Sample records for tree surface temperature

  1. Estimating the Longwave Radiation Underneath the Forest Canopy in Snow-dominated Setting

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Kumar, M.; Link, T. E.

    2017-12-01

    Forest canopies alter incoming longwave radiation at the land surface, thus influencing snow cover energetics. The snow surface receives longwave radiation from the sky as well as from surrounding vegetation. The longwave radiation from trees is determined by its skin temperature, which shows significant heterogeneity depending on its position and morphometric attributes. Here our goal is to derive an effective tree temperature that can be used to estimate the longwave radiation received by the land surface pixel. To this end, we implement these three steps: 1) derive a relation between tree trunk surface temperature and the incident longwave radiation, shortwave radiation, and air temperature; 2) develop an inverse model to calculate the effective temperature by establishing a relationship between the effective temperature and the actual tree temperature; and 3) estimate the effective temperature using widely measured variables, such as solar radiation and forest density. Data used to derive aforementioned relations were obtained at the University of Idaho Experimental Forest, in northern Idaho. Tree skin temperature, incoming longwave radiation, solar radiation received by the tree surface, and air temperature were measured at an isolated tree and a tree within a homogeneous forest stand. Longwave radiation received by the land surface and the sky view factors were also measured at the same two locations. The calculated effective temperature was then compared with the measured tree trunk surface temperature. Additional longwave radiation measurements with pyrgeometer arrays were conducted under forests with different densities to evaluate the relationship between effective temperature and forest density. Our preliminary results show that when exposed to direct shortwave radiation, the tree surface temperature shows a significant difference from the air temperature. Under cloudy or shaded conditions, the tree surface temperature closely follows the air temperature. The effective tree temperature follows the air temperature in a dense forest stand, although it is significantly larger than the air temperature near the isolated tree. This discrepancy motivates us to explore ways to represent the effective tree temperature for stands with different densities.

  2. Vegetation placement for summer built surface temperature moderation in an urban microclimate.

    PubMed

    Millward, Andrew A; Torchia, Melissa; Laursen, Andrew E; Rothman, Lorne D

    2014-06-01

    Urban vegetation can mitigate increases in summer air temperature by reducing the solar gain received by buildings. To quantify the temperature-moderating influence of city trees and vine-covered buildings, a total of 13 pairs of temperature loggers were installed on the surfaces of eight buildings in downtown Toronto, Canada, for 6 months during the summer of 2008. One logger in each pair was shaded by vegetation while the other measured built surface temperature in full sunlight. We investigated the temperature-moderating benefits of solitary mature trees, clusters of trees, and perennial vines using a linear-mixed model and a multiple regression analysis of degree hour difference. We then assessed the temperature-moderating effect of leaf area, plant size and proximity to building, and plant location relative to solar path. During a period of high solar intensity, we measured an average temperature differential of 11.7 °C, with as many as 10-12 h of sustained cooler built surface temperatures. Vegetation on the west-facing aspect of built structures provided the greatest temperature moderation, with maximum benefit (peak temperature difference) occurring late in the afternoon. Large mature trees growing within 5 m of buildings showed the greatest ability to moderate built surface temperature, with those growing in clusters delivering limited additional benefit compared with isolated trees. Perennial vines proved as effective as trees at moderating rise in built surface temperature to the south and west sides of buildings, providing an attractive alternative to shade trees where soil volume and space are limited.

  3. Vegetation Placement for Summer Built Surface Temperature Moderation in an Urban Microclimate

    NASA Astrophysics Data System (ADS)

    Millward, Andrew A.; Torchia, Melissa; Laursen, Andrew E.; Rothman, Lorne D.

    2014-06-01

    Urban vegetation can mitigate increases in summer air temperature by reducing the solar gain received by buildings. To quantify the temperature-moderating influence of city trees and vine-covered buildings, a total of 13 pairs of temperature loggers were installed on the surfaces of eight buildings in downtown Toronto, Canada, for 6 months during the summer of 2008. One logger in each pair was shaded by vegetation while the other measured built surface temperature in full sunlight. We investigated the temperature-moderating benefits of solitary mature trees, clusters of trees, and perennial vines using a linear-mixed model and a multiple regression analysis of degree hour difference. We then assessed the temperature-moderating effect of leaf area, plant size and proximity to building, and plant location relative to solar path. During a period of high solar intensity, we measured an average temperature differential of 11.7 °C, with as many as 10-12 h of sustained cooler built surface temperatures. Vegetation on the west-facing aspect of built structures provided the greatest temperature moderation, with maximum benefit (peak temperature difference) occurring late in the afternoon. Large mature trees growing within 5 m of buildings showed the greatest ability to moderate built surface temperature, with those growing in clusters delivering limited additional benefit compared with isolated trees. Perennial vines proved as effective as trees at moderating rise in built surface temperature to the south and west sides of buildings, providing an attractive alternative to shade trees where soil volume and space are limited.

  4. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    PubMed Central

    Edmondson, J. L.; Stott, I.; Davies, Z. G.; Gaston, K. J.; Leake, J. R.

    2016-01-01

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health. PMID:27641002

  5. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    PubMed

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-09-19

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  6. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    NASA Astrophysics Data System (ADS)

    Edmondson, J. L.; Stott, I.; Davies, Z. G.; Gaston, K. J.; Leake, J. R.

    2016-09-01

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  7. Roles of Urban Tree Canopy and Buildings in Urban Heat Island Effects: Parameterization and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Loughner, Christopher P.; Allen, Dale J.; Zhang, Da-Lin; Pickering, Kenneth E.; Dickerson, Russell R.; Landry, Laura

    2012-01-01

    Urban heat island (UHI) effects can strengthen heat waves and air pollution episodes. In this study, the dampening impact of urban trees on the UHI during an extreme heat wave in the Washington, D.C., and Baltimore, Maryland, metropolitan area is examined by incorporating trees, soil, and grass into the coupled Weather Research and Forecasting model and an urban canopy model (WRF-UCM). By parameterizing the effects of these natural surfaces alongside roadways and buildings, the modified WRF-UCM is used to investigate how urban trees, soil, and grass dampen the UHI. The modified model was run with 50% tree cover over urban roads and a 10% decrease in the width of urban streets to make space for soil and grass alongside the roads and buildings. Results show that, averaged over all urban areas, the added vegetation decreases surface air temperature in urban street canyons by 4.1 K and road-surface and building-wall temperatures by 15.4 and 8.9 K, respectively, as a result of tree shading and evapotranspiration. These temperature changes propagate downwind and alter the temperature gradient associated with the Chesapeake Bay breeze and, therefore, alter the strength of the bay breeze. The impact of building height on the UHI shows that decreasing commercial building heights by 8 m and residential building heights by 2.5 m results in up to 0.4-K higher daytime surface and near-surface air temperatures because of less building shading and up to 1.2-K lower nighttime temperatures because of less longwave radiative trapping in urban street canyons.

  8. Thermal infrared as a tool to detect tree water stress in a coniferous forest

    NASA Astrophysics Data System (ADS)

    Nourtier, M.; Chanzy, A.; Bes, B.; Davi, H.; Hanocq, J. F.; Mariotte, N.; Sappe, G.

    2009-04-01

    In the context of climatic change, species area may move and so, a study of forest species vulnerability is on interest. In Mediterranean regions, trees can suffer of water stress due to drought during summer. Responses to environmental constraints are delayed in forest so it is necessary to anticipate risks in order to adapt management. It would be therefore interesting to localize areas where trees might be vulnerable to water stress. To detect such areas, the idea developed in this study is to map the severity of water stress, which may be linked to soil. Because vegetation surface temperature is linked to transpiration and so to water stress, the relevance of thermal infrared as a tool to detect water stress was explored. Past studies about surface temperature of forests at the planting scale did not lead to conclusive results. At this scale, important spatial and temporal variations of surface temperature, with a magnitude of about 10°C, can be registered but there is possibly a sizeable contribution of the undergrowth (Duchemin, 1998a, 1998b). In the other hand, important stress are not detectable, probably due to meteorological conditions (Pierce et al., 1990). During spring and summer 2008, an experimentation was carried out on the silver fir (Abies alba) forest of Mont Ventoux (south of France) to evaluate temporal variations at tree scale of the surface temperature in relation to water stress and climatic conditions. Two sites and three trees were chosen for measurements of surface temperature with a view to have different levels of water stress. Transpiration deficit is characterised by the ratio of actual transpiration to potential transpiration which is computed by the ISBA model (Noilhan et al., 1989) implemented by climatic observations made at the top of tree canopy. Sap flow measurements needed to calculate this ratio were completed on different trees of the sites. Climatic datas also allows building reference temperature and then surface temperature indices. Throughout the experimentation, there were only short dry periods, 2008 being a wet year. During these periods, temperature indices increased while transpiration ratios decreased showing that an observable increase in surface temperature is induced by water stress. To assess the exploitable signal magnitude, a declining tree having negligible transpiration but a canopy structure, which was still comparable to a healthy tree, was monitored. A difference in surface temperature between the healthy tree and the declining tree get to an average of 4 °C. This gives keys of interpretation of thermal infrared measurements (sensitivity, magnitude) in case of silver fir forest. If encouraging results were obtained, the study showed that the range of magnitude remains modest. Therefore, the influence of climatic conditions, which also influence surface temperature, must be accounted very carefully. To reach operational results spatial study at the forest scale is now required. Keywords: Fir, Abies alba, thermal infrared, water stress, transpiration, surface temperature, remote sensing Duchemin B., D. Guyon, J.P. Lagouarde, 1998. Potential and limits of NOAA-AVHRR temporal composite data for phenology and water stress monitoring of temperate forest ecosystems. International Journal of remote sensing, volume: 20, 5, p 23. Duchemin B., Lagouarde J.P., 1998. Apport des capteurs satellitaires à large champ pour l'estimation de variables de fonctionnement des écosystèmes forestiers tempérés. Thesis. p120. Noilhan J., Planton S., 1989. A simple parameterization of land surface processes for meteorological models. Monthly weather review, volume 117, 3. Pierce L. L., Running S.W., Riggs G.A., 1990. Remote detection of canopy water stress in coniferous forests using the NS001 Thematic Mapper Simulator and the Thermal Infrared Multispectral Scanner. Photogrammetric engineering and remote sensing, volume: 56, 1, p 8.

  9. Effects of urban tree canopy loss on land surface temperature magnitude and timing

    Treesearch

    Arthur Elmes; John Rogan; Christopher Williams; Samuel Ratick; David Nowak; Deborah Martin

    2017-01-01

    Urban Tree Canopy (UTC) plays an important role in moderating the Surface Urban Heat Island (SUHI) effect, which poses threats to human health due to substantially increased temperatures relative to rural areas. UTC coverage is associated with reduced urban temperatures, and therefore benefits both human health and reducing energy use in cities. Measurement of this...

  10. Arctic tree rings as recorders of variations in light availability

    PubMed Central

    Stine, A. R.; Huybers, P.

    2014-01-01

    Annual growth ring variations in Arctic trees are often used to reconstruct surface temperature. In general, however, the growth of Arctic vegetation is limited both by temperature and light availability, suggesting that variations in atmospheric transmissivity may also influence tree-ring characteristics. Here we show that Arctic tree-ring density is sensitive to changes in light availability across two distinct phenomena: explosive volcanic eruptions (P<0.01) and the recent epoch of global dimming (P<0.01). In each case, the greatest response is found in the most light-limited regions of the Arctic. Essentially no late 20th century decline in tree-ring density relative to temperature is seen in the least light-limited regions of the Arctic. Consistent results follow from analysis of tree-ring width and from individually analysing each of seven tree species. Light availability thus appears an important control, opening the possibility for using tree rings to reconstruct historical changes in surface light intensity. PMID:24805143

  11. Effects of post-fire logging on forest surface air temperatures in the Siskiyou Mountains, Oregon, USA

    Treesearch

    Joseph B. Fontaine; Daniel C. Donato; John L. Campbell; Jonathan G. Martin; Beverley E. Law

    2010-01-01

    Following stand-replacing wildfire, post-fire (salvage) logging of fire-killed trees is a widely implemented management practice in many forest types. A common hypothesis is that removal of fire-killed trees increases surface temperatures due to loss of shade and increased solar radiation, thereby influencing vegetation establishment and possibly stand development. Six...

  12. [Effects of different patterns surface mulching on soil properties and fruit trees growth and yield in an apple orchard].

    PubMed

    Zhang, Yi; Xie, Yong-Sheng; Hao, Ming-De; She, Xiao-Yan

    2010-02-01

    Taking a nine-year-old Fuji apple orchard in Loess Plateau as test object, this paper studied the effects of different patterns surface mulching (clean tillage, grass cover, plastic film mulch, straw mulch, and gravel mulch) on the soil properties and fruit trees growth and yield in this orchard. Grass cover induced the lowest differentiation of soil moisture profile, while gravel mulch induced the highest one. In treatment gravel mulch, the soil moisture content in apple trees root zone was the highest, which meant that there was more water available to apple trees. Surface mulching had significant effects on soil temperature, and generally resulted in a decrease in the maximum soil temperature. The exception was treatment plastic film mulch, in which, the soil temperature in summer exceeded the maximum allowable temperature for continuous root growth and physiological function. With the exception of treatment plastic film mulch, surface mulching increased the soil CO2 flux, which was the highest in treatment grass cover. Surface mulching also affected the proportion of various branch types and fruit yield. The proportion of medium-sized branches and fruit yield were the highest in treatment gravel mulch, while the fruit yield was the lowest in treatment grass cover. Factor analysis indicated that among the test surface mulching patterns, gravel mulch was most suitable for the apple orchards in gully region of Loess Plateau.

  13. Evaluating Vegetation Type Effects on Land Surface Temperature at the City Scale

    NASA Astrophysics Data System (ADS)

    Wetherley, E. B.; McFadden, J. P.; Roberts, D. A.

    2017-12-01

    Understanding the effects of different plant functional types and urban materials on surface temperatures has significant consequences for climate modeling, water management, and human health in cities. To date, doing so at the urban scale has been complicated by small-scale surface heterogeneity and limited data. In this study we examined gradients of land surface temperature (LST) across sub-pixel mixtures of different vegetation types and urban materials across the entire Los Angeles, CA, metropolitan area (4,283 km2). We used AVIRIS airborne hyperspectral imagery (36 m resolution, 224 bands, 0.35 - 2.5 μm) to estimate sub-pixel fractions of impervious, pervious, tree, and turfgrass surfaces, validating them with simulated mixtures constructed from image spectra. We then used simultaneously imaged LST retrievals collected at multiple times of day to examine how temperature changed along gradients of the sub-pixel mixtures. Diurnal in situ LST measurements were used to confirm image values. Sub-pixel fractions were well correlated with simulated validation data for turfgrass (r2 = 0.71), tree (r2 = 0.77), impervious (r2 = 0.77), and pervious (r2 = 0.83) surfaces. The LST of pure pixels showed the effects of both the diurnal cycle and the surface type, with vegetated classes having a smaller diurnal temperature range of 11.6°C whereas non-vegetated classes had a diurnal range of 16.2°C (similar to in situ measurements collected simultaneously with the imagery). Observed LST across fractional gradients of turf/impervious and tree/impervious sub-pixel mixtures decreased linearly with increasing vegetation fraction. The slopes of decreasing LST were significantly different between tree and turf mixtures, with steeper slopes observed for turf (p < 0.05). These results suggest that different physiological characteristics and different access to irrigation water of urban trees and turfgrass results in significantly different LST effects, which can be detected at large scales in fractional mixture analysis.

  14. Urban warming trumps natural enemy regulation of herbivorous pests.

    PubMed

    Dale, Adam G; Frank, Steven D

    Trees provide ecosystem services that counter negative effects of urban habitats on human and environmental health. Unfortunately, herbivorous arthropod pests are often more abundant on urban than rural trees, reducing tree growth, survival, and ecosystem services. Previous research where vegetation complexity was reduced has attributed elevated urban pest abundance to decreased regulation by natural enemies. However, reducing vegetation complexity, particularly the density of overstory trees, also makes cities hotter than natural habitats. We ask how urban habitat characteristics influence an abiotic factor, temperature, and a biotic factor, natural enemy abundance, in regulating the abundance of an urban forest pest, the gloomy scale, (Melanaspis tenebricosa). We used a map of surface temperature to select red maple trees (Acer rubrum) at warmer and cooler sites in Raleigh, North Carolina, USA. We quantified habitat complexity by measuring impervious surface cover, local vegetation structural complexity, and landscape scale vegetation cover around each tree. Using path analysis, we determined that impervious surface (the most important habitat variable) increased scale insect abundance by increasing tree canopy temperature, rather than by reducing natural enemy abundance or percent parasitism. As a mechanism for this response, we found that increasing temperature significantly increases scale insect fecundity and contributes to greater population increase. Specifically, adult female M. tenebricosa egg sets increased by approximately 14 eggs for every 1°C increase in temperature. Climate change models predict that the global climate will increase by 2–3°C in the next 50–100 years, which we found would increase scale insect abundance by three orders of magnitude. This result supports predictions that urban and natural forests will face greater herbivory in the future, and suggests that a primary cause could be direct, positive effects of warming on herbivore fitness rather than altered trophic interactions.

  15. Surface temperature dataset for North America obtained by application of optimal interpolation algorithm merging tree-ring chronologies and climate model output

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Xing, Pei; Luo, Yong; Nie, Suping; Zhao, Zongci; Huang, Jianbin; Wang, Shaowu; Tian, Qinhua

    2017-02-01

    A new dataset of surface temperature over North America has been constructed by merging climate model results and empirical tree-ring data through the application of an optimal interpolation algorithm. Errors of both the Community Climate System Model version 4 (CCSM4) simulation and the tree-ring reconstruction were considered to optimize the combination of the two elements. Variance matching was used to reconstruct the surface temperature series. The model simulation provided the background field, and the error covariance matrix was estimated statistically using samples from the simulation results with a running 31-year window for each grid. Thus, the merging process could continue with a time-varying gain matrix. This merging method (MM) was tested using two types of experiment, and the results indicated that the standard deviation of errors was about 0.4 °C lower than the tree-ring reconstructions and about 0.5 °C lower than the model simulation. Because of internal variabilities and uncertainties in the external forcing data, the simulated decadal warm-cool periods were readjusted by the MM such that the decadal variability was more reliable (e.g., the 1940-1960s cooling). During the two centuries (1601-1800 AD) of the preindustrial period, the MM results revealed a compromised spatial pattern of the linear trend of surface temperature, which is in accordance with the phase transition of the Pacific decadal oscillation and Atlantic multidecadal oscillation. Compared with pure CCSM4 simulations, it was demonstrated that the MM brought a significant improvement to the decadal variability of the gridded temperature via the merging of temperature-sensitive tree-ring records.

  16. Estimating the relationship between urban 3D morphology and land surface temperature using airborne LiDAR and Landsat-8 Thermal Infrared Sensor data

    NASA Astrophysics Data System (ADS)

    Lee, J. H.

    2015-12-01

    Urban forests are known for mitigating the urban heat island effect and heat-related health issues by reducing air and surface temperature. Beyond the amount of the canopy area, however, little is known what kind of spatial patterns and structures of urban forests best contributes to reducing temperatures and mitigating the urban heat effects. Previous studies attempted to find the relationship between the land surface temperature and various indicators of vegetation abundance using remote sensed data but the majority of those studies relied on two dimensional area based metrics, such as tree canopy cover, impervious surface area, and Normalized Differential Vegetation Index, etc. This study investigates the relationship between the three-dimensional spatial structure of urban forests and urban surface temperature focusing on vertical variance. We use a Landsat-8 Thermal Infrared Sensor image (acquired on July 24, 2014) to estimate the land surface temperature of the City of Sacramento, CA. We extract the height and volume of urban features (both vegetation and non-vegetation) using airborne LiDAR (Light Detection and Ranging) and high spatial resolution aerial imagery. Using regression analysis, we apply empirical approach to find the relationship between the land surface temperature and different sets of variables, which describe spatial patterns and structures of various urban features including trees. Our analysis demonstrates that incorporating vertical variance parameters improve the accuracy of the model. The results of the study suggest urban tree planting is an effective and viable solution to mitigate urban heat by increasing the variance of urban surface as well as evaporative cooling effect.

  17. America's Urban Forests: Keeping Our Cities Cool

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Quattrochi, Dale A.

    1997-01-01

    The additional heating of the air over the city is the result of the replacement of naturally vegetated surfaces with those composed of asphalt, concrete, rooftops and other man-made materials. The temperatures of these artificial surfaces can be 20 to 40 C higher than vegetated surfaces. Materials such as asphalt store much of the sun's energy and remains hot long after sunset. This produces a dome of elevated air temperatures 5 to 8 C greater over the city, compared to the air temperatures over adjacent rural areas. This effect is called the "urban heat island". Tree canopies can reduce the urban heat island effect by dissipating the solar energy received by transpiring water from leaf surfaces which cools the air by taking "heat" from the air to evaporate the water and by shading surfaces like asphalt, roofs, and concrete parking lots which prevents initial heating and storage of heat. It is difficult to take enough temperature measurements over a large city area to characterize the surface temperature variability and quantify the temperature reduction effects of tree canopies. However, the use of remotely sensed thermal data from airborne scanners are ideal for the task. In a study funded by NASA, a series of flights over Huntsville AL were performed in September 1994 and over Atlanta in May 1997. In this article we will examine the techniques of analyzing remotely sensed data for measuring the effect of tree canopies in reducing the urban heat island effect.

  18. Size Matters — Physiological Temperature Acclimation and Metabolic Scaling of Respiration for Eucalyptus Trees in a Warmer World

    NASA Astrophysics Data System (ADS)

    Drake, J. E.; Toelker, M. G.; Reich, P. B.

    2016-12-01

    Respiration drives the metabolism and growth of trees and represents a large and uncertain component of land surface feedbacks to climate change. A fixed scaling relationship between body mass and respiration has been described as a fundamental law across plants and animals, but this has been controversial. There is now ample evidence that trees adjust their respiration rates in response to temperature variation in their growth environment through physiological acclimation. Is acclimation sufficiently large to alter the scaling relationship between respiration and mass? Here, we make continuous measurements of in-situ­ respiration rates complemented with repeated measurements at a defined set temperature of 15°C for leaves and the entire aboveground component of Eucalyptus parramattensis and E. tereticornis trees growing in the field in warming experiments (ambient vs. +3°C) using 12 whole tree chambers in Australia. We report thousands of repeated measurements as trees grew from 1 to 9-m-tall, allowing a concurrent evaluation of physiological acclimation and metabolic scaling. Trees adjusted the respiration rates of leaves and whole-crowns in relation to the air temperature of the preceding three days, such that: (1) respiration rate per unit mass was reduced by warming when measured at a common temperature, and (2) in-situ whole-crown respiration rates per unit mass were equivalent across ambient and warmed trees (i.e., homeostatic respiration). Acclimation appeared to modify the scaling between respiration and mass, as the slope and intercept of this relationship were affected by recent air temperature. This suggests that metabolic scaling is not fixed, although the overall allometric scaling slope was consistent with the theoretical value of 0.75 (95% CI of 0.5 to 0.78). We suggest that considering acclimation and tree mass together provides new insight into a dynamic scaling of tree respiration, with implications for land surface feedbacks under climate warming.

  19. Understanding Climate Variability of Urban Ecosystems Through the Lens of Citizen Science

    NASA Astrophysics Data System (ADS)

    Ripplinger, J.; Jenerette, D.; Wang, J.; Chandler, M.; Ge, C.; Koutzoukis, S.

    2017-12-01

    The Los Angeles megacity is vulnerable to climate warming - a process that locally exacerbates the urban heat island effect as it intensifies with size and density of the built-up area. We know that large-scale drivers play a role, but in order to understand local-scale climate variation, more research is needed on the biophysical and sociocultural processes driving the urban climate system. In this study, we work with citizen scientists to deploy a high-density network of microsensors across a climate gradient to characterize geographic variation in neighborhood meso- and micro-climates. This research asks: How do urbanization, global climate, and vegetation interact across multiple scales to affect local-scale experiences of temperature? Additionally, citizen scientist-led efforts generated research questions focused on examining microclimatic differences among yard groundcover types (rock mulch vs. lawn vs. artificial turf) and also on variation in temperature related to tree cover. Combining sensor measurements with Weather Research and Forecasting (WRF) spatial models and satellite-based temperature, we estimate spatially-explicit maps of land surface temperature and air temperature to illustrate the substantial difference between surface and air urban heat island intensities and the variable degree of coupling between land surface and air temperature in urban areas. Our results show a strong coupling between air temperature variation and landcover for neighborhoods, with significant detectable signatures from tree cover and impervious surface. Temperature covaried most strongly with urbanization intensity at nighttime during peak summer season, when daily mean air temperature ranged from 12.8C to 30.4C across all groundcover types. The combined effects of neighborhood geography and vegetation determine where and how temperature and tree canopy vary within a city. This citizen science-enabled research shows how large-scale climate drivers and urbanization intensity jointly influence the nature and magnitude of coupling between air temperature and tree cover, and demonstrate how urban vegetation provides an important ecosystem service in cities by decreasing the intensity of local urban heat islands.

  20. Influence of Tree-Scale Environmental Variability on Tree-Ring Reconstructions of Temperature at Sonora Pass, CA

    NASA Astrophysics Data System (ADS)

    Ma, L.; Stine, A.

    2016-12-01

    Tree-ring width from treeline environments tend to covary with local interannual temperature variabilities. However, other environmental factors such as moisture and light availability may further modulate tree growth in cold climates. We investigate the influence of various environmental factors on a tree-ring record from a research plot near Sonora Pass, CA (38.32N, 119.64W; elev. 3130 m). This treeline ecotone is dominated by whitebark pine (Pinus albicaulis) growing as individuals and as stands, and at the transition between tree form and krummholtz. We surveyed all trees in the 160m x 90m site, mapping and coring all trees with a diameter at breast height greater than 10 cm. We use survey data to test for an influence of inter-tree competition on growth. We also test for modulation of growth by variation in distance from surface water, aspect and slope, and soil types. Initial result shows a relationship between tree ring width and local May-July temperature (R = 0.33, p < 0.01), suggesting summer temperature as a large-scale control on growth. Incorporating the tree-level metadata, we test for the effect of spatial variability on mean growth rate and on reconstructed temperatures. Trees that have larger or closer neighboring trees experience greater competition, and we hypothesize that competition will be inversely related to average growth rate. Further, we test the sensitivity of ring-width interannual variability to other non-temperature environmental drivers such as moisture availability, light competition, and spatial relations in the microenvironment. We hypothesize that trees that have ready access to light and water will likely produce ring records more closely correlated with the temperature record, and thus will produce a temperature reconstruction with a higher signal-to-noise ratio; whereas trees that experience more microenvironment limitations or competition will produce ring records resembling temperature and additional environmental factors or will contain more noise.

  1. Stem mortality in surface fires: Part II, experimental methods for characterizing the thermal response of tree stems to heating by fires

    Treesearch

    D. M. Jimenez; B. W. Butler; J. Reardon

    2003-01-01

    Current methods for predicting fire-induced plant mortality in shrubs and trees are largely empirical. These methods are not readily linked to duff burning, soil heating, and surface fire behavior models. In response to the need for a physics-based model of this process, a detailed model for predicting the temperature distribution through a tree stem as a function of...

  2. Merging tree ring chronologies and climate system model simulated temperature by optimal interpolation algorithm in North America

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Xing, Pei; Luo, Yong; Zhao, Zongci; Nie, Suping; Huang, Jianbin; Wang, Shaowu; Tian, Qinhua

    2015-04-01

    A new dataset of annual mean surface temperature has been constructed over North America in recent 500 years by performing optimal interpolation (OI) algorithm. Totally, 149 series totally were screened out including 69 tree ring width (MXD) and 80 tree ring width (TRW) chronologies are screened from International Tree Ring Data Bank (ITRDB). The simulated annual mean surface temperature derives from the past1000 experiment results of Community Climate System Model version 4 (CCSM4). Different from existing research that applying data assimilation approach to (General Circulation Models) GCMs simulation, the errors of both the climate model simulation and tree ring reconstruction were considered, with a view to combining the two parts in an optimal way. Variance matching (VM) was employed to calibrate tree ring chronologies on CRUTEM4v, and corresponding errors were estimated through leave-one-out process. Background error covariance matrix was estimated from samples of simulation results in a running 30-year window in a statistical way. Actually, the background error covariance matrix was calculated locally within the scanning range (2000km in this research). Thus, the merging process continued with a time-varying local gain matrix. The merging method (MM) was tested by two kinds of experiments, and the results indicated standard deviation of errors can be reduced by about 0.3 degree centigrade lower than tree ring reconstructions and 0.5 degree centigrade lower than model simulation. During the recent Obvious decadal variability can be identified in MM results including the evident cooling (0.10 degree per decade) in 1940-60s, wherein the model simulation exhibit a weak increasing trend (0.05 degree per decade) instead. MM results revealed a compromised spatial pattern of the linear trend of surface temperature during a typical period (1601-1800 AD) in Little Ice Age, which basically accorded with the phase transitions of the Pacific decadal oscillation (PDO) and Atlantic multi-decadal oscillation (AMO). Through the empirical orthogonal functions and power spectrum analysis, it was demonstrated that, compared with the pure simulations of CCSM4, MM made significant improvement of decadal variability for the gridded temperature in North America by merging the temperature-sensitive tree ring records.

  3. Temperature response surfaces for mortality risk of tree species with future drought

    DOE PAGES

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; ...

    2017-11-17

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlingsmore » of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7–9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.« less

  4. Temperature response surfaces for mortality risk of tree species with future drought

    NASA Astrophysics Data System (ADS)

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; Gardea, Alfonso A.; Bentley, Lisa Patrick; Law, Darin J.; Breshears, David D.; McDowell, Nate G.; Huxman, Travis E.

    2017-11-01

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlings of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.

  5. Temperature response surfaces for mortality risk of tree species with future drought

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlingsmore » of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P . ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occurs, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.« less

  6. Temperature response surfaces for mortality risk of tree species with future drought

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlingsmore » of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7–9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.« less

  7. Nonannual tree rings in a climate-sensitive Prioria copaifera chronology in the Atrato River, Colombia.

    PubMed

    Herrera-Ramirez, David; Andreu-Hayles, Laia; Del Valle, Jorge I; Santos, Guaciara M; Gonzalez, Paula L M

    2017-08-01

    In temperate climates, tree growth dormancy usually ensures the annual nature of tree rings, but in tropical environments, determination of annual periodicity can be more complex. The purposes of the work are as follows: (1) to generate a reliable tree-ring width chronology for Prioria copaifera Griseb. (Leguminoceae), a tropical tree species dwelling in the Atrato River floodplains, Colombia; (2) to assess the climate signal recorded by the tree-ring records; and (3) to validate the annual periodicity of the tree rings using independent methods. We used standard dendrochronological procedures to generate the P. copaifera tree-ring chronology. We used Pearson correlations to evaluate the relationship of the chronology with the meteorological records, climate regional indices, and gridded precipitation/sea surface temperature products. We also evaluated 24 high-precision 14 C measurements spread over a range of preselected tree rings, with assigned calendar years by dendrochronological techniques, before and after the bomb spike in order to validate the annual nature of the tree rings. The tree-ring width chronology was statistically reliable, and it correlated significantly with local records of annual and October-December (OND) streamflow and precipitation across the upper river watershed (positive), and OND temperature (negative). It was also significantly related to the Oceanic Niño Index, Pacific Decadal Oscillation, and the Southern Oscillation Index, as well as sea surface temperatures over the Caribbean and the Pacific region. However, 14 C high-precision measurements over the tree rings demonstrated offsets of up to 40 years that indicate that P. copaifera can produce more than one ring in certain years. Results derived from the strongest climate-growth relationship during the most recent years of the record suggest that the climatic signal reported may be due to the presence of annual rings in some of those trees in recent years. Our study alerts about the risk of applying dendrochronology in species with challenging anatomical features defining tree rings, commonly found in the tropics, without an independent validation of annual periodicity of tree rings. High-precision 14 C measurements in multiple trees are a useful method to validate the identification of annual tree rings.

  8. Tree-Structured Methods for Prediction and Data Visualization

    DTIC Science & Technology

    2009-03-18

    which variables are most important for predicting smoking abstinence . GUIDE, on the other hand, can model interactions of any order. Fur- ther, it...tree for predicting smoking abstinence after one week of treatment. An observation goes to the left node if and only if the stated condition is...H. E., and Loh, W.-Y. (2009). Which surface atmospheric variable drives the seasonal cycle of sea surface temperature over the global ocean

  9. Out on a limb: Thermal microenvironments in the tropical forest canopy and their relevance to ants.

    PubMed

    Stark, Alyssa Y; Adams, Benjamin J; Fredley, Jennifer L; Yanoviak, Stephen P

    2017-10-01

    Small, cursorial ectotherms like ants often are immersed in the superheated air layers that develop millimeters above exposed, insolated surfaces (i.e., the thermal boundary layer). We quantified the thermal microenvironments around tree branches in the tropical rainforest canopy, and explored the effects of substrate color on the internal body temperature and species composition of arboreal ants. Branch temperatures during the day (09:00-16:00) were hottest (often > 50°C) and most variable on the upper surface, while the lowest and least variable temperatures occurred on the underside. Temperatures on black substrates declined with increasing distance above the surface in both the field and the laboratory. By contrast, a micro-scale temperature inversion occurred above white substrates. Wind events (ca. 2ms -1 ) eliminated these patterns. Internal temperatures of bodies of Cephalotes atratus workers experimentally heated in the laboratory were 6°C warmer on white vs. black substrates, and 6°C cooler than ambient in windy conditions. The composition of ant species foraging at baits differed between black-painted and unpainted tree branches, with a tendency for smaller ants to avoid the significantly hotter black surfaces. Collectively, these outcomes show that ants traversing canopy branches experience very heterogeneous thermal microenvironments that are partly influenced in predictable ways by branch surface coloration and breezy conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Rainforest air-conditioning: the moderating influence of epiphytes on the microclimate in tropical tree crowns

    NASA Astrophysics Data System (ADS)

    Stuntz, Sabine; Simon, Ulrich; Zotz, Gerhard

    2002-05-01

    Epiphytes are often assumed to influence the microclimatic conditions of the tree crowns that they inhabit. In order to quantify this notion, we measured the parameters "temperature" (of the substrate surface and the boundary layer of air above it), "evaporative drying rate" and "evapotranspiration" at various locations within tree crowns with differing epiphyte assemblages. The host tree species was Annona glabra, which was either populated by one of three epiphyte species ( Dimerandra emarginata, Tillandsia fasciculata, or Vriesea sanguinolenta) or was epiphyte-free. We found that during the hottest and driest time of day, microsites in the immediate proximity of epiphytes had significantly lower temperatures than epiphyte-bare locations within the same tree crown, even though the latter were also shaded by host tree foliage or branches. Moreover, water loss through evaporative drying at microsites adjacent to epiphytes was almost 20% lower than at exposed microsites. We also found that, over the course of several weeks, the evapotranspiration in tree crowns bearing epiphytes was significantly lower than in trees without epiphytes. Although the influence of epiphytes on temperature extremes and evaporation rates is relatively subtle, their mitigating effect could be of importance for small animals like arthropods inhabiting an environment as harsh and extreme as the tropical forest canopy.

  11. Impact of new land boundary conditions from Moderate Resolution Imaging Spectroradiometer (MODIS) data on the climatology of land surface variables

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Dickinson, R. E.; Zhou, L.; Shaikh, M.

    2004-10-01

    This paper uses the Community Land Model (CLM2) to investigate the improvements of a new land surface data set, created from multiple high-quality collection 4 Moderate Resolution Imaging Spectroradiometer data of leaf area index (LAI), plant functional type, and vegetation continuous fields, for modeled land surface variables. The previous land surface data in CLM2 underestimate LAI and overestimate the percent cover of grass/crop over most of the global area. For snow-covered regions with abundant solar energy the increased LAI and percent cover of tree/shrub in the new data set decreases the percent cover of surface snow and increases net radiation and thus increases ground and surface (2-m) air temperature, which reduces most of the model cold bias. For snow-free regions the increased LAI and changes in the percent cover from grass/crop to tree or shrub decrease ground and surface air temperature by converting most of the increased net radiation to latent heat flux, which decreases the model warm bias. Furthermore, the new data set greatly decreases ground evaporation and increases canopy evapotranspiration over tropical forests, especially during the wet season, owing to the higher LAI and more trees in the new data set. It makes the simulated ground evaporation and canopy evapotranspiration closer to reality and also reduces the warm biases over tropical regions.

  12. Modeling the effects of urban vegetation on air pollution

    Treesearch

    David J. Nowak; Patrick J. McHale; Myriam Ibarra; Daniel Crane; Jack C. Stevens; Chris J. Luley

    1998-01-01

    Urban vegetation can directly and indirectly affect local and regional air quality by altering the urban atmospheric environment. Trees affect local air temperature by transpiring water through their leaves, by blocking solar radiation (tree shade), which reduces radiation absorption and heat storage by various anthropogenic surfaces (e.g., buildings, roads), and by...

  13. Air pollution removal by urban forests in Canada and its effect on air quality and human health

    Treesearch

    David J. Nowak; Satoshi Hirabayashi; Marlene Doyle; Mark McGovern; Jon Pasher

    2018-01-01

    Urban trees perform a number of ecosystem services including air pollution removal, carbon sequestration, cooling air temperatures and providing aesthetic beauty to the urban landscape. Trees remove air pollution by intercepting particulate matter on plant surfaces and absorbing gaseous pollutants through the leaf stomata. Computer simulations with local environmental...

  14. Effects of urban tree canopy loss on land surface temperature magnitude and timing

    NASA Astrophysics Data System (ADS)

    Elmes, Arthur; Rogan, John; Williams, Christopher; Ratick, Samuel; Nowak, David; Martin, Deborah

    2017-06-01

    Urban Tree Canopy (UTC) plays an important role in moderating the Surface Urban Heat Island (SUHI) effect, which poses threats to human health due to substantially increased temperatures relative to rural areas. UTC coverage is associated with reduced urban temperatures, and therefore benefits both human health and reducing energy use in cities. Measurement of this relationship relies on accurate, fine spatial resolution UTC mapping, and on time series analysis of Land Surface Temperatures (LST). The City of Worcester, Massachusetts underwent extensive UTC loss and gain during the relatively brief period from 2008 to 2015, providing a natural experiment to measure the UTC/LST relationship. This paper consists of two elements to this end. First, it presents methods to map UTC in urban and suburban locations at fine spatial resolution (∼0.5 m) using image segmentation of a fused Lidar/WorldView-2 dataset, in order to show UTC change over time. Second, the areas of UTC change are used to explore changes in LST magnitude and seasonal variability using a time series of all available Landsat data for the study area over the eight-year period from 2007 to 2015. Fractional UTC change per unit area was determined using fine resolution UTC maps for 2008, 2010, and 2015, covering the period of large-scale tree loss and subsequent planting. LST changes were measured across a series of net UTC change bins, providing a relationship between UTC net change and LST trend. LST was analyzed for both monotonic trends over time and changes to seasonal magnitude and timing, using Theil-Sen slopes and Seasonal Trend Analysis (STA), respectively. The largest magnitudes of UTC loss occurred in residential neighborhoods, causing increased exposure of impervious (road) and pervious (grass) surfaces. Net UTC loss showed higher monotonic increases in LST than persistence and gain areas. STA indicated that net UTC loss was associated greater difference between 2008 and 2015 seasonal temperature curves than persistence areas, and also larger peak LST values, with peak increases ranging from 1 to 6 °C. Timing of summer warm period was extended in UTC loss areas by up to 15 days. UTC gain provided moderate LST mitigation, with lower monotonic trends, lower peak temperatures, and smaller seasonal curve changes than both persistence and loss locations. This study shows that urban trees mitigate the magnitude and timing of the surface urban heat island effect, even in suburban areas with less proportional impervious coverage than the dense urban areas traditionally associated with SUHI. Trees can therefore be seen as an effective means of offsetting the energy-intensive urban heat island effect.

  15. Climate reconstructions from tree-ring widths for the last 850 years in Northern Poland

    NASA Astrophysics Data System (ADS)

    Heinrich, Ingo; Knorr, Antje; Heußner, Karl-Uwe; Wazny, Tomasz; Slowinski, Michal; Helle, Gerhard; Simard, Sonia; Scharnweber, Tobias; Buras, Allan; Beck, Wolfgang; Wilmking, Martin; Brauer, Achim

    2015-04-01

    Tree-ring based temperature reconstructions form the scientific backbone of the current debate over global change, and they are the major part of the palaeo data base used for the IPCC report. However, long temperature reconstructions derived from temperate lowland trees growing well within their distributional limits in central Europe are not part of the IPCC report, which is an essential gap in the international data base. It appears that dendroclimatological analysis at temperate lowland sites was so far difficult to perform mainly for three reasons: diffuse climate-growth relationships, the lack of long chronologies due to absence of sufficient numbers of long-living trees and the potential loss of low-frequency signals due to the short length of the sample segments. We present two robust multi-centennial reconstructions of winter temperatures and summer precipitation based on pine and oak tree-ring widths chronologies from northern Poland, where so far no long tree-ring based reconstructions were available. We compared the new records with global, hemispherical and regional reconstructions, and found good agreement with some of them. In comparison, the winter temperature of our reconstruction, however, did not indicate any modern warming nor did the summer precipitation reconstruction suggest any modern 20th century changes. In a second step, we measured cell structures and developed chronologies of parameters such as cell wall thickness and cell lumen area. We used our new method (Liang et al. 2013a,b) applying confocal laser scanning microscopy to increment core surfaces for efficient histometric analyses. We focused on samples covering the last century because meteorological data necessary for calibration studies were available for direct comparisons. It was demonstrated that the correlations with climate were strong and different from those found for tree-ring widths (e.g., N-Poland oak-vessel-lumen-area-chronology with previous September-to-December mean temperature r = 0,61 and N-Poland pine-tracheid-lumen-area-chronology with mean Feb-to-June temperature r = -0,66). By using only raw values, low-frequency signals could be sustained in the chronologies. Liang, W.; Heinrich, I.; Helle, G.; Dorado Liñán, I.; Heinken, T. (2013a): Applying CLSM to increment core surfaces for histometric analyses: A novel advance in quantitative wood anatomy. Dendrochronologia 31, 140-145. Liang, W.; Heinrich, I.; Simard, S.; Helle, G.; Dorado Liñán, I.; Heinken, T. (2013b): Climate signals derived from cell anatomy of Scots pine in NE Germany. Tree Physiology 33, 833-844.

  16. Impacts of Trees on Urban Environment in the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Wang, C.; Upreti, R.; Wang, Z.; Yang, J.

    2017-12-01

    Mounting empirical evidence shows that urban trees are effective in mitigating the thermal stress in the built environment, whereas large scale numerical simulations remain scarce. In this study, we evaluated the effects of shade trees on the built environment in terms of radiative cooling, pedestrian thermal comfort, and surface energy balance, carried out over the contiguous United States (CONUS). A coupled Weather Research and Forecasting-urban modeling system was adopted, incorporating exclusively the radiative shading effect of urban trees. Results show that on average the mean 2-m air temperature in urban areas decreases by 3.06 ˚C, and the 2-m relative humidity increases by 13.62% over the entire CONUS with the shading effect. Analysis of pedestrian thermal comfort shows that shade trees help to improve summer thermal comfort level, but could be detrimental in the winter for Northern cities. In addition, it was found that trees alter the surface energy balance by primarily enhancing the radiative cooling, leading to significant re-distribution of the sensible heat while leaving the ground heat storage comparatively intact.

  17. Sensitivity of Beech Trees to Global Environmental Changes at Most North-Eastern Latitude of Their Occurrence in Europe

    PubMed Central

    Augustaitis, Algirdas; Jasineviciene, Dalia; Girgzdiene, Rasele; Kliucius, Almantas; Marozas, Vitas

    2012-01-01

    The present study aimed to detect sensitivity of beech trees (Fagus sylvatica L.) to meteorological parameters and air pollution by acidifying species as well as to surface ozone outside their north-eastern distribution range. Data set since 1981 of Preila EMEP station enabled to establish that hot Summers, cold dormant, and dry and cold first-half of vegetation periods resulted in beech tree growth reduction. These meteorological parameters explained 57% variation in beech tree ring widths. Acidifying species had no significant effect on beech tree growth. Only ozone was among key factors contributing to beech stand productivity. Phytotoxic effect of this pollutant increased explanation rate of beech tree ring variation by 18%, that is, up to 75%. However, due to climate changes the warmer dormant periods alone are not the basis ensuring favourable conditions for beech tree growth. Increase in air temperature in June-August and decrease in precipitation amount in the first half of vegetation period should result in beech tree radial increment reduction. Despite the fact that phytotoxic effect of surface ozone should not increase due to stabilization in its concentration, it is rather problematic to expect better environmental conditions for beech tree growth at northern latitude of their pervasion. PMID:22649321

  18. The Urban Heat Island Impact in Consideration of Spatial Pattern of Urban Landscape and Structure

    NASA Astrophysics Data System (ADS)

    Kim, J.; Lee, D. K.; Jeong, W.; Sung, S.; Park, J.

    2015-12-01

    Preceding study has established a clear relationship between land surface temperature and area of land covers. However, only few studies have specifically examined the effects of spatial patterns of land covers and urban structure. To examine how much the local climate is affected by the spatial pattern in highly urbanized city, we investigated the correlation between land surface temperature and spatial patterns of land covers. In the analysis of correlation, we categorized urban structure to four different land uses: Apartment residential area, low rise residential area, industrial area and central business district. Through this study, we aims to examine the types of residential structure and land cover pattern for reducing urban heat island and sustainable development. Based on land surface temperature, we investigated the phenomenon of urban heat island through using the data of remote sensing. This study focused on Daegu in Korea. This city, one of the hottest city in Korea has basin form. We used high-resolution land cover data and land surface temperature by using Landsat8 satellite image to examine 100 randomly selected sample sites of 884.15km2 (1)In each land use, we quantified several landscape-levels and class-level landscape metrics for the sample study sites. (2)In addition, we measured the land surface temperature in 3 year hot summer seasons (July to September). Then, we investigated the pattern of land surface temperature for each land use through Ecognition package. (3)We deducted the Pearson correlation coefficients between land surface temperature and each landscape metrics. (4)We analyzed the variance among the four land uses. (5)Using linear regression, we determined land surface temperature model for each land use. (6)Through this analysis, we aims to examine the best pattern of land cover and artificial structure for reducing urban heat island effect in highly urbanized city. The results of linear regression showed that proportional land cover of grass, tree, water and impervious surfaces well explained the temperature in apartment residential areas. In contrast, the changes in the pattern of water, grass, tree and impervious surfaces were the best to determine the temperature in low rise residential area, central business district and industrial area.

  19. Sidewalk Landscape Structure and Thermal Conditions for Child and Adult Pedestrians

    PubMed Central

    Kim, Young-Jae; Lee, Chanam; Kim, Jun-Hyun

    2018-01-01

    Walking is being promoted for health and transportation purposes across all climatic regions in the US and beyond. Despite this, an uncomfortable microclimate condition along sidewalks is one of the major deterrents of walking, and more empirical research is needed to determine the risks of heat exposure to pedestrians while walking. This study examined the effect of street trees and grass along sidewalks on air temperatures. A series of thermal images were taken at the average heights of adults and children in the US to objectively measure the air temperatures of 10 sidewalk segments in College Station, TX, USA. After controlling the other key physical environmental conditions, sidewalks with more trees or wider grass buffer areas had lower air temperatures than those with less vegetation. Children were exposed to higher temperatures due to the greater exposure or proximity to the pavement surface, which tends to have higher radiant heat. Multivariate regression analysis suggested that the configuration of trees and grass buffers along the sidewalks helped to promote pleasant thermal conditions and reduced the differences in ambient air temperatures measured at child and adult heights. This study suggests that street trees and vegetated ground help reduce the air temperatures, leading to more thermally comfortable environments for both child and adult pedestrians in warm climates. The thermal implications of street landscape require further attention by researchers and policy makers that are interested in promoting outdoor walking. PMID:29346312

  20. Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska.

    PubMed

    Sullivan, Patrick F; Ellison, Sarah B Z; McNown, Robert W; Brownlee, Annalis H; Sveinbjörnsson, Bjartmar

    2015-03-01

    The position of the Arctic treeline, which is a key regulator of surface energy exchange and carbon cycling, is widely thought to be controlled by temperature. Here, we present evidence that soil nutrient availability, rather than temperature, may be the proximate control on growth of treeline trees at our study site in northwest Alaska. We examined constraints on growth and allocation of white spruce in three contrasting habitats. The habitats had similar aboveground climates, but soil temperature declined from the riverside terrace to the forest to the treeline. We identified six lines of evidence that conflict with the hypothesis of direct temperature control and/or point to the importance of soil nutrient availability. First, the magnitude of aboveground growth declined from the terrace to the forest to the treeline, along gradients of diminishing soil nitrogen (N) availability and needle N concentration. Second, peak rates of branch extension, main stem radial and fine-root growth were generally not coincident with seasonal air and soil temperature maxima. At the treeline, in particular, rates of aboveground and fine-root growth declined well before air and soil temperatures reached their seasonal peaks. Third, in contrast with the hypothesis of temperature-limited growth, growing season average net photosynthesis was positively related to the sum of normalized branch extension, main stem radial and fine-root growth across trees and sites. Fourth, needle nonstructural carbohydrate concentration was significantly higher on the terrace, where growth was greatest. Fifth, annual branch extension growth was positively related to snow depth, consistent with the hypothesis that deeper snow promotes microbial activity and greater soil nutrient availability. Finally, the tree ring record revealed a large growth increase during late 20th-century climate warming on the terrace, where soil N availability is relatively high. Meanwhile, trees in the forest and at the treeline showed progressively smaller growth increases. Our results suggest temperature effects on tree growth at our study sites may be mediated by soil nutrient availability, making responses to climate change more complex and our ability to interpret the tree ring record more challenging than previously thought.

  1. Secular temperature trends for the southern Rocky Mountains over the last five centuries

    NASA Astrophysics Data System (ADS)

    Berkelhammer, M.; Stott, L. D.

    2012-09-01

    Pre-instrumental surface temperature variability in the Southwestern United States has traditionally been reconstructed using variations in the annual ring widths of high altitude trees that live near a growth-limiting isotherm. A number of studies have suggested that the response of some trees to temperature variations is non-stationary, warranting the development of alternative approaches towards reconstructing past regional temperature variability. Here we present a five-century temperature reconstruction for a high-altitude site in the Rocky Mountains derived from the oxygen isotopic composition of cellulose (δ18Oc) from Bristlecone Pine trees. The record is independent of the co-located growth-based reconstruction while providing the same temporal resolution and absolute age constraints. The empirical correlation between δ18Oc and instrumental temperatures is used to produce a temperature transfer function. A forward-model for cellulose isotope variations, driven by meteorological data and output from an isotope-enabled General Circulation Model, is used to evaluate the processes that propagate the temperature signal to the proxy. The cellulose record documents persistent multidecadal variations in δ18Oc that are attributable to temperature shifts on the order of 1°C but no sustained monotonic rise in temperature or a step-like increase since the late 19th century. The isotope-based temperature history is consistent with both regional wood density-based temperature estimates and some sparse early instrumental records.

  2. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought

    PubMed Central

    Adams, Henry D.; Guardiola-Claramonte, Maite; Barron-Gafford, Greg A.; Villegas, Juan Camilo; Breshears, David D.; Zou, Chris B.; Troch, Peter A.; Huxman, Travis E.

    2009-01-01

    Large-scale biogeographical shifts in vegetation are predicted in response to the altered precipitation and temperature regimes associated with global climate change. Vegetation shifts have profound ecological impacts and are an important climate-ecosystem feedback through their alteration of carbon, water, and energy exchanges of the land surface. Of particular concern is the potential for warmer temperatures to compound the effects of increasingly severe droughts by triggering widespread vegetation shifts via woody plant mortality. The sensitivity of tree mortality to temperature is dependent on which of 2 non-mutually-exclusive mechanisms predominates—temperature-sensitive carbon starvation in response to a period of protracted water stress or temperature-insensitive sudden hydraulic failure under extreme water stress (cavitation). Here we show that experimentally induced warmer temperatures (≈4 °C) shortened the time to drought-induced mortality in Pinus edulis (piñon shortened pine) trees by nearly a third, with temperature-dependent differences in cumulative respiration costs implicating carbon starvation as the primary mechanism of mortality. Extrapolating this temperature effect to the historic frequency of water deficit in the southwestern United States predicts a 5-fold increase in the frequency of regional-scale tree die-off events for this species due to temperature alone. Projected increases in drought frequency due to changes in precipitation and increases in stress from biotic agents (e.g., bark beetles) would further exacerbate mortality. Our results demonstrate the mechanism by which warmer temperatures have exacerbated recent regional die-off events and background mortality rates. Because of pervasive projected increases in temperature, our results portend widespread increases in the extent and frequency of vegetation die-off. PMID:19365070

  3. Climate-driven shift of the tree-line ecotone in the Polar Urals and impacts on land-surface properties

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Shiyatov, S.; Mazepa, V.

    2013-12-01

    Warming of the Arctic climate has triggered a number of changes in terrestrial physical and biogeochemical systems. One of the eloquent expressions of such changes is an expansion of trees and shrubs into tundra areas. There is an emerging need to understand how changes of land-surface thermal, hydrological, and biogeochemical regimes will impact ecosystems in future as well as the associated feedback mechanisms. This study focuses on the area that has undergone one of the rapidest changes in the forest-tundra alpine areas of the Polar Urals, Russia (66.7N, 65.4E). The prevailing species of this forest-tundra ecotone underlain by continuous permafrost is larch (L. sibirica), a predominant species of the Russian Arctic. Open larch and mixed forests with Siberian spruce (P. obovata) and birch (B. tortuosa) are abundant in the downslope, valley areas. Average frost-free period is 64 days with growing season lasting between mid-June to early August. Based on meteorological record at a station in Salekhard, over the period of 1920-2004, the mean summer temperatures have increased by 0.9 deg. and the mean winter temperatures by 1.2 deg., as compared to the 1883-1920 period. The mean summer precipitation has increased from 146 to 178 mm, while as winter precipitation has grown from 67 to 113 mm. This has resulted in 80-100 m altitudinal expansion of single trees and forest that was accompanied by a marked increase in the vertical and radial tree growth, crown density, and productivity of tree stands. Eleven altitudinal transects 300-1100 m long and 20-80 m wide have been developed for long-term monitoring of spatiotemporal dynamics of communities starting in early 1960s. In order to quantitatively assess changes in the composition, structure, and spatial distribution of the forest-tundra communities, census campaigns of 1960-62, 1999, and 2011 produced detailed mappings of locations of all alive and dead trees, and measurements of their essential allometric characteristics. In total, of 1494, 1851, and 1985 trees were observed during the three respective census periods. Analyses of the temporal change of land-surface conditions at the tree scale are presented. Changes of effective surface albedo, shading factors, and radiative characteristics of the area are estimated. Current instrumentation program of the site will inform a physically-based model that will investigate heat-moisture dynamics of the changed land-surface. Expansion of dense and open larch forests on banks of the Kerdomanshor River, Polar Urals, Russia, 1962-2004.

