Comparative analysis of techniques for evaluating the effectiveness of aircraft computing systems
NASA Technical Reports Server (NTRS)
Hitt, E. F.; Bridgman, M. S.; Robinson, A. C.
1981-01-01
Performability analysis is a technique developed for evaluating the effectiveness of fault-tolerant computing systems in multiphase missions. Performability was evaluated for its accuracy, practical usefulness, and relative cost. The evaluation was performed by applying performability and the fault tree method to a set of sample problems ranging from simple to moderately complex. The problems involved as many as five outcomes, two to five mission phases, permanent faults, and some functional dependencies. Transient faults and software errors were not considered. A different analyst was responsible for each technique. Significantly more time and effort were required to learn performability analysis than the fault tree method. Performability is inherently as accurate as fault tree analysis. For the sample problems, fault trees were more practical and less time consuming to apply, while performability required less ingenuity and was more checkable. Performability offers some advantages for evaluating very complex problems.
SPACE PROPULSION SYSTEM PHASED-MISSION PROBABILITY ANALYSIS USING CONVENTIONAL PRA METHODS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis Smith; James Knudsen
As part of a series of papers on the topic of advance probabilistic methods, a benchmark phased-mission problem has been suggested. This problem consists of modeling a space mission using an ion propulsion system, where the mission consists of seven mission phases. The mission requires that the propulsion operate for several phases, where the configuration changes as a function of phase. The ion propulsion system itself consists of five thruster assemblies and a single propellant supply, where each thruster assembly has one propulsion power unit and two ion engines. In this paper, we evaluate the probability of mission failure usingmore » the conventional methodology of event tree/fault tree analysis. The event tree and fault trees are developed and analyzed using Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE). While the benchmark problem is nominally a "dynamic" problem, in our analysis the mission phases are modeled in a single event tree to show the progression from one phase to the next. The propulsion system is modeled in fault trees to account for the operation; or in this case, the failure of the system. Specifically, the propulsion system is decomposed into each of the five thruster assemblies and fed into the appropriate N-out-of-M gate to evaluate mission failure. A separate fault tree for the propulsion system is developed to account for the different success criteria of each mission phase. Common-cause failure modeling is treated using traditional (i.e., parametrically) methods. As part of this paper, we discuss the overall results in addition to the positive and negative aspects of modeling dynamic situations with non-dynamic modeling techniques. One insight from the use of this conventional method for analyzing the benchmark problem is that it requires significant manual manipulation to the fault trees and how they are linked into the event tree. The conventional method also requires editing the resultant cut sets to obtain the correct results. While conventional methods may be used to evaluate a dynamic system like that in the benchmark, the level of effort required may preclude its use on real-world problems.« less
Cost-effectiveness Analysis with Influence Diagrams.
Arias, M; Díez, F J
2015-01-01
Cost-effectiveness analysis (CEA) is used increasingly in medicine to determine whether the health benefit of an intervention is worth the economic cost. Decision trees, the standard decision modeling technique for non-temporal domains, can only perform CEA for very small problems. To develop a method for CEA in problems involving several dozen variables. We explain how to build influence diagrams (IDs) that explicitly represent cost and effectiveness. We propose an algorithm for evaluating cost-effectiveness IDs directly, i.e., without expanding an equivalent decision tree. The evaluation of an ID returns a set of intervals for the willingness to pay - separated by cost-effectiveness thresholds - and, for each interval, the cost, the effectiveness, and the optimal intervention. The algorithm that evaluates the ID directly is in general much more efficient than the brute-force method, which is in turn more efficient than the expansion of an equivalent decision tree. Using OpenMarkov, an open-source software tool that implements this algorithm, we have been able to perform CEAs on several IDs whose equivalent decision trees contain millions of branches. IDs can perform CEA on large problems that cannot be analyzed with decision trees.
Fault Tree in the Trenches, A Success Story
NASA Technical Reports Server (NTRS)
Long, R. Allen; Goodson, Amanda (Technical Monitor)
2000-01-01
Getting caught up in the explanation of Fault Tree Analysis (FTA) minutiae is easy. In fact, most FTA literature tends to address FTA concepts and methodology. Yet there seems to be few articles addressing actual design changes resulting from the successful application of fault tree analysis. This paper demonstrates how fault tree analysis was used to identify and solve a potentially catastrophic mechanical problem at a rocket motor manufacturer. While developing the fault tree given in this example, the analyst was told by several organizations that the piece of equipment in question had been evaluated by several committees and organizations, and that the analyst was wasting his time. The fault tree/cutset analysis resulted in a joint-redesign of the control system by the tool engineering group and the fault tree analyst, as well as bragging rights for the analyst. (That the fault tree found problems where other engineering reviews had failed was not lost on the other engineering groups.) Even more interesting was that this was the analyst's first fault tree which further demonstrates how effective fault tree analysis can be in guiding (i.e., forcing) the analyst to take a methodical approach in evaluating complex systems.
Consensus properties and their large-scale applications for the gene duplication problem.
Moon, Jucheol; Lin, Harris T; Eulenstein, Oliver
2016-06-01
Solving the gene duplication problem is a classical approach for species tree inference from gene trees that are confounded by gene duplications. This problem takes a collection of gene trees and seeks a species tree that implies the minimum number of gene duplications. Wilkinson et al. posed the conjecture that the gene duplication problem satisfies the desirable Pareto property for clusters. That is, for every instance of the problem, all clusters that are commonly present in the input gene trees of this instance, called strict consensus, will also be found in every solution to this instance. We prove that this conjecture does not generally hold. Despite this negative result we show that the gene duplication problem satisfies a weaker version of the Pareto property where the strict consensus is found in at least one solution (rather than all solutions). This weaker property contributes to our design of an efficient scalable algorithm for the gene duplication problem. We demonstrate the performance of our algorithm in analyzing large-scale empirical datasets. Finally, we utilize the algorithm to evaluate the accuracy of standard heuristics for the gene duplication problem using simulated datasets.
Control of deer damage with chemical repellents in regenerating hardwood stands
Brian J. MacGowan; Larry Severeid; Fred, Jr. Skemp
2004-01-01
Wildlife damage can be a major problem in natural tree regeneration or tree plantings. In the North Central Hardwoods region, white-tailed deer (Odocoileus virginianus) are a significant cause of damage to hardwood seedlings. We evaluated the use of a combination of chemical repellents (Hinder®, Tree Guard®, chicken eggs, and...
Graphical models for optimal power flow
Dvijotham, Krishnamurthy; Chertkov, Michael; Van Hentenryck, Pascal; ...
2016-09-13
Optimal power flow (OPF) is the central optimization problem in electric power grids. Although solved routinely in the course of power grid operations, it is known to be strongly NP-hard in general, and weakly NP-hard over tree networks. In this paper, we formulate the optimal power flow problem over tree networks as an inference problem over a tree-structured graphical model where the nodal variables are low-dimensional vectors. We adapt the standard dynamic programming algorithm for inference over a tree-structured graphical model to the OPF problem. Combining this with an interval discretization of the nodal variables, we develop an approximation algorithmmore » for the OPF problem. Further, we use techniques from constraint programming (CP) to perform interval computations and adaptive bound propagation to obtain practically efficient algorithms. Compared to previous algorithms that solve OPF with optimality guarantees using convex relaxations, our approach is able to work for arbitrary tree-structured distribution networks and handle mixed-integer optimization problems. Further, it can be implemented in a distributed message-passing fashion that is scalable and is suitable for “smart grid” applications like control of distributed energy resources. In conclusion, numerical evaluations on several benchmark networks show that practical OPF problems can be solved effectively using this approach.« less
Instruction-matrix-based genetic programming.
Li, Gang; Wang, Jin Feng; Lee, Kin Hong; Leung, Kwong-Sak
2008-08-01
In genetic programming (GP), evolving tree nodes separately would reduce the huge solution space. However, tree nodes are highly interdependent with respect to their fitness. In this paper, we propose a new GP framework, namely, instruction-matrix (IM)-based GP (IMGP), to handle their interactions. IMGP maintains an IM to evolve tree nodes and subtrees separately. IMGP extracts program trees from an IM and updates the IM with the information of the extracted program trees. As the IM actually keeps most of the information of the schemata of GP and evolves the schemata directly, IMGP is effective and efficient. Our experimental results on benchmark problems have verified that IMGP is not only better than those of canonical GP in terms of the qualities of the solutions and the number of program evaluations, but they are also better than some of the related GP algorithms. IMGP can also be used to evolve programs for classification problems. The classifiers obtained have higher classification accuracies than four other GP classification algorithms on four benchmark classification problems. The testing errors are also comparable to or better than those obtained with well-known classifiers. Furthermore, an extended version, called condition matrix for rule learning, has been used successfully to handle multiclass classification problems.
Applied Swarm-based medicine: collecting decision trees for patterns of algorithms analysis.
Panje, Cédric M; Glatzer, Markus; von Rappard, Joscha; Rothermundt, Christian; Hundsberger, Thomas; Zumstein, Valentin; Plasswilm, Ludwig; Putora, Paul Martin
2017-08-16
The objective consensus methodology has recently been applied in consensus finding in several studies on medical decision-making among clinical experts or guidelines. The main advantages of this method are an automated analysis and comparison of treatment algorithms of the participating centers which can be performed anonymously. Based on the experience from completed consensus analyses, the main steps for the successful implementation of the objective consensus methodology were identified and discussed among the main investigators. The following steps for the successful collection and conversion of decision trees were identified and defined in detail: problem definition, population selection, draft input collection, tree conversion, criteria adaptation, problem re-evaluation, results distribution and refinement, tree finalisation, and analysis. This manuscript provides information on the main steps for successful collection of decision trees and summarizes important aspects at each point of the analysis.
Evaluation of different iron compounds in chlorotic Italian lemon trees (Citrus lemon).
Ortiz, Patricio Rivera; Castro Meza, Blanca I; de la Garza Requena, Francisco R; Flores, Guillermo Mendoza; Etchevers Barra, Jorge D
2007-05-01
The severe deficiency of iron or ferric chlorosis is a serious problem of most citrus trees established in calcareous soils, as a result of the low availability of iron in these soils and the poor uptake and limited transport of this nutrient in trees. The objective of this study was to evaluate the response of chlorotic Italian lemon trees (Citrus lemon) to the application of iron compounds to roots and stems. On comparing the effects of aqueous solutions of ferric citrate, ferrous sulphate and FeEDDHA chelate, applied to 20% of the roots grown in soil and sand, of trees that were planted in pots containing calcareous soil, it was observed that the chelate fully corrected ferric chlorosis, while citrate and sulphate did not solve the problem. EDDHA induced the root uptake of iron as well as the movement of the nutrient up to the leaves. With the use of injections of ferric solutions into the secondary stem of adult trees, ferric citrate corrected chlorosis but ferrous sulphate did not. The citrate ion expanded the mobility of iron within the plant, from the injection points up to the leaves, whereas the sulphate ion did not sufficiently improve the movement of iron towards the leaf mesophyll.
A restricted Steiner tree problem is solved by Geometric Method II
NASA Astrophysics Data System (ADS)
Lin, Dazhi; Zhang, Youlin; Lu, Xiaoxu
2013-03-01
The minimum Steiner tree problem has wide application background, such as transportation system, communication network, pipeline design and VISL, etc. It is unfortunately that the computational complexity of the problem is NP-hard. People are common to find some special problems to consider. In this paper, we first put forward a restricted Steiner tree problem, which the fixed vertices are in the same side of one line L and we find a vertex on L such the length of the tree is minimal. By the definition and the complexity of the Steiner tree problem, we know that the complexity of this problem is also Np-complete. In the part one, we have considered there are two fixed vertices to find the restricted Steiner tree problem. Naturally, we consider there are three fixed vertices to find the restricted Steiner tree problem. And we also use the geometric method to solve such the problem.
Steiner trees and spanning trees in six-pin soap films
NASA Astrophysics Data System (ADS)
Dutta, Prasun; Khastgir, S. Pratik; Roy, Anushree
2010-02-01
The problem of finding minimum (local as well as absolute) path lengths joining given points (or terminals) on a plane is known as the Steiner problem. The Steiner problem arises in finding the minimum total road length joining several towns and cities. We study the Steiner tree problem using six-pin soap films. Experimentally, we observe spanning trees as well as Steiner trees partly by varying the pin diameter. We propose a possibly exact expression for the length of a spanning tree or a Steiner tree, which fails mysteriously in certain cases.
Correspondence between spanning trees and the Ising model on a square lattice
NASA Astrophysics Data System (ADS)
Viswanathan, G. M.
2017-06-01
An important problem in statistical physics concerns the fascinating connections between partition functions of lattice models studied in equilibrium statistical mechanics on the one hand and graph theoretical enumeration problems on the other hand. We investigate the nature of the relationship between the number of spanning trees and the partition function of the Ising model on the square lattice. The spanning tree generating function T (z ) gives the spanning tree constant when evaluated at z =1 , while giving the lattice green function when differentiated. It is known that for the infinite square lattice the partition function Z (K ) of the Ising model evaluated at the critical temperature K =Kc is related to T (1 ) . Here we show that this idea in fact generalizes to all real temperatures. We prove that [Z(K ) s e c h 2 K ] 2=k exp[T (k )] , where k =2 tanh(2 K )s e c h (2 K ) . The identical Mahler measure connects the two seemingly disparate quantities T (z ) and Z (K ) . In turn, the Mahler measure is determined by the random walk structure function. Finally, we show that the the above correspondence does not generalize in a straightforward manner to nonplanar lattices.
Exact solutions for species tree inference from discordant gene trees.
Chang, Wen-Chieh; Górecki, Paweł; Eulenstein, Oliver
2013-10-01
Phylogenetic analysis has to overcome the grant challenge of inferring accurate species trees from evolutionary histories of gene families (gene trees) that are discordant with the species tree along whose branches they have evolved. Two well studied approaches to cope with this challenge are to solve either biologically informed gene tree parsimony (GTP) problems under gene duplication, gene loss, and deep coalescence, or the classic RF supertree problem that does not rely on any biological model. Despite the potential of these problems to infer credible species trees, they are NP-hard. Therefore, these problems are addressed by heuristics that typically lack any provable accuracy and precision. We describe fast dynamic programming algorithms that solve the GTP problems and the RF supertree problem exactly, and demonstrate that our algorithms can solve instances with data sets consisting of as many as 22 taxa. Extensions of our algorithms can also report the number of all optimal species trees, as well as the trees themselves. To better asses the quality of the resulting species trees that best fit the given gene trees, we also compute the worst case species trees, their numbers, and optimization score for each of the computational problems. Finally, we demonstrate the performance of our exact algorithms using empirical and simulated data sets, and analyze the quality of heuristic solutions for the studied problems by contrasting them with our exact solutions.
Hybridization and endangered species protection in the molecular era.
Wayne, Robert K; Shaffer, H Bradley
2016-06-01
After decades of discussion, there is little consensus on the extent to which hybrids between endangered and nonendangered species should be protected by US law. As increasingly larger, genome-scale data sets are developed, we can identify individuals and populations with even trace levels of genetic admixture, making the 'hybrid problem' all the more difficult. We developed a decision-tree framework for evaluating hybrid protection, including both the processes that produced hybrids (human-mediated or natural) and the ecological impact of hybrids on natural ecosystems. We then evaluated our decision tree for four case studies drawn from our own work and briefly discuss several other cases from the literature. Throughout, we highlight the management outcomes that our approach provides and the nuances of hybridization as a conservation problem. © 2016 John Wiley & Sons Ltd.
Slabbinck, Bram; Waegeman, Willem; Dawyndt, Peter; De Vos, Paul; De Baets, Bernard
2010-01-30
Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial species. Summarized, by phylogenetic learning we are able to situate and evaluate FAME-based bacterial species classification in a more informative context.
2010-01-01
Background Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. Results In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. Conclusions FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial species. Summarized, by phylogenetic learning we are able to situate and evaluate FAME-based bacterial species classification in a more informative context. PMID:20113515
Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees.
Baste, Julien; Paul, Christophe; Sau, Ignasi; Scornavacca, Celine
2017-04-01
In phylogenetics, a central problem is to infer the evolutionary relationships between a set of species X; these relationships are often depicted via a phylogenetic tree-a tree having its leaves labeled bijectively by elements of X and without degree-2 nodes-called the "species tree." One common approach for reconstructing a species tree consists in first constructing several phylogenetic trees from primary data (e.g., DNA sequences originating from some species in X), and then constructing a single phylogenetic tree maximizing the "concordance" with the input trees. The obtained tree is our estimation of the species tree and, when the input trees are defined on overlapping-but not identical-sets of labels, is called "supertree." In this paper, we focus on two problems that are central when combining phylogenetic trees into a supertree: the compatibility and the strict compatibility problems for unrooted phylogenetic trees. These problems are strongly related, respectively, to the notions of "containing as a minor" and "containing as a topological minor" in the graph community. Both problems are known to be fixed parameter tractable in the number of input trees k, by using their expressibility in monadic second-order logic and a reduction to graphs of bounded treewidth. Motivated by the fact that the dependency on k of these algorithms is prohibitively large, we give the first explicit dynamic programming algorithms for solving these problems, both running in time [Formula: see text], where n is the total size of the input.
Faster Bit-Parallel Algorithms for Unordered Pseudo-tree Matching and Tree Homeomorphism
NASA Astrophysics Data System (ADS)
Kaneta, Yusaku; Arimura, Hiroki
In this paper, we consider the unordered pseudo-tree matching problem, which is a problem of, given two unordered labeled trees P and T, finding all occurrences of P in T via such many-one embeddings that preserve node labels and parent-child relationship. This problem is closely related to tree pattern matching problem for XPath queries with child axis only. If m > w , we present an efficient algorithm that solves the problem in O(nm log(w)/w) time using O(hm/w + mlog(w)/w) space and O(m log(w)) preprocessing on a unit-cost arithmetic RAM model with addition, where m is the number of nodes in P, n is the number of nodes in T, h is the height of T, and w is the word length. We also discuss a modification of our algorithm for the unordered tree homeomorphism problem, which corresponds to a tree pattern matching problem for XPath queries with descendant axis only.
Fuzzy α-minimum spanning tree problem: definition and solutions
NASA Astrophysics Data System (ADS)
Zhou, Jian; Chen, Lu; Wang, Ke; Yang, Fan
2016-04-01
In this paper, the minimum spanning tree problem is investigated on the graph with fuzzy edge weights. The notion of fuzzy ? -minimum spanning tree is presented based on the credibility measure, and then the solutions of the fuzzy ? -minimum spanning tree problem are discussed under different assumptions. First, we respectively, assume that all the edge weights are triangular fuzzy numbers and trapezoidal fuzzy numbers and prove that the fuzzy ? -minimum spanning tree problem can be transformed to a classical problem on a crisp graph in these two cases, which can be solved by classical algorithms such as the Kruskal algorithm and the Prim algorithm in polynomial time. Subsequently, as for the case that the edge weights are general fuzzy numbers, a fuzzy simulation-based genetic algorithm using Prüfer number representation is designed for solving the fuzzy ? -minimum spanning tree problem. Some numerical examples are also provided for illustrating the effectiveness of the proposed solutions.
Serang, Oliver; Noble, William Stafford
2012-01-01
The problem of identifying the proteins in a complex mixture using tandem mass spectrometry can be framed as an inference problem on a graph that connects peptides to proteins. Several existing protein identification methods make use of statistical inference methods for graphical models, including expectation maximization, Markov chain Monte Carlo, and full marginalization coupled with approximation heuristics. We show that, for this problem, the majority of the cost of inference usually comes from a few highly connected subgraphs. Furthermore, we evaluate three different statistical inference methods using a common graphical model, and we demonstrate that junction tree inference substantially improves rates of convergence compared to existing methods. The python code used for this paper is available at http://noble.gs.washington.edu/proj/fido. PMID:22331862
NASA Astrophysics Data System (ADS)
Bouldin, J.
2010-12-01
In the reconstruction of past climates from tree rings multi-decadal to multi-centennial periods, one longstanding problem is the confounding of the natural biological growth trend of the tree with any existing long term trends in the climate. No existing analytical method is capable of resolving these two change components, so it remains unclear how accurate existing ring series standardizations are, and by implication, climate reconstructions based upon them. For example, dendrochronological at the ITRDB are typically standardized by detrending, at each site, each individual tree core, using a relatively stiff deterministic function such as a negative exponential curve or smoothing spline. Another approach, referred to as RCS (Regional Curve Standardization) attempts to solve some problems of the individual series detrending, by constructing a single growth curve from the aggregated cambial ages of the rings of the cores at a site (or collection of sites). This curve is presumed to represent the “ideal” or expected growth of the trees from which it is derived. Although an improvement in some respects, this method will be degraded in direct proportion to the lack of a mixture of tree sizes or ages throughout the span of the chronology. I present a new method of removing the biological curve from tree ring series, such that temporal changes better represent the environmental variation captured by the tree rings. The method institutes several new approaches, such as the correction for the estimated number of missed rings near the pith, and the use of tree size and ring area relationships instead of the traditional tree ages and ring widths. The most important innovation is a careful extraction of the existing information on the relationship between tree size (basal area) and ring area that exists within each single year of the chronology. This information is, by definition, not contaminated by temporal climatic changes, and so when removed, leaves the climatically caused, and random error components of the chronology. A sophisticated algorithm, based on pair-wise ring comparisons in which tree size is standardized both within and between years, forms the basis of the method. Evaluations of the method are underway with both simulated and actual (ITRDB) data, to evaluate the potentials and drawbacks of the method relative to existing methods. The ITRDB test data consists of a set of about 50 primarily high elevation sites from across western North America. Most of these sites show a pronounced 20th Century warming relative to earlier centuries, in accordance with current understanding, albeit at a non-global scale. A relative minority show cooling, occasionally strongly. Current and future work emphasizes evaluation of the method with varying, simulated data, and more thorough empirical evaluations of the method in situations where the type, and intensity, of the primary environmentally limiting factor varies (e.g temperature versus soil moisture limited sites).
NASA Astrophysics Data System (ADS)
Luo, Qiu; Xin, Wu; Qiming, Xiong
2017-06-01
In the process of vegetation remote sensing information extraction, the problem of phenological features and low performance of remote sensing analysis algorithm is not considered. To solve this problem, the method of remote sensing vegetation information based on EVI time-series and the classification of decision-tree of multi-source branch similarity is promoted. Firstly, to improve the time-series stability of recognition accuracy, the seasonal feature of vegetation is extracted based on the fitting span range of time-series. Secondly, the decision-tree similarity is distinguished by adaptive selection path or probability parameter of component prediction. As an index, it is to evaluate the degree of task association, decide whether to perform migration of multi-source decision tree, and ensure the speed of migration. Finally, the accuracy of classification and recognition of pests and diseases can reach 87%--98% of commercial forest in Dalbergia hainanensis, which is significantly better than that of MODIS coverage accuracy of 80%--96% in this area. Therefore, the validity of the proposed method can be verified.
The risk factors of laryngeal pathology in Korean adults using a decision tree model.
Byeon, Haewon
2015-01-01
The purpose of this study was to identify risk factors affecting laryngeal pathology in the Korean population and to evaluate the derived prediction model. Cross-sectional study. Data were drawn from the 2008 Korea National Health and Nutritional Examination Survey. The subjects were 3135 persons (1508 male and 2114 female) aged 19 years and older living in the community. The independent variables were age, sex, occupation, smoking, alcohol drinking, and self-reported voice problems. A decision tree analysis was done to identify risk factors for predicting a model of laryngeal pathology. The significant risk factors of laryngeal pathology were age, gender, occupation, smoking, and self-reported voice problem in decision tree model. Four significant paths were identified in the decision tree model for the prediction of laryngeal pathology. Those identified as high risk groups for laryngeal pathology included those who self-reported a voice problem, those who were males in their 50s who did not recognize a voice problem, those who were not economically active males in their 40s, and male workers aged 19 and over and under 50 or 60 and over who currently smoked. The results of this study suggest that individual risk factors, such as age, sex, occupation, health behavior, and self-reported voice problem, affect the onset of laryngeal pathology in a complex manner. Based on the results of this study, early management of the high-risk groups is needed for the prevention of laryngeal pathology. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Model-based conifer crown surface reconstruction from multi-ocular high-resolution aerial imagery
NASA Astrophysics Data System (ADS)
Sheng, Yongwei
2000-12-01
Tree crown parameters such as width, height, shape and crown closure are desirable in forestry and ecological studies, but they are time-consuming and labor intensive to measure in the field. The stereoscopic capability of high-resolution aerial imagery provides a way to crown surface reconstruction. Existing photogrammetric algorithms designed to map terrain surfaces, however, cannot adequately extract crown surfaces, especially for steep conifer crowns. Considering crown surface reconstruction in a broader context of tree characterization from aerial images, we develop a rigorous perspective tree image formation model to bridge image-based tree extraction and crown surface reconstruction, and an integrated model-based approach to conifer crown surface reconstruction. Based on the fact that most conifer crowns are in a solid geometric form, conifer crowns are modeled as a generalized hemi-ellipsoid. Both the automatic and semi-automatic approaches are investigated to optimal tree model development from multi-ocular images. The semi-automatic 3D tree interpreter developed in this thesis is able to efficiently extract reliable tree parameters and tree models in complicated tree stands. This thesis starts with a sophisticated stereo matching algorithm, and incorporates tree models to guide stereo matching. The following critical problems are addressed in the model-based surface reconstruction process: (1) the problem of surface model composition from tree models, (2) the occlusion problem in disparity prediction from tree models, (3) the problem of integrating the predicted disparities into image matching, (4) the tree model edge effect reduction on the disparity map, (5) the occlusion problem in orthophoto production, and (6) the foreshortening problem in image matching, which is very serious for conifer crown surfaces. Solutions to the above problems are necessary for successful crown surface reconstruction. The model-based approach was applied to recover the canopy surface of a dense redwood stand using tri-ocular high-resolution images scanned from 1:2,400 aerial photographs. The results demonstrate the approach's ability to reconstruct complicated stands. The model-based approach proposed in this thesis is potentially applicable to other surfaces recovering problems with a priori knowledge about objects.
Triplet supertree heuristics for the tree of life
Lin, Harris T; Burleigh, J Gordon; Eulenstein, Oliver
2009-01-01
Background There is much interest in developing fast and accurate supertree methods to infer the tree of life. Supertree methods combine smaller input trees with overlapping sets of taxa to make a comprehensive phylogenetic tree that contains all of the taxa in the input trees. The intrinsically hard triplet supertree problem takes a collection of input species trees and seeks a species tree (supertree) that maximizes the number of triplet subtrees that it shares with the input trees. However, the utility of this supertree problem has been limited by a lack of efficient and effective heuristics. Results We introduce fast hill-climbing heuristics for the triplet supertree problem that perform a step-wise search of the tree space, where each step is guided by an exact solution to an instance of a local search problem. To realize time efficient heuristics we designed the first nontrivial algorithms for two standard search problems, which greatly improve on the time complexity to the best known (naïve) solutions by a factor of n and n2 (the number of taxa in the supertree). These algorithms enable large-scale supertree analyses based on the triplet supertree problem that were previously not possible. We implemented hill-climbing heuristics that are based on our new algorithms, and in analyses of two published supertree data sets, we demonstrate that our new heuristics outperform other standard supertree methods in maximizing the number of triplets shared with the input trees. Conclusion With our new heuristics, the triplet supertree problem is now computationally more tractable for large-scale supertree analyses, and it provides a potentially more accurate alternative to existing supertree methods. PMID:19208181
On the Complexity of Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
Kordi, Misagh; Bansal, Mukul S
2017-01-01
Duplication-Transfer-Loss (DTL) reconciliation has emerged as a powerful technique for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation takes as input a gene family phylogeny and the corresponding species phylogeny, and reconciles the two by postulating speciation, gene duplication, horizontal gene transfer, and gene loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. However, gene trees are frequently non-binary. With such non-binary gene trees, the reconciliation problem seeks to find a binary resolution of the gene tree that minimizes the reconciliation cost. Given the prevalence of non-binary gene trees, many efficient algorithms have been developed for this problem in the context of the simpler Duplication-Loss (DL) reconciliation model. Yet, no efficient algorithms exist for DTL reconciliation with non-binary gene trees and the complexity of the problem remains unknown. In this work, we resolve this open question by showing that the problem is, in fact, NP-hard. Our reduction applies to both the dated and undated formulations of DTL reconciliation. By resolving this long-standing open problem, this work will spur the development of both exact and heuristic algorithms for this important problem.
MASTtreedist: visualization of tree space based on maximum agreement subtree.
Huang, Hong; Li, Yongji
2013-01-01
Phylogenetic tree construction process might produce many candidate trees as the "best estimates." As the number of constructed phylogenetic trees grows, the need to efficiently compare their topological or physical structures arises. One of the tree comparison's software tools, the Mesquite's Tree Set Viz module, allows the rapid and efficient visualization of the tree comparison distances using multidimensional scaling (MDS). Tree-distance measures, such as Robinson-Foulds (RF), for the topological distance among different trees have been implemented in Tree Set Viz. New and sophisticated measures such as Maximum Agreement Subtree (MAST) can be continuously built upon Tree Set Viz. MAST can detect the common substructures among trees and provide more precise information on the similarity of the trees, but it is NP-hard and difficult to implement. In this article, we present a practical tree-distance metric: MASTtreedist, a MAST-based comparison metric in Mesquite's Tree Set Viz module. In this metric, the efficient optimizations for the maximum weight clique problem are applied. The results suggest that the proposed method can efficiently compute the MAST distances among trees, and such tree topological differences can be translated as a scatter of points in two-dimensional (2D) space. We also provide statistical evaluation of provided measures with respect to RF-using experimental data sets. This new comparison module provides a new tree-tree pairwise comparison metric based on the differences of the number of MAST leaves among constructed phylogenetic trees. Such a new phylogenetic tree comparison metric improves the visualization of taxa differences by discriminating small divergences of subtree structures for phylogenetic tree reconstruction.
Diameter-Constrained Steiner Tree
NASA Astrophysics Data System (ADS)
Ding, Wei; Lin, Guohui; Xue, Guoliang
Given an edge-weighted undirected graph G = (V,E,c,w), where each edge e ∈ E has a cost c(e) and a weight w(e), a set S ⊆ V of terminals and a positive constant D 0, we seek a minimum cost Steiner tree where all terminals appear as leaves and its diameter is bounded by D 0. Note that the diameter of a tree represents the maximum weight of path connecting two different leaves in the tree. Such problem is called the minimum cost diameter-constrained Steiner tree problem. This problem is NP-hard even when the topology of Steiner tree is fixed. In present paper we focus on this restricted version and present a fully polynomial time approximation scheme (FPTAS) for computing a minimum cost diameter-constrained Steiner tree under a fixed topology.
Reconciliation of Gene and Species Trees
Rusin, L. Y.; Lyubetskaya, E. V.; Gorbunov, K. Y.; Lyubetsky, V. A.
2014-01-01
The first part of the paper briefly overviews the problem of gene and species trees reconciliation with the focus on defining and algorithmic construction of the evolutionary scenario. Basic ideas are discussed for the aspects of mapping definitions, costs of the mapping and evolutionary scenario, imposing time scales on a scenario, incorporating horizontal gene transfers, binarization and reconciliation of polytomous trees, and construction of species trees and scenarios. The review does not intend to cover the vast diversity of literature published on these subjects. Instead, the authors strived to overview the problem of the evolutionary scenario as a central concept in many areas of evolutionary research. The second part provides detailed mathematical proofs for the solutions of two problems: (i) inferring a gene evolution along a species tree accounting for various types of evolutionary events and (ii) trees reconciliation into a single species tree when only gene duplications and losses are allowed. All proposed algorithms have a cubic time complexity and are mathematically proved to find exact solutions. Solving algorithms for problem (ii) can be naturally extended to incorporate horizontal transfers, other evolutionary events, and time scales on the species tree. PMID:24800245
Using traveling salesman problem algorithms for evolutionary tree construction.
Korostensky, C; Gonnet, G H
2000-07-01
The construction of evolutionary trees is one of the major problems in computational biology, mainly due to its complexity. We present a new tree construction method that constructs a tree with minimum score for a given set of sequences, where the score is the amount of evolution measured in PAM distances. To do this, the problem of tree construction is reduced to the Traveling Salesman Problem (TSP). The input for the TSP algorithm are the pairwise distances of the sequences and the output is a circular tour through the optimal, unknown tree plus the minimum score of the tree. The circular order and the score can be used to construct the topology of the optimal tree. Our method can be used for any scoring function that correlates to the amount of changes along the branches of an evolutionary tree, for instance it could also be used for parsimony scores, but it cannot be used for least squares fit of distances. A TSP solution reduces the space of all possible trees to 2n. Using this order, we can guarantee that we reconstruct a correct evolutionary tree if the absolute value of the error for each distance measurement is smaller than f2.gif" BORDER="0">, where f3.gif" BORDER="0">is the length of the shortest edge in the tree. For data sets with large errors, a dynamic programming approach is used to reconstruct the tree. Finally simulations and experiments with real data are shown.
Finding Frequent Closed Itemsets in Sliding Window in Linear Time
NASA Astrophysics Data System (ADS)
Chen, Junbo; Zhou, Bo; Chen, Lu; Wang, Xinyu; Ding, Yiqun
One of the most well-studied problems in data mining is computing the collection of frequent itemsets in large transactional databases. Since the introduction of the famous Apriori algorithm [14], many others have been proposed to find the frequent itemsets. Among such algorithms, the approach of mining closed itemsets has raised much interest in data mining community. The algorithms taking this approach include TITANIC [8], CLOSET+[6], DCI-Closed [4], FCI-Stream [3], GC-Tree [15], TGC-Tree [16] etc. Among these algorithms, FCI-Stream, GC-Tree and TGC-Tree are online algorithms work under sliding window environments. By the performance evaluation in [16], GC-Tree [15] is the fastest one. In this paper, an improved algorithm based on GC-Tree is proposed, the computational complexity of which is proved to be a linear combination of the average transaction size and the average closed itemset size. The algorithm is based on the essential theorem presented in Sect. 4.2. Empirically, the new algorithm is several orders of magnitude faster than the state of art algorithm, GC-Tree.
Mathematics and evolutionary biology make bioinformatics education comprehensible.
Jungck, John R; Weisstein, Anton E
2013-09-01
The patterns of variation within a molecular sequence data set result from the interplay between population genetic, molecular evolutionary and macroevolutionary processes-the standard purview of evolutionary biologists. Elucidating these patterns, particularly for large data sets, requires an understanding of the structure, assumptions and limitations of the algorithms used by bioinformatics software-the domain of mathematicians and computer scientists. As a result, bioinformatics often suffers a 'two-culture' problem because of the lack of broad overlapping expertise between these two groups. Collaboration among specialists in different fields has greatly mitigated this problem among active bioinformaticians. However, science education researchers report that much of bioinformatics education does little to bridge the cultural divide, the curriculum too focused on solving narrow problems (e.g. interpreting pre-built phylogenetic trees) rather than on exploring broader ones (e.g. exploring alternative phylogenetic strategies for different kinds of data sets). Herein, we present an introduction to the mathematics of tree enumeration, tree construction, split decomposition and sequence alignment. We also introduce off-line downloadable software tools developed by the BioQUEST Curriculum Consortium to help students learn how to interpret and critically evaluate the results of standard bioinformatics analyses.
Mathematics and evolutionary biology make bioinformatics education comprehensible
Weisstein, Anton E.
2013-01-01
The patterns of variation within a molecular sequence data set result from the interplay between population genetic, molecular evolutionary and macroevolutionary processes—the standard purview of evolutionary biologists. Elucidating these patterns, particularly for large data sets, requires an understanding of the structure, assumptions and limitations of the algorithms used by bioinformatics software—the domain of mathematicians and computer scientists. As a result, bioinformatics often suffers a ‘two-culture’ problem because of the lack of broad overlapping expertise between these two groups. Collaboration among specialists in different fields has greatly mitigated this problem among active bioinformaticians. However, science education researchers report that much of bioinformatics education does little to bridge the cultural divide, the curriculum too focused on solving narrow problems (e.g. interpreting pre-built phylogenetic trees) rather than on exploring broader ones (e.g. exploring alternative phylogenetic strategies for different kinds of data sets). Herein, we present an introduction to the mathematics of tree enumeration, tree construction, split decomposition and sequence alignment. We also introduce off-line downloadable software tools developed by the BioQUEST Curriculum Consortium to help students learn how to interpret and critically evaluate the results of standard bioinformatics analyses. PMID:23821621
On Determining if Tree-based Networks Contain Fixed Trees.
Anaya, Maria; Anipchenko-Ulaj, Olga; Ashfaq, Aisha; Chiu, Joyce; Kaiser, Mahedi; Ohsawa, Max Shoji; Owen, Megan; Pavlechko, Ella; St John, Katherine; Suleria, Shivam; Thompson, Keith; Yap, Corrine
2016-05-01
We address an open question of Francis and Steel about phylogenetic networks and trees. They give a polynomial time algorithm to decide if a phylogenetic network, N, is tree-based and pose the problem: given a fixed tree T and network N, is N based on T? We show that it is [Formula: see text]-hard to decide, by reduction from 3-Dimensional Matching (3DM) and further that the problem is fixed-parameter tractable.
Mirroring co-evolving trees in the light of their topologies.
Hajirasouliha, Iman; Schönhuth, Alexander; de Juan, David; Valencia, Alfonso; Sahinalp, S Cenk
2012-05-01
Determining the interaction partners among protein/domain families poses hard computational problems, in particular in the presence of paralogous proteins. Available approaches aim to identify interaction partners among protein/domain families through maximizing the similarity between trimmed versions of their phylogenetic trees. Since maximization of any natural similarity score is computationally difficult, many approaches employ heuristics to evaluate the distance matrices corresponding to the tree topologies in question. In this article, we devise an efficient deterministic algorithm which directly maximizes the similarity between two leaf labeled trees with edge lengths, obtaining a score-optimal alignment of the two trees in question. Our algorithm is significantly faster than those methods based on distance matrix comparison: 1 min on a single processor versus 730 h on a supercomputer. Furthermore, we outperform the current state-of-the-art exhaustive search approach in terms of precision, while incurring acceptable losses in recall. A C implementation of the method demonstrated in this article is available at http://compbio.cs.sfu.ca/mirrort.htm
Fast correspondences search in anatomical trees
NASA Astrophysics Data System (ADS)
dos Santos, Thiago R.; Gergel, Ingmar; Meinzer, Hans-Peter; Maier-Hein, Lena
2010-03-01
Registration of multiple medical images commonly comprises the steps feature extraction, correspondences search and transformation computation. In this paper, we present a new method for a fast and pose independent search of correspondences using as features anatomical trees such as the bronchial system in the lungs or the vessel system in the liver. Our approach scores the similarities between the trees' nodes (bifurcations) taking into account both, topological properties extracted from their graph representations and anatomical properties extracted from the trees themselves. The node assignment maximizes the global similarity (sum of the scores of each pair of assigned nodes), assuring that the matches are distributed throughout the trees. Furthermore, the proposed method is able to deal with distortions in the data, such as noise, motion, artifacts, and problems associated with the extraction method, such as missing or false branches. According to an evaluation on swine lung data sets, the method requires less than one second on average to compute the matching and yields a high rate of correct matches compared to state of the art work.
Thomas A. Snellgrove; James M. Cahill
1980-01-01
When a western white pine (Pinus monticola Dougl. ex D. Don) tree dies, it undergoes a series of physical changes. The effects of these changes on product recovery are evaluated. Tabular information and prediction equations provide the tools necessary for using this resource.
Adversarial search by evolutionary computation.
Hong, T P; Huang, K Y; Lin, W Y
2001-01-01
In this paper, we consider the problem of finding good next moves in two-player games. Traditional search algorithms, such as minimax and alpha-beta pruning, suffer great temporal and spatial expansion when exploring deeply into search trees to find better next moves. The evolution of genetic algorithms with the ability to find global or near global optima in limited time seems promising, but they are inept at finding compound optima, such as the minimax in a game-search tree. We thus propose a new genetic algorithm-based approach that can find a good next move by reserving the board evaluation values of new offspring in a partial game-search tree. Experiments show that solution accuracy and search speed are greatly improved by our algorithm.
Evaluation of three watering and mulching techniques on transplanted trees at Adobe Dam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, C.
1983-06-01
On the basis of these transplant studies, it is recommended that a minimal irrigation schedule be followed in the future for transplanted specimens. Transplanting early in the year reduces the watering requirements. Furthermore, after a one month adjustment period, trees watered once a month did well. Removal of supplemental water should be gradual, so as not to cause shock to the trees. Stone mulch appears to be both durable and effective as a mulching material, and can be cost effective if readily available on site. Fencing is a requirement for Palo Verde and Mesquite transplants but can be foregone onmore » Creosote. Management following transplanting should include regular site inspections for signs of insect infestation and for watering problems. Inspection personnel should watch for signs that transplants have been watered adequately and the fences are intact and not restricting tree growth.« less
Computational efficiency of parallel combinatorial OR-tree searches
NASA Technical Reports Server (NTRS)
Li, Guo-Jie; Wah, Benjamin W.
1990-01-01
The performance of parallel combinatorial OR-tree searches is analytically evaluated. This performance depends on the complexity of the problem to be solved, the error allowance function, the dominance relation, and the search strategies. The exact performance may be difficult to predict due to the nondeterminism and anomalies of parallelism. The authors derive the performance bounds of parallel OR-tree searches with respect to the best-first, depth-first, and breadth-first strategies, and verify these bounds by simulation. They show that a near-linear speedup can be achieved with respect to a large number of processors for parallel OR-tree searches. Using the bounds developed, the authors derive sufficient conditions for assuring that parallelism will not degrade performance and necessary conditions for allowing parallelism to have a speedup greater than the ratio of the numbers of processors. These bounds and conditions provide the theoretical foundation for determining the number of processors required to assure a near-linear speedup.
Wallace, Meredith L; Anderson, Stewart J; Mazumdar, Sati
2010-12-20
Missing covariate data present a challenge to tree-structured methodology due to the fact that a single tree model, as opposed to an estimated parameter value, may be desired for use in a clinical setting. To address this problem, we suggest a multiple imputation algorithm that adds draws of stochastic error to a tree-based single imputation method presented by Conversano and Siciliano (Technical Report, University of Naples, 2003). Unlike previously proposed techniques for accommodating missing covariate data in tree-structured analyses, our methodology allows the modeling of complex and nonlinear covariate structures while still resulting in a single tree model. We perform a simulation study to evaluate our stochastic multiple imputation algorithm when covariate data are missing at random and compare it to other currently used methods. Our algorithm is advantageous for identifying the true underlying covariate structure when complex data and larger percentages of missing covariate observations are present. It is competitive with other current methods with respect to prediction accuracy. To illustrate our algorithm, we create a tree-structured survival model for predicting time to treatment response in older, depressed adults. Copyright © 2010 John Wiley & Sons, Ltd.
Improving multivariate Horner schemes with Monte Carlo tree search
NASA Astrophysics Data System (ADS)
Kuipers, J.; Plaat, A.; Vermaseren, J. A. M.; van den Herik, H. J.
2013-11-01
Optimizing the cost of evaluating a polynomial is a classic problem in computer science. For polynomials in one variable, Horner's method provides a scheme for producing a computationally efficient form. For multivariate polynomials it is possible to generalize Horner's method, but this leaves freedom in the order of the variables. Traditionally, greedy schemes like most-occurring variable first are used. This simple textbook algorithm has given remarkably efficient results. Finding better algorithms has proved difficult. In trying to improve upon the greedy scheme we have implemented Monte Carlo tree search, a recent search method from the field of artificial intelligence. This results in better Horner schemes and reduces the cost of evaluating polynomials, sometimes by factors up to two.
Therapeutic chemical treatment of grape vines for root diseases
USDA-ARS?s Scientific Manuscript database
There is a need to develop post-plant treatment of soil pests for perennial vine and tree crops. Field trials were performed to evaluate post-plant treatment of established grape vines (Vitis vinifera var. Thompson Seedless) with known problems of soilborne plant-parasitic nematodes and pathogens us...
Solutions to time variant problems of real-time expert systems
NASA Technical Reports Server (NTRS)
Yeh, Show-Way; Wu, Chuan-Lin; Hung, Chaw-Kwei
1988-01-01
Real-time expert systems for monitoring and control are driven by input data which changes with time. One of the subtle problems of this field is the propagation of time variant problems from rule to rule. This propagation problem is even complicated under a multiprogramming environment where the expert system may issue test commands to the system to get data and to access time consuming devices to retrieve data for concurrent reasoning. Two approaches are used to handle the flood of input data. Snapshots can be taken to freeze the system from time to time. The expert system treats the system as a stationary one and traces changes by comparing consecutive snapshots. In the other approach, when an input is available, the rules associated with it are evaluated. For both approaches, if the premise condition of a fired rule is changed to being false, the downstream rules should be deactivated. If the status change is due to disappearance of a transient problem, actions taken by the fired downstream rules which are no longer true may need to be undone. If a downstream rule is being evaluated, it should not be fired. Three mechanisms for solving this problem are discussed: tracing, backward checking, and censor setting. In the forward tracing mechanism, when the premise conditions of a fired rule become false, the premise conditions of downstream rules which have been fired or are being evaluated due to the firing of that rule are reevaluated. A tree with its root at the rule being deactivated is traversed. In the backward checking mechanism, when a rule is being fired, the expert system checks back on the premise conditions of the upstream rules that result in evaluation of the rule to see whether it should be fired. The root of the tree being traversed is the rule being fired. In the censor setting mechanism, when a rule is to be evaluated, a censor is constructed based on the premise conditions of the upstream rules and the censor is evaluated just before the rule is fired. Unlike the backward checking mechanism, this one does not search the upstream rules. This paper explores the details of implementation of the three mechanisms.
Mai, Uyen; Mirarab, Siavash
2018-05-08
Sequence data used in reconstructing phylogenetic trees may include various sources of error. Typically errors are detected at the sequence level, but when missed, the erroneous sequences often appear as unexpectedly long branches in the inferred phylogeny. We propose an automatic method to detect such errors. We build a phylogeny including all the data then detect sequences that artificially inflate the tree diameter. We formulate an optimization problem, called the k-shrink problem, that seeks to find k leaves that could be removed to maximally reduce the tree diameter. We present an algorithm to find the exact solution for this problem in polynomial time. We then use several statistical tests to find outlier species that have an unexpectedly high impact on the tree diameter. These tests can use a single tree or a set of related gene trees and can also adjust to species-specific patterns of branch length. The resulting method is called TreeShrink. We test our method on six phylogenomic biological datasets and an HIV dataset and show that the method successfully detects and removes long branches. TreeShrink removes sequences more conservatively than rogue taxon removal and often reduces gene tree discordance more than rogue taxon removal once the amount of filtering is controlled. TreeShrink is an effective method for detecting sequences that lead to unrealistically long branch lengths in phylogenetic trees. The tool is publicly available at https://github.com/uym2/TreeShrink .
Rapid Calculation of Max-Min Fair Rates for Multi-Commodity Flows in Fat-Tree Networks
Mollah, Md Atiqul; Yuan, Xin; Pakin, Scott; ...
2017-08-29
Max-min fairness is often used in the performance modeling of interconnection networks. Existing methods to compute max-min fair rates for multi-commodity flows have high complexity and are computationally infeasible for large networks. In this paper, we show that by considering topological features, this problem can be solved efficiently for the fat-tree topology that is widely used in data centers and high performance compute clusters. Several efficient new algorithms are developed for this problem, including a parallel algorithm that can take advantage of multi-core and shared-memory architectures. Using these algorithms, we demonstrate that it is possible to find the max-min fairmore » rate allocation for multi-commodity flows in fat-tree networks that support tens of thousands of nodes. We evaluate the run-time performance of the proposed algorithms and show improvement in orders of magnitude over the previously best known method. Finally, we further demonstrate a new application of max-min fair rate allocation that is only computationally feasible using our new algorithms.« less
Rapid Calculation of Max-Min Fair Rates for Multi-Commodity Flows in Fat-Tree Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollah, Md Atiqul; Yuan, Xin; Pakin, Scott
Max-min fairness is often used in the performance modeling of interconnection networks. Existing methods to compute max-min fair rates for multi-commodity flows have high complexity and are computationally infeasible for large networks. In this paper, we show that by considering topological features, this problem can be solved efficiently for the fat-tree topology that is widely used in data centers and high performance compute clusters. Several efficient new algorithms are developed for this problem, including a parallel algorithm that can take advantage of multi-core and shared-memory architectures. Using these algorithms, we demonstrate that it is possible to find the max-min fairmore » rate allocation for multi-commodity flows in fat-tree networks that support tens of thousands of nodes. We evaluate the run-time performance of the proposed algorithms and show improvement in orders of magnitude over the previously best known method. Finally, we further demonstrate a new application of max-min fair rate allocation that is only computationally feasible using our new algorithms.« less
A Heuristic Bioinspired for 8-Piece Puzzle
NASA Astrophysics Data System (ADS)
Machado, M. O.; Fabres, P. A.; Melo, J. C. L.
2017-10-01
This paper investigates a mathematical model inspired by nature, and presents a Meta-Heuristic that is efficient in improving the performance of an informed search, when using strategy A * using a General Search Tree as data structure. The work hypothesis suggests that the investigated meta-heuristic is optimal in nature and may be promising in minimizing the computational resources required by an objective-based agent in solving high computational complexity problems (n-part puzzle) as well as In the optimization of objective functions for local search agents. The objective of this work is to describe qualitatively the characteristics and properties of the mathematical model investigated, correlating the main concepts of the A * function with the significant variables of the metaheuristic used. The article shows that the amount of memory required to perform this search when using the metaheuristic is less than using the A * function to evaluate the nodes of a general search tree for the eight-piece puzzle. It is concluded that the meta-heuristic must be parameterized according to the chosen heuristic and the level of the tree that contains the possible solutions to the chosen problem.
Evaluating Web accessibility at different processing phases
NASA Astrophysics Data System (ADS)
Fernandes, N.; Lopes, R.; Carriço, L.
2012-09-01
Modern Web sites use several techniques (e.g. DOM manipulation) that allow for the injection of new content into their Web pages (e.g. AJAX), as well as manipulation of the HTML DOM tree. This has the consequence that the Web pages that are presented to users (i.e. after browser processing) are different from the original structure and content that is transmitted through HTTP communication (i.e. after browser processing). This poses a series of challenges for Web accessibility evaluation, especially on automated evaluation software. This article details an experimental study designed to understand the differences posed by accessibility evaluation after Web browser processing. We implemented a Javascript-based evaluator, QualWeb, that can perform WCAG 2.0 based accessibility evaluations in the two phases of browser processing. Our study shows that, in fact, there are considerable differences between the HTML DOM trees in both phases, which have the consequence of having distinct evaluation results. We discuss the impact of these results in the light of the potential problems that these differences can pose to designers and developers that use accessibility evaluators that function before browser processing.
NASA Astrophysics Data System (ADS)
Rahmadani, S.; Dongoran, A.; Zarlis, M.; Zakarias
2018-03-01
This paper discusses the problem of feature selection using genetic algorithms on a dataset for classification problems. The classification model used is the decicion tree (DT), and Naive Bayes. In this paper we will discuss how the Naive Bayes and Decision Tree models to overcome the classification problem in the dataset, where the dataset feature is selectively selected using GA. Then both models compared their performance, whether there is an increase in accuracy or not. From the results obtained shows an increase in accuracy if the feature selection using GA. The proposed model is referred to as GADT (GA-Decision Tree) and GANB (GA-Naive Bayes). The data sets tested in this paper are taken from the UCI Machine Learning repository.
A Model of Desired Performance in Phylogenetic Tree Construction for Teaching Evolution.
ERIC Educational Resources Information Center
Brewer, Steven D.
This research paper examines phylogenetic tree construction-a form of problem solving in biology-by studying the strategies and heuristics used by experts. One result of the research is the development of a model of desired performance for phylogenetic tree construction. A detailed description of the model and the sample problems which illustrate…
Live phylogeny with polytomies: Finding the most compact parsimonious trees.
Papamichail, D; Huang, A; Kennedy, E; Ott, J-L; Miller, A; Papamichail, G
2017-08-01
Construction of phylogenetic trees has traditionally focused on binary trees where all species appear on leaves, a problem for which numerous efficient solutions have been developed. Certain application domains though, such as viral evolution and transmission, paleontology, linguistics, and phylogenetic stemmatics, often require phylogeny inference that involves placing input species on ancestral tree nodes (live phylogeny), and polytomies. These requirements, despite their prevalence, lead to computationally harder algorithmic solutions and have been sparsely examined in the literature to date. In this article we prove some unique properties of most parsimonious live phylogenetic trees with polytomies, and their mapping to traditional binary phylogenetic trees. We show that our problem reduces to finding the most compact parsimonious tree for n species, and describe a novel efficient algorithm to find such trees without resorting to exhaustive enumeration of all possible tree topologies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wetwood in trees: a timber resource problem.
J.C. Ward; W.Y. Pong
1980-01-01
Available information on wetwood is presented. Wetwood is a type of heartwood which has been internally infused with water. Wetwood is responsible for substantial losses of wood, energy and production expenditures in the forest products industry.The need to evaluate these losses and to find ways to eliminate or minimize them is emphasized....
Keller, Thomas E.; Blakeslee, Jennifer E.; Lemon, Stephenie C.; Courtney, Mark E.
