Density-dependent vulnerability of forest ecosystems to drought
Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Bradford, John B.; Fraver, Shawn; Battaglia, Mike A.; Asherin, Lance A.
2017-01-01
1. Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary driver of competitive intensity among trees, which influences tree growth and mortality. Manipulating tree population density may be a mechanism for moderating drought-induced stress and growth reductions, although the relationship between tree population density and tree drought vulnerability remains poorly quantified, especially across climatic gradients.2. In this study, we examined three long-term forest ecosystem experiments in two widely distributed North American pine species, ponderosa pine Pinus ponderosa (Lawson & C. Lawson) and red pine Pinus resinosa (Aiton), to better elucidate the relationship between tree population density, growth and drought. These experiments span a broad latitude and aridity range and include tree population density treatments that have been purposefully maintained for several decades. We investigated how tree population density influenced resistance (growth during drought) and resilience (growth after drought compared to pre-drought growth) of stand-level growth during and after documented drought events.3. Our results show that relative tree population density was negatively related to drought resistance and resilience, indicating that trees growing at lower densities were less vulnerable to drought. This result was apparent in all three forest ecosystems, and was consistent across species, stand age and drought intensity.4. Synthesis and applications. Our results highlighted that managing pine forest ecosystems at low tree population density represents a promising adaptive strategy for reducing the adverse impacts of drought on forest growth in coming decades. Nonetheless, the broader applicability of our findings to other types of forest ecosystems merits additional investigation.
Mercader, R J; Siegert, N W; McCullough, D G
2012-02-01
Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), a phloem-feeding pest of ash (Fraxinus spp.) trees native to Asia, was first discovered in North America in 2002. Since then, A. planipennis has been found in 15 states and two Canadian provinces and has killed tens of millions of ash trees. Understanding the probability of detecting and accurately delineating low density populations of A. planipennis is a key component of effective management strategies. Here we approach this issue by 1) quantifying the efficiency of sampling nongirdled ash trees to detect new infestations of A. planipennis under varying population densities and 2) evaluating the likelihood of accurately determining the localized spread of discrete A. planipennis infestations. To estimate the probability a sampled tree would be detected as infested across a gradient of A. planipennis densities, we used A. planipennis larval density estimates collected during intensive surveys conducted in three recently infested sites with known origins. Results indicated the probability of detecting low density populations by sampling nongirdled trees was very low, even when detection tools were assumed to have three-fold higher detection probabilities than nongirdled trees. Using these results and an A. planipennis spread model, we explored the expected accuracy with which the spatial extent of an A. planipennis population could be determined. Model simulations indicated a poor ability to delineate the extent of the distribution of localized A. planipennis populations, particularly when a small proportion of the population was assumed to have a higher propensity for dispersal.
Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William
2014-01-01
Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies.
Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William
2014-01-01
Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies. PMID:24992657
Xiao, Zhishu; Mi, Xiangcheng; Holyoak, Marcel; Xie, Wenhua; Cao, Ke; Yang, Xifu; Huang, Xiaoqun; Krebs, Charles J
2017-01-01
The Janzen-Connell model predicts that common species suffer high seed predation from specialized natural enemies as a function of distance from parent trees, and consequently as a function of conspecific density, whereas the predator satiation hypothesis predicts that seed attack is reduced due to predator satiation at high seed densities. Pre-dispersal predation by insects was studied while seeds are still on parent trees, which represents a frequently overlooked stage in which seed predation occurs. Reproductive tree density and seed production were investigated from ten Quercus serrata populations located in south-west China, quantifying density-dependent pre-dispersal seed predation over two years by three insect groups. Acorn infestation was nearly twice as high in the low-seed year as that in the high-seed year, with considerable spatio-temporal variation in the direction and magnitude of density-dependent pre-dispersal seed predation evident. Across whole populations of trees, a high density of reproductive trees caused predator satiation and reduced insect attack in the high-seed year. Within individual trees, and consistent with the Janzen-Connell model, overall insect seed predation was positively correlated with seed production in the low-seed year. In addition, there was variation among insect taxa, with positive density-dependent seed predation by Curculio weevils in the high-seed year and moths in the low-seed year, but apparent density independence by Cyllorhynchites weevils in both years. The overall trend of negative density-dependent, pre-dispersal seed predation suggests that predator satiation limited the occurrence of Janzen-Connell effects across Q. serrata populations. Such effects may have large impacts on plant population dynamics and tree diversity, depending on the extent to which they are reduced by counteracting positive density-dependent predation for seeds on individual trees and other factors affecting successful recruitment. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao
2016-12-01
Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival. © 2016 John Wiley & Sons Ltd/CNRS.
Jones, F.A; Comita, L.S
2008-01-01
Tropical trees may show positive density dependence in fruit set and maturation due to pollen limitation in low-density populations. However, pollen from closely related individuals in the local neighbourhood might reduce fruit set or increase fruit abortion in self-incompatible tree species. We investigated the role of neighbourhood density and genetic relatedness on individual fruit set and abortion in the neotropical tree Jacaranda copaia in a large forest plot in central Panama. Using nested neighbourhood models, we found a strong positive effect of increased conspecific density on fruit set and maturation. However, high neighbourhood genetic relatedness interacted with density to reduce total fruit set and increase the proportion of aborted fruit. Our results imply a fitness advantage for individuals growing in high densities as measured by fruit set, but realized fruit set is lowered by increased neighbourhood relatedness. We hypothesize that the mechanism involved is increased visitation by density-dependent invertebrate pollinators in high-density populations, which increases pollen quantity and carry-over and increases fruit set and maturation, coupled with self-incompatibility at early and late stages due to biparental inbreeding that lowers fruit set and increases fruit abortion. Implications for the reproductive ecology and conservation of tropical tree communities in continuous and fragmented habitats are discussed. PMID:18713714
Emerald ash borer (Coleoptera: Buprestidae) attraction to stressed or baited ash trees.
McCullough, Deborah G; Poland, Therese M; Anulewicz, Andrea C; Cappaert, David
2009-12-01
Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has killed millions of ash (Fraxinus sp.) trees in North America since its discovery in Michigan in 2002. Efficient methods to detect low-density A. planipennis populations remain a critical priority for regulatory and resource management agencies. We compared the density of adult A. planipennis captured on sticky bands and larval density among ash trees that were girdled for 1 or 2 yr, wounded, exposed to the stress-elicitor methyl jasmonate, baited with Manuka oil lures, or left untreated. Studies were conducted at four sites in 2006 and 2007, where A. planipennis densities on untreated trees ranged from very low to moderate. In 2006, 1-yr girdled trees captured significantly more adult A. planipennis and had higher larval densities than untreated control trees or trees treated with methyl jasmonate or Manuka oil. Open-grown trees captured significantly more A. planipennis beetles than partially or fully shaded trees. In 2007, A. planipennis population levels and captures of adult A. planipennis were substantially higher than in 2006. The density of adults captured on sticky bands did not differ significantly among canopy exposure classes or treatments in 2007. Larval density was significantly higher in untreated, wounded, and 1-yr girdled trees (girdled in 2007) than in 2-yr girdled trees (girdled in 2006), where most phloem was consumed by A. planipennis larvae the previous year. A total of 36 trees (32 in 2006, 4 in 2007) caught no beetles, but 16 of those trees (13 in 2006, 3 in 2007) had A. planipennis larvae. In 2006, there was a positive linear relationship between the density of adults captured on sticky bands and larval density in trees. Our results show that freshly girdled and open grown trees were most attractive to A. planipennis, especially at low-density sites. If girdled trees are used for A. planipennis detection or survey, debarking trees to locate larval galleries is crucial.
Castilla, Antonio R.; Pope, Nathaniel; Jha, Shalene
2016-01-01
Background and Aims Global pollinator declines and continued habitat fragmentation highlight the critical need to understand reproduction and gene flow across plant populations. Plant size, conspecific density and local kinship (i.e. neighbourhood genetic relatedness) have been proposed as important mechanisms influencing the reproductive success of flowering plants, but have rarely been simultaneously investigated. Methods We conducted this study on a continuous population of the understorey tree Miconia affinis in the Forest Dynamics Plot on Barro Colorado Island in central Panama. We used spatial, reproductive and population genetic data to investigate the effects of tree size, conspecific neighbourhood density and local kinship on maternal and paternal reproductive success. We used a Bayesian framework to simultaneously model the effects of our explanatory variables on the mean and variance of maternal viable seed set and siring success. Key Results Our results reveal that large trees had lower proportions of viable seeds in their fruits but sired more seeds. We documented differential effects of neighbourhood density and local kinship on both maternal and paternal reproductive components. Trees in more dense neighbourhoods produced on average more viable seeds, although this positive density effect was influenced by variance-inflation with increasing local kinship. Neighbourhood density did not have significant effects on siring success. Conclusions This study is one of the first to reveal an interaction among tree size, conspecific density and local kinship as critical factors differentially influencing maternal and paternal reproductive success. We show that both maternal and paternal reproductive success should be evaluated to determine the population-level and individual traits most essential for plant reproduction. In addition to conserving large trees, we suggest the inclusion of small trees and the conservation of dense patches with low kinship as potential strategies for strengthening the reproductive status of tropical trees. PMID:26602288
Castilla, Antonio R; Pope, Nathaniel; Jha, Shalene
2016-02-01
Global pollinator declines and continued habitat fragmentation highlight the critical need to understand reproduction and gene flow across plant populations. Plant size, conspecific density and local kinship (i.e. neighbourhood genetic relatedness) have been proposed as important mechanisms influencing the reproductive success of flowering plants, but have rarely been simultaneously investigated. We conducted this study on a continuous population of the understorey tree Miconia affinis in the Forest Dynamics Plot on Barro Colorado Island in central Panama. We used spatial, reproductive and population genetic data to investigate the effects of tree size, conspecific neighbourhood density and local kinship on maternal and paternal reproductive success. We used a Bayesian framework to simultaneously model the effects of our explanatory variables on the mean and variance of maternal viable seed set and siring success. Our results reveal that large trees had lower proportions of viable seeds in their fruits but sired more seeds. We documented differential effects of neighbourhood density and local kinship on both maternal and paternal reproductive components. Trees in more dense neighbourhoods produced on average more viable seeds, although this positive density effect was influenced by variance-inflation with increasing local kinship. Neighbourhood density did not have significant effects on siring success. This study is one of the first to reveal an interaction among tree size, conspecific density and local kinship as critical factors differentially influencing maternal and paternal reproductive success. We show that both maternal and paternal reproductive success should be evaluated to determine the population-level and individual traits most essential for plant reproduction. In addition to conserving large trees, we suggest the inclusion of small trees and the conservation of dense patches with low kinship as potential strategies for strengthening the reproductive status of tropical trees. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Duncan, Larry W.; Eissenstat, David M.
1993-01-01
Sixteen mature Valencia orange trees on rough lemon rootstock were selected on the basis of approximately equal, naturally occurring populations of Tylenchulus semipenetrans in soil. In March, fruit 1 cm in diameter or less were removed from eight of the trees, which were kept free of fruit for 15 months. In July, 4 months after fruit removal, fibrous root (<2 mm d) mass density of defruited trees was 51% greater and insoluble starch in fibrous roots was 24% less than on control trees with fruit. Female T. semipenetrans per gram of root were 64% more numerous on roots of control trees than on defruited trees at this time. Numbers of female nematodes per tree and of juveniles and males in soil did not differ between treatments 4 months after fruit removal. Root mass density remained higher on defruited than control trees for the remaining 13 months that the trees were studied, while nematode density in soil beneath defruited trees rapidly increased to levels proportionate to the additional root mass density. Nine months after fruit removal (December), starch concentration was 84% higher in roots of defruited trees compared to controls and remained 28% higher than in controls 15 months (May) following fruit removal. Between months 9 and 15 following fruit removal, nematode density in soil beneath defruited trees increased at a rate five times that of nematode density beneath control trees. In May, female fecundity (eggs/female) on defruited trees was 41% greater than on control trees. The data were consistent with the hypothesis that carbohydrate competition between developing citrus fruit and T. semipenetrans influences seasonal fluctuations in nematode population densities. PMID:19279735
Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J
2016-03-01
Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species.
Urbano, Plutarco; Poveda, Cristina; Molina, Jorge
2015-04-01
Rhodnius prolixus Stål, 1859 is one of the main vectors of Trypanosoma (Schyzotrypanum) cruzi Chagas, 1909. In its natural forest environment, this triatomine is mainly found in palm tree crowns, where it easily establishes and develops dense populations. The aim of this study was to evaluate the effect of the physiognomy and reproductive status of Attalea butyracea on the population relative density and age structure of R. prolixus and to determine the vector's population stratification according to the vertical and horizontal profile of an A. butyracea forest. Using live bait traps, 150 individuals of A. butyracea with different physiognomy and 40 individuals with similar physiognomy (crown size, number of leaves, palm tree height, diameter at breast height, reproductive status) were sampled for triatomines in Yopal, Casanare-Colombia. Temperature and relative humidity were measured in the crown of the palm tree. Entomological indices and natural infection rates were also determined. The relative population density of R. prolixus on natural A. butyracea groves is associated with the palm's height, number of leaves and crown volume. The young immature stages were present mostly at the crown's base and the advanced immature stages and adults were present mostly at the crown of the palm tree. This distribution correlates with the temperature stability and relative humidity in the base and the fluctuation of both environmental variables in the palm's crown. A higher density of R. prolixus was found as the palm tree height increased and as the distance of the palm with respect to the forest border decreased, especially towards anthropically intervened areas. A density index of 12.6 individuals per palm tree with an infestation index of 88.9% and a colonization index of 98.7% was observed. 85.2% was the infection index with T. cruzi. The physiognomy of palm trees affects the relative population density and the distribution of developmental stages of R. prolixus. Therefore, they constitute a risk factor for the potential migration of infected insects from wild environments towards residential environments and the subsequent epidemiological risk of transmission of T. cruzi to people.
St Clair, Samuel B; Hoines, Joshua
2018-01-01
Climate change is restructuring plant populations and can result in range shifts depending on responses at various life stages of plants. In 2013, a widespread and episodic flowering event provided an opportunity to characterize how Joshua tree's reproductive success and population structure vary in response to the climate variability across its range. We examined the reproductive success and stand structure of 10 Joshua tree populations distributed across the Mojave Desert. Joshua tree density varied by more than an order of magnitude across sites. At 8 of the 10 sites, nearly 80% of the Joshua trees were in bloom, and at the other two 40% were in bloom. The range of seed production and fruit set across the study populations varied by more than an order of magnitude. Fruit production occurred at all of our study sites suggesting that yucca moth pollinators were present at our sites. Increasing temperature had strong positive correlations with the number of trees in bloom (R2 = 0.42), inflorescences per tree (R2 = 0.37), and fruit mass (R2 = 0.77) and seed size (R2 = 0.89. In contrast, temperature was negatively correlated with Joshua tree stand density (R2 = -0.80). Positive correlations between temperature and greater flower and seed production suggest that warming may positively affect Joshua Tree reproduction while negative relationships between temperature and stand density are suggestive of potential constraints of warmer temperatures on establishment success.
Arianna Morani; David J. Nowak; Satoshi Hirabayashi; Carlo Calfapietra
2011-01-01
Highest priority zones for tree planting within New York City were selected by using a planting priority index developed combining three main indicators: pollution concentration, population density and low canopy cover. This new tree population was projected through time to estimate potential air quality and carbon bene!ts. Those trees will likely remove more than 10...
Siegert, Nathan W; McCullough, Deborah G; Poland, Therese M; Heyd, Robert L
2017-06-01
Effective survey methods to detect and monitor recently established, low-density infestations of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), remain a high priority because they provide land managers and property owners with time to implement tactics to slow emerald ash borer population growth and the progression of ash mortality. We evaluated options for using girdled ash (Fraxinus spp.) trees for emerald ash borer detection and management in a low-density infestation in a forested area with abundant green ash (F. pennsylvanica). Across replicated 4-ha plots, we compared detection efficiency of 4 versus 16 evenly distributed girdled ash trees and between clusters of 3 versus 12 girdled trees. We also examined within-tree larval distribution in 208 girdled and nongirdled trees and assessed adult emerald ash borer emergence from detection trees felled 11 mo after girdling and left on site. Overall, current-year larvae were present in 85-97% of girdled trees and 57-72% of nongirdled trees, and larval density was 2-5 times greater on girdled than nongirdled trees. Low-density emerald ash borer infestations were readily detected with four girdled trees per 4-ha, and 3-tree clusters were as effective as 12-tree clusters. Larval densities were greatest 0.5 ± 0.4 m below the base of the canopy in girdled trees and 1.3 ± 0.7 m above the canopy base in nongirdled trees. Relatively few adult emerald ash borer emerged from trees felled 11 mo after girdling and left on site through the following summer, suggesting removal or destruction of girdled ash trees may be unnecessary. This could potentially reduce survey costs, particularly in forested areas with poor accessibility. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
Density-dependent vulnerability of forest ecosystems to drought
Alessandra Bottero; Anthony W. D' Amato; Brian J. Palik; John B. Bradford; Shawn Fraver; Mike A. Battaglia; Lance A. Asherin; Harald Bugmann
2017-01-01
Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary...
Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J
2016-01-01
Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species. PMID:26696137
Hoines, Joshua
2018-01-01
Climate change is restructuring plant populations and can result in range shifts depending on responses at various life stages of plants. In 2013, a widespread and episodic flowering event provided an opportunity to characterize how Joshua tree’s reproductive success and population structure vary in response to the climate variability across its range. We examined the reproductive success and stand structure of 10 Joshua tree populations distributed across the Mojave Desert. Joshua tree density varied by more than an order of magnitude across sites. At 8 of the 10 sites, nearly 80% of the Joshua trees were in bloom, and at the other two 40% were in bloom. The range of seed production and fruit set across the study populations varied by more than an order of magnitude. Fruit production occurred at all of our study sites suggesting that yucca moth pollinators were present at our sites. Increasing temperature had strong positive correlations with the number of trees in bloom (R2 = 0.42), inflorescences per tree (R2 = 0.37), and fruit mass (R2 = 0.77) and seed size (R2 = 0.89. In contrast, temperature was negatively correlated with Joshua tree stand density (R2 = -0.80). Positive correlations between temperature and greater flower and seed production suggest that warming may positively affect Joshua Tree reproduction while negative relationships between temperature and stand density are suggestive of potential constraints of warmer temperatures on establishment success. PMID:29474414
Krugner, Rodrigo; Groves, Russell L; Johnson, Marshall W; Flores, Arnel P; Hagler, James R; Morse, Joseph G
2009-06-01
A 2-yr study was conducted in a citrus orchard (Citrus sinensis L. Osbeck cultivar Valencia) to determine the influence of plant water stress on the population dynamics of glassy-winged sharpshooter, Homalodisca vitripennis (Germar). Experimental treatments included irrigation at 100% of the crop evapotranspiration rate (ET(c)) and continuous deficit-irrigation regimens at 80 and 60% ET(c). Microclimate and plant conditions monitored included temperature and humidity in the tree canopy, leaf surface temperature, water potential, and fruit quality and yield. Glassy-winged sharpshooter population densities and activity were monitored weekly by a combination of visual inspections, beat net sampling, and trapping. Glassy-winged sharpshooter populations were negatively affected by severe plant water stress; however, population densities were not linearly related to decreasing water availability in plants. Citrus trees irrigated at 60% ET(c) had significantly warmer leaves, lower xylem water potential, and consequently hosted fewer glassy-winged sharpshooter eggs, nymphs, and adults than trees irrigated at 80% ET(c). Citrus trees irrigated at 100% ET(c) hosted similar numbers of glassy-winged sharpshooter stages as trees irrigated at 60% ET(c) and a lower number of glassy-winged sharpshooter nymphs than the 80% ET(c) treatment, specifically during the nymphal density peak in mid-April to early July. Irrigation treatments did not affect populations of monitored natural enemies. Although the adult glassy-winged sharpshooter population was reduced, on average, by 50% in trees under severe water stress, the total number of fruit and number of fruit across several fruit grade categories were significantly lower in the 60% ET(c) than in the 80 and 100% ET(c) irrigation treatments.
Burr, Stephen J; McCullough, Deborah G; Poland, Therese M
2018-02-08
Emerald ash borer (EAB) (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae), an invasive phloem-feeding buprestid, has killed hundreds of millions of ash (Fraxinus spp.) trees in the United States and two Canadian provinces. We evaluated EAB persistence in post-invasion sites and compared EAB adult captures and larval densities in 24 forested sites across an east-west gradient in southern Michigan representing the Core (post-invasion), Crest (high EAB populations), and Cusp (recently infested areas) of the EAB invasion wave. Condition of green ash (Fraxinus pennsylvanica Marsh) trees were recorded in fixed radius plots and linear transects in each site. Ash mortality was highest in Core sites in the southeast, moderate in Crest sites in central southern Michigan, and low in Cusp sites in the southwest. Traps and trap trees in Crest sites accounted for 75 and 60% of all EAB beetles captured in 2010 and 2011, respectively. Populations of EAB were present in all Core sites and traps in these sites captured 13% of all beetles each year. Beetle captures and larval densities at Cusp sites roughly doubled between 2010 and 2011, reflecting the increasing EAB populations. Sticky bands on girdled trees captured the highest density of EAB beetles per m2 of area, while baited double-decker traps had the highest detection rates and captured the most beetles. Larval densities were higher on girdled ash than on similar ungirdled trees and small planted trees. Woodpecker predation and a native larval parasitoid were present in all three invasion regions but had minor effects on ash survival and EAB densities. © The Author(s) 2018. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Western spruce budworm as related to stand characteristics in the bitterroot national forest
Carroll B. Williams; Patrick J. Shea; Gerald S. Walton
1971-01-01
Relation of population density to certain stand conditions and damage indicators was analyzed in four drainages on the Bitterroot National Forest of Montana. Western spruce budworm (Choristoneura occidentalis Freeman) populations were strongly related to plot basal area, tree species, and tree crown levels, and also to current and past levels of tree defoliation....
Peh, Kelvin S.-H.; Sonké, Bonaventure; Séné, Olivier; Djuikouo, Marie-Noël K.; Nguembou, Charlemagne K.; Taedoumg, Hermann; Begne, Serge K.; Lewis, Simon L.
2014-01-01
Background Traits of non-dominant mixed-forest tree species and their synergies for successful co-occurrence in monodominant Gilbertiodendron dewevrei forest have not yet been investigated. Here we compared the tree species diversity of the monodominant forest with its adjacent mixed forest and then determined which fitness proxies and life history traits of the mixed-forest tree species were most associated with successful co-existence in the monodominant forest. Methodology/Principal Findings We sampled all trees (diameter in breast height [dbh]≥10 cm) within 6×1 ha topographically homogenous areas of intact central African forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450–800 m apart). Monodominant G. dewevrei forest had lower sample-controlled species richness, species density and population density than its adjacent mixed forest in terms of stems with dbh≥10 cm. Analysis of a suite of population-level characteristics, such as relative abundance and geographical distribution, and traits such as wood density, height, diameter at breast height, fruit/seed dispersal mechanism and light requirement–revealed after controlling for phylogeny, species that co-occur with G. dewevrei tend to have higher abundance in adjacent mixed forest, higher wood density and a lower light requirement. Conclusions/Significance Our results suggest that certain traits (wood density and light requirement) and population-level characteristics (relative abundance) may increase the invasibility of a tree species into a tropical closed-canopy system. Such knowledge may assist in the pre-emptive identification of invasive tree species. PMID:24844914
Marshall, Jordan M; Storer, Andrew J; Fraser, Ivich; Beachy, Jessica A; Mastro, Victor C
2009-08-01
The early detection of populations of a forest pest is important to begin initial control efforts, minimizing the risk of further spread and impact. Emerald ash borer (Agrilus planipennis Fairmaire) is an introduced pestiferous insect of ash (Fraxinus spp. L.) in North America. The effectiveness of trapping techniques, including girdled trap trees with sticky bands and purple prism traps, was tested in areas with low- and high-density populations of emerald ash borer. At both densities, large girdled trap trees (>30 cm diameter at breast height [dbh], 1.37 m in height) captured a higher rate of adult beetles per day than smaller trees. However, the odds of detecting emerald ash borer increased as the dbh of the tree increased by 1 cm for trap trees 15-25 cm dbh. Ash species used for the traps differed in the number of larvae per cubic centimeter of phloem. Emerald ash borer larvae were more likely to be detected below, compared with above, the crown base of the trap tree. While larval densities within a trap tree were related to the species of ash, adult capture rates were not. These results provide support for focusing state and regional detection programs on the detection of emerald ash borer adults. If bark peeling for larvae is incorporated into these programs, peeling efforts focused below the crown base may increase likelihood of identifying new infestations while reducing labor costs. Associating traps with larger trees ( approximately 25 cm dbh) may increase the odds of detecting low-density populations of emerald ash borer, possibly reducing the time between infestation establishment and implementing management strategies.
Herbivores limit the population size of big-leaf mahogany trees in an Amazonian forest
Julian M. Norghauer; Christopher M. Free; R. Matthew Landis; James Grogan; Jay R. Malcolm; Sean C. Thomas
2015-01-01
The Janzen -- Connell hypothesis proposes that specialized herbivores maintain high numbers of tree species in tropical forests by restricting adult recruitment so that host populations remain at low densities. We tested this prediction for the large timber tree species, Swietenia macrophylla, whose seeds and seedlings are preyed upon by small mammals and a host-...
Hamard, Marie; Cheyne, Susan M; Nijman, Vincent
2010-06-01
Understanding the complex relationship between primates and their habitats is essential for effective conservation plans. Peat-swamp forest has recently been recognized as an important habitat for the Southern Bornean gibbon (Hylobates albibarbis), but information is scarce on the factors that link gibbon density to characteristics of this unique ecosystem. Our aims in this study were firstly to estimate gibbon density in different forest subtypes in a newly protected, secondary peat-swamp forest in the Sabangau Catchment, Indonesia, and secondly to identify which vegetation characteristics correlate with gibbon density. Data collection was conducted in a 37.1 km(2) area, using auditory sampling methods and vegetation "speed plotting". Gibbon densities varied between survey sites from 1.39 to 3.92 groups/km(2). Canopy cover, tree height, density of large trees and food availability were significantly correlated with gibbon density, identifying the preservation of tall trees and good canopy cover as a conservation priority for the gibbon population in the Sabangau forest. This survey indicates that selective logging, which specifically targets large trees and disrupts canopy cover, is likely to have adverse effects on gibbon populations in peat-swamp forests, and calls for greater protection of these little-studied ecosystems. (c) 2010 Wiley-Liss, Inc.
Andrea C. Anulewicz; Deborah G. McCullough; Therese M. Poland; David Cappaert
2008-01-01
To date, use of girdled trap trees remain the most effective method employed by regulatory and resource management agencies for detecting low-density populations of emerald ash borer (EAB), Agrilus planipennis Fairmaire. Locating suitable trees can be difficult, and felling and debarking trap trees is expensive. Alternative options for EAB detection...
Tree Density and Species Decline in the African Sahel Attributable to Climate
NASA Technical Reports Server (NTRS)
Gonzalez, Patrick; Tucker, Compton J.; Sy, H.
2012-01-01
Increased aridity and human population have reduced tree cover in parts of the African Sahel and degraded resources for local people. Yet, tree cover trends and the relative importance of climate and population remain unresolved. From field measurements, aerial photos, and Ikonos satellite images, we detected significant 1954-2002 tree density declines in the western Sahel of 18 +/- 14% (P = 0.014, n = 204) and 17 +/- 13% (P = 0.0009, n = 187). From field observations, we detected a significant 1960-2000 species richness decline of 21 +/- 11% (P = 0.0028, n = 14) across the Sahel and a southward shift of the Sahel, Sudan, and Guinea zones. Multivariate analyses of climate, soil, and population showed that temperature most significantly (P < 0.001) explained tree cover changes. Multivariate and bivariate tests and field observations indicated the dominance of temperature and precipitation, supporting attribution of tree cover changes to climate variability. Climate change forcing of Sahel climate variability, particularly the significant (P < 0.05) 1901-2002 temperature increases and precipitation decreases in the research areas, connects Sahel tree cover changes to global climate change. This suggests roles for global action and local adaptation to address ecological change in the Sahel.
Nutritional Correlates of Koala Persistence in a Low-Density Population
Stalenberg, Eleanor; Wallis, Ian R.; Cunningham, Ross B.; Allen, Chris; Foley, William J.
2014-01-01
It is widely postulated that nutritional factors drive bottom-up, resource-based patterns in herbivore ecology and distribution. There is, however, much controversy over the roles of different plant constituents and how these influence individual herbivores and herbivore populations. The density of koala (Phascolarctos cinereus) populations varies widely and many attribute population trends to variation in the nutritional quality of the eucalypt leaves of their diet, but there is little evidence to support this hypothesis. We used a nested design that involved sampling of trees at two spatial scales to investigate how leaf chemistry influences free-living koalas from a low-density population in south east New South Wales, Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we found an interaction between toxins and nutrients in leaves at a small spatial scale, whereby koalas preferred trees with leaves of higher concentrations of available nitrogen but lower concentrations of sideroxylonals (secondary metabolites found exclusively in eucalypts) compared to neighbouring trees of the same species. We argue that taxonomic and phenotypic diversity is likely to be important when foraging in habitats of low nutritional quality in providing diet choice to tradeoff nutrients and toxins and minimise movement costs. Our findings suggest that immediate nutritional concerns are an important priority of folivores in low-quality habitats and imply that nutritional limitations play an important role in constraining folivore populations. We show that, with a careful experimental design, it is possible to make inferences about populations of herbivores that exist at extremely low densities and thus achieve a better understanding about how plant composition influences herbivore ecology and persistence. PMID:25470599
Yamada, Toshihiro; Yamada, Yuko; Okuda, Toshinori; Fletcher, Christine
2013-07-01
Differences in the density of conspecific tree individuals in response to environmental gradients are well documented for many tree species, but how such density differences are generated and maintained is poorly understood. We examined the segregation of six dipterocarp species among three soil types in the Pasoh tropical forest, Malaysia. We examined how individual performance and population dynamics changed across the soil types using 10-year demographic data to compare tree performance across soil types, and constructed population matrix models to analyze the population dynamics. Species showed only minor changes in mortality and juvenile growth across soil types, although recruitment differed greatly. Clear, interspecific demographic trade-offs between growth and mortality were found in all soil types. The relative trade-offs by a species did not differ substantially among the soil types. Population sizes were projected to remain stable in all soil types for all species with one exception. Our life-table response experiment demonstrated that the population dynamics of a species differed only subtly among soil types. Therefore, species with strong density differences across soil types do not necessarily differ greatly in their population dynamics across the soil types. In contrast, interspecific differences in population dynamics were large. The trade-off between mortality and growth led to a negative correlation between the contributions of mortality and growth to variations in the population growth rate (λ) and thus reduced their net contributions. Recruitment had little impact on the variation in λ. The combination of these factors resulted in little variation in λ among species.
Pollen-limited reproduction in blue oak: Implications for wind pollination in fragmented populations
Knapp, E.E.; Goedde, M.A.; Rice, K.J.
2001-01-01
Human activities are fragmenting forests and woodlands worldwide, but the impact of reduced tree population densities on pollen transfer in wind-pollinated trees is poorly understood. In a 4-year study, we evaluated relationships among stand density, pollen availability, and seed production in a thinned and fragmented population of blue oak (Quercus douglasii). Geographic coordinates were established and flowering interval determined for 100 contiguous trees. The number of neighboring trees within 60 m that released pollen during each tree's flowering period was calculated and relationships with acorn production explored using multiple regression. We evaluated the effects of female flower production, average temperature, and relative humidity during the pollination period, and number of pollen-producing neighbors on individual trees' acorn production. All factors except temperature were significant in at least one of the years of our study, but the combination of factors influencing acorn production varied among years. In 1996, a year of large acorn crop size, acorn production was significantly positively associated with number of neighboring pollen producers and density of female flowers. In 1997, 1998, and 1999, many trees produced few or no acorns, and significant associations between number of pollen-producing neighbors and acorn production were only apparent among moderately to highly reproductive trees. Acorn production by these reproductive trees in 1997 was significantly positively associated with number of neighboring pollen producers and significantly negatively associated with average relative humidity during the pollination period. In 1998, no analysis was possible, because too few trees produced a moderate to large acorn crop. Only density of female flowers was significantly associated with acorn production of moderately to highly reproductive trees in 1999. The effect of spatial scale was also investigated by conducting analyses with pollen producers counted in radii ranging from 30 m to 80 m. The association between number of pollen-producing neighbors and acorn production was strongest when neighborhood sizes of 60 m or larger were considered. Our results suggest that fragmentation and thinning of blue oak woodlands may reduce pollen availability and limit reproduction in this wind-pollinated species.
Calderón-Cortés, Nancy; Escalera-Vázquez, Luis H; Oyama, Ken
2018-01-01
Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60-98% of standing dead trees and 23-59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057-0.066 trees/m 2 ) than in riparian forests (0.022 and 0.027 trees/m 2 ), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01-0.09 trees/m 2 ) than in larger class sizes (0-0.02 trees/m 2 ). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.
Escalera-Vázquez, Luis H.; Oyama, Ken
2018-01-01
Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60–98% of standing dead trees and 23–59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057–0.066 trees/m2) than in riparian forests (0.022 and 0.027 trees/m2), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01–0.09 trees/m2) than in larger class sizes (0–0.02 trees/m2). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil. PMID:29785342
Karen E. Bagne; Deborah M. Finch
2009-01-01
Mechanical and fire treatments are commonly used to reduce fuels where land use practices have encouraged accumulation of woody debris and high densities of trees. Treatments focus on restoration of vegetation structure, but will also affect wildlife populations. Small mammal populations were monitored before and after dense tree stands were thinned on 2,800 ha in NM,...
Higuchi, P; Silva, A C; Louzada, J N C; Machado, E L M
2010-05-01
The objectives of this study were to evaluate the influence of propagules source and the implication of tree size class on the spatial pattern of Xylopia brasiliensis Spreng. individuals growing under the canopy of an experimental plantation of eucalyptus. To this end, all individuals of Xylopia brasiliensis with diameter at soil height (dsh) > 1 cm were mapped in the understory of a 3.16 ha Eucalyptus spp. and Corymbia spp. plantation, located in the municipality of Lavras, SE Brazil. The largest nearby mature tree of X. brasiliensis was considered as the propagules source. Linear regressions were used to assess the influence of the distance of propagules source on the population parameters (density, basal area and height). The spatial pattern of trees was assessed through the Ripley K function. The overall pattern showed that the propagules source distance had strong influence over spatial distribution of trees, mainly the small ones, indicating that the closer the distance from the propagules source, the higher the tree density and the lower the mean tree height. The population showed different spatial distribution patterns according to the spatial scale and diameter class considered. While small trees tended to be aggregated up to around 80 m, the largest individuals were randomly distributed in the area. A plausible explanation for observed patterns might be limited seed rain and intra-population competition.
Dick, Christopher W; Etchelecu, Gabriela; Austerlitz, Frédéric
2003-03-01
Tropical rainforest trees typically occur in low population densities and rely on animals for cross-pollination. It is of conservation interest therefore to understand how rainforest fragmentation may alter the pollination and breeding structure of remnant trees. Previous studies of the Amazonian tree Dinizia excelsa (Fabaceae) found African honeybees (Apis mellifera scutellata) as the predominant pollinators of trees in highly disturbed habitats, transporting pollen up to 3.2 km between pasture trees. Here, using microsatellite genotypes of seed arrays, we compare outcrossing rates and pollen dispersal distances of (i) remnant D. excelsa in three large ranches, and (ii) a population in undisturbed forest in which African honeybees were absent. Self-fertilization was more frequent in the disturbed habitats (14%, n = 277 seeds from 12 mothers) than in undisturbed forest (10%, n = 295 seeds from 13 mothers). Pollen dispersal was extensive in all three ranches compared to undisturbed forest, however. Using a twogener analysis, we estimated a mean pollen dispersal distance of 1509 m in Colosso ranch, assuming an exponential dispersal function, and 212 m in undisturbed forest. The low effective density of D. excelsa in undisturbed forest (approximately 0.1 trees/ha) indicates that large areas of rainforest must be preserved to maintain minimum viable populations. Our results also suggest, however, that in highly disturbed habitats Apis mellifera may expand genetic neighbourhood areas, thereby linking fragmented and continuous forest populations.
The fine-scale genetic structure of the two-spotted spider mite in a commercial greenhouse.
Uesugi, R; Kunimoto, Y; Osakabe, Mh
2009-02-01
The fine-scale genetic structure of Tetranychus urticae Koch was studied to estimate local gene flow within a rose tree habitat in a commercial greenhouse using seven microsatellite markers. Two beds of rose trees with different population densities were selected and 18 consecutive quadrats of 1.2 m length were sequentially established in each bed. Heterozygote deficiency was positive within quadrats, which was most likely a result of the Wahlund effect because the mites usually form small breeding colonies. Low population density and frequent inbreeding could also accelerate genetic differentiation among the breeding colonies. A short-range (2.4-3.6 m) positive autocorrelation and clear genetic cline among quadrat populations was detected within a bed. This suggests that gene flow was limited to a short range even if population density was substantially increased. Therefore, large-scale dispersal such as aerial dispersal contributed very little to gene flow in the greenhouse.
Tree physiology and bark beetles
Michael G. Ryan; Gerard Sapes; Anna Sala; Sharon Hood
2015-01-01
Irruptive bark beetles usually co-occur with their co-evolved tree hosts at very low (endemic) population densities. However, recent droughts and higher temperatures have promoted widespread tree mortality with consequences for forest carbon, fire and ecosystem services (Kurz et al., 2008; Raffa et al., 2008; Jenkins et al., 2012). In this issue of New Phytologist,...
Memiaghe, Hervé R; Lutz, James A; Korte, Lisa; Alonso, Alfonso; Kenfack, David
2016-01-01
Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh <10 cm) comprised 93.7% of the total tree population, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate.
Memiaghe, Hervé R.; Lutz, James A.; Korte, Lisa; Alonso, Alfonso; Kenfack, David
2016-01-01
Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh <10 cm) comprised 93.7% of the total tree population, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate. PMID:27186658
Castellanos, Maria Clara; Stevenson, Pablo R
2011-06-01
Life history and recruitment information of tropical trees in natural populations is scarce even for important commercial species. This study focused on a widely exploited Neotropical canopy species, Pachira quinata (Malvaceae), at the southernmost, wettest limit of its natural distribution, in the Colombian Amazonia. We studied phenological patterns, seed production and natural densities; assessed the importance of seed dispersal and density-dependent effects on recruitment, using field experiments. At this seasonal forest P. quinata was overrepresented by large adult trees and had very low recruitment caused by the combination of low fruit production, high seed predation and very high seedling mortality under continuous canopies mostly due to damping off pathogens. There was no evidence of negative distance or density effects on recruitment, but a clear requirement of canopy gaps for seedling survival and growth, where pathogen incidence was drastically reduced. In spite of the strong dependence on light for survival of seedlings, seeds germinated readily in the dark. At the study site, the population of P. quinata appeared to be declining, likely because recruitment depended on the rare combination of large gap formation with the presence of reproductive trees nearby. The recruitment biology of this species makes it very vulnerable to any type of logging in natural populations.
Distribution, density, and biomass of introduced small mammals in the southern mariana islands
Wiewel, A.S.; Adams, A.A.Y.; Rodda, G.H.
2009-01-01
Although it is generally accepted that introduced small mammals have detrimental effects on island ecology, our understanding of these effects is frequently limited by incomplete knowledge of small mammal distribution, density, and biomass. Such information is especially critical in the Mariana Islands, where small mammal density is inversely related to effectiveness of Brown Tree Snake (Boiga irregularis) control tools, such as mouse-attractant traps. We used mark-recapture sampling to determine introduced small mammal distribution, density, and biomass in the major habitats of Guam, Rota, Saipan, and Tinian, including grassland, Leucaena forest, and native limestone forest. Of the five species captured, Rattus diardii (sensu Robins et al. 2007) was most common across habitats and islands. In contrast, Mus musculus was rarely captured at forested sites, Suncus murinus was not captured on Rota, and R. exulans and R. norvegicus captures were uncommon. Modeling indicated that neophobia, island, sex, reproductive status, and rain amount influenced R. diardii capture probability, whereas time, island, and capture heterogeneity influenced S. murinus and M. musculus capture probability. Density and biomass were much greater on Rota, Saipan, and Tinian than on Guam, most likely a result of Brown Tree Snake predation pressure on the latter island. Rattus diardii and M. musculus density and biomass were greatest in grassland, whereas S. murinus density and biomass were greatest in Leucaena forest. The high densities documented during this research suggest that introduced small mammals (especially R. diardii) are impacting abundance and diversity of the native fauna and flora of the Mariana Islands. Further, Brown Tree Snake control and management tools that rely on mouse attractants will be less effective on Rota, Saipan, and Tinian than on Guam. If the Brown Tree Snake becomes established on these islands, high-density introduced small mammal populations will likely facilitate and support a high-density Brown Tree Snake population, even as native species are reduced or extirpated. ?? 2009 by University of Hawai'i Press All rights reserved.
Bacles, Cecile F E
2014-01-01
Understanding the consequences of habitat disturbance on mating patterns although pollen and seed dispersal in forest trees has been a long-standing theme of forest and conservation genetics. Forest ecosystems face global environmental pressures from timber exploitation to genetic pollution and climate change, and it is therefore essential to comprehend how disturbances may alter the dispersal of genes and their establishment in tree populations in order to formulate relevant recommendations for sustainable resource management practices and realistic predictions of potential adaptation to climate change by means of range shift or expansion (Kremer et al. 2012). However, obtaining reliable evidence of disturbance-induced effects on gene dispersal processes from empirical evaluation of forest tree populations is difficult. Indeed, tree species share characteristics such as high longevity, long generation time and large reproductive population size, which may impede the experimenter's ability to assess parameters at the spatial and time scales at which any change may occur (Petit and Hampe 2006). It has been suggested that appropriate study designs should encompass comparison of populations before and after disturbance as well as account for demonstrated variation in conspecific density, that is, the spatial distribution of mates, and forest density, including all species and relating to alteration in landscape openness (Bacles & Jump 2011). However, more often than not, empirical studies aiming to assess the consequences of habitat disturbance on genetic processes in tree populations assume rather than quantify a change in tree densities in forests under disturbance and generally fail to account for population history, which may lead to inappropriate interpretation of a causal relationship between population genetic structure and habitat disturbance due to effects of unmonitored confounding variables (Gauzere et al. 2013). In this issue, Shohami and Nathan (2014) take advantage of the distinctive features of the fire-adapted wind-pollinated Aleppo pine Pinus halepensis (Fig. 1) to provide an elegant example of best practice. Thanks to long-term monitoring of the study site, a natural stand in Israel, Shohami and Nathan witnessed the direct impact of habitat disturbance, here taking the shape of fire, on conspecific and forest densities and compared pre- and postdisturbance mating patterns estimated from cones of different ages sampled on the same surviving maternal individuals (Fig. 2). This excellent study design is all the more strong that Shohami and Nathan took further analytical steps to account for confounding variables, such as historical population genetic structure and possible interannual variation in wind conditions, thus giving high credibility to their findings of unequivocal fire-induced alteration of mating patterns in P. halepensis. Most notably, the authors found, at the pollen pool level, a disruption of local genetic structure which, furthermore, they were able to attribute explicitly to enhanced pollen-mediated gene immigration into the low-density fire-disturbed stand. This cleverly designed research provides a model approach to be followed if we are to advance our understanding of disturbance-induced dispersal and genetic change in forest trees. © 2013 John Wiley & Sons Ltd.
Cordia dichotoma G. Forst. : Bioecology and population density
NASA Astrophysics Data System (ADS)
Rahayu, E. S.; Martin, P.; Dewi, N. K.; Kurniawan, F. H.
2017-04-01
Kendal tree is declared as an identity flora of Kendal Regency, Central Java, Indonesia. It is predicted as a rare species; most of the local people do not know the existence of this tree. The study aimed to describe some aspects of bioecology and a population density of Kendal tree. An explorative study was conducted from March to July 2016, through interview, observation, and literature review. The respondents were determined by purposive and snowball sampling methods. The data were analysed descriptively. Results showed that there were very limited numbers (only five trees) of Kendal tree throughout Kendal Regency. The species was identified as Cordia dichotoma G. Forst. The tree is 3-15 m in height. The leaves are simple and arranged spirally, inflorescence dichotomous, bisexual, with five gamosepalous and gamopetalous. Generative reproduction occurred at a low rate. The tree grew optimally in a dusty, sandy loam soil, pH 6.0-6.5 with a temperature ranged from 27-34 °C, a light intensity of 450-1580 lux, and an altitude of about 10 meters above sea level. In conclusion, C. dichotoma is a rare plant in Kendal Regency. This plant needs an alternative method of propagation, regeneration and conservation using in vitro technique.
Contagious seed dispersal beneath heterospecific fruiting trees and its consequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwit, Charles; Levey, Douglas, J.; Greenberg, Cathyrn, H.
2004-05-03
Kwit, Charles, D.J. Levey and Cathryn H. Greenberg. 2004. Contagious seed dispersal beneath heterospecific fruiting trees and its consequences. Oikos. 107:303-308 A n hypothesized advantage of seed dispersal is avoidance of high per capita mortality (i.e. density-dependent mortality) associated with dense populations of seeds and seedlings beneath parent trees. This hypothesis, inherent in nearly all seed dispersal studies, assumes that density effects are species-specific. Yet because many tree species exhibit overlapping fruiting phenologies and share dispersers, seeds may be deposited preferentially under synchronously fruiting heterospecific trees, another location where they may be particularly vulnerable to mortality, in this case bymore » generalist seed predators. We demonstrate that frugivores disperse higher densities of Cornus florida seeds under fruiting (female) I lex opaca trees than under non-fruiting (male) I lex trees in temperate hardwood forest settings in South Carolina, U SA . To determine if density of Cornus and/or I lex seeds influences survivorship of dispersed Cornus seeds, we followed the fates of experimentally dispersed Cornus seeds in neighborhoods of differing, manipulated background densities of Cornus and I lex seeds. We found that the probability of predation on dispersed Cornus seeds was a function of both Cornus and I lex background seed densities. H igher densities of I lex seeds negatively affected Cornus seed survivorship, and this was particularly evident as background densities of dispersed Cornus seeds increased. These results illustrate the importance of viewing seed dispersal and predation in a community context, as the pattern and intensity of density-dependent mortality may not be solely a function of conspecific densities.« less
Isolated Ficus trees deliver dual conservation and development benefits in a rural landscape.
Cottee-Jones, H Eden W; Bajpai, Omesh; Chaudhary, Lal B; Whittaker, Robert J
2015-11-01
Many of the world's rural populations are dependent on the local provision of economically and medicinally important plant resources. However, increasing land-use intensity is depleting these resources, reducing human welfare, and thereby constraining development. Here we investigate a low cost strategy to manage the availability of valuable plant resources, facilitated by the use of isolated Ficus trees as restoration nuclei. We surveyed the plants growing under 207 isolated trees in Assam, India, and categorized them according to their local human-uses. We found that Ficus trees were associated with double the density of important high-grade timber, firewood, human food, livestock fodder, and medicinal plants compared to non-Ficus trees. Management practices were also important in determining the density of valuable plants, with grazing pressure and land-use intensity significantly affecting densities in most categories. Community management practices that conserve isolated Ficus trees, and restrict livestock grazing and high-intensity land-use in their vicinity, can promote plant growth and the provision of important local resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentz, B.J.; Powell, J.A.; Logan, J.A.
1996-12-01
Colonization of a host tree by the mountain pine beetle (Dendroctonus ponderosae) involves chemical communication that enables a massive aggregation of beetles on a single resource, thereby ensuring host death and subsequent beetle population survival. Beetle populations have evolved a mechanism for termination of colonization on a lodgepole pine tree at optimal beetle densities, with a concomitant switch of attacks to nearby trees. Observations of the daily spatial and temporal attack process of mountain pine beetles (nonepidemic) attacking lodgepole pine suggest that beetles switch attacks to a new host tree before the original focus tree is fully colonized, and thatmore » verbenone, an antiaggregating pheromone, may be acting within a tree rather than between trees.« less
McCullough, Deborah G; Poland, Therese M; Lewis, Phillip A
2016-05-01
Economic and ecological impacts of ash (Fraxinus spp.) mortality resulting from emerald ash borer (EAB) (Agrilus planipennis Fairmaire) invasion are severe in forested, residential and urban areas. Management options include girdling ash trees to attract ovipositing adult beetles and then destroying infested trees before larvae develop or protecting ash with a highly effective, systemic emamectin benzoate insecticide. Injecting this insecticide and then girdling injected trees a few weeks later could effectively create lethal trap trees, similar to a bait-and-kill tactic, if girdling does not interfere with insecticide translocation. We compared EAB larval densities on girdled trees, trees injected with the emamectin benzoate insecticide, trees injected with the insecticide and then girdled 18-21 days later and untreated controls at multiple sites. Pretreatment larval densities did not differ among treatments. Current-year larval densities were higher on girdled and control trees than on any trees treated with insecticide at all sites. Foliar residue analysis and adult EAB bioassays showed that girdling trees after insecticide injections did not reduce insecticide translocation. Girdling ash trees to attract adult EAB did not reduce efficacy of emamectin benzoate trunk injections applied ≥ 18 days earlier and could potentially be used in integrated management programs to slow EAB population growth. © 2015 Society of Chemical Industry.
Zhang, Jie; Shangguan, Tie-Liang; Duan, Yi-Hao; Guo, Wei; Liu, Wei-Hua; Guo, Dong-Gang
2014-11-01
Using the plant survivorship theory, the age structure, and the relationship between tree height and diameter (DBH) of Quercus wutaishanica population in Lingkong Mountain were analyzed, and the static life table was compiled and the survival curve plotted. The shuttle shape in age structure of Q. wutaishanica population suggested its temporal stability. The linear regression significantly fitted the positive correlation between tree height and DBH. The maximal life expectancy was observed among the trees beyond the age of the highest mortality and coincided with the lowest point of mortality density, suggesting the strong vitality of the seedlings and young trees that survived in the natural selection and intraspecific competition. The population stability of the Q. wutaishanica population was characterized by the Deevey-II of the survival curve. The dynamic pattern was characterized by the recession in the early phase, growth in the intermediate phase, and stability in the latter phase.
Weghorst, Jennifer A
2007-04-01
The main objective of this study was to estimate the population density and demographic structure of spider monkeys living in wet forest in the vicinity of Sirena Biological Station, Corcovado National Park, Costa Rica. Results of a 14-month line-transect survey showed that spider monkeys of Sirena have one of the highest population densities ever recorded for this genus. Density estimates varied, however, depending on the method chosen to estimate transect width. Data from behavioral monitoring were available to compare density estimates derived from the survey, providing a check of the survey's accuracy. A combination of factors has most probably contributed to the high density of Ateles, including habitat protection within a national park and high diversity of trees of the fig family, Moraceae. Although natural densities of spider monkeys at Sirena are substantially higher than those recorded at most other sites and in previous studies at this site, mean subgroup size and age ratios were similar to those determined in previous studies. Sex ratios were similar to those of other sites with high productivity. Although high densities of preferred fruit trees in the wet, productive forests of Sirena may support a dense population of spider monkeys, other demographic traits recorded at Sirena fall well within the range of values recorded elsewhere for the species.
An inventory of multipurpose avenue trees of urban Chandigarh, India
R. K. Kohli; H. P. Singh; Daizy R. Batish
2000-01-01
Trees in urban ecosystems play a very significant role in environmental protection by checking air and noise pollutants, abating wind, and handling many other functions, in India, Chandigarh is the most modern and environmentally safe city and qualifies to be called a GREEN CITY because of its rich tree component. This is so in spite of its high population density,...
Competition amplifies drought stress in forests across broad climatic and compositional gradients
Gleason, Kelly; Bradford, John B.; Bottero, Alessandra; D'Amato, Tony; Fraver, Shawn; Palik, Brian J.; Battaglia, Michael; Iverson, Louis R.; Kenefic, Laura; Kern, Christel C.
2017-01-01
Forests around the world are experiencing increasingly severe droughts and elevated competitive intensity due to increased tree density. However, the influence of interactions between drought and competition on forest growth remains poorly understood. Using a unique dataset of stand-scale dendrochronology sampled from 6405 trees, we quantified how annual growth of entire tree populations responds to drought and competition in eight, long-term (multi-decadal), experiments with replicated levels of density (e.g., competitive intensity) arrayed across a broad climatic and compositional gradient. Forest growth (cumulative individual tree growth within a stand) declined during drought, especially during more severe drought in drier climates. Forest growth declines were exacerbated by high density at all sites but one, particularly during periods of more severe drought. Surprisingly, the influence of forest density was persistent overall, but these density impacts were greater in the humid sites than in more arid sites. Significant density impacts occurred during periods of more extreme drought, and during warmer temperatures in the semi-arid sites but during periods of cooler temperatures in the humid sites. Because competition has a consistent influence over growth response to drought, maintaining forests at lower density may enhance resilience to drought in all climates.
Nathan W. Siegert; Deborah G. McCullough; Therese M. Poland; Robert L. Heyd
2017-01-01
Effective survey methods to detect and monitor recently established, low-density infestations of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), remain a high priority because they provide land managers and property owners with time to implement tactics to slow emerald ash borer population growth and the progression of...
Collet, Catherine; Ningre, François; Barbeito, Ignacio; Arnaud, Anthony; Piboule, Alexandre
2014-03-01
There is considerable evidence for the presence of positive species diversity-productivity relationships in plant populations, but the population parameters determining the type and strength of the relationship are poorly defined. Relationships between species evenness and tree survival or species coexistence are not well established. The objective of this study was to quantify the joint effects of density and species evenness on tree productivity and species coexistence. A 12-year-old experimental tree plantation mixing two species according to a double gradient of density and species proportion was used. A neighbourhood approach was employed and descriptors of local competition were used to model individual tree growth. Fagus sylvatica and Acer pseudoplatanus were used as model species, as they can be considered as ecologically equivalent in their young stages. Density and tree size were primary factors determining individual growth and stand productivity. Species identity had a significant, but less pronounced, role. Stand productivity was highest when species evenness was close to 1 and slightly lower in uneven mixtures. The reduction in stand productivity when species evenness decreased was of similar magnitude irrespective of which species became dominant, indicating symmetric effects for the two species. When examining individual tree growth in response to species proportion for each species separately, it was observed for both species that individual trees exhibited greater growth in uneven mixtures in which the other species was more frequent. The results suggest that mixtures of these two functionally similar species have the highest production at maximum evenness, indicating a complementary effect between them. The presence of a mixture combines both stabilizing mechanisms (individuals from both species show higher growth when surrounded by individuals from the other species) and equalizing mechanisms (the two species have very similar growth curves) that, in turn, determine the species' relative dominance. These processes should act to ensure the long-term coexistence of species.
Collet, Catherine; Ningre, François; Barbeito, Ignacio; Arnaud, Anthony; Piboule, Alexandre
2014-01-01
Background and Aims There is considerable evidence for the presence of positive species diversity–productivity relationships in plant populations, but the population parameters determining the type and strength of the relationship are poorly defined. Relationships between species evenness and tree survival or species coexistence are not well established. The objective of this study was to quantify the joint effects of density and species evenness on tree productivity and species coexistence. Methods A 12-year-old experimental tree plantation mixing two species according to a double gradient of density and species proportion was used. A neighbourhood approach was employed and descriptors of local competition were used to model individual tree growth. Fagus sylvatica and Acer pseudoplatanus were used as model species, as they can be considered as ecologically equivalent in their young stages. Key Results Density and tree size were primary factors determining individual growth and stand productivity. Species identity had a significant, but less pronounced, role. Stand productivity was highest when species evenness was close to 1 and slightly lower in uneven mixtures. The reduction in stand productivity when species evenness decreased was of similar magnitude irrespective of which species became dominant, indicating symmetric effects for the two species. When examining individual tree growth in response to species proportion for each species separately, it was observed for both species that individual trees exhibited greater growth in uneven mixtures in which the other species was more frequent. Conclusions The results suggest that mixtures of these two functionally similar species have the highest production at maximum evenness, indicating a complementary effect between them. The presence of a mixture combines both stabilizing mechanisms (individuals from both species show higher growth when surrounded by individuals from the other species) and equalizing mechanisms (the two species have very similar growth curves) that, in turn, determine the species' relative dominance. These processes should act to ensure the long-term coexistence of species. PMID:24323248
Mating system and early viability resistance to habitat fragmentation in a bird-pollinated eucalypt
Breed, M F; Ottewell, K M; Gardner, M G; Marklund, M H K; Stead, M G; Harris, J B C; Lowe, A J
2015-01-01
Habitat fragmentation has been shown to disrupt ecosystem processes such as plant-pollinator mutualisms. Consequently, mating patterns in remnant tree populations are expected to shift towards increased inbreeding and reduced pollen diversity, with fitness consequences for future generations. However, mating patterns and phenotypic assessments of open-pollinated progeny have rarely been combined in a single study. Here, we collected seeds from 37 Eucalyptus incrassata trees from contrasting stand densities following recent clearance in a single South Australian population (intact woodland=12.6 trees ha−1; isolated pasture=1.7 trees ha−1; population area=10 km2). 649 progeny from these trees were genotyped at eight microsatellite loci. We estimated genetic diversity, spatial genetic structure, indirect contemporary pollen flow and mating patterns for adults older than the clearance events and open-pollinated progeny sired post-clearance. A proxy of early stage progeny viability was assessed in a common garden experiment. Density had no impact on mating patterns, adult and progeny genetic diversity or progeny growth, but was associated with increased mean pollen dispersal. Weak spatial genetic structure among adults suggests high historical gene flow. We observed preliminary evidence for inbreeding depression related to stress caused by fungal infection, but which was not associated with density. Higher observed heterozygosities in adults compared with progeny may relate to weak selection on progeny and lifetime-accumulated mortality of inbred adults. E. incrassata appears to be resistant to the negative mating pattern and fitness changes expected within fragmented landscapes. This pattern is likely explained by strong outcrossing and regular long-distance pollen flow. PMID:23188172
Scott, Michael L.; Reynolds, Elizabeth W.
2007-01-01
Compared to 5-m by 20-m tree quadrats, belt transects were shown to provide similar estimates of stand structure (stem density and stand basal area) in less than 30 percent of the time. Further, for the streams sampled, there were no statistically significant differences in stem density and basal area estimates between 10-m and 20-m belt transects and the smaller belts took approximately half the time to sample. There was, however, high variance associated with estimates of stand structure for infrequently occurring stems, such as large, relict or legacy riparian trees. Legacy riparian trees occurred in limited numbers at all sites sampled. A reachscale population census of these trees indicated that the 10-m belt transects tended to underestimate both stem density and basal area for these riparian forest elements and that a complete reach-scale census of legacy trees averaged less than one hour per site.
Densities of Agrilus auroguttatus and other borers in California and Arizona oaks
Laurel J. Haavik; Tom W. Coleman; Mary Louise. Flint; Robert C. Venette; Steven J. Seybold
2014-01-01
We investigated within-tree population density of a new invasive species in southern California, the goldspotted oak borer, Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), with respect to host species and the community of other borers present. We measured emergence hole densities of A. auroguttatus and other borers on...
Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe
2015-01-01
The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P. chihuahuana trees and P. chihuahuana tree community and but to specific spatial scales measured by the univariate L-function. The spatial distribution pattern of P. chihuahuana trees was found to be independent of patches of other tree species measured by the bivariate L-function. The spatial distribution was not significantly related to tree density, diameter distribution or tree species diversity. The index of Clark and Evans decreased significantly from the southern to northern plots containing all tree species. Self-thinning due to intra and inter-specific competition-induced mortality is probably the main cause of the decrease in aggregation intensity during the course of population development in this tree community. We recommend the use of larger sampling plots (> 0.25 ha) in uneven-aged and species-rich forest ecosystems to detect less obvious, but important, relationships between spatial tree pattern and functioning and diversity in these forests.
Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe
2015-01-01
The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P. chihuahuana trees and P. chihuahuana tree community and but to specific spatial scales measured by the univariate L-function. The spatial distribution pattern of P. chihuahuana trees was found to be independent of patches of other tree species measured by the bivariate L-function. The spatial distribution was not significantly related to tree density, diameter distribution or tree species diversity. The index of Clark and Evans decreased significantly from the southern to northern plots containing all tree species. Self-thinning due to intra and inter-specific competition-induced mortality is probably the main cause of the decrease in aggregation intensity during the course of population development in this tree community. We recommend the use of larger sampling plots (> 0.25 ha) in uneven-aged and species-rich forest ecosystems to detect less obvious, but important, relationships between spatial tree pattern and functioning and diversity in these forests. PMID:26496189
Trees wanted--dead or alive! Host selection and population dynamics in tree-killing bark beetles.
Kausrud, Kyrre L; Grégoire, Jean-Claude; Skarpaas, Olav; Erbilgin, Nadir; Gilbert, Marius; Økland, Bjørn; Stenseth, Nils Chr
2011-01-01
Bark beetles (Coleoptera: Curculionidae, Scolytinae) feed and breed in dead or severely weakened host trees. When their population densities are high, some species aggregate on healthy host trees so that their defences may be exhausted and the inner bark successfully colonized, killing the tree in the process. Here we investigate under what conditions participating with unrelated conspecifics in risky mass attacks on living trees is an adaptive strategy, and what this can tell us about bark beetle outbreak dynamics. We find that the outcome of individual host selection may deviate from the ideal free distribution in a way that facilitates the emergence of tree-killing (aggressive) behavior, and that any heritability on traits governing aggressiveness seems likely to exist in a state of flux or cycles consistent with variability observed in natural populations. This may have implications for how economically and ecologically important species respond to environmental changes in climate and landscape (forest) structure. The population dynamics emerging from individual behavior are complex, capable of switching between "endemic" and "epidemic" regimes spontaneously or following changes in host availability or resistance. Model predictions are compared to empirical observations, and we identify some factors determining the occurrence and self-limitation of epidemics.
Trends in snag populations in Northern Arizona mixed-conifer and ponderosa pine forests, 1997-2012
J. L. Ganey; S. C. Vojta
2014-01-01
We monitored snag populations in drought-stressed mixed-conifer and ponderosa pine (Pinus ponderosa) forests, northern Arizona, at 5-yr intervals from 1997-2012. Snag density increased from 1997-2007 in both forest types, with accelerated change due to drought-related tree mortality during the period 2002-2007. Snag density declined non-significantly from 2007-2012,...
Stages and Spatial Scales of Recruitment Limitation in Southern Appalachain Forests
James S. Clark; Eric Macklin; Leslie Wood
1998-01-01
Recruitment limitation of tree population dynamics is poorly understood, because fecundity and dispersal are difficult to characterize in closed stands. We present an approach that estimates seed production and dispersal under closed canopies and four limitations on recruitment: tree density and location, fecundity, seed dispersal, and establishment. Consistent...
Kabaria, Caroline W; Gilbert, Marius; Noor, Abdisalan M; Snow, Robert W; Linard, Catherine
2017-01-26
Although malaria has been traditionally regarded as less of a problem in urban areas compared to neighbouring rural areas, the risk of malaria infection continues to exist in densely populated, urban areas of Africa. Despite the recognition that urbanization influences the epidemiology of malaria, there is little consensus on urbanization relevant for malaria parasite mapping. Previous studies examining the relationship between urbanization and malaria transmission have used products defining urbanization at global/continental scales developed in the early 2000s, that overestimate actual urban extents while the population estimates are over 15 years old and estimated at administrative unit level. This study sought to discriminate an urbanization definition that is most relevant for malaria parasite mapping using individual level malaria infection data obtained from nationally representative household-based surveys. Boosted regression tree (BRT) modelling was used to determine the effect of urbanization on malaria transmission and if this effect varied with urbanization definition. In addition, the most recent high resolution population distribution data was used to determine whether population density had significant effect on malaria parasite prevalence and if so, could population density replace urban classifications in modelling malaria transmission patterns. The risk of malaria infection was shown to decline from rural areas through peri-urban settlements to urban central areas. Population density was found to be an important predictor of malaria risk. The final boosted regression trees (BRT) model with urbanization and population density gave the best model fit (Tukey test p value <0.05) compared to the models with urbanization only. Given the challenges in uniformly classifying urban areas across different countries, population density provides a reliable metric to adjust for the patterns of malaria risk in densely populated urban areas. Future malaria risk models can, therefore, be improved by including both population density and urbanization which have both been shown to have significant impact on malaria risk in this study.
Davies, S J; Cavers, S; Finegan, B; White, A; Breed, M F; Lowe, A J
2015-08-01
In forests with gap disturbance regimes, pioneer tree regeneration is typically abundant following stand-replacing disturbances, whether natural or anthropogenic. Differences in pioneer tree density linked to disturbance regime can influence pollinator behaviour and impact on mating patterns and genetic diversity of pioneer populations. Such mating pattern shifts can manifest as higher selfing rates and lower pollen diversity in old growth forest populations. In secondary forest, where more closely related pollen donors occur, an increase in biparental inbreeding is a potential problem. Here, we investigate the consequences of secondary forest colonisation on the mating patterns and genetic diversity of open-pollinated progeny arrays for the long-lived, self-compatible pioneer tree, Vochysia ferruginea, at two Costa Rican sites. Five microsatellite loci were screened across adult and seed cohorts from old growth forest with lower density, secondary forest with higher density, and isolated individual trees in pasture. Progeny from both old growth and secondary forest contexts were predominantly outcrossed (tm=1.00) and experienced low levels of biparental inbreeding (tm-ts=0.00-0.04). In contrast to predictions, our results indicated that the mating patterns of V. ferruginea are relatively robust to density differences between old growth and secondary forest stands. In addition, we observed that pollen-mediated gene flow possibly maintained the genetic diversity of open-pollinated progeny arrays in stands of secondary forest adults. As part of a natural resource management strategy, we suggest that primary forest remnants should be prioritised for conservation to promote restoration of genetic diversity during forest regeneration.
Dispersion patterns and sampling plans for Diaphorina citri (Hemiptera: Psyllidae) in citrus.
Sétamou, Mamoudou; Flores, Daniel; French, J Victor; Hall, David G
2008-08-01
The abundance and spatial dispersion of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) were studied in 34 grapefruit (Citrus paradisi Macfad.) and six sweet orange [Citrus sinensis (L.) Osbeck] orchards from March to August 2006 when the pest is more abundant in southern Texas. Although flush shoot infestation levels did not vary with host plant species, densities of D. citri eggs, nymphs, and adults were significantly higher on sweet orange than on grapefruit. D. citri immatures also were found in significantly higher numbers in the southeastern quadrant of trees than other parts of the canopy. The spatial distribution of D. citri nymphs and adults was analyzed using Iowa's patchiness regression and Taylor's power law. Taylor's power law fitted the data better than Iowa's model. Based on both regression models, the field dispersion patterns of D. citri nymphs and adults were aggregated among flush shoots in individual trees as indicated by the regression slopes that were significantly >1. For the average density of each life stage obtained during our surveys, the minimum number of flush shoots per tree needed to estimate D. citri densities varied from eight for eggs to four flush shoots for adults. Projections indicated that a sampling plan consisting of 10 trees and eight flush shoots per tree would provide density estimates of the three developmental stages of D. citri acceptable enough for population studies and management decisions. A presence-absence sampling plan with a fixed precision level was developed and can be used to provide a quick estimation of D. citri populations in citrus orchards.
Duncan, Dustin T; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A; Arbia, Giuseppe; Castro, Marcia C; White, Kellee; Williams, David R
2014-04-01
The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran's I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran's I range from 0.24 to 0.86, all P =0.001), for tree density (Global Moran's I =0.452, P =0.001), and in the OLS regression residuals (Global Moran's I range from 0.32 to 0.38, all P <0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (r S =-0.19; conventional P -value=0.016; spatially adjusted P -value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (r S =-0.18; conventional P -value=0.019; spatially adjusted P -value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed.
Miller, Rose T; Raharison, Jean-Luc; Irwin, Mitchell T
2017-04-01
The destruction and degradation of forest habitats are major threats to the sustainability of lemur populations in Madagascar. Madagascan landscapes often contain forest fragments that represent refuges for native fauna, while also being used for firewood and timber by local human populations. As undisturbed forest becomes increasingly scarce, understanding resource competition between humans and wildlife in disturbed habitats will be increasingly important. We tested the hypothesis that Malagasy and aye-ayes (Daubentonia madagascariensis) compete for the limited number of dead trees in rainforest fragments at Tsinjoarivo, Madagascar. We surveyed 2.16 ha within five fragments (range 5-228 ha) surrounding human settlements to quantify the density of dead trees and traces of both human and aye-aye activity. Neither aye-aye nor human traces were distributed according to the availability of particular trees species, and aye-ayes and Malagasy apparently preferred several different species. Although overlap was recorded in tree species used, human use tended to be positively correlated with a species' desirability as firewood, while a negative relationship was seen for aye-ayes. Both consumers used trees of similar diameter at breast height, but those used by aye-ayes tended to be older, suggesting that human use might precede usefulness for aye-ayes. Finally, the density of dead trees and aye-aye traces were highest in smaller fragments, but human traces did not vary across fragment size. Although further study is needed to better quantify the aye-aye diet in this region, these data suggest that aye-ayes and local people compete for dead trees, and this competition could constitute a pressure on aye-aye populations.
Colonization of disturbed trees by the southern pine bark beetle guild (Coleoptera: Scolytidae)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flamm, R.O.; Pulley, P.E.; Coulson, R.N.