  4. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance.

    PubMed

    Drake, John E; Tjoelker, Mark G; Vårhammar, Angelica; Medlyn, Belinda E; Reich, Peter B; Leigh, Andrea; Pfautsch, Sebastian; Blackman, Chris J; López, Rosana; Aspinwall, Michael J; Crous, Kristine Y; Duursma, Remko A; Kumarathunge, Dushan; De Kauwe, Martin G; Jiang, Mingkai; Nicotra, Adrienne B; Tissue, David T; Choat, Brendan; Atkin, Owen K; Barton, Craig V M

    2018-06-01

    Heatwaves are likely to increase in frequency and intensity with climate change, which may impair tree function and forest C uptake. However, we have little information regarding the impact of extreme heatwaves on the physiological performance of large trees in the field. Here, we grew Eucalyptus parramattensis trees for 1 year with experimental warming (+3°C) in a field setting, until they were greater than 6 m tall. We withheld irrigation for 1 month to dry the surface soils and then implemented an extreme heatwave treatment of 4 consecutive days with air temperatures exceeding 43°C, while monitoring whole-canopy exchange of CO 2 and H 2 O, leaf temperatures, leaf thermal tolerance, and leaf and branch hydraulic status. The heatwave reduced midday canopy photosynthesis to near zero but transpiration persisted, maintaining canopy cooling. A standard photosynthetic model was unable to capture the observed decoupling between photosynthesis and transpiration at high temperatures, suggesting that climate models may underestimate a moderating feedback of vegetation on heatwave intensity. The heatwave also triggered a rapid increase in leaf thermal tolerance, such that leaf temperatures observed during the heatwave were maintained within the thermal limits of leaf function. All responses were equivalent for trees with a prior history of ambient and warmed (+3°C) temperatures, indicating that climate warming conferred no added tolerance of heatwaves expected in the future. This coordinated physiological response utilizing latent cooling and adjustment of thermal thresholds has implications for tree tolerance of future climate extremes as well as model predictions of future heatwave intensity at landscape and global scales. © 2018 John Wiley & Sons Ltd.

  5. Disturbance Impacts on Thermal Hot Spots and Hot Moments at the Peatland-Atmosphere Interface

    NASA Astrophysics Data System (ADS)

    Leonard, R. M.; Kettridge, N.; Devito, K. J.; Petrone, R. M.; Mendoza, C. A.; Waddington, J. M.; Krause, S.

    2018-01-01

    Soil-surface temperature acts as a master variable driving nonlinear terrestrial ecohydrological, biogeochemical, and micrometeorological processes, inducing short-lived or spatially isolated extremes across heterogeneous landscape surfaces. However, subcanopy soil-surface temperatures have been, to date, characterized through isolated, spatially discrete measurements. Using spatially complex forested northern peatlands as an exemplar ecosystem, we explore the high-resolution spatiotemporal thermal behavior of this critical interface and its response to disturbances by using Fiber-Optic Distributed Temperature Sensing. Soil-surface thermal patterning was identified from 1.9 million temperature measurements under undisturbed, trees removed and vascular subcanopy removed conditions. Removing layers of the structurally diverse vegetation canopy not only increased mean temperatures but it shifted the spatial and temporal distribution, range, and longevity of thermal hot spots and hot moments. We argue that linking hot spots and/or hot moments with spatially variable ecosystem processes and feedbacks is key for predicting ecosystem function and resilience.

  6. High-frequency fluctuations of surface temperatures in an urban environment

    NASA Astrophysics Data System (ADS)

    Christen, Andreas; Meier, Fred; Scherer, Dieter

    2012-04-01

    This study presents an attempt to resolve fluctuations in surface temperatures at scales of a few seconds to several minutes using time-sequential thermography (TST) from a ground-based platform. A scheme is presented to decompose a TST dataset into fluctuating, high-frequency, and long-term mean parts. To demonstrate the scheme's application, a set of four TST runs (day/night, leaves-on/leaves-off) recorded from a 125-m-high platform above a complex urban environment in Berlin, Germany is used. Fluctuations in surface temperatures of different urban facets are measured and related to surface properties (material and form) and possible error sources. A number of relationships were found: (1) Surfaces with surface temperatures that were significantly different from air temperature experienced the highest fluctuations. (2) With increasing surface temperature above (below) air temperature, surface temperature fluctuations experienced a stronger negative (positive) skewness. (3) Surface materials with lower thermal admittance (lawns, leaves) showed higher fluctuations than surfaces with high thermal admittance (walls, roads). (4) Surface temperatures of emerged leaves fluctuate more compared to trees in a leaves-off situation. (5) In many cases, observed fluctuations were coherent across several neighboring pixels. The evidence from (1) to (5) suggests that atmospheric turbulence is a significant contributor to fluctuations. The study underlines the potential of using high-frequency thermal remote sensing in energy balance and turbulence studies at complex land-atmosphere interfaces.

  7. Monitoring of Freezing Dynamics in Trees: A Simple Phase Shift Causes Complexity1[OPEN

    PubMed Central

    Charra-Vaskou, Katline

    2017-01-01

    During winter, trees have to cope with harsh conditions, including extreme freeze-thaw stress. This study focused on ice nucleation and propagation, related water shifts and xylem cavitation, as well as cell damage and was based on in situ monitoring of xylem (thermocouples) and surface temperatures (infrared imaging), ultrasonic emissions, and dendrometer analysis. Field experiments during late winter on Picea abies growing at the alpine timberline revealed three distinct freezing patterns: (1) from the top of the tree toward the base, (2) from thin branches toward the main stem’s top and base, and (3) from the base toward the top. Infrared imaging showed freezing within branches from their base toward distal parts. Such complex freezing causes dynamic and heterogenous patterns in water potential and probably in cavitation. This study highlights the interaction between environmental conditions upon freezing and thawing and demonstrates the enormous complexity of freezing processes in trees. Diameter shrinkage, which indicated water fluxes within the stem, and acoustic emission analysis, which indicated cavitation events near the ice front upon freezing, were both related to minimum temperature and, upon thawing, related to vapor pressure deficit and soil temperature. These complex patterns, emphasizing the common mechanisms between frost and drought stress, shed new light on winter tree physiology. PMID:28242655

  8. Recent Climate Changes in Northwestern Qaidam Basin Inferred from Geothermal Gradients

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhang, T.

    2014-12-01

    Temperature perturbations under the ground surface are direct thermal response to ground surface temperature changes. Thus ground surface temperature history can be reconstructed from borehole temperature measurements using borehole paleothermometry inversion method. In this study, we use seven borehole temperature profiles to reconstruct the ground surface temperature variation of the past 500 years of the Qaidam basin, northwestern China. Borehole transient temperature measurement from seven sites in northwestern Qaidam basin were separated from geothermal gradients and analyzed by functional space inversion method to determine past ground surface temperature variations in this region. All temperature profiles show the effects of recent climatic disturbances. Inversion shows an overall increase in ground surface temperature by an averaged 1.2℃ (-0.11~2.21℃) during the last 500 years. Clear signs of a cold period between 1500 and 1900 A.D., corresponding to the Little Ice Age, have been found. Its coldest period was between 1780~1790 A.D. with the ground surface temperature of 5.4℃. During the 19th and the 20th century, reconstructed ground surface temperature shows a rising trend, and in the late 20th century, the temperature started to decrease. However, the highest temperature in 1990s broke the record of the past 500 years. This reconstructed past ground surface temperature variation is verified by the simulated annual surface air temperature computed by EdGCM and the cooling trend is also confirmed by other reconstruction of winter half year minimum temperatures using tree rings on the northeastern Tibetan Plateau.

  9. Investigation of decadal-scale divergence in tree-ring density chronologies

    NASA Astrophysics Data System (ADS)

    Vaccaro, A.; Emile-Geay, J.; Anchukaitis, K. J.; Wang, J.

    2013-12-01

    Tree-ring data from certain forest sites at northern circumpolar latitudes and from some at higher elevation show an anomalous decrease in temperature-sensitivity of tree growth starting in the mid-20th century. This phenomenon, known as the ';divergence problem' (DP), leads to tree-ring reconstructions that underestimate the warming trend exhibited by instrumental measurements over recent decades (e.g. D'Arrigo et al. 2008). In a study conducted in 1998, Briffa et al. discovered a type of divergence wherein latewood density (MXD) chronologies from an early manifestation of the Schweingruber tree-ring dataset showed strong interannual correlation to summer temperature measurements, but increasing divergence between the decadal-scale trends of the tree-rings and temperature records during the second half of the 20th century. This low-frequency divergence suggests that although tree-rings may accurately trace year-to-year changes in temperature, they might not capture longer-term warming trends, making them unsuitable for reconstructions of long-term climate variations. There is reason to believe, however, that the divergence found by Briffa (1998) is at least partly due to detrending or related statistical issues (Esper et al. 2009). Herein, we will investigate the distribution of this decadal-scale ';Briffa-style' divergence to see if it is confined to the earlier chronologies in the Schweingruber dataset or if it is persistent throughout more recent tree-ring data as well. Following the methodology of previous DP investigations (e.g. Briffa et al. 1998), we will draw comparisons between a network of MXD data and instrumental temperature records over an early period (1850-1960) and a recent period (1961-2000) to detect decadal-scale divergence in recent decades. We will apply the Mann et al. 2009 (M09) style of RegEM reconstruction to the M09 dataset, with and without controlling for divergence, and also to a new tree-ring database assembled using strict, objective criteria, including most of the updated Schweingruber network. Other climate field reconstruction (CFR) methods as described by Wang et al. (2013) will be used on our new tree-ring network to check for robustness. The tree-ring data will be independently compared to instrumental temperature series derived from the GHCN-monthly, HadCRUT4, and the M09 infilled HadCRUT3v temperature datasets for cross-validation. Implications for large-scale temperature reconstructions of the Common Era will be discussed. Briffa, K.R., F. H. Schweingruber, P.D. Jones, T.J. Osborn, S.G. Shiyatov, and E.A. Vaganov (1998),Reduced sensitivity of recent tree-growth to temperature at high northern latitudes, Nature, 391, 678-682. D'Arrigo, R., R. Wilson, B. Liepert, and P. Cherubini (2008), On the ';Divergence Problem' in Northern Forests: A review of the tree-ring evidence and possible causes, GAPC, 60, 289-305. Esper, J. and D. Frank (2009), Divergence pitfalls in tree-ring research, Climate Change, 94, 261-266. Mann, M.E., Z. Zhang, M.K. Hughes, R.S. Bradley, S.K. Miller, S. Rutherford, and F. Ni (2009), Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia, PNAS, 105 (36) 13252-13257. Wang, J., J. Emile-Geay, D. Guillot, and J. E. Smerdon (2013), Evaluating climate field reconstruction techniques using improved emulations of real-world conditions. CPD, 9, 3015-3060.

  10. The effects of green areas on air surface temperature of the Kuala Lumpur city using WRF-ARW modelling and Remote Sensing technique

    NASA Astrophysics Data System (ADS)

    Isa, N. A.; Mohd, W. M. N. Wan; Salleh, S. A.; Ooi, M. C. G.

    2018-02-01

    Matured trees contain high concentration of chlorophyll that encourages the process of photosynthesis. This process produces oxygen as a by-product and releases it into the atmosphere and helps in lowering the ambient temperature. This study attempts to analyse the effect of green area on air surface temperature of the Kuala Lumpur city. The air surface temperatures of two different dates which are, in March 2006 and March 2016 were simulated using the Weather Research and Forecasting (WRF) model. The green area in the city was extracted using the Normalized Difference Vegetation Index (NDVI) from two Landsat satellite images. The relationship between the air surface temperature and the green area were analysed using linear regression models. From the study, it was found that, the green area was significantly affecting the distribution of air temperature within the city. A strong negative correlation was identified through this study which indicated that higher NDVI values tend to have lower air surface temperature distribution within the focus study area. It was also found that, different urban setting in mixed built-up and vegetated areas resulted in different distributions of air surface temperature. Future studies should focus on analysing the air surface temperature within the area of mixed built-up and vegetated area.

  11. FireStem2D – A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires

    PubMed Central

    Chatziefstratiou, Efthalia K.; Bohrer, Gil; Bova, Anthony S.; Subramanian, Ravishankar; Frasson, Renato P. M.; Scherzer, Amy; Butler, Bret W.; Dickinson, Matthew B.

    2013-01-01

    FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes. PMID:23894599

  12. The effects of drought-induced mortality on the response of surviving trees in piñon-juniper woodlands

    NASA Astrophysics Data System (ADS)

    Huang, C. W.; Pockman, W.; Litvak, M. E.

    2017-12-01

    lthough it is well-established that land cover change influences water and carbon cycles across different spatiotemporal scales, the impact of climate-driven mortality events on site energy and water balance and subsequently on vegetation dynamics is more variable among studies. In semi-arid ecosystems globally, mortality events following severe drought are increasingly common. We used long-term observations (i.e., from 2009 to present) in two piñon-juniper (i.e., Pinus edulis and Juniperus monosperma) woodlands located at central New Mexico USA to explore the consequence of mortality events in such water-stressed environments. We compared a pinon-juniper woodland site where girdling was used to mimic mortality of adult pinon (PJG) with a nearby untreated woodland site (PJC). Our primary goal is to disentangle the reduction in water loss via biological pathway (i.e., leaf and sapwood area) introduced by girdling manipulation from other effects contributing to the response of surviving trees such as modifications in surface reflectivity (i.e., albedo and emissivity) and surface roughness impacting the partitioning between components in both energy and water balance at canopy level. To achieve this goal, we directly measured sap flux, environmental factors and ecosystem-atmosphere exchange of carbon, water and energy fluxes using eddy-covariance systems at both sites. We found that 1) for each component of the energy balance the difference between PJC and PJG was surprisingly negligible such that the canopy-level surface temperature (i.e., both radiometric and aerodynamic temperature) remains nearly identical for the two sites; 2) the surface reflectivity and roughness are mainly dominated by the soil surface especially when the foliage coverage in semi-arid regions is small; 3) the increase in soil evaporation after girdling manipulation outcompetes the surviving trees for the use of water in the soil. These results suggest that the so-called `water release hypothesis' may not occur in such water-stressed environments and the surviving trees may become less resilient to further drought conditions mainly due to the reduction in the soil water availability. Keywords: drought resilience, tree mortality, partitioning in energy and water balance, water release hypothesis

  13. Interdecadal modulation of the Atlantic Multi-decadal Oscillation (AMO) on southwest China's temperature over the past 250 years

    NASA Astrophysics Data System (ADS)

    Fang, Keyan; Guo, Zhengtang; Chen, Deliang; Wang, Lei; Dong, Zhipeng; Zhou, Feifei; Zhao, Yan; Li, Jinbao; Li, Yingjun; Cao, Xinguang

    2018-05-01

    The temperature gradient between southwestern China and Indian Ocean is one key driver of the Indian Summer Monsoon, suggesting the necessity to understand temperature variability in southwestern China. Contrary to the general warming experienced in most of China, a few regions in southwestern China have undergone a cooling trend since the 1950s. To place this cooling trend in a historical context, this study develops an Abies fabri tree-ring width chronology in the Sichuan Basin, the most populated region in southwest China. The chronology spans from 1590 to 2012, with its reliable portion from 1758 to 2012, by far the longest in the Sichuan Basin. To better extract regional climate signals encoded in tree rings with strong local disturbances, we incorporate climate signals of nearby tree-ring chronologies to generate a large-scale tree-ring chronology (LSC). The LSC shows higher correlations with temperature near the sampling site on Mount Emei and sea surface temperatures of the northern Atlantic Ocean than chronologies developed using traditional methods. The highest correlations between the LSC and temperature are found from current February to July in the Sichuan Basin for the period 1901-1950 (r = 0.70), with a sharp decrease afterwards. Interdecadal variations of the LSC match well with Atlantic Multi-decadal Oscillation reconstructions, except for the late nineteenth century and after 1980s. This study provides evidence that southwest China is a transitional region both affected by the interdecadal temperature variations of the northern Atlantic and Asian areas, although their influences weakened in recent possible due to enhanced human activities.

  14. Cross-scale modeling of surface temperature and tree seedling establishment inmountain landscapes

    USGS Publications Warehouse

    Dingman, John; Sweet, Lynn C.; McCullough, Ian M.; Davis, Frank W.; Flint, Alan L.; Franklin, Janet; Flint, Lorraine E.

    2013-01-01

    Abstract: Introduction: Estimating surface temperature from above-ground field measurements is important for understanding the complex landscape patterns of plant seedling survival and establishment, processes which occur at heights of only several centimeters. Currently, future climate models predict temperature at 2 m above ground, leaving ground-surface microclimate not well characterized. Methods: Using a network of field temperature sensors and climate models, a ground-surface temperature method was used to estimate microclimate variability of minimum and maximum temperature. Temperature lapse rates were derived from field temperature sensors and distributed across the landscape capturing differences in solar radiation and cold air drainages modeled at a 30-m spatial resolution. Results: The surface temperature estimation method used for this analysis successfully estimated minimum surface temperatures on north-facing, south-facing, valley, and ridgeline topographic settings, and when compared to measured temperatures yielded an R2 of 0.88, 0.80, 0.88, and 0.80, respectively. Maximum surface temperatures generally had slightly more spatial variability than minimum surface temperatures, resulting in R2 values of 0.86, 0.77, 0.72, and 0.79 for north-facing, south-facing, valley, and ridgeline topographic settings. Quasi-Poisson regressions predicting recruitment of Quercus kelloggii (black oak) seedlings from temperature variables were significantly improved using these estimates of surface temperature compared to air temperature modeled at 2 m. Conclusion: Predicting minimum and maximum ground-surface temperatures using a downscaled climate model coupled with temperature lapse rates estimated from field measurements provides a method for modeling temperature effects on plant recruitment. Such methods could be applied to improve projections of species’ range shifts under climate change. Areas of complex topography can provide intricate microclimates that may allow species to redistribute locally as climate changes.

  15. Oxygen stable isotope ratios from British oak tree-rings provide a strong and consistent record of past changes in summer rainfall

    NASA Astrophysics Data System (ADS)

    Young, Giles H. F.; Loader, Neil J.; McCarroll, Danny; Bale, Roderick J.; Demmler, Joanne C.; Miles, Daniel; Nayling, Nigel T.; Rinne, Katja T.; Robertson, Iain; Watts, Camilla; Whitney, Matthew

    2015-12-01

    United Kingdom (UK) summers dominated by anti-cyclonic circulation patterns are characterised by clear skies, warm temperatures, low precipitation totals, low air humidity and more enriched oxygen isotope ratios (δ18O) in precipitation. Such conditions usually result in relatively more positive (enriched) oxygen isotope ratios in tree leaf sugars and ultimately in the tree-ring cellulose formed in that year, the converse being true in cooler, wet summers dominated by westerly air flow and cyclonic conditions. There should therefore be a strong link between tree-ring δ18O and the amount of summer precipitation. Stable oxygen isotope ratios from the latewood cellulose of 40 oak trees sampled at eight locations across Great Britain produce a mean δ18O chronology that correlates strongly and significantly with summer indices of total shear vorticity, surface air pressure, and the amount of summer precipitation across the England and Wales region of the United Kingdom. The isotope-based rainfall signal is stronger and much more stable over time than reconstructions based upon oak ring widths. Using recently developed methods that are precise, efficient and highly cost-effective it is possible to measure both carbon (δ13C) and oxygen (δ18O) isotope ratios simultaneously from the same tree-ring cellulose. In our study region, these two measurements from multiple trees can be used to reconstruct summer temperature (δ13C) and summer precipitation (δ18O) with sufficient independence to allow the evolution of these climate parameters to be reconstructed with high levels of confidence. The existence of long, well-replicated oak tree-ring chronologies across the British Isles mean that it should now be possible to reconstruct both summer temperature and precipitation over many centuries and potentially millennia.

  16. Canopy storage capacity and wettability of leaves and needles: The effect of water temperature changes

    NASA Astrophysics Data System (ADS)

    Klamerus-Iwan, Anna; Błońska, Ewa

    2018-04-01

    The canopy storage capacity (S) is a major component of the surface water balance. We analysed the relationship between the tree canopy water storage capacity and leaf wettability under changing simulated rainfall temperature. We estimated the effect of the rain temperature change on the canopy storage capacity and contact angle of leave and needle surfaces based on two scenarios. Six dominant forest trees were analysed: English oak (Quercus roburL.), common beech (Fagus sylvatica L.), small-leaved lime (Tilia cordata Mill), silver fir (Abies alba), Scots pine (Pinus sylvestris L.),and Norway spruce (Picea abies L.). Twigs of these species were collected from Krynica Zdrój, that is, the Experimental Forestry unit of the University of Agriculture in Cracow (southern Poland). Experimental analyses (simulations of precipitation) were performed in a laboratory under controlled conditions. The canopy storage capacity and leaf wettability classification were determined at 12 water temperatures and a practical calculator to compute changes of S and contact angles of droplets was developed. Among all species, an increase of the rainfall temperature by 0.7 °C decreases the contact angle between leave and needle surfaces by 2.41° and increases the canopy storage capacity by 0.74 g g-1; an increase of the rain temperature by 2.7 °C decreases the contact angle by 9.29° and increases the canopy storage capacity by 2.85 g g-1. A decreased contact angle between a water droplet and leaf surface indicates increased wettability. Thus, our results show that an increased temperature increases the leaf wettability in all examined species. The comparison of different species implies that the water temperature has the strongest effect on spruce and the weakest effect on oak. These data indicate that the rainfall temperature influences the canopy storage capacity.

  17. Drought reconstruction in eastern Hulun Buir steppe, China and its linkages to the sea surface temperatures in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Liu, Na; Liu, Yu; Bao, Guang; Bao, Ming; Wang, Yanchao; Zhang, Lizhi; Ge, Yuxiang; Bao, Wurigen; Tian, Heng

    2016-01-01

    A tree-ring width chronology covering the period 1780-2013 AD was developed from Pinus sylvestris var. mongolica for the eastern Hulun Buir steppe, a region located on the edge of the eastern Mongolian Plateau, China. Climate-growth response analysis revealed drought stress to be the primary limiting factor for tree growth. Therefore, the mean February-July standardized precipitation evapotranspiration index (SPEI) was reconstructed over the period 1819-2013, where the reconstruction could account for 32.8% of the variance in the instrumental record over the calibration period 1953-2011. Comparison with other tree-ring-based moisture sequences from nearby areas confirmed a high degree of confidence in our reconstruction. Severe drought intervals since the late 1970s in our study area consisted with the weakening East Asian summer monsoon, which modulating regional moisture conditions in semi-arid zone over northern China. Drought variations in the study area significantly correlated with sea surface temperatures (SSTs) in North Pacific Ocean, suggesting a possible connection of regional hydroclimatic variations to the Pacific Decadal Oscillation (PDO). The potential influence associated with El Niño-Southern Oscillation (ENSO) was primarily analyzed.

  18. Self-constructed tree-shape high thermal conductivity nanosilver networks in epoxy.

    PubMed

    Pashayi, Kamyar; Fard, Hafez Raeisi; Lai, Fengyuan; Iruvanti, Sushumna; Plawsky, Joel; Borca-Tasciuc, Theodorian

    2014-04-21

    We report the formation of high aspect ratio nanoscale tree-shape silver networks in epoxy, at low temperatures (<150 °C) and atmospheric pressures, that are correlated to a ∼200 fold enhancement of thermal conductivity (κ) of the nanocomposite compared to the polymer matrix. The networks form through a three-step process comprising of self-assembly by diffusion limited aggregation of polyvinylpyrrolidone (PVP) coated nanoparticles, removal of PVP coating from the surface, and sintering of silver nanoparticles in high aspect ratio networked structures. Controlling self-assembly and sintering by carefully designed multistep temperature and time processing leads to κ of our silver nanocomposites that are up to 300% of the present state of the art polymer nanocomposites at similar volume fractions. Our investigation of the κ enhancements enabled by tree-shaped network nanocomposites provides a basis for the development of new polymer nanocomposites for thermal transport and storage applications.

  19. Stream Temperature Estimation From Thermal Infrared Images

    NASA Astrophysics Data System (ADS)

    Handcock, R. N.; Kay, J. E.; Gillespie, A.; Naveh, N.; Cherkauer, K. A.; Burges, S. J.; Booth, D. B.

    2001-12-01

    Stream temperature is an important water quality indicator in the Pacific Northwest where endangered fish populations are sensitive to elevated water temperature. Cold water refugia are essential for the survival of threatened salmon when events such as the removal of riparian vegetation result in elevated stream temperatures. Regional assessment of stream temperatures is limited by sparse sampling of temperatures in both space and time. If critical watersheds are to be properly managed it is necessary to have spatially extensive temperature measurements of known accuracy. Remotely sensed thermal infrared (TIR) imagery can be used to derive spatially distributed estimates of the skin temperature (top 100 nm) of streams. TIR imagery has long been used to estimate skin temperatures of the ocean, where split-window techniques have been used to compensate for atmospheric affects. Streams are a more complex environment because 1) most are unresolved in typical TIR images, and 2) the near-bank environment of stream corridors may consist of tall trees or hot rocks and soils that irradiate the stream surface. As well as compensating for atmospheric effects, key problems to solve in estimating stream temperatures include both subpixel unmixing and multiple scattering. Additionally, fine resolution characteristics of the stream surface such as evaporative cooling due to wind, and water surface roughness, will effect measurements of radiant skin temperatures with TIR devices. We apply these corrections across the Green River and Yakima River watersheds in Washington State to assess the accuracy of remotely sensed stream surface temperature estimates made using fine resolution TIR imagery from a ground-based sensor (FLIR), medium resolution data from the airborne MASTER sensor, and coarse-resolution data from the Terra-ASTER satellite. We use linear spectral mixture analysis to isolate the fraction of land-leaving radiance originating from unresolved streams. To compensate the data for atmospheric effects we combine radiosonde profiles with a physically based radiative transfer model (MODTRAN) and an in-scene relative correction adapted from the ISAC algorithm. Laboratory values for water emissivities are used as a baseline estimate of stream emissivities. Emitted radiance reflected by trees in the stream near-bank environment is estimated from the height and canopy temperature, using a radiosity model.

  20. Global Warming - Are We on Thin Ice?

    NASA Technical Reports Server (NTRS)

    Tucker, Compton J.

    2007-01-01

    The evidence for global warming is very conclusive for the past 400-500 years. Prior to the 16th century, proxy surface temperature data are regionally good but lack a global distribution. The speaker will review surface temperature reconstruction based upon ice cores, coral cores, tree rings, deep sea sediments, and bore holes and discuss the controversy surrounding global warming. This will be contrasted with the excellent data we have from the satellite era of earth observations the past 30+ years that enables the quantitative study of climate across earth science disciplines.

  1. Heat transfer and vascular cambium necrosis in the boles of trees during surface fires

    Treesearch

    M. B. Dickinson

    2002-01-01

    Heat-transfer and cell-survival models are used to link surface fire behavior with vascular cambium necrosis from heating by flames. Vascular cambium cell survival was predicted with a numerical model based on the kinetics of protein denaturation and parameterized with data from the literature. Cell survival was predicted for vascular cambium temperature regimes...

  2. Albedo and its Relationship to Land Cover and the Urban Heat Island in the Boston Metropolitan Region

    NASA Astrophysics Data System (ADS)

    Trlica, A.; Hutyra, L.; Wang, J.; Schaaf, C.; Erb, A.

    2016-12-01

    The urban built environment creates key changes in the biophysical character of the landscape, including the creation of Urban Heat Islands (UHIs) with increased near-surface temperatures in and around cities. Alteration in surface albedo is believed to partially drive UHIs through greater absorption of solar energy, but few empirical studies have specifically quantified albedo across a heterogeneous urban landscape, or investigated linkages between albedo, the UHI, and other surface socio-biophysical characteristics at a high enough spatial resolution to discern urban-scale features. This study used data derived from observations by Landsat and other remote sensing platforms to measure albedo across a varied urban landscape centered on Boston, Massachusetts, and examined the relationship between albedo, several key indicators of urban surface character (canopy cover, impervious fraction, and population density) and land surface temperature at resolutions of both 30 and 500 m. Albedo tended to be lower in areas with highest urbanization intensity indicators compared to rural undeveloped areas, and areas with lower albedo tended also to have higher median daytime summer surface temperatures. A k-means classification utilizing all the data available for each pixel revealed several distinct patterns of urban land cover corresponding mainly to the density of population and constructed surfaces and their impact on tree canopy cover. Mean 30-m summer surface temperatures ranged from 40.0 °C (SD = 2.6) in urban core areas to 26.2 °C (SD = 1.1) in nearby forest, but we only observed correspondingly large albedo decreases in the highest density urban core, with mean albedo of 0.116 (SD = 0.015) compared with 0.155 (SD = 0.015) in forest. Observations show that lower albedo in the Boston metropolitan region may be an important component of the local UHI in the most densely built-up urban core regions, while the UHI temperature effect in less densely settled peripheral regions is more likely to be driven primarily by reduced evapotranspiration due to diminished tree canopy and greater impervious surface coverage. These results empirically characterize surface albedo across a suite of land cover categories and biophysical characteristics and reveal how albedo relates to surface temperatures in this urbanized region.

  3. Quantifying the Impact of Land Cover Composition on Intra-Urban Air Temperature Variations at a Mid-Latitude City

    PubMed Central

    Yan, Hai; Fan, Shuxin; Guo, Chenxiao; Hu, Jie; Dong, Li

    2014-01-01

    The effects of land cover on urban-rural and intra-urban temperature differences have been extensively documented. However, few studies have quantitatively related air temperature to land cover composition at a local scale which may be useful to guide landscape planning and design. In this study, the quantitative relationships between air temperature and land cover composition at a neighborhood scale in Beijing were investigated through a field measurement campaign and statistical analysis. The results showed that the air temperature had a significant positive correlation with the coverage of man-made surfaces, but the degree of correlation varied among different times and seasons. The different land cover types had different effects on air temperature, and also had very different spatial extent dependence: with increasing buffer zone size (from 20 to 300 m in radius), the correlation coefficient of different land cover types varied differently, and their relative impacts also varied among different times and seasons. At noon in summer, ∼37% of the variations in temperature were explained by the percentage tree cover, while ∼87% of the variations in temperature were explained by the percentage of building area and the percentage tree cover on summer night. The results emphasize the key role of tree cover in attenuating urban air temperature during daytime and nighttime in summer, further highlighting that increasing vegetation cover could be one effective way to ameliorate the urban thermal environment. PMID:25010134

  4. Stand, species, and individual traits impact transpiration in historically disturbed forests.

    NASA Astrophysics Data System (ADS)

    Blakely, B.; Rocha, A. V.; McLachlan, J. S.

    2017-12-01

    Historic logging disturbances have changed the structure and species composition of most Northern temperate forests. These changes impact the process of transpiration - which in turn impacts canopy surface temperature - but the links among structure, composition, and transpiration remain unclear. For this reason, ecosystem models typically use simplified structure and composition to simulate the impact of disturbances on forest transpiration. However, such simplifications ignore real variability among stands, species, and individual trees that may strongly influence transpiration across spatial and temporal scales. To capture this variability, we monitored transpiration in 48 individual trees of multiple species in both undisturbed (400+ yr) and historically logged (80 - 120 yr) forests. Using modern and historic forest surveys, we upscaled our observations to stand and regional scales to identify the key changes impacting transpiration. We extended these inferences by establishing a relationship between transpiration and measured surface temperature, linking disturbance-induced changes in structure and composition to local and regional climate. Despite greater potential evapotranspiration and basal area, undisturbed forest transpired less than disturbed (logged) forest. Transpiration was a strong predictor of surface temperature, and the canopy surface was warmer in undisturbed forest. Transpiration differences among disturbed and undisturbed forests resulted from (1) lesser transpiration and dampened seasonality in evergreen species (2) greater transpiration in younger individuals within a species, and (3) strong transpiration by large individuals. When transpiration was scaled to the stand or regional level in a simplified manner (e.g. a single transpiration rate for all deciduous individuals), the resulting estimates differed markedly from the original. Stand- species- and individual-level traits are therefore essential for understanding how transpiration and surface temperature respond to disturbance. Without consideration of such traits, current ecosystem models may struggle to capture the true impact of logging disturbances on forest transpiration.

  5. Electrical treeing behaviors in silicone rubber under an impulse voltage considering high temperature

    NASA Astrophysics Data System (ADS)

    Yunxiao, ZHANG; Yuanxiang, ZHOU; Ling, ZHANG; Zhen, LIN; Jie, LIU; Zhongliu, ZHOU

    2018-05-01

    In this paper, work was conducted to reveal electrical tree behaviors (initiation and propagation) of silicone rubber (SIR) under an impulse voltage with high temperature. Impulse frequencies ranging from 10 Hz to 1 kHz were applied and the temperature was controlled between 30 °C and 90 °C. Experimental results show that tree initiation voltage decreases with increasing pulse frequency, and the descending amplitude is different in different frequency bands. As the pulse frequency increases, more frequent partial discharges occur in the channel, increasing the tree growth rate and the final shape intensity. As for temperature, the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher. Based on differential scanning calorimetry results, we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage. However, the tree growth rate decreases with increasing temperature. Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis. Different tree growth models considering tree channel characteristics are proposed. It is believed that increasing the conductivity in the tree channel restrains the partial discharge, holding back the tree growth at high temperature.

  6. The effect of urban heat island on Izmir's city ecosystem and climate.

    PubMed

    Corumluoglu, Ozsen; Asri, Ibrahim

    2015-03-01

    Depending on the researches done on urban landscapes, it is found that the heat island intensity caused by the activities in any city has some impact on the ecosystem of the region and on the regional climate. Urban areas located in arid and semiarid lands somehow represent heat increase when it is compared with the heat in the surrounding rural areas. Thus, cities located amid forested and temperate climate regions show moderate temperatures. The impervious surfaces let the rainfall leave the city lands faster than undeveloped areas. This effect reduces water's cooling effects on these lands. More significantly, if trees and other vegetations are rare in any region, it means less evapotranspiration-the process by which trees "exhale" water. Trees also contribute to the cooling of urban lands by their shade. Land cover and land use maps can easily be produced by processing of remote sensing satellites' images, like processing of Landsat's images. As a result of this process, urban regions can be distinguished from vegetation. Analyzed GIS data produced and supported by these images can be utilized to determine the impact of urban land on energy, water, and carbon balances at the Earth's surface. Here in this study, it is found that remote sensing technique with thermal images is a liable technique to asses where urban heat islands and hot spots are located in cities. As an application area, in Izmir, it was found that the whole city was in high level of surface temperature as it was over 28 °C during the summer times. Beside this, the highest temperature values which go up to 47 °C are obtained at industrial regions especially where the iron-steel factories and the related industrial activities are.

  7. Predicting water suppy and actual evapotranspiration of street trees

    NASA Astrophysics Data System (ADS)

    Wessolek, Gerd; Heiner, Moreen; Trinks, Steffen

    2017-04-01

    It's well known that street trees cool air temperature in summer-time by transpiration and shading and also reduce runoff. However, it's difficult to analyse if trees have water shortage or not. This contribution focus on predicting water supply, actual evapotranspiration, and runoff by using easily available climate data (precipiation, potential evapotranspiration) and site characteristics (water retention, space, sealing degree, groundwater depth). These parameter were used as input data for Hydro-Pedotransfer-Functions (HPTFs) allowing the estimation of the annual water budget. Results give statements on water supply of trees, drought stress, and additional water demand by irrigation. Procedure also analyse, to which extent the surrounding partly sealed surfaces deliver water to the trees. Four representative street canyons of Berlin City were analysed and evaluated within in training program for M.A. students of „Urban Eco-system Science" at the Technische Universität Berlin.

  8. Planting Trees in India.

    ERIC Educational Resources Information Center

    Oswald, James M.

    Reforestation is desperately needed in India. Three-fourths of the country's ground surface is experiencing desertification, and primitive forests are being destroyed. Reforestation would help moderate temperatures, increase ground water levels, improve soil fertility, and alleviate a wood shortage. In the past, people from the United States, such…

  9. Understanding tree growth in response to moisture variability: Linking 32 years of satellite based soil moisture observations with tree rings

    NASA Astrophysics Data System (ADS)

    Albrecht, Franziska; Dorigo, Wouter; Gruber, Alexander; Wagner, Wolfgang; Kainz, Wolfgang

    2014-05-01

    Climate change induced drought variability impacts global forest ecosystems and forest carbon cycle dynamics. Physiological drought stress might even become an issue in regions generally not considered water-limited. The water balance at the soil surface is essential for forest growth. Soil moisture is a key driver linking precipitation and tree development. Tree ring based analyses are a potential approach to study the driving role of hydrological parameters for tree growth. However, at present two major research gaps are apparent: i) soil moisture records are hardly considered and ii) only a few studies are linking tree ring chronologies and satellite observations. Here we used tree ring chronologies obtained from the International Tree ring Data Bank (ITRDB) and remotely sensed soil moisture observations (ECV_SM) to analyze the moisture-tree growth relationship. The ECV_SM dataset, which is being distributed through ESA's Climate Change Initiative for soil moisture covers the period 1979 to 2010 at a spatial resolution of 0.25°. First analyses were performed for Mongolia, a country characterized by a continental arid climate. We extracted 13 tree ring chronologies suitable for our analysis from the ITRDB. Using monthly satellite based soil moisture observations we confirmed previous studies on the seasonality of soil moisture in Mongolia. Further, we investigated the relationship between tree growth (as reflected by tree ring width index) and remotely sensed soil moisture records by applying correlation analysis. In terms of correlation coefficient a strong response of tree growth to soil moisture conditions of current April to August was observed, confirming a strong linkage between tree growth and soil water storage. The highest correlation was found for current April (R=0.44), indicating that sufficient water supply is vital for trees at the beginning of the growing season. To verify these results, we related the chronologies to reanalysis precipitation and temperature datasets. Precipitation was important during both the current and previous growth season. Temperature showed the strongest correlation for previous (R=0.12) and current October (R=0.21). Hence, our results demonstrated that water supply is most likely limiting tree growth during the growing season, while temperature is determining its length. We are confident that long-term satellite based soil moisture observations can bridge spatial and temporal limitations that are inherent to in situ measurements, which are traditionally used for tree ring research. Our preliminary results are a foundation for further studies linking remotely sensed datasets and tree ring chronologies, an approach that has not been widely investigated among the scientific community.

  10. METRIC model for the estimation and mapping of evapotranspiration in a super intensive olive orchard in Southern Portugal

    NASA Astrophysics Data System (ADS)

    Pôças, Isabel; Nogueira, António; Paço, Teresa A.; Sousa, Adélia; Valente, Fernanda; Silvestre, José; Andrade, José A.; Santos, Francisco L.; Pereira, Luís S.; Allen, Richard G.

    2013-04-01

    Satellite-based surface energy balance models have been successfully applied to estimate and map evapotranspiration (ET). The METRICtm model, Mapping EvapoTranspiration at high Resolution using Internalized Calibration, is one of such models. METRIC has been widely used over an extensive range of vegetation types and applications, mostly focusing annual crops. In the current study, the single-layer-blended METRIC model was applied to Landsat5 TM and Landsat7 ETM+ images to produce estimates of evapotranspiration (ET) in a super intensive olive orchard in Southern Portugal. In sparse woody canopies as in olive orchards, some adjustments in METRIC application related to the estimation of vegetation temperature and of momentum roughness length and sensible heat flux (H) for tall vegetation must be considered. To minimize biases in H estimates due to uncertainties in the definition of momentum roughness length, the Perrier function based on leaf area index and tree canopy architecture, associated with an adjusted estimation of crop height, was used to obtain momentum roughness length estimates. Additionally, to minimize the biases in surface temperature simulations, due to soil and shadow effects, the computation of radiometric temperature considered a three-source condition, where Ts=fcTc+fshadowTshadow+fsunlitTsunlit. As such, the surface temperature (Ts), derived from the thermal band of the Landsat images, integrates the temperature of the canopy (Tc), the temperature of the shaded ground surface (Tshadow), and the temperature of the sunlit ground surface (Tsunlit), according to the relative fraction of vegetation (fc), shadow (fshadow) and sunlit (fsunlit) ground surface, respectively. As the sunlit canopies are the primary source of energy exchange, the effective temperature for the canopy was estimated by solving the three-source condition equation for Tc. To evaluate METRIC performance to estimate ET over the olive grove, several parameters derived from the algorithm were tested against data collected in the field, including eddy covariance ET, surface temperature over the canopy and soil temperature in shaded and sunlit conditions. Additionally, the results were also compared with results published in the literature. The information obtained so far revealed very interesting perspectives for the use of METRIC in the estimation and mapping of ET in super intensive olive orchards. Thereby, this approach might constitute a useful tool towards the improvement of the efficiency of irrigation water management in this crop. The study described is still under way, and thus further applications of METRIC algorithm to a larger number of images and to olive groves with different tree density are planned.

  11. New paleoclimatic database for the Iberian Peninsula since AD 1700 inferred from tree-ring records and documentary evidence: advances in temperature and drought variability reconstructions

    NASA Astrophysics Data System (ADS)

    Tejedor, Ernesto; Ángel Saz, Miguel; de Luis, Martín; Esper, Jan; Barriendos, Mariano; Serrano-Notivoli, Roberto; Novak, Klemen; Longares, Luis Alberto; Martínez-del Castillo, Edurne; María Cuadrat, José

    2017-04-01

    A substantial increase of surface air temperatures in the upcoming decades, particularly significant in the Mediterranean basin, has been reported by the IPCC (IPCC, 2013). It is therefore particularly important to study past climate extremes and variability in this region, which will in turn support the accuracy of future climate scenarios. Yet, our knowledge of past climate variability and trends is limited by the shortage of instrumental data prior to the twentieth century, which prompts to the need of discovering new sources with which to reconstruct past climate. We here present a new paleoclimatic database for the northeast of the Iberian Peninsula based on tree-ring records, documentary evidence and instrumental data. The network includes 774 tree-ring, earlywood and latewood width series from Pinus uncinata, Pinus sylvestris and Pinus nigra trees in the Pyrenees and Iberian Range reaching back to AD 1510. Three reconstructions are developed using these samples; an annual drought reconstruction since AD 1694, a summer drought reconstruction since AD 1734, and a maximum temperature reconstruction since AD 1604. Additionally, the documentary records from 16 locations in the Ebro Valley are examined focusing on climate-related 'rogations'. We differentiated three types of rogations, considering the importance of religious acts, to identify the severity of drought and pluvial events. Finally, an attempt to explore the links between documentary and tree-ring based reconstructions is presented.

  12. Use of ground-based radiometers for L-Band Freeze/Thaw retrieval in a boreal forest site

    NASA Astrophysics Data System (ADS)

    Roy, A.; Sonnentag, O.; Derksen, C.; Toose, P.; Pappas, C.; Mavrovic, A.; El Amine, M.; Royer, A.; Berg, A. A.; Rowlandson, T. L.; Barr, A.; Black, T. A.

    2017-12-01

    The boreal forest is the second largest land biome in the world and thus plays a major role in the global and regional climate systems. The extent, timing and duration of the seasonal freeze/thaw (F/T) state influences vegetation developmental stages (phenology) and, consequently, constitutes an important control on how boreal forest ecosystems exchange carbon, water and energy with the atmosphere. Recently, new L-Band satellite-derived F/T information has become available. However, disentangling the seasonally differing contributions from forest overstory and understory vegetation, and the ground surface to the satellite signal remains challenging. Here we present results from an ongoing campaign with two L-Band surface-based radiometers (SBR) installed on a micrometeorological tower at the Southern Old Black Spruce site (53.99°N / 105.12°W) in central Saskatchewan. One radiometer unit is installed on top of the tower viewing the multi-layer vegetation canopy from above. A second radiometer unit is installed within the multi-layer canopy, viewing the understory and the ground surface only. The objectives of our study are to (i) disentangle the L-Band F/T signal contribution of boreal forest overstory from the combined understory and ground surface contribution, and (ii) link the L-Band F/T signal to related boreal forest structural and functional characteristics. Analysis of these radiometer measurements made from September to November 2016 shows that when the ground surface is thawed, the main contributor to both radiometer signals is soil moisture. The Pearson correlation coefficient between brightness temperature (TB) at vertical polarization (V-pol) and soil permittivity is 0.79 for the radiometer above the canopy and 0.74 for the radiometer below the canopy. Under cold conditions when the soil was thawed (snow insulation) and the trees were frozen (below 0°C), TB at V-pol is negatively correlated with tree permittivity. The freezing tree contribution to the L-Band signal is however confirmed with L-Band coaxial probe measurements that show significant changes in tree L-Band permittivity when the tree temperature falls below 0 °C. This study will help develop freeze/thaw product and ecosystemic processes in boreal forest from satellite based remote sensing.

  13. 140-year subantarctic tree-ring temperature reconstruction reveals tropical forcing of increased Southern Ocean climate variability

    NASA Astrophysics Data System (ADS)

    Turney, C. S.; Fogwill, C. J.; Palmer, J. G.; VanSebille, E.; Thomas, Z.; McGlone, M.; Richardson, S.; Wilmshurst, J.; Fenwick, P.; Zunz, V.; Goosse, H.; Wilson, K. J.; Carter, L.; Lipson, M.; Jones, R. T.; Harsch, M.; Clark, G.; Marzinelli, E.; Rogers, T.; Rainsley, E.; Ciasto, L.; Waterman, S.; Thomas, E. R.; Visbeck, M.

    2017-12-01

    Occupying about 14 % of the world's surface, the Southern Ocean plays a fundamental role in ocean and atmosphere circulation, carbon cycling and Antarctic ice-sheet dynamics. Unfortunately, high interannual variability and a dearth of instrumental observations before the 1950s limits our understanding of how marine-atmosphere-ice domains interact on multi-decadal timescales and the impact of anthropogenic forcing. Here we integrate climate-sensitive tree growth with ocean and atmospheric observations on south-west Pacific subantarctic islands that lie at the boundary of polar and subtropical climates (52-54˚S). Our annually resolved temperature reconstruction captures regional change since the 1870s and demonstrates a significant increase in variability from the 1940s, a phenomenon predating the observational record, and coincident with major changes in mammalian and bird populations. Climate reanalysis and modelling show a parallel change in tropical Pacific sea surface temperatures that generate an atmospheric Rossby wave train which propagates across a large part of the Southern Hemisphere during the austral spring and summer. Our results suggest that modern observed high interannual variability was established across the mid-twentieth century, and that the influence of contemporary equatorial Pacific temperatures may now be a permanent feature across the mid- to high latitudes.

  14. A 300-year Vietnam hydroclimate and ENSO variability record reconstructed from tree ring δ18O

    NASA Astrophysics Data System (ADS)

    Sano, Masaki; Xu, Chenxi; Nakatsuka, Takeshi

    2012-06-01

    A tree ring δ18O chronology is developed for the past 300 years (1705-2004) using 6 cypress trees from northern Vietnam to reconstruct long-term hydroclimatic variations in the summer monsoon season. To the best of our knowledge, this is the first well-replicated tree ringδ18O chronology from Southeast Asia, as well as the longest yet produced. Response analyses reveal that tree ring δ18O is significantly correlated with temperature, precipitation, and the Palmer Drought Severity Index (PDSI) during the period May-October, with highest correlation to the PDSI. Our δ18O chronology accounts for 44% of the PDSI variance, and is in good agreement with a 52-year tree ringδ18O chronology from northern Laos (r = 0.77), indicating that regional hydroclimatic signals are well recorded in the δ18O data. Spatial correlation analyses with global sea surface temperatures suggest that the tropical Pacific plays an important role in modulating hydroclimate over the study region. Further, the δ18O chronology correlates significantly with El Niño-Southern Oscillation (ENSO)-related indices, and is therefore used to reconstruct the annual Multivariate ENSO Index. Because previously published ENSO reconstructions are based mainly on proxy records originating from North America and/or the tropical Pacific, the future development of a tree ringδ18O network from mainland Southeast Asia could lead to an independent and more robust reconstruction of ENSO variability.

  15. Moisture increase in response to high-altitude warming evidenced by tree-rings on the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Jinbao; Shi, Jiangfeng; Zhang, David D.; Yang, Bao; Fang, Keyan; Yue, Pak Hong

    2017-01-01

    Rapid warming has been observed in the high-altitude areas around the globe, but the implications on moisture change are not fully understood. Here we use tree-rings to reveal common moisture change on the southeastern Tibetan Plateau (TP) during the past five centuries, and show that regional moisture change in late spring to early summer (April-June) is closely related to large-scale temperature anomaly over the TP, with increased moisture coincident with periods of high temperature. The most recent pluvial during the 1990s-2000s is likely the wettest for the past five centuries, which coincides with the warmest period on the TP during the past millennium. Dynamic analysis reveals that vertical air convection is enhanced in response to anomalous TP surface warming, leading to an increase in lower-tropospheric humidity and effective precipitation over the southeastern TP. The coherent warm-wet relationship identified in both tree-rings and dynamic analysis implies a generally wetter condition on the southeastern TP under future warming.

  16. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    NASA Astrophysics Data System (ADS)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon

    2014-05-01

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution ( i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested (-2°C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  17. Climate variations in northern North America (6000 BP to present) reconstructed from pollen and tree-ring data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, H.F.; Andrews, J.T.; Short, S.K.

    The characteristic anomaly patterns of modern surface temperature and precipitation are compared to tree-ring indices (0-300 yr) and fossil pollen (0-6000 yr) variations in northern North America. The data base consists of 245 climate stations, 55 tree-ring chronologies, 153 modern pollen collections, and 39 fossil pollen sites. A few areas exhibit relatively high climatic sensitivity, displaying generally consistent patterns during alternate warm and cold periods, regardless of time scales. The surface changes are related to the redistribution (i.e., changes in the mean position and strength) of the planetary-scale waves and to north-south shifts in the mean boundary of the Arcticmore » Front. The zone where the largest changes occur is typically located along the mean present-day boundary between Arctic and Pacific airstreams. Establishing plausible relationships between vegetation responses and concomitant changes in atmospheric circulation patterns increases our confidence that the paleoclimatic signals are indeed related to large-scale circulation changes.« less

  18. Effects of prescribed burning on ecophysiological, anatomical and stem hydraulic properties in Pinus pinea L.

    PubMed

    Battipaglia, Giovanna; Savi, Tadeja; Ascoli, Davide; Castagneri, Daniele; Esposito, Assunta; Mayr, Stefan; Nardini, Andrea

    2016-08-01

    Prescribed burning (PB) is a widespread management technique for wildfire hazard abatement. Understanding PB effects on tree ecophysiology is key to defining burn prescriptions aimed at reducing fire hazard in Mediterranean pine plantations, such as Pinus pinea L. stands. We assessed physiological responses of adult P. pinea trees to PB using a combination of dendroecological, anatomical, hydraulic and isotopic analyses. Tree-ring widths, xylem cell wall thickness, lumen area, hydraulic diameter and tree-ring δ(13)C and δ(18)O were measured in trees on burned and control sites. Vulnerability curves were elaborated to assess tree hydraulic efficiency or safety. Despite the relatively intense thermal treatment (the residence time of temperatures above 50 °C at the stem surface ranged between 242 and 2239 s), burned trees did not suffer mechanical damage to stems, nor significant reduction in radial growth. Moreover, the PB did not affect xylem structure and tree hydraulics. No variations in (13)C-derived water use efficiency were recorded. This confirmed the high resistance of P. pinea to surface fire at the stem base. However, burned trees showed consistently lower δ(18)O values in the PB year, as a likely consequence of reduced competition for water and nutrients due to the understory burning, which increased both photosynthetic activity and stomatal conductance. Our multi-approach analysis offers new perspectives on post-fire survival strategies of P. pinea in an environment where fires are predicted to increase in frequency and severity during the 21st century. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Impacts of regional climatic fluctuations on radial growth of Siberian and Scots pine at Mukhrino mire (central-western Siberia).

    PubMed

    Blanchet, Guillaume; Guillet, Sébastien; Calliari, Baptiste; Corona, Christophe; Edvardsson, Johannes; Stoffel, Markus; Bragazza, Luca

    2017-01-01

    Ring width (TRW) chronologies from Siberian (Pinus sibirica) and Scots (Pinus sylvestris) pine trees were sampled at Mukhrino - a large mire complex in central-western Siberia - to evaluate the impacts of hydroclimatic variability on tree growth over the last three centuries. For this purpose, we compared climate-growth correlation profiles from trees growing on peat soils with those growing on adjacent mineral soils. Tree growth at both peat and mineral soils was positively correlated to air temperature during the vegetation period. This finding can be explained by (i) the positive influence of temperature on plant physiological processes (i.e. growth control) during the growing season and (ii) the indirect impact of air temperatures on water table fluctuations. We observe also a strong link between TRW and the winter Palmer Drought Severity Index (PDSI), especially in Siberian pine, reflecting the isolating effect of snow and limited freezing damage in roots. Significant negative relations were, by contrast, observed between bog TRW chronologies and hydroclimatic indices during spring and summer; they are considered an expression of the negative impacts of high water levels and moist peat soils on root development. Some unusually old bog pines - exhibiting >500 growth rings - apparently colonized the site at the beginning of the Little Ice Age, and therefore seem to confirm that (i) peat conditions may have been drier in Siberia than in most other regions of western Europe during this period. At the same time, the bog trees also point to (ii) their strong dependence on surface conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Heat and Humidity in the City: Neighborhood Heat Index Variability in a Mid-Sized City in the Southeastern United States

    PubMed Central

    Hass, Alisa L.; Ellis, Kelsey N.; Reyes Mason, Lisa; Hathaway, Jon M.; Howe, David A.

