers concerned about tree health. Trees were rated for starch content in late fall, using a visual iodine-staining technique. On the average, trees with heavy pear thrips damage in the spring of 1988 had higher levels of root starch the following fall than trees with light or...

  14. 7 CFR 457.107 - Florida citrus fruit crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; (2) Remained on the tree after damage occurred; (3) Except as provided in (b), was missing, damaged... policies: Florida Citrus Fruit Crop Insurance Provisions 1. Definitions Age class. Trees in the unit are... applicable combination of commodity type, intended use, and age class of trees, within a citrus fruit...

  15. 7 CFR 1416.4 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... perished or suffered losses due to an eligible hurricane. Tier means the geographic bands of damage... hurricanes. Tree means a tree (including a Christmas tree, ornamental tree, nursery tree, and potted tree...

  16. 7 CFR 1416.4 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... perished or suffered losses due to an eligible hurricane. Tier means the geographic bands of damage... hurricanes. Tree means a tree (including a Christmas tree, ornamental tree, nursery tree, and potted tree...

  17. 7 CFR 1416.4 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... perished or suffered losses due to an eligible hurricane. Tier means the geographic bands of damage... hurricanes. Tree means a tree (including a Christmas tree, ornamental tree, nursery tree, and potted tree...

  18. 7 CFR 1416.4 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... perished or suffered losses due to an eligible hurricane. Tier means the geographic bands of damage... hurricanes. Tree means a tree (including a Christmas tree, ornamental tree, nursery tree, and potted tree...

  19. Black bear (Ursus americanus Pallas) feeding damage across timber harvest edges in northern California coast redwood (Sequoia sempervirens[D. Don] Endl.) forests, USA

    USGS Publications Warehouse

    Russell, W.H.; Carnell, K.; McBride, J.R.

    2001-01-01

    Feeding damage to trees by black bears (Ursus americanus Pallas) was recorded in proximity to timber harvest edges in harvested and old-growth stands of coast redwood (Sequoia sempervirens [D. Don] Endl.) in northern California, USA. Bears exhibited distinct preference in their feeding patterns related to stand structure and composition and to distance from the timber-harvest edge. Most damage was recorded within regenerating stands. Regression analysis indicated that density of damaged trees was negatively correlated with distance from timber harvest edges within old-growth stands. A significant negative correlation was also found between the density of trees damaged by bears and habitat diversity (H') as measured by the Shannon diversity index. In addition, bears exhibited preference for pole-size trees (dbh = 10-50 cm) over all other size classes, and coast redwood over other species. In general, damage by bears appeared to act as a natural thinning agent in even-aged stands. No damage was recorded in old-growth stands except in close proximity to the timber-harvest edge where subcanopy recruitment was high.

  20. Subterranean termites in urban forestry: tree preference and management.

    PubMed

    Zorzenon, F J; Campos, A E C

    2015-04-01

    Urban tree deterioration is a common problem all over the world. Inappropriate plant species choice and inadequate planting may lead to micro and macro organism attacks, such as pests and diseases. Subterranean termite damage is common and may promote tree falls. In order to help urban forestry planning, this work was carried out for 9 years on 1477 street trees in a neighborhood in the city of São Paulo, Brazil. Plants were identified to species, grouped as native, exotic plants, and palm trees, and their measures of circumference at breast height (CBH) were taken, in order to evaluate if subterranean termite damages are related to tree size and plant group. Four subterranean termite species were identified infesting up to 27% of the plants, with Coptotermes gestroi (Wasmann) being the most common. Palm trees were not damaged by subterranean termites, while native plants are the most susceptible, especially Caesalpinia pluviosa var. peltophoroides (Fabaceae). Among the native plants monitored C. pluviosa var. peltophoroides, Caesalpinia ferrea var. leiostachya, Erythrina speciosa, Piptadenia gonoacantha (Fabaceae), Gochnatia polymorpha (Asteraceae), Tibouchina granulosa (Melastomataceae), and Handroanthus spp. (Bignoniaceae), the latter was the least damaged. Exotic plants were also susceptible with the exception of Lagerstroemia indica (Lythraceae) and Platanus acerifolia (Platanaceae). Correlation analysis showed that the higher the CBH value, the higher the percentage of internal damage by C. gestroi. Infested trees were treated with imidacloprid and thiamethoxam, and subterranean termites were effectively controlled during the 9-year study.

  1. Crop damage of Eriotheca gracilipes (Bombacaceae) by the Blue-Fronted Amazon (Amazona aestiva, Psittacidae), in the Brazilian Cerrado.

    PubMed

    Ragusa-Netto, J

    2014-11-01

    Seed predation has major effects on the reproductive success of individuals, spatial patterns of populations, genetic variability, interspecific interactions and ultimately in the diversity of tree communities. At a Brazilian savanna, I evaluated the proportional crop loss of Eriotheca gracilipes due the Blue-Fronted Amazon (Amazona aestiva) during a fruiting period. Also, I analyzed the relationship between proportional crop loss to Amazons and both fruit crop size and the distance from the nearest damaged conspecific. Trees produced from 1 to 109 fruits, so that Amazons foraged more often on trees bearing larger fruit crop size, while seldom visited less productive trees. Moreover, the relationship between fruit crop sizes and the number of depredated fruits was significant. However, when only damaged trees were assessed, I found a negative and significant relation between fruit crop size and proportional crop loss to Blue-Fronted Amazons. Taking into account this as a measure more directly related to the probability of seed survival, a negative density dependent effect emerged. Also, Amazons similarly damaged the fruit crops of either close or distant neighboring damaged trees. Hence, in spite of Blue-Fronted Amazons searched for E. gracilipes bearing large fruit crops, they were swamped due to the presence of more fruits than they could eat. Moderate seed predation by Blue-Fronted Amazons either at trees with large fruit crops or in areas where fruiting trees were aggregated implies in an enhanced probability of E. gracilipes seed survival and consequent regeneration success.

  2. Insects that damage white oak acorns

    Treesearch

    Lester P. Gibson; Lester P. Gibson

    1972-01-01

    To grow oak trees--either in forests or for shade trees--crops of good acorns are needed. Yet in some places and at some times, acorn crops are destroyed or badly damaged by insects. To prevent this we need to know, first of all, which insects do the damage.

  3. The influence of prefire tree growth and crown condition on postfire mortality of sugar pine following prescribed fire in Sequoia National Park

    USGS Publications Warehouse

    Nesmith, Jonathan C. B.; Das, Adrian J.; O'Hara, Kevin L.; van Mantgem, Phillip J.

    2015-01-01

    Tree mortality is a vital component of forest management in the context of prescribed fires; however, few studies have examined the effect of prefire tree health on postfire mortality. This is especially relevant for sugar pine (Pinus lambertiana Douglas), a species experiencing population declines due to a suite of anthropogenic factors. Using data from an old-growth mixed-conifer forest in Sequoia National Park, we evaluated the effects of fire, tree size, prefire radial growth, and crown condition on postfire mortality. Models based only on tree size and measures of fire damage were compared with models that included tree size, fire damage, and prefire tree health (e.g., measures of prefire tree radial growth or crown condition). Immediately following the fire, the inclusion of different metrics of prefire tree health produced variable improvements over the models that included only tree size and measures of fire damage, as models that included measures of crown condition performed better than fire-only models, but models that included measures of prefire radial growth did not perform better. However, 5 years following the fire, sugar pine mortality was best predicted by models that included measures of both fire damage and prefire tree health, specifically, diameter at breast height (DBH, 1.37 m), crown scorch, 30-year mean growth, and the number of sharp declines in growth over a 30-year period. This suggests that factors that influence prefire tree health (e.g., drought, competition, pathogens, etc.) may partially determine postfire mortality, especially when accounting for delayed mortality following fire.

  4. Insects and their life cycle: Steps to take to assess threats

    Treesearch

    Alicia M. Bray; Jason B. Oliver

    2013-01-01

    This paper provides a brief overview of the importance of wood-boring insects to the forest nursery industry. Descriptions of the major insect groups are provided with special attention to the life stages that are most problematic within each group. Steps are provided to guide individuals to mitigate potential threats if a new insect is detected causing damage to trees...

  5. Emerald ash borer in Russia: 2009 situation update

    Treesearch

    Y. Baranchikov; Y. Gninenko; G. Yurchenko

    2011-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire, is a beetle native to East Asia and the Russian Far East where it is considered a minor pest, attacking weakened or dying ash trees. In 2006, EAB was found to be responsible for enormous damage of ash species in Moscow, which causes serious concern for Europe. Recently we reviewed the EAB...

  6. Effects of prescribed fire in a central Appalachian oak-hickory stand

    Treesearch

    G.W. Wendel; H. Clay Smith; H. Clay Smith

    1986-01-01

    A prescribed fire in a central Appalachian mixed hardwood stand caused considerable damage to the butt logs of many overstory trees. Although there were increases in the abundance and distribution of several species of hardwoods, advanced red and chestnut oaks were poorly distributed 5-years after burning. An abundance of striped maple and other shrubs in the...

  7. Establishment, hybridization and impact of Laricobius predators on insecticide-treated hemlocks: Exploring integrated management of the hemlock woolly adelgid

    Treesearch

    Albert E. Mayfield; Barbara C. Reynolds; Carla I. Coots; Nathan P. Havill; Cavell Brownie; Andrew R. Tait; James L. Hanula; Shimat V. Joseph; Ashley B. Galloway

    2014-01-01

    An integrated management approach is needed to maintain eastern hemlock (Tsuga canadensis (L.) Carrière) in eastern North America and to minimize tree damage and mortality caused by the invasive hemlock woolly adelgid (Adelges tsugae Annand). This study examined the hypothesis that chemical control with low rates of insecticide...

  8. Mapping of the Asian longhorned beetle's time to maturity and risk to invasion at contiguous United States extent

    Treesearch

    Alexander P. Kappel; R. Talbot Trotter; Melody A. Keena; John Rogan; Christopher A. Williams

    2017-01-01

    Anoplophora glabripennis, the Asian Longhorned Beetle (ALB), is an invasive species of high economic and ecological relevance given the potential it has to cause tree damage, and sometimes mortality, in the United States. Because this pest is introduced by transport in wood-packing products from Asia, ongoing trade activities pose continuous risk...

  9. Large-Scale Assessment of Invasiveness and Potential for Ecological Impact by Nonnative Tree Species.

    Treesearch

    Kevin M. Potter; William D. Smith

    2012-01-01

    Biological invasions represent one of the most significant environmental threats to the maintenance of natural forest ecosystems in North America and elsewhere (Liebhold and others 1995), and have been estimated to cause more than $100 billion annually in damage and control costs (Pimentel and others 2000). However, these costs do not take into account the economic...

  10. A Guide to Major Insects, Diseases, Air Pollution, Injury, and Chemical Injury of Sycamore

    Treesearch

    J.D. Solomon; A. Dan Wilson; N.M. Schiff

    1999-01-01

    This booklet will help nurserymen, forest woodland managers, pest control operators, and homeowners to identify and control pest problems on sycamore trees. The major insect and disease pests of sycamores in the Eastern United Stats are emphasized. Descriptions and illustrations of the pests and the damage they cause are provided to aid in identification. Brief notes...

  11. Surface fuel changes after severe disturbances in northern Rocky Mountain ecosystems

    Treesearch

    Chris Stalling; Robert E. Keane; Molly Retzlaff

    2017-01-01

    It is generally assumed that severe disturbances predispose damaged forests to high fire hazard by creating heavy fuel loading conditions. Of special concern is the perception that surface fuel loadings become high as recently killed trees deposit foliage and woody material on the ground and that these high fuel loadings may cause abnormally severe fires. This study...

  12. Commercial multicopter unmanned aircraft system as a tool for early stage forest survey after wind damage

    NASA Astrophysics Data System (ADS)

    Mokros, Martin; Vybostok, Jozef; Merganic, Jan; Tomastik, Julian; Cernava, Juraj

    2017-04-01

    In recent years unmanned aircraft systems (UAS) are objects of research in many areas. This trend can be seen also in forest research where researchers are focusing on height, diameter and tree crown measurements, monitoring of forest fire, forest gaps and health condition. Our research is focusing on the use of UAS for detecting areas disturbed by wind and deriving the volume of fallen trees for management purposes. This information is crucial after the wind damage happened. We used DJI Phantom 2 Vision+ and acquired the imagery of one forest stand (5.7 ha). The UAS is a quadcopter "all in one" solution. It has a built-in camera with gimbal and a remote controller. The camera is controlled through the application (android/ios). The built-in camera has an image resolution of 4384×3288 (14 megapixels). We have placed five crosses within the plot to be able to georeference the point cloud from UAS. Their positions were measured by Topcon Hiper GGD survey-grade GNSS receiver. We measured the border of damaged area by four different GNSS devices - GeoExplorer 6000, Trimble Nomad, Garmin GPSMAP 60 CSx and by smartphone Sony Xperia X. To process images from UAS we used Agisoft Photoscan Professional, while ArcGIS 10.2 was used to calculate and compare the areas . From the UAS point cloud we calculated DTM and DSM and deducted them. The areas where the difference was close to zero (-0.2 to 0.2) were signed as potentially wind damage areas. Then we filtered the areas that were not signed correctly (for example routes). The calculated area from UAS was 2.66 ha, GeoExplorer 6000 was 2.20 ha, Nomad was 2.06 ha, Garmin was 2.21 ha and from Xperia was the area 2.24 ha. The differences between UAS and GPS devices vary from 0.42 ha to 0.6 ha. The differences were mostly caused by inability to detect small spots of fallen trees on UAS data. These small spots are difficult to measure by GPS devices because the signal is very poor under tree crowns and also it is difficult to find such small spots within the area. Based on the derived area and per hectare volume of the most common tree specie from forest plan (Fagus sylvatica 83%) we calculated the volume of damaged trees and compared the result with data from forest district. The forest district harvested all damaged trees and measured their volume. The volume derived from UAS and forest plan data was 918 m3 and volume measured by forest district was 775 m3. The difference was 143 m3 (18%). The next step of our research is to verify the use of fixed wing UAS for larger areas.

  13. Growth of bear-damaged trees in a mixed plantation of Douglas-fir and red alder.

    Treesearch

    Richard E. Miller; Harry W. Anderson; Donald L. Reukema; Timothy A. Max

    2007-01-01

    Incidence and effects of tree damage by black bear (Ursus americanus altifrontalis) in a 50-year-old, coast Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) plantation are described. Bears girdled or partially girdled 35 dominant or codominant Douglas-fir trees per acre, but only in that...

  14. Following the fate of harvest-damaged trees 13 years after harvests

    Treesearch

    Randy G. Jensen; John M. Kabrick

    2014-01-01

    Logging damage to residual trees during harvest operations can reduce the future volume, quality, and value of wood products. Timber harvests in 1996 on the Missouri Ozark Forest Ecosystem Project (MOFEP) provided a rare opportunity to follow the fate of trees wounded by felling or by skidding with rubber-tired skidders.

  15. Positive and negative effects of grass, cattle, and wild herbivores on Acacia saplings in an East African savanna.

    PubMed

    Riginos, Corinna; Young, Truman P

    2007-10-01

    Plant-plant interactions can be a complex mixture of positive and negative interactions, with the net outcome depending on abiotic and community contexts. In savanna systems, the effects of large herbivores on tree-grass interactions have rarely been studied experimentally, though these herbivores are major players in these systems. In African savannas, trees often become more abundant under heavy cattle grazing but less abundant in wildlife preserves. Woody encroachment where cattle have replaced wild herbivores may be caused by a shift in the competitive balance between trees and grasses. Here we report the results of an experiment designed to quantify the positive, negative, and net effects of grasses, wild herbivores, and cattle on Acacia saplings in a Kenyan savanna. Acacia drepanolobium saplings under four long-term herbivore regimes (wild herbivores, cattle, cattle + wild herbivores, and no large herbivores) were cleared of surrounding grass or left with the surrounding grass intact. After two years, grass-removal saplings exhibited 86% more browse damage than control saplings, suggesting that grass benefited saplings by protecting them from herbivory. However, the negative effect of grass on saplings was far greater; grass-removal trees accrued more than twice the total stem length of control trees. Where wild herbivores were present, saplings were browsed more and produced more new stem growth. Thus, the net effect of wild herbivores was positive, possibly due to the indirect effects of lower competitor tree density in areas accessible to elephants. Additionally, colonization of saplings by symbiotic ants tracked growth patterns, and colonized saplings experienced lower rates of browse damage. These results suggest that savanna tree growth and woody encroachment cannot be predicted by grass cover or herbivore type alone. Rather, tree growth appears to depend on a variety of factors that may be acting together or antagonistically at different stages of the tree's life cycle.

  16. Automatic Detection of Storm Damages Using High-Altitude Photogrammetric Imaging

    NASA Astrophysics Data System (ADS)

    Litkey, P.; Nurminen, K.; Honkavaara, E.

    2013-05-01

    The risks of storms that cause damage in forests are increasing due to climate change. Quickly detecting fallen trees, assessing the amount of fallen trees and efficiently collecting them are of great importance for economic and environmental reasons. Visually detecting and delineating storm damage is a laborious and error-prone process; thus, it is important to develop cost-efficient and highly automated methods. Objective of our research project is to investigate and develop a reliable and efficient method for automatic storm damage detection, which is based on airborne imagery that is collected after a storm. The requirements for the method are the before-storm and after-storm surface models. A difference surface is calculated using two DSMs and the locations where significant changes have appeared are automatically detected. In our previous research we used four-year old airborne laser scanning surface model as the before-storm surface. The after-storm DSM was provided from the photogrammetric images using the Next Generation Automatic Terrain Extraction (NGATE) algorithm of Socet Set software. We obtained 100% accuracy in detection of major storm damages. In this investigation we will further evaluate the sensitivity of the storm-damage detection process. We will investigate the potential of national airborne photography, that is collected at no-leaf season, to automatically produce a before-storm DSM using image matching. We will also compare impact of the terrain extraction algorithm to the results. Our results will also promote the potential of national open source data sets in the management of natural disasters.

  17. The assessment of environmentally sensitive forest road construction in Calabrian pine forest areas of Turkey.

    PubMed

    Tunay, Metin

    2006-07-01

    Forest road construction by bulldozers in Calabrian Pine (Pinus brutia Ten.) forests on mountainous terrain of Turkey causes considerable damage to the environment and the forest standing alongside the road. This situation obliges a study of environmentally sound road construction in Turkey. This study was carried out in 4 sample sites of Antalya Forest Directorate in steep (34-50% gradient) and very steep terrain (51-70% gradient) conditions with bulldozer and excavator machine and direct damages to forest during road construction was determined, including forest area losses and damages to downhill trees in mountainous areas. It was determined that in steep terrain when excavators were used, less forest area (22.16%) was destroyed compared to bulldozers and 26.54% less area in very steep terrain. The proportion of damage on trees where bulldozer worked was nearly twofold higher than excavator was used. The results of this research show that the environmentally sensitive techniques applied for the road construction projects are considerably superior to the traditional use of bulldozers on steep slopes. The environmentally sound forest road construction by use of excavator must be considered an appropriate and reliable solution for mountainous terrain where areas of sensitive forest ecosystems are to be opened up.

  18. Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forests

    PubMed Central

    2012-01-01

    Background Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure. One such sub-canopy disturbance in tropical forests is abscising leaves of large arborescent palm (Arececeae) trees. These leaves can weigh up to 15 kg and cause physical damage and mortality to juvenile plants. Previous studies examining this question suffered from the use of static data at small spatial scales. Here we use data from a large permanent forest plot combined with dynamic data on the survival and growth of > 66,000 individuals over a seven-year period to address whether falling palm fronds do impact neighboring seedling and sapling communities, or whether there is an interaction between the palms and peccaries rooting for fallen palm fruit in the same area as falling leaves. We tested the wider generalisation of these hypotheses by comparing seedling and sapling survival under fruiting and non-fruiting trees in another family, the Myristicaceae. Results We found a spatially-restricted but significant effect of large arborescent fruiting palms on the spatial structure, population dynamics and species diversity of neighbouring sapling and seedling communities. However, these effects were not found around slightly smaller non-fruiting palm trees, suggesting it is seed predators such as peccaries rather than falling leaves that impact on the communities around palm trees. Conversely, this hypothesis was not supported in data from other edible species, such as those in the family Myristicaceae. Conclusions Given the abundance of arborescent palm trees in Amazonian forests, it is reasonable to conclude that their presence does have a significant, if spatially-restricted, impact on juvenile plants, most likely on the survival and growth of seedlings and saplings damaged by foraging peccaries. Given the abundance of fruit produced by each palm, the widespread effects of these small-scale disturbances appear, over long time-scales, to cause directional changes in community structure at larger scales. PMID:22429883

  19. Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forests.

    PubMed

    Queenborough, Simon A; Metz, Margaret R; Wiegand, Thorsten; Valencia, Renato

    2012-03-19

    Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure. One such sub-canopy disturbance in tropical forests is abscising leaves of large arborescent palm (Arececeae) trees. These leaves can weigh up to 15 kg and cause physical damage and mortality to juvenile plants. Previous studies examining this question suffered from the use of static data at small spatial scales. Here we use data from a large permanent forest plot combined with dynamic data on the survival and growth of > 66,000 individuals over a seven-year period to address whether falling palm fronds do impact neighboring seedling and sapling communities, or whether there is an interaction between the palms and peccaries rooting for fallen palm fruit in the same area as falling leaves. We tested the wider generalisation of these hypotheses by comparing seedling and sapling survival under fruiting and non-fruiting trees in another family, the Myristicaceae. We found a spatially-restricted but significant effect of large arborescent fruiting palms on the spatial structure, population dynamics and species diversity of neighbouring sapling and seedling communities. However, these effects were not found around slightly smaller non-fruiting palm trees, suggesting it is seed predators such as peccaries rather than falling leaves that impact on the communities around palm trees. Conversely, this hypothesis was not supported in data from other edible species, such as those in the family Myristicaceae. Given the abundance of arborescent palm trees in Amazonian forests, it is reasonable to conclude that their presence does have a significant, if spatially-restricted, impact on juvenile plants, most likely on the survival and growth of seedlings and saplings damaged by foraging peccaries. Given the abundance of fruit produced by each palm, the widespread effects of these small-scale disturbances appear, over long time-scales, to cause directional changes in community structure at larger scales.

  20. Multicriteria evaluation of simulated logging scenarios in a tropical rain forest.

    PubMed

    Huth, Andreas; Drechsler, Martin; Köhler, Peter

    2004-07-01

    Forest growth models are useful tools for investigating the long-term impacts of logging. In this paper, the results of the rain forest growth model FORMIND were assessed by a multicriteria decision analysis. The main processes covered by FORMIND include tree growth, mortality, regeneration and competition. Tree growth is calculated based on a carbon balance approach. Trees compete for light and space; dying large trees fall down and create gaps in the forest. Sixty-four different logging scenarios for an initially undisturbed forest stand at Deramakot (Malaysia) were simulated. The scenarios differ regarding the logging cycle, logging method, cutting limit and logging intensity. We characterise the impacts with four criteria describing the yield, canopy opening and changes in species composition. Multicriteria decision analysis was used for the first time to evaluate the scenarios and identify the efficient ones. Our results plainly show that reduced-impact logging scenarios are more 'efficient' than the others, since in these scenarios forest damage is minimised without significantly reducing yield. Nevertheless, there is a trade-off between yield and achieving a desired ecological state of logged forest; the ecological state of the logged forests can only be improved by reducing yields and enlarging the logging cycles. Our study also demonstrates that high cutting limits or low logging intensities cannot compensate for the high level of damage caused by conventional logging techniques.

  1. Nonlinear behaviors of FRP-wrapped tall trees subjected to high wind loads

    NASA Astrophysics Data System (ADS)

    Kang, J.; Yi, Z. Z.; Choi, S. G.

    2017-12-01

    This study investigated the mechanical stability of historical tall trees wrapped with fiber-reinforced polymer (FRP) laminates using finite element (FE) analysis. High wind loads are considered as external loading conditions as they are one of the major threats on the structural stability of tall old trees. There have been several traditional practices to enhance the stability of tall trees exposed to high windstorms such as tree supporters and anchorages. They, however, have been sometimes causing negative effects with their misuses as the application guidelines for those methods were not adequately studied or documented. Furthermore, the oldest known trees in the country should be protected from the damage of external surface as well as ruin of the landscape. The objective of this study was to evaluate the structural effects of FRP wraps applied to tall trees subjected to high wind loads. The anisotropic material properties of wood and FRP laminates were considered in the analysis in addition to geometrically nonlinear behaviors. This study revealed that FRP wrapping for tall trees could effectively reduce the deflections and maximum stresses of trees, which results in the enhanced stability of tall trees. The optimum geometry and thicknesses of FRP wraps proposed in this study would provide fundemental guidelines for designing and constructing the application of innovative FRP wraps on tall trees, which are structurally unstable or should be preserved nationally and historically.

  2. Spatial variability in oviposition damage by periodical cicadas in a fragmented landscape.

    PubMed

    Cook, William M; Holt, Robert D; Yao, Jin

    2001-03-01

    Effects of the periodical cicada (Magicicada spp.) on forest dynamics are poorly documented. A 1998 emergence of M. cassini in eastern Kansas led to colonization of a fragmented experimental landscape undergoing secondary succession. We hypothesized that per-tree rates of oviposition damage by cicadas would reflect: (1) distance from the source of the emergence, (2) patch size, and (3) local tree density. Ovipositing females displayed clear preferences for host species and damage incidence showed predictable spatial patterns. Two species (smooth sumac, Rhus glabra, and eastern red cedar, Juniperus virginiana) were rarely attacked, whereas others (rough-leaved dogwood, Cornus drummondii; slippery elm, Ulmus rubra; box elder, Acer negundo, and honey locust, Gleditsia triacanthos) were strongly attacked. The dominant early successional tree, dogwood, received on average the most attacks. As predicted, attacks per stem declined strongly with distance from the emergence source, and with local stem density (a "dilution" effect). Contrary to expectations, there were more attacks per stem on larger patches. Because ovipositing cicadas cut damaging slits in host tree branches, potentially affecting tree growth rate, competitive ability, and capacity to reproduce, cicada damage could potentially influence spatial variation in secondary succession.

  3. Influence of regeneration method and tissue source on the frequency of somatic variation in Populus to infection by Septoria musiva

    Treesearch

    Michael E. Ostry; Ronald L. Hackett; Charles H. Michler; R. Serres; B. McCown

    1994-01-01

    Septoria leaf spot and canker are serious diseases of many hybrid poplar clones in plantations established for biomass production. Developing resistant clones through breeding is the best long-term strategy to minimize tree damage caused by this disease. Tissue culture and somaclonal selection techniques may reduce the time needed to develop disease resistance in...

  4. How to control the white pine weevil with a hand sprayer

    Treesearch

    David Crosby

    1954-01-01

    The white pine weevil is the most serious insect enemy of white pine in the Northeast, where more than 75 percent of these valuable trees are weeviled. Weevil larvae feed just beneath the bark; this kills the leader, causing folks, crooks, and a subsequent degrade of timber. In fact, widespread damage by the weevil has reduced the demand for white pine planting stock...

  5. Susceptibility of central hardwood trees to stem breakage due to ice glazing

    Treesearch

    KaDonna C. Randolph

    2014-01-01

    During January 26-28, 2009, a winter storm dropped a mix of rain, ice, and snow from Texas across the Ohio River Valley and into New England. The storm caused multiple fatalities and millions of dollars of property damage and was called "the biggest natural disaster in modern Kentucky history" (Brammer and Funk 2009: 13). The storm disturbed an estimated 2.4...

  6. Atmospheric emissions of methyl isothiocyanate and chloropicrin following soil fumigation and surface containment treatment in bare-root forest nurseries

    Treesearch

    D. Wang; J. Juzwik; Stephen W. Fraedrich; K. Spokas; Y. Zhang; W.C. Koskinen

    2005-01-01

    Methylisothiocyanate (MITC) and chloropicrin (CP) are alternatives to methyl bromide for soil fumigation. However, surface transport of MITC emission has been cited as the cause for seedling damage in adjacent fields at several bare-root forest-tree nurseries. Field experiments were conducted at nurseries in Wisconsin and Georgia to measure air emissions of MITC and CP...

  7. Atmospheric emissions of methyl isothiocyanate and chloropicrin following soil fumigation and surface containment treatment in bare-root forest nurseries

    Treesearch

    D. Wang; J. Juzwik; S.W. Fraedrich; K. Spokas; Y. Zhang; W.C. Koskinen

    2005-01-01

    Methylisothiocyanate (MITC) and chloropicrin (CP) are alternatives to methyl bromide for soil fumigation. However, surface transport of MITC emission has been cited as the cause for seedling damage in adjacent fields at several bare-root forest-tree nurseries. Field experiments were conducted at nurseries to measure air emissions of MITC and CP after fumigation....

  8. Exotic Forest Insect Pests and Their Impact on Forest Management

    Treesearch

    Therese M. Poland; Robert A. Haack

    2003-01-01

    More than 4500 exotic organisms are now established in the United States, of which over 400 are insects that feed on trees and shrubs. While most exotic insects cause little or no damage, a few have become serious pests and have greatly altered native forest ecosystems. Three of the most recently introduced exotic forest pests are the pine shoot beetle, the Asian...

  9. Limitations on gas exchange recovery following natural drought in Californian oak woodlands.

    NASA Astrophysics Data System (ADS)

    Ackerly, D.; Skelton, R. P.; Dawson, T.; Thompson, S.; Feng, X.; Weitz, A.; McLaughlin, B.

    2017-12-01

    Abstract Background/Question/Methods Drought can cause major damage to plant communities, but species damage thresholds and post-drought recovery of forest productivity are not yet predictable. We asked the question how should forest net primary productivity recover following exposure to severe drought? We used a natural drought period to investigate whether drought responses and post-drought recovery of canopy health could be predicted by properties of the water transport system. We aimed to test the hypothesis that recovery of gas exchange and canopy health would be most severely limited by xylem embolism in stems. To do this we monitored leaf level gas exchange and water status for multiple individuals of two deciduous and two evergreen species for four years spanning a severe drought event and following subsequent rehydration. Results/Discussion Severe drought caused major declines in leaf water potential, reduced stomatal conductance and assimilation rates and increased canopy bareness in our four canopy species. Water potential surpassed levels associated with incipient embolism in leaves of most trees. In contrast, due to hydraulic segmentation, water potential only rarely surpassed critical thresholds in the stems of the study trees. Individuals that surpassed critical thresholds of embolism in the stem displayed significant canopy dieback and mortality. Thus, recovery of plant gas exchange and canopy health was predicted by xylem safety margin in stems, but not leaves, providing strong support for stem cavitation vulnerability as an index of damage under natural drought conditions.

  10. Forest insects and climate change: long-term trends in herbivore damage.

    PubMed

    Klapwijk, Maartje J; Csóka, György; Hirka, Anikó; Björkman, Christer

    2013-10-01

    Long-term data sets, covering several decades, could help to reveal the effects of observed climate change on herbivore damage to plants. However, sufficiently long time series in ecology are scarce. The research presented here analyzes a long-term data set collected by the Hungarian Forest Research Institute over the period 1961-2009. The number of hectares with visible defoliation was estimated and documented for several forest insect pest species. This resulted in a unique time series that provides us with the opportunity to compare insect damage trends with trends in weather patterns. Data were analyzed for six lepidopteran species: Thaumetopoea processionea, Tortrix viridana, Rhyacionia buoliana, Malacosoma neustria, Euproctis chrysorrhoea, and Lymantria dispar. All these species exhibit outbreak dynamics in Hungary. Five of these species prefer deciduous tree species as their host plants, whereas R. buoliana is a specialist on Pinus spp. The data were analyzed using general linear models and generalized least squares regression in relation to mean monthly temperature and precipitation. Temperature increased considerably, especially over the last 25 years (+1.6°C), whereas precipitation exhibited no trend over the period. No change in weather variability over time was observed. There was increased damage caused by two species on deciduous trees. The area of damage attributed to R. buoliana decreased over the study period. There was no evidence of increased variability in damage. We conclude that species exhibiting a trend toward outbreak-level damage over a greater geographical area may be positively affected by changes in weather conditions coinciding with important life stages. Strong associations between the geographical extent of severe damage and monthly temperature and precipitation are difficult to confirm, studying the life-history traits of species could help to increase understanding of responses to climate change.

  11. Variability in leaf damage among cultivars of lychee, host of Myllocerus undecimpustulatus undatus Marshall adults

    USDA-ARS?s Scientific Manuscript database

    The Sri Lankan weevil has imposed heavy damage on the canopy of various ornamental and fruit trees since it was first detected in South Florida in 2000. One of the more heavily damaged fruit trees is lychee, Litchi chinensis (Sapindales: Sapindaceae). As part of a study to better understand host cho...

  12. Impact and injury patterns in between-rails frontal crashes of vehicles with good ratings for frontal crash protection.

    PubMed

    Morgan, Richard M; Cui, Chongzhen; Digges, Kennerly H; Cao, Libo; Kan, Cing-Dao Steve

    2012-01-01

    This research investigated (1) what are the key attributes of the between-rail, frontal crash, (2) what are the types of object contacted, and (3) what is the type of resulting trauma. The method was to study with both weighted and in-depth case reviews of NASS-CDS crash data with direct damage between the longitudinal rails in frontal crashes. Individual case selection was limited to belted occupants in between-rail, frontal impacts of good-rated, late-model vehicles equipped with air bags.This paper evaluates the risk of trauma for drivers in cars and LTVs in between-rail, frontal crashes, and suggests the between-rail impact is more dangerous to car drivers. Using weighted data-representing 227,305 tow-away crashes-the resulting trauma to various body regions was analyzed to suggest greatest injury is to the chest, pelvis/thigh/knee/leg, and foot/ankle. This study analyzed the type of object that caused the direct damage between the rails, including small tree or post, large tree or pole, and another vehicle; and found that the struck object was most often another vehicle or a large tree/pole. Both the extent of damage and the occupant compartment intrusion were explored, and suggest that 64% of the serious injuries are associated with increasing intrusion. Individual NASS cases were reviewed to gain a deeper understanding of the mechanical particulars in the between-rail crash.

  13. Impact and Injury Patterns in Between-Rails Frontal Crashes of Vehicles with Good Ratings for Frontal Crash Protection

    PubMed Central

    Morgan, Richard M.; Cui, Chongzhen; Digges, Kennerly H.; Cao, Libo; Kan, Cing-Dao (Steve)

    2012-01-01

    This research investigated (1) what are the key attributes of the between-rail, frontal crash, (2) what are the types of object contacted, and (3) what is the type of resulting trauma. The method was to study with both weighted and in-depth case reviews of NASS-CDS crash data with direct damage between the longitudinal rails in frontal crashes. Individual case selection was limited to belted occupants in between-rail, frontal impacts of good-rated, late-model vehicles equipped with air bags. This paper evaluates the risk of trauma for drivers in cars and LTVs in between-rail, frontal crashes, and suggests the between-rail impact is more dangerous to car drivers. Using weighted data—representing 227,305 tow-away crashes—the resulting trauma to various body regions was analyzed to suggest greatest injury is to the chest, pelvis/thigh/knee/leg, and foot/ankle. This study analyzed the type of object that caused the direct damage between the rails, including small tree or post, large tree or pole, and another vehicle; and found that the struck object was most often another vehicle or a large tree/pole. Both the extent of damage and the occupant compartment intrusion were explored, and suggest that 64% of the serious injuries are associated with increasing intrusion. Individual NASS cases were reviewed to gain a deeper understanding of the mechanical particulars in the between-rail crash. PMID:23169135

  14. Mannitol can mitigate negative effects of simulated acid mist and fluoranthene in juvenile Japanese red pine (P. densiflora Sieb. et Zucc.).

    PubMed

    Oguntimehin, Ilemobayo; Bandai, Sayuri; Sakugawa, Hiroshi

    2013-03-01

    The negative health effects of simulated acid mists and fluoranthene on juvenile Japanese red pine were investigated, and the methods of protection from these pollutants were examined. The needle gas exchange, chlorophyll fluorescence, chemical contents and visual damage to needles caused by acid mist applied alone or its conjunction with fluoranthene were investigated over 60 d and 20 d, respectively. Acid mist at pH 2 and 3 caused physiological and visual damage, which was enhanced by the addition of fluoranthene to the mist. However, fluoranthene and acid mist at pH 4 and 5 showed only minor effects. These findings indicate that acid mist may be more harmful to pine trees if it occurs in conjunction with polycyclic aromatic hydrocarbons. Moreover, suppression of the singular and additive effects of these compounds was achieved using mannitol, which may be widely applicable to suppression of reactive oxygen species-mediated plant damage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Tree mortality from a short-duration freezing event and global-change-type drought in a Southwestern piñon-juniper woodland, USA

    PubMed Central

    2014-01-01

    This study documents tree mortality in Big Bend National Park in Texas in response to the most acute one-year drought on record, which occurred following a five-day winter freeze. I estimated changes in forest stand structure and species composition due to freezing and drought in the Chisos Mountains of Big Bend National Park using permanent monitoring plot data. The drought killed over half (63%) of the sampled trees over the entire elevation gradient. Significant mortality occurred in trees up to 20 cm diameter (P < 0.05). Pinus cembroides Zucc. experienced the highest seedling and tree mortality (P < 0.0001) (55% of piñon pines died), and over five times as many standing dead pines were observed in 2012 than in 2009. Juniperus deppeana vonSteudal and Quercus emoryi Leibmann also experienced significant declines in tree density (P < 0.02) (30.9% and 20.7%, respectively). Subsequent droughts under climate change will likely cause even greater damage to trees that survived this record drought, especially if such events follow freezes. The results from this study highlight the vulnerability of trees in the Southwest to climatic change and that future shifts in forest structure can have large-scale community consequences. PMID:24949231

  16. Local habitat and landscape influence predation of bird nests on afforested Mediterranean cropland

    NASA Astrophysics Data System (ADS)

    Sánchez-Oliver, J. S.; Rey Benayas, J. M.; Carrascal, L. M.

    2014-07-01

    Afforestation programs such as the one promoted by the EU Common Agrarian Policy have contributed to spread tree plantations on former cropland. Nevertheless these afforestations may cause severe damage to open habitat species, especially birds of high conservation value. We investigated predation of artificial bird nests at young tree plantations and at the open farmland habitat adjacent to the tree plantations in central Spain. Predation rates were very high at both tree plantations (95.6%) and open farmland habitat (94.2%) after two and three week exposure. Plantation edge/area ratio and development of the tree canopy decreased predation rates and plantation area and magpie (Pica pica) abundance increased predation rates within tree plantations, which were also affected by land use types around plantations. The area of nearby tree plantations (positive effect), distance to the tree plantation edge (negative effect), and habitat type (mainly attributable to the location of nests in vineyards) explained predation rates at open farmland habitat. We conclude that predation rates on artificial nests were particularly high and rapid at or nearby large plantations, with high numbers of magpies and low tree development, and located in homogenous landscapes dominated by herbaceous crops and pastures with no remnants of semi-natural woody vegetation. Landscape planning should not favour tree plantations as the ones studied here in Mediterranean agricultural areas that are highly valuable for ground-nesting bird species.