1993-02-01
The southern pine bark beetle guild [Dendroctonus frontalis Zimmermann, D. terebrans (Olivier), Ips calligraphus (Germar), I. grandicollis (Eichhoff), and I. avulsus (Eichhoff)] uses disturbed hosts as habitat for establishment of within-tree populations. The process of colonization of disturbed hosts was examined. Using a procedure designed to emulate effects of a lightning strike, pines were severely disturbed. Response was characterized by measuring beetle populations that (1) arrived at the trees and (2) successfully attacked the trees. Establishment of within-tree populations was characterized by measuring length of egg gallery excavated by attacking adults. The time delay between arrival and attack for D.more » frontalis and I. calligraphus was also calculated. Attack densities of both species became asymptotic as arrival increased. The percentage of arriving beetles that attacked ranged from 9 to 41 for D. frontalis and from 8 to 59 for I. calligraphus. Numbers of beetles that arrived at the tree but did not attack ranged from 2.7 to 50.2 beetles per dm[sup 2] for D. frontalis and from 0.2 to 10.0 beetles per dm[sup 2] for I. calligraphus. Most D. frontalis and I. calligraphus attacked on the day they arrived. The delay between arrival and attack was longer for I. calligraphus than the D. frontalis. Egg gallery excavated by D. frontalis increased throughout the study. Eventually, the Ips species were excluded from the lower half of the hole. The low attack densities observed in this study illustrate the significance of disturbed trees in providing refuges for enzootic levels of bark beetles. The aggregation behavior of beetle populations colonizing disturbed hosts supported the contention that these trees serve as foci for initiation of infestations. Furthermore, in disturbed pines, small numbers of beetles were capable of overcoming host defense systems.« less
Breeding biology and nest-site selection of red-tailed hawks in an altered desert grassland
Hobbs, R.J.; DeStefano, S.; Halvorson, W.L.
2006-01-01
Red-tailed Hawks (Buteo jamaicensis) have expanded their range as trees have invaded formerly-open grasslands. Desert grasslands of southern Arizona have been invaded by mesquite trees (Prosopis velutina) since Anglo-American settlement and now support a large population of Red-tailed Hawks. We studied a population of Red-tailed Hawks in an altered desert grassland in southern Arizona. Our objectives were to determine what environmental characteristics influence Red-tailed Hawk habitat selection in mesquite-invaded desert grasslands and to evaluate the habitat quality of these grasslands for Red-tailed Hawks based on nesting density, nest success, and productivity. Red-tailed Hawks had 86% (95% C.I. = 73-99) nest success and 1.82 young per breeding pair (95% C.I. = 1.41-2.23). Nesting density was 0.15 (95% CI = 0.08-0.21) breeding pairs/km2 and the mean nearest-neighbor distance was 1.95 km (95% C.I. = 1.74-2.16). Red-tailed Hawks selected nest-sites with taller nest-trees and greater tree height and cover than were available at random. Mesquite trees in desert grasslands provide abundant potential nesting structures for Red-tailed Hawks. ?? 2006 The Raptor Research Foundation, Inc.
Albanese, G.; Vickery, P.D.; Sievert, P.R.
2007-01-01
Changes to land use and disturbance frequency threaten disturbance-dependent Lepidoptera within sandplain habitats of the northeastern United States. The frosted elfin (Callophrys irus) is a rare and declining monophagous butterfly that is found in xeric open habitats maintained by disturbance. We surveyed potential habitat for adult frosted elfins at four sites containing frosted elfin populations in southeastern Massachusetts, United States. Based on the survey data, we used kernel density estimation to establish separate adult frosted elfin density classes, and then used regression tree analysis to describe the relationship between density and habitat features. Adult frosted elfin density was greatest when the host plant, wild indigo (Baptisia tinctoria), density was >2.6 plants/m2 and tree canopy cover was <29%. Frosted elfin density was inversely related to tree cover and declined when the density of wild indigo was <2.6 plants/m2 and shrub cover was ???16%. Even small quantities of non-native shrub cover negatively affected elfin densities. This effect was more pronounced when native herbaceous cover was <36%. Our results indicate that management for frosted elfins should aim to increase both wild indigo density and native herbaceous cover and limit native tree and shrub cover in open sandplain habitats. Elimination of non-native shrub cover is also recommended because of the negative effects of even low non-native shrub cover on frosted elfin densities. The maintenance of patches of early successional sandplain habitat with the combination of low tree and shrub cover, high host plant densities, and the absence of non-native shrubs appears essential for frosted elfin persistence, but may also be beneficial for a number of other rare sandplain insects and plant species. ?? 2006 Elsevier Ltd. All rights reserved.
Persson, Inga-Lill; Nilsson, Mats B; Pastor, John; Eriksson, Tobias; Bergström, Roger; Danell, Kjell
2009-10-01
Large herbivores can affect the carbon cycle in boreal forests by changing productivity and plant species composition, which in turn could ultimately alter litter production, nutrient cycling, and the partitioning between aboveground and belowground allocation of carbon. Here we experimentally tested how moose (Alces alces) at different simulated population densities affected belowground respiration rates (estimated as CO2 flux) in young boreal forest stands situated along a site productivity gradient. At high simulated population density, moose browsing considerably depressed belowground respiration rates (24-56% below that of no-moose controls) except during June, where the difference only was 10%. Moose browsing depressed belowground respiration the most on low-productivity sites. Soil moisture and temperature did not affect respiration rates. Impact of moose on belowground respiration was closely linked to litter production and followed Michaelis-Menten dynamics. The main mechanism by which moose decrease belowground respiration rates is likely their effect on photosynthetic biomass (especially decreased productivity of deciduous trees) and total litter production. An increased productivity of deciduous trees along the site productivity gradient causes an unequal effect of moose along the same gradient. The rapid growth of deciduous trees may offer higher resilience against negative effects of moose browsing on litter production and photosynthate allocation to roots.
Lesser prairie-chicken avoidance of trees in a grassland landscape
Lautenbach, Joseph M.; Plumb, Reid T.; Robinson, Samantha G.; Hagen, Christian A.; Haukos, David A.; Pitman, James C.
2016-01-01
Grasslands are among the most imperiled ecosystems in North America. Reasons that grasslands are threatened include conversion to row-crop agriculture, fragmentation, and changes in fire regimes. The reduction of fire processes in remaining prairies has resulted in tree encroachment and establishment in grasslands, further reducing grassland quantity and quality. Grassland birds have been experiencing precipitous population declines in recent decades, commensurate with landscape changes to grasslands. The lesser prairie-chicken (Tympanuchus pallidicinctus Ridgway) is a declining species of prairie grouse of conservation concern. We used second- and third-order habitat selection metrics to test if female lesser prairie-chickens avoid grasslands where trees were present. Our results indicated that female lesser prairie-chickens selected habitats avoiding the nearest trees by 283 m on average, nearly twice as far as would be expected at random. Lesser prairie-chickens were 40 times more likely to use habitats with tree densities of 0 trees ∙ ha− 1 than habitats with 5 trees ∙ ha− 1. Probability of use indicated that lesser prairie-chickens were 19 times more likely to use habitats 1000 m from the nearest tree when compared with using habitats 0 m from the nearest tree. Nest survival was not affected at densities < 2 trees ∙ ha− 1; however, we could not test if nest survival was affected at greater tree densities as no nests were detected at densities > 2 trees ∙ ha− 1. Avoidance of trees could be due to perceived increased predation risk, reduced habitat quality, or a combination of these potentially confounding factors. Preventing further establishment and expansion of trees in landscapes occupied by lesser prairie-chickens could contribute to the continued persistence of the species. Additionally, restoring grasslands through tree removal may facilitate conservation efforts for grassland species such as the lesser prairie-chicken by improving habitat quality and promoting expansion of occupied range.
The mountain pine beetle: causes and consequences of an unprecedented outbreak
Allan L. Carroll
2011-01-01
The mountain pine beetle (Dendroctonus ponderosae) is native to the pine forests of western North America where it normally exists at very low densities, infesting only weakened or damaged trees. Under conditions conducive to survival, populations may erupt and spread over extensive landscapes, killing large numbers of healthy trees.
Trees Wanted—Dead or Alive! Host Selection and Population Dynamics in Tree-Killing Bark Beetles
Kausrud, Kyrre L.; Grégoire, Jean-Claude; Skarpaas, Olav; Erbilgin, Nadir; Gilbert, Marius; Økland, Bjørn; Stenseth, Nils Chr.
2011-01-01
Bark beetles (Coleoptera: Curculionidae, Scolytinae) feed and breed in dead or severely weakened host trees. When their population densities are high, some species aggregate on healthy host trees so that their defences may be exhausted and the inner bark successfully colonized, killing the tree in the process. Here we investigate under what conditions participating with unrelated conspecifics in risky mass attacks on living trees is an adaptive strategy, and what this can tell us about bark beetle outbreak dynamics. We find that the outcome of individual host selection may deviate from the ideal free distribution in a way that facilitates the emergence of tree-killing (aggressive) behavior, and that any heritability on traits governing aggressiveness seems likely to exist in a state of flux or cycles consistent with variability observed in natural populations. This may have implications for how economically and ecologically important species respond to environmental changes in climate and landscape (forest) structure. The population dynamics emerging from individual behavior are complex, capable of switching between “endemic” and “epidemic” regimes spontaneously or following changes in host availability or resistance. Model predictions are compared to empirical observations, and we identify some factors determining the occurrence and self-limitation of epidemics. PMID:21647433
Bernard R. Parresol; F. Thomas Lloyd
2003-01-01
Forest inventory data were used to develop a standage-driven, stochastic predictor of unit-area, frequency weighted lists of breast high tree diameters (DBH). The average of mean statistics from 40 simulation prediction sets of an independent 78-plot validation dataset differed from the observed validation means by 0.5 cm for DBH, and by 12 trees/h for density. The 40...
Shinneman, Douglas J.; Baker, William L.
2009-01-01
Fire is known to structure tree populations, but the role of broad-scale climate variability is less clear. For example, the influence of climatic “teleconnections” (the relationship between oceanic–atmospheric fluctuations and anomalous weather patterns across broad scales) on forest age structure is relatively unexplored. We sampled semiarid piñon–juniper (Pinus edulis–Juniperus osteosperma) woodlands in western Colorado, USA, to test the hypothesis that woodland age structures are shaped by climate, including links to oceanic–atmospheric fluctuations, and by past fires and livestock grazing. Low-severity surface fire was lacking, as fire scars were absent, and did not influence woodland densities, but stand-replacing fires served as long-rotation (>400–600 years), stand-initiating events. Old-growth stands (>300 years old) were found in 75% of plots, consistent with a long fire rotation. Juniper and piñon age structures suggest contrasting responses during the past several centuries to dry and wet episodes linked to the Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO). Juniper density increased slightly during periods of drought, positive (warm) AMO (after ∼10-year lag), and negative (cool) PDO. In contrast, piñon populations may still be recovering from a long, drought-filled period (AD 1620–1820), with pulses of recovery favored during cool AMO, warm PDO, and above-average moisture periods. Analysis of 20th-century tree establishment and instrumental climate data corroborate the long-term relationships between age structure and climate. After Euro–American settlement (AD 1881), livestock grazing reduced understory grasses and forbs, reducing competition with tree seedlings and facilitating climate-induced increases in piñons. Thus tree populations in these woodlands are in flux, affected by drought and wet periods linked to oceanic–atmospheric variability, Euro–American livestock grazing, and long-rotation, high-severity fires. Reductions in livestock grazing levels may aid ecological restoration efforts. However, given long-term fluctuations in tree density and composition, and expected further drought, thinning or burning to reduce tree populations may be misdirected.
De Azevedo, Letícia Henrique; Maeda, Enzo Yuji; Inomoto, Mário Massayuki; De Moraes, Gilberto José
2014-02-01
Litchi (Litchi chinensis Sonnerat) is native to Southeast Asia, where most of the world cultivation of this crop is done. Its commercial cultivation in Brazil is recent and concentrated in the state of São Paulo. This crop has been severely damaged in Asia and Brazil by the litchi erineum mite, Aceria litchii (Keifer) (Eriophyidae). The objectives of this study were the adaptation of a method to estimate the density of A. litchii, an evaluation of the population dynamics of this pest and of its associated predators in the state of São Paulo, and an estimation of its injury levels to litchi trees. To estimate the density of A. litchii, an adaptation of a method commonly used to evaluate nematode densities in plant roots was performed. This method was shown to be adequate for the estimation of the number of A. litchii, and it might also be useful for similar evaluations of other erineum forming mites. Field samples to determine the pest population dynamics were collected monthly from August 2011 to July 2012. Sampled leaves were examined under a stereomicroscope for removal of predators and subsequent extraction ofA. litchii by the adapted method. A. litchii reached maximum densities in November 2011 and June 2012, being found at low densities between January and March 2012. The pattern of variation of A. litchii injury levels was similar to that of the density of A. litchii. The main predatory mite co-occurring with A. litchii was the phytoseiid Phytoseius intermedius Evans and McFarlane. However, high injury levels due toA. litchii suggest that the predator was unable to prevent visible damages to the trees, indicating that control activities should be adopted by growers.
Wang, Yi; Huang, Wei; Siemann, Evan; Zou, Jianwen; Wheeler, Gregory S; Carrillo, Juli; Ding, Jianqing
2011-04-01
Invasive plants often have novel biotic interactions in their introduced ranges. Their defense to herbivory may differ from their native counterparts, potentially influencing the effectiveness of biological control. If invasive plants have decreased resistance but increased tolerance to enemies, insect herbivores may rapidly build up their populations but exert weak control. Moreover, resource availability to plants may affect the efficacy of biological control agents. We tested these predictions using Chinese tallow tree (Triadica sebifera) and two specialist herbivores (Heterapoderopsis bicallosicollis and Gadirtha inexacta) that are candidates for biological control. We performed a pair of field common garden experiments in China in which Triadica seedlings from the native or introduced range were grown in low or high light conditions and subjected to different levels of herbivory by each herbivore in a factorial design. We found that Heterapoderopsis achieved greater densities on tallow trees from the introduced range or when trees were grown in high light conditions. When Gadirtha was raised in the lab on tallow tree foliage we found that it performed better (larger pupal size) when fed foliage from introduced populations. However, introduced populations generally had greater herbivore tolerance such that the impact of each agent on plant performance was lower than on native populations despite higher herbivore loads. Tallow trees grew more slowly and achieved smaller sizes in lower light levels, but the impact of biological control agents was comparable to that found for higher light levels. Plants from introduced populations grew larger than those from native populations in all conditions. Our results suggest that reduced resistance and increased tolerance to herbivory in introduced populations may impede success of biological control programs. Biological control practitioners should include plants from the introduced range in the prerelease evaluation, which will help predict insect impact on target weeds.
Jennings, David E.; Gould, Juli R.; Vandenberg, John D.; Duan, Jian J.; Shrewsbury, Paula M.
2013-01-01
The emerald ash borer (EAB), Agrilus planipennis, is an invasive beetle that has killed millions of ash trees (Fraxinus spp.) since it was accidentally introduced to North America in the 1990s. Understanding how predators such as woodpeckers (Picidae) affect the population dynamics of EAB should enable us to more effectively manage the spread of this beetle, and toward this end we combined two experimental approaches to elucidate the relative importance of woodpecker predation on EAB populations. First, we examined wild populations of EAB in ash trees in New York, with each tree having a section screened to exclude woodpeckers. Second, we established experimental cohorts of EAB in ash trees in Maryland, and the cohorts on half of these trees were caged to exclude woodpeckers. The following spring these trees were debarked and the fates of the EAB larvae were determined. We found that trees from which woodpeckers were excluded consistently had significantly lower levels of predation, and that woodpecker predation comprised a greater source of mortality at sites with a more established wild infestation of EAB. Additionally, there was a considerable difference between New York and Maryland in the effect that woodpecker predation had on EAB population growth, suggesting that predation alone may not be a substantial factor in controlling EAB. In our experimental cohorts we also observed that trees from which woodpeckers were excluded had a significantly higher level of parasitism. The lower level of parasitism on EAB larvae found when exposed to woodpeckers has implications for EAB biological control, suggesting that it might be prudent to exclude woodpeckers from trees when attempting to establish parasitoid populations. Future studies may include utilizing EAB larval cohorts with a range of densities to explore the functional response of woodpeckers. PMID:24349520
Jennings, David E; Gould, Juli R; Vandenberg, John D; Duan, Jian J; Shrewsbury, Paula M
2013-01-01
The emerald ash borer (EAB), Agrilus planipennis, is an invasive beetle that has killed millions of ash trees (Fraxinus spp.) since it was accidentally introduced to North America in the 1990s. Understanding how predators such as woodpeckers (Picidae) affect the population dynamics of EAB should enable us to more effectively manage the spread of this beetle, and toward this end we combined two experimental approaches to elucidate the relative importance of woodpecker predation on EAB populations. First, we examined wild populations of EAB in ash trees in New York, with each tree having a section screened to exclude woodpeckers. Second, we established experimental cohorts of EAB in ash trees in Maryland, and the cohorts on half of these trees were caged to exclude woodpeckers. The following spring these trees were debarked and the fates of the EAB larvae were determined. We found that trees from which woodpeckers were excluded consistently had significantly lower levels of predation, and that woodpecker predation comprised a greater source of mortality at sites with a more established wild infestation of EAB. Additionally, there was a considerable difference between New York and Maryland in the effect that woodpecker predation had on EAB population growth, suggesting that predation alone may not be a substantial factor in controlling EAB. In our experimental cohorts we also observed that trees from which woodpeckers were excluded had a significantly higher level of parasitism. The lower level of parasitism on EAB larvae found when exposed to woodpeckers has implications for EAB biological control, suggesting that it might be prudent to exclude woodpeckers from trees when attempting to establish parasitoid populations. Future studies may include utilizing EAB larval cohorts with a range of densities to explore the functional response of woodpeckers.
Matthew B. Russell; Christopher W. Woodall; Kevin M. Potter; Brian F. Walters; Grant M. Domke; Christopher M. Oswalt
2017-01-01
Forest understories across the northern United States (US) are a complex of tree seedlings, endemic forbs, herbs, shrubs, and introduced plant species within a forest structure defined by tree and forest floor attributes. The substantial increase in white-tailed deer (Odocoileus virginianus Zimmerman) populations over the past decades has resulted...
Specific Gravity Variation in a Lower Mississippi Valley Cottonwood Population
R. E. Farmer; J. R. Wilcox
1966-01-01
Specific gravity varied from 0,32 to 0.46, averaging 0.38. Most of the variation was associated with individual trees; samples within locations accounted for a smaller, but statistically significant, portion of the variation. Variation between locatians was not significant. It was concluded that individual high-density trees' should be sought throughout the...
Duncan, Dustin T.; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A.; Arbia, Giuseppe; Castro, Marcia C.; White, Kellee; Williams, David R.
2017-01-01
The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran’s I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran’s I range from 0.24 to 0.86, all P=0.001), for tree density (Global Moran’s I=0.452, P=0.001), and in the OLS regression residuals (Global Moran’s I range from 0.32 to 0.38, all P<0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (rS=−0.19; conventional P-value=0.016; spatially adjusted P-value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (rS=−0.18; conventional P-value=0.019; spatially adjusted P-value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed. PMID:29354668
Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes.
Petermann, Jana S; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W; Gossner, Martin M
2016-01-01
Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and functioning. We furthermore conclude that artificial tree-hole analogues represent a useful experimental alternative to test effects of changes in forest management on natural communities.
Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes
Petermann, Jana S.; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W.; Gossner, Martin M.
2016-01-01
Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and functioning. We furthermore conclude that artificial tree-hole analogues represent a useful experimental alternative to test effects of changes in forest management on natural communities. PMID:27187741
Ismail, Sascha A.; Ghazoul, Jaboury; Ravikanth, Gudasalamani; Kushalappa, Cheppudira G.; Uma Shaanker, Ramanan; Kettle, Chris J.
2014-01-01
Tropical agro-forest landscapes are global priority areas for biodiversity conservation. Little is known about the ability of these landscapes to sustain large late successional forest trees upon which much forest biodiversity depends. These landscapes are subject to fragmentation and additional habitat degradation which may limit tree recruitment and thus compromise numerous ecosystem services including carbon storage and timber production. Dysoxylum malabaricum is a large canopy tree species in the Meliaceae, a family including many important tropical timber trees. This species is found in highly fragmented forest patches within a complex agro-forest landscape of the Western Ghats biodiversity hot spot, South India. In this paper we combined a molecular assessment of inbreeding with ecological and demographic data to explore the multiple threats to recruitment of this tree species. An evaluation of inbreeding, using eleven microsatellite loci in 297 nursery-reared seedlings collected form low and high density forest patches embedded in an agro-forest matrix, shows that mating between related individuals in low density patches leads to reduced seedling performance. By quantifying habitat degradation and tree recruitment within these forest patches we show that increasing canopy openness and the increased abundance of pioneer tree species lead to a general decline in the suitability of forest patches for the recruitment of D. malabaricum. We conclude that elevated inbreeding due to reduced adult tree density coupled with increased degradation of forest patches, limit the recruitment of this rare late successional tree species. Management strategies which maintain canopy cover and enhance local densities of adult trees in agro-forest mosaics will be required to ensure D. malabaricum persists in these landscapes. Our study highlights the need for a holistic understanding of the incipient processes that threaten populations of many important and rare tropical tree species in human dominated agro-forest landscapes. PMID:24558500
Grundel, R.; Pavlovic, N.B.
2007-01-01
Oak savannas were historically common but are currently rare in the Midwestern United States. We assessed possible associations of bird species with savannas and other threatened habitats in the region by relating fire frequency and vegetation characteristics to seasonal densities of 72 bird species distributed across an open-forest gradient in northwestern Indiana. About one-third of the species did not exhibit statistically significant relationships with any combination of seven vegetation characteristics that included vegetation cover in five vertical strata, dead tree density, and tree height. For 40% of the remaining species, models best predicting species density incorporated tree density. Therefore, management based solely on manipulating tree density may not be an adequate strategy for managing bird populations along this open-forest gradient. Few species exhibited sharp peaks in predicted density under habitat conditions expected in restored savannas, suggesting that few savanna specialists occur among Midwestern bird species. When fire frequency, measured over fifteen years, was added to vegetation characteristics as a predictor of species density, it was incorporated into models for about one-quarter of species, suggesting that fire may modify habitat characteristics in ways that are important for birds but not captured by the structural habitat variables measured. Among those species, similar numbers had peaks in predicted density at low, intermediate, or high fire frequency. For species suggested by previous studies to have a preference for oak savannas along the open-forest gradient, estimated density was maximized at an average fire return interval of about one fire every three years. ?? The Cooper Ornithological Society 2007.
Effectiveness of predator satiation in masting oaks is negatively affected by conspecific density.
Bogdziewicz, Michał; Espelta, Josep M; Muñoz, Alberto; Aparicio, Jose M; Bonal, Raul
2018-04-01
Variation in seed availability shapes plant communities, and is strongly affected by seed predation. In some plant species, temporal variation in seed production is especially high and synchronized over large areas, which is called 'mast seeding'. One selective advantage of this phenomenon is predator satiation which posits that masting helps plants escape seed predation through starvation of predators in lean years, and satiation in mast years. However, even though seed predation can be predicted to have a strong spatial component and depend on plant densities, whether the effectiveness of predator satiation in masting plants changes according to the Janzen-Connell effect has been barely investigated. We studied, over an 8-year period, the seed production, the spatiotemporal patters of weevil seed predation, and the abundance of adult weevils in a holm oak (Quercus ilex) population that consists of trees interspersed at patches covering a continuum of conspecific density. Isolated oaks effectively satiate predators, but this is trumped by increasing conspecific plant density. Lack of predator satiation in trees growing in dense patches was caused by re-distribution of insects among plants that likely attenuated them against food shortage in lean years, and changed the type of weevil functional response from type II in isolated trees to type III in trees growing in dense patches. This study provides the first empirical evaluation of the notion that masting and predator satiation should be more important in populations that start to dominate their communities, and is consistent with the observation that masting is less frequent and less intense in diverse forests.
General and specific gypsy moth predators
Ronald M. Weseloh
1991-01-01
General larval predators of low-density gypsy moth, Lymantria dispar (L.), populations have been assessed by exposing caterpillars tethered by threads. Most mortality occurred on tree trunks and in leaf litter.
NASA Astrophysics Data System (ADS)
Amininasab, Seyed Mehdi; Vedder, Oscar; Schut, Elske; de Jong, Berber; Magrath, Michael J. L.; Korsten, Peter; Komdeur, Jan
2016-01-01
Most birds have specific habitat requirements for breeding. The vegetation structure surrounding nest-sites is an important component of habitat quality, and can have large effects on avian breeding performance. We studied 13 years of Blue Tit Cyanistes caeruleus population data to determine whether characteristics of vegetation structure predict site occupancy, laying date and number of eggs laid. Measurements of vegetation structure included the density of English Oak Quercus robur, European Beech Fagus sylvatica, and other deciduous, coniferous and non-coniferous evergreen trees, within a 20-m radius of nest-boxes used for breeding. Trees were further sub-divided into specific classes of trunk circumferences to determine the densities for different maturity levels. Based on Principal Component Analysis (PCA), we reduced the total number of 17 measured vegetation variables to 7 main categories, which we used for further analyses. We found that the occupancy rate of sites and the number of eggs laid correlated positively with the proportion of deciduous trees and negatively with the density of coniferous trees. Laying of the first egg was advanced with a greater proportion of deciduous trees. Among deciduous trees, the English Oak appeared to be most important, as a higher density of more mature English Oak trees was associated with more frequent nest-box occupancy, a larger number of eggs laid, and an earlier laying start. Furthermore, laying started earlier and more eggs were laid in nest-boxes with higher occupancy rates. Together, these findings highlight the role of deciduous trees, particularly more mature English Oak, as important predictors of high-quality preferred habitat. These results aid in defining habitat quality and will facilitate future studies on the importance of environmental quality for breeding performance.
The Importance of Tree Size and Fecundity for Wind Dispersal of Big-Leaf Mahogany
Norghauer, Julian M.; Nock, Charles A.; Grogan, James
2011-01-01
Seed dispersal by wind is a critical yet poorly understood process in tropical forest trees. How tree size and fecundity affect this process at the population level remains largely unknown because of insufficient replication across adults. We measured seed dispersal by the endangered neotropical timber species big-leaf mahogany (Swietenia macrophylla King, Meliaceae) in the Brazilian Amazon at 25 relatively isolated trees using multiple 1-m wide belt transects extended 100 m downwind. Tree diameter and fecundity correlated positively with increased seed shadow extent; but in combination large, high fecundity trees contributed disproportionately to longer-distance dispersal events (>60 m). Among three empirical models fitted to seed density vs. distance in one dimension, the Student-t (2Dt) generally fit best (compared to the negative exponential and inverse power). When seedfall downwind was modelled in two dimensions using a normalised sample, it peaked furthest downwind (c. 25 m) for large, high-fecundity trees; with the inverse Gaussian and Weibull functions providing comparable fits that were slightly better than the lognormal. Although most seeds fell within 30 m of parent trees, relatively few juveniles were found within this distance, resulting in juvenile-to-seed ratios peaking at c. 35–45 m. Using the 2Dt model fits to predict seed densities downwind, coupled with known fecundity data for 2000–2009, we evaluated potential Swietenia regeneration near adults (≤30 m dispersal) and beyond 30 m. Mean seed arrival into canopy gaps >30 m downwind was more than 3× greater for large, high fecundity trees than small, high-fecundity trees. Tree seed production did not necessarily scale up proportionately with diameter, and was not consistent across years, and this resulting intraspecific variation can have important consequences for local patterns of dispersal in forests. Our results have important implications for management and conservation of big-leaf mahogany populations, and may apply to other threatened wind-dispersed Meliaceae trees. PMID:21408184
NASA Technical Reports Server (NTRS)
Lawton, Robert M.; Lawton, Robert O.
2010-01-01
Didymopanax pittieri is a common shade-intolerant tree colonizing treefall gaps in the elfin forests on windswept ridgecrests in the lower montane rain forests of the Cordillera de Tilarain, Costa Rica. All D. pittieri taller than > 0.5 m in a 5.2-ha elfin forested portion of a gridded study watershed in the Monteverde Cloud Forest Preserve were located, mapped, and measured. This local population of D. pittieri is spatially inhomogeneous, in that density increases with increasing wind exposure; D. pittieri are more abundant near ridge crests than lower on windward slopes. The important and ubiquitous phenomenon of spatial inhomogeneity in population density is addressed and corrected for in spatial analyses by the application of the inhomogeneous version of Ripley's K. The spatial patterns of four size classes of D. pittieri (<5 cm dbh, 5-10 cm dbh, 10-20 cm dbh, and> 20 cm dbh) were investigated. Within the large-scale trend in density driven by wind exposure, D. pittieri saplings are clumped at the scale of treefall gaps and at the scale of patches of aggregated gaps. D. pittieri 5-10 cm dbh are randomly distributed, apparently due to competitive thinning of sapling clumps during the early stages of gap-phase regeneration. D. pittieri larger than 10 cm dbh are overdispersed at a scale larger than that of patches of gaps. Natural disturbance can influence the distribution of shade intolerant tree populations at several different spatial scales, and can have discordant effects at different life history stages.
Assessment and Mapping of Forest Parcel Sizes
Brett J. Butler; Susan L. King
2005-01-01
A method for analyzing and mapping forest parcel sizes in the Northeastern United States is presented. A decision tree model was created that predicts forest parcel size from spatially explicit predictor variables: population density, State, percentage forest land cover, and road density. The model correctly predicted parcel size for 60 percent of the observations in a...
James A. Powell; Barbara J. Bentz
2014-01-01
For species with irruptive population behavior, dispersal is an important component of outbreak dynamics. We developed and parameterized a mechanistic model describing mountain pine beetle (Dendroctonus ponderosae Hopkins) population demographics and dispersal across a landscape. Model components include temperature-dependent phenology, host tree colonization...
Chen, Qi Min; Luo, Qing Hong; Ning, Hu Sen; Zhao, Cheng Yi; Duan, Wen Biao
2017-03-18
The population structure characteristics, natural regeneration, and the influential factors of Haloxylon ammodendron plantations at six different stand ages on the southern edge of the Gurbantunggut Desert were studied. The results showed that H. ammodendron plantation at the stand age of 7 could naturally regenerate. At the stand age of 17, the densities of the seedlings (<30 cm height), saplings (30≤H<50 height), and small trees (≥50 cm height) reached optimal class, and the mean height and base diameter of the small tress reached 1.10 m and 1.91 cm, respectively. The parent trees in H. ammodendron plantation at the stand age of 20 grew best. The height of 35% individuals grew up to 2.50-3.00 m, and the basal stem diameter of 23.1% individuals grew up to 8.00-10.00 cm. The height and diameter growth of the parent trees in H. ammodendron plantation at the stand age of 33 apparently declined, but the regeneration ability by natural seed dispersal was still strong. The regeneration density of natural seed dispersal showed the greatest correlation with the available nitrogen content in 0-100 cm soil layer (0.87), followed by the soil rapidly available phosphorus content (0.84) and the soil water content (0.79). The soils with pH 8.1-8.6 did not limit the nutrient growth of the regeneration layer. In the main stand layer, the individual density of whole regeneration layer showed the greatest correlation with the biomass of the parent trees (0.77), while the density of regeneration layer of the small trees showed the greatest correlation with the planting density (0.71) and the age of the parent trees (0.70).
NASA Astrophysics Data System (ADS)
Lesser, M.; Wentzel, C.; Gray, S.; Jackson, S.
2007-12-01
Many tree species are predicted to expand into new territory over the coming decades in response to changing climate. By studying tree expansions over the last several centuries we can begin to understand the mechanisms underlying these changes and anticipate their consequences for forest management. Woody-plant demographics and decadal to multidecadal climate variability are often closely linked in semi-arid regions. Integrated tree-ring analysis, combining dendroecology and dendroclimatology to document, respectively, the demographic history of the population and the climatic history of the region, can reveal ecological dynamics in response to climate variability. We studied four small, disjunct populations of Pinus ponderosa in the Bighorn Basin of north-central Wyoming. These populations are located 30 to 100 kilometers from the nearest core populations of ponderosa pine in the western Bighorn Mountains. Packrat midden studies have shown that ponderosa pine colonized the western slopes of the Bighorn Range 1500 years ago, so the disjunct populations in the basin must be younger. All trees (living and dead) at each of the four disjunct populations were mapped, cored, and then aged using tree-ring based techniques. We obtained records of hydroclimatic variability from the Bighorn Basin using four tree-ring series from Pinus flexilis (3 sites) and Pseudotsuga menziesii (1 site). The four disjunct populations were all established within the past 500 years. Initially, the populations grew slowly with low recruitment rates until the early 19th century, when they experienced one or more large recruitment pulses. These pulses coincided with extended wet periods in the climate reconstruction. However, similar wet periods before the 19th Century were not accompanied by recruitment pulses, indicating that other factors (e.g., population density, genetic variability) are also important in colonization and expansion. We are currently obtaining genetic data and carrying out population modeling to differentiate the effects of population dynamics, genetic variability, and climate variability on recruitment and expansion of these populations.
Gandhi, Durai Sanjay; Sundarapandian, Somaiah
2017-04-01
Tropical dry forests are one of the most widely distributed ecosystems in tropics, which remain neglected in research, especially in the Eastern Ghats. Therefore, the present study was aimed to quantify the carbon storage in woody vegetation (trees and lianas) on large scale (30, 1 ha plots) in the dry deciduous forest of Sathanur reserve forest of Eastern Ghats. Biomass of adult (≥10 cm DBH) trees was estimated by species-specific allometric equations using diameter and wood density of species whereas in juvenile tree population and lianas, their respective general allometric equations were used to estimate the biomass. The fractional value 0.4453 was used to convert dry biomass into carbon in woody vegetation of tropical dry forest. The mean aboveground biomass value of juvenile tree population was 1.86 Mg/ha. The aboveground biomass of adult trees ranged from 64.81 to 624.96 Mg/ha with a mean of 245.90 Mg/ha. The mean aboveground biomass value of lianas was 7.98 Mg/ha. The total biomass of woody vegetation (adult trees + juvenile population of trees + lianas) ranged from 85.02 to 723.46 Mg/ha, with a mean value of 295.04 Mg/ha. Total carbon accumulated in woody vegetation in tropical dry deciduous forest ranged from 37.86 to 322.16 Mg/ha with a mean value of 131.38 Mg/ha. Adult trees accumulated 94.81% of woody biomass carbon followed by lianas (3.99%) and juvenile population of trees (1.20%). Albizia amara has the greatest biomass and carbon stock (58.31%) among trees except for two plots (24 and 25) where Chloroxylon swietenia contributed more to biomass and carbon stock. Similarly, Albizia amara (52.4%) showed greater carbon storage in juvenile population of trees followed by Chloroxylon swietenia (21.9%). Pterolobium hexapetalum (38.86%) showed a greater accumulation of carbon in liana species followed by Combretum albidum (33.04%). Even though, all the study plots are located within 10 km radius, they show a significant spatial variation among them in terms of biomass and carbon stocks which could be attributed to variation in anthropogenic pressures among the plots as well as to changes in tree density across landscapes. Total basal area of woody vegetation showed a significant positive (R 2 = 0.978; P = 0.000) relationship with carbon storage while juvenile tree basal area showed the negative relationship (R 2 = 0.4804; P = 0.000) with woody carbon storage. The present study generates a large-scale baseline data of dry deciduous forest carbon stock, which would facilitate carbon stock assessment at a national level as well as to understand its contribution on a global scale.
Sétamou, Mamoudou; Bartels, David W
2015-01-01
The spatial niche occupation of the Asian citrus psyllid, Diaphorina citri Kuwayama, 1908, was evaluated to determine its field colonization and food resource exploitation strategies in citrus groves. Mature grapefruit and sweet orange groves were surveyed as part of an area-wide program in 2009-2010 to determine D. citri population densities and between-tree distribution. In both cultivars, significantly more psyllids were found on perimeter trees throughout the study period suggesting a strong edge effect in D. citri distribution in the groves. D. citri densities and infestation levels gradually declined from the edge to the center of grove. Higher numbers of D. citri were recorded on trees located on the east and south sides of the groves than those on the west and north sides. Citrus groves located at the outer edge of the study with at least one side non-surrounded to other citrus groves harbored significantly more D. citri than groves located within the block cluster and entirely surrounded by other groves. In detailed field studies during 2012, infestation of D. citri started from border trees in the grove where possibly one generation is completed before inner trees become infested. In addition, psyllid densities decreased significantly with increasing distance from the grove edge. Using the selection index, D citri exhibited a strong niche occupation preference for border trees.
2015-01-01
The spatial niche occupation of the Asian citrus psyllid, Diaphorina citri Kuwayama, 1908, was evaluated to determine its field colonization and food resource exploitation strategies in citrus groves. Mature grapefruit and sweet orange groves were surveyed as part of an area-wide program in 2009–2010 to determine D. citri population densities and between-tree distribution. In both cultivars, significantly more psyllids were found on perimeter trees throughout the study period suggesting a strong edge effect in D. citri distribution in the groves. D. citri densities and infestation levels gradually declined from the edge to the center of grove. Higher numbers of D. citri were recorded on trees located on the east and south sides of the groves than those on the west and north sides. Citrus groves located at the outer edge of the study with at least one side non-surrounded to other citrus groves harbored significantly more D. citri than groves located within the block cluster and entirely surrounded by other groves. In detailed field studies during 2012, infestation of D. citri started from border trees in the grove where possibly one generation is completed before inner trees become infested. In addition, psyllid densities decreased significantly with increasing distance from the grove edge. Using the selection index, D citri exhibited a strong niche occupation preference for border trees. PMID:26193111
van Mantgem, P.J.; Stephenson, N.L.
2005-01-01
1 We assess the use of simple, size-based matrix population models for projecting population trends for six coniferous tree species in the Sierra Nevada, California. We used demographic data from 16 673 trees in 15 permanent plots to create 17 separate time-invariant, density-independent population projection models, and determined differences between trends projected from initial surveys with a 5-year interval and observed data during two subsequent 5-year time steps. 2 We detected departures from the assumptions of the matrix modelling approach in terms of strong growth autocorrelations. We also found evidence of observation errors for measurements of tree growth and, to a more limited degree, recruitment. Loglinear analysis provided evidence of significant temporal variation in demographic rates for only two of the 17 populations. 3 Total population sizes were strongly predicted by model projections, although population dynamics were dominated by carryover from the previous 5-year time step (i.e. there were few cases of recruitment or death). Fractional changes to overall population sizes were less well predicted. Compared with a null model and a simple demographic model lacking size structure, matrix model projections were better able to predict total population sizes, although the differences were not statistically significant. Matrix model projections were also able to predict short-term rates of survival, growth and recruitment. Mortality frequencies were not well predicted. 4 Our results suggest that simple size-structured models can accurately project future short-term changes for some tree populations. However, not all populations were well predicted and these simple models would probably become more inaccurate over longer projection intervals. The predictive ability of these models would also be limited by disturbance or other events that destabilize demographic rates. ?? 2005 British Ecological Society.
Wood decomposition of Cyrilla racemiflora in a tropical montane forest.
Juan A. Torres
1994-01-01
Changes in wood density, nutrient content, and invertebrate populations throughout the decay of Cyrilla racemiflora (Cyrillaceaea) were compared with those observed in temperate woody tree species. Wood density tended ro remain constant as decay advanced except in the late stages. Nutrients (N, P, Ca, Mg) were in highest concentrations in intact bark, surface wood, and...
Esque, T.C.; Reynolds, B.; DeFalco, L.A.; Waitman, B.A.; Hughson, Debra
2010-01-01
The study of population change with regard to reproduction, seed dispersal, and germination, establishment, growth, and survival/mortality is known as demography. Demographic studies provide managers with information to assess future trends on the density, distribution, health, and population changes of importance or value, including Joshua trees (Yucca brevifolia). Demographic research provides the potential to understand the combined impacts of climate change and land-use practices and determine if strategies for protecting important species are likely to succeed or fall short of management goals and will identify factors that have the potential to de-stabilize populations outside the realm of natural variation so that management strategies can be developed to circumvent challenges for key species, processes, and ecosystems. The National Park Service and US Geological Survey are collaborating to collect demographic information about the demographics of Joshua tree in the Mojave Desert.
Teixeira, A. R.; Monteiro, P. S.; Rebelo, J. M.; Argañaraz, E. R.; Vieira, D.; Lauria-Pires, L.; Nascimento, R.; Vexenat, C. A.; Silva, A. R.; Ault, S. K.; Costa, J. M.
2001-01-01
A trophic network involving molds, invertebrates, and vertebrates, ancestrally adapted to the palm tree (Attalaea phalerata) microhabitat, maintains enzootic Trypanosoma cruzi infections in the Amazonian county Paço do Lumiar, state of Maranhão, Brazil. We assessed seropositivity for T. cruzi infections in the human population of the county, searched in palm trees for the triatomines that harbor these infections, and gathered demographic, environmental, and socioeconomic data. Rhodnius pictipes and R. neglectus in palm-tree frond clefts or in houses were infected with T. cruzi (57% and 41%, respectively). Human blood was found in 6.8% of R. pictipes in houses, and 9 of 10 wild Didelphis marsupialis had virulent T. cruzi infections. Increasing human population density, rain forest deforestation, and human predation of local fauna are risk factors for human T. cruzi infections. PMID:11266300
Grizzly bear density in Glacier National Park, Montana
Kendall, K.C.; Stetz, J.B.; Roon, David A.; Waits, L.P.; Boulanger, J.B.; Paetkau, David
2008-01-01
We present the first rigorous estimate of grizzly bear (Ursus arctos) population density and distribution in and around Glacier National Park (GNP), Montana, USA. We used genetic analysis to identify individual bears from hair samples collected via 2 concurrent sampling methods: 1) systematically distributed, baited, barbed-wire hair traps and 2) unbaited bear rub trees found along trails. We used Huggins closed mixture models in Program MARK to estimate total population size and developed a method to account for heterogeneity caused by unequal access to rub trees. We corrected our estimate for lack of geographic closure using a new method that utilizes information from radiocollared bears and the distribution of bears captured with DNA sampling. Adjusted for closure, the average number of grizzly bears in our study area was 240.7 (95% CI = 202–303) in 1998 and 240.6 (95% CI = 205–304) in 2000. Average grizzly bear density was 30 bears/1,000 km2, with 2.4 times more bears detected per hair trap inside than outside GNP. We provide baseline information important for managing one of the few remaining populations of grizzlies in the contiguous United States.
Charro, José Luis; López-Sánchez, Aida; Perea, Ramón
2018-01-15
Wild ungulate populations have increased and expanded considerably in many regions, including austral woodlands and forests where deer (Cervus elaphus) have been introduced as an alternative management to traditional cattle grazing. In this study, we compared traditional cattle with introduced deer management at increasing deer densities in the "Chaco Serrano" woodlands of Argentina to assess their ecological sustainability. We used three ecological indicators (abundance of tree regeneration, woody plant diversity and browsing damage) as proxies for environmental sustainability in woody systems. Our results indicate that traditional cattle management, at stocking rates of ∼10 ind km -2 , was the most ecologically sustainable management since it allowed greater tree regeneration abundance, higher richness of woody species and lower browsing damage. Importantly, cattle management and deer management at low densities (10 ind km -2 ) showed no significant differences in species richness and abundance of seedlings, although deer caused greater browsing damage on saplings and juveniles. However, management regimes involving high deer densities (∼35 deer km 2 ) was highly unsustainable in comparison to low (∼10 deer km -2 ) and medium (∼20 deer km -2 ) densities, with 40% probability of unsustainable browsing as opposed to less than 5% probability at low and medium densities. In addition, high deer densities caused a strong reduction in tree regeneration, with a 19-30% reduction in the abundance of seedlings and young trees when compared to low deer densities. These results showed that the effect of increasing deer densities on woody plant conservation was not linear, with high deer densities causing a disproportional deleterious effect on tree regeneration and sustainable browsing. Our results suggest that traditional management at low densities or the use of introduced ungulates (deer breeding areas) at low-medium densities (<20 deer km -2 ) are compatible with woody vegetation conservation. However, further research is needed on plant palatability, animal habitat use (spatial heterogeneity) and species turnover and extinction (comparison to areas of low-null historical browsing) to better estimate environmental sustainability of Neotropical ungulate-dominated woodlands. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cryptic herbivores mediate the strength and form of ungulate impacts on a long-lived savanna tree.
Maclean, Janet E; Goheen, Jacob R; Doak, Daniel F; Palmer, Todd M; Young, Truman P
2011-08-01
Plant populations are regulated by a diverse array of herbivores that impose demographic filters throughout their life cycle. Few studies, however, simultaneously quantify the impacts of multiple herbivore guilds on the lifetime performance or population growth rate of plants. In African savannas, large ungulates (such as elephants) are widely regarded as important drivers of woody plant population dynamics, while the potential impacts of smaller, more cryptic herbivores (such as rodents) have largely been ignored. We combined a large-scale ungulate exclusion experiment with a five-year manipulation of rodent densities to quantify the impacts of three herbivore guilds (wild ungulates, domestic cattle, and rodents) on all life stages of a widespread savanna tree. We utilized demographic modeling to reveal the overall role of each guild in regulating tree population dynamics, and to elucidate the importance of different demographic hurdles in driving population growth under contrasting consumer communities. We found that wild ungulates dramatically reduced population growth, shifting the population trajectory from increase to decline, but that the mechanisms driving these effects were strongly mediated by rodents. The impact of wild ungulates on population growth was predominantly driven by their negative effect on tree reproduction when rodents were excluded, and on adult tree survival when rodents were present. By limiting seedling survival, rodents also reduced population growth; however, this effect was strongly dampened where wild ungulates were present. We suggest that these complex interactions between disparate consumer guilds can have important consequences for the population demography of long-lived species, and that the effects of a single consumer group are often likely to vary dramatically depending on the larger community in which interactions are embedded.
Roda, A; Nachman, G; Hosein, F; Rodrigues, J C V; Peña, J E
2012-08-01
The red palm mite (Raoiella indica), an invasive pest of coconut, entered the Western hemisphere in 2004, then rapidly spread through the Caribbean and into Florida, USA. Developing effective sampling methods may aid in the timely detection of the pest in a new area. Studies were conducted to provide and compare intra tree spatial distribution of red palm mite populations on coconut in two different geographical areas, Trinidad and Puerto Rico, recently invaded by the mite. The middle stratum of a palm hosted significantly more mites than fronds from the upper or lower canopy and fronds from the lower stratum, on average, had significantly fewer mites than the two other strata. The mite populations did not vary within a frond. Mite densities on the top section of the pinna had significantly lower mite densities than the two other sections, which were not significantly different from each other. In order to improve future sampling plans for the red palm mite, the data was used to estimate the variance components associated with the various levels of the hierarchical sampling design. Additionally, presence-absence data were used to investigate the probability of no mites being present in a pinna section randomly chosen from a frond inhabited by mites at a certain density. Our results show that the most precise density estimate at the plantation level is to sample one pinna section per tree from as many trees as possible.
Desertification and a shift of forest species in the West African Sahel
Gonzalez, Patrick
2001-01-01
Original field data show that forest species richness and tree density in the West African Sahel declined in the last half of the 20th century. Average forest species richness of areas of 4 km2 in Northwest Senegal fell from 64 ?? 2 species ca 1945 to 43 ?? 2 species in 1993, a decrease significant at p < 0.001. Densities of trees of height ???3 m declined from 10 ?? 0.3 trees ha-1 in 1954 to 7.8 ?? 0.3 trees ha-1 in 1989, also significant at p < 0.001. Standing wood biomass fell 2.1 t ha-1 in the period 1956-1993, releasing CO2 at a rate of 60 kgC person-1 yr-1. These changes have shifted vegetation zones toward areas of higher rainfall at an average rate of 500 to 600 m yr-1. Arid Sahel species have expanded in the north, tracking a concomitant retraction of mesic Sudan and Guinean species to the south. Multivariate analyses identify latitude and longitude, proxies for rainfall and temperature, as the most significant factors explaining tree and shrub distribution. The changes also decreased human carrying capacity to below actual population densities. The rural population of 45 people km-2 exceeded the 1993 carrying capacity, for firewood from shrubs, of 13 people km-2 (range 1 to 21 people km-2). As an adaptation strategy, ecological and socioeconomic factors favor the natural regeneration of local species over the massive plantation of exotic species. Natural regeneration is a traditional practice in which farmers select small field trees that they wish to raise to maturity, protect them, and prune them to promote rapid growth of the apical meristem. The results of this research provide evidence for desertification in the West African Sahel. These documented impacts of desertification foreshadow possible future effects of climate change.
NASA Astrophysics Data System (ADS)
Idder-Ighili, Hakima; Idder, Mohamed Azzedine; Doumandji-Mitiche, Bahia; Chenchouni, Haroun
2015-10-01
The date palm scale (DPS) Parlatoria blanchardi is a serious pest due to the damage it inflicts on its host tree ( Phoenix dactylifera). To develop an effective control against DPS in arid regions, it is essential to know its bio-ecology including population dynamics and climatic factors influencing the duration and timing of life history and also the densities of different phenological stages (crawlers, first and second instars nymphs, adult males, and adult females). Monitoring of biological cycle and population dynamics of the pest were achieved through weekly counts of DPS densities on leaflets sampled at different position of date palm trees in an oasis of Ouargla region (Algerian Sahara Desert). Within this hyper-arid region, DPS established four generations per year, the most important was the spring generation. Two overlapping generations occurred in spring-early summer and two in autumn-early winter; these two pairs of generations were interspersed by two phases of high-mortality rates, the first corresponds to winter cold and the second refers to the extreme heat of summer. Statistical analysis of the effects of the studied climatic conditions (minimum, maximum and mean temperatures, precipitation, humidity, wind, rain days, and climatic indices) on the DPS densities at different phenological stages showed great variability from one stage to another. Among these, adult females were the most affected by climate factors. For the total DPS population, high values of minimum temperatures negatively affected population density, while high maximum temperatures, hygrometry, and De Martonne aridity index showed a positive influence.
Idder-Ighili, Hakima; Idder, Mohamed Azzedine; Doumandji-Mitiche, Bahia; Chenchouni, Haroun
2015-10-01
The date palm scale (DPS) Parlatoria blanchardi is a serious pest due to the damage it inflicts on its host tree (Phoenix dactylifera). To develop an effective control against DPS in arid regions, it is essential to know its bio-ecology including population dynamics and climatic factors influencing the duration and timing of life history and also the densities of different phenological stages (crawlers, first and second instars nymphs, adult males, and adult females). Monitoring of biological cycle and population dynamics of the pest were achieved through weekly counts of DPS densities on leaflets sampled at different position of date palm trees in an oasis of Ouargla region (Algerian Sahara Desert). Within this hyper-arid region, DPS established four generations per year, the most important was the spring generation. Two overlapping generations occurred in spring-early summer and two in autumn-early winter; these two pairs of generations were interspersed by two phases of high-mortality rates, the first corresponds to winter cold and the second refers to the extreme heat of summer. Statistical analysis of the effects of the studied climatic conditions (minimum, maximum and mean temperatures, precipitation, humidity, wind, rain days, and climatic indices) on the DPS densities at different phenological stages showed great variability from one stage to another. Among these, adult females were the most affected by climate factors. For the total DPS population, high values of minimum temperatures negatively affected population density, while high maximum temperatures, hygrometry, and De Martonne aridity index showed a positive influence.
Population structure and fruit production of Pyrus bourgaeana D. are affected by land-use
NASA Astrophysics Data System (ADS)
Arenas-Castro, Salvador; Fernández-Haeger, Juan; Jordano-Barbudo, Diego
2016-11-01
The Iberian wild pear (Pyrus bourgaeana D.) is a rare, fleshy-fruited tree restricted to dehesas and evergreen sclerophyllous Mediterranean forests in the southwestern Iberian Peninsula. It produces palatable fruits and leaves attractive to different species groups, playing an important trophic role in the ecological networks of Mediterranean ecosystems. However, the intensification in the traditional land-use linked to these areas could threaten the stability of the wild pear populations in the short/medium-term. In order to determine the population dynamics of this relevant species in relation to the land-use history, we selected two populations (southern Spain) subjected to different land-use management, dehesa (D) and abandoned olive grove (AOG). An analysis of 122 adult trees reported an overall density of 0.6 trees ha-1. The tree age was estimated by tree-rings analysis in all adult trees. Dendrometric parameters, reproductive features, and germination rates were also measured. Regeneration was clearly biased, as evidenced by the truncated age structure. A low correlation (R2 = 34%) between age and DBH (diameter at breast height) (244 cores analysed) showed that diameter seems not to be a reliable predictor of tree age. Trees from AOG populations had significantly-higher values of DBH, height and crown diameter, but were less productive in terms of fruits and seeds. Nested analysis of variance showed significant variation in fruit production, fruit size, dry mass, water content and seed viability. There were also significant differences in masting. No evidence was found to demonstrate that fruit production, seed viability, or germination rate influence the low natural recruitment of this species. These findings indicate that the traditional agrosilvopastoral practices carried out in the study area for decades, and its subsequent intensification, have strongly influenced the ecological structure of the Iberian wild pear populations at the local scale, which could compromise its stability in the near future.
NASA Astrophysics Data System (ADS)
Chritz, K.; Buchert, M.; Walker, J. C.; Mendoza, D.; Pataki, D. E.; Xu, X.; Lin, J. C.
2017-12-01
Generating long term records of fossil fuel emissions of urban environments is complicated by the fact that direct observations of emissions and urban atmospheric CO2 concentrations were only collected in the recent past. Radiocarbon (14C) in tree rings from urban trees can provide archives of fossil fuel emissions that may track population growth over time, as higher population density is typically correlated with increased vehicular traffic and associated CO2 emissions, which are radiocarbon dead. We present radiocarbon measurements (n=125) from five roadside green ash trees (Fraxinus pennsylvanica) located in three cities of northern Utah - Salt Lake City (urban, 2016 population: 193,744), Logan City (agricultural, 2016 population: 49,110) and Heber (rural, 2016 population: 14,969). Urban trees were cored in four cardinal directions and ring widths were measured and counted to establish a chronology. One ring from every third year in a single core from each tree was removed and holocellulose was extracted from bulk wood of individual rings for 14C analysis. Fraction CO2 from fossil fuel burning (CO2-ff) was calculated using a simple mass-balance calculation from measured 14C values and remote background atmospheric 14CO2 values for NH Zone 2. The data from all three cities indicate a general trend of increasing CO2-ff uptake by the trees from 1980s to present, as expected with increased population growth and vehicular traffic. However, records in all three cities show unique elevated CO2-ff prior to the 1980s, assuming similar climate patterns through time, diverging from historic population size. We employed atmospheric simulations from the STILT (Stochastic Time-Inverted Lagrangian Transport) models for each of these trees to create footprints to determine source areas for CO2. These footprints reveal that atmospheric sampling areas can be large for certain trees, and other sources of 14C dead carbon, such as coal and natural gas from industrial emissions, should also be considered when building these records.
Smith, Joshua B; Turner, Kelsey L; Beasley, James C; DeVault, Travis L; Pitt, William C; Rhodes, Olin E
2016-10-01
Mass aerial delivery of dead mouse baits treated with acetaminophen has been evaluated as a means to reduce brown tree snake (Boiga irregularis) populations over large areas, increasing the likelihood of wide-scale eradication on Guam. Given the high density of snakes in some areas of their invasive range, eradication efforts could result in a resource pulse that may influence food web dynamics and the indirect transport of acetaminophen among trophic levels. We evaluated abundance, habitat type, and snake size (i.e., age) within two study sites on Guam, a secondary limestone forest (upland) and an abandoned coconut plantation (coastal), to determine how experimentally dosing snakes with acetaminophen is likely to influence carrion availability. We found snakes trapped in 3.24 ha plots occurred in greater abundance (population size = 72.5 snakes; SE = 8.8) and were significantly larger (978.6 mm, SE = 14.9) in the coastal than in the upland site (population size = 26.9, SE = 21.5; length = 903.0 mm, SE = 15.9). Despite these differences, carcasses of snakes that died after consuming acetaminophen-laced mice (80 mg) were recovered in consistent locations between sites, with 92 % located on the ground, 4 % in trees, and 4 % found in rock cavities at both sites. Given that most snakes were found on the ground rather than in the tree canopy, our results suggest that many poisoned snake carcasses will be accessible to a wide range of potential scavengers, possibly influencing food web dynamics and potentially contributing to indirect toxicant transfer within affected ecosystems.
Mello, J H F; Moulton, T P; Raíces, D S L; Bergallo, H G
2015-01-01
We carried out a six-year study aimed at evaluating if and how a Brazilian Atlantic Forest small mammal community responded to the presence of the invasive exotic species Artocarpus heterophyllus, the jackfruit tree. In the surroundings of Vila Dois Rios, Ilha Grande, RJ, 18 grids were established, 10 where the jackfruit tree was present and eight were it was absent. Previous results indicated that the composition and abundance of this small mammal community were altered by the presence and density of A. heterophyllus. One observed effect was the increased population size of the spiny-rat Trinomys dimidiatus within the grids where the jackfruit trees were present. Therefore we decided to create a mathematical model for this species, based on the Verhulst-Pearl logistic equation. Our objectives were i) to calculate the carrying capacity K based on real data of the involved species and the environment; ii) propose and evaluate a mathematical model to estimate the population size of T. dimidiatus based on the monthly seed production of jackfruit tree, Artocarpus heterophyllus and iii) determinate the minimum jackfruit tree seed production to maintain at least two T. dimidiatus individuals in one study grid. Our results indicated that the predicted values by the model for the carrying capacity K were significantly correlated with real data. The best fit was found considering 20~35% energy transfer efficiency between trophic levels. Within the scope of assumed premises, our model showed itself to be an adequate simulator for Trinomys dimidiatus populations where the invasive jackfruit tree is present.
Potential misuse of avian density as a conservation metric
Skagen, Susan K.; Yackel Adams, Amy A.
2011-01-01
Effective conservation metrics are needed to evaluate the success of management in a rapidly changing world. Reproductive rates and densities of breeding birds (as a surrogate for reproductive rate) have been used to indicate the quality of avian breeding habitat, but the underlying assumptions of these metrics rarely have been examined. When birds are attracted to breeding areas in part by the presence of conspecifics and when breeding in groups influences predation rates, the effectiveness of density and reproductive rate as indicators of habitat quality is reduced. It is beneficial to clearly distinguish between individual- and population-level processes when evaluating habitat quality. We use the term reproductive rate to refer to both levels and further distinguish among levels by using the terms per capita fecundity (number of female offspring per female per year, individual level) and population growth rate (the product of density and per capita fecundity, population level). We predicted how density and reproductive rate interact over time under density-independent and density-dependent scenarios, assuming the ideal free distribution model of how birds settle in breeding habitats. We predicted population density of small populations would be correlated positively with both per capita fecundity and population growth rate due to the Allee effect. For populations in the density-dependent growth phase, we predicted no relation between density and per capita fecundity (because individuals in all patches will equilibrate to the same success rate) and a positive relation between density and population growth rate. Several ecological theories collectively suggest that positive correlations between density and per capita fecundity would be difficult to detect. We constructed a decision tree to guide interpretation of positive, neutral, nonlinear, and negative relations between density and reproductive rates at individual and population levels. ?? 2010 Society for Conservation Biology.
Response of a tropical tree to non-timber forest products harvest and reduction in habitat size
Kouagou, M’Mouyohoun; Natta, Armand K.; Gado, Choukouratou
2017-01-01
Non-timber forest products (NTFPs) are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae) across two contrasting ecological regions (dry vs. moist) in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high). Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution. PMID:28850624
Response of a tropical tree to non-timber forest products harvest and reduction in habitat size.
Gaoue, Orou G; Kouagou, M'Mouyohoun; Natta, Armand K; Gado, Choukouratou
2017-01-01
Non-timber forest products (NTFPs) are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae) across two contrasting ecological regions (dry vs. moist) in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high). Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution.
Phytophagous mite populations on Tahiti lime, Citrus latifolia, under induced drought conditions.
Quiros-Gonzalez, M
2000-01-01
In the north-western region of Venezuela, Phyllocoptruta oleivora, Tetranychus mexicanus and Brevipalpus phoenicis are common plant-feeding mites on leaves, fruits and branches of Tahiti lime, Citrus latifolia. The population dynamics of these herbivores are affected by many factors, such as weekly treatments with wettable sulphur, particularly during the wet season, maintenance pruning of plants, irrigation with microsprinklers, induction of water stress by withholding irrigation and biotic and abiotic environmental factors. During October 1994-January 1995, 31 trees in a commercial orchard were sampled weekly in order to describe population fluctuations of plant-feeding mites (mean number of mites per leaf or fruit), before (4 weeks) and after (4 weeks) a period of 6 weeks of drought stress (no irrigation). The population density of P. oleivora increased progressively during the last 3 weeks of the irrigation period and reached a maximum of 24 mites per fruit. In contrast, the populations of the other two species, T. mexicanus and B. phoenicis, remained at the same low density as before the withholding-irrigation period. After 6 weeks without irrigation, only T. mexicanus increased, to a high mean value of 11 mites per leaf. The withholding-irrigation practice appears to affect the population size of P. oleivora towards the end of this period and that of T. mexicanus at the beginning of the re-establishment of the water supply. The highest proportion of trees (32%) was infested by T. mexicanus after the withholding-irrigation period, when irrigation was resumed, whereas the highest levels of infestation of trees by P. oleivora and B. phoenicis were 16 and 10%, respectively, during the last week of the water-stress period. Although factors affecting the dynamics of the mites in the orchard are likely to be complex, irrigation management apparently plays an important role.
Detection of emerald ash borer, Agrilus planipennis, at low population density
Melissa J. Porter; Michael D. Hyslop; Andrew J. Storer
2011-01-01
The exotic emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae), was first discovered in North America in Detroit, MI, in 2002. This beetle has killed millions of ash trees in several states in the United States and in Canada, and populations of this insect continue to be detected. EAB is difficult to detect when it invades new...
M.A. Mohamed; H.C. Coppel; J.D. Podgwaite
1983-01-01
An artificially-induced epizootic was created in European pine sawfly (N. sertifer) populations at density levels of 5, 7, and 10 colonies per tree when plots were treated with 3.5 x 108 polyhedral inclusion bodies (PIB) per 0.04 ha. The progress of the epizootic was followed daily. The onset of mortality was at 13 days...
Sanchez-Martin, Maria J; Feliciangeli, M Dora; Campbell-Lendrum, Diarmid; Davies, Clive R
2006-10-01
The Andean Pact Initiative (1997) committed Andean countries to eliminate vectorial transmission of Chagas disease by 2010 via widespread residual insecticide spraying. In Venezuela, this aim could be compromised by reinvasion of houses by palm tree populations of the major vector Rhodnius prolixus. To test this hypothesis, a multivariate logistic regression was undertaken of risk factors for triatomine infestation and colonization in 552 houses and 1068 peri-domestic outbuildings in Barinas State. After adjusting for other risk factors, including palm roofs, R. prolixus infestation and colonization of outbuildings (and, to some extent, houses) was significantly associated with proximity to high densities of Attalea butyracea palm trees. House infestation and/or colonization was also positively associated with bug density in peri-domestic outbuildings, the presence of pigsties and nests. Hence, R. prolixus populations in ineffectively sprayed outbuildings could also provide an important source of house re-infestations. The secondary vector Triatoma maculata was mainly found associated with the presence of hens nesting both indoors and outdoors.
The role of disappeared disturbances in driving the North American prairie-forest boundary
NASA Astrophysics Data System (ADS)
Heilman, K.; McLachlan, J. S.; Staver, A. C.
2016-12-01
Globally, transitions from savanna to forest are often characterized by abrupt changes in tree density that cannot be fully explained by climate and edaphic factors. In the tropics, fire-vegetation feedbacks drive a bimodal distribution in tree cover that leads to alternative forest and savanna stable states within the same climate space. In temperate North America, the pre-European settlement prairie-forest transition has also been hypothesized to be influenced by widespread fires (anthropogenic or natural). However, large scale evidence for fire disturbance feedbacks on tree density in the temperate zone is currently lacking. We investigate both the pre-European and modern tree density along the North American prairie-forest boundary. We hypothesized that the pre-European distribution of tree density was distinctly bimodal due to intact vegetation-disturbance feedbacks along the prairie-forest boundary before settlement, but that fragmentation and fire suppression has produced a modern prairie-forest boundary that is less abrupt and less bimodal. We estimated tree density from aggregated Public Land Survey (PLS) data collected before the time of European agricultural settlement in Minnesota, Wisconsin, Michigan, Indiana, and Illinois and compared PLS density distributions to tree density estimated from modern USFS Forest Inventory Analysis (FIA) data. PLS tree density follows a bimodal distribution that abruptly shifts from savanna to forest at the boundary. Only 15% of the variance in pre-settlement tree density is explained by historical Mean Annual Precipitation (MAP), suggesting that the bimodality may be due to internal feedbacks in the vegetation-disturbance system, rather than to the past underlying environmental gradient. On the modern landscape, MAP explains 6% of FIA tree density variance, and tree density is not bimodal. Regions that had low tree density savannas in the PLS era have significantly increased in tree density, suggesting that the disappearance of disturbances that accompanied agricultural settlement resulted in closed forests where savannas were once an alternative stable state (p < 0.01). Additionally, the once high tree density forests in the PLS have significantly declined in density, suggesting that logging has contributed to land cover change in North America.
Watanabe, Moriaki; Vityakon, Patma; Rambo, A Terry
2014-02-01
The widespread presence of trees in paddy fields is a unique feature of Northeast Thailand's agricultural landscape. A survey of spatial variability in the density of trees in paddy fields in the Northeast Region was conducted utilizing high resolution satellite images and found that the mean density in the whole region was 12.1 trees/ha (varying from a high of 44.6 trees/ha to a low of 0.8 trees/ha). In general, tree densities are higher in the southeastern part of the region and much lower in the northern central part. Tree density was influenced by multiple factors including: (1) the history of land development, with more recently developed paddy fields having higher densities, (2) topography, with fields located at higher topographical positions having a higher mean density of trees, (3) access to natural forest resources, with fields in areas located close to natural forests having higher densities, (4) amount of annual rainfall, with fields in areas with higher average annual rainfall having higher tree densities, and (5) landholding size, with fields in areas with larger-sized landholdings having more trees. However, there is a considerable extent of co-variation among these factors. Although trees remain an important element of the paddy field landscape in the Northeast, it appears that their density has been declining in recent years. If this trend continues, then the vast "invisible forest" represented by trees in paddy fields may truly disappear, with negative consequences for the villagers' livelihoods, biodiversity conservation, and carbon sequestration in the rural ecosystem.
Gonzales, Eva; Hamrick, James L; Smouse, Peter E; Trapnell, Dorset W; Peakall, Rod
2010-01-01
We examined spatial genetic structure (SGS) in Enterolobium cyclocarpum (the Guanacaste tree), a dominant tree of Central American dry forests in 4 sites in Guanacaste Province, Costa Rica. In disturbed dry forest sites (e.g., pastures), E. cyclocarpum is primarily dispersed by cattle and horses, whose movements are restricted by pasture boundaries. The study sites varied in tree densities and disturbance. Allozyme analyses of adult trees demonstrated significant levels of SGS in 3 of 4 sites. SGS was primarily due to clusters of young adults located along seasonal streams, rocky areas, and in abandoned pastures. SGS was highest in the first distance class in the least disturbed population, which also had the lowest density of large adults. Low, but significant SGS characterized the site with the highest number of large adults located in individual pastures. The semiurban site, had no clusters of young adults and, probably as a result, failed to exhibit SGS. Our results demonstrate that disturbance can strongly influence SGS patterns and are consistent with a landscape model in which the location of potential recruitment sites, restricted seed disperser movements, and the number and location of maternal individuals dictate the level and pattern of SGS.
Modelling spruce bark beetle infestation probability
Paulius Zolubas; Jose Negron; A. Steven Munson
2009-01-01
Spruce bark beetle (Ips typographus L.) risk model, based on pure Norway spruce (Picea abies Karst.) stand characteristics in experimental and control plots was developed using classification and regression tree statistical technique under endemic pest population density. The most significant variable in spruce bark beetle...
Impact of Typhoon Haiyan on a Philippine Tarsier Population.
Gursky, Sharon; Salibay, Cristina; Grow, Nanda; Fields, Lori
2017-01-01
Over the last 2 decades the Philippine tarsier (Carlito syrichta aka Tarsius syrichta) has had its conservation status revised from Endangered to Data Deficient to Near Threatened. The last status change was based on a study of the species' population density, which suggested that a single natural catastrophe could potentially wipe out the Philippine tarsier. In 2013 typhoon Haiyan hit Bohol, one of the island strongholds for this species. In this study we compare the density of the Bohol tarsier population within the Philippine Tarsier and Wildlife Sanctuary before and after the typhoon. We demonstrate that the typhoon significantly affected the density of the Philippine tarsier in the sanctuary. Before the typhoon, tarsier density was approximately 157 individuals/km2 whereas after the typhoon the density was a mere 36 individuals/km2. Prior to the typhoon, more Philippine tarsiers were found in older secondary forest than in younger secondary forest, whereas after the typhoon all observed individuals were found in relatively younger secondary forest. Vegetation plots where we observed Philippine tarsiers prior to the typhoon contained a mean of 33 trees/m2, with a mean diameter at breast height (DBH) of 24 cm, and a mean height of 4 m. After the typhoon vegetation plots contained an average of 156 trees, had a mean DBH of 6 cm, and a mean height of 2 m. Based on the IUCN Red List criteria, the reduction and fluctuation in the density of this species suggests that the conservation status of the Philippine tarsier should be changed to Vulnerable. This study indicates natural disasters can have a significant effect on the extinction risk of primates, with implications for future effects of anthropogenic climate change. © 2017 S. Karger AG, Basel.