    2016-01-01

    Daily weather conditions for an entire city are usually represented by a single weather station, often located at a nearby airport. This resolution of atmospheric data fails to recognize the microscale climatic variability associated with land use decisions across and within urban neighborhoods. This study uses heat index, a measure of the combined effects of temperature and humidity, to assess the variability of heat exposure from ten weather stations across four urban neighborhoods and two control locations (downtown and in a nearby nature center) in Knoxville, Tennessee, USA. Results suggest that trees may negate a portion of excess urban heat, but are also associated with greater humidity. As a result, the heat index of locations with more trees is significantly higher than downtown and areas with fewer trees. Trees may also reduce heat stress by shading individuals from incoming radiation, though this is not considered in this study. Greater amounts of impervious surfaces correspond with reduced evapotranspiration and greater runoff, in terms of overall mass balance, leading to a higher temperature, but lower relative humidity. Heat index and relative humidity were found to significantly vary between locations with different tree cover and neighborhood characteristics for the full study time period as well as for the top 10% of heat index days. This work demonstrates the need for high-resolution climate data and the use of additional measures beyond temperature to understand urban neighborhood exposure to extreme heat, and expresses the importance of considering vulnerability differences among residents when analyzing neighborhood-scale impacts. PMID:26761021

  1. Heat and Humidity in the City: Neighborhood Heat Index Variability in a Mid-Sized City in the Southeastern United States.

    PubMed

    Hass, Alisa L; Ellis, Kelsey N; Reyes Mason, Lisa; Hathaway, Jon M; Howe, David A

    2016-01-11

    Daily weather conditions for an entire city are usually represented by a single weather station, often located at a nearby airport. This resolution of atmospheric data fails to recognize the microscale climatic variability associated with land use decisions across and within urban neighborhoods. This study uses heat index, a measure of the combined effects of temperature and humidity, to assess the variability of heat exposure from ten weather stations across four urban neighborhoods and two control locations (downtown and in a nearby nature center) in Knoxville, Tennessee, USA. Results suggest that trees may negate a portion of excess urban heat, but are also associated with greater humidity. As a result, the heat index of locations with more trees is significantly higher than downtown and areas with fewer trees. Trees may also reduce heat stress by shading individuals from incoming radiation, though this is not considered in this study. Greater amounts of impervious surfaces correspond with reduced evapotranspiration and greater runoff, in terms of overall mass balance, leading to a higher temperature, but lower relative humidity. Heat index and relative humidity were found to significantly vary between locations with different tree cover and neighborhood characteristics for the full study time period as well as for the top 10% of heat index days. This work demonstrates the need for high-resolution climate data and the use of additional measures beyond temperature to understand urban neighborhood exposure to extreme heat, and expresses the importance of considering vulnerability differences among residents when analyzing neighborhood-scale impacts.

  2. A comparison of airborne evapotranspiration maps and sapflow measurements in oak and beech forest stands

    NASA Astrophysics Data System (ADS)

    Schlerf, M.; Mallick, K.; Hassler, S. K.; Blume, T.; Ronellenfitsch, F.; Gerhards, M.; Udelhoven, T.; Weiler, M.

    2017-12-01

    Accurate estimations of spatially explicit daily Evapotranspiration (ET) may help water managers quantifying the water requirements of agricultural crops or trees. Airborne remote sensing may provide suitable ET maps, but uncertainties need to be better understood. In this study we compared high spatial resolution remotely sensed ET maps for 7 July 2016 with sap flow measurements over 32 forest stands located in the Attert catchment, Luxembourg. Forest stands differed in terms of species (Quercus robur, Fagus sylvatica), geology (schist, marl, sandstone), and geomorphology (slope position, plain, valley). Within each plot, at 1-3 trees the sap flow velocity (cm per hour) was measured between 8 am and 8 pm in 10 min intervals and averaged into a single value per plot and converted into values of volume flux (litres per day). Remotely sensed ET maps were derived by integrating airborne thermal infrared (TIR) images with an analytical surface energy balance model, Surface Temperature Initiated Closure (STIC1.2, Mallick et al. 2016). Airborne TIR images were acquired under clear sky conditions at 9:12, 10:08, 13:56, 14:50, 15:54, and 18:41 local time using a hyperspectral-thermal instrument. Images were geometrically corrected, calibrated, mosaicked, and converted to surface radiometric temperature. Surface temperature maps in conjunction with meteorological measurements recorded in the forest plots (air temperature, global radiation, relative humidity) were used as input to STIC1.2, for simultaneously estimating ET, sensible heat flux as well as surface and aerodynamic conductances. Instantaneous maps of ET were converted into daily ET maps and compared with the sap flow measurements. Results reveal a significant correspondence between remote sensing and field measured ET. The differences in the magnitude of predicted versus observed ET was found to be associated the biophysical conductances, radiometric surface temperature, and ecohydrological characteristics of the underlying landscape. Forest plots reveal differences in ET depending on the underlying geology and the slope position. Airborne remote sensing offers new ways of estimating the diurnal course of plant transpiration over entire landscapes and is an important bridging technology before high resolution TIR sensors will come into space.

  3. Modeling Environmental Controls on Tree Water Use at Different Temporal scales

    NASA Astrophysics Data System (ADS)

    Guan, H.; Wang, H.; Simmons, C. T.

    2014-12-01

    Vegetation covers 70% of land surface, significantly influencing water and carbon exchange between land surface and the atmosphere. Vegetation transpiration (Et) contributes 80% of the global terrestrial evapotranspiration, making an adequate illustration of how important vegetation is to any hydrological or climatological applications. Transpiration can be estimated through upscaling from sap flow measurements on selected trees. Alternatively, transpiration (or tree water use for forests) can be correlated with environmental variables or estimated in land surface simulations in which a canopy conductance (gc) model is often used. Transpiration and canopy conductance are constrained by supply and demand control factors. Some previous studies estimated Et and gc considering the stresses from both the supply (soil water condition) and demand (e.g. temperature, vapor pressure deficit, solar radiation) factors, while some only considered the demand controls. In this study, we examined the performance of two types of models at daily and half-hourly scales for transpiration and canopy conductance modelling based on a native species in South Australia. The results show that the significance of soil water condition for Et and gc modelling varies with time scales. The model parameter values also vary across time scales. This result calls for attention in choosing models and parameter values for soil-plant-atmosphere continuum and land surface modeling.

  4. Soil temperatures under urban trees and asphalt

    Treesearch

    Howard G. Halverson; Gordon M. Heisler

    1981-01-01

    Summer temperatures under trees planted in holes cut through an asphalt cover in a parking lot and in soil beneath the surrounding asphalt were higher than soil temperatures under trees at a control site. Winter minimums were not different, but maximum summer temperature exceeded the control by 3ºC beneath the parking lot trees and up to 10ºC beneath...

  5. Climate-induced tree mortality: Earth system consequences

    USGS Publications Warehouse

    Adams, Henry D.; Macalady, Alison K.; Breshears, David D.; Allen, Craig D.; Stephenson, Nathan L.; Saleska, Scott; Huxman, Travis E.; McDowell, Nathan G.

    2010-01-01

    One of the greatest uncertainties in global environmental change is predicting changes in feedbacks between the biosphere and the Earth system. Terrestrial ecosystems and, in particular, forests exert strong controls on the global carbon cycle and influence regional hydrology and climatology directly through water and surface energy budgets [Bonan, 2008; Chapin et al., 2008].According to new research, tree mortality associated with elevated temperatures and drought has the potential to rapidly alter forest ecosystems, potentially affecting feedbacks to the Earth system [Allen et al., 2010]. Several lines of recent research demonstrate how tree mortality rates in forests may be sensitive to climate change—particularly warming and drying. This emerging consequence of global change has important effects on Earth system processes (Figure 1).

  6. Response of the Vegetation-Climate System to High Temperature (Invited)

    NASA Astrophysics Data System (ADS)

    Berry, J. A.

    2009-12-01

    High temperature extremes may lead to inhibition of photosynthesis and stomatal closure at the leaf scale. When these responses occur over regional scales, they can initiate a positive feedback loop in the coupled vegetation-climate system. The fraction of net radiation that is used by the land surface to evaporate water decreases leading to deeper, drier boundary layers, fewer clouds, increased solar radiation reaching the surface, and possibility reduced precipitation. These interactions within the vegetation-climate system may amplify natural (or greenhouse gas forced) variations in temperature and further stress the vegetation. Properly modeling of this system depends, among other things, on getting the plant responses to high temperature correct. I will review the current state of this problem and present some studies of rain forest trees to high temperature and drought conducted in the Biosphere 2 enclosure that illustrate how experiments in controlled systems can contribute to our understanding of complex systems to extreme events.

  7. Impact of Urban Growth on Surface Climate: A Case Study in Oran, Algeria

    NASA Technical Reports Server (NTRS)

    Bounoua, Lahouari; Safia, Abdelmounaine; Masek, Jeffrey; Peters-Lidars, Christaq; Imhoff, Marc L.

    2008-01-01

    We develop a land use map discriminating urban surfaces from other cover types over a semiarid region in North Africa and use it in a land surface model to assess the impact of urbanized land on surface energy, water and carbon balances. Unlike in temperate climates where urbanization creates a marked heat island effect, this effect is not strongly marked in semiarid regions. During summer, the urban class results in an additional warming of 1.45 C during daytime and 0.81 C at night compared to that simulated for needleleaf trees under similar climate conditions. Seasonal temperatures show urban areas warmer than their surrounding during summer and slightly cooler in winter. The hydrological cycle is practically "shut down" during summer and characterized by relatively large amount of runoff in winter. We estimate the annual amount of carbon uptake to 1.94 million metric tons with only 11.9% assimilated during the rainy season. However, if urbanization expands to reach 50% of the total area excluding forests, the annual total carbon uptake will decline by 35% and the July mean temperature would increase only 0.10 C, compared to current situation. In contrast, if urbanization expands to 50% of the total land excluding forests and croplands but all short vegetation is replaced by native broadleaf deciduous trees, the annual carbon uptake would increase 39% and the July mean temperature would decrease by 0.9 C, compared to current configuration. These results provide guidelines for urban planners and land use managers and indicate possibilities for mitigating the urban heat.

  8. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.

    PubMed

    Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A

    2014-04-01

    Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.

  9. Imprint of the Atlantic Multidecadal Oscillation on Tree-Ring Widths in Northeastern Asia since 1568

    PubMed Central

    Wang, Xiaochun; Brown, Peter M.; Zhang, Yanni; Song, Laiping

    2011-01-01

    We present a new tree-ring reconstruction of the Atlantic Multidecadal Oscillation (AMO) spanning 1568–2007 CE from northeast Asia. Comparison of the instrumental AMO index, an existing tree-ring based AMO reconstruction, and this new record show strongly similar annual to multidecadal patterns of variation over the last 440 years. Warm phases of the AMO are related to increases in growth of Scots pine trees and moisture availability in northeast China and central eastern Siberia. Multi-tape method (MTM) and cross-wavelet analyses indicate that robust multidecadal (∼64–128 years) variability is present throughout the new proxy record. Our results have important implications concerning the influence of North Atlantic sea surface temperatures on East Asian climate, and provide support for the possibility of an AMO signature on global multidecadal climate variability. PMID:21818380

  10. Surface quality and microstructure of low-vacuum sintered orthodontic bracket 17-4 PH stainless steel fabricated by MIM process

    NASA Astrophysics Data System (ADS)

    Suharno, Bambang; Suharno, Lingga Pradinda; Saputro, Hantoro Restucondro; Irawan, Bambang; Prasetyadi, Tjokro; Ferdian, Deni; Supriyadi, Sugeng

    2018-02-01

    Surface roughness and microstructure play important role on orthodontic bracket quality. Therefore, orthodontic brackets need to have smooth surface roughness to reduce the friction and bacterial adhesion. Microstructure of orthodontic brackets also determine the mechanical properties and corrosion resistance. There are two methods to produce orthodontic bracket, investment casting and metal injection molding. The purpose of this study is to observe the surface roughness and microstructure of orthodontic bracket which were made from two different fabrication methods. To produce orthodontic bracket with metal injection molding method, 17-4 PH stainless steel feedstock was injected to the orthodontic bracket mold using injection molding machine. After injection, the binder was eliminated with solvent and thermal debinding. Solvent debinding process was conducted with hexane at 50 °C on magnetic stirrer for 1.5 hours. Thermal debinding process was conducted at 510 °C with 0.5 °C/min heat rate and 120 min holding time. Hereafter, sintering process were performed with vacuum tube furnace at 1360 °C with heat rate 5 °C/min and 90 min holding time in low vacuum atmosphere. To produce orthodontic bracket with investment casting method, the wax was injected into the mold then the wax pattern was arranged into the tree form. The tree form was then dipped into ceramic slurry and allowed to harden, the ceramic slurry has a thickness in the region of 10 mm. The ceramic mold was then heated at a temperature of over than 1100°C to strengthen the ceramic mold and to remove the remaining wax. After that, the molten 17-4 PH stainless steel was poured into the ceramic mold at a temperature of over 1600°C. The natural cooling process was carried out at temperature of 25°C, after which the ceramic mold was broken away. Then, the orthodontic bracket was cut from the tree form. The results show that the orthodontic bracket which were made with investment casting fabrication method have low porosity, high density, and there is no indication of secondary phase on the microstructure. However, it has rough brackets surface. Whereas, the production of orthodontic brackets using metal injection molding method resulted in better surface roughness. But, it has relatively high porosity, presence of another phase on the microstructure, and low density.

  11. Evidence of multidecadal climate variability and the Atlantic Multidecadal Oscillation from a Gulf of Mexico sea-surface temperature-proxy record

    USGS Publications Warehouse

    Poore, R.Z.; DeLong, K.L.; Richey, J.N.; Quinn, T.M.

    2009-01-01

    A comparison of a Mg/Ca-based sea-surface temperature (SST)-anomaly record from the northern Gulf of Mexico, a calculated index of variability in observed North Atlantic SST known as the Atlantic Multidecadal Oscillation (AMO), and a tree-ring reconstruction of the AMO contain similar patterns of variation over the last 110 years. Thus, the multidecadal variability observed in the instrumental record is present in the tree-ring and Mg/Ca proxy data. Frequency analysis of the Gulf of Mexico SST record and the tree-ring AMO reconstruction from 1550 to 1990 found similar multidecadal-scale periodicities (???30-60 years). This multidecadal periodicity is about half the observed (60-80 years) variability identified in the AMO for the 20th century. The historical records of hurricane landfalls reveal increased landfalls in the Gulf Coast region during time intervals when the AMO index is positive (warmer SST), and decreased landfalls when the AMO index is negative (cooler SST). Thus, we conclude that alternating intervals of high and low hurricane landfall occurrences may continue on multidecadal timescales along the northern Gulf Coast. However, given the short length of the instrumental record, the actual frequency and stability of the AMO are uncertain, and additional AMO proxy records are needed to establish the character of multidecadal-scale SST variability in the North Atlantic. ?? 2009 US Government.

  12. Tree recovery from ice storm injury

    Treesearch

    Kevin T. Smith

    2015-01-01

    Ice storms are part of nature, particularly in northeastern North America. The combination of air and surface temperatures, precipitation, and wind that result in damaging layers of ice is very specific, occurring infrequently at any given location. Across the region however, damaging ice is formed in fragmented areas every year. Occasionally as in December 2013 and...

  13. The Impacts of Climate-Induced Drought on Biogeochemical Cycles

    NASA Astrophysics Data System (ADS)

    Peng, C.

    2014-12-01

    Terrestrial ecosystems and, in particular, forests exert strong controls on the global biogeochemical cycles and influence regional hydrology and climatology directly through water and surface energy budgets. Recent studies indicated that forest mortality caused by rising temperature and drought from around the world have unexpectedly increased in the past decade and they collectively illustrate the vulnerability of many forested ecosystems to rapid increases in tree mortality due to warmer temperatures and more severe drought. Persistent changes in tree mortality rates can alter forest structure, composition, and ecosystem services (such as albedo and carbon sequestration). Quantifying potential impacts of tree mortality on ecosystem processes requires research into mortality effects on carbon, energy, and water budgets at both site and regional levels. Despite recent progress, the uncertainty around mortality responses still limits our ability to predict the likelihood and anticipate the impacts of tree die-off. Studies are needed that explore tree death physiology for a wide variety of functional types, connect patterns of mortality with climate events, and quantify the impacts on carbon, energy, and water flux. In this presentation, I will highlight recent research progress, and identify key research needs and future challenges to predict the consequence and impacts of drought-induced large-scale forest mortality on biogeochemical cycles. I will focus on three main forest ecosystems (tropic rainforest in Amazon, temperate forest in Western USA, and boreal forest in Canada) as detailed case studies.

  14. Field performance of alternative landfill covers vegetated with cottonwood and eucalyptus trees.

    PubMed

    Abichou, Tarek; Musagasa, Jubily; Yuan, Lei; Chanton, Jeff; Tawfiq, Kamal; Rockwood, Donald; Licht, Louis

    2012-01-01

    A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid Waste management facility in Tallahassee, Florida. Additional unlined test sections were also constructed and monitored in order to compare soil water storage, soil temperature, and tree growth inside lysimeters and in unlined test sections. The unlined test sections were in direct contact with landfill gas. Surface runoff on the ET covers was a small proportion of the water balance (1% of precipitation) as compared to 13% in the conventional cover. Percolation in the ET covers averaged 17% and 24% of precipitation as compared to 33% in the conventional cover. On average, soil water storage was higher in the lined lysimeters (429 mm) compared to unlined test sections (408 mm). The average soil temperature in the lysimeters was lower than in the unlined test sections. The average tree height inside the lysimeters was not significantly lower (8.04 mfor eucalyptus and 7.11 mfor cottonwood) than outside (8.82 m for eucalyptus and 8.01 m for cottonwood). ET tree covers vegetated with cottonwood or eucalyptus are feasible for North Florida climate as an alternative to GCL covers.

  15. Informing tree-ring reconstructions with automated dendrometer data: the case of single-leaf pinyon (Pinus monophylla) from Great Basin National Park, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Biondi, F.

    2012-12-01

    One of the most pressing issues in modern tree-ring science is to reduce uncertainty of reconstructions while emphasizing that the composition and dynamics of modern ecosystems cannot be understood from the present alone. I present here the latest results from research on the environmental factors that control radial growth of single-leaf pinyon (Pinus monophylla) in the Great Basin of North America using dendrometer data collected at half-hour intervals during two full growing season, 2010 and 2011. Automated (solar-powered) sensors at the site consisted of 8 point dendrometers installed on 7 trees to measure stem size, together with environmental probes that recorded air temperature, soil temperature and soil moisture. Additional meteorological variables at hourly timesteps were available from the EPA-CASTNET station located within 100 m of the dendrometer site. Daily cycles of stem expansion and contraction were quantified using the approach of Deslauriers et al. 2011, and the amount of daily radial stem increment was regressed against environmental variables. Graphical and numerical results showed that tree growth is relatively insensitive to surface soil moisture during the growing season. This finding corroborates empirical dendroclimatic results that showed how tree-ring chronologies of single-leaf pinyon are mostly a proxy for the balance between winter-spring precipitation supply and growing season evapotranspiration demand, thereby making it an ideal species for drought reconstructions.

  16. Climate, Tree Growth, Forest Drought Stress, and Tree Mortality in Forests of Western North America: Long-Term Patterns and Recent Trends

    NASA Astrophysics Data System (ADS)

    Allen, C. D.; Williams, P.

    2012-12-01

    Ongoing climate changes are increasingly affecting the world's forests, particularly including high latitude and high elevation coniferous forests. Although forest growth has improved in some regions due to greater growing season length and warmth (perhaps along with increased atmospheric CO2 or N), large growth declines or increased mortality from droughts or hotter temperatures also are being observed. We present and interpret information on regional variation in climate-tree growth relationships and trends, and on patterns and trends of climate-related forest disturbances, from western North America. From 235 tree-ring chronologies in the Southwest US we show that tree-ring growth records from warmer southwestern sites are more sensitive to temperature than tree-ring growth records from cooler southwestern sites. Assessment of 59 tree-ring records from 11 species in the Cascade Mountains of the Pacific Northwest shows that trees growing in cool places respond positively to increased temperature and trees in warm places respond negatively, implying that trees historically not sensitive to temperature may become sensitive as mean temperatures warm. An analysis of 59 white spruce populations in Alaska supports the hypothesis that warming has caused tree growth to lose sensitivity to cold temperatures. Comparing ring widths to temperature during just the coldest 50% of years during the 20th century, tree growth was sensitive to cold temperatures, and this effect was strongest at the coldest sites; whereas during the warmest 50% of years, trees were not at all sensitive to cold temperatures, even at the cold sites. Drought and vapor pressure deficit are among the variables that emerge as being increasingly important to these Alaska boreal forests as mean temperatures rise. Most recently, from 346 tree-ring chronologies in the Southwest US we establish a tree-ring-based Forest Drought Stress Index (FDSI) for the three most widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii) in this region. FDSI responds sensitively and nonlinearly to growing season daily maximum temperatures which increase vapor pressure deficit, resulting in greater tree physiological stress and reduced tree growth. Drought conditions and warming temperatures in the Southwest since ca. 1996 have caused FDSI values in particular years since 2000 to start to exceed the most extreme values reconstructed from tree-rings for the past 1000 years for this region. FDSI demonstrates strong correlations with the spatial extent of major forest disturbances in the Southwest, including high-severity wildfire and bark beetle infestations, which over the past 20 years also have affected historically unprecedented levels. Similar trends of increasing extent and severity of forest disturbances are apparent across large portions of western North America. For the Southwest US, given relatively robust projections of substantial further increases in warmer temperatures and drought stress in coming decades, by ~2050 projected levels of FDSI and associated disturbances would reach extreme values, suggesting that current forest ecosystems likely would be forced to reorganize through wholesale tree mortality and the establishment of new dominant species.

  17. Edge-to-Stem Variability in Wet-Canopy Evaporation From an Urban Tree Row

    NASA Astrophysics Data System (ADS)

    Van Stan, John T.; Norman, Zachary; Meghoo, Adrian; Friesen, Jan; Hildebrandt, Anke; Côté, Jean-François; Underwood, S. Jeffrey; Maldonado, Gustavo

    2017-11-01

    Evaporation from wet-canopy (E_C) and stem (E_S) surfaces during rainfall represents a significant portion of municipal-to-global scale hydrologic cycles. For urban ecosystems, E_C and E_S dynamics play valuable roles in stormwater management. Despite this, canopy-interception loss studies typically ignore crown-scale variability in E_C and assume (with few indirect data) that E_S is generally {<}2% of total wet-canopy evaporation. We test these common assumptions for the first time with a spatially-distributed network of in-canopy meteorological monitoring and 45 surface temperature sensors in an urban Pinus elliottii tree row to estimate E_C and E_S under the assumption that crown surfaces behave as "wet bulbs". From December 2015 through July 2016, 33 saturated crown periods (195 h of 5-min observations) were isolated from storms for determination of 5-min evaporation rates ranging from negligible to 0.67 mm h^{-1}. Mean E_S (0.10 mm h^{-1}) was significantly lower (p < 0.01) than mean E_C (0.16 mm h^{-1}). But, E_S values often equalled E_C and, when scaled to trunk area using terrestrial lidar, accounted for 8-13% (inter-quartile range) of total wet-crown evaporation (E_S+E_C scaled to surface area). E_S contributions to total wet-crown evaporation maximized at 33%, showing a general underestimate (by 2-17 times) of this quantity in the literature. Moreover, results suggest wet-crown evaporation from urban tree rows can be adequately estimated by simply assuming saturated tree surfaces behave as wet bulbs, avoiding problematic assumptions associated with other physically-based methods.

  18. 30 CFR 250.517 - Tubing and wellhead equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... evaluated every 30 days and the results submitted to the District Manager. (c) When the tree is installed..., a surface tubing head, a surface tubing hanger, and a surface christmas tree. (d) Wellhead, tree... and one surface safety valve, installed above the master valve, in the vertical run of the tree. (e...

  19. Cluster analyses of 20th century growth patterns in high elevation Great Basin bristlecone pine in the Snake Mountain Range, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Tran, T. J.; Bruening, J. M.; Bunn, A. G.; Salzer, M. W.; Weiss, S. B.

    2015-12-01

    Great Basin bristlecone pine (Pinus longaeva) is a useful climate proxy because of the species' long lifespan (up to 5000 years) and the climatic sensitivity of its annually-resolved rings. Past studies have shown that growth of individual trees can be limited by temperature, soil moisture, or a combination of the two depending on biophysical setting at the scale of tens of meters. We extend recent research suggesting that trees vary in their growth response depending on their position on the landscape to analyze how growth patterns vary over time. We used hierarchical cluster analysis to examine the growth of 52 bristlecone pine trees near the treeline of Mount Washington, Nevada, USA. We classified growth of individual trees over the instrumental climate record into one of two possible scenarios: trees belonging to a temperature-sensitive cluster and trees belonging to a precipitation-sensitive cluster. The number of trees in the precipitation-sensitive cluster outnumbered the number of trees in the temperature-sensitive cluster, with trees in colder locations belonging to the temperature-sensitive cluster. When we separated the temporal range into two sections (1895-1949 and 1950-2002) spanning the length of the instrumental climate record, we found that most of the 52 trees remained loyal to their cluster membership (e.g., trees in the temperature-sensitive cluster in 1895-1949 were also in the temperature sensitive cluster in 1950-2002), though not without exception. Of those trees that do not remain consistent in cluster membership, the majority changed from temperature-sensitive to precipitation-sensitive as time progressed. This could signal a switch from temperature limitation to water limitation with warming climate. We speculate that topographic complexity in high mountain environments like Mount Washington might allow for climate refugia where growth response could remain constant over the Holocene.

  20. Oxygen and carbon stable isotopes in coast redwood tree rings respond to spring and summer climate signals

    NASA Astrophysics Data System (ADS)

    Johnstone, James A.; Roden, John S.; Dawson, Todd E.

    2013-12-01

    variability in the oxygen and carbon isotope composition of tree ring cellulose was investigated in coast redwood (Sequoia sempervirens) from three sites in coastal Northern California. Middle and late wood samples from annual tree rings were compared to regional climate indices and gridded ocean-atmosphere fields for the years 1952-2003. The strongest climate-isotope relationship (r = 0.72) was found with summer (June-September) daily maximum temperature and middle wood δ13, which also responds positively to coastal sea surface temperature and negatively to summer low cloud frequency. Late wood δ18O reflects a balance between 18O-enriched summer fog drip and depleted summer rainwater, while a combined analysis of late wood δ18O and δ13C revealed sensitivity to the sign of summer precipitation anomalies. Empirical orthogonal function analysis of regional summer climate indices and coast redwood stable isotopes identified multivariate isotopic responses to summer fog and drought that correspond to atmospheric circulation anomalies over the NE Pacific and NW U.S. The presence of regional climate signals in coast redwood stable isotope composition, consistent with known mechanistic processes and prior studies, offers the potential for high-resolution paleoclimate reconstructions of the California current system from this long-lived tree species.

  1. Model-based conifer crown surface reconstruction from multi-ocular high-resolution aerial imagery

    NASA Astrophysics Data System (ADS)

    Sheng, Yongwei

    2000-12-01

    Tree crown parameters such as width, height, shape and crown closure are desirable in forestry and ecological studies, but they are time-consuming and labor intensive to measure in the field. The stereoscopic capability of high-resolution aerial imagery provides a way to crown surface reconstruction. Existing photogrammetric algorithms designed to map terrain surfaces, however, cannot adequately extract crown surfaces, especially for steep conifer crowns. Considering crown surface reconstruction in a broader context of tree characterization from aerial images, we develop a rigorous perspective tree image formation model to bridge image-based tree extraction and crown surface reconstruction, and an integrated model-based approach to conifer crown surface reconstruction. Based on the fact that most conifer crowns are in a solid geometric form, conifer crowns are modeled as a generalized hemi-ellipsoid. Both the automatic and semi-automatic approaches are investigated to optimal tree model development from multi-ocular images. The semi-automatic 3D tree interpreter developed in this thesis is able to efficiently extract reliable tree parameters and tree models in complicated tree stands. This thesis starts with a sophisticated stereo matching algorithm, and incorporates tree models to guide stereo matching. The following critical problems are addressed in the model-based surface reconstruction process: (1) the problem of surface model composition from tree models, (2) the occlusion problem in disparity prediction from tree models, (3) the problem of integrating the predicted disparities into image matching, (4) the tree model edge effect reduction on the disparity map, (5) the occlusion problem in orthophoto production, and (6) the foreshortening problem in image matching, which is very serious for conifer crown surfaces. Solutions to the above problems are necessary for successful crown surface reconstruction. The model-based approach was applied to recover the canopy surface of a dense redwood stand using tri-ocular high-resolution images scanned from 1:2,400 aerial photographs. The results demonstrate the approach's ability to reconstruct complicated stands. The model-based approach proposed in this thesis is potentially applicable to other surfaces recovering problems with a priori knowledge about objects.

  2. Seasonal population dynamics of Homalodisca vitripennis (Hemiptera: Cicadellidae) in sweet orange trees maintained under continuous deficit irrigation.

    PubMed

    Krugner, Rodrigo; Groves, Russell L; Johnson, Marshall W; Flores, Arnel P; Hagler, James R; Morse, Joseph G

    2009-06-01

    A 2-yr study was conducted in a citrus orchard (Citrus sinensis L. Osbeck cultivar Valencia) to determine the influence of plant water stress on the population dynamics of glassy-winged sharpshooter, Homalodisca vitripennis (Germar). Experimental treatments included irrigation at 100% of the crop evapotranspiration rate (ET(c)) and continuous deficit-irrigation regimens at 80 and 60% ET(c). Microclimate and plant conditions monitored included temperature and humidity in the tree canopy, leaf surface temperature, water potential, and fruit quality and yield. Glassy-winged sharpshooter population densities and activity were monitored weekly by a combination of visual inspections, beat net sampling, and trapping. Glassy-winged sharpshooter populations were negatively affected by severe plant water stress; however, population densities were not linearly related to decreasing water availability in plants. Citrus trees irrigated at 60% ET(c) had significantly warmer leaves, lower xylem water potential, and consequently hosted fewer glassy-winged sharpshooter eggs, nymphs, and adults than trees irrigated at 80% ET(c). Citrus trees irrigated at 100% ET(c) hosted similar numbers of glassy-winged sharpshooter stages as trees irrigated at 60% ET(c) and a lower number of glassy-winged sharpshooter nymphs than the 80% ET(c) treatment, specifically during the nymphal density peak in mid-April to early July. Irrigation treatments did not affect populations of monitored natural enemies. Although the adult glassy-winged sharpshooter population was reduced, on average, by 50% in trees under severe water stress, the total number of fruit and number of fruit across several fruit grade categories were significantly lower in the 60% ET(c) than in the 80 and 100% ET(c) irrigation treatments.

  3. Climate change at upper treeline: How do trees on the edge react to increasing temperatures?

    NASA Astrophysics Data System (ADS)

    Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof

    2017-04-01

    Treeline ecotones are thought to be particularly sensitive to climate warming, and an alteration of their growth conditions may have important implications for the ecosystem services they supply in mountain regions. We use a novel approach to quantify effects of a changing climate on tree growth, using case studies in the European Alps. We compiled tree-ring data from almost 600 trees of four species at treeline in three climate regions of Switzerland. Temperature loggers installed along transects provided data for a precise interpolation of temperatures experienced by the sampled trees. To assess the influence of temperature on annual growth, we used linear mixed-effects models, allowing us to quantify effect sizes and to account for between-tree growth variability. After removing biological growth trends, we isolated temporal trends of ring-width indices. Furthermore, we fitted non-linear regression models to radial growth rates of individual years with temperature and tree age as predicting covariates for a fine-scale investigation of the temperature dependency of tree growth. For all species, climate-growth linear mixed-effects models indicated strong positive responses of ring-width indices to temperature in early summer and previous year's autumn, featuring considerable between-tree variability. All species showed positive ring-width index trends at treeline but different interactions with elevation: Larix decidua exhibited a declining ring-width index trend with decreasing elevation, whereas Picea abies, Pinus cembra and Pinus mugo showed increasing and/or stable trends. Not only reflected our findings the effects of ameliorated growth conditions, they might have also revealed suspected negative and positive feedbacks of climate change on growth, and increased the knowledge about the functional form and parameterization of the temperature dependency of tree growth.

  4. Monitoring Mountain Meteorology without Much Money (Invited)

    NASA Astrophysics Data System (ADS)

    Lundquist, J. D.

    2009-12-01

    Mountains are the water towers of the world, storing winter precipitation in the form of snow until summer, when it can be used for agriculture and cities. However, mountain weather is highly variable, and measurements are sparsely distributed. In order adequately sample snow and climate variables in complex terrain, we need as many measurements as possible. This means that instruments must be inexpensive and relatively simple to deploy. Here, we demonstrate how dime-sized temperature sensors developed for the refrigeration industry can be used to monitor air temperature (using evergreen trees as radiation shields) and snow cover duration (using the diurnal cycle in near-surface soil temperature). Together, these measurements can be used to recreate accumulated snow water equivalent over the prior year. We also demonstrate how buckets of water may be placed under networked acoustic snow depth sensors to provide an index of daily evaporation rates at SNOTEL stations. (a) Temperature sensor sealed for deployment in the soil. (b) Launching a temperature sensor into a tree. (c) Pulley system to keep sensor above the snow. (a) Photo of bucket underneath acoustic snow depth sensor. (b) Water depth in the bucket as calculated by the snow depth sensor and by a pressure sensor inside the bucket.

  5. Temperature histories from tree rings and corals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, E.R.

    1995-05-01

    Recent temperature trends in long tree-ring and coral proxy temperature histories are evaluated and compared in an effort to objectively determine how anomalous twentieth century temperature changes have been. These histories mostly reflect regional variations in summer warmth from the tree rings and annual warmth from the corals. In the Northern Hemisphere. the North American tree-ring temperature histories and those from the north Polar Urals, covering the past 1000 or more years, indicate that the twentieth century has been anomalously warm relative to the past. In contrast, the tree-ring history from northern Fennoscandia indicates that summer temperatures during the {open_quote}Medievalmore » Warm Period{close_quote} were probably warmer on average than those than during this century. In the Southern Hemisphere, the tree-ring temperature histories from South America show no indication of recent warming, which is in accordance with local instrumental records. In contrast, the tree-ring, records from Tasmania and New Zealand indicate that the twentieth century has been unusually warm particularly since 1960. The coral temperature histories from the Galapagos Islands and the Great Barrier Reef are in broad agreement with the tree-ring temperature histories in those sectors, with the former showing recent cooling and the latter showing recent warming that may be unprecedented. Overall, the regional temperature histories evaluated here broadly support the larger-scale evidence for anomalous twentieth century warming based on instrumental records. However, this warming cannot be confirmed as an unprecedented event in all regions. 38 refs., 3 figs., 2 tabs.« less

  6. Isolated ecosystems on supercooled scree slopes in subalpine environments - interaction between permafrost, soil and vegetation

    NASA Astrophysics Data System (ADS)

    Schwindt, Daniel; Kozák, Johanna-Luise; Kohlpaintner, Michael

    2017-04-01

    In the central European Alps, permafrost can be expected in altitudes above 2300 m a.s.l., where mean annual air temperatures are below -1°C. However, attributed to the thermally induced "chimney effect", isolated permafrost lenses can be found in scree slopes far below the timberline where mean annual air temperature is positive. Usually the supercooled subsurface appears as lenses at the foot of talus slopes, covered by a thick layer of organic material and a unique vegetation composition most obviously characterized by dwarf grown trees ("Hexenwäldli") and azonal plant species. The fact that mean annual air temperature is positive and therefore can be excluded as a driving factor makes these sites unique for studying interdependencies between a supercooled subsurface, plant adaptation and vegetation sociology as well as the soil development. Three study sites in the Swiss Alps, differing in altitude and substrate (granite, dolomite, limestone) were investigated. Studies covered the permafrost-affected central parts of the slope as well as the surrounding areas. For characterizing distribution and temporal variability of ground ice geophysical methods were applied (electrical resistivity- and seismic refraction tomography). Temperature data loggers were used for monitoring the thermal regime (air-, surface- and soil temperatures). Chemical parameters (pH, C/N ratio) and nutrient contents (N, P, Ca, Mg, Mn, K) were analyzed in different depth levels. Plant communities were analyzed with the Braun-Blanquet method. To characterize physiognomic adaptation of trees, transects have been determined parallel to slope, measuring tree height, diameter and age. Results show a strong spatial correlation between frozen ground, formation of a thick organic layer (Tangelhumus), azonal plant species distribution and pronounced dwarfing of trees. Surrounding areas with unfrozen subsurface show an - for the particular altitude - expected species and soil composition and normal forest growth. Ellenberg pointer values in central parts of the study sites showed a strong plant adaption to cold temperatures. However, plant sociological analysis did not indicate one clear azonal community, but two different permafrost-plant-communities, one adapted to acidic and the other to calcareous substrates. Dwarf grown trees (e.g. spruce, 63cm high, 122 years old) could be found in permafrost-affected areas of all study sites, while the same species developed normally in the surroundings. Main factor for the physiognomic adaptation seems to be the low temperature in the rooting zone and the correlated shorter vegetation period, as air temperatures and nutrient supplies between the permafrost affected area and its surroundings are comparable. Pronounced interdependencies between frozen ground distribution, vegetation cover and soil development could be verified for all sites. The supercooled subsurface causes reduced decomposition of organic material as well as dwarfing of trees. In return, Tangelhumus and dwarfed trees positively affect supercooling. Dry organic material thermally insulates the subsurface during summer and prevents/delays thawing, while the high thermal conductivity of the moist or frozen Tangelhumus enhances heat flow and supercooling in winter. In addition, dwarfed trees prevent the formation of a consistent insulating snow cover optimizing thermal fluxes between atmosphere and subsurface.

  7. Effects of different tree species on soil organic matter composition, decomposition rates and temperature sensitivities in boreal forest

    NASA Astrophysics Data System (ADS)

    Segura, Javier; Nilsson, Mats B.; Erhagen, Björn; Sparrman, Tobias; Ilstedt, Ulrik; Schleucher, Jürgen; Öquist, Mats

    2017-04-01

    High-latitude ecosystems store a large proportion of the global soil organic matter (SOM) and its mineralization constitutes a major carbon flux to the atmosphere. It has been suggested that different tree species can significantly influence organo-chemical composition of SOM, and rate and temperature sensitivity of SOM decomposition. In this study we used surface soil samples (top 5 cm) from a field experiment where five different tree species (Pinus silvestrys L, Picea abies (L.) H. Karst., Larix decidua Mill., Betula pendula Roth, and Pinus contorta Douglas) were planted on a grass meadow in a randomized block design (n=3) ca. 40 years ago. The samples were incubated at 4, 9, 14, and 19 °C at a soil water potential of -25 kPa (previously determined as optimal water content for decomposition). CO2 production rates were measured hourly for 13 days. CO2 production rates were consequently lowest in the control plots and increased in the order Meadow< Contorta < Betula < Larix < Pinus < Picea. The values ranged between 0.03-0.1, 0.06-0.154, 0.1-0.24 and 0.13-0.36 mg CO2 g-1 OM (dw) h-1 at 4, 9, 14 and 19°C respectively. The temperature response of CO2 production corresponded to Q10s of 2.22 (±0.11), 2.22(±0.15), 2.66 (±0.18), 2.09 (±0.33), 2.38 (±0.31) and 2.31 (±0.09) for meadow, contorta, betula, larix, pinus and picea respectively. Only betula resulted in significantly higher Q10s as compared to the control plots, picea, contorta and larix treatments. These differences in tree species effects on SOM decomposition and its temperature sensitivity will be further discussed in relation to the organo-chemical composition of SOM as determined by pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) and nuclear magnetic resonance spectroscopy (NMR) techniques. We conclude that the temperature response of SOM decomposition rates is likely coupled to tree species composition and may have important implications for soil C dynamics. This finding can have important implications for both the understanding of forest ecosystem carbon balances in high latitude ecosystems and also the selection of different tree species in forest management schemes.

  8. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario

    2016-01-01

    We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.

  9. Evidence that higher [CO2] increases tree growth sensitivity to temperature: a comparison of modern and paleo oaks

    Treesearch

    Steven L. Voelker; Michael C. Stambaugh; J. Renée Brooks; Frederick C. Meinzer; Barbara Lachenbruch; Richard P. Guyette

    2017-01-01

    To test tree growth-sensitivity to temperature under different ambient CO2 concentrations, we determined stem radial growth rates as they relate to variation in temperature during the last deglacial period, and compare these to modern tree growth rates as they relate to spatial variation in temperature across the modern species distributional...

  10. Predicting Individual Tree and Shrub Species Distributions with Empirically Derived Microclimate Surfaces in a Complex Mountain Ecosystem in Northern Idaho, USA

    NASA Astrophysics Data System (ADS)

    Holden, Z.; Cushman, S.; Evans, J.; Littell, J. S.

    2009-12-01

    The resolution of current climate interpolation models limits our ability to adequately account for temperature variability in complex mountainous terrain. We empirically derive 30 meter resolution models of June-October day and nighttime temperature and April nighttime Vapor Pressure Deficit (VPD) using hourly data from 53 Hobo dataloggers stratified by topographic setting in mixed conifer forests near Bonners Ferry, ID. 66%, of the variability in average June-October daytime temperature is explained by 3 variables (elevation, relative slope position and topographic roughness) derived from 30 meter digital elevation models. 69% of the variability in nighttime temperatures among stations is explained by elevation, relative slope position and topographic dissection (450 meter window). 54% of variability in April nighttime VPD is explained by elevation, soil wetness and the NDVIc derived from Landsat. We extract temperature and VPD predictions at 411 intensified Forest Inventory and Analysis plots (FIA). We use these variables with soil wetness and solar radiation indices derived from a 30 meter DEM to predict the presence and absence of 10 common forest tree species and 25 shrub species. Classification accuracies range from 87% for Pinus ponderosa , to > 97% for most other tree species. Shrub model accuracies are also high with greater than 90% accuracy for the majority of species. Species distribution models based on the physical variables that drive species occurrence, rather than their topographic surrogates, will eventually allow us to predict potential future distributions of these species with warming climate at fine spatial scales.

  11. Global change-type drought-induced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health

    PubMed Central

    Eamus, Derek; Boulain, Nicolas; Cleverly, James; Breshears, David D

    2013-01-01

    Abstract Drought-induced tree mortality is occurring across all forested continents and is expected to increase worldwide during the coming century. Regional-scale forest die-off influences terrestrial albedo, carbon and water budgets, and land-surface energy partitioning. Although increased temperatures during drought are widely identified as a critical contributor to exacerbated tree mortality associated with “global-change-type drought”, corresponding changes in vapor pressure deficit (D) have rarely been considered explicitly and have not been disaggregated from that of temperature per se. Here, we apply a detailed mechanistic soil–plant–atmosphere model to examine the impacts of drought, increased air temperature (+2°C or +5°C), and increased vapor pressure deficit (D; +1 kPa or +2.5 kPa), singly and in combination, on net primary productivity (NPP) and transpiration and forest responses, especially soil moisture content, leaf water potential, and stomatal conductance. We show that increased D exerts a larger detrimental effect on transpiration and NPP, than increased temperature alone, with or without the imposition of a 3-month drought. Combined with drought, the effect of increased D on NPP was substantially larger than that of drought plus increased temperature. Thus, the number of days when NPP was zero across the 2-year simulation was 13 or 14 days in the control and increased temperature scenarios, but increased to approximately 200 days when D was increased. Drought alone increased the number of days of zero NPP to 88, but drought plus increased temperature did not increase the number of days. In contrast, drought and increased D resulted in the number of days when NPP = 0 increasing to 235 (+1 kPa) or 304 days (+2.5 kPa). We conclude that correct identification of the causes of global change-type mortality events requires explicit consideration of the influence of D as well as its interaction with drought and temperature. This study disaggregates the influence of temperature and vapour pressure deficit on net primary productivity of an Australian woodland and their interactions with drought as potential causal agents in recent widespread forest mortality. PMID:24567834

  12. How To Assess The Future Tree-Cover Potential For Reforestation Planning In Semi-Arid Regions? An Attempt Using The Vegetation Model ORCHIDEE

    NASA Astrophysics Data System (ADS)

    Rajaud, A.; De Noblet-Ducoudré, N.

    2015-12-01

    More and more reforestation projects are undertaken at local to continental scales to fight desertification, to address development challenges, and to improve local living conditions in tropical semi-arid regions. These regions are very sensitive to climatic changes and the potential for maintaining tree-covers will be altered in the next decades. Therefore, reforestation planning needs predicting the future "climatic tree-cover potential": the optimum tree-fraction sustainable in future climatic states. Global circulation models projections provide possible future climatologies for the 21st century. These can be used at the global scale to force a land-surface model, which in turn simulates the vegetation development under these conditions. The tree cover leading to an optimum development may then be identified. We propose here to run a state-of-the-art model and to assess the span and the relevance of the answers that can be obtained for reforestation planning. The ORCHIDEE vegetation model is chosen here to allow a multi-criteria evaluation of the optimum cover, as it returns surface climate state variables as well as vegetation functioning and biomass products. It is forced with global climate data (WFDEI and CRU) for the 20th century and models projections (CMIP5 outputs) for the 21st century. At the grid-cell resolution of the forcing climate data, tree-covers ranging from 0 to 100% are successively prescribed. A set of indicators is then derived from the model outputs, meant for modulating reforestation strategies according to the regional priorities (e.g. maximize the biomass production or decrease the surface air temperature). The choice of indicators and the relevance of the final answers provided will be collectively assessed by the climate scientists and reforestation project management experts from the KINOME social enterprise (http://en.kinome.fr). Such feedback will point towards the model most urging needs for improvement.

  13. Variation in the Norwegian gyre and its links to the termohaline circulation (THC).

    NASA Astrophysics Data System (ADS)

    Gunnarson, B. E.; Linderholm, H. W.; Wilson, R.; Rydval, M.

    2017-12-01

    Summer temperature patterns in Scandinavia are partly governed by variations in the North Atlantic drift (being part of the Gulf Stream) causing northern Europe to be warmer than similar latitudes. Observation show that northwestern European climate is strongly link to sea surface temperature (SST) and the ocean circulation (the Norwegian gyre, NG) in the Norwegian Sea. On decadal- multidecadal time scales, there is also positive association with the sub-tropical gyre, but also a weaker (and negative) connection to the sub Polar gyre (SPG) which is linked to the thermohaline circulation (THC). The negative correlations occur only during the April-June and July-September (JAS) seasons, when the ocean mixed layer is shallow in the North Atlantic. A network of Maximum Latewood Density (MXD) tree-ring chronologies from 7 sites in Northern Scandinavia, 1 in central Scotland and 1 in Labrador was used to identifying SST influences on local to regional summer temperatures patterns during 1901-20XX. The sites represent tree growth strongly correlated with mean JAS temperatures (Fennoscandia r > 0.7, Scotland r > 0.6, Labrador r > 0.5). Both the Scotland and Labrador chronologies correlates only with SST from adjacent coastal areas. The Fennoscandian chronologies showed strong and temporally consistent correlations with SST across the NG (r > 0.5), but also positive correlations of the same magnitude across the sub-tropical gyre. In addition, a negative, but weaker, correlation was found over the SPG domain. Climate models (PMIP5) were not able to reproduce the correlation patterns evident in both observations and tree-ring data. The tripolar correlation pattern suggests that North Atlantic SST influences summer temperature variability in Northern Fennoscandia, illustrating the potential for using tree-rings to reconstruct the THC and the heat transport towards the North Atlantic region and atmosphere- ocean interaction back in time.

  14. Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood

    NASA Astrophysics Data System (ADS)

    Taleghani, Mohammad; Sailor, David; Ban-Weiss, George A.

    2016-02-01

    The urban heat island impacts the thermal comfort of pedestrians in cities. In this paper, the effects of four heat mitigation strategies on micrometeorology and the thermal comfort of pedestrians were simulated for a neighborhood in eastern Los Angeles County. The strategies investigated include solar reflective ‘cool roofs’, vegetative ‘green roofs’, solar reflective ‘cool pavements’, and increased street-level trees. A series of micrometeorological simulations for an extreme heat day were carried out assuming widespread adoption of each mitigation strategy. Comparing each simulation to the control simulation assuming current land cover for the neighborhood showed that additional street-trees and cool pavements reduced 1.5 m air temperature, while cool and green roofs mostly provided cooling at heights above pedestrian level. However, cool pavements increased reflected sunlight from the ground to pedestrians at a set of unshaded receptor locations. This reflected radiation intensified the mean radiant temperature and consequently increased physiological equivalent temperature (PET) by 2.2 °C during the day, reducing the thermal comfort of pedestrians. At another set of receptor locations that were on average 5 m from roadways and underneath preexisting tree cover, cool pavements caused significant reductions in surface air temperatures and small changes in mean radiant temperature during the day, leading to decreases in PET of 1.1 °C, and consequent improvements in thermal comfort. For improving thermal comfort of pedestrians during the afternoon in unshaded locations, adding street trees was found to be the most effective strategy. However, afternoon thermal comfort improvements in already shaded locations adjacent to streets were most significant for cool pavements. Green and cool roofs showed the lowest impact on the thermal comfort of pedestrians since they modify the energy balance at roof level, above the height of pedestrians.

  15. Tree-ring isotopes reveal drought sensitivity in trees killed by spruce beetle outbreaks in south-central Alaska.

    PubMed

    Csank, Adam Z; Miller, Amy E; Sherriff, Rosemary L; Berg, Edward E; Welker, Jeffrey M

    2016-10-01

    Increasing temperatures have resulted in reduced growth and increased tree mortality across large areas of western North American forests. We use tree-ring isotope chronologies (δ 13 C and δ 18 O) from live and dead trees from four locations in south-central Alaska, USA, to test whether white spruce trees killed by recent spruce beetle (Dendroctonus rufipennis Kirby) outbreaks showed evidence of drought stress prior to death. Trees that were killed were more sensitive to spring/summer temperature and/or precipitation than trees that survived. At two of our sites, we found greater correlations between the δ 13 C and δ 18 O chronologies and spring/summer temperatures in dead trees than in live trees, suggesting that trees that are more sensitive to temperature-induced drought stress are more likely to be killed. At one site, the difference between δ 13 C in live and dead trees was related to winter/spring precipitation, with dead trees showing stronger correlations between δ 13 C and precipitation, again suggesting increased water stress in dead trees. At all sites where δ 18 O was measured, δ 18 O chronologies showed the greatest difference in climate response between live and dead groups, with δ 18 O in live trees correlating more strongly with late winter precipitation than dead trees. Our results indicate that sites where trees are already sensitive to warm or dry early growing-season conditions experienced the most beetle-kill, which has important implications for forecasting future mortality events in Alaska. © 2016 by the Ecological Society of America.

  16. Recognizing Non-Stationary Climate Response in Tree Growth for Southern Coastal Alaska, USA

    NASA Astrophysics Data System (ADS)

    Wiles, G. C.; Jarvis, S. K.; D'Arrigo, R.; Vargo, L. J.; Appleton, S. N.

    2012-12-01

    Stationarity in growth response of trees to climate over time is assumed in dendroclimatic studies. Recent studies of Alaskan yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach) have identified warming-induced early loss of insulating snowpack and frost damage as a mechanism that can lead to decline in tree growth, which for this species is documented over the last century. A similar stress may be put on temperature-sensitive mountain hemlock (Tsuga mertensiana (Bong.) Carrière) trees at low elevations, which in some cases show a decline in tree growth with warming temperatures. One of the challenges of using tree-ring based SAT, SST, PDO and PNA-related reconstructions for southern coastal Alaska has been understanding the response of tree-ring chronologies to the warming temperatures over the past 50 years. Comparisons of tree growth with long meteorological records from Sitka Alaska that extend back to 1830 suggest many mountain hemlock sites at low elevations are showing decreasing ring-widths, at mid elevations most sites show a steady increasing growth tracking warming, and at treeline a release is documented. The recognition of this recent divergence or decoupling of tree-ring and temperature trends allows for divergence-free temperature reconstructions using trees from moderate elevations. These reconstructions now provide a better perspective for comparing recent warming to Medieval warming and a better understanding of forest dynamics as biomes shift in response to the transition from the Little Ice Age to contemporary warming. Reconstructed temperatures are consistent with well-established, entirely independent tree-ring dated ice advances of land-terminating glaciers along the Gulf of Alaska providing an additional check for stationarity in the reconstructed interval.

  17. Root-zone temperatures affect phenology of bud break, flower cluster development, shoot extension growth and gas exchange of 'Braeburn' (Malus domestica) apple trees.

    PubMed

    Greer, Dennis H; Wünsche, Jens N; Norling, Cara L; Wiggins, Harry N

    2006-01-01

    We investigated the effects of root-zone temperature on bud break, flowering, shoot growth and gas exchange of potted mature apple (Malus domestica (Borkh.)) trees with undisturbed roots. Soil respiration was also determined. Potted 'Braeburn' apple trees on M.9 rootstock were grown for 70 days in a constant day/night temperature regime (25/18 degrees C) and one of three constant root-zone temperatures (7, 15 and 25 degrees C). Both the proportion and timing of bud break were significantly enhanced as root-zone temperature increased. Rate of floral cluster opening was also markedly increased with increasing root-zone temperature. Shoot length increased but shoot girth growth declined as root-zone temperatures increased. Soil respiration and leaf photosynthesis generally increased as root-zone temperatures increased. Results indicate that apple trees growing in regions where root zone temperatures are < or = 15 degrees C have delayed bud break and up to 20% fewer clusters than apple trees exposed to root zone temperatures of > or = 15 degrees C. The effect of root-zone temperature on shoot performance may be mediated through the mobilization of root reserves, although the role of phytohormones cannot be discounted. Variation in leaf photosynthesis across the temperature treatments was inadequately explained by stomatal conductance. Given that root growth increases with increasing temperature, changes in sink activity induced by the root-zone temperature treatments provide a possible explanation for the non-stomatal effect on photosynthesis. Irrespective of underlying mechanisms, root-zone temperatures influence bud break and flowering in apple trees.

  18. Evidence that higher [CO2] increases tree growth sensitivity to temperature: a comparison of modern and paleo oaks

    EPA Science Inventory

    Aim: To test the growth-sensitivity to temperature under different ambient CO2 concentrations, we determined paleo tree growth rates as they relate to variation in temperature during the last deglacial period, and compare these to modern tree growth rates as they relate to spatia...

  19. A whole-tree chamber system for examining tree-level physiological responses of field-grown trees to environmental variation and climate change.