  17. Catastrophic wind damage to North American forests and the potential impact of climate change.

    PubMed

    Peterson, C J

    2000-11-15

    Catastrophic winds from tornadoes and downbursts are a major cause of natural disturbance in forests of eastern North America, accounting for thousands of hectares of disturbed area annually. Wind disturbance shows substantial regional variation, decreasing from the mid-west to the east and from the south-east to New England. In terms of the relative importance among these types of storms, more forest damage results from tornadoes in the south-east and mid-west, while downbursts are the most important type of wind disturbance in the Great Lakes area. Downbursts vary widely in size, but large ones can damage thousands of hectares, while tornadoes are much smaller, seldom affecting more than several hundred hectares. Tornadoes cause the most severe wind disturbances. Site characteristics such as physiography, soil moisture, and soil depth; stand characteristics like density and canopy roughness; and tree characteristics such as size, species, rooting depth, and wood strength, are the factors most recognized as influencing damage patterns. The consequences of wind damage to forests, such as change in environmental conditions, density, size structure, species composition, and successional status, occur on both immediate (hours-to-days) and long-term (months-to-decades) time scales. Most wind disturbances result in the post-disturbance vegetation being comprised of surviving canopy trees, and varying amounts of sprouts, released understory stems, and new seedlings. Stand size structure is usually reduced, and successional status of a forest is often advanced. Diversity can be either increased or decreased, depending on the measure of abundance used to calculate diversity. Because tornadoes and downbursts are in part products of thermodynamic climatic circumstances, they may be affected by anticipated changes in climatic conditions as the 21st century progresses. However, the current understanding of tornado and downburst formation from supercell storms is very incomplete, and climate-change model predictions sufficiently coarse, that predictions of changes in frequency, size, intensity, or timing of these extreme events must be regarded as highly uncertain. Moreover, retrospective approaches that employ tree demography and dendrochronology require prohibitively large sample sizes to resolve details of the relationship between climate fluctuations and characteristics of these storms. To improve predictions of changes in the climatology of these storms, we need improved understanding of the genesis of tornadoes and downbursts within thunderstorms, and greater resolution in global climate models. To improve coping strategies, forest scientists can contribute by giving more attention to how various silvicultural actions influence stand and tree vulnerability. Finally, increased focus on the dynamics of forest recovery and regrowth may suggest management actions that can facilitate desired objectives after one of these unpredictable wind disturbances.

  18. New Insights into the Consequences of Post-Windthrow Salvage Logging Revealed by Functional Structure of Saproxylic Beetles Assemblages

    PubMed Central

    Thorn, Simon; Bässler, Claus; Gottschalk, Thomas; Hothorn, Torsten; Bussler, Heinz; Raffa, Kenneth; Müller, Jörg

    2014-01-01

    Windstorms, bark beetle outbreaks and fires are important natural disturbances in coniferous forests worldwide. Wind-thrown trees promote biodiversity and restoration within production forests, but also cause large economic losses due to bark beetle infestation and accelerated fungal decomposition. Such damaged trees are often removed by salvage logging, which leads to decreased biodiversity and thus increasingly evokes discussions between economists and ecologists about appropriate strategies. To reveal the reasons behind species loss after salvage logging, we used a functional approach based on four habitat-related ecological traits and focused on saproxylic beetles. We predicted that salvage logging would decrease functional diversity (measured as effect sizes of mean pairwise distances using null models) as well as mean values of beetle body size, wood diameter niche and canopy cover niche, but would increase decay stage niche. As expected, salvage logging caused a decrease in species richness, but led to an increase in functional diversity by altering the species composition from habitat-filtered assemblages toward random assemblages. Even though salvage logging removes tree trunks, the most negative effects were found for small and heliophilous species and for species specialized on wood of small diameter. Our results suggested that salvage logging disrupts the natural assembly process on windthrown trees and that negative ecological impacts are caused more by microclimate alteration of the dead-wood objects than by loss of resource amount. These insights underline the power of functional approaches to detect ecosystem responses to anthropogenic disturbance and form a basis for management decisions in conservation. To mitigate negative effects on saproxylic beetle diversity after windthrows, we recommend preserving single windthrown trees or at least their tops with exposed branches during salvage logging. Such an extension of the green-tree retention approach to windthrown trees will preserve natural succession and associated communities of disturbed spruce forests. PMID:25050914

  19. New insights into the consequences of post-windthrow salvage logging revealed by functional structure of saproxylic beetles assemblages.

    PubMed

    Thorn, Simon; Bässler, Claus; Gottschalk, Thomas; Hothorn, Torsten; Bussler, Heinz; Raffa, Kenneth; Müller, Jörg

    2014-01-01

    Windstorms, bark beetle outbreaks and fires are important natural disturbances in coniferous forests worldwide. Wind-thrown trees promote biodiversity and restoration within production forests, but also cause large economic losses due to bark beetle infestation and accelerated fungal decomposition. Such damaged trees are often removed by salvage logging, which leads to decreased biodiversity and thus increasingly evokes discussions between economists and ecologists about appropriate strategies. To reveal the reasons behind species loss after salvage logging, we used a functional approach based on four habitat-related ecological traits and focused on saproxylic beetles. We predicted that salvage logging would decrease functional diversity (measured as effect sizes of mean pairwise distances using null models) as well as mean values of beetle body size, wood diameter niche and canopy cover niche, but would increase decay stage niche. As expected, salvage logging caused a decrease in species richness, but led to an increase in functional diversity by altering the species composition from habitat-filtered assemblages toward random assemblages. Even though salvage logging removes tree trunks, the most negative effects were found for small and heliophilous species and for species specialized on wood of small diameter. Our results suggested that salvage logging disrupts the natural assembly process on windthrown trees and that negative ecological impacts are caused more by microclimate alteration of the dead-wood objects than by loss of resource amount. These insights underline the power of functional approaches to detect ecosystem responses to anthropogenic disturbance and form a basis for management decisions in conservation. To mitigate negative effects on saproxylic beetle diversity after windthrows, we recommend preserving single windthrown trees or at least their tops with exposed branches during salvage logging. Such an extension of the green-tree retention approach to windthrown trees will preserve natural succession and associated communities of disturbed spruce forests.

  20. Using Airborne LIDAR Data for Assessment of Forest Fire Fuel Load Potential

    NASA Astrophysics Data System (ADS)

    İnan, M.; Bilici, E.; Akay, A. E.

    2017-11-01

    Forest fire incidences are one of the most detrimental disasters that may cause long terms effects on forest ecosystems in many parts of the world. In order to minimize environmental damages of fires on forest ecosystems, the forested areas with high fire risk should be determined so that necessary precaution measurements can be implemented in those areas. Assessment of forest fire fuel load can be used to estimate forest fire risk. In order to estimate fuel load capacity, forestry parameters such as number of trees, tree height, tree diameter, crown diameter, and tree volume should be accurately measured. In recent years, with the advancements in remote sensing technology, it is possible to use airborne LIDAR for data estimation of forestry parameters. In this study, the capabilities of using LIDAR based point cloud data for assessment of the forest fuel load potential was investigated. The research area was chosen in the Istanbul Bentler series of Bahceköy Forest Enterprise Directorate that composed of mixed deciduous forest structure.

  1. Herbivory and climate interact serially to control monoterpene emissions from pinyon pine forests.

    PubMed

    Trowbridge, Amy M; Daly, Ryan W; Helmig, Detlev; Stoy, Paul C; Monson, Russell K

    2014-06-01

    The emission of volatile monoterpenes from coniferous trees impacts the oxidative state of the troposphere and multi-trophic signaling between plants and animals. Previous laboratory studies have revealed that climate anomalies and herbivory alter the rate of tree monoterpene emissions. However, no studies to date have been conducted to test these relations in situ. We conducted a two-year field experiment at two semiarid sites dominated by pinyon pine (Pinus edulis) during outbreaks of a specialist herbivore, the southwestern tiger moth (Lophocampa ingens: Arctiidae). We discovered that during the early spring, when herbivory rates were highest, monoterpene emission rates were approximately two to six times higher from undamaged needles on damaged trees, with this increase in emissions due to alpha-pinene, beta-pinene, and camphene at both sites. During mid-summer, emission rates did not differ between previously damaged and undamaged trees at the site on the Western Slope of the Rocky Mountains, but rather tracked changes in the temperature and precipitation regime characteristic of the region. As the mid-summer drought progressed at the Eastern Slope site, emission rates were low, but differences between previously damaged and undamaged trees were not statistically significant. Despite no difference in emissions, mid-summer tissue monoterpene concentrations were significantly lower in previously damaged trees at both sites. With the onset of monsoon rains during late summer, emission rates from previously damaged trees increased to levels higher than those of undamaged trees despite the lack of herbivory. We conclude that (1) herbivory systemically increases the flux of terpenes to the atmosphere during the spring, (2) drought overrides the effect of past herbivory as the primary control over emissions during the mid-summer, and (3) a release from drought and the onset of late-summer rains is correlated with a secondary increase in emissions, particularly from herbivore-damaged trees, possibly due to a drought-delayed stimulation of induced monoterpene synthesis and/or increases in stomatal conductance. A greater understanding of the interactive effects of seasonality and herbivory on monoterpene emissions provides much needed information regarding the atmospheric and ecological consequences that these compounds will have for semiarid ecosystems.

  2. Time series data of a broadleaved secondary forest in Japan as affected by deer and mass mortality of oak trees.

    PubMed

    Itô, Hiroki

    2017-01-01

    Abandonment of broadleaved secondary forests that have been used for various purposes may cause the loss of biodiversity. Some of these forests suffer from diseases such as Japanese oak wilt. An increasing number of deer also impact some of them. Monitoring and recording the status of such forests is important for their proper management. This data set provides a concrete example of temporal changes in a temperate broadleaved secondary forest. The forest has been damaged by mass mortality of oak trees caused by Japanese oak wilt disease. In addition, the forest has been under foraging pressure by sika deer ( Cervus nippon Temminck). The data set can provide information on how such a forest has changed in species composition of the canopy and sub-canopy layers and in species occurrence in the understory layer.

  3. Tree damage resulting from thinning in young-growth Douglas-fir and western hemlock.

    Treesearch

    Norman P. Worthington

    1961-01-01

    Thinning trials on three cooperative experimental forests in western Washington have provided an excellent opportunity to evaluate tree damage resulting from typical thinning operations in young-growth timber. The type and degree of damage can, of course, be expected to strongly affect condition and vigor of the residual stand and ultimate success of a thinning regime...

  4. Trap Type, Chirality of a-Pinene, and Geographic Region Affect Sampling Efficiency of Root and Lower Stem Insects in Pine

    Treesearch

    Nadir Erbilgin; Alex Szele; Kier Dean Klepzig; Kenneth Francis Raffa

    2001-01-01

    Root and lower stem insects cause significant damage to conifers, vector phytopathogenic fungi, and can predispose trees to bark beetle attacks. The development of effective sampling techniques is an important component in managing these cryptic insects. We tested the effects of trap type and stereochemistry of a-pinene, in combination with ethanol, on catches of the...

  5. The Northeastern Ice Storm 1998, A forest damage assessment for New York, Vermont, New Hampshire, and Maine

    Treesearch

    Margaret Miller-Weeks; Chris Eagar; Christina M. Petersen

    1999-01-01

    The ice storm of January 1998 affected 17 million acres of forestland in northern New York, Vermont, New Hampshire, and Maine, including parts of the Green Mountain National Forest and the White Mountain National Forest. Portions of eastern Canada were also impacted, especially Quebec. The weight of accumulated ice caused trees to snap off or bend over to the ground....

  6. Tree crown condition in Virginia before and after Hurricane Isabel (September 2003)

    Treesearch

    KaDonna Randolph; Anita Rose

    2009-01-01

    In September 2003, Hurricane Isabel made landfall in North Carolina as a Category 2 hurricane. As it moved inland, with sustained wind speeds of 37 to 69 miles per hour (59 to 111 km per hour) and gusts up to 91 miles per hour (146 km per hour), the hurricane caused widespread damage throughout Virginia and is a plausible explanation for adverse changes observed in...

  7. First Report of the Ash Dieback Pathogen Hymenoscyphus fraxineus in Korea

    PubMed Central

    Han, Jae-Gu; Shrestha, Bhushan; Hosoya, Tsuyoshi; Lee, Kang-Hyo

    2014-01-01

    In the past two decades, European ash trees (Fraxinus spp.) have been severely damaged due to ash dieback disease, which is caused by the fungal species Hymenoscyphus fraxineus (Chalara fraxinea in the anamorphic stage). Recent molecular phylogenetic and population genetic studies have suggested that this fungus has been introduced from Asia to Europe. During a fungal survey in Korea, H. fraxineus-like apothecia were collected from fallen leaves, rachises, and petioles of Korean ash and Manchurian ash trees. The morphological and ecological traits of these materials are described with the internal transcribed spacer rDNA sequence comparison of H. fraxineus strains collected from Korea, China and Japan. PMID:25606012

  8. Coexistence of Trees and Grass: Importance of climate and fire within the tropics

    NASA Astrophysics Data System (ADS)

    Shuman, J. K.; Fisher, R.; Koven, C.; Knox, R. G.; Andre, B.; Kluzek, E. B.

    2017-12-01

    Tropical forests are characterized by transition zones where dominance shifts between trees and grasses with some areas exhibiting bistability of the two. The cause of this transition and bistability has been linked to the interacting effects of climate, vegetation structure and fire behavior. Utilizing the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a demographic vegetation model, and the CESM ESM, we explore the coexistence of trees and grass across the tropics with an active fire regime. FATES has been updated to use a fire module based on Spitfire. FATES-Spitfire tracks fire ignition, spread and impact based on fuel state and combustion. Fire occurs within the model with variable intensity that kills trees according to the combined effects of cambial damage and crown scorch due to flame height and fire intensity. As a size-structured model, FATES allows for variable mortality based on the size of tree cohorts, where larger trees experience lower morality compared to small trees. Results for simulation scenarios where vegetation is represented by all trees, all grass, or a combination of competing trees and grass are compared to assess changes in biomass, fire regime and tree-grass coexistence. Within the forest-grass transition area there is a critical time during which grass fuels fire spread and prevents the establishment of trees. If trees are able to escape mortality a tree-grass bistable area is successful. The ability to simulate the bistability and transition of trees and grass throughout the tropics is critical to representing vegetation dynamics in response to changing climate and CO2.

  9. Assessment of fire-damaged mesquite trees 8 years following an illegal burn

    Treesearch

    Gerald J. Gottfried; Peter F. Ffolliott; Pablo Garcia; Diego Valdez-Zamudio; Akram Al-Khouri

    2003-01-01

    Effects of an illegal burn on the Santa Rita Experimental Range on mesquite (Prosopis velutina) survival in the semidesert grass-shrub ecosystem was initially assessed in terms of firedamage classes 18 months after the fire and again 8 years after the burn. While many of the mesquite trees on the burned site were damaged by the fire, some of the trees appear to have...

  10. Tree shaking machine aids cone collection in a Douglas-fir seed orchard.

    Treesearch

    Donald L. Copes; William K. Randall

    1983-01-01

    A boom-type tree shaker was used in a Douglas-fir seed orchard to remove cones from 7- to 9-meter tall grafted Douglas-fir trees. An average of 55 percent of the cones were removed by shaking, while damage inflicted to the upper crown was confined primarily to branch and leader breakage in the top three internodes. Damage to the lower bole, where the shaker head...

  11. Effect of simulated ice storm damage on loblolly pine tree and stand growth

    Treesearch

    Rodney E. Will; Thomas Hennessey; Thomas Lynch; Robert Heinemann; Randal Holeman; Dennis Wilson

    2012-01-01

    Ice damage to loblolly pine plantations is a recurrent problem in eastern Oklahoma and western Arkansas with significant ice events occurring recently in 1995, twice in 2000, and in 2007. Following ice damage, forest owners need to decide to clear-cut and replant, thin or partial cut to rehabilitate, or take no action. A quantitative assessment of tree and stand growth...

  12. Mapping the occurrence of tree damage in the forests of the northern United States

    Treesearch

    Randall S. Morin; Scott A. Pugh; Jim. Steinman

    2016-01-01

    The U.S. Forest Service Forest Inventory and Analysis Program uses visual inspections of trees from bottom to top to record damage that is likely to prevent survival, reduce growth, or hinder capability to produce marketable products. This report describes the types of damage and occurrence as measured across the 24-state northern region between 2009 and 2013....

  13. Simple street tree sampling

    Treesearch

    David J. Nowak; Jeffrey T. Walton; James Baldwin; Jerry Bond

    2015-01-01

    Information on street trees is critical for management of this important resource. Sampling of street tree populations provides an efficient means to obtain street tree population information. Long-term repeat measures of street tree samples supply additional information on street tree changes and can be used to report damages from catastrophic events. Analyses of...

  14. In vitro safety assessment of the strawberry tree (Arbutus unedo L.) water leaf extract and arbutin in human peripheral blood lymphocytes.

    PubMed

    Jurica, K; Brčić Karačonji, I; Mikolić, A; Milojković-Opsenica, D; Benković, V; Kopjar, N

    2018-04-25

    Strawberry tree (Arbutus unedo L.) leaves have long been used in the traditional medicine of the Mediterranean region. One of their most bioactive constituents is the glycoside arbutin, whose presence makes A. unedo suitable as a potential substitute for bearberry [Arctostaphylos uva ursi (L.) Spreng] leaves, an herbal preparation widely used for treating urinary tract infections. The safety and biocompatibility of strawberry tree water leaf extract have not yet been documented well. This study estimated arbutin content in strawberry tree water leaf extract (STE) using high performance liquid chromatography. Furthermore, we performed an in vitro safety assessment of the 24 h exposure to three presumably non-toxic concentrations of standardized STE and arbutin in human peripheral blood lymphocytes using the apoptosis/necrosis assay, the alkaline comet assay, and the cytokinesis-block micronucleus cytome assay. The STE was also tested for total antioxidant capacity and lipid peroxidation. At a concentration corresponding to the maximum allowable daily intake of arbutin, the tested extract was not cytotoxic, had a negligible potential for causing primary DNA damage and even hindered micronuclei formation in lymphocytes. It also showed a valuable antioxidant capacity, and did not exert marked lipid peroxidation. These promising results represent a solid frame for further development of STE-based herbal preparations. Although arbutin generally had a low DNA damaging potential, the slowing down of lymphocyte proliferation observed after 24 h of exposure points to a cytostatic effect, which merits further research.

  15. Estimating willingness to pay for protection of eastern black walnut from deer damage

    Treesearch

    Larry D. Godsey; John P. Dwyer

    2008-01-01

    For many landowners willing to plant trees, one of the biggest establishment and maintenance costs is protecting those young trees from deer browse damage. In some cases, the method of protection used can cost two to three times as much as the cost of planting. Deer damage such as nipping off terminal buds and buck rub penetrating the bark and cambial tissue can kill...

  16. A multi-proxy assessment of dieback causes in a Mediterranean oak species.

    PubMed

    Colangelo, Michele; Camarero, J Julio; Battipaglia, Giovanna; Borghetti, Marco; De Micco, Veronica; Gentilesca, Tiziana; Ripullone, Francesco

    2017-05-01

    Drought stress causes forest dieback that is often explained by two interrelated mechanisms, namely hydraulic failure and carbon starvation. However, it is still unclear which functional and structural alterations, related to these mechanisms, predispose to dieback. Here we apply a multi-proxy approach for the characterization of tree structure (radial growth, wood anatomy) and functioning (δ13C, δ18O and non-structural carbohydrates (NSCs)) in tree rings before and after drought-induced dieback. We aim to discriminate which is the main mechanism and to assess which variables can act as early-warning proxies of drought-triggered damage. The study was tailored in southern Italy in two forests (i.e., San Paolo (SP) and Oriolo (OR)) where declining and non-declining trees of a ring-porous tree species (Quercus frainetto Ten.) showing anisohydric behavior coexist. Both stands showed growth decline in response to warm and dry spring conditions, although the onset of dieback was shifted between them (2002 in SP and 2009 in OR). Declining trees displayed a sharp growth drop after this onset with reductions of 49% and 44% at SP and OR sites, respectively. Further, contrary to what we expected, declining trees showed a lower intrinsic water-use efficiency compared with non-declining trees after the dieback onset (with reductions of 9.7% and 5.6% at sites SP and OR, respectively), due to enhanced water loss through transpiration, as indicated by the lower δ18O values. This was more noticeable at the most drought-affected SP stand. Sapwood NSCs did not differ between declining and non-declining trees, indicating no carbon starvation in affected trees. Thus, the characterized structural and functional alterations partially support the hydraulic failure mechanism of dieback. Finally, we show that growth data are reliable early-warning proxies of drought-triggered dieback. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Bark heat resistance of small trees in Californian mixed conifer forests: Testing some model assumptions

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Schwartz, Mark

    2003-01-01

    An essential component to models of fire-caused tree mortality is an assessment of cambial damage. Cambial heat resistance has been traditionally measured in large overstory trees with thick bark, although small trees have thinner bark and thus are more sensitive to fire. We undertook this study to determine if current models of bark heat transfer are applicable to small trees (<20 cm diameter at breast height (dbh)). We performed this work in situ on four common species in the mixed conifer forests of the Sierra Nevada, California.The allometric relationship between bole diameter and bark thickness for each species was linear, even for very small trees (5 cm dbh). Heating experiments demonstrated that bark thickness was the primary determinant of cambial heat resistance. We found only slight, but statistically significant, among species differences in bark thermal properties. Our most significant finding was that small trees were more resistant to heating than expected from commonly used models of bark heat transfer. Our results may differ from those of existing models because we found smaller trees to have a greater proportion of inner bark, which appears to have superior insulating properties compared to outer bark. From a management perspective, growth projections suggest that a 50-year fire-free interval may allow some fire intolerant species to achieve at least some degree of cambial heat resistance in the Sierra Nevada.

  18. Mitochondrial DNA from Hemlock Woolly Adelgid (Hemiptera: Adelgidae) Suggests Cryptic Speciation and Pinpoints the Source of the Introduction to Eastern North America

    Treesearch

    Nathan P. Havill; Michael E. Montgomery; Guoyue Yu; Shigehiko Shiyake; Adalgisa Caccone; Adalgisa Caccone

    2006-01-01

    The hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), is an introduced pest of unknown origin that is causing severe mortality to hemlocks (Tsuga spp.) in eastern North America. Adelgids also occur on other Tsuga species in western North America and East Asia, but these trees are not significantly damaged. The purpose of this study is to use...

  19. Nutrient enrichment intensifies hurricane impact in scrub mangrove ecosystems in the Indian River Lagoon, Florida, USA.

    PubMed

    Feller, Ilka C; Dangremond, Emily M; Devlin, Donna J; Lovelock, Catherine E; Proffitt, C Edward; Rodriguez, Wilfrid

    2015-11-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical, subtropical, and warm temperate coasts. Despite repeated demonstrations of their ecologic and economic value, multiple stressors including nutrient over-enrichment threaten these and other coastal wetlands globally. These ecosystems will be further stressed if tropical storm intensity and frequency increase in response to global climate changes. These stressors will likely interact, but the outcome of that interaction is uncertain. Here, we examined potential interaction between nutrient over-enrichment and the September 2004 hurricanes. Hurricanes Frances and Jeanne made landfall along Florida's Indian River Lagoon and caused extensive damage to a long-term fertilization experiment in a mangrove forest, which previously revealed that productivity was nitrogen (N) limited across the forest and, in particular, that N enrichment dramatically increased growth rates and aboveground biomass of stunted Avicennia germinans trees in the interior scrub zone. During the hurricanes, these trees experienced significant defoliation with three to four times greater reduction in leaf area index (LAI) than control trees. Over the long-term, the +N scrub trees took four years to recover compared to two years for controls. In the adjacent fringe and transition zones, LAI was reduced by > 70%, but with no differences based on zone or fertilization treatment. Despite continued delayed mortality for at least five years after the storms, LAI in the fringe and transition returned to pre-hurricane conditions in two years. Thus, nutrient over-enrichment of the coastal zone will increase the productivity of scrub mangroves, which dominate much of the mangrove landscape in Florida and the Caribbean; however, that benefit is offset by a decrease in their resistance and resilience to hurricane damage that has the potential to destabilize the system.

  20. You'd better walk alone: Changes in forest composition affect pollination efficiency and pre-dispersal cone damage in Iberian Juniperus thurifera forests.

    PubMed

    Rodríguez-García, E; Mezquida, E T; Olano, J M

    2017-11-01

    Changes in land-use patterns are a major driver of global environmental change. Cessation of traditional land-use practices has led to forest expansion and shifts in forest composition. Consequently, former monospecific forests maintained by traditional management are progressing towards mixed forests. However, knowledge is scarce on how the presence of other tree species will affect reproduction of formerly dominant species. We explored this question in the wind-pollinated tree Juniperus thurifera. We hypothesised that the presence of heterospecific trees would have a negative effect on cone production and on the proportion of cones attacked by specialised predators. We assessed the relative importance of forest composition on cone production, seed development and pre-dispersal cone damage on nine paired pure and mixed J. thurifera forests in three regions across the Iberian Peninsula. The effects of forest composition on crop size, cone and seed characteristics, as well as damage by pre-dispersal arthropods were tested using mixed models. Cone production was lower and seed abortion higher in mixed forests, suggesting higher pollination failure. In contrast, cone damage by arthropods was higher in pure forests, supporting the hypothesis that presence of non-host plants reduces damage rates. However, the response of each arthropod to forest composition was species-specific and the relative rates of cone damage varied depending on individual tree crops. Larger crop sizes in pure forests compensated for the higher cone damage rates, leading to a higher net production of sound seeds compared to mixed forests. This study indicates that ongoing changes in forest composition after land abandonment may impact tree reproduction. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  1. A combined field and numerical approach to understanding dilute pyroclastic density current dynamics and hazard potential: Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Brand, Brittany D.; Gravley, Darren M.; Clarke, Amanda B.; Lindsay, Jan M.; Bloomberg, Simon H.; Agustin-Flores, Javier; Németh, Károly

    2014-04-01

    The most dangerous and deadly hazards associated with phreatomagmatic eruptions in the Auckland Volcanic Field (AVF; Auckland, New Zealand) are those related to volcanic base surges - dilute, ground-hugging, particle laden currents with dynamic pressures capable of severe to complete structural damage. We use the well-exposed base surge deposits of the Maungataketake tuff ring (Manukau coast, Auckland), to reconstruct flow dynamics and destructive potential of base surges produced during the eruption. The initial base surge(s) snapped trees up to 0.5 m in diameter near their base as far as 0.7-0.9 km from the vent. Beyond this distance the trees were encapsulated and buried by the surge in growth position. Using the tree diameter and yield strength of the wood we calculate that dynamic pressures (Pdyn) in excess of 12-35 kPa are necessary to cause the observed damage. Next we develop a quantitative model for flow of and sedimentation from a radially-spreading, dilute pyroclastic density currents (PDCs) to determine the damage potential of the base surges produced during the early phases of the eruption and explore the implications of this potential on future eruptions in the region. We find that initial conditions with velocities on the order of 65 m s- 1, bulk density of 38 kg m- 3 and initial, near-vent current thicknesses of 60 m reproduce the field-based Pdyn estimates and runout distances. A sensitivity analysis revealed that lower initial bulk densities result in shorter run-out distances, more rapid deceleration of the current and lower dynamic pressures. Initial velocity does not have a strong influence on run-out distance, although higher initial velocity and slope slightly decrease runout distance due to higher rates of atmospheric entrainment. Using this model we determine that for base surges with runout distances of up to 4 km, complete destruction can be expected within 0.5 km from the vent, moderate destruction can be expected up to 2 km, but much less damage is expected up to the final runout distance of 4 km. For larger eruptions (base surge runout distance 4-6 km), Pdyn of > 35 kPa can be expected up to 2.5 km from source, ensuring complete destruction within this area. Moderate damage to reinforced structures and damage to weaker structures can be expected up to 6 km from source. In both cases hot ash may still cause damage due to igniting flammable materials in the distal-most regions of a base surge. This work illustrates our ability to combine field observations and numerical models to explore the depositional mechanisms, macroscale current dynamics, and potential impact of dilute PDCs. Thus, this approach may serve as a tool to understand the damage potential and extent of previous and potential future eruptions in the AVF.

  2. Detection of spatio-temporal changes of Norway spruce forest stands in Ore Mountains using airborne hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Misurec, J.; Kopačková, V.; Lhotáková, Z.; Albrechtova, J.; Campbell, P. K. E.

    2015-12-01

    The Ore Mountains are an example of the region that suffered from severe environmental pollution caused by long-term coal mining and heavy industry leading to massive dieback of the local Norway spruce forests between the 1970's and 1990's. The situation became getting better at the end of 1990's after pollution loads significantly decreased. In 1998 and 2013, airborne hyperspectral data (with sensor ASAS and APEX, respectively) were used to study recovery of the originally damaged forest stands and compared them with those that have been less affected by environmental pollution. The field campaign (needle biochemical analysis, tree defoliation etc.) accompanied hyperspectral imagery acquisition. An analysis was conducted assessing a set of 16 vegetation indices providing complex information on foliage, biochemistry and canopy biophysics and structure. Five of them (NDVI, NDVI705, VOG1, MSR and TCARI/OSAVI) showing the best results were employed to study spatial gradients as well as temporal changes. The detected gradients are in accordance with ground truth data on representative trees. The obtained results indicate that the original significant differences between the damaged and undamaged stands have been generally levelled until 2013, although it is still possible to detect signs of the previous damages in several cases.

  3. Predicting Hotspots of Human-Elephant Conflict to Inform Mitigation Strategies in Xishuangbanna, Southwest China.

    PubMed

    Chen, Ying; Marino, Jorgelina; Chen, Yong; Tao, Qing; Sullivan, Casey D; Shi, Kun; Macdonald, David W

    2016-01-01

    Research on the spatial patterns of human-wildlife conflict is fundamental to understanding the mechanisms underlying it and to identifying opportunities for mitigation. In the state of Xishuangbanna, containing China's largest tropical forest, an imbalance between nature conservation and economic development has led to increasing conflicts between humans and Asian elephants (Elephas maximus), as both elephant numbers and conversion of habitable land to rubber plantations have increased over the last several decades. We analyzed government data on the compensation costs of elephant-caused damage in Xishuangbanna between 2008 and 2012 to understand the spatial and temporal patterns of conflict, in terms of their occurrence, frequency and distribution. More than 18,261 incidents were reported, including episodes involving damage to rubber trees (n = 10,999), damage to crops such as paddy, upland rice, corn, bananas and sugarcane (n = 11,020), property loss (n = 689) and attacks on humans (n = 19). The conflict data reconfirmed the presence of elephants in areas which have lacked records since the late 1990s. Zero Altered Negative Binomial models revealed that the risk of damage to crops and plantations increased with proximity to protected areas, increasing distance from roads, and lower settlement density. The patterns were constant across seasons and types of crop damaged. Damage to rubber trees was essentially incidental as elephants searched for crops to eat. A predictive map of risks revealed hotspots of conflict within and around protected areas, the last refuges for elephants in the region, and along habitat corridors connecting them. Additionally, we analyzed how mitigation efforts can best diminish the risk of conflict while minimizing financial costs and adverse biological impacts. Our analytical approach can be adopted, adjusted and expanded to other areas with historical records of human-wildlife conflict.

  4. Tree Species Traits but Not Diversity Mitigate Stem Breakage in a Subtropical Forest following a Rare and Extreme Ice Storm

    PubMed Central

    Nadrowski, Karin; Pietsch, Katherina; Baruffol, Martin; Both, Sabine; Gutknecht, Jessica; Bruelheide, Helge; Heklau, Heike; Kahl, Anja; Kahl, Tiemo; Niklaus, Pascal; Kröber, Wenzel; Liu, Xiaojuan; Mi, Xiangcheng; Michalski, Stefan; von Oheimb, Goddert; Purschke, Oliver; Schmid, Bernhard; Fang, Teng; Welk, Erik; Wirth, Christian

    2014-01-01

    Future climates are likely to include extreme events, which in turn have great impacts on ecological systems. In this study, we investigated possible effects that could mitigate stem breakage caused by a rare and extreme ice storm in a Chinese subtropical forest across a gradient of forest diversity. We used Bayesian modeling to correct stem breakage for tree size and variance components analysis to quantify the influence of taxon, leaf and wood functional traits, and stand level properties on the probability of stem breakage. We show that the taxon explained four times more variance in individual stem breakage than did stand level properties; trees with higher specific leaf area (SLA) were less susceptible to breakage. However, a large part of the variation at the taxon scale remained unexplained, implying that unmeasured or undefined traits could be used to predict damage caused by ice storms. When aggregated at the plot level, functional diversity and wood density increased after the ice storm. We suggest that for the adaption of forest management to climate change, much can still be learned from looking at functional traits at the taxon level. PMID:24879434

  5. Relationship between Fe2+ Ca2+ ions and cyclodextrin in olive trees infected with sooty mold

    NASA Astrophysics Data System (ADS)

    Aragão, P. H. A.; Andrade, C. G. T. J.; Ota, A. T.; Costa, M. F.

    2012-07-01

    In this work, Energy Dispersive X-ray Fluorescence (EDXRF) was used to observe the peak areas of chemical elements present in healthy and infected samples and a Scanning Electron Microscopy (SEM) to study the damage caused by sooty mold on olive tree leaves from the Mediterranean. Leaves infected with sooty mold presented a high concentration of Fe2+ and a low concentration of Ca2+. Our results show that the infected leaves cause a metabolic imbalance in the plants due to an anomalous behavior of macronutrients and micronutrients. Infected leaves start to develop a thin layer of glucose (Cyclodextrin) on their surface. Cyclodextrin (CD) molecules are oligosaccharides consisting of α-D-glucopyranose units linked to glucosides. The most common is β-cyclodextrin (β-CD), which has seven units of α-D-glucopyranose. There are different CDs which are widely used as molecular reactors. In this work, some connections between CD molecules conformations that were obtained in order to observe the relationship of Fe2+ and Ca2+ in the olive tree infected with sooty mold were studied. The results are discussed in terms of number of ions found inside and outside the cavity formed by the CD molecules.

  6. The limits to tree height.

    PubMed

    Koch, George W; Sillett, Stephen C; Jennings, Gregory M; Davis, Stephen D

    2004-04-22

    Trees grow tall where resources are abundant, stresses are minor, and competition for light places a premium on height growth. The height to which trees can grow and the biophysical determinants of maximum height are poorly understood. Some models predict heights of up to 120 m in the absence of mechanical damage, but there are historical accounts of taller trees. Current hypotheses of height limitation focus on increasing water transport constraints in taller trees and the resulting reductions in leaf photosynthesis. We studied redwoods (Sequoia sempervirens), including the tallest known tree on Earth (112.7 m), in wet temperate forests of northern California. Our regression analyses of height gradients in leaf functional characteristics estimate a maximum tree height of 122-130 m barring mechanical damage, similar to the tallest recorded trees of the past. As trees grow taller, increasing leaf water stress due to gravity and path length resistance may ultimately limit leaf expansion and photosynthesis for further height growth, even with ample soil moisture.

  7. Weaver ant role in cashew orchards in Vietnam.

    PubMed

    Peng, Renkang; Lan, La Pham; Christian, Keith

    2014-08-01

    Cashew (Anacardium occidentale L.) is a very important source of income for more than 200,000 farmer households in Vietnam. The present cashew productivity in Vietnam is low and unstable, and pest damage is partly responsible for this. Cashew farmers rely on pesticides to minimize the damage, resulting in adverse impacts on farm environment and farmers' health. Weaver ants (Oecophylla spp) are effective biocontrol agents of a range of cashew insect pests in several cashew-growing countries, and these ants are widely distributed in Vietnam. The aim of this study is to evaluate the potential of weaver ants in cashew orchards in Vietnam. Field surveys and field experiment were conducted in five cashew orchards from July 2006 to January 2008 in Binh Phuoc, Dong Nai, and Ba Ria Vung Tau provinces, Vietnam. Based on the field surveys, the most important pests that damage flushing foliar and floral shoots and young cashew fruits and nuts were mosquito bugs, brown shoot borers, blue shoot borers, and fruit-nut borers. The damage caused by each of these pests was significantly lower on trees with weaver ants compared with trees without the ants, showing that the ants were able to keep these pest damages under the control threshold. Regular monitoring of the field experiment showed that weaver ants were similar to insecticides for controlling mosquito bugs, blue shoot borers, fruit-nut borers, leaf rollers, and leaf miners. Aphids did not become major pests in plot with weaver ants. To manage insect pest assemblage in cashew orchards, an integrated pest management using weaver ants as a major component is discussed.

  8. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations.

    PubMed

    Meng, Zhiyong; Yao, Dan; Bai, Lanqiang; Zheng, Yongguang; Xue, Ming; Zhang, Xiaoling; Zhao, Kun; Tian, Fuyou; Wang, Mingjun

    Based on observational analyses and on-site ground and aerial damage surveys, this work aims to reveal the weather phenomena-especially the wind situation-when Oriental Star capsized in the Yangtze River on June 1, 2015. Results demonstrate that the cruise ship capsized when it encountered strong winds at speeds of at least 31 m s -1 near the apex of a bow echo embedded in a squall line. As suggested by the fallen trees within a 2-km radius around the wreck location, such strong winds were likely caused by microburst straight-line wind and/or embedded small vortices, rather than tornadoes.

  9. Use of remote sensing for land use policy formulation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Progress in studies for using remotely sensed data for assessing crop stress and in crop estimation is reported. The estimation of acreage of small forested areas in the southern lower peninsula of Michigan using LANDSAT data is evaluated. Damage to small grains caused by the cereal leaf beetle was assessed through remote sensing. The remote detection of X-disease of peach and cherry trees and of fire blight of pear and apple trees was investigated. The reliability of improving on standard methods of crop production estimation was demonstrated. Areas of virus infestation in vineyards and blueberry fields in western and southwestern Michigan were identified. The installation and systems integration of a microcomputer system for processing and making available remotely sensed data are described.

  10. Detection and Characterization of Stress Symptoms in Forest Vegetation

    NASA Technical Reports Server (NTRS)

    Heller, R. C.

    1971-01-01

    Techniques used at the Pacific Southwest Forest and Range Experiment Station to detect advanced and previsual symptoms of vegetative stress are discussed. Stresses caused by bark beetles in coniferous stands of timber are emphasized because beetles induce stress more rapidly than most other destructive agents. Bark beetles are also the most damaging forest insects in the United States. In the work on stress symptoms, there are two primary objectives: (1) to learn the best combination of films, scales, and filters to detect and locate injured trees from aircraft and spacecraft, and (2) to learn if stressed trees can be detected before visual symptoms of decline occur. Equipment and techniques used in a study of the epidemic of the Black Hills bark beetle are described.