Cariñanos, Paloma; Casares-Porcel, Manuel; Díaz de la Guardia, Consuelo; Aira, María Jesús; Belmonte, Jordina; Boi, Marzia; Elvira-Rendueles, Belén; De Linares, Concepción; Fernández-Rodriguez, Santiago; Maya-Manzano, José María; Pérez-Badía, Rosa; Rodriguez-de la Cruz, David; Rodríguez-Rajo, Francisco Javier; Rojo-Úbeda, Jesús; Romero-Zarco, Carlos; Sánchez-Reyes, Estefanía; Sánchez-Sánchez, José; Tormo-Molina, Rafael; Vega Maray, Ana Mª
2017-05-01
Urban parks play a key role in the provision of ecosystem services, actively participating in improving the quality of life and welfare of local residents. This paper reports on the application of an index designed to quantify the allergenicity of urban parks in a number of Spanish cities. The index, which records biological and biometric parameters for the tree species growing there, classifies parks in terms of the risk they pose for allergy sufferers, graded as null, low, moderate or high. In this initial phase, the index was applied to 26 green areas in 24 Spanish cities; green areas varied in type (urban park, historical or modern garden, boulevard, square or urban forest), size 1-100 ha), geographical location, species richness, number of trees and tree density (number of trees / ha.). The data obtained were used to calculate the percentage of allergenic species in each park, which varied between 17-67%; density ranged from 100 to 300 trees/ha. The index values recorded ranged from a minimum of .07 to a maximum of .87; a significant correlation was found between index value and both number of trees and tree density. Taking an index value of .30 as the threshold considered sufficient to trigger allergy symptoms in the sensitive population, 12 of the parks studied may be regarded as unhealthy at any time of the year. Corrective measures to mitigate the impact of pollen emissions include the implementation of nature-based solutions at various levels: planning and design, handling and management, and strengthening of urban green-infrastructure elements. The index proved to be a useful tool for environmental analysis, and complies with the principles of portability and scalability central to current and horizon scientific research. Copyright © 2017 Elsevier Inc. All rights reserved.
Duan, Jian J; Larson, Kristi; Watt, Tim; Gould, Juli; Lelito, Jonathan P
2013-12-01
Competition for food, mates, and space among different individuals of the same insect species can affect density-dependent regulation of insect abundance or population dynamics. The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a serious invasive pest of North American ash (Fraxinus spp.) trees, with its larvae feeding in serpentine galleries between the interface of sapwood and phloem tissues of ash trees. Using artificial infestation of freshly cut logs of green ash (Fraxinus pennsylvanica Marshall) and tropical ash (Fraxinus uhdei [Wenzig] Lingelsh) with a series of egg densities, we evaluated the mechanism and outcome of intraspecific competition in larvae of A. planipennis in relation to larval density and host plant species. Results from our study showed that as the egg densities on each log (1.5-6.5 cm in diameter and 22-25 cm in length) increased from 200 to 1,600 eggs per square meter of surface area, larval survivorship declined from ≍68 to 10% for the green ash logs, and 86 to 55% for tropical ash logs. Accordingly, larval mortality resulting from cannibalism, starvation, or both, significantly increased as egg density increased, and the biomass of surviving larvae significantly decreased on both ash species. When larval density was adjusted to the same level, however, larval mortality from intraspecific competition was significantly higher and mean biomasses of surviving larvae was significantly lower in green ash than in tropical ash. The role of intraspecific competition of A. planipennis larvae in density-dependent regulation of its natural population dynamics is discussed.
Mapping Tree Density at the Global Scale
NASA Astrophysics Data System (ADS)
Covey, K. R.; Crowther, T. W.; Glick, H.; Bettigole, C.; Bradford, M.
2015-12-01
The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global-scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical regions, with 0.74, and 0.61 trillion in boreal and temperate regions, respectively. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming impact of humans across most of the world. Based on our projected tree densities, we estimate that deforestation is currently responsible for removing over 15 billion trees each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.
Mapping tree density at a global scale
NASA Astrophysics Data System (ADS)
Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M.-N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G.-J.; Tikhonova, E.; Borchardt, P.; Li, C.-F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A.
2015-09-01
The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical forests, with 0.74 trillion in boreal regions and 0.61 trillion in temperate regions. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming effect of humans across most of the world. Based on our projected tree densities, we estimate that over 15 billion trees are cut down each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.
Mapping tree density at a global scale.
Crowther, T W; Glick, H B; Covey, K R; Bettigole, C; Maynard, D S; Thomas, S M; Smith, J R; Hintler, G; Duguid, M C; Amatulli, G; Tuanmu, M-N; Jetz, W; Salas, C; Stam, C; Piotto, D; Tavani, R; Green, S; Bruce, G; Williams, S J; Wiser, S K; Huber, M O; Hengeveld, G M; Nabuurs, G-J; Tikhonova, E; Borchardt, P; Li, C-F; Powrie, L W; Fischer, M; Hemp, A; Homeier, J; Cho, P; Vibrans, A C; Umunay, P M; Piao, S L; Rowe, C W; Ashton, M S; Crane, P R; Bradford, M A
2015-09-10
The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical forests, with 0.74 trillion in boreal regions and 0.61 trillion in temperate regions. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming effect of humans across most of the world. Based on our projected tree densities, we estimate that over 15 billion trees are cut down each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.
Landscape-level effects of forest management on bird species in the Ozarks of southeastern Missouri
Richard L. Clawson; John Faaborg; Wendy K. Gram; Paul A. Porneluzi
2002-01-01
This study was designed as an experiment to test how bird populations in an extensively forested landscape respond to small (group and single-tree selection) and large (clearcut) openings. Our objectives are to test the landscape-level effects of even-aged and uneven-aged forest management relative to no-harvest management on population density and reproductive success...
David W. Vahey; C. Tim Scott; J.Y. Zhu; Kenneth E. Skog
2012-01-01
Methods for estimating present and future carbon storage in trees and forests rely on measurements or estimates of tree volume or volume growth multiplied by specific gravity. Wood density can vary by tree ring and height in a tree. If data on density by tree ring could be obtained and linked to tree size and stand characteristics, it would be possible to more...
Cloutier, D; Kanashiro, M; Ciampi, A Y; Schoen, D J
2007-02-01
Selective logging may impact patterns of genetic diversity within populations of harvested forest tree species by increasing distances separating conspecific trees, and modifying physical and biotic features of the forest habitat. We measured levels of gene diversity, inbreeding, pollen dispersal and spatial genetic structure (SGS) of an Amazonian insect-pollinated Carapa guianensis population before and after commercial selective logging. Similar levels of gene diversity and allelic richness were found before and after logging in both the adult and the seed generations. Pre- and post-harvest outcrossing rates were high, and not significantly different from one another. We found no significant levels of biparental inbreeding either before or after logging. Low levels of pollen pool differentiation were found, and the pre- vs. post-harvest difference was not significant. Pollen dispersal distance estimates averaged between 75 m and 265 m before logging, and between 76 m and 268 m after logging, depending on the value of tree density and the dispersal model used. There were weak and similar levels of differentiation of allele frequencies in the adults and in the pollen pool, before and after logging occurred, as well as weak and similar pre- and post-harvest levels of SGS among adult trees. The large neighbourhood sizes estimated suggest high historical levels of gene flow. Overall our results indicate that there is no clear short-term genetic impact of selective logging on this population of C. guianensis.
Landscape and vegetation effects on avian reproduction on bottomland forest restorations
Twedt, Daniel J.; Somershoe, Scott G.; Hazler, Kirsten R.; Cooper, Robert J.
2010-01-01
Forest restoration has been undertaken on >200,000 ha of agricultural land in the Mississippi Alluvial Valley, USA, during the past few decades. Decisions on where and how to restore bottomland forests are complex and dependent upon landowner objectives, but for conservation of silvicolous (forest-dwelling) birds, ecologists have espoused restoration through planting a diverse mix of densely spaced seedlings that includes fast-growing species. Application of this planting strategy on agricultural tracts that are adjacent to extant forest or within landscapes that are predominately forested has been advocated to increase forest area and enhance forested landscapes, thereby benefiting area-sensitive, silvicolous birds. We measured support for these hypothesized benefits through assessments of densities of breeding birds and reproductive success of 9 species on 36 bottomland forest restoration sites. Densities of thamnic (shrub-scrub dwelling) and silvicolous birds, such as yellow-breasted chat (Icteria virens), indigo bunting (Passerina cyanea), and white-eyed vireo (Vireo griseus) were positively associated with 1) taller trees, 2) greater stem densities, and 3) a greater proportion of forest within the landscape, whereas densities of birds associated with grasslands, such as dickcissel (Spiza americana) and red-winged blackbird (Agelaius phoeniceus), were negatively associated with these variables. Vegetation structure, habitat edge, and temporal effects had greater influence on nest success than did landscape effects. Taller trees, increased density of woody stems, greater vegetation density, and more forest within the landscape were often associated with greater nest success. Nest success of grassland birds was positively related to distance from forest edge but, for thamnic birds, success was greater near edges. Moreover, nest success and estimated fecundity of thamnic species suggested their populations are self-sustaining on forest restoration sites, whereas these sites are likely population sinks for grassland and open-woodland species. We recommend restoration strategies that promote rapid development of dense forest stands within largely forested landscapes to recruit breeding populations of thamnic and silvicolous birds that have reproductive success sufficient to sustain their populations.
Techniques for monitoring pileated woodpeckers.
Evelyn L Bull; Richard S. Holthausen; Marie G. Henjum
1990-01-01
Methods of locating pileated woodpeckers (Dryocopus pileatus) are described, including imitating pileated woodpecker vocalizations, identifying nest and roost trees, and finding foraging signs. Populations of pileated woodpeckers can be monitored by using (1) density of breeding pairs, (2) reproduction, and (3) presence or absence of birds. The...
A.R. Mason; H.G. Paul
1994-01-01
Procedures for monitoring larval populations of the Douglas-fir tussock moth and the western spruce budworm are recommended based on many years experience in sampling these species in eastern Oregon and Washington. It is shown that statistically reliable estimates of larval density can be made for a population by sampling host trees in a series of permanent plots in a...
Ellis, Alicia M
2008-01-01
1. Researchers often use the spatial distribution of insect offspring as a measure of adult oviposition preferences, and then make conclusions about the consequences of these preferences for population growth and the relationship between life-history traits (e.g. oviposition preference and offspring performance). However, several processes other than oviposition preference can generate spatial patterns of offspring density (e.g. dispersal limitations, spatially heterogeneous mortality rates). Incorrectly assuming that offspring distributions reflect oviposition preferences may therefore compromise our ability to understand the mechanisms determining population distributions and the relationship between life-history traits. 2. The purpose of this study was to perform an empirical study at the whole-system scale to examine the movement and oviposition behaviours of the eastern tree hole mosquito Ochlerotatus triseriatus (Say) and test the importance of these behaviours in determining population distribution relative to other mechanisms. 3. A mark-release-recapture experiment was performed to distinguish among the following alternative hypotheses that may explain a previously observed aggregated distribution of tree hole mosquito offspring: (H(1)) mosquitoes prefer habitats with particular vegetation characteristics and these preferences determine the distribution of their offspring; (H(2)) mosquitoes distribute their eggs randomly or evenly throughout their environment, but spatial differences in developmental success generate an aggregated pattern of larval density; (H(3)) mosquitoes randomly colonize habitats, but have limited dispersal capability causing them to distribute offspring where founder populations were established; (H(4)) wind or other environmental factors may lead to passive aggregation, or spatial heterogeneity in adult mortality (H(5)), rather than dispersal, generates clumped offspring distributions. 4. Results indicate that the distribution of tree hole mosquito larvae is determined in part by adult habitat selection (H(1)), but do not exclude additional effects from passive aggregation (H(4)), or spatial patterns in adult mortality (H(5)). 5. This research illustrates the importance of studying oviposition behaviour at the population scale to better evaluate its relative importance in determining population distribution and dynamics. Moreover, this study demonstrates the importance of linking behavioural and population dynamics for understanding evolutionary relationships among life-history traits (e.g. preference and offspring performance) and predicting when behaviour will be important in determining population phenomena.
Breeding birds and vegetation structure in western North Dakota wooded draws
Faanes, C.A.
1987-01-01
Populations and distribution of breeding birds occupying wooded draws were studied in a five-county region of western North Dakota during June 1982. Wooded draw vegetation was dominated by green ash, which occurred in 96% of the draws sampled. Chokecherry and juneberry were the most frequent shrub species. I recorded 49 bird species in the 30 draws censused. Rufous-sided towhee, brown-headed cowbird, house wren, and American goldfinch were the most numerous bird species present. Significant correlations were found between (1) the number of live trees and bird species evenness, (2) density of dead trees and bird species diversity and richness, (3) density of shrubs with bird species evenness, and (4) foliage volume in the high ground layer and bird species evenness.
Ukuda-Hosokawa, Rie; Sadoyama, Yasutsune; Kishaba, Misaki; Kuriwada, Takashi; Anbutsu, Hisashi
2015-01-01
Huanglongbing, or citrus greening, is a devastating disease of citrus plants recently spreading worldwide, which is caused by an uncultivable bacterial pathogen, “Candidatus Liberibacter asiaticus,” and vectored by a phloem-sucking insect, Diaphorina citri. We investigated the infection density dynamics of “Ca. Liberibacter asiaticus” in field populations of D. citri with experiments using field-collected insects to address how “Ca. Liberibacter asiaticus” infection density in the vector insect is relevant to pathogen transmission to citrus plants. Of 500 insects continuously collected from “Ca. Liberibacter asiaticus”-infected citrus trees with pathological symptoms in the spring and autumn of 2009, 497 (99.4%) were “Ca. Liberibacter asiaticus” positive. The infections were systemic across head-thorax and abdomen, ranging from 103 to 107 bacteria per insect. In spring, the infection densities were low in March, at ∼103 bacteria per insect, increasing up to 106 to 107 bacteria per insect in April and May, and decreasing to 105 to 106 bacteria per insect in late May, whereas the infection densities were constantly ∼106 to 107 bacteria per insect in autumn. Statistical analysis suggested that several factors, such as insect sex, host trees, and collection dates, may be correlated with “Ca. Liberibacter asiaticus” infection densities in field D. citri populations. Inoculation experiments with citrus seedlings using field-collected “Ca. Liberibacter asiaticus”-infected insects suggested that (i) “Ca. Liberibacter asiaticus”-transmitting insects tend to exhibit higher infection densities than do nontransmitting insects, (ii) a threshold level (∼106 bacteria per insect) of “Ca. Liberibacter asiaticus” density in D. citri is required for successful transmission to citrus plants, and (iii) D. citri attaining the threshold infection level transmits “Ca. Liberibacter asiaticus” to citrus plants in a stochastic manner. These findings provide valuable insights into understanding, predicting, and controlling this notorious citrus pathogen. PMID:25819961
How Does Tree Density Affect Water Loss of Peatlands? A Mesocosm Experiment
Limpens, Juul; Holmgren, Milena; Jacobs, Cor M. J.; Van der Zee, Sjoerd E. A. T. M.; Karofeld, Edgar; Berendse, Frank
2014-01-01
Raised bogs have accumulated more atmospheric carbon than any other terrestrial ecosystem on Earth. Climate-induced expansion of trees and shrubs may turn these ecosystems from net carbon sinks into sources when associated with reduced water tables. Increasing water loss through tree evapotranspiration could potentially deepen water tables, thus stimulating peat decomposition and carbon release. Bridging the gap between modelling and field studies, we conducted a three-year mesocosm experiment subjecting natural bog vegetation to three birch tree densities, and studied the changes in subsurface temperature, water balance components, leaf area index and vegetation composition. We found the deepest water table in mesocosms with low tree density. Mesocosms with high tree density remained wettest (i.e. highest water tables) whereas the control treatment without trees had intermediate water tables. These differences are attributed mostly to differences in evapotranspiration. Although our mesocosm results cannot be directly scaled up to ecosystem level, the systematic effect of tree density suggests that as bogs become colonized by trees, the effect of trees on ecosystem water loss changes with time, with tree transpiration effects of drying becoming increasingly offset by shading effects during the later phases of tree encroachment. These density-dependent effects of trees on water loss have important implications for the structure and functioning of peatbogs. PMID:24632565
Potential misuse of avian density as a conservation metric.
Skagen, Susan K; Yackel Adams, Amy A
2011-02-01
Effective conservation metrics are needed to evaluate the success of management in a rapidly changing world. Reproductive rates and densities of breeding birds (as a surrogate for reproductive rate) have been used to indicate the quality of avian breeding habitat, but the underlying assumptions of these metrics rarely have been examined. When birds are attracted to breeding areas in part by the presence of conspecifics and when breeding in groups influences predation rates, the effectiveness of density and reproductive rate as indicators of habitat quality is reduced. It is beneficial to clearly distinguish between individual- and population-level processes when evaluating habitat quality. We use the term reproductive rate to refer to both levels and further distinguish among levels by using the terms per capita fecundity (number of female offspring per female per year, individual level) and population growth rate (the product of density and per capita fecundity, population level). We predicted how density and reproductive rate interact over time under density-independent and density-dependent scenarios, assuming the ideal free distribution model of how birds settle in breeding habitats. We predicted population density of small populations would be correlated positively with both per capita fecundity and population growth rate due to the Allee effect. For populations in the density-dependent growth phase, we predicted no relation between density and per capita fecundity (because individuals in all patches will equilibrate to the same success rate) and a positive relation between density and population growth rate. Several ecological theories collectively suggest that positive correlations between density and per capita fecundity would be difficult to detect. We constructed a decision tree to guide interpretation of positive, neutral, nonlinear, and negative relations between density and reproductive rates at individual and population levels. Journal compilation ©2010 Society for Conservation Biology. No claim to original US government works.
David W. MacFarlane; Neil R. Ver Planck
2012-01-01
Data from hardwood trees in Michigan were analyzed to investigate how differences in whole-tree form and wood density between trees of different stem diameter relate to residual error in standard-type biomass equations. The results suggested that whole-tree wood density, measured at breast height, explained a significant proportion of residual error in standard-type...
Twentieth-century decline of large-diameter trees in Yosemite National Park, California, USA
Lutz, J.A.; van Wagtendonk, J.W.; Franklin, J.F.
2009-01-01
Studies of forest change in western North America often focus on increased densities of small-diameter trees rather than on changes in the large tree component. Large trees generally have lower rates of mortality than small trees and are more resilient to climate change, but these assumptions have rarely been examined in long-term studies. We combined data from 655 historical (1932-1936) and 210 modern (1988-1999) vegetation plots to examine changes in density of large-diameter trees in Yosemite National Park (3027 km2). We tested the assumption of stability for large-diameter trees, as both individual species and communities of large-diameter trees. Between the 1930s and 1990s, large-diameter tree density in Yosemite declined 24%. Although the decrease was apparent in all forest types, declines were greatest in subalpine and upper montane forests (57.0% of park area), and least in lower montane forests (15.3% of park area). Large-diameter tree densities of 11 species declined while only 3 species increased. Four general patterns emerged: (1) Pinus albicaulis, Quercus chrysolepis, and Quercus kelloggii had increases in density of large-diameter trees occur throughout their ranges; (2) Pinus jeffreyi, Pinus lambertiana, and Pinus ponderosa, had disproportionately larger decreases in large-diameter tree densities in lower-elevation portions of their ranges; (3) Abies concolor and Pinus contorta, had approximately uniform decreases in large-diameter trees throughout their elevational ranges; and (4) Abies magnifica, Calocedrus decurrens, Juniperus occidentalis, Pinus monticola, Pseudotsuga menziesii, and Tsuga mertensiana displayed little or no change in large-diameter tree densities. In Pinus ponderosa-Calocedrus decurrens forests, modern large-diameter tree densities were equivalent whether or not plots had burned since 1936. However, in unburned plots, the large-diameter trees were predominantly A. concolor, C. decurrens, and Q. chrysolepis, whereas P. ponderosa dominated the large-diameter component of burned plots. Densities of large-diameter P. ponderosa were 8.1 trees ha-1 in plots that had experienced fire, but only 0.5 trees ha-1 in plots that remained unburned. ?? 2009 Elsevier B.V. All rights reserved.
Curtis L. VanderSchaaf; Harold E. Burkhart
2010-01-01
Maximum size-density relationships (MSDR) provide natural resource managers useful information about the relationship between tree density and average tree size. Obtaining a valid estimate of how maximum tree density changes as average tree size changes is necessary to accurately describe these relationships. This paper examines three methods to estimate the slope of...
Seasonal occurrence and impact of Halyomorpha halys (Hemiptera: Pentatomidae) in tree fruit.
Nielsen, Anne L; Hamilton, George C
2009-06-01
Halyomorpha halys is an introduced stink bug species from Asia that is spreading throughout the Mid-Atlantic United States. It is native to South Korea, Japan, and eastern China, where it is an occasional pest of tree fruit, including apple and pear. Cage experiments with adults placed on apple and peach during critical plant growth stages demonstrate that it can cause damage to developing fruit during mid- and late season growth periods and that feeding occurs on all regions of the fruit. Feeding that occurred during pit hardening/mid-season and final swell periods were apparent as damage at harvest, whereas feeding at shuck split/petal fall in peaches and apples caused fruit abscission. Tree fruit at two commercial farms were sampled weekly in 2006-2007 to determine H. halys seasonality. Low densities of nymphs in apple suggest that it is an unsuitable developmental host. Both nymphs and adults were found on pear fruits with peak populations occurring in early July and mid-August, the time when pit hardening/mid-season and swell period damage occurs. At both farms, stink bug damage was greater than 25% damaged fruit per tree. We attribute this to H. halys because population densities were significantly higher than native pentatomids at both locations in both beat samples and blacklight trap captures. The data presented here documents the potential for H. halys to cause damage in orchards throughout the Mid-Atlantic United States and shows the need for development of appropriate control strategies.
Palm, Cheryl A.; Smukler, Sean M.; Sullivan, Clare C.; Mutuo, Patrick K.; Nyadzi, Gerson I.; Walsh, Markus G.
2010-01-01
Potential interactions between food production and climate mitigation are explored for two situations in sub-Saharan Africa, where deforestation and land degradation overlap with hunger and poverty. Three agriculture intensification scenarios for supplying nitrogen to increase crop production (mineral fertilizer, herbaceous legume cover crops—green manures—and agroforestry—legume improved tree fallows) are compared to baseline food production, land requirements to meet basic caloric requirements, and greenhouse gas emissions. At low population densities and high land availability, food security and climate mitigation goals are met with all intensification scenarios, resulting in surplus crop area for reforestation. In contrast, for high population density and small farm sizes, attaining food security and reducing greenhouse gas emissions require mineral fertilizers to make land available for reforestation; green manure or improved tree fallows do not provide sufficient increases in yields to permit reforestation. Tree fallows sequester significant carbon on cropland, but green manures result in net carbon dioxide equivalent emissions because of nitrogen additions. Although these results are encouraging, agricultural intensification in sub-Saharan Africa with mineral fertilizers, green manures, or improved tree fallows will remain low without policies that address access, costs, and lack of incentives. Carbon financing for small-holder agriculture could increase the likelihood of success of Reducing Emissions from Deforestation and Forest Degradation in Developing Countries programs and climate change mitigation but also promote food security in the region. PMID:20453198
Fajardo, Alex; Torres-Díaz, Cristian; Till-Bottraud, Irène
2016-01-01
Disturbances, dispersal and biotic interactions are three major drivers of the spatial distribution of genotypes within populations, the last of which has been less studied than the other two. This study aimed to determine the role of competition and facilitation in the degree of conspecific genetic relatedness of nearby individuals of tree populations. It was expected that competition among conspecifics will lead to low relatedness, while facilitation will lead to high relatedness (selection for high relatedness within clusters). The stand structure and spatial genetic structure (SGS) of trees were examined within old-growth and second-growth forests (including multi-stemmed trees at the edge of forests) of Nothofagus pumilio following large-scale fires in Patagonia, Chile. Genetic spatial autocorrelations were computed on a spatially explicit sampling of the forests using five microsatellite loci. As biotic plant interactions occur among immediate neighbours, mean nearest neighbour distance (MNND) among trees was computed as a threshold for distinguishing the effects of disturbances and biotic interactions. All forests exhibited a significant SGS for distances greater than the MNND. The old-growth forest genetic and stand structure indicated gap recolonization from nearby trees (significantly related trees at distances between 4 and 10 m). At distances smaller than the MNND, trees of the second-growth interior forest showed significantly lower relatedness, suggesting a fading of the recolonization structure by competition, whereas the second-growth edge forest showed a positive and highly significant relatedness among trees (higher among stems of a cluster than among stems of different clusters), resulting from facilitation. Biotic interactions are shown to influence the genetic composition of a tree population. However, facilitation can only persist if individuals are related. Thus, the genetic composition in turn influences what type of biotic interactions will take place among immediate neighbours in post-disturbance forests. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Schulze, E-D; Wirth, C; Mollicone, D; Ziegler, W
2005-11-01
The dark taiga of Siberia is a boreal vegetation dominated by Picea obovata, Abies sibirica, and Pinus sibirica during the late succession. This paper investigates the population and age structure of 18 stands representing different stages after fire, wind throw, and insect damage. To our knowledge, this is the first time that the forest dynamics of the Siberian dark taiga is described quantitatively in terms of succession, and age after disturbance, stand density, and basal area. The basis for the curve-linear age/diameter relation of trees is being analyzed. (1) After a stand-replacing fire Betula dominates (4,000 trees) for about 70 years. Although tree density of Betula decreases rapidly, basal area (BA) reached >30 m2/ha after 40 years. (2) After fire, Abies, Picea, and Pinus establish at the same time as Betula, but grow slower, continue to gain height and eventually replace Betula. Abies has the highest seedling number (about 1,000 trees/ha) and the highest mortality. Picea establishes with 100-400 trees/ha, it has less mortality, but reached the highest age (>350 years, DBH 51 cm). Picea is the most important indicator for successional age after disturbance. Pinus sibirica is an accompanying species. The widely distributed "mixed boreal forest" is a stage about 120 years after fire reaching a BA of >40 m2/ha. (3) Wind throw and insect damage occur in old conifer stands. Betula does not establish. Abies initially dominates (2,000-6,000 trees/ha), but Picea becomes dominant after 150-200 years since Abies is shorter lived. (4) Without disturbance the forest develops into a pure coniferous canopy (BA 40-50 m2/ha) with a self-regenerating density of 1,000 coniferous canopy trees/ha. There is no collapse of old-growth stands. The dark taiga may serve as an example in which a limited set to tree species may gain dominance under certain disturbance conditions without ever getting monotypic.
Response of old-growth conifers to reduction in stand density in western Oregon forests
Latham, P.; Tappeiner, J. C.
2002-01-01
The positive growth response of healthy young trees to density reduction is well known. In contrast, large old trees are usually thought to be intrinsically limited in their ability to respond to increased growing space; therefore, density reduction is seldom used in stands of old-growth trees. We tested the null hypothesis that old-growth trees are incapable of responding with increased growth following density reduction. The diameter growth response of 271 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), ponderosa pine (Pinus ponderosa Dougl. ex Laws) and sugar pine (Pinus lambertiana Dougl.) trees ranging in age from 158 to 650 years was examined 20 to 50 years after density reduction. Density reduction involved either light thinning with removal of less vigorous trees, or shelterwood treatments in which overstory trees were not removed. Ratios of basal area growth after treatment to basal area growth before treatment, and several other measures of growth, all indicated that the old trees sometimes benefited and were not harmed by density reduction. Growth increased by 10% or more for 68% of the trees in treated stands, and nearly 30% of trees increased growth by over 50%. This growth response persisted for at least 20 years. During this 20-year period, only three trees in treated stands (1.5%) exhibited a rapid decrease in growth, whereas growth decreased in 64% of trees in untreated stands. The length of time before a growth response to density reduction occurred varied from 5 to 25 years, with the greatest growth response often occurring 20 to 25 years after treatment. These results have important implications both for the basic biology of aging in woody plants as well as for silvicultural practices in forests with old-growth trees.
Sandra J. Bucci; Fabian G. Scholz; Guillermo Goldstein; William A. Hoffmann; Frederick C. Meinzer; Augusto C. Franco; Thomas Giambelluca; Fernando Miralles-Wilhelm
2008-01-01
Environmental controls of stand-level tree transpiration (E) and seasonal patterns of soil water utilization were studied in five central Brazilian savanna (Cerrado) sites differing in tree density. Tree density of Cerrado vegetation in the study area consistently changes along topographic gradients from ~1,000 trees ha-1 in open savannas (campo...
Mao, Peili; Han, Guangxuan; Wang, Guangmei; Yu, Junbao; Shao, Hongbo
2014-01-01
Effects of age and stand density of mother tree on seed germination, seedling biomass allocation, and seedling growth of Pinus thunbergii were studied. The results showed that age of mother tree did not have significant influences on seed germination, but it was significant on seedling biomass allocation and growth. Seedlings from the minimum and maximum age of mother tree had higher leaf mass ratio and lower root mass ratio than from the middle age of mother tree. Moreover, they also had higher relative height growth rate and slenderness, which were related to their biomass allocation. Stand density of mother tree mainly demonstrated significant effects on seed germination and seedling growth. Seed from higher stand density of mother tree did not decrease germination rate, but had higher mean germination time, indicating that it delayed germination process. Seedlings of higher stand density of mother tree showed higher relative height growth rate and slenderness. These traits of offspring from higher stand density of mother tree were similar to its mother, indicating significant environmental maternal effects. So, mother tree identity of maternal age and environments had important effects on natural regeneration of the coastal P. thunbergii forest.
Mao, Peili; Han, Guangxuan; Wang, Guangmei; Yu, Junbao; Shao, Hongbo
2014-01-01
Effects of age and stand density of mother tree on seed germination, seedling biomass allocation, and seedling growth of Pinus thunbergii were studied. The results showed that age of mother tree did not have significant influences on seed germination, but it was significant on seedling biomass allocation and growth. Seedlings from the minimum and maximum age of mother tree had higher leaf mass ratio and lower root mass ratio than from the middle age of mother tree. Moreover, they also had higher relative height growth rate and slenderness, which were related to their biomass allocation. Stand density of mother tree mainly demonstrated significant effects on seed germination and seedling growth. Seed from higher stand density of mother tree did not decrease germination rate, but had higher mean germination time, indicating that it delayed germination process. Seedlings of higher stand density of mother tree showed higher relative height growth rate and slenderness. These traits of offspring from higher stand density of mother tree were similar to its mother, indicating significant environmental maternal effects. So, mother tree identity of maternal age and environments had important effects on natural regeneration of the coastal P. thunbergii forest. PMID:24955404
Spondias tuberosa Arruda (Anacardiaceae), a threatened tree of the Brazilian Caatinga?
Mertens, J; Germer, J; Siqueira, J A; Sauerborn, J
2017-01-01
Spondias tuberosa Arr., a fructiferous tree endemic to the northeast Brazilian tropical dry forest called Caatinga, accounts for numerous benefits for its ecosystem as well as for the dwellers of the Caatinga. The tree serves as feed for pollinators and dispersers as well as fodder for domestic ruminants, and is a source of additional income for local smallholders and their families. Despite its vantages, it is facing several man-made and natural threats, and it is suspected that S. tuberosa could become extinct. Literature review suggests that S. tuberosa suffers a reduced regeneration leading to population decrease. At this juncture S. tuberosa cannot be considered threatened according to the International Union for Conservation of Nature Red List Categories and Criteria, as it has not yet been assessed and hampered generative regeneration is not considered in the IUCN assessment. The combination of threats, however, may have already caused an extinction debt for S. tuberosa. Due to the observed decline in tree density, a thorough assessment of the S. tuberosa population is recommended, as well as a threat assessment throughout the entire Caatinga.
Pothasin, Pornwiwan; Compton, Stephen G.; Wangpakapattanawong, Prasit
2014-01-01
Fig trees (Ficus) are often ecologically significant keystone species because they sustain populations of the many seed-dispersing animals that feed on their fruits. They are prominent components of riparian zones where they may also contribute to bank stability as well as supporting associated animals. The diversity and distributions of riparian fig trees in deciduous and evergreen forests in Chiang Mai Province, Northern Thailand were investigated in 2010–2012. To record the diversity and abundance of riparian fig trees, we (1) calculated stem density, species richness, and diversity indices in 20×50 m randomly selected quadrats along four streams and (2) measured the distances of individual trees from four streams to determine if species exhibit distinct distribution patterns within riparian zones. A total of 1169 individuals (from c. 4 ha) were recorded in the quadrats, representing 33 Ficus species (13 monoecious and 20 dioecious) from six sub-genera and about 70% of all the species recorded from northern Thailand. All 33 species had at least some stems in close proximity to the streams, but they varied in their typical proximity, with F. squamosa Roxb. and F. ischnopoda Miq the most strictly stream-side species. The riparian forests in Northern Thailand support a rich diversity and high density of Ficus species and our results emphasise the importance of fig tree within the broader priorities of riparian area conservation. Plans to maintain or restore properly functioning riparian forests need to take into account their significance. PMID:25310189
Association of Phytophthora cinnamomi with white oak decline in southern Ohio
Annemarie M. Nagle; Robert P. Long; Laurence V. Madden; Pierluigi. Bonello
2010-01-01
A decline syndrome and widespread mortality of mature white oak tree (Quercus alba) associated with wet and low-lying areas has been recently observed in southern Ohio forests. Previous studies have isolated Phytophthora cinnamomi from white oak rhizospheres. In 2008 and 2009, P. cinnamomi population densities in...
Plethodontid salamander response to Silvilcultural Practices in Missouri Ozark forests
Laura A. Herbeck; David R. Larsen
1999-01-01
There is little information on the effects of tree harvest on salamander populations in the midwestern United States. We present data on plethodontid salamander densities in replicated stands of three forest age classes in the southeastern Ozarks of Missouri. Forest age classes consisted of regeneration-cut sites
Darrell W. Ross; Gary E. Daterman; A. Steven Munson
2005-01-01
Spruce beetle, Dendroctonus rufipennis (Kirby), populations periodically reach outbreak densities throughout the range of spruce, Picea spp., in western North America. During outbreaks it may kill thousands to millions of trees over vast areas, dramatically altering forest structure, composition, and ecological processes, thus impacting a variety...
R.A. Progar; D.C. Blackford; D.R. Cluck; S. Costello; L.B. Dunning; T. Eager; C.L. Jorgensen; A.S. Munson; B. Steed; M.J. Rinella
2013-01-01
Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: CurcuIionidae: Scolytinae), is among the primary causes of mature lodgepole pine, Pinus contorta variety latifolia mortality. Verbenone is the only antiaggregant semiochemical commercially available for reducing mountain pine beetle infestation of...
Comparison of leaf-on and leaf-off ALS data for mapping riparian tree species
NASA Astrophysics Data System (ADS)
Laslier, Marianne; Ba, Antoine; Hubert-Moy, Laurence; Dufour, Simon
2017-10-01
Forest species composition is a fundamental indicator of forest study and management. However, describing forest species composition at large scales and of highly diverse populations remains an issue for which remote sensing can provide significant contribution, in particular, Airborne Laser Scanning (ALS) data. Riparian corridors are good examples of highly valuable ecosystems, with high species richness and large surface areas that can be time consuming and expensive to monitor with in situ measurements. Remote sensing could be useful to study them, but few studies have focused on monitoring riparian tree species using ALS data. This study aimed to determine which metrics derived from ALS data are best suited to identify and map riparian tree species. We acquired very high density leaf-on and leaf-off ALS data along the Sélune River (France). In addition, we inventoried eight main riparian deciduous tree species along the study site. After manual segmentation of the inventoried trees, we extracted 68 morphological and structural metrics from both leaf-on and leaf-off ALS point clouds. Some of these metrics were then selected using Sequential Forward Selection (SFS) algorithm. Support Vector Machine (SVM) classification results showed good accuracy with 7 metrics (0.77). Both leaf-on and leafoff metrics were kept as important metrics for distinguishing tree species. Results demonstrate the ability of 3D information derived from high density ALS data to identify riparian tree species using external and internal structural metrics. They also highlight the complementarity of leaf-on and leaf-off Lidar data for distinguishing riparian tree species.
Christopher Woodall; James Westfall
2009-01-01
Live tree size-density relationships in forests have long provided a framework for understanding stand dynamics. There has been little examination of the relationship between the size-density attributes of live and standing/down dead trees (e.g., number and mean tree size per unit area, such information could help in large-scale efforts to estimate dead wood resources...
Spatial Dependence and Sampling of Phytoseiid Populations on Hass Avocados in Southern California.
Lara, Jesús R; Amrich, Ruth; Saremi, Naseem T; Hoddle, Mark S
2016-04-22
Research on phytoseiid mites has been critical for developing an effective biocontrol strategy for suppressing Oligonchus perseae Tuttle, Baker, and Abatiello (Acari: Tetranychidae) in California avocado orchards. However, basic understanding of the spatial ecology of natural populations of phytoseiids in relation to O. perseae infestations and the validation of research-based strategies for assessing densities of these predators has been limited. To address these shortcomings, cross-sectional and longitudinal observations consisting of >3,000 phytoseiids and 500,000 O. perseae counted on 11,341 leaves were collected across 10 avocado orchards during a 10-yr period. Subsets of these data were analyzed statistically to characterize the spatial distribution of phytoseiids in avocado orchards and to evaluate the merits of developing binomial and enumerative sampling strategies for these predators. Spatial correlation of phytoseiids between trees was detected at one site, and a strong association of phytoseiids with elevated O. perseae densities was detected at four sites. Sampling simulations revealed that enumeration-based sampling performed better than binomial sampling for estimating phytoseiid densities. The ecological implications of these findings and potential for developing a custom sampling plan to estimate densities of phytoseiids inhabiting sampled trees in avocado orchards in California are discussed. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
De Ridder, Maaike; De Haulleville, Thalès; Kearsley, Elizabeth; Van den Bulcke, Jan; Van Acker, Joris; Beeckman, Hans
2014-05-01
It is commonly acknowledged that allometric equations for aboveground biomass and carbon stock estimates are improved significantly if density is included as a variable. However, not much attention is given to this variable in terms of exact, measured values and density profiles from pith to bark. Most published case-studies obtain density values from literature sources or databases, this way using large ranges of density values and possible causing significant errors in carbon stock estimates. The use of one single fixed value for density is also not recommended if carbon stock increments are estimated. Therefore, our objective is to measure and analyze a large number of tree species occurring in two Biosphere Reserves (Luki and Yangambi). Nevertheless, the diversity of tree species in these tropical forests is too high to perform this kind of detailed analysis on all tree species (> 200/ha). Therefore, we focus on the most frequently encountered tree species with high abundance (trees/ha) and dominance (basal area/ha) for this study. Increment cores were scanned with a helical X-ray protocol to obtain density profiles from pith to bark. This way, we aim at dividing the tree species with a distinct type of density profile into separate groups. If, e.g., slopes in density values from pith to bark remain stable over larger samples of one tree species, this slope could also be used to correct for errors in carbon (increment) estimates, caused by density values from simplified density measurements or density values from literature. In summary, this is most likely the first study in the Congo Basin that focuses on density patterns in order to check their influence on carbon stocks and differences in carbon stocking based on species composition (density profiles ~ temperament of tree species).
Sene, Godar; Thiao, Mansour; Samba-Mbaye, Ramatoulaye; Khasa, Damase; Kane, Aboubacry; Mbaye, Mame Samba; Beaulieu, Marie-Ève; Manga, Anicet; Sylla, Samba Ndao
2013-01-01
Several fast-growing and multipurpose tree species have been widely used in West Africa to both reverse the tendency of land degradation and restore soil productivity. Although beneficial effects have been reported on soil stabilization, there still remains a lack of information about their impact on soil microorganisms. Our investigation has been carried out in exotic and native tree plantations of 28 years and aimed to survey and compare the abundance and genetic diversity of natural legume-nodulating rhizobia (LNR). The study of LNR is supported by the phylogenetic analysis which clustered the isolates into three genera: Bradyrhizobium, Mesorhizobium, and Sinorhizobium. The results showed close positive correlations between the sizes of LNR populations estimated both in the dry and rainy seasons and the presence of legume tree hosts. There were significant increases in Rhizobium spp. population densities in response to planting with Acacia spp., and high genetic diversities and richness of genotypes were fittest in these tree plantations. This suggests that enrichment of soil Rhizobium spp. populations is host specific. The results indicated also that species of genera Mesorhizobium and Sinorhizobium were lacking in plantations of non-host species. By contrast, there was a widespread distribution of Bradyrhizobium spp. strains across the tree plantations, with no evident specialization in regard to plantation type. Finally, the study provides information about the LNR communities associated with a range of old tree plantations and some aspects of their relationships to soil factors, which may facilitate the management of man-made forest systems that target ecosystem rehabilitation and preservation of soil biota.
Resende, R T; Resende, M D V; Silva, F F; Azevedo, C F; Takahashi, E K; Silva-Junior, O B; Grattapaglia, D
2017-10-01
We report a genomic selection (GS) study of growth and wood quality traits in an outbred F 2 hybrid Eucalyptus population (n=768) using high-density single-nucleotide polymorphism (SNP) genotyping. Going beyond previous reports in forest trees, models were developed for different selection targets, namely, families, individuals within families and individuals across the entire population using a genomic model including dominance. To provide a more breeder-intelligible assessment of the performance of GS we calculated the expected response as the percentage gain over the population average expected genetic value (EGV) for different proportions of genomically selected individuals, using a rigorous cross-validation (CV) scheme that removed relatedness between training and validation sets. Predictive abilities (PAs) were 0.40-0.57 for individual selection and 0.56-0.75 for family selection. PAs under an additive+dominance model improved predictions by 5 to 14% for growth depending on the selection target, but no improvement was seen for wood traits. The good performance of GS with no relatedness in CV suggested that our average SNP density (~25 kb) captured some short-range linkage disequilibrium. Truncation GS successfully selected individuals with an average EGV significantly higher than the population average. Response to GS on a per year basis was ~100% more efficient than by phenotypic selection and more so with higher selection intensities. These results contribute further experimental data supporting the positive prospects of GS in forest trees. Because generation times are long, traits are complex and costs of DNA genotyping are plummeting, genomic prediction has good perspectives of adoption in tree breeding practice.
Poland, Therese M; Mccullough, Deborah G
2014-02-01
Results of numerous trials to evaluate artificial trap designs and lures for detection of Agrilus planipennis Fairmaire, the emerald ash borer, have yielded inconsistent results, possibly because of different A. planipennis population densities in the field sites. In 2010 and 2011, we compared 1) green canopy traps, 2) purple canopy traps, 3) green double-decker traps, and 4) purple double-decker traps in sites representing a range of A. planipennis infestation levels. Traps were baited with cis-3-hexenol in both years, plus an 80:20 mixture of Manuka and Phoebe oil (2010) or Manuka oil alone (2011). Condition of trees bearing canopy traps, A. planipennis infestation level of trees in the vicinity of traps, and number of A. planipennis captured per trap differed among sites in both years. Overall in both years, more females, males, and beetles of both sexes were captured on double-decker traps than canopy traps, and more beetles of both sexes (2010) or females (2011) were captured on purple traps than green traps. In 2010, detection rates were higher for purple (100%) and green double-decker traps (100%) than for purple (82%) or green canopy traps (64%) at sites with very low to low A. planipennis infestation levels. Captures of A. planipennis on canopy traps consistently increased with the infestation level of the canopy trap-bearing trees. Differences among trap types were most pronounced at sites with low A. planipennis densities, where more beetles were captured on purple double-decker traps than on green canopy traps in both years.
Global Impacts of Long-Term Land Cover Changes Within China's Densely Populated Rural Regions
NASA Astrophysics Data System (ADS)
Ellis, E. C.
2006-12-01
Long-term changes in land cover are usually investigated in terms of large-scale change processes such as urban expansion, deforestation and land conversion to agriculture. Yet China's densely populated agricultural regions, which cover more than 2 million square kilometers of Monsoon Asia, have been transformed profoundly over the past fifty years by fine-scale changes in land cover caused by unprecedented changes in population, technology and social conditions. Using a regional sampling and upscaling design coupled with high-resolution landscape change measurements at five field sites, we investigated long-term changes in land cover and ecological processes, circa 1945 to 2002, within and across China's densely populated agricultural regions. As expected, the construction of buildings and roads increased impervious surface area over time, but the total net increase was surprising, being similar in magnitude to the total current extent of China's cities. Agricultural land area declined over the same period, while tree cover increased, by about 10%, driven by tree planting and regrowth around new buildings, the introduction of perennial agriculture, improved forestry, and declines in annual crop cultivation. Though changes in impervious surface areas were closely related to changes in population density, long-term changes in agricultural land and tree cover were unrelated to populated density and required explanation by more complex models with strong regional and biophysical components. Moreover, most of these changes occurred primarily at fine spatial scales (< 30 m), under the threshold for conventional global and regional land cover change measurements. Given that these changes in built structures and vegetation cover have the potential to contribute substantially to regional and global changes in biogeochemistry, hydrology, and land-atmosphere interactions, future investigations of these changes and their impacts across Monsoon Asia would benefit from models that incorporate fine-scale landscape structure and its changes over time.
Savanna tree density, herbivores, and the herbaceous community: bottom-up vs. top-down effects.
Riginos, Corinna; Grace, James B
2008-08-01
Herbivores choose their habitats both to maximize forage intake and to minimize their risk of predation. For African savanna herbivores, the available habitats range in woody cover from open areas with few trees to dense, almost-closed woodlands. This variation in woody cover or density can have a number of consequences for herbaceous species composition, cover, and productivity, as well as for ease of predator detection and avoidance. Here, we consider two alternative possibilities: first, that tree density affects the herbaceous vegetation, with concomitant "bottom-up" effects on herbivore habitat preferences; or, second, that tree density affects predator visibility, mediating "top-down" effects of predators on herbivore habitat preferences. We sampled sites spanning a 10-fold range of tree densities in an Acacia drepanolobium-dominated savanna in Laikipia, Kenya, for variation in (1) herbaceous cover, composition, and species richness; (2) wild and domestic herbivore use; and (3) degree of visibility obstruction by the tree layer. We then used structural equation modeling to consider the potential influences that tree density may have on herbivores and herbaceous community properties. Tree density was associated with substantial variation in herbaceous species composition and richness. Cattle exhibited a fairly uniform use of the landscape, whereas wild herbivores, with the exception of elephants, exhibited a strong preference for areas of low tree density. Model results suggest that this was not a response to variation in herbaceous-community characteristics, but rather a response to the greater visibility associated with more open places. Elephants, in contrast, preferred areas with higher densities of trees, apparently because of greater forage availability. These results suggest that, for all but the largest species, top-down behavioral effects of predator avoidance on herbivores are mediated by tree density. This, in turn, appears to have cascading effects on the herbaceous vegetation. These results shed light on one of the major features of the "landscape of fear" in which African savanna herbivores exist.
Li, Kevin; Vandermeer, John H; Perfecto, Ivette
2016-05-01
Spatial patterns in ecology can be described as reflective of environmental heterogeneity (exogenous), or emergent from dynamic relationships between interacting species (endogenous), but few empirical studies focus on the combination. The spatial distribution of the nests of Azteca sericeasur, a keystone tropical arboreal ant, is thought to form endogenous spatial patterns among the shade trees of a coffee plantation through self-regulating interactions with controlling agents (i.e. natural enemies). Using inhomogeneous point process models, we found evidence for both types of processes in the spatial distribution of A. sericeasur. Each year's nest distribution was determined mainly by a density-dependent relationship with the previous year's lagged nest density; but using a novel application of a Thomas cluster process to account for the effects of nest clustering, we found that nest distribution also correlated significantly with tree density in the later years of the study. This coincided with the initiation of agricultural intensification and tree felling on the coffee farm. The emergence of this significant exogenous effect, along with the changing character of the density-dependent effect of lagged nest density, provides clues to the mechanism behind a unique phenomenon observed in the plot, that of an increase in nest population despite resource limitation in nest sites. Our results have implications in coffee agroecological management, as this system provides important biocontrol ecosystem services. Further research is needed, however, to understand the effective scales at which these relationships occur.
Pompa-García, Marín; Venegas-González, Alejandro
2016-01-01
Forest ecosystems play an important role in the global carbon cycle. Therefore, understanding the dynamics of carbon uptake in forest ecosystems is much needed. Pinus cooperi is a widely distributed species in the Sierra Madre Occidental in northern Mexico and future climatic variations could impact these ecosystems. Here, we analyze the variations of trunk carbon in two populations of P. cooperi situated at different elevational gradients, combining dendrochronological techniques and allometry. Carbon sequestration (50% biomass) was estimated from a specific allometric equation for this species based on: (i) variation of intra-annual wood density and (ii) diameter reconstruction. The results show that the population at a higher elevation had greater wood density, basal area, and hence, carbon accumulation. This finding can be explained by an ecological response of trees to adverse weather conditions, which would cause a change in the cellular structure affecting the within-ring wood density profile. The influence of variations in climate on the maximum density of chronologies showed a positive correlation with precipitation and the Multivariate El Niño Southern Oscillation Index during the winter season, and a negative correlation with maximum temperature during the spring season. Monitoring previous conditions to growth is crucial due to the increased vulnerability to extreme climatic variations on higher elevational sites. We concluded that temporal variability of wood density contributes to a better understanding of environmental historical changes and forest carbon dynamics in Northern Mexico, representing a significant improvement over previous studies on carbon sequestration. Assuming a uniform density according to tree age is incorrect, so this method can be used for environmental mitigation strategies, such as for managing P. cooperi, a dominant species of great ecological amplitude and widely used in forest industries. PMID:27272519
Pompa-García, Marín; Venegas-González, Alejandro
2016-01-01
Forest ecosystems play an important role in the global carbon cycle. Therefore, understanding the dynamics of carbon uptake in forest ecosystems is much needed. Pinus cooperi is a widely distributed species in the Sierra Madre Occidental in northern Mexico and future climatic variations could impact these ecosystems. Here, we analyze the variations of trunk carbon in two populations of P. cooperi situated at different elevational gradients, combining dendrochronological techniques and allometry. Carbon sequestration (50% biomass) was estimated from a specific allometric equation for this species based on: (i) variation of intra-annual wood density and (ii) diameter reconstruction. The results show that the population at a higher elevation had greater wood density, basal area, and hence, carbon accumulation. This finding can be explained by an ecological response of trees to adverse weather conditions, which would cause a change in the cellular structure affecting the within-ring wood density profile. The influence of variations in climate on the maximum density of chronologies showed a positive correlation with precipitation and the Multivariate El Niño Southern Oscillation Index during the winter season, and a negative correlation with maximum temperature during the spring season. Monitoring previous conditions to growth is crucial due to the increased vulnerability to extreme climatic variations on higher elevational sites. We concluded that temporal variability of wood density contributes to a better understanding of environmental historical changes and forest carbon dynamics in Northern Mexico, representing a significant improvement over previous studies on carbon sequestration. Assuming a uniform density according to tree age is incorrect, so this method can be used for environmental mitigation strategies, such as for managing P. cooperi, a dominant species of great ecological amplitude and widely used in forest industries.
NASA Astrophysics Data System (ADS)
Stella, J. C.; Battles, J. J.; McBride, J. R.; Orr, B. K.
2007-12-01
In the Central Valley of California, pioneer cottonwood and willow species dominate the near-river forests. Historically, seedling recruitment for these disturbance-adapted species coincided with spring floods. Changes in flow timing and magnitude due to river regulation have decreased the success of seedling cohorts and contributed to the decline of these riparian tree populations. In order to address gaps in our understanding of these species and potential restoration strategies, we field-calibrated a conceptual model of seedling recruitment for the dominant pioneer woody species, Populus fremontii, Salix gooddingii, and S. exigua. We conducted experiments to identify seedling desiccation thresholds and seed longevity, used field studies to measure seedling competition and seasonal seed release patterns, and modeled interannual differences in dispersal timing using a degree-day model. These studies were integrated into a recruitment model that generates annual estimates of seedling density and bank elevation based on inputs of seasonal river discharge, seed dispersal timing, and seedling mortality from desiccation. The model predictions successfully captured interannual and species-level patterns in recruitment observed independently throughout a 20-km reach of the lower Tuolumne River from 2002-04. The model correctly predicted that seedling densities were highest in 2004 and lowest in 2003, and that S. exigua recruitment would be less extensive than for the two tree species. This work shows promise as both a quantitative approach linking hydrology, climate and plant community dynamics, and as a process-based framework for guiding flow releases and other management actions to restore riparian tree population along Central Valley rivers.
The genetic effects of a diameter limited cut on black walnut
Rodney L. Robichaud; Olin E., Jr. Rhodes; Keith Woeste
2003-01-01
Black walnut (Juglans nigra L.) trees are often selectively cut from forested stands based on their phenotype or size. This practice lowers the population density and possibly the genetic diversity of the species. Anecdotal evidence links this practice to an observed decline in the availability of high quality black walnuts.
Guide to testing insecticides on coniferous forest defoliators
Carroll B Jr. Williams; David A. Sharpnack; Liz Maxwell; Patrick J. Shea; Mark D. McGregor
1985-01-01
This report provides a guide to techniques for designing field tests of candidate insecticides, and for carrying out pilot tests and control projects. It describes experimental designs for testing hypotheses, and for sampling trees to estimate insect population densities and percent reduction after treatments. Directions for applying insecticides by aircraft and for...
Allometric biomass estimators for aspen-dominated ecosystems in the upper Great Lakes.
Donald A. Perala; David Alban
1993-01-01
Presents allometric estimators relating aboveground and belowground component weights to diameter measurements of more than 2,500 trees and shrubs encompassing 35 woody species samples from 8 soil series. The estimators were only weakly related to soil character but were strongly influenced by population density variation induced by silvicultural treatment.
USDA-ARS?s Scientific Manuscript database
The Asian citrus psyllid (ACP) is the primary vector of a bacterium that produces a devastating disease of citrus, huanglongbing. Efficient surveillance of ACP at low population densities is essential for timely pest management programs. ACP males search for mates on tree branches by producing vibra...
McKenny, H.C.; Keeton, W.S.; Donovan, T.M.
2006-01-01
Managing for stand structural complexity in northern hardwood forests has been proposed as a method for promoting microhabitat characteristics important to eastern red-backed salamanders (Plethodon cinereus). We evaluated the effects of alternate, structure-based silvicultural systems on red-backed salamander populations at two research sites in northwestern Vermont. Treatments included two uneven-aged approaches (single-tree selection and group-selection) and one unconventional approach, termed "structural complexity enhancement" (SCE), that promotes development of late-successional structure, including elevated levels of coarse woody debris (CWD). Treatments were applied to 2 ha units and were replicated two to four times depending on treatment. We surveyed red-backed salamanders with a natural cover search method of transects nested within vegetation plots 1 year after logging. Abundance estimates corrected for detection probability were calculated from survey data with a binomial mixture model. Abundance estimates differed between study areas and were influenced by forest structural characteristics. Model selection was conducted using Akaike Information Criteria, corrected for over-dispersed data and small sample size (QAICc). We found no difference in abundance as a response to treatment as a whole, suggesting that all of the uneven-aged silvicultural systems evaluated can maintain salamander populations after harvest. However, abundance was tied to specific structural habitat attributes associated with study plots within treatments. The most parsimonious model of habitat covariates included site, relative density of overstory trees, and density of more-decayed and less-decayed downed CWD. Abundance responded positively to the density of downed, well-decayed CWD and negatively to the density of poorly decayed CWD and to overstory relative density. CWD volume was not a strong predictor of salamander abundance. We conclude that structural complexity enhancement and the two uneven-aged approaches maintained important microhabitat characteristics for red-backed salamander populations in the short term. Over the long-term, given decay processes as a determinant of biological availability, forestry practices such as SCE that enhance CWD availability and recruitment may result in associated population responses. ?? 2006 Elsevier B.V. All rights reserved.
Adult mortality in a low-density tree population using high-resolution remote sensing.
Kellner, James R; Hubbell, Stephen P
2017-06-01
We developed a statistical framework to quantify mortality rates in canopy trees observed using time series from high-resolution remote sensing. By timing the acquisition of remote sensing data with synchronous annual flowering in the canopy tree species Handroanthus guayacan, we made 2,596 unique detections of 1,006 individual adult trees within 18,883 observation attempts on Barro Colorado Island, Panama (BCI) during an 11-yr period. There were 1,057 observation attempts that resulted in missing data due to cloud cover or incomplete spatial coverage. Using the fraction of 123 individuals from an independent field sample that were detected by satellite data (109 individuals, 88.6%), we estimate that the adult population for this species on BCI was 1,135 individuals. We used a Bayesian state-space model that explicitly accounted for the probability of tree detection and missing observations to compute an annual adult mortality rate of 0.2%·yr -1 (SE = 0.1, 95% CI = 0.06-0.45). An independent estimate of the adult mortality rate from 260 field-checked trees closely matched the landscape-scale estimate (0.33%·yr -1 , SE = 0.16, 95% CI = 0.12-0.74). Our proof-of-concept study shows that one can remotely estimate adult mortality rates for canopy tree species precisely in the presence of variable detection and missing observations. © 2017 by the Ecological Society of America.
`Akohekohe response to flower availability: seasonal abundance, foraging, breeding, and molt
Berlin, Kim E.; Simon, John C.; Pratt, T.K.; Kowalsky, James R.; Hatfield, J.S.; Scott, J.M.; Conant, S.; van Riper, Charles
2001-01-01
We studied the relationship of flower availability to the seasonality of life history events of the `Akohekohe (Palmeria dolei), a primarily nectarivorous and endangered Hawaiian honeycreeper from montane rain forests on Maui, Hawai`i. For comparison, we also investigated temporal bird density and foraging behavior of three other competing Hawaiian honeycreepers: `Apapane (Himatione sanguinea), `I`iwi (Vestiaria coccinea), and Hawai`i `Amakihi (Hemignathus virens). All species except `Amakihi fed primarily on nectar of `Ohi?a-lehua (Metrosideros polymorpha), which produced flowers year-round but had an annual flowering peak in January. Flowers of several subcanopy shrubs and trees were important components of the diet for all nectarivores, and these were available seasonally depending upon the species. `Akohekohe densities did not change temporally, suggesting a relatively stable population residing above 1,700 m. Monthly densities of `Apapane, `I`iwi, and Hawai`i `Amakihi were positively correlated with monthly `Ohi?a-lehua flower abundance, and 50-80% of these populations departed temporarily from our high-elevation site in July. There was a positive correlation with the timing of Akohekohe breeding and high abundance of `Ohi?a-lehua bloom. Molt followed breeding. From a conservation perspective, these results show that `Akohekohe maintain a relatively stable population above the mid-elevation zone of disease transmission, particularly during the fall when `Ohi?a-lehua bloom decreases and mosquitoes increase. `Akohekohe remain on their territories partly by switching their foraging to subcanopy trees and shrubs, most of which require protection from feral pigs (Sus scrofa).
Functional traits help predict post-disturbance demography of tropical trees.
Flores, Olivier; Hérault, Bruno; Delcamp, Matthieu; Garnier, Éric; Gourlet-Fleury, Sylvie
2014-01-01
How tropical tree species respond to disturbance is a central issue of forest ecology, conservation and resource management. We define a hierarchical model to investigate how functional traits measured in control plots relate to the population change rate and to demographic rates for recruitment and mortality after disturbance by logging operations. Population change and demographic rates were quantified on a 12-year period after disturbance and related to seven functional traits measured in control plots. The model was calibrated using a Bayesian Network approach on 53 species surveyed in permanent forest plots (37.5 ha) at Paracou in French Guiana. The network analysis allowed us to highlight both direct and indirect relationships among predictive variables. Overall, 89% of interspecific variability in the population change rate after disturbance were explained by the two demographic rates, the recruitment rate being the most explicative variable. Three direct drivers explained 45% of the variability in recruitment rates, including leaf phosphorus concentration, with a positive effect, and seed size and wood density with negative effects. Mortality rates were explained by interspecific variability in maximum diameter only (25%). Wood density, leaf nitrogen concentration, maximum diameter and seed size were not explained by variables in the analysis and thus appear as independent drivers of post-disturbance demography. Relationships between functional traits and demographic parameters were consistent with results found in undisturbed forests. Functional traits measured in control conditions can thus help predict the fate of tropical tree species after disturbance. Indirect relationships also suggest how different processes interact to mediate species demographic response.
Hailemariam Temesgen; Tara M. Barrett; Greg Latta
2008-01-01
Cavity trees contribute to diverse forest structure and wildlife habitat. For a given stand, the size and density of cavity trees indicate its diversity, complexity, and suitability for wildlife habitat. Size and density of cavity trees vary with stand age, density, and structure. Using Forest Inventory and Analysis (FIA) data collected in western Oregon and western...
Comparison of habitat quality and diet of Colobus vellerosus in forest fragments in Ghana.
Wong, Sarah N P; Saj, Tania L; Sicotte, Pascale
2006-10-01
The forest fragments surrounding the Boabeng-Fiema Monkey Sanctuary (BFMS) in central Ghana shelter small populations of Colobus vellerosus. Little is known about these populations or the ability of the fragments to support them, despite the fact that these fragments represent potentially important habitat for the colobus in this region. We compared the diet of three groups of C. vellerosus in the fragments to two groups in BFMS. We also examined the differences in plant species composition and food abundance among fragments. The study took place from June to November 2003. Dietary data were collected using scan sampling. Plant species composition and food abundance were evaluated using tree plots and large tree surveys. As in BFMS groups, leaves constituted the highest proportion of the diet of fragment groups, yet the colobus in fragments fed on more lianas than did those in BFMS. Over 50% of all species observed eaten by colobus in the fragments were not consumed in BFMS groups during the same season. Food abundance was similar between fragments and BFMS, although species composition differed. There was no relationship between the density of colobus and the density of food trees or percentage of food species, suggesting that other factors may be influencing the number of colobus present. This study highlights the broad dietary range of C. vellerosus, which may be a factor allowing its survival in these fragments.
NASA Astrophysics Data System (ADS)
O'Connor, Timothy G.
2017-01-01
The hypothesis that African elephants may cause the local extirpation of selected woody species was evaluated in a medium-sized, semi-arid reserve following their reintroduction at low density. Mortality, state-change, and regeneration of 25 tree and 17 shrub species were studied between 1997 and 2010. Annual mortality of shrub species ranged from 0.2 to 8.0%, with six species experiencing 6-8%. Eight shrub species lost more than half their adult population (range 10-94%). Annual tree mortality ranged from 0.2 to 10.5%. The two dominant dryland tree species experienced <1% annual mortality, 18 species lost more than half their tree population, and one was eliminated. Elephants accounted for >63% and stress-related agents >20% of tree deaths. The manner in which elephants induced tree death depended on species. The proportion of individuals of a species killed by pollarding or uprooting ranged from 0 to 74%, and by debarking from 0 to 100%. Complete uprooting was a common cause of death for three shrub species. Regeneration ranged from zero for six tree and one shrub species to a seedling every 7 m2 for Colophospermum mopane and 23 m2 for Dichrostachys cinerea in riparian habitat. Three shrub and eight tree species were identified as vulnerable to local extirpation owing to a combination of high mortality and poor regeneration that is likely to result in a considerably simplified system. Reintroduction of elephants into medium-sized reserves without regulation of their numbers may not be a desirable action.
Fourqurean, James W.; Smith, Thomas J.; Possley, Jennifer; Collins, Timothy M.; Lee, David; Namoff, Sandra
2010-01-01
Two species of mangrove trees of Indo-Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year−1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximum number of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha−1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year−1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.
Modeling the size-density relationship in direct-seeded slash pine stands
Quang V. Cao; Thomas J. Dean; V. Clark Baldwin
2000-01-01
The relationship between quadratic mean diameter and tree density appeared curvilinear on a logâlog scale, based on data from direct-seeded slash pine (Pinus elliotti var. elliotti Engelm.) stands. The self-thinning trajectory followed a straight line for high tree density levels and then turned away from this line as tree density...
Ukuda-Hosokawa, Rie; Sadoyama, Yasutsune; Kishaba, Misaki; Kuriwada, Takashi; Anbutsu, Hisashi; Fukatsu, Takema
2015-06-01
Huanglongbing, or citrus greening, is a devastating disease of citrus plants recently spreading worldwide, which is caused by an uncultivable bacterial pathogen, "Candidatus Liberibacter asiaticus," and vectored by a phloem-sucking insect, Diaphorina citri. We investigated the infection density dynamics of "Ca. Liberibacter asiaticus" in field populations of D. citri with experiments using field-collected insects to address how "Ca. Liberibacter asiaticus" infection density in the vector insect is relevant to pathogen transmission to citrus plants. Of 500 insects continuously collected from "Ca. Liberibacter asiaticus"-infected citrus trees with pathological symptoms in the spring and autumn of 2009, 497 (99.4%) were "Ca. Liberibacter asiaticus" positive. The infections were systemic across head-thorax and abdomen, ranging from 10(3) to 10(7) bacteria per insect. In spring, the infection densities were low in March, at ∼ 10(3) bacteria per insect, increasing up to 10(6) to 10(7) bacteria per insect in April and May, and decreasing to 10(5) to 10(6) bacteria per insect in late May, whereas the infection densities were constantly ∼ 10(6) to 10(7) bacteria per insect in autumn. Statistical analysis suggested that several factors, such as insect sex, host trees, and collection dates, may be correlated with "Ca. Liberibacter asiaticus" infection densities in field D. citri populations. Inoculation experiments with citrus seedlings using field-collected "Ca. Liberibacter asiaticus"-infected insects suggested that (i) "Ca. Liberibacter asiaticus"-transmitting insects tend to exhibit higher infection densities than do nontransmitting insects, (ii) a threshold level (∼ 10(6) bacteria per insect) of "Ca. Liberibacter asiaticus" density in D. citri is required for successful transmission to citrus plants, and (iii) D. citri attaining the threshold infection level transmits "Ca. Liberibacter asiaticus" to citrus plants in a stochastic manner. These findings provide valuable insights into understanding, predicting, and controlling this notorious citrus pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Garzon-Lopez, Carol X; Ballesteros-Mejia, Liliana; Ordoñez, Alejandro; Bohlman, Stephanie A; Olff, Han; Jansen, Patrick A
2015-08-01
The coexistence of numerous tree species in tropical forests is commonly explained by negative dependence of recruitment on the conspecific seed and tree density due to specialist natural enemies that attack seeds and seedlings ('Janzen-Connell' effects). Less known is whether guilds of shared seed predators can induce a negative dependence of recruitment on the density of different species of the same plant functional group. We studied 54 plots in tropical forest on Barro Colorado Island, Panama, with contrasting mature tree densities of three coexisting large seeded tree species with shared seed predators. Levels of seed predation were far better explained by incorporating seed densities of all three focal species than by conspecific seed density alone. Both positive and negative density dependencies were observed for different species combinations. Thus, indirect interactions via shared seed predators can either promote or reduce the coexistence of different plant functional groups in tropical forest. © 2015 John Wiley & Sons Ltd/CNRS.
Aleman, Julie C; Blarquez, Olivier; Gourlet-Fleury, Sylvie; Bremond, Laurent; Favier, Charly
2017-01-30
Tree cover is a key variable for ecosystem functioning, and is widely used to study tropical ecosystems. But its determinants and their relative importance are still a matter of debate, especially because most regional and global analyses have not considered the influence of agricultural practices. More information is urgently needed regarding how human practices influence vegetation structure. Here we focused in Central Africa, a region still subjected to traditional agricultural practices with a clear vegetation gradient. Using remote sensing data and global databases, we calibrated a Random Forest model to correlatively link tree cover with climatic, edaphic, fire and agricultural practices data. We showed that annual rainfall and accumulated water deficit were the main drivers of the distribution of tree cover and vegetation classes (defined by the modes of tree cover density), but agricultural practices, especially pastoralism, were also important in determining tree cover. We simulated future tree cover with our model using different scenarios of climate and land-use (agriculture and population) changes. Our simulations suggest that tree cover may respond differently regarding the type of scenarios, but land-use change was an important driver of vegetation change even able to counterbalance the effect of climate change in Central Africa.
NASA Astrophysics Data System (ADS)
Aleman, Julie C.; Blarquez, Olivier; Gourlet-Fleury, Sylvie; Bremond, Laurent; Favier, Charly
2017-01-01
Tree cover is a key variable for ecosystem functioning, and is widely used to study tropical ecosystems. But its determinants and their relative importance are still a matter of debate, especially because most regional and global analyses have not considered the influence of agricultural practices. More information is urgently needed regarding how human practices influence vegetation structure. Here we focused in Central Africa, a region still subjected to traditional agricultural practices with a clear vegetation gradient. Using remote sensing data and global databases, we calibrated a Random Forest model to correlatively link tree cover with climatic, edaphic, fire and agricultural practices data. We showed that annual rainfall and accumulated water deficit were the main drivers of the distribution of tree cover and vegetation classes (defined by the modes of tree cover density), but agricultural practices, especially pastoralism, were also important in determining tree cover. We simulated future tree cover with our model using different scenarios of climate and land-use (agriculture and population) changes. Our simulations suggest that tree cover may respond differently regarding the type of scenarios, but land-use change was an important driver of vegetation change even able to counterbalance the effect of climate change in Central Africa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allred, W.S.; Gaud, W.S.
1993-01-01
Abert squirrels (Sciurus aberti) are obligate herbivores on ponderosa pine (Pinus ponderosa). The inner bark of pine shoots is considered one of the predominant food resources obtained by foraging squirrels. As squirrels forage for this resource they induce green needle losses from chosen feed trees. Amounts of induced green needle losses appear to vary according to the availability of alternative foods and squirrel population densities. Weather also induces green needle losses to ponderosa pines. Results of this study indicate that, at least in some years, heavy snowstorms can induce greater amounts of green needle losses than squirrels. Squirrel herbivory wasmore » not indicated as a factor in any tree mortality. However, losses due to snowstorms are more severe since they may cause the actual depletion of trees in the forest because of the tree mortality they inflict.« less
Sedgwick, James A.; Knopf, Fritz L.