    PubMed

    Medhurst, Jane; Parsby, Jan; Linder, Sune; Wallin, Göran; Ceschia, Eric; Slaney, Michelle

    2006-09-01

    A whole-tree chamber (WTC) system was installed at Flakaliden in northern Sweden to examine the long-term physiological responses of field-grown 40-year-old Norway spruce trees [Picea abies (L.) Karst.] to climate change. The WTCs were designed as large cuvettes to allow the net tree-level CO(2) and water fluxes to be measured on a continuous basis. A total of 12 WTCs were used to impose combinations of atmospheric carbon dioxide concentration, [CO(2)], and air temperature treatments. The air inside the ambient and elevated [CO(2)] WTCs was maintained at 365 and 700 micromol mol(-1), respectively. The air temperature inside the ambient temperature WTCs tracked air temperature outside the WTCs. Elevated temperatures were altered on a monthly time-step and ranged between +2.8 and +5.6 degrees C above ambient temperature. The system allowed continuous, long-term measurement of whole-tree photosynthesis, night-time respiration and transpiration. The performance of the WTCs was assessed using winter and spring data sets. The ability of the WTC system to measure tree-level physiological responses is demonstrated. All WTCs displayed a high level of control over tracking of air temperatures. The set target of 365 micromol mol(-1) in the ambient [CO(2)] chambers was too low to be maintained during winter because of tree dormancy and the high natural increase in [CO(2)] over winter at high latitudes such as the Flakaliden site. Accurate control over [CO(2)] in the ambient [CO(2)] chambers was restored during the spring and the system maintained the elevated [CO(2)] target of 700 micromol mol(-1) for both measurement periods. Air water vapour deficit (VPD) was accurately tracked in ambient temperature WTCs. However, as water vapour pressure in all 12 WTCs was maintained at the level of non-chambered (reference) air, VPD of elevated temperature WTCs was increased.

  20. The Effect of Tree Spacing and Size in Urban Areas: Strategies for Mitigating High Temperature in Urban Heat Islands

    NASA Astrophysics Data System (ADS)

    Berry, R.; Shandas, V.; Makido, Y.

    2017-12-01

    Many cities are unintentionally designed to be heat sinks, which absorb the sun's short-wave radiation and reemit as long-wave radiation. Long time reorganization of this `urban heat island' (UHI) phenomena has led researchers and city planners into developing strategies for reducing ambient temperatures through urban design. Specifically, greening areas have proven to reduce the temperature in UHI's, including strategies such as green streets, green facades, and green roofs have been implemented. Among the scientific community there is promoted study of how myriad greening strategies can reduce temperature, relatively limited work has focused on the distribution, density, and quantity of tree campaigns. This paper examines how the spacing and size of trees reduce temperatures differently. A major focus of the paper is to understand how to lower the temperature through tree planting, and provide recommendations to cities that are attempting to solve their own urban heat island issues. Because different cities have different room for planting greenery, we examined which strategies are more efficient given an area constraint. Areas that have less available room might not be able to plant a high density of trees. We compared the different experimental groups varying in density and size of trees against the control to see the effect the trees had. Through calibration with local weather stations, we used a micrometeorology program (ENVI-Met) to model and simulate the different experimental models and how they affect the temperature. The results suggest that some urban designs can reduce ambient temperatures by over 7 0C, and the inclusion of large form trees have the greatest contribution, by reducing temperatures over 15 0C. The results suggest that using specific strategies that combine placement of specific tree configurations with alternative distribution of urban development patterns can help to solve the current challenges of UHI's, and thereby support management actions for addressing future impacts from climate change.

  1. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands.

    PubMed

    Helmisaari, Heljä-Sisko; Derome, John; Nöjd, Pekka; Kukkola, Mikko

    2007-10-01

    Variations in fine root biomass of trees and understory in 16 stands throughout Finland were examined and relationships to site and stand characteristics determined. Norway spruce fine root biomass varied between 184 and 370 g m(-2), and that of Scots pine ranged between 149 and 386 g m(-2). In northern Finland, understory roots and rhizomes (< 2 mm diameter) accounted for up to 50% of the stand total fine root biomass. Therefore, the fine root biomass of trees plus understory was larger in northern Finland in stands of both tree species, resulting in a negative relationship between fine root biomass and the temperature sum and a positive relationship between fine root biomass and the carbon:nitrogen ratio of the soil organic layer. The foliage:fine root ratio varied between 2.1 and 6.4 for Norway spruce and between 0.8 and 2.2 for Scots pine. The ratio decreased for both Norway spruce and Scots pine from south to north, as well as from fertile to more infertile site types. The foliage:fine root ratio of Norway spruce was related to basal area and stem surface area. The strong positive correlations of these three parameters with fine root nitrogen concentration implies that more fine roots are needed to maintain a certain amount of foliage when nutrient availability is low. No significant relationships were found between stand parameters and fine root biomass at the stand level, but the relationships considerably improved when both fine root biomass and stand parameters were calculated for the mean tree in the stand. When the northern and southern sites were analyzed separately, fine root biomass per tree of both species was significantly correlated with basal area and stem surface area per tree. Basal area, stem surface area and stand density can be estimated accurately and easily. Thus, our results may have value in predicting fine root biomass at the tree and stand level in boreal Norway spruce and Scots pine forests.

  2. Tree-ring formation as an indicator of forest capacity to adapt to the main threats of environmental changes in Lithuania.

    PubMed

    Augustaitis, Algirdas; Augustaitienė, Ingrida; Baugarten, Manuela; Bičenkienė, Steigvilė; Girgždienė, Raselė; Kulbokas, Gintaras; Linkevičius, Edgaras; Marozas, Vitas; Mikalajūnas, Marius; Mordas, Genrik; Mozgeris, Gintautas; Petrauskas, Edmundas; Pivoras, Ainis; Šidlauskas, Giedrius; Ulevičius, Vidmantas; Vitas, Adomas; Matyssek, Rainer

    2018-02-15

    Global changes occurring under different environmental conditions have changed stand competition, as well as nutrient and light availability, which has resulted in changes in productivity. Therefore, in the present study, the characteristics of tree-ring width formation of the prevailing Lithuanian tree species, Norway spruce, Scots pine and silver and downy birch, and key factors resulting in their differences during the last 36-year period were investigated at forest sites located on poor mineral oligotrophic and on nutrient-rich organic mesoeutrophic soils. The aim of the study was as follows: first, to separately detect the maximum possible seasonal effect of three groups of variables - meteorology, acidifying pollutants and surface ozone on the stem basal area increment (BAI) of the evaluated tree species; second, to assess the significance of each group of variables affecting the BAI of these tree species integrally with the remaining groups of variables. Norway spruce was found to be well adapted to recent environmental changes, which makes it one of the most favourable tree species for silviculture in the northeastern part of Europe. The rapid increases recorded in growth intensity since 1980 were attributed to the increase in air temperature, precipitation amount, nitrogen deposition during the vegetative stage and reductions in SO 2 concentrations and S deposition. Scots pine demonstrated the highest level of resilience and capacity to adapt to recent global changes because its reaction to both negative and favourable environmental factors was best expressed. Silver and downy birch tree reactions to the effects of air concentrations of acidifying compounds, their deposition and surface ozone concentrations were the least expressed; however, a significant decline in growth intensity indicated that these tree species experienced a reduced resistance to recent changes in environmental conditions in the mature and over-mature age groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Identifying Threshold Temperatures Associated with Bristlecone Pine Growth Signals in the Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.; Bunn, A. G.; Tran, T. J.; Bruening, J. M.; Salzer, M. W.; Hughes, M. K.

    2016-12-01

    The interpretation of ring-width patterns in high elevation Great Basin bristlecone pine is hampered by the presence of sharp ecophysiological gradients that can lead to mixed growth signals depending on topographic setting of individual trees. We have identified a temperature threshold near the upper forest border above which trees are limited more strongly by temperature, and below which trees tend to be moisture limited. We combined temperature loggers and GIS modeling at a scale of tens of meters to examine trees with different limiting factors. We found that the dual-signal patterns in radial growth can be partially explained by the topoclimate setting of individual trees, with trees in locations where growing season mean temperatures below about 7.4°C to 8°C were more strongly associated with temperature variability than with moisture availability. Using this threshold we show that it is possible to build both temperature and drought reconstructions over the common era from bristlecone pine near the alpine treeline. While our findings might allow for a better physiological understanding of bristlecone pine growth, they also raise questions about the interpretation of temperature reconstructions given the threshold nature of the growth response and the dynamic nature of the treeline ecotone over past millennia.

  4. Insects Extend the Consequences of a Warm, Dry Summer for Tree Growth in the Subsequent Summer near the Arctic Treeline in Alaska

    NASA Astrophysics Data System (ADS)

    Sullivan, P.; Sveinbjornsson, B.

    2008-12-01

    Treeline positions have important implications for surface energy budgets and carbon cycling in high latitude environments. Warming temperatures during the 20th century have been associated with both positive and negative growth trends in treeline white spruce. It has been suggested that negative growth trends may reflect the increasing importance of drought stress as a constraint on tree growth, although direct observations of water stress near the treeline are lacking. We set out to develop a more mechanistic understanding of environmental controls on gas exchange physiology and growth of white spruce near the Arctic treeline in Alaska. Our three-year study was carried out on a riverside terrace along the Agashashok River in Noatak National Preserve. The terrace is capped with a layer of sand/silt that grades from 10 cm depth at the upstream end to 45 cm depth at the downstream end. White spruce of similar size occur along the gradient at similar density, providing an opportunity to examine the role of parent material depth as a control on tree physiology and growth. Air temperatures during the 2006 growing season were near normal, there was no evidence of water stress and white spruce branch extension growth was near the long-term average. The 2007 growing season was exceptionally warm and dry. Stomatal closure was observed during mid-July throughout most of the diurnal cycle in trees growing on less than 30 cm of parent material. The warm, dry conditions and water-stress in the trees may have precipitated a major insect outbreak, which affected nearly all mature trees in the landscape. Branch extension growth in 2007 was reduced to 70 percent of that observed during the 2005 and 2006 growing seasons. Air temperatures during the 2008 growing season returned to near normal. There was no evidence of water stress, but the insect outbreak persisted and branch extension growth did not recover, remaining similar to that observed in 2007. Results of our study highlight the importance of extreme events in shaping the complexity of tree-insect-environment relations at the Arctic treeline and offer an important caution to studies that correlate tree growth with climate. Unfavorable climate conditions in one year may have consequences that persist beyond the return to favorable conditions.

  5. Short and Long-Term Soil Moisture Effects of Liana Removal in a Seasonally Moist Tropical Forest

    PubMed Central

    Reid, Joseph Pignatello; Schnitzer, Stefan A.; Powers, Jennifer S.

    2015-01-01

    Lianas (woody vines) are particularly abundant in tropical forests, and their abundance is increasing in the neotropics. Lianas can compete intensely with trees for above- and belowground resources, including water. As tropical forests experience longer and more intense dry seasons, competition for water is likely to intensify. However, we lack an understanding of how liana abundance affects soil moisture and hence competition with trees for water in tropical forests. To address this critical knowledge gap, we conducted a large-scale liana removal experiment in a seasonal tropical moist forest in central Panama. We monitored shallow and deep soil moisture over the course of three years to assess the effects of lianas in eight 0.64 ha removal plots and eight control plots. Liana removal caused short-term effects in surface soils. Surface soils (10 cm depth) in removal plots dried more slowly during dry periods and accumulated water more slowly after rainfall events. These effects disappeared within four months of the removal treatment. In deeper soils (40 cm depth), liana removal resulted in a multi-year trend towards 5–25% higher soil moisture during the dry seasons with the largest significant effects occurring in the dry season of the third year following treatment. Liana removal did not affect surface soil temperature. Multiple and mutually occurring mechanisms may be responsible for the effects of liana removal on soil moisture, including competition with trees, and altered microclimate, and soil structure. These results indicate that lianas influence hydrologic processes, which may affect tree community dynamics and forest carbon cycling. PMID:26545205

  6. [Tree-ring growth responses of Mongolian oak (Quercus mongolica) to climate change in southern northeast: a case study in Qianshan Mountains].

    PubMed

    Teng, Li; Xing-Yuan, He; Zhen-Ju, Chen

    2014-07-01

    Mongolian oak is one of the most important broad-leaved tree species in forests, Northeast China. Based on the methodology of dendrochronology, the variations of tree ring radial growth of Mongolian oak in Qianshan Mountains, south of Northeast China, were analyzed. Combined with the temperature and precipitation data from meteorological stations since 1951, the relationships between standardized tree ring width chronology and main climatic factors were analyzed. In this region, the precipitation between April and July of the current year had an significant relationship with the tree ring width of Mongolian oak, and was the main factor limiting the radial growth. The extreme maximum temperature of May was also a key factor influencing the tree ring width, which had a significant on the tree ring width of Mongolian oak. The precipitation in April had a significant and stable relationship with the growth of Mongolian oak since the 1950s. The 'divergence problem' was found in the study area, which the sensitivity of tree growth to summer temperature reduced since the 1980s. The tree growth response to temperature showed a seasonal change from summer to spring.

  7. [Difference in responses of major tree species growth to climate in the Miyaluo Mountains, western Sichuan, China].

    PubMed

    Guo, Ming-ming; Zhang, Yuan-dong; Wang, Xiao-chun; Liu, Shi-rong

    2015-08-01

    To explore the responses of different tree species growth to climate change in the semi-humid region of the eastern Tibetan Plateau, we investigated climate-growth relationships of Tsuga chinensis, Abies faxoniana, Picea purpurea at an altitude of 3000 m (low altitude) and A. faxoniana and Larix mastersiana at an altitude of 4000 m (high altitude) using tree ring-width chronologies (total of 182 cores) developed from Miyaluo, western Sichuan, China. Five residual chronologies were developed from the cross-dated ring width series using the program ARSTAN, and the relationships between monthly climate variables and tree-ring index were analyzed. Results showed that the chronologies of trees at low altitudes were negatively correlated with air temperature but positively with precipitation in April and May. This indicated that drought stress limited tree growth at low altitude, but different tree species showed significant variations. T. chinensis was most severely affected by drought stress, followed by A. faxoniana and P. purpurea. Trees at high altitude were mainly affected by growing season temperature. Tree-ring index of A. faxoniana was positively correlated with monthly minimum temperature in February and July of the current year and monthly maximum temperature in October of the previous year. Radial growth of L. mastersiana was positively correlated with monthly maximum temperature in May, and negatively with monthly mean temperature in February and monthly minimum temperature in March. In recent decadal years, the climate in northeast Tibetan Plateau had a warming and drying trend. If this trend continues, we could deduce that P. purpurea should grow faster than T. chinensis and A. faxoniana at low altitudes, while A. faxoniana would benefit more from global warming at high altitudes.

  8. Native and domestic browsers and grazers reduce fuels, fire temperatures, and acacia ant mortality in an African savanna.

    PubMed

    Kimuyu, Duncan M; Sensenig, Ryan L; Riginos, Corinna; Veblen, Kari E; Young, Truman P

    2014-06-01

    Despite the importance of fire and herbivory in structuring savanna systems, few replicated experiments have examined the interactive effects of herbivory and fire on plant dynamics. In addition, the effects of fire on associated ant-tree mutualisms have been largely unexplored. We carried out small controlled burns in each of 18 herbivore treatment plots of the Kenya Long-term Exclosure Experiment (KLEE), where experimentally excluding elephants has resulted in 42% greater tree densities. The KLEE design includes six different herbivore treatments that allowed us to examine how different combinations of megaherbivore wildlife, mesoherbivore wildlife, and cattle affect fire temperatures and subsequent loss of ant symbionts from Acacia trees. Before burning, we quantified herbaceous fuel loads and plant community composition. We tagged all trees, measured their height and basal diameter, and identified the resident ant species on each. We recorded weather conditions during the burns and used ceramic tiles painted with fire-sensitive paints to estimate fire temperatures at different heights and in different microsites (under vs. between trees). Across all treatments, fire temperatures were highest at 0-50 cm off the ground and hotter in the grass under trees than in the grassy areas between trees. Plots with more trees burned hotter than plots with fewer trees, perhaps because of greater fine woody debris. Plots grazed by wildlife and by cattle prior to burning had lower herbaceous fuel loads and experienced lower burn temperatures than ungrazed plots. Many trees lost their ant colonies during the burns. Ant survivorship differed by ant species and at the plot level was positively associated with previous herbivory (and lower fire temperatures). Across all treatments, ant colonies on taller trees were more likely to survive, but even some of the tallest trees lost their ant colonies. Our study marks a significant step in understanding the mechanisms that underlie the interactions between fire and herbivory in savanna ecosystems.

  9. Shelter and remotely sensed night temperatures in orange groves

    NASA Astrophysics Data System (ADS)

    Caselles, V.; Sobrino, J. A.

    1991-06-01

    In previous papers we have used a linear regression approach for determining nocturnal air temperature in orange groves from satellite thermal data. However, this procedure has a poor precision (≈ 2 °C) for applications such as frost forecasting. For this reason a theoretical method has been proposed, which is based on the following assumptions: (1) the air temperature ( T a) is the result of the convective heat exchange between ground and air, and between air and orange trees, and (2) the remotely-sensed temperature ( T) can be expressed as a function of ground ( T g) and orange tree ( T s) temperatures. So the relationship T = T a + ( a g - α) ( T g - Ts) has been derived, where a = (1 + h 2πR/h1L)-1 and α g = ( ɛ g/ɛ) [ P g + (1 - ɛ 0) G'P s]; h 1 is the convective heat transfer coefficient between ground and air, h 2 is the convective heat transfer coefficient between air and orange tree, R is the orange tree radius, L is the distance between two orange tree trunks, ɛ g and ɛ 0 are the emissivities of the ground and of the orange tree, ɛ is the effective emissivity, P g and P s are the proportions of ground and side of the orange tree observed by the sensor, and G' is the shape factor ground-side. Two experiments were carried out in order to validate this model, in which air temperature was measured by means of a mercury thermometer positioned at 1.5m above the ground and in the middle of two orange tree rows. The temperature of the orange tree and the ground was measured with a radiometer, and the temperature of the orange grove was obtained by means of a manual scanning system. Ground and orange tree emissivities were measured using the box method. We have analyzed the dependence of the T-T a relationship on weather conditions, field architecture and viewing angle, and we can conclude that if these parameters are known, the shelter temperature can be obtained from satellite thermal data with a precision of 0.8 °C.

  10. On the coupled use of eddy covariance, sap flow sensors and remote sensing information for Evapotranspiration estimates in a typical heterogeneous Mediterranean ecosystem.

    NASA Astrophysics Data System (ADS)

    Corona, R.; Montaldo, N.

    2017-12-01

    Mediterranean ecosystems are typically heterogeneous, with contrasting plant functional types (PFT, woody vegetation and grass) that compete for water use. Due to the complexity of these ecosystems there is still uncertainty on the estimate of the evapotranspiration (ET). Micrometerological measurements (e.g. eddy covariance method based, EC ) are widely used for ET estimate, but in heterogeneous systems one of the main assumption (surface homogeneity) is not preserved and the method may become less robust. In this sense, the coupled use of sap flow sensors for tree transpiration estimate, surface temperature sensors, remote sensing information for land surface characterization allow to estimate the ET components and the energy balances of the three main land surface components (woody vegetation, grass and bare soil), overtaking the EC method uncertainties. The experimental site of Orroli, in Sardinia (Italy), is a typical Mediterranean heterogeneous ecosystem, monitored from the University of Cagliari since 2003. With the intent to perform an intensive field campaign for the ET estimation, we verified the potentiality of coupling eddy covariance (EC) method, infrared sensors and thermal dissipation methods (i.e. sap flow technique) for tree transpiration estimate. As a first step 3 commercial sap flux sensors were installed in a wild olive clump where the skin temperature of one tree in the clump was monitored with an infrared transducer. Then, other 54 handmade sensors were installed in 14 clumps in the EC footprint. Measurements of diameter were recorded in all the clumps and the sapwood depth was derived from measurements in several trees. The field ET estimation from the 4 commercial sensors was obtained assuming 4 different relationship between the monitored sap flux and the diameter of the species in the footprint. Instead for the 54 handmade sensors a scaling procedure was applied based on the allometric relationships between sapwood area, diameter and canopy cover area within the EC footprint. Furthermore, the hydrologic relationships between soil moisture content and ET of woody vegetation has been computed from sap flux measurements. The ET components are well estimated, highlighting the strong water resistance of wild olive, which survive in drastic dry conditions, in contrast with grass species.

  11. Temperature and tree growth [editorial

    Treesearch

    Michael G. Ryan

    2010-01-01

    Tree growth helps US forests take up 12% of the fossil fuels emitted in the USA (Woodbury et al. 2007), so predicting tree growth for future climates matters. Predicting future climates themselves is uncertain, but climate scientists probably have the most confidence in predictions for temperature. Temperatures are projected to rise by 0.2 °C in the next two decades,...

  12. Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.

    PubMed

    Walker, Xanthe J; Mack, Michelle C; Johnstone, Jill F

    2015-08-01

    Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature-induced drought stress. However, variations in tree growth alone do not reveal the physiological mechanisms behind recent changes in tree growth. Examining stable carbon isotope composition of tree rings in addition to tree growth can provide a secondary line of evidence for physiological drought stress. In this study, we examined patterns of black spruce growth and carbon isotopic composition in tree rings in response to climate warming and drying in the boreal forest of interior Alaska. We examined trees at three nested scales: landscape, toposequence, and a subsample of trees within the toposequence. At each scale, we studied the potential effects of differences in microclimate and moisture availability by sampling on northern and southern aspects. We found that black spruce radial growth responded negatively to monthly metrics of temperature at all examined scales, and we examined ∆(13)C responses on a subsample of trees as representative of the wider region. The negative ∆(13)C responses to temperature reveal that black spruce trees are experiencing moisture stress on both northern and southern aspects. Contrary to our expectations, ∆(13)C from trees on the northern aspect exhibited the strongest drought signal. Our results highlight the prominence of drought stress in the boreal forest of interior Alaska. We conclude that if temperatures continue to warm, we can expect drought-induced productivity declines across large regions of the boreal forest, even for trees located in cool and moist landscape positions. © 2015 John Wiley & Sons Ltd.

  13. Comparison of hyporheic flow and water quality in open and tree-covered banks downstream of Xin'an River dam, China

    NASA Astrophysics Data System (ADS)

    Liu, D.

    2017-12-01

    Plants, especially trees, in the riparian zone may have a significant impact on the flow rate, temperature and chemical properties of groundwater. A field study was conducted in the downstream bank of the Xin'an River dam, Zhejiang, China. In the field, two areas of about 20 meters apart were chosen, of which one was a open place and the other was covered with many orange trees. Comparison of hyporheic flow and water quality in the open and tree-covered banks were made by monitoring the water level, water temperature, water chemistry (March, 2015) along the cross sections perpendicular to the river. The analyses indicated that water level around the trees was relatively low in the day and high in the evening, thus changed the direction and magnitude of the natural groundwater flow velocity, totally strengthened the hyporheic exchange between the groundwater and river. The trees also changed the temperature distribution of the natural river bank, and induced the wider infiltration range of the low-temperature water. The temperature around the trees was relatively low in the day, yet it was high in the evening. Dissolved oxygen (DO) and electricity conductivity (EC) around the trees were significantly increased, yet the pH was almost unaffected.

  14. Temperature characteristics of winter roost-sites for birds and mammals: tree cavities and anthropogenic alternatives

    NASA Astrophysics Data System (ADS)

    Grüebler, Martin U.; Widmer, Silv; Korner-Nievergelt, Fränzi; Naef-Daenzer, Beat

    2014-07-01

    The microclimate of potential roost-sites is likely to be a crucial determinant in the optimal roost-site selection of endotherms, in particular during the winter season of temperate zones. Available roost-sites for birds and mammals in European high trunk orchards are mainly tree cavities, wood stacks and artificial nest boxes. However, little is known about the microclimatic patterns inside cavities and thermal advantages of using these winter roost-sites. Here, we simultaneously investigate the thermal patterns of winter roost-sites in relation to winter ambient temperature and their insulation capacity. While tree cavities and wood stacks strongly buffered the daily cycle of temperature changes, nest boxes showed low buffering capacity. The buffering effect of tree cavities was stronger at extreme ambient temperatures compared to temperatures around zero. Heat sources inside roosts amplified Δ T (i.e., the difference between inside and outside temperatures), particularly in the closed roosts of nest boxes and tree cavities, and less in the open wood stacks with stronger circulation of air. Positive Δ T due to the installation of a heat source increased in cold ambient temperatures. These results suggest that orchard habitats in winter show a spatiotemporal mosaic of sites providing different thermal benefits varying over time and in relation to ambient temperatures. At cold temperatures tree cavities provide significantly higher thermal benefits than nest boxes or wood stacks. Thus, in winter ecology of hole-using endotherms, the availability of tree cavities may be an important characteristic of winter habitat quality.

  15. Widespread tree mortality with the ongoing California drought: the roll of water balance and temperature

    NASA Astrophysics Data System (ADS)

    Goulden, M.; Bales, R. C.

    2016-12-01

    The southern Sierra Nevada experienced extreme drought, heat and forest dieback from 2012-16, with 50% below average P, 3oC above average T, and tens of millions of trees dying. The drought and dieback were widespread at the Southern Sierra Critical Zone Observatory (SSCZO). The SSCZO provides a rich suite of meteorological, ecological and hydrologic datasets, including many that began around 2010 and include two wet years followed by the intensifying drought. The SSCZO observations span an altitude gradient; this gradient includes a xeric pine and oak forest at 1200 m, which is near the lower ecotone of closed canopy forest, and a mesic pine and fir forest at 2100 m. Findings include: 1) Tree death was greater at 1200-m, following the altitudinal pattern seen across central CA, with dieback focused in the lower parts of species and ecosystem type ranges. 2) Mortality was associated with a year over year depletion of subsurface moisture. The cumulative overdraft (P-ET) at 1200 m exceeded 100 cm; the cumulative P-ET at 2100 m was near zero. 3) Much of the accelerated moisture depletion at 1200-m was associated with warmer temperatures and a greater evaporative demand. The 1200 and 2100 m sites experienced similar annual precipitation, and the rate of ET at comparable temperatures was also similar. The lower site was 5oC warmer on average, which led to 40% greater ET, and a more rapid depletion of belowground moisture. 4) A similar pattern was observed in Landsat and MODIS imagery. Mortality was high below 1600 m and low above 2000m. Mortality decreased rapidly with elevation and cooler temperatures from 1600 to 2000 m. Mortality in the 1600 to 2000 m zone was well correlated with Land Surface Temperature, with greater mortality on warm, southern slopes and less mortality on cool, northern slopes. In combination these findings illustrate the interacting effect of drought and temperature in controlling the patterns of tree death accross the Southern Sierra Nevada.

  16. [Cold resistance of four evergreen broad-leaved tree species].

    PubMed

    Wang, Na; Wang, Kui Ling; Liu, Qing Hua; Liu, Qing Chao

    2016-10-01

    The leaves of four evergreen plants, i.e., Fatsia japonica, Nerium indicum, Mahonia bealei and Acer cinnamomifolium were used as the experimental materials. By measuring the changes of in vitro leaf in soluble sugar, soluble protein, free proline, POD activity, chlorophyll content and relative electrolytic conductivity under aritificial simulated low temperature, combining the measurements of SPAD, leaf surface features and anatomical changes in organizational structure in the process of natural wintering, the cold resistance of four evergreen tree species was evaluated comprehensively. The results showed that in the process of artificial low temperature stress, the chlorophyll content of the leaves of four evergreen species decreased, the content of soluble protein pea-ked at -20 ℃, and the soluble sugar, free proline, POD activity and relative electrolytic conductivity showed an overall upward trend. The semilethal temperatures of four species were -8.0, -13.4, -19.4 and -14.8 ℃, respectively. During the winter, the leaf SPAD of the four species changed markedly, reflecting that the change of relative chlorophyll content was related to the change of temperature. Meanwhile, the leaf thickness, cutin layer thickness, stockade tissue thickness and tightness of four species increased and the plasmolysis occurred thereafter. Also the content of starch grains and calcium oxalate cluster crystal increased. The typical stomatal pits and the intensive non-glandular trichome within the pits of N. indicum and the sclerenchyma of M. Bealei could improve the cold resistance of plants to some extent. In addition, the phenomena like the breakage of wax layer in leaf surface, the fracture of epidermal hair and the deformation of palisade tissue indicated that plants were damaged to a certain extent by low temperature.

  17. 30 CFR 250.617 - Tubing and wellhead equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-workover operations with the tree removed: (a) No tubing string shall be placed in service or continue to... the tree, you must: (1) Equip wells to monitor for casing pressure according to the following chart... surface casing head, a surface tubing head, a surface tubing hanger, and a surface christmas tree. (2...

  18. Surface water storage capacity of twenty tree species in Davis, California

    Treesearch

    Qingfu Xiao; E. Gregory McPherson

    2016-01-01

    Urban forestry is an important green infrastructure strategy because healthy trees can intercept rainfall, reducing stormwater runoff and pollutant loading. Surface saturation storage capacity, defined as the thin film of water that must wet tree surfaces before flow begins, is the most important variable influencing rainfall interception processes. Surface storage...

  19. Using the TIMS to estimate evapotranspiration from a forest

    NASA Technical Reports Server (NTRS)

    Teskey, Robert

    1991-01-01

    The main goals were: (1) to characterize the evapotranspiration (Et) of two forested watersheds using direct measurement techniques, and (2) to evaluate if remotely sensed surface temperatures could be used to estimate Et from the same watersheds. Two independent approaches for estimating the Et from watersheds were used. The first was derived using the Penman-Monteith Equation. This model requires the direct measurement of the microclimate of the site as well as biological measurements, i.e., stomatal conductance to water vapor and the leaf area of the stand. The primary limitation of this approach is that the measurement of stomatal conductance is time consuming, and in large trees, access to the foliage is difficult so the sample must be limited to the small number of trees. In the study, the sample was limited to the trees which could be measured from a single tower in each stand.

  20. Experimental investigation of biomimetic self-pumping and self-adaptive transpiration cooling.

    PubMed

    Jiang, Pei-Xue; Huang, Gan; Zhu, Yinhai; Xu, Ruina; Liao, Zhiyuan; Lu, Taojie

    2017-09-01

    Transpiration cooling is an effective way to protect high heat flux walls. However, the pumps for the transpiration cooling system make the system more complex and increase the load, which is a huge challenge for practical applications. A biomimetic self-pumping transpiration cooling system was developed inspired by the process of trees transpiration that has no pumps. An experimental investigation showed that the water coolant automatically flowed from the water tank to the hot surface with a height difference of 80 mm without any pumps. A self-adaptive transpiration cooling system was then developed based on this mechanism. The system effectively cooled the hot surface with the surface temperature kept to about 373 K when the heating flame temperature was 1639 K and the heat flux was about 0.42 MW m -2 . The cooling efficiency reached 94.5%. The coolant mass flow rate adaptively increased with increasing flame heat flux from 0.24 MW m -2 to 0.42 MW m -2 while the cooled surface temperature stayed around 373 K. Schlieren pictures showed a protective steam layer on the hot surface which blocked the flame heat flux to the hot surface. The protective steam layer thickness also increased with increasing heat flux.

  1. Temperature and Mechanisms of Methane Transport in Trees

    NASA Astrophysics Data System (ADS)

    Kutschera, E.; Khalil, A. K.; Rice, A. L.; Rosenstiel, T. N.; Butenhoff, C. L.

    2012-12-01

    The mechanisms of methane (CH4) transport through trees are still not well understood. Previous work has established that transport mechanisms likely differ from rice and emergent aquatic plants. Establishing the role of trees in overall plant CH4 emissions requires a thorough understanding of tree transport. Using stable isotope measurements of CH4 assists in elucidating these transport mechanisms. Although it has been shown that CH4 is transported through the stems of trees, emission from leaves by transpiration has not been ruled out. The effect of temperature on these mechanisms is important to the prediction of changes in CH4 emissions from the biosphere in altered global climates. The effect of temperature on methane (CH4) emitted from black cottonwood (Populus trichocarpa) trees has been measured. Trees were grown hydroponically under greenhouse conditions. After several months of growth, CH4 canopy flux was measured over three weeks. Temperatures were altered from 22oC the first week to 25oC the second week and to 18oC the final week. CH4 flux increased with temperature, where the difference in flux between the coolest and warmest week was statistically significant. A Q10 for CH4 flux from trees was calculated to be 2.7. Stable carbon isotope measurements of emitted CH4 were enriched at the warmest temperature compared to the coolest temperature, although all measurements were depleted with respect to the isotopic composition of root water CH4. This data not only gives insight into the temperature effects on CH4 flux from trees, but the mechanisms of CH4 flux themselves. This research was supported in part by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-08ER64515, and through NASA / Oregon Space Grant Consortium, grants NNG05GJ85H and NNX10AK68H.

  2. Seasonal Shift in Climatic Limiting Factors on Tree Transpiration: Evidence from Sap Flow Observations at Alpine Treelines in Southeast Tibet

    PubMed Central

    Liu, Xinsheng; Nie, Yuqin; Luo, Tianxiang; Yu, Jiehui; Shen, Wei; Zhang, Lin

    2016-01-01

    Alpine and northern treelines are primarily controlled by low temperatures. However, little is known about the impact of low soil temperature on tree transpiration at treelines. We aim to test the hypothesis that in cold-limited forests, the main limiting factors for tree transpiration switch from low soil temperature before summer solstice to atmospheric evaporative demand after summer solstice, which generally results in low transpiration in the early growing season. Sap flow, meteorological factors and predawn needle water potential were continuously monitored throughout one growing season across Smith fir (Abies georgei var. smithii) and juniper (Juniperus saltuaria) treelines in southeast Tibet. Sap flow started in early May and corresponded to a threshold mean air-temperature of 0°C. Across tree species, transpiration was mainly limited by low soil temperature prior to the summer solstice but by vapor pressure deficit and solar radiation post-summer solstice, which was further confirmed on a daily scale. As a result, tree transpiration for both tree species was significantly reduced in the pre-summer solstice period as compared to post-summer solstice, resulting in a lower predawn needle water potential for Smith fir trees in the early growing season. Our data supported the hypothesis, suggesting that tree transpiration mainly responds to soil temperature variations in the early growing season. The results are important for understanding the hydrological response of cold-limited forest ecosystems to climate change. PMID:27468289

  3. Warming and drought combine to increase pest insect fitness on urban trees

    PubMed Central

    Frank, Steven D.

    2017-01-01

    Urban habitats are characterized by impervious surfaces, which increase temperatures and reduce water availability to plants. The effects of these conditions on herbivorous insects are not well understood, but may provide insight into future conditions. Three primary hypotheses have been proposed to explain why multiple herbivorous arthropods are more abundant and damaging in cities, and support has been found for each. First, less complex vegetation may reduce biological control of pests. Second, plant stress can increase plant quality for pests. And third, urban warming can directly increase pest fitness and abundance. These hypotheses are not mutually exclusive, and the effects of temperature and plant stress are particularly related. Thus, we test the hypothesis that urban warming and drought stress combine to increase the fitness and abundance of the scale insect, Melanaspis tenebricosa, an urban tree pest that is more abundant in urban than rural areas of the southeastern U.S. We did this by manipulating drought stress across an existing mosaic of urban warming. We found support for the additive effect of temperature and drought stress such that female embryo production and body size increased with temperature and was greater on drought-stressed than watered trees. This study provides further evidence that drivers of pest insect outbreaks act in concert, rather than independently, and calls for more research that manipulates multiple abiotic factors related to urbanization and climate change to predict their effects on ecological interactions. As cities expand and the climate changes, warmer temperatures and drought conditions may become more widespread in the native range of this pest. These changes have direct physiological benefits for M. tenebricosa, and potentially other pests, that may increase their fitness and abundance in urban and natural forests. PMID:28278206

  4. Nutrient limitation in soils and trees of a treeline ecotone in Rolwaling Himal, Nepal

    NASA Astrophysics Data System (ADS)

    Drollinger, Simon; Müller, Michael; Schickhoff, Udo; Böhner, Jürgen; Scholten, Thomas

    2015-04-01

    At a global scale, tree growth and thus the position of natural alpine treelines is limited by low temperatures. At landscape and local scales, however, the treeline position depends on multiple interactions of influencing factors and mechanisms. The aim of our research is to understand local scale effects of soil properties and nutrient cycling on tree growth limitation, and their interactions with other abiotic and biotic factors, in a near-natural alpine treeline ecotone of Rolwaling Himal, Nepal. In total 48 plots (20 m x 20 m) were investigated. Three north-facing slopes were separated in four different altitudinal zones with the characteristic vegetation of tree species Rhododendron campanulatum, Abies spectabilis, Betula utilis, Sorbus microphylla and Acer spec. We collected 151 soil horizon samples (Ah, Ae, Bh, Bs), 146 litter layer samples (L), and 146 decomposition layer samples (Of) in 2013, as well as 251 leaves from standing biomass (SB) in 2013 and 2014. All samples were analysed for exchangeable cations or nutrient concentrations of C, N, P, K, Mg, Ca, Mn, Fe and Al. Soil moisture, soil and surface air temperatures were measured by 34 installed sensors. Precipitation and air temperatures were measured by three climate stations. The main pedogenic process is leaching of dissolved organic carbon, aluminium and iron from topsoil to subsoil. Soil types are classified as podzols with generally low nutrient concentrations. Soil acidity is extremely high and humus quality of mineral soils is poor. Our results indicate multilateral interactions and a great spatial variability of essential nutrients within the treeline ecotone. Both, soil nutrients and leave macronutrient concentrations of nitrogen (N), magnesium (Mg), potassium (K) decrease significantly with elevation in the treeline ecotone. Besides, phosphorus (P) foliar concentrations decrease significantly with elevation. Based on regression analyses, low soil temperatures and malnutrition most likely affect tree growth in high altitudes. Thus, we assume a high influence of soil properties and nutrient supply on the position of alpine treeline at a local scale. In addition, a manganese (Mn) excess in foliage of woody species was determined above treeline. With the help of multivariate statistical approaches, potential determining factors of treeline position could be quantified.

  5. Physiological stress and ethanol accumulation in tree stems and woody tissues at sublethal temperatures from fire

    Treesearch

    Rick G. Kelsey; Douglas J. Westlind

    2017-01-01

    The lethal temperature limit is 60 degrees Celsius (°C) for plant tissues, including trees, with lower temperatures causing heat stress. As fire injury increases on tree stems, there is an accompanying rise in tissue ethanol concentrations, physiologically linked to impaired mitochondrial oxidative phosphorylation energy production. We theorize that sublethal tissue...

  6. Surface climate responses to explosive volcanic eruptions seen in long European temperature records and mid-to-high latitude tree-ring density around the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Jones, P. D.; Moberg, A.; Osborn, T. J.; Briffa, K. R.

    Explosive volcanic eruptions are known to have an impact on surface temperatures in the two to three years after the eruption, but our ability to determine the impact is impeded by the paucity of eruptions (3-5 large events each century). We examine the response to large eruptions in instrumental temperature records for the whole Northern Hemisphere (NH) and longer European records using superposed epoch analysis. Despite the limited number of eruptions we separate the volcanoes into two groups: tropical and mid-to-high northern latitude (>40°N). The clearest response is after tropical eruptions, where the NH land temperature average cools significantly in the summer months up to three years after the eruptions, although the timing of the response differs markedly from eruption to eruption. Extending the analysis to three European regions (Fennoscandia, Central England and Central Europe) with longer temperature records shows weakly significant summer cooling after tropical eruptions over Fennoscandia, but no discernible impacts in the other two regions. The Fennoscandian series also indicates slight warming in the first, second and fourth winters (but not the third) following the eruptions, but the significance level is not reached. The lack of statistical significance (in the regional series for both summer and winter) is principally due to the greater variability of the regional series compared to the NH land temperature average, with the small number of eruptions being a contributory factor. After higher latitude eruptions significant cooling is restricted to the late summer in the NH during the eruption year, with little of significance in the longer European regional series. We also assess longer records of tree-ring density from the mid-to-high latitude regions of the NH. This analysis further highlights the dearth of major eruptions (about 20 in the last 600 years) and the differences in the spatial patterns of cooling after the eruptions. The response in the NH average of the exactlydated tree-ring density series, however, is of such a unique character, that extremely anomalous negative values can be used to determine when major eruptions occurred in the past, even though the location of the eruption remains unknown for some dates.

  7. Comparison of the driving forces of spring phenology among savanna landscapes by including combined spatial and temporal heterogeneity.

    PubMed

    Zhu, Likai; Southworth, Jane; Meng, Jijun

    2015-10-01

    Understanding spatial and temporal dynamics of land surface phenology (LSP) and its driving forces are critical for providing information relevant to short- and long-term decision making, particularly as it relates to climate response planning. With the third generation Global Inventory Monitoring and Modeling System (GIMMS3g) Normalized Difference Vegetation Index (NDVI) data and environmental data from multiple sources, we investigated the spatio-temporal changes in the start of the growing season (SOS) in southern African savannas from 1982 through 2010 and determined its linkage to environmental factors using spatial panel data models. Overall, the SOS occurs earlier in the north compared to the south. This relates in part to the differences in ecosystems, with northern areas representing high rainfall and dense tree cover (mainly tree savannas), whereas the south has lower rainfall and sparse tree cover (mainly bush and grass savannas). From 1982 to 2010, an advanced trend was observed predominantly in the tree savanna areas of the north, whereas a delayed trend was chiefly found in the floodplain of the north and bush/grass savannas of the south. Different environmental drivers were detected within tree- and grass-dominated savannas, with a critical division being represented by the 800 mm isohyet. Our results supported the importance of water as a driver in this water-limited system, specifically preseason soil moisture, in determining the SOS in these water-limited, grass-dominated savannas. In addition, the research pointed to other, often overlooked, effects of preseason maximum and minimum temperatures on the SOS across the entire region. Higher preseason maximum temperatures led to an advance of the SOS, whereas the opposite effects of preseason minimum temperature were observed. With the rapid increase in global change research, this work will prove helpful for managing savanna landscapes and key to predicting how projected climate changes will affect regional vegetation phenology and productivity.

  8. Establishment of orchards with black polyethylene film mulching: effect on nematode and fungal pathogens, water conservation, and tree growth.

    PubMed

    Duncan, R A; Stapleton, J J; McKenry, M V

    1992-12-01

    Placement of a 3-m-wide, black, polyethylene film mulch down rows of peach (Prunus persica 'Red Haven' on 'Lovell' rootstock) and almond (Prunus dulcis 'Nonpareil' on 'Lovell') trees in the San Joaquin Valley of California resulted in irrigation water conservation of 75%, higher soil temperature in the surface 30 cm, a tendency toward greater root mass, elimination of weeds, and a greater abundance of Meloidogyne incognita second-stage juveniles in soil but reduced root galling when compared to the nonmulched control. Population levels of Pratylenchus hexincisus, a nematode found within tree roots, were reduced by mulching, as were those of Tylenchulus semipenetrans, which survived on old grape roots remaining from a previously planted vineyard, and Paratrichodorus minor, which probably fed on roots of various weed species growing in the nonmulched soil. Populations of Pythium ultimum were not significantly changed, probably also due to the biological refuge of the old grape roots and moderate soil heating level. Trunk diameters of peach trees were increased by mulching, but those of almond trees were reduced by the treatment. Leaf petiole analysis indicated that concentrations of mineral nutrients were inconsistent, except for a significant increase in Ca in both tree species.

  9. Reproductive ecology and stand structure of Joshua tree forests across climate gradients of the Mojave Desert.

    PubMed

    St Clair, Samuel B; Hoines, Joshua

    2018-01-01

    Climate change is restructuring plant populations and can result in range shifts depending on responses at various life stages of plants. In 2013, a widespread and episodic flowering event provided an opportunity to characterize how Joshua tree's reproductive success and population structure vary in response to the climate variability across its range. We examined the reproductive success and stand structure of 10 Joshua tree populations distributed across the Mojave Desert. Joshua tree density varied by more than an order of magnitude across sites. At 8 of the 10 sites, nearly 80% of the Joshua trees were in bloom, and at the other two 40% were in bloom. The range of seed production and fruit set across the study populations varied by more than an order of magnitude. Fruit production occurred at all of our study sites suggesting that yucca moth pollinators were present at our sites. Increasing temperature had strong positive correlations with the number of trees in bloom (R2 = 0.42), inflorescences per tree (R2 = 0.37), and fruit mass (R2 = 0.77) and seed size (R2 = 0.89. In contrast, temperature was negatively correlated with Joshua tree stand density (R2 = -0.80). Positive correlations between temperature and greater flower and seed production suggest that warming may positively affect Joshua Tree reproduction while negative relationships between temperature and stand density are suggestive of potential constraints of warmer temperatures on establishment success.

  10. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees.

    PubMed

    Begum, Shahanara; Nakaba, Satoshi; Yamagishi, Yusuke; Oribe, Yuichiro; Funada, Ryo

    2013-01-01

    The timing of cambial reactivation plays an important role in determination of the amount and quality of wood and the environmental adaptivity of trees. Environmental factors, such as temperature, influence the growth and development of trees. Temperatures from late winter to early spring affect the physiological processes that are involved in the initiation of cambial cell division and xylem differentiation in trees. Cumulative elevated temperatures from late winter to early spring result in earlier initiation of cambial reactivation and xylem differentiation in tree stems and an extended growth period. However, earlier cambial reactivation increases the risk for frost damage because the cold tolerance of cambium decreases after cambial reactivation. The present review focuses on temperature regulation on the timing of cambial reactivation and xylem differentiation in trees, and also highlights recent advances in our understanding of seasonal changes in the cold stability of microtubules in trees. The review also summarizes the present understanding of the relationships between the timing of cambial reactivation, the start of xylem differentiation and changes in levels of storage materials in trees, as well as an attempt to identify the source of energy for cell division and differentiation. A better understanding of the mechanisms that regulate wood formation in trees and the influence of environmental conditions on such mechanisms should help in efforts to improve and enhance the exploitation of wood for commercial applications and to prepare for climatic change. Copyright © Physiologia Plantarum 2012.

  11. Global climate change will increase the abundance of symbiotic nitrogen-fixing trees in much of North America.

    PubMed

    Liao, Wenying; Menge, Duncan N L; Lichstein, Jeremy W; Ángeles-Pérez, Gregorio

    2017-11-01

    Symbiotic nitrogen (N)-fixing trees can drive N and carbon cycling and thus are critical components of future climate projections. Despite detailed understanding of how climate influences N-fixation enzyme activity and physiology, comparatively little is known about how climate influences N-fixing tree abundance. Here, we used forest inventory data from the USA and Mexico (>125,000 plots) along with climate data to address two questions: (1) How does the abundance distribution of N-fixing trees (rhizobial, actinorhizal, and both types together) vary with mean annual temperature (MAT) and precipitation (MAP)? (2) How will changing climate shift the abundance distribution of N-fixing trees? We found that rhizobial N-fixing trees were nearly absent below 15°C MAT, but above 15°C MAT, they increased in abundance as temperature rose. We found no evidence for a hump-shaped response to temperature throughout the range of our data. Rhizobial trees were more abundant in dry than in wet ecosystems. By contrast, actinorhizal trees peaked in abundance at 5-10°C MAT and were least abundant in areas with intermediate precipitation. Next, we used a climate-envelope approach to project how N-fixing tree relative abundance might change in the future. The climate-envelope projection showed that rhizobial N-fixing trees will likely become more abundant in many areas by 2080, particularly in the southern USA and western Mexico, due primarily to rising temperatures. Projections for actinorhizal N-fixing trees were more nuanced due to their nonmonotonic dependence on temperature and precipitation. Overall, the dominant trend is that warming will increase N-fixing tree abundance in much of the USA and Mexico, with large increases up to 40° North latitude. The quantitative link we provide between climate and N-fixing tree abundance can help improve the representation of symbiotic N fixation in Earth System Models. © 2017 John Wiley & Sons Ltd.

  12. Urbanization Effects on the Vertical Distribution of Soil Microbial Communities and Soil C Storage across Edge-to-Interior Urban Forest Gradients

    NASA Astrophysics Data System (ADS)

    Rosier, C. L.; Van Stan, J. T., II; Trammell, T. L.

    2017-12-01

    Urbanization alters environmental conditions such as temperature, moisture, carbon (C) and nitrogen (N) deposition affecting critical soil processes (e.g., C storage). Urban soils experience elevated N deposition (e.g., transportation, industry) and decreased soil moisture via urban heat island that can subsequently alter soil microbial community structure and activity. However, there is a critical gap in understanding how increased temperatures and pollutant deposition influences soil microbial community structure and soil C/N cycling in urban forests. Furthermore, canopy structural differences between individual tree species is a potentially important mechanism facilitating the deposition of pollutants to the soil. The overarching goal of this study is to investigate the influence of urbanization and tree species structural differences on the bacterial and fungal community and C and N content of soils experiencing a gradient of urbanization pressures (i.e., forest edge to interior; 150-m). Soil cores (1-m depth) were collected near the stem (< 0.5 meter) of two tree species with contrasting canopy and bark structure (Fagus grandifolia, vs. Liriodendron tulipifera), and evaluated for soil microbial structure via metagenomic analysis and soil C/N content. We hypothesize that soil moisture constraints coupled with increases in recalcitrant C will decrease gram negative bacteria (i.e., dependent on labile C) while increasing saprophytic fungal community abundance (i.e., specialist consuming recalcitrant C) within both surface and subsurface soils experiencing the greatest urban pressure (i.e., forest edge). We further expect trees located on the edge of forest fragments will maintain greater surface soil (< 20 cm) C concentrations due to decreased soil moisture constraining microbial activity (e.g., slower decay), and increased capture of recalcitrant C stocks from industrial/vehicle emission sources (e.g., black C). Our initial results support our hypotheses that urbanization alters soil microbial community composition via reduced soil moisture and carbon storage potential via deposition gradients. Further analyses will answer important questions regarding how individual tree species alters urban soil C storage, N retention, and microbial dynamics.

  13. Response of Tropical Forests to Intense Climate Variability and Rainfall Anomaly over the Last Decade

    NASA Astrophysics Data System (ADS)

    Saatchi, S.; Asefi, S.

    2012-04-01

    During the last decade, strong precipitation anomalies resulted from increased sea surface temperature in the tropical Atlantic, have caused extensive drying trends in rainforests of western Amazonia, exerting water stress, tree mortality, biomass loss, and large-scale fire disturbance. In contrast, there have been no reports on large-scale disturbance in rainforests of west and central Africa, though being exposed to similar intensity of climate variability. Using data from Tropical Rainfall Mapping Mission (TRMM) (1999-2010), and time series of rainfall observations from meteorological stations (1971-2000), we show that both Amazonian and African rainforest experienced strong precipitation anomalies from 2005-2010. We monitored the response of forest to the climate variability by analyzing the canopy water content observed by SeaWinds Ku-band Scatterometer (QSCAT) (1999-2009) and found that more than 70 million ha of forests in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy backscatter that persisted until the next major drought in 2010. This decline in backscatter has been attributed to loss of canopy water content and large-scale tree mortality corroborated by ground and airborne observations. However, no strong impacts was observed on tropical forests of Africa, suggesting that the African rainforest may have more resilience to droughts. We tested this hypothesis by examining the seasonal rainfall patterns, maximum water deficit, and the surface temperature variations. Results show that there is a complex pattern of low annual rainfall, moderate seasonality, and lower surface temperature in Central Africa compared to Amazonia, indicating potentially a lower evapotranspiration circumventing strong water deficits

  14. Response of Tropical Forests to Intense Climate Variability and Rainfall Anomaly of Last Decade

    NASA Astrophysics Data System (ADS)

    Saatchi, S. S.; Asefi Najafabady, S.

    2011-12-01

    During the last decade, strong precipitation anomalies resulted from increased sea surface temperature in the tropical Atlantic, have caused extensive drying trends in rainforests of western Amazonia, exerting water stress, tree mortality, biomass loss, and large-scale fire disturbance. In contrast, there have been no reports on large-scale disturbance in rainforests of west and central Africa, though being exposed to similar intensity of climate variability. Using data from Tropical Rainfall Mapping Mission (TRMM) (1999-2010), and time series of rainfall observations from meteorological stations (1971-2000), we show that both Amazonian and African rainforest experienced strong precipitation anomalies from 2005-2010. We monitored the response of forest to the climate variability by analyzing the canopy water content observed by SeaWinds Ku-band Scatterometer (QSCAT) (1999-2009) and found that more than 70 million ha of forests in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy backscatter that persisted until the next major drought in 2010. This decline in backscatter has been attributed to loss of canopy water content and large-scale tree mortality corroborated by ground and airborne observations. However, no strong impacts was observed on tropical forests of Africa, suggesting that the African rainforest may have more resilience to droughts. We tested this hypothesis by examining the seasonal rainfall patterns, maximum water deficit, and the surface temperature variations. Results show that there is a complex pattern of low annual rainfall, moderate seasonality, and lower surface temperature in Central Africa compared to Amazonia, indicating potentially a lower evapotranspiration circumventing strong water deficits.

  15. Predicting internal white oak (Quercus alba) log defect features using surface defect indicator measurements

    Treesearch

    Ralph E. Thomas

    2012-01-01

    As hardwood trees grow and develop, surface defects such as limb stubs and wounds are overgrown and encapsulated into the tree. Evidence of these defects can remain on the tree's surface for decades and in many instances for the life of the tree. The location and severity of internal defects dictate the quality and value of products that can be obtained from logs...

  16. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale.

    PubMed

    Carnicer, Jofre; Barbeta, Adrià; Sperlich, Dominik; Coll, Marta; Peñuelas, Josep

    2013-01-01

    Recent large-scale studies of tree growth in the Iberian Peninsula reported contrasting positive and negative effects of temperature in Mediterranean angiosperms and conifers. Here we review the different hypotheses that may explain these trends and propose that the observed contrasting responses of tree growth to temperature in this region could be associated with a continuum of trait differences between angiosperms and conifers. Angiosperm and conifer trees differ in the effects of phenology in their productivity, in their growth allometry, and in their sensitivity to competition. Moreover, angiosperms and conifers significantly differ in hydraulic safety margins, sensitivity of stomatal conductance to vapor-pressure deficit (VPD), xylem recovery capacity or the rate of carbon transfer. These differences could be explained by key features of the xylem such as non-structural carbohydrate content (NSC), wood parenchymal fraction or wood capacitance. We suggest that the reviewed trait differences define two contrasting ecophysiological strategies that may determine qualitatively different growth responses to increased temperature and drought. Improved reciprocal common garden experiments along altitudinal or latitudinal gradients would be key to quantify the relative importance of the different hypotheses reviewed. Finally, we show that warming impacts in this area occur in an ecological context characterized by the advance of forest succession and increased dominance of angiosperm trees over extensive areas. In this context, we examined the empirical relationships between the responses of tree growth to temperature and hydraulic safety margins in angiosperm and coniferous trees. Our findings suggest a future scenario in Mediterranean forests characterized by contrasting demographic responses in conifer and angiosperm trees to both temperature and forest succession, with increased dominance of angiosperm trees, and particularly negative impacts in pines.