  11. DNA and Flavonoids Leach out from Active Nuclei of Taxus and Tsuga after Extreme Climate Stresses

    PubMed Central

    Feucht, Walter; Schmid, Markus; Treutter, Dieter

    2015-01-01

    Severe over-stresses of climate caused dramatic changes in the intracellular distribution of the flavonoids. This was studied in needles from the current year’s growth of the following species and varieties: Tsuga canadensis, Taxus baccata, T. aurea, T. repens, T. nana, and T. compacta. The mode of steady changes in flavonoids was evaluated by microscopic techniques. Most of the flavonoids stain visibly yellow by themselves. The colorless flavanol subgroup can be stained blue by the DMACA reagent. In mid-summer 2013, outstanding high temperatures and intense photo-oxidative irradiation caused in a free-standing tree of Taxus baccata dramatic heat damage in a limited number of cells of the palisade layers. In these cells, the cytoplasm was burned brown. However, the nucleus maintained its healthy “blue” colored appearance which apparently was a result of antioxidant barrier effects by these flavanols. In late May 2014, excessive rainfall greatly affected all study trees. Collectively, in all study trees, a limited number of the mesophyll nuclei from the needless grown in 2013 and 2014 became overly turgid, enlarged in size and the flavanols leached outward through the damaged nuclear membranes. This diffusive stress event was followed one to three days later by a similar efflux of DNA. Such a complete dissolution of the nuclei in young tissues was the most spectacular phenomenon of the present study. As a common feature, leaching of both flavanols and DNA was markedly enhanced with increasing size and age of the cells. There is evidence that signalling flavonoids are sensitized to provide in nuclei and cytoplasm multiple mutual protective mechanisms. However, this well-orchestrated flavonoid system is broken down by extreme climate events. PMID:27135348

  12. Strip-Bark Morphology and Radial Growth Trends in Ancient Pinus sibirica Trees From Central Mongolia

    NASA Astrophysics Data System (ADS)

    Leland, Caroline; Cook, Edward R.; Andreu-Hayles, Laia; Pederson, Neil; Hessl, Amy; Anchukaitis, Kevin J.; Byambasuren, Oyunsanaa; Nachin, Baatarbileg; Davi, Nicole; D'Arrigo, Rosanne; Griffin, Kevin; Bishop, Daniel A.; Rao, Mukund Palat

    2018-03-01

    Some of the oldest and most important trees used for dendroclimatic reconstructions develop strip-bark morphology, in which only a portion of the stem contains living tissue. Yet the ecophysiological factors initiating strip bark and the potential effect of cambial dieback on annual ring widths and tree-ring estimates of past climate remain poorly understood. Using a combination of field observations and tree-ring data, we investigate the causes and timing of cambial dieback events in Pinus sibirica strip-bark trees from central Mongolia and compare the radial growth rates and trends of strip-bark and whole-bark trees over the past 515 years. Results indicate that strip bark is more common on the southern aspect of trees, and dieback events were most prevalent in the 19th century, a cold and dry period. Further, strip-bark and whole-bark trees have differing centennial trends, with strip-bark trees exhibiting notably large increases in ring widths at the beginning of the 20th century. We find a steeper positive trend in the strip-bark chronology relative to the whole-bark chronology when standardizing with age-dependent splines. We hypothesize that localized warming on the southern side of stems due to solar irradiance results in physiological damage and dieback and leads to increasing tree-ring increment along the living portion of strip-bark trees. Because the impact of cambial dieback on ring widths likely varies depending on species and site, we suggest conducting a comparison of strip-bark and whole-bark ring widths before statistically treating ring-width data for climate reconstructions.

  13. A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: A comparative study.

    PubMed

    Joshuva, A; Sugumaran, V

    2017-03-01

    Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Tree-ring dating of meteorite fall in Sikhote-Alin, Eastern Siberia - Russia

    NASA Astrophysics Data System (ADS)

    Fantucci, R.; Di Martino, Mario; Serra, Romano

    2012-01-01

    This research deals with the fall of the Sikhote-Alin iron meteorite on the morning of 12 February 1947, at about 00:38 h Utrecht, in a remote area in the territory of Primorsky Krai in Eastern Siberia (46°09‧36″N, 134°39‧22″E). The area engulfed by the meteoritic fall was around 48 km2, with an elliptic form and thousands of craters. Around the large craters the trees were torn out by the roots and laid radially to the craters at a distance of 10-20 m; the more distant trees had broken tops. This research investigated through dendrocronology n.6 Scots pine trees (Pinus Sibirica) close to one of the main impact craters. The analysis of growth anomalies has shown a sudden decrease since 1947 for 4-8 years after the meteoritic impact. Tree growth stress, detected in 1947, was analysed in detail through wood microsection that confirmed the winter season (rest vegetative period) of the event. The growth stress is mainly due to the lost crown (needle lost) and it did not seem to be caused due to direct damages on trunk and branches (missing of resin ducts).

  15. A comparison of campfire impacts and policies in seven protected areas

    USGS Publications Warehouse

    Reid, S.E.; Marion, J.L.

    2005-01-01

    Using resource-monitoring data from seven protected areas, the effectiveness of three campfire policies-campfire ban, designated campfires, and unregulated campfires-were assessed based on the number of fire sites and the amount of tree damage. Results indicate that unregulated campfire policies permitted substantial numbers of fire sites and tree damage in campsites, although fire bans did not eliminate or even substantially decrease these problems. A designated campfire policy was effective in decreasing number of fire sites, but little difference was found among policies regarding tree damage. Given the importance of campfires to visitor experiences, campfire prohibitions could be viewed as unnecessarily restrictive based on their limited success in preventing resource damage. Conclusions encourage protected-area managers to consider designated campfire policies and prohibitions on axes, hatchets, and saws to better meet resource protection and visitor experience mandates.

  16. Black pod: diverse pathogens with a global impact on cocoa yield.

    PubMed

    Guest, David

    2007-12-01

    ABSTRACT Pathogens of the Straminipile genus Phytophthora cause significant disease losses to global cocoa production. P. megakarya causes significant pod rot and losses due to canker in West Africa, whereas P. capsici and P. citrophthora cause pod rots in Central and South America. The global and highly damaging P. palmivora attacks all parts of the cocoa tree at all stages of the growing cycle. This pathogen causes 20 to 30% pod losses through black pod rot, and kills up to 10% of trees annually through stem cankers. P. palmivora has a complex disease cycle involving several sources of primary inoculum and several modes of dissemination of secondary inoculum. This results in explosive epidemics during favorable environmental conditions. The spread of regional pathogens must be prevented by effective quarantine barriers. Resistance to all these Phytophthora species is typically low in commercial cocoa genotypes. Disease losses can be reduced through integrated management practices that include pruning and shade management, leaf mulching, regular and complete harvesting, sanitation and pod case disposal, appropriate fertilizer application and targeted fungicide use. Packaging these options to improve uptake by smallholders presents a major challenge for the industry.

  17. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought

    PubMed Central

    Carnicer, Jofre; Coll, Marta; Ninyerola, Miquel; Pons, Xavier; Sánchez, Gerardo; Peñuelas, Josep

    2011-01-01

    Climate change is progressively increasing severe drought events in the Northern Hemisphere, causing regional tree die-off events and contributing to the global reduction of the carbon sink efficiency of forests. There is a critical lack of integrated community-wide assessments of drought-induced responses in forests at the macroecological scale, including defoliation, mortality, and food web responses. Here we report a generalized increase in crown defoliation in southern European forests occurring during 1987–2007. Forest tree species have consistently and significantly altered their crown leaf structures, with increased percentages of defoliation in the drier parts of their distributions in response to increased water deficit. We assessed the demographic responses of trees associated with increased defoliation in southern European forests, specifically in the Iberian Peninsula region. We found that defoliation trends are paralleled by significant increases in tree mortality rates in drier areas that are related to tree density and temperature effects. Furthermore, we show that severe drought impacts are associated with sudden changes in insect and fungal defoliation dynamics, creating long-term disruptive effects of drought on food webs. Our results reveal a complex geographical mosaic of species-specific responses to climate change–driven drought pressures on the Iberian Peninsula, with an overwhelmingly predominant trend toward increased drought damage. PMID:21220333

  18. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought.

    PubMed

    Carnicer, Jofre; Coll, Marta; Ninyerola, Miquel; Pons, Xavier; Sánchez, Gerardo; Peñuelas, Josep

    2011-01-25

    Climate change is progressively increasing severe drought events in the Northern Hemisphere, causing regional tree die-off events and contributing to the global reduction of the carbon sink efficiency of forests. There is a critical lack of integrated community-wide assessments of drought-induced responses in forests at the macroecological scale, including defoliation, mortality, and food web responses. Here we report a generalized increase in crown defoliation in southern European forests occurring during 1987-2007. Forest tree species have consistently and significantly altered their crown leaf structures, with increased percentages of defoliation in the drier parts of their distributions in response to increased water deficit. We assessed the demographic responses of trees associated with increased defoliation in southern European forests, specifically in the Iberian Peninsula region. We found that defoliation trends are paralleled by significant increases in tree mortality rates in drier areas that are related to tree density and temperature effects. Furthermore, we show that severe drought impacts are associated with sudden changes in insect and fungal defoliation dynamics, creating long-term disruptive effects of drought on food webs. Our results reveal a complex geographical mosaic of species-specific responses to climate change-driven drought pressures on the Iberian Peninsula, with an overwhelmingly predominant trend toward increased drought damage.

  19. Direct damage to vegetation caused by acid rain and polluted cloud: definition of critical levels for forest trees.

    PubMed

    Cape, J N

    1993-01-01

    The concept of critical levels was developed in order to define short-term and long-term average concentrations of gaseous pollutants above which plants may be damaged. Although the usual way in which pollutants in precipitation (wet deposition) influence vegetation is by affecting soil processes, plant foliage exposed to fog and cloud, which often contain much greater concentrations of pollutant ions than rain, may be damaged directly. The idea of a critical level has been extended to define concentrations of pollutants in wet deposition above which direct damage to plants is likely. Concentrations of acidity and sulphate measured in mountain and coastal cloud are summarised. Vegetation at risk of injury is identified as montane forest growing close to the cloud base, where ion concentrations are highest. The direct effects of acidic precipitation on trees are reviewed, based on experimental exposure of plants to simulated acidic rain, fog or mist. Although most experiments have reported results in terms of pH (H(+) concentration), the accompanying anion is important, with sulphate being more damaging than nitrate. Both conifers and broadleaved tree seedlings showing subtle changes in the structural characteristics of leaf surfaces after exposure to mist or rain at or about pH 3.5, or sulphate concentration of 150 micromol litre(-1). Visible lesions on leaf surfaces occur at around pH 3 (500 micromol litre(-1) sulphate), broadleaved species tending to be more sensitive than conifers. Effects on photosynthesis and water relations, and interactions with other stresses (e.g. frost), have usually been observed only for treatments which have also caused visible injury to the leaf surface. Few experiments on the direct effects of polluted cloud have been conducted under field conditions with mature trees, which unlike seedlings in controlled conditions, may suffer a growth reduction in the absence of visible injury. Although leaching of cations (Ca(2+), Mg(2+), K(+)) is stimulated by acidic precipitation, amounts leached are small compared with root uptake, unless soils have been impoverished. This aspect of the potential effects of acidic precipitation is best considered in terms of the long-term critical-load of pollutants to the soil. Given the practical difficulties in monitoring cloud water composition, a method for defining critical levels is proposed, which uses climatological average data to identify the duration and frequency of hill cloud, and combines this information with measured or modelled concentrations of particulate sulphate in the atmosphere, to derive cloud water concentrations as a function of cloud liquid water content. For forests within 100 m of the cloud base the critical levels of particulate sulphate, corresponding to solution concentrations in the range 150-500 micromol litre(-1), are in the range 1-3.3 microg S m(-3). These concentrations are observed over much of central Europe, suggesting that many montane forests are at risk of direct effects of fossil-fuel-derived pollutants in cloud.

  20. Ambient orchard and on-tree volatile collection system for monitoring and detection of attractants for navel orangeworm

    USDA-ARS?s Scientific Manuscript database

    The navel orangeworm (NOW) is a major insect pest of California tree nuts. Its feeding damage lowers nut kernel quality resulting in considerable monetary loss to growers, producers, and shippers. Moreover, NOW feeding damage directly contributes to aflatoxin contamination. Hence, control of NOW has...

  1. 7 CFR 457.130 - Macadamia tree crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... section 11(b)(3) by your share. (c) The total amount of loss will include both trees damaged and trees... 7 Agriculture 6 2013-01-01 2013-01-01 false Macadamia tree crop insurance provisions. 457.130... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.130 Macadamia tree...

  2. 7 CFR 457.130 - Macadamia tree crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... section 11(b)(3) by your share. (c) The total amount of loss will include both trees damaged and trees... 7 Agriculture 6 2014-01-01 2014-01-01 false Macadamia tree crop insurance provisions. 457.130... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.130 Macadamia tree...

  3. Does freezing and dynamic flexing of frozen branches impact the cavitation resistance of Malus domestica and the Populus clone Walker?

    PubMed

    Christensen-Dalsgaard, Karen K; Tyree, Melvin T

    2013-11-01

    Frost damage to the xylem conduits of trees is a phenomenon of eco-physiological importance. It is often documented in terms of the percentage loss of conductivity (PLC), an indicator of air filling of the conduits. However, trees that refill their conduits in spring could be impacted more by damage to the conduits that reduce cavitation resistance, making them more susceptible to future drought events. We investigated whether ice formation, dynamic flexing of frozen branches or freeze-thaw events could reduce the cavitation resistance (cause "frost fatigue") in first-year shoots of apple (Malus domestica) and clonal hybrid cottonwood (Walker). Frost fatigue was measured in terms of P50 (the negative xylem pressure required to cause a 50 % loss of conductivity). All treatment groups showed significant frost fatigue, with the exception of the pre-flushed, constantly frozen poplar branches. The P50 following freeze treatments was approximately 50 % of the pre-freeze values. The effect tended to be greater in freeze-thawed branches. Dynamic bending of the branches had no effect on either PLC or P50. In three out of four cases, there was a significant correlation between P50 and PLC. Frost fatigue occurred in both apple and poplar, two unrelated species with different drought and frost tolerances, suggesting that it may be a widespread phenomenon that could impact the ecophysiology of temperate forests.

  4. Effect of larval growth conditions on adult body mass and long-distance flight endurance in a wood-boring beetle: Do smaller beetles fly better?

    PubMed

    Brown, Stav; Soroker, Victoria; Ribak, Gal

    2017-04-01

    The tropical fig borer, Batocera rufomaculata De Geer, is a large beetle that is a pest on a number of fruit trees, including fig and mango. Adults feed on the leaves and twigs and females lay their eggs under the bark of the tree. The larvae bore into the tree trunk, causing substantial damage that may lead to the collapse and death of the host tree. We studied how larval development under inferior feeding conditions (experienced during development in dying trees) affects flight endurance in the adult insect. We grew larvae either in their natural host or on sawdust enriched with stale fig tree twigs. Flight endurance of the adults was measured using a custom-built flight-mill. Beetles emerging from the natural host were significantly larger but flew shorter distances than beetles reared on less favourable substrates. There was no difference in the allometric slope of wing area with body mass between the beetles groups; however flight muscle mass scaled with total body mass with an exponent significantly lower than 1.0. Hence, smaller beetles had proportionally larger flight muscles. These findings suggest that beetles that developed smaller as a result from poor nutritional conditions in deteriorating hosts, are better equipped to fly longer distances in search of a new host tree. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Wood properties and trunk allometry of co-occurring rainforest canopy trees in a cyclone-prone environment.

    PubMed

    Read, Jennifer; Evans, Robert; Sanson, Gordon D; Kerr, Stuart; Jaffré, Tanguy

    2011-11-01

    New Caledonia commonly experiences cyclones, so trees there are expected to have enhanced wood traits and trunk allometry that confer resistance to wind damage. We ask whether there is evidence of a trade-off between these traits and growth rate among species. Wood traits, including density, microfibril angle (MFA), and modulus of elasticity (MOE), ratio of tree height to stem diameter, and growth rate were investigated in mature trees of 15 co-occurring canopy species in a New Caledonian rainforest. In contrast to some studies, wood density did not correlate negatively with growth increment. Among angiosperms, wood density and MOE correlated positively with diameter-adjusted tree height, and MOE correlated positively with stem-diameter growth increment. Tall slender trees achieved high stiffness with high efficiency with respect to wood density, in part by low MFA, and with a higher diameter growth increment but a lower buckling safety factor. However, some tree species of a similar niche differed in whole-tree resistance to wind damage and achieved wood stiffness in different ways. There was no evidence of a growth-safety trade-off in these trees. In forests that regularly experience cyclones, there may be stronger selection for high wood density and/or stiffness in fast-growing trees of the upper canopy, with the potential growth trade-off amortized by access to the upper canopy and by other plant traits. Furthermore, decreasing wood density does not necessarily decrease resistance to wind damage, resistance being influenced by other characteristics including cell-level traits (e.g., MFA) and whole-plant architecture.

  6. Detectability of the emerald ash borer (Coleoptera: Buprestidae) in asymptomatic urban trees by using branch samples.

    PubMed

    Ryall, Krista L; Fidgen, Jeffrey G; Turgeon, Jean J

    2011-06-01

    The emerald ash borer, Agrilus planipennis Fairmaire, is an exotic invasive insect causing extensive mortality to ash trees, Fraxinus spp., in Canada and the United States. Detection of incipient populations of this pest is difficult because of its cryptic life stages and a multiyear time lag between initial attack and the appearance of signs or symptoms of infestation. We sampled branches from open-grown urban ash trees to develop a sample unit suitable for detecting low density A. planipennis infestation before any signs or symptoms are evident. The sample unit that maximized detection rates consisted of one 50-cm-long piece from the base of a branch ≥6 cm diameter in the midcrown. The optimal sample size was two such branches per tree. This sampling method detected ≈75% of asymptomatic trees known to be infested by using more intensive sampling and ≈3 times more trees than sampling one-fourth of the circumference of the trunk at breast height. The method is less conspicuous and esthetically damaging to a tree than the removal of bark from the main stem or the use of trap trees, and could be incorporated into routine sanitation or maintenance of city-owned trees to identify and delineate infested areas. This research indicates that branch sampling greatly reduces false negatives associated with visual surveys and window sampling at breast height. Detection of A. planipennis-infested asymptomatic trees through branch sampling in urban centers would provide landowners and urban foresters with more time to develop and implement management tactics.

  7. Demographic analysis of tree colonization in a 20-year-old right-of-way.

    PubMed

    Mercier, C; Brison, J; Bouchard, A

    2001-12-01

    Past tree colonization dynamics of a powerline-right-of-way (ROW) corridor in the Haut-Saint-Laurent region of Quebec was studied based on the present age distribution of its tree populations. This colonization study spans 20 years, from 1977 (ROW clearance) to 1996. The sampled quadrats were classified into six vegetation types. Tree colonization dynamics were interpreted in each type, and three distinct patterns were identified. (1) Communities adapted to acidic conditions were heavily colonized by Acer rubrum, at least for the last 12 years. (2) Communities adapted to mesic or to hydric conditions were more intensely colonized in the period 1985-1987 than in the following 9 years; this past success in tree colonization may have been caused by herbicide treatments, which could have facilitated tree establishment by damaging the herbaceous and shrub vegetation. (3) Cattail, vine-raspberry, and reed-dominated communities contained few tree individuals, with almost all trees establishing between 1979 and 1990; those three vegetation types appear as the most resistant to tree invasion in the ROW studied. This study supports the need for an integrated approach in ROW vegetation management, in which the selection of vegetation treatment methods would depend on the tree colonization dynamics in each vegetation type. Minimizing disturbances inflicted on ROW herbaceous and shrub covers should be the central strategy because disturbances jeopardize natural resistance to future tree invasion, except in communities adapted to acidic conditions where the existing vegetation does not prevent invasion by A. rubrum. Many trees are surviving the successive cutting operations by producing new sprouts each time, particularly in communities adapted to mesic and hydric conditions. In these cases, mechanical cutting should be replaced by a one-time stump-killing operation, to avoid repeated and unsuccessful treatments of the same individuals over time.

  8. Evaluation of growth disturbances of Picea abies (L.) Karst. to disturbances caused by landslide movements

    NASA Astrophysics Data System (ADS)

    Šilhán, Karel

    2017-01-01

    Dendrogeomorphic methods are frequently used in landslide analyses. Although methods of landslide dating based on tree rings are well developed, they still indicated many questions. The aim of this study was to evaluate the frequently used theoretical scheme based on the event-response relationship. Seventy-four individuals of Norway spruce (Picea abies (L.) Karst.) exhibiting visible external disturbance, were sampled on the Girová landslide (the largest historical flow-like landslide in the Czech Republic). This landslide reactivated in May 2010, and post-landslide tree growth responses were studied in detail. These growth responses were compared with the intensity and occurrence of visible external tree disturbance: tilted stems, damaged root systems, and decapitation. Twenty-nine trees (39.2%) died within one to four years following the 2010 landslide movement. The trees that died following the landslide movement were significantly younger and displayed significantly greater stem tilting than the live trees. Abrupt growth suppression was a more-frequent response among the dead trees, whereas growth release dominated among the live trees. Only two trees (2.7%) created no reaction wood in response to the landslide movement. Forty-four percent of the trees started to produce reaction wood structure after a delay, which generally spanned one year. Some eccentric growth was evident in the tree rings of the landslide year and was significant in the first years following the landslide movement. Missing rings were observed only on the upper sides of the stems, and no false tree rings were observed. The results confirm the general validity of event-response relationship, nevertheless this study points out the limitations and uncertainties of this generally accepted working scheme.

  9. Sustainably connecting children with nature: an exploratory study of nature play area visitor impacts and their management

    USGS Publications Warehouse

    Browning, Matthew H.E.M.; Marion, Jeffrey L.; Gregoire, Timothy G.

    2013-01-01

    Parks are developing nature play areas to improve children's health and “connect” them with nature. However, these play areas are often located in protected natural areas where managers must balance recreation with associated environmental impacts. In this exploratory study, we sought to describe these impacts. We also investigated which ages, gender, and play group sizes most frequently caused impact and where impacts most frequently occur. We measured the lineal and aerial extent and severity of impacts at three play areas in the eastern United States. Methods included soil and vegetation loss calculations, qualitative searches and tree and shrub damage classifications. Additionally, we observed 12 h of play at five play areas. Results showed that measurable negative impacts were caused during 33% of the time children play. On average, 76% of groundcover vegetation was lost at recreation sites and 100% was lost at informal trails. In addition, approximately half of all trees and shrubs at sites were damaged. Meanwhile, soil exposure was 25% greater on sites and trails than at controls. Boys and small group sizes more frequently caused impact, and informal recreation sites were most commonly used for play. No statistically significant correlations were found between age or location and impact frequency. Managers interested in developing nature play areas should be aware of, but not deterred by these impacts. The societal benefits of unstructured play in nature may outweigh the environmental costs. Recommended management strategies include selecting impact-resistant sites, improving site resistance, promoting low impact practices, and managing adaptively.

  10. Restoration of freshwater Cypress-Tupelo Wetlands in the southeastern U.S. following severe hurricanes

    USGS Publications Warehouse

    Conner, William H.; Krauss, Ken W.; Shaffer, Gary P.; Stanturf, John A.; Madsen, Palle; Lamb, David

    2012-01-01

    Freshwater forested wetlands commonly occur in the lower Coastal Plain of the southeastern US with baldcypress (Taxodium distichum [L.] L.C. Rich.) and water tupelo (Nyssa aquatica L.) often being the dominant trees. Extensive anthropogenic activities combined with eustatic sea-level rise and land subsidence have caused widespread hydrological changes in many of these forests. In addition, hurricanes (a common, although aperiodic occurrence) cause wide-spread damage from wind and storm surge events, with impacts exacerbated by human-mediated coastal modifications (e.g., dredging, navigation channels, etc.). Restoration of forested wetlands in coastal areas is important because emergent canopies can greatly diminish wind penetration, thereby reducing the wind stress available to generate surface waves and storm surge that are the major cause of damage to coastal ecosystems and their surrounding communities. While there is an overall paucity of large-scale restoration efforts within coastal forested wetlands of the southeastern US, we have determined important characteristics that should drive future efforts. Restoration efforts may be enhanced considerably if coupled with hydrological enhancement, such as freshwater, sediment, or sewage wastewater diversions. Large-scale restoration of coastal forests should be attempted to create a landscape capable of minimizing storm impacts and maximizing wetland sustainability in the face of climate change. Planting is the preferred regeneration method in many forested wetland sites because hydrological alterations have increased flooding, and planted seedlings must be protected from herbivory to enhance establishment. Programs identifying salt tolerance in coastal forest tree species need to be continued to help increase resilience to repetitive storm surge events.

  11. Differences in impacts of Hurricane Sandy on freshwater swamps on the Delmarva Peninsula, Mid−Atlantic Coast, USA

    USGS Publications Warehouse

    Middleton, Beth A.

    2016-01-01

    Hurricane wind and surge may have different influences on the subsequent composition of forests. During Hurricane Sandy, while damaging winds were highest near landfall in New Jersey, inundation occurred along the entire eastern seaboard from Georgia to Maine. In this study, a comparison of damage from salinity intrusion vs. wind/surge was recorded in swamps of the Delmarva Peninsula along the Pocomoke (MD) and Nanticoke (DE) Rivers, south of the most intense wind damage. Hickory Point Cypress Swamp (Hickory) was closest to the Chesapeake Bay and may have been subjected to a salinity surge as evidenced by elevated salinity levels at a gage upstream of this swamp (storm salinity = 13.1 ppt at Nassawango Creek, Snow Hill, Maryland). After Hurricane Sandy, 8% of the standing trees died at Hickory including Acer rubrum, Amelanchier laevis, Ilex spp., and Taxodium distichum. In Plot 2 of Hickory, 25% of the standing trees were dead, and soil salinity levels were the highest recorded in the study. The most important variables related to structural tree damage were soil salinity and proximity to the Atlantic coast as based on Stepwise Regression and NMDS procedures. Wind damage was mostly restricted to broken branches although tipped−up trees were found at Hickory, Whiton and Porter (species: Liquidamabar styraciflua, Pinus taeda, Populus deltoides, Quercus pagoda and Ilex spp.). These trees fell mostly in an east or east−southeast direction (88o−107o) in keeping with the wind direction of Hurricane Sandy on the Delmarva Peninsula. Coastal restoration and management can be informed by the specific differences in hurricane damage to vegetation by salt versus wind.

  12. Effect of weather on Ips typographus (Coleoptera Curculionidae) phenology, voltinism, and associated spruce mortality in the southeastern Alps.

    PubMed

    Faccoli, Massimo

    2009-04-01

    Summer drought associated with high temperatures recorded in the last few years has given rise to outbreaks of bark beetles developing in weakened host trees. The aim of this study was to investigate the possible weather effect on the biology of and damage caused by Ips typographus L. in the southeastern Alps. The study was carried out recording temperature (1962-2007), precipitation (1922-2007), and the damage caused by I. typographus (1993-2007). In addition, data from pheromone-baited traps (1996-2005) provided information on the main periods of flight activity of I. typographus. From 1922 to 2007, precipitation during March-July has decreased approximately 200 mm (-22%), whereas since 1962-2007, mean temperatures during March-July increased approximately 2 degrees C (+13%). Damage caused by I. typographus was inversely correlated with March-July precipitation from the previous year but not correlated with temperature. Increases in spring temperature did not affect the development timing of the first generation, but only changed its onset. Earlier swarming of both overwintering beetles and first-generation offspring ( approximately 20 d sooner over 10 yr), and the early start of the second generation permitted more complete development of the second brood. Voltinism in this species is discussed in relation to thermal and photoperiodic thresholds, indicating that the occurrence of a third generation is limited by the summer photoperiod rather than by temperature. In conclusion, results suggest that spring drought increases damage caused by I. typographus in the following year, whereas warmer spring affects insect phenology.

  13. Red-cockaded woodpecker cavity-tree damage by Hurricane Rita: an evaluation of contributing factors

    Treesearch

    Ben Bainbridge; Kristen A. Baum; Daniel Saenz; Cory K. Adams

    2011-01-01

    Picoides borealis (Red-cockaded Woodpecker) is an endangered species inhabiting pine savannas of the southeastern United States. Because the intensity of hurricanes striking the southeastern United States is likely to increase as global temperatures rise, it is important to identify factors contributing to hurricane damage to Red-cockaded Woodpecker cavity-trees. Our...

  14. Biology and impact of Thrips calcaratus Uzel in the Great Lakes Region

    Treesearch

    Kenneth F. Raffa

    1991-01-01

    Basswood (Tilia americana L.) stands in the Lake States have been experiencing defoliation since around 1979. These symptoms were originally attributed to frost damage because they occur in early spring. However, the pattern of damaged trees was atypical of frost injury. Only basswood trees were affected, and there was no relationship to sites known...

  15. Developing a media moisture threshold for nurseries to reduce tree stress and ambrosia beetle attacks

    USDA-ARS?s Scientific Manuscript database

    Exotic ambrosia beetles are among the most damaging pests of trees grown in nurseries. The primary pests Xylosandrus crassiusculus Motschulsky and Xylosandrus germanus Blandford use ethanol to locate vulnerable trees. Research, primarily with X. germanus, has shown that flood-stressed trees emit eth...

  16. Rx for wounded trees

    Treesearch

    Hal Marx

    1976-01-01

    This booklet offers guidelines on how to care for trees to keep them healthy and to protect them from wounds. It also prescribes ways to prevent, recognize, and minimize damage by decay that most often sets in after tree wounding.

  17. Satellite data based method for general survey of forest insect disturbance in British Columbia

    NASA Astrophysics Data System (ADS)

    Ranson, J.; Montesano, P.

    2008-12-01

    Regional forest disturbances caused by insects are important to monitor and quantify because of their influence on local ecosystems and the global carbon cycle. Local damage to forest trees disrupts food supplies and shelter for a variety of organisms. Changes in the global carbon budget, its sources and its sinks affect the way the earth functions as a whole, and has an impact on global climate. Furthermore, the ability to detect nascent outbreaks and monitor the spread of regional infestations helps managers mitigate the damage done by catastrophic insect outbreaks. While detection is needed at a fine scale to support local mitigation efforts, detection at a broad regional scale is important for carbon flux modeling on the landscape scale, and needed to direct the local efforts. This paper presents a method for routinely detecting insect damage to coniferous forests using MODIS vegetation indices, thermal anomalies and land cover. The technique is validated using insect outbreak maps and accounts for fire disturbance effects. The range of damage detected may be used to interpret and quantify possible forest damage by insects.

  18. Disentangling Environmental and Anthropogenic Impacts on the Distribution of Unintentionally Introduced Invasive Alien Insects in Mainland China

    PubMed Central

    Zhao, Cai-Yun; Xu, Jing; Liu, Xiao-Yan

    2017-01-01

    Abstract Globalization increases the opportunities for unintentionally introduced invasive alien species, especially for insects, and most of these species could damage ecosystems and cause economic loss in China. In this study, we analyzed drivers of the distribution of unintentionally introduced invasive alien insects. Based on the number of unintentionally introduced invasive alien insects and their presence/absence records in each province in mainland China, regression trees were built to elucidate the roles of environmental and anthropogenic factors on the number distribution and similarity of species composition of these insects. Classification and regression trees indicated climatic suitability (the mean temperature in January) and human economic activity (sum of total freight) are primary drivers for the number distribution pattern of unintentionally introduced invasive alien insects at provincial scale, while only environmental factors (the mean January temperature, the annual precipitation and the areas of provinces) significantly affect the similarity of them based on the multivariate regression trees. PMID:28973576

  19. First record of the Granulate Ambrosia Beetle, Xylosandrus crassiusculus (Coleoptera: Curculionidae, Scolytinae), in the Iberian Peninsula.

    PubMed

    Gallego, Diego; Lencina, José Luis; Mas, Hugo; Ceveró, Julia; Faccoli, Massimo

    2017-06-06

    The Granulate Ambrosia Beetle Xylosandrus crassiusculus, an alien species of Asian origin, was recorded for first time in the Iberian Peninsula. Many specimens were collected in October 2016 in the Valencia region (Spain) from infested carob trees. The species is included in the EPPO Alert List as causing serious damage in many Mediterranean regions. A key for the morphological identification of the Xylosandrus species occurring in Europe is also reported.

  20. Uni- and multi-variable modelling of flood losses: experiences gained from the Secchia river inundation event.

    NASA Astrophysics Data System (ADS)

    Carisi, Francesca; Domeneghetti, Alessio; Kreibich, Heidi; Schröter, Kai; Castellarin, Attilio

    2017-04-01

    Flood risk is function of flood hazard and vulnerability, therefore its accurate assessment depends on a reliable quantification of both factors. The scientific literature proposes a number of objective and reliable methods for assessing flood hazard, yet it highlights a limited understanding of the fundamental damage processes. Loss modelling is associated with large uncertainty which is, among other factors, due to a lack of standard procedures; for instance, flood losses are often estimated based on damage models derived in completely different contexts (i.e. different countries or geographical regions) without checking its applicability, or by considering only one explanatory variable (i.e. typically water depth). We consider the Secchia river flood event of January 2014, when a sudden levee-breach caused the inundation of nearly 200 km2 in Northern Italy. In the aftermath of this event, local authorities collected flood loss data, together with additional information on affected private households and industrial activities (e.g. buildings surface and economic value, number of company's employees and others). Based on these data we implemented and compared a quadratic-regression damage function, with water depth as the only explanatory variable, and a multi-variable model that combines multiple regression trees and considers several explanatory variables (i.e. bagging decision trees). Our results show the importance of data collection revealing that (1) a simple quadratic regression damage function based on empirical data from the study area can be significantly more accurate than literature damage-models derived for a different context and (2) multi-variable modelling may outperform the uni-variable approach, yet it is more difficult to develop and apply due to a much higher demand of detailed data.

  1. Diverse responses of different structured forest to drought in Southwest China through remotely sensed data

    NASA Astrophysics Data System (ADS)

    Xu, Peipei; Zhou, Tao; Zhao, Xiang; Luo, Hui; Gao, Shan; Li, Zheng; Cao, Leyao

    2018-07-01

    Global climate change leads to gradual increases in the frequency, intensity, and duration of extreme drought events. Human activities such as afforestation and deforestation have led to spatial variation in forest structure, causing forests to exhibit an age-spatial structure relationship. Thus, it is of great importance to accurately evaluate the effects of drought stress on forest ecosystems with different forest age structures. Because the spatial heterogeneity varies with drought stress intensity, forest age, there are still a lot of uncertainties in current studies. In this study, based on the field measurement, and the proxy index of stand age (based on forest canopy height from LiDAR and stock volume from inventory) at the regional scale, we analyzed the different drought responses of forest ecosystems with various forest ages across different scales in Yunnan province, southwest China from 2001 to 2014. At the local scale, significant differences in the effects of drought stress were found among forests with various ages, suggesting that older forests suffer more under drought stress than younger forests. At the regional scale, the investigation statistics of forest damage indicated a maximum damage ratio in the forest with tall trees (>32 m), whereas damage was minimal in the forest with short trees (<25 m). The stock volume of the forest exhibited the same pattern, that is, the forest damage ratio increased as the stock volume increased. These data demonstrate that the responses of forest drought could be affected by forest age. Under drought stress, older forests show greater vulnerability and risk of damage, which will require special attention for forest managers, as well as improved risk assessments, in the context of future climate change.

  2. Impacts of soil and groundwater salinization on tree crop performance in post-tsunami Aceh Barat, Indonesia

    NASA Astrophysics Data System (ADS)

    Marohn, C.; Distel, A.; Dercon, G.; Wahyunto; Tomlinson, R.; Noordwijk, M. v.; Cadisch, G.

    2012-09-01

    The Indian Ocean tsunami of December 2004 had far reaching consequences for agriculture in Aceh province, Indonesia, and particularly in Aceh Barat district, 150 km from the seaquake epicentre. In this study, the spatial distribution and temporal dynamics of soil and groundwater salinity and their impact on tree crops were monitored in Aceh Barat from 2006 to 2008. On 48 sampling points along ten transects, covering 40 km of coastline, soil and groundwater salinity were measured and related to mortality and yield depression of the locally most important tree crops. Given a yearly rainfall of over 3000 mm, initial groundwater salinity declined rapidly from over 10 to less than 2 mS cm-1 within two years. On the other hand, seasonal dynamics of the groundwater table in combination with intrusion of saline water into the groundwater body led to recurring elevated salinity, sufficient to affect crops. Tree mortality and yield depression in the flooded area varied considerably between tree species. Damage to coconut (65% trees damaged) was related to tsunami run-up height, while rubber (50% trees damaged) was mainly affected by groundwater salinity. Coconut yields (-35% in average) were constrained by groundwater Ca2+ and Mg2+, while rubber yields (-65% on average) were related to groundwater chloride, pH and soil sodium. These findings have implications on planting deep-rooted tree crops as growth will be constrained by ongoing oscillations of the groundwater table and salinity.

  3. Did the late spring frost in 2007 and 2011 affect tree-ring width and earlywood vessel size in Pedunculate oak (Quercus robur) in northern Poland?

    PubMed

    Puchałka, Radosław; Koprowski, Marcin; Przybylak, Julia; Przybylak, Rajmund; Dąbrowski, Henryk P

    2016-08-01

    Trees are sensitive to extreme weather and environmental conditions. This sensitivity is visible in tree-ring widths and cell structure. In our study, we hypothesized that the sudden frost noted at the beginning of May in both 2007 and 2011 affected cambial activity and, consequently, the number and size of vessels in the tree rings. It was decided to test this hypothesis after damage to leaves was observed. The applied response function model did not show any significant relationships between spring temperature and growth. However, this method uses average values for long periods and sometimes misses the short-term effects. This is why we decided to study each ring separately, comparing them with rings unaffected by the late frost. Our study showed that the short-term effect of sudden frost in late spring did not affect tree rings and selected cell parameters. The most likely reasons for this are (i) cambial activity producing the earlywood vessels before the occurrence of the observed leaf damage, (ii) the forest micro-climate protecting the trees from the harsh frost and (iii) the temperature decline being too short-lived an event to affect the oaks. On the other hand, the visible damage may be occasional and not affect cambium activity and tree vitality at all. We conclude that oak is well-adapted to this phenomenon.

  4. Response of Eucalyptus species to frost damage at the Redwood Experimental Forest

    Treesearch

    Danny G. Heavilin

    1978-01-01

    In 1961 a feasibility study was done to determine if certain Eucalyptus species could be grown along the California North Coast for timber or ornamental purposes. Of the 207 trees, representing 31 species, planted on the Redwood Experimental Forest, only 12 trees in 5 species were recorded in the 1976 survival examination. The single most damaging factor was frost....

  5. Guam's forest resources, 2002.

    Treesearch

    Joseph A. Donnegan; Sarah L. Butler; Walter Grabowiecki; Bruce A. Hiserote; David. Limtiaco

    2004-01-01

    The Forest Inventory and Analysis Program collected, analyzed, and summarized field data on 46 forested plots on the island of Guam. Estimates of forest area, tree stem volume and biomass, the numbers of trees, tree damages, and the distribution of tree sizes were summarized for this statistical sample. Detailed tables and graphical highlights provide a summary of Guam...

  6. Tree-breeding technique: some effects of continuous bagging

    Treesearch

    Jonathan W. Wright

    1951-01-01

    In tree-breeding operations, it is standard practice to protect the tree flowers with vegetable parchment or sausage-casing bags during the pollination period so no unwanted pollen can get to them. Since the bags often damage the tree, they are usually removed as soon as the pollination period ends - within 2 or 3 weeks.

  7. Palau's forest resources, 2003.

    Treesearch

    Joseph A. Donnegan; Sarah L. Butler; Olaf Kuegler; Brent J. Stroud; Bruce A. Hiserote; Kashgar. Rengulbai

    2007-01-01

    The Forest Inventory and Analysis Program collected, analyzed, and summarized field data on 54 forested plots on the islands in the Republic of Palau. Estimates of forest area, tree stem volume and biomass, the numbers of trees, tree damages, and the distribution of tree sizes were summarized for this statistical sample. Detailed tables and graphical highlights provide...

  8. Spread of plant pathogens and insect vectors at the northern range margin of cypress in Italy

    NASA Astrophysics Data System (ADS)

    Zocca, Alessia; Zanini, Corrado; Aimi, Andrea; Frigimelica, Gabriella; La Porta, Nicola; Battisti, Andrea

    2008-05-01

    The Mediterranean cypress ( Cupressus sempervirens) is a multi-purpose tree widely used in the Mediterranean region. An anthropogenic range expansion of cypress has taken place at the northern margin of the range in Italy in recent decades, driven by ornamental planting in spite of climatic constraints imposed by low winter temperature. The expansion has created new habitats for pathogens and pests, which strongly limit tree survival in the historical (core) part of the range. Based on the enemy release hypothesis, we predicted that damage should be lower in the expansion area. By comparing tree and seed cone damage by pathogens and pests in core and expansion areas of Trentino, a district in the southern Alps, we showed that tree damage was significantly higher in the core area. Seed cones of C. sempervirens are intensively colonized by an aggressive and specific pathogen (the canker fungus Seiridium cardinale, Coelomycetes), associated with seed insect vectors Megastigmus wachtli (Hymenoptera Torymidae) and Orsillus maculatus (Heteroptera Lygaeidae). In contrast, we observed lower tree damage in the expansion area, where a non-aggressive fungus ( Pestalotiopsis funerea, Coelomycetes) was more frequently associated with the same insect vectors. Our results indicate that both insect species have a great potential to reach the range margin, representing a continuous threat of the arrival of fungal pathogens to trees planted at extreme sites. Global warming may accelerate this process since both insects and fungi profit from increased temperature. In the future, cypress planted at the range margin may then face similar pest and pathogen threats as in the historical range.