2010-01-01
Objective: Distinctive combinations of factors are likely to be associated with serious alcohol problems among adolescents about to emancipate from the foster care system and face the difficult transition to independent adulthood. This study identifies particular subpopulations of older foster youths that differ markedly in the probability of a lifetime diagnosis for alcohol abuse or dependence. Method: Classification and regression tree (CART) analysis was applied to a large, representative sample (N = 732) of individuals, 17 years of age or older, placed in the child welfare system for more than 1 year. CART evaluated two exploratory sets of variables for optimal splits into groups distinguished from each other on the criterion of lifetime alcohol-use disorder diagnosis. Results: Each classification tree yielded four terminal groups with different rates of lifetime alcohol-use disorder diagnosis. Notable groups in the first tree included one characterized by high levels of both delinquency and violence exposure (53% diagnosed) and another that featured lower delinquency but an independent-living placement (21% diagnosed). Notable groups in the second tree included African American adolescents (only 8% diagnosed), White adolescents not close to caregivers (40% diagnosed), and White adolescents closer to caregivers but with a history of psychological abuse (36% diagnosed). Conclusions: Analyses incorporating variables that could be comorbid with or symptomatic of alcohol problems, such as delinquency, yielded classifications potentially useful for assessment and service planning. Analyses without such variables identified other factors, such as quality of caregiving relationships and maltreatment, associated with serious alcohol problems, suggesting opportunities for prevention or intervention. PMID:20946738
2011-01-01
Background This paper is devoted to distance measures for leaf-labelled trees on free leafset. A leaf-labelled tree is a data structure which is a special type of a tree where only leaves (terminal) nodes are labelled. This data structure is used in bioinformatics for modelling of evolution history of genes and species and also in linguistics for modelling of languages evolution history. Many domain specific problems occur and need to be solved with help of tree postprocessing techniques such as distance measures. Results Here we introduce the tree edit distance designed for leaf labelled trees on free leafset, which occurs to be a metric. It is presented together with tree edit consensus tree notion. We provide statistical evaluation of provided measure with respect to R-F, MAST and frequent subsplit based dissimilarity measures as the reference measures. Conclusions The tree edit distance was proven to be a metric and has the advantage of using different costs for contraction and pruning, therefore their properties can be tuned depending on the needs of the user. Two of the presented methods carry the most interesting properties. E(3,1) is very discriminative (having a wide range of values) and has a very regular distance distribution which is similar to a normal distribution in its shape and is good both for similar and non-similar trees. NFC(2,1) on the other hand is proportional or nearly proportional to the number of mutation operations used, irrespective of their type. PMID:21612645
Nutrition facts and limits for micronutrients in tree species used in urban forestry.
Brun, Flávia G K; Brun, Eleandro J; Gerber, Dionatan; Szymczak, Denise A; Londero, Eduardo K; Meyer, Evandro A; Navroski, Márcio C
2017-01-01
There is a huge lack of researches that evaluate the nutritional limits in tree species used in urban forestry, especially in terms of micronutrients. This study aimed to establish limits and range of micronutrients levels for the proper development of tree species utilized in urban forestry. The study was conducted in the city of Santa Maria-RS-Brazil. Through forest inventory, 23 forest species present in urban forest were selected, and 05 vegetative branches of each tree were collected, in which the contents of B, Cu, Fe, Mn and Zn were analyzed. Ranges of micronutrients' contents were developed for class limits criteria. Nutritional problems were detected for B, Cu and Zn in G. robusta and S. cumini, indicating a need of fertilization and management of these trees. The levels of Mn were within an adequate range only for the species C. illinoensis and H. chrysotrichus. The contents of B were higher than the level considered adequate for H. chrysotrichusand M. nigra. The rates of Fe showed high levels for E. japonica, H. chrysotrichusand S. babylonica. The estimated nutritional limits enable a greater control in the classification of the results for each tree species utilized in urban forestry.
Operational applications of satellite snowcover observations in Rio Grande drainage of Colorado
NASA Technical Reports Server (NTRS)
Washicheck, J. N.; Mikesell, T.
1975-01-01
Various mapping techniques were tried and evaluated. There were many problems encountered such as distinquishing clouds from snow and snow under trees. A partial solution to some of the problems involves ground reconnaissance and low air flights. Snow areas, cloud cover, and total areas were planimetered after transferring imagery by use of zoom transfer scope. These determinations were then compared to areas determined by use of a density slicer. Considerable adjustment is required for these two values to compare. NOAA pictures were also utilized in the evaluation. Forest cover is one of the parameters used in the modeling process. The determination of this percentage is being explored.
Single Polygon Counting on Cayley Tree of Order 3
NASA Astrophysics Data System (ADS)
Pah, Chin Hee
2010-07-01
We showed that one form of generalized Catalan numbers is the solution to the problem of finding different connected component with finite vertices containing a fixed root for the semi-infinite Cayley tree of order 3. We give the formula for the full graph, Cayley tree of order 3 which is derived from the generalized Catalan numbers. Using ratios of Gamma functions, two upper bounds are given for problem defined on semi-infinite Cayley tree of order 3 as well as the full graph.
Efficient algorithms for dilated mappings of binary trees
NASA Technical Reports Server (NTRS)
Iqbal, M. Ashraf
1990-01-01
The problem is addressed to find a 1-1 mapping of the vertices of a binary tree onto those of a target binary tree such that the son of a node on the first binary tree is mapped onto a descendent of the image of that node in the second binary tree. There are two natural measures of the cost of this mapping, namely the dilation cost, i.e., the maximum distance in the target binary tree between the images of vertices that are adjacent in the original tree. The other measure, expansion cost, is defined as the number of extra nodes/edges to be added to the target binary tree in order to ensure a 1-1 mapping. An efficient algorithm to find a mapping of one binary tree onto another is described. It is shown that it is possible to minimize one cost of mapping at the expense of the other. This problem arises when designing pipelined arithmetic logic units (ALU) for special purpose computers. The pipeline is composed of ALU chips connected in the form of a binary tree. The operands to the pipeline can be supplied to the leaf nodes of the binary tree which then process and pass the results up to their parents. The final result is available at the root. As each new application may require a distinct nesting of operations, it is useful to be able to find a good mapping of a new binary tree over existing ALU tree. Another problem arises if every distinct required binary tree is known beforehand. Here it is useful to hardwire the pipeline in the form of a minimal supertree that contains all required binary trees.
Irrational exuberance for resolved species trees.
Hahn, Matthew W; Nakhleh, Luay
2016-01-01
Phylogenomics has largely succeeded in its aim of accurately inferring species trees, even when there are high levels of discordance among individual gene trees. These resolved species trees can be used to ask many questions about trait evolution, including the direction of change and number of times traits have evolved. However, the mapping of traits onto trees generally uses only a single representation of the species tree, ignoring variation in the gene trees used to construct it. Recognizing that genes underlie traits, these results imply that many traits follow topologies that are discordant with the species topology. As a consequence, standard methods for character mapping will incorrectly infer the number of times a trait has evolved. This phenomenon, dubbed "hemiplasy," poses many problems in analyses of character evolution. Here we outline these problems, explaining where and when they are likely to occur. We offer several ways in which the possible presence of hemiplasy can be diagnosed, and discuss multiple approaches to dealing with the problems presented by underlying gene tree discordance when carrying out character mapping. Finally, we discuss the implications of hemiplasy for general phylogenetic inference, including the possible drawbacks of the widespread push for "resolved" species trees. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
The Probabilistic Thinking of Primary School Pupils in Cyprus: The Case of Tree Diagrams
ERIC Educational Resources Information Center
Lamprianou, Iasonas; Lamprianou, Thekla Afantiti
2003-01-01
In this research work we explored the nature of 9-12 year old pupils' responses to probabilistic problems with tree diagrams. It was found that a large percentage of pupils failed to respond correctly even to very simple problems that demanded the identification of "possible routes/paths" in figures with tree diagrams/mazes. The results…
Deer damage in central hardwoods: a potential problem
Nancy G. Tilghman; David A. Marquis
1989-01-01
A major part of the diet of white-tailed deer consists of herbaceous plants, acorns, other tree fruits, and the twigs of trees and shrubs. Deer browsing on young tree seedlings can influence the success of regeneration in forest stands. Excessive deer browsing is not a major problem in the central hardwood forest type, except in parts of Pennsylvania and, to a lesser...
Improving Search Properties in Genetic Programming
NASA Technical Reports Server (NTRS)
Janikow, Cezary Z.; DeWeese, Scott
1997-01-01
With the advancing computer processing capabilities, practical computer applications are mostly limited by the amount of human programming required to accomplish a specific task. This necessary human participation creates many problems, such as dramatically increased cost. To alleviate the problem, computers must become more autonomous. In other words, computers must be capable to program/reprogram themselves to adapt to changing environments/tasks/demands/domains. Evolutionary computation offers potential means, but it must be advanced beyond its current practical limitations. Evolutionary algorithms model nature. They maintain a population of structures representing potential solutions to the problem at hand. These structures undergo a simulated evolution by means of mutation, crossover, and a Darwinian selective pressure. Genetic programming (GP) is the most promising example of an evolutionary algorithm. In GP, the structures that evolve are trees, which is a dramatic departure from previously used representations such as strings in genetic algorithms. The space of potential trees is defined by means of their elements: functions, which label internal nodes, and terminals, which label leaves. By attaching semantic interpretation to those elements, trees can be interpreted as computer programs (given an interpreter), evolved architectures, etc. JSC has begun exploring GP as a potential tool for its long-term project on evolving dextrous robotic capabilities. Last year we identified representation redundancies as the primary source of inefficiency in GP. Subsequently, we proposed a method to use problem constraints to reduce those redundancies, effectively reducing GP complexity. This method was implemented afterwards at the University of Missouri. This summer, we have evaluated the payoff from using problem constraints to reduce search complexity on two classes of problems: learning boolean functions and solving the forward kinematics problem. We have also developed and implemented methods to use additional problem heuristics to fine-tune the searchable space, and to use typing information to further reduce the search space. Additional improvements have been proposed, but they are yet to be explored and implemented.
Inferring species trees from incongruent multi-copy gene trees using the Robinson-Foulds distance
2013-01-01
Background Constructing species trees from multi-copy gene trees remains a challenging problem in phylogenetics. One difficulty is that the underlying genes can be incongruent due to evolutionary processes such as gene duplication and loss, deep coalescence, or lateral gene transfer. Gene tree estimation errors may further exacerbate the difficulties of species tree estimation. Results We present a new approach for inferring species trees from incongruent multi-copy gene trees that is based on a generalization of the Robinson-Foulds (RF) distance measure to multi-labeled trees (mul-trees). We prove that it is NP-hard to compute the RF distance between two mul-trees; however, it is easy to calculate this distance between a mul-tree and a singly-labeled species tree. Motivated by this, we formulate the RF problem for mul-trees (MulRF) as follows: Given a collection of multi-copy gene trees, find a singly-labeled species tree that minimizes the total RF distance from the input mul-trees. We develop and implement a fast SPR-based heuristic algorithm for the NP-hard MulRF problem. We compare the performance of the MulRF method (available at http://genome.cs.iastate.edu/CBL/MulRF/) with several gene tree parsimony approaches using gene tree simulations that incorporate gene tree error, gene duplications and losses, and/or lateral transfer. The MulRF method produces more accurate species trees than gene tree parsimony approaches. We also demonstrate that the MulRF method infers in minutes a credible plant species tree from a collection of nearly 2,000 gene trees. Conclusions Our new phylogenetic inference method, based on a generalized RF distance, makes it possible to quickly estimate species trees from large genomic data sets. Since the MulRF method, unlike gene tree parsimony, is based on a generic tree distance measure, it is appealing for analyses of genomic data sets, in which many processes such as deep coalescence, recombination, gene duplication and losses as well as phylogenetic error may contribute to gene tree discord. In experiments, the MulRF method estimated species trees accurately and quickly, demonstrating MulRF as an efficient alternative approach for phylogenetic inference from large-scale genomic data sets. PMID:24180377
Do Branch Lengths Help to Locate a Tree in a Phylogenetic Network?
Gambette, Philippe; van Iersel, Leo; Kelk, Steven; Pardi, Fabio; Scornavacca, Celine
2016-09-01
Phylogenetic networks are increasingly used in evolutionary biology to represent the history of species that have undergone reticulate events such as horizontal gene transfer, hybrid speciation and recombination. One of the most fundamental questions that arise in this context is whether the evolution of a gene with one copy in all species can be explained by a given network. In mathematical terms, this is often translated in the following way: is a given phylogenetic tree contained in a given phylogenetic network? Recently this tree containment problem has been widely investigated from a computational perspective, but most studies have only focused on the topology of the phylogenies, ignoring a piece of information that, in the case of phylogenetic trees, is routinely inferred by evolutionary analyses: branch lengths. These measure the amount of change (e.g., nucleotide substitutions) that has occurred along each branch of the phylogeny. Here, we study a number of versions of the tree containment problem that explicitly account for branch lengths. We show that, although length information has the potential to locate more precisely a tree within a network, the problem is computationally hard in its most general form. On a positive note, for a number of special cases of biological relevance, we provide algorithms that solve this problem efficiently. This includes the case of networks of limited complexity, for which it is possible to recover, among the trees contained by the network with the same topology as the input tree, the closest one in terms of branch lengths.
A Bayesian Supertree Model for Genome-Wide Species Tree Reconstruction
De Oliveira Martins, Leonardo; Mallo, Diego; Posada, David
2016-01-01
Current phylogenomic data sets highlight the need for species tree methods able to deal with several sources of gene tree/species tree incongruence. At the same time, we need to make most use of all available data. Most species tree methods deal with single processes of phylogenetic discordance, namely, gene duplication and loss, incomplete lineage sorting (ILS) or horizontal gene transfer. In this manuscript, we address the problem of species tree inference from multilocus, genome-wide data sets regardless of the presence of gene duplication and loss and ILS therefore without the need to identify orthologs or to use a single individual per species. We do this by extending the idea of Maximum Likelihood (ML) supertrees to a hierarchical Bayesian model where several sources of gene tree/species tree disagreement can be accounted for in a modular manner. We implemented this model in a computer program called guenomu whose inputs are posterior distributions of unrooted gene tree topologies for multiple gene families, and whose output is the posterior distribution of rooted species tree topologies. We conducted extensive simulations to evaluate the performance of our approach in comparison with other species tree approaches able to deal with more than one leaf from the same species. Our method ranked best under simulated data sets, in spite of ignoring branch lengths, and performed well on empirical data, as well as being fast enough to analyze relatively large data sets. Our Bayesian supertree method was also very successful in obtaining better estimates of gene trees, by reducing the uncertainty in their distributions. In addition, our results show that under complex simulation scenarios, gene tree parsimony is also a competitive approach once we consider its speed, in contrast to more sophisticated models. PMID:25281847
Efficient algorithms for a class of partitioning problems
NASA Technical Reports Server (NTRS)
Iqbal, M. Ashraf; Bokhari, Shahid H.
1990-01-01
The problem of optimally partitioning the modules of chain- or tree-like tasks over chain-structured or host-satellite multiple computer systems is addressed. This important class of problems includes many signal processing and industrial control applications. Prior research has resulted in a succession of faster exact and approximate algorithms for these problems. Polynomial exact and approximate algorithms are described for this class that are better than any of the previously reported algorithms. The approach is based on a preprocessing step that condenses the given chain or tree structured task into a monotonic chain or tree. The partitioning of this monotonic take can then be carried out using fast search techniques.
Scattering theory for graphs isomorphic to a regular tree at infinity
NASA Astrophysics Data System (ADS)
Colin de Verdière, Yves; Truc, Françoise
2013-06-01
We describe the spectral theory of the adjacency operator of a graph which is isomorphic to a regular tree at infinity. Using some combinatorics, we reduce the problem to a scattering problem for a finite rank perturbation of the adjacency operator on a regular tree. We develop this scattering theory using the classical recipes for Schrödinger operators in Euclidian spaces.
Effect of slash burning on soil pH.
Robert F. Tarrant
1954-01-01
Evaluating the effects of slash burning on regeneration and tree growth is one of the most pressing forest soil problems in the Douglas-fir region. Extensive literature concerning burning and soils is available for other parts of the world, but conclusions are not directly applicable to the Pacific Northwest. Here several studies are under way or planned to determine...
The inverse Wiener polarity index problem for chemical trees.
Du, Zhibin; Ali, Akbar
2018-01-01
The Wiener polarity number (which, nowadays, known as the Wiener polarity index and usually denoted by Wp) was devised by the chemist Harold Wiener, for predicting the boiling points of alkanes. The index Wp of chemical trees (chemical graphs representing alkanes) is defined as the number of unordered pairs of vertices (carbon atoms) at distance 3. The inverse problems based on some well-known topological indices have already been addressed in the literature. The solution of such inverse problems may be helpful in speeding up the discovery of lead compounds having the desired properties. This paper is devoted to solving a stronger version of the inverse problem based on Wiener polarity index for chemical trees. More precisely, it is proved that for every integer t ∈ {n - 3, n - 2,…,3n - 16, 3n - 15}, n ≥ 6, there exists an n-vertex chemical tree T such that Wp(T) = t.
FTUC: A Flooding Tree Uneven Clustering Protocol for a Wireless Sensor Network.
He, Wei; Pillement, Sebastien; Xu, Du
2017-11-23
Clustering is an efficient approach in a wireless sensor network (WSN) to reduce the energy consumption of nodes and to extend the lifetime of the network. Unfortunately, this approach requires that all cluster heads (CHs) transmit their data to the base station (BS), which gives rise to the long distance communications problem, and in multi-hop routing, the CHs near the BS have to forward data from other nodes that lead those CHs to die prematurely, creating the hot zones problem. Unequal clustering has been proposed to solve these problems. Most of the current algorithms elect CH only by considering their competition radius, leading to unevenly distributed cluster heads. Furthermore, global distances values are needed when calculating the competition radius, which is a tedious task in large networks. To face these problems, we propose a flooding tree uneven clustering protocol (FTUC) suited for large networks. Based on the construction of a tree type sub-network to calculate the minimum and maximum distances values of the network, we then apply the unequal cluster theory. We also introduce referenced position circles to evenly elect cluster heads. Therefore, cluster heads are elected depending on the node's residual energy and their distance to a referenced circle. FTUC builds the best inter-cluster communications route by evaluating a cluster head cost function to find the best next hop to the BS. The simulation results show that the FTUC algorithm decreases the energy consumption of the nodes and balances the global energy consumption effectively, thus extending the lifetime of the network.
Tree planting - strip-mined area in Maryland
Fred L. Bagley
1980-01-01
This report is written to elucidate some of the problems encountered in the planting of trees on strip-mined areas in Maryland. When problems are recognized, normally a solution (or at least, an improvement) can be instituted to alleviate the problem. The methods cited herein are those of experienced foresters engaged in strip-mine planting during the past seventeen...
PCA based feature reduction to improve the accuracy of decision tree c4.5 classification
NASA Astrophysics Data System (ADS)
Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.
2018-03-01
Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.
Majumdar, Satya N
2003-08-01
We use the traveling front approach to derive exact asymptotic results for the statistics of the number of particles in a class of directed diffusion-limited aggregation models on a Cayley tree. We point out that some aspects of these models are closely connected to two different problems in computer science, namely, the digital search tree problem in data structures and the Lempel-Ziv algorithm for data compression. The statistics of the number of particles studied here is related to the statistics of height in digital search trees which, in turn, is related to the statistics of the length of the longest word formed by the Lempel-Ziv algorithm. Implications of our results to these computer science problems are pointed out.
NASA Astrophysics Data System (ADS)
Majumdar, Satya N.
2003-08-01
We use the traveling front approach to derive exact asymptotic results for the statistics of the number of particles in a class of directed diffusion-limited aggregation models on a Cayley tree. We point out that some aspects of these models are closely connected to two different problems in computer science, namely, the digital search tree problem in data structures and the Lempel-Ziv algorithm for data compression. The statistics of the number of particles studied here is related to the statistics of height in digital search trees which, in turn, is related to the statistics of the length of the longest word formed by the Lempel-Ziv algorithm. Implications of our results to these computer science problems are pointed out.
NASA Astrophysics Data System (ADS)
Lakyda, Petro; Vasylyshyn, Roman; Lakyda, Ivan
2013-04-01
Stabilization and preservation of the planet's climate system today is regarded as one of the most important global political-economic, environmental and social problems of mankind. Rising concentration of carbon dioxide in the planet's atmosphere due to anthropogenic impact is the main reason leading to global climate change. Due to the above mentioned, social demands on forests are changing their biosphere role and function of natural sink of greenhouse gases becomes top priority. It is known that one of the most essential components of biological productivity of forests is their live biomass. Absorption, long-term sequestration of carbon and generation of oxygen are secured by its components. System research of its parametric structure and development of regulatory and reference information for assessment of aboveground live biomass components of trees and stands of the main forest-forming tree species in Ukraine began over twenty-five years ago at the department of forest mensuration and forest inventory of National University of Life and Environmental Sciences of Ukraine, involving staff from other research institutions. Today, regulatory and reference materials for evaluation of parametric structure of live biomass are developed for trees of the following major forest-forming tree species of Ukraine: Scots pine of natural and artificial origin, Crimean pine, Norway spruce, silver fir, pedunculate oak, European beech, hornbeam, ash, common birch, aspen and black alder (P.I. Lakyda et al., 2011). An ongoing process on development of similar regulatory and reference materials for forest stands of the abovementioned forest-forming tree species of Ukraine is secured by scientists of departments of forest management, and forest mensuration and forest inventory. The total experimental research base is 609 temporary sample plots, where 4880 model trees were processed, including 3195 model trees with estimates of live biomass components. Laboratory studies conducted on 1743 research sections of tree stems, 809 samples of crown branches, 2560 model tree greenery branches, 346 batches of needles and 534 batches of leaves. These materials have high scientific and practical value, forming a basis for quantitative evaluation of biological productivity of forests in Ukraine, which are of great importance for mitigation of climate change. They also can be used as a data source for development of systems of models of various purposes, which find their application in Ukrainian and world forest science and practice.
C-semiring Frameworks for Minimum Spanning Tree Problems
NASA Astrophysics Data System (ADS)
Bistarelli, Stefano; Santini, Francesco
In this paper we define general algebraic frameworks for the Minimum Spanning Tree problem based on the structure of c-semirings. We propose general algorithms that can compute such trees by following different cost criteria, which must be all specific instantiation of c-semirings. Our algorithms are extensions of well-known procedures, as Prim or Kruskal, and show the expressivity of these algebraic structures. They can deal also with partially-ordered costs on the edges.
1985-05-01
the total weight of a given population of organisms. Browse: Twigs or shoots, with or without attached leaves, of shrubs , trees, or woody vines ...volunteer woody plants, or the fsuccessful establishment, later on, of planted shrubs , trees, and ground covers. 184. Some problem soils absolutely...properly prepared seedbed. Woody plants, such as shrubs and trees, are established by seedling transplants. However, some woody species can be seeded
Subterranean termites in urban forestry: tree preference and management.
Zorzenon, F J; Campos, A E C
2015-04-01
Urban tree deterioration is a common problem all over the world. Inappropriate plant species choice and inadequate planting may lead to micro and macro organism attacks, such as pests and diseases. Subterranean termite damage is common and may promote tree falls. In order to help urban forestry planning, this work was carried out for 9 years on 1477 street trees in a neighborhood in the city of São Paulo, Brazil. Plants were identified to species, grouped as native, exotic plants, and palm trees, and their measures of circumference at breast height (CBH) were taken, in order to evaluate if subterranean termite damages are related to tree size and plant group. Four subterranean termite species were identified infesting up to 27% of the plants, with Coptotermes gestroi (Wasmann) being the most common. Palm trees were not damaged by subterranean termites, while native plants are the most susceptible, especially Caesalpinia pluviosa var. peltophoroides (Fabaceae). Among the native plants monitored C. pluviosa var. peltophoroides, Caesalpinia ferrea var. leiostachya, Erythrina speciosa, Piptadenia gonoacantha (Fabaceae), Gochnatia polymorpha (Asteraceae), Tibouchina granulosa (Melastomataceae), and Handroanthus spp. (Bignoniaceae), the latter was the least damaged. Exotic plants were also susceptible with the exception of Lagerstroemia indica (Lythraceae) and Platanus acerifolia (Platanaceae). Correlation analysis showed that the higher the CBH value, the higher the percentage of internal damage by C. gestroi. Infested trees were treated with imidacloprid and thiamethoxam, and subterranean termites were effectively controlled during the 9-year study.
Evaluating key landscape features of a climate- induced forest decline (Project WC-EM-07-01)
Paul Hennon; Dustin Wittwer
2013-01-01
Yellow-cedar is a culturally, economically, and ecologically important tree in coastal Alaska that has been experiencing a widespread mortality known as yellow-cedar decline for about 100 years. Mapping during annual aerial detection surveys has identified nearly the entire geographical distribution of the problem, which totals over 500,000 acres in Alaska (Lamb and...
Taking a systems approach to ecological systems
Grace, James B.
2015-01-01
Increasingly, there is interest in a systems-level understanding of ecological problems, which requires the evaluation of more complex, causal hypotheses. In this issue of the Journal of Vegetation Science, Soliveres et al. use structural equation modeling to test a causal network hypothesis about how tree canopies affect understorey communities. Historical analysis suggests structural equation modeling has been under-utilized in ecology.
Using convolutional neural networks to explore the microbiome.
Reiman, Derek; Metwally, Ahmed; Yang Dai
2017-07-01
The microbiome has been shown to have an impact on the development of various diseases in the host. Being able to make an accurate prediction of the phenotype of a genomic sample based on its microbial taxonomic abundance profile is an important problem for personalized medicine. In this paper, we examine the potential of using a deep learning framework, a convolutional neural network (CNN), for such a prediction. To facilitate the CNN learning, we explore the structure of abundance profiles by creating the phylogenetic tree and by designing a scheme to embed the tree to a matrix that retains the spatial relationship of nodes in the tree and their quantitative characteristics. The proposed CNN framework is highly accurate, achieving a 99.47% of accuracy based on the evaluation on a dataset 1967 samples of three phenotypes. Our result demonstrated the feasibility and promising aspect of CNN in the classification of sample phenotype.
Teixeira, Andreia Sofia; Monteiro, Pedro T; Carriço, João A; Ramirez, Mário; Francisco, Alexandre P
2015-01-01
Trees, including minimum spanning trees (MSTs), are commonly used in phylogenetic studies. But, for the research community, it may be unclear that the presented tree is just a hypothesis, chosen from among many possible alternatives. In this scenario, it is important to quantify our confidence in both the trees and the branches/edges included in such trees. In this paper, we address this problem for MSTs by introducing a new edge betweenness metric for undirected and weighted graphs. This spanning edge betweenness metric is defined as the fraction of equivalent MSTs where a given edge is present. The metric provides a per edge statistic that is similar to that of the bootstrap approach frequently used in phylogenetics to support the grouping of taxa. We provide methods for the exact computation of this metric based on the well known Kirchhoff's matrix tree theorem. Moreover, we implement and make available a module for the PHYLOViZ software and evaluate the proposed metric concerning both effectiveness and computational performance. Analysis of trees generated using multilocus sequence typing data (MLST) and the goeBURST algorithm revealed that the space of possible MSTs in real data sets is extremely large. Selection of the edge to be represented using bootstrap could lead to unreliable results since alternative edges are present in the same fraction of equivalent MSTs. The choice of the MST to be presented, results from criteria implemented in the algorithm that must be based in biologically plausible models.
Review: Evaluation of Foot-and-Mouth Disease Control Using Fault Tree Analysis.
Isoda, N; Kadohira, M; Sekiguchi, S; Schuppers, M; Stärk, K D C
2015-06-01
An outbreak of foot-and-mouth disease (FMD) causes huge economic losses and animal welfare problems. Although much can be learnt from past FMD outbreaks, several countries are not satisfied with their degree of contingency planning and aiming at more assurance that their control measures will be effective. The purpose of the present article was to develop a generic fault tree framework for the control of an FMD outbreak as a basis for systematic improvement and refinement of control activities and general preparedness. Fault trees are typically used in engineering to document pathways that can lead to an undesired event, that is, ineffective FMD control. The fault tree method allows risk managers to identify immature parts of the control system and to analyse the events or steps that will most probably delay rapid and effective disease control during a real outbreak. The present developed fault tree is generic and can be tailored to fit the specific needs of countries. For instance, the specific fault tree for the 2001 FMD outbreak in the UK was refined based on control weaknesses discussed in peer-reviewed articles. Furthermore, the specific fault tree based on the 2001 outbreak was applied to the subsequent FMD outbreak in 2007 to assess the refinement of control measures following the earlier, major outbreak. The FMD fault tree can assist risk managers to develop more refined and adequate control activities against FMD outbreaks and to find optimum strategies for rapid control. Further application using the current tree will be one of the basic measures for FMD control worldwide. © 2013 Blackwell Verlag GmbH.
Test Input Generation for Red-Black Trees using Abstraction
NASA Technical Reports Server (NTRS)
Visser, Willem; Pasareanu, Corina S.; Pelanek, Radek
2005-01-01
We consider the problem of test input generation for code that manipulates complex data structures. Test inputs are sequences of method calls from the data structure interface. We describe test input generation techniques that rely on state matching to avoid generation of redundant tests. Exhaustive techniques use explicit state model checking to explore all the possible test sequences up to predefined input sizes. Lossy techniques rely on abstraction mappings to compute and store abstract versions of the concrete states; they explore under-approximations of all the possible test sequences. We have implemented the techniques on top of the Java PathFinder model checker and we evaluate them using a Java implementation of red-black trees.
Phylogenetic Copy-Number Factorization of Multiple Tumor Samples.
Zaccaria, Simone; El-Kebir, Mohammed; Klau, Gunnar W; Raphael, Benjamin J
2018-04-16
Cancer is an evolutionary process driven by somatic mutations. This process can be represented as a phylogenetic tree. Constructing such a phylogenetic tree from genome sequencing data is a challenging task due to the many types of mutations in cancer and the fact that nearly all cancer sequencing is of a bulk tumor, measuring a superposition of somatic mutations present in different cells. We study the problem of reconstructing tumor phylogenies from copy-number aberrations (CNAs) measured in bulk-sequencing data. We introduce the Copy-Number Tree Mixture Deconvolution (CNTMD) problem, which aims to find the phylogenetic tree with the fewest number of CNAs that explain the copy-number data from multiple samples of a tumor. We design an algorithm for solving the CNTMD problem and apply the algorithm to both simulated and real data. On simulated data, we find that our algorithm outperforms existing approaches that either perform deconvolution/factorization of mixed tumor samples or build phylogenetic trees assuming homogeneous tumor samples. On real data, we analyze multiple samples from a prostate cancer patient, identifying clones within these samples and a phylogenetic tree that relates these clones and their differing proportions across samples. This phylogenetic tree provides a higher resolution view of copy-number evolution of this cancer than published analyses.
On the Accuracy of Language Trees
Pompei, Simone; Loreto, Vittorio; Tria, Francesca
2011-01-01
Historical linguistics aims at inferring the most likely language phylogenetic tree starting from information concerning the evolutionary relatedness of languages. The available information are typically lists of homologous (lexical, phonological, syntactic) features or characters for many different languages: a set of parallel corpora whose compilation represents a paramount achievement in linguistics. From this perspective the reconstruction of language trees is an example of inverse problems: starting from present, incomplete and often noisy, information, one aims at inferring the most likely past evolutionary history. A fundamental issue in inverse problems is the evaluation of the inference made. A standard way of dealing with this question is to generate data with artificial models in order to have full access to the evolutionary process one is going to infer. This procedure presents an intrinsic limitation: when dealing with real data sets, one typically does not know which model of evolution is the most suitable for them. A possible way out is to compare algorithmic inference with expert classifications. This is the point of view we take here by conducting a thorough survey of the accuracy of reconstruction methods as compared with the Ethnologue expert classifications. We focus in particular on state-of-the-art distance-based methods for phylogeny reconstruction using worldwide linguistic databases. In order to assess the accuracy of the inferred trees we introduce and characterize two generalizations of standard definitions of distances between trees. Based on these scores we quantify the relative performances of the distance-based algorithms considered. Further we quantify how the completeness and the coverage of the available databases affect the accuracy of the reconstruction. Finally we draw some conclusions about where the accuracy of the reconstructions in historical linguistics stands and about the leading directions to improve it. PMID:21674034
Comprehensive decision tree models in bioinformatics.
Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter
2012-01-01
Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics.
Comprehensive Decision Tree Models in Bioinformatics
Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter
2012-01-01
Purpose Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. Methods This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. Results The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. Conclusions The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics. PMID:22479449
Development of Gis Tool for the Solution of Minimum Spanning Tree Problem using Prim's Algorithm
NASA Astrophysics Data System (ADS)
Dutta, S.; Patra, D.; Shankar, H.; Alok Verma, P.
2014-11-01
minimum spanning tree (MST) of a connected, undirected and weighted network is a tree of that network consisting of all its nodes and the sum of weights of all its edges is minimum among all such possible spanning trees of the same network. In this study, we have developed a new GIS tool using most commonly known rudimentary algorithm called Prim's algorithm to construct the minimum spanning tree of a connected, undirected and weighted road network. This algorithm is based on the weight (adjacency) matrix of a weighted network and helps to solve complex network MST problem easily, efficiently and effectively. The selection of the appropriate algorithm is very essential otherwise it will be very hard to get an optimal result. In case of Road Transportation Network, it is very essential to find the optimal results by considering all the necessary points based on cost factor (time or distance). This paper is based on solving the Minimum Spanning Tree (MST) problem of a road network by finding it's minimum span by considering all the important network junction point. GIS technology is usually used to solve the network related problems like the optimal path problem, travelling salesman problem, vehicle routing problems, location-allocation problems etc. Therefore, in this study we have developed a customized GIS tool using Python script in ArcGIS software for the solution of MST problem for a Road Transportation Network of Dehradun city by considering distance and time as the impedance (cost) factors. It has a number of advantages like the users do not need a greater knowledge of the subject as the tool is user-friendly and that allows to access information varied and adapted the needs of the users. This GIS tool for MST can be applied for a nationwide plan called Prime Minister Gram Sadak Yojana in India to provide optimal all weather road connectivity to unconnected villages (points). This tool is also useful for constructing highways or railways spanning several cities optimally or connecting all cities with minimum total road length.
2010-01-01
Background The Maximal Pairing Problem (MPP) is the prototype of a class of combinatorial optimization problems that are of considerable interest in bioinformatics: Given an arbitrary phylogenetic tree T and weights ωxy for the paths between any two pairs of leaves (x, y), what is the collection of edge-disjoint paths between pairs of leaves that maximizes the total weight? Special cases of the MPP for binary trees and equal weights have been described previously; algorithms to solve the general MPP are still missing, however. Results We describe a relatively simple dynamic programming algorithm for the special case of binary trees. We then show that the general case of multifurcating trees can be treated by interleaving solutions to certain auxiliary Maximum Weighted Matching problems with an extension of this dynamic programming approach, resulting in an overall polynomial-time solution of complexity (n4 log n) w.r.t. the number n of leaves. The source code of a C implementation can be obtained under the GNU Public License from http://www.bioinf.uni-leipzig.de/Software/Targeting. For binary trees, we furthermore discuss several constrained variants of the MPP as well as a partition function approach to the probabilistic version of the MPP. Conclusions The algorithms introduced here make it possible to solve the MPP also for large trees with high-degree vertices. This has practical relevance in the field of comparative phylogenetics and, for example, in the context of phylogenetic targeting, i.e., data collection with resource limitations. PMID:20525185
On estimation in k-tree sampling
Christoph Kleinn; Frantisek Vilcko
2007-01-01
The plot design known as k-tree sampling involves taking the k nearest trees from a selected sample point as sample trees. While this plot design is very practical and easily applied in the field for moderate values of k, unbiased estimation remains a problem. In this article, we give a brief introduction to the...
Mathematical form models of tree trunks
Rudolfs Ozolins
2000-01-01
Assortment structure analysis of tree trunks is a characteristic and proper problem that can be solved by using mathematical modeling and standard computer programs. Mathematical form model of tree trunks consists of tapering curve equations and their parameters. Parameters for nine species were obtained by processing measurements of 2,794 model trees and studying the...
Stephen W. Fraedrich; L. David Dwinell
2003-01-01
Pine seedling production and pest problems were evaluated in plots fumigated with methyl bromide and nonfumigated plots over a 6-year period at a Georgia nursery. Fumigation increased bed densities for loblolly pine (Pinus taeda L.) in 1996 and slash pine (Pinus elliotii Engelm. var. elliottii) in 1998;...
Constructing Student Problems in Phylogenetic Tree Construction.
ERIC Educational Resources Information Center
Brewer, Steven D.
Evolution is often equated with natural selection and is taught from a primarily functional perspective while comparative and historical approaches, which are critical for developing an appreciation of the power of evolutionary theory, are often neglected. This report describes a study of expert problem-solving in phylogenetic tree construction.…
Thread Graphs, Linear Rank-Width and Their Algorithmic Applications
NASA Astrophysics Data System (ADS)
Ganian, Robert
The introduction of tree-width by Robertson and Seymour [7] was a breakthrough in the design of graph algorithms. A lot of research since then has focused on obtaining a width measure which would be more general and still allowed efficient algorithms for a wide range of NP-hard problems on graphs of bounded width. To this end, Oum and Seymour have proposed rank-width, which allows the solution of many such hard problems on a less restricted graph classes (see e.g. [3,4]). But what about problems which are NP-hard even on graphs of bounded tree-width or even on trees? The parameter used most often for these exceptionally hard problems is path-width, however it is extremely restrictive - for example the graphs of path-width 1 are exactly paths.
Characterizing the phylogenetic tree-search problem.
Money, Daniel; Whelan, Simon
2012-03-01
Phylogenetic trees are important in many areas of biological research, ranging from systematic studies to the methods used for genome annotation. Finding the best scoring tree under any optimality criterion is an NP-hard problem, which necessitates the use of heuristics for tree-search. Although tree-search plays a major role in obtaining a tree estimate, there remains a limited understanding of its characteristics and how the elements of the statistical inferential procedure interact with the algorithms used. This study begins to answer some of these questions through a detailed examination of maximum likelihood tree-search on a wide range of real genome-scale data sets. We examine all 10,395 trees for each of the 106 genes of an eight-taxa yeast phylogenomic data set, then apply different tree-search algorithms to investigate their performance. We extend our findings by examining two larger genome-scale data sets and a large disparate data set that has been previously used to benchmark the performance of tree-search programs. We identify several broad trends occurring during tree-search that provide an insight into the performance of heuristics and may, in the future, aid their development. These trends include a tendency for the true maximum likelihood (best) tree to also be the shortest tree in terms of branch lengths, a weak tendency for tree-search to recover the best tree, and a tendency for tree-search to encounter fewer local optima in genes that have a high information content. When examining current heuristics for tree-search, we find that nearest-neighbor-interchange performs poorly, and frequently finds trees that are significantly different from the best tree. In contrast, subtree-pruning-and-regrafting tends to perform well, nearly always finding trees that are not significantly different to the best tree. Finally, we demonstrate that the precise implementation of a tree-search strategy, including when and where parameters are optimized, can change the character of tree-search, and that good strategies for tree-search may combine existing tree-search programs.
NASA Astrophysics Data System (ADS)
Larekeng, S. H.; Purwito, A.; Mattjik, N. A.; Sudarsono, S.
2018-05-01
Kopyor coconut is one of the many unique coconut types existed in Indonesia. To overcome the problem of low kopyor fruit yield, it is necessary to study xenia effect on the fruit yield of this coconut. The combination of kopyor coconut and normal coconut population selected at infarmers’ coconut plantations consisted of 33 normal coconut trees, and 9 kopyor coconut trees. All adult trees surrounding the 9 kopyor heterozygous (Kk) palms were evaluated as potential male candidate parents (pollen donors). All samples genotypes were determined using four SNAP markers and six microsatellite marker loci, parentage analysis using CERVUS software version 2.0. Results of the analysis indicate that xenia effect reduced kopyor fruit yields. Kopyor heterozygous (Kk) female parents produced low number of kopyor fruits when they were surrounded by many normal homozygous (KK) pollen donors. Out of 99 harvested progeny arrays from the kopyor heterozygous (Kk) female parents, none exhibited kopyor phenotype. The results also indicate that the pollen dispersal from normal homozygous (KK) donor palms range from 0 m (self pollination) to 54 m (outcrossing). The occurence of outcrossing frequency was at least 95% and the selfing frequency is 5%.
High-resolution tree canopy mapping for New York City using LIDAR and object-based image analysis
NASA Astrophysics Data System (ADS)
MacFaden, Sean W.; O'Neil-Dunne, Jarlath P. M.; Royar, Anna R.; Lu, Jacqueline W. T.; Rundle, Andrew G.
2012-01-01
Urban tree canopy is widely believed to have myriad environmental, social, and human-health benefits, but a lack of precise canopy estimates has hindered quantification of these benefits in many municipalities. This problem was addressed for New York City using object-based image analysis (OBIA) to develop a comprehensive land-cover map, including tree canopy to the scale of individual trees. Mapping was performed using a rule-based expert system that relied primarily on high-resolution LIDAR, specifically its capacity for evaluating the height and texture of aboveground features. Multispectral imagery was also used, but shadowing and varying temporal conditions limited its utility. Contextual analysis was a key part of classification, distinguishing trees according to their physical and spectral properties as well as their relationships to adjacent, nonvegetated features. The automated product was extensively reviewed and edited via manual interpretation, and overall per-pixel accuracy of the final map was 96%. Although manual editing had only a marginal effect on accuracy despite requiring a majority of project effort, it maximized aesthetic quality and ensured the capture of small, isolated trees. Converting high-resolution LIDAR and imagery into usable information is a nontrivial exercise, requiring significant processing time and labor, but an expert system-based combination of OBIA and manual review was an effective method for fine-scale canopy mapping in a complex urban environment.
Exact and Approximate Stability of Solutions to Traveling Salesman Problems.
Niendorf, Moritz; Girard, Anouck R
2018-02-01
This paper presents the stability analysis of an optimal tour for the symmetric traveling salesman problem (TSP) by obtaining stability regions. The stability region of an optimal tour is the set of all cost changes for which that solution remains optimal and can be understood as the margin of optimality for a solution with respect to perturbations in the problem data. It is known that it is not possible to test in polynomial time whether an optimal tour remains optimal after the cost of an arbitrary set of edges changes. Therefore, this paper develops tractable methods to obtain under and over approximations of stability regions based on neighborhoods and relaxations. The application of the results to the two-neighborhood and the minimum 1 tree (M1T) relaxation are discussed in detail. For Euclidean TSPs, stability regions with respect to vertex location perturbations and the notion of safe radii and location criticalities are introduced. Benefits of this paper include insight into robustness properties of tours, minimum spanning trees, M1Ts, and fast methods to evaluate optimality after perturbations occur. Numerical examples are given to demonstrate the methods and achievable approximation quality.
STUDYING FOREST ROOT SYSTEMS - AN OVERVIEW OF METHODOLOGICAL PROBLEMS
The study of tree root systems is central to understanding forest ecosystem carbon and nutrient cycles, nutrient and water uptake, C allocation patterns by trees, soil microbial populations, adaptation of trees to stress, soil organic matter production, etc. Methodological probl...
On Tree-Based Phylogenetic Networks.
Zhang, Louxin
2016-07-01
A large class of phylogenetic networks can be obtained from trees by the addition of horizontal edges between the tree edges. These networks are called tree-based networks. We present a simple necessary and sufficient condition for tree-based networks and prove that a universal tree-based network exists for any number of taxa that contains as its base every phylogenetic tree on the same set of taxa. This answers two problems posted by Francis and Steel recently. A byproduct is a computer program for generating random binary phylogenetic networks under the uniform distribution model.
Walking tree heuristics for biological string alignment, gene location, and phylogenies
NASA Astrophysics Data System (ADS)
Cull, P.; Holloway, J. L.; Cavener, J. D.
1999-03-01
Basic biological information is stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Teasing out the meaning of these strings is a central problem of modern biology. Matching and aligning strings brings out their shared characteristics. Although string matching is well-understood in the edit-distance model, biological strings with transpositions and inversions violate this model's assumptions. We propose a family of heuristics called walking trees to align biologically reasonable strings. Both edit-distance and walking tree methods can locate specific genes within a large string when the genes' sequences are given. When we attempt to match whole strings, the walking tree matches most genes, while the edit-distance method fails. We also give examples in which the walking tree matches substrings even if they have been moved or inverted. The edit-distance method was not designed to handle these problems. We include an example in which the walking tree "discovered" a gene. Calculating scores for whole genome matches gives a method for approximating evolutionary distance. We show two evolutionary trees for the picornaviruses which were computed by the walking tree heuristic. Both of these trees show great similarity to previously constructed trees. The point of this demonstration is that WHOLE genomes can be matched and distances calculated. The first tree was created on a Sequent parallel computer and demonstrates that the walking tree heuristic can be efficiently parallelized. The second tree was created using a network of work stations and demonstrates that there is suffient parallelism in the phylogenetic tree calculation that the sequential walking tree can be used effectively on a network.
Machine Learning Through Signature Trees. Applications to Human Speech.
ERIC Educational Resources Information Center
White, George M.
A signature tree is a binary decision tree used to classify unknown patterns. An attempt was made to develop a computer program for manipulating signature trees as a general research tool for exploring machine learning and pattern recognition. The program was applied to the problem of speech recognition to test its effectiveness for a specific…
USDA-ARS?s Scientific Manuscript database
Plant scientists make inferences and predictions from phylogenetic trees to solve scientific problems. Crop losses due to disease damage is an important problem that many plant breeders would like to solve, so the ability to predict traits like disease resistance from phylogenetic trees derived from...
Improving Predictions of Multiple Binary Models in ILP
2014-01-01
Despite the success of ILP systems in learning first-order rules from small number of examples and complexly structured data in various domains, they struggle in dealing with multiclass problems. In most cases they boil down a multiclass problem into multiple black-box binary problems following the one-versus-one or one-versus-rest binarisation techniques and learn a theory for each one. When evaluating the learned theories of multiple class problems in one-versus-rest paradigm particularly, there is a bias caused by the default rule toward the negative classes leading to an unrealistic high performance beside the lack of prediction integrity between the theories. Here we discuss the problem of using one-versus-rest binarisation technique when it comes to evaluating multiclass data and propose several methods to remedy this problem. We also illustrate the methods and highlight their link to binary tree and Formal Concept Analysis (FCA). Our methods allow learning of a simple, consistent, and reliable multiclass theory by combining the rules of the multiple one-versus-rest theories into one rule list or rule set theory. Empirical evaluation over a number of data sets shows that our proposed methods produce coherent and accurate rule models from the rules learned by the ILP system of Aleph. PMID:24696657
Integrated Approach To Design And Analysis Of Systems
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Iverson, David L.
1993-01-01
Object-oriented fault-tree representation unifies evaluation of reliability and diagnosis of faults. Programming/fault tree described more fully in "Object-Oriented Algorithm For Evaluation Of Fault Trees" (ARC-12731). Augmented fault tree object contains more information than fault tree object used in quantitative analysis of reliability. Additional information needed to diagnose faults in system represented by fault tree.
Marshall, C R
1992-03-01
Reconciling discordant morphological and molecular phylogenies remains a problem in modern systematics. By examining conflicting DNA-hybridization and morphological phylogenies of sand dollars, I show that morphological criteria may be used to help evaluate the reliability of molecular phylogenies where they differ from morphological trees. All available criteria for assessing the reliability of DNA-hybridization phylogenies suggest that the sand dollar DNA-hybridization phylogeny is robust. Standard homology-recognition criteria are used to assess the a priori reliabilities of the morphological attributes associated with the node drawn into question by the DNA data, and it is shown that these attributes are among the least phylogenetically informative of all the morphological characters. Moreover, the questioned node has the smallest number of supporting characters, and most of these characters are associated with the food grooves, which suggests that they may be functionally correlated. Thus, on the basis of the analysis of the morphological data and given the robustness of the DNA tree, the DNA phylogeny is preferred. Further, paleobiogeographic data support the DNA tree rather than the morphological tree, and a plausible heterochronic mechanism has been proposed that may account for the homoplasious morphological evolution that must have occurred if the DNA tree is correct.
NASA Astrophysics Data System (ADS)
Żukowicz, Marek; Markiewicz, Michał
2016-09-01
The aim of the article is to present a mathematical definition of the object model, that is known in computer science as TreeList and to show application of this model for design evolutionary algorithm, that purpose is to generate structures based on this object. The first chapter introduces the reader to the problem of presenting data using the TreeList object. The second chapter describes the problem of testing data structures based on TreeList. The third one shows a mathematical model of the object TreeList and the parameters, used in determining the utility of structures created through this model and in evolutionary strategy, that generates these structures for testing purposes. The last chapter provides a brief summary and plans for future research related to the algorithm presented in the article.
ERIC Educational Resources Information Center
Houston, Paul D.
2006-01-01
There is a childhood saying about a confused dog who thinks he sees a possum in a tree. The problem is that the possum is actually in a different tree so the dog barks up the wrong tree. American education is constantly playing both dog and possum. Sometimes they are the prey, and sometimes they are just confused about what and where the prey is.…
Study on Cloud Security Based on Trust Spanning Tree Protocol
NASA Astrophysics Data System (ADS)
Lai, Yingxu; Liu, Zenghui; Pan, Qiuyue; Liu, Jing
2015-09-01
Attacks executed on Spanning Tree Protocol (STP) expose the weakness of link layer protocols and put the higher layers in jeopardy. Although the problems have been studied for many years and various solutions have been proposed, many security issues remain. To enhance the security and credibility of layer-2 network, we propose a trust-based spanning tree protocol aiming at achieving a higher credibility of LAN switch with a simple and lightweight authentication mechanism. If correctly implemented in each trusted switch, the authentication of trust-based STP can guarantee the credibility of topology information that is announced to other switch in the LAN. To verify the enforcement of the trusted protocol, we present a new trust evaluation method of the STP using a specification-based state model. We implement a prototype of trust-based STP to investigate its practicality. Experiment shows that the trusted protocol can achieve security goals and effectively avoid STP attacks with a lower computation overhead and good convergence performance.
On the use of cartographic projections in visualizing phylo-genetic tree space
2010-01-01
Phylogenetic analysis is becoming an increasingly important tool for biological research. Applications include epidemiological studies, drug development, and evolutionary analysis. Phylogenetic search is a known NP-Hard problem. The size of the data sets which can be analyzed is limited by the exponential growth in the number of trees that must be considered as the problem size increases. A better understanding of the problem space could lead to better methods, which in turn could lead to the feasible analysis of more data sets. We present a definition of phylogenetic tree space and a visualization of this space that shows significant exploitable structure. This structure can be used to develop search methods capable of handling much larger data sets. PMID:20529355
Adaptable Constrained Genetic Programming: Extensions and Applications
NASA Technical Reports Server (NTRS)
Janikow, Cezary Z.
2005-01-01
An evolutionary algorithm applies evolution-based principles to problem solving. To solve a problem, the user defines the space of potential solutions, the representation space. Sample solutions are encoded in a chromosome-like structure. The algorithm maintains a population of such samples, which undergo simulated evolution by means of mutation, crossover, and survival of the fittest principles. Genetic Programming (GP) uses tree-like chromosomes, providing very rich representation suitable for many problems of interest. GP has been successfully applied to a number of practical problems such as learning Boolean functions and designing hardware circuits. To apply GP to a problem, the user needs to define the actual representation space, by defining the atomic functions and terminals labeling the actual trees. The sufficiency principle requires that the label set be sufficient to build the desired solution trees. The closure principle allows the labels to mix in any arity-consistent manner. To satisfy both principles, the user is often forced to provide a large label set, with ad hoc interpretations or penalties to deal with undesired local contexts. This unfortunately enlarges the actual representation space, and thus usually slows down the search. In the past few years, three different methodologies have been proposed to allow the user to alleviate the closure principle by providing means to define, and to process, constraints on mixing the labels in the trees. Last summer we proposed a new methodology to further alleviate the problem by discovering local heuristics for building quality solution trees. A pilot system was implemented last summer and tested throughout the year. This summer we have implemented a new revision, and produced a User's Manual so that the pilot system can be made available to other practitioners and researchers. We have also designed, and partly implemented, a larger system capable of dealing with much more powerful heuristics.
USDA-ARS?s Scientific Manuscript database
Nine years of periodic acoustical monitoring of 93 trees active with Formosan subterranean termite, Coptotermes formosanus Shiraki, evaluated imidacloprid tree foam and noviflumuron bait on activity in trees. Long term, imidacloprid suppressed but did not eliminate termite activity in treated trees...
NASA Astrophysics Data System (ADS)
Kamide, Norihiro; Kaneiwa, Ken
An extended full computation-tree logic, CTLS*, is introduced as a Kripke semantics with a sequence modal operator. This logic can appropriately represent hierarchical tree structures where sequence modal operators in CTLS* are applied to tree structures. An embedding theorem of CTLS* into CTL* is proved. The validity, satisfiability and model-checking problems of CTLS* are shown to be decidable. An illustrative example of biological taxonomy is presented using CTLS* formulas.
Hydrochemical analysis of groundwater using a tree-based model
NASA Astrophysics Data System (ADS)
Litaor, M. Iggy; Brielmann, H.; Reichmann, O.; Shenker, M.
2010-06-01
SummaryHydrochemical indices are commonly used to ascertain aquifer characteristics, salinity problems, anthropogenic inputs and resource management, among others. This study was conducted to test the applicability of a binary decision tree model to aquifer evaluation using hydrochemical indices as input. The main advantage of the tree-based model compared to other commonly used statistical procedures such as cluster and factor analyses is the ability to classify groundwater samples with assigned probability and the reduction of a large data set into a few significant variables without creating new factors. We tested the model using data sets collected from headwater springs of the Jordan River, Israel. The model evaluation consisted of several levels of complexity, from simple separation between the calcium-magnesium-bicarbonate water type of karstic aquifers to the more challenging separation of calcium-sodium-bicarbonate water type flowing through perched and regional basaltic aquifers. In all cases, the model assigned measures for goodness of fit in the form of misclassification errors and singled out the most significant variable in the analysis. The model proceeded through a sequence of partitions providing insight into different possible pathways and changing lithology. The model results were extremely useful in constraining the interpretation of geological heterogeneity and constructing a conceptual flow model for a given aquifer. The tree model clearly identified the hydrochemical indices that were excluded from the analysis, thus providing information that can lead to a decrease in the number of routinely analyzed variables and a significant reduction in laboratory cost.