  17. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale

    PubMed Central

    Carnicer, Jofre; Barbeta, Adrià; Sperlich, Dominik; Coll, Marta; Peñuelas, Josep

    2013-01-01

    Recent large-scale studies of tree growth in the Iberian Peninsula reported contrasting positive and negative effects of temperature in Mediterranean angiosperms and conifers. Here we review the different hypotheses that may explain these trends and propose that the observed contrasting responses of tree growth to temperature in this region could be associated with a continuum of trait differences between angiosperms and conifers. Angiosperm and conifer trees differ in the effects of phenology in their productivity, in their growth allometry, and in their sensitivity to competition. Moreover, angiosperms and conifers significantly differ in hydraulic safety margins, sensitivity of stomatal conductance to vapor-pressure deficit (VPD), xylem recovery capacity or the rate of carbon transfer. These differences could be explained by key features of the xylem such as non-structural carbohydrate content (NSC), wood parenchymal fraction or wood capacitance. We suggest that the reviewed trait differences define two contrasting ecophysiological strategies that may determine qualitatively different growth responses to increased temperature and drought. Improved reciprocal common garden experiments along altitudinal or latitudinal gradients would be key to quantify the relative importance of the different hypotheses reviewed. Finally, we show that warming impacts in this area occur in an ecological context characterized by the advance of forest succession and increased dominance of angiosperm trees over extensive areas. In this context, we examined the empirical relationships between the responses of tree growth to temperature and hydraulic safety margins in angiosperm and coniferous trees. Our findings suggest a future scenario in Mediterranean forests characterized by contrasting demographic responses in conifer and angiosperm trees to both temperature and forest succession, with increased dominance of angiosperm trees, and particularly negative impacts in pines. PMID:24146668

  18. Optimal Stomatal Behaviour Around the World: Synthesis of a Global Stomatal Conductance Database and Scaling from Leaf to Ecosystem

    NASA Astrophysics Data System (ADS)

    Lin, Y. S.; Medlyn, B. E.; Duursma, R.; Prentice, I. C.; Wang, H.

    2014-12-01

    Stomatal conductance (gs) is a key land surface attribute as it links transpiration, the dominant component of global land evapotranspiration and a key element of the global water cycle, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycles, a global scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. We present a unique database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We employed a model of optimal stomatal conductance to assess differences in stomatal behaviour, and estimated the model slope coefficient, g1, which is directly related to the marginal carbon cost of water, for each dataset. We found that g1 varies considerably among PFTs, with evergreen savanna trees having the largest g1 (least conservative water use), followed by C3 grasses and crops, angiosperm trees, gymnosperm trees, and C4 grasses. Amongst angiosperm trees, species with higher wood density had a higher marginal carbon cost of water, as predicted by the theory underpinning the optimal stomatal model. There was an interactive effect between temperature and moisture availability on g1: for wet environments, g1 was largest in high temperature environments, indicated by high mean annual temperature during the period when temperature above 0oC (Tm), but it did not vary with Tm across dry environments. We examine whether these differences in leaf-scale behaviour are reflected in ecosystem-scale differences in water-use efficiency. These findings provide a robust theoretical framework for understanding and predicting the behaviour of stomatal conductance across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of productivity and ecohydrological processes in a future changing climate.

  19. Surface storage of rainfall in tree crowns: not all trees are equal

    Treesearch

    E. Gregory McPherson; Q. Xiao; Natalie van Doorn; P. Peper; E. Teach

    2017-01-01

    Urban forests can be an effective strategy for managing stormwater. The soil that supports tree growth acts like a reservoir that reduces runoff. The tree crown intercepts rainfall on leaves and stems and its evaporation reduces water reaching the ground below. Until now surface storage capacities have been studied only for forest trees. Based on forest research, green...

  20. Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction

    NASA Astrophysics Data System (ADS)

    Jang, Youn Jeong; Jang, Ji-Wook; Choi, Sun Hee; Kim, Jae Young; Kim, Ju Hun; Youn, Duck Hyun; Kim, Won Yong; Han, Suenghoon; Sung Lee, Jae

    2015-04-01

    Highly efficient tree branch-shaped CuO photocathodes are fabricated using the hybrid microwave annealing process with a silicon susceptor within 10 minutes. The unique hierarchical, one-dimensional structure provides more facile charge transport, larger surface areas, and increased crystallinity and crystal ordering with less defects compared to irregular-shaped CuO prepared by conventional thermal annealing. As a result, the photocathode fabricated with the tree branch-shaped CuO produces an unprecedently high photocurrent density of -4.4 mA cm-2 at 0 VRHE under AM 1.5 G simulated sunlight compared to -1.44 mA cm-2 observed for a photocathode fabricated by thermal annealing. It is also confirmed that stoichiometric hydrogen and oxygen are produced from photoelectrochemical water splitting on the tree branch-shaped CuO photocathode and a platinum anode.Highly efficient tree branch-shaped CuO photocathodes are fabricated using the hybrid microwave annealing process with a silicon susceptor within 10 minutes. The unique hierarchical, one-dimensional structure provides more facile charge transport, larger surface areas, and increased crystallinity and crystal ordering with less defects compared to irregular-shaped CuO prepared by conventional thermal annealing. As a result, the photocathode fabricated with the tree branch-shaped CuO produces an unprecedently high photocurrent density of -4.4 mA cm-2 at 0 VRHE under AM 1.5 G simulated sunlight compared to -1.44 mA cm-2 observed for a photocathode fabricated by thermal annealing. It is also confirmed that stoichiometric hydrogen and oxygen are produced from photoelectrochemical water splitting on the tree branch-shaped CuO photocathode and a platinum anode. Electronic supplementary information (ESI) available: The detailed schematic diagram for the HMA process, XRD results, the temperature profile during HMA, derivative XANES results, TEM images, J-V curves, lists of previously reported copper oxide photocathode, and parameters extracted from EIS. See DOI: 10.1039/c5nr00208g

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacoby, G.C.; D`Arrigo, R.D.; Davaajamts, T.

    A 450-year tree-ring width chronology of Siberian pine (Pinus sibirica Du Tour) growing at timberline (2450 meters) in the Tarvagatay Mountains in west central Mongolia shows wide annual growth rings for the recent century. Ecological site observations and comparisons with instrumental temperature records indicate that the ring widths of these trees are sensitive to annual temperature variations. Low-frequency variations in the Tarvagatay tree-ring record are similar to those in a reconstruction of Arctic annual temperatures, which is based on 20 tree-ring width series from northern North America, Scandinavia, and western Russia. The results indicate that recent warming is unusual relativemore » to temperatures of the past 450 years. 29 refs., 2 figs.« less

  2. Temperature variation and distribution of living cells within tree stems: implications for stem respiration modeling and scale-up.

    PubMed

    Stockfors, J

    2000-09-01

    Few studies have examined variation in respiration rates within trees, and even fewer studies have focused on variation caused by within-stem temperature differences. In this study, stem temperatures at 40 positions in the stem of one 30-year-old Norway spruce (Picea abies (L.) Karst.) were measured during 40 days between July 1994 and June 1995. The temperature data were used to simulate variations in respiration rate within the stem. The simulations assumed that the temperature-respiration relationship was constant (Q10 = 2) for all days and all stem positions. Total respiration for the whole stem was calculated by interpolating the temperature between the thermocouples and integrating the respiration rates in three dimensions. Total respiration rate of the stem was then compared to respiration rate scaled up from horizontal planes at the thermocouple heights (40, 140, 240 and 340 cm) on a surface area and on a sapwood volume basis. Simulations were made for three distributions of living cells in the stems: one with a constant 5% fraction of living cells, disregarding depth into the stem; one with a living cell fraction decreasing linearly with depth into the stem; and one with an exponentially decreasing fraction of living cells. Mean temperature variation within the stem was 3.7 degrees C, and was more than 10 degrees C for 8% of the time. The maximum measured temperature difference was 21.5 degrees C. The corresponding mean variation in respiration was 35% and was more than 50% for 24% of the time. Scaling up respiration rates from different heights between 40 and 240 cm to the whole stem produced an error of 2 to 58% for the whole year. For a single sunny day, the error was between 2 and 72%. Thus, within-stem variations in temperature may significantly affect the accuracy of scaling respiration data obtained from small samples to whole trees. A careful choice of chamber position and basis for scaling is necessary to minimize errors from variation in temperature.

  3. Modeling of air pollutant removal by dry deposition to urban trees using a WRF/CMAQ/i-Tree Eco coupled system

    Treesearch

    Maria Theresa I. Cabaraban; Charles N. Kroll; Satoshi Hirabayashi; David J. Nowak

    2013-01-01

    A distributed adaptation of i-Tree Eco was used to simulate dry deposition in an urban area. This investigation focused on the effects of varying temperature, LAI, and NO2 concentration inputs on estimated NO2 dry deposition to trees in Baltimore, MD. A coupled modeling system is described, wherein WRF provided temperature...

  4. Temperature profile in apricot tree canopies under the soil and climate conditions of the Romanian Black Sea Coast.

    PubMed

    Paltineanu, Cristian; Septar, Leinar; Chitu, Emil

    2016-03-01

    The paper describes the temperature profiles determined by thermal imagery in apricot tree canopies under the semi-arid conditions of the Black Sea Coast in a chernozem of Dobrogea Region, Romania. The study analyzes the thermal vertical profile of apricot orchards for three representative cultivars during summertime. Measurements were done when the soil water content (SWC) was at field capacity (FC) within the rooting depth, after intense sprinkler irrigation applications. Canopy temperature was measured during clear sky days at three heights for both sides of the apricot trees, sunlit (south), and shaded (north). For the SWC studied, i.e., FC, canopy height did not induce a significant difference between the temperature of apricot tree leaves (Tc) and the ambient air temperature (Ta) within the entire vertical tree profile, and temperature measurements by thermal imagery can therefore be taken at any height on the tree crown leaves. Differences between sunlit and shaded sides of the canopy were significant. Because of these differences for Tc-Ta among the apricot tree cultivars studied, lower base lines (LBLs) should be determined for each cultivar separately. The use of thermal imagery technique under the conditions of semi-arid coastal areas with low range of vapor pressure deficit could be useful in irrigation scheduling of apricot trees. The paper discusses the implications of the data obtained in the experiment under the conditions of the coastal area of the Black Sea, Romania, and neighboring countries with similar climate, such as Bulgaria and Turkey.

  5. Modeling of air pollutant removal by dry deposition to urban trees using a WRF/CMAQ/i-Tree Eco coupled system.

    PubMed

    Cabaraban, Maria Theresa I; Kroll, Charles N; Hirabayashi, Satoshi; Nowak, David J

    2013-05-01

    A distributed adaptation of i-Tree Eco was used to simulate dry deposition in an urban area. This investigation focused on the effects of varying temperature, LAI, and NO2 concentration inputs on estimated NO2 dry deposition to trees in Baltimore, MD. A coupled modeling system is described, wherein WRF provided temperature and LAI fields, and CMAQ provided NO2 concentrations. A base case simulation was conducted using built-in distributed i-Tree Eco tools, and simulations using different inputs were compared against this base case. Differences in land cover classification and tree cover between the distributed i-Tree Eco and WRF resulted in changes in estimated LAI, which in turn resulted in variations in simulated NO2 dry deposition. Estimated NO2 removal decreased when CMAQ-derived concentration was applied to the distributed i-Tree Eco simulation. Discrepancies in temperature inputs did little to affect estimates of NO2 removal by dry deposition to trees in Baltimore. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Recent enhancement of central Pacific El Niño variability relative to last eight centuries

    PubMed Central

    Liu, Yu; Cobb, Kim M.; Song, Huiming; Li, Qiang; Li, Ching-Yao; Nakatsuka, Takeshi; An, Zhisheng; Zhou, Weijian; Cai, Qiufang; Li, Jinbao; Leavitt, Steven W.; Sun, Changfeng; Mei, Ruochen; Shen, Chuan-Chou; Chan, Ming-Hsun; Sun, Junyan; Yan, Libin; Lei, Ying; Ma, Yongyong; Li, Xuxiang; Chen, Deliang; Linderholm, Hans W.

    2017-01-01

    The far-reaching impacts of central Pacific El Niño events on global climate differ appreciably from those associated with eastern Pacific El Niño events. Central Pacific El Niño events may become more frequent in coming decades as atmospheric greenhouse gas concentrations rise, but the instrumental record of central Pacific sea-surface temperatures is too short to detect potential trends. Here we present an annually resolved reconstruction of NIÑO4 sea-surface temperature, located in the central equatorial Pacific, based on oxygen isotopic time series from Taiwan tree cellulose that span from 1190 AD to 2007 AD. Our reconstruction indicates that relatively warm Niño4 sea-surface temperature values over the late twentieth century are accompanied by higher levels of interannual variability than observed in other intervals of the 818-year-long reconstruction. Our results imply that anthropogenic greenhouse forcing may be driving an increase in central Pacific El Niño-Southern Oscillation variability and/or its hydrological impacts, consistent with recent modelling studies. PMID:28555638

  7. Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    Hadley, J. L.; Kuzeja, P.; Mulcahy, T.; Singh, S.

    2008-12-01

    Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S. Julian Hadley, Paul Kuzeja, Safina Singh and Thomas Mulcahy Transfers of water vapor from terrestrial ecosystems to the atmosphere affect regional hydrology, weather and climate over short time scales, and forest-atmosphere CO2 exchange affects global climate over long timescales. To better understand these effects for forests dominated by two very different tree species, we measured forest-atmosphere water vapor and CO2 transfers by the eddy flux technique to at two sites in central Massachusetts USA for three years. Average annual evapotranspiration (ET) for a young deciduous forest dominated by red oak (Quercus rubra L., the most abundant tree species in the area), was about 430 mm or 25 percent greater than for a coniferous forest dominated by 100 to 230 year old eastern hemlock (Tsuga canadensis L.). The difference in ET was most pronounced in July and August when the deciduous forest lost about 50 percent more water by ET in the average year (192 mm for oak forest versus 130 mm for hemlock). These data indicate that if deciduous trees with similar physiology to red oak replace hemlocks, summertime ET will increase while summer streamflow, soil water content and the extent of year- round wetlands will decrease. Increased summertime ET should also lead to slightly higher regional atmospheric humidity and precipitation. Hemlock-to-deciduous forest conversion has occurred from North Carolina to southern New England and is continuing northward as a lethal insect pest, the hemlock woolly adelgid (Adelges tsugae Annand) continues to kill hemlocks. Average annual carbon storage for the old hemlock forest in our study was about 3.3 Mg C/ha, nearly equal to the average for the deciduous forest, 3.5 Mg C/ha. This calls into question ecological theory that predicts large declines in the rate of carbon uptake for old forests, and indicates that annual carbon storage will not necessarily increase over the long term after hemlock trees are killed by the hemlock woolly adelgid and replaced by deciduous species. Maximum monthly carbon storage in the hemlock forest occurred in spring (April and May) and was enhanced by early soil thawing and cessation of nighttime frost. This pattern is probably common to many evergreen conifers in the northeastern U.S., so climate warming that includes an earlier end to freezing temperatures in spring should increase C storage by conifer forests in the northeastern U.S. - unless this effect is canceled out by reduced C uptake or enhanced C loss due to changes in summer and fall climate.

  8. Effect of canopy structure and open-top chamber techniques on micrometeorological parameters and the gradients and transport of water vapor, carbon dioxide and ozone in the canopies of plum trees (`prunus salicina`) in the San Joaquin valley. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grantz, D.A.; Vaughn, D.L.; Metheny, P.A.

    1995-03-15

    Plum trees (Prunus salicina cv. Casselman) were exposed to ozone in open-top chambers (OTC) or chamberless plots, and trace gas concentrations and microenvironmental conditions were monitored within tree canopies inside the outside the OTC. Concentrations of ozone, carbon dioxide and water vapor, leaf and air temperature, light intensity, and wind speed were measured at nine positions in the tree canopies. The objectives were to: (1) map the distribution of microenvironmental parameters within the canopies inside and outside the OTC; (2) determine transport parameters for gas exchange, and (3) calculate ozone flux. Significant vertical and horizontal gradients were observed; gradients weremore » diminished and often inverted inside relative to outside the OTC due to air distribution at the bottom of the OCT. Ozone flux was readily modeled from measures of stomatal conductance, nonstomatal conductance and ozone concentration at the leaf surface.« less

  9. Drought-induced weakening of growth-temperature associations in high-elevation Iberian pines

    NASA Astrophysics Data System (ADS)

    Diego Galván, J.; Büntgen, Ulf; Ginzler, Christian; Grudd, Håkan; Gutiérrez, Emilia; Labuhn, Inga; Julio Camarero, J.

    2015-01-01

    The growth/climate relationship of theoretically temperature-controlled high-elevation forests has been demonstrated to weaken over recent decades. This is likely due to new tree growth limiting factors, such as an increasing drought risk for ecosystem functioning and productivity across the Mediterranean Basin. In addition, declining tree growth sensitivity to spring temperature may emerge in response to increasing drought stress. Here, we evaluate these ideas by assessing the growth/climate sensitivity of 1500 tree-ring width (TRW) and 102 maximum density (MXD) measurement series from 711 and 74 Pinus uncinata trees, respectively, sampled at 28 high-elevation forest sites across the Pyrenees and two relict populations of the Iberian System. Different dendroclimatological standardization and split period approaches were used to assess the high- to low-frequency behavior of 20th century tree growth in response to temperature means, precipitation totals and drought indices. Long-term variations in TRW track summer temperatures until about 1970 but diverge afterwards, whereas MXD captures the recent temperature increase in the low-frequency domain fairly well. On the other hand summer drought has increasingly driven TRW along the 20th century. Our results suggest fading temperature sensitivity of Iberian high-elevation P. uncinata forest growth, and reveal the importance of summer drought that is becoming the emergent limiting factor of tree ring width formation in many parts of the Mediterranean Basin.

  10. Climate effects on fire regimes and tree recruitment in Black Hills ponderosa pine forests.

    PubMed

    Brown, Peter M

    2006-10-01

    Climate influences forest structure through effects on both species demography (recruitment and mortality) and disturbance regimes. Here, I compare multi-century chronologies of regional fire years and tree recruitment from ponderosa pine forests in the Black Hills of southwestern South Dakota and northeastern Wyoming to reconstructions of precipitation and global circulation indices. Regional fire years were affected by droughts and variations in both Pacific and Atlantic sea surface temperatures. Fires were synchronous with La Niñas, cool phases of the Pacific Decadal Oscillation (PDO), and warm phases of the Atlantic Multidecadal Oscillation (AMO). These quasi-periodic circulation features are associated with drought conditions over much of the western United States. The opposite pattern (El Niño, warm PDO, cool AMO) was associated with fewer fires than expected. Regional tree recruitment largely occurred during wet periods in precipitation reconstructions, with the most abundant recruitment coeval with an extended pluvial from the late 1700s to early 1800s. Widespread even-aged cohorts likely were not the result of large crown fires causing overstory mortality, but rather were caused by optimal climate conditions that contributed to synchronous regional recruitment and longer intervals between surface fires. Synchronous recruitment driven by climate is an example of the Moran effect. The presence of abundant fire-scarred trees in multi-aged stands supports a prevailing historical model for ponderosa pine forests in which recurrent surface fires affected heterogenous forest structure, although the Black Hills apparently had a greater range of fire behavior and resulting forest structure over multi-decadal time scales than ponderosa pine forests of the Southwest that burned more often.

  11. Tree-ring width based temperature and precipitation reconstruction in southeastern China

    NASA Astrophysics Data System (ADS)

    Shi, Jiangfeng; Shi, Shiyuan; Zhao, Yesi; Lu, Huayu

    2017-04-01

    Southeastern China is a subtropical region where the climate is dominated by the Asian monsoon climate system, with high temperature and precipitation in summer, and low temperature and precipitation in winter. Tree-ring research has been developed very fast in the past decade in the region. Some studies show that coniferous tree growth in the region is limited by temperatures in prior winter and during the growing season (i.e., prior November to current April, April to July, etc.), however to different limiting levels. Higher temperature in the dormant season means less damage to leaves and roots, and less consumption of previously stored carbohydrates and starches that can be used for tree growth in the coming year. The mechanism of positive relationships with the growing season is the same as that in high-latitude and high-elevation regions. The temperature reconstructions match each other very well at decadal to multi-decadal scales during the past 150 years at a large spatial scale, that is, of 700 km away, even though there are some discrepancies in the early part of the comparisons. Possible reasons for the discrepancies may include local temperature differences, small sample depth in the early part of the reconstructions, and/or juvenile effects. Generally, there is a weak precipitation signal in tree-ring width chronlogies. However, some studies have shown potentials in precipitation reconstruction in recent years, such as using tree-ring width chrnologies by taking samples at some special sites, using adjusted late-wood width chronlogies, and using stable isotopes. Thus, we might have a comprehensive understanding of the Asian monsson climate system over the past several centuries through temperature and precipitation reconstruction together using tree-ring series.

  12. A cool experimental approach to explain elevational treelines, but can it explain them?

    PubMed

    Bader, Maaike Y; Loranger, Hannah; Zotz, Gerhard

    2014-09-01

    At alpine treeline, trees give way to low-stature alpine vegetation. The main reason may be that tree canopies warm up less in the sun and experience lower average temperatures than alpine vegetation. Low growth temperatures limit tissue formation more than carbon gain, but whether this mechanism universally determines potential treeline elevations is the subject of debate. To study low-temperature limitation in two contrasting treeline tree species, Fajardo and Piper (American Journal of Botany 101: 788-795) grew potted seedlings at ground level or suspended at tree-canopy height (2 m), introducing a promising experimental method for studying the effects of alpine-vegetation and tree-canopy microclimates on tree growth. On the basis of this experiment, the authors concluded that lower temperatures at 2 m caused carbon limitation in one of the species and that treeline-forming mechanisms may thus be taxon-dependent. Here we contest that this important conclusion can be drawn based on the presented experiment, because of confounding effects of extreme root-zone temperature fluctuations and potential drought conditions. To interpret the results of this elegant experiment without logistically challenging technical modifications and to better understand how low temperature leads to treeline formation, studies on effects of fluctuating vs. stable temperatures are badly needed. Other treeline research priorities are interactions between temperature and other climatic factors and differences in microclimate between tree canopies with contrasting morphology and physiology. In spite of our criticism of this particular study, we agree that the development of a universal treeline theory should include continuing explorations of taxon-specific treeline-forming mechanisms. © 2014 Botanical Society of America, Inc.

  13. Spatial and Temporal Variabilities of Solar and Longwave Radiation Fluxes below a Coniferous Forest in the French Alps

    NASA Astrophysics Data System (ADS)

    Sicart, J. E.; Ramseyer, V.; Lejeune, Y.; Essery, R.; Webster, C.; Rutter, N.

    2017-12-01

    At high altitudes and latitudes, snow has a large influence on hydrological processes. Large fractions of these regions are covered by forests, which have a strong influence on snow accumulation and melting processes. Trees absorb a large part of the incoming shortwave radiation and this heat load is mostly dissipated as longwave radiation. Trees shelter the snow surface from wind, so sub-canopy snowmelt depends mainly on the radiative fluxes: vegetation attenuates the transmission of shortwave radiation but enhances longwave irradiance to the surface. An array of 13 pyranometers and 11 pyrgeometers was deployed on the snow surface below a coniferous forest at the CEN-MeteoFrance Col de Porte station in the French Alps (1325 m asl) during the 2017 winter in order to investigate spatial and temporal variabilities of solar and infrared irradiances in different meteorological conditions. Sky view factors measured with hemispherical photographs at each radiometer location were in a narrow range from 0.2 to 0.3. The temperature of the vegetation was measured with IR thermocouples and an IR camera. In clear sky conditions, the attenuation of solar radiation by the canopy reached 96% and its spatial variability exceeded 100 W m-2. Longwave irradiance varied by 30 W m-2 from dense canopy to gap areas. In overcast conditions, the spatial variabilities of solar and infrared irradiances were reduced and remained closely related to the sky view factor. A simple radiative model taking into account the penetration through the canopy of the direct and diffuse solar radiation, and isotropic infrared emission of the vegetation as a blackbody emitter, accurately reproduced the dynamics of the radiation fluxes at the snow surface. Model results show that solar transmissivity of the canopy in overcast conditions is an excellent proxy of the sky view factor and the emitting temperature of the vegetation remained close to the air temperature in this typically dense Alpine forest.

  14. Assessing the Impact of Asian Longhorned Beetle in Worcester, MA: Thermal Effects, Community Responses, and Future Vulnerability

    NASA Astrophysics Data System (ADS)

    Elmes, Arthur Francis Marett

    Urban environments experience air, water, noise, and heat pollution as a consequence of their composition, structure, and function. These adverse environmental conditions, which have direct and indirect effects on human health and ecological stability, can be mitigated or partially offset by healthy and extensive urban forests. Additionally, urban trees provide a number of cultural, aesthetic, and property value benefits. However, to provide maximum ecosystem service benefits, an urban forest must be carefully planned and maintained, so that average tree lifespan is maximized and ecological vulnerability is minimized. Maximal urban forest resilience is best achieved via taxonomic and age-diversity, such that no one genus or age-cohort dominates. This diversity enhances overall urban forest resilience, which in turn facilitates maximum ecosystem service provision. The Asian Longhorned Beetle (ALB, Anoplophora glabripennis) infestation in Worcester, MA represents a case example of taxonomic monoculture vulnerability, but also an excellent opportunity to reinvest and diversify the urban forest. As a result of the ALB infestation, which was first documented in 2008, approximately 35,000 host trees were removed from residential and public property, substantially reducing urban tree canopy coverage and uncovering impervious surfaces. Chapter two quantifies this Urban Tree Canopy (UTC) loss, and shows that in loss areas Land Surface Temperature (LST) increases range from 1 - 6° C. The research investigates multi-scale effects of this relationship, particularly in the hard-hit Burncoat and Greendale neighborhoods of Worcester, MA. In response to the large quantity of UTC loss suffered due to ALB, the Massachusetts Department of Conservation and Recreation (DCR), the City of Worcester, and the Worcester Tree Initiative (WTI) have together planted over 30,000 trees, primarily via tree giveaway programs to local residents. Chapter three assesses the effectiveness of this initiative in terms of juvenile tree mortality rates - a critical indicator of long-term urban forest success. Results indicate that tree stewardship variables such as renter proportion and number of trees planted per property are strong predictors of tree mortality. Tree species was shown to be strong predictor of mortality, with ornamental trees showing lower mortality rates than shade deciduous or conifers. Finally, Chapter four investigates the potential risk of further ALB infestation in the Worcester area, using a circuit theory dispersal model, which uses an analogy with electrical circuits to predict the dispersal of random-walkers across a heterogeneous landscape. The results indicate that impervious surfaces such as roads, sidewalks, and parking lots, as well as proximity to existing trees are facilitators of ALB movement. Circuit-based dispersal maps highlight the importance of narrow dispersal corridors connecting larger areas of potential dispersal. Dispersal potential was combined with ALB habitat suitability measured with Mahalanobis typicality, yielding a hybrid map of ALB infestation risk. These map products are valuable both as contributions to the understanding of invasive species movement in novel environments, and as tools for land managers attempting to eradicate ALB, such as the USDA Animal and Plant Health Inspection Service. This dissertation investigates three elements of the ALB infestation of Worcester, providing a holistic explanation of the impacts, recovery, and vulnerability of Worcester's urban forest.

  15. Evapotranspiration and favorable growing degree-days are key to tree height growth and ecosystem functioning: Meta-analyses of Pacific Northwest historical data.

    PubMed

    Liu, Yang; El-Kassaby, Yousry A

    2018-05-29

    While temperature and precipitation comprise important ecological filtering for native ranges of forest trees and are predisposing factors underlying forest ecosystem dynamics, the extent and severity of drought raises reasonable concerns for carbon storage and species diversity. Based on historical data from common garden experiments across the Pacific Northwest region, we developed non-linear niche models for height-growth trajectories of conifer trees at the sapling stage using annual or seasonal climatic variables. The correlations between virtual tree height for each locality and ecosystem functions were respectively assessed. Best-fitted models were composed of two distinct components: evapotranspiration and the degree-days disparity for temperature regimes between 5 °C and 18 °C (effective temperature sum and growth temperature, respectively). Tree height prediction for adaptive generalists (e.g., Pinus monticola, Thuja plicata) had smaller residuals than for specialists (e.g., Pinus contorta, Pseudotsuga menziesii), albeit a potential confounding factor - tree age. Discernably, there were linearly positive patterns between tree height growth and ecosystem functions (productivity, biomass and species diversity). Additionally, there was a minor effect of tree diversity on height growth in coniferous forests. This study uncovers the implication of key ecological filtering and increases our integrated understanding of how environmental cues affect tree stand growth, species dominance and ecosystem functions.

  16. Chemical composition of Tipuana tipu, a source for tropical honey bee products.

    PubMed

    dos Santos Pereira, Alberto; de Aquino Neto, Francisco Radler

    2003-01-01

    Tipuana tipu (Benth.) Kuntze is a tree from the leguminosae family (Papilionoideae) indigenous in Argentina and extensively used in urbanism, mainly in Southern Brazil. The epicuticular waxes of leaves and branch, and flower surface were studied by high temperature high resolution gas chromatography. Several compounds were characterized, among which the aliphatic alcohols were predominant in branch, leaves and receptacle. Alkanes were predominant only in the petals and the aliphatic acids were predominant in stamen. In branches and leaf epicuticular surfaces, six long chain wax esters series were characterized, as well as lupeol and b-amyrin hexadecanoates.

  17. Variability in solar radiation and temperature explains observed patterns and trends in tree growth rates across four tropical forests.

    PubMed

    Dong, Shirley Xiaobi; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Supardi, M N Nur; Kassim, Abd Rahman; Tan, Sylvester; Moorcroft, Paul R

    2012-10-07

    The response of tropical forests to global climate variability and change remains poorly understood. Results from long-term studies of permanent forest plots have reported different, and in some cases opposing trends in tropical forest dynamics. In this study, we examined changes in tree growth rates at four long-term permanent tropical forest research plots in relation to variation in solar radiation, temperature and precipitation. Temporal variation in the stand-level growth rates measured at five-year intervals was found to be positively correlated with variation in incoming solar radiation and negatively related to temporal variation in night-time temperatures. Taken alone, neither solar radiation variability nor the effects of night-time temperatures can account for the observed temporal variation in tree growth rates across sites, but when considered together, these two climate variables account for most of the observed temporal variability in tree growth rates. Further analysis indicates that the stand-level response is primarily driven by the responses of smaller-sized trees (less than 20 cm in diameter). The combined temperature and radiation responses identified in this study provide a potential explanation for the conflicting patterns in tree growth rates found in previous studies.

  18. Tree and forest water use under elevated CO2 and temperature in Scandinavian boreal forest

    NASA Astrophysics Data System (ADS)

    Berg Hasper, Thomas; Wallin, Göran; Lamba, Shubhangi; Sigurdsson, Bjarni D.; Laudon, Hjalmar; Medhurst, Jane L.; Räntfors, Mats; Linder, Sune; Uddling, Johan

    2014-05-01

    According to experimental studies and models, rising atmospheric carbon dioxide concentration ([CO2]) and temperature have the potential to affect stomatal conductance and, consequently, tree and forest transpiration. This effect has in turn the capacity to influence the terrestrial energy and water balance, including affecting of the magnitude of river runoff. Furthermore, forest productivity is currently water-limited in southern Scandinavia and in a near future, under the projected climatic change, this limitation may become a reality in the central and northern parts of Scandinavia. In this study we examine the water-use responses in 12 40-year old native boreal Norway spruce (Picea abies (L.) Karst.) trees exposed to a factorial combination of two levels of [CO2] (ambient and doubled) and temperature (ambient and +2.8 °C in summer / +5.6 °C in winter), as well as of entire boreal forests to temporal variation in [CO2], temperature and precipitation over the past 50 years in central and northern Sweden. The controlled factorial CO2 and temperature whole-tree chamber experiment at Flakaliden study site demonstrated that Norway spruce trees lacked elevated [CO2]-induced water savings at guard cell, shoot, and tree levels in the years of measurements. Experimentally, elevated temperature did not result in increased shoot or tree water use as stomatal closure fully cancelled the effect of higher vapour pressure deficit in warmed air environment. Consistent with these results, large scale river runoff data and evapotranspiration estimates from large forested watersheds in central Sweden supported lack of elevated CO2-mediated water savings, and rather suggested that the increasing evapotranspiration trend found in this study was primarily linked to increasing precipitation, rising temperature and more efficient forest management. The results from the whole-tree chamber experiment and boreal forested watersheds have important implications for more accurate predictions of boreal atmosphere-biosphere interactions, indicating that tree responses to precipitation and temperature are more important than responses to elevated [CO2] in determining the future forest water-use and hydrology of Scandinavian boreal ecosystems.

  19. Reproductive ecology and stand structure of Joshua tree forests across climate gradients of the Mojave Desert

    PubMed Central

    Hoines, Joshua

    2018-01-01

    Climate change is restructuring plant populations and can result in range shifts depending on responses at various life stages of plants. In 2013, a widespread and episodic flowering event provided an opportunity to characterize how Joshua tree’s reproductive success and population structure vary in response to the climate variability across its range. We examined the reproductive success and stand structure of 10 Joshua tree populations distributed across the Mojave Desert. Joshua tree density varied by more than an order of magnitude across sites. At 8 of the 10 sites, nearly 80% of the Joshua trees were in bloom, and at the other two 40% were in bloom. The range of seed production and fruit set across the study populations varied by more than an order of magnitude. Fruit production occurred at all of our study sites suggesting that yucca moth pollinators were present at our sites. Increasing temperature had strong positive correlations with the number of trees in bloom (R2 = 0.42), inflorescences per tree (R2 = 0.37), and fruit mass (R2 = 0.77) and seed size (R2 = 0.89. In contrast, temperature was negatively correlated with Joshua tree stand density (R2 = -0.80). Positive correlations between temperature and greater flower and seed production suggest that warming may positively affect Joshua Tree reproduction while negative relationships between temperature and stand density are suggestive of potential constraints of warmer temperatures on establishment success. PMID:29474414

  20. Modelling the spatial distribution of Fasciola hepatica in bovines using decision tree, logistic regression and GIS query approaches for Brazil.

    PubMed

    Bennema, S C; Molento, M B; Scholte, R G; Carvalho, O S; Pritsch, I

    2017-11-01

    Fascioliasis is a condition caused by the trematode Fasciola hepatica. In this paper, the spatial distribution of F. hepatica in bovines in Brazil was modelled using a decision tree approach and a logistic regression, combined with a geographic information system (GIS) query. In the decision tree and the logistic model, isothermality had the strongest influence on disease prevalence. Also, the 50-year average precipitation in the warmest quarter of the year was included as a risk factor, having a negative influence on the parasite prevalence. The risk maps developed using both techniques, showed a predicted higher prevalence mainly in the South of Brazil. The prediction performance seemed to be high, but both techniques failed to reach a high accuracy in predicting the medium and high prevalence classes to the entire country. The GIS query map, based on the range of isothermality, minimum temperature of coldest month, precipitation of warmest quarter of the year, altitude and the average dailyland surface temperature, showed a possibility of presence of F. hepatica in a very large area. The risk maps produced using these methods can be used to focus activities of animal and public health programmes, even on non-evaluated F. hepatica areas.

  1. Climate Based Predictability of Oil Palm Tree Yield in Malaysia.

    PubMed

    Oettli, Pascal; Behera, Swadhin K; Yamagata, Toshio

    2018-02-02

    The influence of local conditions and remote climate modes on the interannual variability of oil palm fresh fruit bunches (FFB) total yields in Malaysia and two major regions (Peninsular Malaysia and Sabah/Sarawak) is explored. On a country scale, the state of sea-surface temperatures (SST) in the tropical Pacific Ocean during the previous boreal winter is found to influence the regional climate. When El Niño occurs in the Pacific Ocean, rainfall in Malaysia reduces but air temperature increases, generating a high level of water stress for palm trees. As a result, the yearly production of FFB becomes lower than that of a normal year since the water stress during the boreal spring has an important impact on the total annual yields of FFB. Conversely, La Niña sets favorable conditions for palm trees to produce more FFB by reducing chances of water stress risk. The region of the Leeuwin current also seems to play a secondary role through the Ningaloo Niño/ Niña in the interannual variability of FFB yields. Based on these findings, a linear model is constructed and its ability to reproduce the interannual signal is assessed. This model has shown some skills in predicting the total FFB yield.

  2. Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species

    NASA Astrophysics Data System (ADS)

    Vårhammar, Angelica; Wallin, Göran; McLean, Christopher M.; Dusenge, Mirindi Eric; Medlyn, Belinda E.; Hasper, Thomas B.; Nsabimana, Donat; Uddling, Johan

    2015-04-01

    The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored. We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species to exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to CO2 at different temperatures (20 - 40 C) were used to assess the temperature responses of biochemical photosynthetic capacities. Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species. This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming. (Reference: New Phytologist, in press)

  3. Effects of changing environmental conditions on synthetic aperture radar backscattering coefficient, scattering mechanisms, and class separability in a forest area

    NASA Astrophysics Data System (ADS)

    Mahdavi, Sahel; Maghsoudi, Yasser; Amani, Meisam

    2017-07-01

    Environmental conditions have considerable effects on synthetic aperture radar (SAR) imagery. Therefore, assessing these effects is important for obtaining accurate and reliable results. In this study, three series of RADARSAT-2 SAR images were evaluated. In each of these series, the sensor configuration was fixed, but the environmental conditions differed. The effects of variable environmental conditions were also investigated on co- and cross-polarized backscattering coefficients, Freeman-Durden scattering contributions, and the pedestal height in different classes of a forest area in Ottawa, Ontario. It was observed that the backscattering coefficient of wet snow was up to 2 dB more than that of dry snow. The absence of snow also caused a decrease of up to 3 dB in the surface scattering of ground and up to 5 dB in that of trees. In addition, the backscatter coefficients of ground vegetation, hardwood species, and softwood species were more similar at temperatures below 0°C than those at temperatures above 0°C. Moreover, the pedestal height was generally greater at temperatures above 0°C than at temperatures below 0°C. Finally, the highest class separability was observed when the temperature was at or above 0°C and there was no snow on the ground or trees.

  4. Investigation of Chlorella vulgaris UTEX 265 Cultivation under Light and Low Temperature Stressed Conditions for Lutein Production in Flasks and the Coiled Tree Photo-Bioreactor (CTPBR).

    PubMed

    Gong, Mengyue; Bassi, Amarjeet

    2017-10-01

    Lutein has an increasing share in the pharmaceutical and nutraceutical market due to its benefits to eye health. Microalgae may be a potential source for lutein production while the expense limits the commercialization. In this study, a coiled tubular tree photobioreactor (CTPBR) design was investigated for cultivating the cold tolerant microalgae Chlorella vulgaris UTEX 265 under various conditions for lutein production. The influence and interaction of light irradiance strength, lighting cycle, and temperature on microalgae and lutein production efficiency at low temperature range were also studied in flasks via response surface method (RSM). The results demonstrated that 14 h day-light, 120 μmol photons m -2  s -1 , and 10 °C was the optimal condition for algae growth and lutein production at low temperature experimental ranges. C. vulgaris UTEX 265 showed good potential to produce lutein in cold weather, and the optimum lutein production was contrary to the specific lutein content but corresponds to the trend of optimum growth. Additionally, fast growth (μ = 1.50 day -1 ) and good lutein recovery (11.98 mg g -1  day -1 ) in CTPBR were also achieved at the low irradiance stress condition and the low temperature photo-inhibition conditions.

  5. Growth responses of Scots pine to climatic factors on reclaimed oil shale mined land.

    PubMed

    Metslaid, Sandra; Stanturf, John A; Hordo, Maris; Korjus, Henn; Laarmann, Diana; Kiviste, Andres

    2016-07-01

    Afforestation on reclaimed mining areas has high ecological and economic importance. However, ecosystems established on post-mining substrate can become vulnerable due to climate variability. We used tree-ring data and dendrochronological techniques to study the relationship between climate variables and annual growth of Scots pine (Pinus sylvestris L.) growing on reclaimed open cast oil shale mining areas in Northeast Estonia. Chronologies for trees of different age classes (50, 40, 30) were developed. Pearson's correlation analysis between radial growth indices and monthly climate variables revealed that precipitation in June-July and higher mean temperatures in spring season enhanced radial growth of pine plantations, while higher than average temperatures in summer months inhibited wood production. Sensitivity of radial increment to climatic factors on post-mining soils was not homogenous among the studied populations. Older trees growing on more developed soils were more sensitive to precipitation deficit in summer, while growth indices of two other stand groups (young and middle-aged) were highly correlated to temperature. High mean temperatures in August were negatively related to annual wood production in all trees, while trees in the youngest stands benefited from warmer temperatures in January. As a response to thinning, mean annual basal area increment increased up to 50 %. By managing tree competition in the closed-canopy stands, through the thinning activities, tree sensitivity and response to climate could be manipulated.

  6. Intraspecies variation in a widely distributed tree species regulates the responses of soil microbiome to different temperature regimes.

    PubMed

    Zhang, Cui-Jing; Delgado-Baquerizo, Manuel; Drake, John E; Reich, Peter B; Tjoelker, Mark G; Tissue, David T; Wang, Jun-Tao; He, Ji-Zheng; Singh, Brajesh K

    2018-04-01

    Plant characteristics in different provenances within a single species may vary in response to climate change, which might alter soil microbial communities and ecosystem functions. We conducted a glasshouse experiment and grew seedlings of three provenances (temperate, subtropical and tropical origins) of a tree species (i.e., Eucalyptus tereticornis) at different growth temperatures (18, 21.5, 25, 28.5, 32 and 35.5°C) for 54 days. At the end of the experiment, bacterial and fungal community composition, diversity and abundance were characterized. Measured soil functions included surrogates of microbial respiration, enzyme activities and nutrient cycling. Using Permutation multivariate analysis of variance (PerMANOVA) and network analysis, we found that the identity of tree provenances regulated both structure and function of soil microbiomes. In some cases, tree provenances substantially affected the response of microbial communities to the temperature treatments. For example, we found significant interactions of temperature and tree provenance on bacterial community and relative abundances of Chloroflexi and Zygomycota, and inorganic nitrogen. Microbial abundance was altered in response to increasing temperature, but was not affected by tree provenances. Our study provides novel evidence that even a small variation in biotic components (i.e., intraspecies tree variation) can significantly influence the response of soil microbial community composition and specific soil functions to global warming. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Modeling the effects of tree species and incubation temperature on soil's extracellular enzyme activity in 78-year-old tree plantations

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoqi; Wang, Shen S. J.; Chen, Chengrong

    2017-12-01

    Forest plantations have been widely used as an effective measure for increasing soil carbon (C), and nitrogen (N) stocks and soil enzyme activities play a key role in soil C and N losses during decomposition of soil organic matter. However, few studies have been carried out to elucidate the mechanisms behind the differences in soil C and N cycling by different tree species in response to climate warming. Here, we measured the responses of soil's extracellular enzyme activity (EEA) to a gradient of temperatures using incubation methods in 78-year-old forest plantations with different tree species. Based on a soil enzyme kinetics model, we established a new statistical model to investigate the effects of temperature and tree species on soil EEA. In addition, we established a tree species-enzyme-C/N model to investigate how temperature and tree species influence soil C/N contents over time without considering plant C inputs. These extracellular enzymes included C acquisition enzymes (β-glucosidase, BG), N acquisition enzymes (N-acetylglucosaminidase, NAG; leucine aminopeptidase, LAP) and phosphorus acquisition enzymes (acid phosphatases). The results showed that incubation temperature and tree species significantly influenced all soil EEA and Eucalyptus had 1.01-2.86 times higher soil EEA than coniferous tree species. Modeling showed that Eucalyptus had larger soil C losses but had 0.99-2.38 times longer soil C residence time than the coniferous tree species over time. The differences in the residual soil C and N contents between Eucalyptus and coniferous tree species, as well as between slash pine (Pinus elliottii Engelm. var. elliottii) and hoop pine (Araucaria cunninghamii Ait.), increase with time. On the other hand, the modeling results help explain why exotic slash pine can grow faster, as it has 1.22-1.38 times longer residual soil N residence time for LAP, which mediate soil N cycling in the long term, than native coniferous tree species like hoop pine and kauri pine (Agathis robusta C. Moore). Our results will be helpful for understanding the mechanisms of soil C and N cycling by different tree species, which will have implications for forest management.

  8. Physical and chemical characterization of biochars derived from different agricultural residues

    NASA Astrophysics Data System (ADS)

    Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M. A.; Sonoki, T.

    2014-12-01

    Biochar is widely recognized as an efficient tool for carbon sequestration and soil fertility. The understanding of its chemical and physical properties, which are strongly related to the type of the initial material used and pyrolysis conditions, is crucial to identify the most suitable application of biochar in soil. A selection of organic wastes with different characteristics (e.g., rice husk (RH), rice straw (RS), wood chips of apple tree (Malus pumila) (AB), and oak tree (Quercus serrata) (OB)) were pyrolyzed at different temperatures (400, 500, 600, 700, and 800 °C) in order to optimize the physicochemical properties of biochar as a soil amendment. Low-temperature pyrolysis produced high biochar yields; in contrast, high-temperature pyrolysis led to biochars with a high C content, large surface area, and high adsorption characteristics. Biochar obtained at 600 °C leads to a high recalcitrant character, whereas that obtained at 400 °C retains volatile and easily labile compounds. The biochar obtained from rice materials (RH and RS) showed a high yield and unique chemical properties because of the incorporation of silica elements into its chemical structure. The biochar obtained from wood materials (AB and OB) showed high carbon content and a high absorption character.

  9. Modeling Transport of Turbulent Fluxes in a Heterogeneous Urban Canopy Using a Spatially Explicit Energy Balance

    NASA Astrophysics Data System (ADS)

    Moody, M.; Bailey, B.; Stoll, R., II

    2017-12-01

    Understanding how changes in the microclimate near individual plants affects the surface energy budget is integral to modeling land-atmosphere interactions and a wide range of near surface atmospheric boundary layer phenomena. In urban areas, the complex geometry of the urban canopy layer results in large spatial deviations of turbulent fluxes further complicating the development of models. Accurately accounting for this heterogeneity in order to model urban energy and water use requires a sub-plant level understanding of microclimate variables. We present analysis of new experimental field data taken in and around two Blue Spruce (Picea pungens) trees at the University of Utah in 2015. The test sites were chosen in order study the effects of heterogeneity in an urban environment. An array of sensors were placed in and around the conifers to quantify transport in the soil-plant-atmosphere continuum: radiative fluxes, temperature, sap fluxes, etc. A spatial array of LEMS (Local Energy Measurement Systems) were deployed to obtain pressure, surrounding air temperature and relative humidity. These quantities are used to calculate the radiative and turbulent fluxes. Relying on measurements alone is insufficient to capture the complexity of microclimate distribution as one reaches sub-plant scales. A spatially-explicit radiation and energy balance model previously developed for deciduous trees was extended to include conifers. The model discretizes the tree into isothermal sub-volumes on which energy balances are performed and utilizes incoming radiation as the primary forcing input. The radiative transfer component of the model yields good agreement between measured and modeled upward longwave and shortwave radiative fluxes. Ultimately, the model was validated through an examination of the full energy budget including radiative and turbulent fluxes through isolated Picea pungens in an urban environment.

  10. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions

    PubMed Central

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y.

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia. In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. PMID:27402618

  11. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions.

    PubMed

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  12. Examining mechanisms in the final stages of the elimination of boreal tree species on vulnerable sites in boreal Alaska

    NASA Astrophysics Data System (ADS)

    Juday, G. P.; Jess, R.; Alix, C. M.; Verbyla, D.

    2015-12-01

    The boreal forest of Alaska and western Canada exist in a complex mosaic of environments determined by elevation, aspect of exposure, and longitudinal and latitudinal gradients of change from warm, dry continental to maritime-influenced conditions. This forest region is largely made up of trees with two growth responses to temperature increases. Trees that decrease in growth are termed negative responders, and occupy warm, dry sites at low elevations. Trees that increase in radial growth are termed positive responders, and are largely in western Alaska, and at high elevation of the Brooks and Alaska Ranges. Since the Pacific climate regime shift of the 1970s, mature trees at low elevation sites have experienced increasing climate stress in several quasi-decadal cycles of intensifying drought stress. NDVI trends and tree ring records demonstrating radial growth decline are coherent. Phenological monitoring of spruce height growth also indicates that depletion of spring soil moisture is a critical process driven by the interaction of early warm season temperatures and precipitation. Novel biotic disturbance agents including spruce budworm, outbreaks of which are triggered by warm temperature anomalies related to its biology, and aspen leaf miner are depressing realized growth below climatically predicted levels, suggesting a pathway by which tree death is likely to occur before absolute temperature limits. As a result, insect outbreaks are degrading the otherwise strong long-term climate signal in Alaska boreal trees. However, young tree (> 40 yrs.) regeneration generally does not yet display the symptoms of acute high temperature stress. Overall, on these vulnerable sites, if temperature increases similar to the past 40 years continue, long term survival prospects are questionable because the climate conditions would be outside the limits that have historically defined the species ranges of aspen, Alaska birch, and black and white spruce.

  13. A six hundred-year annual minimum temperature history for the central Tibetan Plateau derived from tree-ring width series

    NASA Astrophysics Data System (ADS)

    He, Minhui; Yang, Bao; Datsenko, Nina M.

    2014-08-01

    The recent unprecedented warming found in different regions has aroused much attention in the past years. How temperature has really changed on the Tibetan Plateau (TP) remains unknown since very limited high-resolution temperature series can be found over this region, where large areas of snow and ice exist. Herein, we develop two Juniperus tibetica Kom. tree-ring width chronologies from different elevations. We found that the two tree-ring series only share high-frequency variability. Correlation, response function and partial correlation analysis indicate that prior year annual (January-December) minimum temperature is most responsible for the higher belt juniper radial growth, while more or less precipitation signal is contained by the tree-ring width chronology at the lower belt and is thus excluded from further analysis. The tree growth-climate model accounted for 40 % of the total variance in actual temperature during the common period 1957-2010. The detected temperature signal is further robustly verified by other results. Consequently, a six century long annual minimum temperature history was firstly recovered for the Yushu region, central TP. Interestingly, the rapid warming trend during the past five decades is identified as a significant cold phase in the context of the past 600 years. The recovered temperature series reflects low-frequency variability consistent with other temperature reconstructions over the whole TP region. Furthermore, the present recovered temperature series is associated with the Asian monsoon strength on decadal to multidecadal scales over the past 600 years.

  14. Recent summer precipitation trends in the Greater Horn of Africa and the emerging role of Indian Ocean sea surface temperature

    NASA Astrophysics Data System (ADS)

    Williams, A. Park; Funk, Chris; Michaelsen, Joel; Rauscher, Sara A.; Robertson, Iain; Wils, Tommy H. G.; Koprowski, Marcin; Eshetu, Zewdu; Loader, Neil J.

    2012-11-01

    We utilize a variety of climate datasets to examine impacts of two mechanisms on precipitation in the Greater Horn of Africa (GHA) during northern-hemisphere summer. First, surface-pressure gradients draw moist air toward the GHA from the tropical Atlantic Ocean and Congo Basin. Variability of the strength of these gradients strongly influences GHA precipitation totals and accounts for important phenomena such as the 1960s-1980s rainfall decline and devastating 1984 drought. Following the 1980s, precipitation variability became increasingly influenced by the southern tropical Indian Ocean (STIO) region. Within this region, increases in sea-surface temperature, evaporation, and precipitation are linked with increased exports of dry mid-tropospheric air from the STIO region toward the GHA. Convergence of dry air above the GHA reduces local convection and precipitation. It also produces a clockwise circulation response near the ground that reduces moisture transports from the Congo Basin. Because precipitation originating in the Congo Basin has a unique isotopic signature, records of moisture transports from the Congo Basin may be preserved in the isotopic composition of annual tree rings in the Ethiopian Highlands. A negative trend in tree-ring oxygen-18 during the past half century suggests a decline in the proportion of precipitation originating from the Congo Basin. This trend may not be part of a natural cycle that will soon rebound because climate models characterize Indian Ocean warming as a principal signature of greenhouse-gas induced climate change. We therefore expect surface warming in the STIO region to continue to negatively impact GHA precipitation during northern-hemisphere summer.

  15. Ikh Turgen Mountain Glacier Change and 3d Surface Extents Prediction Using Long Term Landsat Image and Climate Data

    NASA Astrophysics Data System (ADS)

    Nasanbat, Elbegjargal; Erdenebat, Erdenetogtokh; Chogsom, Bolorchuluun; Lkhamjav, Ochirkhuyag; Nanzad, Lkhagvadorj

    2018-04-01

    The glacier is most important the freshwater resources and indicator of the climate change. The researchers noted that during last decades the glacier is melting due to global warming. The study calculates a spatial distribution of protentional change of glacier coverage in the Ikh Turgen mountain of Western Mongolia, and it integrates long-term climate data and satellite datasets. Therefore, in this experiment has tried to estimation three-dimensional surface area of the glacier. For this purpose, Normalized difference snow index (NDSI) was applied to decision tree approach, using Landsat MSS, TM, ETM+ and LC8 imagery for 1975-2016, a surface and slope for digital elevation model, precipitation and air temperature historical data of meteorological station. The potential volume area significantly changed glacier cover of the Ikh Turgen Mountain, and the area affected by highly variable precipitation and air temperature regimes. Between 1972 and 2016, a potential area of glacier area has been decreased in Ikh Turgen mountain region.

  16. Has anyone noticed that trees are not being planted any longer?

    Treesearch

    Walter D. Smith

    1980-01-01

    Trees provided the coal surface mining industry with a means of restoring the land's productivity at a minimum expense. Trees may still be included in the reclamation plan but tree planting in Ohio was drastically reduced by the 1972 Ohio Surface Mining and Reclamation Law. The basic reasons are categorized as technical, social and economic. The revegetation phase...

  17. Revegetating surface-mined lands with herbaceous and woody species together

    Treesearch

    Willis G. Vogel

    1980-01-01

    Herbaceous cover is required for erosion control on surface-mined lands even where forests are to be established. Where planted with trees, herbaceous species usually cause an increase in tree seedling mortality and retard tree growth, especially in the first few years after planting. Trees seem to be affected most by competition for moisture because their survival is...

  18. Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species.

    PubMed

    Vårhammar, Angelica; Wallin, Göran; McLean, Christopher M; Dusenge, Mirindi Eric; Medlyn, Belinda E; Hasper, Thomas B; Nsabimana, Donat; Uddling, Johan

    2015-05-01

    The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored. We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species with those of exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to carbon dioxide (CO2 ) at different temperatures (20-40°C) were used to assess the temperature responses of biochemical photosynthetic capacities. Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species. This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  19. Use of inexpensive pressure transducers for measuring water levels in wells

    USGS Publications Warehouse

    Keeland, B.D.; Dowd, J.F.; Hardegree, W.S.