  9. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran.

    PubMed

    Khosravi, Khabat; Pham, Binh Thai; Chapi, Kamran; Shirzadi, Ataollah; Shahabi, Himan; Revhaug, Inge; Prakash, Indra; Tien Bui, Dieu

    2018-06-15

    Floods are one of the most damaging natural hazards causing huge loss of property, infrastructure and lives. Prediction of occurrence of flash flood locations is very difficult due to sudden change in climatic condition and manmade factors. However, prior identification of flood susceptible areas can be done with the help of machine learning techniques for proper timely management of flood hazards. In this study, we tested four decision trees based machine learning models namely Logistic Model Trees (LMT), Reduced Error Pruning Trees (REPT), Naïve Bayes Trees (NBT), and Alternating Decision Trees (ADT) for flash flood susceptibility mapping at the Haraz Watershed in the northern part of Iran. For this, a spatial database was constructed with 201 present and past flood locations and eleven flood-influencing factors namely ground slope, altitude, curvature, Stream Power Index (SPI), Topographic Wetness Index (TWI), land use, rainfall, river density, distance from river, lithology, and Normalized Difference Vegetation Index (NDVI). Statistical evaluation measures, the Receiver Operating Characteristic (ROC) curve, and Freidman and Wilcoxon signed-rank tests were used to validate and compare the prediction capability of the models. Results show that the ADT model has the highest prediction capability for flash flood susceptibility assessment, followed by the NBT, the LMT, and the REPT, respectively. These techniques have proven successful in quickly determining flood susceptible areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Impacts of tropical cyclones on U.S. forest tree mortality and carbon flux from 1851 to 2000

    PubMed Central

    Zeng, Hongcheng; Chambers, Jeffrey Q.; Negrón-Juárez, Robinson I.; Hurtt, George C.; Baker, David B.; Powell, Mark D.

    2009-01-01

    Tropical cyclones cause extensive tree mortality and damage to forested ecosystems. A number of patterns in tropical cyclone frequency and intensity have been identified. There exist, however, few studies on the dynamic impacts of historical tropical cyclones at a continental scale. Here, we synthesized field measurements, satellite image analyses, and empirical models to evaluate forest and carbon cycle impacts for historical tropical cyclones from 1851 to 2000 over the continental U.S. Results demonstrated an average of 97 million trees affected each year over the entire United States, with a 53-Tg annual biomass loss, and an average carbon release of 25 Tg y−1. Over the period 1980–1990, released CO2 potentially offset the carbon sink in forest trees by 9–18% over the entire United States. U.S. forests also experienced twice the impact before 1900 than after 1900 because of more active tropical cyclones and a larger extent of forested areas. Forest impacts were primarily located in Gulf Coast areas, particularly southern Texas and Louisiana and south Florida, while significant impacts also occurred in eastern North Carolina. Results serve as an important baseline for evaluating how potential future changes in hurricane frequency and intensity will impact forest tree mortality and carbon balance. PMID:19416842

  11. Suppression of leopard moth (Lepidoptera: Cossidae) populations in olive trees in Egypt through mating disruption.

    PubMed

    Hegazi, E M; Khafagi, W E; Konstantopoulou, M A; Schlyter, F; Raptopoulos, D; Shweil, S; Abd El-Rahman, S; Atwa, A; Ali, S E; Tawfik, H

    2010-10-01

    The leopard moth, Zeuzera pyrina (L.) (Lepidoptera: Cossidae), is a damaging pest for many fruit trees (e.g., apple [Malus spp.], pear [Pyrus spp.] peach [Prunus spp.], and olive [Olea]). Recently, it caused serious yield losses in newly established olive orchards in Egypt, including the death of young trees. Chemical and biological control have shown limited efficiency against this pest. Field tests were conducted in 2005 and 2006 to evaluate mating disruption (MD) for the control of the leopard moth, on heavily infested, densely planted olive plots (336 trees per ha). The binary blend of the pheromone components (E,Z)-2,13-octadecenyl acetate and (E,Z)-3,13-octadecenyl acetate (95:5) was dispensed from polyethylene vials. Efficacy was measured considering reduction of catches in pheromone traps, reduction of active galleries of leopard moth per tree and fruit yield in the pheromone-treated plots (MD) compared with control plots (CO). Male captures in MD plots were reduced by 89.3% in 2005 and 82.9% in 2006, during a trapping period of 14 and 13 wk, respectively. Application of MD over two consecutive years progressively reduced the number of active galleries per tree in the third year where no sex pheromone was applied. In all years, larval galleries outnumbered moth captures. Fruit yield from trees where sex pheromone had been applied in 2005 and 2006 increased significantly in 2006 (98.8 +/- 2.9 kg per tree) and 2007 (23 +/- 1.3 kg per tree) compared with control ones (61.0 +/- 3.9 and 10.0 +/- 0.6 kg per tree, respectively). Mating disruption shows promising for suppressing leopard moth infestation in olives.

  12. The verification of lightning location accuracy in Finland deduced from lightning strikes to trees

    NASA Astrophysics Data System (ADS)

    Mäkelä, Antti; Mäkelä, Jakke; Haapalainen, Jussi; Porjo, Niko

    2016-05-01

    We present a new method to determine the ground truth and accuracy of lightning location systems (LLS), using natural lightning strikes to trees. Observations of strikes to trees are being collected with a Web-based survey tool at the Finnish Meteorological Institute. Since the Finnish thunderstorms tend to have on average a low flash rate, it is often possible to identify from the LLS data unambiguously the stroke that caused damage to a given tree. The coordinates of the tree are then the ground truth for that stroke. The technique has clear advantages over other methods used to determine the ground truth. Instrumented towers and rocket launches measure upward-propagating lightning. Video and audio records, even with triangulation, are rarely capable of high accuracy. We present data for 36 quality-controlled tree strikes in the years 2007-2008. We show that the average inaccuracy of the lightning location network for that period was 600 m. In addition, we show that the 50% confidence ellipse calculated by the lightning location network and used operationally for describing the location accuracy is physically meaningful: half of all the strikes were located within the uncertainty ellipse of the nearest recorded stroke. Using tree strike data thus allows not only the accuracy of the LLS to be estimated but also the reliability of the uncertainty ellipse. To our knowledge, this method has not been attempted before for natural lightning.

  13. Disentangling factors that control the vulnerability of forests to catastrophic wind damage

    NASA Astrophysics Data System (ADS)

    Dracup, E.; Taylor, A.; MacLean, D.; Boulanger, Y.

    2017-12-01

    Wind is an important driver of forest dynamics along North America's north-eastern coastal forests, but also damages many commercially managed forests which society relies as an important source of wood fiber. Although the influence of wind on north-eastern forests is well recognized, knowledge of factors predisposing trees to wind damage is less known, especially in the context of large, powerful wind storm events. This is of particular concern as climate change is expected to alter the frequency and severity of strong wind storms affecting this region. On 29 September 2003, Hurricane Juan made landfall over Nova Scotia, Canada as a Category 2 hurricane with sustained winds of 158 km/h, and gusts of up to 185 km/h. Hurricane Juan variously damaged a swath of over 600,000 ha of forest. The damaged forest area was surveyed using aerial photography and LandSAT imagery and categorized according to level of wind damage sustained (none, low, moderate, severe) at a resolution of 15 x 15 m square cells. We used Random Forest to analyze and compare level of wind damage in each cell with a myriad of abiotic (exposure, depth to water table, soil composition, etc.) and biotic (tree species composition, canopy closure, canopy height, etc.) factors known or expected to predispose trees to windthrow. From our analysis, we identified topographic exposure, precipitation, and maximum gust speed as the top predictors of windthrow during Hurricane Juan. To our surprise, forest stand factors, such as tree species composition and height, had minimal effects on level of windthrow. These results can be used to construct predictive risk maps which can help society to assess the vulnerability of forests to future wind storm events.

  14. The relationship between measures of tree vigor and pear thrips damage in sugar maple

    Treesearch

    Gretchen Smith; Christina M. Petersen; Roy Van Driesche; Charles Burnham

    1991-01-01

    In this presentation I will address three points associated with pear thrips damage and sugar maple. First, I will describe the impact of pear thrips on sugar maple in Massachusetts, in both the sugarbush and the natural forest stand, based on root starch assays that were completed this fall (1988). Secondly, I will discuss the relationship between tree health and...

  15. Cold-season patterns of reserve and soluble carbohydrates in sugar maple and ice-damaged trees of two age classes following drought

    Treesearch

    B. L. Wong; K. L. Baggett; A. H. Rye

    2009-01-01

    This study examines the effects of summer drought on the composition and profiles of cold-season reserve and soluble carbohydrates in sugar maple (Acer saccharum Marsh.) trees (50-100 years old or ~200 years old) in which the crowns were nondamaged or damaged by the 1998 ice storm. The overall cold season reserve...

  16. Impact of heat stress on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    NASA Astrophysics Data System (ADS)

    Kleist, E.; Mentel, T. F.; Andres, S.; Bohne, A.; Folkers, A.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Wildt, J.

    2012-07-01

    Changes in the biogenic volatile organic compound (BVOC) emissions from European beech, Palestine oak, Scots pine, and Norway spruce exposed to heat stress were measured in a laboratory setup. In general, heat stress decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. Decreasing emission strength with heat stress was independent of the tree species and whether the de novo emissions being constitutive or induced by biotic stress. In contrast, heat stress induced emissions of green leaf volatiles. It also amplified the release of monoterpenes stored in resin ducts of conifers probably due to heat-induced damage of these resin ducts. The increased release of monoterpenes could be strong and long lasting. But, despite of such strong monoterpene emission pulses, the net effect of heat stress on BVOC emissions from conifers can be an overall decrease. In particular during insect attack on conifers the plants showed de novo emissions of sesquiterpenes and phenolic BVOC which exceeded constitutive monoterpene emissions from pools. The heat stress induced decrease of these de novo emissions was larger than the increased release caused by damage of resin ducts. We project that global change induced heat waves may cause increased BVOC emissions only in cases where the respective areas are predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOC. Otherwise the overall effect of heat stress will be a decrease in BVOC emissions.

  17. Photosynthetic and antioxidant responses of Liquidambar formosana and Schima superba seedlings to sulfuric-rich and nitric-rich simulated acid rain.

    PubMed

    Chen, Juan; Wang, Wen-Hua; Liu, Ting-Wu; Wu, Fei-Hua; Zheng, Hai-Lei

    2013-03-01

    To study whether differential responses occur in photosynthesis and antioxidant system for seedlings of Liquidambar formosana, an acid rain (AR)-sensitive tree species and Schima superba, an AR-tolerant tree species treated with three types of pH 3.0 simulated AR (SiAR) including sulfuric-rich (S-SiAR), nitric-rich (N-SiAR), sulfate and nitrate mixed (SN-SiAR), we investigated the changes of leaf necrosis, chlorophyll content, soluble protein and proline content, photosynthesis and chlorophyll fluorescence characteristics, reactive oxygen species production, membrane lipid peroxidation, small molecular antioxidant content, antioxidant enzyme activities and related protein expressions. Our results showed that SiAR significantly caused leaf necrosis, inhibited photosynthesis, induced superoxide radical and hydrogen peroxide generation, aggravated membrane lipid peroxidation, changed antioxidant enzyme activities, modified related protein expressions such as Cu/Zn superoxide dismutase (SOD), l-ascorbate peroxidase (APX, EC 1. 11. 1. 11), glutathione S transferase (GST, EC 2. 5. 1. 18) and Rubisco large subunit (RuBISCO LSU), altered non-protein thiols (NPT) and glutathione (GSH) content in leaves of L. formosana and S. superba. Taken together, we concluded that the damages caused by SiAR in L. formosana were more severe and suffered from more negative impacts than in S. superba. S-SiAR induced more serious damages for the plants than did SN-SiAR and N-SiAR. Crown Copyright © 2013. Published by Elsevier Masson SAS. All rights reserved.

  18. 78 FR 73498 - Stanislaus National Forest, CA; Notice of Intent To Prepare an Environmental Impact Statement for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... Statement. SUMMARY: The Stanislaus National Forest proposes to remove hazard trees and dead trees within the... trees which pays for their removal from the woods and potentially other future restoration treatments... varied from low to high, but many areas contain trees killed or so severely damaged that they are not...

  19. Federated States of Micronesia's forest resources, 2006

    Treesearch

    Joseph A. Donnegan; Sarah L. Butler; Olaf Kuegler; Bruce A. Hiserote

    2011-01-01

    The Forest Inventory and Analysis program collected, analyzed, and summarized field data on 73 forested field plots on the islands of Kosrae, Chuuk, Pohnpei, and Yap in the Federated States of Micronesia (FSM). Estimates of forest area, tree stem volume and biomass, the numbers of trees, tree damages, and the distribution of tree sizes were summarized for this...

  20. Commonwealth of the Northern Mariana Islands' forest resources, 2004

    Treesearch

    Joseph A. Donnegan; Sarah L. Butler; Olaf Kuegler; Bruce A. Hiserote

    2011-01-01

    The Forest Inventory and Analysis program collected, analyzed, and summarized field data on 37 field plots on the islands of Rota, Tinian, and Saipan in the Commonwealth of the Northern Mariana Islands (CNMI). Estimates of forest area, tree stem volume and biomass, the numbers of trees, tree damages, and the distribution of tree sizes were summarized for this...

  1. Differential effects of plant ontogeny and damage type on phloem and foliage monoterpenes in jack pine (Pinus banksiana).

    PubMed

    Erbilgin, Nadir; Colgan, L Jessie

    2012-08-01

    Coniferous trees have both constitutive and inducible defences that deter or kill herbivores and pathogens. We investigated constitutive and induced monoterpene responses of jack pine (Pinus banksiana Lamb.) to a number of damage types: a fungal associate of the mountain pine beetle (Dendroctonus ponderosae Hopkins), Grosmannia clavigera (Robinson-Jeffrey & R.W. Davidson); two phytohormones, methyl jasmonate (MJ) and methyl salicylate (MS); simulated herbivory; and mechanical wounding. We only included the fungal, MJ and mechanical wounding treatments in the field experiments while all treatments were part of the greenhouse studies. We focused on both constitutive and induced responses between juvenile and mature jack pine trees and differences in defences between phloem and needles. We found that phytohormone applications and fungal inoculation resulted in the greatest increase in monoterpenes in both juvenile and mature trees. Additionally, damage types differentially affected the proportions of individual monoterpenes: MJ-treated mature trees had higher myrcene and β-pinene than fungal-inoculated mature trees, while needles of juveniles inoculated with the fungus contained higher limonene than MJ- or MS-treated juveniles. Although the constitutive monoterpenes were higher in the phloem of juveniles than mature jack pine trees, the phloem of mature trees had a much higher magnitude of induction. Further, induced monoterpene concentrations in juveniles were higher in phloem than in needles. There was no difference in monoterpene concentration between phytohormone applications and G. clavigera inoculation in mature trees, while in juvenile trees MJ was different from both G. clavigera and simulated herbivory in needle monoterpenes, but there was no difference between phytohormone applications and simulated herbivory in the phloem.

  2. Beaver lodge distributions and damage assessments in a forested wetland ecosystem in the southern United States

    USGS Publications Warehouse

    King, S.L.; Keeland, B.D.; Moore, J.L.

    1998-01-01

    Caddo Lake, USA, a Ramsar Wetland of International Importance, is a lacustrine wetland complex consisting of stands of flooded baldcypress intermixed with open water and emergent wetland habitats. Recently, concern has been expressed over a perceived increase in the beaver population and the impact of beaver on the long-term sustainability of the baldcypress ecosystem. We used intensive beaver lodge surveys to determine the distribution and relative abundance of beaver and the amount, type, and distribution of beaver damage to mature trees and seedlings at Caddo Lake. A total of 229 lodges were located with a combination of aerial and boat/ground surveys. Most lodges were located in open water and edge habitats. About 95% of the lodges were occupied by beaver or nutria. Some form of damage was exhibited by one or more trees near 85% of the lodges. Intensive damage assessments around 35 lodges indicated that most damage to trees, baldcypress in particular, was restricted to peeling or stripping of bark which is believed to have minimal effect on tree survival. Surveys of regeneration indicated that baldcypress seedlings were very abundant; however, over 99.9% were less than 30 cm tall. The lack of recruitment into the larger size classes appears to be a result of high stand densities and water management practices. At this time, the young age and density of the baldcypress forests suggest that recruitment is not a major concern and herbivore damage appears to be having a minimal effect on the forest.

  3. Compensatory responses in plant-herbivore interactions: Impacts of insects on leaf water relations

    NASA Astrophysics Data System (ADS)

    Peschiutta, María L.; Bucci, Sandra J.; Scholz, Fabián G.; Goldstein, Guillermo

    2016-05-01

    Herbivore damage to leaves has been typically evaluated in terms of fractions of area removed; however morpho-physiological changes in the remaining tissues can occur in response to removal. We assessed the effects of partial removal of the leaf mesophyll by Caliroa cerasi (Hymenoptera) on leaf hydraulic conductance (Kleaf), vascular architecture, water relations and leaf size of three Prunus avium cultivars. The insect feeds on the leaf mesophyll leaving the vein network intact (skeletonization). Within each cultivar there were trees without infestations and trees chronically infested, at least over the last three years. Leaf size of intact leaves tended to be similar during leaf expansion before herbivore attack occurs across infested and non-infested trees. However, after herbivore attack and when the leaves were fully expanded, damaged leaves were smaller than leaves from non-infested trees. Damaged area varied between 21 and 31% depending on cultivar. The non-disruption of the vascular system together with either vein density or capacitance increased in damaged leaves resulted in similar Kleaf and stomatal conductance in infested and non-infested trees. Non-stomatal water loss from repeated leaf damage led to lower leaf water potentials in two of the infested cultivars. Lower leaf osmotic potentials and vulnerability to loss of Kleaf were observed in infested plants. Our results show that skeletonization resulted in compensatory changes in terms of water relations and hydraulics traits and in cultivar-specific physiological changes in phylogenetic related P. avium. Our findings indicate that detrimental effects of herbivory on the photosynthetic surface are counterbalanced by changes providing higher drought resistance, which has adaptive significance in ecosystems where water availability is low and furthermore where global climate changes would decrease soil water availability in the future even further.

  4. Noninfectious diseases of oaks

    Treesearch

    David R. Houston

    1971-01-01

    Noninfectious diseases arise primarily from the harmful effects of wound agents, chemical, and adverse environmental factors. Wounds directly result in damage to trees, but they are important primarily as infection courts for pathogenic organisms. Adverse environmental factors affect trees both directly and indirectly. Trees weakened by environmental stresses become...

  5. Beyond Tree Throw: Wind, Water, Rock and the Mechanics of Tree-Driven Bedrock Physical Weathering

    NASA Astrophysics Data System (ADS)

    Marshall, J. A.; Anderson, R. S.; Dawson, T. E.; Dietrich, W. E.; Minear, J. T.

    2017-12-01

    Tree throw is often invoked as the dominant process in converting bedrock to soil and thus helping to build the Critical Zone (CZ). In addition, observations of tree roots lifting sidewalk slabs, occupying cracks, and prying slabs of rock from cliff faces have led to a general belief in the power of plant growth forces. These common observations have led to conceptual models with trees at the center of the soil genesis process. This is despite the observation that tree throw is rare in many forested settings, and a dearth of field measurements that quantify the magnitude of growth forces. While few trees blow down, every tree grows roots, inserting many tens of percent of its mass below ground. Yet we lack data quantifying the role of trees in both damaging bedrock and detaching it (and thus producing soil). By combing force measurements at the tree-bedrock interface with precipitation, solar radiation, wind speed, and wind-driven tree sway data we quantified the magnitude and frequency of tree-driven soil-production mechanisms from two contrasting climatic and lithologic regimes (Boulder and Eel Creek CZ Observatories). Preliminary data suggests that in settings with relatively thin soils, trees can damage and detach rock due to diurnal fluctuations, wind response and rainfall events. Surprisingly, our data suggests that forces from roots and trunks growing against bedrock are insufficient to pry rock apart or damage bedrock although much more work is needed in this area. The frequency, magnitude and style of wind-driven tree forces at the bedrock interface varies considerably from one to another species. This suggests that tree properties such as mass, elasticity, stiffness and branch structure determine whether trees respond to gusts big or small, move at the same frequency as large wind gusts, or are able to self-dampen near-ground sway response to extended wind forces. Our measurements of precipitation-driven and daily fluctuations in root pressures exerted on bedrock suggest that these fluctuations may impart a cyclic stress fatigue that over the lifetime of a tree could considerably weaken the enfolding rock (104 to 106 days depending on the species). Combined, our results suggest that wind-driven root torque and water uptake may be the primary mechanisms driving bedrock erosion and soil production in thin soil settings.

  6. Ambrosia Beetle (Coleoptera: Scolytidae) Species, Flight, and Attack on Living Eastern Cottonwood Trees.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, D R; D.C. Booth: M.S. Wallace

    2005-12-01

    ABSTRACT In spring 2002, ambrosia beetles (Coleoptera: Scolytidae) infested an intensively managed 22-ha tree plantation on the upper coastal plain of South Carolina. Nearly 3,500 scolytids representing 28 species were captured in ethanol-baited traps from 18 June 2002 to 18 April 2004. More than 88% of total captures were exotic species. Five species [Dryoxylon onoharaensum (Murayama), Euwallacea validus (Eichhoff), Pseudopityophthorus minutissimus (Zimmermann), Xyleborus atratus Eichhoff, and Xyleborus impressus Eichhoff]) were collected in South Carolina for the first time. Of four tree species in the plantation, eastern cottonwood, Populus deltoides Bartram, was the only one attacked, with nearly 40% of themore » trees sustaining ambrosia beetle damage. Clone ST66 sustained more damage than clone S7C15. ST66 trees receiving fertilization were attacked more frequently than trees receiving irrigation, irrigation_fertilization, or controls, although the number of S7C15 trees attacked did not differ among treatments. The study location is near major shipping ports; our results demonstrate the necessity for intensive monitoring programs to determine the arrival, spread, ecology, and impact of exotic scolytids.« less

  7. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees

    PubMed Central

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. ‘Golden Delicious.’ To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback. PMID:27379146

  8. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees.

    PubMed

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. 'Golden Delicious.' To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback.

  9. Wind damage effects of Hurricane Andrew on mangrove communities along the southwest coast of Florida, USA

    USGS Publications Warehouse

    Doyle, T.W.; Smith, T. J.; Robblee, M.B.

    1995-01-01

    On August 24, 1992, Hurricane Andrew downed and defoliated an extensive swath of mangrove trees across the lower Florida peninsula. Permanent field sites were established to assess the extent of forest damage and to monitor the rate and process of forest recovery. Canopy trees suffered the highest mortality particularly for sites within and immediately north of the storm's eyewall. The type and extent of site damage, windthrow, branch loss, and defoliation generally decreased exponentially with increasing distance from the storm track. Forest damage was greater for sites in the storm's right quadrant than in the left quadrant tor the same given distance from the storm center. Stand exposure, both horizontally and vertically, increased the susceptibility and probability of forest damage and accounted for much of the local variability. Slight species differences were found. Laguncularia racemosa exceeded Avicennia germinans and Rhizophora mangle in damage tendency under similar wind conditions. Azimuths of downed trees were strongly correlated with maximum wind speed and vector based on a hurricane simulation of the storm. Lateral branch loss and leaf defoliation on sites without windthrow damage indicated a degree of crown thinning and light penetration equivalent to treefall gaps under normally intact forest conditions. Mangrove species and forests are susceptible to catastrophic disturbance by hurricanes; the impacts of which are significant to changes in forest structure and function.

  10. Comparisons of protein profiles of beech bark disease resistant and susceptible American beech (Fagus grandifolia)

    Treesearch

    Mary E. Mason; Jennifer L. Koch; Marek Krasowski; Judy Loo

    2013-01-01

    Beech bark disease is an insect-fungus complex that damages and often kills American beech trees and has major ecological and economic impacts on forests of the northeastern United States and southeastern Canadian forests. The disease begins when exotic beech scale insects feed on the bark of trees, and is followed by infection of damaged bark tissues by one of the...

  11. Rapid scientific response to Landers quake

    NASA Astrophysics Data System (ADS)

    Mori, J.; Hudnut, K.; Jones, L.; Hauksson, E.; Hutton, K.

    Early on the morning of June 28, 1992, millions of people in southern California were awakened by the largest earthquake (Ms 7.5, Mw 7.4) in the western U.S. in the past 40 years. The quake initiated near the town of Landers, Calif., at 11:57 (GMT) and ruptured to the north and then the northwest along a 70-km stretch of the Mojave Shear Zone. Fortunately, the strongest shaking occurred in uninhabited regions of the Mojave desert, but one child was killed in Yucca Valley and 400 people were injured in the surrounding area. The communities of Landers, Yucca Valley, and Joshua Tree in San Bernardino County sustained significant ($100 million) damage to buildings and roads. Damage to water and power lines also caused problems in many of the desert areas.

  12. Probabilistic flood damage modelling at the meso-scale

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2014-05-01

    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  13. Distribution of the cone insect, Dioryctria disclusa, in red pine.

    Treesearch

    William J. Mattson

    1976-01-01

    Within the crowns of red pine, Pinus resinosa Ait., trees, larvae of the cone insect, Dioryctria disclusa Heinrich, tended to follow the distributions of their foods. Between-tree distributions of larvae, however, were relatable to food distributions in only two of five years. Cone damage/tree by D. disclusa increased linearly with cone abundance per tree when insect...

  14. Flow visualization around an apple with and without bagging

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Kubota, Y.; Ohishi, M.; Mochizuki, O.

    2017-04-01

    The typhoon often causes the vast damage to drop the apple before harvest. Many apples fall from trees by the strong wind. These apples are usually bagged to protect them from insects and control sun light for the apples colouring while they are ripening on the tree. We directly measured the drag force acting on an apple with and without bagging experimentally to bare the influence of the bagging on the dropping mechanism. There are two interesting results through the experiment: the drag coefficient of a naked apple is smaller than a sphere, and the bagging is a cause of increasing drag coefficient. To know the reason of these results, we visualized flow around the apple with and without bagging by using the hydrogen bubbles method in an open water channel in this study. We found two facts as follows: the hollow on the top of an apple plays reduction of width of the wake of an apple and reason of increasing the wake width is the flow separation from peripheral edge of the bagging.

  15. 36 CFR 261.6 - Timber and other forest products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...

  16. Biology, ecology, and management of Xylosandrus spp. ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in ornamental tree nurseries

    USDA-ARS?s Scientific Manuscript database

    Xylosandrus germanus (Blandford) and Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae: Scolytinae) are two of the most damaging non-native ambrosia beetle pests in ornamental tree nurseries. Adult females tunnel into the stems and branches of host trees to create galleries with bro...

  17. Physiology and Genetics of Tree-Phytophage Interactions

    Treesearch

    Frances Lieutier; William J. Mattson; Michael R. Wagner

    1999-01-01

    Interactions between trees and phytophagous organisms represent an important fundamental process in the evolution of forest ecosystems. Through evolutionary time, the special traits of trees have lead the herbivore populations to differentiate and evolve in order to cope with the variability in natural resistance mechanisms of their hosts. Conversely, damage by...

  18. American Samoa's forest resources, 2001.

    Treesearch

    Joseph A. Donnegan; Sheri S. Mann; Sarah L. Butler; Bruce A. Hiserote

    2004-01-01

    The Forest Inventory and Analysis Program of the Pacific Northwest Research Station collected, analyzed, and summarized data from field plots, and mapped land cover on four islands in American Samoa. This statistical sample provides estimates of forest area, stem volume, biomass, numbers of trees, damages to trees, and tree size distribution. The summary provides...

  19. 36 CFR 261.6 - Timber and other forest products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...

  20. 36 CFR 261.6 - Timber and other forest products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...

  1. 36 CFR 261.6 - Timber and other forest products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...

  2. 36 CFR 261.6 - Timber and other forest products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...

  3. Photo guide for estimating risk to hardwood trees during prescribed burning operations in eastern oak forests

    Treesearch

    Patrick H. Brose

    2009-01-01

    A field guide of 40 photographs of common hardwood trees of eastern oak forests and fuel loadings surrounding their bases. The guide contains instructions on how to rapidly assess a tree's likelihood to be damaged or killed by prescribed burning.

  4. Take me to your leader: does early successional nonhost vegetation spatially inhibit Pissodes strobi (Coleoptera: Curculionidae)?

    PubMed

    Koopmans, Jordan M; De La Giroday, Honey-Marie C; Lindgren, B Staffan; Aukema, Brian H

    2009-08-01

    The spatial influences of host and nonhost trees and shrubs on the colonization patterns of white pine weevil Pissodes strobi (Peck) were studied within a stand of planted interior hybrid spruce [Picea glauca (Moench) Voss x Picea engelmannii (Parry) ex Engelm.]. Planted spruce accounted for one third of all trees within the stand, whereas the remaining two thirds were comprised of early-successional nonhost vegetation, such as alder (Alnus spp.), paper birch (Betula papyrifera Marsh.), black cottonwood [Populus balsamifera ssp. trichocarpa (T. Ng.) Brayshaw], lodgepole pine [Pinus contorta (Dougl.) ex Loud.], trembling aspen (Populus tremuloides Michx), willow (Salix spp.), and Canadian buffaloberry [Shepherdia canadensis (L.) Nutt.]. Unlike the spruce trees, nonhost vegetation in the stand was not uniformly distributed. Spatial point process models showed that Canadian buffaloberry, paper birch, black cottonwoood, and trembling aspen had negative associations with damage caused by the weevil, even though the density of the insects' hosts in these areas did not change. Moreover, knowing the locations of these nonhost trees provided as much, or more, inference about the locations of weevil-attacked trees as knowing the locations of suitable or preferred host trees (i.e., those larger in size). Nonhost volatiles, the alteration of soil composition, and overstory shade are discussed as potential explanatory factors for the patterns observed. New research avenues are suggested to determine whether nonhost vegetation in early successional stands might be an additional tool in the management of these insects in commercially important forests.

  5. An economic approach to assessing import policies designed to prevent the arrival of invasive species: the case of Puccinia psidii in Hawai'i

    USGS Publications Warehouse

    Burnett, Kimberly; D'Evelyn, Sean; Loope, Lloyd; Wada, Christopher A.

    2012-01-01

    Since its first documented introduction to Hawai‘i in 2005, the rust fungus Puccinia psidii has already severely damaged Syzygium jambos (Indian rose apple) trees and the federally endangered Eugenia koolauensis (nioi). Fortunately, the particular strain has yet to cause serious damage to Metrosideros polymorpha (‘ōhi‘a), which comprises roughly 80% of the state's native forests and covers 400,000 ha. Although the rust has affected less than 5% of Hawaii's ‘ōhi‘a trees thus far, the introduction of more virulent strains and the genetic evolution of the current strain are still possible. Since the primary pathway of introduction is Myrtaceae plant material imported from outside the state, potential damage to ‘ōhi‘a can be minimized by regulating those high-risk imports. We discuss the economic impact on the state's florist, nursery, landscaping, and forest plantation industries of a proposed rule that would ban the import of non-seed Myrtaceae plant material and require a 1-year quarantine of seeds. Our analysis suggests that the benefits to the forest plantation industry of a complete ban on non-seed material would likely outweigh the costs to other affected sectors, even without considering the reduction in risk to ‘ōhi‘a. Incorporating the value of ‘ōhi‘a protection would further increase the benefit–cost ratio in favor of an import ban.

  6. Economic analysis of the proposed rule to prevent arrival of new genetic strains of the rust fungus Puccinia psidii in Hawai'i.

    USGS Publications Warehouse

    Burnett, Kimberly; D'Evelyn, Sean; Loope, Lloyd; Wada, Christopher A.

    2012-01-01

    Since its first documented introduction to Hawai‘i in 2005, the rust fungus P. psidii has already severely damaged Syzygium jambos (Indian rose apple) trees and the federally endangered Eugenia koolauensis (nioi). Fortunately, the particular strain has yet to cause serious damage to ‘ōhi‘a, which comprises roughly 80% of the state’s native forests and covers 400,000 ha. Although the rust has affected less than 5% of Hawaii’s ‘ōhi‘a trees thus far, the introduction of more virulent strains and the genetic evolution of the current strain are still possible. Since the primary pathway of introduction is Myrtaceae plant material imported from outside the state, potential damage to ‘ohi‘a can be minimized by regulating those high-risk imports. We discuss the economic impact on the state’s florist, nursery, landscaping, and forest plantation industries of a proposed rule that would ban the import of non-seed Myrtaceae plant material and require a one-year quarantine of seeds. Our analysis suggests that the benefits to the forest plantation industry of a complete ban on non-seed material would likely outweigh the costs to other affected sectors, even without considering the reduction in risk to ‘ōhi‘a. Incorporating the value of ‘ōhi‘a protection would further increase the benefit-cost ratio in favor of an import ban.

  7. Protective effect of pomegranate derived products on UVB-mediated damage in human reconstituted skin

    PubMed Central

    Afaq, Farrukh; Zaid, Mohammad Abu; Khan, Naghma; Dreher, Mark; Mukhtar, Hasan

    2010-01-01

    Solar ultraviolet (UV) radiation, particularly its UVB (290-320 nm) component, is the primary cause of many adverse biological effects including photoaging and skin cancer. UVB radiation causes DNA damage, protein oxidation and induces matrix metalloproteinases (MMPs). Photochemoprevention via the use of botanical antioxidants in affording protection to human skin against UVB damage is receiving increasing attention. Pomegranate, from the tree Punica granatum contains anthocyanins and hydrolyzable tannins and possesses strong anti-oxidant and anti-tumor promoting properties. In this study, we determined the effect of pomegranate derived products POMx juice, POMx extract and pomegranate oil (POMo) against UVB-mediated damage using reconstituted human skin (EpiDerm™ FT-200). EpiDerm was treated with POMx juice (1-2 μl/0.1 ml/well), POMx extract (5-10 μg/0.1 ml/well), and POMo (1-2 μl/0.1 ml/well) for 1 h prior to UVB (60 mJ/cm2) irradiation and was harvested 12 h post-UVB to assess protein oxidation, markers of DNA damage and photoaging by western blot analysis and immunohistochemistry. Pretreatment of Epiderm with pomegranate derived products resulted in inhibition of UVB-induced (i) cyclobutane pyrimidine dimers, (ii) 8-dihydro-2′-deoxyguanosine, (iii) protein oxidation, and (iv) PCNA protein expression. We also found that pretreatment of Epiderm with pomegranate derived products resulted in inhibition of UVB-induced (i) collagenase (MMP-1), (ii) gelatinase (MMP-2, MMP-9), (iii) stromelysin (MMP-3), (iv) marilysin (MMP-7), (v) elastase (MMP-12), and (vi) tropoelastin. Gelatin zymography revealed that pomegranate derived products inhibited UVB-induced MMP-2 and MMP-9 activities. Pomegranate derived products also caused a decrease in UVB-induced protein expression of c-Fos and phosphorylation of c-Jun. Collectively, these results suggest that all three pomegranate derived products may be useful against UVB-induced damage to human skin. PMID:19320737

  8. Plant-parasitic nematodes associated with olive tree (Olea europaea L.) with a focus on the Mediterranean Basin: a review.

    PubMed

    Ali, Nadine; Chapuis, Elodie; Tavoillot, Johannes; Mateille, Thierry

    2014-01-01

    The olive tree (Olea europaea ssp. europaea.) is one of the most ancient cultivated trees. It is an emblematic species owing to its ecological, economic and cultural importance, especially in the Mediterranean Basin. Plant-parasitic nematodes are major damaging pests on olive trees, mainly in nurseries. They significantly contribute to economic losses in the top-ten olive-producing countries in the world. However, the damages they induce in orchards and nurseries are specifically documented only in a few countries. This review aims to update knowledge about the olive-nematode pathosystem by: (1) updating the list of plant-parasitic nematodes associated with olive trees; (2) analysing their diversity (taxonomic level, trophic groups, dominance of taxa), which allowed us (i) to assess the richness observed in each country, and (ii) to exhibit and describe the most important taxa able to induce damages on olive trees such as: Meloidogyne, Pratylenchus, Helicotylenchus, Xiphinema, Tylenchulus, Rotylenchulus, Heterodera (distribution especially in the Mediterranean Basin, pathogenicity and reactions of olive trees); (3) describing some management strategies focusing on alternative control methods; (4) suggesting new approaches for controlling plant-parasitic nematodes based on the management of the diversity of their communities, which are structured by several environmental factors such as olive diversity (due to domestication of wild olive in the past, and to breeding now), cropping systems (from traditional to high-density orchards), irrigation, and terroirs. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  9. Tomographic Image Reconstruction Using an Interpolation Method for Tree Decay Detection

    Treesearch

    Hailin Feng; Guanghui Li; Sheng Fu; Xiping Wang

    2014-01-01

    Stress wave velocity has been traditionally regarded as an indicator of the extent of damage inside wood. This paper aimed to detect internal decay of urban trees through reconstructing tomographic image of the cross section of a tree trunk. A grid model covering the cross section area of a tree trunk was defined with some assumptions. Stress wave data were processed...

  10. Disentangling Environmental and Anthropogenic Impacts on the Distribution of Unintentionally Introduced Invasive Alien Insects in Mainland China.

    PubMed

    Zhao, Cai-Yun; Li, Jun-Sheng; Xu, Jing; Liu, Xiao-Yan

    2017-05-01

    Globalization increases the opportunities for unintentionally introduced invasive alien species, especially for insects, and most of these species could damage ecosystems and cause economic loss in China. In this study, we analyzed drivers of the distribution of unintentionally introduced invasive alien insects. Based on the number of unintentionally introduced invasive alien insects and their presence/absence records in each province in mainland China, regression trees were built to elucidate the roles of environmental and anthropogenic factors on the number distribution and similarity of species composition of these insects. Classification and regression trees indicated climatic suitability (the mean temperature in January) and human economic activity (sum of total freight) are primary drivers for the number distribution pattern of unintentionally introduced invasive alien insects at provincial scale, while only environmental factors (the mean January temperature, the annual precipitation and the areas of provinces) significantly affect the similarity of them based on the multivariate regression trees. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinnikov, B.; NRC Kurchatov Inst.

    According to Scientific and Technical Cooperation between the USA and Russia in the field of nuclear engineering the Idaho National Laboratory has transferred to the possession of the National Research Center ' Kurchatov Inst. ' the SAPHIRE software without any fee. With the help of the software Kurchatov Inst. developed a Pilot Living PSA- Model of Leningrad NPP Unit 1. Computations of core damage frequencies were carried out for additional Initiating Events. In the submitted paper such additional Initiating Events are fires in various compartments of the NPP. During the computations of each fire, structure of the PSA - Modelmore » was not changed, but Fault Trees for the appropriate systems, which are removed from service during the fire, were changed. It follows from the computations, that for ten fires Core Damaged Frequencies (CDF) are not changed. Other six fires will cause additional core damage. On the basis of the calculated results it is possible to determine a degree of importance of these fires and to establish sequence of performance of fire-prevention measures in various places of the NPP. (authors)« less

  12. 18 CFR 380.15 - Siting and maintenance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... disposed of without undue delay. (7) Remaining trees and shrubs should not be unnecessarily damaged. (8... nearby residences or public areas, should be planted in trees and shrubs, or other appropriate...