Ergonomic evaluation and comparison of wood harvesting systems in Northwest Russia.
Gerasimov, Yuri; Sokolov, Anton
2014-03-01
A comparison of 14 currently applicable wood harvesting systems was assessed with respect to ergonomic point of view. For this purpose, the research method, based on the Hodges-Lehmann rule and the integrated work-severity rate of single machinery, was developed for ergonomic evaluation of cut-to-length, tree-length and full-tree harvesting systems. Altogether, about 130 different parameters of 36 units of equipment that impact on the ergonomics and work conditions were measured and estimated in interviews undertaken directly at forestry harvesting workplaces in 15 logging companies in the Republic of Karelia, Northwest Russia. Then the results were compared to the effective norms, and the degree of compliance with the stipulated values was determined. The estimates obtained for the degree of compliance were combined. This permits a direct comparison of the workload on forestry harvesting workers such as operators, lumberjacks and choker setters. In many respects, the current ergonomic standard is standard, except for the operators of cable skidders, chainsaws and choker settings. Visibility and work postures were considered to be the most critical features influencing the operator's performance. Problems still exist, despite the extensive development of cabs. The best working conditions in terms of harvesting systems were provided by "harvester + forwarder" in cut-to-length harvesting, and "feller-buncher + grapple skidder" in full-tree harvesting. The motor-manual tree-length harvesting performed with cable skidders showed the worst results in terms of ergonomics. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Tanglegrams: A Reduction Tool for Mathematical Phylogenetics.
Matsen, Frederick A; Billey, Sara C; Kas, Arnold; Konvalinka, Matjaz
2018-01-01
Many discrete mathematics problems in phylogenetics are defined in terms of the relative labeling of pairs of leaf-labeled trees. These relative labelings are naturally formalized as tanglegrams, which have previously been an object of study in coevolutionary analysis. Although there has been considerable work on planar drawings of tanglegrams, they have not been fully explored as combinatorial objects until recently. In this paper, we describe how many discrete mathematical questions on trees "factor" through a problem on tanglegrams, and how understanding that factoring can simplify analysis. Depending on the problem, it may be useful to consider a unordered version of tanglegrams, and/or their unrooted counterparts. For all of these definitions, we show how the isomorphism types of tanglegrams can be understood in terms of double cosets of the symmetric group, and we investigate their automorphisms. Understanding tanglegrams better will isolate the distinct problems on leaf-labeled pairs of trees and reveal natural symmetries of spaces associated with such problems.
Fast Construction of Near Parsimonious Hybridization Networks for Multiple Phylogenetic Trees.
Mirzaei, Sajad; Wu, Yufeng
2016-01-01
Hybridization networks represent plausible evolutionary histories of species that are affected by reticulate evolutionary processes. An established computational problem on hybridization networks is constructing the most parsimonious hybridization network such that each of the given phylogenetic trees (called gene trees) is "displayed" in the network. There have been several previous approaches, including an exact method and several heuristics, for this NP-hard problem. However, the exact method is only applicable to a limited range of data, and heuristic methods can be less accurate and also slow sometimes. In this paper, we develop a new algorithm for constructing near parsimonious networks for multiple binary gene trees. This method is more efficient for large numbers of gene trees than previous heuristics. This new method also produces more parsimonious results on many simulated datasets as well as a real biological dataset than a previous method. We also show that our method produces topologically more accurate networks for many datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Dmitriy; Weber, Gunther H.
2014-03-31
Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements. We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local{global representation, we illustrate how di erent problems that rely on contour trees can be solved in parallel with minimal communication.
Automated Reconstruction of Neural Trees Using Front Re-initialization
Mukherjee, Amit; Stepanyants, Armen
2013-01-01
This paper proposes a greedy algorithm for automated reconstruction of neural arbors from light microscopy stacks of images. The algorithm is based on the minimum cost path method. While the minimum cost path, obtained using the Fast Marching Method, results in a trace with the least cumulative cost between the start and the end points, it is not sufficient for the reconstruction of neural trees. This is because sections of the minimum cost path can erroneously travel through the image background with undetectable detriment to the cumulative cost. To circumvent this problem we propose an algorithm that grows a neural tree from a specified root by iteratively re-initializing the Fast Marching fronts. The speed image used in the Fast Marching Method is generated by computing the average outward flux of the gradient vector flow field. Each iteration of the algorithm produces a candidate extension by allowing the front to travel a specified distance and then tracking from the farthest point of the front back to the tree. Robust likelihood ratio test is used to evaluate the quality of the candidate extension by comparing voxel intensities along the extension to those in the foreground and the background. The qualified extensions are appended to the current tree, the front is re-initialized, and Fast Marching is continued until the stopping criterion is met. To evaluate the performance of the algorithm we reconstructed 6 stacks of two-photon microscopy images and compared the results to the ground truth reconstructions by using the DIADEM metric. The average comparison score was 0.82 out of 1.0, which is on par with the performance achieved by expert manual tracers. PMID:24386539
Data mining for multiagent rules, strategies, and fuzzy decision tree structure
NASA Astrophysics Data System (ADS)
Smith, James F., III; Rhyne, Robert D., II; Fisher, Kristin
2002-03-01
A fuzzy logic based resource manager (RM) has been developed that automatically allocates electronic attack resources in real-time over many dissimilar platforms. Two different data mining algorithms have been developed to determine rules, strategies, and fuzzy decision tree structure. The first data mining algorithm uses a genetic algorithm as a data mining function and is called from an electronic game. The game allows a human expert to play against the resource manager in a simulated battlespace with each of the defending platforms being exclusively directed by the fuzzy resource manager and the attacking platforms being controlled by the human expert or operating autonomously under their own logic. This approach automates the data mining problem. The game automatically creates a database reflecting the domain expert's knowledge. It calls a data mining function, a genetic algorithm, for data mining of the database as required and allows easy evaluation of the information mined in the second step. The criterion for re- optimization is discussed as well as experimental results. Then a second data mining algorithm that uses a genetic program as a data mining function is introduced to automatically discover fuzzy decision tree structures. Finally, a fuzzy decision tree generated through this process is discussed.
Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson
2010-08-01
Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this review was to assess machine learning alternatives to logistic regression, which may accomplish the same goals but with fewer assumptions or greater accuracy. We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (classification and regression trees [CART]), and meta-classifiers (in particular, boosting). Although the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and, to a lesser extent, decision trees (particularly CART), appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data.
Barros, Rodrigo C; Winck, Ana T; Machado, Karina S; Basgalupp, Márcio P; de Carvalho, André C P L F; Ruiz, Duncan D; de Souza, Osmar Norberto
2012-11-21
This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.
Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data
2012-01-01
Background This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. Results The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. Conclusions We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor. PMID:23171000
Shi, Cheng-Min; Yang, Ziheng
2018-01-01
Abstract The phylogenetic relationships among extant gibbon species remain unresolved despite numerous efforts using morphological, behavorial, and genetic data and the sequencing of whole genomes. A major challenge in reconstructing the gibbon phylogeny is the radiative speciation process, which resulted in extremely short internal branches in the species phylogeny and extensive incomplete lineage sorting with extensive gene-tree heterogeneity across the genome. Here, we analyze two genomic-scale data sets, with ∼10,000 putative noncoding and exonic loci, respectively, to estimate the species tree for the major groups of gibbons. We used the Bayesian full-likelihood method bpp under the multispecies coalescent model, which naturally accommodates incomplete lineage sorting and uncertainties in the gene trees. For comparison, we included three heuristic coalescent-based methods (mp-est, SVDQuartets, and astral) as well as concatenation. From both data sets, we infer the phylogeny for the four extant gibbon genera to be (Hylobates, (Nomascus, (Hoolock, Symphalangus))). We used simulation guided by the real data to evaluate the accuracy of the methods used. Astral, while not as efficient as bpp, performed well in estimation of the species tree even in presence of excessive incomplete lineage sorting. Concatenation, mp-est and SVDQuartets were unreliable when the species tree contains very short internal branches. Likelihood ratio test of gene flow suggests a small amount of migration from Hylobates moloch to H. pileatus, while cross-genera migration is absent or rare. Our results highlight the utility of coalescent-based methods in addressing challenging species tree problems characterized by short internal branches and rampant gene tree-species tree discordance. PMID:29087487
Tree-based solvers for adaptive mesh refinement code FLASH - I: gravity and optical depths
NASA Astrophysics Data System (ADS)
Wünsch, R.; Walch, S.; Dinnbier, F.; Whitworth, A.
2018-04-01
We describe an OctTree algorithm for the MPI parallel, adaptive mesh refinement code FLASH, which can be used to calculate the gas self-gravity, and also the angle-averaged local optical depth, for treating ambient diffuse radiation. The algorithm communicates to the different processors only those parts of the tree that are needed to perform the tree-walk locally. The advantage of this approach is a relatively low memory requirement, important in particular for the optical depth calculation, which needs to process information from many different directions. This feature also enables a general tree-based radiation transport algorithm that will be described in a subsequent paper, and delivers excellent scaling up to at least 1500 cores. Boundary conditions for gravity can be either isolated or periodic, and they can be specified in each direction independently, using a newly developed generalization of the Ewald method. The gravity calculation can be accelerated with the adaptive block update technique by partially re-using the solution from the previous time-step. Comparison with the FLASH internal multigrid gravity solver shows that tree-based methods provide a competitive alternative, particularly for problems with isolated or mixed boundary conditions. We evaluate several multipole acceptance criteria (MACs) and identify a relatively simple approximate partial error MAC which provides high accuracy at low computational cost. The optical depth estimates are found to agree very well with those of the RADMC-3D radiation transport code, with the tree-solver being much faster. Our algorithm is available in the standard release of the FLASH code in version 4.0 and later.
What is the danger of the anomaly zone for empirical phylogenetics?
Huang, Huateng; Knowles, L Lacey
2009-10-01
The increasing number of observations of gene trees with discordant topologies in phylogenetic studies has raised awareness about the problems of incongruence between species trees and gene trees. Moreover, theoretical treatments focusing on the impact of coalescent variance on phylogenetic study have also identified situations where the most probable gene trees are ones that do not match the underlying species tree (i.e., anomalous gene trees [AGTs]). However, although the theoretical proof of the existence of AGTs is alarming, the actual risk that AGTs pose to empirical phylogenetic study is far from clear. Establishing the conditions (i.e., the branch lengths in a species tree) for which AGTs are possible does not address the critical issue of how prevalent they might be. Furthermore, theoretical characterization of the species trees for which AGTs may pose a problem (i.e., the anomaly zone or the species histories for which AGTs are theoretically possible) is based on consideration of just one source of variance that contributes to species tree and gene tree discord-gene lineage coalescence. Yet, empirical data contain another important stochastic component-mutational variance. Estimated gene trees will differ from the underlying gene trees (i.e., the actual genealogy) because of the random process of mutation. Here, we take a simulation approach to investigate the prevalence of AGTs, among estimated gene trees, thereby characterizing the boundaries of the anomaly zone taking into account both coalescent and mutational variances. We also determine the frequency of realized AGTs, which is critical to putting the theoretical work on AGTs into a realistic biological context. Two salient results emerge from this investigation. First, our results show that mutational variance can indeed expand the parameter space (i.e., the relative branch lengths in a species tree) where AGTs might be observed in empirical data. By exploring the underlying cause for the expanded anomaly zone, we identify aspects of empirical data relevant to avoiding the problems that AGTs pose for species tree inference from multilocus data. Second, for the empirical species histories where AGTs are possible, unresolved trees-not AGTs-predominate the pool of estimated gene trees. This result suggests that the risk of AGTs, while they exist in theory, may rarely be realized in practice. By considering the biological realities of both mutational and coalescent variances, the study has refined, and redefined, what the actual challenges are for empirical phylogenetic study of recently diverged taxa that have speciated rapidly-AGTs themselves are unlikely to pose a significant danger to empirical phylogenetic study.
... trigger allergic reactions include fish, shellfish, peanuts, and tree nuts, such as walnuts. Problem foods for children can include eggs, milk, peanuts, tree nuts, soy, and wheat. The allergic reaction may ...
E. M. Hornibrook
1939-01-01
A satisfactory silvicultural management of ponderosa pine stands requires a judicious selection of trees to be left in the reserve stand. The timber marker must know what type of tree has the greatest growth potentialities and what type of tree will respond but slightly upon being released. The silvicultural problem in marking therefore is one of recognizing the...
Identifying failure in a tree network of a parallel computer
Archer, Charles J.; Pinnow, Kurt W.; Wallenfelt, Brian P.
2010-08-24
Methods, parallel computers, and products are provided for identifying failure in a tree network of a parallel computer. The parallel computer includes one or more processing sets including an I/O node and a plurality of compute nodes. For each processing set embodiments include selecting a set of test compute nodes, the test compute nodes being a subset of the compute nodes of the processing set; measuring the performance of the I/O node of the processing set; measuring the performance of the selected set of test compute nodes; calculating a current test value in dependence upon the measured performance of the I/O node of the processing set, the measured performance of the set of test compute nodes, and a predetermined value for I/O node performance; and comparing the current test value with a predetermined tree performance threshold. If the current test value is below the predetermined tree performance threshold, embodiments include selecting another set of test compute nodes. If the current test value is not below the predetermined tree performance threshold, embodiments include selecting from the test compute nodes one or more potential problem nodes and testing individually potential problem nodes and links to potential problem nodes.
Encoding phylogenetic trees in terms of weighted quartets.
Grünewald, Stefan; Huber, Katharina T; Moulton, Vincent; Semple, Charles
2008-04-01
One of the main problems in phylogenetics is to develop systematic methods for constructing evolutionary or phylogenetic trees. For a set of species X, an edge-weighted phylogenetic X-tree or phylogenetic tree is a (graph theoretical) tree with leaf set X and no degree 2 vertices, together with a map assigning a non-negative length to each edge of the tree. Within phylogenetics, several methods have been proposed for constructing such trees that work by trying to piece together quartet trees on X, i.e. phylogenetic trees each having four leaves in X. Hence, it is of interest to characterise when a collection of quartet trees corresponds to a (unique) phylogenetic tree. Recently, Dress and Erdös provided such a characterisation for binary phylogenetic trees, that is, phylogenetic trees all of whose internal vertices have degree 3. Here we provide a new characterisation for arbitrary phylogenetic trees.
The Decision Tree: A Tool for Achieving Behavioral Change.
ERIC Educational Resources Information Center
Saren, Dru
1999-01-01
Presents a "Decision Tree" process for structuring team decision making and problem solving about specific student behavioral goals. The Decision Tree involves a sequence of questions/decisions that can be answered in "yes/no" terms. Questions address reasonableness of the goal, time factors, importance of the goal, responsibilities, safety,…
Plotto, Anne; Baldwin, Elizabeth; McCollum, Greg; Manthey, John; Narciso, Jan; Irey, Mike
2010-05-01
Some anecdotal reports suggest that infection of citrus trees with Candidatus Liberibacter asiaticus (Las), the suspected causal agent of huanglongbing (HLB) disease, imparts off flavor to orange juice. It is of interest to the industry to know how Las infection affects juice quality with respect to cultivar, maturity, or processing method. Hamlin, Midsweet, and Valencia oranges were harvested over 2 y from trees that tested negative (Las-) or positive (Las+) for Las from different groves and included normal looking (nonsymptomatic) and symptomatic fruit (small, green, and lopsided) from Las+ trees. In the 1st year, fruit were manually juiced, while in the 2nd year, a commercial process was used. Juice from Las+ trees was compared to juice from Las- trees in difference-from-control tests, and by descriptive analysis. Results showed large variability due to tree, harvest date, and cultivar. Juice from Hamlin Las+ trees tended to be more bitter and sour than its Las- counterpart. In contrast, hand processed Valencia juice from Las+ trees was perceived to have some off-flavor and bitterness compared to control, but the following year, commercially processed Valencia juice from Las+ trees was perceived to be only slightly more sour than juice from Las- trees for the April harvest, and to be sweeter for the June harvest. When juice from individual replicates was pooled to be more representative of a commercial situation, there was no difference between Las+ and Las- juice in Valencia. Trained panel differences were noted for juice from Hamlin Las+ fruit, especially for symptomatic fruit. Assumptions that juice made from oranges harvested from Huanglongbing (from infection with Liberibacter sp.) affected trees is off-flavored appeared to be generally more true for Hamlin juice than for Midsweet or Valencia, especially for Hamlin juice made from symptomatic fruit. For Midsweet and Valencia, flavor differences between juice made from fruit harvested from diseased or healthy trees varied greatly between trees, season, and even processing method. Under a commercial processing situation, where juice is blended from several varieties, seasons, and multiple locations, it is expected that off-flavor will not be a major problem.
On the Integration of Logic Programming and Functional Programming.
1985-06-01
be performed with simple handtools and devices. However, if the problem is more complex, say involving the cylinders, camshaft , or drive train, then...f(x,x) with f(y, g(y)), and would bind x to g(x) (Ref. 7]. The problem, of course, is that the attempt to prune the search tree allows circularity...combinatorial-explosion, since the search trees generated can grow very unpredictably (Re£. 19: p. 2293. Somewhat akin to the halting problem, it means that a
ERIC Educational Resources Information Center
Werner, Suzanne K.
2003-01-01
Describes a series of activities exploring Leonardo da Vinci's tree theory that are designed to strengthen 8th grade students' data collection and problem solving skills in physical science classes. (KHR)
Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.
On the Complexity of the Asymmetric VPN Problem
NASA Astrophysics Data System (ADS)
Rothvoß, Thomas; Sanità, Laura
We give the first constant factor approximation algorithm for the asymmetric Virtual Private Network (textsc{Vpn}) problem with arbitrary concave costs. We even show the stronger result, that there is always a tree solution of cost at most 2·OPT and that a tree solution of (expected) cost at most 49.84·OPT can be determined in polynomial time.
J.M. Linton; H.M. Barnes; R.D. Seale; P.D. Jones; E. Lowell; S.S. Hummel
2010-01-01
Finding alternative uses for raw material from small-diameter trees is a critical problem throughout the United States. In western states, a lack of markets for small-diameter ponderosa pine (Pinus ponderosa) and lodgepole pine (Pinus contorta ) can contribute to problems associated with overstocking. To test the feasibility of...
Gaining forests but losing ground: A GIS evaluation in a Himalayan watershed
NASA Astrophysics Data System (ADS)
Schreier, Hans; Brown, Sandra; Schmidt, Margaret; Shah, Pravakar; Shrestha, Bubhan; Nakarmi, Gopal; Subba, Khagendra; Wymann, Susanne
1994-01-01
GIS overlay techniques were used to provide a quantitative historic documentation of deforestation and land-use dynamics in the Middle Mountains of Nepal between 1947 and 1990. Deforestation was most critical in the 1960s, but active afforestation programs in the 1980s have reversed the process. In spite of these trends, the degradation problem is more complex. The GIS evaluation showed that 86% of the recently afforested land is now under pine plantations located primarily at lower elevations and moderately steep slopes. In contrast, rainfed agricultural expansion is most pronounced on acidic soils and steeper, upper elevation sites, suggesting marginalization of agriculture. Agricultural expansion coupled with major losses of grazing land to pine forests are the key processes pointing towards major animal feed deficits. An alternative animal feed source is suggested through GIS using a topographically based microclimatic classification to generate a tree-planting map where the optimum ecological conditions for selective native fodder tree species are identified.
Reconstruction of phylogenetic trees of prokaryotes using maximal common intervals.
Heydari, Mahdi; Marashi, Sayed-Amir; Tusserkani, Ruzbeh; Sadeghi, Mehdi
2014-10-01
One of the fundamental problems in bioinformatics is phylogenetic tree reconstruction, which can be used for classifying living organisms into different taxonomic clades. The classical approach to this problem is based on a marker such as 16S ribosomal RNA. Since evolutionary events like genomic rearrangements are not included in reconstructions of phylogenetic trees based on single genes, much effort has been made to find other characteristics for phylogenetic reconstruction in recent years. With the increasing availability of completely sequenced genomes, gene order can be considered as a new solution for this problem. In the present work, we applied maximal common intervals (MCIs) in two or more genomes to infer their distance and to reconstruct their evolutionary relationship. Additionally, measures based on uncommon segments (UCS's), i.e., those genomic segments which are not detected as part of any of the MCIs, are also used for phylogenetic tree reconstruction. We applied these two types of measures for reconstructing the phylogenetic tree of 63 prokaryotes with known COG (clusters of orthologous groups) families. Similarity between the MCI-based (resp. UCS-based) reconstructed phylogenetic trees and the phylogenetic tree obtained from NCBI taxonomy browser is as high as 93.1% (resp. 94.9%). We show that in the case of this diverse dataset of prokaryotes, tree reconstruction based on MCI and UCS outperforms most of the currently available methods based on gene orders, including breakpoint distance and DCJ. We additionally tested our new measures on a dataset of 13 closely-related bacteria from the genus Prochlorococcus. In this case, distances like rearrangement distance, breakpoint distance and DCJ proved to be useful, while our new measures are still appropriate for phylogenetic reconstruction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Voice based gender classification using machine learning
NASA Astrophysics Data System (ADS)
Raahul, A.; Sapthagiri, R.; Pankaj, K.; Vijayarajan, V.
2017-11-01
Gender identification is one of the major problem speech analysis today. Tracing the gender from acoustic data i.e., pitch, median, frequency etc. Machine learning gives promising results for classification problem in all the research domains. There are several performance metrics to evaluate algorithms of an area. Our Comparative model algorithm for evaluating 5 different machine learning algorithms based on eight different metrics in gender classification from acoustic data. Agenda is to identify gender, with five different algorithms: Linear Discriminant Analysis (LDA), K-Nearest Neighbour (KNN), Classification and Regression Trees (CART), Random Forest (RF), and Support Vector Machine (SVM) on basis of eight different metrics. The main parameter in evaluating any algorithms is its performance. Misclassification rate must be less in classification problems, which says that the accuracy rate must be high. Location and gender of the person have become very crucial in economic markets in the form of AdSense. Here with this comparative model algorithm, we are trying to assess the different ML algorithms and find the best fit for gender classification of acoustic data.
Binary space partitioning trees and their uses
NASA Technical Reports Server (NTRS)
Bell, Bradley N.
1989-01-01
Binary Space Partitioning (BSP) trees have some qualities that make them useful in solving many graphics related problems. The purpose is to describe what a BSP tree is, and how it can be used to solve the problem of hidden surface removal, and constructive solid geometry. The BSP tree is based on the idea that a plane acting as a divider subdivides space into two parts with one being on the positive side and the other on the negative. A polygonal solid is then represented as the volume defined by the collective interior half spaces of the solid's bounding surfaces. The nature of how the tree is organized lends itself well for sorting polygons relative to an arbitrary point in 3 space. The speed at which the tree can be traversed for depth sorting is fast enough to provide hidden surface removal at interactive speeds. The fact that a BSP tree actually represents a polygonal solid as a bounded volume also makes it quite useful in performing the boolean operations used in constructive solid geometry. Due to the nature of the BSP tree, polygons can be classified as they are subdivided. The ability to classify polygons as they are subdivided can enhance the simplicity of implementing constructive solid geometry.
Kong, C H; Chen, L C; Xu, X H; Wang, P; Wang, S L
2008-12-24
Autotoxicity is a major reason for replant problems in managed tree ecosystems. Studies have related phenolics-based allelochemicals to autotoxicity. We selected a 20-year-old replanted Chinese fir [Cunninghamia lancealata (Lamb.) Hook] tree ecosystem to isolate, identify, determine the biological activity of, and quantify soil phytotoxins. Eight common phenolics (coumarin, vanillin, isovanillin, and p-hydroxybenzoic, vanillic, benzoic, cinnamic, and ferulic acids), friedelin, and a novel cyclic dipeptide (6-hydroxy-1,3-dimethyl-8-nonadecyl-[1,4]-diazocane-2,5-diketone) were obtained by using the bioassay-guided isolation technique from toxic soil of the replanted Chinese fir tree ecosystem. Chemical structures were determined by spectroscopic means, including 2D-NMR (COSY, HMQC, HMBC, and NOESY) experiments. High concentrations of soil phenolics and friedelin were observed in the natural evergreen broadleaf forest (CK) rather than in the Chinese fir tree ecosystem. The phenolics and friedelin were not phytotoxic to Chinese fir trees. However, the cyclic dipeptide inhibited Chinese fir growth at soil concentrations determined in the replanted Chinese fir tree ecosystem. There was a significantly higher soil concentration of cyclic dipeptide in the replanted Chinese fir tree ecosystem than in a fresh Chinese fir tree ecosystem. The results suggest that phenolics and friedelin are not key allelochemicals since they are weakly phytotoxic and are detected in low concentrations in the replanted Chinese fir tree ecosystem, while cyclic dipeptide is a highly active allelochemical with a phytotoxic effect that limits offspring growth in the replanted Chinese fir tree ecosystem. The discovery of cyclic dipeptide, as well as a further understanding of its potential action mechanism in the replanted Chinese fir tree ecosystem, may contribute to solving the replant problems in managed tree ecosystems.
Chilling and heat requirements for flowering in temperate fruit trees
NASA Astrophysics Data System (ADS)
Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike
2014-08-01
Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut ( Castanea mollissima Blume) and jujube ( Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing's cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.
Chilling and heat requirements for flowering in temperate fruit trees.
Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike
2014-08-01
Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut (Castanea mollissima Blume) and jujube (Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing’s cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.
NASA Technical Reports Server (NTRS)
Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.
1982-01-01
A variety of artificial intelligence techniques which could be used with regard to NASA space applications and robotics were evaluated. The techniques studied were decision tree manipulators, problem solvers, rule based systems, logic programming languages, representation language languages, and expert systems. The overall structure of a robotic simulation tool was defined and a framework for that tool developed. Nonlinear and linearized dynamics equations were formulated for n link manipulator configurations. A framework for the robotic simulation was established which uses validated manipulator component models connected according to a user defined configuration.
Links to Literature--Huge Trees, Small Drawings: Ideas of Relative Sizes.
ERIC Educational Resources Information Center
Burton, Gail
1996-01-01
Discusses a unit integrating science, mathematics, and environmental education centered around "The Great Kapok Tree," by Lynne Cherry (1990). Ratios are used to make scale drawings of trees in a rain forest. Other activities include a terrarium and problem-solving activities based on eating habits of rain forest animals. (KMC)
A.P. Schmitz; J.D. Carstens
2017-01-01
Kentucky coffeetree, Gymnocladus dioicus, is a picturesque shade tree adaptable to urban conditions and drought, with no serious insect or disease problems. These traits make G. dioicus a promising candidate among diverse tree genera to replace ash (Fraxinus) trees affected by the emerald ash borer (Agrilus...
Masías, Víctor H.; Krause, Mariane; Valdés, Nelson; Pérez, J. C.; Laengle, Sigifredo
2015-01-01
Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBTree, and REPTree) are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice. PMID:25914657
Masías, Víctor H; Krause, Mariane; Valdés, Nelson; Pérez, J C; Laengle, Sigifredo
2015-01-01
Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBTree, and REPTree) are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice.
Wang, Zhaocai; Huang, Dongmei; Meng, Huajun; Tang, Chengpei
2013-10-01
The minimum spanning tree (MST) problem is to find minimum edge connected subsets containing all the vertex of a given undirected graph. It is a vitally important NP-complete problem in graph theory and applied mathematics, having numerous real life applications. Moreover in previous studies, DNA molecular operations usually were used to solve NP-complete head-to-tail path search problems, rarely for NP-hard problems with multi-lateral path solutions result, such as the minimum spanning tree problem. In this paper, we present a new fast DNA algorithm for solving the MST problem using DNA molecular operations. For an undirected graph with n vertex and m edges, we reasonably design flexible length DNA strands representing the vertex and edges, take appropriate steps and get the solutions of the MST problem in proper length range and O(3m+n) time complexity. We extend the application of DNA molecular operations and simultaneity simplify the complexity of the computation. Results of computer simulative experiments show that the proposed method updates some of the best known values with very short time and that the proposed method provides a better performance with solution accuracy over existing algorithms. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Detection of significant protein coevolution.
Ochoa, David; Juan, David; Valencia, Alfonso; Pazos, Florencio
2015-07-01
The evolution of proteins cannot be fully understood without taking into account the coevolutionary linkages entangling them. From a practical point of view, coevolution between protein families has been used as a way of detecting protein interactions and functional relationships from genomic information. The most common approach to inferring protein coevolution involves the quantification of phylogenetic tree similarity using a family of methodologies termed mirrortree. In spite of their success, a fundamental problem of these approaches is the lack of an adequate statistical framework to assess the significance of a given coevolutionary score (tree similarity). As a consequence, a number of ad hoc filters and arbitrary thresholds are required in an attempt to obtain a final set of confident coevolutionary signals. In this work, we developed a method for associating confidence estimators (P values) to the tree-similarity scores, using a null model specifically designed for the tree comparison problem. We show how this approach largely improves the quality and coverage (number of pairs that can be evaluated) of the detected coevolution in all the stages of the mirrortree workflow, independently of the starting genomic information. This not only leads to a better understanding of protein coevolution and its biological implications, but also to obtain a highly reliable and comprehensive network of predicted interactions, as well as information on the substructure of macromolecular complexes using only genomic information. The software and datasets used in this work are freely available at: http://csbg.cnb.csic.es/pMT/. pazos@cnb.csic.es Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ben Ayed, Rayda; Ben Hassen, Hanen; Ennouri, Karim; Ben Marzoug, Riadh; Rebai, Ahmed
2016-01-01
Olive (Olea europaea), whose importance is mainly due to nutritional and health features, is one of the most economically significant oil-producing trees in the Mediterranean region. Unfortunately, the increasing market demand towards virgin olive oil could often result in its adulteration with less expensive oils, which is a serious problem for the public and quality control evaluators of virgin olive oil. Therefore, to avoid frauds, olive cultivar identification and virgin olive oil authentication have become a major issue for the producers and consumers of quality control in the olive chain. Presently, genetic traceability using SSR is the cost effective and powerful marker technique that can be employed to resolve such problems. However, to identify an unknown monovarietal virgin olive oil cultivar, a reference system has become necessary. Thus, an Olive Genetic Diversity Database (OGDD) (http://www.bioinfo-cbs.org/ogdd/) is presented in this work. It is a genetic, morphologic and chemical database of worldwide olive tree and oil having a double function. In fact, besides being a reference system generated for the identification of unkown olive or virgin olive oil cultivars based on their microsatellite allele size(s), it provides users additional morphological and chemical information for each identified cultivar. Currently, OGDD is designed to enable users to easily retrieve and visualize biologically important information (SSR markers, and olive tree and oil characteristics of about 200 cultivars worldwide) using a set of efficient query interfaces and analysis tools. It can be accessed through a web service from any modern programming language using a simple hypertext transfer protocol call. The web site is implemented in java, JavaScript, PHP, HTML and Apache with all major browsers supported. Database URL: http://www.bioinfo-cbs.org/ogdd/ PMID:26827236
Computational path planner for product assembly in complex environments
NASA Astrophysics Data System (ADS)
Shang, Wei; Liu, Jianhua; Ning, Ruxin; Liu, Mi
2013-03-01
Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.
A dynamic fault tree model of a propulsion system
NASA Technical Reports Server (NTRS)
Xu, Hong; Dugan, Joanne Bechta; Meshkat, Leila
2006-01-01
We present a dynamic fault tree model of the benchmark propulsion system, and solve it using Galileo. Dynamic fault trees (DFT) extend traditional static fault trees with special gates to model spares and other sequence dependencies. Galileo solves DFT models using a judicious combination of automatically generated Markov and Binary Decision Diagram models. Galileo easily handles the complexities exhibited by the benchmark problem. In particular, Galileo is designed to model phased mission systems.
Waldemar Chmielewski; Wojciech Dmuchowski; Stanislaw Suplat
1998-01-01
In the last 10 years, 3.5 percent of the tree population died annually in PolandÃs largest and most polluted cities, which is a problem of economic importance. Dieback of streetside trees in Warsaw is a long term process. It is an effect of biological reactions of trees to unfavorable conditions in the urban environment, particularly air and soil pollution and water...
A program to compute the soft Robinson-Foulds distance between phylogenetic networks.
Lu, Bingxin; Zhang, Louxin; Leong, Hon Wai
2017-03-14
Over the past two decades, phylogenetic networks have been studied to model reticulate evolutionary events. The relationships among phylogenetic networks, phylogenetic trees and clusters serve as the basis for reconstruction and comparison of phylogenetic networks. To understand these relationships, two problems are raised: the tree containment problem, which asks whether a phylogenetic tree is displayed in a phylogenetic network, and the cluster containment problem, which asks whether a cluster is represented at a node in a phylogenetic network. Both the problems are NP-complete. A fast exponential-time algorithm for the cluster containment problem on arbitrary networks is developed and implemented in C. The resulting program is further extended into a computer program for fast computation of the Soft Robinson-Foulds distance between phylogenetic networks. Two computer programs are developed for facilitating reconstruction and validation of phylogenetic network models in evolutionary and comparative genomics. Our simulation tests indicated that they are fast enough for use in practice. Additionally, the distribution of the Soft Robinson-Foulds distance between phylogenetic networks is demonstrated to be unlikely normal by our simulation data.
Food Allergy 101 | NIH MedlinePlus the Magazine
... reactions in adults include fish, shellfish, peanuts, and tree nuts, such as walnuts. Problem foods for children can include eggs, milk, peanuts, tree nuts, soy, and wheat. What are symptoms? The ...
Doubravsky, Karel; Dohnal, Mirko
2015-01-01
Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details. PMID:26158662
Doubravsky, Karel; Dohnal, Mirko
2015-01-01
Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details.
Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications.
Brown, J R; Doolittle, W F
1995-03-28
Universal trees based on sequences of single gene homologs cannot be rooted. Iwabe et al. [Iwabe, N., Kuma, K.-I., Hasegawa, M., Osawa, S. & Miyata, T. (1989) Proc. Natl. Acad. Sci. USA 86, 9355-9359] circumvented this problem by using ancient gene duplications that predated the last common ancestor of all living things. Their separate, reciprocally rooted gene trees for elongation factors and ATPase subunits showed Bacteria (eubacteria) as branching first from the universal tree with Archaea (archaebacteria) and Eucarya (eukaryotes) as sister groups. Given its topical importance to evolutionary biology and concerns about the appropriateness of the ATPase data set, an evaluation of the universal tree root using other ancient gene duplications is essential. In this study, we derive a rooting for the universal tree using aminoacyl-tRNA synthetase genes, an extensive multigene family whose divergence likely preceded that of prokaryotes and eukaryotes. An approximately 1600-bp conserved region was sequenced from the isoleucyl-tRNA synthetases of several species representing deep evolutionary branches of eukaryotes (Nosema locustae), Bacteria (Aquifex pyrophilus and Thermotoga maritima) and Archaea (Pyrococcus furiosus and Sulfolobus acidocaldarius). In addition, a new valyl-tRNA synthetase was characterized from the protist Trichomonas vaginalis. Different phylogenetic methods were used to generate trees of isoleucyl-tRNA synthetases rooted by valyl- and leucyl-tRNA synthetases. All isoleucyl-tRNA synthetase trees showed Archaea and Eucarya as sister groups, providing strong confirmation for the universal tree rooting reported by Iwabe et al. As well, there was strong support for the monophyly (sensu Hennig) of Archaea. The valyl-tRNA synthetase gene from Tr. vaginalis clustered with other eukaryotic ValRS genes, which may have been transferred from the mitochondrial genome to the nuclear genome, suggesting that this amitochondrial trichomonad once harbored an endosymbiotic bacterium.
Defender-Attacker Decision Tree Analysis to Combat Terrorism.
Garcia, Ryan J B; von Winterfeldt, Detlof
2016-12-01
We propose a methodology, called defender-attacker decision tree analysis, to evaluate defensive actions against terrorist attacks in a dynamic and hostile environment. Like most game-theoretic formulations of this problem, we assume that the defenders act rationally by maximizing their expected utility or minimizing their expected costs. However, we do not assume that attackers maximize their expected utilities. Instead, we encode the defender's limited knowledge about the attacker's motivations and capabilities as a conditional probability distribution over the attacker's decisions. We apply this methodology to the problem of defending against possible terrorist attacks on commercial airplanes, using one of three weapons: infrared-guided MANPADS (man-portable air defense systems), laser-guided MANPADS, or visually targeted RPGs (rocket propelled grenades). We also evaluate three countermeasures against these weapons: DIRCMs (directional infrared countermeasures), perimeter control around the airport, and hardening airplanes. The model includes deterrence effects, the effectiveness of the countermeasures, and the substitution of weapons and targets once a specific countermeasure is selected. It also includes a second stage of defensive decisions after an attack occurs. Key findings are: (1) due to the high cost of the countermeasures, not implementing countermeasures is the preferred defensive alternative for a large range of parameters; (2) if the probability of an attack and the associated consequences are large, a combination of DIRCMs and ground perimeter control are preferred over any single countermeasure. © 2016 Society for Risk Analysis.
Automated Decision Tree Classification of Corneal Shape
Twa, Michael D.; Parthasarathy, Srinivasan; Roberts, Cynthia; Mahmoud, Ashraf M.; Raasch, Thomas W.; Bullimore, Mark A.
2011-01-01
Purpose The volume and complexity of data produced during videokeratography examinations present a challenge of interpretation. As a consequence, results are often analyzed qualitatively by subjective pattern recognition or reduced to comparisons of summary indices. We describe the application of decision tree induction, an automated machine learning classification method, to discriminate between normal and keratoconic corneal shapes in an objective and quantitative way. We then compared this method with other known classification methods. Methods The corneal surface was modeled with a seventh-order Zernike polynomial for 132 normal eyes of 92 subjects and 112 eyes of 71 subjects diagnosed with keratoconus. A decision tree classifier was induced using the C4.5 algorithm, and its classification performance was compared with the modified Rabinowitz–McDonnell index, Schwiegerling’s Z3 index (Z3), Keratoconus Prediction Index (KPI), KISA%, and Cone Location and Magnitude Index using recommended classification thresholds for each method. We also evaluated the area under the receiver operator characteristic (ROC) curve for each classification method. Results Our decision tree classifier performed equal to or better than the other classifiers tested: accuracy was 92% and the area under the ROC curve was 0.97. Our decision tree classifier reduced the information needed to distinguish between normal and keratoconus eyes using four of 36 Zernike polynomial coefficients. The four surface features selected as classification attributes by the decision tree method were inferior elevation, greater sagittal depth, oblique toricity, and trefoil. Conclusions Automated decision tree classification of corneal shape through Zernike polynomials is an accurate quantitative method of classification that is interpretable and can be generated from any instrument platform capable of raw elevation data output. This method of pattern classification is extendable to other classification problems. PMID:16357645
Acoustic evaluation of standing trees : recent research development
Xiping Wang; Robert J. Ross; Peter Carter
2005-01-01
This paper presents some research results from recent trial studies on measuring acoustic velocities on standing trees of five softwood species. The relationships between tree velocities measured by time of flight method and log velocities measured by resonance method were evaluated. Theoretical and empirical models were developed for adjusting observed tree velocity...
Many-to-Many Multicast Routing Schemes under a Fixed Topology
Ding, Wei; Wang, Hongfa; Wei, Xuerui
2013-01-01
Many-to-many multicast routing can be extensively applied in computer or communication networks supporting various continuous multimedia applications. The paper focuses on the case where all users share a common communication channel while each user is both a sender and a receiver of messages in multicasting as well as an end user. In this case, the multicast tree appears as a terminal Steiner tree (TeST). The problem of finding a TeST with a quality-of-service (QoS) optimization is frequently NP-hard. However, we discover that it is a good idea to find a many-to-many multicast tree with QoS optimization under a fixed topology. In this paper, we are concerned with three kinds of QoS optimization objectives of multicast tree, that is, the minimum cost, minimum diameter, and maximum reliability. All of three optimization problems are distributed into two types, the centralized and decentralized version. This paper uses the dynamic programming method to devise an exact algorithm, respectively, for the centralized and decentralized versions of each optimization problem. PMID:23589706
Experimental evaluation of certification trails using abstract data type validation
NASA Technical Reports Server (NTRS)
Wilson, Dwight S.; Sullivan, Gregory F.; Masson, Gerald M.
1993-01-01
Certification trails are a recently introduced and promising approach to fault-detection and fault-tolerance. Recent experimental work reveals many cases in which a certification-trail approach allows for significantly faster program execution time than a basic time-redundancy approach. Algorithms for answer-validation of abstract data types allow a certification trail approach to be used for a wide variety of problems. An attempt to assess the performance of algorithms utilizing certification trails on abstract data types is reported. Specifically, this method was applied to the following problems: heapsort, Hullman tree, shortest path, and skyline. Previous results used certification trails specific to a particular problem and implementation. The approach allows certification trails to be localized to 'data structure modules,' making the use of this technique transparent to the user of such modules.
Grading sugar pine saw logs in trees.
John W. Henley
1972-01-01
Small limbs and small overgrown limbs cause problems when grading saw logs in sugar pine trees. Surface characteristics and lumber recovery information for 426 logs from 64 sugar pine trees were examined. Resulting modifications in the grading specification that allow a grader to ignore small limbs and small limb indicators do not appear to decrease the performance of...
Goal Programming: A New Tool for the Christmas Tree Industry
Bruce G. Hansen
1977-01-01
Goal programing (GP) can be useful for decision making in the natural Christmas tree industry. Its usefulness is demonstrated through an analysis of a hypothetical problem in which two potential growers decide how to use 10 acres in growing Christmas trees. Though the physical settings are identical, distinct differences between their goals significantly influence the...
David H. Dawson; John A. Pitcher
1970-01-01
Economic trends are interpreted and related to planning applied forest tree-improvement programs for the North-Central Region. Projected demands for forest products are considered in light of the forest resource and alternatives for its use. Suggestions are given for tree-improvement programs for seven conifer and three hardwood species.
A scalable method for identifying frequent subtrees in sets of large phylogenetic trees.
Ramu, Avinash; Kahveci, Tamer; Burleigh, J Gordon
2012-10-03
We consider the problem of finding the maximum frequent agreement subtrees (MFASTs) in a collection of phylogenetic trees. Existing methods for this problem often do not scale beyond datasets with around 100 taxa. Our goal is to address this problem for datasets with over a thousand taxa and hundreds of trees. We develop a heuristic solution that aims to find MFASTs in sets of many, large phylogenetic trees. Our method works in multiple phases. In the first phase, it identifies small candidate subtrees from the set of input trees which serve as the seeds of larger subtrees. In the second phase, it combines these small seeds to build larger candidate MFASTs. In the final phase, it performs a post-processing step that ensures that we find a frequent agreement subtree that is not contained in a larger frequent agreement subtree. We demonstrate that this heuristic can easily handle data sets with 1000 taxa, greatly extending the estimation of MFASTs beyond current methods. Although this heuristic does not guarantee to find all MFASTs or the largest MFAST, it found the MFAST in all of our synthetic datasets where we could verify the correctness of the result. It also performed well on large empirical data sets. Its performance is robust to the number and size of the input trees. Overall, this method provides a simple and fast way to identify strongly supported subtrees within large phylogenetic hypotheses.
A scalable method for identifying frequent subtrees in sets of large phylogenetic trees
2012-01-01
Background We consider the problem of finding the maximum frequent agreement subtrees (MFASTs) in a collection of phylogenetic trees. Existing methods for this problem often do not scale beyond datasets with around 100 taxa. Our goal is to address this problem for datasets with over a thousand taxa and hundreds of trees. Results We develop a heuristic solution that aims to find MFASTs in sets of many, large phylogenetic trees. Our method works in multiple phases. In the first phase, it identifies small candidate subtrees from the set of input trees which serve as the seeds of larger subtrees. In the second phase, it combines these small seeds to build larger candidate MFASTs. In the final phase, it performs a post-processing step that ensures that we find a frequent agreement subtree that is not contained in a larger frequent agreement subtree. We demonstrate that this heuristic can easily handle data sets with 1000 taxa, greatly extending the estimation of MFASTs beyond current methods. Conclusions Although this heuristic does not guarantee to find all MFASTs or the largest MFAST, it found the MFAST in all of our synthetic datasets where we could verify the correctness of the result. It also performed well on large empirical data sets. Its performance is robust to the number and size of the input trees. Overall, this method provides a simple and fast way to identify strongly supported subtrees within large phylogenetic hypotheses. PMID:23033843
NASA Astrophysics Data System (ADS)
Fang, F. J.
2017-12-01
Reconciling observations at fundamentally different scales is central in understanding the global carbon cycle. This study investigates a model-based melding of forest inventory data, remote-sensing data and micrometeorological-station data ("flux towers" estimating forest heat, CO2 and H2O fluxes). The individual tree-based model FORCCHN was used to evaluate the tree DBH increment and forest carbon fluxes. These are the first simultaneous simulations of the forest carbon budgets from flux towers and individual-tree growth estimates of forest carbon budgets using the continuous forest inventory data — under circumstances in which both predictions can be tested. Along with the global implications of such findings, this also improves the capacity for forest sustainable management and the comprehensive understanding of forest ecosystems. In forest ecology, diameter at breast height (DBH) of a tree significantly determines an individual tree's cross-sectional sapwood area, its biomass and carbon storage. Evaluation the annual DBH increment (ΔDBH) of an individual tree is central to understanding tree growth and forest ecology. Ecosystem Carbon flux is a consequence of key ecosystem processes in the forest-ecosystem carbon cycle, Gross and Net Primary Production (GPP and NPP, respectively) and Net Ecosystem Respiration (NEP). All of these closely relate with tree DBH changes and tree death. Despite advances in evaluating forest carbon fluxes with flux towers and forest inventories for individual tree ΔDBH, few current ecological models can simultaneously quantify and predict the tree ΔDBH and forest carbon flux.
Performance Analysis of Evolutionary Algorithms for Steiner Tree Problems.
Lai, Xinsheng; Zhou, Yuren; Xia, Xiaoyun; Zhang, Qingfu
2017-01-01
The Steiner tree problem (STP) aims to determine some Steiner nodes such that the minimum spanning tree over these Steiner nodes and a given set of special nodes has the minimum weight, which is NP-hard. STP includes several important cases. The Steiner tree problem in graphs (GSTP) is one of them. Many heuristics have been proposed for STP, and some of them have proved to be performance guarantee approximation algorithms for this problem. Since evolutionary algorithms (EAs) are general and popular randomized heuristics, it is significant to investigate the performance of EAs for STP. Several empirical investigations have shown that EAs are efficient for STP. However, up to now, there is no theoretical work on the performance of EAs for STP. In this article, we reveal that the (1+1) EA achieves 3/2-approximation ratio for STP in a special class of quasi-bipartite graphs in expected runtime [Formula: see text], where [Formula: see text], [Formula: see text], and [Formula: see text] are, respectively, the number of Steiner nodes, the number of special nodes, and the largest weight among all edges in the input graph. We also show that the (1+1) EA is better than two other heuristics on two GSTP instances, and the (1+1) EA may be inefficient on a constructed GSTP instance.
Seaweeds and halophytes to remove carbon from the atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenn, E.P.; Kent, K.J.; Thompson, T.L.
1991-02-01
The utility industry and other interested parties have investigated strategies to mitigate the buildup of atmospheric CO{sub 2}. One option that has been considered is the planting of trees on a massive scale to absorb carbon through photosynthesis. A dilemma of using tree plantations, however, is that they might occupy land that will be needed for food production or other needs for an expected doubling of human population in the tropical regions. We evaluated seaweeds and salt-tolerant terrestrial plants (halophytes) to be grown on the coastal shelves and salt deserts of the world as possible alternatives to tree plantations. Anmore » estimated 1.3 {times} 10{sup 6} km{sup 2} of continental shelf and 1.3 {times} 10{sup 6} km{sup 2} of salt desert may be usable for seaweed and halophyte plantations. The production rates of managed seaweed and halophyte plantings are similar to managed tree plantations. Seaweeds and halophytes could conceivably absorb 10--20% of annual fossil fuel carbon emissions through biomass production, similar to estimates made for tree plantations. Present costs of halophyte biomass production are similar to costs of tree biomass production, whereas seaweed biomass is much more expensive to produce using existing technologies. Storage of seaweed carbon might be accomplished by allowing it to enter the sediment detritus chain whereas halophyte carbon might be sequestered in the soil, or used as biomass fuel. As has been concluded for reforestation, these saline biomass crops could at best help delay rather than solve the carbon dioxide build-up problem. 1 fig., 13 tabs.« less
Maximum parsimony, substitution model, and probability phylogenetic trees.
Weng, J F; Thomas, D A; Mareels, I
2011-01-01
The problem of inferring phylogenies (phylogenetic trees) is one of the main problems in computational biology. There are three main methods for inferring phylogenies-Maximum Parsimony (MP), Distance Matrix (DM) and Maximum Likelihood (ML), of which the MP method is the most well-studied and popular method. In the MP method the optimization criterion is the number of substitutions of the nucleotides computed by the differences in the investigated nucleotide sequences. However, the MP method is often criticized as it only counts the substitutions observable at the current time and all the unobservable substitutions that really occur in the evolutionary history are omitted. In order to take into account the unobservable substitutions, some substitution models have been established and they are now widely used in the DM and ML methods but these substitution models cannot be used within the classical MP method. Recently the authors proposed a probability representation model for phylogenetic trees and the reconstructed trees in this model are called probability phylogenetic trees. One of the advantages of the probability representation model is that it can include a substitution model to infer phylogenetic trees based on the MP principle. In this paper we explain how to use a substitution model in the reconstruction of probability phylogenetic trees and show the advantage of this approach with examples.
Non-unique key B-Tree implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ries, D.R.
1980-12-23
The B-Trees are an indexed method to allow fast retrieval and order preserving updates to a FRAMIS relation based on a designated set of keys in the relation. A B-Tree access method is being implemented to provide indexed and sequential (in index order) access to FRAMIS relations. The implementation modifies the basic B-Tree structure to correctly allow multiple key values and still maintain the balanced page fill property of B-Trees. The data structures of the B-Tree are presented first, including the FRAMIS solution to the duplicate key value problem. Then the access level routines and utilities are presented. These routinesmore » include the original B-Tree creation; searching the B-Tree; and inserting, deleting, and replacing tuples on the B-Tree. In conclusion, the uses of the B-Tree access structures at the semantic level to enhance the FRAMIS performance are discussed. 10 figures.« less
Pīrāga, Dace; Tabors, Guntis; Nikodemus, Oļģerts; Žīgure, Zane; Brūmelis, Guntis
2017-05-01
The aim of this study was to evaluate the use of various indicators in the assessment of environmental pollution and to determine the response of pine to changes of pollution levels. Mezaparks is a part of Riga that has been subject to various long-term effects of atmospheric pollution and, in particular, historically from a large superphosphate factory. To determine the spatial distribution of pollution, moss, pine bark and soil O and B horizons were used as sorbents in this study, as well as the additional annual increment of pine trees. The current spatial distribution of pollution is best shown by heavy metal accumulation in mosses and the long-term accumulation of P 2 O 5 pollution by the soil O horizon. The methodological problems of using these sorbents were explored in the study. Environmental pollution and its changes could be associated with the tree growth ring annual additional increment of Mezaparks pine forest stands. The additional increment increased after the closing of the Riga superphosphate factory.
Polynomial-Time Algorithms for Building a Consensus MUL-Tree
Cui, Yun; Jansson, Jesper
2012-01-01
Abstract A multi-labeled phylogenetic tree, or MUL-tree, is a generalization of a phylogenetic tree that allows each leaf label to be used many times. MUL-trees have applications in biogeography, the study of host–parasite cospeciation, gene evolution studies, and computer science. Here, we consider the problem of inferring a consensus MUL-tree that summarizes a given set of conflicting MUL-trees, and present the first polynomial-time algorithms for solving it. In particular, we give a straightforward, fast algorithm for building a strict consensus MUL-tree for any input set of MUL-trees with identical leaf label multisets, as well as a polynomial-time algorithm for building a majority rule consensus MUL-tree for the special case where every leaf label occurs at most twice. We also show that, although it is NP-hard to find a majority rule consensus MUL-tree in general, the variant that we call the singular majority rule consensus MUL-tree can be constructed efficiently whenever it exists. PMID:22963134
Polynomial-time algorithms for building a consensus MUL-tree.
Cui, Yun; Jansson, Jesper; Sung, Wing-Kin
2012-09-01
A multi-labeled phylogenetic tree, or MUL-tree, is a generalization of a phylogenetic tree that allows each leaf label to be used many times. MUL-trees have applications in biogeography, the study of host-parasite cospeciation, gene evolution studies, and computer science. Here, we consider the problem of inferring a consensus MUL-tree that summarizes a given set of conflicting MUL-trees, and present the first polynomial-time algorithms for solving it. In particular, we give a straightforward, fast algorithm for building a strict consensus MUL-tree for any input set of MUL-trees with identical leaf label multisets, as well as a polynomial-time algorithm for building a majority rule consensus MUL-tree for the special case where every leaf label occurs at most twice. We also show that, although it is NP-hard to find a majority rule consensus MUL-tree in general, the variant that we call the singular majority rule consensus MUL-tree can be constructed efficiently whenever it exists.
A highly efficient machine planting system for forestry research plantations—the Wright-MSU method
James R. McKenna; Oriana Rueda-Krauss; Brian Beheler
2011-01-01
For forestry research purposes, grid planting with uniform tree spacing is superior to planting with nonuniform spacing because it controls density across the plantation and facilitates accurate repeat measurements. The ability to cross-check tree positions in a grid-type plantation avoids problems associated with dead or missing trees and increases the efficiency and...