    1997-01-01

    Frequent measurement of below ground water levels at multiple locations is an important component of many wetland ecosystem studies. These measurements, however, are usually time consuming, labor intensive, and expensive. This paper describes a water-level sensor that is inexpensive and easy to construct. The sensor is placed below the expected low water level in a shallow well and, when connected to a datalogger, uses a pressure transducer to detect groundwater or surface water elevations. Details of pressure transducer theory, sensor construction, calibration, and examples of field installations are presented. Although the transducers must be individually calibrated, the sensors have a linear response to changing water levels (r2 ??? .999). Measurement errors resulting from temperature fluctuations are shown to be about 4 cm over a 35??C temperature range, but are minimal when the sensors are installed in groundwater wells where temperatures are less variable. Greater accuracy may be obtained by incorporating water temperature data into the initial calibration (0.14 cm error over a 35??C temperature range). Examples of the utility of these sensors in studies of groundwater/surface water interactions and the effects of water level fluctuations on tree growth are provided. ?? 1997 Kluwer Academic Publishers.

  20. Data fusion with artificial neural networks (ANN) for classification of earth surface from microwave satellite measurements

    NASA Technical Reports Server (NTRS)

    Lure, Y. M. Fleming; Grody, Norman C.; Chiou, Y. S. Peter; Yeh, H. Y. Michael

    1993-01-01

    A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR).

  1. The effects of urban warming on herbivore abundance and street tree condition.

    PubMed

    Dale, Adam G; Frank, Steven D

    2014-01-01

    Trees are essential to urban habitats because they provide services that benefit the environment and improve human health. Unfortunately, urban trees often have more herbivorous insect pests than rural trees but the mechanisms and consequences of these infestations are not well documented. Here, we examine how temperature affects the abundance of a scale insect, Melanaspis tenebricosa (Comstock) (Hemiptera: Diaspididae), on one of the most commonly planted street trees in the eastern U.S. Next, we examine how both pest abundance and temperature are associated with water stress, growth, and condition of 26 urban street trees. Although trees in the warmest urban sites grew the most, they were more water stressed and in worse condition than trees in cooler sites. Our analyses indicate that visible declines in tree condition were best explained by scale-insect infestation rather than temperature. To test the broader relevance of these results, we extend our analysis to a database of more than 2700 Raleigh, US street trees. Plotting these trees on a Landsat thermal image of Raleigh, we found that warmer sites had over 70% more trees in poor condition than those in cooler sites. Our results support previous studies linking warmer urban habitats to greater pest abundance and extend this association to show its effect on street tree condition. Our results suggest that street tree condition and ecosystem services may decline as urban expansion and global warming exacerbate the urban heat island effect. Although our non-probability sampling method limits our scope of inference, our results present a gloomy outlook for urban forests and emphasize the need for management tools. Existing urban tree inventories and thermal maps could be used to identify species that would be most suitable for urban conditions.

  2. Leaf temperature and stomatal influences on sap velocity diurnal hysteresis in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Gimenez, B.; Negron Juarez, R. I.; Koven, C.; Powell, T.; Higuchi, N.; Chambers, J.; Varadharajan, C.

    2016-12-01

    In order to improve our ability to predict terrestrial evapotranspiration fluxes, an understanding of the interactions between plant physiology and environmental conditions is necessary, but remains poorly characterized, especially in tropical ecosystems. In this study we show a tight positive correlation between sap velocity (at 1 m of height) and leaf surface temperature (LST, 20-30 m of height) in canopy dominant trees in two primary rainforest sites in the Amazon basin (Santarém and Manaus, Brazil). As leaf temperatures varied throughout the day, sap velocity responded with little delay (<15 min). Positive sap velocity was often observed at night, but also closely followed night time LSTs. When plotted versus LST, sap velocity showed an exponential increase before reaching a reflection point and a plateau and is characterized as a sigmoidal curve, in all observed trees. Moreover, a clear diurnal hysteresis in sap velocity was evident with morning periods showing higher temperature sensitivities than afternoon and night periods. Diurnal leaf observations showed a morning peak in stomatal conductance ( 10:00-10:30), but a mid-day to afternoon peak in transpiration and leaf temperature (12:00-14:00). Our observations suggest the sap velocity-LST hysteresis pattern arises due to the temporal offset between stomatal conductance and vapor pressure deficits (VPD) and demonstrates the dominating effect of VPD over stomatal conductance in maintaining high transpiration/sap flow rates under elevated temperatures. Our results have important implications for modeling tropical forest transpiration and suggests the possibility of predicting evapotranspiration fluxes at the ecosystem to regional scales based on remote sensed vegetation temperature.

  3. SUMO Chamber Conditions

    DOE Data Explorer

    Sevanto, Sanna [Los Alamos National Laboratory; Powers, Heath [Los Alamos National Laboratory; Dickman, Turin L. [Los Alamos National Laboratory; Collins, Adam [Los Alamos National Laboratory; Grossiord, Charlotte [Swiss Federal Institute for Forest Snow and Landscape Research; Adams, Henry [Oklahoma State University; Borrego, Isaac [USGS Southwest Biological Science Center; McDowell, Nate [Pacific Northwest National Laboratory (PNNL); Stockton, Elizabeth [University of New Mexico; Ryan, Max [Los Alamos National Laboratory; Slentz, Matthew [Mohle Adams; Briggs, Sam [Fossil Creek Nursery; McBranch, Natalie [Los Alamos National Laboratory; Morgan, Bryn [Los Alamos National Laboratory

    2018-01-01

    The Los Alamos Survival–Mortality experiment (SUMO) is located on Frijoles Mesa near Los Alamos, New Mexico, USA, at an elevation of 2150 m. This was a tree manipulation study that investigated the relative impacts of drought and warming on plant function and reveals how trees adapt to drought and heat in semi-arid regions. The study factored the role of tree hydraulic acclimation to both precipitation and temperature and separated their effects.The experiment is located in a pinon-juniper woodland near the ponderosa pine (Pinus ponderosa) forest ecotone. Chamber conditions (temperature, relative humidity, vapor pressure deficit) for SUMO Open Top Chambers (OTCs) used to control air temperatures surrounding heated and control chamber trees. See SUMO Target Tree Information data package (doi:10.15485/1440544) for additional information. Data released by Los Alamos National Lab for public use under LA-UR-18-23656.

  4. A method for locating potential tree-planting sites in urban areas: a case study of Los Angeles, USA

    Treesearch

    Chunxia Wua; Qingfu Xiaoa; Gregory E. McPherson

    2008-01-01

    A GIS-based method for locating potential tree-planting sites based on land cover data is introduced. Criteria were developed to identify locations that are spatially available for potential tree planting based on land cover, sufficient distance from impervious surfaces, a minimum amount of pervious surface, and no crown overlap with other trees. In an ArcGIS...

  5. [Difference of water relationships of poplar trees in Zhangbei County, Hebei, China based on stable isotope and thermal dissipation method].

    PubMed

    Miao, Bo; Meng, Ping; Zhang, Jin Song; He, Fang Jie; Sun, Shou Jia

    2017-07-18

    The water sources and transpiration of poplar trees in Zhangbei County were measured using stable hydrogen isotope and thermal dissipation method. The differences in water relationships between dieback and non-dieback poplar trees were analyzed. The results showed that the dieback trees mainly used shallow water from 0-30 cm soil layer during growing season while the non-dieback trees mainly used water from 30-80 cm soil layer. There was a significant difference in water source between them. The non-dieback trees used more water from middle and deep soil layers than that of the dieback trees during the dry season. The percentage of poplar trees using water from 0-30 cm soil layer increased in wet season, and the increase of dieback trees was higher than that of non-dieback trees. The contributions of water from 30-180 cm soil layer of dieback and non-dieback trees both decreased in wet season. The sap flow rate of non-dieback trees was higher than that of dieback trees. There was a similar variation tend of sap flow rate between dieback and non-dieback trees in different weather conditions, but the start time of sap flow of non-dieback trees was earlier than that of dieback trees. Correlation analysis showed that the sap flow rate of either dieback or non-dieback poplar trees strongly related to soil temperature, wind speed, photosynthetically active radiation, relative humidity and air temperature. The sap flow rate of die-back poplar trees strongly negatively related to soil temperature and relative humidity, and strongly positively related to the other factors. The sap flow rate of non-dieback poplar trees only strongly negatively related to relative humidity but positively related to the other factors. The results revealed transpiration of both poplar trees was easily affected by environmental factors. The water consumption of dieback trees was less than non-dieback trees because the cumulative sap flow amount of dieback trees was lower. Reduced transpiration of dieback trees couldn't help to prevent poplar forest declining due to shallow water source.

  6. Radial Growth and Physiological Response of Coniferous Trees to Arctic Amplification

    NASA Astrophysics Data System (ADS)

    Tei, Shunsuke; Sugimoto, Atsuko; Liang, Maochang; Yonenobu, Hitoshi; Matsuura, Yojiro; Osawa, Akira; Sato, Hisashi; Fujinuma, Junichi; Maximov, Trofim

    2017-11-01

    We describe the physiological responses of boreal conifers to climate change for the past 112 years using ring-width and carbon isotope ratio (δ13C) chronologies at six forest sites in northern Eurasia and Canada. Responses differed among regions, depending on their climatic and/or geographic characteristics. Tree radial growth decreased over the past 52 years in central eastern Siberia with the higher rate of summer temperature increase than other regions, as indicated by the negative correlation between radial growth and summer temperature, but increased in northern Europe and Canada. Changes in tree-ring δ13C indicated that recent climatic conditions have induced stronger drought stress for trees from central eastern Siberia than for those from other regions. The observed tree growth trends were compared to those simulated using a dynamic global vegetation model. Although the modeled annual net primary production (NPP) for trees generally exhibited similar decadal variation to radial growth, simulations did not show a recent decrease in tree growth, even in central eastern Siberia. This was probably due to an overestimation of the sensitivity of modeled tree NPP to precipitation. Our results suggest that the tree NPP forecasted under the expected future increases in temperature and average precipitation might be overestimated, especially in severely dry regions such as central eastern Siberia.

  7. Annual Proxy Records from Tropical Cloud Forest Trees in the Monteverde Cloud Forest, Costa Rica

    NASA Astrophysics Data System (ADS)

    Anchukaitis, K. J.; Evans, M. N.; Wheelwright, N. T.; Schrag, D. P.

    2005-12-01

    The extinction of the Golden Toad (Bufo periglenes) from Costa Rica's Monteverde Cloud Forest prompted research into the causes of ecological change in the montane forests of Costa Rica. Subsequent analysis of meteorological data has suggested that warmer global surface and tropical Pacific sea surface temperatures contribute to an observed decrease in cloud cover at Monteverde. However, while recent studies may have concluded that climate change is already having an effect on cloud forest environments in Costa Rica, without the context provided by long-term climate records, it is difficult to confidently conclude that the observed ecological changes are the result of anthropogenic climate forcing, land clearance in the lowland rainforest, or natural variability in tropical climate. To address this, we develop high-resolution proxy paleoclimate records from trees without annual rings in the Monteverde Cloud Forest in Costa Rica. Calibration of an age model in these trees is a fundamental prerequisite for proxy paleoclimate reconstructions. Our approach exploits the isotopic seasonality in the δ18O of water sources (fog versus rainfall) used by trees over the course of a single year. Ocotea tenera individuals of known age and measured annual growth increments were sampled in long-term monitored plantation sites in order to test this proposed age model. High-resolution (200μm increments) stable isotope measurements on cellulose reveal distinct, coherent δ18O cycles of 6 to 10‰. The calculated growth rates derived from the isotope timeseries match those observed from basal growth increment measurements. Spatial fidelity in the age model and climate signal is examined by using multiple cores from multiple trees and multiple sites. These data support our hypothesis that annual isotope cycles in these trees can be used to provide chronological control in the absence of rings. The ability of trees to record interannual climate variability in local hydrometeorology and remote climate forcing is evaluated using the isotope signal from multiple trees, local meteorological observations, and climate field data for the well-observed 1997-1998 warm El Niño-Southern Oscillation (ENSO) event. The successful calibration of our age model is a necessary step toward the development of long, annually-resolved paleoclimate reconstructions from old trees, even without rings, which will be used to evaluate the cause of recent observed climate change at Monteverde and as proxies for tropical climate field reconstructions.

  8. Elevated growth temperatures alter hydraulic characteristics in trembling aspen (Populus tremuloides) seedlings: implications for tree drought tolerance

    Treesearch

    Danielle A. Way; Jean-Christophe Domec; Robert B. Jackson

    2013-01-01

    Although climate change will alter both soil water availability and evaporative demand, our understanding of how future climate conditions will alter tree hydraulic architecture is limited. Here, we demonstrate that growth at elevated temperatures (ambient +5 °C) affects hydraulic traits in seedlings of the deciduous boreal tree species Populus tremuloides, with the...

  9. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds

    Treesearch

    Martin Wilmking; Glenn P. Juday; Valerie A. Barber; Harold S.J. Zald

    2004-01-01

    Northern and high-latitude alpine treelines are generally thought to be limited by available warmth. Most studies of tree-growth-climate interaction at treeline as well as climate reconstructions using dendrochronology report positive growth response of treeline trees to warmer temperatures. However, population-wide responses of treeline trees to climate remain largely...

  10. Simulated transient thermal infrared emissions of forest canopies during rainfall events

    NASA Astrophysics Data System (ADS)

    Ballard, Jerrell R.; Hawkins, William R.; Howington, Stacy E.; Kala, Raju V.

    2017-05-01

    We describe the development of a centimeter-scale resolution simulation framework for a theoretical tree canopy that includes rainfall deposition, evaporation, and thermal infrared emittance. Rainfall is simulated as discrete raindrops with specified rate. The individual droplets will either fall through the canopy and intersect the ground; adhere to a leaf; bounce or shatter on impact with a leaf resulting in smaller droplets that are propagated through the canopy. Surface physical temperatures are individually determined by surface water evaporation, spatially varying within canopy wind velocities, solar radiation, and water vapor pressure. Results are validated by theoretical canopy gap and gross rainfall interception models.

  11. Predicting tree biomass growth in the temperate-boreal ecotone: is tree size, age, competition or climate response most important?

    USGS Publications Warehouse

    Foster, Jane R.; Finley, Andrew O.; D'Amato, Anthony W.; Bradford, John B.; Banerjee, Sudipto

    2016-01-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species likeAcer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone.

  12. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important?

    PubMed

    Foster, Jane R; Finley, Andrew O; D'Amato, Anthony W; Bradford, John B; Banerjee, Sudipto

    2016-06-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests' ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals' size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92-95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone. © 2015 John Wiley & Sons Ltd.

  13. Rapid warming forces contrasting growth trends of subalpine fir ( Abies fabri ) at higher- and lower-elevations in the eastern Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenzhi; Jia, Min; Wang, Genxu

    Tree radial growth is expected to increase at higher elevations under climate warming, while lower elevation tree growth is expected to decline. However, numerous studies have found tree radial growth responds consistently to climate along elevational gradients. Here, we sampled five plots across the subalpine Abies fabri forest belt on Gongga Mountain in the eastern Tibetan Plateau to determine tree radial growth trends and responses to climate. Three commonly used detrending methods all consistently showed that tree radial growth at high elevation (> 3100 m) increased, while tree growth declined at the lower elevations (2700 m–2900 m) over the lastmore » three decades. Increasing late-growing season temperature positively (p < 0.05) correlated to tree radial growth at higher elevations, but the sign of this relationship reversed to become negative at lower elevations. Moving-window correlation analyses indicated the difference between high and low elevations response to temperature variation increased strongly with warming. Placing our result into the global context, 62% of 39 published studies found that trees along elevation gradients respond divergently to warming, and that these are located in warmer and wetter regions of the Earth. Notably, 28% of studies found non-significant responses to temperature at both high and low elevations. Our findings in the subalpine mountain forest in the eastern Tibetan Plateau were consistent with the majority of published datasets, and imply increasing temperature benefit for tree populations at higher elevation, while warming dampens growth at lower elevations.« less

  14. Seeing the landscape for the trees: Metrics to guide riparian shade management in river catchments

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew F.; Wilby, Robert L.

    2015-05-01

    Rising water temperature (Tw) due to anthropogenic climate change may have serious consequences for river ecosystems. Conservation and/or expansion of riparian shade could counter warming and buy time for ecosystems to adapt. However, sensitivity of river reaches to direct solar radiation is highly heterogeneous in space and time, so benefits of shading are also expected to be site specific. We use a network of high-resolution temperature measurements from two upland rivers in the UK, in conjunction with topographic shade modeling, to assess the relative significance of landscape and riparian shade to the thermal behavior of river reaches. Trees occupy 7% of the study catchments (comparable with the UK national average) yet shade covers 52% of the area and is concentrated along river corridors. Riparian shade is most beneficial for managing Tw at distances 5-20 km downstream from the source of the rivers where discharge is modest, flow is dominated by near-surface hydrological pathways, there is a wide floodplain with little landscape shade, and where cumulative solar exposure times are sufficient to affect Tw. For the rivers studied, we find that approximately 0.5 km of complete shade is necessary to off-set Tw by 1°C during July (the month with peak Tw) at a headwater site; whereas 1.1 km of shade is required 25 km downstream. Further research is needed to assess the integrated effect of future changes in air temperature, sunshine duration, direct solar radiation, and downward diffuse radiation on Tw to help tree planting schemes achieve intended outcomes.

  15. Stress indicators based on airborne thermal imagery for field phenotyping a heterogeneous tree population for response to water constraints

    PubMed Central

    Virlet, Nicolas; Lebourgeois, Valentine; Martinez, Sébastien; Costes, Evelyne; Labbé, Sylvain; Regnard, Jean-Luc

    2014-01-01

    As field phenotyping of plant response to water constraints constitutes a bottleneck for breeding programmes, airborne thermal imagery can contribute to assessing the water status of a wide range of individuals simultaneously. However, the presence of mixed soil–plant pixels in heterogeneous plant cover complicates the interpretation of canopy temperature. Moran’s Water Deficit Index (WDI = 1–ETact/ETmax), which was designed to overcome this difficulty, was compared with surface minus air temperature (T s–T a) as a water stress indicator. As parameterization of the theoretical equations for WDI computation is difficult, particularly when applied to genotypes with large architectural variability, a simplified procedure based on quantile regression was proposed to delineate the Vegetation Index–Temperature (VIT) scatterplot. The sensitivity of WDI to variations in wet and dry references was assessed by applying more or less stringent quantile levels. The different stress indicators tested on a series of airborne multispectral images (RGB, near-infrared, and thermal infrared) of a population of 122 apple hybrids, under two irrigation regimes, significantly discriminated the tree water statuses. For each acquisition date, the statistical method efficiently delineated the VIT scatterplot, while the limits obtained using the theoretical approach overlapped it, leading to inconsistent WDI values. Once water constraint was established, the different stress indicators were linearly correlated to the stem water potential among a tree subset. T s–T a showed a strong sensitivity to evaporative demand, which limited its relevancy for temporal comparisons. Finally, the statistical approach of WDI appeared the most suitable for high-throughput phenotyping. PMID:25080086

  16. The Impact of Greenspace on Thermal Comfort in a Residential Quarter of Beijing, China.

    PubMed

    Wu, Zhifeng; Kong, Fanhua; Wang, Yening; Sun, Ranhao; Chen, Liding

    2016-12-08

    With the process of urbanization, a large number of residential quarters, which is the main dwelling form in the urban area of Beijing, have been developed in last three decades to accommodate the rising population. In the context of intensification of urban heat island (UHI), the potential degradation of the thermal environment of residential quarters can give rise to a variety of problems affecting inhabitants' health. This paper reports the results of a numerical study of the thermal conditions of a residential quarter on a typical summertime day under four greening modification scenarios, characterized by different leaf area density (LAD) profiles. The modelling results demonstrated that vegetation could evidently reduce near-surface air temperature, with the combination of grass and mature trees achieving as much as 1.5 °C of air temperature decrease compared with the non-green scenario. Vegetation can also lead to smaller air temperature fluctuations, which contribute to a more stable microclimate. The Universal Thermal Climate Index (UTCI) was then calculated to represent the variation of thermal environment of the study area. While grass is helpful in improving outdoor thermal comfort, trees are more effective in reducing the duration and expansion of suffering from severe heat stress. The results of this study showed that proper maintenance of vegetation, especially trees, is significant to improving the outdoor thermal environment in the summer season. In consideration of the deficiency of the current code in the management of greenspace in residential areas, we hope the results reported here will help promote the improvement of the code and related regulations for greenspace management.

  17. The Impact of Greenspace on Thermal Comfort in a Residential Quarter of Beijing, China

    PubMed Central

    Wu, Zhifeng; Kong, Fanhua; Wang, Yening; Sun, Ranhao; Chen, Liding

    2016-01-01

    With the process of urbanization, a large number of residential quarters, which is the main dwelling form in the urban area of Beijing, have been developed in last three decades to accommodate the rising population. In the context of intensification of urban heat island (UHI), the potential degradation of the thermal environment of residential quarters can give rise to a variety of problems affecting inhabitants’ health. This paper reports the results of a numerical study of the thermal conditions of a residential quarter on a typical summertime day under four greening modification scenarios, characterized by different leaf area density (LAD) profiles. The modelling results demonstrated that vegetation could evidently reduce near-surface air temperature, with the combination of grass and mature trees achieving as much as 1.5 °C of air temperature decrease compared with the non-green scenario. Vegetation can also lead to smaller air temperature fluctuations, which contribute to a more stable microclimate. The Universal Thermal Climate Index (UTCI) was then calculated to represent the variation of thermal environment of the study area. While grass is helpful in improving outdoor thermal comfort, trees are more effective in reducing the duration and expansion of suffering from severe heat stress. The results of this study showed that proper maintenance of vegetation, especially trees, is significant to improving the outdoor thermal environment in the summer season. In consideration of the deficiency of the current code in the management of greenspace in residential areas, we hope the results reported here will help promote the improvement of the code and related regulations for greenspace management. PMID:27941659

  18. Stable carbon isotopic composition of tree rings from a pine tree from Augustów Wilderness, Poland, as a temperature and local environment conditions indicator.

    PubMed

    Pawelczyk, Slawomira; Pazdur, Anna; Halas, Stanislaw

    2004-06-01

    Tree rings can be used as archives of climatic and environmental data with annual resolution. Tree rings widths, maximum late wood density and other parameters as stable composition in tree rings can be used for the reconstruction of past climatic and environmental changes. Stable carbon isotope ratios in tree rings may provide valuable information on past climatic conditions. 13C/12C ratios of plant organic matter can reflect corresponding 13C/12C ratio of atmospheric CO2 during formation of the rings. Investigations of isotopic carbon composition in tree rings from in the ecologically clean the Augustów Wilderness region in the north-eastern part of Poland (22 degrees 58'E, 53 degrees 51'N) (nowadays a sanctuary) were undertaken. Series of delta13C in alpha-cellulose and in wholewood were acquired. Those measurements constituted a part of more complex investigations of carbon isotope composition in tree rings including the measurements of radiocarbon concentration and tree ring widths. This article presents preliminary results. It is argued that contrary to the tree ring widths and delta13C in wholewood that do not reveal significant correlation with temperature, the variation of delta13C in the latewood alpha-cellulose is correlated with combined July and August temperatures. Copyright 2004 Taylor and Francis Ltd.

  19. Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model

    NASA Astrophysics Data System (ADS)

    Acevedo, Walter; Fallah, Bijan; Reich, Sebastian; Cubasch, Ulrich

    2017-05-01

    Paleoclimate data assimilation (DA) is a promising technique to systematically combine the information from climate model simulations and proxy records. Here, we investigate the assimilation of tree-ring-width (TRW) chronologies into an atmospheric global climate model using ensemble Kalman filter (EnKF) techniques and a process-based tree-growth forward model as an observation operator. Our results, within a perfect-model experiment setting, indicate that the "online DA" approach did not outperform the "off-line" one, despite its considerable additional implementation complexity. On the other hand, it was observed that the nonlinear response of tree growth to surface temperature and soil moisture does deteriorate the operation of the time-averaged EnKF methodology. Moreover, for the first time we show that this skill loss appears significantly sensitive to the structure of the growth rate function, used to represent the principle of limiting factors (PLF) within the forward model. In general, our experiments showed that the error reduction achieved by assimilating pseudo-TRW chronologies is modulated by the magnitude of the yearly internal variability in the model. This result might help the dendrochronology community to optimize their sampling efforts.

  20. Effect of Temperature on Acoustic Evaluation of Standing trees and logs: Part 1-Laboratory investigation

    Treesearch

    Shan Gao; Xiping Wang; Lihai Wang; R. Bruce. Allison

    2012-01-01

    The goals of this study were to investigate the effect of environment temperature on acoustic velocity of standing trees and green logs and to develop workable models for compensating temperature differences as acoustic measurements are performed in different climates and seasons. The objective of Part 1 was to investigate interactive effects of temperature and...

  1. Spring-Summer Temperatures Since AD 1780 Reconstructed from Stable Oxygen Isotope Ratios in White Spruce Tree-Rings from the Mackenzie Delta, Northwestern Canada

    NASA Technical Reports Server (NTRS)

    Porter, Trevor J.; Pisaric, Michael F. J.; Field, Robert D.; Kokelj, Steven V.; Edwards, Thomas W. D.; deMontigny, Peter; Healy, Richard; LeGrande, Allegra N.

    2013-01-01

    High-latitude delta(exp 18)O archives deriving from meteoric water (e.g., tree-rings and ice-cores) can provide valuable information on past temperature variability, but stationarity of temperature signals in these archives depends on the stability of moisture source/trajectory and precipitation seasonality, both of which can be affected by atmospheric circulation changes. A tree-ring delta(exp 18)O record (AD 1780-2003) from the Mackenzie Delta is evaluated as a temperature proxy based on linear regression diagnostics. The primary source of moisture for this region is the North Pacific and, thus, North Pacific atmospheric circulation variability could potentially affect the tree-ring delta(exp 18)O-temperature signal. Over the instrumental period (AD 1892-2003), tree-ring delta(exp 18)O explained 29% of interannual variability in April-July minimum temperatures, and the explained variability increases substantially at lower-frequencies. A split-period calibration/verification analysis found the delta(exp 18)O-temperature relation was time-stable, which supported a temperature reconstruction back to AD 1780. The stability of the delta(exp 18)O-temperature signal indirectly implies the study region is insensitive to North Pacific circulation effects, since North Pacific circulation was not constant over the calibration period. Simulations from the NASA-GISS ModelE isotope-enabled general circulation model confirm that meteoric delta(exp 18)O and precipitation seasonality in the study region are likely insensitive to North Pacific circulation effects, highlighting the paleoclimatic value of tree-ring and possibly other delta(exp 18)O records from this region. Our delta(exp 18)O-based temperature reconstruction is the first of its kind in northwestern North America, and one of few worldwide, and provides a long-term context for evaluating recent climate warming in the Mackenzie Delta region.

  2. Early Stages Of Biome Shift in Boreal Alaska: Climate Sensitivity of Tree Growth and Accelerated Tree Mortality

    NASA Astrophysics Data System (ADS)

    Juday, G. P.; Grant, T.; Alix, C. M.; Spencer, D. L.; Beck, P. S.

    2012-12-01

    The boreal forest region of Alaska is characterized by a major east-west climate gradient, in addition to a widely appreciated north-south gradient. Low elevations of the eastern and central Interior experience warm summer temperatures and low annual precipitation, while coastal western Alaska has cool summer temperatures and greater precipitation. In the Interior the four dominant tree species of white and black spruce, aspen, and Alaska birch on low elevation sites nearly all register a strong negative radial growth relationship to summer temperatures, concentrated in May and July. Precipitation, particularly in late winter and midsummer, plays a supplemental role as a positive factor in growth. Floodplain white spruce along the Yukon and Kuskokwim Rivers transition from negative temperature response to positive response in western Alaska near the tree limit. Populations of white spruce on treeline sites display both negative growth response to July temperature and positive response to spring temperatures, with the negative response dominant in the east and the positive response dominant in the west. Across boreal Alaska summer temperatures increased abruptly in 1974, and have remained at historically high levels since. Correspondingly, climatic favorability for radial growth of Interior trees on most low elevation sites has been at extreme low levels particularly in the 21st century. Satellite-based NDVI coverage confirms that forest growth reduction is widespread in boreal Alaska since the 1980s. Defoliating and wood boring insects have reached outbreak population levels across most of boreal Alaska, partly from release of direct temperature control on the insects and partly from increased tree host susceptibility. Major outbreak species include aspen leaf miner, spruce engraver beetle, and spruce budworm. About a dozen tall willow species have been subjected to widespread attack by willow leaf blotch miner, and a new disease and defoliating insect have spread rapidly in alder shrubs, so nearly all woody species face health challenges. Temperatures and precipitation on many Interior sites are now at or beyond tolerance limits for white spruce, aspen, and Alaska birch. Two episodes of acute drought injury were widespread in birch during the last decade. Deficits in climate predicted tree growth are synchronous with the major insect outbreaks as recorded in insect trapping records and aerial surveys of area affected. Over the past 25 years tree mortality of 50% or more occurred in nearly all long-term monitoring plots in mature stands on productive sites in the Interior, but to date trees have successfully regenerated on most disturbed sites. These environmental changes and tree responses, including opposite responses, are coherent, and consistent with early stages of a biome shift eliminating boreal forest on dry Interior sites, and emergence of a new climate optimum zone in western Alaska currently only sparsely populated with forest.

  3. Evaluation of Rock Surface Characterization by Means of Temperature Distribution

    NASA Astrophysics Data System (ADS)

    Seker, D. Z.; Incekara, A. H.; Acar, A.; Kaya, S.; Bayram, B.; Sivri, N.

    2017-12-01

    Rocks have many different types which are formed over many years. Close range photogrammetry is a techniques widely used and preferred rather than other conventional methods. In this method, the photographs overlapping each other are the basic data source of the point cloud data which is the main data source for 3D model that provides analysts automation possibility. Due to irregular and complex structures of rocks, representation of their surfaces with a large number points is more effective. Color differences caused by weathering on the rock surfaces or naturally occurring make it possible to produce enough number of point clouds from the photographs. Objects such as small trees, shrubs and weeds on and around the surface also contribute to this. These differences and properties are important for efficient operation of pixel matching algorithms to generate adequate point cloud from photographs. In this study, possibilities of using temperature distribution for interpretation of roughness of rock surface which is one of the parameters representing the surface, was investigated. For the study, a small rock which is in size of 3 m x 1 m, located at ITU Ayazaga Campus was selected as study object. Two different methods were used. The first one is production of producing choropleth map by interpolation using temperature values of control points marked on object which were also used in 3D model. 3D object model was created with the help of terrestrial photographs and 12 control points marked on the object and coordinated. Temperature value of control points were measured by using infrared thermometer and used as basic data source in order to create choropleth map with interpolation. Temperature values range from 32 to 37.2 degrees. In the second method, 3D object model was produced by means of terrestrial thermal photographs. Fort this purpose, several terrestrial photographs were taken by thermal camera and 3D object model showing temperature distribution was created. The temperature distributions in both applications are almost identical in position. The areas on the rock surface that roughness values are higher than the surroundings can be clearly identified. When the temperature distributions produced by both methods are evaluated, it is observed that as the roughness on the surface increases, the temperature increases.

  4. Long tree-ring chronologies provide evidence of recent tree growth decrease in a Central African tropical forest.

    PubMed

    Battipaglia, Giovanna; Zalloni, Enrica; Castaldi, Simona; Marzaioli, Fabio; Cazzolla-Gatti, Roberto; Lasserre, Bruno; Tognetti, Roberto; Marchetti, Marco; Valentini, Riccardo

    2015-01-01

    It is still unclear whether the exponential rise of atmospheric CO2 concentration has produced a fertilization effect on tropical forests, thus incrementing their growth rate, in the last two centuries. As many factors affect tree growth patterns, short -term studies might be influenced by the confounding effect of several interacting environmental variables on plant growth. Long-term analyses of tree growth can elucidate long-term trends of plant growth response to dominant drivers. The study of annual rings, applied to long tree-ring chronologies in tropical forest trees enables such analysis. Long-term tree-ring chronologies of three widespread African species were measured in Central Africa to analyze the growth of trees over the last two centuries. Growth trends were correlated to changes in global atmospheric CO2 concentration and local variations in the main climatic drivers, temperature and rainfall. Our results provided no evidence for a fertilization effect of CO2 on tree growth. On the contrary, an overall growth decline was observed for all three species in the last century, which appears to be significantly correlated to the increase in local temperature. These findings provide additional support to the global observations of a slowing down of C sequestration in the trunks of forest trees in recent decades. Data indicate that the CO2 increase alone has not been sufficient to obtain a tree growth increase in tropical trees. The effect of other changing environmental factors, like temperature, may have overridden the fertilization effect of CO2.

  5. Long Tree-Ring Chronologies Provide Evidence of Recent Tree Growth Decrease in a Central African Tropical Forest

    PubMed Central

    Battipaglia, Giovanna; Zalloni, Enrica; Castaldi, Simona; Marzaioli, Fabio; Cazzolla- Gatti, Roberto; Lasserre, Bruno; Tognetti, Roberto; Marchetti, Marco; Valentini, Riccardo

    2015-01-01

    It is still unclear whether the exponential rise of atmospheric CO2 concentration has produced a fertilization effect on tropical forests, thus incrementing their growth rate, in the last two centuries. As many factors affect tree growth patterns, short -term studies might be influenced by the confounding effect of several interacting environmental variables on plant growth. Long-term analyses of tree growth can elucidate long-term trends of plant growth response to dominant drivers. The study of annual rings, applied to long tree-ring chronologies in tropical forest trees enables such analysis. Long-term tree-ring chronologies of three widespread African species were measured in Central Africa to analyze the growth of trees over the last two centuries. Growth trends were correlated to changes in global atmospheric CO2 concentration and local variations in the main climatic drivers, temperature and rainfall. Our results provided no evidence for a fertilization effect of CO2 on tree growth. On the contrary, an overall growth decline was observed for all three species in the last century, which appears to be significantly correlated to the increase in local temperature. These findings provide additional support to the global observations of a slowing down of C sequestration in the trunks of forest trees in recent decades. Data indicate that the CO2 increase alone has not been sufficient to obtain a tree growth increase in tropical trees. The effect of other changing environmental factors, like temperature, may have overridden the fertilization effect of CO2. PMID:25806946

  6. The distribution shifts of Pinus armandii and its response to temperature and precipitation in China

    PubMed Central

    Zheng, Xiaofeng; Gao, Pengxiang

    2017-01-01

    Background The changing climate, particularly in regard to temperature and precipitation, is already affecting tree species’ distributions. Pinus armandii, which dominates on the Yungui Plateau and in the Qinba Mountains in China, is of economic, cultural and ecological value. We wish to test the correlations between the distribution shift of P. armandii and changing climate, and figure out how it tracks future climate change. Methods We sampled the surface soil at sites throughout the distribution of P. armandii to compare the relative abundance of pollen to the current percent cover of plant species. This was used to determine possible changes in the distribution P. armandii. Given the hilly terrain, elevation was considered together with temperature and precipitation as variables correlated with distribution shifts of P. armandii. Results We show that P. armandii is undergoing change in its geographic range, including retraction, a shift to more northern areas and from the upper high part of the mountains to a lower-altitude part in hilly areas. Temperature was the strongest correlate of this distribution shift. Elevation and precipitation were also both significantly correlated with distribution change of P. armandii, but to a lesser degree than temperature. Conclusion The geographic range of P. armandii has been gradually decreasing under the influence of climate change. This provides evidence of the effect of climate change on trees at the species level and suggests that at least some species will have a limited ability to track the changing climate. PMID:28929025

  7. Stay tuned: active amplification tunes tree cricket ears to track temperature-dependent song frequency.

    PubMed

    Mhatre, Natasha; Pollack, Gerald; Mason, Andrew

    2016-04-01

    Tree cricket males produce tonal songs, used for mate attraction and male-male interactions. Active mechanics tunes hearing to conspecific song frequency. However, tree cricket song frequency increases with temperature, presenting a problem for tuned listeners. We show that the actively amplified frequency increases with temperature, thus shifting mechanical and neuronal auditory tuning to maintain a match with conspecific song frequency. Active auditory processes are known from several taxa, but their adaptive function has rarely been demonstrated. We show that tree crickets harness active processes to ensure that auditory tuning remains matched to conspecific song frequency, despite changing environmental conditions and signal characteristics. Adaptive tuning allows tree crickets to selectively detect potential mates or rivals over large distances and is likely to bestow a strong selective advantage by reducing mate-finding effort and facilitating intermale interactions. © 2016 The Author(s).

  8. Difference in tree growth responses to climate at the upper treeline: Qilian Juniper in the Anyemaqen Mountains.

    PubMed

    Peng, Jianfeng; Gou, Xiaohua; Chen, Fahu; Li, Jinbao; Liu, Puxing; Zhang, Yong; Fang, Keyan

    2008-08-01

    Three ring-width chronologies were developed from Qilian Juniper (Sabina przewalskii Kom.) at the upper treeline along a west-east gradient in the Anyemaqen Mountains. Most chronological statistics, except for mean sensitivity (MS), decreased from west to east. The first principal component (PC1) loadings indicated that stands in a similar climate condition were most important to the variability of radial growth. PC2 loadings decreased from west to east, suggesting the difference of tree-growth between eastern and western Anyemaqen Mountains. Correlations between standard chronologies and climatic factors revealed different climatic influences on radial growth along a west-east gradient in the study area. Temperature of warm season (July-August) was important to the radial growth at the upper treeline in the whole study area. Precipitation of current May was an important limiting factor of tree growth only in the western (drier) upper treeline, whereas precipitation of current September limited tree growth in the eastern (wetter) upper treeline. Response function analysis results showed that there were regional differences between tree growth and climatic factors in various sampling sites of the whole study area. Temperature and precipitation were the important factors influencing tree growth in western (drier) upper treeline. However, tree growth was greatly limited by temperature at the upper treeline in the middle area, and was more limited by precipitation than temperature in the eastern (wetter) upper treeline.

  9. Measuring soil and tree temperatures during prescribed fires with thermocouple probes

    Treesearch

    Stephen S. Sackett; Sally M. Haase

    1992-01-01

    Soil and cambium temperatures must be known to ascertain certain effects of prescribed fires on trees. Thermocouple-based systems were devised for measuring soil and cambium temperatures during prescribed fires. The systems, which incorporate both commercially available and custom components, perform three basic functions: data collection, data retrieval, and data...

  10. How Do Trees Know When to Flower? Predicting Reproductive Phenology of Douglas-fir with Changing Winter and Spring Temperatures

    NASA Astrophysics Data System (ADS)

    Prevey, J.; St Clair, B.; Harrington, C.

    2016-12-01

    Flowering at the right time is one of the primary ways that plants are adapted to their environment. Trees that flower too early risk cold damage to vulnerable new tissues and those that flower too late miss peak resources or may mistime flowering to coincide with other trees, altering outcrossing rates and gene flow. Past observations indicate that temperature cues over winter and spring influence the timing of flowering in many tree species. Understanding these cues is important for predicting how flowering phenology of trees will change with a changing climate.We developed predictive models of flowering for Douglas-fir, an abundant and commercially important tree in the Pacific Northwest. We assembled over 10,000 flowering observations of trees from 11 sites across western Oregon and Washington. We modeled the dates of flowering using hourly temperature data; our models of flowering were adapted from previous models of vegetative budburst and height growth initiation developed for Douglas-fir. Preliminary results show that both chilling (cold) and forcing (warm) temperatures over winter and spring are important determinants of flowering time for Douglas-fir. This suggests that as spring temperatures warm in the future, Douglas-fir across the Pacific Northwest will flower earlier, unless plants experience insufficient chilling over winter, in which case it is possible that Douglas-fir may flower later than in the past, or not flower at all. At one site, Douglas-fir genotypes from different geographic regions flowered in the same order from year to year, indicating that both temperature and heredity influence flowering. Knowledge of the environmental and genetic cues that drive the timing of flowering can help predict how changes in temperature under various climate models could change flowering time across sites. These models may also indicate the geographic areas where future climate could enhance or reduce flowering of Douglas-fir in the future.

  11. Intra- and interspecific tree growth across a long altitudinal gradient in the Peruvian Andes.

    PubMed

    Rapp, Joshua M; Silman, Miles R; Clark, James S; Girardin, Cecile A J; Galiano, Darcy; Tito, Richard

    2012-09-01

    Tree growth response across environmental gradients is fundamental to understanding species distributional ecology and forest ecosystem ecology and to predict future ecosystem services. Cross-sectional patterns of ecosystem properties with respect to climatic gradients are often used to predict ecosystem responses to global change. Across sites in the tropics, primary productivity increases with temperature, suggesting that forest ecosystems will become more productive as temperature rises. However, this trend is confounded with a shift in species composition and so may not reflect the response of in situ forests to warming. In this study, we simultaneously studied tree diameter growth across the altitudinal ranges of species within a single genus across a geographically compact temperature gradient, to separate the direct effect of temperature on tree growth from that of species compositional turnover. Using a Bayesian state space modeling framework we combined data from repeated diameter censuses and dendrometer measurements from across a 1700-m altitudinal gradient collected over six years on over 2400 trees in Weinmannia, a dominant and widespread genus of cloud forest trees in the Andes. Within species, growth showed no consistent trend with altitude, but higher-elevation species had lower growth rates than lower-elevation species, suggesting that species turnover is largely responsible for the positive correlation between productivity and temperature in tropical forests. Our results may indicate a significant difference in how low- and high-latitude forests will respond to climate change, since temperate and boreal tree species are consistently observed to have a positive relationship between growth and temperature. If our results hold for other tropical species, a positive response in ecosystem productivity to increasing temperatures in the Andes will depend on the altitudinal migration of tree species. The rapid pace of climate change, and slow observed rates of migration, suggest a slow, or even initially negative response of ecosystem productivity to warming. Finally, this study shows how the observed scale of biological organization can affect conclusions drawn from studies of ecological phenomena across environmental gradients, and calls into question the common practice in tropical ecology of lumping species at higher taxonomic levels.

  12. Diameter-growth model across shortleaf pine range using regression tree analysis

    Treesearch

    Daniel Yaussy; Louis Iverson; Anantha Prasad

    1999-01-01

    Diameter growth of a tree in most gap-phase models is limited by light, nutrients, moisture, and temperature. Growing-season temperature is represented by growing degree days (gdd), which is the sum of the average daily temperatures above a baseline temperature. Gap-phase models determine the north-south range of a species by the gdd limits at the north and south...

  13. Hydrostratigraphy of Tree Island Cores from Water Conservation Area 3

    USGS Publications Warehouse

    McNeill, Donald F.; Cunningham, Kevin J.

    2003-01-01

    Cores and borehole-geophysical logs collected on and around two tree islands in Water Conservation Area 3 have been examined to develop a stratigraphic framework for these ecosystems. Especially important is the potential for the exchange of ground water and surface water within these features. The hydrostratigraphic results from this study document the lithologic nature of the foundation of the tree islands, the distribution of porous intervals, the potential for paleotopographic influence on their formation, and the importance of low-permeability, subaerial-exposure horizons on the vertical exchange of ground water and surface water. Figure 1. Location of Tree Islands 3AS3 and 3BS1. [larger image] Results from this hydrostratigraphic study indicate that subtle differences occur in lithofacies and topography between the on-island and off-island subsurface geologic records. Specifics are described herein. Firstly, at both tree-island sites, the top of the limestone bedrock is slightly elevated beneath the head of the tree islands relative to the off-island core sites and the tail of the tree islands, which suggests that bedrock 'highs' acted as 'seeds' for the development of the tree islands of this study and possibly many others. Secondly, examination of the recovered core and the caliper logs tentatively suggest that the elevated limestone beneath the tree islands may have a preferentially more porous framework relative to limestone beneath the adjacent areas, possibly providing a ground-water-to-surface-water connection that sustains the tree island system. Finally, because the elevation of the top of the limestone bedrock at the head of Tree Island 3AS3 is slightly higher than the surrounding upper surface of the peat, and because the wetland peats have a lower hydraulic conductivity than the limestone bedrock (Miami Limestone and Fort Thompson Formation), it is possible that there is a head difference between surface water of the wetlands and the ground water in underlying limestone bedrock.

  14. There is no temperature dependence of net biochemical fractionation of hydrogen and oxygen isotopes in tree-ring cellulose.

    PubMed

    Roden, J S; Ehleringer, J R

    2000-01-01

    The isotopic composition of tree-ring cellulose was obtained over a two-year period from small diameter, riparian zone trees along an elevational transect in Big Cottonwood Canyon, Utah, USA to test for a possible temperature dependence of net biological fractionation during cellulose synthesis. The isotope ratios of stream water varied by only 3.6% and 0.2% in deltaD and delta18O, respectively, over an elevation change of 810m. The similarity in stream water and macroenvironment over the short (13km) transect produced nearly constant stem and leaf water deltaD and delta18O values. In addition, what few seasonal variations observed in the isotopic composition of source water and atmospheric water vapor or in leaf water evaporative enrichment were experienced equally by all sites along the elevational transect. The temperature at each site along the transect spanned a range of > or = 5 degrees C as calculated using the adiabatic lapse rate. Since the deltaD and delta18O values of stem and leaf water varied little for these trees over this elevation/temperature transect, any differences in tree-ring cellulose deltaD and delta18O values should have been associated with temperature effects on net biological fractionation. However, the slopes of the regressions of elevation versus the deltaD and delta18O values of tree-ring cellulose were not significantly different from zero indicating little or no temperature dependence of net biological fractionation. Therefore, cross-site climatic reconstruction studies using the isotope ratios of cellulose need not be concerned that temperatures during the growing season have influenced results.

  15. Shifts in Geochemical Parameters and Greenhouse Gas Fluxes following Insect-Induced Tree Mortality

    NASA Astrophysics Data System (ADS)

    Brouillard, B.; Mikkelson, K. M.; Berryman, E.; Sharp, J.; Leonard, L.; Vega, M.

    2016-12-01

    Extensive insect infestations and resultant expansive tree mortality are occurring globally due in part to warmer temperatures and persistent drought. These forest disturbances are expected to cause shifts in the biogeochemical cycle due to the cessation of below ground root outputs, changes in soil microbial communities, hydrologic perturbations, and altered woody material deposits to the forest floor. To better understand biogeochemical alterations and resolve potentially conflicting findings, we studied a lodgepole pine forest recently impacted by mountain pine beetles to determine the response of subsurface geochemical parameters and gaseous flux to the effects of surrounding tree mortality. While many parameters were found to be significantly different under recently killed trees compared to their healthy counterparts (pH, soil moisture, C/N-species), notable biogeochemically relevant parameters displayed shifts that tracked with the level of surrounding tree mortality. For instance, aromatic carbon (TSUVA) and CO2 respiration were found to have an increasing linear response under grey trees as the surrounding tree mortality within an 8m radius also increased. Rather than a linear increase, ammonium and nitrogen associated bacterial communities displayed a threshold effect, not increasing until a certain level of tree mortality of approximately 40% was surpassed. Gas flux was also correlated to measured parameters in three near surface soil horizons to determine drivers of CO2 and N2O release and their interactions with biogeochemical cycles. Collectively, these results aid in elucidating the extent of forest mortality required to overcome compensatory terrestrial biogeochemical processes. A heightened understanding of these shifts will aid the scientific and resource management community through enhanced predictive understanding of greenhouse gas release or potential water quality impacts following forest disturbance.

  16. Tree-hugging koalas demonstrate a novel thermoregulatory mechanism for arboreal mammals

    PubMed Central

    Briscoe, Natalie J.; Handasyde, Kathrine A.; Griffiths, Stephen R.; Porter, Warren P.; Krockenberger, Andrew; Kearney, Michael R.

    2014-01-01

    How climate impacts organisms depends not only on their physiology, but also whether they can buffer themselves against climate variability via their behaviour. One of the way species can withstand hot temperatures is by seeking out cool microclimates, but only if their habitat provides such refugia. Here, we describe a novel thermoregulatory strategy in an arboreal mammal, the koala Phascolarctos cinereus. During hot weather, koalas enhanced conductive heat loss by seeking out and resting against tree trunks that were substantially cooler than ambient air temperature. Using a biophysical model of heat exchange, we show that this behaviour greatly reduces the amount of heat that must be lost via evaporative cooling, potentially increasing koala survival during extreme heat events. While it has long been known that internal temperatures of trees differ from ambient air temperatures, the relevance of this for arboreal and semi-arboreal mammals has not previously been explored. Our results highlight the important role of tree trunks as aboveground ‘heat sinks’, providing cool local microenvironments not only for koalas, but also for all tree-dwelling species. PMID:24899683

  17. Hide and go seek with temperature signals of Northeastern US Tree Species

    NASA Astrophysics Data System (ADS)

    Alexander, M. R.; Pederson, N.; Bishop, D. A.; Pearl, J. K.; Anchukaitis, K. J.

    2017-12-01

    Improving reconstructions of past climate is vital in providing long-term context for regional climate change. There have been only two published reconstructions of past temperatures in the northeastern U.S. (NEUS) since the 1980s, one based on Picea rubens, and one out in 2017 based upon Chamaecyparis thyoides (Atlantic white cedar; AWC). Because increased species diversity generally improves dendrohydroclimatic reconstructions and both Picea rubens and AWC have limitations as paleoproxies due to land-use and air pollution, we conducted a series of tests to ask, "Does species diversity improve reconstructions of temperature history in the northeastern United States?" The first two tests were performed on AWC and then a network of AWC and Picea rubens. Subsequent tests added groups of species or genera from a network of 230 tree-ring chronologies beginning with those having the strongest relation between warming temperatures and increased growth. PC1 of the AWC test represented 40% of the variance and showed a significant positive relation with winter temperature (r = 0.38). As additional species were included, the "winter temperature PC" accounted for less of the overall variance, ranging from 26% of the variance in test 2 to 5% by test 5. AWC is swamped by the hydroclimatic signal that dominates our network. Populations of species such as Fagus grandifolia, Fraxinus nigra, Juniperus virginiana, Liriodendron tulipifera, Pinus rigida, and Pinus strobus from our network loaded strongest with AWC on the winter temperature PC. Including multiple species accounted for almost 20% more variance in the winter temperature record than AWC alone. Although drought is a dominating influence of tree growth in this region, our results suggest that winter temperatures are recorded within NEUS tree rings. Increasing the species diversity of tree proxies has the potential for improving reconstruction of paleotemperatures in regions lacking latitudinal or altitudinal tree lines, such as those found in the NEUS.

  18. The influence of volcanic eruptions on growth of central European lowland trees in NE-Germany during the last Millennium

    NASA Astrophysics Data System (ADS)

    Pieper, Hagen; Heinrich, Ingo; Heußner, Karl-Uwe; Helle, Gerd

    2013-04-01

    Large and mainly tropical volcanic eruptions can have significant effects on the Earth's climate system, likely resulting in decreased summer and increased winter temperature means, as well as enhanced fractions of diffuse light lasting for one to several years after the eruptive outbreak. It has been argued that due to scattering by volcanic sulfur aerosol the more diffuse light fraction can be particularly beneficial for tree growth and more generally for ecosystems biomass productivity. However, other observations suggest decreasing tree-ring width because of the cooler conditions following large eruptions, with overall stronger fingerprints expected towards higher altitudes and higher latitudes where tree growth is mainly temperature-limited. Since tree growth in lowland temperate climate zones is dominated by various climate quantities rather than temperature alone. Thus it has been hypothesized that tree growth within the temperate zones of the mid-latitudes may not suffer from lower temperatures per se, but rather profits from increased rates of diffuse light, in tandem with reduced evapotranspiration and subsequently enhanced soil moisture availability. Most studies so far have concentrated on the impact of volcanic eruptions on trees growing outside the temperate climate zones. This study aims at trees in temperate zones where tree growth is less temperature limited. Therefore, a comprehensive database with 1128 samples of millennium-long tree-ring chronologies of Quercus robur L. and Pinus sylvestris L. based on heterogenous archaeological material originating from three different lowland sites (Greifswald, Eberswalde and Saxony) in eastern Germany was used to test whether tree growth suffered or profited from the globally changed conditions after large volcanic eruptions. The growth relationships were tested against 49 individual large volcanic eruptions from the last Millennium. High-resolution ice core records of sulfate measurements calibrated against atmospheric observations after modern eruptions identified the timing and magnitude of the eruptions since 1000 CE. Dendrochronological methods revealed a predominantly negative relationship of our long tree-ring chronologies to large volcanic eruptions. In two tree-ring width chronologies of oak and pine (Quercus robur L. and Pinus sylvestris L.) originating from the different sites in eastern Germany a negative influence on tree growth for up to four years after large eruptions could be detected. In comparison, the chronologies of Q. robur reveal a stronger negative (71%) response after large eruptions than those of P. sylvestris (54%). Only at the Greifswald site both tree species show a common negative response in tree growth after volcanic eruptions. For both tree species and at all three sites just the eruption years of 1586 revealed significant positive growth responses whereas significant negative tree growths was detected after the eruptions of 1800. Volcanic aerosols originating from the northern hemisphere appear to cause a greater reduction in tree growth than aerosols from volcanoes from the southern hemisphere, which probably relates to the shorter distance to the investigated tree sites. Our study clearly indicates that effects of major volcanic eruptions are less obvious in central Europe than observed for trees growing at the altitudinal or latitudinal timberlines.

  19. Modeling the relationships among internal defect features and external Appalachian hardwood log defect indicators

    Treesearch

    R. Edward Thomas

    2009-01-01

    As a hardwood tree grows and develops, surface defects such as branch stubs and wounds are overgrown. Evidence of these defects remain on the log surface for decades and in many instances for the life of the tree. As the tree grows the defect is encapsulated or grown over by new wood. During this process the appearance of the defect in the tree's bark changes. The...

  20. Intermediate-scale community-level flux of CO 2 and CH 4 in a Minnesota peatland: Putting the SPRUCE project in a global context

    DOE PAGES

    Hanson, Paul J.; Gill, Allison; Xu, Xiaofeng; ...

    2016-08-20

    Peatland measurements of CO 2 and CH 4 flux were obtained at scales appropriate to the in situ biological community below the tree layer to demonstrate representativeness of the spruce and peatland responses under climatic and environmental change (SPRUCE) experiment. Surface flux measurements were made using dual open-path analyzers over an area of 1.13 m 2 in daylight and dark conditions along with associated peat temperatures, water table height, hummock moisture, atmospheric pressure and incident radiation data. Observations from August 2011 through December 2014 demonstrated seasonal trends correlated with temperature as the dominant apparent driving variable. The S1-Bog for themore » SPRUCE study was found to be representative of temperate peatlands in terms of CO 2 and CH 4 flux. Maximum net CO 2 flux in midsummer showed similar rates of C uptake and loss: daytime surface uptake was -5 to -6 µmol m -2 s -1 and dark period loss rates were 4–5 µmol m -2 s -1 (positive values are carbon lost to the atmosphere). Maximum midsummer CH4-C flux ranged from 0.4 to 0.5 µmol m -2 s -1 and was a factor of 10 lower than dark CO 2–C efflux rates. Midwinter conditions produced near-zero flux for both CO 2 and CH 4 with frozen surfaces. Integrating temperature-dependent models across annual periods showed dark CO 2–C and CH 4–C flux to be 894 ± 34 and 16 ± 2 gC m -2 y -1, respectively. Net ecosystem exchange of carbon from the shrub-forb-Sphagnum-microbial community (excluding tree contributions) ranged from -3.1 gCO2–C m -2 y -1 in 2013, to C losses from 21 to 65 gCO 2–C m -2 y -1 for the other years.« less

  1. Physical and chemical characterizations of biochars derived from different agricultural residues

    NASA Astrophysics Data System (ADS)

    Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M. A.; Sonoki, T.