  13. Modulating the light environment with the peach ‘asymmetric orchard’: effects on gas exchange performances, photoprotection, and photoinhibition

    PubMed Central

    Losciale, Pasquale; Chow, Wah Soon; Corelli Grappadelli, Luca

    2010-01-01

    The productivity of fruit trees is a linear function of the light intercepted, although the relationship is less tight when greater than 50% of available light is intercepted. This paper investigates the management of light energy in peach using the measurement of whole-tree light interception and gas exchange, along with the absorbed energy partitioning at the leaf level by concurrent measurements of gas exchange and chlorophyll fluorescence. These measurements were performed on trees of a custom-built ‘asymmetric’ orchard. Whole-tree gas exchange for north–south, vertical canopies (C) was similar to that for canopies intercepting the highest irradiance in the morning hours (W), but trees receiving the highest irradiance in the afternoon (E) had the highest net photosynthesis and transpiration while maintaining a water use efficiency (WUE) comparable to the other treatments. In the W trees, 29% and 8% more photosystems were damaged than in C and E trees, respectively. The quenching partitioning revealed that the non-photochemical quenching (NPQ) played the most important role in excess energy dissipation, but it was not fully active at low irradiance, possibly due to a sub-optimal trans-thylakoid ΔpH. The non-net carboxylative mechanisms (NC) appeared to be the main photoprotective mechanisms at low irradiance levels and, probably, they could facilitate the establishment of a trans-thylakoid ΔpH more appropriate for NPQ. These findings support the conclusion that irradiance impinging on leaves may be excessive and can cause photodamage, whose repair requires energy in the form of carbohydrates that are thereby diverted from tree growth and productivity. PMID:20124356

  14. Tree stability under wind: simulating uprooting with root breakage using a finite element method.

    PubMed

    Yang, Ming; Défossez, Pauline; Danjon, Frédéric; Fourcaud, Thierry

    2014-09-01

    Windstorms are the major natural hazard affecting European forests, causing tree damage and timber losses. Modelling tree anchorage mechanisms has progressed with advances in plant architectural modelling, but it is still limited in terms of estimation of anchorage strength. This paper aims to provide a new model for root anchorage, including the successive breakage of roots during uprooting. The model was based on the finite element method. The breakage of individual roots was taken into account using a failure law derived from previous work carried out on fibre metal laminates. Soil mechanical plasticity was considered using the Mohr-Coulomb failure criterion. The mechanical model for roots was implemented in the numerical code ABAQUS using beam elements embedded in a soil block meshed with 3-D solid elements. The model was tested by simulating tree-pulling experiments previously carried out on a tree of Pinus pinaster (maritime pine). Soil mechanical parameters were obtained from laboratory tests. Root system architecture was digitized and imported into ABAQUS while root material properties were estimated from the literature. Numerical simulations of tree-pulling tests exhibited realistic successive root breakages during uprooting, which could be seen in the resulting response curves. Broken roots could be visually located within the root system at any stage of the simulations. The model allowed estimation of anchorage strength in terms of the critical turning moment and accumulated energy, which were in good agreement with in situ measurements. This study provides the first model of tree anchorage strength for P. pinaster derived from the mechanical strength of individual roots. The generic nature of the model permits its further application to other tree species and soil conditions.

  15. Tree stability under wind: simulating uprooting with root breakage using a finite element method

    PubMed Central

    Yang, Ming; Défossez, Pauline; Danjon, Frédéric; Fourcaud, Thierry

    2014-01-01

    Background and Aims Windstorms are the major natural hazard affecting European forests, causing tree damage and timber losses. Modelling tree anchorage mechanisms has progressed with advances in plant architectural modelling, but it is still limited in terms of estimation of anchorage strength. This paper aims to provide a new model for root anchorage, including the successive breakage of roots during uprooting. Methods The model was based on the finite element method. The breakage of individual roots was taken into account using a failure law derived from previous work carried out on fibre metal laminates. Soil mechanical plasticity was considered using the Mohr–Coulomb failure criterion. The mechanical model for roots was implemented in the numerical code ABAQUS using beam elements embedded in a soil block meshed with 3-D solid elements. The model was tested by simulating tree-pulling experiments previously carried out on a tree of Pinus pinaster (maritime pine). Soil mechanical parameters were obtained from laboratory tests. Root system architecture was digitized and imported into ABAQUS while root material properties were estimated from the literature. Key Results Numerical simulations of tree-pulling tests exhibited realistic successive root breakages during uprooting, which could be seen in the resulting response curves. Broken roots could be visually located within the root system at any stage of the simulations. The model allowed estimation of anchorage strength in terms of the critical turning moment and accumulated energy, which were in good agreement with in situ measurements. Conclusions This study provides the first model of tree anchorage strength for P. pinaster derived from the mechanical strength of individual roots. The generic nature of the model permits its further application to other tree species and soil conditions. PMID:25006178

  16. Flood risk assessment and mapping for the Lebanese watersheds

    NASA Astrophysics Data System (ADS)

    Abdallah, Chadi; Hdeib, Rouya

    2016-04-01

    Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. Nowadays, with the emerging global warming phenomenon, this number is expected to increase. The Eastern Mediterranean area, including Lebanon (10452 Km2, 4.5 M habitant), has witnessed in the past few decades an increase frequency of flooding events. This study profoundly assess the flood risk over Lebanon covering all the 17 major watersheds and a number of small sub-catchments. It evaluate the physical direct tangible damages caused by floods. The risk assessment and evaluation process was carried out over three stages; i) Evaluating Assets at Risk, where the areas and assets vulnerable to flooding are identified, ii) Vulnerability Assessment, where the causes of vulnerability are assessed and the value of the assets are provided, iii) Risk Assessment, where damage functions are established and the consequent damages of flooding are estimated. A detailed Land CoverUse map was prepared at a scale of 1/ 1 000 using 0.4 m resolution satellite images within the flood hazard zones. The detailed field verification enabled to allocate and characterize all elements at risk, identify hotspots, interview local witnesses, and to correlate and calibrate previous flood damages with the utilized models. All filed gathered information was collected through Mobile Application and transformed to be standardized and classified under GIS environment. Consequently; the general damage evaluation and risk maps at different flood recurrence periods (10, 50, 100 years) were established. Major results showed that floods in a winter season (December, January, and February) of 10 year recurrence and of water retention ranging from 1 to 3 days can cause total damages (losses) that reach 1.14 M for crop lands and 2.30 M for green houses. Whereas, it may cause 0.2 M to losses in fruit trees for a flood retention ranging from 3 to 5 days. These numbers differs according to the flooding season, cultivation type and the agro-climatic zone. The flood damage equivalence to constructions summed up to reach 32 M for residential structures, 29 M for non-residential structures, and 5 M for the Syrian refugees tents, while structures' content losses were estimated at 27M, 54M, 7 M respectively for the same flood frequency. The total length of affected road networks during flooding is 1589km with an estimated cost of 565M. The total number of affected population reached 82,000 while the number of effected vehicles is 62,000 for a 50year recurrence period

  17. Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores.

    PubMed

    Coverdale, Tyler C; Kartzinel, Tyler R; Grabowski, Kathryn L; Shriver, Robert K; Hassan, Abdikadir A; Goheen, Jacob R; Palmer, Todd M; Pringle, Robert M

    2016-11-01

    Positive indirect effects of consumers on their resources can stabilize food webs by preventing overexploitation, but the coupling of trophic and non-trophic interactions remains poorly integrated into our understanding of community dynamics. Elephants engineer African savanna ecosystems by toppling trees and breaking branches, and although their negative effects on trees are well documented, their effects on small-statured plants remain poorly understood. Using data on 117 understory plant taxa collected over 7 yr within 36 1-ha experimental plots in a semi-arid Kenyan savanna, we measured the strength and direction of elephant impacts on understory vegetation. We found that elephants had neutral effects on most (83-89%) species, with a similar frequency of positive and negative responses among the remainder. Overall, estimated understory biomass was 5-14% greater in the presence of elephants across a range of rainfall levels. Whereas direct consumption likely accounts for the negative effects, positive effects are presumably indirect. We hypothesized that elephants create associational refuges for understory plants by damaging tree canopies in ways that physically inhibit feeding by other large herbivores. As predicted, understory biomass and species richness beneath elephant-damaged trees were 55% and 21% greater, respectively, than under undamaged trees. Experimentally simulated elephant damage increased understory biomass by 37% and species richness by 49% after 1 yr. Conversely, experimentally removing elephant damaged branches decreased understory biomass by 39% and richness by 30% relative to sham-manipulated trees. Camera-trap surveys revealed that elephant damage reduced the frequency of herbivory by 71%, whereas we detected no significant effect of damage on temperature, light, or soil moisture. We conclude that elephants locally facilitate understory plants by creating refuges from herbivory, which countervails the direct negative effects of consumption and enhances larger-scale biomass and diversity by promoting the persistence of rare and palatable species. Our results offer a counterpoint to concerns about the deleterious impacts of elephant "overpopulation" that should be considered in debates over wildlife management in African protected areas: understory species comprise the bulk of savanna plant biodiversity, and their responses to elephants are buffered by the interplay of opposing consumptive and non-consumptive interactions. © 2016 by the Ecological Society of America.

  18. Quantifying tree mortality in a mixed species woodland using multitemporal high spatial resolution satellite imagery

    USGS Publications Warehouse

    Garrity, Steven R.; Allen, Craig D.; Brumby, Steven P.; Gangodagamage, Chandana; McDowell, Nate G.; Cai, D. Michael

    2013-01-01

    Widespread tree mortality events have recently been observed in several biomes. To effectively quantify the severity and extent of these events, tools that allow for rapid assessment at the landscape scale are required. Past studies using high spatial resolution satellite imagery have primarily focused on detecting green, red, and gray tree canopies during and shortly after tree damage or mortality has occurred. However, detecting trees in various stages of death is not always possible due to limited availability of archived satellite imagery. Here we assess the capability of high spatial resolution satellite imagery for tree mortality detection in a southwestern U.S. mixed species woodland using archived satellite images acquired prior to mortality and well after dead trees had dropped their leaves. We developed a multistep classification approach that uses: supervised masking of non-tree image elements; bi-temporal (pre- and post-mortality) differencing of normalized difference vegetation index (NDVI) and red:green ratio (RGI); and unsupervised multivariate clustering of pixels into live and dead tree classes using a Gaussian mixture model. Classification accuracies were improved in a final step by tuning the rules of pixel classification using the posterior probabilities of class membership obtained from the Gaussian mixture model. Classifications were produced for two images acquired post-mortality with overall accuracies of 97.9% and 98.5%, respectively. Classified images were combined with land cover data to characterize the spatiotemporal characteristics of tree mortality across areas with differences in tree species composition. We found that 38% of tree crown area was lost during the drought period between 2002 and 2006. The majority of tree mortality during this period was concentrated in piñon-juniper (Pinus edulis-Juniperus monosperma) woodlands. An additional 20% of the tree canopy died or was removed between 2006 and 2011, primarily in areas experiencing wildfire and management activity. -Our results demonstrate that unsupervised clustering of bi-temporal NDVI and RGI differences can be used to detect tree mortality resulting from numerous causes and in several forest cover types.

  19. Avoiding Wildfire Damage: A Checklist for Homeowners

    MedlinePlus

    ... vegetation is fuel for a wildfire, though some trees and shrubs are more flammable than others. To ... you will need to modify or eliminate brush, trees and other vegetation near your home. The greater ...

  20. Summaries of some silvical characteristics of several appalachian hardwood trees

    Treesearch

    George R., Jr. Trimble

    1975-01-01

    A number of Appalachian hardwood trees are ranked according to the following silvical characteristics: shade tolerands, development of epicormic branching, susceptibility to frost damage, diameter growth rate, and seed dormancy.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansbrough, J.R.

    The source and nature of air pollutants are reviewed in relation to tree growth with emphasis on SO/sub 2/ and fluorides. Damage from SO/sub 2/ can result to conifer foliage from continued fumigation at concentrations exceeding 0.2 ppm. Hydrogen fluoride is toxic to some plants in concentrations as low as 0.1 ppb. The kind of damage depends mainly on the nature of the pollutant, the concentration, the atmospheric conditions, and the duration of fumigations. The contribution of trees in combating air polution involves the recognition and application of genetic variation between tree species in resistance to certain pollutants, as wellmore » as genetic variations of clonal lines of trees within a species. More information is needed on the entire air quality problem in order that research and control measures can meet the need of future generations.« less

  2. 7 CFR 81.11 - Compliance with program provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... connection with tree removal. If a producer does not comply with the terms of this part, including the... connection with such tree removal, and will also be liable to USDA for any other damages incurred as a result... properly remove the prune/plum trees from the applicable block or the whole orchard regardless of whether...

  3. 7 CFR 783.5 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SPECIAL PROGRAMS TREE ASSISTANCE PROGRAM § 783.5 Application. (a) A complete application for TAP benefits... written estimate of the number of trees, bushes or vines lost or damaged which is prepared by the owner or... the number of acres involved by on-site visual inspection of the land and trees, bushes or vines. (3...

  4. 26 CFR 1.165-7 - Casualty losses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... planted trees and ornamental shrubs on the grounds surrounding the building. In 1961 the land, building, trees, and shrubs are damaged by hurricane. At the time of the casualty the adjusted basis of the land is $18,000 and the adjusted basis of the building is $66,000. At that time the trees and shrubs have...

  5. Planting and care of fine hardwood seedlings: diseases in hardwood tree plantings

    Treesearch

    Paula M. Pijut

    2006-01-01

    Hardwood trees planted for timber production, wildlife habitat, riparian buffers, native woodland restoration, windbreaks, watershed protection, erosion control, and conservation are susceptible to damage or even death by various native and exotic fungal or bacterial diseases. Establishment, growth, and the quality of the trees produced can be affected by these disease...

  6. A guide for salvaging white pine injured by forest fires

    Treesearch

    Thomas W. McConkey; Donald R. Gedney

    1951-01-01

    White pine forests are severely damaged by forest fires. Generally a fire kills all trees less than 20 feet high immediately. Larger trees may die later, depending on the degree of injury. Salvage operations must be started soon after a fire, because insects and fungi quickly attack trees that are killed.

  7. Arbuscular mycorrhizal fungal diversity and natural enemies promote coexistence of tropical tree species

    Treesearch

    Benedicte Bachelot; María Uriarte; Krista L. McGuire; Jill Thompson; Jess Zimmerman

    2017-01-01

    Negative population feedbacks mediated by natural enemies can promote species coexistence at the community scale through disproportionate mortality of numerically dominant (common) tree species. Simultaneously, associations with arbuscular mycorrhizal fungi (AMF) can result in positive effects on tree populations. Coupling data on seedling foliar damage from herbivores...

  8. Variation in resistance of hard pines to mouse damage

    Treesearch

    Frank S., Jr. Santamour; Frank E. Cunningham; Richard J. Peterson

    1963-01-01

    The most rapid progress in forest-tree improvement will be attained through artificial reforestation with superior genotypes. These trees may be native species, exotics, or hybrid combinations involving several species of diverse origins. Any tree planting creates an artificial situation, which is made even more artificial by the introduction of non-native types. In...

  9. Fungal symbionts in three exotic ambrosia beetles, Xylosandrus amputatus, Xyleborinus andrewesi, and Dryoxylon onoharaense (Coleoptera: Curculionidae: Scolytinae: Xyleborini) in Florida

    USDA-ARS?s Scientific Manuscript database

    Abstract In nearly every forest habitat, ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae) plant and maintain symbiotic fungus gardens inside dead or dying trees. Some non-native ambrosia beetles aggressively attack live trees and damage tree crops, lumber, and native woody pla...

  10. Individual- and scattered-tree influences on ultraviolet irradiance

    Treesearch

    Gordon M. Heisler; Richard H. Gao, Wei Grant

    2003-01-01

    Many of the potential effects of ultraviolet radiation (UVR--damage to materials, altered herbivory of insects and activity of microbes, modified growth of vegetation, and adverse or beneficial effects on human health?are modified by the presence of trees that influence UVR exposure to various degrees. Though tree effects on total solar irradiance have been...

  11. Dynamics of combined forest damage risks for 21st century (SRES A1B, B1)

    NASA Astrophysics Data System (ADS)

    Panferov, Oleg; Merklein, Johannes; Sogachev, Andrey; Junghans, Udo; Ahrends, Bernd

    2010-05-01

    The ongoing climate change can result in increasing frequency of weather extremes (Leckebusch et al., 2008) which in turn can produce wide area forest damage (windthrows, droughts, insect attacks) within forest ecosystems in Europe. The probability and extent of damage, depend not only on a strength of a driving force itself but especially on combinations of effecting agents and their interactions with forest ecosystem structure and soil properties. The combined effect of several factors which are not the extremes themselves can lead to the biotic and/or abiotic damage so that the combination becomes an extreme event. As soon as a damage event occurs, the forest structure is changed. The changes in forest structure in their turn strengthen or inhibits the influence of different climatic factors thus increase or decrease the probability of the next damage event creating positive or negative feedbacks. To assess the roles of separate meteorological factors and their combinations in forest damage under present and future climatic conditions the coupled model was created in University of Goettingen, as a part of a Decision Support System (Jansen et al, 2008, Panferov et al., 2009). The model combines the 3D ABL Model SCADIS (Panferov and Sogachev, 2008) with modified soil hydrology model BROOK 90 (Federer, 2003, Ahrends et al. 2009) and the model of climate dependent biotic damage. The projected future developments of forest damage events in 21st Century were carried out under conditions of SRES scenarios A1B and B1; the present conditions were evaluated using the measured data of German Weather Service. Climate scenario data of coupled ECHAM5-MPIOM were downscaled by the regional climate model Climate Local Model (CLM) to the spatial resolution of 0.2° x 0.2° and temporal resolution of 24 hours. Using these data as input the small-scale coupled process based modeling was then carried out for example region of Solling, Germany calculating the water and energy balance of forest ecosystems, wind loading on trees and biotic damage for several tree species and typical soil types. The damage risks a certain forest stand at a given soil results from daily combinations of air and soil temperatures, soil water characteristics, static and gust wind loads on trees with dynamic LAI and of soil texture. Some damaged stands show higher vulnerability and thus - positive feedbacks to climate forcing (Vygodskaya et al., 2007). Therefore, changes of microclimate in remaining stands after changes in forest structure are taken into account. Model output is aggregated to 30-years periods and compared to "present conditions" of 1981-2010. The results show considerable increment of both biotic and abiotic risks towards 2100 relatively to "present" caused by weak changes in precipitation and wind patterns and strong increase of mean air temperature and soil temperatures. It is shown, e.g. that the wind- damage-induced changes of structure and microclimate provide a positive feedback i.e. - increase the probability of the next damage event. The study was financed by BMBF within the frames of joint project "Decision Support System - Forest and Climate Change" (DSS-WuK) and by Grant of Ministry for Science and Culture of Lower Saxony "KLIFF". We gratefully acknowledge this support.

  12. A single-probe heat pulse method for estimating sap velocity in trees.

    PubMed

    López-Bernal, Álvaro; Testi, Luca; Villalobos, Francisco J

    2017-10-01

    Available sap flow methods are still far from being simple, cheap and reliable enough to be used beyond very specific research purposes. This study presents and tests a new single-probe heat pulse (SPHP) method for monitoring sap velocity in trees using a single-probe sensor, rather than the multi-probe arrangements used up to now. Based on the fundamental conduction-convection principles of heat transport in sapwood, convective velocity (V h ) is estimated from the temperature increase in the heater after the application of a heat pulse (ΔT). The method was validated against measurements performed with the compensation heat pulse (CHP) technique in field trees of six different species. To do so, a dedicated three-probe sensor capable of simultaneously applying both methods was produced and used. Experimental measurements in the six species showed an excellent agreement between SPHP and CHP outputs for moderate to high flow rates, confirming the applicability of the method. In relation to other sap flow methods, SPHP presents several significant advantages: it requires low power inputs, it uses technically simpler and potentially cheaper instrumentation, the physical damage to the tree is minimal and artefacts caused by incorrect probe spacing and alignment are removed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Gypsy moth life system model

    Treesearch

    J. J. Colbert; G. E. Racin

    1991-01-01

    The model is composed of four major subsystems that are driven by weather. The stand subsystem incorporates the effects of damage by the gypsy moth into annual tree diameter and height growth as well as tree mortality.

  14. Not all droughts are created equal: translating meteorological drought into woody plant mortality.

    PubMed

    Anderegg, Leander D L; Anderegg, William R L; Berry, Joseph A

    2013-07-01

    Widespread drought-induced mortality of woody plants has recently occurred worldwide, is likely to be exacerbated by future climate change and holds large ecological consequences. Yet despite decades of research on plant-water relations, the pathways through which drought causes plant mortality are poorly understood. Recent work on the physiology of tree mortality has begun to reveal how physiological dysfunction induced by water stress leads to plant death; however, we are still far from being able to predict tree mortality using easily observed or modeled meteorological variables. In this review, we contend that, in order to fully understand when and where plants will exceed mortality thresholds when drought occurs, we must understand the entire path by which precipitation deficit is translated into physiological dysfunction and lasting physiological damage. In temperate ecosystems with seasonal climate patterns, precipitation characteristics such as seasonality, timing, form (snow versus rain) and intensity interact with edaphic characteristics to determine when and how much water is actually available to plants as soil moisture. Plant and community characteristics then mediate how quickly water is used and seasonally varying plant physiology determines whether the resulting soil moisture deficit is physiologically damaging. Recent research suggests that drought seasonality and timing matter for how an ecosystem experiences drought. But, mortality studies that bridge the gaps between climatology, hydrology, plant ecology and plant physiology are rare. Drawing upon a broad hydrological and ecological perspective, we highlight key and underappreciated processes that may mediate drought-induced tree mortality and propose steps to better include these components in current research.

  15. Shade Tree Diversity, Cocoa Pest Damage, Yield Compensating Inputs and Farmers' Net Returns in West Africa

    PubMed Central

    Daghela Bisseleua, Hervé Bertin; Fotio, Daniel; Yede; Missoup, Alain Didier; Vidal, Stefan

    2013-01-01

    Cocoa agroforests can significantly support biodiversity, yet intensification of farming practices is degrading agroforestry habitats and compromising ecosystem services such as biological pest control. Effective conservation strategies depend on the type of relationship between agricultural matrix, biodiversity and ecosystem services, but to date the shape of this relationship is unknown. We linked shade index calculated from eight vegetation variables, with insect pests and beneficial insects (ants, wasps and spiders) in 20 cocoa agroforests differing in woody and herbaceous vegetation diversity. We measured herbivory and predatory rates, and quantified resulting increases in cocoa yield and net returns. We found that number of spider webs and wasp nests significantly decreased with increasing density of exotic shade tree species. Greater species richness of native shade tree species was associated with a higher number of wasp nests and spider webs while species richness of understory plants did not have a strong impact on these beneficial species. Species richness of ants, wasp nests and spider webs peaked at higher levels of plant species richness. The number of herbivore species (mirid bugs and cocoa pod borers) and the rate of herbivory on cocoa pods decreased with increasing shade index. Shade index was negatively related to yield, with yield significantly higher at shade and herb covers<50%. However, higher inputs in the cocoa farms do not necessarily result in a higher net return. In conclusion, our study shows the importance of a diverse shade canopy in reducing damage caused by cocoa pests. It also highlights the importance of conservation initiatives in tropical agroforestry landscapes. PMID:23520451

  16. [Secondary Raman spectrum of beta-carotene molecule in living leaf of French phoenix tree].

    PubMed

    Zhao, Jin-tao; Zhang, Peng-xiang; Xu, Cun-ying

    2002-10-01

    Under visible incidence light 514.5 nm, the Raman scattering spectrum from the beta-carotene molecule in the leaf was directly obtained after it was immediately collected from French phoenix tree without any preparing the sample but cleaning. It is very easy to collect the secondary Raman lines addition to the first Raman spectrum in situ by micro Raman. By careful comparing and analyzing the Raman lines between 2,000-3,100 cm-1 and below 2,000 cm-1 regions, we obtained the correlated relation of the first and secondary Raman lines. The study results indicated that there is no damage to the structure and configuration of beta-carotene molecule in the live leaf by controlling laser power on the sample surface and integrating time for Raman signal, but large power laser or long time irradiation on the live sample would cause very strong fluorescence background in Raman spectrum which indicated that there is a photo damage in the center of photo reaction. The Micro Raman would become one of possible in situ methods for investigating live plant molecules growing up in different environment. At last we proposed and discussed the advantages and limits in micro Raman when it is applied to investigating live molecules in botany field.

  17. Development of Riparian Tree Roots in Compacted Coarse Gravel Mixtures - Analysis of Alternative Measures to Decrease Asphalt Damages caused by Tree Roots

    NASA Astrophysics Data System (ADS)

    Gruber, Eva; Weissteiner, Clemens; Rauch, Hans Peter

    2017-04-01

    Tree roots are a major concern in the maintenance of roads in general, and infrequently used paths along rivers and cycling lanes specifically. High repairing costs paired with insufficient mitigation measures lead to the importance of developing a strategy to prevent tree roots from entering the infrastructural construction. Adding to this, damaged asphalt is a threat to cyclists and pedestrians, which makes the search for a solution altogether a pressing matter. In the process of an ongoing project with ViaDonau, during which different measures are tested on-site along the Danube, a field experiment has been set up to test the impact of coarse gravel as sublayer material on the development of tree roots. The aim is to present a recommendation of a certain gravel mixture to use as sublayer. It should reduce root penetration into the pavement construction and increases a drainage effect to prevent condensation and high moisture levels underneath the asphalt. The present work is focusing on the root development of the field experiment after two vegetation periods. The field experiment simulates a concrete-paved road with a vegetation strip next to it. The setup is identical for all fields with poplars and willow cuttings planted along the paved area and the possibility for the tree roots to enter the sublayers of the pavement. These sublayers are made up of six boxes filled with differently sized coarse gravel mixtures (0/32, 8/32, 8/32 hydraulic bound mixture, 16/32, 0/63 and 16/63) to test if the composition has an impact on the root penetration and permanent development. Root dry biomass data in the boxes was collected in 27 subplots. Root dry biomass data was put in relation to the biomass data of the vegetated soil strips in order to consider different biomass development. Additionally for one column of the subplots tree roots were scanned to gain information on the diameter distribution of the collected biomass. Biomass data was also compared to last year's to state the biomass development and a possible establishment of the tree roots. The prevailing hypothesis is that a mixture with coarse gravel is more likely to inhibit roots from entering the construction because of its draining features due to the lack of fine sediments. As for now, this assumption is mostly coherent with the results of the field experiment. Nevertheless, it seems that the best results were collected of the box with the 8/32 hydraulic bound mixture.

  18. Western spruce budworm as related to stand characteristics in the bitterroot national forest

    Treesearch

    Carroll B. Williams; Patrick J. Shea; Gerald S. Walton

    1971-01-01

    Relation of population density to certain stand conditions and damage indicators was analyzed in four drainages on the Bitterroot National Forest of Montana. Western spruce budworm (Choristoneura occidentalis Freeman) populations were strongly related to plot basal area, tree species, and tree crown levels, and also to current and past levels of tree defoliation....

  19. Distribution of trunk-injected 14C-imidacloprid in ash trees and effects on emerald ash borer (Coleoptera: Buprestidae) adults

    Treesearch

    David Mota-Sánchez; Bert M. Cregg; Deborah G. McCullough; Therese M. Poland; Robert M. Hollingworth

    2009-01-01

    The emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae) is a destructive exotic pest of North American ash (Fraxinus sp.) trees. Trunk injection of imidacloprid is commonly used to protect landscape ash trees from A. planipennis damage. Efficacy can vary and little is known about the...

  20. Scab severity in relation to hedge pruning pecan trees in the Southeastern USA

    USDA-ARS?s Scientific Manuscript database

    Scab is the most damaging disease of pecan in the Southeastern USA. Pecan trees are tall (up to 30+ m), and managing disease in the upper canopy is problematic. Hedge pruning trees to ~12 m is being explored to facilitate efficacy of ground-based fungicide sprays, but resulting vigorous shoot growth...

  1. Banking on the future: progress, challenges and opportunities for the genetic conservation of forest trees

    Treesearch

    Kevin M. Potter; Robert M. Jetton; Andrew Bower; Douglass F. Jacobs; Gary Man; Valerie D. Hipkins; Murphy Westwood

    2017-01-01

    Genetic diversity provides the essential basis for the adaptation and resilience of tree species to environmental stress and change. The genetic conservation of tree species is an urgent global necessity as forest conversion and fragmentation continue apace, damaging insects and pathogens are transported between continents, and climate change alters local habitat...

  2. Bugs and burns: effects of fire on ponderosa pine bark beetle (Project INT-F-07-02)

    Treesearch

    Thomas DeGomez; Thomas Kolb; Sabrina Kleinman; Kelly Williams

    2013-01-01

    Fire-damaged trees that otherwise would have survived can be killed by bark beetles (McCullough and others 1998, McHugh and others 2003). Wallin and others (2008) found that fire weakens a tree’s defense against bark beetles. An unacceptable level of tree mortality may occur after a controlled burn as a result of weakened tree defenses (Sullivan and others 2003)....

  3. Initial tree mortality, and insect and pathogen response to fire and thinning restoration treatments in an old growth, mixed-conifer forest of the Sierra Nevada, California

    Treesearch

    P. Maloney; T. Smith; C. Jensen; J. Innes; D. Rizzo; M. North

    2008-01-01

    Fire and thinning restoration treatments in fire-suppressed forests often damage or stress leave trees, altering pathogen and insect affects. We compared types of insect- and pathogen-mediated mortality on mixed-conifer trees 3years after treatment. The number of bark beetle attacked trees was greater in burn treatments compared with no-burn treatments, and in some...

  4. Impact of urban environmental pollution on growth, leaf damage, and chemical constituents of Warsaw urban trees

    Treesearch

    Waldemar Chmielewski; Wojciech Dmuchowski; Stanislaw Suplat

    1998-01-01

    In the last 10 years, 3.5 percent of the tree population died annually in PolandÕs largest and most polluted cities, which is a problem of economic importance. Dieback of streetside trees in Warsaw is a long term process. It is an effect of biological reactions of trees to unfavorable conditions in the urban environment, particularly air and soil pollution and water...

  5. Rust-red stringy white rot: The Indian paint fungus, Echinodontium tinctorium

    Treesearch

    A. D. Wilson

    1997-01-01

    Older trees are more susceptible to damage by this fungus, although even very young trees are susceptible to infection. Infections occur most frequently in dense stands where selfpruning creates infection courts for the fungus.

  6. Conifer Monoterpene Chemistry during an Outbreak Enhances Consumption and Immune Response of an Eruptive Folivore.

    PubMed

    Trowbridge, Amy M; Bowers, M Deane; Monson, Russell K

    2016-12-01

    Changes in the chemical composition of plant defense compounds during herbivory can impact herbivore resource allocation patterns and thereby herbivore survival, growth, and immune response against endoparasitoid infection. Few studies have investigated folivore responses to changes in plant chemistry that occur under outbreak conditions in mature conifer systems. Using data from an earlier observational field study, we carried out laboratory bioassays to test how variation in monoterpenes in piñon pine trees (Pinus edulis, Pinaceae) during an outbreak affects growth, consumption, and immune response of a specialist herbivore, the Southwestern tiger moth (Lophocampa ingens, Arctiidae). Larvae were fed on artificial diets containing four monoterpenes at concentrations that mimicked those observed in undamaged and herbivore-damaged trees in situ during an outbreak. Damaged trees contained 30% lower total monoterpene concentrations, likely reflecting volatile losses as observed in a previous field study Trowbridge et al. (Ecology 95:1591-1603, Trowbridge et al. 2014). Herbivores reared on diets mimicking terpene concentrations in the needles of damaged trees exhibited an approximately 60% increase in consumption relative to larvae reared on diets characteristic of trees without herbivore damage. Higher consumption was accompanied by a 40% increase in immune response with no change in growth rate. These observations suggest preferential resource allocation towards immunity and/or a strong genetic component that determines growth under these conditions. These outcomes, which favor the herbivore, point to: (i) a potential positive feedback mechanism that may increase L. ingens's chance of escaping parasitism during the early phases of an outbreak; and (ii) the important role of monoterpenes in mediating conifer-folivore interactions specifically for P. edulis, which has suffered large-scale drought-induced mortality events exacerbated by the presence of insects.

  7. Ecosystem Consequences of Prolonged Ozone Pollution in the Southern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Cousins, S.; Battles, J. J.; Cisneros, R.; Esperanza, A.; Swenson, D.

    2015-12-01

    While acute O3 exposure is widely known to damage plant tissues, the chronic effects on long lived organisms such as trees remain unclear. In the southern Sierra Nevada, O3 pollution has afflicted pine-dominated forests for over 40 years. Here we report the results of a long-term study of O3 impact on tree injury, growth, and mortality. Our study employed a network of forest plots along a gradient of O3 pollution with recurring measurements from 1991-2012. Over the same period and locations, summer O3 was monitored via partnership with USNPS and USFS, making this one of the longest known ecosystem studies of O3 pollution and its effects. We found that exposure at the most polluted sites declined 33%, from a W126 index of 20.12 ppm-hrs in 1992 to 13.5 ppm-hrs in 2012. The severity of foliar pollution damage at these sites also declined, from 43.9 on the 0-100 Ozone Injury Index (OII) scale to 34.2, a drop of 22%. At locations with lower O3 exposure, damage declined from OII of 16.9 to 9.2. Mean annual tree mortality rates over the 20 year period, calculated with a profile likelihood approach, were 0.5%/yr (95% CI 0.3 to 0.8 %/yr). This rate is similar to that of healthy canopy trees in similar unpolluted stands. However, low and declining tree growth rates reveal possible ecosystem impacts of prolonged exposure to pollution. Across affected sites, mean relative growth rates were 1.1%/yr in 1991-2000, and just 0.9%/yr in 2000-2011, a decline of 15.6% in the second decade. Initial analyses suggest that tree damage is positively correlated with June-October O3, as indicated by previous studies. Further analysis will explore the drivers of ecosystem impacts and roles of other natural and anthropogenic stressors, including variation in climatic water deficit. Understanding the consequences of prolonged O3 exposure on both individual trees and complex forest ecosystems helps identify the hidden environmental costs of tropospheric O3 and potential benefits of cleaner air.

  8. Estimating Paleoflood Magnitude From Tree-Ring Anatomy and the Height of Abrasion Scars

    NASA Astrophysics Data System (ADS)

    Yanosky, T. M.; Jarrett, R. D.

    2003-12-01

    Evidence of floods preserved in the growth rings of trees can be used to extend the historical record of flooding or to estimate the magnitude of extraordinary floods on ungaged streams. Floods that damage the aerial parts of trees during the growing season sometimes induce striking anatomical changes in subsequent growth of rings in the lower trunk. In ring-porous species, this growth most commonly produces concentric bands of atypically large vessels within the latewood. The number and diameter of anomalous vessels seem positively related to the amount of flood damage, and thus can be used to refine estimates of flood magnitude when also considering the position of the tree relative to the channel and its approximate height during the flood. Floods of long duration on low-gradient streams are less likely to damage trees directly, but prolonged root flooding often results in the formation of narrow rings with atypically small vessels; shorter-duration floods, sometimes inundating roots for as little as several days, are followed by the production of fibers (non-conducting cells) with large lumens and thin walls that appear as light-colored bands compared to earlier-formed tissue. In these instances, a series of trees increasingly distant from the channel can be used to estimate a minimum flood elevation. Abrasion scars from flood-borne debris often are the most easily observed evidence of flood damage and, like anatomical abnormalities, can be precisely dated. The relation between the heights of scars and maximum flood stages depends in part upon channel slope. Previous studies have indicated that scar heights along low-gradient streams are the same or slightly lower than maximum flood elevations. Along the high-gradient (6% maximum slope) Buffalo Creek, Colorado USA, scar heights measured in 102 trees following a flood in 1996 ranged from -0.6 to +1.5 m relative to the actual crest elevation. Scar elevations exceeding flood elevations by 3-4 m, however, were observed following a flood in 2002 along a small Colorado stream with slopes ranging from 6 to 15%.

  9. Dormancy release of Norway spruce under climatic warming: testing ecophysiological models of bud burst with a whole-tree chamber experiment.

    PubMed

    Hänninen, Heikki; Slaney, Michelle; Linder, Sune

    2007-02-01

    Ecophysiological models predicting timing of bud burst were tested with data gathered from 40-year-old Norway spruce (Picea abies (L.) Karst.) trees growing in northern Sweden in whole-tree chambers under climatic conditions predicted to prevail in 2100. Norway spruce trees, with heights between 5 and 7 m, were enclosed in individual chambers that provided a factorial combination of ambient (365 micromol mol-1) or elevated (700 micromol mol-1) atmospheric CO2 concentration, [CO2], and ambient or elevated air temperature. Temperature elevation above ambient ranged from +2.8 degrees C in summer to +5.6 degrees C in winter. Compared with control trees, elevated air temperature hastened bud burst by 2 to 3 weeks, whereas elevated [CO2] had no effect on the timing of bud burst. A simple model based on the assumption that bud rest completion takes place on a fixed calendar day predicted timing of bud burst more accurately than two more complicated models in which bud rest completion is caused by accumulated chilling. Together with some recent studies, the results suggest that, in adult trees, some additional environmental cues besides chilling are required for bud rest completion. Although it appears that these additional factors will protect trees under predicted climatic warming conditions, increased risk of frost damage associated with earlier bud burst cannot be ruled out. Inconsistent and partially anomalous results obtained in the model fitting show that, in addition to phenological data gathered under field conditions, more specific data from growth chamber and greenhouse experiments are needed for further development and testing of the models.

  10. X-ray computed microtomography characterizes the wound effect that causes sap flow underestimation by thermal dissipation sensors.

    PubMed

    Marañón-Jiménez, S; Van den Bulcke, J; Piayda, A; Van Acker, J; Cuntz, M; Rebmann, C; Steppe, K

    2018-02-01

    Insertion of thermal dissipation (TD) sap flow sensors in living tree stems causes damage of the wood tissue, as is the case with other invasive methods. The subsequent wound formation is one of the main causes of underestimation of tree water-use measured by TD sensors. However, the specific alterations in wood anatomy in response to inserted sensors have not yet been characterized, and the linked dysfunctions in xylem conductance and sensor accuracy are still unknown. In this study, we investigate the anatomical mechanisms prompting sap flow underestimation and the dynamic process of wound formation. Successive sets of TD sensors were installed in the early, mid and end stage of the growing season in diffuse- and ring-porous trees, Fagus sylvatica (Linnaeus) and Quercus petraea ((Mattuschka) Lieblein), respectively. The trees were cut in autumn and additional sensors were installed in the cut stem segments as controls without wound formation. The wounded area and volume surrounding each sensor was then visually determined by X-ray computed microtomography (X-ray microCT). This technique allowed the characterization of vessel anatomical transformations such as tyloses formation, their spatial distribution and quantification of reduction in conductive area. MicroCT scans showed considerable formation of tyloses that reduced the conductive area of vessels surrounding the inserted TD probes, thus causing an underestimation in sap flux density (SFD) in both beech and oak. Discolored wood tissue was ellipsoidal, larger in the radial plane, more extensive in beech than in oak, and also for sensors installed for longer times. However, the severity of anatomical transformations did not always follow this pattern. Increased wound size with time, for example, did not result in larger SFD underestimation. This information helps us to better understand the mechanisms involved in wound effects with TD sensors and allows the provision of practical recommendations to reduce biases associated with wounding in field sap flow measurements. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Nezara viridula (Hemiptera: Pentatomidae) feeding patterns in macadamia nut in Hawaii: nut maturity and cultivar effects.