Stocking levels and underlying assumptions for uneven-aged Ponderosa Pine stands.
P.H. Cochran
1992-01-01
Potential Problems With Q-Values Many ponderosa pine stands have a limited number of size classes, and it may be desirable to carry very large trees through several cutting cycles. Large numbers of trees below commercial size are not needed to provide adequate numbers of future replacement trees. Under these conditions, application of stand density index (SDI) can have...
Learning from examples - Generation and evaluation of decision trees for software resource analysis
NASA Technical Reports Server (NTRS)
Selby, Richard W.; Porter, Adam A.
1988-01-01
A general solution method for the automatic generation of decision (or classification) trees is investigated. The approach is to provide insights through in-depth empirical characterization and evaluation of decision trees for software resource data analysis. The trees identify classes of objects (software modules) that had high development effort. Sixteen software systems ranging from 3,000 to 112,000 source lines were selected for analysis from a NASA production environment. The collection and analysis of 74 attributes (or metrics), for over 4,700 objects, captured information about the development effort, faults, changes, design style, and implementation style. A total of 9,600 decision trees were automatically generated and evaluated. The trees correctly identified 79.3 percent of the software modules that had high development effort or faults, and the trees generated from the best parameter combinations correctly identified 88.4 percent of the modules on the average.
MDTS: automatic complex materials design using Monte Carlo tree search.
M Dieb, Thaer; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji
2017-01-01
Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.
MDTS: automatic complex materials design using Monte Carlo tree search
NASA Astrophysics Data System (ADS)
Dieb, Thaer M.; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji
2017-12-01
Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.
Initialization Method for Grammar-Guided Genetic Programming
NASA Astrophysics Data System (ADS)
García-Arnau, M.; Manrique, D.; Ríos, J.; Rodríguez-Patón, A.
This paper proposes a new tree-generation algorithm for grammarguided genetic programming that includes a parameter to control the maximum size of the trees to be generated. An important feature of this algorithm is that the initial populations generated are adequately distributed in terms of tree size and distribution within the search space. Consequently, genetic programming systems starting from the initial populations generated by the proposed method have a higher convergence speed. Two different problems have been chosen to carry out the experiments: a laboratory test involving searching for arithmetical equalities and the real-world task of breast cancer prognosis. In both problems, comparisons have been made to another five important initialization methods.
A computerized tree growth projection system for forest resource evaluation in the lake states
Allen L. Lundgren; Burton L. Essex
1978-01-01
A computerized tree growth projection system has been developed for the Lake States Region as part of a larger Forest Resources Evaluation Program (FREP). Incorporating data from more than 1500 permanent growth plots throughout the Lake States, this system projects tree growth, mortality, regeneration, and removals in stands with any mixture of tree species and sizes,...
Evaluation of Lands for Off-Road Recreational Four-Wheel Drive Vehicle Use
1981-10-01
21. Hoover, Bob, "Off-Road Vehicle Problem on Public Lands," Proceedings of the 40th Annual Meeting of the Association of Midwest Fish and Wildlife...Trailbike Recreation (U.S. Department of the Interior, Heritage Chonservation and RecreatiýFService, 1978). Planting and Establishment of Trees, Shrubs ...Ground Covers and Vines , TM 5-E3U-4 (DA, 15 June 1976). Pleuther, R. L., A Critique on the Performance of Off-Road Vehicles: Full Scale Test Results
Investigation of decadal-scale divergence in tree-ring density chronologies
NASA Astrophysics Data System (ADS)
Vaccaro, A.; Emile-Geay, J.; Anchukaitis, K. J.; Wang, J.
2013-12-01
Tree-ring data from certain forest sites at northern circumpolar latitudes and from some at higher elevation show an anomalous decrease in temperature-sensitivity of tree growth starting in the mid-20th century. This phenomenon, known as the ';divergence problem' (DP), leads to tree-ring reconstructions that underestimate the warming trend exhibited by instrumental measurements over recent decades (e.g. D'Arrigo et al. 2008). In a study conducted in 1998, Briffa et al. discovered a type of divergence wherein latewood density (MXD) chronologies from an early manifestation of the Schweingruber tree-ring dataset showed strong interannual correlation to summer temperature measurements, but increasing divergence between the decadal-scale trends of the tree-rings and temperature records during the second half of the 20th century. This low-frequency divergence suggests that although tree-rings may accurately trace year-to-year changes in temperature, they might not capture longer-term warming trends, making them unsuitable for reconstructions of long-term climate variations. There is reason to believe, however, that the divergence found by Briffa (1998) is at least partly due to detrending or related statistical issues (Esper et al. 2009). Herein, we will investigate the distribution of this decadal-scale ';Briffa-style' divergence to see if it is confined to the earlier chronologies in the Schweingruber dataset or if it is persistent throughout more recent tree-ring data as well. Following the methodology of previous DP investigations (e.g. Briffa et al. 1998), we will draw comparisons between a network of MXD data and instrumental temperature records over an early period (1850-1960) and a recent period (1961-2000) to detect decadal-scale divergence in recent decades. We will apply the Mann et al. 2009 (M09) style of RegEM reconstruction to the M09 dataset, with and without controlling for divergence, and also to a new tree-ring database assembled using strict, objective criteria, including most of the updated Schweingruber network. Other climate field reconstruction (CFR) methods as described by Wang et al. (2013) will be used on our new tree-ring network to check for robustness. The tree-ring data will be independently compared to instrumental temperature series derived from the GHCN-monthly, HadCRUT4, and the M09 infilled HadCRUT3v temperature datasets for cross-validation. Implications for large-scale temperature reconstructions of the Common Era will be discussed. Briffa, K.R., F. H. Schweingruber, P.D. Jones, T.J. Osborn, S.G. Shiyatov, and E.A. Vaganov (1998),Reduced sensitivity of recent tree-growth to temperature at high northern latitudes, Nature, 391, 678-682. D'Arrigo, R., R. Wilson, B. Liepert, and P. Cherubini (2008), On the ';Divergence Problem' in Northern Forests: A review of the tree-ring evidence and possible causes, GAPC, 60, 289-305. Esper, J. and D. Frank (2009), Divergence pitfalls in tree-ring research, Climate Change, 94, 261-266. Mann, M.E., Z. Zhang, M.K. Hughes, R.S. Bradley, S.K. Miller, S. Rutherford, and F. Ni (2009), Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia, PNAS, 105 (36) 13252-13257. Wang, J., J. Emile-Geay, D. Guillot, and J. E. Smerdon (2013), Evaluating climate field reconstruction techniques using improved emulations of real-world conditions. CPD, 9, 3015-3060.
Condition trees as a mechanism for communicating the meaning of uncertainties
NASA Astrophysics Data System (ADS)
Beven, Keith
2015-04-01
Uncertainty communication for environmental problems is fraught with difficulty for good epistemic reasons. The fact that most sources of uncertainty are subject to, and often dominated by, epistemic uncertainties means that the unthinking use of probability theory might actually be misleading and lead to false inference (even in some cases where the assumptions of a probabilistic error model might seem to be reasonably valid). This therefore creates problems in communicating the meaning of probabilistic uncertainties of model predictions to potential users (there are many examples in hydrology, hydraulics, climate change and other domains). It is suggested that one way of being more explicit about the meaning of uncertainties is to associate each type of application with a condition tree of assumptions that need to be made in producing an estimate of uncertainty. The condition tree then provides a basis for discussion and communication of assumptions about uncertainties with users. Agreement of assumptions (albeit generally at some institutional level) will provide some buy-in on the part of users, and a basis for commissioning of future studies. Even in some relatively well-defined problems, such as mapping flood risk, such a condition tree can be rather extensive, but by making each step in the tree explicit then an audit trail is established for future reference. This can act to provide focus in the exercise of agreeing more realistic assumptions.
Automatic translation of digraph to fault-tree models
NASA Technical Reports Server (NTRS)
Iverson, David L.
1992-01-01
The author presents a technique for converting digraph models, including those models containing cycles, to a fault-tree format. A computer program which automatically performs this translation using an object-oriented representation of the models has been developed. The fault-trees resulting from translations can be used for fault-tree analysis and diagnosis. Programs to calculate fault-tree and digraph cut sets and perform diagnosis with fault-tree models have also been developed. The digraph to fault-tree translation system has been successfully tested on several digraphs of varying size and complexity. Details of some representative translation problems are presented. Most of the computation performed by the program is dedicated to finding minimal cut sets for digraph nodes in order to break cycles in the digraph. Fault-trees produced by the translator have been successfully used with NASA's Fault-Tree Diagnosis System (FTDS) to produce automated diagnostic systems.
Lee, Doo-Hyung; Cullum, John P.; Anderson, Jennifer L.; Daugherty, Jodi L.; Beckett, Lisa M.; Leskey, Tracy C.
2014-01-01
Halyomorpha halys is an invasive species from Asia causing major economic losses in agricultural production in the mid-Atlantic region of the United States. Unlike other crop pests, H. halys is also well-known for nuisance problems in urban, suburban, and rural areas, as massive numbers of adults often invade human-made structures to overwinter inside protected environments. Research efforts have focused on populations in human-made structures while overwintering ecology of H. halys in natural landscapes is virtually unknown. We explored forested landscapes in the mid-Atlantic region to locate and characterize natural overwintering structures used by H. halys. We also evaluated the use of detector canines to locate overwintering H. halys to enhance the accuracy and efficiency of surveys. From these studies, we indentified shared characteristics of overwintering sites used by H. halys in natural landscapes. Overwintering H. halys were recovered from dry crevices in dead, standing trees with thick bark, particularly oak (Quercus spp.) and locust (Robinia spp.); these characteristics were shared by 11.8% of all dead trees in surveyed landscapes. For trees with favorable characteristics, we sampled ∼20% of the total above-ground tree area and recovered 5.9 adults per tree from the trees with H. halys present. Two detector canines were successfully trained to recognize and detect the odor of adult H. halys yielding >84% accuracy in laboratory and semi-field trials. Detector canines also found overwintering H. halys under field conditions. In particular, overwintering H. halys were recovered only from dead trees that yielded positive indications from the canines and shared key tree characteristics established by human surveyors. The identified characteristics of natural overwintering sites of H. halys will serve as baseline information to establish crop economic risk levels posed by overwintering populations, and accordingly develop sustainable management programs. PMID:24717734
Efficient Decoding of Compressed Data.
ERIC Educational Resources Information Center
Bassiouni, Mostafa A.; Mukherjee, Amar
1995-01-01
Discusses the problem of enhancing the speed of Huffman decoding of compressed data. Topics addressed include the Huffman decoding tree; multibit decoding; binary string mapping problems; and algorithms for solving mapping problems. (22 references) (LRW)
Decentralized Patrolling Under Constraints in Dynamic Environments.
Shaofei Chen; Feng Wu; Lincheng Shen; Jing Chen; Ramchurn, Sarvapali D
2016-12-01
We investigate a decentralized patrolling problem for dynamic environments where information is distributed alongside threats. In this problem, agents obtain information at a location, but may suffer attacks from the threat at that location. In a decentralized fashion, each agent patrols in a designated area of the environment and interacts with a limited number of agents. Therefore, the goal of these agents is to coordinate to gather as much information as possible while limiting the damage incurred. Hence, we model this class of problem as a transition-decoupled partially observable Markov decision process with health constraints. Furthermore, we propose scalable decentralized online algorithms based on Monte Carlo tree search and a factored belief vector. We empirically evaluate our algorithms on decentralized patrolling problems and benchmark them against the state-of-the-art online planning solver. The results show that our approach outperforms the state-of-the-art by more than 56% for six agents patrolling problems and can scale up to 24 agents in reasonable time.
James Lashomb; Alan Iskra; Ann Brooks Gould; George Hamilton
2003-01-01
Bacterial leaf scorch (BLS) of amenity trees is caused by the bacterium Xylella fastidiosa, a xylem-limited pathogen that causes water stress resulting in leaf scorch, decline, and eventual death of affected trees. Recent surveys indicate that BLS is widespread throughout the eastern half of the United States. In New Jersey, BLS primarily affects red and pin oaks...
Ozge, C; Toros, F; Bayramkaya, E; Camdeviren, H; Sasmaz, T
2006-08-01
The purpose of this study is to evaluate the most important sociodemographic factors on smoking status of high school students using a broad randomised epidemiological survey. Using in-class, self administered questionnaire about their sociodemographic variables and smoking behaviour, a representative sample of total 3304 students of preparatory, 9th, 10th, and 11th grades, from 22 randomly selected schools of Mersin, were evaluated and discriminative factors have been determined using appropriate statistics. In addition to binary logistic regression analysis, the study evaluated combined effects of these factors using classification and regression tree methodology, as a new statistical method. The data showed that 38% of the students reported lifetime smoking and 16.9% of them reported current smoking with a male predominancy and increasing prevalence by age. Second hand smoking was reported at a 74.3% frequency with father predominance (56.6%). The significantly important factors that affect current smoking in these age groups were increased by household size, late birth rank, certain school types, low academic performance, increased second hand smoking, and stress (especially reported as separation from a close friend or because of violence at home). Classification and regression tree methodology showed the importance of some neglected sociodemographic factors with a good classification capacity. It was concluded that, as closely related with sociocultural factors, smoking was a common problem in this young population, generating important academic and social burden in youth life and with increasing data about this behaviour and using new statistical methods, effective coping strategies could be composed.
Di Campli, Emanuela; Di Bartolomeo, Soraya; Delli Pizzi, Patricia; Di Giulio, Mara; Grande, Rossella; Nostro, Antonia; Cellini, Luigina
2012-11-01
Head lice infestation is an emerging social problem in undeveloped and developed countries. Because of louse resistance increasing, several long-used insecticidal compounds have lost their efficacy, and alternatives, such as essential oils, have been proposed to treat this parasitic infestation. The present study investigated the efficacy of two natural substances: tea tree (Melaleuca alternifolia) oil and nerolidol (3,7,11-trimethyl-1,6,10-dodecatrien-3-ol) against lice and its eggs. Products were used alone and in combination (ratio 1:1 and 1:2) from 8 % dilution. The in vitro effect of natural substances at different concentrations were evaluated against 69 head lice (adults and nymphs) and 187 louse eggs collected from school children in Chieti-Pescara (Central Italy) over a 6-month period. The lice mortality was evaluated for 24 h by a stereo light microscope. The ovicidal activity was monitored by microscopic inspections for 15 days. Tea tree oil was more effective than nerolidol against head lice with 100 % mortality at 30 min and 1 % concentration. On the contrary, nerolidol expressed a more pronounced ovicidal activity inducing the failure of 50 % of the eggs to hatch at 1 % concentration after 4 days; the same effect was achieved by using a twice concentration of tea tree oil. The association of the two substances both in ratios 1:1 and 1:2 combined efficaciously their insecticidal and ovicidal effect; in particular, the ratio 1:2 (tea tree oil 0.5 % plus nerolidol 1 %) acted producing both the death of all head lice at 30 min and the abortive effect of louse eggs after 5 days. These results offer new potential application of natural compounds and display a promising scenario in the treatment of pediculosis resistant cases. The development of novel pediculicides containing essential oils could be, in fact, an important tool to control the parasitic infestation.
Jane: a new tool for the cophylogeny reconstruction problem.
Conow, Chris; Fielder, Daniel; Ovadia, Yaniv; Libeskind-Hadas, Ran
2010-02-03
This paper describes the theory and implementation of a new software tool, called Jane, for the study of historical associations. This problem arises in parasitology (associations of hosts and parasites), molecular systematics (associations of orderings and genes), and biogeography (associations of regions and orderings). The underlying problem is that of reconciling pairs of trees subject to biologically plausible events and costs associated with these events. Existing software tools for this problem have strengths and limitations, and the new Jane tool described here provides functionality that complements existing tools. The Jane software tool uses a polynomial time dynamic programming algorithm in conjunction with a genetic algorithm to find very good, and often optimal, solutions even for relatively large pairs of trees. The tool allows the user to provide rich timing information on both the host and parasite trees. In addition the user can limit host switch distance and specify multiple host switch costs by specifying regions in the host tree and costs for host switches between pairs of regions. Jane also provides a graphical user interface that allows the user to interactively experiment with modifications to the solutions found by the program. Jane is shown to be a useful tool for cophylogenetic reconstruction. Its functionality complements existing tools and it is therefore likely to be of use to researchers in the areas of parasitology, molecular systematics, and biogeography.
A short note on the use of the red-black tree in Cartesian adaptive mesh refinement algorithms
NASA Astrophysics Data System (ADS)
Hasbestan, Jaber J.; Senocak, Inanc
2017-12-01
Mesh adaptivity is an indispensable capability to tackle multiphysics problems with large disparity in time and length scales. With the availability of powerful supercomputers, there is a pressing need to extend time-proven computational techniques to extreme-scale problems. Cartesian adaptive mesh refinement (AMR) is one such method that enables simulation of multiscale, multiphysics problems. AMR is based on construction of octrees. Originally, an explicit tree data structure was used to generate and manipulate an adaptive Cartesian mesh. At least eight pointers are required in an explicit approach to construct an octree. Parent-child relationships are then used to traverse the tree. An explicit octree, however, is expensive in terms of memory usage and the time it takes to traverse the tree to access a specific node. For these reasons, implicit pointerless methods have been pioneered within the computer graphics community, motivated by applications requiring interactivity and realistic three dimensional visualization. Lewiner et al. [1] provides a concise review of pointerless approaches to generate an octree. Use of a hash table and Z-order curve are two key concepts in pointerless methods that we briefly discuss next.
2015-01-01
Among the recent data mining techniques available, the boosting approach has attracted a great deal of attention because of its effective learning algorithm and strong boundaries in terms of its generalization performance. However, the boosting approach has yet to be used in regression problems within the construction domain, including cost estimations, but has been actively utilized in other domains. Therefore, a boosting regression tree (BRT) is applied to cost estimations at the early stage of a construction project to examine the applicability of the boosting approach to a regression problem within the construction domain. To evaluate the performance of the BRT model, its performance was compared with that of a neural network (NN) model, which has been proven to have a high performance in cost estimation domains. The BRT model has shown results similar to those of NN model using 234 actual cost datasets of a building construction project. In addition, the BRT model can provide additional information such as the importance plot and structure model, which can support estimators in comprehending the decision making process. Consequently, the boosting approach has potential applicability in preliminary cost estimations in a building construction project. PMID:26339227
Shin, Yoonseok
2015-01-01
Among the recent data mining techniques available, the boosting approach has attracted a great deal of attention because of its effective learning algorithm and strong boundaries in terms of its generalization performance. However, the boosting approach has yet to be used in regression problems within the construction domain, including cost estimations, but has been actively utilized in other domains. Therefore, a boosting regression tree (BRT) is applied to cost estimations at the early stage of a construction project to examine the applicability of the boosting approach to a regression problem within the construction domain. To evaluate the performance of the BRT model, its performance was compared with that of a neural network (NN) model, which has been proven to have a high performance in cost estimation domains. The BRT model has shown results similar to those of NN model using 234 actual cost datasets of a building construction project. In addition, the BRT model can provide additional information such as the importance plot and structure model, which can support estimators in comprehending the decision making process. Consequently, the boosting approach has potential applicability in preliminary cost estimations in a building construction project.
SETs: stand evaluation tools: I. an individual-tree approach to making stand evaluations
Paul S. DeBald; Joseph J. Mendel
1976-01-01
The authors outline a stand-evaluation method that stresses individuality by (1) making on-the-ground projections of individual tree development; (2) summarizing stand values in terms of the individual trees in the stand and their potential development; and (3) tailoring several management possibilities to an individual stand so the owner can choose among them.
Reconstructing Unrooted Phylogenetic Trees from Symbolic Ternary Metrics.
Grünewald, Stefan; Long, Yangjing; Wu, Yaokun
2018-03-09
Böcker and Dress (Adv Math 138:105-125, 1998) presented a 1-to-1 correspondence between symbolically dated rooted trees and symbolic ultrametrics. We consider the corresponding problem for unrooted trees. More precisely, given a tree T with leaf set X and a proper vertex coloring of its interior vertices, we can map every triple of three different leaves to the color of its median vertex. We characterize all ternary maps that can be obtained in this way in terms of 4- and 5-point conditions, and we show that the corresponding tree and its coloring can be reconstructed from a ternary map that satisfies those conditions. Further, we give an additional condition that characterizes whether the tree is binary, and we describe an algorithm that reconstructs general trees in a bottom-up fashion.
Anchoring quartet-based phylogenetic distances and applications to species tree reconstruction.
Sayyari, Erfan; Mirarab, Siavash
2016-11-11
Inferring species trees from gene trees using the coalescent-based summary methods has been the subject of much attention, yet new scalable and accurate methods are needed. We introduce DISTIQUE, a new statistically consistent summary method for inferring species trees from gene trees under the coalescent model. We generalize our results to arbitrary phylogenetic inference problems; we show that two arbitrarily chosen leaves, called anchors, can be used to estimate relative distances between all other pairs of leaves by inferring relevant quartet trees. This results in a family of distance-based tree inference methods, with running times ranging between quadratic to quartic in the number of leaves. We show in simulated studies that DISTIQUE has comparable accuracy to leading coalescent-based summary methods and reduced running times.
Computing Role Assignments of Proper Interval Graphs in Polynomial Time
NASA Astrophysics Data System (ADS)
Heggernes, Pinar; van't Hof, Pim; Paulusma, Daniël
A homomorphism from a graph G to a graph R is locally surjective if its restriction to the neighborhood of each vertex of G is surjective. Such a homomorphism is also called an R-role assignment of G. Role assignments have applications in distributed computing, social network theory, and topological graph theory. The Role Assignment problem has as input a pair of graphs (G,R) and asks whether G has an R-role assignment. This problem is NP-complete already on input pairs (G,R) where R is a path on three vertices. So far, the only known non-trivial tractable case consists of input pairs (G,R) where G is a tree. We present a polynomial time algorithm that solves Role Assignment on all input pairs (G,R) where G is a proper interval graph. Thus we identify the first graph class other than trees on which the problem is tractable. As a complementary result, we show that the problem is Graph Isomorphism-hard on chordal graphs, a superclass of proper interval graphs and trees.
The Quantification of Consistent Subjective Logic Tree Branch Weights for PSHA
NASA Astrophysics Data System (ADS)
Runge, A. K.; Scherbaum, F.
2012-04-01
The development of quantitative models for the rate of exceedance of seismically generated ground motion parameters is the target of probabilistic seismic hazard analysis (PSHA). In regions of low to moderate seismicity, the selection and evaluation of source- and/or ground-motion models is often a major challenge to hazard analysts and affected by large epistemic uncertainties. In PSHA this type of uncertainties is commonly treated within a logic tree framework in which the branch weights express the degree-of-belief values of an expert in the corresponding set of models. For the calculation of the distribution of hazard curves, these branch weights are subsequently used as subjective probabilities. However the quality of the results depends strongly on the "quality" of the expert knowledge. A major challenge for experts in this context is to provide weight estimates which are logically consistent (in the sense of Kolmogorov's axioms) and to be aware of and to deal with the multitude of heuristics and biases which affect human judgment under uncertainty. For example, people tend to give smaller weights to each branch of a logic tree the more branches it has, starting with equal weights for all branches and then adjusting this uniform distribution based on his/her beliefs about how the branches differ. This effect is known as pruning bias.¹ A similar unwanted effect, which may even wrongly suggest robustness of the corresponding hazard estimates, will appear in cases where all models are first judged according to some numerical quality measure approach and the resulting weights are subsequently normalized to sum up to one.2 To address these problems, we have developed interactive graphical tools for the determination of logic tree branch weights in form of logically consistent subjective probabilities, based on the concepts suggested in Curtis and Wood (2004).3 Instead of determining the set of weights for all the models in a single step, the computer driven elicitation process is performed as a sequence of evaluations of relative weights for small subsets of models which are presented to the analyst. From these, the distribution of logic tree weights for the whole model set is determined as solution of an optimization problem. The model subset presented to the analyst in each step is designed to maximize the expected information. The result of this process is a set of logically consistent weights together with a measure of confidence determined from the amount of conflicting information which is provided by the expert during the relative weighting process.
A Sharp methodology for VLSI layout
NASA Astrophysics Data System (ADS)
Bapat, Shekhar
1993-01-01
The layout problem for VLSI circuits is recognized as a very difficult problem and has been traditionally decomposed into the several seemingly independent sub-problems of placement, global routing, and detailed routing. Although this structure achieves a reduction in programming complexity, it is also typically accompanied by a reduction in solution quality. Most current placement research recognizes that the separation is artificial, and that the placement and routing problems should be solved ideally in tandem. We propose a new interconnection model, Sharp and an associated partitioning algorithm. The Sharp interconnection model uses a partitioning shape that roughly resembles the musical sharp 'number sign' and makes extensive use of pre-computed rectilinear Steiner trees. The model is designed to generate strategic routing information along with the partitioning results. Additionally, the Sharp model also generates estimates of the routing congestion. We also propose the Sharp layout heuristic that solves the layout problem in its entirety. The Sharp layout heuristic makes extensive use of the Sharp partitioning model. The use of precomputed Steiner tree forms enables the method to model accurately net characteristics. For example, the Steiner tree forms can model both the length of the net and more importantly its route. In fact, the tree forms are also appropriate for modeling the timing delays of nets. The Sharp heuristic works to minimize both the total layout area by minimizing total net length (thus reducing the total wiring area), and the congestion imbalances in the various channels (thus reducing the unused or wasted channel area). Our heuristic uses circuit element movements amongst the different partitioning blocks and selection of alternate minimal Steiner tree forms to achieve this goal. The objective function for the algorithm can be modified readily to include other important circuit constraints like propagation delays. The layout technique first computes a very high-level approximation of the layout solution (i.e., the positions of the circuit elements and the associated net routes). The approximate solution is alternately refined, objective function. The technique creates well defined sub-problems and offers intermediary steps that can be solved in parallel, as well as a parallel mechanism to merge the sub-problem solutions.
Keller, Kathrin M.; Lienert, Sebastian; Bozbiyik, Anil; ...
2017-05-24
Measurements of the stable carbon isotope ratio ( δ 13C) on annual tree rings offer new opportunities to evaluate mechanisms of variations in photosynthesis and stomatal conductance under changing CO 2 and climate conditions, especially in conjunction with process-based biogeochemical model simulations. The isotopic discrimination is indicative of the ratio between the CO 2 partial pressure in the intercellular cavities and the atmosphere ( c i/ c a) and of the ratio of assimilation to stomatal conductance, termed intrinsic water-use efficiency (iWUE). We performed isotope-enabled simulations over the industrial period with the land biosphere module (CLM4.5) of the Community Earthmore » System Model and the Land Surface Processes and Exchanges (LPX-Bern) dynamic global vegetation model. Results for C3 tree species show good agreement with a global compilation of δ 13C measurements on leaves, though modeled 13C discrimination by C3 trees is smaller in arid regions than measured. A compilation of 76 tree-ring records, mainly from Europe, boreal Asia, and western North America, suggests on average small 20th century changes in isotopic discrimination and in c i/ c a and an increase in iWUE of about 27% since 1900. LPX-Bern results match these century-scale reconstructions, supporting the idea that the physiology of stomata has evolved to optimize trade-offs between carbon gain by assimilation and water loss by transpiration. In contrast, CLM4.5 simulates an increase in discrimination and in turn a change in iWUE that is almost twice as large as that revealed by the tree-ring data. Factorial simulations show that these changes are mainly in response to rising atmospheric CO 2. The results suggest that the downregulation of c i/ c a and of photosynthesis by nitrogen limitation is possibly too strong in the standard setup of CLM4.5 or that there may be problems associated with the implementation of conductance, assimilation, and related adjustment processes on long-term environmental changes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Kathrin M.; Lienert, Sebastian; Bozbiyik, Anil
Measurements of the stable carbon isotope ratio ( δ 13C) on annual tree rings offer new opportunities to evaluate mechanisms of variations in photosynthesis and stomatal conductance under changing CO 2 and climate conditions, especially in conjunction with process-based biogeochemical model simulations. The isotopic discrimination is indicative of the ratio between the CO 2 partial pressure in the intercellular cavities and the atmosphere ( c i/ c a) and of the ratio of assimilation to stomatal conductance, termed intrinsic water-use efficiency (iWUE). We performed isotope-enabled simulations over the industrial period with the land biosphere module (CLM4.5) of the Community Earthmore » System Model and the Land Surface Processes and Exchanges (LPX-Bern) dynamic global vegetation model. Results for C3 tree species show good agreement with a global compilation of δ 13C measurements on leaves, though modeled 13C discrimination by C3 trees is smaller in arid regions than measured. A compilation of 76 tree-ring records, mainly from Europe, boreal Asia, and western North America, suggests on average small 20th century changes in isotopic discrimination and in c i/ c a and an increase in iWUE of about 27% since 1900. LPX-Bern results match these century-scale reconstructions, supporting the idea that the physiology of stomata has evolved to optimize trade-offs between carbon gain by assimilation and water loss by transpiration. In contrast, CLM4.5 simulates an increase in discrimination and in turn a change in iWUE that is almost twice as large as that revealed by the tree-ring data. Factorial simulations show that these changes are mainly in response to rising atmospheric CO 2. The results suggest that the downregulation of c i/ c a and of photosynthesis by nitrogen limitation is possibly too strong in the standard setup of CLM4.5 or that there may be problems associated with the implementation of conductance, assimilation, and related adjustment processes on long-term environmental changes.« less
NASA Astrophysics Data System (ADS)
Keller, Kathrin M.; Lienert, Sebastian; Bozbiyik, Anil; Stocker, Thomas F.; Churakova (Sidorova), Olga V.; Frank, David C.; Klesse, Stefan; Koven, Charles D.; Leuenberger, Markus; Riley, William J.; Saurer, Matthias; Siegwolf, Rolf; Weigt, Rosemarie B.; Joos, Fortunat
2017-05-01
Measurements of the stable carbon isotope ratio (δ13C) on annual tree rings offer new opportunities to evaluate mechanisms of variations in photosynthesis and stomatal conductance under changing CO2 and climate conditions, especially in conjunction with process-based biogeochemical model simulations. The isotopic discrimination is indicative of the ratio between the CO2 partial pressure in the intercellular cavities and the atmosphere (ci/ca) and of the ratio of assimilation to stomatal conductance, termed intrinsic water-use efficiency (iWUE). We performed isotope-enabled simulations over the industrial period with the land biosphere module (CLM4.5) of the Community Earth System Model and the Land Surface Processes and Exchanges (LPX-Bern) dynamic global vegetation model. Results for C3 tree species show good agreement with a global compilation of δ13C measurements on leaves, though modeled 13C discrimination by C3 trees is smaller in arid regions than measured. A compilation of 76 tree-ring records, mainly from Europe, boreal Asia, and western North America, suggests on average small 20th century changes in isotopic discrimination and in ci/ca and an increase in iWUE of about 27 % since 1900. LPX-Bern results match these century-scale reconstructions, supporting the idea that the physiology of stomata has evolved to optimize trade-offs between carbon gain by assimilation and water loss by transpiration. In contrast, CLM4.5 simulates an increase in discrimination and in turn a change in iWUE that is almost twice as large as that revealed by the tree-ring data. Factorial simulations show that these changes are mainly in response to rising atmospheric CO2. The results suggest that the downregulation of ci/ca and of photosynthesis by nitrogen limitation is possibly too strong in the standard setup of CLM4.5 or that there may be problems associated with the implementation of conductance, assimilation, and related adjustment processes on long-term environmental changes.
Heterogeneous Compression of Large Collections of Evolutionary Trees.
Matthews, Suzanne J
2015-01-01
Compressing heterogeneous collections of trees is an open problem in computational phylogenetics. In a heterogeneous tree collection, each tree can contain a unique set of taxa. An ideal compression method would allow for the efficient archival of large tree collections and enable scientists to identify common evolutionary relationships over disparate analyses. In this paper, we extend TreeZip to compress heterogeneous collections of trees. TreeZip is the most efficient algorithm for compressing homogeneous tree collections. To the best of our knowledge, no other domain-based compression algorithm exists for large heterogeneous tree collections or enable their rapid analysis. Our experimental results indicate that TreeZip averages 89.03 percent (72.69 percent) space savings on unweighted (weighted) collections of trees when the level of heterogeneity in a collection is moderate. The organization of the TRZ file allows for efficient computations over heterogeneous data. For example, consensus trees can be computed in mere seconds. Lastly, combining the TreeZip compressed (TRZ) file with general-purpose compression yields average space savings of 97.34 percent (81.43 percent) on unweighted (weighted) collections of trees. Our results lead us to believe that TreeZip will prove invaluable in the efficient archival of tree collections, and enables scientists to develop novel methods for relating heterogeneous collections of trees.
Object-oriented fault tree evaluation program for quantitative analyses
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Koen, B. V.
1988-01-01
Object-oriented programming can be combined with fault free techniques to give a significantly improved environment for evaluating the safety and reliability of large complex systems for space missions. Deep knowledge about system components and interactions, available from reliability studies and other sources, can be described using objects that make up a knowledge base. This knowledge base can be interrogated throughout the design process, during system testing, and during operation, and can be easily modified to reflect design changes in order to maintain a consistent information source. An object-oriented environment for reliability assessment has been developed on a Texas Instrument (TI) Explorer LISP workstation. The program, which directly evaluates system fault trees, utilizes the object-oriented extension to LISP called Flavors that is available on the Explorer. The object representation of a fault tree facilitates the storage and retrieval of information associated with each event in the tree, including tree structural information and intermediate results obtained during the tree reduction process. Reliability data associated with each basic event are stored in the fault tree objects. The object-oriented environment on the Explorer also includes a graphical tree editor which was modified to display and edit the fault trees.
Wilderness Campers' Perception and Evaluation of Campsite Impacts.
ERIC Educational Resources Information Center
Farrell, Tracy; Hall, Troy E.; White, Dave D.
2001-01-01
Interviewed campers regarding their perceptions of impacts to vegetation, soil, and trees, comparing campers' measurements of vegetation loss, mineral soil exposure, tree damage, and site size with managers' evaluations. Most campers noticed vegetation impacts, and about half noticed soil impacts and tree damage. Most commented positively about…
A Survey on Robotic Coconut Tree Climbers - Existing Methods and Techniques
NASA Astrophysics Data System (ADS)
Kannan Megalingam, Rajesh; Sakthiprasad, K. M.; Sreekanth, M. M.; Vamsy Vivek, Gedela
2017-08-01
As the coconut palm growers are struggling with the acute shortage of human coconut tree climbers to climb and harvest the coconuts, many are working towards possible alternatives to help them handle this situation. In this study paper we analyse the problems associated with the shortage of human coconut tree climbers in -depth. We also present details of various existing mechanical models available in the market and have not yet solved this issue. Along with this we discuss how robotics and automation could be a possible solution for this entire problem. In this context we discuss about the features of such robotic system and also give suggestions on various unmanned robotic models that can be designed and implemented.
Direct evaluation of fault trees using object-oriented programming techniques
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Koen, B. V.
1989-01-01
Object-oriented programming techniques are used in an algorithm for the direct evaluation of fault trees. The algorithm combines a simple bottom-up procedure for trees without repeated events with a top-down recursive procedure for trees with repeated events. The object-oriented approach results in a dynamic modularization of the tree at each step in the reduction process. The algorithm reduces the number of recursive calls required to solve trees with repeated events and calculates intermediate results as well as the solution of the top event. The intermediate results can be reused if part of the tree is modified. An example is presented in which the results of the algorithm implemented with conventional techniques are compared to those of the object-oriented approach.
Linton, J M; Barnes, H M; Seale, R D; Jones, P D; Lowell, E C; Hummel, S S
2010-08-01
Finding alternative uses for raw material from small-diameter trees is a critical problem throughout the United States. In western states, a lack of markets for small-diameter ponderosa pine (Pinus ponderosa) and lodgepole pine (Pinus contorta) can contribute to problems associated with overstocking. To test the feasibility of producing structural composite lumber (SCL) beams from these two western species, we used a new technology called steam-pressed scrim lumber (SPSL) based on scrimming technology developed in Australia. Both standing green and fire-killed ponderosa and lodgepole pine logs were used in an initial test. Fire-killed logs of both species were found to be unsuitable for producing SPSL but green logs were suitable for producing SPSL. For SPSL from green material, ponderosa pine had significantly higher modulus of rupture and work-to-maximum load values than did SPSL from lodgepole pine. Modulus of elasticity was higher for lodgepole pine. The presence of blows was greater with lodgepole pine than with ponderosa. Blows had a negative effect on the mechanical properties of ponderosa pine but no significant effect on the mechanical properties of SPSL from lodgepole pine. An evaluation of non-destructive testing methods showed that X-ray could be used to determine low density areas in parent beams. The use of a sonic compression wave tester for NDE evaluation of modulus of rupture showed some promise with SPSL but requires further research. (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Hongcui; Kawahara, Tatsuya
CALL (Computer Assisted Language Learning) systems using ASR (Automatic Speech Recognition) for second language learning have received increasing interest recently. However, it still remains a challenge to achieve high speech recognition performance, including accurate detection of erroneous utterances by non-native speakers. Conventionally, possible error patterns, based on linguistic knowledge, are added to the lexicon and language model, or the ASR grammar network. However, this approach easily falls in the trade-off of coverage of errors and the increase of perplexity. To solve the problem, we propose a method based on a decision tree to learn effective prediction of errors made by non-native speakers. An experimental evaluation with a number of foreign students learning Japanese shows that the proposed method can effectively generate an ASR grammar network, given a target sentence, to achieve both better coverage of errors and smaller perplexity, resulting in significant improvement in ASR accuracy.
Pärkkä, Juha; Cluitmans, Luc; Ermes, Miikka
2010-09-01
Inactive and sedentary lifestyle is a major problem in many industrialized countries today. Automatic recognition of type of physical activity can be used to show the user the distribution of his daily activities and to motivate him into more active lifestyle. In this study, an automatic activity-recognition system consisting of wireless motion bands and a PDA is evaluated. The system classifies raw sensor data into activity types online. It uses a decision tree classifier, which has low computational cost and low battery consumption. The classifier parameters can be personalized online by performing a short bout of an activity and by telling the system which activity is being performed. Data were collected with seven volunteers during five everyday activities: lying, sitting/standing, walking, running, and cycling. The online system can detect these activities with overall 86.6% accuracy and with 94.0% accuracy after classifier personalization.
Bottom-Up Evaluation of Twig Join Pattern Queries in XML Document Databases
NASA Astrophysics Data System (ADS)
Chen, Yangjun
Since the extensible markup language XML emerged as a new standard for information representation and exchange on the Internet, the problem of storing, indexing, and querying XML documents has been among the major issues of database research. In this paper, we study the twig pattern matching and discuss a new algorithm for processing ordered twig pattern queries. The time complexity of the algorithmis bounded by O(|D|·|Q| + |T|·leaf Q ) and its space overhead is by O(leaf T ·leaf Q ), where T stands for a document tree, Q for a twig pattern and D is a largest data stream associated with a node q of Q, which contains the database nodes that match the node predicate at q. leaf T (leaf Q ) represents the number of the leaf nodes of T (resp. Q). In addition, the algorithm can be adapted to an indexing environment with XB-trees being used.
Effects of photochemical smog on lemons and navel oranges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, C.R.; Taylor, O.C.; Richards, B.L.
1970-05-01
Experiments were carried out on lemon and Navel orange trees to determine the kind and extent of damage caused by air pollution in the Los Angeles Basin. Trees were enclosed in filter-equipped greenhouses and compared with control trees which were exposed to ambient air. Yield of lemons was about one third more in filtered trees, and with oranges, the yield was about doubled. Fruit drop in oranges was a major problem associated with the exposure to ambient air pollution. Trees in ambient air were reduced in photosynthesis to 66% of filtered-air treatments. Fluoride, while present in the atmosphere was ofmore » minor importance to the health and performance of the trees. 2 tables.« less
PhyloExplorer: a web server to validate, explore and query phylogenetic trees
Ranwez, Vincent; Clairon, Nicolas; Delsuc, Frédéric; Pourali, Saeed; Auberval, Nicolas; Diser, Sorel; Berry, Vincent
2009-01-01
Background Many important problems in evolutionary biology require molecular phylogenies to be reconstructed. Phylogenetic trees must then be manipulated for subsequent inclusion in publications or analyses such as supertree inference and tree comparisons. However, no tool is currently available to facilitate the management of tree collections providing, for instance: standardisation of taxon names among trees with respect to a reference taxonomy; selection of relevant subsets of trees or sub-trees according to a taxonomic query; or simply computation of descriptive statistics on the collection. Moreover, although several databases of phylogenetic trees exist, there is currently no easy way to find trees that are both relevant and complementary to a given collection of trees. Results We propose a tool to facilitate assessment and management of phylogenetic tree collections. Given an input collection of rooted trees, PhyloExplorer provides facilities for obtaining statistics describing the collection, correcting invalid taxon names, extracting taxonomically relevant parts of the collection using a dedicated query language, and identifying related trees in the TreeBASE database. Conclusion PhyloExplorer is a simple and interactive website implemented through underlying Python libraries and MySQL databases. It is available at: and the source code can be downloaded from: . PMID:19450253
Recursive algorithms for phylogenetic tree counting.
Gavryushkina, Alexandra; Welch, David; Drummond, Alexei J
2013-10-28
In Bayesian phylogenetic inference we are interested in distributions over a space of trees. The number of trees in a tree space is an important characteristic of the space and is useful for specifying prior distributions. When all samples come from the same time point and no prior information available on divergence times, the tree counting problem is easy. However, when fossil evidence is used in the inference to constrain the tree or data are sampled serially, new tree spaces arise and counting the number of trees is more difficult. We describe an algorithm that is polynomial in the number of sampled individuals for counting of resolutions of a constraint tree assuming that the number of constraints is fixed. We generalise this algorithm to counting resolutions of a fully ranked constraint tree. We describe a quadratic algorithm for counting the number of possible fully ranked trees on n sampled individuals. We introduce a new type of tree, called a fully ranked tree with sampled ancestors, and describe a cubic time algorithm for counting the number of such trees on n sampled individuals. These algorithms should be employed for Bayesian Markov chain Monte Carlo inference when fossil data are included or data are serially sampled.
Multicompare tests of the performance of different metaheuristics in EEG dipole source localization.
Escalona-Vargas, Diana Irazú; Lopez-Arevalo, Ivan; Gutiérrez, David
2014-01-01
We study the use of nonparametric multicompare statistical tests on the performance of simulated annealing (SA), genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE), when used for electroencephalographic (EEG) source localization. Such task can be posed as an optimization problem for which the referred metaheuristic methods are well suited. Hence, we evaluate the localization's performance in terms of metaheuristics' operational parameters and for a fixed number of evaluations of the objective function. In this way, we are able to link the efficiency of the metaheuristics with a common measure of computational cost. Our results did not show significant differences in the metaheuristics' performance for the case of single source localization. In case of localizing two correlated sources, we found that PSO (ring and tree topologies) and DE performed the worst, then they should not be considered in large-scale EEG source localization problems. Overall, the multicompare tests allowed to demonstrate the little effect that the selection of a particular metaheuristic and the variations in their operational parameters have in this optimization problem.
Economic analysis of the gypsy moth problem in the northeast: II. applied to residential property
Brian R. Payne; William B. White; Roger E. McCay; Robert R. McNichols
1973-01-01
Guidelines are presented for determining dollar losses in residential property values from tree mortality caused by the gypsy moth. The method is based on an earlier study in Amherst, Massachusetts, of the contribution of trees to property values. For each target area, the method requires data on property value, lot size, and number of trees 6 inches dbh and larger for...
Knutson, M.G.; Klaas, E.E.
1998-01-01
Large floodplain forests represent a threatened and endangered type of ecosystem in the United States. Estimates of cumulative losses of floodplain forest range from 57% to 95% at different locations within the continental United Stales. Floodplain forests of the Upper Mississippi River (UMR) have significantly declined in extent due to agriculture, lock and dam construction, and urban development since European settlement. We collected data on shrubs, herbs, and trees from 56 floodplain forest plots in 1992 and compared our results with a previous analysis of historical tree data from the same area recorded by the General Land Office Survey in the 1840s. Acer saccharinum strongly dominates among mature trees and its relative dominance has increased over time. Salix spp. And Betula nigra have declined in relative dominance. Tree sizes are similar to those of presettlement forests, but present forests have fewer trees. The lack of early successional tree species and a trend toward an increasing monoculture of A. Saccharinum in the mature stages indicate problems with regeneration. Because floodplain forests represent a rare habitat type, losses and changes in habitat quality could pose serious problems for wildlife that depend upon these habitats, especially birds.
A linear programming approach to max-sum problem: a review.
Werner, Tomás
2007-07-01
The max-sum labeling problem, defined as maximizing a sum of binary (i.e., pairwise) functions of discrete variables, is a general NP-hard optimization problem with many applications, such as computing the MAP configuration of a Markov random field. We review a not widely known approach to the problem, developed by Ukrainian researchers Schlesinger et al. in 1976, and show how it contributes to recent results, most importantly, those on the convex combination of trees and tree-reweighted max-product. In particular, we review Schlesinger et al.'s upper bound on the max-sum criterion, its minimization by equivalent transformations, its relation to the constraint satisfaction problem, the fact that this minimization is dual to a linear programming relaxation of the original problem, and the three kinds of consistency necessary for optimality of the upper bound. We revisit problems with Boolean variables and supermodular problems. We describe two algorithms for decreasing the upper bound. We present an example application for structural image analysis.
78 FR 5191 - National Institute on Aging; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-24
... review and evaluate grant applications. Place: DoubleTree by Hilton Hotel Bethesda, 8120 Wisconsin Avenue.... to 2:00 p.m. Agenda: To review and evaluate grant applications. Place: DoubleTree by Hilton Hotel... applications. Place: DoubleTree by Hilton Hotel Bethesda, 8120 Wisconsin Avenue, Bethesda, MD 20814. Contact...
Object-Oriented Algorithm For Evaluation Of Fault Trees
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Koen, B. V.
1992-01-01
Algorithm for direct evaluation of fault trees incorporates techniques of object-oriented programming. Reduces number of calls needed to solve trees with repeated events. Provides significantly improved software environment for such computations as quantitative analyses of safety and reliability of complicated systems of equipment (e.g., spacecraft or factories).
Use of sonic tomography to detect and quantify wood decay in living trees1
Gilbert, Gregory S.; Ballesteros, Javier O.; Barrios-Rodriguez, Cesar A.; Bonadies, Ernesto F.; Cedeño-Sánchez, Marjorie L.; Fossatti-Caballero, Nohely J.; Trejos-Rodríguez, Mariam M.; Pérez-Suñiga, José Moises; Holub-Young, Katharine S.; Henn, Laura A. W.; Thompson, Jennifer B.; García-López, Cesar G.; Romo, Amanda C.; Johnston, Daniel C.; Barrick, Pablo P.; Jordan, Fulvia A.; Hershcovich, Shiran; Russo, Natalie; Sánchez, Juan David; Fábrega, Juan Pablo; Lumpkin, Raleigh; McWilliams, Hunter A.; Chester, Kathleen N.; Burgos, Alana C.; Wong, E. Beatriz; Diab, Jonathan H.; Renteria, Sonia A.; Harrower, Jennifer T.; Hooton, Douglas A.; Glenn, Travis C.; Faircloth, Brant C.; Hubbell, Stephen P.
2016-01-01
Premise of the study: Field methodology and image analysis protocols using acoustic tomography were developed and evaluated as a tool to estimate the amount of internal decay and damage of living trees, with special attention to tropical rainforest trees with irregular trunk shapes. Methods and Results: Living trunks of a diversity of tree species in tropical rainforests in the Republic of Panama were scanned using an Argus Electronic PiCUS 3 Sonic Tomograph and evaluated for the amount and patterns of internal decay. A protocol using ImageJ analysis software was used to quantify the proportions of intact and compromised wood. The protocols provide replicable estimates of internal decay and cavities for trees of varying shapes, wood density, and bark thickness. Conclusions: Sonic tomography, coupled with image analysis, provides an efficient, noninvasive approach to evaluate decay patterns and structural integrity of even irregularly shaped living trees. PMID:28101433
Evaluation of Algorithms for a Miles-in-Trail Decision Support Tool
NASA Technical Reports Server (NTRS)
Bloem, Michael; Hattaway, David; Bambos, Nicholas
2012-01-01
Four machine learning algorithms were prototyped and evaluated for use in a proposed decision support tool that would assist air traffic managers as they set Miles-in-Trail restrictions. The tool would display probabilities that each possible Miles-in-Trail value should be used in a given situation. The algorithms were evaluated with an expected Miles-in-Trail cost that assumes traffic managers set restrictions based on the tool-suggested probabilities. Basic Support Vector Machine, random forest, and decision tree algorithms were evaluated, as was a softmax regression algorithm that was modified to explicitly reduce the expected Miles-in-Trail cost. The algorithms were evaluated with data from the summer of 2011 for air traffic flows bound to the Newark Liberty International Airport (EWR) over the ARD, PENNS, and SHAFF fixes. The algorithms were provided with 18 input features that describe the weather at EWR, the runway configuration at EWR, the scheduled traffic demand at EWR and the fixes, and other traffic management initiatives in place at EWR. Features describing other traffic management initiatives at EWR and the weather at EWR achieved relatively high information gain scores, indicating that they are the most useful for estimating Miles-in-Trail. In spite of a high variance or over-fitting problem, the decision tree algorithm achieved the lowest expected Miles-in-Trail costs when the algorithms were evaluated using 10-fold cross validation with the summer 2011 data for these air traffic flows.
Three-dimensional curvilinear device reconstruction from two fluoroscopic views
NASA Astrophysics Data System (ADS)
Delmas, Charlotte; Berger, Marie-Odile; Kerrien, Erwan; Riddell, Cyril; Trousset, Yves; Anxionnat, René; Bracard, Serge
2015-03-01
In interventional radiology, navigating devices under the sole guidance of fluoroscopic images inside a complex architecture of tortuous and narrow vessels like the cerebral vascular tree is a difficult task. Visualizing the device in 3D could facilitate this navigation. For curvilinear devices such as guide-wires and catheters, a 3D reconstruction may be achieved using two simultaneous fluoroscopic views, as available on a biplane acquisition system. The purpose of this paper is to present a new automatic three-dimensional curve reconstruction method that has the potential to reconstruct complex 3D curves and does not require a perfect segmentation of the endovascular device. Using epipolar geometry, our algorithm translates the point correspondence problem into a segment correspondence problem. Candidate 3D curves can be formed and evaluated independently after identifying all possible combinations of compatible 3D segments. Correspondence is then inherently solved by looking in 3D space for the most coherent curve in terms of continuity and curvature. This problem can be cast into a graph problem where the most coherent curve corresponds to the shortest path of a weighted graph. We present quantitative results of curve reconstructions performed from numerically simulated projections of tortuous 3D curves extracted from cerebral vascular trees affected with brain arteriovenous malformations as well as fluoroscopic image pairs of a guide-wire from both phantom and clinical sets. Our method was able to select the correct 3D segments in 97.5% of simulated cases thus demonstrating its ability to handle complex 3D curves and can deal with imperfect 2D segmentation.
A new approach to enhance the performance of decision tree for classifying gene expression data.
Hassan, Md; Kotagiri, Ramamohanarao
2013-12-20
Gene expression data classification is a challenging task due to the large dimensionality and very small number of samples. Decision tree is one of the popular machine learning approaches to address such classification problems. However, the existing decision tree algorithms use a single gene feature at each node to split the data into its child nodes and hence might suffer from poor performance specially when classifying gene expression dataset. By using a new decision tree algorithm where, each node of the tree consists of more than one gene, we enhance the classification performance of traditional decision tree classifiers. Our method selects suitable genes that are combined using a linear function to form a derived composite feature. To determine the structure of the tree we use the area under the Receiver Operating Characteristics curve (AUC). Experimental analysis demonstrates higher classification accuracy using the new decision tree compared to the other existing decision trees in literature. We experimentally compare the effect of our scheme against other well known decision tree techniques. Experiments show that our algorithm can substantially boost the classification performance of the decision tree.
Doyle, Suzanne R.; Donovan, Dennis M.