    2014-08-01

    Biochar has received large attention as a strategy to tackle against carbon emission. Not only carbon fixation has been carried out but also other merits for agricultural application due to unique physical and chemical character such as absorption of contaminated compounds in soil, trapping ammonia and methane emission from compost, and enhancement of fertilizer quality. In our study, different local waste feed stocks (rice husk, rice straw, wood chips of apple tree (Malus Pumila) and oak tree (Quercus serrata)), in Aomori, Japan, were utilized for creating biochar with different temperature (400-800 °C). Concerning to the biochar production, the pyrolysis of lower temperature had more biochar yield than higher temperature pyrolysis process. On the contrary, surface areas and adsorption characters have been increased as increasing temperature. The proportions of carbon content in the biochars also increased together with increased temperatures. Infrared-Fourier spectra (FT-IR) and 13C-NMR were used to understand carbon chemical compositions in our biochars, and it was observed that the numbers of the shoulders representing aromatic groups, considered as stable carbon structure appeared as the temperature came closer to 600 °C, as well as in FT-IR. In rice materials, the peak assigned to SiO2, was observed in all biochars (400-800 °C) in FT-IR. We suppose that the pyrolysis at 600 °C creates the most recalcitrant character for carbon sequestration, meanwhile the pyrolysis at 400 °C produces the superior properties as a fertilizer by retaining volatile and easily labile compounds which promotes soil microbial activities.

  2. Isoprene emission and photosynthesis during heatwaves and drought in black locust

    NASA Astrophysics Data System (ADS)

    Bamberger, Ines; Ruehr, Nadine K.; Schmitt, Michael; Gast, Andreas; Wohlfahrt, Georg; Arneth, Almut

    2017-08-01

    Extreme weather conditions like heatwaves and drought can substantially affect tree physiology and the emissions of isoprene. To date, however, there is only limited understanding of isoprene emission patterns during prolonged heat stress and next to no data on emission patterns during coupled heat-drought stress or during post-stress recovery. We studied gas exchange and isoprene emissions of black locust trees under episodic heat stress and in combination with drought. Heatwaves were simulated in a controlled greenhouse facility by exposing trees to outside temperatures +10 °C, and trees in the heat-drought treatment were supplied with half of the irrigation water given to heat and control trees. Leaf gas exchange of isoprene, CO2 and H2O was quantified using self-constructed, automatically operating chambers, which were permanently installed on leaves (n = 3 per treatment). Heat and combined heat-drought stress resulted in a sharp decline of net photosynthesis (Anet) and stomatal conductance. Simultaneously, isoprene emissions increased 6- to 8-fold in the heat and heat-drought treatment, which resulted in a carbon loss that was equivalent to 12 and 20 % of assimilated carbon at the time of measurement. Once temperature stress was released at the end of two 15-day-long heatwaves, stomatal conductance remained reduced, while isoprene emissions and Anet recovered quickly to values of the control trees. Further, we found that isoprene emissions covaried with Anet during nonstress conditions, while during the heatwaves, isoprene emissions were not related to Anet but to light and temperature. Under standard air temperature and light conditions (here 30 °C and photosynthetically active radiation of 500 µmol m-2 s-1), isoprene emissions of the heat trees were by 45 % and the heat-drought trees were by 27 % lower than in control trees. Moreover, temperature response curves showed that not only the isoprene emission factor changed during both heat and heat-drought stress, but also the shape of the response. Because introducing a simple treatment-specific correction factor could not reproduce stress-induced isoprene emissions, different parameterizations of light and temperature functions are needed to describe tree isoprene emissions under heat and combined heat-drought stress. In order to increase the accuracy of predictions of isoprene emissions in response to climate extremes, such individual stress parameterizations should be introduced to current BVOC models.

  3. Evidence of tree species' range shifts in a complex landscape.

    PubMed

    Monleon, Vicente J; Lintz, Heather E

    2015-01-01

    Climate change is expected to change the distribution of species. For long-lived, sessile species such as trees, tracking the warming climate depends on seedling colonization of newly favorable areas. We compare the distribution of seedlings and mature trees for all but the rarest tree species in California, Oregon and Washington, United States of America, a large, environmentally diverse region. Across 46 species, the mean annual temperature of the range of seedlings was 0.120°C colder than that of the range of trees (95% confidence interval from 0.096 to 0.144°C). The extremes of the seedling distributions also shifted towards colder temperature than those of mature trees, but the change was less pronounced. Although the mean elevation and mean latitude of the range of seedlings was higher than and north of those of the range of mature trees, elevational and latitudinal shifts run in opposite directions for the majority of the species, reflecting the lack of a direct biological relationship between species' distributions and those variables. The broad scale, environmental diversity and variety of disturbance regimes and land uses of the study area, the large number and exhaustive sampling of tree species, and the direct causal relationship between the temperature response and a warming climate, provide strong evidence to attribute the observed shifts to climate change.

  4. The study of the thermal imaging law on several objects in winter environment

    NASA Astrophysics Data System (ADS)

    Wang, Xuan-yu; Pang, Min-hui

    2013-09-01

    Some thermal imaging experiments have been done about a building with a door made of iron, copperplate and aluminum flake, several trees, marbles, a glass window and a concrete wall under different conditions in a winter day while the environmental temperature and relative humidity are simultaneously measured by an electronic sensor. The experimental results show that the thermal imaging temperatures of the targets are related to the category of materials, and presenting some laws with the environment temperature changing. All of the thermal imaging temperature of the targets obviously varies with the atmospheric environment temperature by the large temperature difference. The changes of the surface temperature of metals are more obviously than nonmetals. The thermal imaging temperature of the door made of iron is more easily affected by the atmospheric environment temperature than copperplate while aluminum flake is more difficultly affected than copperplate under the same condition. The temperature of an ordinary concrete wall is obviously higher than the one painted by oil paint. Under the same condition, the changes of glasses are the most in all of the nonmetal targets.

  5. Long-term growth decline in Toona ciliata in a moist tropical forest in Bangladesh: Impact of global warming

    NASA Astrophysics Data System (ADS)

    Rahman, Mizanur; Islam, Rofiqul; Islam, Mahmuda

    2017-04-01

    Tropical forests are carbon rich ecosystems and small changes in tropical forest tree growth substantially influence the global carbon cycle. Forest monitoring studies report inconsistent growth changes in tropical forest trees over the past decades. Most of the studies highlighted changes in the forest level carbon gain, neglecting the species-specific growth changes which ultimately determine community-level responses. Tree-ring analysis can provide historical data on species-specific tree growth with annual resolution. Such studies are inadequate in Bangladesh, which is one of the most climate sensitive regions in the tropics. In this study, we investigated long-term growth rates of Toona ciliata in a moist tropical forest of Bangladesh by using tree-ring analysis. We sampled 50 trees of varying size, obtained increment cores from these trees and measured tree-ring width. Analyses of growth patterns revealed size-dependent growth increments. After correcting for the effect of tree size on tree growth (ontogenetic changes) by two different methods we found declining growth rates in T. ciliata from 1960 to 2013. Standardized ring-width index (RWI) was strongly negatively correlated with annual mean and maximum temperatures suggesting that rising temperature might cause the observed growth decline in T. ciliata. Assuming that global temperatures will rise at the current rate, the observed growth decline is assumed to continue. The analysis of stable carbon and oxygen isotopes may reveal more insight on the physiological response of this species to future climatic changes.

  6. Tree Density and Species Decline in the African Sahel Attributable to Climate

    NASA Technical Reports Server (NTRS)

    Gonzalez, Patrick; Tucker, Compton J.; Sy, H.

    2012-01-01

    Increased aridity and human population have reduced tree cover in parts of the African Sahel and degraded resources for local people. Yet, tree cover trends and the relative importance of climate and population remain unresolved. From field measurements, aerial photos, and Ikonos satellite images, we detected significant 1954-2002 tree density declines in the western Sahel of 18 +/- 14% (P = 0.014, n = 204) and 17 +/- 13% (P = 0.0009, n = 187). From field observations, we detected a significant 1960-2000 species richness decline of 21 +/- 11% (P = 0.0028, n = 14) across the Sahel and a southward shift of the Sahel, Sudan, and Guinea zones. Multivariate analyses of climate, soil, and population showed that temperature most significantly (P < 0.001) explained tree cover changes. Multivariate and bivariate tests and field observations indicated the dominance of temperature and precipitation, supporting attribution of tree cover changes to climate variability. Climate change forcing of Sahel climate variability, particularly the significant (P < 0.05) 1901-2002 temperature increases and precipitation decreases in the research areas, connects Sahel tree cover changes to global climate change. This suggests roles for global action and local adaptation to address ecological change in the Sahel.

  7. Nitrate-nitrogen reduction by established tree and pasture buffer strips associated with a cattle feedlot effluent disposal area near Armidale, NSW Australia.

    PubMed

    Wang, Liangmin; Duggin, John A; Nie, Daoping

    2012-05-30

    Vegetated buffer strips have been recognized as an important element in overall agro-ecosystem management to reduce the delivery of non-point source pollutants from agricultural land to inland water systems. A buffer strip experiment consisting of two tree species (Eucalyptus camaldulensis and Casuarina cunninghamiana) with two planting densities and a pasture treatment was conducted to determine the effectiveness of NO(3)-N removal from a cattle feedlot effluent disposal area at Tullimba near Armidale, NSW Australia. Different management methods were applied for the buffers where grass and weeds were mowed 2-3 times during the second and third years and were not managed during the rest experimental years for the tree buffer, while grass was harvested 1-3 times per year for the pasture buffer. The differences between tree species and planting density significantly affected tree growth, but the growth difference did not significantly affect their capacities to reduce NO(3)-N in soil surface runoff and groundwater. On average for all the tree and pasture treatments, the buffer strips reduced NO(3)-N concentration by 8.5%, 14.7% and 14.4% for the surface runoff, shallow and deep groundwater respectively. The tree and pasture buffer strips were not significantly different in NO(3)-N reduction for both shallow and deep groundwater while the pasture buffer strips reduced significantly more NO(3)-N concentration in surface runoff than the tree buffer strips. Both buffer strips reduced more than 50% of surface runoff volume indicating that both the tree and pasture buffer strips were efficient at removing water and nutrients, mostly through a significant reduction in soil surface runoff volume. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Global Climate Change (GCC) Issues and Their Impacts on the US Army Corps of Engineers

    DTIC Science & Technology

    1991-11-01

    Amazon River flow. At first this flow was channeled down the Mississippi River to the Gulf of Mexico: "... about 11,000 years ago, however, a major...Foraminifera ( fossil evidence of microorganisms that inhabit water masses of specific temperature and salinity) from surface waters of the Gulf of...records can be tied into tree ring records (both current and fossilized ) to produce an accurate record for the last 8,200 years. This type of study is

  9. BOREAS TE-5 Surface Meteorological and Radiation Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. Measurements of meteorological data, including air and soil temperature, RH, and PPFD, were 30-minute intervals during the 1994 IFCs at various sites in the BOREAS NSA and SSA. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  10. The interaction between freezing tolerance and phenology in temperate deciduous trees

    PubMed Central

    Vitasse, Yann; Lenz, Armando; Körner, Christian

    2014-01-01

    Temperate climates are defined by distinct temperature seasonality with large and often unpredictable weather during any of the four seasons. To thrive in such climates, trees have to withstand a cold winter and the stochastic occurrence of freeze events during any time of the year. The physiological mechanisms trees adopt to escape, avoid, and tolerate freezing temperatures include a cold acclimation in autumn, a dormancy period during winter (leafless in deciduous trees), and the maintenance of a certain freezing tolerance during dehardening in early spring. The change from one phase to the next is mediated by complex interactions between temperature and photoperiod. This review aims at providing an overview of the interplay between phenology of leaves and species-specific freezing resistance. First, we address the long-term evolutionary responses that enabled temperate trees to tolerate certain low temperature extremes. We provide evidence that short term acclimation of freezing resistance plays a crucial role both in dormant and active buds, including re-acclimation to cold conditions following warm spells. This ability declines to almost zero during leaf emergence. Second, we show that the risk that native temperate trees encounter freeze injuries is low and is confined to spring and underline that this risk might be altered by climate warming depending on species-specific phenological responses to environmental cues. PMID:25346748

  11. Dating young geomorphic surfaces using age of colonizing Douglas fir in southwestern Washington and northwestern Oregon, USA

    USGS Publications Warehouse

    Pierson, T.C.

    2007-01-01

    Dating of dynamic, young (<500 years) geomorphic landforms, particularly volcanofluvial features, requires higher precision than is possible with radiocarbon dating. Minimum ages of recently created landforms have long been obtained from tree-ring ages of the oldest trees growing on new surfaces. But to estimate the year of landform creation requires that two time corrections be added to tree ages obtained from increment cores: (1) the time interval between stabilization of the new landform surface and germination of the sampled trees (germination lag time or GLT); and (2) the interval between seedling germination and growth to sampling height, if the trees are not cored at ground level. The sum of these two time intervals is the colonization time gap (CTG). Such time corrections have been needed for more precise dating of terraces and floodplains in lowland river valleys in the Cascade Range, where significant eruption-induced lateral shifting and vertical aggradation of channels can occur over years to decades, and where timing of such geomorphic changes can be critical to emergency planning. Earliest colonizing Douglas fir (Pseudotsuga menziesii) were sampled for tree-ring dating at eight sites on lowland (<750 m a.s.l.), recently formed surfaces of known age near three Cascade volcanoes - Mount Rainier, Mount St. Helens and Mount Hood - in southwestern Washington and northwestern Oregon. Increment cores or stem sections were taken at breast height and, where possible, at ground level from the largest, oldest-looking trees at each study site. At least ten trees were sampled at each site unless the total of early colonizers was less. Results indicate that a correction of four years should be used for GLT and 10 years for CTG if the single largest (and presumed oldest) Douglas fir growing on a surface of unknown age is sampled. This approach would have a potential error of up to 20 years. Error can be reduced by sampling the five largest Douglas fir instead of the single largest. A GLT correction of 5 years should be added to the mean ring-count age of the five largest trees growing on the surface being dated, if the trees are cored at ground level. This correction would have an approximate error of ??5 years. If the trees are cored at about 1.4 m above the round surface (breast height), a CTG correction of 11 years should be added to the mean age of the five sampled trees (with an error of about ??7 years).

  12. Updated precipitation reconstruction (AD 1482-2012) for Huashan, north-central China

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Zhang, Ruibo; Wang, Huiqin; Qin, Li; Yuan, Yujiang

    2016-02-01

    We developed a tree-ring width chronology from pine trees ( Pinus tabulaeformis and Pinus armandii) stand near the peaks of Huashan, Shaanxi, north-central China. Growth-climate response analyses showed that the radial growth of pine trees is mainly influenced by April-June precipitation. A model to reconstruct precipitation based on tree widths was constructed, accounting for 55 % of the instrumental variance during the period 1953-2012. Spatial correlation analyses between the reconstruction and observed gridded precipitation data shows that the seasonal precipitation reconstruction captures regional climatic variations over north China. Compared with the historical archives and other tree-ring records in north China, many large-scale drought events, linked to the El Niño-Southern Oscillation (ENSO), were found. Many of these events have had profound impacts on the people of north China over the past several centuries. Composite maps of sea surface temperatures and 500 hPa geopotential heights for selected extremely dry and wet years in Huashan show characteristics similar to those related to the ENSO patterns, particularly with regard to ocean and atmospheric conditions in the equatorial and north Pacific. Our 531-year precipitation reconstruction for Huashan provides a long-term perspective on current and 20th century wet and dry events in north China, and is useful to guide expectations of future variability, and helps us to address climate change.

  13. Effect of temperature on Acoustic Evaluation of standing trees and logs: Part 2: Field Investigation

    Treesearch

    Shan Gao; Xiping Wang; Lihai Wang; R. Bruce Allison

    2013-01-01

    The objectives of this study were to investigate the effect of seasonal temperature changes on acoustic velocity measured on standing trees and green logs and to develop models for compensating temperature differences because acoustic measurements are performed in different climates and seasons. Field testing was conducted on 20 red pine (Pinus resinosa...

  14. Mycelial abundance and other factors related to truffle productivity in Tuber melanosporum-Quercus ilex orchards.

    PubMed

    Suz, Laura M; Martín, María P; Oliach, Daniel; Fischer, Christine R; Colinas, Carlos

    2008-08-01

    Relative quantification of DNA from Tuber melanosporum mycelia was performed by conventional and real-time PCR in soil from trees in three truffle orchards of different ages to determine: (1) whether burn appearance is related to the amount of T. melanosporum mycelium in soil, and (2) whether productivity onset and truffle production are related to (a) the amount of T. melanosporum mycelium in soil, (b) tree height and diameter, (c) burn extension and (d) surface rock cover. The burn seems to appear only after a certain amount of mycelium has formed. Precociously productive trees presented higher quantities of mycelium than nonproductive trees in the productivity onset study, while highly productive trees presented less quantities of mycelium than nonproductive trees in the productivity study. Trees with high but not excessive surface rock cover showed greater truffle production. Larger trees tended to display a burn earlier than smaller trees.

  15. Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest.

    PubMed

    Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Ohashi, Mizue; Matsumoto, Kazuho; Ichihashi, Ryuji; Kumagai, Tomo'omi; Otsuki, Kyoichi

    2014-05-01

    Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux. © The Author 2014. Published by Oxford University Press. All rights reserved.

  16. Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis.

    PubMed

    Aspinwall, Michael J; Drake, John E; Campany, Courtney; Vårhammar, Angelica; Ghannoum, Oula; Tissue, David T; Reich, Peter B; Tjoelker, Mark G

    2016-10-01

    Understanding physiological acclimation of photosynthesis and respiration is important in elucidating the metabolic performance of trees in a changing climate. Does physiological acclimation to climate warming mirror acclimation to seasonal temperature changes? We grew Eucalyptus tereticornis trees in the field for 14 months inside 9-m tall whole-tree chambers tracking ambient air temperature (Tair ) or ambient Tair  + 3°C (i.e. 'warmed'). We measured light- and CO2 -saturated net photosynthesis (Amax ) and night-time dark respiration (R) each month at 25°C to quantify acclimation. Tree growth was measured, and leaf nitrogen (N) and total nonstructural carbohydrate (TNC) concentrations were determined to investigate mechanisms of acclimation. Warming reduced Amax and R measured at 25°C compared to ambient-grown trees. Both traits also declined as mean daily Tair increased, and did so in a similar way across temperature treatments. Amax and R (at 25°C) both increased as TNC concentrations increased seasonally; these relationships appeared to arise from source-sink imbalances, suggesting potential substrate regulation of thermal acclimation. We found that photosynthesis and respiration each acclimated equivalently to experimental warming and seasonal temperature change of a similar magnitude, reflecting a common, nearly homeostatic constraint on leaf carbon exchange that will be important in governing tree responses to climate warming. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. Photosynthesis and isoprene emission from trees along an urban-rural gradient in Texas.

    PubMed

    Lahr, Eleanor C; Schade, Gunnar W; Crossett, Caitlin C; Watson, Matthew R

    2015-11-01

    Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban-rural gradient that serves as a proxy for climate change, to understand daily and seasonal responses to changes in temperature and other environmental variables. Leaf-level gas exchange and basal isoprene emission of post oak (Quercus stellata) and sweet gum (Liquidambar styraciflua) were recorded at regular intervals over an entire growing season at urban, suburban, and rural sites in eastern Texas. In addition, the temperature and atmospheric carbon dioxide concentration experienced by leaves were experimentally manipulated in spring, early summer, and late summer. We found that trees experienced lower stomatal conductance and photosynthesis and higher isoprene emission, at the urban and suburban sites compared to the rural site. Path analysis indicated a daily positive effect of isoprene emission on photosynthesis, but unexpectedly, higher isoprene emission from urban trees was not associated with improved photosynthesis as temperatures increased during the growing season. Furthermore, urban trees experienced relatively higher isoprene emission at high CO2 concentrations, while isoprene emission was suppressed at the other sites. These results suggest that isoprene emission may be less beneficial in urban, and potentially future, environmental conditions, particularly if higher temperatures override the suppressive effects of high CO2 on isoprene emission. These are important considerations for modeling future biosphere-atmosphere interactions and for understanding tree physiological responses to climate change. © 2015 John Wiley & Sons Ltd.

  18. Fine Root Abundance and Dynamics of Stone Pine (Pinus cembra) at the Alpine Treeline Is Not Impaired by Self-shading.

    PubMed

    Kubisch, Petra; Leuschner, Christoph; Coners, Heinz; Gruber, Andreas; Hertel, Dietrich

    2017-01-01

    Low temperatures are crucial for the formation of the alpine treeline worldwide. Since soil temperature in the shade of tree canopies is lower than in open sites, it was assumed that self-shading may impair the trees' root growth performance. While experiments with tree saplings demonstrate root growth impairment at soil temperatures below 5-7°C, field studies exploring the soil temperature - root growth relationship at the treeline are missing. We recorded soil temperature and fine root abundance and dynamics in shaded and sun-exposed areas under canopies of isolated Pinus cembra trees at the alpine treeline. In contrast to the mentioned assumption, we found more fine root biomass and higher fine root growth in colder than in warmer soil areas. Moreover, colder areas showed higher fine root turnover and thus lower root lifespan than warmer places. We conclude that P. cembra balances enhanced fine root mortality in cold soils with higher fine root activity and by maintaining higher fine root biomass, most likely as a response to shortage in soil resource supply. The results from our study highlight the importance of in situ measurements on mature trees to understand the fine root response and carbon allocation pattern to the thermal growth conditions at the alpine treeline.

  19. Temperature changes in Poland from the 16th to the 20th centuries

    NASA Astrophysics Data System (ADS)

    Przybylak, Rajmund; Majorowicz, Jacek; Wójcik, Gabriel; Zielski, Andrzej; Choryczewski, Waldemar; Marciniak, Kazimierz; Nowosad, Wiesaw; Oliski, Piotr; Syta, Krzysztof

    2005-05-01

    A standardized tree-ring width chronology of the Scots pine (Pinus sylvestris L.) along with different types of documentary evidence (e.g. annals, chronicles, diaries, private correspondence, records of public administration, early newspapers) have been used to reconstruct air temperature in Poland. The ground surface temperature (GST) history has been reconstructed based on the continuous temperature logs from 13 wells, using a new method developed recently by Harris and Chapman (1998; Journal of Geophysical Research 103: 7371-7383) which is compared with the functional space inversion (FSI) method applied to all available Polish temperature-depth profiles analysed before.Response function calculations conducted for trees growing in Poland (except in mountainous regions) reveal a statistically significant correlation between the annual ring widths of the Scots pine and the monthly mean air temperatures, particularly from February and March, but also from January and April. Therefore, it was only possible to reconstruct the mean January-April air temperature.The following periods featured a warm late winter/early spring: 1530-90, 1656-70 (the warmest period), 1820-50, 1910-40, and after 1985. On the other hand, a cold January-April occurred in the following periods: 1600-50, 1760-75, 1800-15, 1880-1900, and 1950-80.Reconstructions of thermal conditions using documentary evidence were carried out for winter (December-February) and summer (June-August) from 1501 to 1840 and, therefore, their results cannot be directly compared with reconstructions based on tree-ring widths. Winter temperatures in this period were colder than air temperature in the 20th century. On the other hand, historical summers were generally warmer than those occurring in the 20th century. Such situations dominated in the 16th and 17th centuries, as well as at the turn of the 18th and 19th centuries. Throughout almost the entire period from 1501 to 1840, the thermal continentality of the climate in Poland was greater than in the 20th century.GST reconstructions show that its average pre-instrumental level (1500-1778) is about 0.9-1.5 °C lower than the mean air temperature for the period 1951-81. Lower amplitude of GST warming (0.9 +/- 0.1 °C) results from the individual and simultaneous inversions of well temperature data using the FSI method. A very good correspondence of the results has been found between series of annual mean GSTs from the FSI method and mean seasonal air temperatures reconstructed using documentary evidence.

  20. Effect of Different Tree canopies on the Brightness Temperature of Snowpack

    NASA Astrophysics Data System (ADS)

    Mousavi, S.; De Roo, R. D.; Brucker, L.

    2017-12-01

    Snow stores the water we drink and is essential to grow food that we eat. But changes in snow quantities such as snow water equivalent (SWE) are underway and have serious consequences. So, effective management of the freshwater reservoir requires to monitor frequently (weekly or better) the spatial distribution of SWE and snowpack wetness. Both microwave radar and radiometer systems have long been considered as relevant remote sensing tools in retrieving globally snow physical parameters of interest thanks to their all-weather operation capability. However, their observations are sensitive to the presence of tree canopies, which in turns impacts SWE estimation. To address this long-lasting challenge, we parked a truck-mounted microwave radiometer system for an entire winter in a rare area where it exists different tree types in the different cardinal directions. We used dual-polarization microwave radiometers at three different frequencies (1.4, 19, and 37 GHz), mounted on a boom truck to observe continuously the snowpack surrounding the truck. Observations were recorded at different incidence angles. These measurements have been collected in Grand Mesa National Forest, Colorado as part of the NASA SnowEx 2016-17. In this presentation, the effect of Engelmann Spruce and Aspen trees on the measured brightness temperature of snow is discussed. It is shown that Engelmann Spruce trees increases the brightness temperature of the snowpack more than Aspen trees do. Moreover, the elevation angular dependence of the measured brightness temperatures of snowpack with and without tree canopies is investigated in the context of SWE retrievals. A time-lapse camera was monitoring a snow post installed in the sensors' field of view to characterize the brightness temperature change as snow depth evolved. Also, our study takes advantage of the snowpit measurements that were collected near the radiometers' field of view.

  1. Phenology of temperate trees in tropical climates

    NASA Astrophysics Data System (ADS)

    Borchert, Rolf; Robertson, Kevin; Schwartz, Mark D.; Williams-Linera, Guadalupe

    2005-09-01

    Several North American broad-leaved tree species range from the northern United States at ˜47°N to moist tropical montane forests in Mexico and Central America at 15-20°N. Along this gradient the average minimum temperatures of the coldest month (T Jan), which characterize annual variation in temperature, increase from -10 to 12°C and tree phenology changes from deciduous to leaf-exchanging or evergreen in the southern range with a year-long growing season. Between 30 and 45°N, the time of bud break is highly correlated with T Jan and bud break can be reliably predicted for the week in which mean minimum temperature rises to 7°C. Temperature-dependent deciduous phenology—and hence the validity of temperature-driven phenology models—terminates in southern North America near 30°N, where T Jan>7°C enables growth of tropical trees and cultivation of frost-sensitive citrus fruits. In tropical climates most temperate broad-leaved species exchange old for new leaves within a few weeks in January-February, i.e., their phenology becomes similar to that of tropical leaf-exchanging species. Leaf buds of the southern ecotypes of these temperate species are therefore not winter-dormant and have no chilling requirement. As in many tropical trees, bud break of Celtis, Quercus and Fagus growing in warm climates is induced in early spring by increasing daylength. In tropical climates vegetative phenology is determined mainly by leaf longevity, seasonal variation in water stress and day length. As water stress during the dry season varies widely with soil water storage, climate-driven models cannot predict tree phenology in the tropics and tropical tree phenology does not constitute a useful indicator of global warming.

  2. Climate change for the last 1,000 years inferred from borehole temperatures

    NASA Astrophysics Data System (ADS)

    Kitaoka, K.; Arimoto, H.; Hamamoto, H.; Taniguchi, M.; Takeuchi, T.

    2013-12-01

    Subsurface temperatures are an archive of temperature changes occurred at the ground surface in the recent past (Lachenbruch and Marshall, 1986; Pollack, 1993). In order to investigate the local surface temperature histories in Osaka Plane, Japan, we observed subsurface temperatures in existing boreholes, using a thermometer logger. Many temperature-depth profiles within 200 m depth from the ground surface have been obtained, but they show considerable variability. The geological formations in the area consist of horizontally stratified sedimentary layers of about 1,000 m in thickness overlaid on bedrock of granite. There exists a vertical disordered structure in the formations, which may be relating to an active fault (Uemachi fault) in the bedrock (Takemura, et al, 2013). It is considered that groundwater in the horizontal layers cannot move vertically, but can move vertically along the vertical disordered zone. Various temperature profiles might be related to occurrence of vertical groundwater flow in the zone. Analytical models of subsurface temperature which include heat conduction and convection due to vertical groundwater flow in the zone have been constructed under the boundary conditions of prescribing time dependent surface temperature and uniform geothermal flux from greater depths. To solve as one-dimensional problem, heat transfer between the vertical zone and the surrounding medium of no groundwater flow is assumed. Prescribing surface temperatures were given as exponential and periodic functions of the time. Climate change can be considered to comprise both natural and artificial changes. Artificial change, which occurs by the increasing combustion of fossil fuels, is considered roughly to be an exponential increase of the ground surface temperature during the last 150 years. Natural change, which can correlate to solar activity (Lassen and Friis-Christensen, 1995), is assumed roughly to be periodic with the period of about 1200 y at the minimum time of 1620 AD for the last 2,000 years, based on the proxy data in literature (Kitagawa, 1995; Moberg, et al, 2005). Analytical solutions have been obtained by applying a superimpose method. Optimum values of parameters included in the model have been obtained by fitting the solutions to the data of temperature-depth profiles by a least-square method. As a result, the amplitude of natural oscillation in the area is about 0.8 degree in average, which is in agreement with the result of tree ring analysis of Yakushima cedar (Kitagawa, 1995). Greater upward groundwater flow rates (up to 1.0 m/y, Darcy flux) are seen along the vertical disordered structure. However, the increasing rate of ground surface temperature is greater than that in atmospheric temperature during the last 140 years at Osaka Meteorological Observatory, Japan Meteorological Agency. The high increasing rate of the ground surface temperature suggests that the change in atmospheric temperature is influenced by the change in long wave radiation from the ground surface.

  3. The natural emergence of asymmetric tree-shaped pathways for cooling of a non-uniformly heated domain

    NASA Astrophysics Data System (ADS)

    Cetkin, Erdal; Oliani, Alessandro

    2015-07-01

    Here, we show that the peak temperature on a non-uniformly heated domain can be decreased by embedding a high-conductivity insert in it. The trunk of the high-conductivity insert is in contact with a heat sink. The heat is generated non-uniformly throughout the domain or concentrated in a square spot of length scale 0.1 L0, where L0 is the length scale of the non-uniformly heated domain. Peak and average temperatures are affected by the volume fraction of the high-conductivity material and by the shape of the high-conductivity pathways. This paper uncovers how varying the shape of the symmetric and asymmetric high-conductivity trees affects the overall thermal conductance of the heat generating domain. The tree-shaped high-conductivity inserts tend to grow toward where the heat generation is concentrated in order to minimize the peak temperature, i.e., in order to minimize the resistances to the heat flow. This behaviour of high-conductivity trees is alike with the root growth of the plants and trees. They also tend to grow towards sunlight, and their roots tend to grow towards water and nutrients. This paper uncovers the similarity between biological trees and high-conductivity trees, which is that trees should grow asymmetrically when the boundary conditions are non-uniform. We show here even though all the trees have the same objectives (minimum flow resistance), their shape should not be the same because of the variation in boundary conditions. To sum up, this paper shows that there is a high-conductivity tree design corresponding to minimum peak temperature with fixed constraints and conditions. This result is in accord with the constructal law which states that there should be an optimal design for a given set of conditions and constraints, and this design should be morphed in order to ensure minimum flow resistances as conditions and constraints change.

  4. Climate Response of Tree Radial Growth at Different Timescales in the Qinling Mountains.

    PubMed

    Sun, Changfeng; Liu, Yu

    2016-01-01

    The analysis of the tree radial growth response to climate is crucial for dendroclimatological research. However, the response relationships between tree-ring indices and climatic factors at different timescales are not yet clear. In this study, the tree-ring width of Huashan pine (Pinus armandii) from Huashan in the Qinling Mountains, north-central China, was used to explore the response differences of tree growth to climatic factors at daily, pentad (5 days), dekad (10 days) and monthly timescales. Correlation function and linear regression analysis were applied in this paper. The tree-ring width showed a more sensitive response to daily and pentad climatic factors. With the timescale decreasing, the absolute value of the maximum correlation coefficient between the tree-ring data and precipitation increases as well as temperature (mean, minimum and maximum temperature). Compared to the other three timescales, pentad was more suitable for analysing the response of tree growth to climate. Relative to the monthly climate data, the association between the tree-ring data and the pentad climate data was more remarkable and accurate, and the reconstruction function based on the pentad climate was also more reliable and stable. We found that the major climatic factor limiting Huashan pine growth was the precipitation of pentads 20-35 (from April 6 to June 24) rather than the well-known April-June precipitation. The pentad was also proved to be a better timescale for analysing the climate and tree growth in the western and eastern Qinling Mountains. The formation of the earlywood density of Chinese pine (Pinus tabulaeformis) from Shimenshan in western Qinling was mainly affected by the maximum temperature of pentads 28-32 (from May 16 to June 9). The maximum temperature of pentads 28-33 (from May 16 to June 14) was the major factor affecting the ring width of Chinese pine from Shirenshan in eastern Qinling.

  5. Evaluating the responses of forest ecosystems to climate change and CO2 using dynamic global vegetation models.

    PubMed

    Song, Xiang; Zeng, Xiaodong

    2017-02-01

    The climate has important influences on the distribution and structure of forest ecosystems, which may lead to vital feedback to climate change. However, much of the existing work focuses on the changes in carbon fluxes or water cycles due to climate change and/or atmospheric CO 2 , and few studies have considered how and to what extent climate change and CO 2 influence the ecosystem structure (e.g., fractional coverage change) and the changes in the responses of ecosystems with different characteristics. In this work, two dynamic global vegetation models (DGVMs): IAP-DGVM coupled with CLM3 and CLM4-CNDV, were used to investigate the response of the forest ecosystem structure to changes in climate (temperature and precipitation) and CO 2 concentration. In the temperature sensitivity tests, warming reduced the global area-averaged ecosystem gross primary production in the two models, which decreased global forest area. Furthermore, the changes in tree fractional coverage (Δ F tree ; %) from the two models were sensitive to the regional temperature and ecosystem structure, i.e., the mean annual temperature (MAT; °C) largely determined whether Δ F tree was positive or negative, while the tree fractional coverage ( F tree ; %) played a decisive role in the amplitude of Δ F tree around the globe, and the dependence was more remarkable in IAP-DGVM. In cases with precipitation change, F tree had a uniformly positive relationship with precipitation, especially in the transition zones of forests (30% <  F tree  < 60%) for IAP-DGVM and in semiarid and arid regions for CLM4-CNDV. Moreover, Δ F tree had a stronger dependence on F tree than on the mean annual precipitation (MAP; mm/year). It was also demonstrated that both models captured the fertilization effects of the CO 2 concentration.

  6. Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico

    NASA Astrophysics Data System (ADS)

    Brienen, Roel J. W.; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-12-01

    Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ18Otr). Interannual variation in δ18Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ13C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ18Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18O-depleted rain in the region and seem to have affected the δ18Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ18Otr of M. acantholoba can be used as a proxy for source water δ18O and that interannual variation in δ18Oprec is caused by a regional amount effect. This contrasts with δ18O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in disentangling the processes influencing precipitation δ18O.

  7. Climate variability reflected by tree-ring width and δ18O in a heavily glaciated area of the Patagonian Andes since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Meier, W. J. H.; Wernicke, J., Jr.; Braun, M.; Aravena, J. C.; Jaña, R.; Griessinger, J.

    2016-12-01

    Since the end of the Little Ice Age, the area of the Northern and Southern Patagonian ice sheet decreased by more than 14% and 11%, respectively. The melting increased since the last decade by 2.3%. The glaciers of Cordillera Darwin recorded a surface decrease of approximately 14% for the last 140 years. The reason for the excessive glacial change is often explained through the rise in temperature combined with a decrease in precipitation or a change in seasonality. Since a spatially coherent coverage of climatological measurement is lacking it is not possible to verify this assumption in a differentiated manner. Hence, the German- Chilean joint project "Responses of GlAciers, Biosphere and hYdrology to climate Variability and climate chAnge across the Southern Andes (GABY-VASA)" aims to determine the influence of long and short term climate variabilities (El Niño-Southern Oscillation (ENSO), Southern Hemisphere Annular Mode (SAM)) on the cryo- and biosphere. Trees growing at the glacier margins and at the natural treeline were sampled at four different locations ranging from the humid western part of the southern Andes (annual precipitation > 10.000mma-1) to the distinct dryer eastern part (annual precipitation < 500mma-1). Besides the tree-ring width based temperature reconstruction the precipitation variability reflected by δ18O in tree-rings is a promising approach to obtain detailed information of small-scaled hydro climatic conditions. Furthermore the use of δ18O as a proxy in combination with tree-ring width offers the opportunity of meteorological back trajectories and the derivation of air masses since the Little Ice Age. It thus interlinks past and present climate and allows to draw conclusions about the driving forces of glacial change.

  8. Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico

    PubMed Central

    Brienen, Roel J W; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-01-01

    [1] Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ18Otr). Interannual variation in δ18Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ13C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ18Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18O-depleted rain in the region and seem to have affected the δ18Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ18Otr of M. acantholoba can be used as a proxy for source water δ18O and that interannual variation in δ18Oprec is caused by a regional amount effect. This contrasts with δ18O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in disentangling the processes influencing precipitation δ18O. PMID:26213660

  9. Tree-Ring Based May-July Temperature Reconstruction Since AD 1630 on the Western Loess Plateau, China

    PubMed Central

    Song, Huiming; Liu, Yu; Li, Qiang; Gao, Na; Ma, Yongyong; Zhang, Yanhua

    2014-01-01

    Tree-ring samples from Chinese Pine (Pinus tabulaeformis Carr.) collected at Mt. Shimen on the western Loess Plateau, China, were used to reconstruct the mean May–July temperature during AD 1630–2011. The regression model explained 48% of the adjusted variance in the instrumentally observed mean May–July temperature. The reconstruction revealed significant temperature variations at interannual to decadal scales. Cool periods observed in the reconstruction coincided with reduced solar activities. The reconstructed temperature matched well with two other tree-ring based temperature reconstructions conducted on the northern slope of the Qinling Mountains (on the southern margin of the Loess Plateau of China) for both annual and decadal scales. In addition, this study agreed well with several series derived from different proxies. This reconstruction improves upon the sparse network of high-resolution paleoclimatic records for the western Loess Plateau, China. PMID:24690885

  10. Factors affecting spruce establishment and recruitment near western treeline, Alaska

    NASA Astrophysics Data System (ADS)

    Miller, A. E.; Sherriff, R.; Wilson, T. L.

    2015-12-01

    Regional warming and increases in tree growth are contributing to increased productivity near the western forest margin in Alaska. The effects of warming on seedling recruitment has received little attention, in spite of forecasted forest expansion near western treeline. Here, we used stand structure and environmental data from white spruce (Picea glauca) stands (n = 95) sampled across a longitudinal gradient to explore factors influencing white spruce growth, establishment and recruitment in southwest Alaska. Using tree-ring chronologies developed from a subset of the plots (n = 30), we estimated establishment dates and basal area increment (BAI) for trees of all age classes across a range of site conditions. We used GLMs (generalized linear models) to explore the relationship between tree growth and temperature in undisturbed, low elevation sites along the gradient, using BAI averaged over the years 1975-2000. In addition, we examined the relationship between growing degree days (GDD) and seedling establishment over the previous three decades. We used total counts of live seedlings, saplings and live and dead trees, representing four cohorts, to evaluate whether geospatial, climate, and measured plot covariates predicted abundance of the different size classes. We hypothesized that the relationship between abundance and longitude would vary by size class, and that this relationship would be mediated by growing season temperature. We found that mean BAI for trees in undisturbed, low elevation sites increased with July maximum temperature, and that the slope of the relationship with temperature changed with longitude (interaction significant with 90% confidence). White spruce establishment was positively associated with longer summers and/or greater heat accumulation, as inferred from GDD. Seedling, sapling and tree abundance were also positively correlated with temperature across the study area. The response to longitude was mixed, with smaller size classes (seedlings, small saplings) most abundant at the western end of the gradient, and larger size classes (trees) most abundant to the east, suggesting a moving front of white spruce establishment near western treeline.

  11. Tree height–diameter allometry across the United States

    PubMed Central

    Hulshof, Catherine M; Swenson, Nathan G; Weiser, Michael D

    2015-01-01

    The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height–diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed-effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade-intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life-history strategies, phylogenetic history, and environmental limitations at biogeographical scales. PMID:25859325

  12. Tree height-diameter allometry across the United States.

    PubMed

    Hulshof, Catherine M; Swenson, Nathan G; Weiser, Michael D

    2015-03-01

    The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height-diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed-effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade-intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life-history strategies, phylogenetic history, and environmental limitations at biogeographical scales.

  13. Climatic correlates of tree mortality in water- and energy-limited forests

    USGS Publications Warehouse

    Das, Adrian J.; Stephenson, Nathan L.; Flint, Alan; Das, Tapash; van Mantgem, Phillip J.

    2013-01-01

    Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.

  14. Climatic correlates of tree mortality in water- and energy-limited forests.

    PubMed

    Das, Adrian J; Stephenson, Nathan L; Flint, Alan; Das, Tapash; van Mantgem, Phillip J

    2013-01-01

    Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California's Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.

  15. Climatic Correlates of Tree Mortality in Water- and Energy-Limited Forests

    PubMed Central

    Das, Adrian J.; Stephenson, Nathan L.; Flint, Alan; Das, Tapash; van Mantgem, Phillip J.

    2013-01-01

    Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes. PMID:23936118

  16. Evidence of Tree Species’ Range Shifts in a Complex Landscape

    PubMed Central

    Monleon, Vicente J.; Lintz, Heather E.

    2015-01-01

    Climate change is expected to change the distribution of species. For long-lived, sessile species such as trees, tracking the warming climate depends on seedling colonization of newly favorable areas. We compare the distribution of seedlings and mature trees for all but the rarest tree species in California, Oregon and Washington, United States of America, a large, environmentally diverse region. Across 46 species, the mean annual temperature of the range of seedlings was 0.120°C colder than that of the range of trees (95% confidence interval from 0.096 to 0.144°C). The extremes of the seedling distributions also shifted towards colder temperature than those of mature trees, but the change was less pronounced. Although the mean elevation and mean latitude of the range of seedlings was higher than and north of those of the range of mature trees, elevational and latitudinal shifts run in opposite directions for the majority of the species, reflecting the lack of a direct biological relationship between species’ distributions and those variables. The broad scale, environmental diversity and variety of disturbance regimes and land uses of the study area, the large number and exhaustive sampling of tree species, and the direct causal relationship between the temperature response and a warming climate, provide strong evidence to attribute the observed shifts to climate change. PMID:25634090

  17. Impacts of land use and land cover on surface and air temperature in urban landscapes

    NASA Astrophysics Data System (ADS)

    Crum, S.; Jenerette, D.

    2015-12-01

    Accelerating urbanization affects regional climate as the result of changing land cover and land use (LCLU). Urban land cover composition may provide valuable insight into relationships among urbanization, air, and land-surface temperature (Ta and LST, respectively). Climate may alter these relationships, where hotter climates experience larger LULC effects. To address these hypotheses we examined links between Ta, LST, LCLU, and vegetation across an urban coastal to desert climate gradient in southern California, USA. Using surface temperature radiometers, continuously measuring LST on standardized asphalt, concrete, and turf grass surfaces across the climate gradient, we found a 7.2°C and 4.6°C temperature decrease from asphalt to vegetated cover in the coast and desert, respectively. There is 131% more temporal variation in asphalt than turf grass surfaces, but 37% less temporal variation in concrete than turf grass. For concrete and turf grass surfaces, temporal variation in temperature increased from coast to desert. Using ground-based thermal imagery, measuring LST for 24 h sequences over citrus orchard and industrial use locations, we found a 14.5°C temperature decrease from industrial to orchard land use types (38.4°C and 23.9°C, respectively). Additionally, industrial land use types have 209% more spatial variation than orchard (CV=0.20 and 0.09, respectively). Using a network of 300 Ta (iButton) sensors mounted in city street trees throughout the region and hyperspectral imagery data we found urban vegetation greenness, measured using the normalized difference vegetation index (NDVI), was negatively correlated to Ta at night across the climate gradient. Contrasting previous findings, the closest coupling between NDVI and Ta is at the coast from 0000 h to 0800 h (highest r2 = 0.6, P < 0.05) while relationships at the desert are weaker (highest r2 = 0.38, P < 0.05). These findings indicate that vegetation cover in urbanized regions of southern California, USA decrease Ta and LST and spatial variation in LST, while built surfaces and land uses have the opposite effect. Furthermore these relationships are regulated by regional climate patterns, with decreases in Ta and LST being strongest in the coastal sub-region.

  18. Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes

    PubMed Central

    Macias-Fauria, Marc; Johnson, Edward A.

    2013-01-01

    Forests are expected to expand into alpine areas because of climate warming, causing land-cover change and fragmentation of alpine habitats. However, this expansion will only occur if the present upper treeline is limited by low-growing season temperatures that reduce plant growth. This temperature limitation has not been quantified at a landscape scale. Here, we show that temperature alone cannot realistically explain high-elevation tree cover over a >100-km2 area in the Canadian Rockies and that geologic/geomorphic processes are fundamental to understanding the heterogeneous landscape distribution of trees. Furthermore, upslope tree advance in a warmer scenario will be severely limited by availability of sites with adequate geomorphic/topographic characteristics. Our results imply that landscape-to-regional scale projections of warming-induced, high-elevation forest advance into alpine areas should not be based solely on temperature-sensitive, site-specific upper-treeline studies but also on geomorphic processes that control tree occurrence at long (centuries/millennia) timescales. PMID:23569221

  19. The Urban Tree as a Tool to Mitigate the Urban Heat Island in Mexico City: A Simple Phenomenological Model.

    PubMed

    Ballinas, Mónica; Barradas, Víctor L

    2016-01-01

    The urban heat island (UHI) is mainly a nocturnal phenomenon, but it also appears during the day in Mexico City. The UHI may affect human thermal comfort, which can influence human productivity and morbidity in the spring/summer period. A simple phenomenological model based on the energy balance was developed to generate theoretical support of UHI mitigation in Mexico City focused on the latent heat flux change by increasing tree coverage to reduce sensible heat flux and air temperature. Half-hourly data of the urban energy balance components were generated in a typical residential/commercial neighborhood of Mexico City and then parameterized using easily measured variables (air temperature, humidity, pressure, and visibility). Canopy conductance was estimated every hour in four tree species, and transpiration was estimated using sap flow technique and parameterized by the envelope function method. Averaged values of net radiation, energy storage, and sensible and latent heat flux were around 449, 224, 153, and 72 W m, respectively. Daily tree transpiration ranged from 3.64 to 4.35 Ld. To reduce air temperature by 1°C in the studied area, 63 large would be required per hectare, whereas to reduce the air temperature by 2°C only 24 large trees would be required. This study suggests increasing tree canopy cover in the city cannot mitigate UHI adequately but requires choosing the most appropriate tree species to solve this problem. It is imperative to include these types of studies in tree selection and urban development planning to adequately mitigate UHI. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Scale Modelling of Nocturnal Cooling in Urban Parks

    NASA Astrophysics Data System (ADS)

    Spronken-Smith, R. A.; Oke, T. R.

    Scale modelling is used to determine the relative contribution of heat transfer processes to the nocturnal cooling of urban parks and the characteristic temporal and spatial variation of surface temperature. Validation is achieved using a hardware model-to-numerical model-to-field observation chain of comparisons. For the calm case, modelling shows that urban-park differences of sky view factor (s) and thermal admittance () are the relevant properties governing the park cool island (PCI) effect. Reduction in sky view factor by buildings and trees decreases the drain of longwave radiation from the surface to the sky. Thus park areas near the perimeter where there may be a line of buildings or trees, or even sites within a park containing tree clumps or individual trees, generally cool less than open areas. The edge effect applies within distances of about 2.2 to 3.5 times the height of the border obstruction, i.e., to have any part of the park cooling at the maximum rate a square park must be at least twice these dimensions in width. Although the central areas of parks larger than this will experience greater cooling they will accumulate a larger volume of cold air that may make it possible for them to initiate a thermal circulation and extend the influence of the park into the surrounding city. Given real world values of s and it seems likely that radiation and conduction play almost equal roles in nocturnal PCI development. Evaporation is not a significant cooling mechanism in the nocturnal calm case but by day it is probably critical in establishing a PCI by sunset. It is likely that conditions that favour PCI by day (tree shade, soil wetness) retard PCI growth at night. The present work, which only deals with PCI growth, cannot predict which type of park will be coolest at night. Complete specification of nocturnal PCI magnitude requires knowledge of the PCI at sunset, and this depends on daytime energetics.

  1. Tree Mortality Decreases Water Availability and Ecosystem Resilience to Drought in Piñon-Juniper Woodlands in the Southwestern U.S.: Tree Mortality in Semiarid Biomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morillas, L.; Pangle, R. E.; Maurer, G. E.

    Climate-driven tree mortality has increased globally in response to warmer temperature and more severe drought. To examine how tree mortality in semi-arid biomes impacts surface water balance, we experimentally manipulated a piñon-juniper (PJ) woodland by girdling all adult piñon trees in a 4 ha area, decreasing piñon basal area by ~65%. Over 3.5 years (2009-2013), we compared water flux measurements from this girdled site with those from a nearby intact PJ woodland. Before and after girdling, the ratio of evapotranspiration (ET) to incoming precipitation was similar between the two sites. Girdling altered the partitioning of ET such that the contributionmore » of canopy transpiration to ET decreased 9-14% over the study period, relative to the intact control, while non-canopy ET increased. We attributed the elevated non-canopy ET in the girdled site each year to winter increases in sublimation, and summer increases in both soil evaporation and below-canopy transpiration. Although we expected that mortality of a canopy dominant would increase the availability of water and other resources to surviving vegetation, we observed a decrease in both soil volumetric water content and sap flow rates in the remaining trees at the girdled site, relative to the control. This post-girdling decrease in the performance of the remaining trees occurred during the severe 2011-2012 drought, suggesting that piñon mortality may trigger feedback mechanisms that leave PJ woodlands drier relative to undisturbed sites, and potentially more vulnerable to drought.« less

  2. Climatic Signals in Tree Rings of Heritiera fomes Buch.-Ham. in the Sundarbans, Bangladesh

    PubMed Central

    Chowdhury, Md. Qumruzzaman; De Ridder, Maaike; Beeckman, Hans

    2016-01-01

    Mangroves occur along the coastlines throughout the tropics and sub-tropics, supporting a wide variety of resources and services. In order to understand the responses of future climate change on this ecosystem, we need to know how mangrove species have responded to climate changes in the recent past. This study aims at exploring the climatic influences on the radial growth of Heritiera fomes from a local to global scale. A total of 40 stem discs were collected at breast height position from two different zones with contrasting salinity in the Sundarbans, Bangladesh. All specimens showed distinct tree rings and most of the trees (70%) could be visually and statistically crossdated. Successful crossdating enabled the development of two zone-specific chronologies. The mean radial increment was significantly higher at low salinity (eastern) zone compared to higher salinity (western) zone. The two zone-specific chronologies synchronized significantly, allowing for the construction of a regional chronology. The annual and monsoon precipitation mainly influence the tree growth of H. fomes. The growth response to local precipitation is similar in both zones except June and November in the western zone, while the significant influence is lacking. The large-scale climatic drivers such as sea surface temperature (SST) of equatorial Pacific and Indian Ocean as well as the El Niño-Southern Oscillation (ENSO) revealed no teleconnection with tree growth. The tree rings of this species are thus an indicator for monsoon precipitation variations in Bangladesh. The wider distribution of this species from the South to South East Asian coast presents an outstanding opportunity for developing a large-scale tree-ring network of mangroves. PMID:26927229

  3. Challenges and approaches to projecting changes in forest distributions in complex mountain landscape

    NASA Astrophysics Data System (ADS)

    Kueppers, L. M.; Molotch, N. P.; Meromy, L.; Moyes, A. B.; Conlisk, E.; Castanha, C.

    2015-12-01

    The extent and density of forest trees in mountain landscapes is a first order control on watershed function, affecting patterns of snow accumulation, timing of snowmelt, and amount and quality of run-off, through alterations of surface energy and water fluxes and wind. Climate change is increasingly affecting the density and distribution of mature forests through changes to disturbance regimes, increases in physiological stress and increases in mortality due to warmer temperatures. In addition, climate change is likely altering patterns of regeneration and driving establishment of trees in high elevation meadows and alpine tundra. Though hard to detect in current forestry datasets, changes in tree establishment are critical to the future of forests. Experimental approaches, such as our climate warming experiment in the Colorado Front Range, can provide valuable data regarding seedling sensitivity to climate variability and change across important landscape positions. We've found that warming enhances negative effects of water stress across forest, treeline and alpine sites, reducing recruitment in the absence of additional summer moisture. At the lowest elevation, reductions with warming have reduced Engelmann spruce recruitment to zero. Species differ in their responses to warming in the alpine, but together confirm the importance of seed dispersal to upward forest shifts. The presence of trees or other vegetation can facilitate tree establishment by modifying microclimates, especially at and above treeline. Ultimately, these ecological and demographic processes govern the timescales of tree and forest responses to climate variability and change. For the long-lived species that dominate high elevation watersheds, these processes can take decades or centuries to play out, meaning many tree populations are and will continue to be out of equilibrium with a rapidly changing climate. Projecting changes in tree distributions and abundances across mountain landscapes requires integration of changes in hydroclimatic conditions across diverse topoclimatic settings; the sensitivity of recruitment, growth and mortality to climate; and feedbacks between trees and microclimate into modeling tools that represent time-explicit ecological and demographic processes.