    PubMed

    Follett, Peter A; Wright, Mark G; Golden, Mary

    2009-08-01

    Nezara viridula L. (Hemiptera: Pentatomidae) is a serious pest of macadamia nuts, Macadamia integrifolia, in Hawaii. Using ruthenium red dye to stain stink bug feeding probes, feeding activity was determined for nuts of various maturity levels harvested from the tree and off the ground throughout the growing season in five commercial cultivars. Damage occurred in the tree and on the ground during all nut growth stages. Damage on the ground was often higher than in the tree. Cultivar 246 was more susceptible to attack than cultivars 333 and 800. It was previously thought that cultivar susceptibility was related to husk and shell thickness, but cultivar 246 showed higher damage than other cultivars even during early nut development when the nuts are small and before the shell has formed. This suggests that shell and husk thickness may play a secondary role in susceptibility to feeding by N. viridula. Monitoring N. viridula feeding activity during early nut development may help alert growers to potential problems later in the season, but early-season probing activity in immature nuts was not a good predictor of damage levels in mature nuts later in the season in our study.

  12. Edge Effects Influence the Abundance of the Invasive Halyomorpha halys (Hemiptera: Pentatomidae) in Woody Plant Nurseries.

    PubMed

    Venugopal, P Dilip; Martinson, Holly M; Bergmann, Erik J; Shrewsbury, Paula M; Raupp, Michael J

    2015-06-01

    The invasive brown marmorated stink bug, Halyomorpha halys (Stål), has caused severe economic losses in the United States and is also a major nuisance pest invading homes. In diverse woody plant nurseries, favored host plants may be attacked at different times of the season and in different locations in the field. Knowledge of factors influencing H. halys abundance and simple methods to predict where H. halys are found and cause damage are needed to develop effective management strategies. In this study, we examined H. halys abundance on plants in tree nurseries as a function of distance from field edges (edge and core samples) and documented the abundance in tree nurseries adjoining different habitat types (corn, soybean, residential areas, and production sod). We conducted timed counts for H. halys on 2,016 individual trees belonging to 146 unique woody plant cultivars at two commercial tree nurseries in Maryland. Across three years of sampling, we found that H. halys nymphs and adults were more abundant at field edges (0-5 m from edges) than in the core of fields (15-20 m from edges). Proximity of soybean fields was associated with high nymph and adult abundance. Results indicate that monitoring efforts and intervention tactics for this invasive pest could be restricted to field edges, especially those close to soybean fields. We show clearly that spatial factors, especially distance from edge, strongly influence H. halys abundance in nurseries. This information may greatly simplify the development of any future management strategies. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Water and Forest Health: Drought Stress as a Core Driver of Forest Disturbances and Tree Mortality in Western North America

    NASA Astrophysics Data System (ADS)

    Allen, C. D.; Williams, P.

    2012-12-01

    Increasing warmth and dry climate conditions have affected large portions of western North America in recent years, causing elevated levels of both chronic and acute forest drought stress. In turn, increases in drought stress amplify the incidence and severity of the most significant forest disturbances in this region, including wildfire, drought-induced tree mortality, and outbreaks of damaging insects and diseases. Regional patterns of drought stress and various forest disturbances are reviewed, including interactions among climate and the various disturbance processes; similar global-scale patterns and trends of drought-amplified forest die-off and high-severity wildfire also are addressed. New research is presented that derives a tree-ring-based Forest Drought Stress Index (FDSI) for the three most widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii) in the southwestern US (Arizona, New Mexico), demonstrating nonlinear escalation of FDSI to levels unprecedented in the past 1000 years, in response to both drought and especially recent warming. This new work further highlights strong correlations between drought stress and amplified forest disturbances (fire, bark beetle outbreaks), and projects that by ca. 2050 anticipated regional warming will cause mean FDSI levels to reach extreme levels that may exceed thresholds for the survival of current tree species in large portions of their current range. Given recent trends of forest disturbance and projections for substantially warmer temperatures and greater drought stress for much of western North America in coming years, the growing risks to western forest health are becoming clear. This emerging understanding suggests an urgent need to determine potentials and methods for managing water on-site to maintain the vigor and resilience of western forests in the face of increasing levels of climate-induced water stress.

  14. Logging damage

    Treesearch

    Ralph D. Nyland

    1989-01-01

    The best commercial logging will damage at least some residual trees during all forms of partial cutting, no matter how carefully done. Yet recommendations at the end of this Note show there is much that you can do to limit damage by proper road and trail layout, proper training and supervision of crews, appropriate equipment, and diligence.

  15. Tornado Damage Assessment: Reconstructing the Wind Through Debris Tracking and Treefall Pattern Analysis

    NASA Astrophysics Data System (ADS)

    Godfrey, C. M.; Peterson, C. J.; Lombardo, F.

    2017-12-01

    Efforts to enhance the resilience of communities to tornadoes requires an understanding of the interconnected nature of debris and damage propagation in both the built and natural environment. A first step toward characterizing the interconnectedness of these elements within a given community involves detailed post-event surveys of tornado damage. Such damage surveys immediately followed the 22 January 2017 EF3 tornadoes in the southern Georgia towns of Nashville and Albany. After assigning EF-scale ratings to impacted structures, the authors geotagged hundreds of pieces of debris scattered around selected residential structures and outbuildings in each neighborhood and paired each piece of debris with its source structure. Detailed information on trees in the vicinity of the structures supplements the debris data, including the species, dimensions, location, fall direction, and level of damage. High-resolution satellite imagery helps to identify the location and fall direction of hundreds of additional forest trees. These debris and treefall patterns allow an estimation of the near-surface wind field using a Rankine vortex model coupled with both a tree stability model and an infrastructure fragility model that simulates debris flight. Comparisons between the modeled damage and the actual treefall and debris field show remarkable similarities for a selected set of vortex parameters, indicating the viability of this approach for estimating enhanced Fujita scale levels, determining the near-surface wind field of a tornado during its passage through a neighborhood, and identifying how debris may contribute to the overall risk from tornadoes.

  16. Hurricane Katrina's carbon footprint on U.S. Gulf Coast forests.

    PubMed

    Chambers, Jeffrey Q; Fisher, Jeremy I; Zeng, Hongcheng; Chapman, Elise L; Baker, David B; Hurtt, George C

    2007-11-16

    Hurricane Katrina's impact on U.S. Gulf Coast forests was quantified by linking ecological field studies, Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) image analyses, and empirically based models. Within areas affected by relatively constant wind speed, tree mortality and damage exhibited strong species-controlled gradients. Spatially explicit forest disturbance maps coupled with extrapolation models predicted mortality and severe structural damage to approximately 320 million large trees totaling 105 teragrams of carbon, representing 50 to 140% of the net annual U.S. forest tree carbon sink. Changes in disturbance regimes from increased storm activity expected under a warming climate will reduce forest biomass stocks, increase ecosystem respiration, and may represent an important positive feedback mechanism to elevated atmospheric carbon dioxide.

  17. Air blasts generated by rockfall impacts: Analysis of the 1996 Happy Isles event in Yosemite National Park

    USGS Publications Warehouse

    Morrissey, M.M.; Savage, W.Z.; Wieczorek, G.F.

    1999-01-01

    The July 10, 1996, Happy Isles rockfall in Yosemite National Park, California, released 23,000 to 38,000 m3 of granite in four separate events. The impacts of the first two events which involved a 550-m free fall, generated seismic waves and atmospheric pressure waves (air blasts). We focus on the dynamic behavior of the second air blast that downed over 1000 trees, destroyed a bridge, demolished a snack bar, and caused one fatality and several injuries. Calculated velocities for the air blast from a two-phase, finite difference model are compared to velocities estimated from tree damage. From tornadic studies of tree damage, the air blast is estimated to have traveled <108-120 m/s within 50 m from the impact and decreased to <10-20 m/s within 500 m from the impact. The numerical model simulates the two-dimensional propagation of an air blast through a dusty atmosphere with initial conditions defined by the impact velocity and pressure. The impact velocity (105-107 m/s) is estimated from the Colorado Rockfall Simulation Program that simulates rockfall trajectories. The impact pressure (0.5 MPa) is constrained by the kinetic energy of the impact (1010-1012 J) estimated from the seismic energy generated by the impact. Results from the air blast simulations indicate that the second Happy Isles air blast (weak shock wave) traveled with an initial velocity above the local sound speed. The size and location of the first impact are thought to have injected <50 wt % dust into the atmosphere. This amount of dust lowered the local atmospheric sound speed to ???220 m/s. The discrepancy between calculated velocity data and field estimated velocity data (???220 m/s versus ???110 m/s) is attributed to energy dissipated by the downing of trees and additional entrainment of debris into the atmosphere not included in the calculations. Copyright 1999 by the American Geophysical Union.

  18. Air blasts generated by rockfall impacts: Analysis of the 1996 Happy Isles event in Yosemite National Park

    NASA Astrophysics Data System (ADS)

    Morrissey, M. M.; Savage, W. Z.; Wieczorek, G. F.

    1999-10-01

    The July 10, 1996, Happy Isles rockfall in Yosemite National Park, California, released 23,000 to 38,000 m3 of granite in four separate events. The impacts of the first two events which involved a 550-m free fall, generated seismic waves and atmospheric pressure waves (air blasts). We focus on the dynamic behavior of the second air blast that downed over 1000 trees, destroyed a bridge, demolished a snack bar, and caused one fatality and several injuries. Calculated velocities for the air blast from a two-phase, finite difference model are compared to velocities estimated from tree damage. From tornadic studies of tree damage, the air blast is estimated to have traveled <108-120 m/s within 50 m from the impact and decreased to <10-20 m/s within 500 m from the impact. The numerical model simulates the two-dimensional propagation of an air blast through a dusty atmosphere with initial conditions defined by the impact velocity and pressure. The impact velocity (105-107 m/s) is estimated from the Colorado Rockfall Simulation Program that simulates rockfall trajectories. The impact pressure (0.5 MPa) is constrained by the kinetic energy of the impact (1010-1012 J) estimated from the seismic energy generated by the impact. Results from the air blast simulations indicate that the second Happy Isles air blast (weak shock wave) traveled with an initial velocity above the local sound speed. The size and location of the first impact are thought to have injected <50 wt% dust into the atmosphere. This amount of dust lowered the local atmospheric sound speed to ˜220 m/s. The discrepancy between calculated velocity data and field estimated velocity data (˜220 m/s versus ˜110 m/s) is attributed to energy dissipated by the downing of trees and additional entrainment of debris into the atmosphere not included in the calculations.

  19. Incidence of insects, diseases, and other damaging agents in Oregon forests.

    Treesearch

    Paul A. Dunham

    2008-01-01

    This report uses data from a network of forest inventory plots sampled at two points in time, annual aerial insect and disease surveys, and specialized pest damage surveys to quantify the incidence and impact of insects, diseases, and other damaging agents on Oregon's forests. The number and volume of trees damaged or killed by various agents is summarized....

  20. Size-dependent mortality in a Neotropical savanna tree: the role of height-related adjustments in hydraulic architecture and carbon allocation

    Treesearch

    Yong-Jiang Zhang; Frederick C. Meinzer; Guang-You Hao; Fabian G. Scholz; Sandra J. Bucci; Frederico S.C. Takahashi; Randol Villalobos-Vega; Juan P. Giraldo; Kun-Fang Cao; William A. Hoffmann; Guillermo Goldstein

    2009-01-01

    Size-related changes in hydraulic architecture, carbon allocation, and gas exchange of Sclerolobium paniculatum (Leguminosae), a dominant tree species in Neotropical savannas of central Brazil (Cerrado), were investigated to assess their potential role in the dieback of tall individuals. Trees greater than ~6 m tall exhibited more branch damage,...

  1. Spathodea campanulata P. Beauv.

    Treesearch

    K.F. Connor; J.K. Francis

    2002-01-01

    S. campanulata is a medium-sized tree that commonly reaches a height of 21 m; however, in some parts of West Africa, it may reach 30 m. Heart and butt rots are common in trees older than 20 to 25 years that have suffered mechanical or fire damage. In Hawaii, large trees form narrow butresses at the base. It grows naturally in the secondary forests...

  2. Deer damage in central hardwoods: a potential problem

    Treesearch

    Nancy G. Tilghman; David A. Marquis

    1989-01-01

    A major part of the diet of white-tailed deer consists of herbaceous plants, acorns, other tree fruits, and the twigs of trees and shrubs. Deer browsing on young tree seedlings can influence the success of regeneration in forest stands. Excessive deer browsing is not a major problem in the central hardwood forest type, except in parts of Pennsylvania and, to a lesser...

  3. Delayed tree mortality in the Atchafalaya Basin of Southern Louisiana following Hurricane Andrew

    USGS Publications Warehouse

    Keeland, B.D.; Gorham, L.E.

    2009-01-01

    Hurricanes can damage trees in forested wetlands, and the potential for mortality related to these storms exists due to the effects of tree damage over time. In August 1992, Hurricane Andrew passed through the forested wetlands of southern Louisiana with winds in excess of 225 kph. Although more than 78 of the basal area was destroyed in some areas, most trees greater than 2.5 cm dbh were alive and resprouting prolifically the following year (98.8). Survival of most tree species was similarly high two years after the hurricane, but mortality rates of some species increased dramatically. For example, Populus heterophylla (swamp cottonwood) mortality increased from 7.8 to 59.2 (n 76) and Salix interior (sandbar willow) mortality increased from 4.5 to 57.1 (n 21). Stem sprouts on many up-rooted hardwood trees of other species were still alive in 1998, 6 years after the hurricane. Due to the understory tree species composition, regeneration, and high levels of resprouting, there was little change in species composition or perhaps a slight shift toward more shade and flood tolerant species six years following the hurricane event. Triadica sebifera (Chinese tallow) was found on some of the sites heavily disturbed by Hurricane Andrew, and may proliferate at the expense of native tree species. ?? 2009 The Society of Wetland Scientists.

  4. Do Native Insects and Associated Fungi Limit Non-Native Woodwasp, Sirex noctilio, Survival in a Newly Invaded Environment?

    PubMed Central

    Haavik, Laurel J.; Dodds, Kevin J.; Allison, Jeremy D.

    2015-01-01

    Sirex noctilio F. (Hymenoptera: Siricidae) is an introduced pest of pines (Pinus spp.) in several countries in the Southern Hemisphere. Although S. noctilio is established in North America (first discovered in 2004), it has not been a destructive pest there so far, where forest communities more closely resemble those in its native Eurasian range—where it is not a pest. To investigate the influence of the existing community of associated insects (competitors + natural enemies) and fungi (vectored by insects) on S. noctilio survival in North America, we examined stage-specific mortality factors and their relative importance, generating life tables drawn from experimentally-manipulated and natural cohorts of Sirex spp. (mostly S. noctilio, but some native S. nigricornis F.). For both natural and experimentally-manipulated cohorts, factors which acted during the earliest Sirex life stages, most likely tree resistance and/or competition among fungal associates, were paramount in dictating woodwasp survival. Experimentally-manipulated life tables revealed that protection from the community of associates resulted in a significantly, and substantially larger (>15x) S. noctilio F1 generation than exposure to it. Seventy percent of generation mortality in the exposed cohort was due to tree resistance or unknown causes early in larval development, which could have included competition among other bark- or wood-inhabiting insects and/or their fungal associates. Only 46% of generation mortality in the protected cohort was due to tree resistance and/or unknown causes. Parasitoids, particularly endoparasitoids (Ibalia spp.), showed limited ability to control S. noctilio, and reduced the experimentally-established cohort by only 11%, and natural cohorts an average of 3.4%. The relative importance of tree resistance vs. competition with bark- and wood-borers in reducing S. noctilio survival remains unclear. Tree resistance and/or competition likely contribute more than natural enemies in maintaining the S. noctilio population in North America below damaging levels. PMID:26447845

  5. How Much Water Trees Access and How It Determines Forest Response to Drought

    NASA Astrophysics Data System (ADS)

    Berdanier, A. B.; Clark, J. S.

    2015-12-01

    Forests are transformed by drought as water availability drops below levels where trees of different sizes and species can maintain productivity and survive. Physiological studies have provided detailed understanding of how species differences affect drought vulnerability but they offer almost no insights about the amount of water different trees can access beyond general statements about rooting depth. While canopy architecture provides strong evidence for light availability aboveground, belowground moisture availability remains essentially unknown. For example, do larger trees always have greater access to soil moisture? In temperate mixed forests, the ability to access a large soil moisture pool could minimize damage during drought events and facilitate post-drought recovery, potentially at the expense of neighboring trees. We show that the pool of accessible soil moisture can be estimated for trees with data on whole-plant transpiration and that this data can be used to predict water availability for forest stands. We estimate soil water availability with a Bayesian state-space model based on a simple water balance, where cumulative depressions in water use below potential transpiration indicate soil resource depletion. We compare trees of different sizes and species, extend these findings to the entire stand, and connect them to our recent research showing that tree survival after drought depends on post-drought growth recovery and local moisture availability. These results can be used to predict competitive abilities for soil water, understand ecohydrological variation within stands, and identify trees that are at risk of damage from future drought events.

  6. Seasonal variation in hybrid poplar tolerance to glyphosate.

    Treesearch

    Daniel Netzer; Edward Hansen

    1992-01-01

    Reports that glyphosate applied during April or May in hybrid poplar plantations usually results in tree growth increases and that later summer applications often result in tree damage, growth loss, or mortality. Introduces the concept of "physiological" and "morphological" herbicide tolerance.

  7. Diversity, Ecology and Herbivory of Hairstreak Butterflies (Theclinae) Associated with the Velvet Tree, Miconia calvescens in Costa Rica

    PubMed Central

    Badenes-Péérez, F. R.; Alfaro-Alpíízar, M. A.; Johnson, M. T.

    2010-01-01

    Larvae of three species of hairstreak butterflies in the subfamily Theclinae (Lepidoptera: Lycaenidae) were found feeding on developing inflorescences, flower buds, and immature fruits of the velvet tree, Miconia calvescens DC. (Myrtales: Melastomataceae) in Costa Rica. Erora opisena (Druce), Parrhasius polibetes (Cramer), and Temecla paron (Godman and Salvin) were studied in association with M. calvescens, an uncommon tree in its natural range in the neotropics and a target for biocontrol as an invader in Pacific islands. Host plant use by the three theclines was similar, with eggs being laid on inflorescences and cryptic larvae remaining there throughout development. Feeding damage by E. opisena was most abundant in pre-flowering M. calvescens, when 23% of inflorescences showed feeding damage characteristic of this species. Feeding damage by T. paron peaked at flowering, when 30% of inflorescences were affected. At field sites, E. opisena and T. paron damaged an average of 26 and 18% of each attacked inflorescence, respectively. In cage experiments, individual third- and fourth-instar larvae of E. opisena damaged an average of 24 and 21% of an inflorescence before pupating, respectively. This study provides the first host plant record for E. opisena and T. paron, the first record of P. polibetes feeding on Melastomataceae, and the first records of E. opisena and T. paron presence in Costa Rica. PMID:21265617

  8. Methods to Reduce Forest Residue Volume after Timber Harvesting and Produce Black Carbon.

    PubMed

    Page-Dumroese, Deborah S; Busse, Matt D; Archuleta, James G; McAvoy, Darren; Roussel, Eric

    2017-01-01

    Forest restoration often includes thinning to reduce tree density and improve ecosystem processes and function while also reducing the risk of wildfire or insect and disease outbreaks. However, one drawback of these restoration treatments is that slash is often burned in piles that may damage the soil and require further restoration activities. Pile burning is currently used on many forest sites as the preferred method for residue disposal because piles can be burned at various times of the year and are usually more controlled than broadcast burns. In many cases, fire can be beneficial to site conditions and soil properties, but slash piles, with a large concentration of wood, needles, forest floor, and sometimes mineral soil, can cause long-term damage. We describe several alternative methods for reducing nonmerchantable forest residues that will help remove excess woody biomass, minimize detrimental soil impacts, and create charcoal for improving soil organic matter and carbon sequestration.

  9. The Landers earthquake; preliminary instrumental results

    USGS Publications Warehouse

    Jones, L.; Mori, J.; Hauksson, E.

    1992-01-01

    Early on the morning of June 28, 1992, millions of people in southern California were awakened by the largest earthquake to occur in the western United States in the past 40 yrs. At 4:58 a.m PDT (local time), faulting associated with the magnitude 7.3 earthquake broke through to earth's surface near the town of Landers, California. the surface rupture then propagated 70km (45 mi) to the north and northwest along a band of faults passing through the middle of the Mojave Desert. Fortunately, the strongest shaking occurred in uninhabited regions of the Mojave Desert. Still one child was killed in Yucca Valley, and about 400 people were injured in the surrounding area. the desert communities of Landers, Yucca Valley, and Joshua Tree in San Bernardino Country suffered considerable damage to buildings and roads. Damage to water and power lines caused problems in many areas. 

  10. The Role of Viral, Host, and Secondary Bacterial Factors in Influenza Pathogenesis

    PubMed Central

    Kash, John C.; Taubenberger, Jeffery K.

    2016-01-01

    Influenza A virus infections in humans generally cause self-limited infections, but can result in severe disease, secondary bacterial pneumonias, and death. Influenza viruses can replicate in epithelial cells throughout the respiratory tree and can cause tracheitis, bronchitis, bronchiolitis, diffuse alveolar damage with pulmonary edema and hemorrhage, and interstitial and airspace inflammation. The mechanisms by which influenza infections result in enhanced disease, including development of pneumonia and acute respiratory distress, are multifactorial, involving host, viral, and bacterial factors. Host factors that enhance risk of severe influenza disease include underlying comorbidities, such as cardiac and respiratory disease, immunosuppression, and pregnancy. Viral parameters enhancing disease risk include polymerase mutations associated with host switch and adaptation, viral proteins that modulate immune and antiviral responses, and virulence factors that increase disease severity, which can be especially prominent in pandemic viruses and some zoonotic influenza viruses causing human infections. Influenza viral infections result in damage to the respiratory epithelium that facilitates secondary infection with common bacterial pneumopathogens and can lead to secondary bacterial pneumonias that greatly contribute to respiratory distress, enhanced morbidity, and death. Understanding the molecular mechanisms by which influenza and secondary bacterial infections, coupled with the role of host risk factors, contribute to enhanced morbidity and mortality is essential to develop better therapeutic strategies to treat severe influenza. PMID:25747532

  11. Environmental and hormonal control of cambial stem cell dynamics.

    PubMed

    Bhalerao, Rishikesh P; Fischer, Urs

    2017-01-01

    Perennial trees have the amazing ability to adjust their growth rate to both adverse and favorable seasonally reoccurring environmental conditions over hundreds of years. In trunks and stems, the basis for the tuning of seasonal growth rate is the regulation of cambial stem cell activity. Cambial stem cell quiescence and dormancy protect the tree from potential physiological and genomic damage caused by adverse growing conditions and may permit a long lifespan. Cambial dormancy and longevity are both aspects of a tree's life for which the study of cambial stem cell behavior in the annual model plant Arabidopsis is inadequate. Recent functional analyses of hormone perception and catabolism mutants in Populus indicate that shoot-derived long-range signals, as well as local cues, steer cambial activity. Auxin is central to the regulation of cambial activity and probably also maintenance. Emerging genome editing and phenotyping technologies will enable the identification of down-stream targets of hormonal action and facilitate the genetic dissection of complex traits of cambial biology. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Forest Health Monitoring in New Hampshire, 1996-1999

    Treesearch

    Northeastern Research Station

    2002-01-01

    New Hampshire has mature forests dominated by hardwood species but with significant softwood resources. The majority of the trees are healthy with full crowns (low transparency, high density), little dieback and little damage. Red maple had higher dieback and more damage than other species. Eastern white pine had lower crown densities and little damage.

  13. Dealing with frost damage and climate change in tree fruit crops

    USDA-ARS?s Scientific Manuscript database

    Each year, the U.S. produces about 15 million tons of deciduous fruit crops that have a combined value of >$10 billion. Unpredictable cold damage to these nutritionally important crops is a major threat to industry profitability. Over the last six years, cold damage has accounted for almost half o...

  14. Gene expression responses of paper birch to elevated O3 and CO2 during leaf maturation and senescence

    NASA Astrophysics Data System (ADS)

    Kontunen-Soppela, S.; Parviainen, J.; Ruhanen, H.; Brosché, M.; Keinanen, M.; Thakur, R. C.; Kolehmainen, M.; Kangasjarvi, J.; Oksanen, E.; Karnosky, D. F.; Vapaavuori, E.

    2009-12-01

    Forest trees are exposed to increasing concentrations of O3 and CO2 simultaneously. The rise of concentration in these gases causes changes in the gene expression of trees, which can be small in acclimated trees, but yet pivotal for the metabolism of the trees. We have studied the response of paper birch (Betula papyrifera) leaf gene expression to elevated O3 and CO2 concentrations during leaf maturation and senescence. The hypotheses were:(1) Elevated O3 induces oxidative stress in leaves. During long O3-exposure repair mechanisms are activated. Because chemical defense requires energy and carbon uptake is reduced, leaf senescence is activated earlier. Alternatively, the senescence-associated processes, remobilization and storage of carbohydrates and nutrients, may not be completed. (2) In the combination of elevated CO2+O3, the O3-caused damages are not seen or they are smaller, due to closure of the stomata under elevated CO2 and decreased O3 uptake by the leaves. On the other hand, elevated CO2 may provide energy and increase defense chemicals, enabling leaves to repair the O3-caused damages. Gene expression responses of paper birch leaves to elevated O3 and CO2 were studied with microarray analyses. Samples were collected from the long-term O3 and CO2 fumigation experiment Aspen FACE in Rhinelander, WI, USA (http://aspenface.mtu.edu/). The site contains 12 FACE rings receiving CO2, O3, CO2+O3, and ambient air (controls). Birches have been exposed to elevated CO2 (550ppm) and O3 (1.5X ambient) since 1998. Leaf samples were collected in July, August and September 2004. The cDNA-microarrays used for hybridizations consisted of Populus euphratica ESTs representing ca 6500 different genes. In order to detect similar gene expression patterns within samplings and treatments, the microarray data was analyzed with multivariate methods; clustering with Self-Organizing Map, finding optimal cluster grouping by K-means clustering and visualizing the results with Sammon's mapping. Most of the alterations in the gene expression in comparison to ambient rings were caused by O3, alone and in combination with elevated CO2. O3 reduced photosynthesis and carbon assimilation and induced defense to oxidative stress resulting in earlier leaf senescence. Transport and proteolysis gene expressions were activated, indicating that at least some remobilization of nutrients for storage was completed. The combined CO2+O3 treatment resembled the O3 treatment, indicating that elevated CO2 is not able to totally alleviate the harmful effects of elevated O3. Some specific gene expression changes in the combined O3+CO2 treatment showed that experiments with O3 or CO2-exposure alone are not sufficient to predict plant responses to these gases together, and that field experiments with multiple variables are essential in order to understand responses to future environmental conditions.

  15. Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics

    NASA Astrophysics Data System (ADS)

    Schuldt, B.; Leuschner, C.; Horna, V.; Moser, G.; Köhler, M.; van Straaten, O.; Barus, H.

    2011-08-01

    A large-scale replicated throughfall exclusion experiment was conducted in a pre-montane perhumid rainforest in Sulawesi (Indonesia) exposing the trees for two years to pronounced soil desiccation. The lack of regularly occurring dry periods and shallow rooting patterns distinguish this experiment from similar experiments conducted in the Amazonian rainforest. We tested the hypotheses that a tree's sun canopy is more affected by soil drought than its shade crown, making tall trees particularly vulnerable even under a perhumid climate, and that extended drought periods stimulate an acclimation in the hydraulic system of the sun canopy. In the abundant and tall tree species Castanopsis acuminatissima (Fagaceae), we compared 31 morphological, anatomical, hydraulic and chemical variables of leaves, branches and the stem together with stem diameter growth between drought and control plots. There was no evidence of canopy dieback. However, the drought treatment led to a 30 % reduction in sapwood-specific hydraulic conductivity of sun canopy branches, possibly caused by the formation of smaller vessels and/or vessel filling by tyloses. Drought caused an increase in leaf size, but a decrease in leaf number, and a reduction in foliar calcium content. The δ13C and δ18O signatures of sun canopy leaves gave no indication of a permanent down-regulation of stomatal conductance during the drought, indicating that pre-senescent leaf shedding may have improved the water status of the remaining leaves. Annual stem diameter growth decreased during the drought, while the density of wood in the recently produced xylem increased in both the stem and sun canopy branches (marginally significant). The sun canopy showed a more pronounced drought response than the shade crown indicating that tall trees with a large sun canopy are more vulnerable to drought stress. We conclude that the extended drought prompted a number of medium- to long-term responses in the leaves, branches and the trunk, which may have reduced drought susceptibility. However, unlike a natural drought, our drought simulation experiment was carried out under conditions of high humidity, which may have dampened drought induced damages.

  16. Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery

    Treesearch

    Arjan J. H. Meddens; Jeffrey A. Hicke; Lee A. Vierling; Andrew T. Hudak

    2013-01-01

    Bark beetles cause significant tree mortality in coniferous forests across North America. Mapping beetle-caused tree mortality is therefore important for gauging impacts to forest ecosystems and assessing trends. Remote sensing offers the potential for accurate, repeatable estimates of tree mortality in outbreak areas. With the advancement of multi-temporal disturbance...

  17. White fir stands killed by tussock moth...70-mm. color photography aids detection

    Treesearch

    Steven L. Wert; Boyd E. Wickman

    1968-01-01

    The use of large-scale 70 mm. aerial photography proved to be an effective technique for detecting trees in white fir stands killed by Douglas-fir tussock moth in northeastern California. Correlations between ground and photo estimates of dead trees were high. But correlations between such estimates of lesser degrees of tree damage--thin tops and topkill--were much...

  18. Estimating probabilities of infestation and extent of damage by the roundheaded pine beetle in ponderosa pine in the Sacramento Mountains, New Mexico

    Treesearch

    Jose Negron

    1997-01-01

    Classification trees and linear regression analysis were used to build models to predict probabilities of infestation and amount of tree mortality in terms of basal area resulting from roundheaded pine beetle, Dendroctonus adjunctus Blandford, activity in ponderosa pine, Pinus ponderosa Laws., in the Sacramento Mountains, New Mexico. Classification trees were built for...

  19. Acorn fall and weeviling in a northern red oak seedling orchard

    Treesearch

    Daniel R. Miller; Scott E. Schlarbaum

    2005-01-01

    In 2000, we determined levels of damage by acorn weevils (Curculio spp.) and patterns of acorn fall in a northern red oak (Quercus rubra L.) seedling orchard in eastern Tennessee. The mean (±SE) production of acorns among 43 selected trees was 5,930 ± 586 acorns per tree with a maximum production level of 16,969 acorns for one tree...

  20. Regeneration in windthrow areas in hemiboreal forests: the influence of microsite on the height growths of different tree species

    Treesearch

    F. Vodde; K. Jõgiste; L. Gruson; T. Ilisson; K. Köster; J.A. Stanturf

    2010-01-01

    Natural regeneration of windthrow areas is an important issue when planning forestry measures after forest disturbances. Seedling recruitment was investigated in storm-damaged hemiboreal mixed forests in eastern Estonia. The establishment and growth of seedlings from natural regeneration was registered for tree species in soil pits and in mounds of uprooted trees in...

  1. Leaf flush in black walnut at several midwest locations

    Treesearch

    Calvin F. Bey

    1972-01-01

    Late spring frosts damage the tender new growth of black walnut trees, and the earliest trees to break dormancy are vulnerable for the longest period. Walnut trees growing in coves and low spots (frost pockets) are most vulnerable. If the terminal shoot is killed, one or more lateral buds at the base of the newly killed shoot commonly develop; generally, the result is...

  2. The Hickory Run deer exclosure

    Treesearch

    Ted J. Grisez

    1959-01-01

    The damage that deer can do to both planted and natural tree seedlings is vividly demonstrated by a l/l0-acre fenced exclosure at Hickory Run State Park in Carbon County, Pennsylvania. Here, by comparing the growth of trees that have been browsed by deer with the growth of trees that have been protected from deer by the fence, one can see the injurious effects of...

  3. Hurricane Maria Puerto Rico Landsat Analysis

    DOE Data Explorer

    Feng, Yanlei; Chambers, Jeff [LBNL; Negron-Juarez, Robinson [LBNL; Patricola, Chris; Clinton, Nick; Uriarte, Maria; Hall, Jaz; Collins, William

    2018-01-01

    Hurricane Maria made landfall as a strong Category 4 storm in southeast Puerto Rico on September 20th, 2018. The powerful storm traversed the island in a northwesterly direction causing widespread destruction. This study focused on a rapid assessment of Hurricane Marias impact to Puerto Ricos forests. Calibrated and corrected Landsat 8 image composites for the entire island were generated using Google Earth Engine for a comparable pre-Maria and post-Maria time period that accounted for phenology. Spectral mixture analysis (SMA) using image-derived end members was carried out on both composites to calculate the change in the non-photosynthetic vegetation (Delta-NPV) spectral response, a metric that quantifies the increased fraction of exposed wood and surface litter associated with tree mortality and crown damage from the storm. Hurricane simulations were also conducted using the Weather Research and Forecasting (WRF) regional climate model to estimate wind speeds associated with forest disturbance. Dramatic changes in forest structure across the entire island were evident from pre- and post-Maria composited Landsat 8 images. A Delta-NPV map for only the forested pixels illustrated significant spatial variability in disturbance, with patterns that associated with factors such as slope, aspect and elevation. An initial order-of-magnitude impact estimate based on previous work indicated that Hurricane Maria may have caused mortality and severe damage to 23-31 million trees. Additional field work and image analyses are required to further detail the impact of Hurricane Maria to Puerto Rico forests. A minor update to this dataset was posted on April 20, 2018. The previous version is being retired. If you need access to the prior version of the data, email ngee-tropics-archive@lbl.gov.

  4. Effects of Fire on Southern Pine: Observations and Recommendations

    Treesearch

    Dale D. Wade; R.W. Johansen

    1986-01-01

    Systematically discusses fire damage as it relates to all parts of the tree: available literature is critiqued, apparent contradictions resolved, and some commonly held misconceptions dispelled. Suggestions for avoiding fire damage during prescribed burns are given.

  5. Improving the flash flood frequency analysis applying dendrogeomorphological evidences

    NASA Astrophysics Data System (ADS)

    Ruiz-Villanueva, V.; Ballesteros, J. A.; Bodoque, J. M.; Stoffel, M.; Bollschweiler, M.; Díez-Herrero, A.

    2009-09-01

    Flash floods are one of the natural hazards that cause major damages worldwide. Especially in Mediterranean areas they provoke high economic losses every year. In mountain areas with high stream gradients, floods events are characterized by extremely high flow and debris transport rates. Flash flood analysis in mountain areas presents specific scientific challenges. On one hand, there is a lack of information on precipitation and discharge due to a lack of spatially well distributed gauge stations with long records. On the other hand, gauge stations may not record correctly during extreme events when they are damaged or the discharge exceeds the recordable level. In this case, no systematic data allows improvement of the understanding of the spatial and temporal occurrence of the process. Since historic documentation is normally scarce or even completely missing in mountain areas, tree-ring analysis can provide an alternative approach. Flash floods may influence trees in different ways: (1) tilting of the stem through the unilateral pressure of the flowing mass or individual boulders; (2) root exposure through erosion of the banks; (3) injuries and scars caused by boulders and wood transported in the flow; (4) decapitation of the stem and resulting candelabra growth through the severe impact of boulders; (5) stem burial through deposition of material. The trees react to these disturbances with specific growth changes such as abrupt change of the yearly increment and anatomical changes like reaction wood or callus tissue. In this study, we sampled 90 cross sections and 265 increment cores of trees heavily affected by past flash floods in order to date past events and to reconstruct recurrence intervals in two torrent channels located in the Spanish Central System. The first study site is located along the Pelayo River, a torrent in natural conditions. Based on the external disturbances of trees and their geomorphological position, 114 Pinus pinaster (Ait.) influenced by flash flood events were sampled using an increment borer. For each tree sampled, additional information were recorded including the geographical position (GPS measure), the geomorphological situation based on a detailed geomorphological map, the social position within neighbouring trees, a description of the external disturbances and information on tree diameter, tree height and the position of the cores extracted. 265 cores were collected. In the laboratory, the 265 samples were analyzed using the standard methods: surface preparation, counting of tree rings as well as measuring of ring widths using a digital LINTAB positioning table and TSAP 4.6 software. Increment curves of the disturbed trees were then crossdated with a reference chronology in order to correct faulty tree-ring series derived from disturbed samples and to determine initiation of abrupt growth suppression or release. The age of the trees in this field site is between 50 and 100 years old. In the field most of the trees were tilted (93 %) and showed exposed roots (64 %). In the laboratory, growth suppressions were detected in 165 samples. Based on the number of trees showing disturbances, the intensity of the disturbance and the spatial distribution of the trees in the field, seven well represented events were dated for the last 50 years: 2005, 2000, 1996, 1976, 1973, 1966 and 1963. The second field site was a reach of 2 km length along the Arenal River, where the stream is channelized. Here stumps from previously felled trees could be analyzed directly in the field. 100 Alnus glutinosa (L.) Gaertn. and Fraxinus angustifolia (Vahl.) cross sections were investigated in order to date internal wounds. Different carpenter tools, sanding paper and magnifying glasses were used to count tree rings and to date the wounds in the field. In addition to the dating in the field, 22 cross sections were sampled and analyzed in the laboratory using the standard methods. The age of the trees ranges between 30 and 50 years. Based on the injuries dated in the field and in the laboratory, and based on the location of the trees, 8 main events were dated for the last 30 years: 2005, 2003, 2000, 1998, 1997, 1995, 1993 and 1978. Additional results are in progress, such as the amount of rainfall responsible for the triggering of the events, estimation of the magnitude, and the influence of the channelization in the case of the Arenal River. The strength of Dendrogeomorphology in flood analysis has been demonstrated, especially in areas where the lack of historical documents, rainfall and flow data limits the use of traditional methods.

  6. The Strong Wind event of 24th January 2009 in Catalonia: a social impact analysis

    NASA Astrophysics Data System (ADS)

    Amaro, J.; Aran, M.; Barberia, L.; Llasat, M. C.

    2009-09-01

    Although strong winds are frequent in Catalonia, one of the events with the strongest impact in recent years was on January 24th 2009. An explosive cyclogenesis process took place in the Atlantic: pressure fell 30 hPa in less than 24 hours. The strong wind storm pounded the northern of Spain and the south of France with some fatalities and important economic losses in these regions. Several automatic weather stations recorded wind gusts higher than 100 km/h in Catalonia. Emergency services received more than 20.000 calls in 24 hours and there were 497 interventions in only 12 hours. As a consequence of fallen and uprooted trees railway and road infrastructures got damages and more than 30.000 customers had no electricity during 24 hours. Unfortunately there were a total of 6 fatalities, two of them because of fallen trees and the other ones when a sports centre collapsed over a group of children. In Spain, insurance policies cover damages due to strong winds when fixed thresholds are overcome and, according to the Royal Decree 300/2004 of 20th February, extraordinary risk are assumed by the Consorcio de Compensación de Seguros. Subsequently, Public Weather Services (PWS) had an increased on the number of requests received from people affected by this event and from insurance companies, for the corresponding indemnity or not. As an example, during the first month after the event, in the Servei Meteorològic de Catalunya (SMC) more than 600 requests were received only related to these damages (as an average PWS of SMC received a total of 400 requests per month). Following the research started by the Social Impact Research Group of MEDEX project, a good vulnerability indicator of a meteorological risk can be the number of requests reported. This study uses the information received in the PWS of the SMC during the six months after the event, according the criteria and methodology established in Gayà et al (2008). The objective is to compare the vulnerability with the hazard intensity and to analyze elements at risk. In order to do this, data about population density, land uses, type of damages and media information are also considered. The first results show that the major number of requests corresponds to areas densely populated, with vulnerable urban materials, and to residential areas, where fallen trees caused damages on buildings. However, the highest wind gusts were recorded in rural areas where a minor number of requests have been reported in spite of the ecological damages. Finally, the different risk perception of the population played an important role in their reaction to the warnings received.