1990-01-01
We examined habitat relationships and nest site characteristics for 6 species of cavity-nesting birds--American kestrel (Falco sparverius), northern flicker (Colaptes auratus), red-headed woodpecker (Melanerpes erythrocephalus), black-capped chickadee (Parus atricapillus), house wren (Troglodytes aedon), and European starling (Sturnus vulgaris)--in a mature plains cottonwood (Populus sargentii) bottomland along the South Platte River in northeastern Colorado in 1985 and 1986. We examined characteristics of cavities, nest trees, and the habitat surrounding nest trees. Density of large trees (>69 cm dbh), total length of dead limbs ≥10 cm diameter (TDLL), and cavity density were the most important habitat variables; dead limb length (DLL), dbh, and species were the most important tree variables; and cavity height, cavity entrance diameter, and substrate condition at the cavity (live vs. dead) were the most important cavity variables in segregating cavity nesters along habitat, tree, and cavity dimensions, respectively. Random sites differed most from cavity-nesting bird sites on the basis of dbh, DLL, limb tree density (trees with ≥1 m dead limbs ≥10 cm diameter), and cavity density. Habitats of red-headed woodpeckers and American kestrels were the most unique, differing most from random sites. Based on current trends in cottonwood demography, densities of cavity-nesting birds will probably decline gradually along the South Platte River, paralleling a decline in DLL, limb tree density, snag density, and the concurrent lack of cottonwood regeneration.
Dominant tree species are at risk from exaggerated drought under climate change.
Fensham, Roderick J; Fraser, Josie; MacDermott, Harry J; Firn, Jenifer
2015-10-01
Predicting the consequences of climate change on forest systems is difficult because trees may display species-specific responses to exaggerated droughts that may not be reflected by the climatic envelope of their geographic range. Furthermore, few studies have examined the postdrought recovery potential of drought-susceptible tree species. This study develops a robust ranking of the drought susceptibility of 21 tree species based on their mortality after two droughts (1990s and 2000s) in the savanna of north-eastern Australia. Drought-induced mortality was positively related to species dominance, negatively related to the ratio of postdrought seedlings to adults and had no relationship to the magnitude of extreme drought within the species current geographic ranges. These results suggest that predicting the consequences of exaggerated drought on species' geographic ranges is difficult, but that dominant species like Eucalyptus with relatively slow rates of population recovery and dispersal are the most susceptible. The implications for savanna ecosystems are lower tree densities and basal area. © 2015 John Wiley & Sons Ltd.
Boris Zeide
2004-01-01
Estimation of stand density is based on a relationship between number of trees and their average diameter in fully stocked stands. Popular measures of density (Reinekeâs stand density index and basal area) assume that number of trees decreases as a power function of diameter. Actually, number of trees drops faster than predicted by the power function because the number...
[Estimation of vegetation carbon storage and density of forests at tree layer in Tibet, China.
Liu, Shu Qin; Xia, Chao Zong; Feng, Wei; Zhang, Ke Bin; Ma, Li; Liu, Jian Kang
2017-10-01
The estimation of vegetation carbon storage and density of forests at tree layer in Tibet Autonomous Region was calculated based on the eighth forest inventory data using the biomass inventory method, as well as other attributes like tree trunk density and carbon content of different species. The results showed that the total carbon storage at tree layer in Tibet forest ecosystem was 1.067×10 9 t and the average carbon density was 72.49 t·hm -2 . The carbon storage at tree layer of different stands was in the order of arbor forest > scattered wood > sparse forest > alluvial tree. The carbon storage of different forest types at tree layer were in the order of shelterbelt > special purpose forest > timber forest > firewood forest. The proportion of the first mentioned two was 88.5%, and the average carbon density of different forest types at tree layer was 88.09 t·hm -2 . The carbon sto-rage and its distribution area at tree layer in different forest groups were in the same order, followed by mature forest > over mature forest > near mature forest > middle aged forest > young forest. The carbon storage in mature forests accounted for 50% of the total carbon storage at tree layer in diffe-rent forest groups. The carbon storage at tree layer in different forest groups increased first and then decreased with the increase of stand ages.
Randall S. Morin; Kurt W. Gottschalk; Michael E. Ostry; Andrew M. Liebhold
2018-01-01
Butternut trees dying from a canker disease were first reported in southwestern Wisconsin in 1967. Since then, the disease has caused extensive mortality of butternut throughout its North American range. The objectives of this study were to quantify changes in butternut populations and density across its range and identify habitat characteristics of sites where...
Stephen W. Fraedrich; Michelle M. Cram
2002-01-01
A Longidorus species was consistently associated with patches of stunted and chlorotic loblolly pine seedlings at a forest-tree nursery in Georgia. Seedlings from affected areas had poorly developed root systems that lacked lateral and feeder roots. Longidorus population densities in composite soil samples from the margins of...
Norghauer, Julian M; Newbery, David M
2016-05-01
Although negative density dependence (NDD) can facilitate tree species coexistence in forests, the underlying mechanisms can differ, and rarely are the dynamics of seedlings and saplings studied together. Herein we present and discuss a novel mechanism based on our investigation of NDD predictions for the large, grove-forming ectomycorrhizal mast fruiting tree, Microberlinia bisulcata (Caesalpiniaceae), in an 82.5-ha plot at Korup, Cameroon. We tested whether juvenile density, size, growth and survival decreases with increasing conspecific adult basal area for 3245 'new' seedlings and 540 'old' seedlings (< 75-cm tall) during an approximately 4-year study period (2008-2012) and for 234 'saplings' (≥ 75-cm tall) during an approximately 6-year study period (2008-2014). We found that the respective densities of new seedlings, old seedlings and saplings were positively, not and negatively related to increasing BA. Maximum leaf numbers and heights of old seedlings were negatively correlated with increasing basal areas, as were sapling heights and stem diameters. Whereas survivorship of new seedlings decreased by more than one-half with increasing basal area over its range in 2010-2012, that of old seedlings decreased by almost two-thirds, but only in 2008-2010, and was generally unrelated to conspecific seedling density. In 2010-2012 relative growth rates in new seedlings' heights decreased with increasing basal area, as well as with increasing seedling density, together with increasing leaf numbers, whereas old seedlings' growth was unrelated to either conspecific density or basal area. Saplings of below-average height had reduced survivorship with increasing basal area (probability decreasing from approx. 0.4 to 0.05 over the basal area range tested), but only sapling growth in terms of leaf numbers decreased with increasing basal area. These static and dynamic results indicate that NDD is operating within this system, possibly stabilizing the M. bisulcata population. However, these NDD patterns are unlikely to be caused by symmetric competition or by consumers. Instead, an alternative mechanism for conspecific adult-juvenile negative feedback is proposed, one which involves the interaction between tree phenology and ectomycorrhizal linkages.
Ecophysiological variables influencing Aleppo pine seed and cone production: a review.
Ayari, Abdelaziz; Khouja, Mohamed Larbi
2014-04-01
The most interesting factors associated with seed and cone production of Aleppo pine were largely reviewed to identify broad patterns and potential effectiveness of reforestation efforts and planning. Aleppo pine cone production and seed yields are relatively variable, with differences between spatial and temporal influences. These differences are considered, mainly between (i) year, (ii) stand characteristics and (iii) individual tree measurements. Annual variability among populations was recorded for cone production per tree, based on influencing factors such as genetic characteristics, wetness, nutrient availability, insect pests and disease. In addition, some factors may affect Aleppo pine tree growth directly but may be affecting seed and cone production indirectly. Therefore, reduced stand density results in less competition among Aleppo pine trees and accompanying understory flora, which subsequently increases the stem diameter and other tree dimensions, including seed production. This review suggests that reforestation planning, particularly thinning, will result in improved tree morphology that will increase Aleppo pine seed and cone crops. Wildfire intensity and stand conditions such as light and soil nutrient status are also examined.
Maps and models of density and stiffness within individual Douglas-fir trees
Christine L. Todoroki; Eini C. Lowell; Dennis P. Dykstra; David G. Briggs
2012-01-01
Spatial maps of density and stiffness patterns within individual trees were developed using two methods: (1) measured wood properties of veneer sheets; and (2) mixed effects models, to test the hypothesis that within-tree patterns could be predicted from easily measurable tree variables (height, taper, breast-height diameter, and acoustic velocity). Sample trees...
Livingstone, Donald; Stack, Conrad; Mustiga, Guiliana M; Rodezno, Dayana C; Suarez, Carmen; Amores, Freddy; Feltus, Frank A; Mockaitis, Keithanne; Cornejo, Omar E; Motamayor, Juan C
2017-01-01
Cacao ( Theobroma cacao L.) is an important cash crop in tropical regions around the world and has a rich agronomic history in South America. As a key component in the cosmetic and confectionary industries, millions of people worldwide use products made from cacao, ranging from shampoo to chocolate. An Illumina Infinity II array was created using 13,530 SNPs identified within a small diversity panel of cacao. Of these SNPs, 12,643 derive from variation within annotated cacao genes. The genotypes of 3,072 trees were obtained, including two mapping populations from Ecuador. High-density linkage maps for these two populations were generated and compared to the cacao genome assembly. Phenotypic data from these populations were combined with the linkage maps to identify the QTLs for yield and disease resistance.
Spatial aspects of tree mortality strongly differ between young and old-growth forests.
Larson, Andrew J; Lutz, James A; Donato, Daniel C; Freund, James A; Swanson, Mark E; HilleRisLambers, Janneke; Sprugel, Douglas G; Franklin, Jerry F
2015-11-01
Rates and spatial patterns of tree mortality are predicted to change during forest structural development. In young forests, mortality should be primarily density dependent due to competition for light, leading to an increasingly spatially uniform pattern of surviving trees. In contrast, mortality in old-growth forests should be primarily caused by contagious and spatially autocorrelated agents (e.g., insects, wind), causing spatial aggregation of surviving trees to increase through time. We tested these predictions by contrasting a three-decade record of tree mortality from replicated mapped permanent plots located in young (< 60-year-old) and old-growth (> 300-year-old) Abies amabilis forests. Trees in young forests died at a rate of 4.42% per year, whereas trees in old-growth forests died at 0.60% per year. Tree mortality in young forests was significantly aggregated, strongly density dependent, and caused live tree patterns to become more uniform through time. Mortality in old-growth forests was spatially aggregated, but was density independent and did not change the spatial pattern of surviving trees. These results extend current theory by demonstrating that density-dependent competitive mortality leading to increasingly uniform tree spacing in young forests ultimately transitions late in succession to a more diverse tree mortality regime that maintains spatial heterogeneity through time.
Bryson-Morrison, Nicola; Matsuzawa, Tetsuro; Humle, Tatyana
2016-12-01
Many primate populations occur outside protected areas in fragmented anthropogenic landscapes. Empirical data on the ecological characteristics that define an anthropogenic landscape are urgently required if conservation initiatives in such environments are to succeed. The main objective of our study was to determine the composition and availability of chimpanzee (Pan troglodytes verus) food resources across fine spatial scales in the anthropogenic landscape of Bossou, Guinea, West Africa. We examined food resources in all habitat types available in the chimpanzees' core area. We surveyed resource composition, structure and heterogeneity (20 m × 20 m quadrats, N = 54) and assessed temporal availability of food from phenology trails (total distance 5951 m; 1073 individual trees) over 1 year (2012-2013). Over half of Bossou consists of regenerating forest and is highly diverse in terms of chimpanzee food species; large fruit bearing trees are rare and confined to primary and riverine forest. Moraceae (mulberries and figs) was the dominant family, trees of which produce drupaceous fruits favored by chimpanzees. The oil palm occurs at high densities throughout and is the only species found in all habitat types except primary forest. Our data suggest that the high densities of oil palm and fig trees, along with abundant terrestrial herbaceous vegetation and cultivars, are able to provide the chimpanzees with widely available resources, compensating for the scarcity of large fruit trees. A significant difference was found between habitat types in stem density/ha and basal area m 2 /ha of chimpanzee food species. Secondary, young secondary, and primary forest emerged as the most important habitat types for availability of food tree species. Our study emphasizes the importance of examining ecological characteristics of an anthropogenic landscape as each available habitat type is unlikely to be equally important in terms of spatial and temporal availability of resources. Am. J. Primatol. 78:1237-1249, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Population biology of the European woodwasp, Sirex noctilio, in Galicia, Spain.
Lombardero, M J; Ayres, M P; Krivak-Tetley, F E; Fitza, K N E
2016-10-01
Sirex noctilio Fabricius (Hymenoptera, Siricidae) is rare and rarely studied where it is native in Eurasia, but is a widespread pest of pines in the Southern Hemisphere. Here we report on the abundance, basic biology, host use patterns and natural enemies of native S. noctilio in Galicia, Spain. Most trees attacked by S. noctilio failed to produce any adult progeny: >90% of emergences came from <20% of the attacked trees. The highest reproduction was in Pinus pinaster, followed by Pinus sylvestris and Pinus radiata. The proportions of S. noctilio requiring 1, 2 or 3 years for development were 0.72: 0.24: 0.04. Delayed development could be an adaptation to avoid parasitic nematodes, which sterilized 41.5% adults with one year generation time but only 19% of adults with 2 years generation time. Hymenoptera parasitoids accounted for 20% mortality. Sex ratios were male biased at 1: 2.9. Body size and fecundity were highly variable and lower than previously reported from the Southern Hemisphere. On attacked trees, there were 5-20 attacks per standard log (18 dm2), with usually 1-3 drills per attack. Attack densities and drills per attack were higher in trees that subsequently died. The production of S. noctilio per log was positively related to total attacks, and negatively related to: (1) attack density, (2) incidence of blue stain from Ophiostoma fungi and (3) frequency of lesions in plant tissue around points of attack. A preliminary life table for S. noctilio in Galicia estimated effects on potential population growth rate from (in decreasing order of importance) host suitability, unequal sex ratio, parasitic nematodes and Hymenoptera parasitoids.
Fajardo, A
2018-05-01
The wood economics spectrum provides a general framework for interspecific trait-trait coordination across wide environmental gradients. Whether global patterns are mirrored within species constitutes a poorly explored subject. In this study, I first determined whether wood density co-varies together with elevation, tree growth and height at the within-species level. Second, I determined the variation of wood density in different stem parts (trunk, branch and twigs). In situ trunk sapwood, trunk heartwood, branch and twig densities, in addition to stem growth rates and tree height were determined in adult trees of Nothofagus pumilio at four elevations in five locations spanning 18° of latitude. Mixed effects models were fitted to test relationships among variables. The variation in wood density reported in this study was narrow (ca. 0.4-0.6 g cm -3 ) relative to global density variation (ca. 0.3-1.0 g cm -3 ). There was no significant relationship between stem growth rates and wood density. Furthermore, the elevation gradient did not alter the wood density of any stem part. Trunk sapwood density was negatively related to tree height. Twig density was higher than branch and trunk densities. Trunk heartwood density was always significantly higher than sapwood density. Negative across-species trends found in the growth-wood density relationship may not emerge as the aggregate of parallel intraspecific patterns. Actually, trees with contrasting growth rates show similar wood density values. Tree height, which is tightly related to elevation, showed a negative relationship with sapwood density. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Shan Gao; Xiping Wang; Michael C. Wiemann; Brian K. Brashaw; Robert J. Ross; Lihai Wang
2017-01-01
Key message Field methods for rapid determination of wood density in trees have evolved from increment borer, torsiometer, Pilodyn, and nail withdrawal into sophisticated electronic tools of resistance drilling measurement. A partial resistance drilling approach coupled with knowledge of internal tree density distribution may...
Root density of cherry trees grafted on prunus mahaleb in a semi-arid region
NASA Astrophysics Data System (ADS)
Paltineanu, Cristian; Septar, Leinar; Gavat, Corina; Chitu, Emil; Oprita, Alexandru; Moale, Cristina; Lamureanu, Gheorghe; Vrinceanu, Andrei
2016-07-01
Root density was investigated using the trench method in a cherry (Prunus avium grafted on Prunus mahaleb) orchard with clean cultivation in inter-rows and in-row. Trenches of 1 m width and 1.2 m depth were dug up between neighbouring trees. The objectives of the paper were to clarify the spatial distribution of root density of cherry trees under the soil and climate conditions of the region to expand knowledge of optimum planting distance and orchard management for a broad area of chernozems. Some soil physical properties were significantly worsened in inter-rows versus in-row, mainly due to soil compaction, and there were higher root density values in in-row versus inter-rows. Root density decreased more intensely with soil depth than with distance from trees. The pattern of root density suggests that the cherry tree density and fruit yield could be increased. However, other factors concerning orchard management and fruit yield should also be considered. The results obtained have a potential impact to improve irrigation and fertilizer application by various methods, considering the soil depth and distance from trees to wet soil, in accordance with root development.
NASA Astrophysics Data System (ADS)
Silveira, Andréa P.; Martins, Fernando R.; Araújo, Francisca S.
2012-08-01
In temperate and tropical rainforests, ontogenetic structure and allometry during tree ontogeny are often associated with light gradients. Light is not considered a limiting resource in deciduous thorny woodland (DTW), but establishment and growth occur during a short rainy period, when the canopy is fully leaved and light in the understory may be modified. Our aim was to investigate whether the light gradient in DTW and the biomechanical limitations of tree growth would be enough to produce an ontogenetic structure and allometric growth similar to rainforest canopy trees. We investigated the ontogenetic stages and diameter-height relationship of Cordia oncocalyx (Boraginaceae), a dominant canopy tree of the DTW of semiarid northeastern Brazil. We tagged, measured and classified the ontogenetic stages of 2.895 individuals in a 1 ha area (5°6'58.1″S and 40°52'19.4″W). In the rainy season only 4.7% of the light falling on the canopy reached the ground. Initial ontogenetic stages, mainly infant (50.9%) and seedling (42.1%), were predominant in the population, with the remaining 7% distributed among juvenile, immature, virginile and reproductive. The ontogenetic structure was similar to that of rainforest tree species, but the population formed both permanent seed and infant banks in response to long dry periods and erratic rainy spells. Like many other Boraginaceae tree species in tropical rainforests, C. oncocalyx has a Prévost architectural model, but allometric growth was quite different from rainforest trees. C. oncocalyx invested slightly more in diameter at first, then in height and finally invested greatly in diameter and attained an asymptotic height. The continued high investment in diameter growth at late stages and the asymptotic height point to low tree density and more frequent xylem embolism as the main drivers of tree allometric shape in DTW. This indicates that tree ontogenetic structure and allometric relationships depend on vegetation formation type.
Read, Jennifer; Evans, Robert; Sanson, Gordon D; Kerr, Stuart; Jaffré, Tanguy
2011-11-01
New Caledonia commonly experiences cyclones, so trees there are expected to have enhanced wood traits and trunk allometry that confer resistance to wind damage. We ask whether there is evidence of a trade-off between these traits and growth rate among species. Wood traits, including density, microfibril angle (MFA), and modulus of elasticity (MOE), ratio of tree height to stem diameter, and growth rate were investigated in mature trees of 15 co-occurring canopy species in a New Caledonian rainforest. In contrast to some studies, wood density did not correlate negatively with growth increment. Among angiosperms, wood density and MOE correlated positively with diameter-adjusted tree height, and MOE correlated positively with stem-diameter growth increment. Tall slender trees achieved high stiffness with high efficiency with respect to wood density, in part by low MFA, and with a higher diameter growth increment but a lower buckling safety factor. However, some tree species of a similar niche differed in whole-tree resistance to wind damage and achieved wood stiffness in different ways. There was no evidence of a growth-safety trade-off in these trees. In forests that regularly experience cyclones, there may be stronger selection for high wood density and/or stiffness in fast-growing trees of the upper canopy, with the potential growth trade-off amortized by access to the upper canopy and by other plant traits. Furthermore, decreasing wood density does not necessarily decrease resistance to wind damage, resistance being influenced by other characteristics including cell-level traits (e.g., MFA) and whole-plant architecture.
Morgan Kain; Loretta Battaglia; Alejandro Royo; Walter P. Carson
2011-01-01
We evaluated the impact of long-term over-browsing by white-tailed deer on the diversity and density of trees in a forest in the Allegheny High Plateau region of central Pennsylvania.We compared tree diversity and density inside a 60 year-old deer exclosure to an adjacent reference site. Browsing caused a 55-100% decline in density of four tree species (Prunus...
Factors Controlling Vegetation Fires in Protected and Non-Protected Areas of Myanmar
Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O.
2015-01-01
Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar. PMID:25909632
Factors controlling vegetation fires in protected and non-protected areas of myanmar.
Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O
2015-01-01
Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.
Trees, soils, and food security
Sanchez, P. A.; Buresh, R. J.; Leakey, R. R. B.
1997-01-01
Trees have a different impact on soil properties than annual crops, because of their longer residence time, larger biomass accumulation, and longer-lasting, more extensive root systems. In natural forests nutrients are efficiently cycled with very small inputs and outputs from the system. In most agricultural systems the opposite happens. Agroforestry encompasses the continuum between these extremes, and emerging hard data is showing that successful agroforestry systems increase nutrient inputs, enhance internal flows, decrease nutrient losses and provide environmental benefits: when the competition for growth resources between the tree and the crop component is well managed. The three main determinants for overcoming rural poverty in Africa are (i) reversing soil fertility depletion, (ii) intensifying and diversifying land use with high-value products, and (iii) providing an enabling policy environment for the smallholder farming sector. Agroforestry practices can improve food production in a sustainable way through their contribution to soil fertility replenishment. The use of organic inputs as a source of biologically-fixed nitrogen, together with deep nitrate that is captured by trees, plays a major role in nitrogen replenishment. The combination of commercial phosphorus fertilizers with available organic resources may be the key to increasing and sustaining phosphorus capital. High-value trees, 'Cinderella' species, can fit in specific niches on farms, thereby making the system ecologically stable and more rewarding economically, in addition to diversifying and increasing rural incomes and improving food security. In the most heavily populated areas of East Africa, where farm size is extremely small, the number of trees on farms is increasing as farmers seek to reduce labour demands, compatible with the drift of some members of the family into the towns to earn off-farm income. Contrary to the concept that population pressure promotes deforestation, there is evidence that demonstrates that there are conditions under which increasing tree planting is occurring on farms in the tropics through successful agroforestry as human population density increases.
Foraging ecology of howler monkeys in a cacao (Theobroma cacao) plantation in Comalcalco, Mexico.
Muñoz, David; Estrada, Alejandro; Naranjo, Eduardo; Ochoa, Susana
2006-02-01
Recent evidence indicates that primate populations may persist in neotropical fragmented landscapes by using arboreal agroecosystems, which may provide temporary habitats, increased areas of vegetation, and connectivity, among other benefits. However, limited data are available on how primates are able to sustain themselves in such manmade habitats. We report the results of a 9-month-long investigation of the feeding ecology of a troop of howler monkeys (n = 24) that have lived for the past 25 years in a 12-ha cacao plantation in the lowlands of Tabasco, Mexico. A vegetation census indicated the presence of 630 trees (> or =20 cm diameter at breast height (DBH)) of 32 shade species in the plantation. The howlers used 16 plant species (13 of which were trees) as sources of leaves, fruits, and flowers. Five shade tree species (Ficus cotinifolia, Pithecellobium saman, Gliricidia sepium, F. obtusifolia, and Ficus sp.) accounted for slightly over 80% of the total feeding time and 78% of the total number trees (n = 139) used by the howlers, and were consistently used by the howlers from month to month. The howlers spent an average of 51% of their monthly feeding time exploiting young leaves, 29% exploiting mature fruit, and 20% exploiting flowers and other plant items. Monthly consumption of young leaves varied from 23% to 67%, and monthly consumption of ripe fruit varied from 12% to 64%. Differences in the protein-to-fiber ratio of young vs. mature leaves influenced diet selection by the monkeys. The howlers used 8.3 ha of the plantation area, and on average traveled 388 m per day in each month. The howlers preferred tree species whose contribution to the total tree biomass and density was above average for the shade-tree population in the plantation. Given the right conditions of management and protection, shaded arboreal plantations in fragmented landscapes can sustain segments of howler monkey populations for many decades. Copyright 2006 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Colgan, M.; Asner, G. P.; Swemmer, A. M.
2011-12-01
The accurate estimation of carbon stored in a tree is essential to accounting for the carbon emissions due to deforestation and degradation. Airborne LiDAR (Light Detection and Ranging) has been successful in estimating aboveground carbon density (ACD) by correlating airborne metrics, such as canopy height, to field-estimated biomass. This latter step is reliant on field allometry which is applied to forest inventory quantities, such as stem diameter and height, to predict the biomass of a given tree stem. Constructing such allometry is expensive, time consuming, and requires destructive sampling. Consequently, the sample sizes used to construct such allometry are often small, and the largest tree sampled is often much smaller than the largest in the forest population. The uncertainty resulting from these sampling errors can lead to severe biases when the allometry is applied to stems larger than those harvested to construct the allometry, which is then subsequently propagated to airborne ACD estimates. The Kruger National Park (KNP) mission of maintaining biodiversity coincides with preserving ecosystem carbon stocks. However, one hurdle to accurately quantifying carbon density in savannas is that small stems are typically harvested to construct woody biomass allometry, yet they are not representative of Kruger's distribution of biomass. Consequently, these equations inadequately capture large tree variation in sapwood/hardwood composition, root/shoot/leaf allocation, branch fall, and stem rot. This study eliminates the "middleman" of field allometry by directly measuring, or harvesting, tree biomass within the extent of airborne LiDAR. This enables comparisons of field and airborne ACD estimates, and also enables creation of new airborne algorithms to estimate biomass at the scale of individual trees. A field campaign was conducted at Pompey Silica Mine 5km outside Kruger National Park, South Africa, in Mar-Aug 2010 to harvest and weigh tree mass. Since harvesting of trees is not possible within KNP, this was a unique opportunity to fell trees already scheduled to be cleared for mining operations. The area was first flown by the Carnegie Airborne Observatory in early May, prior to harvest, to enable correlation of LiDAR-measured tree height and crown diameter to harvested tree mass. Results include over 4,000 harvested stems and 13 species-specific biomass equations, including seven Kruger woody species previously without allometry. We found existing biomass stem allometry over-estimates ACD in the field, whereas airborne estimates based on harvest data avoid this bias while maintaining similar precision to field-based estimates. Lastly, a new airborne algorithm estimating biomass at the tree-level reduced error from tree canopies "leaning" into field plots but whose stems are outside plot boundaries. These advances pave the way to better understanding of savanna and forest carbon density at landscape and regional scales.
NASA Astrophysics Data System (ADS)
Kueppers, L. M.; Molotch, N. P.; Meromy, L.; Moyes, A. B.; Conlisk, E.; Castanha, C.
2015-12-01
The extent and density of forest trees in mountain landscapes is a first order control on watershed function, affecting patterns of snow accumulation, timing of snowmelt, and amount and quality of run-off, through alterations of surface energy and water fluxes and wind. Climate change is increasingly affecting the density and distribution of mature forests through changes to disturbance regimes, increases in physiological stress and increases in mortality due to warmer temperatures. In addition, climate change is likely altering patterns of regeneration and driving establishment of trees in high elevation meadows and alpine tundra. Though hard to detect in current forestry datasets, changes in tree establishment are critical to the future of forests. Experimental approaches, such as our climate warming experiment in the Colorado Front Range, can provide valuable data regarding seedling sensitivity to climate variability and change across important landscape positions. We've found that warming enhances negative effects of water stress across forest, treeline and alpine sites, reducing recruitment in the absence of additional summer moisture. At the lowest elevation, reductions with warming have reduced Engelmann spruce recruitment to zero. Species differ in their responses to warming in the alpine, but together confirm the importance of seed dispersal to upward forest shifts. The presence of trees or other vegetation can facilitate tree establishment by modifying microclimates, especially at and above treeline. Ultimately, these ecological and demographic processes govern the timescales of tree and forest responses to climate variability and change. For the long-lived species that dominate high elevation watersheds, these processes can take decades or centuries to play out, meaning many tree populations are and will continue to be out of equilibrium with a rapidly changing climate. Projecting changes in tree distributions and abundances across mountain landscapes requires integration of changes in hydroclimatic conditions across diverse topoclimatic settings; the sensitivity of recruitment, growth and mortality to climate; and feedbacks between trees and microclimate into modeling tools that represent time-explicit ecological and demographic processes.
Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Joanne Rebbeck; Kamal J.K. Gandhi; Annemarie Smith; Wendy S. Klooster; Catherine P. Herms; Alejandro A. Royo
2010-01-01
The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program involving the U.S. Forest Service's Northern Research Station and The Ohio State University. We are monitoring the decline and mortality of >4,500 ash trees and saplings, EAB population density, changes...
Jose F. Negron; Willis C. Schaupp; Erik Johnson
2000-01-01
The Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, attacks Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco (Pinaceae), throughout western North America. Periodic outbreaks cause increased mortality of its host. Land managers and forest health specialists often need to determine population trends of this insect. Bark samples were obtained from 326 trees...
Inventory implications of using sampling variances in estimation of growth model coefficients
Albert R. Stage; William R. Wykoff
2000-01-01
Variables based on stand densities or stocking have sampling errors that depend on the relation of tree size to plot size and on the spatial structure of the population, ignoring the sampling errors of such variables, which include most measures of competition used in both distance-dependent and distance-independent growth models, can bias the predictions obtained from...
The potential economic impacts of emerald ash borer (Agrilus planipennis) on Ohio, U.S., communities
T. Davis Sydnor; Matthew Bumgardner; Andrew Todd
2007-01-01
A survey of 200 communities with individuals such as urban foresters who have assigned responsibilities for their urban tree resource was conducted to provide baseline data on ash density within Ohio communities. Sixty-seven communities responded, including the five largest cities in Ohio. Data represent 25% of the population of Ohio and 33% of communities surveyed....
Elias, Ani A; Busov, Victor B; Kosola, Kevin R; Ma, Cathleen; Etherington, Elizabeth; Shevchenko, Olga; Gandhi, Harish; Pearce, David W; Rood, Stewart B; Strauss, Steven H
2012-10-01
Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations.
Elias, Ani A.; Busov, Victor B.; Kosola, Kevin R.; Ma, Cathleen; Etherington, Elizabeth; Shevchenko, Olga; Gandhi, Harish; Pearce, David W.; Rood, Stewart B.; Strauss, Steven H.
2012-01-01
Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA20 and GA8, in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations. PMID:22904164
Development of an establishment scheme for a DGVM
NASA Astrophysics Data System (ADS)
Song, Xiang; Zeng, Xiaodong; Zhu, Jiawen; Shao, Pu
2016-07-01
Environmental changes are expected to shift the distribution and abundance of vegetation by determining seedling establishment and success. However, most current ecosystem models only focus on the impacts of abiotic factors on biogeophysics (e.g., global distribution, etc.), ignoring their roles in the population dynamics (e.g., seedling establishment rate, mortality rate, etc.) of ecological communities. Such neglect may lead to biases in ecosystem population dynamics (such as changes in population density for woody species in forest ecosystems) and characteristics. In the present study, a new establishment scheme for introducing soil water as a function rather than a threshold was developed and validated, using version 1.0 of the IAP-DGVM as a test bed. The results showed that soil water in the establishment scheme had a remarkable influence on forest transition zones. Compared with the original scheme, the new scheme significantly improved simulations of tree population density, especially in the peripheral areas of forests and transition zones. Consequently, biases in forest fractional coverage were reduced in approximately 78.8% of the global grid cells. The global simulated areas of tree, shrub, grass and bare soil performed better, where the relative biases were reduced from 34.3% to 4.8%, from 27.6% to 13.1%, from 55.2% to 9.2%, and from 37.6% to 3.6%, respectively. Furthermore, the new scheme had more reasonable dependencies of plant functional types (PFTs) on mean annual precipitation, and described the correct dominant PFTs in the tropical rainforest peripheral areas of the Amazon and central Africa.
Scott R. Abella
2009-01-01
Trees in many forests affect the soils and plants below their canopies. In current high-density southwestern ponderosa pine (Pinus ponderosa) forests, managers have opportunities to enhance multiple ecosystem values by manipulating tree density, distribution, and canopy cover through tree thinning. I performed a study in northern Arizona ponderosa...
Maintenance cost, toppling risk and size of trees in a self-thinning stand.
Larjavaara, Markku
2010-07-07
Wind routinely topples trees during storms, and the likelihood that a tree is toppled depends critically on its allometry. Yet none of the existing theories to explain tree allometry consider wind drag on tree canopies. Since leaf area index in crowded, self-thinning stands is independent of stand density, the drag force per unit land can also be assumed to be independent of stand density, with only canopy height influencing the total toppling moment. Tree stem dimensions and the self-thinning biomass can then be computed by further assuming that the risk of toppling over and stem maintenance per unit land area are independent of stand density, and that stem maintenance cost is a linear function of stem surface area and sapwood volume. These assumptions provide a novel way to understand tree allometry and lead to a self-thinning line relating tree biomass and stand density with a power between -3/2 and -2/3 depending on the ratio of maintenance of sapwood and stem surface. (c) 2010 Elsevier Ltd. All rights reserved.
Reid, Colleen E; Clougherty, Jane E; Shmool, Jessie L C; Kubzansky, Laura D
2017-11-18
Living near vegetation, often called "green space" or "greenness", has been associated with numerous health benefits. We hypothesized that the two key components of urban vegetation, trees and grass, may differentially affect health. We estimated the association between near-residence trees, grass, and total vegetation (from the 2010 High Resolution Land Cover dataset for New York City (NYC)) with self-reported health from a survey of NYC adults (n = 1281). We found higher reporting of "very good" or "excellent" health for respondents with the highest, compared to the lowest, quartiles of tree (RR = 1.23, 95% CI = 1.06-1.44) but not grass density (relative risk (RR) = 1.00, 95% CI = 0.86-1.17) within 1000 m buffers, adjusting for pertinent confounders. Significant positive associations between trees and self-reported health remained after adjustment for grass, whereas associations with grass remained non-significant. Adjustment for air pollutants increased beneficial associations between trees and self-reported health; adjustment for parks only partially attenuated these effects. Results were null or negative using a 300 m buffer. Findings imply that higher exposure to vegetation, particularly trees outside of parks, may be associated with better health. If replicated, this may suggest that urban street tree planting may improve population health.
Aleman, Julie C.; Blarquez, Olivier; Gourlet-Fleury, Sylvie; Bremond, Laurent; Favier, Charly
2017-01-01
Tree cover is a key variable for ecosystem functioning, and is widely used to study tropical ecosystems. But its determinants and their relative importance are still a matter of debate, especially because most regional and global analyses have not considered the influence of agricultural practices. More information is urgently needed regarding how human practices influence vegetation structure. Here we focused in Central Africa, a region still subjected to traditional agricultural practices with a clear vegetation gradient. Using remote sensing data and global databases, we calibrated a Random Forest model to correlatively link tree cover with climatic, edaphic, fire and agricultural practices data. We showed that annual rainfall and accumulated water deficit were the main drivers of the distribution of tree cover and vegetation classes (defined by the modes of tree cover density), but agricultural practices, especially pastoralism, were also important in determining tree cover. We simulated future tree cover with our model using different scenarios of climate and land-use (agriculture and population) changes. Our simulations suggest that tree cover may respond differently regarding the type of scenarios, but land-use change was an important driver of vegetation change even able to counterbalance the effect of climate change in Central Africa. PMID:28134259
Does probability of occurrence relate to population dynamics?
Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Georges, Damien; Dullinger, Stefan; Eckhart, Vincent M.; Edwards, Thomas C.; Gravel, Dominique; Kunstler, Georges; Merow, Cory; Moore, Kara; Piedallu, Christian; Vissault, Steve; Zimmermann, Niklaus E.; Zurell, Damaris; Schurr, Frank M.
2014-01-01
Hutchinson defined species' realized niche as the set of environmental conditions in which populations can persist in the presence of competitors. In terms of demography, the realized niche corresponds to the environments where the intrinsic growth rate (r) of populations is positive. Observed species occurrences should reflect the realized niche when additional processes like dispersal and local extinction lags do not have overwhelming effects. Despite the foundational nature of these ideas, quantitative assessments of the relationship between range-wide demographic performance and occurrence probability have not been made. This assessment is needed both to improve our conceptual understanding of species' niches and ranges and to develop reliable mechanistic models of species geographic distributions that incorporate demography and species interactions.The objective of this study is to analyse how demographic parameters (intrinsic growth rate r and carrying capacity K ) and population density (N ) relate to occurrence probability (Pocc ). We hypothesized that these relationships vary with species' competitive ability. Demographic parameters, density, and occurrence probability were estimated for 108 tree species from four temperate forest inventory surveys (Québec, western USA, France and Switzerland). We used published information of shade tolerance as indicators of light competition strategy, assuming that high tolerance denotes high competitive capacity in stable forest environments.Interestingly, relationships between demographic parameters and occurrence probability did not vary substantially across degrees of shade tolerance and regions. Although they were influenced by the uncertainty in the estimation of the demographic parameters, we found that r was generally negatively correlated with Pocc, while N, and for most regions K, was generally positively correlated with Pocc. Thus, in temperate forest trees the regions of highest occurrence probability are those with high densities but slow intrinsic population growth rates. The uncertain relationships between demography and occurrence probability suggests caution when linking species distribution and demographic models.
McCullough, Deborah G; Poland, Therese M; Anulewicz, Andrea C; Lewis, Phillip; Cappaert, David
2011-10-01
Effective methods are needed to protect ash trees (Fraxinus spp.) from emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive buprestid that has killed millions of North American ash (Fraxinus spp.) trees. We randomly assigned 175 ash trees (11.5-48.1 cm in diameter) in 25 blocks located in three study sites in Michigan to one of seven insecticide treatments in May 2007. Treatments included 1) trunk-injected emamectin benzoate; 2) trunk-injected imidacloprid; 3) basal trunk spray of dinotefuran with or 4) without Pentra-Bark, an agricultural surfactant; 5) basal trunk spray of imidacloprid with or 6) without Pentra-Bark; or (7) control. Foliar insecticide residues (enzyme-linked immunosorbent assay) and toxicity of leaves to adult A. planipennis (4-d bioassays) were quantified at 3-4-wk intervals posttreatment. Seven blocks of trees were felled and sampled in fall 2007 to quantify A. planipennis larval density. Half of the remaining blocks were retreated in spring 2008. Bioassays and residue analyses were repeated in summer 2008, and then all trees were sampled to assess larval density in winter. Foliage from emamectin benzoate-treated trees was highly toxic to adult A. planipennis, and larval density was < 1% of that in comparable control trees, even two seasons posttreatment. Larval densities in trees treated with trunk-injected imidacloprid in 2007 + 2008 were similar to control trees. Dinotefuran and imidacloprid were effectively translocated within trees treated with the noninvasive basal trunk sprays; the surfactant did not appreciably enhance A. planipennis control. In 2008, larval densities were 57-68% lower in trees treated with dinotefuran or imidacloprid trunk sprays in 2007 + 2008 than on controls, but densities in trees treated only in 2007 were similar to controls. Highly effective control provided by emamectin benzoate for > or = 2 yr may reduce costs or logistical issues associated with treatment.
Allen E. Plocher
2003-01-01
In three floodplain forest restorations, established in abandoned agricultural fields in Illinois, permanent plots were sampled for 3 years to determine survivorship and density of planted tree seedlings, and species composition and density of natural regeneration. Planted tree survivorship decreased over time at all sites and after 3 years ranged from 32 to 61 percent...
Adjusting forest density estimates for surveyor bias in historical tree surveys
Brice B. Hanberry; Jian Yang; John M. Kabrick; Hong S. He
2012-01-01
The U.S. General Land Office surveys, conducted between the late 1700s to early 1900s, provide records of trees prior to widespread European and American colonial settlement. However, potential and documented surveyor bias raises questions about the reliability of historical tree density estimates and other metrics based on density estimated from these records. In this...
Seedbed Density Affects Size of 3-0 Green Ash Nursery Stock
J.H. Stoeckeler
1967-01-01
Nursery seedbed density of 3-0 green ash, which ranged from 4 to 36 trees per square foot at Carlos Avery Nursery, Forest Lake, Minn., had a marked effect on caliper, height, fresh weight, and percent and amound of plantable stock. The highest number of good-quality trees was produced at a density of 12.5 trees per square foot.
Ralph L. Amateis; Harold E. Burkhart
2015-01-01
A Fakopp TreeSonic acoustic device was used to measure time of flight (TOF) impulses through sample trees prior to felling from 27-year-old loblolly pine (Pinus taeda L.) plantations established at different planting densities. After felling, the sample trees were sawn into lumber and the boards subjected to edgewise bending under 2-point loading. Bending properties...
Production of litter and detritus related to the density of mangrove
NASA Astrophysics Data System (ADS)
Budi Mulya, Miswar; Arlen, HJ
2018-03-01
Research about the production of leaf litter and detritus related to the density of mangrove trees has been done. The aims of this research are to know and analyze the amount of litter and detritus produced to the density of mangrove trees. The production and collection of leaf litter were carried out in five stations. Production of detritus and decomposition rate were calculated by measuring its dry weight. The density and level of mangrove trees were determined using transect quadratic method. The relationship between the leaf litter and detritus production ratio related to mangrove density were then analyzed. Results showed that mangrove trees with the density of 766.67 ind ha‑1 ccould produce the amount of litter and detritus to about 28597.33 gha‑1day‑1and 1099.35 gha‑1day‑1 while mangrove trees with the density of 1300 ind ha‑1 could produce the amount of litter and detritus to about 35093.33 g/ha/day and 1216.68 gha‑1day‑1 respectively. Data analysis showed that the increment of mangrove density is linearly related to the production increment of litter and detritus.
Garcia, Martín N.; Acuña, Cintia; Borralho, Nuno M. G.; Grattapaglia, Dario; Marcucci Poltri, Susana N.
2013-01-01
The promise of association genetics to identify genes or genomic regions controlling complex traits has generated a flurry of interest. Such phenotype-genotype associations could be useful to accelerate tree breeding cycles, increase precision and selection intensity for late expressing, low heritability traits. However, the prospects of association genetics in highly heterozygous undomesticated forest trees can be severely impacted by the presence of cryptic population and pedigree structure. To investigate how to better account for this, we compared the GLM and five combinations of the Unified Mixed Model (UMM) on data of a low-density genome-wide association study for growth and wood property traits carried out in a Eucalyptus globulus population (n = 303) with 7,680 Diversity Array Technology (DArT) markers. Model comparisons were based on the degree of deviation from the uniform distribution and estimates of the mean square differences between the observed and expected p-values of all significant marker-trait associations detected. Our analysis revealed the presence of population and family structure. There was not a single best model for all traits. Striking differences in detection power and accuracy were observed among the different models especially when population structure was not accounted for. The UMM method was the best and produced superior results when compared to GLM for all traits. Following stringent correction for false discoveries, 18 marker-trait associations were detected, 16 for tree diameter growth and two for lignin monomer composition (S∶G ratio), a key wood property trait. The two DArT markers associated with S∶G ratio on chromosome 10, physically map within 1 Mbp of the ferulate 5-hydroxylase (F5H) gene, providing a putative independent validation of this marker-trait association. This study details the merit of collectively integrate population structure and relatedness in association analyses in undomesticated, highly heterozygous forest trees, and provides additional insights into the nature of complex quantitative traits in Eucalyptus. PMID:24282578
Livingstone, Donald; Stack, Conrad; Mustiga, Guiliana M.; Rodezno, Dayana C.; Suarez, Carmen; Amores, Freddy; Feltus, Frank A.; Mockaitis, Keithanne; Cornejo, Omar E.; Motamayor, Juan C.
2017-01-01
Cacao (Theobroma cacao L.) is an important cash crop in tropical regions around the world and has a rich agronomic history in South America. As a key component in the cosmetic and confectionary industries, millions of people worldwide use products made from cacao, ranging from shampoo to chocolate. An Illumina Infinity II array was created using 13,530 SNPs identified within a small diversity panel of cacao. Of these SNPs, 12,643 derive from variation within annotated cacao genes. The genotypes of 3,072 trees were obtained, including two mapping populations from Ecuador. High-density linkage maps for these two populations were generated and compared to the cacao genome assembly. Phenotypic data from these populations were combined with the linkage maps to identify the QTLs for yield and disease resistance. PMID:29259608
Integration of vessel traits, wood density, and height in angiosperm shrubs and trees.
Martínez-Cabrera, Hugo I; Schenk, H Jochen; Cevallos-Ferriz, Sergio R S; Jones, Cynthia S
2011-05-01
Trees and shrubs tend to occupy different niches within and across ecosystems; therefore, traits related to their resource use and life history are expected to differ. Here we analyzed how growth form is related to variation in integration among vessel traits, wood density, and height. We also considered the ecological and evolutionary consequences of such differences. In a sample of 200 woody plant species (65 shrubs and 135 trees) from Argentina, Mexico, and the United States, standardized major axis (SMA) regression, correlation analyses, and ANOVA were used to determine whether relationships among traits differed between growth forms. The influence of phylogenetic relationships was examined with a phylogenetic ANOVA and phylogenetically independent contrasts (PICs). A principal component analysis was conducted to determine whether trees and shrubs occupy different portions of multivariate trait space. Wood density did not differ between shrubs and trees, but there were significant differences in vessel diameter, vessel density, theoretical conductivity, and as expected, height. In addition, relationships between vessel traits and wood density differed between growth forms. Trees showed coordination among vessel traits, wood density, and height, but in shrubs, wood density and vessel traits were independent. These results hold when phylogenetic relationships were considered. In the multivariate analyses, these differences translated as significantly different positions in multivariate trait space occupied by shrubs and trees. Differences in trait integration between growth forms suggest that evolution of growth form in some lineages might be associated with the degree of trait interrelation.
Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics
Ilstedt, U.; Bargués Tobella, A.; Bazié, H. R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; Sheil, D.; Malmer, A.
2016-01-01
Water scarcity contributes to the poverty of around one-third of the world’s people. Despite many benefits, tree planting in dry regions is often discouraged by concerns that trees reduce water availability. Yet relevant studies from the tropics are scarce, and the impacts of intermediate tree cover remain unexplored. We developed and tested an optimum tree cover theory in which groundwater recharge is maximized at an intermediate tree density. Below this optimal tree density the benefits from any additional trees on water percolation exceed their extra water use, leading to increased groundwater recharge, while above the optimum the opposite occurs. Our results, based on groundwater budgets calibrated with measurements of drainage and transpiration in a cultivated woodland in West Africa, demonstrate that groundwater recharge was maximised at intermediate tree densities. In contrast to the prevailing view, we therefore find that moderate tree cover can increase groundwater recharge, and that tree planting and various tree management options can improve groundwater resources. We evaluate the necessary conditions for these results to hold and suggest that they are likely to be common in the seasonally dry tropics, offering potential for widespread tree establishment and increased benefits for hundreds of millions of people. PMID:26908158
Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics
NASA Astrophysics Data System (ADS)
Ilstedt, U.; Bargués Tobella, A.; Bazié, H. R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; Sheil, D.; Malmer, A.
2016-02-01
Water scarcity contributes to the poverty of around one-third of the world’s people. Despite many benefits, tree planting in dry regions is often discouraged by concerns that trees reduce water availability. Yet relevant studies from the tropics are scarce, and the impacts of intermediate tree cover remain unexplored. We developed and tested an optimum tree cover theory in which groundwater recharge is maximized at an intermediate tree density. Below this optimal tree density the benefits from any additional trees on water percolation exceed their extra water use, leading to increased groundwater recharge, while above the optimum the opposite occurs. Our results, based on groundwater budgets calibrated with measurements of drainage and transpiration in a cultivated woodland in West Africa, demonstrate that groundwater recharge was maximised at intermediate tree densities. In contrast to the prevailing view, we therefore find that moderate tree cover can increase groundwater recharge, and that tree planting and various tree management options can improve groundwater resources. We evaluate the necessary conditions for these results to hold and suggest that they are likely to be common in the seasonally dry tropics, offering potential for widespread tree establishment and increased benefits for hundreds of millions of people.
Predicting Grizzly Bear Density in Western North America
Mowat, Garth; Heard, Douglas C.; Schwarz, Carl J.
2013-01-01
Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend. PMID:24367552
Predicting grizzly bear density in western North America.
Mowat, Garth; Heard, Douglas C; Schwarz, Carl J
2013-01-01
Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend.
NASA Astrophysics Data System (ADS)
Suleman, Nazia; Sait, Steve; Compton, Stephen G.
2015-01-01
Interactions between fig trees (Ficus) and their pollinating fig wasps (Agaonidae) result in both a highly species-specific nursery mutualism and mutual exploitation. Around half of the 800 or so fig tree species are functionally dioecious. Figs on male plants produce pollen and fig wasp offspring, whereas figs on female plants produce only seeds. Figs on female plants are traps for pollinators. The fig wasps enter the female figs to oviposit, but lose their wings on entry and are then prevented from oviposition by the long styles that characterise the flowers in female figs. Continuation of the mutualism depends on the pollinators' failure to distinguish between male and female figs before entry. Female plants may also have a negative impact on the parasitoid fig wasps that feed on pollinators, if they are also attracted to female figs. We used glasshouse populations of figs (with and without female plants), pollinators and parasitoids to infer the impact of female figs on fig wasp dynamics. Cyclic population fluctuations were present in both species. Female plants appeared to dampen the amplitudes of pollinator population cycles, and parasitoid populations may become less tightly coupled with host populations, but the presence of female figs did not reduce parasitism rates, nor parasitoid and pollinator densities, and only parasitoid sex ratios were affected. Our glasshouse experimental design was likely to favour the impact of female figs on the wasp populations, which suggests that female plants in the field are unlikely to have a major negative impact on their pollinators, despite being a major mortality factor.
Mapping tree density in forests of the southwestern USA using Landsat 8 data
Humagain, Kamal; Portillo-Quintero, Carlos; Cox, Robert D.; Cain, James W.
2017-01-01
The increase of tree density in forests of the American Southwest promotes extreme fire events, understory biodiversity losses, and degraded habitat conditions for many wildlife species. To ameliorate these changes, managers and scientists have begun planning treatments aimed at reducing fuels and increasing understory biodiversity. However, spatial variability in tree density across the landscape is not well-characterized, and if better known, could greatly influence planning efforts. We used reflectance values from individual Landsat 8 bands (bands 2, 3, 4, 5, 6, and 7) and calculated vegetation indices (difference vegetation index, simple ratios, and normalized vegetation indices) to estimate tree density in an area planned for treatment in the Jemez Mountains, New Mexico, characterized by multiple vegetation types and a complex topography. Because different vegetation types have different spectral signatures, we derived models with multiple predictor variables for each vegetation type, rather than using a single model for the entire project area, and compared the model-derived values to values collected from on-the-ground transects. Among conifer-dominated areas (73% of the project area), the best models (as determined by corrected Akaike Information Criteria (AICc)) included Landsat bands 2, 3, 4, and 7 along with simple ratios, normalized vegetation indices, and the difference vegetation index (R2 values for ponderosa: 0.47, piñon-juniper: 0.52, and spruce-fir: 0.66). On the other hand, in aspen-dominated areas (9% of the project area), the best model included individual bands 4 and 2, simple ratio, and normalized vegetation index (R2 value: 0.97). Most areas dominated by ponderosa, pinyon-juniper, or spruce-fir had more than 100 trees per hectare. About 54% of the study area has medium to high density of trees (100–1000 trees/hectare), and a small fraction (4.5%) of the area has very high density (>1000 trees/hectare). Our results provide a better understanding of tree density for identifying areas in need of treatment and planning for more effective treatment. Our analysis also provides an integrated method of estimating tree density across complex landscapes that could be useful for further restoration planning.
Design Difficulties in Stand Density Studies
Frank A. Bennett
1969-01-01
Designing unbiased stand density studies is difficult. An acceptable sample requires stratification of the plots of age, site, and density. When basal area, percent stocking, or Reineke's stand density index is used as the density measure, this stratification forces a high negative correlation between site and number of trees per acre. Mortality in trees per acre...
McCullough, Deborah G; Siegert, Nathan W
2007-10-01
Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), a phloem-feeding pest native to Asia, was identified in June 2002 as the cause of widespread ash (Fraxinus spp.), mortality in southeastern Michigan and Windsor, Ontario, Canada. Localized populations of A. planipennis have since been found across lower Michigan and in areas of Ohio, Indiana, Illinois, Maryland, and Ontario. Officials working to contain A. planipennis and managers of forestlands near A. planipennis infestations must be able to compare alternative strategies to allocate limited funds efficiently and effectively. Empirical data from a total of 148 green ash, Fraxinus pennsylvanica Marsh., and white ash, Fraxinus americana L., trees were used to develop models to estimate surface area of the trunk and branches by using tree diameter at breast height (dbh). Data collected from 71 additional F. pennsylvanica and F. americana trees killed by A. planipennis showed that on average, 88.9 +/- 4.6 beetles developed and emerged per m2 of surface area. Models were applied to ash inventory data collected at two outlier sites to estimate potential production of A. planipennis beetles at each site. Large trees of merchantable size (dbh > or = 26 cm) accounted for roughly 6% of all ash trees at the two sites, but they could have contributed 55-65% of the total A. planipennis production at both sites. In contrast, 75- 80% of the ash trees at the outlier sites were < or =13 cm dbh, but these small trees could have contributed only < or =12% of the potential A. planipennis production at both sites. Our results, in combination with inventory data, can be used by regulatory officials and resource managers to estimate potential A. planipennis production and to compare options for reducing A. planipennis density and slowing the rate of spread for any area of interest.
Influence of the Sting Nematode, Belonolaimus longicaudalus, on Young Citrus Trees.
Kaplan, D T
1985-10-01
The sting nematode, Belonolaimus longicaudatus, was associated with poor growth of citrus in a central Florida nursery. Foliage of trees was sparse and chlorotic. Affected rootstocks included Changsha and Cleopatra mandarin orange; Flying Dragon, Rubidoux, and Jacobsen trifoliate orange; Macrophylla and Milam lemon; Palestine sweet lime; sour orange; and the hybrids - Carrizo, Morton, and Rusk citrange and Swingle citrumelo. Root symptoms included apical swelling, development of swollen terminals containing 3-5 apical meristems and hyperplastic tissue, coarse roots, and a reduction in the number of fibrous roots. Population densities as high as 392 sting nematodes per liter soil were detected, with 80% of the population occurring in the top 30 cm of soil; however, nematodes were detected to 107 cm deep. Although an ectoparasite, the nematode was closely associated with citrus root systems and was transported with bare root nursery stock. Disinfestation was accomplished by hot water treatment (49 C for 5 minutes).
Changes in Mauna Kea Dry Forest Structure 2000-2014
Banko, Paul C.; Brinck, Kevin W.
2014-01-01
Changes in the structure of the subalpine vegetation of Palila Critical Habitat on the southwestern slope of Mauna Kea Volcano, Hawai‘i, were analyzed using 12 metrics of change in māmane (Sophora chrysophylla) and naio (Myoporum sandwicense) trees surveyed on plots in 2000 and 2014. These two dominant species were analyzed separately, and changes in their structure indicated changes in the forest’s health. There was a significant increase in māmane minimum crown height (indicating a higher ungulate “browse line”), canopy area, canopy volume, percentage of trees with ungulate damage, and percentage of dead trees. No significant changes were observed in māmane maximum crown height, proportion of plots with trees, sapling density, proportion of plots with saplings, or the height distribution of trees. The only significant positive change was for māmane tree density. Significantly negative changes were observed for naio minimum crown height, tree height, canopy area, canopy volume, and percentage of dead trees. No significant changes were observed in naio tree density, proportion of plots with trees, proportion of plots with saplings, or percentage of trees with ungulate damage. Significantly positive changes were observed in naio sapling density and the height distribution of trees. There was also a significant increase in the proportion of māmane vs. naio trees in the survey area. The survey methods did not allow us to distinguish among potential factors driving these changes for metrics other than the percentage of trees with ungulate damage. Continued ungulate browsing and prolonged drought are likely the factors contributing most to the observed changes in vegetation, but tree disease or insect infestation of māmane, or naio, and competition from alien grasses and other weeds could also be causing or exacerbating the impacts to the forest. Although māmane tree density has increased since 2000, this study also demonstrates that efforts by managers to remove sheep (Ovis spp.) from Palila Critical Habitat have not overcome the ability of sheep to continue to damage māmane trees and impede restoration of the vegetation.
Habitat characteristics of American woodcock nest sites on a managed area in Maine
McAuley, D.G.; Longcore, J.R.; Sepik, G.F.; Pendleton, G.W.
1996-01-01
We measured characteristics of habitat near 89 nests of American woodcock (Scolopax minor) and 100 randomly selected points on Moosehorn National Wildlife Refuge, Calais, Maine, an area managed for woodcock. At nest sites, basal area was lower (P 0.05) or between sites of successful nests and nests destroyed by predators, although the large variances of the variables reduced our power to detect differences. Habitat around sites of renests differed from sites of first nests. Sites around first nests had lower basal area of dead trees (P = 0.05) and higher stem densities of aspen (P = 0.03) and cherry saplings (P = 0.001), and viburnum (P = 0.05), while renest sites had taller trees (P = 0.02). The change from nest sites in areas dominated by alders and tree-size gray birch used in 1977-80 to sites dominated by sapling trees, especially aspen, used during 1987-90 suggests that woodcock in the expanding population at the refuge are selecting nest sites created by habitat management since 1979.
Graves, T.A.; Kendall, Katherine C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.
2011-01-01
Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system.
Body mass index, safety hazards, and neighborhood attractiveness.
Lovasi, Gina S; Bader, Michael D M; Quinn, James; Neckerman, Kathryn; Weiss, Christopher; Rundle, Andrew
2012-10-01
Neighborhood attractiveness and safety may encourage physical activity and help individuals maintain a healthy weight. However, these neighborhood characteristics may not be equally relevant to health across all settings and population subgroups. To evaluate whether potentially attractive neighborhood features are associated with lower BMI, whether safety hazards are associated with higher BMI, and whether environment-environment interactions are present such that associations for a particular characteristic are stronger in an otherwise supportive environment. Survey data and measured height and weight were collected from a convenience sample of 13,102 adult New York City (NYC) residents in 2000-2002; data analyses were completed 2008-2012. Built-environment measures based on municipal GIS data sources were constructed within 1-km network buffers to assess walkable urban form (density, land-use mix, transit access); attractiveness (sidewalk cafés, landmark buildings, street trees, street cleanliness); and safety (homicide rate, pedestrian-auto collision and fatality rate). Generalized linear models with cluster-robust SEs controlled for individual and area-based sociodemographic characteristics. The presence of sidewalk cafés, density of landmark buildings, and density of street trees were associated with lower BMI, whereas the proportion of streets rated as clean was associated with higher BMI. Interactions were observed for sidewalk cafés with neighborhood poverty, for street-tree density with walkability, and for street cleanliness with safety. Safety hazard indicators were not independently associated with BMI. Potentially attractive community and natural features were associated with lower BMI among adults in NYC, and there was some evidence of effect modification. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Leaf δ18O of remaining trees is affected by thinning intensity in a semiarid pine forest.
Moreno-Gutiérrez, Cristina; Barberá, Gonzalo G; Nicolás, Emilio; DE Luis, Martín; Castillo, Víctor M; Martínez-Fernández, Faustino; Querejeta, José I
2011-06-01
Silvicultural thinning usually improves the water status of remaining trees in water-limited forests. We evaluated the usefulness of a dual stable isotope approach (δ¹³C, δ¹⁸O) for comparing the physiological performance of remaining trees between forest stands subjected to two different thinning intensities (moderate versus heavy) in a 60-year-old Pinus halepensis Mill. plantation in semiarid southeastern Spain. We measured bulk leaf δ¹³C and δ¹⁸O, foliar elemental concentrations, stem water content, stem water δ¹⁸O (δ¹⁸O(stem water)), tree ring widths and leaf gas exchange rates to assess the influence of forest stand density on tree performance. Remaining trees in low-density stands (heavily thinned) showed lower leaf δ¹⁸O, and higher stomatal conductance (g(s)), photosynthetic rate and radial growth than those in moderate-density stands (moderately thinned). By contrast, leaf δ¹³C, intrinsic water-use efficiency, foliar elemental concentrations and δ¹⁸O(stem water) were unaffected by stand density. Lower foliar δ¹⁸O in heavily thinned stands reflected higher g(s) of remaining trees due to decreased inter-tree competition for water, whereas higher photosynthetic rate was largely attributable to reduced stomatal limitation to CO₂ uptake. The dual isotope approach provided insight into the early (12 months) effects of stand density manipulation on the physiological performance of remaining trees. © 2011 Blackwell Publishing Ltd.
Seasonal and spatial changes in the structure of the subcortical insect community in pine forests
Ken Yoshikawa; Makoto Kasahara
1991-01-01
More than 30 species of beetles have been identified/documented as pine borers in Japan, the majority of them belonging to the Curculionidae, Cerambycidae, and Scolytidae. The density of their populations is controlled primarily by food supply. Although most of them are secondary pests which cannot attack healthy trees, an epidemic of pine wilt disease caused by the...
Musa, Najihah; Andersson, Klas; Burman, Joseph; Andersson, Fredrik; Hedenström, Erik; Jansson, Nicklas; Paltto, Heidi; Westerberg, Lars; Winde, Inis; Larsson, Mattias C; Bergman, Karl-Olof; Milberg, Per
2013-01-01
The European red click beetle, Elater ferrugineus L., is associated with wood mould in old hollow deciduous trees. As a result of severe habitat fragmentation caused by human disturbance, it is threatened throughout its distribution range. A new pheromone-based survey method, which is very efficient in detecting the species, was used in the present study to relate the occurrence of E. ferrugineus to the density of deciduous trees. The latter data were from a recently completed regional survey in SE Sweden recording >120,000 deciduous trees. The occurrence of E. ferrugineus increased with increasing amount of large hollow and large non-hollow trees in the surrounding landscape. Quercus robur (oak) was found to be the most important substrate for E. ferrugineus, whereas two groups of tree species (Carpinus betulus, Fagus sylvatica, Ulmus glabra, vs. Acer platanoides, Aesculus hippocastanum, Fraxinus excelsior, Tilia cordata) were less important but may be a complement to oak in sustaining populations of the beetle. The occurrence of E. ferrugineus was explained by the density of oaks at two different spatial scales, within the circle radii 327 m and 4658 m. In conclusion, priority should be given to oaks in conservation management of E. ferrugineus, and then to the deciduous trees in the genera listed above. Conservation planning at large spatial and temporal scales appears to be essential for long-term persistence of E. ferrugineus. We also show that occurrence models based on strategic sampling might result in pessimistic predictions. This study demonstrates how pheromone-based monitoring make insects excellent tools for sustained feedback to models for landscape conservation management.
Musa, Najihah; Andersson, Klas; Burman, Joseph; Andersson, Fredrik; Hedenström, Erik; Jansson, Nicklas; Paltto, Heidi; Westerberg, Lars; Winde, Inis; Larsson, Mattias C.; Bergman, Karl-Olof; Milberg, Per
2013-01-01
The European red click beetle, Elater ferrugineus L., is associated with wood mould in old hollow deciduous trees. As a result of severe habitat fragmentation caused by human disturbance, it is threatened throughout its distribution range. A new pheromone-based survey method, which is very efficient in detecting the species, was used in the present study to relate the occurrence of E. ferrugineus to the density of deciduous trees. The latter data were from a recently completed regional survey in SE Sweden recording >120,000 deciduous trees. The occurrence of E. ferrugineus increased with increasing amount of large hollow and large non-hollow trees in the surrounding landscape. Quercus robur (oak) was found to be the most important substrate for E. ferrugineus, whereas two groups of tree species (Carpinus betulus, Fagus sylvatica, Ulmus glabra, vs. Acer platanoides, Aesculus hippocastanum, Fraxinus excelsior, Tilia cordata) were less important but may be a complement to oak in sustaining populations of the beetle. The occurrence of E. ferrugineus was explained by the density of oaks at two different spatial scales, within the circle radii 327 m and 4658 m. In conclusion, priority should be given to oaks in conservation management of E. ferrugineus, and then to the deciduous trees in the genera listed above. Conservation planning at large spatial and temporal scales appears to be essential for long-term persistence of E. ferrugineus. We also show that occurrence models based on strategic sampling might result in pessimistic predictions. This study demonstrates how pheromone-based monitoring make insects excellent tools for sustained feedback to models for landscape conservation management. PMID:23840415
NASA Astrophysics Data System (ADS)
Uhía, E.; Briones, M. J. I.
2002-12-01
In order to increase our present knowledge of the potential impacts of deforestation on the soil ecosystem, we investigated the responses of enchytraeid and tardigrade populations to tree harvesting. The study was conducted in an area of ca. 10 ha located at an altitude of approximately 450 m in the surroundings of the University campus (Vigo, Pontevedra, Spain). Pine forest ( Pinus pinaster Aiton), with an average density of 400 trees/ha ranging between 10 and 20 years of age, and some young oaks ( Quercus robur L.) were covering the area. At the end of the summer 1995, approximately 50% of the area was harvested. Soil and animal samples were taken from May 1996 to April 1997 at monthly intervals in both forested and deforested areas. Removal of the trees resulted in a significant effect on enchytraeid population numbers and their response was species-dependent in terms of changes in both population numbers and vertical distribution. Higher mortality rates of enchytraeids were recorded in the absence of trees. August seemed to have been critical for survival of all enchytraeid species as no individuals were found in that month and only a few recovered in the following month. Only Cognettia sphagnetorum showed vertical migration in order to avoid adverse conditions. Tardigrades were more abundant in the deforested areas; their ability to enter in a resistant stage could have enabled them to overcome adverse environmental conditions. It is concluded that harvesting of the trees has changed the soil environment and that differences in moisture and temperature conditions are not sufficient to explain the observed differences. The forest soils contained more organic matter than those in the deforested area and therefore differences in the amount and/or quality of the organic matter could be one of the possible explanations for the observed changes in enchytraeid abundance when the forest is removed.
Rueegger, Niels; Law, Brad; Goldingay, Ross
2018-01-01
Understanding maternity roost requirements is fundamental to guide timber production forest management given such roosts are vital to sustain bat populations. We tracked lactating females of three tree cavity-roosting species: Gould's long-eared bat (Nyctophilus gouldi) (n = 7), eastern broad-nosed bat (Scotorepens orion) (n = 6) and little forest bat (Vespadelus vulturnus) (n = 25), over five weeks in young (predominately <5 years old) forest regenerating from heavy timber harvest in southeast Australia. We aimed to investigate interspecific maternity roost selection in a regenerating landscape and by doing so, increase our understanding of the three species' roost ecology. Sixteen V. vulturnus, 15 N. gouldi and six S. orion unique maternity roost trees were located. Bats displayed a degree of maternity roost selection plasticity, however, interspecific differences were found. Nyctophilus gouldi roosted selectively in retained riparian buffers, in trees of high senescence and switched roosts every day. Vespadelus vulturnus roosted in logged areas and displayed high roost site fidelity, with one roost used for 33 consecutive days. Scotorepens orion selected large live trees of low senescence. The preliminary data for this species suggests that females roost most days in 'primary' roosts but display a roost switching behaviour conforming to the fission-fusion model. Dead trees were identified to be important for both N. gouldi and V. vulturnus. Historical and recent logging at our study area drastically reduced cavity-bearing tree density to 1.4 trees per hectare in the logging zones (outside of exclusion areas), potentially limiting local populations of tree cavity-roosting bats and other cavity-dependent wildlife. Our data demonstrate that forest management must consider a range of maternity roost requirements to accommodate differences among species and highlight the importance of exclusion areas for roost habitat. We propose that an expanded 'retention forestry' approach should be implemented in logged areas that includes in-perpetuity forest patch retention to increase habitat complexity and continuity.
Law, Brad; Goldingay, Ross
2018-01-01
Understanding maternity roost requirements is fundamental to guide timber production forest management given such roosts are vital to sustain bat populations. We tracked lactating females of three tree cavity-roosting species: Gould's long-eared bat (Nyctophilus gouldi) (n = 7), eastern broad-nosed bat (Scotorepens orion) (n = 6) and little forest bat (Vespadelus vulturnus) (n = 25), over five weeks in young (predominately <5 years old) forest regenerating from heavy timber harvest in southeast Australia. We aimed to investigate interspecific maternity roost selection in a regenerating landscape and by doing so, increase our understanding of the three species’ roost ecology. Sixteen V. vulturnus, 15 N. gouldi and six S. orion unique maternity roost trees were located. Bats displayed a degree of maternity roost selection plasticity, however, interspecific differences were found. Nyctophilus gouldi roosted selectively in retained riparian buffers, in trees of high senescence and switched roosts every day. Vespadelus vulturnus roosted in logged areas and displayed high roost site fidelity, with one roost used for 33 consecutive days. Scotorepens orion selected large live trees of low senescence. The preliminary data for this species suggests that females roost most days in ‘primary’ roosts but display a roost switching behaviour conforming to the fission-fusion model. Dead trees were identified to be important for both N. gouldi and V. vulturnus. Historical and recent logging at our study area drastically reduced cavity-bearing tree density to 1.4 trees per hectare in the logging zones (outside of exclusion areas), potentially limiting local populations of tree cavity-roosting bats and other cavity-dependent wildlife. Our data demonstrate that forest management must consider a range of maternity roost requirements to accommodate differences among species and highlight the importance of exclusion areas for roost habitat. We propose that an expanded ‘retention forestry’ approach should be implemented in logged areas that includes in-perpetuity forest patch retention to increase habitat complexity and continuity. PMID:29543883
Hamraz, Hamid; Contreras, Marco A; Zhang, Jun
2017-07-28
Airborne laser scanning (LiDAR) point clouds over large forested areas can be processed to segment individual trees and subsequently extract tree-level information. Existing segmentation procedures typically detect more than 90% of overstory trees, yet they barely detect 60% of understory trees because of the occlusion effect of higher canopy layers. Although understory trees provide limited financial value, they are an essential component of ecosystem functioning by offering habitat for numerous wildlife species and influencing stand development. Here we model the occlusion effect in terms of point density. We estimate the fractions of points representing different canopy layers (one overstory and multiple understory) and also pinpoint the required density for reasonable tree segmentation (where accuracy plateaus). We show that at a density of ~170 pt/m² understory trees can likely be segmented as accurately as overstory trees. Given the advancements of LiDAR sensor technology, point clouds will affordably reach this required density. Using modern computational approaches for big data, the denser point clouds can efficiently be processed to ultimately allow accurate remote quantification of forest resources. The methodology can also be adopted for other similar remote sensing or advanced imaging applications such as geological subsurface modelling or biomedical tissue analysis.