2014-01-01
Aims The purpose of this study was to explore the selection of predictor variables in the evaluation of drug treatment completion using an ensemble approach with classification trees. The basic methodology is reviewed and the subagging procedure of random subsampling is applied. Methods Among 234 individuals with stimulant use disorders randomized to a 12-Step facilitative intervention shown to increase stimulant use abstinence, 67.52% were classified as treatment completers. A total of 122 baseline variables were used to identify factors associated with completion. Findings The number of types of self-help activity involvement prior to treatment was the predominant predictor. Other effective predictors included better coping self-efficacy for substance use in high-risk situations, more days of prior meeting attendance, greater acceptance of the Disease model, higher confidence for not resuming use following discharge, lower ASI Drug and Alcohol composite scores, negative urine screens for cocaine or marijuana, and fewer employment problems. Conclusions The application of an ensemble subsampling regression tree method utilizes the fact that classification trees are unstable but, on average, produce an improved prediction of the completion of drug abuse treatment. The results support the notion there are early indicators of treatment completion that may allow for modification of approaches more tailored to fitting the needs of individuals and potentially provide more successful treatment engagement and improved outcomes. PMID:25134038
Zhou, Xiaofan; Shen, Xing-Xing; Hittinger, Chris Todd
2018-01-01
Abstract The sizes of the data matrices assembled to resolve branches of the tree of life have increased dramatically, motivating the development of programs for fast, yet accurate, inference. For example, several different fast programs have been developed in the very popular maximum likelihood framework, including RAxML/ExaML, PhyML, IQ-TREE, and FastTree. Although these programs are widely used, a systematic evaluation and comparison of their performance using empirical genome-scale data matrices has so far been lacking. To address this question, we evaluated these four programs on 19 empirical phylogenomic data sets with hundreds to thousands of genes and up to 200 taxa with respect to likelihood maximization, tree topology, and computational speed. For single-gene tree inference, we found that the more exhaustive and slower strategies (ten searches per alignment) outperformed faster strategies (one tree search per alignment) using RAxML, PhyML, or IQ-TREE. Interestingly, single-gene trees inferred by the three programs yielded comparable coalescent-based species tree estimations. For concatenation-based species tree inference, IQ-TREE consistently achieved the best-observed likelihoods for all data sets, and RAxML/ExaML was a close second. In contrast, PhyML often failed to complete concatenation-based analyses, whereas FastTree was the fastest but generated lower likelihood values and more dissimilar tree topologies in both types of analyses. Finally, data matrix properties, such as the number of taxa and the strength of phylogenetic signal, sometimes substantially influenced the programs’ relative performance. Our results provide real-world gene and species tree phylogenetic inference benchmarks to inform the design and execution of large-scale phylogenomic data analyses. PMID:29177474
Multipoint to multipoint routing and wavelength assignment in multi-domain optical networks
NASA Astrophysics Data System (ADS)
Qin, Panke; Wu, Jingru; Li, Xudong; Tang, Yongli
2018-01-01
In multi-point to multi-point (MP2MP) routing and wavelength assignment (RWA) problems, researchers usually assume the optical networks to be a single domain. However, the optical networks develop toward to multi-domain and larger scale in practice. In this context, multi-core shared tree (MST)-based MP2MP RWA are introduced problems including optimal multicast domain sequence selection, core nodes belonging in which domains and so on. In this letter, we focus on MST-based MP2MP RWA problems in multi-domain optical networks, mixed integer linear programming (MILP) formulations to optimally construct MP2MP multicast trees is presented. A heuristic algorithm base on network virtualization and weighted clustering algorithm (NV-WCA) is proposed. Simulation results show that, under different traffic patterns, the proposed algorithm achieves significant improvement on network resources occupation and multicast trees setup latency in contrast with the conventional algorithms which were proposed base on a single domain network environment.
Species Tree Inference Using a Mixture Model.
Ullah, Ikram; Parviainen, Pekka; Lagergren, Jens
2015-09-01
Species tree reconstruction has been a subject of substantial research due to its central role across biology and medicine. A species tree is often reconstructed using a set of gene trees or by directly using sequence data. In either of these cases, one of the main confounding phenomena is the discordance between a species tree and a gene tree due to evolutionary events such as duplications and losses. Probabilistic methods can resolve the discordance by coestimating gene trees and the species tree but this approach poses a scalability problem for larger data sets. We present MixTreEM-DLRS: A two-phase approach for reconstructing a species tree in the presence of gene duplications and losses. In the first phase, MixTreEM, a novel structural expectation maximization algorithm based on a mixture model is used to reconstruct a set of candidate species trees, given sequence data for monocopy gene families from the genomes under study. In the second phase, PrIME-DLRS, a method based on the DLRS model (Åkerborg O, Sennblad B, Arvestad L, Lagergren J. 2009. Simultaneous Bayesian gene tree reconstruction and reconciliation analysis. Proc Natl Acad Sci U S A. 106(14):5714-5719), is used for selecting the best species tree. PrIME-DLRS can handle multicopy gene families since DLRS, apart from modeling sequence evolution, models gene duplication and loss using a gene evolution model (Arvestad L, Lagergren J, Sennblad B. 2009. The gene evolution model and computing its associated probabilities. J ACM. 56(2):1-44). We evaluate MixTreEM-DLRS using synthetic and biological data, and compare its performance with a recent genome-scale species tree reconstruction method PHYLDOG (Boussau B, Szöllősi GJ, Duret L, Gouy M, Tannier E, Daubin V. 2013. Genome-scale coestimation of species and gene trees. Genome Res. 23(2):323-330) as well as with a fast parsimony-based algorithm Duptree (Wehe A, Bansal MS, Burleigh JG, Eulenstein O. 2008. Duptree: a program for large-scale phylogenetic analyses using gene tree parsimony. Bioinformatics 24(13):1540-1541). Our method is competitive with PHYLDOG in terms of accuracy and runs significantly faster and our method outperforms Duptree in accuracy. The analysis constituted by MixTreEM without DLRS may also be used for selecting the target species tree, yielding a fast and yet accurate algorithm for larger data sets. MixTreEM is freely available at http://prime.scilifelab.se/mixtreem/. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cheryl A. Smith
2008-01-01
Diagnosing Christmas tree problems can be a challenge, requiring a basic knowledge of plant culture and physiology, the effect of environmental influences on plant health, and the ability to identify the possible causes of plant problems. Developing a solution or remedy to the problem depends on a proper diagnosis, a process that requires recognition of a problem and...
Visualizing phylogenetic tree landscapes.
Wilgenbusch, James C; Huang, Wen; Gallivan, Kyle A
2017-02-02
Genomic-scale sequence alignments are increasingly used to infer phylogenies in order to better understand the processes and patterns of evolution. Different partitions within these new alignments (e.g., genes, codon positions, and structural features) often favor hundreds if not thousands of competing phylogenies. Summarizing and comparing phylogenies obtained from multi-source data sets using current consensus tree methods discards valuable information and can disguise potential methodological problems. Discovery of efficient and accurate dimensionality reduction methods used to display at once in 2- or 3- dimensions the relationship among these competing phylogenies will help practitioners diagnose the limits of current evolutionary models and potential problems with phylogenetic reconstruction methods when analyzing large multi-source data sets. We introduce several dimensionality reduction methods to visualize in 2- and 3-dimensions the relationship among competing phylogenies obtained from gene partitions found in three mid- to large-size mitochondrial genome alignments. We test the performance of these dimensionality reduction methods by applying several goodness-of-fit measures. The intrinsic dimensionality of each data set is also estimated to determine whether projections in 2- and 3-dimensions can be expected to reveal meaningful relationships among trees from different data partitions. Several new approaches to aid in the comparison of different phylogenetic landscapes are presented. Curvilinear Components Analysis (CCA) and a stochastic gradient decent (SGD) optimization method give the best representation of the original tree-to-tree distance matrix for each of the three- mitochondrial genome alignments and greatly outperformed the method currently used to visualize tree landscapes. The CCA + SGD method converged at least as fast as previously applied methods for visualizing tree landscapes. We demonstrate for all three mtDNA alignments that 3D projections significantly increase the fit between the tree-to-tree distances and can facilitate the interpretation of the relationship among phylogenetic trees. We demonstrate that the choice of dimensionality reduction method can significantly influence the spatial relationship among a large set of competing phylogenetic trees. We highlight the importance of selecting a dimensionality reduction method to visualize large multi-locus phylogenetic landscapes and demonstrate that 3D projections of mitochondrial tree landscapes better capture the relationship among the trees being compared.
Morphological comparison of Fusarium species associated with Euwallacea ambrosia beetles
USDA-ARS?s Scientific Manuscript database
Tree damage caused by Euwallacea ambrosia beetles, including those of fruit trees, has become a severe problem worldwide. Euwallacea species cultivate Fusarium in their galleries as a source of nutrition. Concerning the ambrosia species of Fusarium, 12 phylogenetic species have been discovered based...
NASA Astrophysics Data System (ADS)
Ornes, Stephen
2018-04-01
The ability of trees to cool by transporting water from their roots to the leaves has been known for centuries. But as Stephen Ornes discovers, the principles of transpiration are also inspiring innovative techniques to cool vehicles travelling at hypersonic speeds, where unwanted heat is a problem too
Risk Analysis of Return Support Material on Gas Compressor Platform Project
NASA Astrophysics Data System (ADS)
Silvianita; Aulia, B. U.; Khakim, M. L. N.; Rosyid, Daniel M.
2017-07-01
On a fixed platforms project are not only carried out by a contractor, but two or more contractors. Cooperation in the construction of fixed platforms is often not according to plan, it is caused by several factors. It takes a good synergy between the contractor to avoid miss communication may cause problems on the project. For the example is about support material (sea fastening, skid shoe and shipping support) used in the process of sending a jacket structure to operation place often does not return to the contractor. It needs a systematic method to overcome the problem of support material. This paper analyses the causes and effects of GAS Compressor Platform that support material is not return, using Fault Tree Analysis (FTA) and Event Tree Analysis (ETA). From fault tree analysis, the probability of top event is 0.7783. From event tree analysis diagram, the contractors lose Rp.350.000.000, - to Rp.10.000.000.000, -.
E. Gregory McPherson; Paula J. Peper
2012-01-01
This paper describes three long-term tree growth studies conducted to evaluate tree performance because repeated measurements of the same trees produce critical data for growth model calibration and validation. Several empirical and process-based approaches to modeling tree growth are reviewed. Modeling is more advanced in the fields of forestry and...
Creating ensembles of decision trees through sampling
Kamath, Chandrika; Cantu-Paz, Erick
2005-08-30
A system for decision tree ensembles that includes a module to read the data, a module to sort the data, a module to evaluate a potential split of the data according to some criterion using a random sample of the data, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method is based on statistical sampling techniques and includes the steps of reading the data; sorting the data; evaluating a potential split according to some criterion using a random sample of the data, splitting the data, and combining multiple decision trees in ensembles.
Parallel family trees for transfer matrices in the Potts model
NASA Astrophysics Data System (ADS)
Navarro, Cristobal A.; Canfora, Fabrizio; Hitschfeld, Nancy; Navarro, Gonzalo
2015-02-01
The computational cost of transfer matrix methods for the Potts model is related to the question in how many ways can two layers of a lattice be connected? Answering the question leads to the generation of a combinatorial set of lattice configurations. This set defines the configuration space of the problem, and the smaller it is, the faster the transfer matrix can be computed. The configuration space of generic (q , v) transfer matrix methods for strips is in the order of the Catalan numbers, which grows asymptotically as O(4m) where m is the width of the strip. Other transfer matrix methods with a smaller configuration space indeed exist but they make assumptions on the temperature, number of spin states, or restrict the structure of the lattice. In this paper we propose a parallel algorithm that uses a sub-Catalan configuration space of O(3m) to build the generic (q , v) transfer matrix in a compressed form. The improvement is achieved by grouping the original set of Catalan configurations into a forest of family trees, in such a way that the solution to the problem is now computed by solving the root node of each family. As a result, the algorithm becomes exponentially faster than the Catalan approach while still highly parallel. The resulting matrix is stored in a compressed form using O(3m ×4m) of space, making numerical evaluation and decompression to be faster than evaluating the matrix in its O(4m ×4m) uncompressed form. Experimental results for different sizes of strip lattices show that the parallel family trees (PFT) strategy indeed runs exponentially faster than the Catalan Parallel Method (CPM), especially when dealing with dense transfer matrices. In terms of parallel performance, we report strong-scaling speedups of up to 5.7 × when running on an 8-core shared memory machine and 28 × for a 32-core cluster. The best balance of speedup and efficiency for the multi-core machine was achieved when using p = 4 processors, while for the cluster scenario it was in the range p ∈ [ 8 , 10 ] . Because of the parallel capabilities of the algorithm, a large-scale execution of the parallel family trees strategy in a supercomputer could contribute to the study of wider strip lattices.
Time and Energy Efficient Relay Transmission for Multi-Hop Wireless Sensor Networks.
Kim, Jin-Woo; Barrado, José Ramón Ramos; Jeon, Dong-Keun
2016-06-27
The IEEE 802.15.4 standard is widely recognized as one of the most successful enabling technologies for short range low rate wireless communications and it is used in IoT applications. It covers all the details related to the MAC and PHY layers of the IoT protocol stack. Due to the nature of IoT, the wireless sensor networks are autonomously self-organized networks without infrastructure support. One of the issues in IoT is the network scalability. To address this issue, it is necessary to support the multi-hop topology. The IEEE 802.15.4 network can support a star, peer-to-peer, or cluster-tree topology. One of the IEEE 802.15.4 topologies suited for the high predictability of performance guarantees and energy efficient behavior is a cluster-tree topology where sensor nodes can switch off their transceivers and go into a sleep state to save energy. However, the IEEE 802.15.4 cluster-tree topology may not be able to provide sufficient bandwidth for the increased traffic load and the additional information may not be delivered successfully. The common drawback of the existing approaches is that they do not address the poor bandwidth utilization problem in IEEE 802.15.4 cluster-tree networks, so it is difficult to increase the network performance. Therefore, to solve this problem in this paper we study a relay transmission protocol based on the standard protocol in the IEEE 802.15.4 MAC. In the proposed scheme, the coordinators can relay data frames to their parent devices or their children devices without contention and can provide bandwidth for the increased traffic load or the number of devices. We also evaluate the performance of the proposed scheme through simulation. The simulation results demonstrate that the proposed scheme can improve the reliability, the end-to-end delay, and the energy consumption.
Ben Ayed, Rayda; Ben Hassen, Hanen; Ennouri, Karim; Ben Marzoug, Riadh; Rebai, Ahmed
2016-01-01
Olive (Olea europaea), whose importance is mainly due to nutritional and health features, is one of the most economically significant oil-producing trees in the Mediterranean region. Unfortunately, the increasing market demand towards virgin olive oil could often result in its adulteration with less expensive oils, which is a serious problem for the public and quality control evaluators of virgin olive oil. Therefore, to avoid frauds, olive cultivar identification and virgin olive oil authentication have become a major issue for the producers and consumers of quality control in the olive chain. Presently, genetic traceability using SSR is the cost effective and powerful marker technique that can be employed to resolve such problems. However, to identify an unknown monovarietal virgin olive oil cultivar, a reference system has become necessary. Thus, an Olive Genetic Diversity Database (OGDD) (http://www.bioinfo-cbs.org/ogdd/) is presented in this work. It is a genetic, morphologic and chemical database of worldwide olive tree and oil having a double function. In fact, besides being a reference system generated for the identification of unkown olive or virgin olive oil cultivars based on their microsatellite allele size(s), it provides users additional morphological and chemical information for each identified cultivar. Currently, OGDD is designed to enable users to easily retrieve and visualize biologically important information (SSR markers, and olive tree and oil characteristics of about 200 cultivars worldwide) using a set of efficient query interfaces and analysis tools. It can be accessed through a web service from any modern programming language using a simple hypertext transfer protocol call. The web site is implemented in java, JavaScript, PHP, HTML and Apache with all major browsers supported. Database URL: http://www.bioinfo-cbs.org/ogdd/. © The Author(s) 2016. Published by Oxford University Press.
Time and Energy Efficient Relay Transmission for Multi-Hop Wireless Sensor Networks
Kim, Jin-Woo; Barrado, José Ramón Ramos; Jeon, Dong-Keun
2016-01-01
The IEEE 802.15.4 standard is widely recognized as one of the most successful enabling technologies for short range low rate wireless communications and it is used in IoT applications. It covers all the details related to the MAC and PHY layers of the IoT protocol stack. Due to the nature of IoT, the wireless sensor networks are autonomously self-organized networks without infrastructure support. One of the issues in IoT is the network scalability. To address this issue, it is necessary to support the multi-hop topology. The IEEE 802.15.4 network can support a star, peer-to-peer, or cluster-tree topology. One of the IEEE 802.15.4 topologies suited for the high predictability of performance guarantees and energy efficient behavior is a cluster-tree topology where sensor nodes can switch off their transceivers and go into a sleep state to save energy. However, the IEEE 802.15.4 cluster-tree topology may not be able to provide sufficient bandwidth for the increased traffic load and the additional information may not be delivered successfully. The common drawback of the existing approaches is that they do not address the poor bandwidth utilization problem in IEEE 802.15.4 cluster-tree networks, so it is difficult to increase the network performance. Therefore, to solve this problem in this paper we study a relay transmission protocol based on the standard protocol in the IEEE 802.15.4 MAC. In the proposed scheme, the coordinators can relay data frames to their parent devices or their children devices without contention and can provide bandwidth for the increased traffic load or the number of devices. We also evaluate the performance of the proposed scheme through simulation. The simulation results demonstrate that the proposed scheme can improve the reliability, the end-to-end delay, and the energy consumption. PMID:27355952
A description of STEMS-- the stand and tree evaluation and modeling system.
David M. Belcher; Margaret R. Holdaway; Gary J. Brand
1982-01-01
This paper describes STEMS (Stand and Tree Evaluation and Modeling System), the current computerized Lake State tree growth projection system. It presents the program structure, discusses the growth and mortality components, the management subsystem, and the regeneration subsystem. Some preliminary results of model testing are presented and an application is...
Planning effectiveness may grow on fault trees.
Chow, C W; Haddad, K; Mannino, B
1991-10-01
The first step of a strategic planning process--identifying and analyzing threats and opportunities--requires subjective judgments. By using an analytical tool known as a fault tree, healthcare administrators can reduce the unreliability of subjective decision making by creating a logical structure for problem solving and decision making. A case study of 11 healthcare administrators showed that an analysis technique called prospective hindsight can add to a fault tree's ability to improve a strategic planning process.
Evaluation Theory Tree Re-Examined
ERIC Educational Resources Information Center
Christie, Christina A.; Alkin, Marvin C.
2008-01-01
When examining various evaluation prescriptive theories comparatively, we find it helpful to have a framework showing how they are related that highlights features that distinguish theoretical perspectives, thus a "theory" about theories. The evaluation theory tree that we presented in Alkin's recent book, "Evaluation Roots"…
Random walk hierarchy measure: What is more hierarchical, a chain, a tree or a star?
Czégel, Dániel; Palla, Gergely
2015-01-01
Signs of hierarchy are prevalent in a wide range of systems in nature and society. One of the key problems is quantifying the importance of hierarchical organisation in the structure of the network representing the interactions or connections between the fundamental units of the studied system. Although a number of notable methods are already available, their vast majority is treating all directed acyclic graphs as already maximally hierarchical. Here we propose a hierarchy measure based on random walks on the network. The novelty of our approach is that directed trees corresponding to multi level pyramidal structures obtain higher hierarchy scores compared to directed chains and directed stars. Furthermore, in the thermodynamic limit the hierarchy measure of regular trees is converging to a well defined limit depending only on the branching number. When applied to real networks, our method is computationally very effective, as the result can be evaluated with arbitrary precision by subsequent multiplications of the transition matrix describing the random walk process. In addition, the tests on real world networks provided very intuitive results, e.g., the trophic levels obtained from our approach on a food web were highly consistent with former results from ecology. PMID:26657012
Random walk hierarchy measure: What is more hierarchical, a chain, a tree or a star?
NASA Astrophysics Data System (ADS)
Czégel, Dániel; Palla, Gergely
2015-12-01
Signs of hierarchy are prevalent in a wide range of systems in nature and society. One of the key problems is quantifying the importance of hierarchical organisation in the structure of the network representing the interactions or connections between the fundamental units of the studied system. Although a number of notable methods are already available, their vast majority is treating all directed acyclic graphs as already maximally hierarchical. Here we propose a hierarchy measure based on random walks on the network. The novelty of our approach is that directed trees corresponding to multi level pyramidal structures obtain higher hierarchy scores compared to directed chains and directed stars. Furthermore, in the thermodynamic limit the hierarchy measure of regular trees is converging to a well defined limit depending only on the branching number. When applied to real networks, our method is computationally very effective, as the result can be evaluated with arbitrary precision by subsequent multiplications of the transition matrix describing the random walk process. In addition, the tests on real world networks provided very intuitive results, e.g., the trophic levels obtained from our approach on a food web were highly consistent with former results from ecology.
Random walk hierarchy measure: What is more hierarchical, a chain, a tree or a star?
Czégel, Dániel; Palla, Gergely
2015-12-10
Signs of hierarchy are prevalent in a wide range of systems in nature and society. One of the key problems is quantifying the importance of hierarchical organisation in the structure of the network representing the interactions or connections between the fundamental units of the studied system. Although a number of notable methods are already available, their vast majority is treating all directed acyclic graphs as already maximally hierarchical. Here we propose a hierarchy measure based on random walks on the network. The novelty of our approach is that directed trees corresponding to multi level pyramidal structures obtain higher hierarchy scores compared to directed chains and directed stars. Furthermore, in the thermodynamic limit the hierarchy measure of regular trees is converging to a well defined limit depending only on the branching number. When applied to real networks, our method is computationally very effective, as the result can be evaluated with arbitrary precision by subsequent multiplications of the transition matrix describing the random walk process. In addition, the tests on real world networks provided very intuitive results, e.g., the trophic levels obtained from our approach on a food web were highly consistent with former results from ecology.
FISHtrees 3.0: Tumor Phylogenetics Using a Ploidy Probe.
Gertz, E Michael; Chowdhury, Salim Akhter; Lee, Woei-Jyh; Wangsa, Darawalee; Heselmeyer-Haddad, Kerstin; Ried, Thomas; Schwartz, Russell; Schäffer, Alejandro A
2016-01-01
Advances in fluorescence in situ hybridization (FISH) make it feasible to detect multiple copy-number changes in hundreds of cells of solid tumors. Studies using FISH, sequencing, and other technologies have revealed substantial intra-tumor heterogeneity. The evolution of subclones in tumors may be modeled by phylogenies. Tumors often harbor aneuploid or polyploid cell populations. Using a FISH probe to estimate changes in ploidy can guide the creation of trees that model changes in ploidy and individual gene copy-number variations. We present FISHtrees 3.0, which implements a ploidy-based tree building method based on mixed integer linear programming (MILP). The ploidy-based modeling in FISHtrees includes a new formulation of the problem of merging trees for changes of a single gene into trees modeling changes in multiple genes and the ploidy. When multiple samples are collected from each patient, varying over time or tumor regions, it is useful to evaluate similarities in tumor progression among the samples. Therefore, we further implemented in FISHtrees 3.0 a new method to build consensus graphs for multiple samples. We validate FISHtrees 3.0 on a simulated data and on FISH data from paired cases of cervical primary and metastatic tumors and on paired breast ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). Tests on simulated data show improved accuracy of the ploidy-based approach relative to prior ploidyless methods. Tests on real data further demonstrate novel insights these methods offer into tumor progression processes. Trees for DCIS samples are significantly less complex than trees for paired IDC samples. Consensus graphs show substantial divergence among most paired samples from both sets. Low consensus between DCIS and IDC trees may help explain the difficulty in finding biomarkers that predict which DCIS cases are at most risk to progress to IDC. The FISHtrees software is available at ftp://ftp.ncbi.nih.gov/pub/FISHtrees.
FISHtrees 3.0: Tumor Phylogenetics Using a Ploidy Probe
Chowdhury, Salim Akhter; Lee, Woei-Jyh; Wangsa, Darawalee; Heselmeyer-Haddad, Kerstin; Ried, Thomas; Schwartz, Russell; Schäffer, Alejandro A.
2016-01-01
Advances in fluorescence in situ hybridization (FISH) make it feasible to detect multiple copy-number changes in hundreds of cells of solid tumors. Studies using FISH, sequencing, and other technologies have revealed substantial intra-tumor heterogeneity. The evolution of subclones in tumors may be modeled by phylogenies. Tumors often harbor aneuploid or polyploid cell populations. Using a FISH probe to estimate changes in ploidy can guide the creation of trees that model changes in ploidy and individual gene copy-number variations. We present FISHtrees 3.0, which implements a ploidy-based tree building method based on mixed integer linear programming (MILP). The ploidy-based modeling in FISHtrees includes a new formulation of the problem of merging trees for changes of a single gene into trees modeling changes in multiple genes and the ploidy. When multiple samples are collected from each patient, varying over time or tumor regions, it is useful to evaluate similarities in tumor progression among the samples. Therefore, we further implemented in FISHtrees 3.0 a new method to build consensus graphs for multiple samples. We validate FISHtrees 3.0 on a simulated data and on FISH data from paired cases of cervical primary and metastatic tumors and on paired breast ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). Tests on simulated data show improved accuracy of the ploidy-based approach relative to prior ploidyless methods. Tests on real data further demonstrate novel insights these methods offer into tumor progression processes. Trees for DCIS samples are significantly less complex than trees for paired IDC samples. Consensus graphs show substantial divergence among most paired samples from both sets. Low consensus between DCIS and IDC trees may help explain the difficulty in finding biomarkers that predict which DCIS cases are at most risk to progress to IDC. The FISHtrees software is available at ftp://ftp.ncbi.nih.gov/pub/FISHtrees. PMID:27362268
The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis.
Koziol, James A; Feng, Anne C; Jia, Zhenyu; Wang, Yipeng; Goodison, Seven; McClelland, Michael; Mercola, Dan
2009-01-01
Classification and regression trees have long been used for cancer diagnosis and prognosis. Nevertheless, instability and variable selection bias, as well as overfitting, are well-known problems of tree-based methods. In this article, we investigate whether ensemble tree classifiers can ameliorate these difficulties, using data from two recent studies of radical prostatectomy in prostate cancer. Using time to progression following prostatectomy as the relevant clinical endpoint, we found that ensemble tree classifiers robustly and reproducibly identified three subgroups of patients in the two clinical datasets: non-progressors, early progressors and late progressors. Moreover, the consensus classifications were independent predictors of time to progression compared to known clinical prognostic factors.
Tree Testing of Hierarchical Menu Structures for Health Applications
Le, Thai; Chaudhuri, Shomir; Chung, Jane; Thompson, Hilaire J; Demiris, George
2014-01-01
To address the need for greater evidence-based evaluation of Health Information Technology (HIT) systems we introduce a method of usability testing termed tree testing. In a tree test, participants are presented with an abstract hierarchical tree of the system taxonomy and asked to navigate through the tree in completing representative tasks. We apply tree testing to a commercially available health application, demonstrating a use case and providing a comparison with more traditional in-person usability testing methods. Online tree tests (N=54) and in-person usability tests (N=15) were conducted from August to September 2013. Tree testing provided a method to quantitatively evaluate the information structure of a system using various navigational metrics including completion time, task accuracy, and path length. The results of the analyses compared favorably to the results seen from the traditional usability test. Tree testing provides a flexible, evidence-based approach for researchers to evaluate the information structure of HITs. In addition, remote tree testing provides a quick, flexible, and high volume method of acquiring feedback in a structured format that allows for quantitative comparisons. With the diverse nature and often large quantities of health information available, addressing issues of terminology and concept classifications during the early development process of a health information system will improve navigation through the system and save future resources. Tree testing is a usability method that can be used to quickly and easily assess information hierarchy of health information systems. PMID:24582924
Review of environmental effects and treatment of runoff from storage and handling of wood.
Hedmark, Asa; Scholz, Miklas
2008-09-01
This review paper summarises the environmental effects of runoff from wood handling sites including log yards. The characteristics of site runoff and the corresponding effects on the receiving watercourses are presented for worldwide case studies, highlighting the urgent need to address the water pollution problem associated with the wood industry. The methods used to reduce the negative environmental impact of the runoff, such as constructed wetlands, soil infiltration and chemical oxidation, are evaluated. The principal environmental problem of runoff is usually the high concentration of organic substances originating from the wood and bark, some of which are toxic to aquatic life. Phosphorus is also a problem according to some studies. The toxicity of the runoff varies greatly, and depends on the species of tree stored, the amount of water the wood has been in contact with and the degree of runoff treatment.
Efficient multifeature index structures for music data retrieval
NASA Astrophysics Data System (ADS)
Lee, Wegin; Chen, Arbee L. P.
1999-12-01
In this paper, we propose four index structures for music data retrieval. Based on suffix trees, we develop two index structures called combined suffix tree and independent suffix trees. These methods still show shortcomings for some search functions. Hence we develop another index, called Twin Suffix Trees, to overcome these problems. However, the Twin Suffix Trees lack of scalability when the amount of music data becomes large. Therefore we propose the fourth index, called Grid-Twin Suffix Trees, to provide scalability and flexibility for a large amount of music data. For each index, we can use different search functions, like exact search and approximate search, on different music features, like melody, rhythm or both. We compare the performance of the different search functions applied on each index structure by a series of experiments.
NASA Astrophysics Data System (ADS)
Batzias, Dimitris F.
2012-12-01
Fault Tree Analysis (FTA) can be used for technology transfer when the relevant problem (called 'top even' in FTA) is solved in a technology centre and the results are diffused to interested parties (usually Small Medium Enterprises - SMEs) that have not the proper equipment and the required know-how to solve the problem by their own. Nevertheless, there is a significant drawback in this procedure: the information usually provided by the SMEs to the technology centre, about production conditions and corresponding quality characteristics of the product, and (sometimes) the relevant expertise in the Knowledge Base of this centre may be inadequate to form a complete fault tree. Since such cases are quite frequent in practice, we have developed a methodology for transforming incomplete fault tree to Ishikawa diagram, which is more flexible and less strict in establishing causal chains, because it uses a surface phenomenological level with a limited number of categories of faults. On the other hand, such an Ishikawa diagram can be extended to simulate a fault tree as relevant knowledge increases. An implementation of this transformation, referring to anodization of aluminium, is presented.
Measuring Timber Truck Loads With Image Processing In Paper Mills
NASA Astrophysics Data System (ADS)
Silva, M. Santos; Carvalho, Fernando D.; Rodrigues, F. Carvalho; Goncalves, Ana N. R.
1989-04-01
The raw material for the paper industry is wood. To have an exact account of the stock of piled sawn tree trunks every truck load entering the plant's stockyard must be measured as to the amount of wood being brought in. Weighting down the trucks has its own problems, mainly, due to the high capacity of the tree trunks to absorb water. This problem is further enhanced when calculations must be made to arrive at the mass of sawn tree trunks which must go into the process of producing a certain quantity of paper pulp. The method presented here is based on two fixed cameras which take the image of the truck load. One takes a view of the trunks in order to get information on the average length of the tree trunks. The other obtains a side view which is digitised and by just discriminating against a grey level the area covered by the tree trunk cross section is measured. A simple arithmetic operation gives the volume of wood in the trunk. The same computer, a PC, will register the trucks particulars is almost independent of weather the wood is wet or dry and it serves trucks of any size.
USDA-ARS?s Scientific Manuscript database
Western juniper trees can cause late term abortions in cattle, similar to ponderosa pine trees. Analyses of western juniper trees from 35 locations across the state of Oregon suggest that western juniper trees in all areas present an abortion risk in pregnant cattle. Results from this study demonstr...
MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination
NASA Technical Reports Server (NTRS)
Riggs, George A.; Hall, Dorothy K.
2010-01-01
Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.
Risk assessment techniques with applicability in marine engineering
NASA Astrophysics Data System (ADS)
Rudenko, E.; Panaitescu, F. V.; Panaitescu, M.
2015-11-01
Nowadays risk management is a carefully planned process. The task of risk management is organically woven into the general problem of increasing the efficiency of business. Passive attitude to risk and awareness of its existence are replaced by active management techniques. Risk assessment is one of the most important stages of risk management, since for risk management it is necessary first to analyze and evaluate risk. There are many definitions of this notion but in general case risk assessment refers to the systematic process of identifying the factors and types of risk and their quantitative assessment, i.e. risk analysis methodology combines mutually complementary quantitative and qualitative approaches. Purpose of the work: In this paper we will consider as risk assessment technique Fault Tree analysis (FTA). The objectives are: understand purpose of FTA, understand and apply rules of Boolean algebra, analyse a simple system using FTA, FTA advantages and disadvantages. Research and methodology: The main purpose is to help identify potential causes of system failures before the failures actually occur. We can evaluate the probability of the Top event.The steps of this analize are: the system's examination from Top to Down, the use of symbols to represent events, the use of mathematical tools for critical areas, the use of Fault tree logic diagrams to identify the cause of the Top event. Results: In the finally of study it will be obtained: critical areas, Fault tree logical diagrams and the probability of the Top event. These results can be used for the risk assessment analyses.
Using Predictive Analytics to Predict Power Outages from Severe Weather
NASA Astrophysics Data System (ADS)
Wanik, D. W.; Anagnostou, E. N.; Hartman, B.; Frediani, M. E.; Astitha, M.
2015-12-01
The distribution of reliable power is essential to businesses, public services, and our daily lives. With the growing abundance of data being collected and created by industry (i.e. outage data), government agencies (i.e. land cover), and academia (i.e. weather forecasts), we can begin to tackle problems that previously seemed too complex to solve. In this session, we will present newly developed tools to aid decision-support challenges at electric distribution utilities that must mitigate, prepare for, respond to and recover from severe weather. We will show a performance evaluation of outage predictive models built for Eversource Energy (formerly Connecticut Light & Power) for storms of all types (i.e. blizzards, thunderstorms and hurricanes) and magnitudes (from 20 to >15,000 outages). High resolution weather simulations (simulated with the Weather and Research Forecast Model) were joined with utility outage data to calibrate four types of models: a decision tree (DT), random forest (RF), boosted gradient tree (BT) and an ensemble (ENS) decision tree regression that combined predictions from DT, RF and BT. The study shows that the ENS model forced with weather, infrastructure and land cover data was superior to the other models we evaluated, especially in terms of predicting the spatial distribution of outages. This research has the potential to be used for other critical infrastructure systems (such as telecommunications, drinking water and gas distribution networks), and can be readily expanded to the entire New England region to facilitate better planning and coordination among decision-makers when severe weather strikes.
Classification of Tree Species in Overstorey Canopy of Subtropical Forest Using QuickBird Images.
Lin, Chinsu; Popescu, Sorin C; Thomson, Gavin; Tsogt, Khongor; Chang, Chein-I
2015-01-01
This paper proposes a supervised classification scheme to identify 40 tree species (2 coniferous, 38 broadleaf) belonging to 22 families and 36 genera in high spatial resolution QuickBird multispectral images (HMS). Overall kappa coefficient (OKC) and species conditional kappa coefficients (SCKC) were used to evaluate classification performance in training samples and estimate accuracy and uncertainty in test samples. Baseline classification performance using HMS images and vegetation index (VI) images were evaluated with an OKC value of 0.58 and 0.48 respectively, but performance improved significantly (up to 0.99) when used in combination with an HMS spectral-spatial texture image (SpecTex). One of the 40 species had very high conditional kappa coefficient performance (SCKC ≥ 0.95) using 4-band HMS and 5-band VIs images, but, only five species had lower performance (0.68 ≤ SCKC ≤ 0.94) using the SpecTex images. When SpecTex images were combined with a Visible Atmospherically Resistant Index (VARI), there was a significant improvement in performance in the training samples. The same level of improvement could not be replicated in the test samples indicating that a high degree of uncertainty exists in species classification accuracy which may be due to individual tree crown density, leaf greenness (inter-canopy gaps), and noise in the background environment (intra-canopy gaps). These factors increase uncertainty in the spectral texture features and therefore represent potential problems when using pixel-based classification techniques for multi-species classification.
Topological numbering of features on a mesh
NASA Technical Reports Server (NTRS)
Atallah, Mikhail J.; Hambrusch, Susanne E.; Tewinkel, Lynn E.
1988-01-01
Assume a nxn binary image is given containing horizontally convex features; i.e., for each feature, each of its row's pixels form an interval on that row. The problem of assigning topological numbers to such features is considered; i.e., assign a number to every feature f so that all features to the left of f have a smaller number assigned to them. This problem arises in solutions to the stereo matching problem. A parallel algorithm to solve the topological numbering problem in O(n) time on an nxn mesh of processors is presented. The key idea of the solution is to create a tree from which the topological numbers can be obtained even though the tree does not uniquely represent the to the left of relationship of the features.
NASA Astrophysics Data System (ADS)
Sujadi, H.; Bastian, A.; Tira
2018-05-01
In the city, many trees are found uprooted and cause accidents and many losses. No exception in the area of Majalengka Regency of West Java Province which can also anytime an accident or disaster caused by fallen trees, where in Majalengka district is logging trees on the street and public places are not done regularly. Based on the above problems, the need for tools that can detect a porous tree, to assist in the sorting of trees which should be felled and not felled by the party who has the authority of the general management of BMCK. Previously created tools to detect porous trees imported from Hungary and Germany, namely Arbosonic3D and Sonic Tomography. This design uses piezoelectric sensors to detect how much pressure is received by fragile and fragile trees, of course the fragile and fragile strength of trees will be different when exposed to the same pressure given the fragile density of fragile and fragile trees, then the data sent to Arduino Uno R3 to be processed into an information. This research produces a means of detecting the loss of a tree for early detection and no falling trees.
Evolutionary tree reconstruction
NASA Technical Reports Server (NTRS)
Cheeseman, Peter; Kanefsky, Bob
1990-01-01
It is described how Minimum Description Length (MDL) can be applied to the problem of DNA and protein evolutionary tree reconstruction. If there is a set of mutations that transform a common ancestor into a set of the known sequences, and this description is shorter than the information to encode the known sequences directly, then strong evidence for an evolutionary relationship has been found. A heuristic algorithm is described that searches for the simplest tree (smallest MDL) that finds close to optimal trees on the test data. Various ways of extending the MDL theory to more complex evolutionary relationships are discussed.
Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
Kordi, Misagh; Bansal, Mukul S
2017-06-01
Duplication-Transfer-Loss (DTL) reconciliation is a powerful method for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation seeks to reconcile gene trees with species trees by postulating speciation, duplication, transfer, and loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. In practice, however, gene trees are often non-binary due to uncertainty in the gene tree topologies, and DTL reconciliation with non-binary gene trees is known to be NP-hard. In this paper, we present the first exact algorithms for DTL reconciliation with non-binary gene trees. Specifically, we (i) show that the DTL reconciliation problem for non-binary gene trees is fixed-parameter tractable in the maximum degree of the gene tree, (ii) present an exponential-time, but in-practice efficient, algorithm to track and enumerate all optimal binary resolutions of a non-binary input gene tree, and (iii) apply our algorithms to a large empirical data set of over 4700 gene trees from 100 species to study the impact of gene tree uncertainty on DTL-reconciliation and to demonstrate the applicability and utility of our algorithms. The new techniques and algorithms introduced in this paper will help biologists avoid incorrect evolutionary inferences caused by gene tree uncertainty.
CosmoBon, tree research team, for studying utilization of woody plant in space environment
NASA Astrophysics Data System (ADS)
Tomita-Yokotani, Kaori; Yamashita, Masamichi; Hashimoto, Hirofumi; Sato, Seigo; Baba, Keiichi; Chida, Yukari
2012-07-01
We are proposing to raise woody plants in space for several applications and plant science, as Tree research team, TRT. Trees produce excess oxygen, wooden materials for living cabin, and provide biomass for cultivating mushroom and insect as for the space agriculture. Excellent tree shapes which would be deeply related to wood formation improve quality of life under stressful environment in outer space. We have the serious problem about their size. Bonsai is one of the Japanese traditional arts. We have been investigating the tension wood formation under exotic gravitational environment using Bonsai. CosmoBon is the small tree Bonsai for our space experiment. The tension wood formation in CosmoBon was confirmed as the same as that in the natural trees. Our goal is to examine feasibility to grow various species of trees in space as bioresource for space agriculture.
Özge, C; Toros, F; Bayramkaya, E; Çamdeviren, H; Şaşmaz, T
2006-01-01
Background The purpose of this study is to evaluate the most important sociodemographic factors on smoking status of high school students using a broad randomised epidemiological survey. Methods Using in‐class, self administered questionnaire about their sociodemographic variables and smoking behaviour, a representative sample of total 3304 students of preparatory, 9th, 10th, and 11th grades, from 22 randomly selected schools of Mersin, were evaluated and discriminative factors have been determined using appropriate statistics. In addition to binary logistic regression analysis, the study evaluated combined effects of these factors using classification and regression tree methodology, as a new statistical method. Results The data showed that 38% of the students reported lifetime smoking and 16.9% of them reported current smoking with a male predominancy and increasing prevalence by age. Second hand smoking was reported at a 74.3% frequency with father predominance (56.6%). The significantly important factors that affect current smoking in these age groups were increased by household size, late birth rank, certain school types, low academic performance, increased second hand smoking, and stress (especially reported as separation from a close friend or because of violence at home). Classification and regression tree methodology showed the importance of some neglected sociodemographic factors with a good classification capacity. Conclusions It was concluded that, as closely related with sociocultural factors, smoking was a common problem in this young population, generating important academic and social burden in youth life and with increasing data about this behaviour and using new statistical methods, effective coping strategies could be composed. PMID:16891446
Visualizing Phylogenetic Treespace Using Cartographic Projections
NASA Astrophysics Data System (ADS)
Sundberg, Kenneth; Clement, Mark; Snell, Quinn
Phylogenetic analysis is becoming an increasingly important tool for biological research. Applications include epidemiological studies, drug development, and evolutionary analysis. Phylogenetic search is a known NP-Hard problem. The size of the data sets which can be analyzed is limited by the exponential growth in the number of trees that must be considered as the problem size increases. A better understanding of the problem space could lead to better methods, which in turn could lead to the feasible analysis of more data sets. We present a definition of phylogenetic tree space and a visualization of this space that shows significant exploitable structure. This structure can be used to develop search methods capable of handling much larger datasets.
Evaluation of four methods for estimating leaf area of isolated trees
P.J. Peper; E.G. McPherson
2003-01-01
The accurate modeling of the physiological and functional processes of urban forests requires information on the leaf area of urban tree species. Several non-destructive, indirect leaf area sampling methods have shown good performance for homogenous canopies. These methods have not been evaluated for use in urban settings where trees are typically isolated and...
An Improved Decision Tree for Predicting a Major Product in Competing Reactions
ERIC Educational Resources Information Center
Graham, Kate J.
2014-01-01
When organic chemistry students encounter competing reactions, they are often overwhelmed by the task of evaluating multiple factors that affect the outcome of a reaction. The use of a decision tree is a useful tool to teach students to evaluate a complex situation and propose a likely outcome. Specifically, a decision tree can help students…
Quiet planting in the locked constraints satisfaction problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zdeborova, Lenka; Krzakala, Florent
2009-01-01
We study the planted ensemble of locked constraint satisfaction problems. We describe the connection between the random and planted ensembles. The use of the cavity method is combined with arguments from reconstruction on trees and first and second moment considerations; in particular the connection with the reconstruction on trees appears to be crucial. Our main result is the location of the hard region in the planted ensemble, thus providing hard satisfiable benchmarks. In a part of that hard region instances have with high probability a single satisfying assignment.
Formulaic expert method to integrate evaluation and valuation of heritage trees in compact city.
Jim, C Y
2006-05-01
Urban trees serve important environmental, social and economic functions, but similar to other natural endowments they are not customarily depicted in monetary terms. The needs to augment protection, funding and community support for urban greening call for proper valuation. Heritage trees (HTs), the cream of urban-tree stock, deserve special attention. Existing assessment methods do not give justice to outstanding trees in compact cities deficient in high-caliber greenery, and to their social-cultural-historical importance. They artificially separate evaluation from valuation, which should be a natural progression from the former. Review of tree valuation methods suggested the formula approach to be more suitable than contingent valuation and hedonic pricing, and provided hints on their strengths and weaknesses. This study develops an alternative formulaic expert method (FEM) that integrates evaluation and valuation, maximizes objectivity, broadly encompasses the key tree, tree-environment and tree-human traits, and accords realistic monetary value to HTs. Six primary criteria (dimension, species, tree, condition, location, and outstanding consideration) branched into 45 secondary criteria, each allocated numerical marks. Each primary criterion was standardized to carry equal weight, and a tree's maximum aggregate score is capped at 100. A Monetary Assignment Factor (MAF) to consign dollar value to each score unit was derived from three-year average per m(2) sale price of medium-sized residential flats. The applicability of FEM was tested on selected HTs in compact Hong Kong. The aggregate score of a tree multiplied by MAF yielded monetary value, which was on average 66 times higher than the result from the commonly-adopted Council of Tree and Landscape Appraisers method. The computed tree values could be publicized together with multiple tree benefits to raise understanding and awareness and rally support to protect HTs. The property-linked FEM could be flexibly applied to other cities, especially to assess HTs in compact developing cities.
Screening ornamental cherry (Prunus) taxa for resistance to infection by Blumeriella jaapii
USDA-ARS?s Scientific Manuscript database
Ornamental flowering cherry trees are important landscape plants in the U.S., but are susceptible to a number of serious pests and disease problems. Cherry leaf spot, caused by the fungus Blumeriella jaapii, is characterized by defoliating susceptible trees in late summer, leading to weakening or ev...
Forest management guidelines for controlling wild grapevines
H. Clay Smith
1984-01-01
Grapevines (Vitis spp.) are becoming a major problem to forest managers in the Appalachians, especially when clearcutting is done on highly productive hardwood sites. Where present, grapevines can reduce tree quality and growth, and eventually kill the tree. Silvical characteristics of grapevines are discussed as background for grapevine control....
Sugarbush management: a guide to maintaining tree health
David R. Houston; Douglas C. Allen; Denis Lachance
1990-01-01
Many pests and other stresses affect maple trees growing in a sugarbush. Some pests can markedly reduce sap quantity; others, although conspicuous, are not important. Stresses can result from activities by people and from natural phenomena. Recognizing problems and understanding the factors that contribute to their occurrence, development, and significance are...
USDA-ARS?s Scientific Manuscript database
Incomplete meteorological data has been a problem in environmental modeling studies. The objective of this work was to develop a technique to reconstruct missing daily precipitation data in the central part of Chesapeake Bay Watershed using regression trees (RT) and artificial neural networks (ANN)....
NASA Astrophysics Data System (ADS)
Shimamura, Atsushi; Moritsu, Toshiyuki; Someya, Harushi
To dematerialize the securities such as stocks or cooporate bonds, the securities were registered to account in the registration agencies which were connected as tree. This tree structure had the advantage in the management of the securities those were issued large amount and number of brands of securities were limited. But when the securities such as account receivables or advance notes are dematerialized, number of brands of the securities increases extremely. In this case, the management of securities with tree structure becomes very difficult because of the concentration of information to root of the tree. To resolve this problem, using the graph structure is assumed instead of the tree structure. When the securities are kept with tree structure, the delivery path of securities is unique, but when securities are kept with graph structure, path of delivery is not unique. In this report, we describe the requirement of the delivery path of securities, and we describe selecting method of the path.
Nodal distances for rooted phylogenetic trees.
Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente, Gabriel
2010-08-01
Dissimilarity measures for (possibly weighted) phylogenetic trees based on the comparison of their vectors of path lengths between pairs of taxa, have been present in the systematics literature since the early seventies. For rooted phylogenetic trees, however, these vectors can only separate non-weighted binary trees, and therefore these dissimilarity measures are metrics only on this class of rooted phylogenetic trees. In this paper we overcome this problem, by splitting in a suitable way each path length between two taxa into two lengths. We prove that the resulting splitted path lengths matrices single out arbitrary rooted phylogenetic trees with nested taxa and arcs weighted in the set of positive real numbers. This allows the definition of metrics on this general class of rooted phylogenetic trees by comparing these matrices through metrics in spaces M(n)(R) of real-valued n x n matrices. We conclude this paper by establishing some basic facts about the metrics for non-weighted phylogenetic trees defined in this way using L(p) metrics on M(n)(R), with p [epsilon] R(>0).
Tree-space statistics and approximations for large-scale analysis of anatomical trees.
Feragen, Aasa; Owen, Megan; Petersen, Jens; Wille, Mathilde M W; Thomsen, Laura H; Dirksen, Asger; de Bruijne, Marleen
2013-01-01
Statistical analysis of anatomical trees is hard to perform due to differences in the topological structure of the trees. In this paper we define statistical properties of leaf-labeled anatomical trees with geometric edge attributes by considering the anatomical trees as points in the geometric space of leaf-labeled trees. This tree-space is a geodesic metric space where any two trees are connected by a unique shortest path, which corresponds to a tree deformation. However, tree-space is not a manifold, and the usual strategy of performing statistical analysis in a tangent space and projecting onto tree-space is not available. Using tree-space and its shortest paths, a variety of statistical properties, such as mean, principal component, hypothesis testing and linear discriminant analysis can be defined. For some of these properties it is still an open problem how to compute them; others (like the mean) can be computed, but efficient alternatives are helpful in speeding up algorithms that use means iteratively, like hypothesis testing. In this paper, we take advantage of a very large dataset (N = 8016) to obtain computable approximations, under the assumption that the data trees parametrize the relevant parts of tree-space well. Using the developed approximate statistics, we illustrate how the structure and geometry of airway trees vary across a population and show that airway trees with Chronic Obstructive Pulmonary Disease come from a different distribution in tree-space than healthy ones. Software is available from http://image.diku.dk/aasa/software.php.
Health and climate related ecosystem services provided by street trees in the urban environment.
Salmond, Jennifer A; Tadaki, Marc; Vardoulakis, Sotiris; Arbuthnott, Katherine; Coutts, Andrew; Demuzere, Matthias; Dirks, Kim N; Heaviside, Clare; Lim, Shanon; Macintyre, Helen; McInnes, Rachel N; Wheeler, Benedict W
2016-03-08
Urban tree planting initiatives are being actively promoted as a planning tool to enable urban areas to adapt to and mitigate against climate change, enhance urban sustainability and improve human health and well-being. However, opportunities for creating new areas of green space within cities are often limited and tree planting initiatives may be constrained to kerbside locations. At this scale, the net impact of trees on human health and the local environment is less clear, and generalised approaches for evaluating their impact are not well developed.In this review, we use an urban ecosystems services framework to evaluate the direct, and locally-generated, ecosystems services and disservices provided by street trees. We focus our review on the services of major importance to human health and well-being which include 'climate regulation', 'air quality regulation' and 'aesthetics and cultural services'. These are themes that are commonly used to justify new street tree or street tree retention initiatives. We argue that current scientific understanding of the impact of street trees on human health and the urban environment has been limited by predominantly regional-scale reductionist approaches which consider vegetation generally and/or single out individual services or impacts without considering the wider synergistic impacts of street trees on urban ecosystems. This can lead planners and policymakers towards decision making based on single parameter optimisation strategies which may be problematic when a single intervention offers different outcomes and has multiple effects and potential trade-offs in different places.We suggest that a holistic approach is required to evaluate the services and disservices provided by street trees at different scales. We provide information to guide decision makers and planners in their attempts to evaluate the value of vegetation in their local setting. We show that by ensuring that the specific aim of the intervention, the scale of the desired biophysical effect and an awareness of a range of impacts guide the choice of i) tree species, ii) location and iii) density of tree placement, street trees can be an important tool for urban planners and designers in developing resilient and resourceful cities in an era of climatic change.
Consequences of Common Topological Rearrangements for Partition Trees in Phylogenomic Inference.
Chernomor, Olga; Minh, Bui Quang; von Haeseler, Arndt
2015-12-01
In phylogenomic analysis the collection of trees with identical score (maximum likelihood or parsimony score) may hamper tree search algorithms. Such collections are coined phylogenetic terraces. For sparse supermatrices with a lot of missing data, the number of terraces and the number of trees on the terraces can be very large. If terraces are not taken into account, a lot of computation time might be unnecessarily spent to evaluate many trees that in fact have identical score. To save computation time during the tree search, it is worthwhile to quickly identify such cases. The score of a species tree is the sum of scores for all the so-called induced partition trees. Therefore, if the topological rearrangement applied to a species tree does not change the induced partition trees, the score of these partition trees is unchanged. Here, we provide the conditions under which the three most widely used topological rearrangements (nearest neighbor interchange, subtree pruning and regrafting, and tree bisection and reconnection) change the topologies of induced partition trees. During the tree search, these conditions allow us to quickly identify whether we can save computation time on the evaluation of newly encountered trees. We also introduce the concept of partial terraces and demonstrate that they occur more frequently than the original "full" terrace. Hence, partial terrace is the more important factor of timesaving compared to full terrace. Therefore, taking into account the above conditions and the partial terrace concept will help to speed up the tree search in phylogenomic inference.
Baneshi, Mohammad Reza; Haghdoost, Ali Akbar; Zolala, Farzaneh; Nakhaee, Nouzar; Jalali, Maryam; Tabrizi, Reza; Akbari, Maryam
2017-04-01
This study aimed to assess using tree-based models the impact of different dimensions of religion and other risk factors on suicide attempts in the Islamic Republic of Iran. Three hundred patients who attempted suicide and 300 age- and sex-matched patient attendants with other types of disease who referred to Kerman Afzalipour Hospital were recruited for this study following a convenience sampling. Religiosity was assessed by the Duke University Religion Index. A tree-based model was constructed using the Gini Index as the homogeneity criterion. A complementary discrimination analysis was also applied. Variables contributing to the construction of the tree were stressful life events, mental disorder, family support, and religious belief. Strong religious belief was a protective factor for those with a low number of stressful life events and those with a high mental disorder score; 72 % of those who formed these two groups had not attempted suicide. Moreover, 63 % of those with a high number of stressful life events, strong family support, strong problem-solving skills, and a low mental disorder score were less likely to attempt suicide. The significance of four other variables, GHQ, problem-coping skills, friend support, and neuroticism, was revealed in the discrimination analysis. Religious beliefs seem to be an independent factor that can predict risk for suicidal behavior. Based on the decision tree, religious beliefs among people with a high number of stressful life events might not be a dissuading factor. Such subjects need more family support and problem-solving skills.
Problem? "No Problem!" Solving Technical Contradictions
ERIC Educational Resources Information Center
Kutz, K. Scott; Stefan, Victor
2007-01-01
TRIZ (pronounced TREES), the Russian acronym for the theory of inventive problem solving, enables a person to focus his attention on finding genuine, potential solutions in contrast to searching for ideas that "may" work through a happenstance way. It is a patent database-backed methodology that helps to reduce time spent on the problem,…
Acoustic evaluation of wood quality in standing trees. Part I, Acoustic wave behavior
Xiping Wang; Robert J. Ross; Peter Carter
2007-01-01
Acoustic wave velocities in standing trees or live softwood species were measured by the time-of-flight (TOF) method. Tree velocities were compared with acoustic velocities measured in corresponding butt logs through a resonance acoustic method. The experimental data showed a skewed relationship between tree and log acoustic measurements. For most trees tested,...