  7. Effects of high temperature on photosynthesis and related gene expression in poplar

    PubMed Central

    2014-01-01

    Background High temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants. Results We found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress. Genome-wide gene expression analysis at six hours of heat stress identified 29,896 differentially expressed genes (15,670 up-regulated and 14,226 down-regulated), including multiple classes of transcription factors. These interact with each other and regulate the expression of photosynthesis-related genes in response to heat stress, controlling carbon fixation and changes in stomatal conductance. Heat stress of more than twelve hours caused reduced electron transport, damaged photosystems, activated the glycolate pathway and caused H2O2 production; as a result, photosynthetic capacity did not recover completely. Conclusions This study provides a systematic physiological and global gene expression profile of the poplar photosynthetic response to heat stress and identifies the main limitations and threshold of photosynthesis under heat stress. It will expand our understanding of plant thermostability and provides a robust dataset for future studies. PMID:24774695

  8. Effects of high temperature on photosynthesis and related gene expression in poplar.

    PubMed

    Song, Yuepeng; Chen, Qingqing; Ci, Dong; Shao, Xinning; Zhang, Deqiang

    2014-04-28

    High temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants. We found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress. Genome-wide gene expression analysis at six hours of heat stress identified 29,896 differentially expressed genes (15,670 up-regulated and 14,226 down-regulated), including multiple classes of transcription factors. These interact with each other and regulate the expression of photosynthesis-related genes in response to heat stress, controlling carbon fixation and changes in stomatal conductance. Heat stress of more than twelve hours caused reduced electron transport, damaged photosystems, activated the glycolate pathway and caused H2O2 production; as a result, photosynthetic capacity did not recover completely. This study provides a systematic physiological and global gene expression profile of the poplar photosynthetic response to heat stress and identifies the main limitations and threshold of photosynthesis under heat stress. It will expand our understanding of plant thermostability and provides a robust dataset for future studies.

  9. Cardiovascular causes of airway compression.

    PubMed

    Kussman, Barry D; Geva, Tal; McGowan, Francis X

    2004-01-01

    Compression of the paediatric airway is a relatively common and often unrecognized complication of congenital cardiac and aortic arch anomalies. Airway obstruction may be the result of an anomalous relationship between the tracheobronchial tree and vascular structures (producing a vascular ring) or the result of extrinsic compression caused by dilated pulmonary arteries, left atrial enlargement, massive cardiomegaly, or intraluminal bronchial obstruction. A high index of suspicion of mechanical airway compression should be maintained in infants and children with recurrent respiratory difficulties, stridor, wheezing, dysphagia, or apnoea unexplained by other causes. Prompt diagnosis is required to avoid death and minimize airway damage. In addition to plain chest radiography and echocardiography, diagnostic investigations may consist of barium oesophagography, magnetic resonance imaging (MRI), computed tomography, cardiac catheterization and bronchoscopy. The most important recent advance is MRI, which can produce high quality three-dimensional reconstruction of all anatomic elements allowing for precise anatomic delineation and improved surgical planning. Anaesthetic technique will depend on the type of vascular ring and the presence of any congenital heart disease or intrinsic lesions of the tracheobronchial tree. Vascular rings may be repaired through a conventional posterolateral thoracotomy, or utilizing video-assisted thoracoscopic surgery (VATS) or robotic endoscopic surgery. Persistent airway obstruction following surgical repair may be due to residual compression, secondary airway wall instability (malacia), or intrinsic lesions of the airway. Simultaneous repair of cardiac defects and vascular tracheobronchial compression carries a higher risk of morbidity and mortality.

  10. Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland.

    PubMed

    Skelton, Robert P; Brodribb, Timothy J; McAdam, Scott A M; Mitchell, Patrick J

    2017-09-01

    Drought can cause major damage to plant communities, but species damage thresholds and postdrought recovery of forest productivity are not yet predictable. We used an El Niño drought event as a natural experiment to test whether postdrought recovery of gas exchange could be predicted by properties of the water transport system, or if metabolism, primarily high abscisic acid concentration, might delay recovery. We monitored detailed physiological responses, including shoot sapflow, leaf gas exchange, leaf water potential and foliar abscisic acid (ABA), during drought and through the subsequent rehydration period for a sample of eight canopy and understory species. Severe drought caused major declines in leaf water potential, elevated foliar ABA concentrations and reduced stomatal conductance and assimilation rates in our eight sample species. Leaf water potential surpassed levels associated with incipient loss of leaf hydraulic conductance in four species. Following heavy rainfall gas exchange in all species, except those trees predicted to have suffered hydraulic impairment, recovered to prestressed rates within 1 d. Recovery of plant gas exchange was rapid and could be predicted by the hydraulic safety margin, providing strong support for leaf vulnerability to water deficit as an index of damage under natural drought conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Mechanisms of copper stress alleviation in Citrus trees after metal uptake by leaves or roots.

    PubMed

    Hippler, Franz Walter Rieger; Petená, Guilherme; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Azevedo, Ricardo Antunes; Mattos-Jr, Dirceu

    2018-05-01

    Nutritional disorders caused by copper (Cu) have affected citrus orchards. Since Cu is foliar sprayed as a pesticide to control citrus diseases, this metal accumulates in the soil. Thereby, we evaluated the effects of Cu leaf absorption after spray of different metal sources, as well as roots absorption on growth, nutritional status, and oxidative stress of young sweet orange trees. Two experiments were carried out under greenhouse conditions. The first experiment was set up with varying Cu levels to the soil (nil Cu, 0.5, 2.0, 4.0 and 8.0 g of Cu per plant as CuSO 4 .5H 2 O), whereas the second experiment with Cu application via foliar sprays (0.5 and 2.0 g of Cu per plant) and comparing two metal sources (CuSO 4 .5H 2 O or Cu(OH) 2 ). Copper was mainly accumulated in roots with soil supply, but an increase of oxidative stress levels was observed in leaves. On the other hand, Cu concentrations were higher in leaves that received foliar sprays, mainly as Cu(OH) 2 . However, when sulfate was foliar sprayed, plants exhibited more symptoms of injuries in the canopy with decreased chlorophyll contents and increased hydrogen peroxide and lipid peroxidation levels. Copper toxicity was characterized by sap leakage from the trunk and twigs, which is the first report of this specific Cu excess symptom in woody trees. Despite plants with 8.0 g of Cu soil-applied exhibiting the sap leakage, growth of new plant parts was more vigorous with lower oxidative stress levels and injuries compared to those with 4.0 g of Cu soil-applied (without sap leakage). With the highest level of Cu applied via foliar as sulfate, Cu was eliminated by plant roots, increasing the rhizospheric soil metal levels. Despite citrus likely exhibiting different mechanisms to reduce the damages caused by metal toxicity, such as responsive enzymatic antioxidant system, metal accumulation in the roots, and metal exclusion by roots, excess Cu resulted in damages on plant growth and metabolism when the metal was taken up either by roots or leaves.

  12. Interaction of insecticide and media moisture on ambrosia beetle (Coleoptera: Curculionidae) attacks on ornamental trees

    USDA-ARS?s Scientific Manuscript database

    Exotic ambrosia beetles, particularly Xylosandrus crassiusculus (Motschulsky) and Xylosandrus germanus (Blandford), are among the most economically damaging pests of ornamental trees in nurseries. Growers have had few tactics besides insecticide applications to reduce ambrosia beetle attacks but rec...

  13. April 23, 1983 tornado at the Savannah River Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, A.J.

    1983-07-01

    Just before 8:00 p.m. on Saturday, April 23, 1983, a small (Fl) tornado touched ground in Jackson, South Carolina and traveled northeast for several miles, passing just northwest of the SRP 700-A Area. The tornado uprooted or snapped many large trees in Jackson, and damaged several homes and buildings, including the loss of an entire roof from one store. After it passed through Jackson, the tornado damaged pine forests on the SRP border. Based on the Fujita tornado intensity scale and observed damage, the maximum winds in the tornado were probably 100 to 150 mph. Several swaths in the forestedmore » area, each several hundred yards long, were almost denuded (80 to 90% uprooting or snapping of trees). As the tornado approached A Area, it appeared to be weakening, with maximum tree losses of 30 to 50%. The A-Area meteorological tower measured winds of 62 mph before the wind sensor was blown off the tower. Damage to A Area was small, although several trailers lost windows and pieces of roofing, one trailer was overturned, and at least one small shed was demolished. The tornado continued to the northeast where it died out over the SRP forest after felling trees for several more miles. Inspection of the rest of the SRP site from a helicopter showed that no other tornados hit SRP during the April 23 storm, although other tornados hit parts of South Carolina and Georgia. It was the first known occurrence of a tornado at SRP since 1976.« less

  14. Incidence and impact of damage to South Carolina's timber, 1979

    Treesearch

    Robert L. Anderson; Joe P. McClure; William H. Hoffard; Noel D. Cost

    1981-01-01

    This bulletin reports survey data on agents damaging trees in South Carolina’s forests. Data were collected in 1977 and 1978 by the Renewable Resources Evaluation Work Unit of the Southeastern Forest Experiment Station.

  15. Planting and care of fine hardwood seedlings: Diagnosing and controlling wildlife damage in hardwood plantations.

    Treesearch

    James McKenna; Keith Woeste

    2004-01-01

    Once trees are planted and begin growing, damage from wildlife can threaten their quality. In this publication we discuss how to identify and manage injury to hardwoods from wildlife to minimize losses.

  16. Mapping potential carbon and timber losses from hurricanes using a decision tree and ecosystem services driver model.

    PubMed

    Delphin, S; Escobedo, F J; Abd-Elrahman, A; Cropper, W

    2013-11-15

    Information on the effect of direct drivers such as hurricanes on ecosystem services is relevant to landowners and policy makers due to predicted effects from climate change. We identified forest damage risk zones due to hurricanes and estimated the potential loss of 2 key ecosystem services: aboveground carbon storage and timber volume. Using land cover, plot-level forest inventory data, the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, and a decision tree-based framework; we determined potential damage to subtropical forests from hurricanes in the Lower Suwannee River (LS) and Pensacola Bay (PB) watersheds in Florida, US. We used biophysical factors identified in previous studies as being influential in forest damage in our decision tree and hurricane wind risk maps. Results show that 31% and 0.5% of the total aboveground carbon storage in the LS and PB, respectively was located in high forest damage risk (HR) zones. Overall 15% and 0.7% of the total timber net volume in the LS and PB, respectively, was in HR zones. This model can also be used for identifying timber salvage areas, developing ecosystem service provision and management scenarios, and assessing the effect of other drivers on ecosystem services and goods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Pushed to the limit: consequences of climate change for the Araucariaceae: a relictual rain forest family

    PubMed Central

    Offord, Catherine A.

    2011-01-01

    Background and Aims Under predicted climate change scenarios, increased temperatures are likely to predispose trees to leaf and other tissue damage, resulting in plant death and contraction of already narrow distribution ranges in many relictual species. The effects of predicted upward temperatures may be further exacerbated by changes in rainfall patterns and damage caused by frosts on trees that have been insufficiently cold-hardened. The Araucariaceae is a relictual family and the seven species found in Australia have limited natural distributions characterized by low frost intensity and frequency, and warm summer temperatures. The temperature limits for these species were determined in order to help understand how such species will fare in a changing climate. Methods Experiments were conducted using samples from representative trees of the Araucariaceae species occurring in Australia, Agathis (A. atropurpurea, A. microstachya and A. robusta), Arauacaria (A. bidwilli, A. cunninghamii and A. heterophylla) and Wollemia nobilis. Samples were collected from plants grown in a common garden environment. Lower and higher temperature limits were determined by subjecting detached winter-hardened leaves to temperatures from 0 to –17 °C and summer-exposed leaves to 25 to 63 °C, then measuring the efficiency of photosystem II (Fv/Fm) and visually rating leaf damage. The exotherm, a sharp rise in temperature indicating the point of ice nucleation within the cells of the leaf, was measured on detached leaves of winter-hardened and summer temperature-exposed leaves. Key Results Lower temperature limits (indicated by FT50, the temperature at which PSII efficiency is 50 %, and LT50 the temperature at which 50 % visual leaf damage occurred) were approx. –5·5 to –7·5 °C for A. atropurpurea, A. microstachya and A. heterophylla, approx. –7 to –9 °C for A. robusta, A. bidwillii and A. cunninghamii, and –10·5 to –11 °C for W. nobilis. High temperature damage began at 47·5 °C for W. nobilis, and occurred in the range 48·5–52 °C for A. bidwillii and A. cunninghamii, and in the range 50·5–53·5 °C for A. robusta, A. microstachya and A. heterophylla. Winter-hardened leaves had ice nucleation temperatures of –5·5 °C or lower, with W. nobilis the lowest at –6·8 °C. All species had significantly higher ice nucleation temperatures in summer, with A. atropurpurea and A. heterophylla forming ice in the leaf at temperatures >3 °C higher in summer than in winter. Wollemia nobilis had lower FT50 and LT50 values than its ice nucleation temperature, indicating that the species has a degree of ice tolerance. Conclusions While lower temperature limits in the Australian Araucariaceae are generally unlikely to affect their survival in wild populations during normal winters, unseasonal frosts may have devastating effects on tree survival. Extreme high temperatures are not common in the areas of natural occurrence, but upward temperature shifts, in combination with localized radiant heating, may increase the heat experienced within a canopy by at least 10 °C and impact on tree survival, and may contribute to range contraction. Heat stress may explain why many landscape plantings of W. nobilis have failed in hotter areas of Australia. PMID:21727080

  18. Pushed to the limit: consequences of climate change for the Araucariaceae: a relictual rain forest family.

    PubMed

    Offord, Catherine A

    2011-08-01

    Under predicted climate change scenarios, increased temperatures are likely to predispose trees to leaf and other tissue damage, resulting in plant death and contraction of already narrow distribution ranges in many relictual species. The effects of predicted upward temperatures may be further exacerbated by changes in rainfall patterns and damage caused by frosts on trees that have been insufficiently cold-hardened. The Araucariaceae is a relictual family and the seven species found in Australia have limited natural distributions characterized by low frost intensity and frequency, and warm summer temperatures. The temperature limits for these species were determined in order to help understand how such species will fare in a changing climate. Experiments were conducted using samples from representative trees of the Araucariaceae species occurring in Australia, Agathis (A. atropurpurea, A. microstachya and A. robusta), Arauacaria (A. bidwilli, A. cunninghamii and A. heterophylla) and Wollemia nobilis. Samples were collected from plants grown in a common garden environment. Lower and higher temperature limits were determined by subjecting detached winter-hardened leaves to temperatures from 0 to -17 °C and summer-exposed leaves to 25 to 63 °C, then measuring the efficiency of photosystem II (F(v)/F(m)) and visually rating leaf damage. The exotherm, a sharp rise in temperature indicating the point of ice nucleation within the cells of the leaf, was measured on detached leaves of winter-hardened and summer temperature-exposed leaves. Lower temperature limits (indicated by FT(50), the temperature at which PSII efficiency is 50 %, and LT(50) the temperature at which 50 % visual leaf damage occurred) were approx. -5·5 to -7·5 °C for A. atropurpurea, A. microstachya and A. heterophylla, approx. -7 to -9 °C for A. robusta, A. bidwillii and A. cunninghamii, and -10·5 to -11 °C for W. nobilis. High temperature damage began at 47·5 °C for W. nobilis, and occurred in the range 48·5-52 °C for A. bidwillii and A. cunninghamii, and in the range 50·5-53·5 °C for A. robusta, A. microstachya and A. heterophylla. Winter-hardened leaves had ice nucleation temperatures of -5·5 °C or lower, with W. nobilis the lowest at -6·8 °C. All species had significantly higher ice nucleation temperatures in summer, with A. atropurpurea and A. heterophylla forming ice in the leaf at temperatures >3 °C higher in summer than in winter. Wollemia nobilis had lower FT(50) and LT(50) values than its ice nucleation temperature, indicating that the species has a degree of ice tolerance. While lower temperature limits in the Australian Araucariaceae are generally unlikely to affect their survival in wild populations during normal winters, unseasonal frosts may have devastating effects on tree survival. Extreme high temperatures are not common in the areas of natural occurrence, but upward temperature shifts, in combination with localized radiant heating, may increase the heat experienced within a canopy by at least 10 °C and impact on tree survival, and may contribute to range contraction. Heat stress may explain why many landscape plantings of W. nobilis have failed in hotter areas of Australia.

  19. Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds?

    PubMed

    Holopainen, Jarmo K

    2011-12-01

    Plants produce a variety of volatile organic compounds (VOCs). Under abiotic and biotic stresses, the number and amount of produced compounds can increase. Due to their long life span and large size, trees can produce biogenic VOCs (BVOCs) in much higher amounts than many other plants. It has been suggested that at cellular and tree physiological levels, induced production of VOCs is aimed at improving plant resistance to damage by reactive oxygen species generated by multiple abiotic stresses. In the few reported cases when biosynthesis of plant volatiles is inhibited or enhanced, the observed response to stress can be attributed to plant volatiles. Reported increase, e.g., in photosynthesis has mostly ranged between 5 and 50%. A comprehensive model to explain similar induction of VOCs under multiple biotic stresses is not yet available. As a result of pathogen or herbivore attack on forest trees, the induced production of VOCs is localized to the damage site but systemic induction of emissions has also been detected. These volatiles can affect fungal pathogens and the arrival rate of herbivorous insects on damaged trees, but also act as signalling compounds to maintain the trophic cascades that may improve tree fitness by improved efficiency of herbivore natural enemies. On the forest scale, biotic induction of VOC synthesis and release leads to an amplified flow of BVOCs in atmospheric reactions, which in atmospheres rich in oxides of nitrogen (NOx) results in ozone formation, and in low NOx atmospheres results in oxidation of VOCs, removal in ozone from the troposphere and the resulting formation of biogenic secondary organic aerosol (SOA) particles. I will summarize recent advances in the understanding of stress-induced VOC emissions from trees, with special focus on Populus spp. Particular importance is given to the ecological and atmospheric feedback systems based on BVOCs and biogenic SOA formation.

  20. Effects of acid deposition on terrestrial ecosystems and their rehabilitation strategies in China.

    PubMed

    Feng, Zong-wei; Miao, Hong; Zhang, Fu-zhu; Huang, Yi-zong

    2002-04-01

    South China has become the third largest region associated with acid deposition following Europe and North America, the area subject to damage by acid deposition increased from 1.75 million km2 in 1985 to 2.8 million km2 in 1993. Acid deposition has caused serious damage to ecosystem. Combined pollution of acid rain and SO2 showed the obvious multiple effects on crops. Vegetable was more sensitive to acid deposition than foodstuff crops. Annual economic loss of crops due to acid deposition damage in eleven provinces of south China was 4.26 billion RMB Yuan. Acid deposition caused serious damage to forest. Annual economic loss of wood volume was about 1.8 billion RMB Yuan and forest ecological benefit loss 16.2 billion in eleven provinces of south China. Acid deposition in south China was typical "sulfuric acid type". According to the thoughts of sustainable development, some strategies were brought forward as follows: (1) enhancing environmental management, specifying acid-controlling region, controlling and abating the total emission amount of SO2; (2) selecting practical energy technologies of clean coal, for example, cleansing and selecting coal, sulfur-fixed-type industrial briqutting, abating sulfur from waste gas and so on; (3) developing other energy sources to replace coal, including water electricity, atomic energy and the new energy such as solar energy, wind energy and so on; (4) in acid deposition region of south China, selecting acid-resistant type of crop and tree to decrease agricultural losses, planting more green fertilizer crops, using organic fertilizers and liming, in order to improve buffer capacities of soil.

  1. The Brown Tree Snake on Guam: How the Arrival of One Invasive Species Damaged the Ecology, Commerce, Electrical Systems and Human Health on Guam: A Comprehensive Information Source

    USGS Publications Warehouse

    Fritts, Thomas H.; Leasman-Tanner, Dawn

    2001-01-01

    Synopsis -- Shortly after World War II, and before 1952, the brown tree snake was accidentally transported from its native range in the South Pacific to Guam, probably as a stowaway in ship cargo. As a result of abnormally abundant prey resources on Guam and the absence of natural predators and other population controls, brown tree snake populations reached unprecedented numbers. Snakes caused the extirpation of most of the native forest vertebrate species; thousands of power outages affecting private, commercial, and military activities; widespread loss of domestic birds and pets; and considerable emotional trauma to residents and visitors alike when snakes invaded human habitats with the potential for severe envenomation of small children. Since Guam is a major transportation hub in the Pacific, numerous opportunities exist for the brown tree snakes on Guam to be introduced accidentally to other Pacific islands as passive stowaways in ship and air traffic from Guam. Numerous sightings of this species have been reported on other islands, and an incipient population is probably established on Saipan. It is important that people who may come in contact with the brown tree snake, particularly on neighboring islands and other high-risk sites, understand the scope of this problem and how to identify the snake so proper action can be taken. This resource has been developed to provide source materials on the history of the invasion, continuing threats, research results, and containment and management of the brown tree snake (Boiga irregularis) in Guam and its relevance to other islands and mild continental environments.

  2. Protecting the forests while allowing removal of damaged trees may imperil saproxylic insect biodiversity in the Hyrcanian Beech Forests of Iran

    Treesearch

    Müller Jörg; Thorn Simon; Baier Roland; Sagheb-Talebi Khosro; Barimani Hassan V.; Seibold Sebastian; Michael D. Ulyshen; Gossner Martin M.

    2015-01-01

    The 1.8 million ha of forest south of the Caspian Sea represent a remarkably intact ecosystem with numerous old-growth features and unique species assemblages. To protect these forests, Iranian authorities recently passed a law which protects healthy trees but permits the removal of injured, dying and dead trees. To quantify the biodiversity effects of this strategy,...

  3. Mean wind patterns and snow depths in an alpine-subalpine ecosystem as measured by damage to coniferous trees

    Treesearch

    G. L. Wooldridge; R. C. Musselman; R. A. Sommerfeld; D. G. Fox; B. H. Connell

    1996-01-01

    1. Deformations of Engelmann spruce and subalpine fir trees were surveyed for the purpose of determining climatic wind speeds and directions and snow depths in the Glacier Lakes Ecosystem Experiments Site (GLEES) in the Snowy Range of southeastern Wyoming, USA. Tree deformations were recorded at 50- and 100-m grid intervals over areas of c. 30 ha and 300 ha,...

  4. Arboreal seed removal and insect damage in three California oaks

    Treesearch

    Walter D. Koenig; Johannes M. H. Knops; William J. Carmen

    2002-01-01

    We investigated arboreal removal and insect damage to acorns in an undisturbed oak woodland in central coastal California. Arboreal seed removal was determined for four to eight individual Quercus lobata trees over a period of 14 years by comparing visual estimates of the acorn crop with the number of acorns caught in seed traps. Insect damage was...

  5. Incidence and impact of damage to Virginia's timber, 1986

    Treesearch

    Cindy M. Huber; Joe P. McClure; Noel D. Cost

    1987-01-01

    This bulletin reports survey data on agents damaging trees in Virginia's forests. Data were collected in 1984 and 1985 by the Forest Inventory and Analysis Work Unit of the Southeastern Forest Experiment Station. This effort was part of the fifth inventory of the State's forests. Damage information similiar to the previous survey was gathered for this...

  6. Phenotypic interactions between tree hosts and invasive forest pathogens in the light of globalization and climate change

    PubMed Central

    2016-01-01

    Invasive pathogens can cause considerable damage to forest ecosystems. Lack of coevolution is generally thought to enable invasive pathogens to bypass the defence and/or recognition systems in the host. Although mostly true, this argument fails to predict intermittent outcomes in space and time, underlining the need to include the roles of the environment and the phenotype in host–pathogen interactions when predicting disease impacts. We emphasize the need to consider host–tree imbalances from a phenotypic perspective, considering the lack of coevolutionary and evolutionary history with the pathogen and the environment, respectively. We describe how phenotypic plasticity and plastic responses to environmental shifts may become maladaptive when hosts are faced with novel pathogens. The lack of host–pathogen and environmental coevolution are aligned with two global processes currently driving forest damage: globalization and climate change, respectively. We suggest that globalization and climate change act synergistically, increasing the chances of both genotypic and phenotypic imbalances. Short moves on the same continent are more likely to be in balance than if the move is from another part of the world. We use Gremmeniella abietina outbreaks in Sweden to exemplify how host–pathogen phenotypic interactions can help to predict the impacts of specific invasive and emergent diseases. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’. PMID:28080981

  7. Phenotypic interactions between tree hosts and invasive forest pathogens in the light of globalization and climate change.

    PubMed

    Stenlid, Jan; Oliva, Jonàs

    2016-12-05

    Invasive pathogens can cause considerable damage to forest ecosystems. Lack of coevolution is generally thought to enable invasive pathogens to bypass the defence and/or recognition systems in the host. Although mostly true, this argument fails to predict intermittent outcomes in space and time, underlining the need to include the roles of the environment and the phenotype in host-pathogen interactions when predicting disease impacts. We emphasize the need to consider host-tree imbalances from a phenotypic perspective, considering the lack of coevolutionary and evolutionary history with the pathogen and the environment, respectively. We describe how phenotypic plasticity and plastic responses to environmental shifts may become maladaptive when hosts are faced with novel pathogens. The lack of host-pathogen and environmental coevolution are aligned with two global processes currently driving forest damage: globalization and climate change, respectively. We suggest that globalization and climate change act synergistically, increasing the chances of both genotypic and phenotypic imbalances. Short moves on the same continent are more likely to be in balance than if the move is from another part of the world. We use Gremmeniella abietina outbreaks in Sweden to exemplify how host-pathogen phenotypic interactions can help to predict the impacts of specific invasive and emergent diseases.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).

  8. How the timberline formed: altitudinal changes in stand structure and dynamics around the timberline in central Japan.

    PubMed

    Takahashi, Koichi; Hirosawa, Tatsuru; Morishima, Ryohei

    2012-05-01

    Altitudinal timberlines are thought to move upward by global warming, a crucial topic in ecology. Tall tree species (the conifer Abies mariesii and the deciduous broad-leaved Betula ermanii) dominate the sub-alpine zone between 1600 and 2500 m a.s.l., the timberline, on Mount Norikura in central Japan. Dwarf pine Pinus pumila dominates above the timberline to near the summit (3026 m a.s.l.). This study evaluated how the timberline formed on Mount Norikura by examining altitudinal changes in stand structure and dynamics around the timberline. One hundred and twenty-five plots of 10 m × 10 m were established around the timberline (2350-2600 m a.s.l.). Trunk diameter growth rate during 6 years was examined for A. mariesii, B. ermanii and P. pumila. Mortality during this period and mechanical damage scars on the trunks and branches due to strong wind and snow were examined for A. mariesii only. The density, maximum trunk height and diameter of A. mariesii in plots decreased with altitude. The maximum trunk height of B. ermanii decreased with altitude, but density and maximum trunk diameter did not decrease. In contrast, the density of P. pumila abruptly increased from around the timberline. A strong negative correlation was found between the densities of P. pumila and tall tree species, indicating their interspecific competition. Trunk diameter growth rates of A. mariesii and B. ermanii did not decrease with altitude, suggesting that these two tall tree species can grow at the timberline. The ratio of trees with mechanical damage scars increased with altitude for A. mariesii, a tendency more conspicuous for larger trees. The mortality of larger A. mariesii was also greater at higher altitude. Tall tree species may not increase their trunk height and survive around the timberline because of mechanical damage. This study suggests that the altitudinal location of the timberline is mainly affected by mechanical damage due to strong wind and snow rather than by growth limitation due to low temperature. Therefore, the timberline would not move upward even under global warming if these growth and mortality characteristics do not change for a long time.

  9. Molecular and morphological identification of  pistachio armored scale insects (Hemiptera: Diaspididae), with description of a new species.

    PubMed

    Hosseininaveh, Fatemeh; Nozari, Jamasb; Kaydan, Mehmet Bora; Hosseininaveh, Vahid

    2016-12-01

    Members of the family Diaspididae (Hemiptera: Coccomorpha) can be devastating pests that suck parenchyma cell contents from crops and cause severe damage to pistachio trees (Pistacia vera L.). The current research collected and characterized diaspidid species from pistachio orchards in Kerman province, Iran, according to their morphological and molecular features. Lepidosaphes pistaciae Archangelskaya, Suturaspis davatchi (Balachowsky & Kaussari) and Melanaspis inopinata (Leonardi) are redescribed and a new species, Melanaspis pistaciae Hosseininaveh & Kaydan sp. n., is described. Phylogenetic trees based on molecular analysis of COI and 28S rDNA fragments placed all the species in separated clades and confirmed M. pistaciae as a new taxon which is concluded by morphological differences. Molecular analysis suggests non-monophyly of the populations of each species. Melanaspis pistaciae sp. n. has spread to most cultivated pistachio areas in Iran and has probably been misidentified as M. inopinata in the past. Further investigation of the biology of this species may lead to development of more effective approaches for controlling this pest.

  10. Evaluation of synaptophysin as an immunohistochemical marker for equine grass sickness.

    PubMed

    Waggett, B E; McGorum, B C; Shaw, D J; Pirie, R S; MacIntyre, N; Wernery, U; Milne, E M

    2010-05-01

    It has been proposed that synaptophysin, an abundant integral membrane protein of synaptic vesicles, is an immunohistochemical marker for degenerating neurons in equine grass sickness (GS). In the present study, a statistically generated decision tree based on assessment of synaptophysin-immunolabelled ileal sections facilitated correct differentiation of all 20 cases of GS and 24 cases of non-GS disease (comprising eight horses with colic, six with neuroparalytic botulism and 10 controls). This technique also facilitated correct diagnosis of GS in all three cases that had been erroneously classified as having non-GS disease based on conventional interpretation of haematoxylin and eosin-stained cryostat sections of ileal surgical biopsies. Further prospective studies involving larger numbers of horses are required to fully validate this decision tree. In contrast to GS, botulism did not alter ileal neuron density or synaptophysin labelling, indicating that different mechanisms cause neuronal damage and/or dysfunction in GS and botulism. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Symbiont diversification in ambrosia beetles: Diversity of fungi associated with exotic scolytine beetles

    USDA-ARS?s Scientific Manuscript database

    In virtually every forest habitat, ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae) plant and maintain symbiotic fungus gardens inside dead or dying wood. Some introduced ambrosia beetles aggressively attack live trees and can damage tree crops, lumber, and native woody plant t...

  12. Beech root sprouts can be damaged by sodium arsenite treatment of parent tree

    Treesearch

    Frederick H. Berry

    1956-01-01

    American beech (Fagus grandifolia) can produce an abundance of root sprouts. In some cut-over woodlands, the sprouts occupy space that could be utilized by more desirable tree species. Therefore it seemed desirable to explore methods of destroying beech root sprouts.

  13. Irrigation and fertilization effects on Nantucket Pine Tip Moth (Lepidoptera: Tortricidae) Damage levels and pupal weight in an intensively-managed pine plantation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, David, R.; Nowak, John, T.; Fettig, Christopher, J.

    2003-10-01

    The widespread application of intensive forest management practices throughout the southeastern U.S. has increased loblolly pine, Pinus taeda L., yields and shortened conventional rotation lengths. Fluctuations in Nantucket pine tip moth, Rhyacionia frustrana (Comstock), population density and subsequent damage levels have been linked to variations in management intensity. We examined the effects of two practices, irrigation and fertilization, on R. frustrana damage levels and pupal weights in an intensively-managed P. taeda plantation in South Carolina. Trees received intensive weed control and one of the following treatments; irrigation only. fertilization only, irrigation + fertilization, or control. Mean whole-tree tip moth damagemore » levels ranged from <1 to 48% during this study. Damage levels differed significantly among treatments in two tip moth generations in 2001, but not 2000. Pupal weight was significantly heavier in fertilization compared to the irrigation treatment in 2000, but no significant differences were observed in 2001. Tree diameter. height. and aboveground volume were significantly greater in the irrigation + fertilization than in the irrigation treatment after two growing seasons. Our data suggest that intensive management practices that include irrigation and fertilization do not consistently increase R. frustrana damage levels and pupal weights as is commonly believed. However, tip moth suppression efforts in areas adjacent to our study may have partially reduced the potential impacts of R. frustrana on this experiment.« less

  14. October 1, 1989 tornado at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, M.J.; Kurzeja, R.J.

    1990-01-01

    A tornado with wind speeds in the 113 to 157 mph range struck the southern portion of the Savannah River Site near Aiken, SC at around 7:30 pm on October 1, 1989. The tornado was spawned from a severe thunderstorm with a height of 57,000 ft in a warm and humid air mass. Two million dollars in timber damage occurred over 2,500 acres along a ten-mile swath, but no onsite structural damage or personal injury occurred. Tree-fall patterns indicated that some of this damage was the result of thunderstorm downbursts which accompanied the tornado. Ground-based and aerial photography showed bothmore » snapped and mowed over trees which indicate that the tornado was elevated at times. 4 refs., 25 figs., 2 tabs.« less

  15. Tree Nut Allergies

    MedlinePlus

    ... Blog Vision Awards Common Allergens Tree Nut Allergy Tree Nut Allergy Learn about tree nut allergy, how ... a Tree Nut Label card . Allergic Reactions to Tree Nuts Tree nuts can cause a severe and ...

  16. Comparisons of protein profiles of beech bark disease resistant and susceptible American beech (Fagus grandifolia)

    PubMed Central

    2013-01-01

    Background Beech bark disease is an insect-fungus complex that damages and often kills American beech trees and has major ecological and economic impacts on forests of the northeastern United States and southeastern Canadian forests. The disease begins when exotic beech scale insects feed on the bark of trees, and is followed by infection of damaged bark tissues by one of the Neonectria species of fungi. Proteomic analysis was conducted of beech bark proteins from diseased trees and healthy trees in areas heavily infested with beech bark disease. All of the diseased trees had signs of Neonectria infection such as cankers or fruiting bodies. In previous tests reported elsewhere, all of the diseased trees were demonstrated to be susceptible to the scale insect and all of the healthy trees were demonstrated to be resistant to the scale insect. Sixteen trees were sampled from eight geographically isolated stands, the sample consisting of 10 healthy (scale-resistant) and 6 diseased/infested (scale-susceptible) trees. Results Proteins were extracted from each tree and analysed in triplicate by isoelectric focusing followed by denaturing gel electrophoresis. Gels were stained and protein spots identified and intensity quantified, then a statistical model was fit to identify significant differences between trees. A subset of BBD differential proteins were analysed by mass spectrometry and matched to known protein sequences for identification. Identified proteins had homology to stress, insect, and pathogen related proteins in other plant systems. Protein spots significantly different in diseased and healthy trees having no stand or disease-by-stand interaction effects were identified. Conclusions Further study of these proteins should help to understand processes critical to resistance to beech bark disease and to develop biomarkers for use in tree breeding programs and for the selection of resistant trees prior to or in early stages of BBD development in stands. Early identification of resistant trees (prior to the full disease development in an area) will allow forest management through the removal of susceptible trees and their root-sprouts prior to the onset of disease, allowing management and mitigation of costs, economic impact, and impacts on ecological systems and services. PMID:23317283

  17. A computer vision system for the recognition of trees in aerial photographs

    NASA Technical Reports Server (NTRS)

    Pinz, Axel J.

    1991-01-01

    Increasing problems of forest damage in Central Europe set the demand for an appropriate forest damage assessment tool. The Vision Expert System (VES) is presented which is capable of finding trees in color infrared aerial photographs. Concept and architecture of VES are discussed briefly. The system is applied to a multisource test data set. The processing of this multisource data set leads to a multiple interpretation result for one scene. An integration of these results will provide a better scene description by the vision system. This is achieved by an implementation of Steven's correlation algorithm.

  18. Errors in Site Index Determination Caused by Tree Age Variation in Even-Aged Oak Stands

    Treesearch

    Robert A. McQuilkin

    1975-01-01

    Age deviations of individual trees in even-aged oak stands in Missouri caused variations in the height growth patterns and site index estimates of these younger or older trees. A correction factor for site index estimates on these age-deviant trees is given.

  19. Application of data mining techniques to explore predictors of upper urinary tract damage in patients with neurogenic bladder.

    PubMed

    Fang, H; Lu, B; Wang, X; Zheng, L; Sun, K; Cai, W

    2017-08-17

    This study proposed a decision tree model to screen upper urinary tract damage (UUTD) for patients with neurogenic bladder (NGB). Thirty-four NGB patients with UUTD were recruited in the case group, while 78 without UUTD were included in the control group. A decision tree method, classification and regression tree (CART), was then applied to develop the model in which UUTD was used as a dependent variable and history of urinary tract infections, bladder management, conservative treatment, and urodynamic findings were used as independent variables. The urethra function factor was found to be the primary screening information of patients and treated as the root node of the tree; Pabd max (maximum abdominal pressure, >14 cmH2O), Pves max (maximum intravesical pressure, ≤89 cmH2O), and gender (female) were also variables associated with UUTD. The accuracy of the proposed model was 84.8%, and the area under curve was 0.901 (95%CI=0.844-0.958), suggesting that the decision tree model might provide a new and convenient way to screen UUTD for NGB patients in both undeveloped and developing areas.

  20. Modelling the influence of predicted future climate change on the risk of wind damage within New Zealand's planted forests.

    PubMed

    Moore, John R; Watt, Michael S

    2015-08-01

    Wind is the major abiotic disturbance in New Zealand's planted forests, but little is known about how the risk of wind damage may be affected by future climate change. We linked a mechanistic wind damage model (ForestGALES) to an empirical growth model for radiata pine (Pinus radiata D. Don) and a process-based growth model (cenw) to predict the risk of wind damage under different future emissions scenarios and assumptions about the future wind climate. The cenw model was used to estimate site productivity for constant CO2 concentration at 1990 values and for assumed increases in CO2 concentration from current values to those expected during 2040 and 2090 under the B1 (low), A1B (mid-range) and A2 (high) emission scenarios. Stand development was modelled for different levels of site productivity, contrasting silvicultural regimes and sites across New Zealand. The risk of wind damage was predicted for each regime and emission scenario combination using the ForestGALES model. The sensitivity to changes in the intensity of the future wind climate was also examined. Results showed that increased tree growth rates under the different emissions scenarios had the greatest impact on the risk of wind damage. The increase in risk was greatest for stands growing at high stand density under the A2 emissions scenario with increased CO2 concentration. The increased productivity under this scenario resulted in increased tree height, without a corresponding increase in diameter, leading to more slender trees that were predicted to be at greater risk from wind damage. The risk of wind damage was further increased by the modest increases in the extreme wind climate that are predicted to occur. These results have implications for the development of silvicultural regimes that are resilient to climate change and also indicate that future productivity gains may be offset by greater losses from disturbances. © 2015 John Wiley & Sons Ltd.

  1. Volcano ecology at Chaiten, Chile: geophysical processes interact with forest ecosystems

    NASA Astrophysics Data System (ADS)

    Swanson, F. J.; Crisafulli, C.; Jones, J. A.; Lara, A.