Hahn, Micah B.; Gurley, Emily S.; Epstein, Jonathan H.; Islam, Mohammad S.; Patz, Jonathan A.; Daszak, Peter; Luby, Stephen P.
2014-01-01
Nipah virus has caused recurring outbreaks in central and northwest Bangladesh (the “Nipah Belt”). Little is known about roosting behavior of the fruit bat reservoir, Pteropus giganteus, or factors driving spillover. We compared human population density and ecological characteristics of case villages and control villages (no reported outbreaks) to understand their role in P. giganteus roosting ecology and Nipah virus spillover risk. Nipah Belt villages have a higher human population density (P < 0.0001), and forests that are more fragmented than elsewhere in Bangladesh (0.50 versus 0.32 patches/km2, P < 0.0001). The number of roosts in a village correlates with forest fragmentation (r = 0.22, P = 0.03). Villages with a roost containing Polyalthia longifolia or Bombax ceiba trees were more likely case villages (odds ratio [OR] = 10.8, 95% confidence interval [CI] = 1.3–90.6). This study suggests that, in addition to human population density, composition and structure of the landscape shared by P. giganteus and humans may influence the geographic distribution of Nipah virus spillovers. PMID:24323516
Hahn, Micah B; Gurley, Emily S; Epstein, Jonathan H; Islam, Mohammad S; Patz, Jonathan A; Daszak, Peter; Luby, Stephen P
2014-02-01
Nipah virus has caused recurring outbreaks in central and northwest Bangladesh (the "Nipah Belt"). Little is known about roosting behavior of the fruit bat reservoir, Pteropus giganteus, or factors driving spillover. We compared human population density and ecological characteristics of case villages and control villages (no reported outbreaks) to understand their role in P. giganteus roosting ecology and Nipah virus spillover risk. Nipah Belt villages have a higher human population density (P < 0.0001), and forests that are more fragmented than elsewhere in Bangladesh (0.50 versus 0.32 patches/km(2), P < 0.0001). The number of roosts in a village correlates with forest fragmentation (r = 0.22, P = 0.03). Villages with a roost containing Polyalthia longifolia or Bombax ceiba trees were more likely case villages (odds ratio [OR] = 10.8, 95% confidence interval [CI] = 1.3-90.6). This study suggests that, in addition to human population density, composition and structure of the landscape shared by P. giganteus and humans may influence the geographic distribution of Nipah virus spillovers.
Rate of tree carbon accumulation increases continuously with tree size.
Stephenson, N L; Das, A J; Condit, R; Russo, S E; Baker, P J; Beckman, N G; Coomes, D A; Lines, E R; Morris, W K; Rüger, N; Alvarez, E; Blundo, C; Bunyavejchewin, S; Chuyong, G; Davies, S J; Duque, A; Ewango, C N; Flores, O; Franklin, J F; Grau, H R; Hao, Z; Harmon, M E; Hubbell, S P; Kenfack, D; Lin, Y; Makana, J-R; Malizia, A; Malizia, L R; Pabst, R J; Pongpattananurak, N; Su, S-H; Sun, I-F; Tan, S; Thomas, D; van Mantgem, P J; Wang, X; Wiser, S K; Zavala, M A
2014-03-06
Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.
Yang, Louie H; Karban, Richard
2009-01-01
Periodical cicadas (Magicicada spp.) are insect herbivores that feed on host tree roots, but their distribution among hosts is determined largely by the oviposition of female cicadas in the previous generation. A pattern of decreasing tree growth rates with increasing cicada densities is predicted when considering the costs of chronic root herbivory, but the opposite pattern is expected when considering adaptive habitat selection. Here, we report observations indicating that the relationship between periodical cicada densities and host tree growth rates is hump shaped. We suggest that both herbivory and habitat selection are likely to be key processes explaining this pattern, resulting in regions of positive and negative correlation. These results suggest that the effects of cicada herbivory are most apparent at relatively high cicada densities, while habitat selection tends to distribute cicada herbivory on host trees that are able to compensate for cicada root herbivory up to threshold cicada densities.
Density, ages, and growth rates in old-growth and young-growth forests in coastal Oregon
Tappeiner, J. C.; Huffman, D.; Spies, T.; Bailey, John D.
1997-01-01
We studied the ages and diameter growth rates of trees in former Douglas-fir (Pseudotsuga menziesii (Mirb.)Franco) old-growth stands on 10 sites and compared them with young-growth stands (50-70 years old, regenerated after timber harvest) in the Coast Range of western Oregon. The diameters and diameter growth rates for the first 100 years of trees in the old-growth stands were significantly greater than those in the young-growth stands. Growth rates in the old stands were comparable with those from long-term studies of young stands in which density is about 100-120 trees/ha; often young-growth stand density is well over 500 trees/ha. Ages of large trees in the old stands ranged from 100 to 420 years; ages in young stands varied by only about 5 to 10 years. Apparently, regeneration of old-growth stands on these sites occurred over a prolonged period, and trees grew at low density with little self-thinning; in contrast, after timber harvest, young stands may develop with high density of trees with similar ages and considerable self-thinning. The results suggest that thinning may be needed in dense young stands where the management objective is to speed development of old-growth characteristics.
Land crabs as key drivers in tropical coastal forest recruitment
Lindquist, E.S.; Krauss, K.W.; Green, P.T.; O'Dowd, D. J.; Sherman, P.M.; Smith, T. J.
2009-01-01
Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems-mangroves, island maritime forests, and mainland coastal terrestrial forests-where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests. ?? 2009 Cambridge Philosophical Society.
Do understorey or overstorey traits drive tree encroachment on a drained raised bog?
Jagodziński, A M; Horodecki, P; Rawlik, K; Dyderski, M K
2017-07-01
One of the most important threats to peatland ecosystems is drainage, resulting in encroachment of woody species. Our main aim was to check which features - overstorey or understorey vegetation - are more important for shaping the seedling bank of pioneer trees colonising peatlands (Pinus sylvestris and Betula pubescens). We hypothesised that tree stand parameters will be more important predictors of natural regeneration density than understorey vegetation parameters, and the former will be negatively correlated with species diversity and richness and also with functional richness and functional dispersion, which indicate a high level of habitat filtering. The study was conducted in the 'Zielone Bagna' nature reserve (NW Poland). We assessed the structure of tree stands and natural regeneration (of B. pubescens and P. sylvestris) and vegetation species composition. Random forest and DCA were applied to assess relationships between variables studied. Understorey vegetation traits affected tree seedling density (up to 0.5-m height) more than tree stand traits. Density of older seedlings depended more on tree stand traits. We did not find statistically significant relationships between natural regeneration densities and functional diversity components, except for functional richness, which was positively correlated with density of the youngest tree seedlings. Seedling densities were higher in plots with lower functional dispersion and functional divergence, which indicated that habitat filtering is more important than competition. Presence of an abundant seedling bank is crucial for the process of woody species encroachment on drained peatlands, thus its dynamics should be monitored in protected areas. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Mean wind speed below building height in residential neighborhoods with different tree densities
G.M. Heisler
1990-01-01
There is little available knowledge of the absolute or relative effects of trees and buildings on wind at or below building height in residential neighborhoods. In this study, mean wind speed was measured at a height of 6.6 ft (2 m) in neighborhoods of single-family houses. BuIlding densities ranged between 6% and 12% of the land ares, and tree-cover densities were...
Tanentzap, Andrew J; Zou, James; Coomes, David A
2013-01-01
High deer populations threaten the conservation value of woodlands and grasslands, but predicting the success of deer culling, in terms of allowing vegetation to recover, is difficult. Numerical simulation modeling is one approach to gain insight into the outcomes of management scenarios. We develop a spatially explicit model to predict the responses of Betula spp. to red deer (Cervus elaphus) and land management in the Scottish Highlands. Our model integrates a Bayesian stochastic stage-based matrix model within the framework of a widely used individual-based forest simulation model, using data collected along spatial and temporal gradients in deer browsing. By initializing our model with the historical spatial locations of trees, we find that densities of juvenile trees (<3 m tall) predicted after 9–13 years closely match counts observed in the field. This is among the first tests of the accuracy of a dynamical simulation model for predicting the responses of tree regeneration to herbivores. We then test the relative importance of deer browsing, ground cover vegetation, and seed availability in facilitating landscape-level birch regeneration using simulations in which we varied these three variables. We find that deer primarily control transitions of birch to taller (>3 m) height tiers over 30 years, but regeneration also requires suitable ground cover for seedling establishment. Densities of adult seed sources did not influence regeneration, nor did an active management scenario where we altered the spatial configuration of adults by creating “woodland islets”. Our results show that managers interested in maximizing tree regeneration cannot simply reduce deer densities but must also improve ground cover for seedling establishment, and the model we develop now enables managers to quantify explicitly how much both these factors need to be altered. More broadly, our findings emphasize the need for land managers to consider the impacts of large herbivores rather than their densities. PMID:23919137
Sun, Qian Hui; Wu, Xia; Wang, Mei Zhen; Zhang, Liu Hua; Yao, Xiao Lan; Qi, Jin Qiu; Hao, Jian Feng
2018-03-01
We analyzed understory species diversity, soil physicochemical traits and their relationships in the 25-year-old non-commercial Pinus massoniana plantations with five different stand densities, i.e., 1057, 1136, 1231, 1383 and 1515 trees·hm -2 , in Wenfeng Mountain, Xinjin District, Sichuan Province, China. The results showed that a total of 110 species were found, belonging to 57 families and 98 genera. With the increase of tree density, the understory species showed a succession pattern from positive to moderate to shady. Different densities had significant effects on the contents of total potassium and organic matter in the soils. With the increase ofdensity, the contents of organic matter and total potassium in understory vegetation first increased and then decreased. The trends of the relationship between both diversity and soil physiochemical characteristics and tree density were similar. Both of them increased with the increase of density, with the maximum value presented at the density of 1136 trees·hm -2 . The concentrations of total phosphorus, available potassium, total potassium and total nitrogen was closely related to plant diversity index. The results suggested that the density at 1136 trees·hm -2 would be more beneficial to improve the stability of species diversity and soil fertility of P. massoniana non-commercial plantations in Wenfeng Mountain.
Ndiade-Bourobou, D; Hardy, O J; Favreau, B; Moussavou, H; Nzengue, E; Mignot, A; Bouvet, J-M
2010-11-01
We analysed the spatial distribution of genetic diversity to infer gene flow for Baillonella toxisperma Pierre (Moabi), a threatened entomophilous pollinated and animal-dispersed Central African tree, with typically low density (5-7 adults trees/km(2)). Fifteen nuclear and three universal chloroplast microsatellites markers were used to type 247 individuals localized in three contiguous areas with differing past logging intensity. These three areas were within a natural forest block of approximately 2886 km(2) in Gabon. Expected heterozygosity and chloroplast diversity were He(nuc) = 0.570 and H(cp) = 0.761, respectively. F(IS) was only significant in one area (F(IS) = 0.076, P < 0.01) and could be attributed to selfing. For nuclear loci, Bayesian clustering did not detect discrete gene pools within and between the three areas and global differentiation (F(STnuc) = 0.007, P > 0.05) was not significant, suggesting that they are one population. At the level of the whole forest, both nuclear and chloroplast markers revealed a weak correlation between genetic relatedness and spatial distance between individuals: Sp(nuc) = 0.003 and Sp(cp) = 0.015, respectively. The extent of gene flow (σ) was partitioned into global gene flow (σ(g)) from 6.6 to 9.9 km, seed dispersal (σ(s)) from 4.0 to 6.3 km and pollen dispersal (σ(p)) from 9.8 to 10.8 km. These uncommonly high dispersal distances indicate that low-density canopy trees in African rainforests could be connected by extensive gene flow, although, given the current threats facing many seed disperser species in Central Africa, this may no longer be the case. © 2010 Blackwell Publishing Ltd.
Relationship of Climatic and Forest Factors to Drought- and Heat-Induced Tree Mortality
Zhang, Qingyin; Shao, Ming’an; Jia, Xiaoxu; Wei, Xiaorong
2017-01-01
Tree mortality due to warming and drought is a critical aspect of forest ecosystem in responding to climate change. Spatial patterns of tree mortality induced by drought and its influencing factors, however, have yet to be documented at the global scale. We collected observations from 248 sites globally where trees have died due to drought and then assessed the effects of climatic and forest factors on the rate of tree mortality. The global mean annual mortality rate was 5.5%. The rate of tree mortality was significantly and negatively correlated with mean annual precipitation (P < 0.01). Tree mortality was lowest in tropical rainforests with mean annual precipitation >2000 mm and was severe in regions with mean annual precipitation <1000 mm. Mortality rates varied amongst species. The global annual rate of mortality was much higher for gymnosperms (7.1%) than angiosperms (4.8%) but did not differ significantly between evergreen (6.2%) and deciduous (6.1%) species. Stand age and wood density affected the mortality rate. Saplings (4.6%) had a higher mortality rate than mature trees (3.2%), and mortality rates significantly decreased with increasing wood density for all species (P < 0.01). We therefore concluded that the tree mortality around the globe varied with climatic and forest factors. The differences between tree species, wood density, stand density, and stand age should be considered when evaluating tree mortality at a large spatial scale during future climatic extremes. PMID:28095437
Relationship of Climatic and Forest Factors to Drought- and Heat-Induced Tree Mortality.
Zhang, Qingyin; Shao, Ming'an; Jia, Xiaoxu; Wei, Xiaorong
2017-01-01
Tree mortality due to warming and drought is a critical aspect of forest ecosystem in responding to climate change. Spatial patterns of tree mortality induced by drought and its influencing factors, however, have yet to be documented at the global scale. We collected observations from 248 sites globally where trees have died due to drought and then assessed the effects of climatic and forest factors on the rate of tree mortality. The global mean annual mortality rate was 5.5%. The rate of tree mortality was significantly and negatively correlated with mean annual precipitation (P < 0.01). Tree mortality was lowest in tropical rainforests with mean annual precipitation >2000 mm and was severe in regions with mean annual precipitation <1000 mm. Mortality rates varied amongst species. The global annual rate of mortality was much higher for gymnosperms (7.1%) than angiosperms (4.8%) but did not differ significantly between evergreen (6.2%) and deciduous (6.1%) species. Stand age and wood density affected the mortality rate. Saplings (4.6%) had a higher mortality rate than mature trees (3.2%), and mortality rates significantly decreased with increasing wood density for all species (P < 0.01). We therefore concluded that the tree mortality around the globe varied with climatic and forest factors. The differences between tree species, wood density, stand density, and stand age should be considered when evaluating tree mortality at a large spatial scale during future climatic extremes.
Christopher W. Woodall; Linda Nagel
2007-01-01
Refining the understanding of the relationship between a stand's standing live and down dead trees in terms of size, density, and biomass attributes may aid efforts to predict fuel loadings based on standing tree attributes. Therefore, the objective of this study was to compare down dead and standing live tree attributes (size, density, and biomass) for inventory...
Rate of tree carbon accumulation increases continuously with tree size
Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; Álvarez, E.; Blundo, C.; Bunyavejchewin, S.; Chuyong, G.; Davies, S.J.; Duque, Á.; Ewango, C.N.; Flores, O.; Franklin, J.F.; Grau, H.R.; Hao, Z.; Harmon, M.E.; Hubbell, S.P.; Kenfack, D.; Lin, Y.; Makana, J.-R.; Malizia, A.; Malizia, L.R.; Pabst, R.J.; Pongpattananurak, N.; Su, S.-H.; Sun, I-F.; Tan, S.; Thomas, D.; van Mantgem, P.J.; Wang, X.; Wiser, S.K.; Zavala, M.A.
2014-01-01
Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle—particularly net primary productivity and carbon storage - increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree’s total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to understand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.
A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis
De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan
2016-01-01
Background and Aims Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Methods Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Key Results Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. Conclusions A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. PMID:27107414
NASA Astrophysics Data System (ADS)
Coelho, Luís Francisco Mello; Ribeiro, Milton Cezar; Pereira, Rodrigo Augusto Santinelo
2014-05-01
The success of fig trees in tropical ecosystems is evidenced by the great diversity (+750 species) and wide geographic distribution of the genus. We assessed the contribution of environmental variables on the species richness and density of fig trees in fragments of seasonal semideciduous forest (SSF) in Brazil. We assessed 20 forest fragments in three regions in Sao Paulo State, Brazil. Fig tree richness and density was estimated in rectangular plots, comprising 31.4 ha sampled. Both richness and fig tree density were linearly modeled as function of variables representing (1) fragment metrics, (2) forest structure, and (3) landscape metrics expressing water drainage in the fragments. Model selection was performed by comparing the AIC values (Akaike Information Criterion) and the relative weight of each model (wAIC). Both species richness and fig tree density were better explained by the water availability in the fragment (meter of streams/ha): wAICrichness = 0.45, wAICdensity = 0.96. The remaining variables related to anthropic perturbation and forest structure were of little weight in the models. The rainfall seasonality in SSF seems to select for both establishment strategies and morphological adaptations in the hemiepiphytic fig tree species. In the studied SSF, hemiepiphytes established at lower heights in their host trees than reported for fig trees in evergreen rainforests. Some hemiepiphytic fig species evolved superficial roots extending up to 100 m from their trunks, resulting in hectare-scale root zones that allow them to efficiently forage water and soil nutrients. The community of fig trees was robust to variation in forest structure and conservation level of SSF fragments, making this group of plants an important element for the functioning of seasonal tropical forests.
McCormack, Gavin R
2017-06-01
The aim of this study was to estimate the associations between neighbourhood built environment characteristics and transportation walking (TW), recreational walking (RW), and moderate-intensity (MPA) and vigorous-intensity physical activity (VPA) in adults independent of sociodemographic characteristics and residential self-selection (i.e. the reasons related to physical activity associated with a person's choice of neighbourhood). In 2007 and 2008, 4423 Calgary adults completed land-based telephone interviews capturing physical activity, sociodemographic characteristics and reasons for residential self-selection. Using spatial data, we estimated population density, proportion of green space, path/cycleway length, business density, bus stop density, city-managed tree density, sidewalk length, park type mix and recreational destination mix within a 1.6 km street network distance from the participants' geolocated residential postal code. Generalized linear models estimated the associations between neighbourhood built environment characteristics and weekly neighbourhood-based physical activity participation (≥ 10 minutes/week; odds ratios [ORs]) and, among those who reported participation, duration of activity (unstandardized beta coefficients [B]). The sample included more women (59.7%) than men (40.3%) and the mean (standard deviation) age was 47.1 (15.6) years. TW participation was associated with intersection (OR = 1.11; 95% CI: 1.03 to 1.20) and business (OR = 1.52; 1.29 to 1.78) density, and sidewalk length (OR = 1.19; 1.09 to 1.29), while TW minutes was associated with business (B = 19.24 minutes/week; 11.28 to 27.20) and tree (B = 6.51; 2.29 to 10.72 minutes/week) density, and recreational destination mix (B = -8.88 minutes/ week; -12.49 to -5.28). RW participation was associated with path/cycleway length (OR = 1.17; 1.05 to 1.31). MPA participation was associated with recreational destination mix (OR = 1.09; 1.01 to 1.17) and sidewalk length (OR = 1.10; 1.02 to 1.19); however, MPA minutes was negatively associated with population density (B = -8.65 minutes/ week; -15.32 to -1.98). VPA participation was associated with sidewalk length (OR = 1.11; 1.02 to 1.20), path/cycleway length (OR = 1.12; 1.02 to 1.24) and proportion of neighbourhood green space (OR = 0.89; 0.82 to 0.98). VPA minutes was associated with tree density (B = 7.28 minutes/week; 0.39 to 14.17). Some neighbourhood built environment characteristics appear important for supporting physical activity participation while others may be more supportive of increasing physical activity duration. Modifications that increase the density of utilitarian destinations and the quantity of available sidewalks in established neighbourhoods could increase overall levels of neighbourhood-based physical activity.
Relative density: the key to stocking assessment in regional analysisa forest survey viewpoint.
Colin D. MacLean
1979-01-01
Relative density is a measure of tree crowding compared to a reference level such as normal density. This stand attribute, when compared to management standards, indicates adequacy of stocking. The Pacific Coast Forest Survey Unit assesses the relative density of each stand sampled by summing the individual density contributions of each tree tallied, thus quantifying...
The relative density of forests in the United States
Christopher W. Woodall; Charles H. Perry; Patrick D. Miles
2006-01-01
A relative stand density assessment technique, using the mean specific gravity of all trees in a stand to predict its maximum stand density index (SDI) and subsequently its relative stand density (current SDI divided by maximum SDI), was used to estimate the relative density of forests across the United States using a national-scale forest inventory. Live tree biomass...
Clougherty, Jane E.; Shmool, Jessie L.C.; Kubzansky, Laura D.
2017-01-01
Living near vegetation, often called “green space” or “greenness”, has been associated with numerous health benefits. We hypothesized that the two key components of urban vegetation, trees and grass, may differentially affect health. We estimated the association between near-residence trees, grass, and total vegetation (from the 2010 High Resolution Land Cover dataset for New York City (NYC)) with self-reported health from a survey of NYC adults (n = 1281). We found higher reporting of “very good” or “excellent” health for respondents with the highest, compared to the lowest, quartiles of tree (RR = 1.23, 95% CI = 1.06–1.44) but not grass density (relative risk (RR) = 1.00, 95% CI = 0.86–1.17) within 1000 m buffers, adjusting for pertinent confounders. Significant positive associations between trees and self-reported health remained after adjustment for grass, whereas associations with grass remained non-significant. Adjustment for air pollutants increased beneficial associations between trees and self-reported health; adjustment for parks only partially attenuated these effects. Results were null or negative using a 300 m buffer. Findings imply that higher exposure to vegetation, particularly trees outside of parks, may be associated with better health. If replicated, this may suggest that urban street tree planting may improve population health. PMID:29156551
Mark E. Harmon; Christopher W. Woodall; Becky Fasth; Jay Sexton; Misha Yatkov
2011-01-01
Woody detritus or dead wood is an important part of forest ecosystems and has become a routine facet of forest monitoring and inventory. Biomass and carbon estimates of dead wood depend on knowledge of species- and decay class-specifi c density or density reduction factors. While some progress has been made in determining these parameters for dead and downed trees (DD...
USDA-ARS?s Scientific Manuscript database
Trees, even in the same orchard or nursery, can have considerably different structures and foliage densities. Conventional chemical applications often spray the entire field at a constant rate without considering field variations, resulting in excessive chemical waste and spray drift. To address thi...
Ding, Jiarui; Shah, Sohrab; Condon, Anne
2016-01-01
Motivation: Many biological data processing problems can be formalized as clustering problems to partition data points into sensible and biologically interpretable groups. Results: This article introduces densityCut, a novel density-based clustering algorithm, which is both time- and space-efficient and proceeds as follows: densityCut first roughly estimates the densities of data points from a K-nearest neighbour graph and then refines the densities via a random walk. A cluster consists of points falling into the basin of attraction of an estimated mode of the underlining density function. A post-processing step merges clusters and generates a hierarchical cluster tree. The number of clusters is selected from the most stable clustering in the hierarchical cluster tree. Experimental results on ten synthetic benchmark datasets and two microarray gene expression datasets demonstrate that densityCut performs better than state-of-the-art algorithms for clustering biological datasets. For applications, we focus on the recent cancer mutation clustering and single cell data analyses, namely to cluster variant allele frequencies of somatic mutations to reveal clonal architectures of individual tumours, to cluster single-cell gene expression data to uncover cell population compositions, and to cluster single-cell mass cytometry data to detect communities of cells of the same functional states or types. densityCut performs better than competing algorithms and is scalable to large datasets. Availability and Implementation: Data and the densityCut R package is available from https://bitbucket.org/jerry00/densitycut_dev. Contact: condon@cs.ubc.ca or sshah@bccrc.ca or jiaruid@cs.ubc.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153661
Modeling multi-scale resource selection for bear rub trees in northwestern Montana
Morgan Henderson, Matthew J.; Hebblewhite, Mark; Mitchell, Michael S.; Stetz, Jeffrey B.; Kendall, Katherine C.; Carlson, Ross T.
2015-01-01
Both black (Ursus americanus) and grizzly bears (U. arctos) are known to rub on trees and other objects, producing a network of repeatedly used and identifiable rub sites. In 2012, we used a resource selection function to evaluate hypothesized relationships between locations of 887 bear rubs in northwestern Montana, USA, and elevation, slope angle, density of open roads and distance from areas of heightened plant-productivity likely containing forage for bears. Slope and density of open roads were negatively correlated with rub presence. No other covariates were supported as explanatory variables. We also hypothesized that bear rubs would be more strongly associated with closed roads and developed trails than with game trails. The frequencies of bear rubs on 30 paired segments of developed tracks and game trails were not different. Our results suggest bear rubs may be associated with bear travel routes, and support their use as “random” sampling devices for non-invasive spatial capture–recapture population monitoring.
G.R. Johnson; Barbara L. Gartner; Doug Maguire; Alan Kanaskie
2003-01-01
Wood density, moisture content, tracheld width and cell wall size were examined in trees from plots that were sprayed for 5 years with chlorothalonil (Bravo ®) fungicide to reduce the impact of Swiss needle-cast (SNC) and from trees in adjacent unsprayed plots. The unsprayed (more heavily diseased) trees had significantly narrower sapwood, narrower growth tings, lower...
Changes in tree density do not influence epicormic branching of yellow-poplar
H. Clay Smith
1977-01-01
Epicormic branching was studied in a West Virginia yellow-poplar stand thinned to various tree density levels. Study trees in the 55- to 60-year-old second-growth stand were primarily codominant in crown class with 32 to 48 feet of log height. Eight-year study results indicated that yellow-poplar trees in this age class and locale could be thinned without serious loss...
Gutierrez-Coarite, Rosemary; Yoneishi, Nicole M; Pulakkatu-Thodi, Ishakh; Mollinedo, Javier; Calla, Bernarda; Wright, Mark G; Geib, Scott M
2018-04-02
Macadamia felted coccid, Eriococcus ironsidei (Williams) (Hemiptera: Eriococcidae) was first found infesting macadamia trees in the island of Hawaii in 2005. Macadamia felted coccid infests all above-ground parts of trees to feed and reproduce. Their feeding activity distorts and stunts new growth which causes yellow spotting on older leaves, and when population densities become high, branch dieback occurs. Different predatory beetles have been observed in macadamia nut trees infested by E. ironsidei, the most abundant were Halmus chalybeus, Curinus coeruleus, Scymnodes lividigaster, Rhyzobius forestieri, and Sticholotis ruficeps. To verify predation of E. ironsidei by these beetles, a molecular assay was developed utilizing species-specific primers to determine presence in gut content of predators. Using these primers for PCR analysis, wild predator beetles were screened for the presence of E. ironsidei DNA. Analysis of beetles collected from macadamia orchards revealed predation by H. chalybeus, C. coeruleus, S. lividigaster, R. forestieri, and S. ruficeps on E. ironsidei. This study demonstrates that these beetles may play an important role in controlling the population of E. ironsidei, and these predators may be useful as biocontrol agents for E. ironsidei.
Constancy and asynchrony of Osmoderma eremita populations in tree hollows.
Ranius, Thomas
2001-01-01
A species rich beetle fauna is associated with old, hollow trees. Many of these species are regarded as endangered, but there is little understanding of the population structure and extinction risks of these species. In this study I show that one of the most endangered beetles, Osmoderma eremita, has a population structure which conforms to that of a metapopulation, with each tree possibly sustaining a local population. This was revealed by performing a mark-release-recapture experiment in 26 trees over a 5-year period. The spatial variability between trees was much greater than temporal variability between years. The population size was on average 11 adults tree -1 year -1 , but differed widely between trees (0-85 adults tree -1 year -1 ). The population size in each tree varied moderately between years [mean coefficient of variation (C.V.)=0.51], but more widely than from sampling errors alone (P=0.008, Monte Carlo simulation). The population size variability in all trees combined, however, was not larger than expected from sampling errors alone in a constant population (C.V.=0.15, P=0.335, Monte Carlo simulation). Thus, the fluctuations of local populations cancel each other out when they are added together. This pattern can arise only when the fluctuations occur asynchronously between trees. The asynchrony of the fluctuations justifies the assumption usually made in metapopulation modelling, that local populations within a metapopulation fluctuate independently of one another. The asynchrony might greatly increase persistence time at the metapopulation level (per stand), compared to the local population level (per tree). The total population size of O. eremita in the study area was estimated to be 3,900 individuals. Other localities sustaining O. eremita are smaller in area, and most of these must be enlarged to allow long-term metapopulation persistence and to satisfy genetic considerations of the O. eremita populations.
Scott, J.M.; Mountainspring, S.; van Riper, Charles; Kepler, C.B.; Jacobi, J.D.; Burr, T.A.; Giffen, J.G.
1984-01-01
We studied the distribution, population size, and habitat response of the Palila (Loxioides bailleui) during the 1980-1984 nonbreeding seasons to infer factors that limit the population and to develop management strategies. Distribution was fairly constant from year to year. Palila were confined to the subalpine woodland on Mauna Kea on the island of Hawaii, occurred between 2,000 and 2,850 m elevation, and reached highest densities on the southwest slopes. The population showed large annual fluctuations, from 6,400 birds in 1981 to 2,000 in 1984. The width of woodland was the most important variable in determining habitat response. Palila were more common in areas with greater crown cover, taller trees, and a higher proportion of native plants in the understory. Annual variation in Palila density within a habitat reflected variation in levels of their staple food, mamane pods. The main limiting factors of the population appeared to be the availability of good habitat and levels of their staple food. Palila had strongly depressed densities in the Pohakuloa flats area. This low density could not be explained by gross habitat features or food levels. Site tenacity, thermal stress, disturbance, and disease were hypothesized explanations. Our study indicated that the most effective management strategies would be the removal of feral ungulates and certain noxious plants from Palila habitat and the extension of the woodland zone to areas now intensively grazed.
Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States.
Eggo, Rosalind M; Cauchemez, Simon; Ferguson, Neil M
2011-02-06
There is still limited understanding of key determinants of spatial spread of influenza. The 1918 pandemic provides an opportunity to elucidate spatial determinants of spread on a large scale. To better characterize the spread of the 1918 major wave, we fitted a range of city-to-city transmission models to mortality data collected for 246 population centres in England and Wales and 47 cities in the US. Using a gravity model for city-to-city contacts, we explored the effect of population size and distance on the spread of disease and tested assumptions regarding density dependence in connectivity between cities. We employed Bayesian Markov Chain Monte Carlo methods to estimate parameters of the model for population, infectivity, distance and density dependence. We inferred the most likely transmission trees for both countries. For England and Wales, a model that estimated the degree of density dependence in connectivity between cities was preferable by deviance information criterion comparison. Early in the major wave, long distance infective interactions predominated, with local infection events more likely as the epidemic became widespread. For the US, with fewer more widely dispersed cities, statistical power was lacking to estimate population size dependence or the degree of density dependence, with the preferred model depending on distance only. We find that parameters estimated from the England and Wales dataset can be applied to the US data with no likelihood penalty.
Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States
Eggo, Rosalind M.; Cauchemez, Simon; Ferguson, Neil M.
2011-01-01
There is still limited understanding of key determinants of spatial spread of influenza. The 1918 pandemic provides an opportunity to elucidate spatial determinants of spread on a large scale. To better characterize the spread of the 1918 major wave, we fitted a range of city-to-city transmission models to mortality data collected for 246 population centres in England and Wales and 47 cities in the US. Using a gravity model for city-to-city contacts, we explored the effect of population size and distance on the spread of disease and tested assumptions regarding density dependence in connectivity between cities. We employed Bayesian Markov Chain Monte Carlo methods to estimate parameters of the model for population, infectivity, distance and density dependence. We inferred the most likely transmission trees for both countries. For England and Wales, a model that estimated the degree of density dependence in connectivity between cities was preferable by deviance information criterion comparison. Early in the major wave, long distance infective interactions predominated, with local infection events more likely as the epidemic became widespread. For the US, with fewer more widely dispersed cities, statistical power was lacking to estimate population size dependence or the degree of density dependence, with the preferred model depending on distance only. We find that parameters estimated from the England and Wales dataset can be applied to the US data with no likelihood penalty. PMID:20573630
Sampling Methods for Detection and Monitoring of the Asian Citrus Psyllid (Hemiptera: Psyllidae).
Monzo, C; Arevalo, H A; Jones, M M; Vanaclocha, P; Croxton, S D; Qureshi, J A; Stansly, P A
2015-06-01
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama is a key pest of citrus due to its role as vector of citrus greening disease or "huanglongbing." ACP monitoring is considered an indispensable tool for management of vector and disease. In the present study, datasets collected between 2009 and 2013 from 245 citrus blocks were used to evaluate precision, sensitivity for detection, and efficiency of five sampling methods. The number of samples needed to reach a 0.25 standard error-mean ratio was estimated using Taylor's power law and used to compare precision among sampling methods. Comparison of detection sensitivity and time expenditure (cost) between stem-tap and other sampling methodologies conducted consecutively at the same location were also assessed. Stem-tap sampling was the most efficient sampling method when ACP densities were moderate to high and served as the basis for comparison with all other methods. Protocols that grouped trees near randomly selected locations across the block were more efficient than sampling trees at random across the block. Sweep net sampling was similar to stem-taps in number of captures per sampled unit, but less precise at any ACP density. Yellow sticky traps were 14 times more sensitive than stem-taps but much more time consuming and thus less efficient except at very low population densities. Visual sampling was efficient for detecting and monitoring ACP at low densities. Suction sampling was time consuming and taxing but the most sensitive of all methods for detection of sparse populations. This information can be used to optimize ACP monitoring efforts. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; Oyama, Ken; Sork, Victoria; Chapman, Colin A.; Stoner, Kathryn E.
2012-01-01
Spider monkeys (Ateles geoffroyi) use sites composed of one or more trees for sleeping (sleeping sites and sleeping trees, respectively). Beneath these sites/trees they deposit copious amounts of dung in latrines. This behavior results in a clumped deposition pattern of seeds and nutrients that directly impacts the regeneration of tropical forests. Therefore, information on the density and spatial distribution of sleeping sites and latrines, and the characteristics (i.e., composition and structure) of sleeping trees are needed to improve our understanding of the ecological significance of spider monkeys in influencing forest composition. Moreover, since primate populations are increasingly forced to inhabit fragmented landscapes, it is important to assess if these characteristics differ between continuous and fragmented forests. We assessed this novel information from eight independent spider monkey communities in the Lacandona rainforest, Mexico: four continuous forest sites and four forest fragments. Both the density of sleeping sites and latrines did not differ between forest conditions. Latrines were uniformly distributed across sleeping sites, but the spatial distribution of sleeping sites within the areas was highly variable, being particularly clumped in forest fragments. In fact, the average inter-latrine distances were almost double in continuous forest than in fragments. Latrines were located beneath only a few tree species, and these trees were larger in diameter in continuous than fragmented forests. Because latrines may represent hotspots of seedling recruitment, our results have important ecological and conservation implications. The variation in the spatial distribution of sleeping sites across the forest indicates that spider monkeys likely create a complex seed deposition pattern in space and time. However, the use of a very few tree species for sleeping could contribute to the establishment of specific vegetation associations typical of the southeastern Mexican rainforest, such as Terminalia-Dialium, and Brosimum-Dialium. PMID:23056486
González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; Oyama, Ken; Sork, Victoria; Chapman, Colin A; Stoner, Kathryn E
2012-01-01
Spider monkeys (Ateles geoffroyi) use sites composed of one or more trees for sleeping (sleeping sites and sleeping trees, respectively). Beneath these sites/trees they deposit copious amounts of dung in latrines. This behavior results in a clumped deposition pattern of seeds and nutrients that directly impacts the regeneration of tropical forests. Therefore, information on the density and spatial distribution of sleeping sites and latrines, and the characteristics (i.e., composition and structure) of sleeping trees are needed to improve our understanding of the ecological significance of spider monkeys in influencing forest composition. Moreover, since primate populations are increasingly forced to inhabit fragmented landscapes, it is important to assess if these characteristics differ between continuous and fragmented forests. We assessed this novel information from eight independent spider monkey communities in the Lacandona rainforest, Mexico: four continuous forest sites and four forest fragments. Both the density of sleeping sites and latrines did not differ between forest conditions. Latrines were uniformly distributed across sleeping sites, but the spatial distribution of sleeping sites within the areas was highly variable, being particularly clumped in forest fragments. In fact, the average inter-latrine distances were almost double in continuous forest than in fragments. Latrines were located beneath only a few tree species, and these trees were larger in diameter in continuous than fragmented forests. Because latrines may represent hotspots of seedling recruitment, our results have important ecological and conservation implications. The variation in the spatial distribution of sleeping sites across the forest indicates that spider monkeys likely create a complex seed deposition pattern in space and time. However, the use of a very few tree species for sleeping could contribute to the establishment of specific vegetation associations typical of the southeastern Mexican rainforest, such as Terminalia-Dialium, and Brosimum-Dialium.
Wieczorek, Mareike; Kruse, Stefan; Epp, Laura S; Kolmogorov, Alexei; Nikolaev, Anatoly N; Heinrich, Ingo; Jeltsch, Florian; Pestryakova, Lyudmila A; Zibulski, Romy; Herzschuh, Ulrike
2017-09-01
Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field- and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least ~240 yr. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra, however, a change in growth form from krummholz to erect trees, beginning ~130 yr ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future. © 2017 by the Ecological Society of America.
Three-Dimensional Nanometer Features of Direct Current Electrical Trees in Low-Density Polyethylene.
Pallon, Love K H; Nilsson, Fritjof; Yu, Shun; Liu, Dongming; Diaz, Ana; Holler, Mirko; Chen, Xiangrong R; Gubanski, Stanislaw; Hedenqvist, Mikael S; Olsson, Richard T; Gedde, Ulf W
2017-03-08
Electrical trees are one reason for the breakdown of insulating materials in electrical power systems. An understanding of the growth of electrical trees plays a crucial role in the development of reliable high voltage direct current (HVDC) power grid systems with transmission voltages up to 1 MV. A section that contained an electrical tree in low-density polyethylene (LDPE) has been visualized in three dimensions (3D) with a resolution of 92 nm by X-ray ptychographic tomography. The 3D imaging revealed prechannel-formations with a lower density with the width of a couple of hundred nanometers formed around the main branch of the electrical tree. The prechannel structures were partially connected with the main tree via paths through material with a lower density, proving that the tree had grown in a step-by-step manner via the prestep structures formed in front of the main channels. All the prechannel structures had a size well below the limit of the Paschen law and were thus not formed by partial discharges. Instead, it is suggested that the prechannel structures were formed by electro-mechanical stress and impact ionization, where the former was confirmed by simulations to be a potential explanation with electro-mechanical stress tensors being almost of the same order of magnitude as the short-term modulus of low-density polyethylene.
Boskova, Veronika; Bonhoeffer, Sebastian; Stadler, Tanja
2014-01-01
Quantifying epidemiological dynamics is crucial for understanding and forecasting the spread of an epidemic. The coalescent and the birth-death model are used interchangeably to infer epidemiological parameters from the genealogical relationships of the pathogen population under study, which in turn are inferred from the pathogen genetic sequencing data. To compare the performance of these widely applied models, we performed a simulation study. We simulated phylogenetic trees under the constant rate birth-death model and the coalescent model with a deterministic exponentially growing infected population. For each tree, we re-estimated the epidemiological parameters using both a birth-death and a coalescent based method, implemented as an MCMC procedure in BEAST v2.0. In our analyses that estimate the growth rate of an epidemic based on simulated birth-death trees, the point estimates such as the maximum a posteriori/maximum likelihood estimates are not very different. However, the estimates of uncertainty are very different. The birth-death model had a higher coverage than the coalescent model, i.e. contained the true value in the highest posterior density (HPD) interval more often (2–13% vs. 31–75% error). The coverage of the coalescent decreases with decreasing basic reproductive ratio and increasing sampling probability of infecteds. We hypothesize that the biases in the coalescent are due to the assumption of deterministic rather than stochastic population size changes. Both methods performed reasonably well when analyzing trees simulated under the coalescent. The methods can also identify other key epidemiological parameters as long as one of the parameters is fixed to its true value. In summary, when using genetic data to estimate epidemic dynamics, our results suggest that the birth-death method will be less sensitive to population fluctuations of early outbreaks than the coalescent method that assumes a deterministic exponentially growing infected population. PMID:25375100
Monroy-Ortiz, Columba; García-Moya, Edmundo; Romero-Manzanares, Angélica; Luna-Cavazos, Mario; Monroy, Rafael
2018-05-15
This research integrates Traditional and Formal Ecological Knowledge (TEK / FEK) of a Tropical Dry Forest in central Mexico, in order to assess harvesting and conservation of the non-timber forest species. We were interested in: knowing the structure and diversity of the forest community; identifying which are the tree resources of common interest to the users through participatory workshops. A further interest was to identify those resources which are important to local people in terms of preservation; explaining the relationship of the species with some environmental factors; and visualizing which management practices endanger or facilitate the conservation of species. Studied areas were defined and labelled on a map drawn by local informants, where they indicated those plant species of common interest for preservation. Ethnobotanical techniques were used to reveal the TEK and assess harvesting and conservation of the species. With the FEK through community and population ecology, we detected the importance of five environmental factors, obtained various ecological indicators of the vegetation, and studied the population structure of the relevant species. The FEK was analyzed using descriptive and multivariate statistics. As a result, low density and small basal area of trees were registered. Species richness and diversity index were similar to other natural protected areas in Mexico. Tree species harvested shown an asymmetric distribution of diameters. Harvesting, elevation, and accessibility were the most influential factors on tree density. FEK demonstrated that TEK is helpful for the assessment of forest harvesting. Ecological analysis complemented the local knowledge detecting that Lysiloma tergemina is a species non-identified for the people as interesting, although we discover that it is a threatened species by over-harvesting. Haematoxylum brasiletto was identified as important for conservation due to its scarcity and medicinal use. Our results advanced on how the traditional harvesting of tree community has contributed to preserve diversity, when comparing with protected areas. Discrepancies between both kinds of knowledge should be reconciled for contributing to the preservation of priority resources by the local society. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Grarock, Kate; Lindenmayer, David B.; Wood, Jeffrey T.; Tidemann, Christopher R.
2013-10-01
Introduced species pose a major threat to biodiversity across the globe. Understanding the impact of introduced species is critical for effective management. Many species around the world are reliant on tree cavities, and competition for these resources can be intense: threatening the survival of native species. Through the establishment of 225 nest boxes, we examined the relationship between tree density and the abundance and nesting success of three bird species in Canberra, Australia. The common myna ( Acridotheres tristis) is an introduced species in Australia, and the crimson rosella ( Platycercus elegans) and eastern rosella ( Platycercus eximius) are native species. We then investigated the impact of common myna nest box occupation on crimson rosella and eastern rosella abundance. Tree density significantly influenced the abundance and cavity-nesting of all three species. Common myna abundance (birds per square kilometer) was greatest at low tree density sites (101.9 ± 22.4) and declined at medium (45.4 ± 10.1) and high (9.7 ± 3.6) tree density sites. The opposite pattern was observed for the crimson rosella, with greater abundance (birds per square kilometer) at high tree density sites (83.9 ± 9.3), declining over medium (61.6 ± 6.4) and low (31.4 ± 3.9) tree density sites. The eastern rosella was more abundant at medium tree density sites (48.6 ± 8.0 birds per square kilometer). Despite the strong influence of tree density, we found a significant negative relationship between common myna nest box occupancy and the abundance of the crimson rosella ( F 1,13 = 7.548, P = 0.017) and eastern rosella ( F 1,13 = 9.672, P < 0.001) at some sites. We also observed a slight increase in rosella nesting interruptions by the common myna at lower tree densities (high: 1.3 % ± 1.3, medium: 6.6 % ± 2.2, low: 12.7 % ± 6.2), although this increase was not statistically significant ( F 2,40 = 2.435, P = 0.100). Our study provides the strongest evidence to date for the negative impact of the common myna on native bird abundance through cavity-nesting competition. However, due to the strong influence of habitat on species abundance and nesting, it is essential to investigate the impacts of introduced species in conjunction with habitat variation. We also suggest one component of introduced species management could include habitat restoration to reduce habitat suitability for introduced species.
Grarock, Kate; Lindenmayer, David B; Wood, Jeffrey T; Tidemann, Christopher R
2013-10-01
Introduced species pose a major threat to biodiversity across the globe. Understanding the impact of introduced species is critical for effective management. Many species around the world are reliant on tree cavities, and competition for these resources can be intense: threatening the survival of native species. Through the establishment of 225 nest boxes, we examined the relationship between tree density and the abundance and nesting success of three bird species in Canberra, Australia. The common myna (Acridotheres tristis) is an introduced species in Australia, and the crimson rosella (Platycercus elegans) and eastern rosella (Platycercus eximius) are native species. We then investigated the impact of common myna nest box occupation on crimson rosella and eastern rosella abundance. Tree density significantly influenced the abundance and cavity-nesting of all three species. Common myna abundance (birds per square kilometer) was greatest at low tree density sites (101.9 ± 22.4) and declined at medium (45.4 ± 10.1) and high (9.7 ± 3.6) tree density sites. The opposite pattern was observed for the crimson rosella, with greater abundance (birds per square kilometer) at high tree density sites (83.9 ± 9.3), declining over medium (61.6 ± 6.4) and low (31.4 ± 3.9) tree density sites. The eastern rosella was more abundant at medium tree density sites (48.6 ± 8.0 birds per square kilometer). Despite the strong influence of tree density, we found a significant negative relationship between common myna nest box occupancy and the abundance of the crimson rosella (F 1,13 = 7.548, P = 0.017) and eastern rosella (F 1,13 = 9.672, P < 0.001) at some sites. We also observed a slight increase in rosella nesting interruptions by the common myna at lower tree densities (high: 1.3% ± 1.3, medium: 6.6% ± 2.2, low: 12.7% ± 6.2), although this increase was not statistically significant (F 2,40 = 2.435, P = 0.100). Our study provides the strongest evidence to date for the negative impact of the common myna on native bird abundance through cavity-nesting competition. However, due to the strong influence of habitat on species abundance and nesting, it is essential to investigate the impacts of introduced species in conjunction with habitat variation. We also suggest one component of introduced species management could include habitat restoration to reduce habitat suitability for introduced species.
Weed, Aaron S; Elkinton, Joseph S; Lany, Nina K
2016-12-01
Insect populations are affected by density-dependent and density-independent factors, and knowing how these factors affect long-term population growth is critical to pest management. In this study, we experimentally manipulated densities of the hemlock woolly adelgid on eastern and western hemlock trees in the western USA to evaluate the effects of density and host species on hemlock woolly adelgid crawler colonization. We then followed development of hemlock woolly adelgid on each hemlock species. Settlement of crawlers was strongly density-dependent and consistent between host species. In addition, a period of hot days that coincided with the settlement of hemlock woolly adelgid crawlers put our experimental and naturally occurring populations into diapause during April. Diapause resulted in one generation that yr in our experimental population. Analyses of long-term air temperature records indicated that diapause-inducing temperatures in April similar to those observed in our experiment have occurred rarely since 1909 and the frequency of these events has not changed over time. Prior work suggests that hemlock woolly adelgid completes two generations per yr in the western USA with a diapause occurring in the summer. This typical life history reflects the long-term influence of regional average seasonal temperature patterns on development and the timing of diapause-inducing temperatures. However, the timing of unseasonal weather, such as the hot days observed in our experiment, occasionally changes life history trajectories from this normal pattern. Our results show that density-dependent and density-independent factors have strong effects on generational mortality and life history of hemlock woolly adelgid that are important to its population dynamics and management. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.
Spatial pattern corrections and sample sizes for forest density estimates of historical tree surveys
Brice B. Hanberry; Shawn Fraver; Hong S. He; Jian Yang; Dan C. Dey; Brian J. Palik
2011-01-01
The U.S. General Land Office land surveys document trees present during European settlement. However, use of these surveys for calculating historical forest density and other derived metrics is limited by uncertainty about the performance of plotless density estimators under a range of conditions. Therefore, we tested two plotless density estimators, developed by...
Status and habitat relationships of northern flying squirrels on Mount Desert Island, Maine
O'Connell, A.F.; Servello, F.; Higgins, J.; Halteman, W.
2001-01-01
Northern (Glaucomys sabrinus) and southern (G. volans) flying squirrels occur in Maine, but there is uncertainty about range overlap in southcentral Maine where the southern flying squirrel reaches its geographic range limit. We surveyed flying squirrels on Mount Desert Island (MDI), located along the central Maine coast, to update the current status and distribution of these species. We captured only northern flying squirrels, and populations (> 2 individuals) were located in two conifer stands and one mixed conifer-hardwood stand. All three stands were located in relatively older forests, outside a large area burned in a 1947 fire. Tree diameters were similar between trap stations with and without captures, under-story density was low overall, and there was a trend of higher seedling density at capture locations. Low understory density may allow squirrels more effective gliding movements between trees, which may enhance predator avoidance. Although the southern flying squirrel was reported from MDI numerous times during the 20th century, no voucher specimens exist, and species identification and localities have been poorly documented. Future surveys on MDI should consider collection of voucher specimens to validate subsequent survey efforts and effectively document changes in local biodiversity.
Guerfel, Mokhtar; Ben Mansour, Mohamed; Ouni, Youssef; Guido, Flamini; Boujnah, Dalenda; Zarrouk, Mokhtar
2012-01-01
The present study focused on the comparison the chemical composition of virgin olive oil samples obtained from fruits of the main Tunisian olive cultivar (Chemlali) grown in four planting densities (156, 100, 69, and 51 trees ha−1). Despite the variability in the triacylglycerols and volatile compounds composition, the quality indices (free fatty acids, peroxide value, and spectrophotometric indices K232 and K270) all of the virgin olive oils samples studied met the commercial standards. Decanal was the major constituent, accounting for about 30% of the whole volatiles. Moreover, the chemical composition of the volatile fraction of the oil from fruits of trees grown at the planting density of 156, 100, and 51 trees ha−1 was also characterised by the preeminence of 1-hexanol, while oils from fruits of trees grown at the planting density of 69 trees ha−1 had higher content of (E)-2-hexenal (20.3%). Our results confirm that planting density is a crucial parameter that may influence the quality of olive oils. PMID:22629139
Mereta, Seid Tiku; Yewhalaw, Delenasaw; Boets, Pieter; Ahmed, Abdulhakim; Duchateau, Luc; Speybroeck, Niko; Vanwambeke, Sophie O; Legesse, Worku; De Meester, Luc; Goethals, Peter L M
2013-11-04
A fundamental understanding of the spatial distribution and ecology of mosquito larvae is essential for effective vector control intervention strategies. In this study, data-driven decision tree models, generalized linear models and ordination analysis were used to identify the most important biotic and abiotic factors that affect the occurrence and abundance of mosquito larvae in Southwest Ethiopia. In total, 220 samples were taken at 180 sampling locations during the years 2010 and 2012. Sampling sites were characterized based on physical, chemical and biological attributes. The predictive performance of decision tree models was evaluated based on correctly classified instances (CCI), Cohen's kappa statistic (κ) and the determination coefficient (R2). A conditional analysis was performed on the regression tree models to test the relation between key environmental and biological parameters and the abundance of mosquito larvae. The decision tree model developed for anopheline larvae showed a good model performance (CCI = 84 ± 2%, and κ = 0.66 ± 0.04), indicating that the genus has clear habitat requirements. Anopheline mosquito larvae showed a widespread distribution and especially occurred in small human-made aquatic habitats. Water temperature, canopy cover, emergent vegetation cover, and presence of predators and competitors were found to be the main variables determining the abundance and distribution of anopheline larvae. In contrast, anopheline mosquito larvae were found to be less prominently present in permanent larval habitats. This could be attributed to the high abundance and diversity of natural predators and competitors suppressing the mosquito population densities. The findings of this study suggest that targeting smaller human-made aquatic habitats could result in effective larval control of anopheline mosquitoes in the study area. Controlling the occurrence of mosquito larvae via drainage of permanent wetlands may not be a good management strategy as it negatively affects the occurrence and abundance of mosquito predators and competitors and promotes an increase in anopheline population densities.
2013-01-01
Background A fundamental understanding of the spatial distribution and ecology of mosquito larvae is essential for effective vector control intervention strategies. In this study, data-driven decision tree models, generalized linear models and ordination analysis were used to identify the most important biotic and abiotic factors that affect the occurrence and abundance of mosquito larvae in Southwest Ethiopia. Methods In total, 220 samples were taken at 180 sampling locations during the years 2010 and 2012. Sampling sites were characterized based on physical, chemical and biological attributes. The predictive performance of decision tree models was evaluated based on correctly classified instances (CCI), Cohen’s kappa statistic (κ) and the determination coefficient (R2). A conditional analysis was performed on the regression tree models to test the relation between key environmental and biological parameters and the abundance of mosquito larvae. Results The decision tree model developed for anopheline larvae showed a good model performance (CCI = 84 ± 2%, and κ = 0.66 ± 0.04), indicating that the genus has clear habitat requirements. Anopheline mosquito larvae showed a widespread distribution and especially occurred in small human-made aquatic habitats. Water temperature, canopy cover, emergent vegetation cover, and presence of predators and competitors were found to be the main variables determining the abundance and distribution of anopheline larvae. In contrast, anopheline mosquito larvae were found to be less prominently present in permanent larval habitats. This could be attributed to the high abundance and diversity of natural predators and competitors suppressing the mosquito population densities. Conclusions The findings of this study suggest that targeting smaller human-made aquatic habitats could result in effective larval control of anopheline mosquitoes in the study area. Controlling the occurrence of mosquito larvae via drainage of permanent wetlands may not be a good management strategy as it negatively affects the occurrence and abundance of mosquito predators and competitors and promotes an increase in anopheline population densities. PMID:24499518
Determinants of stingless bee nest density in lowland dipterocarp forests of Sabah, Malaysia.
Eltz, Thomas; Brühl, Carsten A; van der Kaars, Sander; Linsenmair, Eduard K
2002-03-01
We measured the nest density of stingless bees (Apidae, Meliponini) in undisturbed and logged-over dipterocarp forests in Sabah, northern Borneo, and evaluated hypotheses on proximate factors leading to the observed variation: population control mediated by (1) nest predation, (2) limitation of nest trees, or (3) food limitation. Per-area nest density varied twentyfold across 14 forest sites and was significantly affected by locality, but not by the degree and history of disturbance. Nest density was generally high in sites located in the Sepilok Forest fragment (mean 8.4 nests/ha), bordering mangroves or plantations. In contrast, nest densities in continuous forests were all low (between 0 and 2.1 nests/ha, mean 0.5 nests/ha). Yearly nest mortality was low (13.5-15.0%) over 4 years of observation and did not vary between forest localities, thus limiting the potential of nest predation (1) in creating the observed variation in nest density. The presence of potential nest trees (2), though positively correlated with nest density, explained only a minute fraction of the observed variation. Nest density was best explained by differences in the pollen resources (3) available to the bees (quantified by analysis of pollen in bee garbage). Across five selected sites the amount of nonforest pollen (from mangrove or crop plants) included in diets of Trigona collina was positively correlated with T. collina nest density. External pollen sources are a likely supplement to bee diets at times when little flowering occurs inside the forest, thus increasing overall bee carrying capacity. Pollen limitation was also indicated by direct measurements of pollen import and foraging activity of T. collina in three selected sites: Pollen traps installed at nests in high-density Sepilok captured significantly more corbicular pollen than colonies in low-density Deramakot. At the same time, morning foraging activity was also greater in Sepilok, indicating a regulatory increase in foraging in response to high pollen availability. We conclude that the abundance of stingless bees in forests in Sabah is chiefly dependent on the local availability of food resources. Bee populations strongly benefit from edge effects and increased foraging habitat diversity. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00442-001-0848-6.
Ne'eman, Gidi; Goubitz, Shirrinka; Werger, Marinus J A; Shmida, Avi
2011-07-01
Sex allocation has been studied mainly in small herbaceous plants but much less in monoecious wind-pollinated trees. The aim of this study was to explore changes in gender segregation and sex allocation by Pinus halepensis, a Mediterranean lowland pine tree, within tree crowns and between trees differing in their size or crown shape. The production of new male and female cones and sex allocation of biomass, nitrogen and phosphorus were studied. The relationship between branch location, its reproductive status and proxies of branch vigour was also studied. Small trees produced only female cones, but, as trees grew, they produced both male and female cones. Female cones were produced mainly in the upper part of the crown, and male cones in its middle and lower parts. Lateral branch density was correlated with the number of male but not female cones; lateral branches were more dense in large than in small trees and even denser in hemispherical trees. Apical branches grew faster, were thicker and their phosphorus concentration was higher than in lateral shoots. Nitrogen concentration was higher in cone-bearing apical branches than in apical vegetative branches and in lateral branches with or without cones. Allocation to male relative to female function increased with tree size as predicted by sex allocation theory. The adaptive values of sex allocation and gender segregation patterns in P. halepensis, in relation to its unique life history, are demonstrated and discussed. Small trees produce only female cones that have a higher probability of being pollinated than the probability of male cones pollinating; the female-first strategy enhances population spread. Hemispherical old trees are loaded with serotinous cones that supply enough seeds for post-fire germination; thus, allocation to males is more beneficial than to females.
Community assessment of tropical tree biomass: challenges and opportunities for REDD.
Theilade, Ida; Rutishauser, Ervan; Poulsen, Michael K
2015-12-01
REDD+ programs rely on accurate forest carbon monitoring. Several REDD+ projects have recently shown that local communities can monitor above ground biomass as well as external professionals, but at lower costs. However, the precision and accuracy of carbon monitoring conducted by local communities have rarely been assessed in the tropics. The aim of this study was to investigate different sources of error in tree biomass measurements conducted by community monitors and determine the effect on biomass estimates. Furthermore, we explored the potential of local ecological knowledge to assess wood density and botanical identification of trees. Community monitors were able to measure tree DBH accurately, but some large errors were found in girth measurements of large and odd-shaped trees. Monitors with experience from the logging industry performed better than monitors without previous experience. Indeed, only experienced monitors were able to discriminate trees with low wood densities. Local ecological knowledge did not allow consistent tree identification across monitors. Future REDD+ programmes may benefit from the systematic training of local monitors in tree DBH measurement, with special attention given to large and odd-shaped trees. A better understanding of traditional classification systems and concepts is required for local tree identifications and wood density estimates to become useful in monitoring of biomass and tree diversity.
Maximum likelihood clustering with dependent feature trees
NASA Technical Reports Server (NTRS)
Chittineni, C. B. (Principal Investigator)
1981-01-01
The decomposition of mixture density of the data into its normal component densities is considered. The densities are approximated with first order dependent feature trees using criteria of mutual information and distance measures. Expressions are presented for the criteria when the densities are Gaussian. By defining different typs of nodes in a general dependent feature tree, maximum likelihood equations are developed for the estimation of parameters using fixed point iterations. The field structure of the data is also taken into account in developing maximum likelihood equations. Experimental results from the processing of remotely sensed multispectral scanner imagery data are included.
Celentano, Danielle; Rousseau, Guillaume Xavier; Engel, Vera Lex; Façanha, Cristiane Lima; Oliveira, Elivaldo Moreira de; Moura, Emanoel Gomes de
2014-01-27
Riparian forests provide ecosystem services that are essential for human well-being. The Pepital River is the main water supply for Alcântara (Brazil) and its forests are disappearing. This is affecting water volume and distribution in the region. Promoting forest restoration is imperative. In deprived regions, restoration success depends on the integration of ecology, livelihoods and traditional knowledge (TEK). In this study, an interdisciplinary research framework is proposed to design riparian forest restoration strategies based on ecological data, TEK and social needs. This study takes place in a region presenting a complex history of human relocation and land tenure. Local populations from seven villages were surveyed to document livelihood (including 'free-listing' of agricultural crops and homegarden tree species). Additionally, their perceptions toward environmental changes were explored through semi-structured interviews (n = 79). Ethnobotanical information on forest species and their uses were assessed by local-specialists (n = 19). Remnants of conserved forests were surveyed to access ecological information on tree species (three plots of 1,000 m2). Results included descriptive statistics, frequency and Smith’s index of salience of the free-list results. The local population depends primarily on slash-and-burn subsistence agriculture to meet their needs. Interviewees showed a strong empirical knowledge about the environmental problems of the river, and of their causes, consequences and potential solutions. Twenty-four tree species (dbh > 10 cm) were found at the reference sites. Tree density averaged 510 individuals per hectare (stdv = 91.6); and 12 species were considered the most abundant (density > 10ind/ha). There was a strong consensus among plant-specialists about the most important trees. The species lists from reference sites and plant-specialists presented an important convergence. Slash-and-burn agriculture is the main source of livelihood but also the main driver of forest degradation. Effective restoration approaches must transform problems into solutions by empowering local people. Successional agroforestry combining annual crops and trees may be a suitable transitional phase for restoration. The model must be designed collectively and include species of ecological, cultural, and socioeconomic value. In deprived communities of the Amazon, forest restoration must be a process that combines environmental and social gains.
Modeling abundance effects in distance sampling
Royle, J. Andrew; Dawson, D.K.; Bates, S.
2004-01-01
Distance-sampling methods are commonly used in studies of animal populations to estimate population density. A common objective of such studies is to evaluate the relationship between abundance or density and covariates that describe animal habitat or other environmental influences. However, little attention has been focused on methods of modeling abundance covariate effects in conventional distance-sampling models. In this paper we propose a distance-sampling model that accommodates covariate effects on abundance. The model is based on specification of the distance-sampling likelihood at the level of the sample unit in terms of local abundance (for each sampling unit). This model is augmented with a Poisson regression model for local abundance that is parameterized in terms of available covariates. Maximum-likelihood estimation of detection and density parameters is based on the integrated likelihood, wherein local abundance is removed from the likelihood by integration. We provide an example using avian point-transect data of Ovenbirds (Seiurus aurocapillus) collected using a distance-sampling protocol and two measures of habitat structure (understory cover and basal area of overstory trees). The model yields a sensible description (positive effect of understory cover, negative effect on basal area) of the relationship between habitat and Ovenbird density that can be used to evaluate the effects of habitat management on Ovenbird populations.
Urban heat island effect on cicada densities in metropolitan Seoul.
Nguyen, Hoa Q; Andersen, Desiree K; Kim, Yuseob; Jang, Yikweon
2018-01-01
Urban heat island (UHI) effect, the ubiquitous consequence of urbanization, is considered to play a major role in population expansion of numerous insects. Cryptotympana atrata and Hyalessa fuscata are the most abundant cicada species in the Korean Peninsula, where their population densities are higher in urban than in rural areas. We predicted a positive relationship between the UHI intensities and population densities of these two cicada species in metropolitan Seoul. To test this prediction, enumeration surveys of cicada exuviae densities were conducted in 36 localities located within and in the vicinity of metropolitan Seoul. Samples were collected in two consecutive periods from July to August 2015. The abundance of each species was estimated by two resource-weighted densities, one based on the total geographic area, and the other on the total number of trees. Multiple linear regression analyses were performed to identify factors critical for the prevalence of cicada species in the urban habitat. C. atrata and H. fuscata were major constituents of cicada species composition collected across all localities. Minimum temperature and sampling period were significant factors contributing to the variation in densities of both species, whereas other environmental factors related to urbanization were not significant. More cicada exuviae were collected in the second rather than in the first samplings, which matched the phenological pattern of cicadas in metropolitan Seoul. Cicada population densities increased measurably with the increase in temperature. Age of residential complex also exhibited a significantly positive correlation to H. fuscata densities, but not to C. atrata densities. Effects of temperature on cicada densities have been discerned from other environmental factors, as cicada densities increased measurably in tandem with elevated temperature. Several mechanisms may contribute to the abundance of cicadas in urban environments, such as higher fecundity of females, lower mortality rate of instars, decline in host plant quality, and local adaptation of organisms, but none of them were tested in the current study. In sum, results of the enumeration surveys of cicada exuviae support the hypothesis that the UHI effect underlies the population expansion of cicadas in metropolitan Seoul. Nevertheless, the underlying mechanisms for this remain untested.
Bai, Xuejiao; Queenborough, Simon A; Wang, Xugao; Zhang, Jian; Li, Buhang; Yuan, Zuoqiang; Xing, Dingliang; Lin, Fei; Ye, Ji; Hao, Zhanqing
2012-11-01
Seedling dynamics play a crucial role in determining species distributions and coexistence. Exploring causes of variation in seedling dynamics can therefore provide key insights into the factors affecting these phenomena. We examined the relative importance of biotic neighborhood processes and habitat heterogeneity using survival data for 5,827 seedlings in 39 tree and shrub species over 2 years from an old-growth temperate forest in northeastern China. We found significant negative density-dependence effects on survival of tree seedlings, and limited effects of habitat heterogeneity (edaphic and topographic variables) on survival of shrub seedlings. The importance of negative density dependence on young tree seedling survival was replaced by habitat in tree seedlings ≥ 4 years old. As expected, negative density dependence was more apparent in gravity-dispersed species compared to wind-dispersed and animal-dispersed species. Moreover, we found that a community compensatory trend existed for trees. Therefore, although negative density dependence was not as pervasive as in other forest communities, it is an important mechanism for the maintenance of community diversity in this temperate forest. We conclude that both negative density dependence and habitat heterogeneity drive seedling survival, but their relative importance varies with seedling age classes and species traits.
A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis.
De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan
2016-06-01
Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Smit, Gert N
2005-01-01
Background The investigation was conducted in a savanna area covered by what was considered an undesirably dense stand of Colophospermum mopane trees, mainly because such a dense stand of trees often results in the suppression of herbaceous plants. The objectives of this study were to determine the influence of intensity of tree thinning on the dry matter yield of herbaceous plants (notably grasses) and to investigate differences in herbaceous species composition between defined subhabitats (under tree canopies, between tree canopies and where trees have been removed). Seven plots (65 × 180 m) were subjected to different intensities of tree thinning, ranging from a totally cleared plot (0 %) to plots thinned to the equivalent of 10 %, 20%, 35 %, 50% and 75 % of the leaf biomass of a control plot (100 %) with a tree density of 2711 plants ha-1. The establishment of herbaceous plants (grasses and forbs) in response to reduced competition from the woody plants was measured during three full growing seasons following the thinning treatments. Results The grass component reacted positively to the tree thinning in terms of total dry matter (DM) yield, but forbs were negatively influenced. Rainfall interacted with tree density and the differences between grass DM yields in thinned plots during years of below average rainfall were substantially higher than those of the control. At high tree densities, yields differed little between seasons of varying rainfall. The relation between grass DM yield and tree biomass was curvilinear, best described by the exponential regression equation. Subhabitat differentiation by C. mopane trees did provide some qualitative benefits, with certain desirable grass species showing a preference for the subhabitat under tree canopies. Conclusion While it can be concluded from this study that high tree densities suppress herbaceous production, the decision to clear/thin the C. mopane trees should include additional considerations. Thinning of C. mopane with the exclusive objective of increasing productivity of the grass layer would thus invariably involve a compromise situation where some trees should be left for the sake of the qualitative benefits on the herbaceous layer, soil enrichment, provision of browse and stability of the ecosystem. PMID:15921528
Radiocarbon Dating and Wood Density Chronologies of Mangrove Trees in Arid Western Australia
Santini, Nadia S.; Hua, Quan; Schmitz, Nele; Lovelock, Catherine E.
2013-01-01
Mangrove trees tend to be larger and mangrove communities more diverse in tropical latitudes, particularly where there is high rainfall. Variation in the structure, growth and productivity of mangrove forests over climatic gradients suggests they are sensitive to variations in climate, but evidence of changes in the structure and growth of mangrove trees in response to climatic variation is scarce. Bomb-pulse radiocarbon dating provides accurate dates of recent wood formation and tree age of tropical and subtropical tree species. Here, we used radiocarbon techniques combined with X-ray densitometry to develop a wood density chronology for the mangrove Avicennia marina in the Exmouth Gulf, Western Australia (WA). We tested whether wood density chronologies of A. marina were sensitive to variation in the Pacific Decadal Oscillation Index, which reflects temperature fluctuations in the Pacific Ocean and is linked to the instrumental rainfall record in north WA. We also determined growth rates in mangrove trees from the Exmouth Gulf, WA. We found that seaward fringing A. marina trees (∼10 cm diameter) were 48±1 to 89±23 years old (mean ± 1σ) and that their growth rates ranged from 4.08±2.36 to 5.30±3.33 mm/yr (mean ±1σ). The wood density of our studied mangrove trees decreased with increases in the Pacific Decadal Oscillation Index. Future predicted drying of the region will likely lead to further reductions in wood density and their associated growth rates in mangrove forests in the region. PMID:24265797
Radiocarbon dating and wood density chronologies of mangrove trees in arid Western Australia.
Santini, Nadia S; Hua, Quan; Schmitz, Nele; Lovelock, Catherine E
2013-01-01
Mangrove trees tend to be larger and mangrove communities more diverse in tropical latitudes, particularly where there is high rainfall. Variation in the structure, growth and productivity of mangrove forests over climatic gradients suggests they are sensitive to variations in climate, but evidence of changes in the structure and growth of mangrove trees in response to climatic variation is scarce. Bomb-pulse radiocarbon dating provides accurate dates of recent wood formation and tree age of tropical and subtropical tree species. Here, we used radiocarbon techniques combined with X-ray densitometry to develop a wood density chronology for the mangrove Avicennia marina in the Exmouth Gulf, Western Australia (WA). We tested whether wood density chronologies of A. marina were sensitive to variation in the Pacific Decadal Oscillation Index, which reflects temperature fluctuations in the Pacific Ocean and is linked to the instrumental rainfall record in north WA. We also determined growth rates in mangrove trees from the Exmouth Gulf, WA. We found that seaward fringing A. marina trees (~10 cm diameter) were 48 ± 1 to 89 ± 23 years old (mean ± 1 σ) and that their growth rates ranged from 4.08 ± 2.36 to 5.30 ± 3.33 mm/yr (mean ± 1 σ). The wood density of our studied mangrove trees decreased with increases in the Pacific Decadal Oscillation Index. Future predicted drying of the region will likely lead to further reductions in wood density and their associated growth rates in mangrove forests in the region.