A new method for evaluating forest thinning: growth dominance in managed Pinus resinosa stands
John B. Bradford; Anthony W. D' Amato; Brian J. Palik; Shawn Fraver
2010-01-01
Growth dominance is a relatively new, simple, quantitative metric of within-stand individual tree growth patterns, and is defined as positive when larger trees in the stand display proportionally greater growth than smaller trees, and negative when smaller trees display proportionally greater growth than larger trees. We examined long-term silvicultural experiments in...
Five instruments for measuring tree height: an evaluation
Michael S. Williams; William A. Bechtold; V.J. LaBau
1994-01-01
Five instruments were tested for reliability in measuring tree heights under realistic conditions. Four linear models were used to determine if tree height can be measured unbiasedly over all tree sizes and if any of the instruments were more efficient in estimating tree height. The laser height finder was the only instrument to produce unbiased estimates of the true...
Decision tree and ensemble learning algorithms with their applications in bioinformatics.
Che, Dongsheng; Liu, Qi; Rasheed, Khaled; Tao, Xiuping
2011-01-01
Machine learning approaches have wide applications in bioinformatics, and decision tree is one of the successful approaches applied in this field. In this chapter, we briefly review decision tree and related ensemble algorithms and show the successful applications of such approaches on solving biological problems. We hope that by learning the algorithms of decision trees and ensemble classifiers, biologists can get the basic ideas of how machine learning algorithms work. On the other hand, by being exposed to the applications of decision trees and ensemble algorithms in bioinformatics, computer scientists can get better ideas of which bioinformatics topics they may work on in their future research directions. We aim to provide a platform to bridge the gap between biologists and computer scientists.
The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis
Koziol, James A.; Feng, Anne C.; Jia, Zhenyu; Wang, Yipeng; Goodison, Seven; McClelland, Michael; Mercola, Dan
2009-01-01
Motivation: Classification and regression trees have long been used for cancer diagnosis and prognosis. Nevertheless, instability and variable selection bias, as well as overfitting, are well-known problems of tree-based methods. In this article, we investigate whether ensemble tree classifiers can ameliorate these difficulties, using data from two recent studies of radical prostatectomy in prostate cancer. Results: Using time to progression following prostatectomy as the relevant clinical endpoint, we found that ensemble tree classifiers robustly and reproducibly identified three subgroups of patients in the two clinical datasets: non-progressors, early progressors and late progressors. Moreover, the consensus classifications were independent predictors of time to progression compared to known clinical prognostic factors. Contact: dmercola@uci.edu PMID:18628288
Decision tree modeling using R.
Zhang, Zhongheng
2016-08-01
In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.
NASA Technical Reports Server (NTRS)
Han, Chia Yung; Wan, Liqun; Wee, William G.
1990-01-01
A knowledge-based interactive problem solving environment called KIPSE1 is presented. The KIPSE1 is a system built on a commercial expert system shell, the KEE system. This environment gives user capability to carry out exploratory data analysis and pattern classification tasks. A good solution often consists of a sequence of steps with a set of methods used at each step. In KIPSE1, solution is represented in the form of a decision tree and each node of the solution tree represents a partial solution to the problem. Many methodologies are provided at each node to the user such that the user can interactively select the method and data sets to test and subsequently examine the results. Otherwise, users are allowed to make decisions at various stages of problem solving to subdivide the problem into smaller subproblems such that a large problem can be handled and a better solution can be found.
UAVs Task and Motion Planning in the Presence of Obstacles and Prioritized Targets
Gottlieb, Yoav; Shima, Tal
2015-01-01
The intertwined task assignment and motion planning problem of assigning a team of fixed-winged unmanned aerial vehicles to a set of prioritized targets in an environment with obstacles is addressed. It is assumed that the targets’ locations and initial priorities are determined using a network of unattended ground sensors used to detect potential threats at restricted zones. The targets are characterized by a time-varying level of importance, and timing constraints must be fulfilled before a vehicle is allowed to visit a specific target. It is assumed that the vehicles are carrying body-fixed sensors and, thus, are required to approach a designated target while flying straight and level. The fixed-winged aerial vehicles are modeled as Dubins vehicles, i.e., having a constant speed and a minimum turning radius constraint. The investigated integrated problem of task assignment and motion planning is posed in the form of a decision tree, and two search algorithms are proposed: an exhaustive algorithm that improves over run time and provides the minimum cost solution, encoded in the tree, and a greedy algorithm that provides a quick feasible solution. To satisfy the target’s visitation timing constraint, a path elongation motion planning algorithm amidst obstacles is provided. Using simulations, the performance of the algorithms is compared, evaluated and exemplified. PMID:26610522
Virtual Network Embedding via Monte Carlo Tree Search.
Haeri, Soroush; Trajkovic, Ljiljana
2018-02-01
Network virtualization helps overcome shortcomings of the current Internet architecture. The virtualized network architecture enables coexistence of multiple virtual networks (VNs) on an existing physical infrastructure. VN embedding (VNE) problem, which deals with the embedding of VN components onto a physical network, is known to be -hard. In this paper, we propose two VNE algorithms: MaVEn-M and MaVEn-S. MaVEn-M employs the multicommodity flow algorithm for virtual link mapping while MaVEn-S uses the shortest-path algorithm. They formalize the virtual node mapping problem by using the Markov decision process (MDP) framework and devise action policies (node mappings) for the proposed MDP using the Monte Carlo tree search algorithm. Service providers may adjust the execution time of the MaVEn algorithms based on the traffic load of VN requests. The objective of the algorithms is to maximize the profit of infrastructure providers. We develop a discrete event VNE simulator to implement and evaluate performance of MaVEn-M, MaVEn-S, and several recently proposed VNE algorithms. We introduce profitability as a new performance metric that captures both acceptance and revenue to cost ratios. Simulation results show that the proposed algorithms find more profitable solutions than the existing algorithms. Given additional computation time, they further improve embedding solutions.
Randall S. Morin; Jim Steinman; KaDonna C. Randolph
2012-01-01
The condition of tree crowns is an important indicator of tree and forest health. Crown conditions have been evaluated during surveys of Forest Inventory and Analysis (FIA) Phase 3 (P3) plots since 1999. In this study, remeasured data from 39,357 trees in the northern United States were used to assess the probability of survival among various tree species using the...
Snohomish Estuary Wetlands Study. Volume II. Basic Information and Evaluation
1978-08-01
vegetation in these areas is of thrre major types : Coniferous trees , broadleaf deciluous trpee., ana shrubs. The coniferous trees are predominantly Sitka...in coniferous trees and also rest there when not hunting. The swamp habitat type is highly productive, generating abundant detr~i- tus. However, since...areas is of three major types : Coniferous trees , broadleaf deciduous trees , and shrubs. The coni- ferous trees are Sitka Spruce (Picea sitchensis
An evaluation of the STEMS tree growth projection system.
Margaret R. Holdaway; Gary J. Brand
1983-01-01
STEMS (Stand and Tree Evaluation and Modeling System) is a tree growth projection system. This paper (1) compares the performance of the current version of STEMS developed for the Lake States with that of the original model and (2) reports the results of an analysis of the current model over a wide range of conditions and identifies its main strengths and weaknesses...
Establishment of monitoring plots and evaluation of trees injured by ozone
Daniel Duriscoe; Kenneth Stolte; John Pronos
1996-01-01
By establishing longâterm monitoring plots, it is possible to record environmental and biological conditions of the plot and individual trees, evaluate the condition of crowns of trees in the plot, and determine the extent of ozone injury to western conifers. This chapter recommends various methods for recording data and selecting plots, and provides information for...
Modeling the effect of competition on tree diameter growth as applied in STEMS.
Margaret R. Holdaway
1984-01-01
The modifier function used in STEMS (Stand and Tree Evaluation and Modeling System) mathematically represents the effect that the surrounding forest community has on the growth of an individual tree. This paper 1) develops the most recent modifier function, 2) discusses its form, 3) reports the results of the analysis with biological considerations and 4) evaluates the...
NASA Astrophysics Data System (ADS)
Giambastiani, Yamuna; Preti, Federico; Errico, Alessandro; Penna, Daniele
2017-04-01
There is growing interest in developing models for predicting how root anchorage and tree bracing could influence tree stability. This work presents the results of different experiments aimed at evaluating the mechanical response of plate roots to pulling tests. Pulling tests have been executed with increasing soil water content and soil of different texture. Different types of tree bracing have been examined for evaluating its impact on plant stiffness. Root plate was anchored with different systems for evaluating the change in overturning resistance. The first results indicate that soil water content contributed to modify both the soil cohesion and the stabilizing forces. Wind effect, slope stability and root reinforcement could be better quantified by means of such a results.
Venous tree separation in the liver: graph partitioning using a non-ising model.
O'Donnell, Thomas; Kaftan, Jens N; Schuh, Andreas; Tietjen, Christian; Soza, Grzegorz; Aach, Til
2011-01-01
Entangled tree-like vascular systems are commonly found in the body (e.g., in the peripheries and lungs). Separation of these systems in medical images may be formulated as a graph partitioning problem given an imperfect segmentation and specification of the tree roots. In this work, we show that the ubiquitous Ising-model approaches (e.g., Graph Cuts, Random Walker) are not appropriate for tackling this problem and propose a novel method based on recursive minimal paths for doing so. To motivate our method, we focus on the intertwined portal and hepatic venous systems in the liver. Separation of these systems is critical for liver intervention planning, in particular when resection is involved. We apply our method to 34 clinical datasets, each containing well over a hundred vessel branches, demonstrating its effectiveness.
Model-Based Design of Tree WSNs for Decentralized Detection.
Tantawy, Ashraf; Koutsoukos, Xenofon; Biswas, Gautam
2015-08-20
The classical decentralized detection problem of finding the optimal decision rules at the sensor and fusion center, as well as variants that introduce physical channel impairments have been studied extensively in the literature. The deployment of WSNs in decentralized detection applications brings new challenges to the field. Protocols for different communication layers have to be co-designed to optimize the detection performance. In this paper, we consider the communication network design problem for a tree WSN. We pursue a system-level approach where a complete model for the system is developed that captures the interactions between different layers, as well as different sensor quality measures. For network optimization, we propose a hierarchical optimization algorithm that lends itself to the tree structure, requiring only local network information. The proposed design approach shows superior performance over several contentionless and contention-based network design approaches.
Large unbalanced credit scoring using Lasso-logistic regression ensemble.
Wang, Hong; Xu, Qingsong; Zhou, Lifeng
2015-01-01
Recently, various ensemble learning methods with different base classifiers have been proposed for credit scoring problems. However, for various reasons, there has been little research using logistic regression as the base classifier. In this paper, given large unbalanced data, we consider the plausibility of ensemble learning using regularized logistic regression as the base classifier to deal with credit scoring problems. In this research, the data is first balanced and diversified by clustering and bagging algorithms. Then we apply a Lasso-logistic regression learning ensemble to evaluate the credit risks. We show that the proposed algorithm outperforms popular credit scoring models such as decision tree, Lasso-logistic regression and random forests in terms of AUC and F-measure. We also provide two importance measures for the proposed model to identify important variables in the data.
Using tree diversity to compare phylogenetic heuristics.
Sul, Seung-Jin; Matthews, Suzanne; Williams, Tiffani L
2009-04-29
Evolutionary trees are family trees that represent the relationships between a group of organisms. Phylogenetic heuristics are used to search stochastically for the best-scoring trees in tree space. Given that better tree scores are believed to be better approximations of the true phylogeny, traditional evaluation techniques have used tree scores to determine the heuristics that find the best scores in the fastest time. We develop new techniques to evaluate phylogenetic heuristics based on both tree scores and topologies to compare Pauprat and Rec-I-DCM3, two popular Maximum Parsimony search algorithms. Our results show that although Pauprat and Rec-I-DCM3 find the trees with the same best scores, topologically these trees are quite different. Furthermore, the Rec-I-DCM3 trees cluster distinctly from the Pauprat trees. In addition to our heatmap visualizations of using parsimony scores and the Robinson-Foulds distance to compare best-scoring trees found by the two heuristics, we also develop entropy-based methods to show the diversity of the trees found. Overall, Pauprat identifies more diverse trees than Rec-I-DCM3. Overall, our work shows that there is value to comparing heuristics beyond the parsimony scores that they find. Pauprat is a slower heuristic than Rec-I-DCM3. However, our work shows that there is tremendous value in using Pauprat to reconstruct trees-especially since it finds identical scoring but topologically distinct trees. Hence, instead of discounting Pauprat, effort should go in improving its implementation. Ultimately, improved performance measures lead to better phylogenetic heuristics and will result in better approximations of the true evolutionary history of the organisms of interest.
Silvestre, Ellida de Aguiar; Schwarcz, Kaiser Dias; Grando, Carolina; de Campos, Jaqueline Bueno; Sujii, Patricia Sanae; Tambarussi, Evandro Vagner; Macrini, Camila Menezes Trindade; Pinheiro, José Baldin; Brancalion, Pedro Henrique Santin; Zucchi, Maria Imaculada
2018-03-16
The reproductive system of a tree species has substantial impact on genetic diversity and structure within and among natural populations. Such information, should be considered when planning tree planting for forest restoration. Here, we describe the mating system and genetic diversity of an overexploited Neotropical tree, Myroxylon peruiferum L.f. (Fabaceae) sampled from a forest remnant (10 seed trees and 200 seeds) and assess whether the effective population size of nursery-grown seedlings (148 seedlings) is sufficient to prevent inbreeding depression in reintroduced populations. Genetic analyses were performed based on 8 microsatellite loci. M. peruiferum presented a mixed mating system with evidence of biparental inbreeding (t^m-t^s = 0.118). We found low levels of genetic diversity for M. peruiferum species (allelic richness: 1.40 to 4.82; expected heterozygosity: 0.29 to 0.52). Based on Ne(v) within progeny, we suggest a sample size of 47 seed trees to achieve an effective population size of 100. The effective population sizes for the nursery-grown seedlings were much smaller Ne = 27.54-34.86) than that recommended for short term Ne ≥ 100) population conservation. Therefore, to obtain a reasonable genetic representation of native tree species and prevent problems associated with inbreeding depression, seedling production for restoration purposes may require a much larger sampling effort than is currently used, a problem that is further complicated by species with a mixed mating system. This study emphasizes the need to integrate species reproductive biology into seedling production programs and connect conservation genetics with ecological restoration.
NASA Astrophysics Data System (ADS)
de Barros, Felipe P. J.; Bolster, Diogo; Sanchez-Vila, Xavier; Nowak, Wolfgang
2011-05-01
Assessing health risk in hydrological systems is an interdisciplinary field. It relies on the expertise in the fields of hydrology and public health and needs powerful translation concepts to provide decision support and policy making. Reliable health risk estimates need to account for the uncertainties and variabilities present in hydrological, physiological, and human behavioral parameters. Despite significant theoretical advancements in stochastic hydrology, there is still a dire need to further propagate these concepts to practical problems and to society in general. Following a recent line of work, we use fault trees to address the task of probabilistic risk analysis and to support related decision and management problems. Fault trees allow us to decompose the assessment of health risk into individual manageable modules, thus tackling a complex system by a structural divide and conquer approach. The complexity within each module can be chosen individually according to data availability, parsimony, relative importance, and stage of analysis. Three differences are highlighted in this paper when compared to previous works: (1) The fault tree proposed here accounts for the uncertainty in both hydrological and health components, (2) system failure within the fault tree is defined in terms of risk being above a threshold value, whereas previous studies that used fault trees used auxiliary events such as exceedance of critical concentration levels, and (3) we introduce a new form of stochastic fault tree that allows us to weaken the assumption of independent subsystems that is required by a classical fault tree approach. We illustrate our concept in a simple groundwater-related setting.
ERIC Educational Resources Information Center
Chow, Alan F.; Van Haneghan, James P.
2016-01-01
This study reports the results of a study examining how easily students are able to transfer frequency solutions to conditional probability problems to novel situations. University students studied either a problem solved using the traditional Bayes formula format or using a natural frequency (tree diagram) format. In addition, the example problem…
NASA Astrophysics Data System (ADS)
Le, Zichun; Suo, Kaihua; Fu, Minglei; Jiang, Ling; Dong, Wen
2012-03-01
In order to minimize the average end to end delay for data transporting in hybrid wireless optical broadband access network, a novel routing algorithm named MSTMCF (minimum spanning tree and minimum cost flow) is devised. The routing problem is described as a minimum spanning tree and minimum cost flow model and corresponding algorithm procedures are given. To verify the effectiveness of MSTMCF algorithm, extensively simulations based on OWNS have been done under different types of traffic source.
Structural system reliability calculation using a probabilistic fault tree analysis method
NASA Technical Reports Server (NTRS)
Torng, T. Y.; Wu, Y.-T.; Millwater, H. R.
1992-01-01
The development of a new probabilistic fault tree analysis (PFTA) method for calculating structural system reliability is summarized. The proposed PFTA procedure includes: developing a fault tree to represent the complex structural system, constructing an approximation function for each bottom event, determining a dominant sampling sequence for all bottom events, and calculating the system reliability using an adaptive importance sampling method. PFTA is suitable for complicated structural problems that require computer-intensive computer calculations. A computer program has been developed to implement the PFTA.
Simultaneous gene finding in multiple genomes.
König, Stefanie; Romoth, Lars W; Gerischer, Lizzy; Stanke, Mario
2016-11-15
As the tree of life is populated with sequenced genomes ever more densely, the new challenge is the accurate and consistent annotation of entire clades of genomes. We address this problem with a new approach to comparative gene finding that takes a multiple genome alignment of closely related species and simultaneously predicts the location and structure of protein-coding genes in all input genomes, thereby exploiting negative selection and sequence conservation. The model prefers potential gene structures in the different genomes that are in agreement with each other, or-if not-where the exon gains and losses are plausible given the species tree. We formulate the multi-species gene finding problem as a binary labeling problem on a graph. The resulting optimization problem is NP hard, but can be efficiently approximated using a subgradient-based dual decomposition approach. The proposed method was tested on whole-genome alignments of 12 vertebrate and 12 Drosophila species. The accuracy was evaluated for human, mouse and Drosophila melanogaster and compared to competing methods. Results suggest that our method is well-suited for annotation of (a large number of) genomes of closely related species within a clade, in particular, when RNA-Seq data are available for many of the genomes. The transfer of existing annotations from one genome to another via the genome alignment is more accurate than previous approaches that are based on protein-spliced alignments, when the genomes are at close to medium distances. The method is implemented in C ++ as part of Augustus and available open source at http://bioinf.uni-greifswald.de/augustus/ CONTACT: stefaniekoenig@ymail.com or mario.stanke@uni-greifswald.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Tree health mapping with multispectral remote sensing data at UC Davis, California
Q. Xiao; E.G. McPherson
2005-01-01
Tree health is a critical parameter for evaluating urban ecosystem health and sustainability. TradiÂtionally, this parameter has been derived from field surveys. We used multispectral remote sensing data and GIS techniques to determine tree health at the University of California, Davis. The study area (363 ha) contained 8,962 trees of 215 species. Tree health...
Edwards, T.C.; Cutler, D.R.; Zimmermann, N.E.; Geiser, L.; Moisen, Gretchen G.
2006-01-01
We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification tree models for predicting the presence of four lichen species in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by resubstitution rates were similar for each lichen species irrespective of the underlying sample survey form. Cross-validation estimates of prediction accuracies were lower than resubstitution accuracies for all species and both design types, and in all cases were closer to the true prediction accuracies based on the EVALUATION data set. We argue that greater emphasis should be placed on calculating and reporting cross-validation accuracy rates rather than simple resubstitution accuracy rates. Evaluation of the DESIGN and PURPOSIVE tree models on the EVALUATION data set shows significantly lower prediction accuracy for the PURPOSIVE tree models relative to the DESIGN models, indicating that non-probabilistic sample surveys may generate models with limited predictive capability. These differences were consistent across all four lichen species, with 11 of the 12 possible species and sample survey type comparisons having significantly lower accuracy rates. Some differences in accuracy were as large as 50%. The classification tree structures also differed considerably both among and within the modelled species, depending on the sample survey form. Overlap in the predictor variables selected by the DESIGN and PURPOSIVE tree models ranged from only 20% to 38%, indicating the classification trees fit the two evaluated survey forms on different sets of predictor variables. The magnitude of these differences in predictor variables throws doubt on ecological interpretation derived from prediction models based on non-probabilistic sample surveys. ?? 2006 Elsevier B.V. All rights reserved.
Using histograms to introduce randomization in the generation of ensembles of decision trees
Kamath, Chandrika; Cantu-Paz, Erick; Littau, David
2005-02-22
A system for decision tree ensembles that includes a module to read the data, a module to create a histogram, a module to evaluate a potential split according to some criterion using the histogram, a module to select a split point randomly in an interval around the best split, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method includes the steps of reading the data; creating a histogram; evaluating a potential split according to some criterion using the histogram, selecting a split point randomly in an interval around the best split, splitting the data, and combining multiple decision trees in ensembles.
Exploring the Complexity of Tree Thinking Expertise in an Undergraduate Systematics Course
ERIC Educational Resources Information Center
Halverson, Kristy L.; Pires, Chris J.; Abell, Sandra K.
2011-01-01
Student understanding of biological representations has not been well studied. Yet, we know that to be efficient problem solvers in evolutionary biology and systematics, college students must develop expertise in thinking with a particular type of representation, phylogenetic trees. The purpose of this study was to understand how undergraduates…
Problem-Solving Modules in Large Introductory Biology Lectures Enhance Student Understanding
ERIC Educational Resources Information Center
Cooper, Scott; Hanmer, Deborah; Cerbin, Bill
2006-01-01
We studied the effect of formative assessment and feedback on learning. Students produced phylogenetic trees based upon morphological and molecular data. The trees were projected in class, feedback provided, and the process repeated twice with new data. Assessment revealed that these in-class modules resulted in significant improvement in student…
USDA-ARS?s Scientific Manuscript database
Almond leaf scorch (ALS) disease has been a chronic problem for California almond growers. This disease is caused by the bacterial pathogen Xylella fastidiosa and is transmitted by xylem-feeding insects. Previous research suggested that retaining, rather than roguing, ALS-affected trees may be more ...
Do People Grow on Family Trees? Genealogy for Kids & Other Beginners. Teacher's Guide.
ERIC Educational Resources Information Center
Wolfman, Ira
This teacher's guide to "Do People Grow on Family Trees?" provides the classroom teacher with thought-provoking discussion topics and questions and curriculum-enhancing activities. It presents objective-based, action learning strategies that involve students in the following: simulation situations that lead to problem solving and other…
Mark J. Ambrose
2018-01-01
Tree mortality is a natural process in all forest ecosystems. High mortality can be an indicator of forest health problems. On aregional scale, high mortality levels may indicate widespread insect or disease impacts. High mortality may also occur if a large proportion of the forest in a particular region is made up of older, senescent stands. The approach...
Mark J. Ambrose
2011-01-01
Tree mortality is a natural process in all forest ecosystems, but it can also be an indicator of forest health issues. On a regional scale, high-mortality levels may indicate widespread insect or disease problems. Regionally high mortality may also occur if a large proportion of the forests in an area are made up of older, senescent stands.
Mark J. Ambrose
2012-01-01
Tree mortality is a natural process in all forest ecosystems. However, extremely high mortality also can be an indicator of forest health issues. On a regional scale, high mortality levels may indicate widespread insect or disease problems. High mortality may also occur if a large proportion of the forest in a particular region is made up of older, senescent stands....
PVEX: An expert system for producibility/value engineering
NASA Technical Reports Server (NTRS)
Lam, Chun S.; Moseley, Warren
1991-01-01
PVEX is described as an expert system that solves the problem of selection of the material and process in missile manufacturing. The producibility and the value problem has been deeply studied in the past years, and was written in dBase III and PROLOG before. A new approach is presented in that the solution is achieved by introducing hypothetical reasoning, heuristic criteria integrated with a simple hypertext system and shell programming. PVEX combines KMS with Unix scripts which graphically depicts decision trees. The decision trees convey high level qualitative problem solving knowledge to users, and a stand-alone help facility and technical documentation is available through KMS. The system developed is considerably less development costly than any other comparable expert system.
van Iersel, Leo; Kelk, Steven; Lekić, Nela; Scornavacca, Celine
2014-05-05
Reticulate events play an important role in determining evolutionary relationships. The problem of computing the minimum number of such events to explain discordance between two phylogenetic trees is a hard computational problem. Even for binary trees, exact solvers struggle to solve instances with reticulation number larger than 40-50. Here we present CycleKiller and NonbinaryCycleKiller, the first methods to produce solutions verifiably close to optimality for instances with hundreds or even thousands of reticulations. Using simulations, we demonstrate that these algorithms run quickly for large and difficult instances, producing solutions that are very close to optimality. As a spin-off from our simulations we also present TerminusEst, which is the fastest exact method currently available that can handle nonbinary trees: this is used to measure the accuracy of the NonbinaryCycleKiller algorithm. All three methods are based on extensions of previous theoretical work (SIDMA 26(4):1635-1656, TCBB 10(1):18-25, SIDMA 28(1):49-66) and are publicly available. We also apply our methods to real data.
Stabilization of a locally minimal forest
NASA Astrophysics Data System (ADS)
Ivanov, A. O.; Mel'nikova, A. E.; Tuzhilin, A. A.
2014-03-01
The method of partial stabilization of locally minimal networks, which was invented by Ivanov and Tuzhilin to construct examples of shortest trees with given topology, is developed. According to this method, boundary vertices of degree 2 are not added to all edges of the original locally minimal tree, but only to some of them. The problem of partial stabilization of locally minimal trees in a finite-dimensional Euclidean space is solved completely in the paper, that is, without any restrictions imposed on the number of edges remaining free of subdivision. A criterion for the realizability of such stabilization is established. In addition, the general problem of searching for the shortest forest connecting a finite family of boundary compact sets in an arbitrary metric space is formalized; it is shown that such forests exist for any family of compact sets if and only if for any finite subset of the ambient space there exists a shortest tree connecting it. The theory developed here allows us to establish further generalizations of the stabilization theorem both for arbitrary metric spaces and for metric spaces with some special properties. Bibliography: 10 titles.
Quantifying MCMC exploration of phylogenetic tree space.
Whidden, Chris; Matsen, Frederick A
2015-05-01
In order to gain an understanding of the effectiveness of phylogenetic Markov chain Monte Carlo (MCMC), it is important to understand how quickly the empirical distribution of the MCMC converges to the posterior distribution. In this article, we investigate this problem on phylogenetic tree topologies with a metric that is especially well suited to the task: the subtree prune-and-regraft (SPR) metric. This metric directly corresponds to the minimum number of MCMC rearrangements required to move between trees in common phylogenetic MCMC implementations. We develop a novel graph-based approach to analyze tree posteriors and find that the SPR metric is much more informative than simpler metrics that are unrelated to MCMC moves. In doing so, we show conclusively that topological peaks do occur in Bayesian phylogenetic posteriors from real data sets as sampled with standard MCMC approaches, investigate the efficiency of Metropolis-coupled MCMC (MCMCMC) in traversing the valleys between peaks, and show that conditional clade distribution (CCD) can have systematic problems when there are multiple peaks. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Semantic Segmentation of Forest Stands of Pure Species as a Global Optimization Problem
NASA Astrophysics Data System (ADS)
Dechesne, C.; Mallet, C.; Le Bris, A.; Gouet-Brunet, V.
2017-05-01
Forest stand delineation is a fundamental task for forest management purposes, that is still mainly manually performed through visual inspection of geospatial (very) high spatial resolution images. Stand detection has been barely addressed in the literature which has mainly focused, in forested environments, on individual tree extraction and tree species classification. From a methodological point of view, stand detection can be considered as a semantic segmentation problem. It offers two advantages. First, one can retrieve the dominant tree species per segment. Secondly, one can benefit from existing low-level tree species label maps from the literature as a basis for high-level object extraction. Thus, the semantic segmentation issue becomes a regularization issue in a weakly structured environment and can be formulated in an energetical framework. This papers aims at investigating which regularization strategies of the literature are the most adapted to delineate and classify forest stands of pure species. Both airborne lidar point clouds and multispectral very high spatial resolution images are integrated for that purpose. The local methods (such as filtering and probabilistic relaxation) are not adapted for such problem since the increase of the classification accuracy is below 5%. The global methods, based on an energy model, tend to be more efficient with an accuracy gain up to 15%. The segmentation results using such models have an accuracy ranging from 96% to 99%.
Consequences of Common Topological Rearrangements for Partition Trees in Phylogenomic Inference
Minh, Bui Quang; von Haeseler, Arndt
2015-01-01
Abstract In phylogenomic analysis the collection of trees with identical score (maximum likelihood or parsimony score) may hamper tree search algorithms. Such collections are coined phylogenetic terraces. For sparse supermatrices with a lot of missing data, the number of terraces and the number of trees on the terraces can be very large. If terraces are not taken into account, a lot of computation time might be unnecessarily spent to evaluate many trees that in fact have identical score. To save computation time during the tree search, it is worthwhile to quickly identify such cases. The score of a species tree is the sum of scores for all the so-called induced partition trees. Therefore, if the topological rearrangement applied to a species tree does not change the induced partition trees, the score of these partition trees is unchanged. Here, we provide the conditions under which the three most widely used topological rearrangements (nearest neighbor interchange, subtree pruning and regrafting, and tree bisection and reconnection) change the topologies of induced partition trees. During the tree search, these conditions allow us to quickly identify whether we can save computation time on the evaluation of newly encountered trees. We also introduce the concept of partial terraces and demonstrate that they occur more frequently than the original “full” terrace. Hence, partial terrace is the more important factor of timesaving compared to full terrace. Therefore, taking into account the above conditions and the partial terrace concept will help to speed up the tree search in phylogenomic inference. PMID:26448206
The Inference of Gene Trees with Species Trees
Szöllősi, Gergely J.; Tannier, Eric; Daubin, Vincent; Boussau, Bastien
2015-01-01
This article reviews the various models that have been used to describe the relationships between gene trees and species trees. Molecular phylogeny has focused mainly on improving models for the reconstruction of gene trees based on sequence alignments. Yet, most phylogeneticists seek to reveal the history of species. Although the histories of genes and species are tightly linked, they are seldom identical, because genes duplicate, are lost or horizontally transferred, and because alleles can coexist in populations for periods that may span several speciation events. Building models describing the relationship between gene and species trees can thus improve the reconstruction of gene trees when a species tree is known, and vice versa. Several approaches have been proposed to solve the problem in one direction or the other, but in general neither gene trees nor species trees are known. Only a few studies have attempted to jointly infer gene trees and species trees. These models account for gene duplication and loss, transfer or incomplete lineage sorting. Some of them consider several types of events together, but none exists currently that considers the full repertoire of processes that generate gene trees along the species tree. Simulations as well as empirical studies on genomic data show that combining gene tree–species tree models with models of sequence evolution improves gene tree reconstruction. In turn, these better gene trees provide a more reliable basis for studying genome evolution or reconstructing ancestral chromosomes and ancestral gene sequences. We predict that gene tree–species tree methods that can deal with genomic data sets will be instrumental to advancing our understanding of genomic evolution. PMID:25070970
Quantitative method of medication system interface evaluation.
Pingenot, Alleene Anne; Shanteau, James; Pingenot, James D F
2007-01-01
The objective of this study was to develop a quantitative method of evaluating the user interface for medication system software. A detailed task analysis provided a description of user goals and essential activity. A structural fault analysis was used to develop a detailed description of the system interface. Nurses experienced with use of the system under evaluation provided estimates of failure rates for each point in this simplified fault tree. Means of estimated failure rates provided quantitative data for fault analysis. Authors note that, although failures of steps in the program were frequent, participants reported numerous methods of working around these failures so that overall system failure was rare. However, frequent process failure can affect the time required for processing medications, making a system inefficient. This method of interface analysis, called Software Efficiency Evaluation and Fault Identification Method, provides quantitative information with which prototypes can be compared and problems within an interface identified.
ERIC Educational Resources Information Center
Karagiannis, P.; Markelis, I.; Paparrizos, K.; Samaras, N.; Sifaleras, A.
2006-01-01
This paper presents new web-based educational software (webNetPro) for "Linear Network Programming." It includes many algorithms for "Network Optimization" problems, such as shortest path problems, minimum spanning tree problems, maximum flow problems and other search algorithms. Therefore, webNetPro can assist the teaching process of courses such…
Stewardship matters: Case studies in establishment success of urban trees
Lara A. Roman; Lindsey A. Walker; Catherine M. Martineau; David J. Muffly; Susan A. MacQueen; Winnie Harris
2015-01-01
Urban tree planting initiatives aim to provide ecosystem services that materialize decades after planting, therefore understanding tree survival and growth is essential to evaluating planting program performance. Tree mortality is relatively high during the establishment phase, the first few years after planting. Qualitative assessments of programs with particularly...
Using terrestrial stereo photography to interpret changes in tree quality characteristics
David L. Sonderman
1980-01-01
A technique is described for using stereo photography to evaluate tree quality changes over time. Stereo pairs were taken four times over an 18-year period. All four faces of the selected trees were photographed. Individual defect changes are shown for young upland white oak trees.
Association between split selection instability and predictive error in survival trees.
Radespiel-Tröger, M; Gefeller, O; Rabenstein, T; Hothorn, T
2006-01-01
To evaluate split selection instability in six survival tree algorithms and its relationship with predictive error by means of a bootstrap study. We study the following algorithms: logrank statistic with multivariate p-value adjustment without pruning (LR), Kaplan-Meier distance of survival curves (KM), martingale residuals (MR), Poisson regression for censored data (PR), within-node impurity (WI), and exponential log-likelihood loss (XL). With the exception of LR, initial trees are pruned by using split-complexity, and final trees are selected by means of cross-validation. We employ a real dataset from a clinical study of patients with gallbladder stones. The predictive error is evaluated using the integrated Brier score for censored data. The relationship between split selection instability and predictive error is evaluated by means of box-percentile plots, covariate and cutpoint selection entropy, and cutpoint selection coefficients of variation, respectively, in the root node. We found a positive association between covariate selection instability and predictive error in the root node. LR yields the lowest predictive error, while KM and MR yield the highest predictive error. The predictive error of survival trees is related to split selection instability. Based on the low predictive error of LR, we recommend the use of this algorithm for the construction of survival trees. Unpruned survival trees with multivariate p-value adjustment can perform equally well compared to pruned trees. The analysis of split selection instability can be used to communicate the results of tree-based analyses to clinicians and to support the application of survival trees.
Niknafs, Noushin; Beleva-Guthrie, Violeta; Naiman, Daniel Q.; Karchin, Rachel
2015-01-01
Recent improvements in next-generation sequencing of tumor samples and the ability to identify somatic mutations at low allelic fractions have opened the way for new approaches to model the evolution of individual cancers. The power and utility of these models is increased when tumor samples from multiple sites are sequenced. Temporal ordering of the samples may provide insight into the etiology of both primary and metastatic lesions and rationalizations for tumor recurrence and therapeutic failures. Additional insights may be provided by temporal ordering of evolving subclones—cellular subpopulations with unique mutational profiles. Current methods for subclone hierarchy inference tightly couple the problem of temporal ordering with that of estimating the fraction of cancer cells harboring each mutation. We present a new framework that includes a rigorous statistical hypothesis test and a collection of tools that make it possible to decouple these problems, which we believe will enable substantial progress in the field of subclone hierarchy inference. The methods presented here can be flexibly combined with methods developed by others addressing either of these problems. We provide tools to interpret hypothesis test results, which inform phylogenetic tree construction, and we introduce the first genetic algorithm designed for this purpose. The utility of our framework is systematically demonstrated in simulations. For most tested combinations of tumor purity, sequencing coverage, and tree complexity, good power (≥ 0.8) can be achieved and Type 1 error is well controlled when at least three tumor samples are available from a patient. Using data from three published multi-region tumor sequencing studies of (murine) small cell lung cancer, acute myeloid leukemia, and chronic lymphocytic leukemia, in which the authors reconstructed subclonal phylogenetic trees by manual expert curation, we show how different configurations of our tools can identify either a single tree in agreement with the authors, or a small set of trees, which include the authors’ preferred tree. Our results have implications for improved modeling of tumor evolution and the importance of multi-region tumor sequencing. PMID:26436540
Robustness of mission plans for unmanned aircraft
NASA Astrophysics Data System (ADS)
Niendorf, Moritz
This thesis studies the robustness of optimal mission plans for unmanned aircraft. Mission planning typically involves tactical planning and path planning. Tactical planning refers to task scheduling and in multi aircraft scenarios also includes establishing a communication topology. Path planning refers to computing a feasible and collision-free trajectory. For a prototypical mission planning problem, the traveling salesman problem on a weighted graph, the robustness of an optimal tour is analyzed with respect to changes to the edge costs. Specifically, the stability region of an optimal tour is obtained, i.e., the set of all edge cost perturbations for which that tour is optimal. The exact stability region of solutions to variants of the traveling salesman problems is obtained from a linear programming relaxation of an auxiliary problem. Edge cost tolerances and edge criticalities are derived from the stability region. For Euclidean traveling salesman problems, robustness with respect to perturbations to vertex locations is considered and safe radii and vertex criticalities are introduced. For weighted-sum multi-objective problems, stability regions with respect to changes in the objectives, weights, and simultaneous changes are given. Most critical weight perturbations are derived. Computing exact stability regions is intractable for large instances. Therefore, tractable approximations are desirable. The stability region of solutions to relaxations of the traveling salesman problem give under approximations and sets of tours give over approximations. The application of these results to the two-neighborhood and the minimum 1-tree relaxation are discussed. Bounds on edge cost tolerances and approximate criticalities are obtainable likewise. A minimum spanning tree is an optimal communication topology for minimizing the cumulative transmission power in multi aircraft missions. The stability region of a minimum spanning tree is given and tolerances, stability balls, and criticalities are derived. This analysis is extended to Euclidean minimum spanning trees. This thesis aims at enabling increased mission performance by providing means of assessing the robustness and optimality of a mission and methods for identifying critical elements. Examples of the application to mission planning in contested environments, cargo aircraft mission planning, multi-objective mission planning, and planning optimal communication topologies for teams of unmanned aircraft are given.
Evaluating trees as energy crops in Napa County
Dean R. Donaldson; Richard B. Standiford
1983-01-01
An evaluation of tree species for energy crops was initiated at two areas in Napa County, California. At one area, Eucalyptus viminalis at 39 months was significantly taller than E. camaldulensis at 50 months. Also evaluated were five clones of Pinus radiata, Juglans regia X hindsii...
NASA Astrophysics Data System (ADS)
Shidiq, I. P. A.; Ismail, M. H.; Kamarudin, N.
2014-02-01
The preservation and sustainable management of forest and other land cover ecosystems such as rubber trees will help addressing two major recent issues: climate change and bio-resource energy. The rubber trees are dominantly distributed in the Negeri Sembilan and Kedah on the west coast side of Peninsular Malaysia. This study is aimed to analyse the spatial distribution and biomass of rubber trees in Peninsular Malaysia with special emphasis in Negeri Sembilan State. Geospatial data from remote sensors are used to tackle the time and labour consuming problem due to the large spatial coverage and the need of continuous temporal data. Remote sensing imagery used in this study is a Landsat 5 TM. The image from optical sensor was used to sense the rubber trees and further classified rubber tree by different age.
Design of Probabilistic Random Forests with Applications to Anticancer Drug Sensitivity Prediction
Rahman, Raziur; Haider, Saad; Ghosh, Souparno; Pal, Ranadip
2015-01-01
Random forests consisting of an ensemble of regression trees with equal weights are frequently used for design of predictive models. In this article, we consider an extension of the methodology by representing the regression trees in the form of probabilistic trees and analyzing the nature of heteroscedasticity. The probabilistic tree representation allows for analytical computation of confidence intervals (CIs), and the tree weight optimization is expected to provide stricter CIs with comparable performance in mean error. We approached the ensemble of probabilistic trees’ prediction from the perspectives of a mixture distribution and as a weighted sum of correlated random variables. We applied our methodology to the drug sensitivity prediction problem on synthetic and cancer cell line encyclopedia dataset and illustrated that tree weights can be selected to reduce the average length of the CI without increase in mean error. PMID:27081304
Building of fuzzy decision trees using ID3 algorithm
NASA Astrophysics Data System (ADS)
Begenova, S. B.; Avdeenko, T. V.
2018-05-01
Decision trees are widely used in the field of machine learning and artificial intelligence. Such popularity is due to the fact that with the help of decision trees graphic models, text rules can be built and they are easily understood by the final user. Because of the inaccuracy of observations, uncertainties, the data, collected in the environment, often take an unclear form. Therefore, fuzzy decision trees becoming popular in the field of machine learning. This article presents a method that includes the features of the two above-mentioned approaches: a graphical representation of the rules system in the form of a tree and a fuzzy representation of the data. The approach uses such advantages as high comprehensibility of decision trees and the ability to cope with inaccurate and uncertain information in fuzzy representation. The received learning method is suitable for classifying problems with both numerical and symbolic features. In the article, solution illustrations and numerical results are given.
Team decision problems with classical and quantum signals
Brandenburger, Adam; La Mura, Pierfrancesco
2016-01-01
We study team decision problems where communication is not possible, but coordination among team members can be realized via signals in a shared environment. We consider a variety of decision problems that differ in what team members know about one another's actions and knowledge. For each type of decision problem, we investigate how different assumptions on the available signals affect team performance. Specifically, we consider the cases of perfectly correlated, i.i.d., and exchangeable classical signals, as well as the case of quantum signals. We find that, whereas in perfect-recall trees (Kuhn 1950 Proc. Natl Acad. Sci. USA 36, 570–576; Kuhn 1953 In Contributions to the theory of games, vol. II (eds H Kuhn, A Tucker), pp. 193–216) no type of signal improves performance, in imperfect-recall trees quantum signals may bring an improvement. Isbell (Isbell 1957 In Contributions to the theory of games, vol. III (eds M Drescher, A Tucker, P Wolfe), pp. 79–96) proved that, in non-Kuhn trees, classical i.i.d. signals may improve performance. We show that further improvement may be possible by use of classical exchangeable or quantum signals. We include an example of the effect of quantum signals in the context of high-frequency trading. PMID:26621985
Team decision problems with classical and quantum signals.
Brandenburger, Adam; La Mura, Pierfrancesco
2016-01-13
We study team decision problems where communication is not possible, but coordination among team members can be realized via signals in a shared environment. We consider a variety of decision problems that differ in what team members know about one another's actions and knowledge. For each type of decision problem, we investigate how different assumptions on the available signals affect team performance. Specifically, we consider the cases of perfectly correlated, i.i.d., and exchangeable classical signals, as well as the case of quantum signals. We find that, whereas in perfect-recall trees (Kuhn 1950 Proc. Natl Acad. Sci. USA 36, 570-576; Kuhn 1953 In Contributions to the theory of games, vol. II (eds H Kuhn, A Tucker), pp. 193-216) no type of signal improves performance, in imperfect-recall trees quantum signals may bring an improvement. Isbell (Isbell 1957 In Contributions to the theory of games, vol. III (eds M Drescher, A Tucker, P Wolfe), pp. 79-96) proved that, in non-Kuhn trees, classical i.i.d. signals may improve performance. We show that further improvement may be possible by use of classical exchangeable or quantum signals. We include an example of the effect of quantum signals in the context of high-frequency trading. © 2015 The Authors.
Numerical taxonomy on data: Experimental results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, J.; Farach, M.
1997-12-01
The numerical taxonomy problems associated with most of the optimization criteria described above are NP - hard [3, 5, 1, 4]. In, the first positive result for numerical taxonomy was presented. They showed that if e is the distance to the closest tree metric under the L{sub {infinity}} norm. i.e., e = min{sub T} [L{sub {infinity}} (T-D)], then it is possible to construct a tree T such that L{sub {infinity}} (T-D) {le} 3e, that is, they gave a 3-approximation algorithm for this problem. We will refer to this algorithm as the Single Pivot (SP) heuristic.
Research on Robustness of Tree-based P2P Streaming
NASA Astrophysics Data System (ADS)
Chu, Chen; Yan, Jinyao; Ding, Kuangzheng; Wang, Xi
Research on P2P streaming media is a hot topic in the area of Internet technology. It has emerged as a promising technique. This new paradigm brings a number of unique advantages such as scalability, resilience and also effectiveness in coping with dynamics and heterogeneity. However, There are also many problems in P2P streaming media systems using traditional tree-based topology such as the bandwidth limits between parents and child nodes; node's joining or leaving has a great effect on robustness of tree-based topology. This paper will introduce a method of measuring the robustness of tree-based topology: using network measurement, we observe and record the bandwidth between all the nodes, analyses the correlation between all the sibling flows, measure the robustness of tree-based topology. And the result shows that in the Tree-based topology, the different links which have similar routing paths would share the bandwidth bottleneck, reduce the robustness of the Tree-based topology.
2015-01-01
We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement. PMID:25844072
GSHR-Tree: a spatial index tree based on dynamic spatial slot and hash table in grid environments
NASA Astrophysics Data System (ADS)
Chen, Zhanlong; Wu, Xin-cai; Wu, Liang
2008-12-01
Computation Grids enable the coordinated sharing of large-scale distributed heterogeneous computing resources that can be used to solve computationally intensive problems in science, engineering, and commerce. Grid spatial applications are made possible by high-speed networks and a new generation of Grid middleware that resides between networks and traditional GIS applications. The integration of the multi-sources and heterogeneous spatial information and the management of the distributed spatial resources and the sharing and cooperative of the spatial data and Grid services are the key problems to resolve in the development of the Grid GIS. The performance of the spatial index mechanism is the key technology of the Grid GIS and spatial database affects the holistic performance of the GIS in Grid Environments. In order to improve the efficiency of parallel processing of a spatial mass data under the distributed parallel computing grid environment, this paper presents a new grid slot hash parallel spatial index GSHR-Tree structure established in the parallel spatial indexing mechanism. Based on the hash table and dynamic spatial slot, this paper has improved the structure of the classical parallel R tree index. The GSHR-Tree index makes full use of the good qualities of R-Tree and hash data structure. This paper has constructed a new parallel spatial index that can meet the needs of parallel grid computing about the magnanimous spatial data in the distributed network. This arithmetic splits space in to multi-slots by multiplying and reverting and maps these slots to sites in distributed and parallel system. Each sites constructs the spatial objects in its spatial slot into an R tree. On the basis of this tree structure, the index data was distributed among multiple nodes in the grid networks by using large node R-tree method. The unbalance during process can be quickly adjusted by means of a dynamical adjusting algorithm. This tree structure has considered the distributed operation, reduplication operation transfer operation of spatial index in the grid environment. The design of GSHR-Tree has ensured the performance of the load balance in the parallel computation. This tree structure is fit for the parallel process of the spatial information in the distributed network environments. Instead of spatial object's recursive comparison where original R tree has been used, the algorithm builds the spatial index by applying binary code operation in which computer runs more efficiently, and extended dynamic hash code for bit comparison. In GSHR-Tree, a new server is assigned to the network whenever a split of a full node is required. We describe a more flexible allocation protocol which copes with a temporary shortage of storage resources. It uses a distributed balanced binary spatial tree that scales with insertions to potentially any number of storage servers through splits of the overloaded ones. The application manipulates the GSHR-Tree structure from a node in the grid environment. The node addresses the tree through its image that the splits can make outdated. This may generate addressing errors, solved by the forwarding among the servers. In this paper, a spatial index data distribution algorithm that limits the number of servers has been proposed. We improve the storage utilization at the cost of additional messages. The structure of GSHR-Tree is believed that the scheme of this grid spatial index should fit the needs of new applications using endlessly larger sets of spatial data. Our proposal constitutes a flexible storage allocation method for a distributed spatial index. The insertion policy can be tuned dynamically to cope with periods of storage shortage. In such cases storage balancing should be favored for better space utilization, at the price of extra message exchanges between servers. This structure makes a compromise in the updating of the duplicated index and the transformation of the spatial index data. Meeting the needs of the grid computing, GSHRTree has a flexible structure in order to satisfy new needs in the future. The GSHR-Tree provides the R-tree capabilities for large spatial datasets stored over interconnected servers. The analysis, including the experiments, confirmed the efficiency of our design choices. The scheme should fit the needs of new applications of spatial data, using endlessly larger datasets. Using the system response time of the parallel processing of spatial scope query algorithm as the performance evaluation factor, According to the result of the simulated the experiments, GSHR-Tree is performed to prove the reasonable design and the high performance of the indexing structure that the paper presented.
1972-10-01
planting of new trees , evaluations be made to determine what species of tree best will withstand the conditions of that area Such trees as the willow...beyond 2 years) effects. The following factors were surveyed "by this study : geological characteristics, soil erosion & sedimentation, tree damage...Erosion and Sedimentations Tree Damage 14 Wildlife and Related Habitat 17 Fishlife and Related Habitat 22 Water Quality 27 Recreation Impact 32
Eric D. Forsman; James K. Swingle; Raymond J. Davis; Brian L. Biswell; Lawrence S. Andrews
2016-01-01
We describe the historical and current distribution of tree voles (Arborimus longicaudus; A. pomo) and compare the minimum density of trees with tree vole nests in different forest age-classes based on museum records, field notes of previous collectors, tree vole nest surveys conducted by federal agencies, and our field studies in Oregon and...
Mortality rates associated with crown health for eastern forest tree species
Randall S. Morin; KaDonna C. Randolph; Jim Steinman
2015-01-01
The condition of tree crowns is an important indicator of tree and forest health. Crown conditions have been evaluated during inventories of the US Forest Service Forest Inventory and Analysis (FIA) program since 1999. In this study, remeasured data from 55,013 trees on 2616 FIA plots in the eastern USA were used to assess the probability of survival among various tree...
A hybrid approach to select features and classify diseases based on medical data
NASA Astrophysics Data System (ADS)
AbdelLatif, Hisham; Luo, Jiawei
2018-03-01
Feature selection is popular problem in the classification of diseases in clinical medicine. Here, we developing a hybrid methodology to classify diseases, based on three medical datasets, Arrhythmia, Breast cancer, and Hepatitis datasets. This methodology called k-means ANOVA Support Vector Machine (K-ANOVA-SVM) uses K-means cluster with ANOVA statistical to preprocessing data and selection the significant features, and Support Vector Machines in the classification process. To compare and evaluate the performance, we choice three classification algorithms, decision tree Naïve Bayes, Support Vector Machines and applied the medical datasets direct to these algorithms. Our methodology was a much better classification accuracy is given of 98% in Arrhythmia datasets, 92% in Breast cancer datasets and 88% in Hepatitis datasets, Compare to use the medical data directly with decision tree Naïve Bayes, and Support Vector Machines. Also, the ROC curve and precision with (K-ANOVA-SVM) Achieved best results than other algorithms
Image processing system for the measurement of timber truck loads
NASA Astrophysics Data System (ADS)
Carvalho, Fernando D.; Correia, Bento A. B.; Davies, Roger; Rodrigues, Fernando C.; Freitas, Jose C. A.
1993-01-01
The paper industry uses wood as its raw material. To know the quantity of wood in the pile of sawn tree trunks, every truck load entering the plant is measured to determine its volume. The objective of this procedure is to know the solid volume of wood stocked in the plant. Weighing the tree trunks has its own problems, due to their high capacity for absorbing water. Image processing techniques were used to evaluate the volume of a truck load of logs of wood. The system is based on a PC equipped with an image processing board using data flow processors. Three cameras allow image acquisition of the sides and rear of the truck. The lateral images contain information about the sectional area of the logs, and the rear image contains information about the length of the logs. The machine vision system and the implemented algorithms are described. The results being obtained with the industrial prototype that is now installed in a paper mill are also presented.
Risk management of key issues of FPSO
NASA Astrophysics Data System (ADS)
Sun, Liping; Sun, Hai
2012-12-01
Risk analysis of key systems have become a growing topic late of because of the development of offshore structures. Equipment failures of offloading system and fire accidents were analyzed based on the floating production, storage and offloading (FPSO) features. Fault tree analysis (FTA), and failure modes and effects analysis (FMEA) methods were examined based on information already researched on modules of relex reliability studio (RRS). Equipment failures were also analyzed qualitatively by establishing a fault tree and Boolean structure function based on the shortage of failure cases, statistical data, and risk control measures examined. Failure modes of fire accident were classified according to the different areas of fire occurrences during the FMEA process, using risk priority number (RPN) methods to evaluate their severity rank. The qualitative analysis of FTA gave the basic insight of forming the failure modes of FPSO offloading, and the fire FMEA gave the priorities and suggested processes. The research has practical importance for the security analysis problems of FPSO.
Evaluating the risk of industrial espionage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bott, T.F.