    2010-12-01

    The May 2008 eruption of Chaiten Volcano (Chile) offers many insights into volcano ecology -ecological responses to volcanic and associated hydrologic processes and ecosystem development in post-eruption landscapes. Varied intensities of pyroclastic density currents (PDC) and thickness of tephra fall deposits (to 50+ cm) created strong gradients of disturbance in several hundred square kilometers of native forest in a sector north to southeast from the volcano. A gradient from tree removal to toppled forest to standing, scorched forest extends 1.5 km northward from the caldera rim along the trajectory of a PDC. Close to the vent (e.g., 2 km NE from rim) a rain of ca. 10 cm of gravel tephra stripped foliage and twigs from tree canopies; farther away (23 km SE) 10 cm of fine tephra loaded the canopy, causing extensive fall of limbs >8 cm diameter. Even in the severely disturbed, north-flank PDC zone, surviving bamboo, ferns, and other herbs sprouted from pre-eruption soil and other refugia; sprouts of new foliage appeared on the boles and major limbs of several species of toppled and scorched, standing trees; animals including vertebrates (rodents and amphibians) and terrestrial invertebrates (e.g., insects and arachnids) either survived or quickly recolonized; and a diverse fungal community began decomposing the vast dead wood resource. During the second growing season we documented the presence of some plant species that had colonized by seed. Within two years after the eruption secondary ecological disturbances resulting from channel change and overbank deposition of fluvially transported tephra created new patches of damaged forest in riparian zones of streams draining the north flank and along the Rio Rayas and Rio Chaiten. These features parallel observations in the intensively-studied, post-1980-eruption landscape of Mount St. Helens over a similar time period. However, several aspects of ecological response to the two eruptions differ because of differences in biota and geophysical processes and products. For example, many tree species at Chaiten are angiosperms (i.e., broadleaf evergreen species) that have an ability to resprout following defoliation, whereas gymnosperms (conifers) that dominated the Mount St. Helens landscape perished immediately. The long-term persistence of severely damaged, but sprouting trees at Chaiten is unclear. Both sites appear to have “hot spots” and “cold spots” of rapid versus slow vegetation regeneration, influenced by initial patterns of survival and secondary disturbances. Many questions remain, such as the role of chemical deposition (e.g., HCl) in foliage damage in either eruption. Our experiences at Mount St. Helens and Chaiten highlight the value of observations made as early as possible after an eruption, long-term continuation of study, work in interdisciplinary teams, and establishment of basic protocols for volcano ecology study.

  2. A Global Perspective on Warmer Droughts as a Key Driver of Forest Disturbances and Tree Mortality (Invited)

    NASA Astrophysics Data System (ADS)

    Allen, C. D.

    2013-12-01

    Recent global warming, in concert with episodic droughts, is causing elevated levels of both chronic and acute forest water stress across large regions. Such increases in water stress affect forest dynamics in multiple ways, including by amplifying the incidence and severity of many significant forest disturbances, particularly drought-induced tree mortality, wildfire, and outbreaks of damaging insects and diseases. Emerging global-scale patterns of drought-related forest die-off are presented, including a newly updated map overview of documented drought- and heat-induced tree mortality events from around the world, demonstrating the vulnerability of all major forest types to forest drought stress, even in typically wet environments. Comparative patterns of drought stress and associated forest disturbances are reviewed for several regions (southwestern Australia, Inner Asia, western North America, Mediterranean Basin), including interactions among climate and various disturbance processes. From the Southwest USA, research is presented that derives a tree-ring-based Forest Drought Stress Index (FDSI) for the most regionally-widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii), demonstrating recent escalation of FDSI to extreme levels relative to the past 1000 years, due to both drought and especially warming. This new work further highlights strong correlations between drought stress and amplified forest disturbances (fire, bark beetle outbreaks), and projects that by CE 2050 anticipated regional warming will cause mean FDSI values to reach historically unprecedented levels that may exceed thresholds for the survival of current tree species in large portions of their current range in the Southwest. Similar patterns of recent climate-amplified forest disturbance risk are apparent from a variety of relatively dry regions across this planet, and given climate projections for substantially warmer temperatures and greater drought stress for many areas globally, the growing water-stress risks to forest health in such regions are becoming clearer. However, the effects of drought stress on forest dynamics are ameliorated through diverse compensatory and resilience-enhancing mechanisms and processes which operate at scales ranging from intracellular tree physiologies and individual tree developmental and morphological adjustments to species population-level demographic and genetic responses to forest stand-level structural and compositional responses up to landscape-scale tree host-insect pest outbreak dynamics and forest-climate ecohydrological feedbacks. In addition, significant uncertainties exist regarding how various other global atmospheric changes (e.g., CO2 enrichment, increased N deposition, and elevated surface-level ozone) will interact with the world's diverse spectrum of tree species to also affect global forest dynamics. Research efforts to address such core scientific uncertainties associated with modeling drought-induced tree mortality and resultant forest dynamics will be discussed.

  3. Toward the development of survey trapping technology for the emerald ash borer

    Treesearch

    Therese Poland; Damon Crook; Joseph Francese; Jason Oliver; Gard Otis; Peter De Groot; Gary Grant; Linda MacDonald; Deborah McCullough; Ivich Fraser; David Lance; Victor Mastro; Nadeer Youssef; Tanya Turk; Melodie Youngs

    2007-01-01

    Improved survey tools are essential for accurately delimiting the infestation of emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) and for detecting new infestations. Current survey methods including visual surveys for damage, girdled trap trees, and trunk dissections are less than ideal because newly infested trees...

  4. Relating lightning data to fire occurrence data

    Treesearch

    Frank H. Koch

    2009-01-01

    Lightning disturbance can affect forest health at various scales. Lightning strikes may kill or weaken individual trees. Lightning-damaged trees may in turn function as epicenters of pest outbreaks in forest stands, as is the case with the southern pine beetle and other bark beetles (Rykiel and others 1988).

  5. Sugar maple seed production in northern New Hampshire

    Treesearch

    Peter W. Garrett; Raymond E. Graber

    1995-01-01

    Large numbers of sugar maple seed are dispersed every second or third year. Very little seed was damaged by insects or mammals prior to dispersal. The trapping methods used prevented major losses following seed fall. Seed production was positively correlated with tree diameter but not with age of seed trees.

  6. A Lingering Miseducation: Confronting the Legacy of "Little Tree."

    ERIC Educational Resources Information Center

    Justice, Daniel Heath

    2000-01-01

    The popular book, "The Education of Little Tree," written by a Ku Klux Klansman, perpetuates popular stereotypes about American Indians and advances the author's ideology about segregation and staunch individualism. This type of fraud is especially damaging to children, both White and Indian, who internalize such stereotypes as more…

  7. Fungi and diseases - natural components of healthy forests

    Treesearch

    M. E. Ostry; G. Laflamme

    2009-01-01

    Forest health is described and perceived in different ways by the general public, land owners, managers, politicians, and scientists, depending on their values and objectives. Native tree pathogens and diseases are often associated with negative impacts even though damage is limited or not widespread. Too often, the concepts of tree...

  8. Urban tree influences on ultraviolet irradiance

    Treesearch

    Gordon M. Heisler; Richard H. Grant; Wei Gao

    2002-01-01

    Many of the effects of ultraviolet radiation (UVR) on people and their environment - damage to various materials, survival of insects and microbial pathogens, growth of vegetation, and adverse or beneficial effects on human health - are modified by the presence of trees. Human epidemiological investigations generally consider exposure as given by indices of UVR...

  9. The relationship between the emerald ash borer (Agrilus planipennis) and ash (Fraxinus spp.) tree decline: Using visual canopy condition assessments and leaf isotope measurements to assess pest damage

    Treesearch

    Charles E. Flower; Kathleen S. Knight; Joanne Rebbeck; Miquel A. Gonzalez-Meler

    2013-01-01

    Ash trees (Fraxinus spp.) in North America are being severely impacted by the invasive emerald ash borer (Agrilus planipennis Fairmaire) which was inadvertently introduced to the US in the 1990s from Asia. The emerald ash borer (EAB) is a phloem boring beetle which relies exclusively on ash trees to complete its life cycle. Larvae...

  10. Ability of field populations of Coptotermes spp., Reticulitermes flavipes, and Mastotermes darwiniensis (Isoptera: Rhinotermitidae; Mastotermitidae) to damage plastic cable sheathings.

    PubMed

    Lenz, Michael; Kard, Brad; Creffield, James W; Evans, Theodore A; Brown, Kenneth S; Freytag, Edward D; Zhong, Jun-Hong; Lee, Chow-Yang; Yeoh, Boon-Hoi; Yoshimura, Tsuyoshi; Tsunoda, Kunio; Vongkaluang, Charunee; Sornnuwat, Yupaporn; Roland, Ted A; de Santi, Marie Pommier

    2013-06-01

    A comparative field study was conducted to evaluate the ability of subterranean termites to damage a set of four different plastic materials (cable sheathings) exposed below- and above-ground. Eight pest species from six countries were included, viz., Coptotermes formosanus (Shiraki) in China, Japan, and the United States; Coptotermes gestroi (Wasmann) in Thailand and Malaysia; Coptotermes curvignathus (Holmgren) and Coptotermes kalshoveni (Kemner) in Malaysia; Coptotermes acinaciformis (Froggatt) with two forms of the species complex and Mastotermes darwiniensis (Froggatt) in Australia; and Reticulitermes flavipes (Kollar) in the United States. Termite species were separated into four tiers relative to decreasing ability to damage plastics. The first tier, most damaging, included C. acinaciformis, mound-building form, and M. darwiniensis, both from tropical Australia. The second tier included C. acinaciformis, tree-nesting form, from temperate Australia and C. kalshoveni from Southeast Asia. The third tier included C. curcignathus and C. gestroi from Southeast Asia and C. formosanus from China, Japan, and the United States, whereas the fourth tier included only R. flavipes, which caused no damage. A consequence of these results is that plastics considered resistant to termite damage in some locations will not be so in others because of differences in the termite fauna, for example, resistant plastics from the United States and Japan will require further testing in Southeast Asia and Australia. However, plastics considered resistant in Australia will be resistant in all other locations.

  11. Hurricane Harvey: Infrastructure Damage Assessment of Texas' Central Gulf Coast Region

    NASA Astrophysics Data System (ADS)

    Mooney, W. D.; Fovenyessy, S.; Patterson, S. F.

    2017-12-01

    We report a detailed ground-based damage survey for Hurricane Harvey, the first major hurricane to make landfall along the central Texas coast since the 1970 Category 3 Hurricane Celia. Harvey, a Category 4 storm, made landfall near Rockport, Texas on August 25th, 2017 at 10 PM local time. From September 2nd to 5th we visited Rockport and 22 nearby cities to assess the severity of the damage. Nearly all damage observed occurred as a direct result of the hurricane-force winds, rather than a storm surge. This observation is in contrast to the severe damage caused by both high winds and a significant storm surge, locally 3 to 5 m in height, in the 2013 Category 5 Hurricane Haiyan, that devastated the Philippines. We have adopted a damage scale and have given an average damage score for each of the areas investigated. Our damage contour map illustrates the areal variation in damage. The damage observed was widespread with a high degree of variability. Different types of damage included: (1) fallen fences and utility poles; (2) trees with branches broken or completely snapped in half; (3) business signs that were either partially or fully destroyed; (4) partially sunken or otherwise damaged boats; (5) and sheet metal sheds either completely or partially destroyed. There was also varying degrees of damage to both residential and commercial structures. Many homes had (6) roof damage, ranging from minor damage to complete destruction of the roof and second story, and (7) siding damage, where parts or whole sections of the homes siding had been removed. The area that had the lowest average damage score was Corpus Christi, and the areas that had the highest average damage score was both Fulton and Holiday Beach. There is no simple, uniform pattern of damage distribution. Rather, the damage was scattered, revealing hot spots of areas that received more damage than the surrounding area. However, when compared to the NOAA wind swath map, all of the damage was contained within the zone of highest wind speed.

  12. Heavy snowfall damage Virginia pine

    Treesearch

    Richard H. Fenton

    1959-01-01

    In the Coastal Plain from Virginia to Pennsylvania, snowstorms heavy enough to damage trees are unusual. Weather Bureau records for the general area show that heavy snowfall - 8 to 25 inches in a single storm - occurs at an average frequency of about once in 7 years.

  13. Relationships between common forest metrics and realized impacts of Hurricane Katrina on forest resources in Mississippi

    Treesearch

    Sonja N. Oswalt; Christopher M. Oswalt

    2008-01-01

    This paper compares and contrasts hurricane-related damage recorded across the Mississippi landscape in the 2 years following Katrina with initial damage assessments based on modeled parameters by the USDA Forest Service. Logistic and multiple regressions are used to evaluate the influence of stand characteristics on tree damage probability. Specifically, this paper...

  14. Windstorm damage in Boundary Waters Canoe Area Wilderness (Minnesota, USA): Evaluating landscape-level risk factors

    Treesearch

    W. Keith Moser; Mark D. Nelson

    2009-01-01

    Ecosystem management requires an understanding of disturbance processes and their influence on forests. One of these disturbances is damage due to severe wind events. In an ideal model, assessing risk of windstorm damage to a forested ecosystem entails defining tree-, stand-, and landscape-level factors that influence response and recovery. Data are not always...

  15. Black bear damage to northwestern conifers in California: a review

    Treesearch

    Kenneth O. Fulgham; Dennis Hosack

    2017-01-01

    A total of 789 black bear damaged trees were investigate over a multi-year period on 14 different study sites chosen on lands of four participating timber companies. The sites ranged from 30 to 50 years of age. Four different conifer species were found to have black bear damage: coastal redwood (Sequoia sempervirens (D. Don) Endl.), Douglas-fir (...

  16. Residual tree damage during selection cuts using two skidding systems in the Missouri Ozarks

    Treesearch

    Robert L. Ficklin; John P. Dwyer; Bruce E. Cutter; Tom Draper

    1997-01-01

    Today, there is an interest in using alternative silvicultural systems like selection and two-aged management, because the public finds these systems more acceptable than clearcutting. However, repeated entries into forest stands to remove timber increase the risk of residual stand damage. Harvest techniques are desirable that (1) reduce the risk of stand damage and (2...

  17. Seed tolerance to predation: Evidence from the toxic seeds of the buckeye tree (Aesculus californica; Sapindaceae).

    PubMed

    Mendoza, Eduardo; Dirzo, Rodolfo

    2009-07-01

    Tolerance, the capacity of plants to withstand attack by animals, as opposed to resistance, has been poorly examined in the context of seed predation. We investigated the role that the seed mass of the large-seeded endemic tree Aesculus californica plays as a tolerance trait to rodent attack by comparing, under greenhouse conditions, patterns of germination, and subsequent seedling growth, of seeds with a wide range of natural damage. Germination percentage was reduced by 50% and time to germination by 64% in attacked compared to intact seeds, and germination probability was negatively correlated with damage. Seedlings that emerged from intact seeds were taller and bore more leaves than those from damaged seeds. This species' large seed mass favors tolerance to damage because heavily damaged seeds are able to germinate and produce seedlings. This finding is significant given that seeds of this species are known to contain chemical compounds toxic to vertebrates, a resistance trait. We posit that this combination of tolerance and resistance traits might be a particularly effective antipredation strategy when seeds are exposed to a variety of vertebrate predators.

  18. Vegetation Disturbance and Recovery Following a Rare Windthrow Event in the Great Smoky Mountains National Park

    NASA Astrophysics Data System (ADS)

    Bernardes, S.; Madden, M.

    2016-06-01

    The tornado outbreak of April 2011 in the Southeastern United States caused major damage to property and natural ecosystems. During the outbreak, the Great Smoky Mountains National Park (GRSM) was hit by an EF4 tornado, resulting in a long strip of broken branches and toppled old-growth forest trees. Little is known of the consequences of extreme windthrow events, partly due to limitations in characterizing and monitoring wind-driven vegetation disturbance and recovery over large areas and over time. This work analyzed vegetation damage in the GRSM resulting from the 2011 tornado outbreak and monitored vegetation recovery in the region over a four-year period. Anomalies of the Enhanced Vegetation Index (EVI) calculated using Landsat scenes showed that the 2011 tornado affected 21.38 km2 of forest, including submesic to mesic oak/hardwoods, Southern Appalachian cove hardwood forests and montane alluvial forests. Tornado damage severity was mapped and investigated by using anomalies of EVI over space and time and showed track discontinuity and significant variation in damage intensity along the tornado track, suggesting vortex-topography interactions. Temporal profiles and spatial representations of EVI anomalies for the period 2011-2015 indicated that EVI in 2015 was above pre-event values, indicating homogeneous canopy and lack of vertical structure during regrowth.

  19. [Mirizzi's syndrome. Evaluation of 3 cases].

    PubMed

    Garavello, A; Manfroni, S; Bellanova, G; Antonellis, D

    2004-01-01

    Evaluation of three cases of Mirizzi's syndrome (MS), a rare condition of non neoplastic biliary tree obstruction. We reviewed three cases of MS, operated from July 1998 to December 2000 in our institution. All patients were preoperatively evaluated by clinical examination, Ultrasound (US) and Endoscopic retrograde colangiopancreatography (CPRE) for jaundice. Computed Tomography (TC) was also performed in two. Abdominal pain was the main symptom in two patients, jaundice in one (17 mg/dl); Courvoisier-Terrier sign, suggestive for a biliopancreatic neoplasm, was present in two patients. US was sensitive for gallbladder stones and biliary tree dilatation but not specific for MS; TC only excluded a malignancy in the biliopancreatic area but wasn't useful for diagnosis. CPRE visualized a gallbladder stone obstructing the biliary tree in two cases, but failed to show the fistula between gallbladder and hepatic duct in one. Operations were performed with an "open" approach; in two patients colecystectomy was sufficient to relieve the obstruction, in one patient the biliary fistula was closed with a gallbladder tissue flap over a T tube. Mirizzi's syndrome is a rare condition, but surgeons must be aware of it, particularly in the laparoscopic era were dissection of the Calot triangle may lead to a damage of the hepatic duct. Suspect of MS is mandatory in all cases of jaundice with non neoplastic biliary obstruction. Preoperative diagnosis of MS is not easy; US is sensitive for gallbladder stone and biliary tree dilatation, but not specific for choledochal stone compression and biliobiliary fistula. TC is useful for exclusion of pancreatic or liver neoplasms but is non specific for MS. CPRE represents the "gold" standard for MS, showing the hepatic duct compression caused by the stone impacted in gallbladder neck. CPRE is not only diagnostic but also operative; sphyncterotomy and stones extraction give a temporary relief of hyerbilirubinemia waiting for operation. When only a gallbladder stone causing the biliary tree obstruction is found simple cholecystectomy is curative, but a large colecysto-choledocal fistula needs a biliary tree reconstruction, also with a bilio-digestive anastomosis. Mirizzi syndrome is a rare condition, but surgeons must be aware of it. Surgical approach to MS in the "laparoscopic era" may be complicated by the presence of a colecysto-biliary fistula; in these cases dissection of the Calot triangle may difficult or impossible. When a MS is suspected the "open" approach is preferable, also for the reconstruction of biliary tree. CPRE is the most important diagnostic tool, showing the stone compressing the biliary tree.

  20. High-Throughput Sequencing Reveals Drastic Changes in Fungal Communities in the Phyllosphere of Norway Spruce (Picea abies) Following Invasion of the Spruce Bud Scale (Physokermes piceae).

    PubMed

    Menkis, Audrius; Marčiulynas, Adas; Gedminas, Artūras; Lynikienė, Jūratė; Povilaitienė, Aistė

    2015-11-01

    The aim of this study was to assess the diversity and composition of fungal communities in damaged and undamaged shoots of Norway spruce (Picea abies) following recent invasion of the spruce bud scale (Physokermes piceae) in Lithuania. Sampling was done in July 2013 and included 50 random lateral shoots from ten random trees in each of five visually undamaged and five damaged 40-50-year-old pure stands of P. abies. DNA was isolated from 500 individual shoots, subjected to amplification of the internal transcribed spacer of fungal ribosomal DNA (ITS rDNA), barcoded and sequenced. Clustering of 149,426 high-quality sequences resulted in 1193 non-singleton contigs of which 1039 (87.1 %) were fungal. In total, there were 893 fungal taxa in damaged shoots and 608 taxa in undamaged shoots (p < 0.0001). Furthermore, 431 (41.5 %) fungal taxa were exclusively in damaged shoots, 146 (14.0 %) were exclusively in undamaged shoots, and 462 (44.5 %) were common to both types of samples. Correspondence analysis showed that study sites representing damaged and undamaged shoots were separated from each other, indicating that in these fungal communities, these were largely different and, therefore, heavily affected by P. piceae. In conclusion, the results demonstrated that invasive alien tree pests may have a profound effect on fungal mycobiota associated with the phyllosphere of P. abies, and therefore, in addition to their direct negative effect owing physical damage of the tissue, they may also indirectly determine health, sustainability and, ultimately, distribution of the forest tree species.

  1. Red Pine Pocket Mortality - Unknown Cause (Pest Alert)

    Treesearch

    USDA Forest Service

    1985-01-01

    Continuing mortality of red pine from an unknown cause has been observed in 30 to 40 year old plantations in southern and west central Wisconsin. A single tree or small group of trees die, followed by mortality of adjacent trees. These circular pockets of dead trees expand up to 0.3 acre per year.

  2. Characterizing Damage of Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) in Blueberries.

    PubMed

    Wiman, Nik G; Parker, Joyce E; Rodriguez-Saona, Cesar; Walton, Vaughn M

    2015-06-01

    Brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is a severe economic pest of growing importance in the United States, Canada, and Europe. While feeding damage from H. halys has been characterized in tree fruit, vegetables, and agronomic crops, less is known about the impacts of stink bugs on small fruits such as blueberries. In this study, we examined H. halys feeding on two representative early and late ripening blueberry cultivars in Oregon and New Jersey. This research examined how different densities of H. halys confined on blueberry clusters for week-long periods affected fruit quality at harvest. After fruit were ripe, we stained and quantified the number of salivary sheaths on berries as an indication of feeding pressure. Feeding by H. halys damaged the fruits by causing increased levels of external discoloration, and internal damage in the form of tissue necrosis. Exposure of berries to H. halys was also associated with decreasing berry weights and lower soluble solids in fruits. However, the different cultivars did not respond consistently to feeding pressure from H. halys. Weekly variability in feeding pressure of two of the cultivars as quantified by the number of stylet sheaths per berry was largely accounted for by environmental variables. We conclude that H. halys does have potential to severely damage blueberries and may become an important economic pest. Characterization of damage is important because correct identification of insect damage is key for successful management. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Observations and laboratory simulations of tornadoes in complex topographical regions

    NASA Astrophysics Data System (ADS)

    Karstens, Christopher Daniel

    Aerial photos taken along the damage paths of the Joplin, MO, and Tuscaloosa-Birmingham, AL, tornadoes of 2011 captured and preserved several unique patterns of damage. In particular, a few distinct tree-fall patterns were noted along the Tuscaloosa-Birmingham tornado track that appeared highly influenced by the underlying topography. One such region was the focus of a damage survey and motivated laboratory vortex simulations with a 3-D foam representation of the underlying topography, in addition to simulations performed with idealized 2D topographic features, using Iowa State University's tornado simulator. The purpose of this dissertation is to explore various aspects related to the interaction of a tornado or a tornado-like vortex with its underlying topography. Three topics are examined: 1) Analysis of tornado-induced tree-fall using aerial photography from the Joplin, MO, and Tuscaloosa-Birmingham, AL, tornadoes of 2011, 2) Laboratory investigation of topographical influences on a simulated tornado-like vortex, and 3) On the use of non-standard EF-scale damage indicators to categorize tornadoes.

  4. Reconstruction of glacial lake outburst floods in northern Tien Shan: Implications for hazard assessment

    NASA Astrophysics Data System (ADS)

    Zaginaev, V.; Ballesteros-Cánovas, J. A.; Erokhin, S.; Matov, E.; Petrakov, D.; Stoffel, M.

    2016-09-01

    Glacier lake outburst floods (GLOFs) and related debris flows are among the most significant natural threats in the Tien Shan Mountains of Kyrgyzstan and have even caused the loss of life and damage to infrastructure in its capital Bishkek. An improved understanding of the occurrence of this process is essential so as to be able to design reliable disaster risk reduction strategies, even more so in view of ongoing climate change and scenarios of future evolutions. Here, we apply a dendrogeomorphic approach to reconstruct past debris-flow activity on the Aksay cone (Ala-Archa valley, Kyrgyz range), where outbursting glacier lakes and intense rainfalls have triggered huge debris flows over the past decades. A total of 96 Picea abies (L.) Karst. trees growing on the cone and along the main channel have been selected based on the evidence of past debris-flow damage in their trunks; these trees were then sampled using increment borers. The dating of past events was based on the assessment of growth disturbances (GD) in the tree-ring records and included the detection of injuries, tangential rows of traumatic resin ducts, reaction wood, and abrupt growth changes. In total, 320 GD were identified in the tree-ring samples. In combination with aerial imagery and geomorphic recognition in the field, reactions in trees and their position on the cone have allowed reconstruction of the main spatial patterns of past events on the Aksay cone. Our findings suggest that at least 27 debris flows have occurred on the site between 1877 and 2015 and point to the occurrence of at least 17 events that were not documented prior to this study. We also observe high process activity during the 1950s and 1960s, with major events on the cone in 1950, 1966, and 1968, coinciding with phases of slight glacier advance. The spatial analyses of events also point to two different spatial patterns, suggesting that quite dissimilar magnitudes probably occurred during glacier lake outburst floods and rainfall-induced debris-flow events. The results presented here represent the longest, annually resolved GLOF series in the region, which in turn has key implications on risk assessment, not just in the Ala-Archa valley, but also in the entire Kyrgyz range (northern Tien Shan).

  5. Causes of mortality of red-cockaded woodpecker cavity trees

    Treesearch

    Richard N. Conner; D. Craig Rudolph; David L. Kulhavy; Ann E. Snow

    1991-01-01

    Over a 13-year period we examined the mortality of cavity trees (n = 453) used by red-cockaded woodpeckers (Picoides borealis) on national forests in eastern Texas. Bark beetles (53%), wind snap (30%), and fire (7%) were the major causes of cavity tree mortality. Bark beetles were the major cause of mortality in loblolly (Pinus taeda...

  6. Forest Health Monitoring in Vermont, 1996-1999

    Treesearch

    Northeastern Research Station

    2002-01-01

    Vermont forests vary in size and age class. Trees are distributed evenly between hardwood and softwood species but hardwood dominated the seedling sample. Most of the trees are healthy, with full crowns (low transparency, high density), little dieback and little damage. White and green ash had higher transparencies and lower crown densities possibly explained by the...

  7. Black Turpentine Beetle Infestations After Thinning in a Loblolly Pine Plantation

    Treesearch

    D.P. Feduccia; W.F. Mann

    1975-01-01

    Black turpentine beetle infestations can be reduced substantially by minimizing injuries to residual trees during logging and avoiding harvesting on waterlogged soils to prevent excessive root damage. After thinning, losses can be minimized by spraying visibly injured trees with lindane immediatly, checking susceptible stands frequently for infestations, and applyling...

  8. Dreyfusia nordmannianae in Northern and Central Europe: potential for biological control and comments on its taxonomy

    Treesearch

    H.P. Ravn; N.P. Havill; S. Akbulut; R.G. Foottit; M. Serin; M. Erdem; S. Mutun; M. Kenis

    2013-01-01

    The silver fir woolly adelgid, Dreyfusia nordmannianae, is the most severe pest occurring on Abies nordmanniana in Central and Northern Europe. The adelgid is particularly damaging to trees in Christmas tree plantations. Dreyfusia nordmannianae is native to the Caucasus region and alien to Europe, where its...

  9. Phylogenetic prediction of Alternaria leaf blight resistance in wild and cultivated species of carrots (Daucus, Apiaceae)

    USDA-ARS?s Scientific Manuscript database

    Plant scientists make inferences and predictions from phylogenetic trees to solve scientific problems. Crop losses due to disease damage is an important problem that many plant breeders would like to solve, so the ability to predict traits like disease resistance from phylogenetic trees derived from...

  10. The efficacy of salvage logging in reducing subsequent fire severity in conifer-dominated forests of Minnesota, U.S.A.

    PubMed

    Fraver, Shawn; Jain, Theresa; Bradford, John B; D'Amato, Anthony W; Kastendick, Doug; Palik, Brian; Shinneman, Doug; Stanovick, John

    2011-09-01

    Although primarily used to mitigate economic losses following disturbance, salvage logging has also been justified on the basis of reducing fire risk and fire severity; however, its ability to achieve these secondary objectives remains unclear. The patchiness resulting from a sequence of recent disturbances-blowdown, salvage logging, and wildfire-provided an excellent opportunity to assess the impacts of blowdown and salvage logging on wildfire severity. We used two fire-severity assessments (tree-crown and forest-floor characteristics) to compare post-wildfire conditions among three treatment combinations (Blowdown-Salvage-Fire, Blowdown-Fire, and Fire only). Our results suggest that salvage logging reduced the intensity (heat released) of the subsequent fire. However, its effect on severity (impact to the system) differed between the tree crowns and forest floor: tree-crown indices suggest that salvage logging decreased fire severity (albeit with modest statistical support), while forest-floor indices suggest that salvage logging increased fire severity. We attribute the latter finding to the greater exposure of mineral soil caused by logging operations; once exposed, soils are more likely to register the damaging effects of fire, even if fire intensity is not extreme. These results highlight the important distinction between fire intensity and severity when formulating post-disturbance management prescriptions.

  11. The efficacy of salvage logging in reducing subsequent fire severity in conifer-dominated forests of Minnesota, USA

    USGS Publications Warehouse

    Fraver, S.; Jain, T.; Bradford, J.B.; D'Amato, A.W.; Kastendick, D.; Palik, B.; Shinneman, D.; Stanovick, J.

    2011-01-01

    Although primarily used to mitigate economic losses following disturbance, salvage logging has also been justified on the basis of reducing fire risk and fire severity; however, its ability to achieve these secondary objectives remains unclear. The patchiness resulting from a sequence of recent disturbances-blowdown, salvage logging, and ildfire- provided an excellent opportunity to assess the impacts of blowdown and salvage logging on wildfire severity. We used two fire-severity assessments (tree-crown and forest-floor characteristics) to compare post-wildfire conditions among three treatment combinations (Blowdown-Salvage-Fire, Blowdown-Fire, and Fire only). Our results suggest that salvage logging reduced the intensity (heat released) of the subsequent fire. However, its effect on severity (impact to the system) differed between the tree crowns and forest floor: tree-crown indices suggest that salvage logging decreased fire severity (albeit with modest statistical support), while forest-floor indices suggest that salvage logging increased fire severity. We attribute the latter finding to the greater exposure of mineral soil caused by logging operations; once exposed, soils are more likely to register the damaging effects of fire, even if fire intensity is not extreme. These results highlight the important distinction between fire intensity and severity when formulating post-disturbance management prescriptions. ?? 2011 by the Ecological Society of America.

  12. Variation in plant defense against invasive herbivores: evidence for a hypersensitive response in eastern hemlocks (Tsuga canadensis).

    PubMed

    Radville, Laura; Chaves, Arielle; Preisser, Evan L

    2011-06-01

    Herbivores can trigger a wide array of morphological and chemical changes in their host plants. Feeding by some insects induces a defensive hypersensitive response, a defense mechanism consisting of elevated H(2)O(2) levels and tissue death at the site of herbivore feeding. The invasive hemlock woolly adelgid Adelges tsugae ('HWA') and elongate hemlock scale Fiorinia externa ('EHS') feed on eastern hemlocks; although both are sessile sap feeders, HWA causes more damage than EHS. The rapid rate of tree death following HWA infestation has led to the suggestion that feeding induces a hypersensitive response in hemlock trees. We assessed the potential for an herbivore-induced hypersensitive response in eastern hemlocks by measuring H(2)O(2) levels in foliage from HWA-infested, EHS-infested, and uninfested trees. Needles with settled HWA or EHS had higher H(2)O(2) levels than control needles, suggesting a localized hypersensitive plant response. Needles with no direct contact to settled HWA also had high H(2)O(2) levels, suggesting that HWA infestation may induce a systemic defense response in eastern hemlocks. There was no similar systemic defensive response in the EHS treatment. Our results showed that two herbivores in the same feeding guild had dramatically different outcomes on the health of their shared host.

  13. Methodological Aspects of the Potential Use of Dendrochronological Techniques When Analyzing the Long-Term Impact of Tourism on Protected Areas.

    PubMed

    Ciapała, Szymon; Adamski, Paweł

    2015-01-01

    Intensification of pedestrian tourism causes damage to trees near tourist tracks, and likewise changes the soil structure. As a result, one may expect that annual amount of trees growing near tracks is significantly lower than deeper in the forest. However, during the study of the long-term impact of tourism on the environment (determined from tree increment dynamics), some methodological problems may occur. It is particularly important in protected areas where law and administrative regulations related to nature conservation force research to be conducted using small samples. In this paper we have analyzed the data collected in the Polish part of the Tatra National Park in the two study plots divided into two zones each: the area directly under the influence of the tourist's trampling and the control group. The aim of such analyses was to present the potential effects of the factors which may affect the results of dendrochronological analysis: (i) small size of samples that affects their representativeness, (ii) spatial differences in the rates of the process, as a result of spatial variability of environmental factors and (iii) temporal differences in the rates of the process. This study confirms that the factors mentioned above could significantly influence the results and should be taken into consideration during the analysis.

  14. Differential ecophysiological responses and resilience to heat wave events in four co-occurring temperate tree species

    NASA Astrophysics Data System (ADS)

    Guha, Anirban; Han, Jimei; Cummings, Cadan; McLennan, David A.; Warren, Jeffrey M.

    2018-06-01

    Extreme summer heat waves are known to induce foliar and stem mortality in temperate forest ecosystems, yet our mechanistic knowledge of physiological thresholds for damage is lacking. Current spatiotemporal simulations of forest growth responses to climate change fail to explain the variability between co-occurring tree species to climate extremes, indicating a need for new model frameworks that include mechanistic understanding of trait-specific responses. In this context, using manipulative heat wave (hw) experiments we investigated ecophysiological responses and physiological recovery in four co-occurring temperate tree species of the southeastern United States including three deciduous angiosperms: southern red oak (Quercus falcata Michx.), shumard oak (Q. shumardii Buckl.) and, tulip-poplar (Liriodendron tulipifera L.) and one evergreen conifer: eastern white pine (Pinus strobus L.). The objectives were to investigate inter-specific differences in ecophysiological responses to hw events to understand mechanistic differences in resilience that may be useful for future model development. Two-year-old, well-irrigated potted saplings were exposed to progressively increasing extreme hw diurnal cycles followed by a recovery cycle, with peak midday air temperature increasing from 37 °C to a maximum of 51 °C on the third day of the hw. Plants were assessed for various photosynthetic and water use responses, chlorophyll fluorescence and photosystem-II (PSII) activity, leaf temperature and foliar pigments. Intense heat caused progressive down-regulation in net photosynthesis, but the stomata remained operational, which helped cool leaves through loss of latent heat. Even though whole plant transpiration increased for all species, the rate plateaued at higher hw events that allowed leaf temperature to exceed 45 °C, well beyond the optimal range. A significant increase in non-photochemical quenching over the hw cycles was evident in all species though indications of both transient and chronic PSII damage were evident in the most heat sensitive species, pine and tulip poplar. The oaks, especially Q. falcata, showed greater thermotolerance than other species with a higher threshold for photodamage to PSII, rapid overnight recovery of photoinhibition and minimal heat-induced canopy necrosis. We conclude that these co-occurring tree species exhibit large variability in thermotolerance and in their capability to repair both transient and chronic photodamage. Our results indicate that extreme heat induced damage to PSII within the leaf chloroplasts may be a mechanistic trait that can be used to project how different species respond to extreme weather events.

  15. Native plant diversity increases herbivory to non-natives

    PubMed Central

    Pearse, Ian S.; Hipp, Andrew L.

    2014-01-01

    There is often an inverse relationship between the diversity of a plant community and the invasibility of that community by non-native plants. Native herbivores that colonize novel plants may contribute to diversity–invasibility relationships by limiting the relative success of non-native plants. Here, we show that, in large collections of non-native oak trees at sites across the USA, non-native oaks introduced to regions with greater oak species richness accumulated greater leaf damage than in regions with low oak richness. Underlying this trend was the ability of herbivores to exploit non-native plants that were close relatives to their native host. In diverse oak communities, non-native trees were on average more closely related to native trees and received greater leaf damage than those in depauperate oak communities. Because insect herbivores colonize non-native plants that are similar to their native hosts, in communities with greater native plant diversity, non-natives experience greater herbivory. PMID:25232143

  16. Influence of Environmental Pollution on Leaf Properties of Urban Plane Trees, Platanus orientalis L.

    PubMed Central

    Pourkhabbaz, Alireza; Rastin, Nayerah; Olbrich, Andrea; Langenfeld-Heyser, Rosemarie

    2010-01-01

    To investigate whether leaves of plane trees (Platanus orientalis) are damaged by traffic pollution, trees from a megacity (Mashhad, Iran) and a rural area were investigated. Soil and air from the urban centre showed enrichment of several toxic elements, but only lead was enriched in leaves. Leaf size and stomata density were lower at the urban site. At the urban site leaf surfaces were heavily loaded by dust particles but the stomata were not occluded; the cuticle was thinner; other anatomical properties were unaffected suggesting that plane trees can cope with traffic exhaust in megacities. PMID:20577871

  17. Influence of environmental pollution on leaf properties of urban plane trees, Platanus orientalis L.

    PubMed

    Pourkhabbaz, Alireza; Rastin, Nayerah; Olbrich, Andrea; Langenfeld-Heyser, Rosemarie; Polle, Andrea

    2010-09-01

    To investigate whether leaves of plane trees (Platanus orientalis) are damaged by traffic pollution, trees from a megacity (Mashhad, Iran) and a rural area were investigated. Soil and air from the urban centre showed enrichment of several toxic elements, but only lead was enriched in leaves. Leaf size and stomata density were lower at the urban site. At the urban site leaf surfaces were heavily loaded by dust particles but the stomata were not occluded; the cuticle was thinner; other anatomical properties were unaffected suggesting that plane trees can cope with traffic exhaust in megacities.

  18. African bees to control African elephants

    NASA Astrophysics Data System (ADS)

    Vollrath, Fritz; Douglas-Hamilton, Iain

    2002-11-01

    Numbers of elephants have declined in Africa and Asia over the past 30 years while numbers of humans have increased, both substantially. Friction between these two keystone species is reaching levels which are worryingly high from an ecological as well as a political viewpoint. Ways and means must be found to keep the two apart, at least in areas sensitive to each species' survival. The aggressive African bee might be one such method. Here we demonstrate that African bees deter elephants from damaging the vegetation and trees which house their hives. We argue that bees can be employed profitably to protect not only selected trees, but also selected areas, from elephant damage.

  19. African bees to control African elephants.

    PubMed

    Vollrath, Fritz; Douglas-Hamilton, Iain

    2002-11-01

    Numbers of elephants have declined in Africa and Asia over the past 30 years while numbers of humans have increased, both substantially. Friction between these two keystone species is reaching levels which are worryingly high from an ecological as well as a political viewpoint. Ways and means must be found to keep the two apart, at least in areas sensitive to each species' survival. The aggressive African bee might be one such method. Here we demonstrate that African bees deter elephants from damaging the vegetation and trees which house their hives. We argue that bees can be employed profitably to protect not only selected trees, but also selected areas, from elephant damage.

  20. Land-cover change detection

    USGS Publications Warehouse

    Chen, Xuexia; Giri, Chandra; Vogelmann, James

    2012-01-01

    Land cover is the biophysical material on the surface of the earth. Land-cover types include grass, shrubs, trees, barren, water, and man-made features. Land cover changes continuously.  The rate of change can be either dramatic and abrupt, such as the changes caused by logging, hurricanes and fire, or subtle and gradual, such as regeneration of forests and damage caused by insects (Verbesselt et al., 2001).  Previous studies have shown that land cover has changed dramatically during the past sevearal centuries and that these changes have severely affected our ecosystems (Foody, 2010; Lambin et al., 2001). Lambin and Strahlers (1994b) summarized five types of cause for land-cover changes: (1) long-term natural changes in climate conditions, (2) geomorphological and ecological processes, (3) human-induced alterations of vegetation cover and landscapes, (4) interannual climate variability, and (5) human-induced greenhouse effect.  Tools and techniques are needed to detect, describe, and predict these changes to facilitate sustainable management of natural resources.

Top