Barazani, Oz; Keren-Keiserman, Alexandra; Westberg, Erik; Hanin, Nir; Dag, Arnon; Ben-Ari, Giora; Fragman-Sapir, Ori; Tugendhaft, Yizhar; Kerem, Zohar; Kadereit, Joachim W
2016-12-13
Naturally growing populations of olive trees are found in the Mediterranean garrigue and maquis in Israel. Here, we used the Simple Sequence Repeat (SSR) genetic marker technique to investigate whether these represent wild var. sylvestris. Leaf samples were collected from a total of 205 trees at six sites of naturally growing olive populations in Israel. The genetic analysis included a multi-locus lineage (MLL) analysis, Rousset's genetic distances, Fst values, private alleles, other diversity values and a Structure analysis. The analyses also included scions and suckers of old cultivated olive trees, for which the dominance of one clone in scions (MLL1) and a second in suckers (MLL7) had been shown earlier. The majority of trees from a Judean Mts. population and from one population from the Galilee showed close genetic similarity to scions of old cultivated trees. Different from that, site-specific and a high number of single occurrence MLLs were found in four olive populations from the Galilee and Carmel which also were genetically more distant from old cultivated trees, had relatively high genetic diversity values and higher numbers of private alleles. Whereas in two of these populations MLL7 (and partly MLL1) were found in low frequency, the two other populations did not contain these MLLs and were very similar in their genetic structure to suckers of old cultivated olive trees that originated from sexual reproduction. The genetic distinctness from old cultivated olive trees, particularly of one population from Galilee and one from Carmel, suggests that trees at these sites might represent wild var. sylvestris. The similarity in genetic structure of these two populations with the suckers of old cultivated trees implies that wild trees were used as rootstocks. Alternatively, trees at these two sites may be remnants of old cultivated trees in which the scion-derived trunk died and was replaced by suckers. However, considering landscape and topographic environment at the two sites this second interpretation is less likely.
NASA Technical Reports Server (NTRS)
Franklin, Janet; Simonett, David
1988-01-01
The Li-Strahler reflectance model, driven by LANDSAT Thematic Mapper (TM) data, provided regional estimates of tree size and density within 20 percent of sampled values in two bioclimatic zones in West Africa. This model exploits tree geometry in an inversion technique to predict average tree size and density from reflectance data using a few simple parameters measured in the field (spatial pattern, shape, and size distribution of trees) and in the imagery (spectral signatures of scene components). Trees are treated as simply shaped objects, and multispectral reflectance of a pixel is assumed to be related only to the proportions of tree crown, shadow, and understory in the pixel. These, in turn, are a direct function of the number and size of trees, the solar illumination angle, and the spectral signatures of crown, shadow and understory. Given the variance in reflectance from pixel to pixel within a homogeneous area of woodland, caused by the variation in the number and size of trees, the model can be inverted to give estimates of average tree size and density. Because the inversion is sensitive to correct determination of component signatures, predictions are not accurate for small areas.
Estimating the Longwave Radiation Underneath the Forest Canopy in Snow-dominated Setting
NASA Astrophysics Data System (ADS)
Zhou, Y.; Kumar, M.; Link, T. E.
2017-12-01
Forest canopies alter incoming longwave radiation at the land surface, thus influencing snow cover energetics. The snow surface receives longwave radiation from the sky as well as from surrounding vegetation. The longwave radiation from trees is determined by its skin temperature, which shows significant heterogeneity depending on its position and morphometric attributes. Here our goal is to derive an effective tree temperature that can be used to estimate the longwave radiation received by the land surface pixel. To this end, we implement these three steps: 1) derive a relation between tree trunk surface temperature and the incident longwave radiation, shortwave radiation, and air temperature; 2) develop an inverse model to calculate the effective temperature by establishing a relationship between the effective temperature and the actual tree temperature; and 3) estimate the effective temperature using widely measured variables, such as solar radiation and forest density. Data used to derive aforementioned relations were obtained at the University of Idaho Experimental Forest, in northern Idaho. Tree skin temperature, incoming longwave radiation, solar radiation received by the tree surface, and air temperature were measured at an isolated tree and a tree within a homogeneous forest stand. Longwave radiation received by the land surface and the sky view factors were also measured at the same two locations. The calculated effective temperature was then compared with the measured tree trunk surface temperature. Additional longwave radiation measurements with pyrgeometer arrays were conducted under forests with different densities to evaluate the relationship between effective temperature and forest density. Our preliminary results show that when exposed to direct shortwave radiation, the tree surface temperature shows a significant difference from the air temperature. Under cloudy or shaded conditions, the tree surface temperature closely follows the air temperature. The effective tree temperature follows the air temperature in a dense forest stand, although it is significantly larger than the air temperature near the isolated tree. This discrepancy motivates us to explore ways to represent the effective tree temperature for stands with different densities.
Accessible light detection and ranging: estimating large tree density for habitat identification
Heather A. Kramer; Brandon M. Collins; Claire V. Gallagher; John Keane; Scott L. Stephens; Maggi Kelly
2016-01-01
Large trees are important to a wide variety of wildlife, including many species of conservation concern, such as the California spotted owl (Strix occidentalis occidentalis). Light detection and ranging (LiDAR) has been successfully utilized to identify the density of large-diameter trees, either by segmenting the LiDAR point cloud into...
A Disease-Mediated Trophic Cascade in the Serengeti and its Implications for Ecosystem C
Holdo, Ricardo M.; Sinclair, Anthony R. E.; Dobson, Andrew P.; Metzger, Kristine L.; Bolker, Benjamin M.; Ritchie, Mark E.; Holt, Robert D.
2009-01-01
Tree cover is a fundamental structural characteristic and driver of ecosystem processes in terrestrial ecosystems, and trees are a major global carbon (C) sink. Fire and herbivores have been hypothesized to play dominant roles in regulating trees in African savannas, but the evidence for this is conflicting. Moving up a trophic scale, the factors that regulate fire occurrence and herbivores, such as disease and predation, are poorly understood for any given ecosystem. We used a Bayesian state-space model to show that the wildebeest population irruption that followed disease (rinderpest) eradication in the Serengeti ecosystem of East Africa led to a widespread reduction in the extent of fire and an ongoing recovery of the tree population. This supports the hypothesis that disease has played a key role in the regulation of this ecosystem. We then link our state-space model with theoretical and empirical results quantifying the effects of grazing and fire on soil carbon to predict that this cascade may have led to important shifts in the size of pools of C stored in soil and biomass. Our results suggest that the dynamics of herbivores and fire are tightly coupled at landscape scales, that fire exerts clear top-down effects on tree density, and that disease outbreaks in dominant herbivores can lead to complex trophic cascades in savanna ecosystems. We propose that the long-term status of the Serengeti and other intensely grazed savannas as sources or sinks for C may be fundamentally linked to the control of disease outbreaks and poaching. PMID:19787022
Hayes, Christopher J; DeGomez, Tom E; Clancy, Karen M; Williams, Kelly K; McMillin, Joel D; Anhold, John A
2008-08-01
Lindgren funnel traps baited with aggregation pheromones are widely used to monitor and manage populations of economically important bark beetles (Coleoptera: Scolytidae). This study was designed to advance our understanding of how funnel trap catches assess bark beetle communities and relative abundance of individual species. In the second year (2005) of a 3-yr study of the bark beetle community structure in north-central Arizona pine (Pinus spp.) forests, we collected data on stand structure, site conditions, and local bark beetle-induced tree mortality at each trap site. We also collected samples of bark from infested (brood) trees near trap sites to identify and determine the population density of bark beetles that were attacking ponderosa pine, Pinus ponderosa Douglas ex Lawson, in the area surrounding the traps. Multiple regression models indicated that the number of Dendroctonus and Ips beetles captured in 2005 was inversely related to elevation of the trap site, and positively associated with the amount of ponderosa pine in the stand surrounding the site. Traps located closer to brood trees also captured more beetles. The relationship between trap catches and host tree mortality was weak and inconsistent in forest stands surrounding the funnel traps, suggesting that trap catches do not provide a good estimate of local beetle-induced tree mortality. However, pheromone-baited funnel trap data and data from gallery identification in bark samples produced statistically similar relative abundance profiles for the five species of bark beetles that we examined, indicating that funnel trap data provided a good assessment of species presence and relative abundance.
Ryall, Krista L; Fidgen, Jeffrey G; Turgeon, Jean J
2011-06-01
The emerald ash borer, Agrilus planipennis Fairmaire, is an exotic invasive insect causing extensive mortality to ash trees, Fraxinus spp., in Canada and the United States. Detection of incipient populations of this pest is difficult because of its cryptic life stages and a multiyear time lag between initial attack and the appearance of signs or symptoms of infestation. We sampled branches from open-grown urban ash trees to develop a sample unit suitable for detecting low density A. planipennis infestation before any signs or symptoms are evident. The sample unit that maximized detection rates consisted of one 50-cm-long piece from the base of a branch ≥6 cm diameter in the midcrown. The optimal sample size was two such branches per tree. This sampling method detected ≈75% of asymptomatic trees known to be infested by using more intensive sampling and ≈3 times more trees than sampling one-fourth of the circumference of the trunk at breast height. The method is less conspicuous and esthetically damaging to a tree than the removal of bark from the main stem or the use of trap trees, and could be incorporated into routine sanitation or maintenance of city-owned trees to identify and delineate infested areas. This research indicates that branch sampling greatly reduces false negatives associated with visual surveys and window sampling at breast height. Detection of A. planipennis-infested asymptomatic trees through branch sampling in urban centers would provide landowners and urban foresters with more time to develop and implement management tactics.
Distribution and abundance patterns of the palila on Mauna Kea, Hawaii
van Riper, Charles; Scott, J. Michael; Woodside, D.M.
1978-01-01
Censuses of the known geographical range of the rare and endangered Palila were conducted in January (nonbreeding season) and September (breeding season) 1975. The habitat (mamane and naio forest of Mauna Kea, Hawaii) was divided into five major areas, with each analyzed for vegetational composition, phenology of the predominant tree species, and Palila density. Using a line transect census technique, we determined that: 1) the Palila occupied 5,560 ha, approximately 10% of its former range; 2) Palila populations were more restricted in the nonbreeding season, possibly reflecting their flocking tendency; 3) Palila densities were 38 birds per km2 in the breeding season and 36 birds per km2 in the nonbreeding season; 4) Palila population movements were small, and apparently were correlated with patterns of food availability; and 5) all methods of analysis yielded a projected population of approximately 1,600 birds. These low numbers, coupled with its restricted range, make the Palila one of the most vulnerable endangered species.
Abundance of large old trees in wood-pastures of Transylvania (Romania).
Hartel, Tibor; Hanspach, Jan; Moga, Cosmin I; Holban, Lucian; Szapanyos, Árpád; Tamás, Réka; Hováth, Csaba; Réti, Kinga-Olga
2018-02-01
Wood-pastures are special types of agroforestry systems that integrate trees with livestock grazing. Wood pastures can be hotspots for large old tree abundance and have exceptional natural values; but they are declining all over Europe. While presence of large old trees in wood-pastures can provide arguments for their maintenance, actual data on their distribution and abundance are sparse. Our study is the first to survey large old trees in Eastern Europe over such a large area. We surveyed 97 wood-pastures in Transylvania (Romania) in order to (i) provide a descriptive overview of the large old tree abundance; and (ii) to explore the environmental determinants of the abundance and persistence of large old trees in wood-pastures. We identified 2520 large old trees belonging to 16 taxonomic groups. Oak was present in 66% of the wood-pastures, followed by beech (33%), hornbeam (24%) and pear (22%). For each of these four species we constructed a generalized linear model with quasi-Poisson error distribution to explain individual tree abundance. Oak trees were most abundant in large wood-pastures and in wood-pastures from the Saxon cultural region of Transylvania. Beech abundance related positively to elevation and to proximity of human settlements. Abundance of hornbeam was highest in large wood-pastures, in wood-pastures from the Saxon cultural region, and in places with high cover of adjacent forest and a low human population density. Large old pear trees were most abundant in large wood-pastures that were close to paved roads. The maintenance of large old trees in production landscapes is a challenge for science, policy and local people, but it also can serve as an impetus for integrating economic, ecological and social goals within a landscape. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veldman, Joseph W.; Mattingly, W. Brett; Brudvig, Lars A.
Although savanna trees and forest trees are thought to represent distinct functional groups with different effects on ecosystem processes, few empirical studies have examined these effects. In particular, it remains unclear if savanna and forest trees differ in their ability to coexist with understory plants, which comprise the majority of plant diversity in most savannas. We used structural equation modeling (SEM) and data from 157 sites across three locations in the southeastern United States to understand the effects of broadleaf savanna trees, broadleaf forest trees, and pine trees on savanna understory plant communities. After accounting for underlying gradients in firemore » frequency and soil moisture, abundances (i.e., basal area and stem density) of forest trees and pines, but not savanna trees, were negatively correlated with the cover and density (i.e., local-scale species richness) of C4 graminoid species, a defining savanna understory functional group that is linked to ecosystem flammability. In analyses of the full understory community, abundances of trees from all functional groups were negatively correlated with species density and cover. For both the C4 and full communities, fire frequency promoted understory plants directly, and indirectly by limiting forest tree abundance. There was little indirect influence of fire on the understory mediated through savanna trees and pines, which are more fire tolerant than forest trees. We conclude that tree functional identity is an important factor that influences overstory tree relationships with savanna understory plant communities. In particular, distinct relationships between trees and C4 graminoids have implications for grass-tree coexistence and vegetation-fire feedbacks that maintain savanna environments and their associated understory plant diversity.« less
Nesting habitat and productivity of Swainson's Hawks in southeastern Arizona
Nishida, Catherine; Boal, Clint W.; DeStefano, Stephen; Hobbs, Royden J.
2013-01-01
We studied Swainson's Hawks (Buteo swainsoni) in southeastern Arizona to assess the status of the local breeding population. Nest success (≥1 young fledged) was 44.4% in 1999 with an average of 1.43 ± 0.09 (SE) young produced per successful pair. Productivity was similar in 2000, with 58.2% nesting success and 1.83 ± 0.09 fledglings per successful pair. Mesquite (Prosopis velutina) and cottonwood (Populus fremontii) accounted for >50% of 167 nest trees. Nest trees were taller than surrounding trees and random trees, and overall there was more vegetative cover at nest sites than random sites. This apparent requirement for cover around nest sites could be important for management of the species in Arizona. However, any need for cover at nest sites must be balanced with the need for open areas for foraging. Density of nesting Swainson's Hawks was higher in agriculture than in grasslands and desert scrub. Breeding pairs had similar success in agricultural and nonagricultural areas, but the effect of rapid and widespread land-use change on breeding distribution and productivity continues to be a concern throughout the range of the species.
Long-term changes of tree species composition and distribution in Korean mountain forests
NASA Astrophysics Data System (ADS)
Lee, Boknam; Lee, Hoontaek; Cho, Sunhee; Yoon, Jongguk; Park, Jongyoung; Kim, Hyun Seok
2017-04-01
Long-term changes in the abundance and distribution of tree species in the temperate forests of South Korea remain poorly understood. We investigated how tree species composition and stand distribution change across temperate mountainous forests using the species composition and DBH size collected over the past 15 years (1998-2012) across 130 permanent forest plots of 0.1 ha in Jiri and Baegun mountains in South Korea. The overall net change of tree communities over the years showed positive in terms of stand density, richness, diversity, and evenness. At the species level, the change of relative species composition has been led by intermediate and shade-tolerant species, such as Quercus mongolica, Carpinus laxiflora, Quercus serrate, Quercus variabilis, Styrax japonicus, Lindera erythrocarpa, and Pinus densiflora and was categorized into five species communities, representing gradual increase or decrease, establishment, extinction, fluctuation of species population. At the community level, the change in species composition appeared to have consistent and directional patterns of increase in the annual rate of change in the mean species traits including species density, pole growth rate, adult growth rate, and adult stature. Based on the additive models, the distribution of species diversity was significantly related to topographical variables including elevation, latitude, longitude, slope, topographic wetness index, and curvature where elevation was the most significant driver, followed by latitude and longitude. However, the change in distribution of species diversity was only significantly influenced by latitude and longitude. This is the first study to reveal the long-term dynamics of change in tree species composition and distribution, which are important to broaden our understanding of temperate mountainous forest ecosystem in South Korea.
David J. Nowak; Jeffrey T. Walton; James Baldwin; Jerry Bond
2015-01-01
Information on street trees is critical for management of this important resource. Sampling of street tree populations provides an efficient means to obtain street tree population information. Long-term repeat measures of street tree samples supply additional information on street tree changes and can be used to report damages from catastrophic events. Analyses of...
Habitat use of woodpeckers in the Big Woods of eastern Arkansas
Krementz, David G.; Lehnen, Sarah E.; Luscier, J.D.
2012-01-01
The Big Woods of eastern Arkansas contain some of the highest densities of woodpeckers recorded within bottomland hardwood forests of the southeastern United States. A better understanding of habitat use patterns by these woodpeckers is a priority for conservationists seeking to maintain these high densities in the Big Woods and the Lower Mississippi Alluvial Valley as a whole. Hence, we used linear mixed-effects and linear models to estimate the importance of habitat characteristics to woodpecker density in the Big Woods during the breeding seasons of 2006 and 2007 and the winter of 2007. Northern flicker Colaptes auratus density was negatively related to tree density both for moderate (. 25 cm diameter at breast height) and larger trees (>61 cm diameter at breast height). Red-headed woodpeckers Melanerpes erythrocephalus also had a negative relationship with density of large (. 61 cm diameter at breast height) trees. Bark disfiguration (an index of tree health) was negatively related to red-bellied woodpecker Melanerpes carolinus and yellow-bellied sapsucker Sphyrapicus varius densities. No measured habitat variables explained pileated woodpecker Dryocopus pileatus density. Overall, the high densities of woodpeckers observed in our study suggest that the current forest management of the Big Woods of Arkansas is meeting the nesting, roosting, and foraging requirements for these birds.
D’Amato, Anthony W.; Bradford, John B.; Fraver, Shawn; Palik, Brian J.
2013-01-01
Reducing tree densities through silvicultural thinning has been widely advocated as a strategy for enhancing resistance and resilience to drought, yet few empirical evaluations of this approach exist. We examined detailed dendrochronological data from a long-term (>50 yrs) replicated thinning experiment to determine if density reductions conferred greater resistance and/or resilience to droughts, assessed by the magnitude of stand-level growth reductions. Our results suggest that thinning generally enhanced drought resistance and resilience; however, this relationship showed a pronounced reversal over time in stands maintained at lower tree densities. Specifically, lower-density stands exhibited greater resistance and resilience at younger ages (49 years), yet exhibited lower resistance and resilience at older ages (76 years), relative to higher-density stands. We attribute this reversal to significantly greater tree sizes attained within the lower-density stands through stand development, which in turn increased tree-level water demand during the later droughts. Results from response-function analyses indicate that thinning altered growth-climate relationships, such that higher-density stands were more sensitive to growing-season precipitation relative to lower-density stands. These results confirm the potential of density management to moderate drought impacts on growth, and they highlight the importance of accounting for stand structure when predicting climate-change impacts to forest systems.
D'Amato, Anthony W; Bradford, John B; Fraver, Shawn; Palik, Brian J
2013-12-01
Reducing tree densities through silvicultural thinning has been widely advocated as a strategy for enhancing resistance and resilience to drought, yet few empirical evaluations of this approach exist. We examined detailed dendrochronological data from a long-term (> 50 years) replicated thinning experiment to determine if density reductions conferred greater resistance and/or resilience to droughts, assessed by the magnitude of stand-level growth reductions. Our results suggest that thinning generally enhanced drought resistance and resilience; however, this relationship showed a pronounced reversal over time in stands maintained at lower tree densities. Specifically, lower-density stands exhibited greater resistance and resilience at younger ages (49 years), yet exhibited lower resistance and resilience at older ages (76 years), relative to higher-density stands. We attribute this reversal to significantly greater tree sizes attained within the lower-density stands through stand development, which in turn increased tree-level water demand during the later droughts. Results from response-function analyses indicate that thinning altered growth-climate relationships, such that higher-density stands were more sensitive to growing-season precipitation relative to lower-density stands. These results confirm the potential of density management to moderate drought impacts on growth, and they highlight the importance of accounting for stand structure when predicting climate-change impacts to forests.
Ragusa-Netto, J
2014-11-01
Seed predation has major effects on the reproductive success of individuals, spatial patterns of populations, genetic variability, interspecific interactions and ultimately in the diversity of tree communities. At a Brazilian savanna, I evaluated the proportional crop loss of Eriotheca gracilipes due the Blue-Fronted Amazon (Amazona aestiva) during a fruiting period. Also, I analyzed the relationship between proportional crop loss to Amazons and both fruit crop size and the distance from the nearest damaged conspecific. Trees produced from 1 to 109 fruits, so that Amazons foraged more often on trees bearing larger fruit crop size, while seldom visited less productive trees. Moreover, the relationship between fruit crop sizes and the number of depredated fruits was significant. However, when only damaged trees were assessed, I found a negative and significant relation between fruit crop size and proportional crop loss to Blue-Fronted Amazons. Taking into account this as a measure more directly related to the probability of seed survival, a negative density dependent effect emerged. Also, Amazons similarly damaged the fruit crops of either close or distant neighboring damaged trees. Hence, in spite of Blue-Fronted Amazons searched for E. gracilipes bearing large fruit crops, they were swamped due to the presence of more fruits than they could eat. Moderate seed predation by Blue-Fronted Amazons either at trees with large fruit crops or in areas where fruiting trees were aggregated implies in an enhanced probability of E. gracilipes seed survival and consequent regeneration success.
Sweeney, Jon; Silk, Peter J; Rhainds, Marc; MacKay, Wayne; Hughes, Cory; Van Rooyen, Kate; MacKinnon, Wayne; Leclair, Gaetan; Holmes, Steve; Kettela, Edward G
2017-06-01
Tetropium fuscum (F.), native to Europe and established in Nova Scotia, Canada, since at least 1990, is considered a low-to-moderate threat to spruce (Picea spp.) forests in North America and regulated as a quarantine pest by the Canadian Food Inspection Agency. We tested broadcast applications of the aggregation pheromone racemic (5E)-6,10-dimethyl-5,9-undecadien-2-ol (fuscumol), formulated at 10% concentration in Hercon Bio-Flakes (Hercon International, Emigsville, PA), for efficacy in disrupting T. fuscum mating and suppressing populations. Two applications of 2.5-2.75 kg Bio-Flakes (250-275 g a.i.) per ha per season significantly reduced trap catches and mating success (2009, 2010, 2012): about 30% of females trapped in treated plots had mated compared with 60% of females trapped in untreated plots. Similar reductions in mating success were observed in 2011 with one or two 4.5 kg/ha applications of Bio-Flakes. Mean densities of T. fuscum colonizing sentinel bait logs or girdled trees were 36% lower in pheromone-treated plots than in untreated plots, but the difference was not statistically significant. Lack of population suppression may have been because mated females immigrated into treated plots or because populations were so high that despite a 50% reduction in mating success, absolute numbers of mated females were sufficient to infest our bait logs or trees. This is the first demonstration of insect mating disruption via broadcast application of an aggregation pheromone. Pheromone-mediated mating disruption has potential to slow the spread of invasive cerambycids by targeting low-density outlier populations near or beyond the leading edge of an infestation. © Crown copyright 2017.
Macquarrie, Chris J K; Scharbach, Roger
2015-02-01
The success of emerald ash borer (Agrilus planipennis Fairmaire) in North America is hypothesized to be due to both the lack of significant natural enemies permitting easy establishment and a population of trees that lack the ability to defend themselves, which allows populations to grow unchecked. Since its discovery in 2002, a number of studies have examined mortality factors of the insect in forests, but none have examined the role of natural enemies and other mortality agents in the urban forest. This is significant because it is in the urban forest where the emerald ash borer has had the most significant economic impacts. We studied populations in urban forests in three municipalities in Ontario, Canada, between 2010 and 2012 using life tables and stage-specific survivorship to analyze data from a split-rearing manipulative experiment. We found that there was little overall mortality caused by natural enemies; most mortality we did observe was caused by disease. Stage-specific survivorship was lowest in small and large larvae, supporting previous observations of high mortality in these two stages. We also used our data to test the hypothesis that mortality and density in emerald ash borer are linked. Our results support the prediction of a negative relationship between mortality and density. However, the relationship varies between insects developing in the crown and those in the trunk of the tree. This relationship was significant because when incorporated with previous findings, it suggests a mechanism and hypothesis to explain the outbreak dynamics of the emerald ash borer. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dean S. DeBell; Ryan Singleton; Barbara L. Gartner; David D. Marshall
2004-01-01
Breast-high stem sections were sampled from 56 western hemlock (Tsuga heterophylla (Raf.) Sarg.) trees growing in 15 plots representing a wide range of tree and site conditions in northwestern Oregon. Growth and wood density traits of individual rings were measured via X-ray densitometry, and relationships of ring density and its components to age...
Morello-Frosch, Rachel; Cushing, Lara
2013-01-01
Objective: We examined the distribution of heat risk–related land cover (HRRLC) characteristics across racial/ethnic groups and degrees of residential segregation. Methods: Block group–level tree canopy and impervious surface estimates were derived from the 2001 National Land Cover Dataset for densely populated urban areas of the United States and Puerto Rico, and linked to demographic characteristics from the 2000 Census. Racial/ethnic groups in a given block group were considered to live in HRRLC if at least half their population experienced the absence of tree canopy and at least half of the ground was covered by impervious surface (roofs, driveways, sidewalks, roads). Residential segregation was characterized for metropolitan areas in the United States and Puerto Rico using the multigroup dissimilarity index. Results: After adjustment for ecoregion and precipitation, holding segregation level constant, non-Hispanic blacks were 52% more likely (95% CI: 37%, 69%), non-Hispanic Asians 32% more likely (95% CI: 18%, 47%), and Hispanics 21% more likely (95% CI: 8%, 35%) to live in HRRLC conditions compared with non-Hispanic whites. Within each racial/ethnic group, HRRLC conditions increased with increasing degrees of metropolitan area-level segregation. Further adjustment for home ownership and poverty did not substantially alter these results, but adjustment for population density and metropolitan area population attenuated the segregation effects, suggesting a mediating or confounding role. Conclusions: Land cover was associated with segregation within each racial/ethnic group, which may be explained partly by the concentration of racial/ethnic minorities into densely populated neighborhoods within larger, more segregated cities. In anticipation of greater frequency and duration of extreme heat events, climate change adaptation strategies, such as planting trees in urban areas, should explicitly incorporate an environmental justice framework that addresses racial/ethnic disparities in HRRLC. PMID:23694846
Michael J. Clifford; Monique E. Rocca; Robert Delph; Paulette L. Ford; Neil S. Cobb
2008-01-01
The current drought and ensuing bark beetle outbreaks during 2002 to 2004 in the Southwest have greatly increased tree mortality in pinyon-juniper woodlands. We studied causes and consequences of the drought-induced mortality. First, we tested the paradigm that high stand densities in pinyon-juniper woodlands would increase tree mortality. Stand densities did not...
Zhenmin Tang; Jim L. Chambers; Mary A. Sword Sayer; James P. Barnett
2003-01-01
To assess the effects of stand density and canopy environment on tree physiology, we measured gas exchange responses of the same needle age class of 16-year-old loblolly pines (Pinus taeda L.) in thinned (512 trees ha-1) and non-thinned treatment plots (2,863 trees ha-1) in central Louisiana....
Using nonlinear quantile regression to estimate the self-thinning boundary curve
Quang V. Cao; Thomas J. Dean
2015-01-01
The relationship between tree size (quadratic mean diameter) and tree density (number of trees per unit area) has been a topic of research and discussion for many decades. Starting with Reineke in 1933, the maximum size-density relationship, on a log-log scale, has been assumed to be linear. Several techniques, including linear quantile regression, have been employed...
Population dynamics in changing environments: the case of an eruptive forest pest species.
Kausrud, Kyrre; Okland, Bjørn; Skarpaas, Olav; Grégoire, Jean-Claude; Erbilgin, Nadir; Stenseth, Nils Chr
2012-02-01
In recent decades we have seen rapid and co-occurring changes in landscape structure, species distributions and even climate as consequences of human activity. Such changes affect the dynamics of the interaction between major forest pest species, such as bark beetles (Coleoptera: Curculionidae, Scolytinae), and their host trees. Normally breeding mostly in broken or severely stressed spruce; at high population densities some bark beetle species can colonise and kill healthy trees on scales ranging from single trees in a stand to multi-annual landscape-wide outbreaks. In Eurasia, the largest outbreaks are caused by the spruce bark beetle, Ips typographus (Linnaeus), which is common and shares a wide distribution with its main host, Norway spruce (Picea abies Karst.). A large literature is now available, from which this review aims to synthesize research relevant for the population dynamics of I. typographus and co-occurring species under changing conditions. We find that spruce bark beetle population dynamics tend to be metastable, but that mixed-species and age-heterogeneous forests with good site-matching tend to be less susceptible to large-scale outbreaks. While large accumulations of logs should be removed and/or debarked before the next swarming period, intensive removal of all coarse dead wood may be counterproductive, as it reduces the diversity of predators that in some areas may play a role in keeping I. typographus populations below the outbreak threshold, and sanitary logging frequently causes edge effects and root damage, reducing the resistance of remaining trees. It is very hard to predict the outcome of interspecific interactions due to invading beetle species or I. typographus establishing outside its current range, as they can be of varying sign and strength and may fluctuate depending on environmental factors and population phase. Most research indicates that beetle outbreaks will increase in frequency and magnitude as temperature, wind speed and precipitation variability increases, and that mitigating forestry practices should be adopted as soon as possible considering the time lags involved. © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.
What regulates crab predation on mangrove propagules?
NASA Astrophysics Data System (ADS)
Van Nedervelde, Fleur; Cannicci, Stefano; Koedam, Nico; Bosire, Jared; Dahdouh-Guebas, Farid
2015-02-01
Crabs play a major role in some ecosystems. To increase our knowledge about the factors that influence crab predation on propagules in mangrove forests, we performed experiments in Gazi Bay, Kenya in July 2009. We tested whether: (1) crab density influences propagule predation rate; (2) crab size influences food competition and predation rate; (3) crabs depredate at different rates according to propagule and canopy cover species; (4) vegetation density is correlated with crab density; (5) food preferences of herbivorous crabs are determined by size, shape and nutritional value. We found that (1) propagule predation rate was positively correlated to crab density. (2) Crab competitive abilities were unrelated to their size. (3) Avicennia marina propagules were consumed more quickly than Ceriops tagal except under C. tagal canopies. (4) Crab density was negatively correlated with the density of A. marina trees and pneumatophores. (5) Crabs prefer small items with a lower C:N ratio. Vegetation density influences crab density, and crab density affects propagule availability and hence vegetation recruitment rate. Consequently, the mutual relationships between vegetation and crab populations could be important for forest restoration success and management.
Single-Step BLUP with Varying Genotyping Effort in Open-Pollinated Picea glauca.
Ratcliffe, Blaise; El-Dien, Omnia Gamal; Cappa, Eduardo P; Porth, Ilga; Klápště, Jaroslav; Chen, Charles; El-Kassaby, Yousry A
2017-03-10
Maximization of genetic gain in forest tree breeding programs is contingent on the accuracy of the predicted breeding values and precision of the estimated genetic parameters. We investigated the effect of the combined use of contemporary pedigree information and genomic relatedness estimates on the accuracy of predicted breeding values and precision of estimated genetic parameters, as well as rankings of selection candidates, using single-step genomic evaluation (HBLUP). In this study, two traits with diverse heritabilities [tree height (HT) and wood density (WD)] were assessed at various levels of family genotyping efforts (0, 25, 50, 75, and 100%) from a population of white spruce ( Picea glauca ) consisting of 1694 trees from 214 open-pollinated families, representing 43 provenances in Québec, Canada. The results revealed that HBLUP bivariate analysis is effective in reducing the known bias in heritability estimates of open-pollinated populations, as it exposes hidden relatedness, potential pedigree errors, and inbreeding. The addition of genomic information in the analysis considerably improved the accuracy in breeding value estimates by accounting for both Mendelian sampling and historical coancestry that were not captured by the contemporary pedigree alone. Increasing family genotyping efforts were associated with continuous improvement in model fit, precision of genetic parameters, and breeding value accuracy. Yet, improvements were observed even at minimal genotyping effort, indicating that even modest genotyping effort is effective in improving genetic evaluation. The combined utilization of both pedigree and genomic information may be a cost-effective approach to increase the accuracy of breeding values in forest tree breeding programs where shallow pedigrees and large testing populations are the norm. Copyright © 2017 Ratcliffe et al.
Estimating stem volume and biomass of Pinus koraiensis using LiDAR data.
Kwak, Doo-Ahn; Lee, Woo-Kyun; Cho, Hyun-Kook; Lee, Seung-Ho; Son, Yowhan; Kafatos, Menas; Kim, So-Ra
2010-07-01
The objective of this study was to estimate the stem volume and biomass of individual trees using the crown geometric volume (CGV), which was extracted from small-footprint light detection and ranging (LiDAR) data. Attempts were made to analyze the stem volume and biomass of Korean Pine stands (Pinus koraiensis Sieb. et Zucc.) for three classes of tree density: low (240 N/ha), medium (370 N/ha), and high (1,340 N/ha). To delineate individual trees, extended maxima transformation and watershed segmentation of image processing methods were applied, as in one of our previous studies. As the next step, the crown base height (CBH) of individual trees has to be determined; information for this was found in the LiDAR point cloud data using k-means clustering. The LiDAR-derived CGV and stem volume can be estimated on the basis of the proportional relationship between the CGV and stem volume. As a result, low tree-density plots had the best performance for LiDAR-derived CBH, CGV, and stem volume (R (2) = 0.67, 0.57, and 0.68, respectively) and accuracy was lowest for high tree-density plots (R (2) = 0.48, 0.36, and 0.44, respectively). In the case of medium tree-density plots accuracy was R (2) = 0.51, 0.52, and 0.62, respectively. The LiDAR-derived stem biomass can be predicted from the stem volume using the wood basic density of coniferous trees (0.48 g/cm(3)), and the LiDAR-derived above-ground biomass can then be estimated from the stem volume using the biomass conversion and expansion factors (BCEF, 1.29) proposed by the Korea Forest Research Institute (KFRI).
Wooley, Stuart C.; Donaldson, Jack R.; Gusse, Adam C.; Lindroth, Richard L.; Stevens, Michael T.
2007-01-01
Background and Aims A wide variety of plants produce extrafloral nectaries (EFNs) that are visited by predatory arthropods. But very few studies have investigated the relationship between plant genetic variation and EFNs. The presence of foliar EFNs is highly variable among different aspen (Populus tremuloides) genotypes and the EFNs are visited by parasitic wasps and predatory flies. The aim here was to determine the heritability of EFNs among aspen genotypes and age classes, possible trade-offs between direct and indirect defences, EFN induction following herbivory, and the relationship between EFNs and predatory insects. Methods EFN density was quantified among aspen genotypes in Wisconsin on trees of different ages and broad-sense heritability from common garden trees was calculated. EFNs were also quantified in natural aspen stands in Utah. From the common garden trees foliar defensive chemical levels were quantified to evaluate their relationship with EFN density. A defoliation experiment was performed to determine if EFNs can be induced in response to herbivory. Finally, predatory arthropod abundance among aspen trees was quantified to determine the relationship between arthropod abundance and EFNs. Key Results Broad-sense heritability for expression (0·74–0·82) and induction (0·85) of EFNs was high. One-year-old trees had 20% greater EFN density than 4-year-old trees and more than 50% greater EFN density than ≥10-year-old trees. No trade-offs were found between foliar chemical concentrations and EFN density. Predatory fly abundance varied among aspen genotypes, but predatory arthropod abundance and average EFN density were not related. Conclusions Aspen extrafloral nectaries are strongly genetically determined and have the potential to respond rapidly to evolutionary forces. The pattern of EFN expression among different age classes of trees appears to follow predictions of optimal defence theory. The relationship between EFNs and predators likely varies in relation to multiple temporal and environmental factors. PMID:17951361
Jiang, Ze-Hui; Wang, Yu-Rong; Fei, Ben-Hua; Fu, Feng; Hse, Chung-Yun
2007-06-01
Rapid prediction of annual ring density of Paulownia elongate standing trees using near infrared spectroscopy was studied. It was non-destructive to collect the samples for trees, that is, the wood cores 5 mm in diameter were unthreaded at the breast height of standing trees instead of fallen trees. Then the spectra data were collected by autoscan method of NIR. The annual ring density was determined by mercury immersion. And the models were made and analyzed by the partial least square (PLS) and full cross validation in the 350-2 500 nm wavelength range. The results showed that high coefficients were obtained between the annual ring and the NIR fitted data. The correlation coefficient of prediction model was 0.88 and 0.91 in the middle diameter and bigger diameter, respectively. Moreover, high coefficients of correlation were also obtained between annual ring density laboratory-determined and the NIR fitted data in the middle diameter of Paulownia elongate standing trees, the correlation coefficient of calibration model and prediction model were 0.90 and 0.83, and the standard errors of calibration (SEC) and standard errors of prediction(SEP) were 0.012 and 0.016, respectively. The method can simply, rapidly and non-destructively estimate the annual ring density of the Paulownia elongate standing trees close to the cutting age.
John T. Perren; Michael Kane; Dehai Zhao; Richard Daniels
2016-01-01
Thinning is a well understood concept used to manage density dependent factors at the stand level. This study evaluates the effect of planting density, cultural intensity, and thinning treatment on loblolly pine post-thinning individual tree development. The Lower Coastal Plain Culture/Density Study, has four initial densities, in combination with two cultural...
Ming, Feng; Liu, Qi-Kun; Shi, Jin-Lei; Wang, Wei; Lu, Bao-Rong
2009-01-01
To effectively conserve sour orange (Citrus aurantium L.) germplasm on two islands at the estuary of the Yangtze River in China, we estimated genetic variation and relationships of the known parental trees and their proposed descendents (young trees) using the fingerprints of random amplified polymorphic DNA (RAPD). Results based on RAPD analyses showed considerable genetic diversity in the parental populations (H(e)=0.202). The overall populations including the parental and young trees showed slightly higher genetic diversity (H(e)=0.298) than the parents, with about 10% variation between populations. An unweighted pair group method with arithmetic mean analysis dendrogram based on cluster analysis of the Jaccard similarity among individuals demonstrated a more complicated relationship of the parental and young trees from the two islands, although the young trees showed a clear association with parental trees. This indicates a significant contribution of parental trees in establishing the sour orange populations on the two islands. According to farmers' knowledge, conservation of only one or two parental trees would be sufficient because they believed that the whole populations were generated from a single mother tree. However, this study suggests that preserving most parental trees and some selected young trees with distant genetic relationships should be an effective conservation strategy for sour orange germplasm on the two islands.
Range expansion promotes cooperation in an experimental microbial metapopulation
Datta, Manoshi Sen; Korolev, Kirill S.; Cvijovic, Ivana; Dudley, Carmel; Gore, Jeff
2013-01-01
Natural populations throughout the tree of life undergo range expansions in response to changes in the environment. Recent theoretical work suggests that range expansions can have a strong effect on evolution, even leading to the fixation of deleterious alleles that would normally be outcompeted in the absence of migration. However, little is known about how range expansions might influence alleles under frequency- or density-dependent selection. Moreover, there is very little experimental evidence to complement existing theory, since expanding populations are difficult to study in the natural environment. In this study, we have used a yeast experimental system to explore the effect of range expansions on the maintenance of cooperative behaviors, which commonly display frequency- and density-dependent selection and are widespread in nature. We found that range expansions favor the maintenance of cooperation in two ways: (i) through the enrichment of cooperators at the front of the expanding population and (ii) by allowing cooperators to “outrun” an invading wave of defectors. In this system, cooperation is enhanced through the coupling of population ecology and evolutionary dynamics in expanding populations, thus providing experimental evidence for a unique mechanism through which cooperative behaviors could be maintained in nature. PMID:23569263
Soil cover by natural trees in agroforestry systems
NASA Astrophysics Data System (ADS)
Diaz-Ambrona, C. G. H.; Almoguera Millán, C.; Tarquis Alfonso, A.
2009-04-01
The dehesa is common agroforestry system in the Iberian Peninsula. These open oak parklands with silvo-pastoral use cover about two million hectares. Traditionally annual pastures have been grazed by cows, sheep and also goats while acorns feed Iberian pig diet. Evergreen oak (Quercus ilex L.) has other uses as fuelwood collection and folder after tree pruning. The hypothesis of this work is that tree density and canopy depend on soil types. We using the spanish GIS called SIGPAC to download the images of dehesa in areas with different soil types. True colour images were restoring to a binary code, previously canopy colour range was selected. Soil cover by tree canopy was calculated and number of trees. Processing result was comparable to real data. With these data we have applied a dynamic simulation model Dehesa to determine evergreen oak acorn and annual pasture production. The model Dehesa is divided into five submodels: Climate, Soil, Evergreen oak, Pasture and Grazing. The first three require the inputs: (i) daily weather data (maximum and minimum temperatures, precipitation and solar radiation); (ii) the soil input parameters for three horizons (thickness, field capacity, permanent wilting point, and bulk density); and (iii) the tree characterization of the dehesa (tree density, canopy diameter and height, and diameter of the trunk). The influence of tree on pasture potential production is inversely proportional to the canopy cover. Acorn production increase with tree canopy cover until stabilizing itself, and will decrease if density becomes too high (more than 80% soil tree cover) at that point there is competition between the trees. Main driving force for dehesa productivity is soil type for pasture, and tree cover for acorn production. Highest pasture productivity was obtained on soil Dystric Planosol (Alfisol), Dystric Cambisol and Chromo-calcic-luvisol, these soils only cover 22.4% of southwest of the Iberian peninssula. Lowest productivity was obtained on Dystric Lithosol.
NASA Astrophysics Data System (ADS)
Welsh, C.; Smith, D. J.; Edwards, T.; Prowse, T.
2016-12-01
Ongoing climate change is expected to have lasting impacts on the runoff behaviour of rivers in northern British Columbia, Canada. Of particular concern is the loss of mountain snowpack and greater rainfall totals altering hydrograph characteristics. Sustained deviations in seasonal streamflow will pose significant challenges for effective watershed management. These ongoing changes highlight the importance of improving our understanding of the long-term biophysical linkages between the storage and release of water and downstream freshwater ecosystems. Such integrated research is particularly relevant to fisheries management as fluctuations in populations of Pacific salmon represent a complex and management-relevant biophysical issue in northern Canada. Unfortunately, hydroclimate and salmon productivity records in this region are sparse and of short duration, constraining our understanding of the impact of climate-induced hydrologic changes and biological responses to the last century. Proxy records derived from tree-rings provide annually or seasonally resolved data and have played a prominent role in attempts to establish how hydroclimate has varied in the past. The objective of my doctoral research is to reconstruct the prehistoric hydroclimate and salmon population trends in the Skeena, Nass and Stikine Watersheds using multiple tree-ring proxies to investigate the long-term biophysical linkages extending across a headwater-to-coast continuum in northern British Columbia, Canada. Ring-width, wood density and stable isotope chronologies using a number of mid-to high-elevation tree species will be constructed across each basin and sub-basin area for the purposes of reconstrucing the predominent temperature and precipiation signature that influence streamflow. Preliminary tree-ring δ18O and δ13C-isotope results indicate a strong negative association with mean monthly relative humidity values, suggesting a physiological control by moisture loss. The results of this study highlight the importance of combining several tree-ring parameters and species in order to strengthen streamflow reconstructions. This study is ongoing and has an estimated completion timeframe of spring 2018.
Restoration of the ponderosa pine ecosystem and its understory
Lee E. Hughes
2008-01-01
Restoration of the Mt. Logan ponderosa pine ecosystem has been on-going since 1995. This effort included tree thinning to a density based on what the tree density was in 1870. The desired plant community objectives from the Mt. Trumbull Resource Conservation Area Plan had a forest objective as 50% trees to be in old-growth - i.e., a diameter class of 20-31.9+ inch...
Camaratta, Danielle; Chaves, Óscar M; Bicca-Marques, Júlio César
2017-03-01
Understanding the ecological factors that influence the presence, abundance, and distribution of species within their habitats is critical for ensuring their long-term conservation. In the case of primary consumers, such as most primates, the availability and richness of plant foods are considered key drivers of population density at these variables influence the spatial distribution of social units within a finer, habitat patch level scale. We tested the hypothesis that the spatiotemporal availability and richness of plant foods, drive the spatial distribution of brown howler monkeys (Alouatta guariba clamitans) at a fine spatial scale. We established five line transects (2.6-4.3 km long) to census the population of brown howlers in Morro São Pedro, a 1,200 ha Atlantic forest remnant in southern Brazil, every 2 weeks from January to June 2015. We used data from tree inventories performed in sighting and control plots, and phenological surveys of 17 top food tree species to estimate bi-weekly food availability. We recorded a total of 95 sightings. The number of sightings per sampling period ranged from 2 to 12. The availability of fruit (ripe and unripe) was higher in sighting than in control plots, whereas leaf availability and the richness of food tree species was similar. We conclude that the spatial distribution of fruiting trees and the availability of fruit drive the pattern of habitat use, and spacing of brown howler groups in Morro São Pedro. © 2017 Wiley Periodicals, Inc.
Strickland, Dan; Kielstra, Brian; Ryan Norris, D
2011-12-01
Variation in habitat quality can have important consequences for fitness and population dynamics. For food-caching species, a critical determinant of habitat quality is normally the density of storable food, but it is also possible that quality is driven by the ability of habitats to preserve food items. The food-caching gray jay (Perisoreus canadensis) occupies year-round territories in the coniferous boreal and subalpine forests of North America, but does not use conifer seed crops as a source of food. Over the last 33 years, we found that the occupancy rate of territories in Algonquin Park (ON, Canada) has declined at a higher rate in territories with a lower proportion of conifers compared to those with a higher proportion. Individuals occupying territories with a low proportion of conifers were also less likely to successfully fledge young. Using chambers to simulate food caches, we conducted an experiment to examine the hypothesis that coniferous trees are better able to preserve the perishable food items stored in summer and fall than deciduous trees due to their antibacterial and antifungal properties. Over a 1-4 month exposure period, we found that mealworms, blueberries, and raisins all lost less weight when stored on spruce and pine trees compared to deciduous and other coniferous trees. Our results indicate a novel mechanism to explain how habitat quality may influence the fitness and population dynamics of food-caching animals, and has important implications for understanding range limits for boreal breeding animals.
Buckelew Cumming Anne; Daniel Twardus; William Smith
2006-01-01
Urban forests have many components: park trees, small woodlands, riparian buffers, street trees, and others. While some communities conduct city-wide inventories of street tree populations, there has been no comprehensive, statewide sampling to characterize the structure, health, and function of street tree populations. A statewide Street Tree Monitoring pilot study...
Oil Palm and Rubber Tree Water Use Patterns: Effects of Topography and Flooding
Hardanto, Afik; Röll, Alexander; Niu, Furong; Meijide, Ana; Hendrayanto; Hölscher, Dirk
2017-01-01
Oil palm and rubber plantations extend over large areas and encompass heterogeneous site conditions. In periods of high rainfall, plants in valleys and at riparian sites are more prone to flooding than plants at elevated topographic positions. We asked to what extent topographic position and flooding affect oil palm and rubber tree water use patterns and thereby influence spatial and temporal heterogeneity of transpiration. In an undulating terrain in the lowlands of Jambi, Indonesia, plantations of the two species were studied in plot pairs consisting of upland and adjacent valley plots. All upland plots were non-flooded, whereas the corresponding valley plots included non-flooded, long-term flooded, and short-term flooded conditions. Within each plot pair, sap flux densities in palms or trees were monitored simultaneously with thermal dissipation probes. In plot pairs with non-flooded valleys, sap flux densities of oil palms were only slightly different between the topographic positions, whereas sap flux densities of rubber trees were higher in the valley than at the according upland site. In pairs with long-term flooded valleys, sap flux densities in valleys were lower than at upland plots for both species, but the reduction was far less pronounced in oil palms than in rubber trees (-22 and -45% in maximum sap flux density, respectively). At these long-term flooded valley plots palm and tree water use also responded less sensitively to fluctuations in micrometeorological variables than at upland plots. In short-term flooded valley plots, sap flux densities of oil palm were hardly affected by flooding, but sap flux densities of rubber trees were reduced considerably. Topographic position and flooding thus affected water use patterns in both oil palms and rubber trees, but the changes in rubber trees were much more pronounced: compared to non-flooded upland sites, the different flooding conditions at valley sites amplified the observed heterogeneity of plot mean water use by a factor of 2.4 in oil palm and by a factor of 4.2 in rubber plantations. Such strong differences between species as well as the pronounced heterogeneity of water use across space and time may be of relevance for eco-hydrological assessments of tropical plantation landscapes. PMID:28421091
On incomplete sampling under birth-death models and connections to the sampling-based coalescent.
Stadler, Tanja
2009-11-07
The constant rate birth-death process is used as a stochastic model for many biological systems, for example phylogenies or disease transmission. As the biological data are usually not fully available, it is crucial to understand the effect of incomplete sampling. In this paper, we analyze the constant rate birth-death process with incomplete sampling. We derive the density of the bifurcation events for trees on n leaves which evolved under this birth-death-sampling process. This density is used for calculating prior distributions in Bayesian inference programs and for efficiently simulating trees. We show that the birth-death-sampling process can be interpreted as a birth-death process with reduced rates and complete sampling. This shows that joint inference of birth rate, death rate and sampling probability is not possible. The birth-death-sampling process is compared to the sampling-based population genetics model, the coalescent. It is shown that despite many similarities between these two models, the distribution of bifurcation times remains different even in the case of very large population sizes. We illustrate these findings on an Hepatitis C virus dataset from Egypt. We show that the transmission times estimates are significantly different-the widely used Gamma statistic even changes its sign from negative to positive when switching from the coalescent to the birth-death process.
Janneke Hille Ris Lambers; James S. Clark
2003-01-01
Processes limiting recruitment of trees may have large impacts on forest dynamics. In this paper, we determined the effects of dispersal, shrubs (Rhododendron maximum), and density-dependent mortality on seed and seedling distributions of Southern Appalachian trees. We quantified the spatial distribution of seed rain, seed bank densities, first-year...
NASA Astrophysics Data System (ADS)
Björklund, J. A.; Gunnarson, B. E.; Seftigen, K.; Esper, J.; Linderholm, H. W.
2014-04-01
Here we explore two new tree-ring parameters, derived from measurements of wood density and blue intensity (BI). The new proxies show an increase in the interannual summer temperature signal compared to established proxies, and present the potential to improve long-term performance. At high latitudes, where tree growth is mainly limited by low temperatures, radiodensitometric measurements of wood density, specifically maximum latewood density (MXD), provides a temperature proxy that is superior to that of tree-ring widths. The high cost of developing MXD has led to experimentation with a less expensive method using optical flatbed scanners to produce a new proxy, herein referred to as maximum latewood blue absorption intensity (abbreviated MXBI). MXBI is shown to be very similar to MXD on annual timescales but less accurate on centennial timescales. This is due to the fact that extractives, such as resin, stain the wood differentially from tree to tree and from heartwood to sapwood. To overcome this problem, and to address similar potential problems in radiodensitometric measurements, the new parameters Δblue intensity (ΔBI) and Δdensity are designed by subtracting the ambient BI/density in the earlywood, as a background value, from the latewood measurements. As a case-study, based on Scots pine trees from Northern Sweden, we show that Δdensity can be used as a quality control of MXD values and that the reconstructive performance of warm-season mean temperatures is more focused towards the summer months (JJA - June, July, August), with an increase by roughly 20% when also utilising the interannual information from the earlywood. However, even though the new parameter ΔBI experiences an improvement as well, there are still puzzling dissimilarities between Δdensity and ΔBI on multicentennial timescales. As a consequence, temperature reconstructions based on ΔBI will presently only be able to resolve information on decadal-to-centennial timescales. The possibility of trying to calibrate BI into a measure of lignin content or density, similarly to how radiographic measurements are calibrated into density, could be a solution. If this works, only then can ΔBI be used as a reliable proxy in multicentennial-scale climate reconstructions.
RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection.
Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S
Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request.
RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection
Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S.
2015-01-01
Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request. PMID:25685112
The balance of planting and mortality in a street tree population
Lara A. Roman; John J. Battles; Joe R. McBride
2013-01-01
Street trees have aesthetic, environmental, human health, and economic benefits in urban ecosystems. Street tree populations are constructed by cycles of planting, growth, death, removal and replacement. The goals of this study were to understand how tree mortality and planting rates affect net population growth, evaluate the shape of the mortality curve, and assess...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupšys, P.
A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.
iNJclust: Iterative Neighbor-Joining Tree Clustering Framework for Inferring Population Structure.
Limpiti, Tulaya; Amornbunchornvej, Chainarong; Intarapanich, Apichart; Assawamakin, Anunchai; Tongsima, Sissades
2014-01-01
Understanding genetic differences among populations is one of the most important issues in population genetics. Genetic variations, e.g., single nucleotide polymorphisms, are used to characterize commonality and difference of individuals from various populations. This paper presents an efficient graph-based clustering framework which operates iteratively on the Neighbor-Joining (NJ) tree called the iNJclust algorithm. The framework uses well-known genetic measurements, namely the allele-sharing distance, the neighbor-joining tree, and the fixation index. The behavior of the fixation index is utilized in the algorithm's stopping criterion. The algorithm provides an estimated number of populations, individual assignments, and relationships between populations as outputs. The clustering result is reported in the form of a binary tree, whose terminal nodes represent the final inferred populations and the tree structure preserves the genetic relationships among them. The clustering performance and the robustness of the proposed algorithm are tested extensively using simulated and real data sets from bovine, sheep, and human populations. The result indicates that the number of populations within each data set is reasonably estimated, the individual assignment is robust, and the structure of the inferred population tree corresponds to the intrinsic relationships among populations within the data.
Allman, Elizabeth S; Degnan, James H; Rhodes, John A
2011-06-01
Gene trees are evolutionary trees representing the ancestry of genes sampled from multiple populations. Species trees represent populations of individuals-each with many genes-splitting into new populations or species. The coalescent process, which models ancestry of gene copies within populations, is often used to model the probability distribution of gene trees given a fixed species tree. This multispecies coalescent model provides a framework for phylogeneticists to infer species trees from gene trees using maximum likelihood or Bayesian approaches. Because the coalescent models a branching process over time, all trees are typically assumed to be rooted in this setting. Often, however, gene trees inferred by traditional phylogenetic methods are unrooted. We investigate probabilities of unrooted gene trees under the multispecies coalescent model. We show that when there are four species with one gene sampled per species, the distribution of unrooted gene tree topologies identifies the unrooted species tree topology and some, but not all, information in the species tree edges (branch lengths). The location of the root on the species tree is not identifiable in this situation. However, for 5 or more species with one gene sampled per species, we show that the distribution of unrooted gene tree topologies identifies the rooted species tree topology and all its internal branch lengths. The length of any pendant branch leading to a leaf of the species tree is also identifiable for any species from which more than one gene is sampled.
75 FR 48927 - Sierra National Forest, Bass Lake Ranger District, California, Fish Camp Project
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-12
... stocked and thinning is needed. This thinning is needed to reduce inter-tree competition and improve tree... densities are above what can be sustained, with inter-tree competition increasing and tree vigor beginning... communities and reduce inter tree competition to improve tree vigor and increase stand resistance to drought...
Brewer, S.K.; Rabeni, C.F.
2011-01-01
This study examined how interactions between natural landscape features and land use influenced the abundance of smallmouth bass, Micropterus dolomieu, in Missouri, USA, streams. Stream segments were placed into one of four groups based on natural-occurring watershed characteristics (soil texture and soil permeability) predicted to relate to smallmouth bass abundance. Within each group, stream segments were assigned forest (n = 3), pasture (n = 3), or urban (n = 3) designations based on the percentages of land use within each watershed. Analyses of variance indicated smallmouth bass densities differed between land use and natural conditions. Decision tree models indicated abundance was highest in forested stream segments and lowest in urban stream segments, regardless of group designation. Land use explained the most variation in decision tree models, but in-channel features of temperature, flow, and sediment also contributed significantly. These results are unique and indicate the importance of natural-occurring watershed conditions in defining the potential of populations and how finer-scale filters interact with land use to further alter population potential. Smallmouth bass has differing vulnerabilities to land-use attributes, and the better the natural watershed conditions are for population success, the more resilient these populations will be when land conversion occurs.
Goodrich, Betsy A; Waring, Kristen M; Kolb, Thomas E
2016-10-01
The persistence of some tree species is threatened by combinations of novel abiotic and biotic stressors. To examine the hypothesis that Pinus strobiformis Engelm., a tree threatened by an invasive forest pathogen and a changing climate, exhibits intraspecific genetic variation in adaptive traits, we conducted a common garden study of seedlings at one location with two watering regimes using 24 populations. Four key findings emerged: (i) growth and physiological traits were low to moderately differentiated among populations but differentiation was high for some traits in water-stressed populations; (ii) seedlings from warmer climates grew larger, had higher stomatal density and were more water-use efficient (as measured by the carbon isotope ratio) than populations from colder climates; (iii) seedlings from the northern edge of the species' distribution had lower water-use efficiency, higher stomatal conductance, slower growth and longer survival in a lethal drought experiment compared with seedlings from more southern populations; and (iv) based on non-metric multidimensional scaling analyses, populations clustered into southern and northern groups, which did not correspond to current seed transfer zones. Our discovery of a clinal geographic pattern of genetic variation in adaptive traits of P. strobiformis seedlings will be useful in developing strategies to maintain the species during ongoing climate change and in the face of an invasive pathogen. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Breed, Martin F; Gardner, Michael G; Ottewell, Kym M; Navarro, Carlos M; Lowe, Andrew J
2012-01-01
The influence of habitat fragmentation on mating patterns and progeny fitness in trees is critical for understanding the long-term impact of contemporary landscape change on the sustainability of biodiversity. We examined the relationship between mating patterns, using microsatellites, and fitness of progeny, in a common garden trial, for the insect-pollinated big-leaf mahogany, Swietenia macrophylla King, sourced from forests and isolated trees in 16 populations across Central America. As expected, isolated trees had disrupted mating patterns and reduced fitness. However, for dry provenances, fitness was negatively related to correlated paternity, while for mesic provenances, fitness was correlated positively with outcrossing rate and negatively with correlated paternity. Poorer performance of mesic provenances is likely because of reduced effective pollen donor density due to poorer environmental suitability and greater disturbance history. Our results demonstrate a differential shift in reproductive assurance and inbreeding costs in mahogany, driven by exploitation history and contemporary landscape context. PMID:22381041
Bates, Anne L.; Orem, William H.; Newman, Susan; Gawlik, Dale E.; Lerch, Harry E.; Corum, Margo D.; Van Winkle, Monica
2010-01-01
Concentrations of organic biomarkers and concentrations of phosphorus in soil cores can potentially be used as proxies for historic population densities of wading birds on tree islands in the Florida Everglades. This report focuses on establishing a link between the organic biomarker uric acid found in wading bird guano and the high phosphorus concentrations in tree island soils in the Florida Everglades. Uric acid was determined in soil core sections, in surface samples, and in bird guano by using a method of high-performance liquid chromatography-mass spectrometry (HPLC-MS) developed for this purpose. Preliminary results show an overall correlation between uric acid and total phosphorus in three soil cores, with a general trend of decreasing concentrations of both uric acid and phosphorus with depth. However, we have also found no uric acid in a soil core having high concentrations of phosphorus. We believe that this result may be explained by different geochemical circumstances at that site.
King, S.L.; Keeland, B.D.; Moore, J.L.
1998-01-01
Caddo Lake, USA, a Ramsar Wetland of International Importance, is a lacustrine wetland complex consisting of stands of flooded baldcypress intermixed with open water and emergent wetland habitats. Recently, concern has been expressed over a perceived increase in the beaver population and the impact of beaver on the long-term sustainability of the baldcypress ecosystem. We used intensive beaver lodge surveys to determine the distribution and relative abundance of beaver and the amount, type, and distribution of beaver damage to mature trees and seedlings at Caddo Lake. A total of 229 lodges were located with a combination of aerial and boat/ground surveys. Most lodges were located in open water and edge habitats. About 95% of the lodges were occupied by beaver or nutria. Some form of damage was exhibited by one or more trees near 85% of the lodges. Intensive damage assessments around 35 lodges indicated that most damage to trees, baldcypress in particular, was restricted to peeling or stripping of bark which is believed to have minimal effect on tree survival. Surveys of regeneration indicated that baldcypress seedlings were very abundant; however, over 99.9% were less than 30 cm tall. The lack of recruitment into the larger size classes appears to be a result of high stand densities and water management practices. At this time, the young age and density of the baldcypress forests suggest that recruitment is not a major concern and herbivore damage appears to be having a minimal effect on the forest.
Ecological consequences of forest elephant declines for Afrotropical forests.
Poulsen, John R; Rosin, Cooper; Meier, Amelia; Mills, Emily; Nuñez, Chase L; Koerner, Sally E; Blanchard, Emily; Callejas, Jennifer; Moore, Sarah; Sowers, Mark
2018-06-01
Poaching is rapidly extirpating African forest elephants (Loxodonta cyclotis) from most of their historical range, leaving vast areas of elephant-free tropical forest. Elephants are ecological engineers that create and maintain forest habitat; thus, their loss will have large consequences for the composition and structure of Afrotropical forests. Through a comprehensive literature review, we evaluated the roles of forest elephants in seed dispersal, nutrient recycling, and herbivory and physical damage to predict the cascading ecological effects of their population declines. Loss of seed dispersal by elephants will favor tree species dispersed abiotically and by smaller dispersal agents, and tree species composition will depend on the downstream effects of changes in elephant nutrient cycling and browsing. Loss of trampling and herbivory of seedlings and saplings will result in high tree density with release from browsing pressures. Diminished seed dispersal by elephants and high stem density are likely to reduce the recruitment of large trees and thus increase homogeneity of forest structure and decrease carbon stocks. The loss of ecological services by forest elephants likely means Central African forests will be more like Neotropical forests, from which megafauna were extirpated thousands of years ago. Without intervention, as much as 96% of Central African forests will have modified species composition and structure as elephants are compressed into remaining protected areas. Stopping elephant poaching is an urgent first step to mitigating these effects, but long-term conservation will require land-use planning that incorporates elephant habitat into forested landscapes that are being rapidly transformed by industrial agriculture and logging. © 2017 Society for Conservation Biology.
2016-01-01
Motivation: Gene tree represents the evolutionary history of gene lineages that originate from multiple related populations. Under the multispecies coalescent model, lineages may coalesce outside the species (population) boundary. Given a species tree (with branch lengths), the gene tree probability is the probability of observing a specific gene tree topology under the multispecies coalescent model. There are two existing algorithms for computing the exact gene tree probability. The first algorithm is due to Degnan and Salter, where they enumerate all the so-called coalescent histories for the given species tree and the gene tree topology. Their algorithm runs in exponential time in the number of gene lineages in general. The second algorithm is the STELLS algorithm (2012), which is usually faster but also runs in exponential time in almost all the cases. Results: In this article, we present a new algorithm, called CompactCH, for computing the exact gene tree probability. This new algorithm is based on the notion of compact coalescent histories: multiple coalescent histories are represented by a single compact coalescent history. The key advantage of our new algorithm is that it runs in polynomial time in the number of gene lineages if the number of populations is fixed to be a constant. The new algorithm is more efficient than the STELLS algorithm both in theory and in practice when the number of populations is small and there are multiple gene lineages from each population. As an application, we show that CompactCH can be applied in the inference of population tree (i.e. the population divergence history) from population haplotypes. Simulation results show that the CompactCH algorithm enables efficient and accurate inference of population trees with much more haplotypes than a previous approach. Availability: The CompactCH algorithm is implemented in the STELLS software package, which is available for download at http://www.engr.uconn.edu/ywu/STELLS.html. Contact: ywu@engr.uconn.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307621
Ecosystem development on terraces along the Kugururok River, northwest Alaska
Binkley, Dan; Suarez, F.; Stottlemyer, R.; Caldwell, B.
1997-01-01
Riverside terraces along the Kugururok River in the Noatak National Preserve provided an opportunity to study primary succession, considering general trends that apply across all terraces, and unique events that influence individual terraces. The 30-year-old willow/poplar (Salix spp., Populus balsamifera L.) terrace had no trees taller than 1.5 m; the abundant spruce trees were not tall enough to emerge from the canopy height of the willows and poplars, and moose (Alces alces [Clinton]) browsing limited the canopy height of these plants. The 75-year-old poplar/spruce (Picea glauca [Moench] Voss) terrace had a high density of poplars (> 1000/ha) and low density of spruce (125/ha); heavy browsing by moose reduced the density of poplar by about one-half. The removal of the poplar by moose in this stand resulted in sustained increases in growth of individual spruce trees. The 100-year-old younger spruce/poplar terrace had about twice as many spruce trees (1250/ha) as poplar trees (500/ha), and the spruce trees were larger on average than the poplar trees. In the 220+ year-old older spruce/poplar type, only a few poplars remained (about 25/ha), and the number of spruce trees (600/ha) was only half that of the younger stage, either from lower initial spruce density on this terrace, or increased mortality of spruce. The 240+ year-old spruce type was a second-generation forest, characterized by a high density (1950/ha) of small spruce trees, some of which were tilted, indicating discontinuous permafrost. Plant litterfall mass showed no strong trend with terrace age, although N content of litterfall appeared to decline by about 1/3 in the spruce-dominated stages. Fungal biomass increased with ecosystem age, whereas bacterial biomass and microfauna declined. We found no evidence of declining soil N supply in older stages, but fertilization experiments would be needed to determine if N limitation of productivity changed with ecosystem development. We conclude that the general successional trend of increased spruce dominance is robust for this location, but that unique events play important roles in determining tree densities and the timing of the shift in dominance from poplar to spruce. The arrival of moose in the 1970s accelerated dominance by spruce on young terraces.
Judge, Seth W.; Camp, Richard J.; Hart, Patrick J.; Kichman, Scott T.
2018-01-01
Endangered Hawai‘i ʻĀkepas (Loxops coccineus) are endemic to Hawai‘i island, where they occur in five spatially distinct populations. Data concerning the status and population trends of these unique Hawaiian honeycreepers are crucial for assessing the effectiveness of recovery and management actions. In 2016, we used point‐transect distance sampling to estimate the abundance of Hawai‘i ʻĀkepas in portions of Hawai‘i Volcanoes National Park (HAVO) and the Kaʻū Forest Reserve (KFR) on Mauna Loa volcano. We then compiled the survey data from four other populations to provide a global population estimate. In our HAVO and KFR study area, we mapped habitat classes to determine the population densities in each habitat. Densities were highest (1.03 birds/ha) in open‐canopy montane ʻōhiʻa (Metrosideros polymorpha) woodland. In contrast, densities of the largest ʻĀkepa population on Mauna Kea volcano were highest in closed‐canopy ʻōhiʻa and koa (Acacia koa) forest where the species is dependent on nest cavities in tall (> 15 m), large (> 50‐cm diameter at breast height) trees. We surveyed potential nesting habitat in HAVO and KFR and found only one cavity in the short‐stature montane ʻōhiʻa woodland and five cavities in the tall‐stature forest. Differences in densities between the Mauna Kea and Mauna Loa populations suggest that Hawai‘i ʻĀkepas may exhibit different foraging and nesting behaviors in the two habitats. The estimated overall population density in the HAVO and KFR study area was 0.52 birds/ha, which equates to 3663 (95% CI 1725–6961) birds in their 11,377‐ha population range. We calculated a global population of 16,428 (95% CI 10,065–25,198) birds, which is similar to an estimate of 13,892 (95% CI 10,315–17,469) birds made in 1986. Our results suggest that populations are stable to increasing in the two largest populations, but the three other populations are smaller (range = 77–1443 birds) and trends for those populations are unknown.
Feurtey, Alice; Cornille, Amandine; Shykoff, Jacqui A; Snirc, Alodie; Giraud, Tatiana
2017-02-01
Crop-to-wild gene flow can reduce the fitness and genetic integrity of wild species. Malus sylvestris , the European crab-apple fruit tree in particular, is threatened by the disappearance of its habitat and by gene flow from its domesticated relative , Malus domestica . With the aims of evaluating threats for M. sylvestris and of formulating recommendations for its conservation, we studied here, using microsatellite markers and growth experiments: (i) hybridization rates in seeds and trees from a French forest and in seeds used for replanting crab apples in agrosystems and in forests, (ii) the impact of the level of M. domestica ancestry on individual tree fitness and (iii) pollen dispersal abilities in relation to crop-to-wild gene flow. We found substantial contemporary crop-to-wild gene flow in crab-apple tree populations and superior fitness of hybrids compared to wild seeds and seedlings. Using paternity analyses, we showed that pollen dispersal could occur up to 4 km and decreased with tree density. The seed network furnishing the wild apple reintroduction agroforestry programmes was found to suffer from poor genetic diversity, introgressions and species misidentification. Overall, our findings indicate supported threats for the European wild apple steering us to provide precise recommendations for its conservation.
Drought-induced weakening of growth-temperature associations in high-elevation Iberian pines
NASA Astrophysics Data System (ADS)
Diego Galván, J.; Büntgen, Ulf; Ginzler, Christian; Grudd, Håkan; Gutiérrez, Emilia; Labuhn, Inga; Julio Camarero, J.