1998-12-31
A methodology for estimating the relative probabilities of different compromise paths for protected information by insider and visitor intelligence collectors has been developed based on an event-tree analysis of the intelligence collection operation. The analyst identifies target information and ultimate users who might attempt to gain that information. The analyst then uses an event tree to develop a set of compromise paths. Probability models are developed for each of the compromise paths that user parameters based on expert judgment or historical data on security violations. The resulting probability estimates indicate the relative likelihood of different compromise paths and provide anmore » input for security resource allocation. Application of the methodology is demonstrated using a national security example. A set of compromise paths and probability models specifically addressing this example espionage problem are developed. The probability models for hard-copy information compromise paths are quantified as an illustration of the results using parametric values representative of historical data available in secure facilities, supplemented where necessary by expert judgment.« less
Problem decomposition by mutual information and force-based clustering
NASA Astrophysics Data System (ADS)
Otero, Richard Edward
The scale of engineering problems has sharply increased over the last twenty years. Larger coupled systems, increasing complexity, and limited resources create a need for methods that automatically decompose problems into manageable sub-problems by discovering and leveraging problem structure. The ability to learn the coupling (inter-dependence) structure and reorganize the original problem could lead to large reductions in the time to analyze complex problems. Such decomposition methods could also provide engineering insight on the fundamental physics driving problem solution. This work forwards the current state of the art in engineering decomposition through the application of techniques originally developed within computer science and information theory. The work describes the current state of automatic problem decomposition in engineering and utilizes several promising ideas to advance the state of the practice. Mutual information is a novel metric for data dependence and works on both continuous and discrete data. Mutual information can measure both the linear and non-linear dependence between variables without the limitations of linear dependence measured through covariance. Mutual information is also able to handle data that does not have derivative information, unlike other metrics that require it. The value of mutual information to engineering design work is demonstrated on a planetary entry problem. This study utilizes a novel tool developed in this work for planetary entry system synthesis. A graphical method, force-based clustering, is used to discover related sub-graph structure as a function of problem structure and links ranked by their mutual information. This method does not require the stochastic use of neural networks and could be used with any link ranking method currently utilized in the field. Application of this method is demonstrated on a large, coupled low-thrust trajectory problem. Mutual information also serves as the basis for an alternative global optimizer, called MIMIC, which is unrelated to Genetic Algorithms. Advancement to the current practice demonstrates the use of MIMIC as a global method that explicitly models problem structure with mutual information, providing an alternate method for globally searching multi-modal domains. By leveraging discovered problem inter- dependencies, MIMIC may be appropriate for highly coupled problems or those with large function evaluation cost. This work introduces a useful addition to the MIMIC algorithm that enables its use on continuous input variables. By leveraging automatic decision tree generation methods from Machine Learning and a set of randomly generated test problems, decision trees for which method to apply are also created, quantifying decomposition performance over a large region of the design space.
Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks.
Oh, S June; Joung, Je-Gun; Chang, Jeong-Ho; Zhang, Byoung-Tak
2006-06-06
To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway structures using meta-level information rather than sequence information. This method may yield further information about biological evolution, such as the history of horizontal transfer of each gene, by studying the detailed structure of the phylogenetic tree constructed by the kernel-based method.
Millennium-scale crossdating and inter-annual climate sensitivities of standing California redwoods.
Carroll, Allyson L; Sillett, Stephen C; Kramer, Russell D
2014-01-01
Extremely decay-resistant wood and fire-resistant bark allow California's redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI) helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE) have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood species have numerous scientific applications, including determination of tree ages, accurate dating of fire-return intervals, archaeology, analyses of stable isotopes, long-term climate reconstructions, and quantifying rates of carbon sequestration.
Millennium-Scale Crossdating and Inter-Annual Climate Sensitivities of Standing California Redwoods
Carroll, Allyson L.; Sillett, Stephen C.; Kramer, Russell D.
2014-01-01
Extremely decay-resistant wood and fire-resistant bark allow California’s redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI) helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE) have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood species have numerous scientific applications, including determination of tree ages, accurate dating of fire-return intervals, archaeology, analyses of stable isotopes, long-term climate reconstructions, and quantifying rates of carbon sequestration. PMID:25029026
E.R Peña-Mendoza; A. Gómez-Guerrero; Mark Fenn; P. Hernández de la Rosa; D. Alvarado Rosales
2016-01-01
The nutritional content and tree top in the forests are evaluated of Abies religiosa, San Miguel Tlaixpan (SMT) and Rio Frio (RF), State of Mexico. The work had two parts. In the first, the nutritional content was evaluated in new foliage (N, P, K, Ca and Mg) in Abies religiosa trees, in periods of spring, summer and winter, in...
Model-Based Design of Tree WSNs for Decentralized Detection †
Tantawy, Ashraf; Koutsoukos, Xenofon; Biswas, Gautam
2015-01-01
The classical decentralized detection problem of finding the optimal decision rules at the sensor and fusion center, as well as variants that introduce physical channel impairments have been studied extensively in the literature. The deployment of WSNs in decentralized detection applications brings new challenges to the field. Protocols for different communication layers have to be co-designed to optimize the detection performance. In this paper, we consider the communication network design problem for a tree WSN. We pursue a system-level approach where a complete model for the system is developed that captures the interactions between different layers, as well as different sensor quality measures. For network optimization, we propose a hierarchical optimization algorithm that lends itself to the tree structure, requiring only local network information. The proposed design approach shows superior performance over several contentionless and contention-based network design approaches. PMID:26307989
Multi-terminal pipe routing by Steiner minimal tree and particle swarm optimisation
NASA Astrophysics Data System (ADS)
Liu, Qiang; Wang, Chengen
2012-08-01
Computer-aided design of pipe routing is of fundamental importance for complex equipments' developments. In this article, non-rectilinear branch pipe routing with multiple terminals that can be formulated as a Euclidean Steiner Minimal Tree with Obstacles (ESMTO) problem is studied in the context of an aeroengine-integrated design engineering. Unlike the traditional methods that connect pipe terminals sequentially, this article presents a new branch pipe routing algorithm based on the Steiner tree theory. The article begins with a new algorithm for solving the ESMTO problem by using particle swarm optimisation (PSO), and then extends the method to the surface cases by using geodesics to meet the requirements of routing non-rectilinear pipes on the surfaces of aeroengines. Subsequently, the adaptive region strategy and the basic visibility graph method are adopted to increase the computation efficiency. Numeral computations show that the proposed routing algorithm can find satisfactory routing layouts while running in polynomial time.
Isomorphism of dimer configurations and spanning trees on finite square lattices
NASA Astrophysics Data System (ADS)
Brankov, J. G.
1995-09-01
One-to-one mappings of the close-packed dimer configurations on a finite square lattice with free boundaries L onto the spanning trees of a related graph (or two-graph) G are found. The graph (two-graph) G can be constructed from L by: (1) deleting all the vertices of L with arbitrarily fixed parity of the row and column numbers; (2) suppressing all the vertices of degree 2 except those of degree 2 in L; (3) merging all the vertices of degree 1 into a single vertex g. The matrix Kirchhoff theorem reduces the enumeration problem for the spanning trees on G to the eigenvalue problem for the discrete Laplacian on the square lattice L'=G g with mixed Dirichlet-Neumann boundary conditions in at least one direction. That fact explains some of the unusual finite-size properties of the dimer model.
NASA Technical Reports Server (NTRS)
Alpan, S. (Principal Investigator)
1976-01-01
The author has identified the following significant results. It is observed that LANDSAT images can be used in preparing an accurate tectonic map of the study areas. These images are most useful in geological mapping areas where vegetation cover is sparse. LANDSAT images can be used to identify and separate evergreens and trees with leaves, and they can successfully delineate boundaries of forestry areas. Water holding capacity of the soil, internal and external drainage, vegetation pattern, irrigated and nonirrigated land, and fallow and planted fields are also detected on the LANDSAT imagery.
Ruiz-Benito, Paloma; Lines, Emily R.; Gómez-Aparicio, Lorena; Zavala, Miguel A.; Coomes, David A.
2013-01-01
Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions. PMID:23451096
Indexing Volumetric Shapes with Matching and Packing
Koes, David Ryan; Camacho, Carlos J.
2014-01-01
We describe a novel algorithm for bulk-loading an index with high-dimensional data and apply it to the problem of volumetric shape matching. Our matching and packing algorithm is a general approach for packing data according to a similarity metric. First an approximate k-nearest neighbor graph is constructed using vantage-point initialization, an improvement to previous work that decreases construction time while improving the quality of approximation. Then graph matching is iteratively performed to pack related items closely together. The end result is a dense index with good performance. We define a new query specification for shape matching that uses minimum and maximum shape constraints to explicitly specify the spatial requirements of the desired shape. This specification provides a natural language for performing volumetric shape matching and is readily supported by the geometry-based similarity search (GSS) tree, an indexing structure that maintains explicit representations of volumetric shape. We describe our implementation of a GSS tree for volumetric shape matching and provide a comprehensive evaluation of parameter sensitivity, performance, and scalability. Compared to previous bulk-loading algorithms, we find that matching and packing can construct a GSS-tree index in the same amount of time that is denser, flatter, and better performing, with an observed average performance improvement of 2X. PMID:26085707
Baldwin, Elizabeth; Plotto, Anne; Manthey, John; McCollum, Greg; Bai, Jinhe; Irey, Mike; Cameron, Randall; Luzio, Gary
2010-01-27
More than 90% of oranges in Florida are processed, and since Huanglongbing (HLB) disease has been rumored to affect fruit flavor, chemical and physical analyses were conducted on fruit and juice from healthy (Las -) and diseased (Las +) trees on three juice processing varieties over two seasons, and in some cases several harvests. Fruit, both asymptomatic and symptomatic for the disease, were used, and fresh squeezed and processed/pasteurized juices were evaluated. Fruit and juice characteristics measured included color, size, solids, acids, sugars, aroma volatiles, ascorbic acid, secondary metabolites, pectin, pectin-demethylating enzymes, and juice cloud. Results showed that asymptomatic fruit from symptomatic trees were similar to healthy fruit for many of the quality factors measured, but that juice from asymptomatic and especially symptomatic fruits were often higher in the bitter compounds limonin and nomilin. However, values were generally below reported taste threshold levels, and only symptomatic fruit seemed likely to cause flavor problems. There was variation due to harvest date, which was often greater than that due to disease. It is likely that the detrimental flavor attributes of symptomatic fruit (which often drop off the tree) will be largely diluted in commercial juice blends that include juice from fruit of several varieties, locations, and seasons.
NASA Astrophysics Data System (ADS)
Miyamoto, Hitoshi
2015-04-01
Vegetation overgrowth in fluvial floodplains, gravel beds, and sand bars has been a serious engineering problem for riparian management in Japan. From the viewpoints of flood control and ecological conservation, it would be necessary to predict the vegetation dynamics accurately for long-term duration. In this research, we have developed a stochastic model for predicting the vegetation dynamics in fluvial floodplains with emphasis on the interaction with flood impacts. The model consists of the following four components: (i) long-term stochastic behavior of flow discharge, (ii) hydrodynamics in a channel with floodplain vegetation, (iii) variation of riverbed topography, and (iv) vegetation dynamics on floodplains. In the vegetation dynamics model, the flood discharge (i) is stochastically simulated using a filtered Poisson process, one of the conventional approaches in hydrological time-series generation. The component for vegetation dynamics (iv) includes the effects of tree growth, mortality by floods, and infant tree recruitment. Vegetation condition has been observed mainly before and after floods since 2008 at a field site located between 23-24 km from the river mouth in Kako River, Japan. The Kako River has the catchment area of 1,730 km2 and the main channel length of 96 km. This site is one of the vegetation overgrowth sites in the Kako River floodplains. The predominant tree species are willows and bamboos. In the field survey, the position, trunk diameter and height of each tree as well as the riverbed materials were measured after several flood events to investigate their impacts on the floodplain vegetation community. This presentation tries to examine effects of anthropogenic river regulations, i.e., thinning and cutting-down, in the vegetated channel in Kako River by using the vegetation dynamics model. Sensitivity of both the flood water level and the vegetation status in the channel is statistically evaluated in terms of the different cutting-down levels, timings and scales of the thinning, etc., by the Monte Carlo simulation of the model.
30 CFR 250.517 - Tubing and wellhead equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... evaluated every 30 days and the results submitted to the District Manager. (c) When the tree is installed..., a surface tubing head, a surface tubing hanger, and a surface christmas tree. (d) Wellhead, tree... and one surface safety valve, installed above the master valve, in the vertical run of the tree. (e...
Evaluating realized genetic gains from tree improvement.
J.B. St. Clair
1993-01-01
Tree improvement has become an essential part of the management of forest lands for wood production, and predicting yields and realized gains from forests planted with genetically-improved trees will become increasingly important. This paper discusses concepts of tree improvement and genetic gain important to growth and yield modeling, and reviews previous studies of...
Leaf, woody, and root biomass of Populus irrigated with landfill leachate
Jill A. Zalesny; Ronald S., Jr. Zalesny; D.R. Coyle; R.B. Hall
2007-01-01
Poplar (Populus spp.) trees can be utilized for ecological leachate disposal when applied as an irrigation source for managed tree systems. Our objective was to evaluate differences in tree height, diameter, volume, and biomass of leaf, stem, branch, and root tissues of Populus trees after two seasons of irrigation with municipal...
An approximation algorithm for the Noah's Ark problem with random feature loss.
Hickey, Glenn; Blanchette, Mathieu; Carmi, Paz; Maheshwari, Anil; Zeh, Norbert
2011-01-01
The phylogenetic diversity (PD) of a set of species is a measure of their evolutionary distinctness based on a phylogenetic tree. PD is increasingly being adopted as an index of biodiversity in ecological conservation projects. The Noah's Ark Problem (NAP) is an NP-Hard optimization problem that abstracts a fundamental conservation challenge in asking to maximize the expected PD of a set of taxa given a fixed budget, where each taxon is associated with a cost of conservation and a probability of extinction. Only simplified instances of the problem, where one or more parameters are fixed as constants, have as of yet been addressed in the literature. Furthermore, it has been argued that PD is not an appropriate metric for models that allow information to be lost along paths in the tree. We therefore generalize the NAP to incorporate a proposed model of feature loss according to an exponential distribution and term this problem NAP with Loss (NAPL). In this paper, we present a pseudopolynomial time approximation scheme for NAPL.
Evaluation of a procedure for reducing vehicle-tree accidents.
DOT National Transportation Integrated Search
1987-01-01
A procedure for reducing vehicle-tree accidents was evaluated. The procedure, developed by the Michigan Department of Transportation, consists of five steps: (1) preparing a base map and plotting roadway information, (2) assigning priorities for fiel...
Evaluation of roadside greenbelt trees damage caused by strangler plants in Bogor
NASA Astrophysics Data System (ADS)
Danniswari, Dibyanti; Nasrullah, Nizar
2017-10-01
Certain plants are called stranglers (hemiepiphyte) because they grow on host trees and slowly choking the host, which often results in the host’s death. The existence of strangler plants on roadside greenbelt trees is quite common in Bogor, but they may cause tree’s failure and threaten users’ safety. To prevent such hazard, evaluation of roadside greenbelt trees damage caused by strangler plants is important. This study was directed to analyse the vegetation of strangler plants in Bogor, to assess the damage caused by stranglers, and to compose strangled trees maintenance recommendations. This study was conducted in March to May 2014 by doing survey at five major roads in Bogor, which were Jalan Ahmad Yani, Jalan Sudirman, Jalan Pemuda, Jalan Semeru, and Jalan Juanda. The results showed that strangler species found in Bogor are Ficus benjamina, Ficus glauca, Ficus elastica, and Schefflera actinophylla. The most common species in Bogor is F. benjamina. Host trees that tend to be preferred by strangler plants are trees with large trunk, many branches, and medium to high height. The maintenance for every strangled tree is different according to the damage level, mild to severe damage could be treated by strangler root cutting to tree logging, respectively.
Cheaib, Alissar; Badeau, Vincent; Boe, Julien; Chuine, Isabelle; Delire, Christine; Dufrêne, Eric; François, Christophe; Gritti, Emmanuel S; Legay, Myriam; Pagé, Christian; Thuiller, Wilfried; Viovy, Nicolas; Leadley, Paul
2012-06-01
Model-based projections of shifts in tree species range due to climate change are becoming an important decision support tool for forest management. However, poorly evaluated sources of uncertainty require more scrutiny before relying heavily on models for decision-making. We evaluated uncertainty arising from differences in model formulations of tree response to climate change based on a rigorous intercomparison of projections of tree distributions in France. We compared eight models ranging from niche-based to process-based models. On average, models project large range contractions of temperate tree species in lowlands due to climate change. There was substantial disagreement between models for temperate broadleaf deciduous tree species, but differences in the capacity of models to account for rising CO(2) impacts explained much of the disagreement. There was good quantitative agreement among models concerning the range contractions for Scots pine. For the dominant Mediterranean tree species, Holm oak, all models foresee substantial range expansion. © 2012 Blackwell Publishing Ltd/CNRS.
"Be the Tree": Classical Literature, Art Therapy, and Transcending Trauma in "Speak"
ERIC Educational Resources Information Center
Snider, Jessi
2014-01-01
Laurie Halse Anderson's young adult novel "Speak" concerns the rape and subsequent silence of ninth grade protagonist Melinda Sordino. By relying on extensive literary allusions involving trees, rape, silence, and transformation, Anderson creates a young adult problem novel that is both of the moment and timeless in its themes. The…
USDA-ARS?s Scientific Manuscript database
‘Rapid Apple Decline’ (RAD) is a newly emerging problem of young, dwarf apple trees in the northeastern USA. The affected trees show trunk necrosis, bark cracking and canker formation before collapsing in the summer. In this study, a new luteovirus and three common viruses were identified from apple...
Recognizing and treating diseases in Caribbean trees
Deborah Jean Lodge
2002-01-01
Although the majority of tree problems in urban setting are not caused by disease organisms, there are some current and potential disease threats in the Caribbean. Symptoms are the expression of stress in the plant. Symptoms may appear to be identical in response to many different types of diseases and physical or chemical damage. It is therefore helpful to determine...
Frank G. Hawksworth
1964-01-01
Diseases are a major concern to forest managers throughout the lodgepole pine type. In many areas, diseases constitute the primary management problem. As might be expected for a tree that has a distribution from Baja California, Mexico to the Yukon and from the Pacific to the Dakotas, the diseases of chief concern vary in different parts of the tree's range. For...
A report on conceptual advances in roll on/off technology in forestry
Dave Atkins; Robert Rummer; Beth Dodson; Craig E. Thomas; Andy Horcher; Ed Messerlie; Craig Rawlings; David Haston
2007-01-01
Over the last two decades, increasingly severe fire seasons have led policymakers to recognize the need for thinning overgrown stands of trees.However, thinning presents a financial challenge. The problem is that hazardous fuel reduction projects âespecially projects in the Wildland/Urban Interfaceâ contain mostly smaller trees, which have...
Greedy algorithms in disordered systems
NASA Astrophysics Data System (ADS)
Duxbury, P. M.; Dobrin, R.
1999-08-01
We discuss search, minimal path and minimal spanning tree algorithms and their applications to disordered systems. Greedy algorithms solve these problems exactly, and are related to extremal dynamics in physics. Minimal cost path (Dijkstra) and minimal cost spanning tree (Prim) algorithms provide extremal dynamics for a polymer in a random medium (the KPZ universality class) and invasion percolation (without trapping) respectively.
Variation in the nutritional physiology of tree-feeding swallowtail caterpillars
Matthew P. Ayres; Janice L. Bossart; J. Mark Scriber
1991-01-01
A key problem in addressing patterns of interaction between forest insects and their host trees is determining the level at which important ecological and evolutionary interactions occur. We commonly view plant-herbivore relations as herbivore species interacting with plant species, tacitly assuming that variation among members of either species is small and one can...
USDA-ARS?s Scientific Manuscript database
Manure recycling as a fertilizer is one of solutions for the environmental problem related with livestock manure treatment as well as the ocean dumping ban act prohibiting manure disposal to the ocean in Korea. For the manure disposal, tree plantation area is being a candidate place. However, the ma...
Seasonal recovery of chlorotic needles in Scotch pine
Jerry K. Jones; Jerry K. Jones
1971-01-01
As part of a research project on Christmas trees being carried on by the USDA Forest Service's Northeastern Forest Experiment Station, the author made a cooperative study of how discolored needles recover their normal color in February and April. Though this does not solve the Christmas tree growers' problem, it does shed some light on the process involved in...
Basic tree-ring sample preparation techniques for aging aspen
Lance A. Asherin; Stephen A. Mata
2001-01-01
Aspen is notoriously difficult to age because of its light-colored wood and faint annual growth rings. Careful preparation and processing of aspen ring samples can overcome these problems, yield accurate age and growth estimates, and concisely date disturbance events present in the tree-ring record. Proper collection of aspen wood is essential in obtaining usable ring...
Digital photo monitoring for tree crown
Neil Clark; Sang-Mook Lee
2007-01-01
Assessing change in the amount of foliage within a treeâs crown is the goal of crown transparency estimation, a component in many forest health assessment programs. Many sources of variability limit analysis and interpretation of crown condition data. Increased precision is needed to detect more subtle changes that are important for detection of health problems....
Field data analysis of asphalt road paving damages caused by tree roots
NASA Astrophysics Data System (ADS)
Weissteiner, Clemens; Rauch, Hans Peter
2015-04-01
Tree root damages are a frequent problem along paved cycling paths and service roads of rivers and streams. Damages occur mostly on streets with thin asphalt layers and especially in the upper part of the pavement structure. The maintainers of these roads are faced with frequent and high annual repair costs in order to guarantee traffic safety and pleasant cycling conditions. The focus of this research project is to get an insight in the processes governing the growth of the tree roots in asphalt layers and to develop test methods to avoid rood penetration into the road structure. Tree vegetation has been analysed selectively along a 300 km long cycle and service path of the Danube River in the region of Austria. Tree characteristics, topographic as well as hydrologic conditions have been analysed at 119 spots with different asphalt damage intensities. On 5 spots additional investigations on the root growth characteristics where performed. First results underline a high potential damage of pioneer trees which are growing naturally along rivers. Mostly, local occurring fast growing tree species penetrated the road layer structure. In a few cases other tree species where as well responsible for road structure damages. The age respectively the size of the trees didn't seem to influence significantly the occurrence of asphalt damages. Road structure damages were found to appear unaffected by hydrologic or topographic conditions. However, results have to be interpreted with care as the investigations represent a temporally limited view of the problem situation. The investigations of the root growth characteristics proved that tree roots penetrate the road structure mostly between the gravel sublayer and the asphalt layer as the layers it selves don't allow a penetration because of their high compaction. Furthermore roots appear to be attracted by condensed water at the underside of the asphalt layer. Further steps of the research project imply testing of different compositions of gravel size mixtures as sublayer material. A coarse gravel size mixture allows the condensed water to drain in deeper layers and inhibits root growth because of mechanical impedance and air pruning of roots.
Autumn Algorithm-Computation of Hybridization Networks for Realistic Phylogenetic Trees.
Huson, Daniel H; Linz, Simone
2018-01-01
A minimum hybridization network is a rooted phylogenetic network that displays two given rooted phylogenetic trees using a minimum number of reticulations. Previous mathematical work on their calculation has usually assumed the input trees to be bifurcating, correctly rooted, or that they both contain the same taxa. These assumptions do not hold in biological studies and "realistic" trees have multifurcations, are difficult to root, and rarely contain the same taxa. We present a new algorithm for computing minimum hybridization networks for a given pair of "realistic" rooted phylogenetic trees. We also describe how the algorithm might be used to improve the rooting of the input trees. We introduce the concept of "autumn trees", a nice framework for the formulation of algorithms based on the mathematics of "maximum acyclic agreement forests". While the main computational problem is hard, the run-time depends mainly on how different the given input trees are. In biological studies, where the trees are reasonably similar, our parallel implementation performs well in practice. The algorithm is available in our open source program Dendroscope 3, providing a platform for biologists to explore rooted phylogenetic networks. We demonstrate the utility of the algorithm using several previously studied data sets.
Teng, Li; Xing-Yuan, He; Zhen-Ju, Chen
2014-07-01
Mongolian oak is one of the most important broad-leaved tree species in forests, Northeast China. Based on the methodology of dendrochronology, the variations of tree ring radial growth of Mongolian oak in Qianshan Mountains, south of Northeast China, were analyzed. Combined with the temperature and precipitation data from meteorological stations since 1951, the relationships between standardized tree ring width chronology and main climatic factors were analyzed. In this region, the precipitation between April and July of the current year had an significant relationship with the tree ring width of Mongolian oak, and was the main factor limiting the radial growth. The extreme maximum temperature of May was also a key factor influencing the tree ring width, which had a significant on the tree ring width of Mongolian oak. The precipitation in April had a significant and stable relationship with the growth of Mongolian oak since the 1950s. The 'divergence problem' was found in the study area, which the sensitivity of tree growth to summer temperature reduced since the 1980s. The tree growth response to temperature showed a seasonal change from summer to spring.
Sah, Jay P.; Ross, Michael S.; Snyder, James R.; Ogurcak, Danielle E.
2010-01-01
In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.
The hydraulic limitation hypothesis revisited.
Ryan, Michael G; Phillips, Nathan; Bond, Barbara J
2006-03-01
We proposed the hydraulic limitation hypothesis (HLH) as a mechanism to explain universal patterns in tree height, and tree and stand biomass growth: height growth slows down as trees grow taller, maximum height is lower for trees of the same species on resource-poor sites and annual wood production declines after canopy closure for even-aged forests. Our review of 51 studies that measured one or more of the components necessary for testing the hypothesis showed that taller trees differ physiologically from shorter, younger trees. Stomatal conductance to water vapour (g(s)), photosynthesis (A) and leaf-specific hydraulic conductance (K L) are often, but not always, lower in taller trees. Additionally, leaf mass per area is often greater in taller trees, and leaf area:sapwood area ratio changes with tree height. We conclude that hydraulic limitation of gas exchange with increasing tree size is common, but not universal. Where hydraulic limitations to A do occur, no evidence supports the original expectation that hydraulic limitation of carbon assimilation is sufficient to explain observed declines in wood production. Any limit to height or height growth does not appear to be related to the so-called age-related decline in wood production of forests after canopy closure. Future work on this problem should explicitly link leaf or canopy gas exchange with tree and stand growth, and consider a more fundamental assumption: whether tree biomass growth is limited by carbon availability.
The watering of tall trees--embolization and recovery.
Gouin, Henri
2015-03-21
We can propound a thermo-mechanical understanding of the ascent of sap to the top of tall trees thanks to a comparison between experiments associated with the cohesion-tension theory and the disjoining pressure concept for liquid thin-films. When a segment of xylem is tight-filled with crude sap, the liquid pressure can be negative although the pressure in embolized vessels remains positive. Examples are given that illustrate how embolized vessels can be refilled and why the ascent of sap is possible even in the tallest trees avoiding the problem due to cavitation. However, the maximum height of trees is limited by the stability domain of liquid thin-films. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chaotic behavior of a spin-glass model on a Cayley tree
NASA Astrophysics Data System (ADS)
da Costa, F. A.; de Araújo, J. M.; Salinas, S. R.
2015-06-01
We investigate the phase diagram of a spin-1 Ising spin-glass model on a Cayley tree. According to early work of Thompson and collaborators, this problem can be formulated in terms of a set of nonlinear discrete recursion relations along the branches of the tree. Physically relevant solutions correspond to the attractors of these mapping equations. In the limit of infinite coordination of the tree, and for some choices of the model parameters, we make contact with findings for the phase diagram of more recently investigated versions of the Blume-Emery-Griffiths spin-glass model. In addition to the anticipated phases, we numerically characterize the existence of modulated and chaotic structures.
Effects of open-top chambers on Valencia' orange trees. [Citrus sinensis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszyk, D.M.; Takemoto, B.K.; Kats, G.
Open-top field chambers are the most widely used technology for evaluating the impacts of air pollutants on vegetation. This study was conducted to evaluate the long-term effects of chambers on Valencia orange trees (Citrus sinensis (L.) Osbeck). The trees were exposed to ambient ozone (O{sub 3}) for 51 months in large (4.3-m diam. by 2.9-m high) nonfiltered open-top chambers (NF) and in ambient air without chambers (AA). Results suggest that the yield increases for NF compared to AA trees could, in part, be accounted for by decreased flux of O{sub 3} into leaves (based on decreased O{sub 3} exposure andmore » leaf conductance). However, other factors, i.e., increased tree growth, altered leaf C allocation, and lack of wind stress occurring only in chambers, likely contributed to higher NF tree yields.« less
NASA Technical Reports Server (NTRS)
Tian, Jianhui; Porter, Adam; Zelkowitz, Marvin V.
1992-01-01
Identification of high cost modules has been viewed as one mechanism to improve overall system reliability, since such modules tend to produce more than their share of problems. A decision tree model was used to identify such modules. In this current paper, a previously developed axiomatic model of program complexity is merged with the previously developed decision tree process for an improvement in the ability to identify such modules. This improvement was tested using data from the NASA Software Engineering Laboratory.
Olive tree-ring problematic dating: a comparative analysis on Santorini (Greece).
Cherubini, Paolo; Humbel, Turi; Beeckman, Hans; Gärtner, Holger; Mannes, David; Pearson, Charlotte; Schoch, Werner; Tognetti, Roberto; Lev-Yadun, Simcha
2013-01-01
Olive trees are a classic component of Mediterranean environments and some of them are known historically to be very old. In order to evaluate the possibility to use olive tree-rings for dendrochronology, we examined by various methods the reliability of olive tree-rings identification. Dendrochronological analyses of olive trees growing on the Aegean island Santorini (Greece) show that the determination of the number of tree-rings is impossible because of intra-annual wood density fluctuations, variability in tree-ring boundary structure, and restriction of its cambial activity to shifting sectors of the circumference, causing the tree-ring sequences along radii of the same cross section to differ.
NASA Astrophysics Data System (ADS)
Neary, D.; Smethurst, P.; Petrone, K.
2009-04-01
A typical improved-pasture property in the high-rainfall zone of Australia contains 0.5-2.0 km of waterways per 100 ha. Nationwide, some 25-30 million ha of improved pasture contains about 100,000 km of streams, of which about 75% are currently un-buffered and contributing to soil and water degradation. Farmers and natural resource managers are considering ways to enhance environmental outcomes at farm and catchment scales using stream-side buffers of trees and other perennial vegetation. Benefits of buffers include improved water quality, biodiversity, carbon sequestration and aesthetics. Lack of sound information and funding for establishing and managing buffer zones is hindering wide-scale adoption of this practice. Stream-side areas of farms are generally highly productive (wet and nutrient-rich) and contain a high biodiversity, but they are also high-risk zones for soil and water values and stock safety. Development of options based on a balance between environmental and economic outcomes would potentially promote wider adoption. Australian codes of forest practice currently discourage or prevent harvesting of trees in streamside buffers. These codes were developed exclusively for large-scale native forests and industrial-scale plantations, and were applicable to farm forestry as now required. In countries including USA and Germany trees in stream-side buffers are harvested using Best Management Practices. Trees may grow at a faster rate in riparian zones and provide a commercial return, but the impacts of tree establishment and harvesting on water yield and quality must be evaluated. However, there have been few designed experiments investigating this problem. Australia has recently initiated studies to explore the use of high-value timber species and associated vegetation in riparian zones to improve water quality, particularly suspended sediment. Preliminary information from the Yan Yan Gurt Catchment in Victoria indicate that forested riparian strips can retain 98% of the sediment entrained in runoff from agricultural sections of the catchment. This paper examines the science background from North American and European experiences relative to Australia, with particular emphasis on sediment relationships after tree harvesting using Best Management Practices.
An illustrative analysis of technological alternatives for satellite communications
NASA Technical Reports Server (NTRS)
Metcalfe, M. R.; Cazalet, E. G.; North, D. W.
1979-01-01
The demand for satellite communications services in the domestic market is discussed. Two approaches to increasing system capacity are the expansion of service into frequencies presently allocated but not used for satellite communications, and the development of technologies that provide a greater level of service within the currently used frequency bands. The development of economic models and analytic techniques for evaluating capacity expansion alternatives such as these are presented. The satellite orbit spectrum problem, and also outlines of some suitable analytic approaches are examined. Illustrative analysis of domestic communications satellite technology options for providing increased levels of service are also examined. The analysis illustrates the use of probabilities and decision trees in analyzing alternatives, and provides insight into the important aspects of the orbit spectrum problem that would warrant inclusion in a larger scale analysis.
Large Unbalanced Credit Scoring Using Lasso-Logistic Regression Ensemble
Wang, Hong; Xu, Qingsong; Zhou, Lifeng
2015-01-01
Recently, various ensemble learning methods with different base classifiers have been proposed for credit scoring problems. However, for various reasons, there has been little research using logistic regression as the base classifier. In this paper, given large unbalanced data, we consider the plausibility of ensemble learning using regularized logistic regression as the base classifier to deal with credit scoring problems. In this research, the data is first balanced and diversified by clustering and bagging algorithms. Then we apply a Lasso-logistic regression learning ensemble to evaluate the credit risks. We show that the proposed algorithm outperforms popular credit scoring models such as decision tree, Lasso-logistic regression and random forests in terms of AUC and F-measure. We also provide two importance measures for the proposed model to identify important variables in the data. PMID:25706988
An adaptive critic-based scheme for consensus control of nonlinear multi-agent systems
NASA Astrophysics Data System (ADS)
Heydari, Ali; Balakrishnan, S. N.
2014-12-01
The problem of decentralised consensus control of a network of heterogeneous nonlinear systems is formulated as an optimal tracking problem and a solution is proposed using an approximate dynamic programming based neurocontroller. The neurocontroller training comprises an initial offline training phase and an online re-optimisation phase to account for the fact that the reference signal subject to tracking is not fully known and available ahead of time, i.e., during the offline training phase. As long as the dynamics of the agents are controllable, and the communication graph has a directed spanning tree, this scheme guarantees the synchronisation/consensus even under switching communication topology and directed communication graph. Finally, an aerospace application is selected for the evaluation of the performance of the method. Simulation results demonstrate the potential of the scheme.
Rainfall interception by Santa Monica’s municipal urban forest
Q. Xiao; E.G. McPherson
2004-01-01
Tree health is a critical parameter for evaluating urban ecosystem health and sustainability. TradiÂtionally, this parameter has been derived from field surveys. We used multispectral remote sensing data and GIS techniques to determine tree health at the University of California, Davis. The study area (363 ha) contained 8,962 trees of 215 species. Tree health...
Evaluation of acoustic tomography for tree decay detection
Shanquing Liang; Xiping Wang; Janice Wiedenbeck; Zhiyong Cai; Feng Fu
2008-01-01
In this study, the acoustic tomography technique was used to detect internal decay in high value black cherry (Prunus seratina) trees. Two-dimensional images of the cross sections of the tree samples were constructed using PiCUS Q70 software. The trees were felled following the field test, and a disc from each testing elevation was subsequently cut...
SETs: stand evaluation tools: II. tree value conversion standards for hardwood sawtimber
Joseph J. Mendel; Paul S. DeBald; Martin E. Dale
1976-01-01
Tree quatity index tables are presented for 12 important hardwood species of the oak-hickory forest. From these, tree value conversion standards are developed for each species, log grade, merchantable height, and diameter at breast height. The method of calculating tree value conversion standards and adapting them to different conditions is explained. A computer...
Regional height-diameter equations for major tree species of southwest Oregon.
H. Temesgen; D.W. Hann; V.J. Monleon
2006-01-01
Selected tree height and diameter functions were evaluated for their predictive abilities for major tree species of southwest Oregon. The equations included tree diameter alone, or diameter plus alternative measures of stand density and relative position. Two of the base equations were asymptotic functions, and two were exponential functional forms. The inclusion of...
The balance of planting and mortality in a street tree population
Lara A. Roman; John J. Battles; Joe R. McBride
2013-01-01
Street trees have aesthetic, environmental, human health, and economic benefits in urban ecosystems. Street tree populations are constructed by cycles of planting, growth, death, removal and replacement. The goals of this study were to understand how tree mortality and planting rates affect net population growth, evaluate the shape of the mortality curve, and assess...
Predicting abundance of 80 tree species following climate change in the Eastern United States
Louis R. Iverson; Anantha M. Prasad; Anantha M. Prasad
1998-01-01
Projected climate warming will potentially have profound effects on the earth?s biota, including a large redistribution of tree species. We developed models to evaluate potential shifts for 80 individual tree species in the eastern United States. First, environmental factors associated with current ranges of tree species were assessed using geographic information...
Evaluation of blown down Alaska spruce and hemlock trees for pulp.
Donald J. Fahey; James M. Cahill
1983-01-01
Chips from Alaska hemlock and spruce trees blown down more than 10 years produced usable grades of viscose pulp. Yields of pulp from both species were about 2 percent lower for blowdown material than for control trees. Ash content was slightly higher in the pulp manufactured from blowdown timber than in pulp from control trees.
Monitoring environmental stress in forest trees using biochemical and physiological markers
R. Minocha; S.C. Minocha; S. Long
2003-01-01
Our objective was to determine the usefulness of polyamines, particularly putrescine, and amino acids such as arginine, as foliar indicators of abiotic stress in visually asymptomatic trees. An evaluation of apparently healthy trees is essential in developing risk assessment and stress remediation strategies for forest trees prior to the onset of obvious decline....
Coppicing to convert small cull trees to growing stock
Gerald A. Walters
1972-01-01
Several tree species are now being planted in Hawaii to reforest areas on which firetree (Myrica faya Ait.)-a plant pest of little commercial value-has been killed. The potential of converting cull trees of five ofthe replacement species into growing stock trees by coppicing was evaluated. Australian toon and tropical ash showed the greatest...
Comparing nonparametric Bayesian tree priors for clonal reconstruction of tumors.
Deshwar, Amit G; Vembu, Shankar; Morris, Quaid
2015-01-01
Statistical machine learning methods, especially nonparametric Bayesian methods, have become increasingly popular to infer clonal population structure of tumors. Here we describe the treeCRP, an extension of the Chinese restaurant process (CRP), a popular construction used in nonparametric mixture models, to infer the phylogeny and genotype of major subclonal lineages represented in the population of cancer cells. We also propose new split-merge updates tailored to the subclonal reconstruction problem that improve the mixing time of Markov chains. In comparisons with the tree-structured stick breaking prior used in PhyloSub, we demonstrate superior mixing and running time using the treeCRP with our new split-merge procedures. We also show that given the same number of samples, TSSB and treeCRP have similar ability to recover the subclonal structure of a tumor…
Fabian C.C. Uzoh; William W. Oliver
2008-01-01
A diameter increment model is developed and evaluated for individual trees of ponderosa pine throughout the species range in the United States using a multilevel linear mixed model. Stochastic variability is broken down among period, locale, plot, tree and within-tree components. Covariates acting at tree and stand level, as breast height diameter, density, site index...
Maffei, Helen M; Filip, Gregory M; Gruelke, Nancy E; Oblinger, Brent W; Margolis, Ellis; Chadwick, Kristen L
2016-01-01
Mid- to very large-sized Douglas-fir (Pseudotsuga menzieseii var. menziesii) that were lightly- to moderately-infected by dwarf mistletoe (Arceuthobium douglasii) were analyzed over a 14-year period to evaluate whether mechanical pruning could eradicate mistletoe (or at least delay the onset of severe infection) without significantly affecting tree vitality and by inference, longevity. Immediate and longterm pruning effects on mistletoe infection severity were assessed by comparing pruned trees (n = 173) to unpruned trees (n = 55) with respect to: (1) percentage of trees with no visible infections 14 years post-pruning, (2) Broom Volume Rating (BVR), and (3) rate of BVR increase 14 years postpruning. Vitality/longevity (compared with unpruned trees) was assessed using six indicators: (1) tree survival, (2) the development of severe infections, (3) the development of dead tops, (4) tree-ring width indices, (5) Normalized Difference Vegetation Index (NDVI) from high-resolution multi-spectral imagery, and (6) live-crown ratio (LCR) and increment. Twenty-four percent of the pruned trees remained free of mistletoe 14 years post-pruning. Pruning is most likely to successfully eradicate mistletoe in lightly infected trees (BVR 1 or 2) without infected neighbors. Pruning significantly decreased mean BVR in the pruned versus the unpruned trees. However, the subsequent average rate of intensification (1.3–1.5 BVR per decade) was not affected, implying that a single pruning provides ~14 years respite in the progression of infection levels. Post-pruning infection intensification was slower on dominant and co-dominants than on intermediate or suppressed trees. The success of mistletoe eradication via pruning and need for follow-up pruning should be evaluated no sooner than 14 years after pruning to allow for the development of detectable brooms. Based on six indicators, foliage from witches brooms contribute little to long-term tree vitality since removal appears to have little effect on resources available for tree growth and maintenance. In the severely pruned trees, tree-ring width was reduced for several years post-pruning, but then compensated with larger ring width in later years. Both NDVI and LCR increment were significantly higher for the pruned trees than the control trees, while the development of severe infections and/or dead tops was significantly (5X and 3X) higher for the controls. If possible, multiple indicators of tree vitality should be evaluated. Pruning can be worthwhile even if all the mistletoe is not removed, because mistletoe intensification is delayed. The impact of removing the brooms seems to be minimal, and post-pruning crowns had greater NDVI values.
Ground States of Random Spanning Trees on a D-Wave 2X
NASA Astrophysics Data System (ADS)
Hall, J. S.; Hobl, L.; Novotny, M. A.; Michielsen, Kristel
The performances of two D-Wave 2 machines (476 and 496 qubits) and of a 1097-qubit D-Wave 2X were investigated. Each chip has a Chimera interaction graph calG . Problem input consists of values for the fields hj and for the two-qubit interactions Ji , j of an Ising spin-glass problem formulated on calG . Output is returned in terms of a spin configuration {sj } , with sj = +/- 1 . We generated random spanning trees (RSTs) uniformly distributed over all spanning trees of calG . On the 476-qubit D-Wave 2, RSTs were generated on the full chip with Ji , j = - 1 and hj = 0 and solved one thousand times. The distribution of solution energies and the average magnetization of each qubit were determined. On both the 476- and 1097-qubit machines, four identical spanning trees were generated on each quadrant of the chip. The statistical independence of these regions was investigated. In another study, on the D-Wave 2X, one hundred RSTs with random Ji , j ∈ { - 1 , 1 } and hj = 0 were generated on the full chip. Each RST problem was solved one hundred times and the number of times the ground state energy was found was recorded. This procedure was repeated for square subgraphs, with dimensions ranging from 7 ×7 to 11 ×11. Supported in part by NSF Grants DGE-0947419 and DMR-1206233. D-Wave time provided by D-Wave Systems and by the USRA Quantum Artificial Intelligence Laboratory Research Opportunity.
Species tree inference by minimizing deep coalescences.
Than, Cuong; Nakhleh, Luay
2009-09-01
In a 1997 seminal paper, W. Maddison proposed minimizing deep coalescences, or MDC, as an optimization criterion for inferring the species tree from a set of incongruent gene trees, assuming the incongruence is exclusively due to lineage sorting. In a subsequent paper, Maddison and Knowles provided and implemented a search heuristic for optimizing the MDC criterion, given a set of gene trees. However, the heuristic is not guaranteed to compute optimal solutions, and its hill-climbing search makes it slow in practice. In this paper, we provide two exact solutions to the problem of inferring the species tree from a set of gene trees under the MDC criterion. In other words, our solutions are guaranteed to find the tree that minimizes the total number of deep coalescences from a set of gene trees. One solution is based on a novel integer linear programming (ILP) formulation, and another is based on a simple dynamic programming (DP) approach. Powerful ILP solvers, such as CPLEX, make the first solution appealing, particularly for very large-scale instances of the problem, whereas the DP-based solution eliminates dependence on proprietary tools, and its simplicity makes it easy to integrate with other genomic events that may cause gene tree incongruence. Using the exact solutions, we analyze a data set of 106 loci from eight yeast species, a data set of 268 loci from eight Apicomplexan species, and several simulated data sets. We show that the MDC criterion provides very accurate estimates of the species tree topologies, and that our solutions are very fast, thus allowing for the accurate analysis of genome-scale data sets. Further, the efficiency of the solutions allow for quick exploration of sub-optimal solutions, which is important for a parsimony-based criterion such as MDC, as we show. We show that searching for the species tree in the compatibility graph of the clusters induced by the gene trees may be sufficient in practice, a finding that helps ameliorate the computational requirements of optimization solutions. Further, we study the statistical consistency and convergence rate of the MDC criterion, as well as its optimality in inferring the species tree. Finally, we show how our solutions can be used to identify potential horizontal gene transfer events that may have caused some of the incongruence in the data, thus augmenting Maddison's original framework. We have implemented our solutions in the PhyloNet software package, which is freely available at: http://bioinfo.cs.rice.edu/phylonet.
Undergraduate Students’ Initial Ability in Understanding Phylogenetic Tree
NASA Astrophysics Data System (ADS)
Sa'adah, S.; Hidayat, T.; Sudargo, Fransisca
2017-04-01
The Phylogenetic tree is a visual representation depicts a hypothesis about the evolutionary relationship among taxa. Evolutionary experts use this representation to evaluate the evidence for evolution. The phylogenetic tree is currently growing for many disciplines in biology. Consequently, learning about the phylogenetic tree has become an important part of biological education and an interesting area of biology education research. Skill to understanding and reasoning of the phylogenetic tree, (called tree thinking) is an important skill for biology students. However, research showed many students have difficulty in interpreting, constructing, and comparing among the phylogenetic tree, as well as experiencing a misconception in the understanding of the phylogenetic tree. Students are often not taught how to reason about evolutionary relationship depicted in the diagram. Students are also not provided with information about the underlying theory and process of phylogenetic. This study aims to investigate the initial ability of undergraduate students in understanding and reasoning of the phylogenetic tree. The research method is the descriptive method. Students are given multiple choice questions and an essay that representative by tree thinking elements. Each correct answer made percentages. Each student is also given questionnaires. The results showed that the undergraduate students’ initial ability in understanding and reasoning phylogenetic tree is low. Many students are not able to answer questions about the phylogenetic tree. Only 19 % undergraduate student who answered correctly on indicator evaluate the evolutionary relationship among taxa, 25% undergraduate student who answered correctly on indicator applying concepts of the clade, 17% undergraduate student who answered correctly on indicator determines the character evolution, and only a few undergraduate student who can construct the phylogenetic tree.
Playing "Twenty Questions" with Attribute Blocks.
ERIC Educational Resources Information Center
Pagni, David L.
1993-01-01
Investigates the problem of finding the expected number of questions necessary to identify 1 out of a set of 30 attribute blocks. Solutions include the use of a tree diagram or a computer simulation. Generalizes the problem for increased numbers of attributes. (MDH)
Bald eagle winter roost characteristics in Lava Beds National Monument, California
Stohlgren, Thomas J.
1993-01-01
This study provided a survey of bald eagle (Haliaeetus leucocephalus) winter roost habitat (in 4 km2 of potential roost areas) in southern Lava Beds National Monument, California. A systematic-clustered sampling design (n=381 plots) was used to compare forest stand characteristics in two primary roost areas (Caldwell Butte and Eagle Nest Butte) and two potential roost areas (Hidden Valley and Island Butte). A 100 percent inventory of roost trees in Caldwell Butte (n=103 trees) and Eagle Nest Butte (n=44 trees) showed they were spatially clumped and restricted to 12.7 percent and 2.8 percent, respectively, of the study areas. Roost trees, primarily ponderosa pine (Pinus ponderosa), averaged 81.1 ± 1.3 cm dbh (mean ± 1 S.E.) compared to non-roost trees (>35 cm dbh) that averaged 52.2 ± 1.0 cm dbh. Roost trees were generally taller and more open-structured than non-roost trees. All four study sites had adequate numbers of mid-sized trees (10 to 50 cm dbh) to replace the current stock of older, larger roost trees. However, seedling and small trees (<10 cm dbh) in the roost areas were spatially clumped and few, suggesting that maintaining a continuous population of roost trees may be a problem in the distant future. Long-term studies of changing winter roost habitat and eagle use are essential to protect the bald eagle in the northwestern US.
A Critical Review on the Use of Support Values in Tree Viewers and Bioinformatics Toolkits.
Czech, Lucas; Huerta-Cepas, Jaime; Stamatakis, Alexandros
2017-06-01
Phylogenetic trees are routinely visualized to present and interpret the evolutionary relationships of species. Most empirical evolutionary data studies contain a visualization of the inferred tree with branch support values. Ambiguous semantics in tree file formats can lead to erroneous tree visualizations and therefore to incorrect interpretations of phylogenetic analyses. Here, we discuss problems that arise when displaying branch values on trees after rerooting. Branch values are typically stored as node labels in the widely-used Newick tree format. However, such values are attributes of branches. Storing them as node labels can therefore yield errors when rerooting trees. This depends on the mostly implicit semantics that tools deploy to interpret node labels. We reviewed ten tree viewers and ten bioinformatics toolkits that can display and reroot trees. We found that 14 out of 20 of these tools do not permit users to select the semantics of node labels. Thus, unaware users might obtain incorrect results when rooting trees. We illustrate such incorrect mappings for several test cases and real examples taken from the literature. This review has already led to improvements in eight tools. We suggest tools should provide options that explicitly force users to define the semantics of node labels. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Optimality problem of network topology in stocks market analysis
NASA Astrophysics Data System (ADS)
Djauhari, Maman Abdurachman; Gan, Siew Lee
2015-02-01
Since its introduction fifteen years ago, minimal spanning tree has become an indispensible tool in econophysics. It is to filter the important economic information contained in a complex system of financial markets' commodities. Here we show that, in general, that tool is not optimal in terms of topological properties. Consequently, the economic interpretation of the filtered information might be misleading. To overcome that non-optimality problem, a set of criteria and a selection procedure of an optimal minimal spanning tree will be developed. By using New York Stock Exchange data, the advantages of the proposed method will be illustrated in terms of the power-law of degree distribution.
Four competing interactions for models with an uncountable set of spin values on a Cayley tree
NASA Astrophysics Data System (ADS)
Rozikov, U. A.; Haydarov, F. H.
2017-06-01
We consider models with four competing interactions ( external field, nearest neighbor, second neighbor, and three neighbors) and an uncountable set [0, 1] of spin values on the Cayley tree of order two. We reduce the problem of describing the splitting Gibbs measures of the model to the problem of analyzing solutions of a nonlinear integral equation and study some particular cases for Ising and Potts models. We also show that periodic Gibbs measures for the given models either are translation invariant or have the period two. We present examples where periodic Gibbs measures with the period two are not unique.
NASA Astrophysics Data System (ADS)
Rizvi, Syed S.; Shah, Dipali; Riasat, Aasia
The Time Wrap algorithm [3] offers a run time recovery mechanism that deals with the causality errors. These run time recovery mechanisms consists of rollback, anti-message, and Global Virtual Time (GVT) techniques. For rollback, there is a need to compute GVT which is used in discrete-event simulation to reclaim the memory, commit the output, detect the termination, and handle the errors. However, the computation of GVT requires dealing with transient message problem and the simultaneous reporting problem. These problems can be dealt in an efficient manner by the Samadi's algorithm [8] which works fine in the presence of causality errors. However, the performance of both Time Wrap and Samadi's algorithms depends on the latency involve in GVT computation. Both algorithms give poor latency for large simulation systems especially in the presence of causality errors. To improve the latency and reduce the processor ideal time, we implement tree and butterflies barriers with the optimistic algorithm. Our analysis shows that the use of synchronous barriers such as tree and butterfly with the optimistic algorithm not only minimizes the GVT latency but also minimizes the processor idle time.
Forest health restoration in south-central Alaska: a problem analysis.
Darrell W. Ross; Gary E. Daterman; Jerry L. Boughton; Thomas M. Quigley
2001-01-01
A spruce beetle outbreak of unprecedented size and intensity killed most of the spruce trees on millions of acres of forest land in south-central Alaska in the 1990s. The tree mortality is affecting every component of the ecosystem, including the socioeconomic culture dependent on the resources of these vast forests. Based on information obtained through workshops and...
Severity of scab and its effects on fruit weight in mechanically hedge-pruned and topped pecan trees
USDA-ARS?s Scientific Manuscript database
Scab is the most damaging disease of pecan in the southeastern USA. Pecan trees can attain 44 m in height, so managing disease in the upper canopy is a problem. Fungicide is ordinarily applied using ground-based air-blast sprayers. Although mechanical hedge-pruning and topping of pecan is done for s...
Genetic structure of the invasive tree Ailanthus altissima in eastern United States cities
Preston R. Aldrich; Joseph S. Briguglio; Shyam N. Kapadia; Minesh U. Morker; Ankit Rawal; Preeti Kalra; Cynthia D. Huebner; Gary K. Greer
2010-01-01
Ailanthus altissima is an invasive tree from Asia. It now occurs in most US states, and although primarily an urban weed, it has become a problem in forested areas especially in the eastern states. Little is known about its genetic structure. We explore its naturalized gene pool from 28 populations, mostly of the eastern US where infestations are...
Dwight D. Baker; Maurice Fried; John A. Parrotta
1995-01-01
Estimation of symbiotic N2 fixation associated with large perennial plant species, especially trees, poses special problems because the process must be followed over a potentially long period of time to integrate the total amount of fixation. Estimations using isotope dilution methodology have begun to be used for trees in field studies. Because...
L. R. Costello; J. D. MacDonald; K. A. Jacobs
1991-01-01
Field measurements of oxygen concentration and oxygen diffusion rate (ODR) indicate that ODR is a more reliable indicator of problem sites. In a landscaped area where oak trees are declining, ODR in the upper part of the soil profile ranged between 0.1-0.2 µg O2cm2/minute (where µg = micrograms, and O...
Broadcast Applications of Glyphosate Control Nutsedge at a South Georgia Forest Tree Nursery
Stephen W. Fraedrich; L. David Dwinell; Michelle M. Cram
2003-01-01
Nutsedge is a major weed problem in some southern forest tree nurseries. Although herbicides can control most weeds in nurseries, control of nutsedge is usually dependent on fumigation. The purpose of this study was to examine the effectiveness of broadcast applications of glyphosate for control of nutsedge. Single and multiple applications of glyphosate at 2.2 kg ai/...
Gary W. Miller
1998-01-01
This report summarizes the basic silvicultural problems associated with regenerating commercial hardwood (broadleaf) species in the eastern United States and includes a review of current methods used to reduce the impact of deer browsing. The following topics are discussed: 1) the biological requirements and regeneration mechanism associated with several important tree...
Afforestation, restoration and regeneration -- Not all trees are created equal
Shaneka Lawson; Charles H. Michler
2014-01-01
Undulations in weather patterns have caused climate shifts of increased frequency and duration around the world. The need for additional research and model data on this pressing problem has resulted in a plethora of research groups examining a particular tree species or biome for negative effects of climate change. This review aims to (1) collect and merge recent...