2015-01-01
The growth/climate relationship of theoretically temperature-controlled high-elevation forests has been demonstrated to weaken over recent decades. This is likely due to new tree growth limiting factors, such as an increasing drought risk for ecosystem functioning and productivity across the Mediterranean Basin. In addition, declining tree growth sensitivity to spring temperature may emerge in response to increasing drought stress. Here, we evaluate these ideas by assessing the growth/climate sensitivity of 1500 tree-ring width (TRW) and 102 maximum density (MXD) measurement series from 711 and 74 Pinus uncinata trees, respectively, sampled at 28 high-elevation forest sites across the Pyrenees and two relict populations of the Iberian System. Different dendroclimatological standardization and split period approaches were used to assess the high- to low-frequency behavior of 20th century tree growth in response to temperature means, precipitation totals and drought indices. Long-term variations in TRW track summer temperatures until about 1970 but diverge afterwards, whereas MXD captures the recent temperature increase in the low-frequency domain fairly well. On the other hand summer drought has increasingly driven TRW along the 20th century. Our results suggest fading temperature sensitivity of Iberian high-elevation P. uncinata forest growth, and reveal the importance of summer drought that is becoming the emergent limiting factor of tree ring width formation in many parts of the Mediterranean Basin.
Brian J. Clough; Miranda T. Curzon; Grant M. Domke; Matthew B. Russell; Christopher W. Woodall
2017-01-01
Aim: For trees, wood density is linked to competing energetic demands and therefore reflects responses to the environment. Climatic trends in wood density are recognized, yet their contribution to regional biogeographical patterns or impact on forest biomass stocks is not understood. This study has the following two objectives: (O1) to characterize wood densityâclimate...
Spatial variations in Eulemur fulvus rufus and Lepilemur mustelinus densities in Madagascar.
Lehman, Shawn M
2007-01-01
I present data on variations in Eulemur fulvus rufus and Lepilemur mustelinus densities as well as tree characteristics (height, diameter and stem frequency) between edge and interior forest habitats in southeastern Madagascar. Line transect surveys were conducted from June 2003 to November 2005 in edge and interior forest habitats in the Vohibola III Classified Forest. Although E. f. rufus densities were significantly lower in edge habitats than in interior habitats, density estimates for L. mustelinus did not differ significantly between habitats. Trees in edge habitats were significantly shorter, had smaller diameters and had lower stem frequencies (for those >25 cm in diameter) than trees in interior habitats. Spatial characteristics of food abundance and quality may explain lemur density patterns in Vohibola III. Low E. f. rufus densities may reduce seed dispersal in edge habitats, which has important consequences for the long-term viability of forest ecosystems in Madagascar. Copyright (c) 2007 S. Karger AG, Basel.
R. Justin DeRose; Shih-Yu Wang; John D. Shaw
2013-01-01
This study introduces a novel tree-ring dataset, with unparalleled spatial density, for use as a climate proxy. Ancillary Douglas fir and pinyon pine tree-ring data collected by the U.S. Forest Service Forest Inventory and Analysis Program (FIA data) were subjected to a series of tests to determine their feasibility as climate proxies. First, temporal coherence between...
Spatial trends in leaf size of Amazonian rainforest trees
NASA Astrophysics Data System (ADS)
Malhado, A. C. M.; Malhi, Y.; Whittaker, R. J.; Ladle, R. J.; Ter Steege, H.; Aragão, L. E. O. C.; Quesada, C. A.; Araujo-Murakami, A.; Phillips, O. L.; Peacock, J.; Lopez-Gonzalez, G.; Baker, T. R.; Butt, N.; Anderson, L. O.; Arroyo, L.; Almeida, S.; Higuchi, N.; Killeen, T. J.; Monteagudo, A.; Neill, D.; Pitman, N.; Prieto, A.; Salomão, R. P.; Silva, N.; Vásquez-Martínez, R.; Laurance, W. F.
2009-02-01
Leaf size influences many aspects of tree function such as rates of transpiration and photosynthesis and, consequently, often varies in a predictable way in response to environmental gradients. The recent development of pan-Amazonian databases based on permanent botanical plots (e.g. RAINFOR, ATDN) has now made it possible to assess trends in leaf size across environmental gradients in Amazonia. Previous plot-based studies have shown that the community structure of Amazonian trees breaks down into at least two major ecological gradients corresponding with variations in soil fertility (decreasing south to northeast) and length of the dry season (increasing from northwest to south and east). Here we describe the results of the geographic distribution of leaf size categories based on 121 plots distributed across eight South American countries. We find that, as predicted, the Amazon forest is predominantly populated by tree species and individuals in the mesophyll size class (20.25-182.25 cm2). The geographic distribution of species and individuals with large leaves (>20.25 cm2) is complex but is generally characterized by a higher proportion of such trees in the north-west of the region. Spatially corrected regressions reveal weak correlations between the proportion of large-leaved species and metrics of water availability. We also find a significant negative relationship between leaf size and wood density.
Spatial trends in leaf size of Amazonian rainforest trees
NASA Astrophysics Data System (ADS)
Malhado, A. C. M.; Malhi, Y.; Whittaker, R. J.; Ladle, R. J.; Ter Steege, H.; Phillips, O. L.; Butt, N.; Aragão, L. E. O. C.; Quesada, C. A.; Araujo-Murakami, A.; Arroyo, L.; Peacock, J.; Lopez-Gonzalez, G.; Baker, T. R.; Anderson, L. O.; Almeida, S.; Higuchi, N.; Killeen, T. J.; Monteagudo, A.; Neill, D.; Pitman, N.; Prieto, A.; Salomão, R. P.; Vásquez-Martínez, R.; Laurance, W. F.
2009-08-01
Leaf size influences many aspects of tree function such as rates of transpiration and photosynthesis and, consequently, often varies in a predictable way in response to environmental gradients. The recent development of pan-Amazonian databases based on permanent botanical plots has now made it possible to assess trends in leaf size across environmental gradients in Amazonia. Previous plot-based studies have shown that the community structure of Amazonian trees breaks down into at least two major ecological gradients corresponding with variations in soil fertility (decreasing from southwest to northeast) and length of the dry season (increasing from northwest to south and east). Here we describe the geographic distribution of leaf size categories based on 121 plots distributed across eight South American countries. We find that the Amazon forest is predominantly populated by tree species and individuals in the mesophyll size class (20.25-182.25 cm2). The geographic distribution of species and individuals with large leaves (>20.25 cm2) is complex but is generally characterized by a higher proportion of such trees in the northwest of the region. Spatially corrected regressions reveal weak correlations between the proportion of large-leaved species and metrics of water availability. We also find a significant negative relationship between leaf size and wood density.
Demand-based urban forest planning using high-resolution remote sensing and AHP
NASA Astrophysics Data System (ADS)
Kolanuvada, Srinivasa Raju; Mariappan, Muneeswaran; Krishnan, Vani
2016-05-01
Urban forest planning is important for providing better urban ecosystem services and conserve the natural carbon sinks inside the urban area. In this study, a demand based urban forest plan was developed for Chennai city by using Analytical Hierarchy Process (AHP) method. Population density, Tree cover, Air quality index and Carbon stocks are the parameters were considered in this study. Tree cover and Above Ground Biomass (AGB) layers were prepared at a resolution of 1m from airborne LiDAR and aerial photos. The ranks and weights are assigned by the spatial priority using AHP. The results show that, the actual status of the urban forest is not adequate to provide ecosystem services on spatial priority. From this perspective, we prepared a demand based plan for improving the urban ecosystem.
Roberge, Jean-Michel; Lämås, Tomas; Lundmark, Tomas; Ranius, Thomas; Felton, Adam; Nordin, Annika
2015-05-01
Over previous decades new environmental measures have been implemented in forestry. In Fennoscandia, forest management practices were modified to set aside conservation areas and to retain trees at final felling. In this study we simulated the long-term effects of set-aside establishment and tree retention practices on the future availability of large trees and dead wood, two forest structures of documented importance to biodiversity conservation. Using a forest decision support system (Heureka), we projected the amounts of these structures over 200 years in two managed north Swedish landscapes, under management scenarios with and without set-asides and tree retention. In line with common best practice, we simulated set-asides covering 5% of the productive area with priority to older stands, as well as ∼5% green-tree retention (solitary trees and forest patches) including high-stump creation at final felling. We found that only tree retention contributed to substantial increases in the future density of large (DBH ≥35 cm) deciduous trees, while both measures made significant contributions to the availability of large conifers. It took more than half a century to observe stronger increases in the densities of large deciduous trees as an effect of tree retention. The mean landscape-scale volumes of hard dead wood fluctuated widely, but the conservation measures yielded values which were, on average over the entire simulation period, about 2.5 times as high as for scenarios without these measures. While the density of large conifers increased with time in the landscape initially dominated by younger forest, best practice conservation measures did not avert a long-term decrease in large conifer density in the landscape initially comprised of more old forest. Our results highlight the needs to adopt a long temporal perspective and to consider initial landscape conditions when evaluating the large-scale effects of conservation measures on forest biodiversity. Copyright © 2015 Elsevier Ltd. All rights reserved.
David Marshall
2013-01-01
Density management through thinning is the most important tool foresters have to aff ect stand development and stand structure of existing stands. Reducing stand density by thinning increases the growing space and resource availability (e.g., light, water, and nutrients) for the remaining trees. Th is can result in increased average tree growth. More available site...
A new type of density-management diagram for slash pine plantations
Curtis L. VanderSchaaf
2006-01-01
Many Density-Management Diagrams (DMD) have been developed for conifer species throughout the world based on stand density index (SDI). The diagrams often plot the logarithm of average tree size (volume, weight, or quadratic mean diameter) over the logarithm of trees per unit area. A new type of DMD is presented for slash pine (Pinus elliottii var elliottii)...
Pan, Ping; Han, Tian Yi; OuYang, Xun Zhi; Liu, Yuan Qiu; Zang, Hao; Ning, Jin Kui; Yang, Yang
2017-12-01
The distribution characteristics of carbon density under aerially seeded Pinus massoniana plantations in Ganzhou City of Jiangxi Province were studied. Total 15 factors, including site, stand, understory vegetation, litter and so on were selected to establish a relationship model between stand carbon density and influencing factors, and the main influencing factors were also screened. The results showed that the average carbon density was 98.29 t·hm -2 at stand level with soil layer (49.58 t·hm -2 ) > tree layer (45.25 t·hm -2 ) > understory vegetation layer (2.23 t·hm -2 ) > litter layer (1.23 t·hm -2 ). Significantly positive correlations were found among the tree, litter and soil layers, but not among the other layers. The main factors were tree density, avera-ge diameter at breast height (DBH), soil thickness, slope position, stand age and canopy density to affect carbon density in aerially seeded P. massoniana plantations. The partial correlation coefficients of the six main factors ranged from 0.331 to 0.434 with significance by t test. The multiple correlation coefficient of quantitative model I reached 0.796 with significance by F test (F=9.28). For stand density, the best tree density and canopy density were 1500-2100 plants·hm -2 and 0.4-0.7, respectively. The moderate density was helpful to improve ecosystem carbon sequestration. The carbon density increased with increasing stand age, DBH and soil thickness, and was higher in lower than middle and upper slope positions.
Wang, Yan-Ping; Han, Ming-Yu; Zhang, Lin-Sen; Dang, Yong-Jian; Qu, Jun-Tao
2012-03-01
To have an overall understanding on the soil moisture characteristics in the apple orchards of Luochuan County can not only provide theoretical basis for selecting apple orchard sites, choosing the best root-stock combination, and improving the soil water management, but also has reference importance in increasing the productive efficiency of our apple orchards. In this study, a fixed-point continuous monitoring was conducted on the overall soil moisture environment and the variation characteristics of soil moisture in the County apple orchards differed in age class, stand type, and tree type (standard or dwarfed). For the apple orchards in the County, the rhizosphere (0-200 cm) soils of most apple trees were water-deficient, and the deficit in 0-60 cm soil layer was less than that in 60-200 cm layer. During growth season, the water storage in 0-60 cm soil layer had the same variation trend as the rainfall pattern. The relative soil moisture content in most orchards was less than 60% , and seasonal drought was quite severe. The coefficient of variation of soil moisture content decreased with soil depth. With the increasing age of the orchards, soil water storage decreased. At the same planting density, the orchards with dwarfed trees had more water storage in 0-5 m soil layer than the orchards with standard trees. However, when the orchards were planted with dwarfed trees at a higher density, the soil water storage in the orchards with dwarfed trees was lesser than that in the standard orchards. The mature orchards on highland had the highest soil moisture content, followed by the mature orchards on flat land, and on terraced land. Tree density had great effects on the soil moisture content. When the tree density was the same, planting dwarfed trees could decrease the water consumption, and increase the soil moisture content significantly. To decrease the planting density through the removal of trees would be an effective way to maintain the soil water balance of apple orchards, and achieve the sustainable development of the orchards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarnoch, Stanley J.; Vukovich, Mark A.; Kilgo, John C.
A 14-year study of snag characteristics was established in 41- to 44-year old loblolly pine (Pinus taeda L.) stands in southeastern USA. During the initial 5.5 years, no stand manipulation or unusually high-mortality events occurred. Afterwards, three treatments were applied consisting of trees thinned and removed, trees felled and not removed, and artificial creation of snags produced by girdling and herbicide injection. The thinned treatments were designed to maintain the same live canopy density as the snag-created treatment, disregarding snags that remained standing.We monitored snag height, diameter, density, volume, and bark percentage; the number of cavities was monitored in naturalmore » snags only. During the first 5.5 years, recruitment and loss rates were stable, resulting in a stable snag population. Large snags (≥25 cm diameter) were common, but subcanopy small snags (10 to <25 cm diameter) dominated numerically. Large natural snags survived (90% quantile) significantly longer (6.0–9.4 years) than smaller snags (4.4–6.9 years). Large artificial snags persisted the longest (11.8 years). Cavities in natural snags developed within 3 years following tree death. The mean number of cavities per snag was five times greater in large versus small snags and large snags were more likely to have multiple cavities, emphasizing the importance of mature pine stands for cavity-dependent wildlife species.« less
The prevalence of terraced treescapes in analyses of phylogenetic data sets.
Dobrin, Barbara H; Zwickl, Derrick J; Sanderson, Michael J
2018-04-04
The pattern of data availability in a phylogenetic data set may lead to the formation of terraces, collections of equally optimal trees. Terraces can arise in tree space if trees are scored with parsimony or with partitioned, edge-unlinked maximum likelihood. Theory predicts that terraces can be large, but their prevalence in contemporary data sets has never been surveyed. We selected 26 data sets and phylogenetic trees reported in recent literature and investigated the terraces to which the trees would belong, under a common set of inference assumptions. We examined terrace size as a function of the sampling properties of the data sets, including taxon coverage density (the proportion of taxon-by-gene positions with any data present) and a measure of gene sampling "sufficiency". We evaluated each data set in relation to the theoretical minimum gene sampling depth needed to reduce terrace size to a single tree, and explored the impact of the terraces found in replicate trees in bootstrap methods. Terraces were identified in nearly all data sets with taxon coverage densities < 0.90. They were not found, however, in high-coverage-density (i.e., ≥ 0.94) transcriptomic and genomic data sets. The terraces could be very large, and size varied inversely with taxon coverage density and with gene sampling sufficiency. Few data sets achieved a theoretical minimum gene sampling depth needed to reduce terrace size to a single tree. Terraces found during bootstrap resampling reduced overall support. If certain inference assumptions apply, trees estimated from empirical data sets often belong to large terraces of equally optimal trees. Terrace size correlates to data set sampling properties. Data sets seldom include enough genes to reduce terrace size to one tree. When bootstrap replicate trees lie on a terrace, statistical support for phylogenetic hypotheses may be reduced. Although some of the published analyses surveyed were conducted with edge-linked inference models (which do not induce terraces), unlinked models have been used and advocated. The present study describes the potential impact of that inference assumption on phylogenetic inference in the context of the kinds of multigene data sets now widely assembled for large-scale tree construction.
NASA Astrophysics Data System (ADS)
Nakatani, Naoki; Chan, Garnet Kin-Lic
2013-04-01
We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.
Modeling decay rates of dead wood in a neotropical forest.
Hérault, Bruno; Beauchêne, Jacques; Muller, Félix; Wagner, Fabien; Baraloto, Christopher; Blanc, Lilian; Martin, Jean-Michel
2010-09-01
Variation of dead wood decay rates among tropical trees remains one source of uncertainty in global models of the carbon cycle. Taking advantage of a broad forest plot network surveyed for tree mortality over a 23-year period, we measured the remaining fraction of boles from 367 dead trees from 26 neotropical species widely varying in wood density (0.23-1.24 g cm(-3)) and tree circumference at death time (31.5-272.0 cm). We modeled decay rates within a Bayesian framework assuming a first order differential equation to model the decomposition process and tested for the effects of forest management (selective logging vs. unexploited), of mode of death (standing vs. downed) and of topographical levels (bottomlands vs. hillsides vs. hilltops) on wood decay rates. The general decay model predicts the observed remaining fraction of dead wood (R2 = 60%) with only two biological predictors: tree circumference at death time and wood specific density. Neither selective logging nor local topography had a differential effect on wood decay rates. Including the mode of death into the model revealed that standing dead trees decomposed faster than downed dead trees, but the gain of model accuracy remains rather marginal. Overall, these results suggest that the release of carbon from tropical dead trees to the atmosphere can be simply estimated using tree circumference at death time and wood density.
Genetic consequences of seed dispersal to sleeping trees by white-bellied spider monkeys
NASA Astrophysics Data System (ADS)
Karubian, Jordan; Ottewell, Kym; Link, Andres; Di Fiore, Anthony
2015-10-01
Frugivorous animals frequently generate clumped distributions of seeds away from source trees via 'destination-based' dispersal processes. For example, use of traditional sleeping trees by white-bellied spider monkeys Ateles belzebuth generates high densities of seeds of a preferred food source, the palm Oenocarpus bataua, at these sites. Little is known about the maternal seed source diversity and population genetic metrics of seed pools encountered at these sites. Given the repeated use of sleeping trees over time, and the fluid social organization and wide ranging movements exhibited by spider monkeys, we predicted that O. bataua seed pools beneath sleeping trees would be characterized by relatively high values of maternal seed source diversity and standard metrics of genetic diversity. Contrary to these expectations, we found relatively low average maternal seed source diversity beneath each of 6 sleeping trees we studied (weighted mean α = 3.74), but considerable variation in diversity of maternal seed sources between sleeping trees (range = 1.75-10.1) and high heterogeneity in standard genetic diversity measures between sleeping trees. There was no evidence for overlap in maternal seed sources between sleeping tree sites (δ = 1.0), resulting in significant genetic differentiation (Fst = 0.055-0.319) between these sites. Observed variation between sleeping trees could not be explained by the number of individual spider monkeys whose core home ranges included a given tree, nor by distance to a central mineral lick, a focal point of spider monkey activity. These findings suggest that spider monkey seed dispersal to sleeping trees is spatially restricted, perhaps because the animals visit sleeping trees at the end of the day and therefore only disperse O. bataua fruits that they ingest late in the day. These results add to our growing appreciation of the ways frugivore behavior mechanistically shapes seed dispersal outcomes.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-08
... relatively low tree densities of 25-60% forest cover with understories that are dominated by native grasses... relatively low tree densities of 25-60% forest cover with understories that are dominated by native grasses...
Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph
2008-12-01
Forest transpiration estimates are frequently based on xylem sap flux measurements in the outer sections of the hydro-active stem sapwood. We used Granier's constant-heating technique with heating probes at various xylem depths to analyze radial patterns of sap flux density in the sapwood of seven broad-leaved tree species differing in wood density and xylem structure. Study aims were to (1) compare radial sap flux density profiles between diffuse- and ring-porous trees and (2) analyze the relationship between hydro-active sapwood area and stem diameter. In all investigated species except the diffuse-porous beech (Fagus sylvatica L.) and ring-porous ash (Fraxinus excelsior L.), sap flux density peaked at a depth of 1 to 4 cm beneath the cambium, revealing a hump-shaped curve with species-specific slopes. Beech and ash reached maximum sap flux densities immediately beneath the cambium in the youngest annual growth rings. Experiments with dyes showed that the hydro-active sapwood occupied 70 to 90% of the stem cross-sectional area in mature trees of diffuse-porous species, whereas it occupied only about 21% in ring-porous ash. Dendrochronological analyses indicated that vessels in the older sapwood may remain functional for 100 years or more in diffuse-porous species and for up to 27 years in ring-porous ash. We conclude that radial sap flux density patterns are largely dependent on tree species, which may introduce serious bias in sap-flux-derived forest transpiration estimates, if non-specific sap flux profiles are assumed.
Stature of sub-arctic birch in relation to growth rate, lifespan and tree form.
Jónsson, Thorbergur Hjalti
2004-11-01
Sub-arctic mountain birch Betula pubescens var. pumila communities in the North Atlantic region are of variable stature, ranging from prostrate scrubs to forests with trees up to 12 m high. Four hypotheses were tested, relating growth and population characteristics of sub-arctic birch woodland and scrub to tree stature; i.e. the variable stature of birch woods is due to differences in (1) the mean growth rate; (2) the age-related patterns of growth rate; (3) the life expectancy of stems; or (4) the tree form. A stratified random sample of 300 birch trees was drawn from the total population of indigenous birch woodlands and scrub in Iceland, yielding 286 valid sample genets. The population was divided into three sub-populations with dominant trees 0-2, 2-4 and 4-12 m tall, referred to as birch scrub, birch scrub-woodland and birch forest, respectively. Trees in the scrub population were of more contorted growth form than birch in the scrub-woodland and forest populations. Mean growth rates, mean age and median life expectancies increased significantly with sub-population of greater tree stature. At the population level, annual increment and longevity of birch stems was apparently interrelated as the stems in vigorously growing birch sub-populations had a longer life expectancy than those of slower growth. However, no difference was observed between sub-populations in age-related patterns of extension growth rate. The results were consistent with hypotheses (1), (3) and (4), but hypothesis (2) was rejected. Hence, mountain birch of more vigorous growth attains a greater stature than birch of lesser increment due to faster extension growth rate and a longer lifespan. In addition, the more contorted stem form of scrub populations contributes to their low stature.
Li, Min; Li, Yujuan; Wang, Ying; Ma, Xiangjian; Zhang, Yuan; Tan, Feng; Wu, Rongling
2016-01-01
As a salt-tolerant arbor tree species, Salix matsudana plays an important role in afforestation and greening in the coastal areas of China. To select superior Salix varieties that adapt to wide saline areas, it is of paramount importance to understand and identify the mechanisms of salt-tolerance at the level of the whole genome. Here, we describe a high-density genetic linkage map of S. matsudana that represents a good coverage of the Salix genome. An intraspecific F1 hybrid population was established by crossing the salt-sensitive “Yanjiang” variety as the female parent with the salt-tolerant “9901” variety as the male parent. This population, along with its parents, was genotyped by specific length amplified fragment sequencing (SLAF-seq), leading to 277,333 high-quality SLAF markers. By marker analysis, we found that both the parents and offspring were tetraploid. The mean sequencing depth was 53.20-fold for “Yanjiang”, 47.41-fold for “9901”, and 11.02-fold for the offspring. Of the SLAF markers detected, 42,321 are polymorphic with sufficient quality for map construction. The final genetic map was constructed using 6,737 SLAF markers, covering 38 linkage groups (LGs). The genetic map spanned 5,497.45 cM in length, with an average distance of 0.82 cM. As a first high-density genetic map of S. matsudana constructed from salt tolerance-varying varieties, this study will provide a foundation for mapping quantitative trait loci that modulate salt tolerance and resistance in Salix and provide important references for molecular breeding of this important forest tree. PMID:27327501
Development of Envelope Curves for Predicting Void Dimensions from Overturned Trees
2014-07-01
transport due to tree root throw: integrating tree population dynamics, wildfire, and geomorphic response (Gallaway et al. 2009...Johnson. 2009. Sediment transport due to tree root throw: Integrating tree population dynamics, wildfire and geomorphic response. Earth Surface Processes...environment, but not vegetation (Peterson and Leach 2008) ............................................................ 17 4.7 Pedologic and geomorphic impacts
Local population extinction and vitality of an epiphytic lichen in fragmented old-growth forest.
Ockinger, Erik; Nilsson, Sven G
2010-07-01
The population dynamics of organisms living in short-lived habitats will largely depend on the turnover of habitat patches. It has been suggested that epiphytes, whose host plants can be regarded as habitat patches, often form such patch-tracking populations. However, very little is known about the long-term fate of epiphyte individuals and populations. We estimated life span and assessed environmental factors influencing changes in vitality, fertility, abundance, and distribution of the epiphytic lichen species Lobaria pulmonaria on two spatial scales, individual trees and forest patches, over a period of approximately 10 years in 66 old-growth forest fragments. The lichen had gone extinct from 7 of the 66 sites (13.0%) where it was found 10 years earlier, even though the sites remained unchanged. The risk of local population extinction increased with decreasing population size. In contrast to the decrease in the number of occupied trees and sites, the mean area of the lichen per tree increased by 43.0%. The number of trees with fertile ramets of L. pulmonaria increased from 7 (approximately 1%) to 61 (approximately 10%) trees, and the number of forest fragments with fertile ramets increased from 4 to 23 fragments. The mean annual rate of L. pulmonaria extinction at the tree level was estimated to be 2.52%, translating into an expected lifetime of 39.7 years. This disappearance rate is higher than estimated mortality rates for potential host trees. The risk of extinction at the tree level was significantly positively related to tree circumference and differed between tree species. The probability of presence of fertile ramets increased significantly with local population size. Our results show a long expected lifetime of Lobaria pulmonaria ramets on individual trees and a recent increase in vitality, probably due to decreasing air pollution. The population is, however, declining slowly even though remaining stands are left uncut, which we interpret as an extinction debt.
Street trees reduce the negative effects of urbanization on birds.
Pena, João Carlos de Castro; Martello, Felipe; Ribeiro, Milton Cezar; Armitage, Richard A; Young, Robert J; Rodrigues, Marcos
2017-01-01
The effects of streets on biodiversity is an important aspect of urban ecology, but it has been neglected worldwide. Several vegetation attributes (e.g. street tree density and diversity) have important effects on biodiversity and ecological processes. In this study, we evaluated the influences of urban vegetation-represented by characteristics of street trees (canopy size, proportion of native tree species and tree species richness)-and characteristics of the landscape (distance to parks and vegetation quantity), and human impacts (human population size and exposure to noise) on taxonomic data and functional diversity indices of the bird community inhabiting streets. The study area was the southern region of Belo Horizonte (Minas Gerais, Brazil), a largely urbanized city in the understudied Neotropical region. Bird data were collected on 60 point count locations distributed across the streets of the landscape. We used a series of competing GLM models (using Akaike's information criterion for small sample sizes) to assess the relative contribution of the different sets of variables to explain the observed patterns. Seventy-three bird species were observed exploiting the streets: native species were the most abundant and frequent throughout this landscape. The bird community's functional richness and Rao's Quadratic Entropy presented values lower than 0.5. Therefore, this landscape was favoring few functional traits. Exposure to noise was the most limiting factor for this bird community. However, the average size of arboreal patches and, especially the characteristics of street trees, were able to reduce the negative effects of noise on the bird community. These results show the importance of adequately planning the urban afforestation process: increasing tree species richness, preserving large trees and planting more native trees species in the streets are management practices that will increase bird species richness, abundance and community functional aspects and consequently improve human wellbeing and quality of life.
Fichtner, Andreas; Forrester, David I.; Härdtle, Werner; Sturm, Knut; von Oheimb, Goddert
2015-01-01
The role of competition in tree communities is increasingly well understood, while little is known about the patterns and mechanisms of the interplay between above- and belowground competition in tree communities. This knowledge, however, is crucial for a better understanding of community dynamics and developing adaptive near-natural management strategies. We assessed neighbourhood interactions in an unmanaged old-growth European beech (Fagus sylvatica) forest by quantifying variation in the intensity of above- (shading) and belowground competition (crowding) among dominant and co-dominant canopy beech trees during tree maturation. Shading had on average a much larger impact on radial growth than crowding and the sensitivity to changes in competitive conditions was lowest for crowding effects. We found that each mode of competition reduced the effect of the other. Increasing crowding reduced the negative effect of shading, and at high levels of shading, crowding actually had a facilitative effect and increased growth. Our study demonstrates that complementarity in above- and belowground processes enable F. sylvatica to alter resource acquisition strategies, thus optimising tree radial growth. As a result, competition seemed to become less important in stands with a high growing stock and tree communities with a long continuity of anthropogenic undisturbed population dynamics. We suggest that growth rates do not exclusively depend on the density of potential competitors at the intraspecific level, but on the conspecific aggregation of large-diameter trees and their functional role for regulating biotic filtering processes. This finding highlights the potential importance of the rarely examined relationship between the spatial aggregation pattern of large-diameter trees and the outcome of neighbourhood interactions, which may be central to community dynamics and the related forest ecosystem services. PMID:25803035
Fichtner, Andreas; Forrester, David I; Härdtle, Werner; Sturm, Knut; von Oheimb, Goddert
2015-01-01
The role of competition in tree communities is increasingly well understood, while little is known about the patterns and mechanisms of the interplay between above- and belowground competition in tree communities. This knowledge, however, is crucial for a better understanding of community dynamics and developing adaptive near-natural management strategies. We assessed neighbourhood interactions in an unmanaged old-growth European beech (Fagus sylvatica) forest by quantifying variation in the intensity of above- (shading) and belowground competition (crowding) among dominant and co-dominant canopy beech trees during tree maturation. Shading had on average a much larger impact on radial growth than crowding and the sensitivity to changes in competitive conditions was lowest for crowding effects. We found that each mode of competition reduced the effect of the other. Increasing crowding reduced the negative effect of shading, and at high levels of shading, crowding actually had a facilitative effect and increased growth. Our study demonstrates that complementarity in above- and belowground processes enable F. sylvatica to alter resource acquisition strategies, thus optimising tree radial growth. As a result, competition seemed to become less important in stands with a high growing stock and tree communities with a long continuity of anthropogenic undisturbed population dynamics. We suggest that growth rates do not exclusively depend on the density of potential competitors at the intraspecific level, but on the conspecific aggregation of large-diameter trees and their functional role for regulating biotic filtering processes. This finding highlights the potential importance of the rarely examined relationship between the spatial aggregation pattern of large-diameter trees and the outcome of neighbourhood interactions, which may be central to community dynamics and the related forest ecosystem services.
Madison Akers; Michael Kane; Robert Teskey; Richard Daniels; Dehai Zhao; Santosh Subedi
2012-01-01
Twelve-year old loblolly pine (Pinus taeda L.) stands were analyzed for the effects of planting density and cultural intensity on tree and crown attributes. Four study installations were located in the Piedmont and Upper Coastal Plain regions of the U.S. South. The treatments included six planting densities (740, 1480, 2220, 2960, 3700, 4440 trees...
Results after 20 years from a western larch levels-of-growing-stock study.
K.W. Seidel
1987-01-01
The 20-year growth response from a levels-of-growing-stock study in an even-aged western larch stand in eastern Oregon, first thinned at age 33, showed that trees growing at low stand densities grew more rapidly in diameter than trees in high-density plots. Height growth was relatively uniform among density levels. Both basal-area and total cubic-volume increment...
Chapman, Colin A; Wasserman, Michael D; Gillespie, Thomas R; Speirs, Michaela L; Lawes, Michael J; Saj, Tania L; Ziegler, Toni E
2006-12-01
Identifying factors that influence animal density is a fundamental goal in ecology that has taken on new importance with the need to develop informed management plans. This is particularly the case for primates as the tropical forest that supports many species is being rapidly converted. We use a system of forest fragments adjacent to Kibale National Park, Uganda, to examine if food availability and parasite infections have synergistic affects on red colobus (Piliocolobus tephrosceles) abundance. Given that the size of primate populations can often respond slowly to environmental changes, we also examined how these factors influenced cortisol levels. To meet these objectives, we monitored gastrointestinal parasites, evaluated fecal cortisol levels, and determined changes in food availability by conducting complete tree inventories in eight fragments in 2000 and 2003. Red colobus populations declined by an average of 21% among the fragments; however, population change ranged from a 25% increase to a 57% decline. The cumulative basal area of food trees declined by an average of 29.5%; however, forest change was highly variable (a 2% gain to a 71% decline). We found that nematode prevalence averaged 58% among fragments (range 29-83%). The change in colobus population size was correlated both with food availability and a number of indices of parasite infections. A path analysis suggests that change in food availability has a strong direct effect on population size, but it also has an indirect effect via parasite infections. 2006 Wiley-Liss, Inc.
Thinning regimes and initial spacing for Eucalyptus plantations in Brazil.
Ferraz Filho, Antonio C; Mola-Yudego, Blas; González-Olabarria, José R; Scolforo, José Roberto S
2018-01-01
This study focuses on the effects of different thinning regimes on clonal Eucalyptus plantations growth. Four different trials, planted in 1999 and located in Bahia and Espírito Santo States, were used. Aside from thinning, initial planting density, and post thinning fertilization application were also evaluated. Before canopy closure, and therefore before excessive competition between trees took place, it was found that stands planted under low densities (667 trees per hectare) presented a lower mortality proportion when compared to stand planted under higher densities (1111 trees per hectare). However, diameter growth prior to thinning operations was not statistically different between these two densities, presenting an overall mean of 4.9 cm/year. After canopy closure and the application of the thinning treatments, it was found that thinning regimes beginning early in the life of the stand and leaving a low number of residual trees presented the highest diameter and height growth. Unthinned treatments and thinning regimes late in the life of the stand (after 5.5 years), leaving a large number of residual trees presented the highest values of basal area production. The choice of the best thinning regime for Eucalyptus clonal material will vary according to the plantation objective.
Fedrowitz, Katja; Kuusinen, Mikko; Snäll, Tord
2012-01-01
1. One approach to biodiversity conservation is to set aside small woodland key habitats (WKHs) in intensively managed landscapes. The aim is to support species, such as epiphytes, which often depend on old trees and are negatively affected by intensive forestry. However, it is not known whether the number of host trees within these areas can sustain species in the long term. 2. We studied metapopulation dynamics and assessed the future persistence of epiphytes assuming host tree numbers similar to those observed in large north European WKHs. The study species were seven cyanolichens confined to Populus tremula in the boreal study area. Colonizations and extinctions were recorded in 2008 on trees that had been surveyed 13 years earlier. We applied generalized (non)linear models to test the importance of environmental conditions, facilitation and spatial connectivity on the metapopulation dynamics. We also simulated the effects of tree numbers and tree fall rates on future species persistence. 3. Metapopulation dynamics were explained by tree quality, size or tree fall. In one species, colonizations increased with increasing connectivity, and in a second species it increased if other lichens sharing the photobiont with the focal species were present, suggesting facilitation. Both stochastic extinctions from standing trees and deterministic extinctions caused by tree fall should be accounted for in projecting epiphyte metapopulation dynamics. 4. One to three infrequent, sexually dispersed study species face a significant extinction risk within 50 years, especially in areas with low tree numbers. 5. Synthesis and applications. During the coming decades, infrequent, sexually dispersed, epiphytic lichens are likely to be lost from small woodland habitat set asides in intensively managed landscapes. Local extinction will be a consequence of low colonization rates and tree fall. Low colonization rates can be prevented by retaining large trees on which lichen species colonization rates are the highest and by assuring a high density of occupied trees. The negative effect of tree fall should be compensated for by assuring continuous availability of old trees. This can be achieved by decreasing the populations of large browsers, or by retaining trees with high conservation value during management operations. PMID:22745512
Robert E. Keane
2006-01-01
The Tree Data (TD) methods are used to sample individual live and dead trees on a fixed-area plot to estimate tree density, size, and age class distributions before and after fire in order to assess tree survival and mortality rates. This method can also be used to sample individual shrubs if they are over 4.5 ft tall. When trees are larger than the user-specified...
Khan, Md Nabiul Islam; Hijbeek, Renske; Berger, Uta; Koedam, Nico; Grueters, Uwe; Islam, S M Zahirul; Hasan, Md Asadul; Dahdouh-Guebas, Farid
2016-01-01
In the Point-Centred Quarter Method (PCQM), the mean distance of the first nearest plants in each quadrant of a number of random sample points is converted to plant density. It is a quick method for plant density estimation. In recent publications the estimator equations of simple PCQM (PCQM1) and higher order ones (PCQM2 and PCQM3, which uses the distance of the second and third nearest plants, respectively) show discrepancy. This study attempts to review PCQM estimators in order to find the most accurate equation form. We tested the accuracy of different PCQM equations using Monte Carlo Simulations in simulated (having 'random', 'aggregated' and 'regular' spatial patterns) plant populations and empirical ones. PCQM requires at least 50 sample points to ensure a desired level of accuracy. PCQM with a corrected estimator is more accurate than with a previously published estimator. The published PCQM versions (PCQM1, PCQM2 and PCQM3) show significant differences in accuracy of density estimation, i.e. the higher order PCQM provides higher accuracy. However, the corrected PCQM versions show no significant differences among them as tested in various spatial patterns except in plant assemblages with a strong repulsion (plant competition). If N is number of sample points and R is distance, the corrected estimator of PCQM1 is 4(4N - 1)/(π ∑ R2) but not 12N/(π ∑ R2), of PCQM2 is 4(8N - 1)/(π ∑ R2) but not 28N/(π ∑ R2) and of PCQM3 is 4(12N - 1)/(π ∑ R2) but not 44N/(π ∑ R2) as published. If the spatial pattern of a plant association is random, PCQM1 with a corrected equation estimator and over 50 sample points would be sufficient to provide accurate density estimation. PCQM using just the nearest tree in each quadrant is therefore sufficient, which facilitates sampling of trees, particularly in areas with just a few hundred trees per hectare. PCQM3 provides the best density estimations for all types of plant assemblages including the repulsion process. Since in practice, the spatial pattern of a plant association remains unknown before starting a vegetation survey, for field applications the use of PCQM3 along with the corrected estimator is recommended. However, for sparse plant populations, where the use of PCQM3 may pose practical limitations, the PCQM2 or PCQM1 would be applied. During application of PCQM in the field, care should be taken to summarize the distance data based on 'the inverse summation of squared distances' but not 'the summation of inverse squared distances' as erroneously published.
Potential woodpecker nest trees through artificial inoculation of heart rots
Richard N. Conner; James G. Dickson; J. Howard Williamson
1983-01-01
We suggest that the fungus Spongipellis pachyodon might be used to artificially create suitable hardwood nest trees for woodpeckers in both young and older trees and when supplies of potential nest trees are limited. Sizes of trees suitable for inoculation, inoculation heights, and densities of snags are suggested for six species of woodpeckers.
Small clusters of fast-growing trees enhance forest structure on restored bottomland sites
Twedt, D.J.
2006-01-01
Despite the diversity of trees in bottomland forests, restoration on bottomland sites is often initiated by planting only a few species of slow-growing, hard mast?producing trees. Although successful at establishing trees, these young forests are slow to develop vertical structure, which is a key predictor of forest bird colonization. Furthermore, when natural seed sources are few, restored sites may be depauperate in woody species. To increase richness of woody species, maximum tree height, and total stem density, I supplemented traditional plantings on each of 40 bottomland restoration sites by planting 96 Eastern cottonwood (Populus deltoides) and American sycamore (Platanus occidentalis) in eight clusters of 12 trees. First year survival of cottonwood stem cuttings (25%) and sycamore seedlings (47%) was poor, but survival increased when afforded protection from competition with weeds. After five growing seasons, 165 of these 320 supplemental tree clusters had at least one surviving tree. Vegetation surrounding surviving clusters of supplemental trees harbored a greater number of woody species, increased stem density, and greater maximum tree height than was found on paired restoration sites without supplemental trees. These increases were primarily accounted for by the supplemental trees.
A Continuous Method for Gene Flow
Palczewski, Michal; Beerli, Peter
2013-01-01
Most modern population genetics inference methods are based on the coalescence framework. Methods that allow estimating parameters of structured populations commonly insert migration events into the genealogies. For these methods the calculation of the coalescence probability density of a genealogy requires a product over all time periods between events. Data sets that contain populations with high rates of gene flow among them require an enormous number of calculations. A new method, transition probability-structured coalescence (TPSC), replaces the discrete migration events with probability statements. Because the speed of calculation is independent of the amount of gene flow, this method allows calculating the coalescence densities efficiently. The current implementation of TPSC uses an approximation simplifying the interaction among lineages. Simulations and coverage comparisons of TPSC vs. MIGRATE show that TPSC allows estimation of high migration rates more precisely, but because of the approximation the estimation of low migration rates is biased. The implementation of TPSC into programs that calculate quantities on phylogenetic tree structures is straightforward, so the TPSC approach will facilitate more general inferences in many computer programs. PMID:23666937
Magrach, Ainhoa; Larrinaga, Asier R.; Santamaría, Luis
2011-01-01
One and a half centuries after Darwin visited Chiloe Island, what he described as “…an island covered by one great forest…” has lost two-thirds of its forested areas. At this biodiversity hotspot, forest surface is becoming increasingly fragmented due to unregulated logging, clearing for pastures and replacement by exotic tree plantations. Decrease in patch size, increased isolation and “edge effects” can influence the persistence of forest species in remnant fragments. We assessed how these variables affect local density for six forest birds, chosen to include the most important seed dispersers (four species) and bird pollinators (two species, one of which acts also as seed disperser), plus the most common insectivore (Aphrastura spinicauda). Based on cue-count point surveys (8 points per fragment), we estimated bird densities for each species in 22 forest fragments of varying size, shape, isolation and internal-habitat structure (e.g. tree size and epiphyte cover). Bird densities varied with fragment connectivity (three species) and shape (three species), but none of the species was significantly affected by patch size. Satellite image analyses revealed that, from 1985 to 2008, forested area decreased by 8.8% and the remaining forest fragments became 16% smaller, 58–73% more isolated and 11–50% more regular. During that period, bird density estimates for the northern part of Chiloé (covering an area of 1214.75 km2) decreased for one species (elaenia), increased for another two (chucao and hummingbird) and did not vary for three (rayadito, thrust and blackbird). For the first three species, changes in patch features respectively exacerbated, balanced and overcame the effects of forest loss on bird population size (landscape-level abundance). Hence, changes in patch features can modulate the effect of habitat fragmentation on forest birds, suggesting that spatial planning (guided by spatially-explicit models) can be an effective tool to facilitate their conservation. PMID:21738723
Magrach, Ainhoa; Larrinaga, Asier R; Santamaría, Luis
2011-01-01
One and a half centuries after Darwin visited Chiloe Island, what he described as "…an island covered by one great forest…" has lost two-thirds of its forested areas. At this biodiversity hotspot, forest surface is becoming increasingly fragmented due to unregulated logging, clearing for pastures and replacement by exotic tree plantations. Decrease in patch size, increased isolation and "edge effects" can influence the persistence of forest species in remnant fragments. We assessed how these variables affect local density for six forest birds, chosen to include the most important seed dispersers (four species) and bird pollinators (two species, one of which acts also as seed disperser), plus the most common insectivore (Aphrastura spinicauda). Based on cue-count point surveys (8 points per fragment), we estimated bird densities for each species in 22 forest fragments of varying size, shape, isolation and internal-habitat structure (e.g. tree size and epiphyte cover). Bird densities varied with fragment connectivity (three species) and shape (three species), but none of the species was significantly affected by patch size. Satellite image analyses revealed that, from 1985 to 2008, forested area decreased by 8.8% and the remaining forest fragments became 16% smaller, 58-73% more isolated and 11-50% more regular. During that period, bird density estimates for the northern part of Chiloé (covering an area of 1214.75 km(2)) decreased for one species (elaenia), increased for another two (chucao and hummingbird) and did not vary for three (rayadito, thrust and blackbird). For the first three species, changes in patch features respectively exacerbated, balanced and overcame the effects of forest loss on bird population size (landscape-level abundance). Hence, changes in patch features can modulate the effect of habitat fragmentation on forest birds, suggesting that spatial planning (guided by spatially-explicit models) can be an effective tool to facilitate their conservation.
Local versus landscape-scale effects of savanna trees on grasses
Riginos, C.; Grace, J.B.; Augustine, D.J.; Young, T.P.
2009-01-01
1. Savanna ecosystems - defined by the coexistence of trees and grasses - cover more than one-fifth the world's land surface and harbour most of the world's rangelands, livestock and large mammal diversity. Savanna trees can have a variety of effects on grasses, with consequences for the wild and domestic herbivores that depend on them. 2.Studies of these effects have focused on two different spatial scales. At the scale of individual trees, many studies have shown net positive effects of trees on sub-canopy grass nutrient concentrations and biomass. At the landscape scale, other studies have shown negative effects of high tree densities on grass productivity. These disparate results have led to different conclusions about the effects of trees on forage quality and ungulate nutrition in savannas. 3.We integrate these approaches by examining the effects of trees on grasses at both spatial scales and across a range of landscape-scale tree densities. 4.We quantified grass biomass, species composition and nutrient concentrations in these different contexts in an Acacia drepanolobium savanna in Laikipia, Kenya. Individual trees had positive effects on grass biomass, most likely because trees enrich soil nitrogen. Grass leaf phosphorus in sub-canopy areas, however, was depressed. The effects of individual trees could explain the effects of increasing landscape-scale tree cover for the biomass of only two of the four dominant grass species. 5.The negative effects of trees on grass and soil phosphorus, combined with depressed grass productivity in areas of high tree cover, suggest that ungulate nutrition may be compromised in areas with many trees. 6.Synthesis. We conclude that few, isolated trees may have positive local effects on savanna grasses and forage, but in areas of high tree density the negative landscape-scale effects of trees are likely to outweigh these positive effects. In savannas and other patchy landscapes, attempts to predict the consequences of changes in patch abundances for ecosystem services (e.g. rangeland productivity and carbon sequestration) will depend on our understanding of the extent to which local, patch-scale dynamics do or do not predict landscape-scale dynamics. ?? 2009 British Ecological Society.
Santosh Subedi; Dr. Michael Kane; Dr. Dehai Zhao; Dr. Bruce Borders; Dr. Dale Greene
2012-01-01
We destructively sampled a total of 192 12-year-old loblolly pine trees from four installations established by the Plantation Management Research Cooperative (PMRC) to analyze the effects of planting density and cultural intensity on tree level biomass allocation in the Piedmont and Upper Coastal Plain of Georgia and Alabama. Each installation had 12 plots, each plot...
Allen L. Lundgren
1981-01-01
Describes an analysis of initial density and subsequent thinning options for red pine (Pinus resinosa Ait.) plantations in the Lake States. Results showed that the initial number of established trees per acres has a major impact on the amount and quality of timber product yields, with 200 trees per acre (500/ha) thinned to 120 square feet of basal area per acre (27.5...
Hale, James D.; Fairbrass, Alison J.; Matthews, Tom J.; Sadler, Jon P.
2012-01-01
Background Urbanization is characterized by high levels of sealed land-cover, and small, geometrically complex, fragmented land-use patches. The extent and density of urbanized land-use is increasing, with implications for habitat quality, connectivity and city ecology. Little is known about densification thresholds for urban ecosystem function, and the response of mammals, nocturnal and cryptic taxa are poorly studied in this respect. Bats (Chiroptera) are sensitive to changing urban form at a species, guild and community level, so are ideal model organisms for analyses of this nature. Methodology/Principal Findings We surveyed bats around urban ponds in the West Midlands conurbation, United Kingdom (UK). Sites were stratified between five urban land classes, representing a gradient of built land-cover at the 1 km2 scale. Models for bat presence and activity were developed using land-cover and land-use data from multiple radii around each pond. Structural connectivity of tree networks was used as an indicator of the functional connectivity between habitats. All species were sensitive to measures of urban density. Some were also sensitive to landscape composition and structural connectivity at different spatial scales. These results represent new findings for an urban area. The activity of Pipistrellus pipistrellus (Schreber 1774) exhibited a non-linear relationship with the area of built land-cover, being much reduced beyond the threshold of ∼60% built surface. The presence of tree networks appears to mitigate the negative effects of urbanization for this species. Conclusions/Significance Our results suggest that increasing urban density negatively impacts the study species. This has implications for infill development policy, built density targets and the compact city debate. Bats were also sensitive to the composition and structure of the urban form at a range of spatial scales, with implications for land-use planning and management. Protecting and establishing tree networks may improve the resilience of some bat populations to urban densification. PMID:22428015
Hale, James D; Fairbrass, Alison J; Matthews, Tom J; Sadler, Jon P
2012-01-01
Urbanization is characterized by high levels of sealed land-cover, and small, geometrically complex, fragmented land-use patches. The extent and density of urbanized land-use is increasing, with implications for habitat quality, connectivity and city ecology. Little is known about densification thresholds for urban ecosystem function, and the response of mammals, nocturnal and cryptic taxa are poorly studied in this respect. Bats (Chiroptera) are sensitive to changing urban form at a species, guild and community level, so are ideal model organisms for analyses of this nature. We surveyed bats around urban ponds in the West Midlands conurbation, United Kingdom (UK). Sites were stratified between five urban land classes, representing a gradient of built land-cover at the 1 km(2) scale. Models for bat presence and activity were developed using land-cover and land-use data from multiple radii around each pond. Structural connectivity of tree networks was used as an indicator of the functional connectivity between habitats. All species were sensitive to measures of urban density. Some were also sensitive to landscape composition and structural connectivity at different spatial scales. These results represent new findings for an urban area. The activity of Pipistrellus pipistrellus (Schreber 1774) exhibited a non-linear relationship with the area of built land-cover, being much reduced beyond the threshold of ∼60% built surface. The presence of tree networks appears to mitigate the negative effects of urbanization for this species. Our results suggest that increasing urban density negatively impacts the study species. This has implications for infill development policy, built density targets and the compact city debate. Bats were also sensitive to the composition and structure of the urban form at a range of spatial scales, with implications for land-use planning and management. Protecting and establishing tree networks may improve the resilience of some bat populations to urban densification.
Wang, Yafeng; Pederson, Neil; Ellison, Aaron M; Buckley, Hannah L; Case, Bradley S; Liang, Eryuan; Julio Camarero, J
2016-07-01
The most widespread response to global warming among alpine treeline ecotones is not an upward shift, but an increase in tree density. However, the impact of increasing density on interactions among trees at treeline is not well understood. Here, we test if treeline densification induced by climatic warming leads to increasing intraspecific competition. We mapped and measured the size and age of Smith fir trees growing in two treelines located in the southeastern Tibetan Plateau. We used spatial point-pattern and codispersion analyses to describe the spatial association and covariation among seedlings, juveniles, and adults grouped in 30-yr age classes from the 1860s to the present. Effects of competition on tree height and regeneration were inferred from bivariate mark-correlations. Since the 1950s, a rapid densification occurred at both sites in response to climatic warming. Competition between adults and juveniles or seedlings at small scales intensified as density increased. Encroachment negatively affected height growth and further reduced recruitment around mature trees. We infer that tree recruitment at the studied treelines was more cold-limited prior to 1950 and shifted to a less temperature-constrained regime in response to climatic warming. Therefore, the ongoing densification and encroachment of alpine treelines could alter the way climate drives their transitions toward subalpine forests. © 2016 by the Ecological Society of America.
Arctic tree rings as recorders of variations in light availability
Stine, A. R.; Huybers, P.
2014-01-01
Annual growth ring variations in Arctic trees are often used to reconstruct surface temperature. In general, however, the growth of Arctic vegetation is limited both by temperature and light availability, suggesting that variations in atmospheric transmissivity may also influence tree-ring characteristics. Here we show that Arctic tree-ring density is sensitive to changes in light availability across two distinct phenomena: explosive volcanic eruptions (P<0.01) and the recent epoch of global dimming (P<0.01). In each case, the greatest response is found in the most light-limited regions of the Arctic. Essentially no late 20th century decline in tree-ring density relative to temperature is seen in the least light-limited regions of the Arctic. Consistent results follow from analysis of tree-ring width and from individually analysing each of seven tree species. Light availability thus appears an important control, opening the possibility for using tree rings to reconstruct historical changes in surface light intensity. PMID:24805143
Status and trends of the land bird avifauna on Tinian and Aguiguan, Mariana Islands
Camp, Richard J.; Pratt, Thane K.; Amidon, Fred; Marshall, Ann P.; Kremer, Shelly; Laut, Megan
2012-01-01
Avian surveys were conducted on the islands of Tinian and Aguiguan, Marianas Islands, in 2008 by the U.S. Fish and Wildlife Service to provide current baseline densities and abundances and assess population trends using data collected from previous surveys. On Tinian, during the three surveys (1982, 1996, and 2008), 18 species were detected, and abundances and trends were assessed for 12 species. Half of the 10 native species—Yellow Bittern (Ixobrychus sinensis), White-throated Ground-Dove (Gallicolumba xanthonura), Collared Kingfisher (Todiramphus chloris), Rufous Fantail (Rhipidura rufifrons), and Micronesian Starling (Aplonis opaca)—and one alien bird—Island Collared-Dove (Streptopelia bitorquata)—have increased since 1982. Three native birds—Mariana Fruit-Dove (Ptilinopus roseicapilla), Micronesian Honeyeater (Myzomela rubratra), and Tinian Monarch (Monarcha takatsukasae)—have decreased since 1982. Trends for the remaining two native birds—White Tern (Gygis alba) and Bridled White-eye (Zosterops saypani)—and one alien bird—Eurasian Tree Sparrow (Passer montanus)—were considered relatively stable. Only five birds—White-throated Ground-Dove, Mariana Fruit-Dove, Tinian Monarch, Rufous Fantail, and Bridled White-eye—showed significant differences among regions of Tinian by year. Tinian Monarch was found in all habitat types, with the greatest monarch densities observed in limestone forest, secondary forest, and tangantangan (Leucaena leucocephala) thicket and the smallest densities found in open fields and urban/residential habitats. On Aguiguan, 19 species were detected on one or both of the surveys (1982 and 2008), and abundance estimates were produced for nine native and one alien species. Densities for seven of the nine native birds—White-throated Ground-Dove, Mariana Fruit-Dove, Collared Kingfisher, Rufous Fantail, Bridled White-eye, Golden White-eye (Cleptornis marchei), and Micronesian Starling—and the alien bird— Island Collared-Dove—were significantly greater in 2008 than 1982. No differences in densities were detected between the two surveys for White Tern and Micronesian Honeyeater. Three native land birds— Micronesian Megapode (Megapodius laperouse), Guam Swiftlet (Collocalia bartschi), and Nightingale Reed-Warbler (Acrocephalus luscinia)—were either not detected during the point-transect counts or the numbers of birds detected were too small to estimate densities for either island. Increased military operations on Tinian may result in increases in habitat clearings and the human population, which would expand human-dominated habitats, and declines in some bird populations would be likely to continue or be exacerbated with these actions. Expanded military activities on Tinian would also mean increased movement between Guam and Tinian, elevating the probability of transporting the brown tree snake (Boiga irregularis) to Tinian.
Willis, Damien; Carter, Robert; Murdock, Chris; Blair, Benjie
2012-12-01
Ticks were collected from 20 sites in the Calhoun, Cherokee, and Cleburne Counties in east-central Alabama areas to determine the relationship between plant physiognomy, environmental variables, and tick populations. Sites investigated included various burning regimes, wildland-urban-interface (WUI), a college campus, and an unmanaged area. Amblyomma americanum (L.) (Acari: Ixodidae) dominated the tick population while Ixodes scapularis Say was not encountered. There were complex differences in tick populations among site conditions. After prescribed burning, the tick population size was small but was larger in subsequent 2- and 5-year post-burn sites. An increase in Odocoileus virginianus foraging in recently burned sites is likely responsible for this phenomenon. WUI areas had the largest tick populations likely due to Odocoileus virginianus activity in an area that provides cover, forage, and a connection to a wildlife refuge. It is possible that the likelihood of humans coming in contact with ticks and tick-borne diseases is greater in WUI areas than in unbroken contiguous forest. A. americanum showed a positive correlation with percent cover of grass and leaf litter mass and a negative relationship with pine sapling density. Variables expected to be strongly correlated with A. americanum populations such as soil moisture, canopy closure, and tree density were found to have weak correlations. © 2012 The Society for Vector Ecology.
NASA Astrophysics Data System (ADS)
Fader, Marianela; von Bloh, Werner; Shi, Sinan; Bondeau, Alberte; Cramer, Wolfgang
2016-04-01
In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall and direct degradation of ecosystems. Human population growth and socioeconomic changes, notably on the Eastern and Southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive ecohydrological model. Here we present here the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL, "Lund-Potsdam-Jena managed Land"): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was then successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. A first application of the model indicates that, currently, agricultural trees consume in average more irrigation water per hectare than annual crops. Also, different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. This is very relevant since the Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 74% from climate change and population growth if irrigation systems and conveyance are not improved. Additionally, future water scarcity might pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios by the end of the century (1). The importance of including agricultural trees in the ecohydrological models is also shown in the results concerning soil organic carbon (SOC). Since in former model versions, areas with agricultural trees were simulated as perennial grasslands, implementing agricultural trees in LPJmL increased the carbon stock in soils in most of the Mediterranean area. We compared the SOC estimates before and after the implementation of agricultural trees, with the organic carbon density from the HWSD database (2). These data are produced by establishing functions between SOC and soil type, topography, climate variables and land use situation. The number of grid-cells with decreased differences to the HWSD estimates almost doubles the number of grid-cells with increased differences. This means that the development moved LPJmL's results for SOC closer to HWSD values (3). With the model development presented here, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture and its linkage with water use and resources. References: (1) Fader, M., von Bloh, W., Shi, S., Bondeau, A., Cramer, W. (2015) : Mediterranean irrigation under climate change: More efficient irrigation needed to compensate increases in irrigation water requirements. HESSD 12, 8459-8504. (2) Hiederer, R. and Köchy, M.: Global Soil Organic Carbon Estimates and the Harmonized World Soil Database. EUR Scientific and Technical Research series - ISSN 1831-9424 (online), doi: 10.2788/13267, 2012. (3) Fader, M., von Bloh, W., Shi, S., Bondeau, A., Cramer, W. (2015): Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model. Geosci. Model Dev., 8, 3545-3561, 2015.
Calibrated birth-death phylogenetic time-tree priors for bayesian inference.
Heled, Joseph; Drummond, Alexei J
2015-05-01
Here we introduce a general class of multiple calibration birth-death tree priors for use in Bayesian phylogenetic inference. All tree priors in this class separate ancestral node heights into a set of "calibrated nodes" and "uncalibrated nodes" such that the marginal distribution of the calibrated nodes is user-specified whereas the density ratio of the birth-death prior is retained for trees with equal values for the calibrated nodes. We describe two formulations, one in which the calibration information informs the prior on ranked tree topologies, through the (conditional) prior, and the other which factorizes the prior on divergence times and ranked topologies, thus allowing uniform, or any arbitrary prior distribution on ranked topologies. Although the first of these formulations has some attractive properties, the algorithm we present for computing its prior density is computationally intensive. However, the second formulation is always faster and computationally efficient for up to six calibrations. We demonstrate the utility of the new class of multiple-calibration tree priors using both small simulations and a real-world analysis and compare the results to existing schemes. The two new calibrated tree priors described in this article offer greater flexibility and control of prior specification in calibrated time-tree inference and divergence time dating, and will remove the need for indirect approaches to the assessment of the combined effect of calibration densities and tree priors in Bayesian phylogenetic inference. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Seasonal and cumulative loblolly pine development under two stand density and fertility levels
James D. Haywood
1992-01-01
An 8 year-old loblolly pine (Pinus taeda L.) stand was subjected to two cultural treatments for examination of seasonal and cumulative pine development. In the first treatment, pine density was either reduced by removal cutting to 2% trees per acre, at a 12- by 124 spacing, or left uncut with an original density of 1,210 trees per acre at a 6- by 6-...
J.Y. Zhu; David W. Vahey; C. Tim Scott
2008-01-01
This study used ring width correlations to examine the effects of tree-growth suppression on within-tree local wood density and tracheid anatomical properties. A wood core sample was taken from a 70-yr-old Douglas-fir that grew under various degrees of suppression in a natural forest setting. SilviScan and an imaging technique were used to obtain wood density and...
Rengers, Francis K.; McGuire, Luke; Coe, Jeffrey A.; Kean, Jason W.; Baum, Rex L.; Staley, Dennis M.; Godt, Jonathan W.
2016-01-01
We explored regional influences on debris-flow initiation throughout the Colorado Front Range (Colorado, USA) by exploiting a unique data set of more than 1100 debris flows that initiated during a 5 day rainstorm in 2013. Using geospatial data, we examined the influence of rain, hillslope angle, hillslope aspect, and vegetation density on debris-flow initiation. In particular we used a greenness index to differentiate areas of high tree density from grass and bare soil. The data demonstrated an overwhelming propensity for debris-flow initiation on south-facing hillslopes. However, when the debris-flow density was analyzed with respect to total rainfall and greenness we found that most debris flows occurred in areas of high rainfall and low tree density, regardless of hillslope aspect. These results indicate that present-day tree density exerts a stronger influence on debris-flow initiation locations than aspect-driven variations in soil and bedrock properties that developed over longer time scales.
Effects of lightning on trees: A predictive model based on in situ electrical resistivity.
Gora, Evan M; Bitzer, Phillip M; Burchfield, Jeffrey C; Schnitzer, Stefan A; Yanoviak, Stephen P
2017-10-01
The effects of lightning on trees range from catastrophic death to the absence of observable damage. Such differences may be predictable among tree species, and more generally among plant life history strategies and growth forms. We used field-collected electrical resistivity data in temperate and tropical forests to model how the distribution of power from a lightning discharge varies with tree size and identity, and with the presence of lianas. Estimated heating density (heat generated per volume of tree tissue) and maximum power (maximum rate of heating) from a standardized lightning discharge differed 300% among tree species. Tree size and morphology also were important; the heating density of a hypothetical 10 m tall Alseis blackiana was 49 times greater than for a 30 m tall conspecific, and 127 times greater than for a 30 m tall Dipteryx panamensis . Lianas may protect trees from lightning by conducting electric current; estimated heating and maximum power were reduced by 60% (±7.1%) for trees with one liana and by 87% (±4.0%) for trees with three lianas. This study provides the first quantitative mechanism describing how differences among trees can influence lightning-tree interactions, and how lianas can serve as natural lightning rods for trees.
Ecology of a nesting red-shouldered hawk population
Stewart, R.E.
1949-01-01
An ecological study of a nesting Red-shouldered Hawk population was made over a 185 square mile area on the Coastal Plain of Maryland in 1947. The courting and nesting season extended from late February until late June.....During the nesting season a combination of fairly extensive flood-plain forest with adjacent clearings appears to meet the major ecological requirements of the Red-shouldered Hawk in this region. A total of 51 pairs was found in the study area, occupying about 42 square miles or 23% of the total area studied. The population density on the land that was suitable for this species was about 1 pair per .8 of a square mile, while the density for the entire study area would be only about 1 pair per 3.6 square miles.....Nests were spaced fairly evenly over most of the flood-plain forests, especially in areas where the width.of the flood plain was relatively constant. There was an inverse correlation between the width of the flood plain and the distances between nests in adjacent territories. The nests were all situated in fairly large trees and were from 28 feet to 77 feet above the ground, averaging 50. They were found in 14 different species of trees, all deciduous.....The Barred Owl and Red-shouldered Hawk were commonly associated together in the same lowland habitats. Other raptores were all largely restricted to upland habitats....The average number of young in 47 occupied nests following the hatching period was 2.7 with extremes of 1 and 4. Only 3 out of 52 nests (6%) were found deserted at this time....The food habits of nestling Red-shouldered Hawks are very diversified. They feed on many types of warm-blooded and cold-blooded vertebrates as well as invertebrates.
Wills, Christopher; Harms, Kyle E; Wiegand, Thorsten; Punchi-Manage, Ruwan; Gilbert, Gregory S; Erickson, David; Kress, W John; Hubbell, Stephen P; Gunatilleke, C V Savitri; Gunatilleke, I A U Nimal
2016-01-01
Studies of forest dynamics plots (FDPs) have revealed a variety of negative density-dependent (NDD) demographic interactions, especially among conspecific trees. These interactions can affect growth rate, recruitment and mortality, and they play a central role in the maintenance of species diversity in these complex ecosystems. Here we use an equal area annulus (EAA) point-pattern method to comprehensively analyze data from two tropical FDPs, Barro Colorado Island in Panama and Sinharaja in Sri Lanka. We show that these NDD interactions also influence the continued evolutionary diversification of even distantly related tree species in these FDPs. We examine the details of a wide range of these interactions between individual trees and the trees that surround them. All these interactions, and their cumulative effects, are strongest among conspecific focal and surrounding tree species in both FDPs. They diminish in magnitude with increasing phylogenetic distance between heterospecific focal and surrounding trees, but do not disappear or change the pattern of their dependence on size, density, frequency or physical distance even among the most distantly related trees. The phylogenetic persistence of all these effects provides evidence that interactions between tree species that share an ecosystem may continue to promote adaptive divergence even after the species' gene pools have become separated. Adaptive divergence among taxa would operate in stark contrast to an alternative possibility that has previously been suggested, that distantly related species with dispersal-limited distributions and confronted with unpredictable neighbors will tend to converge on common strategies of resource use. In addition, we have also uncovered a positive density-dependent effect: growth rates of large trees are boosted in the presence of a smaller basal area of surrounding trees. We also show that many of the NDD interactions switch sign rapidly as focal trees grow in size, and that their cumulative effect can strongly influence the distributions and species composition of the trees that surround the focal trees during the focal trees' lifetimes.
Van Etten, Megan L.; Tate, Jennifer A.; Anderson, Sandra H.; Kelly, Dave; Ladley, Jenny J.; Merrett, Merilyn F.; Peterson, Paul G.; Robertson, Alastair W.
2015-01-01
Background and Aims Interactions between species are especially sensitive to environmental changes. The interaction between plants and pollinators is of particular interest given the potential current global decline in pollinators. Reduced pollinator services can be compensated for in some plant species by self-pollination. However, if inbreeding depression is high, selfed progeny could die prior to reaching adulthood, leading to cryptic recruitment failure. Methods To examine this scenario, pollinator abundance, pollen limitation, selfing rates and inbreeding depression were examined in 12 populations of varying disturbance levels in Sophora microphylla (Fabaceae), an endemic New Zealand tree species. Key Results High pollen limitation was found in all populations (average of 58 % reduction in seed production, nine populations), together with high selfing rates (61 % of offspring selfed, six populations) and high inbreeding depression (selfed offspring 86 % less fit, six populations). Pollen limitation was associated with lower visitation rates by the two endemic bird pollinators. Conclusions The results suggest that for these populations, over half of the seeds produced are genetically doomed. This reduction in the fitness of progeny due to reduced pollinator service is probably important to population dynamics of other New Zealand species. More broadly, the results suggest that measures of seed production or seedling densities may be a gross overestimate of the effective offspring production. This could lead to cryptic recruitment failure, i.e. a decline in successful reproduction despite high progeny production. Given the global extent of pollinator declines, cryptic recruitment failure may be widespread. PMID:26229065
Vinson, C C; Kanashiro, M; Sebbenn, A M; Williams, T C R; Harris, S A; Boshier, D H
2015-08-01
The impact of logging and subsequent recovery after logging is predicted to vary depending on specific life history traits of the logged species. The Eco-gene simulation model was used to evaluate the long-term impacts of selective logging over 300 years on two contrasting Brazilian Amazon tree species, Dipteryx odorata and Jacaranda copaia. D. odorata (Leguminosae), a slow growing climax tree, occurs at very low densities, whereas J. copaia (Bignoniaceae) is a fast growing pioneer tree that occurs at high densities. Microsatellite multilocus genotypes of the pre-logging populations were used as data inputs for the Eco-gene model and post-logging genetic data was used to verify the output from the simulations. Overall, under current Brazilian forest management regulations, there were neither short nor long-term impacts on J. copaia. By contrast, D. odorata cannot be sustainably logged under current regulations, a sustainable scenario was achieved by increasing the minimum cutting diameter at breast height from 50 to 100 cm over 30-year logging cycles. Genetic parameters were only slightly affected by selective logging, with reductions in the numbers of alleles and single genotypes. In the short term, the loss of alleles seen in J. copaia simulations was the same as in real data, whereas fewer alleles were lost in D. odorata simulations than in the field. The different impacts and periods of recovery for each species support the idea that ecological and genetic information are essential at species, ecological guild or reproductive group levels to help derive sustainable management scenarios for tropical forests.