Development of a sampling system for Armillaria rhizomorphs in mixed oak stands: a progress report
Mark J. Twery; Philip M. Wargo
1991-01-01
The assessment of the problems caused by gypsy moth is dependent on a number of characteristics of a forest stand. One of the main impacts of defoliation is the mortality of standing trees. Mortality is seldom caused directly by defoliation, but is usually associated with a secondary agent which attacks the tree in its weakened condition.
[Comprehensive evaluation and selection of urban eco-engineering virescent trees in Shenyang City].
Lu, Min; Jiang, Fengqi; Li, Yingjie
2004-07-01
Urban virescence eco-engineering is the core of urban eco-environmental construction, which can promote urban sustainable development. In urban virescence eco-engineering, the comprehensive evaluation of ecological adapt-ability and ecological effect of urban plants is the scientific basis of rational application and selection of urban garden plants. The ecological effect and integrative functions of urban virescence eco-engineering depend upon the selection and layout of garden plants. Using the methods of garden expert consultation and evaluation, this paper established systematically integrative evaluation and application indices of virescence plants in Shenyang City, from the aspects of ecological adaptability, ecological effect, beautification effect, resistance to plant diseases and insect pests, anti-pollution and economic results. According to garden experts evaluation and location of Shenyang, 200 sorts of virescence trees were evaluated and classified on the basis of the comprehensive evaluation system of virescence trees, and using cold resistance, drought resistance, barren resistance, plant diseases and insect pests resistance, anti-pollution, ornamental quality and ecological effects as the indexes. The results showed that the number of first rank trees was 58, the second was 93, methods of third was 38, and the fourth was 11, ranked by integrative performance.
ERIC Educational Resources Information Center
Reusser, Kurt; And Others
The main concern of this paper is on the psychological processes of how students understand and solve mathematical word problems, and on how this knowledge can be applied to computer-based tutoring. It is argued that only a better understanding of the psychological requirements for understanding and solving those problems will lead to…
Tree Colors: Color Schemes for Tree-Structured Data.
Tennekes, Martijn; de Jonge, Edwin
2014-12-01
We present a method to map tree structures to colors from the Hue-Chroma-Luminance color model, which is known for its well balanced perceptual properties. The Tree Colors method can be tuned with several parameters, whose effect on the resulting color schemes is discussed in detail. We provide a free and open source implementation with sensible parameter defaults. Categorical data are very common in statistical graphics, and often these categories form a classification tree. We evaluate applying Tree Colors to tree structured data with a survey on a large group of users from a national statistical institute. Our user study suggests that Tree Colors are useful, not only for improving node-link diagrams, but also for unveiling tree structure in non-hierarchical visualizations.
NASA Astrophysics Data System (ADS)
Constantin, Nechita; Francisca, Chiriloaei; Maria, Radoane; Ionel, Popa; Nicoae, Radoane
2016-04-01
This study is focused on analysis the frequency components of the signal detected in living and sub-fossil tree ring series from different time periods. The investigation is oriented to analyze signal frequency components (low and high) of the two categories of trees. The interpretation technique of tree ring width is the instrument most often used to elaborate past climatic reconstructions. The annual resolution, but also, the high capacity of trees to accumulate climatic information are attributes which confer to palaeo-environmental reconstructions the biggest credibility. The main objective of the study refers to the evaluation of climatic signal characteristics, both present day climate and palaeo-climate (last 7000 years BP). Modern dendrochronological methods were applied on 350 samples of sub-fossil trees and 400 living trees. The subfossil trunks were sampled from different fluvial environments (Siret, Suceava, Moldova). Their age was determined using radiocarbon, varying from under 100 years to almost 7000 years BP. The subfossil tree species investigated were Quercus, Alnus, Ulmus. Considering living trees, these were identified on eastern part of Romania, in different actual physico-geographical conditions. The studied living tree species consisted in Quercus species (robur and petraea). Each site was investigated regarding stress factors of the sampled tree. The working methods were applied to the total wood series, both late and early, to detect intra-annual level climate information. Each series has been tested to separate individual trees with climatic signal of other trees with different signals (noises determined by competition between individuals or site stress, or anthropic impact). Comparing dendrochronological series (sub-fossil and living trees) we want to identify what significant causes determined the difference in the signal frequencies. Especially, the human interventions registered in the last 2 centuries will be evaluated by these different types of signal in the tree rings. In order to evaluate this aspect we used time series which were standardized to avoid the non-climatic signal. This type of investigation is the first of its kind to Eastern Europe, an area so large (over 50 000 km2) and a high number of sites and individuals studied (about 1000). The obtained results will help us to understand the palaeo-environment evolution in the last Holocene and when human intervention has been really significant.
Analyzing and synthesizing phylogenies using tree alignment graphs.
Smith, Stephen A; Brown, Joseph W; Hinchliff, Cody E
2013-01-01
Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe.
Analyzing and Synthesizing Phylogenies Using Tree Alignment Graphs
Smith, Stephen A.; Brown, Joseph W.; Hinchliff, Cody E.
2013-01-01
Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe. PMID:24086118
Evaluation of the Biotoxicity of Tree Wood Ashes in Zebrafish Embryos.
Consigli, Veronica; Guarienti, Michela; Bilo, Fabjola; Benassi, Laura; Depero, Laura E; Bontempi, Elza; Presta, Marco
2016-10-01
Ashes derived from biomass combustion and used as soil fertilizers can generate negative environmental and human health risks, related to leaching of heavy metals and other putative toxic elements. Tree wood ash composition may vary depending on geographical location and surrounding industrial processes. In this study, we evaluated the biotoxicity of lixiviated tree wood ash samples from trees of the Ash (Fraxinus), Cherry (Pronus), Hazel (Corylus), and Black locust (Robinia) genus collected in an industrialized region in Northern Italy. Elemental chemical analysis of the samples was performed by total reflection X-ray fluorescence technique and their biotoxicity was assessed in zebrafish (Danio rerio) embryos. Ashes from Ash, Cherry, and Hazel trees, but not Black locust trees, had a high concentration of heavy metals and other putative toxic elements. Accordingly, a dose-dependent increase in mortality rate and morphological and teratogenic defects was observed in zebrafish embryos treated with lixiviated Ash, Cherry, and Hazel tree wood samples, whereas the toxicity of Black locust tree wood ashes was negligible. In conclusion, lixiviated wood ashes from different plants show a different content of toxic elements that correlate with their biotoxic effects on zebrafish embryos. Tree wood ashes derived from biomass combustion may represent a potential risk for the environment and human health.
Olive Tree-Ring Problematic Dating: A Comparative Analysis on Santorini (Greece)
Cherubini, Paolo; Humbel, Turi; Beeckman, Hans; Gärtner, Holger; Mannes, David; Pearson, Charlotte; Schoch, Werner; Tognetti, Roberto; Lev-Yadun, Simcha
2013-01-01
Olive trees are a classic component of Mediterranean environments and some of them are known historically to be very old. In order to evaluate the possibility to use olive tree-rings for dendrochronology, we examined by various methods the reliability of olive tree-rings identification. Dendrochronological analyses of olive trees growing on the Aegean island Santorini (Greece) show that the determination of the number of tree-rings is impossible because of intra-annual wood density fluctuations, variability in tree-ring boundary structure, and restriction of its cambial activity to shifting sectors of the circumference, causing the tree-ring sequences along radii of the same cross section to differ. PMID:23382949
Expected performance of m-solution backtracking
NASA Technical Reports Server (NTRS)
Nicol, D. M.
1986-01-01
This paper derives upper bounds on the expected number of search tree nodes visited during an m-solution backtracking search, a search which terminates after some preselected number m problem solutions are found. The search behavior is assumed to have a general probabilistic structure. The results are stated in terms of node expansion and contraction. A visited search tree node is said to be expanding if the mean number of its children visited by the search exceeds 1 and is contracting otherwise. It is shown that if every node expands, or if every node contracts, then the number of search tree nodes visited by a search has an upper bound which is linear in the depth of the tree, in the mean number of children a node has, and in the number of solutions sought. Also derived are bounds linear in the depth of the tree in some situations where an upper portion of the tree contracts (expands), while the lower portion expands (contracts). While previous analyses of 1-solution backtracking have concluded that the expected performance is always linear in the tree depth, the model allows superlinear expected performance.
Towards a hybrid energy efficient multi-tree-based optimized routing protocol for wireless networks.
Mitton, Nathalie; Razafindralambo, Tahiry; Simplot-Ryl, David; Stojmenovic, Ivan
2012-12-13
This paper considers the problem of designing power efficient routing with guaranteed delivery for sensor networks with unknown geographic locations. We propose HECTOR, a hybrid energy efficient tree-based optimized routing protocol, based on two sets of virtual coordinates. One set is based on rooted tree coordinates, and the other is based on hop distances toward several landmarks. In HECTOR, the node currently holding the packet forwards it to its neighbor that optimizes ratio of power cost over distance progress with landmark coordinates, among nodes that reduce landmark coordinates and do not increase distance in tree coordinates. If such a node does not exist, then forwarding is made to the neighbor that reduces tree-based distance only and optimizes power cost over tree distance progress ratio. We theoretically prove the packet delivery and propose an extension based on the use of multiple trees. Our simulations show the superiority of our algorithm over existing alternatives while guaranteeing delivery, and only up to 30% additional power compared to centralized shortest weighted path algorithm.
Towards a Hybrid Energy Efficient Multi-Tree-Based Optimized Routing Protocol for Wireless Networks
Mitton, Nathalie; Razafindralambo, Tahiry; Simplot-Ryl, David; Stojmenovic, Ivan
2012-01-01
This paper considers the problem of designing power efficient routing with guaranteed delivery for sensor networks with unknown geographic locations. We propose HECTOR, a hybrid energy efficient tree-based optimized routing protocol, based on two sets of virtual coordinates. One set is based on rooted tree coordinates, and the other is based on hop distances toward several landmarks. In HECTOR, the node currently holding the packet forwards it to its neighbor that optimizes ratio of power cost over distance progress with landmark coordinates, among nodes that reduce landmark coordinates and do not increase distance in tree coordinates. If such a node does not exist, then forwarding is made to the neighbor that reduces tree-based distance only and optimizes power cost over tree distance progress ratio. We theoretically prove the packet delivery and propose an extension based on the use of multiple trees. Our simulations show the superiority of our algorithm over existing alternatives while guaranteeing delivery, and only up to 30% additional power compared to centralized shortest weighted path algorithm. PMID:23443398
Ramezankhani, Roghieh; Sajjadi, Nooshin; Nezakati Esmaeilzadeh, Roya; Jozi, Seyed Ali; Shirzadi, Mohammad Reza
2018-05-08
Cutaneous Leishmaniasis (CL) is a neglected tropical disease that continues to be a health problem in Iran. Nearly 350 million people are thought to be at risk. We investigated the impact of the environmental factors on CL incidence during the period 2007- 2015 in a known endemic area for this disease in Isfahan Province, Iran. After collecting data with regard to the climatic, topographic, vegetation coverage and CL cases in the study area, a decision tree model was built using the classification and regression tree algorithm. CL data for the years 2007 until 2012 were used for model construction and the data for the years 2013 until 2015 were used for testing the model. The Root Mean Square error and the correlation factor were used to evaluate the predictive performance of the decision tree model. We found that wind speeds less than 14 m/s, altitudes between 1234 and 1810 m above the mean sea level, vegetation coverage according to the normalized difference vegetation index (NDVI) less than 0.12, rainfall less than 1.6 mm and air temperatures higher than 30°C would correspond to a seasonal incidence of 163.28 per 100,000 persons, while if wind speed is less than 14 m/s, altitude less than 1,810 m and NDVI higher than 0.12, then the mean seasonal incidence of the disease would be 2.27 per 100,000 persons. Environmental factors were found to be important predictive variables for CL incidence and should be considered in surveillance and prevention programmes for CL control.
An Examination of Diameter Density Prediction with k-NN and Airborne Lidar
Strunk, Jacob L.; Gould, Peter J.; Packalen, Petteri; ...
2017-11-16
While lidar-based forest inventory methods have been widely demonstrated, performances of methods to predict tree diameters with airborne lidar (lidar) are not well understood. One cause for this is that the performance metrics typically used in studies for prediction of diameters can be difficult to interpret, and may not support comparative inferences between sampling designs and study areas. To help with this problem we propose two indices and use them to evaluate a variety of lidar and k nearest neighbor (k-NN) strategies for prediction of tree diameter distributions. The indices are based on the coefficient of determination ( R 2),more » and root mean square deviation (RMSD). Both of the indices are highly interpretable, and the RMSD-based index facilitates comparisons with alternative (non-lidar) inventory strategies, and with projects in other regions. K-NN diameter distribution prediction strategies were examined using auxiliary lidar for 190 training plots distribute across the 800 km 2 Savannah River Site in South Carolina, USA. In conclusion, we evaluate the performance of k-NN with respect to distance metrics, number of neighbors, predictor sets, and response sets. K-NN and lidar explained 80% of variability in diameters, and Mahalanobis distance with k = 3 neighbors performed best according to a number of criteria.« less
An Examination of Diameter Density Prediction with k-NN and Airborne Lidar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strunk, Jacob L.; Gould, Peter J.; Packalen, Petteri
While lidar-based forest inventory methods have been widely demonstrated, performances of methods to predict tree diameters with airborne lidar (lidar) are not well understood. One cause for this is that the performance metrics typically used in studies for prediction of diameters can be difficult to interpret, and may not support comparative inferences between sampling designs and study areas. To help with this problem we propose two indices and use them to evaluate a variety of lidar and k nearest neighbor (k-NN) strategies for prediction of tree diameter distributions. The indices are based on the coefficient of determination ( R 2),more » and root mean square deviation (RMSD). Both of the indices are highly interpretable, and the RMSD-based index facilitates comparisons with alternative (non-lidar) inventory strategies, and with projects in other regions. K-NN diameter distribution prediction strategies were examined using auxiliary lidar for 190 training plots distribute across the 800 km 2 Savannah River Site in South Carolina, USA. In conclusion, we evaluate the performance of k-NN with respect to distance metrics, number of neighbors, predictor sets, and response sets. K-NN and lidar explained 80% of variability in diameters, and Mahalanobis distance with k = 3 neighbors performed best according to a number of criteria.« less
Evaluation of a portable MOS electronic nose to detect root rots in shade tree species
Manuela Baietto; Letizia Pozzi; Alphus Dan Wilson; Daniele Bassi
2013-01-01
The early detection of wood decays in high-value standing trees is very important in urban areas because mitigating control measures must be implemented long before tree failures result in property damage or injuries to citizens. Adverse urban environments increase physiological stresses in trees, causing greater susceptibility to attacks by pathogenic decay fungi. The...
Prediction and measurement of thermally induced cambial tissue necrosis in tree stems
Joshua L. Jones; Brent W. Webb; Bret W. Butler; Matthew B. Dickinson; Daniel Jimenez; James Reardon; Anthony S. Bova
2006-01-01
A model for fire-induced heating in tree stems is linked to a recently reported model for tissue necrosis. The combined model produces cambial tissue necrosis predictions in a tree stem as a function of heating rate, heating time, tree species, and stem diameter. Model accuracy is evaluated by comparison with experimental measurements in two hardwood and two softwood...
Arjan J. H. Meddens; Jeffrey A. Hicke; Lee A. Vierling; Andrew T. Hudak
2013-01-01
Bark beetles cause significant tree mortality in coniferous forests across North America. Mapping beetle-caused tree mortality is therefore important for gauging impacts to forest ecosystems and assessing trends. Remote sensing offers the potential for accurate, repeatable estimates of tree mortality in outbreak areas. With the advancement of multi-temporal disturbance...
Quality control of measurements made on fixed-area sample plots
Ola Lindgren
2000-01-01
The paper describes results from a large program for quality control of forest measurements. The performance of 87 surveyors was evaluated. Tree heights were usually measured well, whereas the counting of tree-rings on increment cores was a source of considerable bias for many surveyors. During tree count on sample plots, many surveyors had a tendency to forget trees,...
Active optical sensors for tree stem detection and classification in nurseries.
Garrido, Miguel; Perez-Ruiz, Manuel; Valero, Constantino; Gliever, Chris J; Hanson, Bradley D; Slaughter, David C
2014-06-19
Active optical sensing (LIDAR and light curtain transmission) devices mounted on a mobile platform can correctly detect, localize, and classify trees. To conduct an evaluation and comparison of the different sensors, an optical encoder wheel was used for vehicle odometry and provided a measurement of the linear displacement of the prototype vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and subsequent data processing, each sensor was individually evaluated to characterize their reliability, as well as their advantages and disadvantages for the proposed task. Test results indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These results can help system designers select the most reliable sensor for the accurate detection and localization of each tree in a nursery, which might allow labor-intensive tasks, such as weeding, to be automated without damaging crops.
Towards an Optimized Method of Olive Tree Crown Volume Measurement
Miranda-Fuentes, Antonio; Llorens, Jordi; Gamarra-Diezma, Juan L.; Gil-Ribes, Jesús A.; Gil, Emilio
2015-01-01
Accurate crown characterization of large isolated olive trees is vital for adjusting spray doses in three-dimensional crop agriculture. Among the many methodologies available, laser sensors have proved to be the most reliable and accurate. However, their operation is time consuming and requires specialist knowledge and so a simpler crown characterization method is required. To this end, three methods were evaluated and compared with LiDAR measurements to determine their accuracy: Vertical Crown Projected Area method (VCPA), Ellipsoid Volume method (VE) and Tree Silhouette Volume method (VTS). Trials were performed in three different kinds of olive tree plantations: intensive, adapted one-trunked traditional and traditional. In total, 55 trees were characterized. Results show that all three methods are appropriate to estimate the crown volume, reaching high coefficients of determination: R2 = 0.783, 0.843 and 0.824 for VCPA, VE and VTS, respectively. However, discrepancies arise when evaluating tree plantations separately, especially for traditional trees. Here, correlations between LiDAR volume and other parameters showed that the Mean Vector calculated for VCPA method showed the highest correlation for traditional trees, thus its use in traditional plantations is highly recommended. PMID:25658396
Uncertain decision tree inductive inference
NASA Astrophysics Data System (ADS)
Zarban, L.; Jafari, S.; Fakhrahmad, S. M.
2011-10-01
Induction is the process of reasoning in which general rules are formulated based on limited observations of recurring phenomenal patterns. Decision tree learning is one of the most widely used and practical inductive methods, which represents the results in a tree scheme. Various decision tree algorithms have already been proposed such as CLS, ID3, Assistant C4.5, REPTree and Random Tree. These algorithms suffer from some major shortcomings. In this article, after discussing the main limitations of the existing methods, we introduce a new decision tree induction algorithm, which overcomes all the problems existing in its counterparts. The new method uses bit strings and maintains important information on them. This use of bit strings and logical operation on them causes high speed during the induction process. Therefore, it has several important features: it deals with inconsistencies in data, avoids overfitting and handles uncertainty. We also illustrate more advantages and the new features of the proposed method. The experimental results show the effectiveness of the method in comparison with other methods existing in the literature.
Distance-Based Phylogenetic Methods Around a Polytomy.
Davidson, Ruth; Sullivant, Seth
2014-01-01
Distance-based phylogenetic algorithms attempt to solve the NP-hard least-squares phylogeny problem by mapping an arbitrary dissimilarity map representing biological data to a tree metric. The set of all dissimilarity maps is a Euclidean space properly containing the space of all tree metrics as a polyhedral fan. Outputs of distance-based tree reconstruction algorithms such as UPGMA and neighbor-joining are points in the maximal cones in the fan. Tree metrics with polytomies lie at the intersections of maximal cones. A phylogenetic algorithm divides the space of all dissimilarity maps into regions based upon which combinatorial tree is reconstructed by the algorithm. Comparison of phylogenetic methods can be done by comparing the geometry of these regions. We use polyhedral geometry to compare the local nature of the subdivisions induced by least-squares phylogeny, UPGMA, and neighbor-joining when the true tree has a single polytomy with exactly four neighbors. Our results suggest that in some circumstances, UPGMA and neighbor-joining poorly match least-squares phylogeny.
On defining a unique phylogenetic tree with homoplastic characters.
Goloboff, Pablo A; Wilkinson, Mark
2018-05-01
This paper discusses the problem of whether creating a matrix with all the character state combinations that have a fixed number of steps (or extra steps) on a given tree T, produces the same tree T when analyzed with maximum parsimony or maximum likelihood. Exhaustive enumeration of cases up to 20 taxa for binary characters, and up to 12 taxa for 4-state characters, shows that the same tree is recovered (as unique most likely or most parsimonious tree) as long as the number of extra steps is within 1/4 of the number of taxa. This dependence, 1/4 of the number of taxa, is discussed with a general argumentation, in terms of the spread of the character changes on the tree used to select character state distributions. The present finding allows creating matrices which have as much homoplasy as possible for the most parsimonious or likely tree to be predictable, and examination of these matrices with hill-climbing search algorithms provides additional evidence on the (lack of a) necessary relationship between homoplasy and the ability of search methods to find optimal trees. Copyright © 2018 Elsevier Inc. All rights reserved.
Disanto, Filippo; Rosenberg, Noah A
2016-01-01
Coalescent histories provide lists of species tree branches on which gene tree coalescences can take place, and their enumerative properties assist in understanding the computational complexity of calculations central in the study of gene trees and species trees. Here, we solve an enumerative problem left open by Rosenberg (IEEE/ACM Transactions on Computational Biology and Bioinformatics 10: 1253-1262, 2013) concerning the number of coalescent histories for gene trees and species trees with a matching labeled topology that belongs to a generic caterpillar-like family. By bringing a generating function approach to the study of coalescent histories, we prove that for any caterpillar-like family with seed tree t , the sequence (h n ) n ≥ 0 describing the number of matching coalescent histories of the n th tree of the family grows asymptotically as a constant multiple of the Catalan numbers. Thus, h n ∼ β t c n , where the asymptotic constant β t > 0 depends on the shape of the seed tree t. The result extends a claim demonstrated only for seed trees with at most eight taxa to arbitrary seed trees, expanding the set of cases for which detailed enumerative properties of coalescent histories can be determined. We introduce a procedure that computes from t the constant β t as well as the algebraic expression for the generating function of the sequence (h n ) n ≥ 0 .
Bootstrap confidence levels for phylogenetic trees.
Efron, B; Halloran, E; Holmes, S
1996-07-09
Evolutionary trees are often estimated from DNA or RNA sequence data. How much confidence should we have in the estimated trees? In 1985, Felsenstein [Felsenstein, J. (1985) Evolution 39, 783-791] suggested the use of the bootstrap to answer this question. Felsenstein's method, which in concept is a straightforward application of the bootstrap, is widely used, but has been criticized as biased in the genetics literature. This paper concerns the use of the bootstrap in the tree problem. We show that Felsenstein's method is not biased, but that it can be corrected to better agree with standard ideas of confidence levels and hypothesis testing. These corrections can be made by using the more elaborate bootstrap method presented here, at the expense of considerably more computation.
EEG feature selection method based on decision tree.
Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun
2015-01-01
This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whittaker, R.H.; Cohen, N.; Olson, J.S.
Measurement of productivity of forests is a difficult problem which has been variously approached. Results from an exploratory application of one approach (Whittaker 1961) to trees of three species - Liriodendron tulipifera (tulip tree or yellow poplar), Quercus alba (white oak), and Pinus echinata (shortleaf pine) - are reported here. The trees were felled in a logging operation at Oak Ridge National Laboratory in a mature second-growth, mixed oak-pine forest including also Quercus velutina, Q. coccinea, Q. falcata, Pinus virginiana, Acer rubrum, Nyssa sylvatica, Oxydendrum arboreum, and Carya ovalis. The forest grew on slopes of low hills on Knox dolomitemore » at about 300 m elevation. 22 references, 1 figure, 2 tables.« less
NASA Astrophysics Data System (ADS)
Pawlik, Łukasz; Kasprzak, Marek
2018-01-01
Following previous findings regarding the influence of vascular plants (mainly trees) on weathering, soil production and hillslope stability, in this study, we attempted to test a hypothesis regarding significant impacts of tree root systems on soil and regolith properties. Different types of impacts from tree root system (direct and indirect) are commonly gathered under the key term of "biomechanical effects". To add to the discussion of the biomechanical effects of trees, we used a non-invasive geophysical method, electrical resistivity tomography (ERT), to investigate the profiles of four different configurations at three study sites within the Polish section of the Outer Western Carpathians. At each site, one long profile (up to 189 m) of a large section of a hillslope and three short profiles (up to 19.5 m), that is, microsites occupied by trees or their remnants, were made. Short profiles included the tree root zone of a healthy large tree, the tree stump of a decaying tree and the pit-and-mound topography formed after a tree uprooting. The resistivity of regolith and bedrock presented on the long profiles and in comparison with the short profiles through the microsites it can be seen how tree roots impact soil and regolith properties and add to the complexity of the whole soil/regolith profile. Trees change soil and regolith properties directly through root channels and moisture migration and indirectly through the uprooting of trees and the formation of pit-and-mound topography. Within tree stump microsites, the impact of tree root systems, evaluated by a resistivity model, was smaller compared to microsites with living trees or those with pit-and-mound topography but was still visible even several decades after the trees were windbroken or cut down. The ERT method is highly useful for quick evaluation of the impact of tree root systems on soils and regolith. This method, in contrast to traditional soil analyses, offers a continuous dataset for the entire microsite and at depths not normally reached by standard soil excavations. The non-invasive nature of ERT studies is especially important for protected areas as it was shown in the present study.
Multi-level tree analysis of pulmonary artery/vein trees in non-contrast CT images
NASA Astrophysics Data System (ADS)
Gao, Zhiyun; Grout, Randall W.; Hoffman, Eric A.; Saha, Punam K.
2012-02-01
Diseases like pulmonary embolism and pulmonary hypertension are associated with vascular dystrophy. Identifying such pulmonary artery/vein (A/V) tree dystrophy in terms of quantitative measures via CT imaging significantly facilitates early detection of disease or a treatment monitoring process. A tree structure, consisting of nodes and connected arcs, linked to the volumetric representation allows multi-level geometric and volumetric analysis of A/V trees. Here, a new theory and method is presented to generate multi-level A/V tree representation of volumetric data and to compute quantitative measures of A/V tree geometry and topology at various tree hierarchies. The new method is primarily designed on arc skeleton computation followed by a tree construction based topologic and geometric analysis of the skeleton. The method starts with a volumetric A/V representation as input and generates its topologic and multi-level volumetric tree representations long with different multi-level morphometric measures. A new recursive merging and pruning algorithms are introduced to detect bad junctions and noisy branches often associated with digital geometric and topologic analysis. Also, a new notion of shortest axial path is introduced to improve the skeletal arc joining two junctions. The accuracy of the multi-level tree analysis algorithm has been evaluated using computer generated phantoms and pulmonary CT images of a pig vessel cast phantom while the reproducibility of method is evaluated using multi-user A/V separation of in vivo contrast-enhanced CT images of a pig lung at different respiratory volumes.
Sah, Jay P.; Ross, Michael S.; Snyder, James R.; ...
2010-01-01
In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated withmore » tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.« less
Chen, Xiao Yu; Ma, Li Zhuang; Chu, Na; Zhou, Min; Hu, Yiyang
2013-01-01
Chronic hepatitis B (CHB) is a serious public health problem, and Traditional Chinese Medicine (TCM) plays an important role in the control and treatment for CHB. In the treatment of TCM, zheng discrimination is the most important step. In this paper, an approach based on CFS-GA (Correlation based Feature Selection and Genetic Algorithm) and C5.0 boost decision tree is used for zheng classification and progression in the TCM treatment of CHB. The CFS-GA performs better than the typical method of CFS. By CFS-GA, the acquired attribute subset is classified by C5.0 boost decision tree for TCM zheng classification of CHB, and C5.0 decision tree outperforms two typical decision trees of NBTree and REPTree on CFS-GA, CFS, and nonselection in comparison. Based on the critical indicators from C5.0 decision tree, important lab indicators in zheng progression are obtained by the method of stepwise discriminant analysis for expressing TCM zhengs in CHB, and alterations of the important indicators are also analyzed in zheng progression. In conclusion, all the three decision trees perform better on CFS-GA than on CFS and nonselection, and C5.0 decision tree outperforms the two typical decision trees both on attribute selection and nonselection.
Andreas, Sylke; Dirmaier, Jörg; Harfst, Timo; Kawski, Stephan; Koch, Uwe; Schulz, Holger
2009-03-01
The aim of this study was to evaluate a case-mix system to classify inpatients with mental disorders in Germany by means of self-report and expert-rated instruments. The use of case-mix systems enhances the transparency of performance and cost structure and can thus improve the quality of mental health care. We analysed a consecutive sample of 1677 inpatients with mental disorders from 11 hospitals using regression tree analysis. The model assigns patients to 17 groups, accounting for 17% of the variance for duration of stay. Patients with eating disorders had a longer duration of stay than patients with anxiety disorder, duration of mental illness of less than 3-5 years, lower levels of interpersonal problems and higher occupational position. The results showed that besides diagnosis, variables such as duration of illness and interpersonal problems are important for classifying inpatients with mental disorders. The results of the study should be critically reviewed regarding the empirical results of other studies and the appropriateness of case group concepts for inpatients with mental disorders.
Interacting factors driving a major loss of large trees with cavities in a forest ecosystem.
Lindenmayer, David B; Blanchard, Wade; McBurney, Lachlan; Blair, David; Banks, Sam; Likens, Gene E; Franklin, Jerry F; Laurance, William F; Stein, John A R; Gibbons, Philip
2012-01-01
Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia--forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006-2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57-100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide.
Energy aware path planning in complex four dimensional environments
NASA Astrophysics Data System (ADS)
Chakrabarty, Anjan
This dissertation addresses the problem of energy-aware path planning for small autonomous vehicles. While small autonomous vehicles can perform missions that are too risky (or infeasible) for larger vehicles, the missions are limited by the amount of energy that can be carried on board the vehicle. Path planning techniques that either minimize energy consumption or exploit energy available in the environment can thus increase range and endurance. Path planning is complicated by significant spatial (and potentially temporal) variations in the environment. While the main focus is on autonomous aircraft, this research also addresses autonomous ground vehicles. Range and endurance of small unmanned aerial vehicles (UAVs) can be greatly improved by utilizing energy from the atmosphere. Wind can be exploited to minimize energy consumption of a small UAV. But wind, like any other atmospheric component , is a space and time varying phenomenon. To effectively use wind for long range missions, both exploration and exploitation of wind is critical. This research presents a kinematics based tree algorithm which efficiently handles the four dimensional (three spatial and time) path planning problem. The Kinematic Tree algorithm provides a sequence of waypoints, airspeeds, heading and bank angle commands for each segment of the path. The planner is shown to be resolution complete and computationally efficient. Global optimality of the cost function cannot be claimed, as energy is gained from the atmosphere, making the cost function inadmissible. However the Kinematic Tree is shown to be optimal up to resolution if the cost function is admissible. Simulation results show the efficacy of this planning method for a glider in complex real wind data. Simulation results verify that the planner is able to extract energy from the atmosphere enabling long range missions. The Kinematic Tree planning framework, developed to minimize energy consumption of UAVs, is applied for path planning in ground robots. In traditional path planning problem the focus is on obstacle avoidance and navigation. The optimal Kinematic Tree algorithm named Kinematic Tree* is shown to find optimal paths to reach the destination while avoiding obstacles. A more challenging path planning scenario arises for planning in complex terrain. This research shows how the Kinematic Tree* algorithm can be extended to find minimum energy paths for a ground vehicle in difficult mountainous terrain.
Fault Tree Analysis Application for Safety and Reliability
NASA Technical Reports Server (NTRS)
Wallace, Dolores R.
2003-01-01
Many commercial software tools exist for fault tree analysis (FTA), an accepted method for mitigating risk in systems. The method embedded in the tools identifies a root as use in system components, but when software is identified as a root cause, it does not build trees into the software component. No commercial software tools have been built specifically for development and analysis of software fault trees. Research indicates that the methods of FTA could be applied to software, but the method is not practical without automated tool support. With appropriate automated tool support, software fault tree analysis (SFTA) may be a practical technique for identifying the underlying cause of software faults that may lead to critical system failures. We strive to demonstrate that existing commercial tools for FTA can be adapted for use with SFTA, and that applied to a safety-critical system, SFTA can be used to identify serious potential problems long before integrator and system testing.
Mhatre, Natasha; Pollack, Gerald; Mason, Andrew
2016-04-01
Tree cricket males produce tonal songs, used for mate attraction and male-male interactions. Active mechanics tunes hearing to conspecific song frequency. However, tree cricket song frequency increases with temperature, presenting a problem for tuned listeners. We show that the actively amplified frequency increases with temperature, thus shifting mechanical and neuronal auditory tuning to maintain a match with conspecific song frequency. Active auditory processes are known from several taxa, but their adaptive function has rarely been demonstrated. We show that tree crickets harness active processes to ensure that auditory tuning remains matched to conspecific song frequency, despite changing environmental conditions and signal characteristics. Adaptive tuning allows tree crickets to selectively detect potential mates or rivals over large distances and is likely to bestow a strong selective advantage by reducing mate-finding effort and facilitating intermale interactions. © 2016 The Author(s).
Silva, Neuza; Moreira, Helena; Canavarro, Maria Cristina; Carona, Carlos
2018-01-01
Most children and adolescents with chronic health conditions have impaired health-related quality of life and are at high risk of internalizing and externalizing problems. However, few patients present clinically significant symptoms. Using a decision-tree approach, this study aimed to identify risk profiles for psychological problems based on measures that can be easily scored and interpreted by healthcare professionals in pediatric settings. The participants were 736 children and adolescents between 8–18 years of age with asthma, epilepsy, cerebral palsy, type-1diabetes or obesity. The children and adolescents completed self-report measures of health-related quality of life (DISABKIDS-10) and psychological problems (Strengths and Difficulties Questionnaire). Sociodemographic and clinical data were collected from their parents/ physicians. Children and adolescents were classified into the normal (78.5%) or borderline/clinical range (21.5%) according to the Strengths and Difficulties Questionnaire cut-off values for psychological problems. The overall accuracy of the decision-tree model was 78.1% (sensitivity = 71.5%; specificity = 79.9%), with 4 profiles predicting 71.5% of borderline/clinical cases. The strongest predictor of psychological problems was a health-related quality of life standardized score below the threshold of 57.5 for patients with cerebral palsy, epilepsy or obesity and below 70.0 for patients with asthma or diabetes. Other significant predictors were low socio-economic status, single-parent household, medication intake and younger age. The model showed adequate validity (risk = .28, SE = .02) and accuracy (area under the Receiver Operating Characteristic curve = .84; CI = .80/.87). The identification of pediatric patients at high risk for psychological problems may contribute to a more efficient allocation of health resources, particularly with regard to their referral to specialized psychological assessment and intervention. PMID:29852026
Vlsi implementation of flexible architecture for decision tree classification in data mining
NASA Astrophysics Data System (ADS)
Sharma, K. Venkatesh; Shewandagn, Behailu; Bhukya, Shankar Nayak
2017-07-01
The Data mining algorithms have become vital to researchers in science, engineering, medicine, business, search and security domains. In recent years, there has been a terrific raise in the size of the data being collected and analyzed. Classification is the main difficulty faced in data mining. In a number of the solutions developed for this problem, most accepted one is Decision Tree Classification (DTC) that gives high precision while handling very large amount of data. This paper presents VLSI implementation of flexible architecture for Decision Tree classification in data mining using c4.5 algorithm.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Hu, Q.
2017-09-01
Continuous development of urban road traffic system requests higher standards of road ecological environment. Ecological benefits of street trees are getting more attention. Carbon sequestration of street trees refers to the carbon stocks of street trees, which can be a measurement for ecological benefits of street trees. Estimating carbon sequestration in a traditional way is costly and inefficient. In order to solve above problems, a carbon sequestration estimation approach for street trees based on 3D point cloud from vehicle-borne laser scanning system is proposed in this paper. The method can measure the geometric parameters of a street tree, including tree height, crown width, diameter at breast height (DBH), by processing and analyzing point cloud data of an individual tree. Four Chinese scholartree trees and four camphor trees are selected for experiment. The root mean square error (RMSE) of tree height is 0.11m for Chinese scholartree and 0.02m for camphor. Crown widths in X direction and Y direction, as well as the average crown width are calculated. And the RMSE of average crown width is 0.22m for Chinese scholartree and 0.10m for camphor. The last calculated parameter is DBH, the RMSE of DBH is 0.5cm for both Chinese scholartree and camphor. Combining the measured geometric parameters and an appropriate carbon sequestration calculation model, the individual tree's carbon sequestration will be estimated. The proposed method can help enlarge application range of vehicle-borne laser point cloud data, improve the efficiency of estimating carbon sequestration, construct urban ecological environment and manage landscape.
Evaluating and improving rootstocks for apple cultivation
USDA-ARS?s Scientific Manuscript database
The foundations of a productive and healthy orchard are the rootstocks that provide anchorage, water and nutrients essential to the above ground portions of the trees. The utilization of composite trees has increased the efficiency of breeding productive apple trees by dividing the selection of sci...
Anantha M. Prasad; Louis R. Iverson; Andy Liaw; Andy Liaw
2006-01-01
We evaluated four statistical models - Regression Tree Analysis (RTA), Bagging Trees (BT), Random Forests (RF), and Multivariate Adaptive Regression Splines (MARS) - for predictive vegetation mapping under current and future climate scenarios according to the Canadian Climate Centre global circulation model.
USDA-ARS?s Scientific Manuscript database
Since the first report of the 'A72' semi-dwarf peach tree (Nn) by Monet and Salesses (1975), little information has become available on this genotype. We evaluated the growth habit and verified the inheritance of 'A72' in a population of 220 progeny derived from self-pollination. Detailed tree and ...
USDA-ARS?s Scientific Manuscript database
End-products of tree nuts and tree fruits grown in California, USA were evaluated for the ability to remove methyl bromide from the ventilation effluent of postharvest chamber fumigations. Activated carbon sorbents from walnut and almond shells as well as peach and prune pits were prepared using dif...
Structure, function and value of street trees in California, USA
E. Gregory McPherson; Natalie van Doorn; John de Goede
2016-01-01
This study compiled recent inventory data from 929,823 street trees in 50 cities to determine trends in tree number and density, identify priority investments and create baseline data against which the efficacy of future practices can be evaluated. The number of street trees increased from 5.9 million in 1988 to 9.1 million in 2014, about one for every four residents....
Sap-Sugar Content of Grafted Sugar Maple Trees
Maurice E. Jr. Demeritt; Maurice E. Jr. Demeritt
1985-01-01
In March and April 1983, 289 and 196 young grafted sugar maple trees were tapped and evaluated for sap-sugar content. In April, sap was collected from taps both above and below the graft union. Diameter of all tapped trees at 18 inches above the ground was measured. Analysis of the data revealed that: (1) trees selected for high sugar yield cannot be reproduced by...
Performance of engineered soil and trees in a parking lot bioswale
Qingfu Xiao; Gregory McPherson
2011-01-01
A bioswale integrating an engineered soil and trees was installed in a parking lot to evaluate its ability to reduce storm runoff, pollutant loading, and support tree growth. The adjacent control and treatment sites each received runoff from eight parking spaces and were identical except that there was no bioswale for the control site. A tree was planted at both sites...
David J. Nowak; Eric J. Greenfield
2010-01-01
The 2001 National Land Cover Database (NLCD) provides 30-m resolution estimates of percentage tree canopy and percentage impervious cover for the conterminous United States. Previous estimates that compared NLCD tree canopy and impervious cover estimates with photo-interpreted cover estimates within selected counties and places revealed that NLCD underestimates tree...
Root starch in defoliated sugar maples following thrips damage
Barbara S. Burns
1991-01-01
Sugar maple root starch evaluations were done in 1987 and 1988 as a service to Vermont sugarmakers concerned about tree health. Trees were rated for starch content in late fall, using a visual iodine-staining technique. On the average, trees with heavy pear thrips damage in the spring of 1988 had higher levels of root starch the following fall than trees with light or...
Tracey N. Johnson; Steven W. Buskirk; Gregory D. Hayward; Martin G. Raphael
2014-01-01
A recent series of bark beetle outbreaks in the Rocky Mountain region of the U.S. is the largest and most intense ever recorded. Factors contributing to tree mortality from bark beetles are complex, but include aspects of forest stand condition. Because stand conditions respond to forest management, evaluating bark beetle-caused tree mortality and changes in forest...
Susan J. Prichard; Maureen C. Kennedy
2012-01-01
Fuel reduction treatments are increasingly used to mitigate future wildfire severity in dry forests, but few opportunities exist to assess their effectiveness. We evaluated the influence of fuel treatment, tree size and species on tree mortality following a large wildfire event in recent thin-only, thin and prescribed burn (thin-Rx) units. Of the trees that died within...
Michael J. Clifford; Patrick D. Royer; Neil S. Cobb; David D. Breshears; Paulette L. Ford
2013-01-01
Recent regional tree die-off events appear to have been triggered by a combination of drought and heat - referred to as 'global-change-type drought'. To complement experiments focused on resolving mechanisms of drought-induced tree mortality, an evaluation of how patterns of tree die-off relate to highly spatially variable precipitation is needed....
ERIC Educational Resources Information Center
Torres, Edgardo E.; And Others
This comprehensive investigation into the reasons behind the crucial problem of the student dropout in foreign language programs focuses on seven interrelated areas. These are: (1) student, (2) teacher, (3) administration, (4) counselor, (5) parent, (6) community, and (7) teacher training. A fault-tree analysis of the dropout problem provides a…
Shrub-Steppe Early Succession Following Juniper Cutting and Prescribed Fire
NASA Astrophysics Data System (ADS)
Bates, Jonathan D.; Davies, Kirk W.; Sharp, Robert N.
2011-03-01
Pinus- Juniperus L. (Piñon-juniper) woodlands of the western United States have expanded in area nearly 10-fold since the late 1800's. Juniperus occidentalis ssp. occidentalis Hook. (western juniper) dominance in sagebrush steppe has several negative consequences, including reductions in herbaceous production and diversity, decreased wildlife habitat, and higher erosion and runoff potentials. Prescribed fire and mechanical tree removal are the main methods used to control J. occidentalis and restore sagebrush steppe. However, mature woodlands become difficult to prescribe burn because of the lack of understory fuels. We evaluated partial cutting of the woodlands (cutting 25-50% of the trees) to increase surface fuels, followed by prescribed fire treatments in late successional J. occidentalis woodlands of southwest Idaho to assess understory recovery. The study was conducted in two different plant associations and evaluated what percentage of the woodland required preparatory cutting to eliminate remaining J. occidentalis by prescribed fire, determined the impacts of fire to understory species, and examined early post-fire successional dynamics. The study demonstrated that late successional J. occidentalis woodlands can be burned after pre-cutting only a portion of the trees. Early succession in the cut-and-burn treatments were dominated by native annual and perennial forbs, in part due to high mortality of perennial bunchgrasses. By the third year after fire the number of establishing perennial grass seedlings indicated that both associations would achieve full herbaceous recovery. Cutting-prescribed fire combinations are an effective means for controlling encroaching late successional J. occidentalis and restoring herbaceous plant communities. However, land managers should recognize that there are potential problems associated with cutting-prescribed fire applications when invasive weeds are present.
Shrub-steppe early succession following juniper cutting and prescribed fire.
Bates, Jonathan D; Davies, Kirk W; Sharp, Robert N
2011-03-01
Pinus-Juniperus L. (Piñon-juniper) woodlands of the western United States have expanded in area nearly 10-fold since the late 1800's. Juniperus occidentalis ssp. occidentalis Hook. (western juniper) dominance in sagebrush steppe has several negative consequences, including reductions in herbaceous production and diversity, decreased wildlife habitat, and higher erosion and runoff potentials. Prescribed fire and mechanical tree removal are the main methods used to control J. occidentalis and restore sagebrush steppe. However, mature woodlands become difficult to prescribe burn because of the lack of understory fuels. We evaluated partial cutting of the woodlands (cutting 25-50% of the trees) to increase surface fuels, followed by prescribed fire treatments in late successional J. occidentalis woodlands of southwest Idaho to assess understory recovery. The study was conducted in two different plant associations and evaluated what percentage of the woodland required preparatory cutting to eliminate remaining J. occidentalis by prescribed fire, determined the impacts of fire to understory species, and examined early post-fire successional dynamics. The study demonstrated that late successional J. occidentalis woodlands can be burned after pre-cutting only a portion of the trees. Early succession in the cut-and-burn treatments were dominated by native annual and perennial forbs, in part due to high mortality of perennial bunchgrasses. By the third year after fire the number of establishing perennial grass seedlings indicated that both associations would achieve full herbaceous recovery. Cutting-prescribed fire combinations are an effective means for controlling encroaching late successional J. occidentalis and restoring herbaceous plant communities. However, land managers should recognize that there are potential problems associated with cutting-prescribed fire applications when invasive weeds are present.
Protecting forest trees and their seed from wild mammals: a review of the literature
M.A. Radwan
1963-01-01
An extensive literature'points to wild mammals as agents that may seriously reduce the productive capacity of forests and in many ways, interfere with efforts to grow valuable trees. While the loss of forest values is not a new problem, it has been brought into sharper focus through better identification of the various kinds of mammal-caused injuries and by...
Exploiting Non-sequence Data in Dynamic Model Learning
2013-10-01
For our experiments here and in Section 3.5, we implement the proposed algorithms in MATLAB and use the maximum directed spanning tree solver...embarrassingly parallelizable, whereas PM’s maximum directed spanning tree procedure is harder to parallelize. In this experiment, our MATLAB ...some estimation problems, this approach is able to give unique and consistent estimates while the maximum- likelihood method gets entangled in
Mechanical properties of salvaged dead yellow-cedar in southeast Alaska : Phase I
K. A. McDonald; P. E. Hennon; J. H. Stevens; D. W. Green
An intensive decline and mortality problem is affecting yellow-cedar trees in southeast Alaska. Yellow-cedar snags (dead trees) could be important to the economy in southeast Alaska, if some high-value uses for the snags could be established. Due to the high decay resistance of yellow-cedar, the rate of deterioration is so slow that snags may remain standing for a...
Effect of simulated ice storm damage on loblolly pine tree and stand growth
Rodney E. Will; Thomas Hennessey; Thomas Lynch; Robert Heinemann; Randal Holeman; Dennis Wilson
2012-01-01
Ice damage to loblolly pine plantations is a recurrent problem in eastern Oklahoma and western Arkansas with significant ice events occurring recently in 1995, twice in 2000, and in 2007. Following ice damage, forest owners need to decide to clear-cut and replant, thin or partial cut to rehabilitate, or take no action. A quantitative assessment of tree and stand growth...
ERIC Educational Resources Information Center
O'Bryan, Robert C.; Iverson, Maynard J.
Designed as a guide for teachers in planning and conducting young and adult farmer classes, the unit covers the basic areas of tree-fruit production. The format of the 10-lesson unit allows for the utilization of the problem-solving and discussion methods of teaching. The major objective of the unit is to develop the ability to effectively…
On Profit-Maximizing Pricing for the Highway and Tollbooth Problems
NASA Astrophysics Data System (ADS)
Elbassioni, Khaled; Raman, Rajiv; Ray, Saurabh; Sitters, René
In the tollbooth problem on trees, we are given a tree T= (V,E) with n edges, and a set of m customers, each of whom is interested in purchasing a path on the graph. Each customer has a fixed budget, and the objective is to price the edges of T such that the total revenue made by selling the paths to the customers that can afford them is maximized. An important special case of this problem, known as the highway problem, is when T is restricted to be a line. For the tollbooth problem, we present an O(logn)-approximation, improving on the current best O(logm)-approximation. We also study a special case of the tollbooth problem, when all the paths that customers are interested in purchasing go towards a fixed root of T. In this case, we present an algorithm that returns a (1 - ɛ)-approximation, for any ɛ> 0, and runs in quasi-polynomial time. On the other hand, we rule out the existence of an FPTAS by showing that even for the line case, the problem is strongly NP-hard. Finally, we show that in the discount model, when we allow some items to be priced below zero to improve the overall profit, the problem becomes even APX-hard.
How to test herbicides at forest tree nurseries.
Roger E. Sandquist; Peyton W. Owston; Stephen E. McDonald
1981-01-01
Procedures developed in a cooperative westwide study of weed control in forest tree nurseries are described in a form modified for use by nursery managers. The proven, properly designed test and evaluation methods can be used to generate data needed for evaluation and registration of herbicides.
Representations of the language recognition problem for a theorem prover
NASA Technical Reports Server (NTRS)
Minker, J.; Vanderbrug, G. J.
1972-01-01
Two representations of the language recognition problem for a theorem prover in first order logic are presented and contrasted. One of the representations is based on the familiar method of generating sentential forms of the language, and the other is based on the Cocke parsing algorithm. An augmented theorem prover is described which permits recognition of recursive languages. The state-transformation method developed by Cordell Green to construct problem solutions in resolution-based systems can be used to obtain the parse tree. In particular, the end-order traversal of the parse tree is derived in one of the representations. An inference system, termed the cycle inference system, is defined which makes it possible for the theorem prover to model the method on which the representation is based. The general applicability of the cycle inference system to state space problems is discussed. Given an unsatisfiable set S, where each clause has at most one positive literal, it is shown that there exists an input proof. The clauses for the two representations satisfy these conditions, as do many state space problems.
Prescriptions for Tough Vegetation Problems
James H. Miller
1999-01-01
Most tough forst vegetation problems are caused by non-native plants. These foreign invaders-often called exotic, alien, or noxious weeds-occur as trees, shrubs, vines, and grasses. Some have been introduced into this country accidentally, but most were brought here intentionally for livestock forage or as ornamentals.
A linear decomposition method for large optimization problems. Blueprint for development
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.
1982-01-01
A method is proposed for decomposing large optimization problems encountered in the design of engineering systems such as an aircraft into a number of smaller subproblems. The decomposition is achieved by organizing the problem and the subordinated subproblems in a tree hierarchy and optimizing each subsystem separately. Coupling of the subproblems is accounted for by subsequent optimization of the entire system based on sensitivities of the suboptimization problem solutions at each level of the tree to variables of the next higher level. A formalization of the procedure suitable for computer implementation is developed and the state of readiness of the implementation building blocks is reviewed showing that the ingredients for the development are on the shelf. The decomposition method is also shown to be compatible with the natural human organization of the design process of engineering systems. The method is also examined with respect to the trends in computer hardware and software progress to point out that its efficiency can be amplified by network computing using parallel processors.
Growth divergence: a challenging opportunity for dendrochronology
NASA Astrophysics Data System (ADS)
Buras, Allan; Sass-Klaassen, Ute; Wilmking, Martin
2017-04-01
Dendrochronology is an essential cornerstone of paleoclimatology and the evaluation of climate change impacts on forest ecosystems. However, a growing body of literature indicates that the standard dendrochronological approach may too rigorously neglect individualistic tree-growth (e.g. Wilmking et al., 2004, Buras et al., 2016). Amongst others, these studies showed convincing evidence that individual trees of the same species sampled at one site expressed different long-term growth patterns and therefore differing climate-growth relationships. This phenomenon is commonly termed growth divergence (GD) and possibly weakens our ability to correctly estimate past climate variability as discussed in the context of the so-called divergence phenomenon (D'Arrigo et al., 2008). In this context, climate change may naturally select for trees on the stand-level which are better adapted to future conditions. Although GD has been reported for several sites, the standard dendrochronological approach yet does not consider the existence of GD. A possible reason for this methodological persistence is the lack of detailed information on the frequency, magnitude, and impact of GD occurrence. To assess GD occurrence and related tree-individual variations in climate-growth response we conducted a global GD study by using 134 ring-width data representing 52 tree species and 16 genera distributed over 115 sites across 22 countries. Our analyses clearly reveal GD to be a common phenomenon as occurring in 85 % of all sites. GD was clearly related to the degree of tree-individual differences in climate-growth response. Respective transfer functions which appropriately accounted for GD by selection of tree-cohorts with a high share of long-term variance on average increased the precision and stability of tree-ring based climate reconstructions. Concluding, incorporation of GD assessments into the dendrochronological approach has a strong potential to improve the precision of our predictions of past climates as well as the response of forest ecosystems to climate change. Buras, A. et al. Tuning the Voices of a Choir: Detecting Ecological Gradients in Time-Series Populations. PLOS ONE 11, e0158346 (2016). Wilmking, M., Juday, G. P., Barber, V. A. & Zald, H. S. J. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biology 10, 1724-1736 (2004). D'Arrigo, R., Wilson, R., Liepert, B. & Cherubini, P. On the 'Divergence Problem' in Northern Forests: A review of the tree-ring evidence and possible causes. Global and Planetary Change 60, 289-305 (2008).
Tropical geometry of statistical models.
Pachter, Lior; Sturmfels, Bernd
2004-11-16
This article presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. Here, we address the question of how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. The Newton polytope of a statistical model plays a key role. Our results are applied to the hidden Markov model and the general Markov model on a binary tree.
7 CFR 1214.61 - Independent evaluation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE CHRISTMAS TREE PROMOTION, RESEARCH, AND INFORMATION ORDER Christmas Tree Promotion, Research, and Information Order Promotion...
7 CFR 1214.61 - Independent evaluation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE CHRISTMAS TREE PROMOTION, RESEARCH, AND INFORMATION ORDER Christmas Tree Promotion, Research, and Information Order Promotion...
7 CFR 1214.61 - Independent evaluation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE CHRISTMAS TREE PROMOTION, RESEARCH, AND INFORMATION ORDER Christmas Tree Promotion, Research, and Information Order Promotion...
Plant growth responses to polypropylene--biocontainers
USDA-ARS?s Scientific Manuscript database
The influence of bio-fillers incorporated into polypropylene (PP) on the growth of plants was evaluated. Biocontainers were created by injection molding of PP with 25-40% by weight of Osage orange tree, Paulownia tree, coffee tree wood or dried distillers grain and 5% by weight of maleated polypropy...