Vinson, C C; Kanashiro, M; Sebbenn, A M; Williams, T CR; Harris, S A; Boshier, D H
2015-01-01
The impact of logging and subsequent recovery after logging is predicted to vary depending on specific life history traits of the logged species. The Eco-gene simulation model was used to evaluate the long-term impacts of selective logging over 300 years on two contrasting Brazilian Amazon tree species, Dipteryx odorata and Jacaranda copaia. D. odorata (Leguminosae), a slow growing climax tree, occurs at very low densities, whereas J. copaia (Bignoniaceae) is a fast growing pioneer tree that occurs at high densities. Microsatellite multilocus genotypes of the pre-logging populations were used as data inputs for the Eco-gene model and post-logging genetic data was used to verify the output from the simulations. Overall, under current Brazilian forest management regulations, there were neither short nor long-term impacts on J. copaia. By contrast, D. odorata cannot be sustainably logged under current regulations, a sustainable scenario was achieved by increasing the minimum cutting diameter at breast height from 50 to 100 cm over 30-year logging cycles. Genetic parameters were only slightly affected by selective logging, with reductions in the numbers of alleles and single genotypes. In the short term, the loss of alleles seen in J. copaia simulations was the same as in real data, whereas fewer alleles were lost in D. odorata simulations than in the field. The different impacts and periods of recovery for each species support the idea that ecological and genetic information are essential at species, ecological guild or reproductive group levels to help derive sustainable management scenarios for tropical forests. PMID:24424164
Geological Substrates Shape Tree Species and Trait Distributions in African Moist Forests
Fayolle, Adeline; Engelbrecht, Bettina; Freycon, Vincent; Mortier, Frédéric; Swaine, Michael; Réjou-Méchain, Maxime; Doucet, Jean-Louis; Fauvet, Nicolas; Cornu, Guillaume; Gourlet-Fleury, Sylvie
2012-01-01
Background Understanding the factors that shape the distribution of tropical tree species at large scales is a central issue in ecology, conservation and forest management. The aims of this study were to (i) assess the importance of environmental factors relative to historical factors for tree species distributions in the semi-evergreen forests of the northern Congo basin; and to (ii) identify potential mechanisms explaining distribution patterns through a trait-based approach. Methodology/Principal Findings We analyzed the distribution patterns of 31 common tree species in an area of more than 700,000 km2 spanning the borders of Cameroon, the Central African Republic, and the Republic of Congo using forest inventory data from 56,445 0.5-ha plots. Spatial variation of environmental (climate, topography and geology) and historical factors (human disturbance) were quantified from maps and satellite records. Four key functional traits (leaf phenology, shade tolerance, wood density, and maximum growth rate) were extracted from the literature. The geological substrate was of major importance for the distribution of the focal species, while climate and past human disturbances had a significant but lesser impact. Species distribution patterns were significantly related to functional traits. Species associated with sandy soils typical of sandstone and alluvium were characterized by slow growth rates, shade tolerance, evergreen leaves, and high wood density, traits allowing persistence on resource-poor soils. In contrast, fast-growing pioneer species rarely occurred on sandy soils, except for Lophira alata. Conclusions/Significance The results indicate strong environmental filtering due to differential soil resource availability across geological substrates. Additionally, long-term human disturbances in resource-rich areas may have accentuated the observed patterns of species and trait distributions. Trait differences across geological substrates imply pronounced differences in population and ecosystem processes, and call for different conservation and management strategies. PMID:22905127
Mangels, Jule; Blüthgen, Nico; Frank, Kevin; Grassein, Fabrice; Hilpert, Andrea; Mody, Karsten
2015-01-01
Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores. PMID:25938417
Holste, Ellen K; Holl, Karen D; Zahawi, Rakan A; Kobe, Richard K
2016-10-01
Establishing diverse mycorrhizal fungal communities is considered important for forest recovery, yet mycorrhizae may have complex effects on tree growth depending on the composition of fungal species present. In an effort to understand the role of mycorrhizal fungi community in forest restoration in southern Costa Rica, we sampled the arbuscular mycorrhizal fungal (AMF) community across eight sites that were planted with the same species ( Inga edulis, Erythrina poeppigiana, Terminalia amazonia, and Vochysia guatemalensis ) but varied twofold to fourfold in overall tree growth rates. The AMF community was measured in multiple ways: as percent colonization of host tree roots, by DNA isolation of the fungal species associated with the roots, and through spore density, volume, and identity in both the wet and dry seasons. Consistent with prior tropical restoration research, the majority of fungal species belonged to the genus Glomus and genus Acaulospora , accounting for more than half of the species and relative abundance found on trees roots and over 95% of spore density across all sites. Greater AMF diversity correlated with lower soil organic matter, carbon, and nitrogen concentrations and longer durations of prior pasture use across sites. Contrary to previous literature findings, AMF species diversity and spore densities were inversely related to tree growth, which may have arisen from trees facultatively increasing their associations with AMF in lower soil fertility sites. Changes to AMF community composition also may have led to variation in disturbance susceptibility, host tree nutrient acquisition, and tree growth. These results highlight the potential importance of fungal-tree-soil interactions in forest recovery and suggest that fungal community dynamics could have important implications for tree growth in disturbed soils.
Log-Normal Distribution of Cosmic Voids in Simulations and Mocks
NASA Astrophysics Data System (ADS)
Russell, E.; Pycke, J.-R.
2017-01-01
Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of these data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.
G.D. Hertel; H. N. Wallace
1983-01-01
Effects of the cut-and-leave and cut-and-top treatments on within-tree populations of the southern pine beetle were evaluated in seven active infestations in central Louisiana. Beetle populations were significantly reduced only in December by felling freshly attacked trees.
Allana K. Welsh; Jeffrey O. Dawson; Gerald J. Gottfried; Dittmar Hahn
2009-01-01
The diversity of uncultured Frankia populations in root nodules of Alnus oblongifolia trees geographically isolated on mountaintops of central Arizona was analyzed by comparative sequence analyses of nifH gene fragments. Sequences were retrieved from Frankia populations in nodules of four trees from each of...
Infection of Ixodes ricinus by Borrelia burgdorferi sensu lato in peri-urban forests of France
Perthame, Emeline; Sertour, Natacha; Garnier, Martine; Godard, Vincent
2017-01-01
Lyme borreliosis is the most common tick-borne disease in the northern hemisphere. In Europe, it is transmitted by Ixodes ticks that carry bacteria belonging to the Borrelia burgdorferi sensu lato complex. The objective of this work was to explore eco-epidemiological factors of Lyme borreliosis in peri-urban forests of France (Sénart, Notre-Dame and Rambouillet). We investigated whether the introduction of Tamias sibiricus in Sénart could alter the density of infected ticks. Moreover, the density and tick infection were investigated according to the tree species found in various patches of Sénart forest. For this purpose, ticks were sampled during 3 years. In the Sénart forest, the density of nymph and adult ticks showed no significant difference between 2008, 2009 and 2011. The nymph density varied significantly as a function of the month of collection. Regarding the nymphs, a higher rate of infection and infected density were found in 2009. Plots with chipmunks (C) presented a lower density of both nymphs and adult ticks than plots without chipmunks (NC) did. A higher rate of infection of nymphs with Borrelia was seen in C plots. The prevalence of the various species of Borrelia was also found to vary between C and NC plots with the year of the collect. The presence of chestnut trees positively influenced the density of both nymphs and adults. The infected nymph density showed a significant difference depending on the peri-urban forest studied, Sénart being higher than Rambouillet. The prevalence of Borrelia species also differed between the various forests studied. Concerning the putative role that Tamias sibiricus may play in the transmission of Borrelia, our results suggest that its presence is correlated with a higher rate of infection of questing ticks by Borrelia genospecies and if its population increases, it could play a significant role in the risk of transmission of Lyme borreliosis. PMID:28846709
Infection of Ixodes ricinus by Borrelia burgdorferi sensu lato in peri-urban forests of France.
Marchant, Axelle; Le Coupanec, Alain; Joly, Claire; Perthame, Emeline; Sertour, Natacha; Garnier, Martine; Godard, Vincent; Ferquel, Elisabeth; Choumet, Valerie
2017-01-01
Lyme borreliosis is the most common tick-borne disease in the northern hemisphere. In Europe, it is transmitted by Ixodes ticks that carry bacteria belonging to the Borrelia burgdorferi sensu lato complex. The objective of this work was to explore eco-epidemiological factors of Lyme borreliosis in peri-urban forests of France (Sénart, Notre-Dame and Rambouillet). We investigated whether the introduction of Tamias sibiricus in Sénart could alter the density of infected ticks. Moreover, the density and tick infection were investigated according to the tree species found in various patches of Sénart forest. For this purpose, ticks were sampled during 3 years. In the Sénart forest, the density of nymph and adult ticks showed no significant difference between 2008, 2009 and 2011. The nymph density varied significantly as a function of the month of collection. Regarding the nymphs, a higher rate of infection and infected density were found in 2009. Plots with chipmunks (C) presented a lower density of both nymphs and adult ticks than plots without chipmunks (NC) did. A higher rate of infection of nymphs with Borrelia was seen in C plots. The prevalence of the various species of Borrelia was also found to vary between C and NC plots with the year of the collect. The presence of chestnut trees positively influenced the density of both nymphs and adults. The infected nymph density showed a significant difference depending on the peri-urban forest studied, Sénart being higher than Rambouillet. The prevalence of Borrelia species also differed between the various forests studied. Concerning the putative role that Tamias sibiricus may play in the transmission of Borrelia, our results suggest that its presence is correlated with a higher rate of infection of questing ticks by Borrelia genospecies and if its population increases, it could play a significant role in the risk of transmission of Lyme borreliosis.
Monzo, Cesar; Stansly, Philip A.
2017-01-01
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is the key pest of citrus wherever it occurs due to its role as vector of huanglongbing (HLB) also known as citrus greening disease. Insecticidal vector control is considered to be the primary strategy for HLB management and is typically intense owing to the severity of this disease. While this approach slows spread and also decreases severity of HLB once the disease is established, economic viability of increasingly frequent sprays is uncertain. Lacking until now were studies evaluating the optimum frequency of insecticide applications to mature trees during the growing season under conditions of high HLB incidence. We related different degrees of insecticide control with ACP abundance and ultimately, with HLB-associated yield losses in two four-year replicated experiments conducted in commercial groves of mature orange trees under high HLB incidence. Decisions on insecticide applications directed at ACP were made by project managers and confined to designated plots according to experimental design. All operational costs as well as production benefits were taken into account for economic analysis. The relationship between management costs, ACP abundance and HLB-associated economic losses based on current prices for process oranges was used to determine the optimum frequency and timing for insecticide applications during the growing season. Trees under the most intensive insecticidal control harbored fewest ACP resulting in greatest yields. The relationship between vector densities and yield loss was significant but differed between the two test orchards, possibly due to varying initial HLB infection levels, ACP populations or cultivar response. Based on these relationships, treatment thresholds during the growing season were obtained as a function of application costs, juice market prices and ACP densities. A conservative threshold for mature trees with high incidence of HLB would help maintain economic viability by reducing excessive insecticide sprays, thereby leaving more room for non-aggressive management tools such as biological control. PMID:28426676
Monzo, Cesar; Stansly, Philip A
2017-01-01
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is the key pest of citrus wherever it occurs due to its role as vector of huanglongbing (HLB) also known as citrus greening disease. Insecticidal vector control is considered to be the primary strategy for HLB management and is typically intense owing to the severity of this disease. While this approach slows spread and also decreases severity of HLB once the disease is established, economic viability of increasingly frequent sprays is uncertain. Lacking until now were studies evaluating the optimum frequency of insecticide applications to mature trees during the growing season under conditions of high HLB incidence. We related different degrees of insecticide control with ACP abundance and ultimately, with HLB-associated yield losses in two four-year replicated experiments conducted in commercial groves of mature orange trees under high HLB incidence. Decisions on insecticide applications directed at ACP were made by project managers and confined to designated plots according to experimental design. All operational costs as well as production benefits were taken into account for economic analysis. The relationship between management costs, ACP abundance and HLB-associated economic losses based on current prices for process oranges was used to determine the optimum frequency and timing for insecticide applications during the growing season. Trees under the most intensive insecticidal control harbored fewest ACP resulting in greatest yields. The relationship between vector densities and yield loss was significant but differed between the two test orchards, possibly due to varying initial HLB infection levels, ACP populations or cultivar response. Based on these relationships, treatment thresholds during the growing season were obtained as a function of application costs, juice market prices and ACP densities. A conservative threshold for mature trees with high incidence of HLB would help maintain economic viability by reducing excessive insecticide sprays, thereby leaving more room for non-aggressive management tools such as biological control.
Urban climate modifies tree growth in Berlin
NASA Astrophysics Data System (ADS)
Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans
2017-12-01
Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees (Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.
Urban climate modifies tree growth in Berlin
NASA Astrophysics Data System (ADS)
Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans
2018-05-01
Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees ( Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.
Urban climate modifies tree growth in Berlin.
Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans
2018-05-01
Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees (Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.
Heartwood and sapwood in eucalyptus trees: non-conventional approach to wood quality.
Cherelli, Sabrina G; Sartori, Maria Márcia P; Próspero, André G; Ballarin, Adriano W
2018-01-01
This study evaluated the quality of heartwood and sapwood from mature trees of three species of Eucalyptus, by means of the qualification of their proportion, determination of basic and apparent density using non-destructive attenuation of gamma radiation technique and calculation of the density uniformity index. Six trees of each species (Eucalyptus grandis - 18 years old, Eucalyptus tereticornis - 35 years old and Corymbia citriodora - 28 years old) were used in the experimental program. The heartwood and sapwood were delimited by macroscopic analysis and the calculation of areas and percentage of heartwood and sapwood were performed using digital image. The uniformity index was calculated following methodology which numerically quantifies the dispersion of punctual density values of the wood around the mean density along the radius. The percentage of the heartwood was higher than the sapwood in all species studied. The density results showed no statistical difference between heartwood and sapwood. Differently from the density results, in all species studied there was statistical differences between uniformity indexes for heartwood and sapwood regions, making justifiable the inclusion of the density uniformity index as a quality parameter for Eucalyptus wood.
Development of laser-guided precision sprayers for tree crop applications
USDA-ARS?s Scientific Manuscript database
Tree crops in nurseries and orchards have great variations in shapes, sizes, canopy densities and gaps between in-row trees. The variability requires future sprayers to be flexible to spray the amount of chemicals that can match tree structures. A precision air-assisted sprayer was developed to appl...
Restoration over time and sustainability of Schinus terebinthifolius Raddi.
Álvares-Carvalho, S V; Silva-Mann, R; Gois, I B; Melo, M F V; Oliveira, A S; Ferreira, R A; Gomes, L J
2017-05-31
The success of recovery programs on degraded areas is dependent on the genetic material to be used, which should present heterozygosity and genetic diversity in native and recovered populations. This study was carried out to evaluate the model efficiency to enable the recovery of a degraded area of the Lower São Francisco, Sergipe, Brazil. The target species for this study was Schinus terebinthifolius Raddi. Three populations were analyzed, the recovered area, seed-tree source population, and native tree population border established to the recovered area. The random amplified polymorphic DNA (RAPD) markers were used for diversity analysis. Genetic structure was estimated to evaluate the level of genetic variability existent in each population. There was no correlation between the spatial distribution and the genetic distances for all trees of the recovered area. The heterozygosity present in the recovered population was higher than the native tree population. The seed-tree source population presents genetic bottlenecks. Three clusters were suggested (ΔK = 3) with non-genetic structure. High intra-population genetic variability and inter-population differentiation are present. However, gene flow may also introduce potentially adaptive alleles in the populations of the recovered area, and the native population is necessary to ensure the sustainability and maintenance of the populations by allelic exchange.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, G.M.; School of Materials Science and Engineering, The University of New South Wales, NSW 2052; Yang, C.C., E-mail: ccyang@unsw.edu.a
2009-12-15
In this work, the tree-like carbon nanotubes (CNTs) with branches of different diameters and the wing-like CNTs with graphitic-sheets of different densities were synthesized by using plasma enhanced chemical vapor deposition. The nanostructures of the as-prepared hybrid carbon materials were characterized by scanning electron microscopy and transmission electron microscopy. The structural dependence of field electron emission (FEE) property was also investigated. It is found that both of the tree- and wing-like CNTs exhibit a lower turn-on field and higher emission current density than the pristine CNTs, which can be ascribed to the effects of branch size, crystal orientation, and graphitic-sheetmore » density. - Graphical abstract: Tree-like carbon nanotubes (CNTs) with branches and the wing-like CNTs with graphitic-sheets were synthesized by using plasma enhanced chemical vapor deposition. The structural dependence of field electron emission property was also investigated.« less
NASA Astrophysics Data System (ADS)
Soja, Maciej J.; Blomberg, Erik; Ulander, Lars M. H.
2015-04-01
In this paper, a significant correlation between the HH/VV phase difference (polarisation phase difference, PPD) and the above-ground biomass (AGB) is observed for incidence angles above 30° in airborne P-band SAR data acquired over two boreal test sites in Sweden. A geometric model is used to explain the dependence of the AGB on tree height, stem radius, and tree number density, whereas a cylinder-over-ground model is used to explain the dependence of the PPD on the same three forest parameters. The models show that forest anisotropy need to be accounted for at P-band in order to obtain a linear relationship between the PPD and the AGB. An approach to the estimation of tree number density is proposed, based on a comparison between the modelled and observed PPDs.
Stature of Sub-arctic Birch in Relation to Growth Rate, Lifespan and Tree Form
JÓNSSON, THORBERGUR HJALTI
2004-01-01
• Background and Aims Sub-arctic mountain birch Betula pubescens var. pumila communities in the North Atlantic region are of variable stature, ranging from prostrate scrubs to forests with trees up to 12 m high. Four hypotheses were tested, relating growth and population characteristics of sub-arctic birch woodland and scrub to tree stature; i.e. the variable stature of birch woods is due to differences in (1) the mean growth rate; (2) the age-related patterns of growth rate; (3) the life expectancy of stems; or (4) the tree form. • Methods A stratified random sample of 300 birch trees was drawn from the total population of indigenous birch woodlands and scrub in Iceland, yielding 286 valid sample genets. The population was divided into three sub-populations with dominant trees 0–2, 2–4 and 4–12 m tall, referred to as birch scrub, birch scrub-woodland and birch forest, respectively. • Key Results Trees in the scrub population were of more contorted growth form than birch in the scrub-woodland and forest populations. Mean growth rates, mean age and median life expectancies increased significantly with sub-population of greater tree stature. At the population level, annual increment and longevity of birch stems was apparently interrelated as the stems in vigorously growing birch sub-populations had a longer life expectancy than those of slower growth. However, no difference was observed between sub-populations in age-related patterns of extension growth rate. • Conclusions The results were consistent with hypotheses (1), (3) and (4), but hypothesis (2) was rejected. Hence, mountain birch of more vigorous growth attains a greater stature than birch of lesser increment due to faster extension growth rate and a longer lifespan. In addition, the more contorted stem form of scrub populations contributes to their low stature. PMID:15374837
Andrew T. Hudak; Benjamin C. Bright; Scott M. Pokswinski; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Carine Klauberg; Carlos A. Silva
2016-01-01
Eglin Air Force Base (AFB) in Florida, in the United States, conserves a large reservoir of native longleaf pine (Pinus palustris Mill.) stands that land managers maintain by using frequent fires. We predicted tree density, basal area, and dominant tree species from 195 forest inventory plots, low-density airborne LiDAR, and Landsat data available across the entirety...
2014-01-01
Background The accessibility of high-throughput genotyping technologies has contributed greatly to the development of genomic resources in non-model organisms. High-density genotyping arrays have only recently been developed for some economically important species such as conifers. The potential for using genomic technologies in association mapping and breeding depends largely on the genome wide patterns of diversity and linkage disequilibrium in current breeding populations. This study aims to deepen our knowledge regarding these issues in maritime pine, the first species used for reforestation in south western Europe. Results Using a new map merging algorithm, we first established a 1,712 cM composite linkage map (comprising 1,838 SNP markers in 12 linkage groups) by bringing together three already available genetic maps. Using rigorous statistical testing based on kernel density estimation and resampling we identified cold and hot spots of recombination. In parallel, 186 unrelated trees of a mass-selected population were genotyped using a 12k-SNP array. A total of 2,600 informative SNPs allowed to describe historical recombination, genetic diversity and genetic structure of this recently domesticated breeding pool that forms the basis of much of the current and future breeding of this species. We observe very low levels of population genetic structure and find no evidence that artificial selection has caused a reduction in genetic diversity. By combining these two pieces of information, we provided the map position of 1,671 SNPs corresponding to 1,192 different loci. This made it possible to analyze the spatial pattern of genetic diversity (H e ) and long distance linkage disequilibrium (LD) along the chromosomes. We found no particular pattern in the empirical variogram of H e across the 12 linkage groups and, as expected for an outcrossing species with large effective population size, we observed an almost complete lack of long distance LD. Conclusions These results are a stepping stone for the development of strategies for studies in population genomics, association mapping and genomic prediction in this economical and ecologically important forest tree species. PMID:24581176
Wills, Christopher; Harms, Kyle E.; Wiegand, Thorsten; Punchi-Manage, Ruwan; Gilbert, Gregory S.; Erickson, David; Kress, W. John; Hubbell, Stephen P.; Gunatilleke, C. V. Savitri; Gunatilleke, I. A. U. Nimal
2016-01-01
Studies of forest dynamics plots (FDPs) have revealed a variety of negative density-dependent (NDD) demographic interactions, especially among conspecific trees. These interactions can affect growth rate, recruitment and mortality, and they play a central role in the maintenance of species diversity in these complex ecosystems. Here we use an equal area annulus (EAA) point-pattern method to comprehensively analyze data from two tropical FDPs, Barro Colorado Island in Panama and Sinharaja in Sri Lanka. We show that these NDD interactions also influence the continued evolutionary diversification of even distantly related tree species in these FDPs. We examine the details of a wide range of these interactions between individual trees and the trees that surround them. All these interactions, and their cumulative effects, are strongest among conspecific focal and surrounding tree species in both FDPs. They diminish in magnitude with increasing phylogenetic distance between heterospecific focal and surrounding trees, but do not disappear or change the pattern of their dependence on size, density, frequency or physical distance even among the most distantly related trees. The phylogenetic persistence of all these effects provides evidence that interactions between tree species that share an ecosystem may continue to promote adaptive divergence even after the species’ gene pools have become separated. Adaptive divergence among taxa would operate in stark contrast to an alternative possibility that has previously been suggested, that distantly related species with dispersal-limited distributions and confronted with unpredictable neighbors will tend to converge on common strategies of resource use. In addition, we have also uncovered a positive density-dependent effect: growth rates of large trees are boosted in the presence of a smaller basal area of surrounding trees. We also show that many of the NDD interactions switch sign rapidly as focal trees grow in size, and that their cumulative effect can strongly influence the distributions and species composition of the trees that surround the focal trees during the focal trees’ lifetimes. PMID:27305092
Al-Atiyat, R M; Aljumaah, R S
2014-08-27
This study aimed to estimate evolutionary distances and to reconstruct phylogeny trees between different Awassi sheep populations. Thirty-two sheep individuals from three different geographical areas of Jordan and the Kingdom of Saudi Arabia (KSA) were randomly sampled. DNA was extracted from the tissue samples and sequenced using the T7 promoter universal primer. Different phylogenetic trees were reconstructed from 0.64-kb DNA sequences using the MEGA software with the best general time reverse distance model. Three methods of distance estimation were then used. The maximum composite likelihood test was considered for reconstructing maximum likelihood, neighbor-joining and UPGMA trees. The maximum likelihood tree indicated three major clusters separated by cytosine (C) and thymine (T). The greatest distance was shown between the South sheep and North sheep. On the other hand, the KSA sheep as an outgroup showed shorter evolutionary distance to the North sheep population than to the others. The neighbor-joining and UPGMA trees showed quite reliable clusters of evolutionary differentiation of Jordan sheep populations from the Saudi population. The overall results support geographical information and ecological types of the sheep populations studied. Summing up, the resulting phylogeny trees may contribute to the limited information about the genetic relatedness and phylogeny of Awassi sheep in nearby Arab countries.
National assessment of Tree City USA participation
Tree City USA is a national program that recognizes municipal commitment to community forestry. In return for meeting program requirements, Tree City USA participants expect social, economic, and/or environmental benefits. Understanding the geographic distribution and socioeconomic characteristics of Tree City USA communities at the national scale can offer insights into the motivations or barriers to program participation, and provide context for community forestry research at finer scales. In this study, researchers assessed patterns in Tree City USA participation for all U.S. communities with more than 2,500 people according to geography, community population size, and socioeconomic characteristics, such as income, education, and race. Nationally, 23.5% of communities studied were Tree City USA participants, and this accounted for 53.9% of the total population in these communities. Tree City USA participation rates varied substantially by U.S. region, but in each region participation rates were higher in larger communities, and long-term participants tended to be larger communities than more recent enrollees. In logistic regression models, owner occupancy rates were significant negative predictors of Tree City USA participation, education and percent white population were positive predictors in many U.S. regions, and inconsistent patterns were observed for income and population age. The findings indicate that communities with smaller populations, lower educat
Forest Health Monitoring in Vermont, 1996-1999
Northeastern Research Station
2002-01-01
Vermont forests vary in size and age class. Trees are distributed evenly between hardwood and softwood species but hardwood dominated the seedling sample. Most of the trees are healthy, with full crowns (low transparency, high density), little dieback and little damage. White and green ash had higher transparencies and lower crown densities possibly explained by the...
Frederick C. Meinzer; Paula I. Campanello; Jean-Christophe Domec; M. Genoveva Gatti; Guillermo Goldstein; Randol Villalobos-Vega; David R. Woodruff
2008-01-01
This study examined how leaf and stem functional traits related to gas exchange and water balance scale with two potential proxies for tree hydraulic architecture: the leaf area:sapwood area ratio (AL:AS) and wood density (W). We studied the upper crowns of individuals of 15 tropical forest...
Structural Characteristics of an Old-Growth Coast Redwood Stand in Mendocino County, California
Gregory A. Giusti
2007-01-01
This paper compares stand characteristics of Old Growth coastal redwood stand densities and forest structure found throughout the northern tier of the range of coast redwood (Sequoia sempervirens). Tree densities are relatively low compared to commercially managed stands of coast redwood. Tree size classes distributions vary from 254cm...
Are self-thinning constraints needed in a tree-specific mortality model?
Robert A. Monserud; Thomas Ledermann; Hubert Sterba
2005-01-01
Can a tree-specific mortality model elicit expected forest stand density dynamics without imposing stand-level constraints such as Reineke's maximum stand density index (SDImax) or the -3/2 power law of self-thinning? We examine this emergent properties question using the Austrian stand simulator PROGNAUS. This simulator was chosen...
Regression estimators for late-instar gypsy moth larvae at low pupulation densities
W.E. Wallnr; A.S. Devito; Stanley J. Zarnoch
1989-01-01
Two regression estimators were developed for determining densities of late-instar gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), larvae from burlap band and pyrethrin spray counts on oak trees in Vermont, Massachusetts, Connecticut, and New York. Studies were conducted by marking larvae on individual burlap banded trees within 15...
Predicting oak density with ecological, physical, and soil indicators
Callie Jo Schweitzer; Adrian A. Lesak; Yong Wang
2006-01-01
We predicted density of oak species in the mid-Cumberland Plateau region of northeastern Alabama on the basis of basal area of tree associations based on light tolerances, physical site characteristics, and soil type. Tree basal area was determined for four species groups: oaks (Quercus spp.), hickories (Carya spp.), yellow-poplar...
USDA-ARS?s Scientific Manuscript database
Scab (caused by Venturia effusa) is the major disease of pecan in the southeastern USA. There is no information available on the fine scale population genetic diversity. Four cv. Wichita trees (populations) were sampled hierarchically. Within each tree canopy, 4 approximately evenly spaced terminals...
Assisted migration of forest populations for adapting trees to climate change
Cuauhtémoc Sáenz-Romero; Roberto A. Lindig-Cisneros; Dennis G. Joyce; Jean Beaulieu; J. Bradley St. Clair; Barry C. Jaquish
2016-01-01
We present evidence that climatic change is an ongoing process and that forest tree populations are genetically differentiated for quantitative traits because of adaptation to specific habitats. We discuss in detail indications that the shift of suitable climatic habitat for forest tree species and populations, as a result of rapid climatic change, is likely to cause...
Mendivelso, Hooz A; Camarero, J Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol
2013-01-01
A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.
Mendivelso, Hooz A.; Camarero, J. Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol
2013-01-01
A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability. PMID:24116001
James, Shelley A; Clearwater, Michael J; Meinzer, Frederick C; Goldstein, Guillermo
2002-03-01
Robust thermal dissipation sensors of variable length (3 to 30 cm) were developed to overcome limitations to the measurement of radial profiles of sap flow in large-diameter tropical trees with deep sapwood. The effective measuring length of the custom-made sensors was reduced to 1 cm at the tip of a thermally nonconducting shaft, thereby minimizing the influence of nonuniform sap flux density profiles across the sapwood. Sap flow was measured at different depths and circumferential positions in the trunks of four trees at the Parque Natural Metropolitano canopy crane site, Panama City, Republic of Panama. Sap flow was detected to a depth of 24 cm in the trunks of a 1-m-diameter Anacardium excelsum (Bertero & Balb. ex Kunth) Skeels tree and a 0.65-m-diameter Ficus insipida Willd. tree, and to depths of 7 cm in a 0.34-m-diameter Cordia alliodora (Ruiz & Pav.) Cham. trunk, and 17 cm in a 0.47-m-diameter Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin trunk. Sap flux density was maximal in the outermost 4 cm of sapwood and declined with increasing sapwood depth. Considerable variation in sap flux density profiles was observed both within and among the trees. In S. morototoni, radial variation in sap flux density was associated with radial variation in wood properties, particularly vessel lumen area and distribution. High variability in radial and circumferential sap flux density resulted in large errors when measurements of sap flow at a single depth, or a single radial profile, were used to estimate whole-plant water use. Diurnal water use ranged from 750 kg H2O day-1 for A. excelsum to 37 kg H2O day-1 for C. alliodora.
Bayesian Analysis of Evolutionary Divergence with Genomic Data under Diverse Demographic Models.
Chung, Yujin; Hey, Jody
2017-06-01
We present a new Bayesian method for estimating demographic and phylogenetic history using population genomic data. Several key innovations are introduced that allow the study of diverse models within an Isolation-with-Migration framework. The new method implements a 2-step analysis, with an initial Markov chain Monte Carlo (MCMC) phase that samples simple coalescent trees, followed by the calculation of the joint posterior density for the parameters of a demographic model. In step 1, the MCMC sampling phase, the method uses a reduced state space, consisting of coalescent trees without migration paths, and a simple importance sampling distribution without the demography of interest. Once obtained, a single sample of trees can be used in step 2 to calculate the joint posterior density for model parameters under multiple diverse demographic models, without having to repeat MCMC runs. Because migration paths are not included in the state space of the MCMC phase, but rather are handled by analytic integration in step 2 of the analysis, the method is scalable to a large number of loci with excellent MCMC mixing properties. With an implementation of the new method in the computer program MIST, we demonstrate the method's accuracy, scalability, and other advantages using simulated data and DNA sequences of two common chimpanzee subspecies: Pan troglodytes (P. t.) troglodytes and P. t. verus. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Trouvé, Raphaël; Bontemps, Jean-Daniel; Seynave, Ingrid; Collet, Catherine; Lebourgeois, François
2015-10-01
Even-aged forest stands are competitive communities where competition for light gives advantages to tall individuals, thereby inducing a race for height. These same individuals must however balance this competitive advantage with height-related mechanical and hydraulic risks. These phenomena may induce variations in height-diameter growth relationships, with primary dependences on stand density and tree social status as proxies for competition pressure and access to light, and on availability of local environmental resources, including water. We aimed to investigate the effects of stand density, tree social status and water stress on the individual height-circumference growth allocation (Δh-Δc), in even-aged stands of Quercus petraea Liebl. (sessile oak). Within-stand Δc was used as surrogate for tree social status. We used an original long-term experimental plot network, set up in the species production area in France, and designed to explore stand dynamics on a maximum density gradient. Growth allocation was modelled statistically by relating the shape of the Δh-Δc relationship to stand density, stand age and water deficit. The shape of the Δh-Δc relationship shifted from linear with a moderate slope in open-grown stands to concave saturating with an initial steep slope in closed stands. Maximum height growth was found to follow a typical mono-modal response to stand age. In open-grown stands, increasing summer soil water deficit was found to decrease height growth relative to radial growth, suggesting hydraulic constraints on height growth. A similar pattern was found in closed stands, the magnitude of the effect however lowering from suppressed to dominant trees. We highlight the high phenotypic plasticity of growth in sessile oak trees that further adapt their allocation scheme to their environment. Stand density and tree social status were major drivers of growth allocation variations, while water stress had a detrimental effect on height in the Δh-Δc allocation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Newton, Leslie; Frampton, John; Monahan, John; Goldfarb, Barry; Hain, Fred
2011-01-01
Since its introduction into the Southern Appalachians in the 1950s, the balsam woolly adelgid, Adelges piceae Ratzeburg (Hemiptera: Adelgidae), has devastated native populations of Fraser fir, Abies fraseri (Pursh) Poir. (Pinales: Pinaceae), and has become a major pest in Christmas tree plantations requiring expensive chemical treatments. Adelges piceae—resistant Fraser fir trees would lessen costs for the Christmas tree industry and assist in the restoration of native stands. Resistance screening is an important step in this process. Here, four studies directed toward the development of time— and cost—efficient techniques for screening are reported. In the first study, three methods to artificially infest seedlings of different ages were evaluated in a shade—covered greenhouse. Two—year—old seedlings had much lower infestation levels than 7 year—old seedlings. Placing infested bark at the base of the seedling was less effective than tying infested bark to the seedling or suspending infested bolts above the seedling. Although the two latter techniques resulted in similar densities on the seedlings, they each have positive and negative considerations. Attaching bark to uninfested trees is effective, but very time consuming. The suspended bolt method mimics natural infestation and is more economical than attaching bark, but care must be taken to ensure an even distribution of crawlers falling onto the seedlings. The second study focused on the density and distribution of crawlers falling from suspended bolts onto paper gridded into 7.6 × 7.6 cm cells. Crawler density in a 30 cm band under and to each side of the suspended bolt ranged from 400 to over 3000 crawlers per cell (1 to 55 crawlers per cm2). In the third study, excised branches from 4 year—old A. fraseri and A. vetchii seedlings were artificially infested with A. piceae to determine whether this technique may be useful for early resistance screening. The excised A. fraseri branches supported complete adelgid development (crawler to egg—laying adult), and very little adelgid development occurred on A. vetchii branches. The fourth study compared infestation levels and gouting response on excised versus intact branches of 4 year—old A. fraseri seedlings from three different seed sources, and excised branches from 4 year—old and 25 year—old trees. There were no differences in infestation levels between excised versus intact branches nor in very young versus mature trees; gouting response was observed only on intact branches. PMID:22239164
Coleman, Joanna L.; Barclay, Robert M. R.
2011-01-01
Background We address three key gaps in research on urban wildlife ecology: insufficient attention to (1) grassland biomes, (2) individual- and population-level effects, and (3) vertebrates other than birds. We hypothesized that urbanization in the North American Prairies, by increasing habitat complexity (via the proliferation of vertical structures such as trees and buildings), thereby enhancing the availability of day-roosts, tree cover, and insects, would benefit synanthropic bats, resulting in increased fitness among urban individuals. Methodology/Principal Findings Over three years, we captured more than 1,600 little brown bats (Myotis lucifugus) in urban and non-urban riparian sites in and around Calgary, Alberta, Canada. This species dominated bat assemblages throughout our study area, but nowhere more so than in the city. Our data did not support most of our specific predictions. Increased numbers of urban bats did not reflect urbanization-related benefits such as enhanced body condition, reproductive rates, or successful production of juveniles. Instead, bats did best in the transition zone situated between strictly urban and rural areas. Conclusions/Significance We reject our hypothesis and explore various explanations. One possibility is that urban and rural M. lucifugus exhibit increased use of anthropogenic roosts, as opposed to natural ones, leading to larger maternity colonies and higher population densities and, in turn, increased competition for insect prey. Other possibilities include increased stress, disease transmission and/or impacts of noise on urban bats. Whatever the proximate cause, the combination of greater bat population density with decreased body condition and production of juveniles indicates that Calgary does not represent a population source for Prairie bats. We studied a highly synanthropic species in a system where it could reasonably be expected to respond positively to urbanization, but failed to observe any apparent benefits at the individual level, leading us to propose that urban development may be universally detrimental to bats. PMID:21857890
Land cover and air pollution are associated with asthma hospitalisations: A cross-sectional study.
Alcock, Ian; White, Mathew; Cherrie, Mark; Wheeler, Benedict; Taylor, Jonathon; McInnes, Rachel; Otte Im Kampe, Eveline; Vardoulakis, Sotiris; Sarran, Christophe; Soyiri, Ireneous; Fleming, Lora
2017-12-01
There is increasing policy interest in the potential for vegetation in urban areas to mitigate harmful effects of air pollution on respiratory health. We aimed to quantify relationships between tree and green space density and asthma-related hospitalisations, and explore how these varied with exposure to background air pollution concentrations. Population standardised asthma hospitalisation rates (1997-2012) for 26,455 urban residential areas of England were merged with area-level data on vegetation and background air pollutant concentrations. We fitted negative binomial regression models using maximum likelihood estimation to obtain estimates of asthma-vegetation relationships at different levels of pollutant exposure. Green space and gardens were associated with reductions in asthma hospitalisation when pollutant exposures were lower but had no significant association when pollutant exposures were higher. In contrast, tree density was associated with reduced asthma hospitalisation when pollutant exposures were higher but had no significant association when pollutant exposures were lower. We found differential effects of natural environments at high and low background pollutant concentrations. These findings can provide evidence for urban planning decisions which aim to leverage health co-benefits from environmental improvements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mietkiewicz, Nathan; Kulakowski, Dominik; Veblen, Thomas T
2018-03-01
Over the past 30 years, forest disturbances have increased in size, intensity, and frequency globally, and are predicted to continue increasing due to climate change, potentially relaxing the constraints of vegetation properties on disturbance regimes. However, the consequences of the potentially declining importance of vegetation in determining future disturbance regimes are not well understood. Historically, bark beetles preferentially attack older trees and stands in later stages of development. However, as climate warming intensifies outbreaks by promoting growth of beetle populations and compromising tree defenses, smaller diameter trees and stands in early stages of development now are being affected by outbreaks. To date, no study has considered how stand age and other pre-outbreak forest conditions mediate the effects of outbreaks on surface and aerial fuel arrangements. We collected fuels data across a chronosequence of post-outbreak sites affected by spruce beetle (SB) between the 1940s and the 2010s, stratified by young (<130 yr) and old (>130 yr) post-fire stands. Canopy and surface fuel loads were calculated for each tree and stand, and available crown fuel load, crown bulk density, and canopy bulk densities were estimated. Canopy bulk density and density of live canopy individuals were reduced in all stands affected by SB, though foliage loss was proportionally greater in old stands as compared to young stands. Fine surface fuel loads in young stands were three times greater shortly (<30 yr) following outbreak as compared to young stands not affected by outbreak, after which the abundance of fine surface fuels decreased to below endemic (i.e., non-outbreak) levels. In both young and old stands, the net effect of SB outbreaks during the 20th and 21st centuries reduced total canopy fuels and increased stand-scale spatial heterogeneity of canopy fuels following outbreak. Importantly, the decrease in canopy fuels following outbreaks was greater in young post-fire stands than in older stands, suggesting that SB outbreaks may more substantially reduce risk of active crown fire when they affect stands in earlier stages of development. The current study shows that the effects of SB outbreaks on forest structure and on fuel profiles are strongly contingent on pre-outbreak conditions as determined by pre-outbreak disturbance history. © 2018 by the Ecological Society of America.
Synergistic effects of fire and elephants on arboreal animals in an African savanna.
Pringle, Robert M; Kimuyu, Duncan M; Sensenig, Ryan L; Palmer, Todd M; Riginos, Corinna; Veblen, Kari E; Young, Truman P
2015-11-01
Disturbance is a crucial determinant of animal abundance, distribution and community structure in many ecosystems, but the ways in which multiple disturbance types interact remain poorly understood. The effects of multiple-disturbance interactions can be additive, subadditive or super-additive (synergistic). Synergistic effects in particular can accelerate ecological change; thus, characterizing such synergies, the conditions under which they arise, and how long they persist has been identified as a major goal of ecology. We factorially manipulated two principal sources of disturbance in African savannas, fire and elephants, and measured their independent and interactive effects on the numerically dominant vertebrate (the arboreal gekkonid lizard Lygodactylus keniensis) and invertebrate (a guild of symbiotic Acacia ants) animal species in a semi-arid Kenyan savanna. Elephant exclusion alone (minus fire) had negligible effects on gecko density. Fire alone (minus elephants) had negligible effects on gecko density after 4 months, but increased gecko density twofold after 16 months, likely because the decay of fire-damaged woody biomass created refuges and nest sites for geckos. In the presence of elephants, fire increased gecko density nearly threefold within 4 months of the experimental burn; this occurred because fire increased the incidence of elephant damage to trees, which in turn improved microhabitat quality for geckos. However, this synergistic positive effect of fire and elephants attenuated over the ensuing year, such that only the main effect of fire was evident after 16 months. Fire also altered the structure of symbiotic plant-ant assemblages occupying the dominant tree species (Acacia drepanolobium); this influenced gecko habitat selection but did not explain the synergistic effect of fire and elephants. However, fire-driven shifts in plant-ant occupancy may have indirectly mediated this effect by increasing trees' susceptibility to elephant damage. Our findings confirm the importance of fire × elephant interactions in structuring arboreal wildlife populations. Where habitat modification by megaherbivores facilitates co-occurring species, fire may amplify these effects in the short term by increasing the frequency or intensity of herbivory, leading to synergy. In the longer term, tree mortality due to both top kill by fire and toppling by large herbivores may reduce overall microhabitat availability, eliminating the synergy. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Stemflow in low-density and hedgerow olive orchards in Portugal
NASA Astrophysics Data System (ADS)
Dias, Pedro D.; Valente, Fernanda; Pereira, Fernando L.; Abreu, Francisco G.
2015-04-01
Stemflow (Sf) is responsible for a localized water and solute input to soil around tree's trunks, playing an important eco-hydrological role in forest and agricultural ecosystems. Sf was monitored for seven months in 25 Olea europaea L. trees distributed in three orchards managed in two different ways, traditional low-density and super high density hedgerow. The orchards were located in central Portugal in the regions of Santarém (Várzea and Azóia) and Lisboa (Tapada). Seven olive varieties were analysed: Arbequina, Galega, Picual, Maçanilha, Cordovil, Azeiteira, Negrinha and Blanqueta. Measured Sf ranged from 7.5 to 87.2 mm (relative to crown-projected area), corresponding to 1.2 and 16.7% of gross rainfall (Pg). To understand better the variables that affect Sf and to be able to predict its value, linear regression models were fitted to these data. Whenever possible, the linear models were simplified using the backward stepwise algorithm based on the Akaike information criterion. For each tree, multiple linear regressions were adjusted between Sf and the duration, volume and intensity of rainfall episodes and maximum evaporation rate. In the low-density Várzea grove the more relevant explanatory variables were the three rainfall characteristics. In the super high density Azóia orchard only rainfall volume and intensity were considered relevant. In the low-density Tapada's grove all trees had a different sub-model with Pg being the only common variable. To try to explain differences between trees and to improve the quality of the modeling in each orchard, another set of explanatory variables was added: canopy volume, tree and trunk heights and trunk perimeter at the height of the first branches. The variables present in all sub-models were rainfall volume and intensity and the tree and trunk heights. Canopy volume and rainfall duration were also present in the sub-models of the two low-density groves (Tapada and Várzea). The determination coefficient (R2) of all models ranged from 0.5 to 0.76. The size of leaves was also analysed. Although there were significant differences between varieties and between trees of the same variety, they did not seem to affect the amount of Sf generated. Through analysis of bark storage capacity, it was found that older trees, with rough and thick bark, had higher trunk storage capacity and, therefore, originated less Sf. The results confirm the need for considering the contribution of stemflow when trying to correctly assess interception loss in olive orchards. Although the use of simple and general statistical models may be an attractive option, their precision may be small, making direct measurements or conceptual modelling preferable methods.
Sap Flow Estimate Of Watershed-Scale Transpiration
NASA Astrophysics Data System (ADS)
Kumagai, T.; Aoki, S.; Shimizu, T.; Otsuki, K.
2006-12-01
The present study examined how to obtain sufficient information to extrapolate watershed-scale transpiration in a Japanese cedar (Cryptomeria japonica D. Don) forest from sap flow measurements of available individual trees. In this study, we conducted measurements of tree biometrics and tree-to-tree and radial variations in xylem sap flux density (Fd) in two different stand plots, an upper slope plot (UP) and lower slope plot (LP), during the growing season with significant variations in environmental factors. The manner in which the mean stand sap flux density (JS) and tree stem allometric relationship (diameter at breast height (DBH) versus sapwood area (AS_tree)) vary between the two stands along the slope of the watershed was then investigated. After these analyses, appropriate sample sizes for estimations of representative JS values in the stand were also determined. The results demonstrated that a unique or general function allowed description of the allometric relationship along the slope, but the data for its formulation needed to be obtained in both UP and LP. They also revealed that JS in UP and LP were almost the same during the study period despite differences in tree density and size between the two plots. This implies that JS measured in a partial stand within a watershed is a reasonable estimator of the values of other stands, and that stand sapwood area calculated by AS_tree is a strong determinant of water-use in a forest watershed. To estimate JS in both an UP and LP, at least 10 trees should be sampled, but not necessarily more than this.
Gidoin, Cynthia; Avelino, Jacques; Deheuvels, Olivier; Cilas, Christian; Bieng, Marie Ange Ngo
2014-03-01
Vegetation composition and plant spatial structure affect disease intensity through resource and microclimatic variation effects. The aim of this study was to evaluate the independent effect and relative importance of host composition and plant spatial structure variables in explaining disease intensity at the plot scale. For that purpose, frosty pod rot intensity, a disease caused by Moniliophthora roreri on cacao pods, was monitored in 36 cacao agroforests in Costa Rica in order to assess the vegetation composition and spatial structure variables conducive to the disease. Hierarchical partitioning was used to identify the most causal factors. Firstly, pod production, cacao tree density and shade tree spatial structure had significant independent effects on disease intensity. In our case study, the amount of susceptible tissue was the most relevant host composition variable for explaining disease intensity by resource dilution. Indeed, cacao tree density probably affected disease intensity more by the creation of self-shading rather than by host dilution. Lastly, only regularly distributed forest trees, and not aggregated or randomly distributed forest trees, reduced disease intensity in comparison to plots with a low forest tree density. A regular spatial structure is probably crucial to the creation of moderate and uniform shade as recommended for frosty pod rot management. As pod production is an important service expected from these agroforests, shade tree spatial structure may be a lever for integrated management of frosty pod rot in cacao agroforests.
A multiscale assessment of tree avoidance by prairie birds
Thompson, Sarah J.; Arnold, Todd W.; Amundson, Courtney L.
2014-01-01
In North America, grassland bird abundances have declined, likely as a result of loss and degradation of prairie habitat. Given the expense and limited opportunity to procure new grasslands, managers are increasingly focusing on ways to improve existing habitat for grassland birds, using techniques such as tree removal. To examine the potential for tree removal to benefit grassland birds, we conducted 446 point counts on 35 grassland habitat patches in the highly fragmented landscape of west-central Minnesota during 2009–2011. We modeled density of four grassland bird species in relation to habitat composition at multiple scales, focusing on covariates that described grass, woody vegetation (trees and large shrubs), or combinations of grass and woody vegetation. The best-supported models for all four grassland bird species incorporated variables measured at multiple scales, including local features such as grass height, litter depth, and local tree abundance, as well as landscape-level measures of grass and tree cover. Savannah Sparrows (Passerculus sandwichensis), Sedge Wrens (Cistothorus platensis), and Bobolinks (Dolichonyx oryzivorus) responded consistently and negatively to woody vegetation, but response to litter depth, grass height, and grassland extent were mixed among species. Our results suggest that reducing shrub and tree cover is more likely to increase the density of grassland birds than are attempts to improve grass quality or quantity. In particular, tree removal is more likely to increase density of Savannah Sparrows and Sedge Wrens than any reasonable changes in grass quality or quantity. Yet tree removal may not result in increased abundance of grassland birds if habitat composition is not considered at multiple scales. Managers will need to either manage at large scales (80–300 ha) or focus their efforts on removing trees in landscapes that contain some grasslands but few nearby wooded areas.
NASA Astrophysics Data System (ADS)
Lin, Yi; West, Geoff
2016-08-01
As an important canopy structure indicator, leaf area index (LAI) proved to be of considerable implications for forest ecosystem and ecological studies, and efficient techniques for accurate LAI acquisitions have long been highlighted. Airborne light detection and ranging (LiDAR), often termed as airborne laser scanning (ALS), once was extensively investigated for this task but showed limited performance due to its low sampling density. Now, ALS systems exhibit more competing capacities such as high density and multi-return sampling, and hence, people began to ask the questions like-;can ALS now work better on the task of LAI prediction?; As a re-examination, this study investigated the feasibility of LAI retrievals at the individual tree level based on high density and multi-return ALS, by directly considering the vertical distributions of laser points lying within each tree crown instead of by proposing feature variables such as quantiles involving laser point distribution modes at the plot level. The examination was operated in the case of four tree species (i.e. Picea abies, Pinus sylvestris, Populus tremula and Quercus robur) in a mixed forest, with their LAI-related reference data collected by using static terrestrial laser scanning (TLS). In light of the differences between ALS- and TLS-based LAI characterizations, the methods of voxelization of 3D scattered laser points, effective LAI (LAIe) that does not distinguish branches from canopies and unified cumulative LAI (ucLAI) that is often used to characterize the vertical profiles of crown leaf area densities (LADs) was used; then, the relationships between the ALS- and TLS-derived LAIes were determined, and so did ucLAIs. Tests indicated that the tree-level LAIes for the four tree species can be estimated based on the used airborne LiDAR (R2 = 0.07, 0.26, 0.43 and 0.21, respectively) and their ucLAIs can also be derived. Overall, this study has validated the usage of the contemporary high density multi-return airborne LiDARs for LAIe and LAD profile retrievals at the individual tree level, and the contribution are of high potential for advancing forest ecosystem modeling and ecological understanding.
Pometti, Carolina; Bessega, Cecilia; Cialdella, Ana; Ewens, Mauricio; Saidman, Beatriz; Vilardi, Juan
2018-01-01
The identification of factors that structure intraspecific diversity is of particular interest for biological conservation and restoration ecology. All rangelands in Argentina are currently experiencing some form of deterioration or desertification. Acacia aroma is a multipurpose species widely distributed throughout this country. In this study, we used the AFLP technique to study genetic diversity, population genetic structure, and fine-scale spatial genetic structure in 170 individuals belonging to 6 natural Argentinean populations. With 401 loci, the mean heterozygosity (HE = 0.2) and the mean percentage of polymorphic loci (PPL = 62.1%) coefficients indicated that the genetic variation is relatively high in A. aroma. The analysis with STRUCTURE showed that the number of clusters (K) was 3. With Geneland analysis, the number of clusters was K = 4, sharing the same grouping as STRUCTURE but dividing one population into two groups. When studying SGS, significant structure was detected in 3 of 6 populations. The neighbourhood size in these populations ranged from 15.2 to 64.3 individuals. The estimated gene dispersal distance depended on the effective population density and disturbance level and ranged from 45 to 864 m. The combined results suggest that a sampling strategy, which aims to maintain a considerable part of the variability contained in natural populations sampled here, would include at least 3 units defined by the clusters analyses that exhibit particular genetic properties. Moreover, the current SGS analysis suggests that within the wider management units/provinces, seed collection from A. aroma should target trees separated by a minimum distance of 50 m but preferably 150 m to reduce genetic relatedness among seeds from different trees.
Bessega, Cecilia; Cialdella, Ana; Ewens, Mauricio; Saidman, Beatriz; Vilardi, Juan
2018-01-01
The identification of factors that structure intraspecific diversity is of particular interest for biological conservation and restoration ecology. All rangelands in Argentina are currently experiencing some form of deterioration or desertification. Acacia aroma is a multipurpose species widely distributed throughout this country. In this study, we used the AFLP technique to study genetic diversity, population genetic structure, and fine-scale spatial genetic structure in 170 individuals belonging to 6 natural Argentinean populations. With 401 loci, the mean heterozygosity (HE = 0.2) and the mean percentage of polymorphic loci (PPL = 62.1%) coefficients indicated that the genetic variation is relatively high in A. aroma. The analysis with STRUCTURE showed that the number of clusters (K) was 3. With Geneland analysis, the number of clusters was K = 4, sharing the same grouping as STRUCTURE but dividing one population into two groups. When studying SGS, significant structure was detected in 3 of 6 populations. The neighbourhood size in these populations ranged from 15.2 to 64.3 individuals. The estimated gene dispersal distance depended on the effective population density and disturbance level and ranged from 45 to 864 m. The combined results suggest that a sampling strategy, which aims to maintain a considerable part of the variability contained in natural populations sampled here, would include at least 3 units defined by the clusters analyses that exhibit particular genetic properties. Moreover, the current SGS analysis suggests that within the wider management units/provinces, seed collection from A. aroma should target trees separated by a minimum distance of 50 m but preferably 150 m to reduce genetic relatedness among seeds from different trees. PMID:29389969
Forest Health Monitoring in Massachusetts, 1996-1999
Northeastern Research Station
2002-01-01
Massachusetts has mature forests dominated by hardwood species. Most of the trees are healthy, with full crowns (low transparency, high density), little dieback and little damage. Red maple trees made up almost one quarter of the trees and had slightly higher amounts of dieback, thinner crowns, and more damage than other common tree species.
A generalized system of models forecasting Central States tree growth.
Stephen R. Shifley
1987-01-01
Describes the development and testing of a system of individual tree-based growth projection models applicable to species in Indiana, Missouri, and Ohio. Annual tree basal area growth is estimated as a function of tree size, crown ratio, stand density, and site index. Models are compatible with the STEMS and TWIGS Projection System.
Stelinski, L L; Miller, J R; Rogers, M E
2008-08-01
The citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae), is a worldwide pest of citrus. A season-long investigation was conducted that evaluated mating disruption for this pest. Effective disruption of the male P. citrella orientation to pheromone traps (98%) and reduced flush infestation by larvae was achieved for 221 d with two deployments of a 3:1 blend of (Z,Z,E)-7,11,13-hexadecatrienal/(Z,Z)-7,11-hexadecadienal at a remarkably low rate of 1.5 g active ingredient (AI)/ha per deployment. To gain insight into the mechanism that mediates the disruption of P. citrella, male moth catch was quantified in replicated plots of citrus treated with varying densities of pheromone dispensers. The densities of septum dispensers compared were: 0 (0/ha, 0.0 g AI/ha), 0.2 (one every fifth tree or 35/ha, 0.05 g AI/ha), 1 (215/ha, 0.29 g AI/ha), and 5 per tree (1,100/ha, 1.5 g AI/ha). Profile analysis by previously published mathematical methods matched predictions of noncompetitive mating disruption. Behavioral observations of male P. citrella in the field revealed that males did not approach mating disruption dispensers in any of the dispenser density treatments. The current report presents the first set of profile analyses combined with direct behavioral observations consistent with previously published theoretical predictions for a noncompetitive mechanism of mating disruption. The results suggest that disruption of P. citrella should be effective even at high population densities given the density-independent nature of disruption for this species and the remarkably low rate of pheromone per hectare required for efficacy.
Red Cedar Invasion Along the Missouri River, South Dakota: Cause and Consequence
NASA Astrophysics Data System (ADS)
Greene, S.; Knox, J. C.
2012-12-01
This research evaluates drivers of and ecosystem response to red cedar (Juniperus virginiana) invasion of riparian surfaces downstream of Gavin's Point Dam on the Missouri River. Gavin's Point Dam changed the downstream geomorphology and hydrology of the river and its floodplain by reducing scouring floods and flood-deposited sediment. The native cottonwood species (Populus deltoides) favors cleared surfaces with little to no competitors to establish. Now that there are infrequent erosive floods along the riparian surfaces to remove competitor seeds and seedlings, other vegetation is able to establish. Red cedar is invading the understory of established cottonwood stands and post-dam riparian surfaces. To assess reasons and spatial patterns for the recent invasion of red cedar, a stratified random sampling of soil, tree density and frequency by species, and tree age of 14 forest stands was undertaken along 59 river kilometers of riparian habitat. Soil particle size was determined using laser diffraction and tree ages were estimated from ring counts of tree cores. As an indicator of ecosystem response to invasion, we measured organic matter content in soil collected beneath red cedar and cottonwood trees at three different depths. Of 565 red cedars, only two trees were established before the dam was built. We applied a multiple regression model of red cedar density as a function of cottonwood density and percent sand (63-1000 microns in diameter) in StatPlus© statistical software. Cottonwood density and percent sand are strongly correlated with invasion of red cedar along various riparian surfaces (n = 59, R2 = 0.42, p-values < 0.05). No significant differences exist between organic matter content of soil beneath red cedar and cottonwood trees (p-value > 0.05 for all depths). These findings suggest that the dam's minimization of downstream high-stage flows opened up new habitat for red cedar to establish. Fluvial geomorphic surfaces reflect soil type and cottonwood density and, in turn, predict susceptibility of a surface to red cedar invasion. Nonetheless, soils underlying red cedar and cottonwood trees are functionally similar with regard to soil organic matter content.
Kwan, Paul; Welch, Mitchell
2017-01-01
In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus. An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops. PMID:28875085
Al-Kindi, Khalifa M; Kwan, Paul; R Andrew, Nigel; Welch, Mitchell
2017-01-01
In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus . An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops.
Projecting range-wide sun bear population trends using tree cover and camera-trap bycatch data.
Scotson, Lorraine; Fredriksson, Gabriella; Ngoprasert, Dusit; Wong, Wai-Ming; Fieberg, John
2017-01-01
Monitoring population trends of threatened species requires standardized techniques that can be applied over broad areas and repeated through time. Sun bears Helarctos malayanus are a forest dependent tropical bear found throughout most of Southeast Asia. Previous estimates of global population trends have relied on expert opinion and cannot be systematically replicated. We combined data from 1,463 camera traps within 31 field sites across sun bear range to model the relationship between photo catch rates of sun bears and tree cover. Sun bears were detected in all levels of tree cover above 20%, and the probability of presence was positively associated with the amount of tree cover within a 6-km2 buffer of the camera traps. We used the relationship between catch rates and tree cover across space to infer temporal trends in sun bear abundance in response to tree cover loss at country and global-scales. Our model-based projections based on this "space for time" substitution suggested that sun bear population declines associated with tree cover loss between 2000-2014 in mainland southeast Asia were ~9%, with declines highest in Cambodia and lowest in Myanmar. During the same period, sun bear populations in insular southeast Asia (Malaysia, Indonesia and Brunei) were projected to have declined at a much higher rate (22%). Cast forward over 30-years, from the year 2000, by assuming a constant rate of change in tree cover, we projected population declines in the insular region that surpassed 50%, meeting the IUCN criteria for endangered if sun bears were listed on the population level. Although this approach requires several assumptions, most notably that trends in abundance across space can be used to infer temporal trends, population projections using remotely sensed tree cover data may serve as a useful alternative (or supplement) to expert opinion. The advantages of this approach is that it is objective, data-driven, repeatable, and it requires that all assumptions be clearly stated.
Magnetic record associated with tree ring density: Possible climate proxy
Kletetschka, Gunther; Pruner, Petr; Venhodova, Daniela; Kadlec, Jaroslav
2007-01-01
A magnetic signature of tree rings was tested as a potential paleo-climatic indicator. We examined wood from sequoia tree, located in Mountain Home State Forest, California, whose tree ring record spans over the period 600 – 1700 A.D. We measured low and high-field magnetic susceptibility, the natural remanent magnetization (NRM), saturation isothermal remanent magnetization (SIRM), and stability against thermal and alternating field (AF) demagnetization. Magnetic investigation of the 200 mm long sequoia material suggests that magnetic efficiency of natural remanence may be a sensitive paleoclimate indicator because it is substantially higher (in average >1%) during the Medieval Warm Epoch (700–1300 A.D.) than during the Little Ice Age (1300–1850 A.D.) where it is <1%. Diamagnetic behavior has been noted to be prevalent in regions with higher tree ring density. The mineralogical nature of the remanence carrier was not directly detected but maghemite is suggested due to low coercivity and absence of Verwey transition. Tree ring density, along with the wood's magnetic remanence efficiency, records the Little Ice Age (LIA) well documented in Europe. Such a record suggests that the European LIA was a global phenomenon. Magnetic analysis of the thermal stability reveals the blocking temperatures near 200 degree C. This phenomenon suggests that the remanent component in this tree may be thermal in origin and was controlled by local thermal condition. PMID:17381844
UAV hyperspectral and lidar data analysis for vegetation applications
NASA Astrophysics Data System (ADS)
Sankey, Temuulen; Sankey, Joel; Donager, Jonathon
2017-04-01
High spatial and spectral resolution remote sensing data are critically needed to classify forest vegetation and measure their structure at the level of individual species and canopies. Here we test high-resolution lidar and hyperspectral data from unmanned aerial vehicles (UAV) and demonstrate a lidar-hyperspectral image fusion method in treated and control forests with varying tree density and canopy cover as well as in an ecotone with a gradient of vegetation and topography in northern Arizona, USA. The fusion performs better (88% overall accuracy) than either data type alone, particularly for species with similar spectral signature, but different canopy sizes. The lidar data provides estimates of individual tree height (R2=0.90; RMSE=2.3m) and crown diameter (R2=0.72; RMSE=0.71m) as well as total tree canopy cover (R2=0.87; RMSE=9.5%) and tree density (R2=0.77; RMSE=0.69 trees/cell) in 10 m cells across thin only, burn only, thin-and-burn, and control treatments, where tree cover and density ranged between 22-50% and 1-3.5 trees/cell, respectively. The lidar data also produces high accuracy DEM (R2=0.95; RMSE=0.43m). The lidar and hyperspectral sensors and methods demonstrated here can be widely applied across a gradient of vegetation and topography for monitoring ecosystem changes.
Martinson, S J; Fernádez Ajó, A A; Martínez, A S; Krivak-Tetley, F E; Villacide, J M; Ayres, M P; Corley, J C
2018-04-18
Accidental and intentional global movement of species has increased the frequency of novel plant-insect interactions. In Patagonia, the European woodwasp, Sirex noctilio, has invaded commercial plantations of North American pines. We compared the patterns of resin defenses and S. noctilio-caused mortality at two mixed-species forests near San Carlos de Bariloche, Argentina. We observed lower levels of resin flow and higher levels of mortality in Pinus contorta compared with Pinus ponderosa. In general, S. noctilio attacked trees with lower resin compared with neighboring trees. Resin production in P. ponderosa was not related to growth rates, but for P. contorta, slower growing trees produced less resin than faster growing conspecifics. For all infested trees, attack density and number of drills (ovipositor probes) per attack did not vary with resin production. Most attacks resulted in one or two drills. Attack rates and drills/attack were basically uniform across the bole of the tree except for a decrease in both drills/attack and attack density in the upper portion of the crown, and an increase in the attack density for the bottom 10% of the tree. Planted pines in Patagonia grow faster than their counterparts in North America, and produce less resin, consistent with the growth-differentiation balance hypothesis. Limited resin defenses may help to explain the high susceptibility of P. contorta to woodwasps in Patagonia.
Eric D. Forsman; James K. Swingle; Raymond J. Davis; Brian L. Biswell; Lawrence S. Andrews
2016-01-01
We describe the historical and current distribution of tree voles (Arborimus longicaudus; A. pomo) and compare the minimum density of trees with tree vole nests in different forest age-classes based on museum records, field notes of previous collectors, tree vole nest surveys conducted by federal agencies, and our field studies in Oregon and...
McCullough, Deborah G; Siegert, Nathan W; Poland, Therese M; Pierce, Steven J; Ahn, Su Zie
2011-10-01
Effective methods for early detection of newly established, low density emerald ash borer (Agrilus planipennis Fairmaire) infestations are critically needed in North America. We assessed adult A. planipennis captures on four types of traps in a 16-ha site in central Michigan. The site was divided into 16 blocks, each comprised of four 50- by 50-m cells. Green ash trees (Fraxinus pennsylvanica Marshall) were inventoried by diameter class and ash phloem area was estimated for each cell. One trap type was randomly assigned to each cell in each block. Because initial sampling showed that A. planipennis density was extremely low, infested ash logs were introduced into the center of the site. In total, 87 beetles were captured during the summer. Purple double-decker traps baited with a blend of ash leaf volatiles, Manuka oil, and ethanol captured 65% of all A. planipennis beetles. Similarly baited, green double-decker traps captured 18% of the beetles, whereas sticky bands on girdled trees captured 11% of the beetles. Purple traps baited with Manuka oil and suspended in the canopies of live ash trees captured only 5% of the beetles. At least one beetle was captured on 81% of the purple double-decker traps, 56% of the green double-decker traps, 42% of sticky bands, and 25% of the canopy traps. Abundance of ash phloem near traps had no effect on captures and trap location and sun exposure had only weak effects on captures. Twelve girdled and 29 nongirdled trees were felled and sampled in winter. Current-year larvae were present in 100% of the girdled trees and 72% of the nongirdled trees, but larval density was five times higher on girdled than nongirdled trees.
2011-01-01
Background Technological advances are progressively increasing the application of genomics to a wider array of economically and ecologically important species. High-density maps enriched for transcribed genes facilitate the discovery of connections between genes and phenotypes. We report the construction of a high-density linkage map of expressed genes for the heterozygous genome of Eucalyptus using Single Feature Polymorphism (SFP) markers. Results SFP discovery and mapping was achieved using pseudo-testcross screening and selective mapping to simultaneously optimize linkage mapping and microarray costs. SFP genotyping was carried out by hybridizing complementary RNA prepared from 4.5 year-old trees xylem to an SFP array containing 103,000 25-mer oligonucleotide probes representing 20,726 unigenes derived from a modest size expressed sequence tags collection. An SFP-mapping microarray with 43,777 selected candidate SFP probes representing 15,698 genes was subsequently designed and used to genotype SFPs in a larger subset of the segregating population drawn by selective mapping. A total of 1,845 genes were mapped, with 884 of them ordered with high likelihood support on a framework map anchored to 180 microsatellites with average density of 1.2 cM. Using more probes per unigene increased by two-fold the likelihood of detecting segregating SFPs eventually resulting in more genes mapped. In silico validation showed that 87% of the SFPs map to the expected location on the 4.5X draft sequence of the Eucalyptus grandis genome. Conclusions The Eucalyptus 1,845 gene map is the most highly enriched map for transcriptional information for any forest tree species to date. It represents a major improvement on the number of genes previously positioned on Eucalyptus maps and provides an initial glimpse at the gene space for this global tree genome. A general protocol is proposed to build high-density transcript linkage maps in less characterized plant species by SFP genotyping with a concurrent objective of reducing microarray costs. HIgh-density gene-rich maps represent a powerful resource to assist gene discovery endeavors when used in combination with QTL and association mapping and should be especially valuable to assist the assembly of reference genome sequences soon to come for several plant and animal species. PMID:21492453
Analysis of vegetation changes in Rock Creek Park, 1991-2007
Hatfield, Jeff S.; Krafft, Cairn
2009-01-01
Vegetation data collected at Rock Creek Park every 4 years during 1991-2007 were analyzed for differences among 3 regions within the park and among years. The variables measured and analyzed were percentage of twigs browsed, percentage of canopy cover, species richness of herbaceous plants, number of tree seedlings in each of 7 height classes, tree seedling stocking rate for low deer density and high deer density areas, percentage of tree and shrub cover < 2 m in height, mean diameter at breast height (DBH) of trees > 1 cm DBH, number of tree stems > 1 cm DBH, species richness of trees and shrubs, and mean height of the 5 tallest trees in each plot quadrant. Repeated measures analysis of variance (ANOVA) was used to test for differences and, except for some differences in tree species composition among the 3 regions, no differences (P > 0.01) were found among the 3 regions in the variables discussed above. Many of the variables showed very significant differences (P < 0.01) among years, and causative factors should be investigated further. In addition, importance values were calculated for the 10 most important tree species in each region and changes over time were reported. Future sampling recommendations are also discussed.
Bagchi, Robert; Philipson, Christopher D; Slade, Eleanor M; Hector, Andy; Phillips, Sam; Villanueva, Jerome F; Lewis, Owen T; Lyal, Christopher H C; Nilus, Reuben; Madran, Adzley; Scholes, Julie D; Press, Malcolm C
2011-11-27
Much of the forest remaining in South East Asia has been selectively logged. The processes promoting species coexistence may be the key to the recovery and maintenance of diversity in these forests. One such process is the Janzen-Connell mechanism, where specialized natural enemies such as seed predators maintain diversity by inhibiting regeneration near conspecifics. In Neotropical forests, anthropogenic disturbance can disrupt the Janzen-Connell mechanism, but similar data are unavailable for South East Asia. We investigated the effects of conspecific density (two spatial scales) and distance from fruiting trees on seed and seedling survival of the canopy tree Parashorea malaanonan in unlogged and logged forests in Sabah, Malaysia. The production of mature seeds was higher in unlogged forest, perhaps because high adult densities facilitate pollination or satiate pre-dispersal predators. In both forest types, post-dispersal survival was reduced by small-scale (1 m(2)) conspecific density, but not by proximity to the nearest fruiting tree. Large-scale conspecific density (seeds per fruiting tree) reduced predation, probably by satiating predators. Higher seed production in unlogged forest, in combination with slightly higher survival, meant that recruitment was almost entirely limited to unlogged forest. Thus, while logging might not affect the Janzen-Connell mechanism at this site, it may influence the recruitment of particular species.
Modern tree species composition reflects ancient Maya "forest gardens" in northwest Belize.
Ross, Nanci J
2011-01-01
Ecology and ethnobotany were integrated to assess the impact of ancient Maya tree-dominated home gardens (i.e., "forest gardens"), which contained a diversity of tree species used for daily household needs, on the modern tree species composition of a Mesoamerican forest. Researchers have argued that the ubiquity of these ancient gardens throughout Mesoamerica led to the dominance of species useful to Maya in the contemporary forest, but this pattern may be localized depending on ancient land use. The tested hypothesis was that species composition would be significantly different between areas of dense ancient residential structures (high density) and areas of little or no ancient settlement (low density). Sixty-three 400-m2 plots (31 high density and 32 low density) were censused around the El Pilar Archaeological Reserve in northwestern Belize. Species composition was significantly different, with higher abundances of commonly utilized "forest garden" species still persisting in high-density forest areas despite centuries of abandonment. Subsequent edaphic analyses only explained 5% of the species composition differences. This research provides data on the long-term impacts of Maya forests gardens for use in development of future conservation models. For Mesoamerican conservation programs to work, we must understand the complex ecological and social interactions within an ecosystem that developed in intimate association with humans.