  4. Potential utility of tree ring δ18O series for reconstructing precipitation records from the lower reaches of the Yangtze River, southeast China

    NASA Astrophysics Data System (ADS)

    Xu, Chenxi; Ge, Junyi; Nakatsuka, Takeshi; Yi, Liang; Zheng, Huaizhou; Sano, Masaki

    2016-04-01

    In this study, we investigated the interannual and intraannual variabilities in the oxygen isotope composition (δ18O) preserved in the tree ring cellulose of Pinus taiwanensis in the lower reaches of the Yangtze River, southeast China, to explore its potential utility for precipitation reconstruction over the period of 1855-2013. Intraannual variations of tree ring cellulose δ18O show distinct annual cycles that are characterized by δ18O maxima in the early growth near the ring boundary and δ18O minima in the middle and late portions of the ring. Seasonal patterns of tree ring δ18O were influenced by August-October typhoons. The tree ring cellulose δ18O was measured in both young and old trees to test for the juvenile effect. The results revealed no significant differences in the mean values and long-term trends in δ18O in the old and young trees. A response analysis indicated that tree ring δ18O correlated significantly with precipitation and relative humidity between May and October, and the δ18O chronology accounted for 37.4% of the actual variation in the May-October precipitation between 1951 and 2013. The extremely dry and wet years revealed by the tree ring δ18O-based reconstructed precipitation also corresponded to actual local drought and flood events from the documentary records. Reconstructed precipitation showed significant relationship with central tropical Pacific sea surface temperature, which indicated that El Niño-Southern Oscillation (ENSO) exerted influences on May-October precipitation in the lower reaches of the Yangtze River. In addition, the relationship between ENSO and precipitation weakened between 1920 and 1940, and low variance of ENSO from 1920 to 1940 may result in the damped ENSO's influences on precipitation in southeast China.

  5. Responses of rubber leaf phenology to climatic variations in Southwest China

    NASA Astrophysics Data System (ADS)

    Zhai, De-Li; Yu, Haiying; Chen, Si-Chong; Ranjitkar, Sailesh; Xu, Jianchu

    2017-11-01

    The phenology of rubber trees (Hevea brasiliensis) could be influenced by meteorological factors and exhibits significant changes under different geoclimates. In the sub-optimal environment in Xishuangbanna, rubber trees undergo lengthy periods of defoliation and refoliation. The timing of refoliation from budburst to leaf aging could be affected by powdery mildew disease (Oidium heveae), which negatively impacts seed and latex production. Rubber trees are most susceptible to powdery mildew disease at the copper and leaf changing stages. Understanding and predicting leaf phenology of rubber trees are helpful to develop effective means of controlling the disease. This research investigated the effect of several meteorological factors on different leaf phenological stages in a sub-optimal environment for rubber cultivation in Jinghong, Yunnan in Southwest China. Partial least square regression was used to quantify the relationship between meteorological factors and recorded rubber phenologies from 2003 to 2011. Minimum temperature in December was found to be the critical factor for the leaf phenology development of rubber trees. Comparing the delayed effects of minimum temperature, the maximum temperature, diurnal temperature range, and sunshine hours were found to advancing leaf phenologies. A comparatively lower minimum temperature in December would facilitate the advancing of leaf phenologies of rubber trees. Higher levels of precipitation in February delayed the light green and the entire process of leaf aging. Delayed leaf phenology was found to be related to severe rubber powdery mildew disease. These results were used to build predictive models that could be applied to early warning systems of rubber powdery mildew disease.

  6. Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate

    NASA Astrophysics Data System (ADS)

    Brault, M.-O.; Mysak, L. A.; Matthews, H. D.; Simmons, C. T.

    2013-08-01

    The end of the Pleistocene was a turning point for the Earth system as climate gradually emerged from millennia of severe glaciation in the Northern Hemisphere. The deglacial climate change coincided with an unprecedented decline in many species of Pleistocene megafauna, including the near-total eradication of the woolly mammoth. Due to an herbivorous diet that presumably involved large-scale tree grazing, the mammoth extinction has been associated with the rapid expansion of dwarf deciduous trees in Siberia and Beringia, thus potentially contributing to the changing climate of the period. In this study, we use the University of Victoria Earth System Climate Model (UVic ESCM) to simulate the possible effects of these extinctions on climate during the latest deglacial period. We have explored various hypothetical scenarios of forest expansion in the northern high latitudes, quantifying the biogeophysical effects in terms of changes in surface albedo and air temperature. These scenarios include a Maximum Impact Scenario (MIS) which simulates the greatest possible post-extinction reforestation in the model, and sensitivity tests which investigate the timing of extinction, the fraction of trees grazed by mammoths, and the southern extent of mammoth habitats. We also show the results of a simulation with free atmospheric CO2-carbon cycle interactions. For the MIS, we obtained a surface albedo increase and global warming of 0.006 and 0.175 °C, respectively. Less extreme scenarios produced smaller global mean temperature changes, though local warming in some locations exceeded 0.3 °C even in the more realistic extinction scenarios. In the free CO2 simulation, the biogeophysical-induced warming was amplified by a biogeochemical effect, whereby the replacement of high-latitude tundra with shrub forest led to a release of soil carbon to the atmosphere and a small atmospheric CO2 increase. Overall, our results suggest the potential for a small, though non-trivial, effect of megafaunal extinctions on Pleistocene climate.

  7. Tree Mortality Decreases Water Availability and Ecosystem Resilience to Drought in Piñon-Juniper Woodlands in the Southwestern U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morillas, Laura; Pangle, Robert E.; Maurer, Gregory E.

    Climate-driven tree mortality has increased globally in response to warmer temperature and more severe drought. To examine how tree mortality in semiarid biomes impacts surface water balance, we experimentally manipulated a piñon-juniper (PJ) woodland by girdling all adult piñon trees in a 4 ha area, decreasing piñon basal area by ~65%. Over 3.5 years (2009–2013), we compared water flux measurements from this girdled site with those from a nearby intact PJ woodland. Before and after girdling, the ratio of evapotranspiration (ET) to incoming precipitation was similar between the two sites. Girdling altered the partitioning of ET such that the contributionmore » of canopy transpiration to ET decreased 9–14% over the study period, relative to the intact control, while noncanopy ET increased. We attributed the elevated noncanopy ET in the girdled site each year to winter increases in sublimation and summer increases in both soil evaporation and below-canopy transpiration. Although we expected that mortality of a canopy dominant would increase the availability of water and other resources to surviving vegetation, we observed a decrease in both soil volumetric water content and sap flow rates in the remaining trees at the girdled site, relative to the control. Furthermore, this postgirdling decrease in the performance of the remaining trees occurred during the severe 2011–2012 drought, suggesting that piñon mortality may trigger feedback mechanisms that leave PJ woodlands drier relative to undisturbed sites and potentially more vulnerable to drought.« less

  8. Tree Mortality Decreases Water Availability and Ecosystem Resilience to Drought in Piñon-Juniper Woodlands in the Southwestern U.S.

    NASA Astrophysics Data System (ADS)

    Morillas, L.; Pangle, R. E.; Maurer, G. E.; Pockman, W. T.; McDowell, N.; Huang, C.-W.; Krofcheck, D. J.; Fox, A. M.; Sinsabaugh, R. L.; Rahn, T. A.; Litvak, M. E.

    2017-12-01

    Climate-driven tree mortality has increased globally in response to warmer temperature and more severe drought. To examine how tree mortality in semiarid biomes impacts surface water balance, we experimentally manipulated a piñon-juniper (PJ) woodland by girdling all adult piñon trees in a 4 ha area, decreasing piñon basal area by 65%. Over 3.5 years (2009-2013), we compared water flux measurements from this girdled site with those from a nearby intact PJ woodland. Before and after girdling, the ratio of evapotranspiration (ET) to incoming precipitation was similar between the two sites. Girdling altered the partitioning of ET such that the contribution of canopy transpiration to ET decreased 9-14% over the study period, relative to the intact control, while noncanopy ET increased. We attributed the elevated noncanopy ET in the girdled site each year to winter increases in sublimation and summer increases in both soil evaporation and below-canopy transpiration. Although we expected that mortality of a canopy dominant would increase the availability of water and other resources to surviving vegetation, we observed a decrease in both soil volumetric water content and sap flow rates in the remaining trees at the girdled site, relative to the control. This postgirdling decrease in the performance of the remaining trees occurred during the severe 2011-2012 drought, suggesting that piñon mortality may trigger feedback mechanisms that leave PJ woodlands drier relative to undisturbed sites and potentially more vulnerable to drought.

  9. Tree Mortality Decreases Water Availability and Ecosystem Resilience to Drought in Piñon-Juniper Woodlands in the Southwestern U.S.

    DOE PAGES

    Morillas, Laura; Pangle, Robert E.; Maurer, Gregory E.; ...

    2017-11-17

    Climate-driven tree mortality has increased globally in response to warmer temperature and more severe drought. To examine how tree mortality in semiarid biomes impacts surface water balance, we experimentally manipulated a piñon-juniper (PJ) woodland by girdling all adult piñon trees in a 4 ha area, decreasing piñon basal area by ~65%. Over 3.5 years (2009–2013), we compared water flux measurements from this girdled site with those from a nearby intact PJ woodland. Before and after girdling, the ratio of evapotranspiration (ET) to incoming precipitation was similar between the two sites. Girdling altered the partitioning of ET such that the contributionmore » of canopy transpiration to ET decreased 9–14% over the study period, relative to the intact control, while noncanopy ET increased. We attributed the elevated noncanopy ET in the girdled site each year to winter increases in sublimation and summer increases in both soil evaporation and below-canopy transpiration. Although we expected that mortality of a canopy dominant would increase the availability of water and other resources to surviving vegetation, we observed a decrease in both soil volumetric water content and sap flow rates in the remaining trees at the girdled site, relative to the control. Furthermore, this postgirdling decrease in the performance of the remaining trees occurred during the severe 2011–2012 drought, suggesting that piñon mortality may trigger feedback mechanisms that leave PJ woodlands drier relative to undisturbed sites and potentially more vulnerable to drought.« less

  10. Spatial and temporal changes in leaf coloring date of Acer palmatum and Ginkgo biloba in response to temperature increases in South Korea.

    PubMed

    Park, Chang-Kyun; Ho, Chang-Hoi; Jeong, Su-Jong; Lee, Eun Ju; Kim, Jinwon

    2017-01-01

    Understanding shifts in autumn phenology associated with climate changes is critical for preserving forest ecosystems. This study examines the changes in the leaf coloring date (LCD) of two temperate deciduous tree species, Acer palmatum (Acer) and Ginkgo biloba (Ginkgo), in response to surface air temperature (Ts) changes at 54 stations of South Korea for the period 1989-2007. The variations of Acer and Ginkgo in South Korea are very similar: they show the same mean LCD of 295th day of the year and delays of about 0.45 days year-1 during the observation period. The delaying trend is closely correlated (correlation coefficient > 0.77) with increases in Ts in mid-autumn by 2.8 days °C-1. It is noted that the LCD delaying and temperature sensitivity (days °C-1) for both tree species show negligible dependences on latitudes and elevations. Given the significant LCD-Ts relation, we project LCD changes for 2016-35 and 2046-65 using a process-based model forced by temperature from climate model simulation. The projections indicate that the mean LCD would be further delayed by 3.2 (3.7) days in 2016-35 (2046-65) due to mid-autumn Ts increases. This study suggests that the mid-autumn warming is largely responsible for the observed LCD changes in South Korea and will intensify the delaying trends in the future.

  11. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions

    USGS Publications Warehouse

    Moyes, Andrew B.; Germino, Matthew J.; Kueppers, Lara M.

    2015-01-01

    Summer precipitation may be at least as important as temperature in constraining C gain by establishing subalpine trees at and above current alpine treelines as seasonally dry subalpine and alpine ecosystems continue to warm.

  12. Sensitivity of subalpine tree seedlings and alpine plants to natural and manipulated climate variation: Initial results from an Alpine Treeline Warming Experiment (Invited)

    NASA Astrophysics Data System (ADS)

    Kueppers, L. M.

    2010-12-01

    Niche models and paleoecological studies indicate that future climate change will alter the geographic distributions of plant species. Changes in temperature, snowmelt timing, or moisture conditions at one edge of a species’ range may have different consequences for recruitment, carbon exchange, phenology, and survival than changes at another edge. Similarly, local genetic adaptation may constrain species and community responses to climate change. We have established a new experiment to investigate potential shifts in the distribution of subalpine tree species, and the alpine species they might replace. We are asking how tree species recruitment and alpine species growth and reproduction vary within their current ranges, and in response to temperature and soil moisture manipulations. We are also examining whether genetic provenance and ecosystem processes constrain tree seedling and alpine herb responses. Our Alpine Treeline Warming Experiment is located across three sites at Niwot Ridge, CO, ranging from near the lower limit of subalpine forest to alpine tundra. We use infrared heaters to raise growing season surface soil temperatures by 4-5°C, and to lengthen the growing season. The warming treatment is crossed with a soil moisture manipulation to distinguish effects due to higher temperatures from those due to drier soil. Each plot is a common garden sown with high and low elevation provenances of limber pine (Pinus flexilis) and Engelmann spruce (Picea engelmannii). We established an additional set of experimental plots to examine treatment effects on alpine species phenology, growth and reproduction. Under ambient conditions in 2009, tree seedling germination rate, lifespan, and first season survival was higher within the species’ current range than in the alpine, and for Engelmann spruce, was higher at the low elevation limit than the high elevation limit. Source population (low vs. high elevation) was a significant factor explaining natural variation in germination rates and timing, seedling physiology, and seedling survival. In 2010, the first season with experimental effects data, the timing of germination was substantially advanced with warming for both species, and warming appeared to increase germination rates for limber pine, but to depress rates for Engelmann spruce at treeline. Seedling carbon balance was negative at the warmest leaf temperatures and there is some indication that the low elevation provenance has a higher total assimilation rate and net carbon gain than the high elevation provenance. Water availability was an important driver of variation in carbon assimilation through the growing season. Our early results suggest that with higher germination rates and lower mortality rates, limber pine is better able to recruit into the alpine than Engelmann spruce, and that lower elevation provenances of limber pine are better at assimilating carbon for growth regardless of site. Ultimate success in seedling establishment may be more contingent on water availability than temperature, even at these high elevations.

  13. Albedo, Land Cover, and Daytime Surface Temperature Variation Across an Urbanized Landscape

    NASA Astrophysics Data System (ADS)

    Trlica, A.; Hutyra, L. R.; Schaaf, C. L.; Erb, A.; Wang, J. A.

    2017-11-01

    Land surface albedo is a key parameter controlling the local energy budget, and altering the albedo of built surfaces has been proposed as a tool to mitigate high near-surface temperatures in the urban heat island. However, most research on albedo in urban landscapes has used coarse-resolution data, and few studies have attempted to relate albedo to other urban land cover characteristics. This study provides an empirical description of urban summertime albedo using 30 m remote sensing measurements in the metropolitan area around Boston, Massachusetts, relating albedo to metrics of impervious cover fraction, tree canopy coverage, population density, and land surface temperature (LST). At 30 m spatial resolution, median albedo over the study area (excluding open water) was 0.152 (0.112-0.187). Trends of lower albedo with increasing urbanization metrics and temperature emerged only after aggregating data to 500 m or the boundaries of individual towns, at which scale a -0.01 change in albedo was associated with a 29 (25-35)% decrease in canopy cover, a 27 (24-30)% increase in impervious cover, and an increase in population from 11 to 386 km-2. The most intensively urbanized towns in the region showed albedo up to 0.035 lower than the least urbanized towns, and mean mid-morning LST 12.6°C higher. Trends in albedo derived from 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) measurements were comparable, but indicated a strong contribution of open water at this coarser resolution. These results reveal linkages between albedo and urban land cover character, and offer empirical context for climate resilient planning and future landscape functional changes with urbanization.

  14. Diverging climate trends in Mongolian taiga forests influence growth and regeneration of Larix sibirica

    PubMed Central

    Dulamsuren, Choimaa; Khishigjargal, Mookhor; Leuschner, Hanns Hubert; Leuschner, Christoph

    2010-01-01

    Central and semiarid north-eastern Asia was subject to twentieth century warming far above the global average. Since forests of this region occur at their drought limit, they are particularly vulnerable to climate change. We studied the regional variations of temperature and precipitation trends and their effects on tree growth and forest regeneration in Mongolia. Tree-ring series from more than 2,300 trees of Siberian larch (Larix sibirica) collected in four regions of Mongolia’s forest zone were analyzed and related to available weather data. Climate trends underlie a remarkable regional variation leading to contrasting responses of tree growth in taiga forests even within the same mountain system. Within a distance of a few hundred kilometers (140–490 km), areas with recently reduced growth and regeneration of larch alternated with regions where these parameters remained constant or even increased. Reduced productivity could be correlated with increasing summer temperatures and decreasing precipitation; improved growth conditions were found at increasing precipitation, but constant summer temperatures. An effect of increasing winter temperatures on tree-ring width or forest regeneration was not detectable. Since declines of productivity and regeneration are more widespread in the Mongolian taiga than the opposite trend, a net loss of forests is likely to occur in the future, as strong increases in temperature and regionally differing changes in precipitation are predicted for the twenty-first century. PMID:20571829

  15. Diverging climate trends in Mongolian taiga forests influence growth and regeneration of Larix sibirica.

    PubMed

    Dulamsuren, Choimaa; Hauck, Markus; Khishigjargal, Mookhor; Leuschner, Hanns Hubert; Leuschner, Christoph

    2010-08-01

    Central and semiarid north-eastern Asia was subject to twentieth century warming far above the global average. Since forests of this region occur at their drought limit, they are particularly vulnerable to climate change. We studied the regional variations of temperature and precipitation trends and their effects on tree growth and forest regeneration in Mongolia. Tree-ring series from more than 2,300 trees of Siberian larch (Larix sibirica) collected in four regions of Mongolia's forest zone were analyzed and related to available weather data. Climate trends underlie a remarkable regional variation leading to contrasting responses of tree growth in taiga forests even within the same mountain system. Within a distance of a few hundred kilometers (140-490 km), areas with recently reduced growth and regeneration of larch alternated with regions where these parameters remained constant or even increased. Reduced productivity could be correlated with increasing summer temperatures and decreasing precipitation; improved growth conditions were found at increasing precipitation, but constant summer temperatures. An effect of increasing winter temperatures on tree-ring width or forest regeneration was not detectable. Since declines of productivity and regeneration are more widespread in the Mongolian taiga than the opposite trend, a net loss of forests is likely to occur in the future, as strong increases in temperature and regionally differing changes in precipitation are predicted for the twenty-first century.

  16. Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective.

    PubMed

    Maurya, Jay P; Bhalerao, Rishikesh P

    2017-09-01

    How plants adapt their developmental patterns to regular seasonal changes is an important question in biology. The annual growth cycle in perennial long-lived trees is yet another example of how plants can adapt to seasonal changes. The two main signals that plants rely on to respond to seasonal changes are photoperiod and temperature, and these signals have critical roles in the temporal regulation of the annual growth cycle of trees. This review presents the latest findings to provide insight into the molecular mechanisms that underlie how photoperiodic and temperature signals regulate seasonal growth in trees. The results point to a high level of conservation in the signalling pathways that mediate photoperiodic control of seasonal growth in trees and flowering in annual plants such as arabidopsis. Furthermore, the data indicate that symplastic communication may mediate certain aspects of seasonal growth. Although considerable insight into the control of phenology in model plants such as poplar and spruce has been obtained, the future challenge is extending these studies to other, non-model trees. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Urban climate modifies tree growth in Berlin

    NASA Astrophysics Data System (ADS)

    Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans

    2017-12-01

    Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees (Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.

  18. Urban climate modifies tree growth in Berlin

    NASA Astrophysics Data System (ADS)

    Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans

    2018-05-01

    Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees ( Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.

  19. Urban climate modifies tree growth in Berlin.

    PubMed

    Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans

    2018-05-01

    Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees (Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.

  20. Microhabitats and canopy cover moderate high summer temperatures in a fragmented Mediterranean landscape.

    PubMed

    Keppel, Gunnar; Anderson, Sharolyn; Williams, Craig; Kleindorfer, Sonia; O'Connell, Christopher

    2017-01-01

    Extreme heat events will become more frequent under anthropogenic climate change, especially in Mediterranean ecosystems. Microhabitats can considerably moderate (buffer) the effects of extreme weather events and hence facilitate the persistence of some components of the biodiversity. We investigate the microclimatic moderation provided by two important microhabitats (cavities formed by the leaves of the grass-tree Xanthorrhoea semiplana F.Muell., Xanthorrhoeaceae; and inside the leaf-litter) during the summer of 2015/16 on the Fleurieu Peninsula of South Australia. We placed microsensors inside and outside these microhabitats, as well as above the ground below the forest canopy. Grass-tree and leaf-litter microhabitats significantly buffered against high temperatures and low relative humidity, compared to ground-below-canopy sensors. There was no significant difference between grass-tree and leaf-litter temperatures: in both microhabitats, daily temperature variation was reduced, day temperatures were 1-5°C cooler, night temperatures were 0.5-3°C warmer, and maximum temperatures were up to 14.4°C lower, compared to ground-below-canopy sensors. Grass-tree and leaf-litter microhabitats moderated heat increase at an average rate of 0.24°C temperature per 1°C increase of ambient temperature in the ground-below-canopy microhabitat. The average daily variation in temperature was determined by the type (grass-tree and leaf-litter versus ground-below-canopy) of microhabitat (explaining 67%), the amount of canopy cover and the area of the vegetation fragment (together explaining almost 10% of the variation). Greater canopy cover increased the amount of microclimatic moderation provided, especially in the leaf-litter. Our study highlights the importance of microhabitats in moderating macroclimatic conditions. However, this moderating effect is currently not considered in species distribution modelling under anthropogenic climate change nor in the management of vegetation. This shortcoming will have to be addressed to obtain realistic forecasts of future species distributions and to achieve effective management of biodiversity.

  1. Ultraviolet leaf reflectance of common urban trees and the prediction of reflectance from leaf surface characteristics

    Treesearch

    Richard H. Grant; Gordon M. Heisler; Wei Gao; Matthew Jenks

    2003-01-01

    The spectral reflectance and transmittance over the wavelength range of 250-700nm were evaluated for leaves of 20 deciduous tree species and leaf sheaths of five isogenic wax variants of Sorghum bicolor differing in visible reflectance due to cuticular waxes. Using the sorghum sheath reflectance and cuticle surface characteristics as a model, it was concluded that tree...

  2. In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species.

    PubMed

    Slot, Martijn; Winter, Klaus

    2017-12-01

    Net photosynthetic carbon uptake of Panamanian lowland tropical forest species is typically optimal at 30-32 °C. The processes responsible for the decrease in photosynthesis at higher temperatures are not fully understood for tropical trees. We determined temperature responses of maximum rates of RuBP-carboxylation (V CMax ) and RuBP-regeneration (J Max ), stomatal conductance (G s ), and respiration in the light (R Light ) in situ for 4 lowland tropical tree species in Panama. G s had the lowest temperature optimum (T Opt ), similar to that of net photosynthesis, and photosynthesis became increasingly limited by stomatal conductance as temperature increased. J Max peaked at 34-37 °C and V CMax ~2 °C above that, except in the late-successional species Calophyllum longifolium, in which both peaked at ~33 °C. R Light significantly increased with increasing temperature, but simulations with a photosynthesis model indicated that this had only a small effect on net photosynthesis. We found no evidence for Rubisco-activase limitation of photosynthesis. T Opt of V CMax and J Max fell within the observed in situ leaf temperature range, but our study nonetheless suggests that net photosynthesis of tropical trees is more strongly influenced by the indirect effects of high temperature-for example, through elevated vapour pressure deficit and resulting decreases in stomatal conductance-than by direct temperature effects on photosynthetic biochemistry and respiration. © 2017 John Wiley & Sons Ltd.

  3. Temperature threshold of isoprene emission from tropical trees, Ficus virgata and Ficus septica.

    PubMed

    Oku, Hirosuke; Inafuku, Masashi; Takamine, Tomonori; Nagamine, Maki; Saitoh, Seikoh; Fukuta, Masakazu

    2014-01-01

    This paper describes the existence of temperature threshold in isoprene emission from tropical trees for the first time. Isoprene emission capacity of Ficus virgata leaves kept outdoors were measured over a period of 20 d in the wintertime. When the plants experienced the low temperature below 12 °C in the daytime, isoprene emission was completely suppressed, and re-activated by elevated temperature above the threshold of 12 °C. Photosynthesis is also decreased similarly, but too much smaller extent compared to the reduction observed for isoprene emission. The cut off level of accumulated temperature to shut off the isoprene emission was roughly estimated to be 300 degree/d. The shut off in the isoprene emission by the low temperature was confirmed experimentally by use of phytotron with tropical trees of F. virgata and F. septica. Isoprene emission of both species ceased at 12 °C, and re-activated by raising the temperature above the threshold level. Photosynthesis was lowered slightly as was the case for the field observation, and no close association between photosynthesis and isoprene emission was noted. The expression of isoprene synthase gene showed much greater variation after exposure to the cold temperature compared to those involved in photosynthesis. These observations therefore suggested the existence of putative direct connection between perception of temperature and isoprene emission in tropical trees, which may merit further investigation to estimate the net output of isoprene from subtropical or tropical forest. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Modelling the Relationship Between Land Surface Temperature and Landscape Patterns of Land Use Land Cover Classification Using Multi Linear Regression Models

    NASA Astrophysics Data System (ADS)

    Bernales, A. M.; Antolihao, J. A.; Samonte, C.; Campomanes, F.; Rojas, R. J.; dela Serna, A. M.; Silapan, J.

    2016-06-01

    The threat of the ailments related to urbanization like heat stress is very prevalent. There are a lot of things that can be done to lessen the effect of urbanization to the surface temperature of the area like using green roofs or planting trees in the area. So land use really matters in both increasing and decreasing surface temperature. It is known that there is a relationship between land use land cover (LULC) and land surface temperature (LST). Quantifying this relationship in terms of a mathematical model is very important so as to provide a way to predict LST based on the LULC alone. This study aims to examine the relationship between LST and LULC as well as to create a model that can predict LST using class-level spatial metrics from LULC. LST was derived from a Landsat 8 image and LULC classification was derived from LiDAR and Orthophoto datasets. Class-level spatial metrics were created in FRAGSTATS with the LULC and LST as inputs and these metrics were analysed using a statistical framework. Multi linear regression was done to create models that would predict LST for each class and it was found that the spatial metric "Effective mesh size" was a top predictor for LST in 6 out of 7 classes. The model created can still be refined by adding a temporal aspect by analysing the LST of another farming period (for rural areas) and looking for common predictors between LSTs of these two different farming periods.

  5. Microwave remote sensing and radar polarization signatures of natural fields

    NASA Technical Reports Server (NTRS)

    Mo, Tsan

    1989-01-01

    Theoretical models developed for simulation of microwave remote sensing of the Earth surface from airborne/spaceborne sensors are described. Theoretical model calculations were performed and the results were compared with data of field measurements. Data studied included polarimetric images at the frequencies of P band, L band, and C band, acquired with airborne polarimeters over a agricultural field test site. Radar polarization signatures from bare soil surfaces and from tree covered fields were obtained from the data. The models developed in this report include: (1) Small perturbation model of wave scatterings from randomly rough surfaces, (2) Physical optics model, (3) Geometrical optics model, and (4) Electromagnetic wave scattering from dielectric cylinders of finite lengths, which replace the trees and branches in the modeling of tree covered field. Additionally, a three-layer emissivity model for passive sensing of a vegetation covered soil surface is also developed. The effects of surface roughness, soil moisture contents, and tree parameters on the polarization signatures were investigated.

  6. Residential building energy conservation and avoided power plant emissions by urban and community trees in the United States

    Treesearch

    David J. Nowak; Nathaniel Appleton; Alexis Ellis; Eric Greenfield

    2017-01-01

    Urban trees and forests alter building energy use and associated emissions from power plants by shading buildings, cooling air temperatures and altering wind speeds around buildings. Field data on urban trees were combined with local urban/community tree and land cover maps, modeling of tree effects on building energy use and pollutant emissions, and state energy and...

  7. Differential response of Aspen and Birch trees to heat stress under elevated carbon dioxide

    Treesearch

    Joseph N.T. Darbah; Thomas D. Sharkey; Carlo Calfapietra; David F. Karnosky

    2010-01-01

    The effect of high temperature on photosynthesis of isoprene-emitting (aspen) and non-isoprene-emitting (birch) trees were measured under elevated CO2 and ambient conditions. Aspen trees tolerated heat better than birch trees and elevated CO2 protected photosynthesis of both species against moderate heat stress. Elevated CO...

  8. Foliage Sampling Guides for Loblolly Pine

    Treesearch

    Carol G. Wells

    1969-01-01

    Loblolly pine (Pinus taeda L.) trees were sampled to determine the effect of growth flush, crown position of pole trees, and winter temperature extremes upon the nutrient content of needles. Winter temperatures did not have an important influence upon elemental content. Because concentrations of several elements differed for Ihe first, second, and...

  9. Red Cedar Invasion Along the Missouri River, South Dakota: Cause and Consequence

    NASA Astrophysics Data System (ADS)

    Greene, S.; Knox, J. C.

    2012-12-01

    This research evaluates drivers of and ecosystem response to red cedar (Juniperus virginiana) invasion of riparian surfaces downstream of Gavin's Point Dam on the Missouri River. Gavin's Point Dam changed the downstream geomorphology and hydrology of the river and its floodplain by reducing scouring floods and flood-deposited sediment. The native cottonwood species (Populus deltoides) favors cleared surfaces with little to no competitors to establish. Now that there are infrequent erosive floods along the riparian surfaces to remove competitor seeds and seedlings, other vegetation is able to establish. Red cedar is invading the understory of established cottonwood stands and post-dam riparian surfaces. To assess reasons and spatial patterns for the recent invasion of red cedar, a stratified random sampling of soil, tree density and frequency by species, and tree age of 14 forest stands was undertaken along 59 river kilometers of riparian habitat. Soil particle size was determined using laser diffraction and tree ages were estimated from ring counts of tree cores. As an indicator of ecosystem response to invasion, we measured organic matter content in soil collected beneath red cedar and cottonwood trees at three different depths. Of 565 red cedars, only two trees were established before the dam was built. We applied a multiple regression model of red cedar density as a function of cottonwood density and percent sand (63-1000 microns in diameter) in StatPlus© statistical software. Cottonwood density and percent sand are strongly correlated with invasion of red cedar along various riparian surfaces (n = 59, R2 = 0.42, p-values < 0.05). No significant differences exist between organic matter content of soil beneath red cedar and cottonwood trees (p-value > 0.05 for all depths). These findings suggest that the dam's minimization of downstream high-stage flows opened up new habitat for red cedar to establish. Fluvial geomorphic surfaces reflect soil type and cottonwood density and, in turn, predict susceptibility of a surface to red cedar invasion. Nonetheless, soils underlying red cedar and cottonwood trees are functionally similar with regard to soil organic matter content.

  10. Tree-shaped fractal meta-surface with left-handed characteristics for absorption application

    NASA Astrophysics Data System (ADS)

    Faruque, M. R. I.; Hasan, M. M.; Islam, M. T.

    2018-02-01

    A tri-band fractal meta-surface absorber composed of metallic branches of a tree connected with a straight metal strip has been presented in this paper for high absorption application. The proposed tree-shaped structure shows resonance in C-, X-, and Ku-bands and left-handed characteristics in 14.15 GHz. The dimension of the tree-shaped meta-surface single unit cell structure is 9 × 9 mm2 and the effective medium ratio is 5.50. In addition, the designed absorber structure shows absorption above 84%, whereas the absorber structure printed on epoxy resin fiber substrate material. The FIT-based CST-MWS has been utilized for the design, simulation, and analysis purposes. Fabrication is also done for the experimental validation.

  11. Binary space partitioning trees and their uses

    NASA Technical Reports Server (NTRS)

    Bell, Bradley N.

    1989-01-01

    Binary Space Partitioning (BSP) trees have some qualities that make them useful in solving many graphics related problems. The purpose is to describe what a BSP tree is, and how it can be used to solve the problem of hidden surface removal, and constructive solid geometry. The BSP tree is based on the idea that a plane acting as a divider subdivides space into two parts with one being on the positive side and the other on the negative. A polygonal solid is then represented as the volume defined by the collective interior half spaces of the solid's bounding surfaces. The nature of how the tree is organized lends itself well for sorting polygons relative to an arbitrary point in 3 space. The speed at which the tree can be traversed for depth sorting is fast enough to provide hidden surface removal at interactive speeds. The fact that a BSP tree actually represents a polygonal solid as a bounded volume also makes it quite useful in performing the boolean operations used in constructive solid geometry. Due to the nature of the BSP tree, polygons can be classified as they are subdivided. The ability to classify polygons as they are subdivided can enhance the simplicity of implementing constructive solid geometry.

  12. Imaging tree roots with borehole radar

    Treesearch

    John R. Butnor; Kurt H. Johnsen; Per Wikstrom; Tomas Lundmark; Sune Linder

    2006-01-01

    Ground-penetrating radar has been used to de-tect and map tree roots using surface-based antennas in reflection mode. On amenable soils these methods can accurately detect lateral tree roots. In some tree species (e.g. Pinus taeda, Pinus palustris), vertically orientated tap roots directly beneath the tree, comprise most of the root mass. It is...

  13. Quantifying environmental limiting factors on tree cover using geospatial data.

    PubMed

    Greenberg, Jonathan A; Santos, Maria J; Dobrowski, Solomon Z; Vanderbilt, Vern C; Ustin, Susan L

    2015-01-01

    Environmental limiting factors (ELFs) are the thresholds that determine the maximum or minimum biological response for a given suite of environmental conditions. We asked the following questions: 1) Can we detect ELFs on percent tree cover across the eastern slopes of the Lake Tahoe Basin, NV? 2) How are the ELFs distributed spatially? 3) To what extent are unmeasured environmental factors limiting tree cover? ELFs are difficult to quantify as they require significant sample sizes. We addressed this by using geospatial data over a relatively large spatial extent, where the wall-to-wall sampling ensures the inclusion of rare data points which define the minimum or maximum response to environmental factors. We tested mean temperature, minimum temperature, potential evapotranspiration (PET) and PET minus precipitation (PET-P) as potential limiting factors on percent tree cover. We found that the study area showed system-wide limitations on tree cover, and each of the factors showed evidence of being limiting on tree cover. However, only 1.2% of the total area appeared to be limited by the four (4) environmental factors, suggesting other unmeasured factors are limiting much of the tree cover in the study area. Where sites were near their theoretical maximum, non-forest sites (tree cover < 25%) were primarily limited by cold mean temperatures, open-canopy forest sites (tree cover between 25% and 60%) were primarily limited by evaporative demand, and closed-canopy forests were not limited by any particular environmental factor. The detection of ELFs is necessary in order to fully understand the width of limitations that species experience within their geographic range.

  14. Distribution of near-surface permafrost in Alaska: estimates of present and future conditions

    USGS Publications Warehouse

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Nield, Shawn J.; Johnson, Kristofer D.; Finley, Andrew O.

    2015-01-01

    High-latitude regions are experiencing rapid and extensive changes in ecosystem composition and function as the result of increases in average air temperature. Increasing air temperatures have led to widespread thawing and degradation of permafrost, which in turn has affected ecosystems, socioeconomics, and the carbon cycle of high latitudes. Here we overcome complex interactions among surface and subsurface conditions to map nearsurface permafrost through decision and regression tree approaches that statistically and spatially extend field observations using remotely sensed imagery, climatic data, and thematic maps of a wide range of surface and subsurface biophysical characteristics. The data fusion approach generated medium-resolution (30-m pixels) maps of near-surface (within 1 m) permafrost, active-layer thickness, and associated uncertainty estimates throughout mainland Alaska. Our calibrated models (overall test accuracy of ~85%) were used to quantify changes in permafrost distribution under varying future climate scenarios assuming no other changes in biophysical factors. Models indicate that near-surface permafrost underlies 38% of mainland Alaska and that near-surface permafrost will disappear on 16 to 24% of the landscape by the end of the 21st Century. Simulations suggest that near-surface permafrost degradation is more probable in central regions of Alaska than more northerly regions. Taken together, these results have obvious implications for potential remobilization of frozen soil carbon pools under warmer temperatures. Additionally, warmer and drier conditions may increase fire activity and severity, which may exacerbate rates of permafrost thaw and carbon remobilization relative to climate alone. The mapping of permafrost distribution across Alaska is important for land-use planning, environmental assessments, and a wide-array of geophysical studies.

  15. Cryopreservation of spores of Dicksonia sellowiana: an endangered tree fern indigenous to South and Central America.

    PubMed

    Rogge, G D; Viana, A M; Randi, A M

    2000-01-01

    Spores of Dicksonia sellowiana (Presl.) Hook., an endangered tree fern, were stored in liquid nitrogen. Surface sterilized spores were placed in 1 ml sterile polypropylene cryotubes and were plunged into liquid nitrogen cryo-cans for 15 minutes, 15 days, 1 month and 3 months. In all, of the treatments the percentage of germination was higher than the control (fresh spores). Germination in Dyer and MS media supplement with 10 (-7) M and 5 x 10(-7) M BA was also promoted as comparing to control. There was no difference between the germination of spores thawed rapidly in a water bath at 45 degree C during 5 minutes or slowly at room temperature. Cryopreservation seems to promote germination of some dormant spores of D. sellowiana. The pre-treatment in cryoprotective solution of dimethyl sulphoxide 15%(v/v) in 1 M glycerol inhibited the germination of cryopreserved spores

  16. Extreme Drought Events Revealed in Amazon Tree Ring Records

    NASA Astrophysics Data System (ADS)

    Jenkins, H. S.; Baker, P. A.; Guilderson, T. P.

    2010-12-01

    The Amazon basin is a center of deep atmospheric convection and thus acts as a major engine for global hydrologic circulation. Yet despite its significance, a full understanding of Amazon rainfall variability remains elusive due to a poor historical record of climate. Temperate tree rings have been used extensively to reconstruct climate over the last thousand years, however less attention has been given to the application of dendrochronology in tropical regions, in large part due to a lower frequency of tree species known to produce annual rings. Here we present a tree ring record of drought extremes from the Madre de Dios region of southeastern Peru over the last 190 years. We confirm that tree ring growth in species Cedrela odorata is annual and show it to be well correlated with wet season precipitation. This correlation is used to identify extreme dry (and wet) events that have occurred in the past. We focus on drought events identified in the record as drought frequency is expected to increase over the Amazon in a warming climate. The Cedrela chronology records historic Amazon droughts of the 20th century previously identified in the literature and extends the record of drought for this region to the year 1816. Our analysis shows that there has been an increase in the frequency of extreme drought (mean recurrence interval = 5-6 years) since the turn of the 20th century and both Atlantic and Pacific sea surface temperature (SST) forcing mechanisms are implicated.

  17. Seed dispersal and seed fate in Joshua tree (Yucca brevifolia)

    USGS Publications Warehouse

    Waitman, B.A.; Vander Wall, S.B.; Esque, Todd

    2012-01-01

    Joshua tree (Yucca brevifolia) is a charismatic symbol of the Mojave Desert. Despite its familiarity, we know little about the reproduction of this species, including mechanisms of seed dispersal. Here we examine mechanisms of seed dispersal and resulting seed fate. We experimentally tracked fruit and seed removal and followed the fates of Joshua tree seeds using radioactive tracers. The majority of Joshua tree fruits monitored were taken directly from the tree canopy by white-tailed antelope squirrels, and seeds and fruits on the soil surface were quickly removed by animals. Rodents given seeds labeled with scandium-46 cached them between 0.1 cm and 4.1 cm deep. Seedling emergence was most common for seeds planted 1 cm deep, whereas seeds placed on the soil surface seldom germinated. Wind dispersal is unlikely because fruits and seeds lack adaptations for wind dispersal; wind speeds required to move Joshua tree seeds and fruits across the soil surface were higher than those typically found in the Mojave Desert. Further, rodents removed most seeds before abiotic burial was possible. We conclude that most Joshua tree seeds are dispersed by scatter hoarding by rodents, and that caches made by rodents are suitable sites for seedling emergence.

  18. Hydraulic redistribution in a Mediterranean wild olive-pasture ecosystem: A key to tree survival and a limit to tree-patch size.

    NASA Astrophysics Data System (ADS)

    Curreli, Matteo; Montaldo, Nicola; Oren, Ram

    2017-04-01

    In water-limited environments, such as certain Mediterranean ecosystems, trees may survive prolonged droughts by uptake of water by dimorphic root system: deep roots, growing vertically, and shallower lateral roots, extending beyond the crown projection of tree clumps into zones of seasonal vegetative cover. In such ecosystems, therefore, the balance between soil water under tree canopy versus that in treeless patches plays a crucial role on sustaining tree physiological performance and surface water fluxes during drought periods. The study has been performed at the Orroli site, Sardinia (Italy). The landscape is covered by patchy vegetation: wild olives trees in clumps, herbaceous species, drying to bare soil in late spring. The climate is Mediterranean maritime with long droughts from May to October, and an historical mean yearly rain of about 670 mm concentrated in the autumn and winter months. Soil depth varies from 10 to 50 cm, with underlying fractured rocky layer of basalt. From 2003, a 10 meters micrometeorological tower equipped with eddy-covariance system has been used for measuring water and energy surface fluxes, as well as key state variables (e.g. leaf and soil skin temperature, radiations, air humidity and wind velocity). Soil moisture was measured with five soil water reflectometers (two below the olive canopy and three in patches with pasture vegetation alternating with bare soil in the dry season). Early analyses show that wild olive continue to transpire even as the soil dries and the pasture desiccates. In 2015, to estimate plant water use and in the context of soil water dynamic, 33 Granier-type thermal dissipation probes were installed for estimating sap flow in stems of wild olives trees, 40 cm aboveground, in representative trees over the eddy-covariance foot-print. The combined data of sap flow, soil water content, and eddy covariance, revealed hydraulic redistribution system through the plant and the soil at different layers, allowing to quantify the reliance of the system on different horizontally and vertically differentiated soil compartments. Results shows that during light hours, until transpiration decreases in midday, shallow roots uptake deplete the water content in the upper layer. As transpiration decreases, hydraulically redistributed water provides for both transpiration of wild olives and recharge of shallow soil layers. This buffering, attained by long recharge time of shallow soil, allow woody vegetation to remain physiologically active during very dry conditions. The hydraulically redistributed water is the main source of water for evapotranspiration in the dry summer, and its relevance increases with decreasing water availability. Thus, the spatial coverage and distribution of tree clumps is regulated by the soil water available in the inter-tree clump areas, suggesting that, if Mediterranean areas dry as predicted by IPCC, the proportion of an area occupied by tree clumps will shrink in the future, with predictable consequences to ecosystem services.

  19. Results of the Winter Flow Experiments Conducted on December 7-8, February 7-8, and February 28-29, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dressen, Donald S.; Beikmann, Mel

    A winter flow regime has been proposed as a method of maintaining a non-freezing environment following the loss of circulation in the HDR Reservoir test facility when ambient temperature is below 32 °F. The regime, as presently envisioned, would automatically convert the surface facility from reservoir circulation to low rate reservoir production through the entire operating system except the EE-3A wellhead, the EE-2A x-mas tree, and the make-up/feed pump/water supply system.

  20. Thermal conditions within tree cavities in ponderosa pine (Pinus ponderosa) forests: potential implications for cavity users.

    PubMed

    Vierling, Kerri T; Lorenz, Teresa J; Cunningham, Patrick; Potterf, Kelsi

    2018-04-01

    Tree cavities provide critical roosting and breeding sites for multiple species, and thermal environments in these cavities are important to understand. Our objectives were to (1) describe thermal characteristics in cavities between June 3 and August 9, 2014, and (2) investigate the environmental factors that influence cavity temperatures. We placed iButtons in 84 different cavities in ponderosa pine (Pinus ponderosa) forests in central Washington, and took hourly measurements for at least 8 days in each cavity. Temperatures above 40 °C are generally lethal to developing avian embryos, and ~ 18% of the cavities had internal temperatures of ≥ 40 °C for at least 1 h of each day. We modeled daily maximum cavity temperature, the amplitude of daily cavity temperatures, and the difference between the mean internal cavity and mean ambient temperatures as a function of several environmental variables. These variables included canopy cover, tree diameter at cavity height, cavity volume, entrance area, the hardness of the cavity body, the hardness of the cavity sill (which is the wood below the cavity entrance which forms the barrier between the cavity and the external environment), and sill width. Ambient temperature had the largest effect size for maximum cavity temperature and amplitude. Larger trees with harder sills may provide more thermally stable cavity environments, and decayed sills were positively associated with maximum cavity temperatures. Summer temperatures are projected to increase in this region, and additional research is needed to determine how the thermal environments of cavities will influence species occupancy, breeding, and survival.

  1. Thermal conditions within tree cavities in ponderosa pine (Pinus ponderosa) forests: potential implications for cavity users

    NASA Astrophysics Data System (ADS)

    Vierling, Kerri T.; Lorenz, Teresa J.; Cunningham, Patrick; Potterf, Kelsi

    2017-11-01

    Tree cavities provide critical roosting and breeding sites for multiple species, and thermal environments in these cavities are important to understand. Our objectives were to (1) describe thermal characteristics in cavities between June 3 and August 9, 2014, and (2) investigate the environmental factors that influence cavity temperatures. We placed iButtons in 84 different cavities in ponderosa pine (Pinus ponderosa) forests in central Washington, and took hourly measurements for at least 8 days in each cavity. Temperatures above 40 °C are generally lethal to developing avian embryos, and 18% of the cavities had internal temperatures of ≥ 40 °C for at least 1 h of each day. We modeled daily maximum cavity temperature, the amplitude of daily cavity temperatures, and the difference between the mean internal cavity and mean ambient temperatures as a function of several environmental variables. These variables included canopy cover, tree diameter at cavity height, cavity volume, entrance area, the hardness of the cavity body, the hardness of the cavity sill (which is the wood below the cavity entrance which forms the barrier between the cavity and the external environment), and sill width. Ambient temperature had the largest effect size for maximum cavity temperature and amplitude. Larger trees with harder sills may provide more thermally stable cavity environments, and decayed sills were positively associated with maximum cavity temperatures. Summer temperatures are projected to increase in this region, and additional research is needed to determine how the thermal environments of cavities will influence species occupancy, breeding, and survival.

  2. Mars Science Laboratory Frame Manager for Centralized Frame Tree Database and Target Pointing

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Leger, Chris; Peters, Stephen; Carsten, Joseph; Diaz-Calderon, Antonio

    2013-01-01

    The FM (Frame Manager) flight software module is responsible for maintaining the frame tree database containing coordinate transforms between frames. The frame tree is a proper tree structure of directed links, consisting of surface and rover subtrees. Actual frame transforms are updated by their owner. FM updates site and saved frames for the surface tree. As the rover drives to a new area, a new site frame with an incremented site index can be created. Several clients including ARM and RSM (Remote Sensing Mast) update their related rover frames that they own. Through the onboard centralized FM frame tree database, client modules can query transforms between any two frames. Important applications include target image pointing for RSM-mounted cameras and frame-referenced arm moves. The use of frame tree eliminates cumbersome, error-prone calculations of coordinate entries for commands and thus simplifies flight operations significantly.

  3. Surface-based GPR underestimates below-stump root biomass

    Treesearch

    John R. Butnor; Lisa J. Samuelson; Thomas A. Stokes; Kurt H. Johnsen; Peter H. Anderson; Carlos A. Gonzalez-Benecke

    2016-01-01

    Aims While lateral root mass is readily detectable with ground penetrating radar (GPR), the roots beneath a tree (below-stump) and overlapping lateral roots near large trees are problematic for surface-based antennas operated in reflection mode. We sought to determine if tree size (DBH) effects GPR root detection proximal to longleaf pine (Pinus palustris Mill) and if...

  4. Differences in photosynthesis and isoprene emission in post oak (Quercus stellata) and sweetgum (Liquidambar styraciflua) trees along an urban-to-rural gradient in Texas

    NASA Astrophysics Data System (ADS)

    Crossett, C.; Lahr, E.; Haas, G.; Schade, G. W.

    2014-12-01

    Many plants produce isoprene, a volatile organic compound that can mitigate damage to photosynthetic systems during short- or long-term increases in leaf temperature. After its production within leaves, isoprene is emitted to the atmosphere and influences regional atmospheric chemistry. Here, we use an urban-to-rural gradient to explore future effects of climate change on tree eco-physiology and feedbacks to atmospheric chemistry. Urban areas mimic many of the conditions expected to occur in the future; in particular, cities have warmer temperatures due to the urban heat island (UHI) effect, and less water availability relative to rural areas. Along a 90 km urban-to-rural gradient, we measured photosynthesis and isoprene emission from trees at three sites in eastern Texas: Houston (urban), The Woodlands (suburban) and Sam Houston National Forest (rural). Isoprene emission from post oak (Quercus stellata) was higher in Houston than the other sites, and when leaf temperatures were increased above ambient conditions, trees produced more isoprene. Leaves produced more isoprene at high leaf temperatures in early summer than in late summer, suggesting gradual acclimation of photosynthetic processes over the course of the summer. We also found that sweetgum (Liquidambar styraciflua) emitted more isoprene than post oak, but when leaf temperatures were increased, isoprene emission was exhausted more quickly in sweetgum relative to post oak. At the same time, post oak maintained higher levels of photosynthesis seasonally and during short-term temperature increases. Both post oak and sweetgum are significant isoprene emitters and represent approximately two and four percent crown cover in the United States, respectively. Our results suggest that in a warming climate, we can expect trees to produce more isoprene seasonally and in response to short-term temperature extremes, and that species-specific differences in photosynthesis and isoprene emission may play an important role in forest dynamics, particularly in long-term forest growth and carbon storage. Further exploration of the interactive effect of increased CO2, temperature, and drought on tree physiology will improve our understanding of forest dynamics and forest-climate feedbacks.

  5. A Millennial-length Reconstruction of the Western Pacific Pattern with Associated Paleoclimate

    NASA Astrophysics Data System (ADS)

    Wright, W. E.; Guan, B. T.; Wei, K.

    2010-12-01

    The Western Pacific Pattern (WP) is a lesser known 500 hPa pressure pattern similar to the NAO or PNA. As defined, the poles of the WP index are centered on 60°N over the Kamchatka peninsula and the neighboring Pacific and on 32.5°N over the western north Pacific. However, the area of influence for the southern half of the dipole includes a wide swath from East Asia, across Taiwan, through the Philippine Sea, to the western north Pacific. Tree rings of Taiwanese Chamaecyparis obtusa var. formosana in this extended region show significant correlation with the WP, and with local temperature. The WP is also significantly correlated with atmospheric temperatures over Taiwan, especially at 850hPa and 700 hPa, pressure levels that bracket the tree site. Spectral analysis indicates that variations in the WP occur at relatively high frequency, with most power at less than 5 years. Simple linear regression against high frequency variants of the tree-ring chronology yielded the most significant correlation coefficients. Two reconstructions are presented. The first uses a tree-ring time series produced as the first intrinsic mode function (IMF) from an Ensemble Empirical Mode Decomposition (EEMD), based on the Hilbert-Huang Transform. The significance of the regression using the EEMD-derived time series was much more significant than time series produced using traditional high pass filtering. The second also uses the first IMF of a tree-ring time series, but the dataset was first sorted and partitioned at a specified quantile prior to EEMD decomposition, with the mean of the partitioned data forming the input to the EEMD. The partitioning was done to filter out the less climatically sensitive tree rings, a common problem with shade tolerant trees. Time series statistics indicate that the first reconstruction is reliable to 1241 of the Common Era. Reliability of the second reconstruction is dependent on the development of statistics related to the quantile partitioning, and the consequent reduction in sample depth. However, the correlation coefficients from regressions over the instrumental period greatly exceed those from any other method of chronology generation, and so the technique holds promise. Additional atmospheric parameters having significant correlations against the WPO and tree ring time series with similar spatial patterns are also presented. These include vertical wind shear (850hPa-700hPa) over the northern Philippines and the Philippine Sea, surface Omega and 850hPa v-winds over the East China Sea, Japan and Taiwan. Possible links to changes in the subtropical jet stream will also be discussed.

  6. Temperature, precipitation and biotic interactions as determinants of tree seedling recruitment across the tree line ecotone.

    PubMed

    Tingstad, Lise; Olsen, Siri Lie; Klanderud, Kari; Vandvik, Vigdis; Ohlson, Mikael

    2015-10-01

    Seedling recruitment is a critical life history stage for trees, and successful recruitment is tightly linked to both abiotic factors and biotic interactions. In order to better understand how tree species' distributions may change in response to anticipated climate change, more knowledge of the effects of complex climate and biotic interactions is needed. We conducted a seed-sowing experiment to investigate how temperature, precipitation and biotic interactions impact recruitment of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings in southern Norway. Seeds were sown into intact vegetation and experimentally created gaps. To study the combined effects of temperature and precipitation, the experiment was replicated across 12 sites, spanning a natural climate gradient from boreal to alpine and from sub-continental to oceanic. Seedling emergence and survival were assessed 12 and 16 months after sowing, respectively, and above-ground biomass and height were determined at the end of the experiment. Interestingly, very few seedlings were detected in the boreal sites, and the highest number of seedlings emerged and established in the alpine sites, indicating that low temperature did not limit seedling recruitment. Site precipitation had an overall positive effect on seedling recruitment, especially at intermediate precipitation levels. Seedling emergence, establishment and biomass were higher in gap plots compared to intact vegetation at all temperature levels. These results suggest that biotic interactions in the form of competition may be more important than temperature as a limiting factor for tree seedling recruitment in the sub- and low-alpine zone of southern Norway.

  7. Ethanol accumulation during severe drought may signal tree vulnerability to detection and attack by bark beetles

    Treesearch

    Rick G. Kelsey; D. Gallego; F.J. Sánchez-Garcia; J.A. Pajares

    2014-01-01

    Tree mortality from temperature-driven drought is occurring in forests around the world, often in conjunction with bark beetle outbreaks when carbon allocation to tree defense declines. Physiological metrics for detecting stressed trees with enhanced vulnerability prior to bark beetle attacks remain elusive. Ethanol, water, monoterpene concentrations, and composition...

  8. Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagos, Samson M.; Leung, Lai-Yung Ruby; Xue, Yongkang

    2014-02-22

    Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Furthermore, the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubsmore » and an increase in surface air temperature.« less

  9. Development of Envelope Curves for Predicting Void Dimensions from Overturned Trees

    DTIC Science & Technology

    2014-07-01

    transport due to tree root throw: integrating tree population dynamics, wildfire, and geomorphic response (Gallaway et al. 2009...Johnson. 2009. Sediment transport due to tree root throw: Integrating tree population dynamics, wildfire and geomorphic response. Earth Surface Processes...environment, but not vegetation (Peterson and Leach 2008) ............................................................ 17 4.7 Pedologic and geomorphic impacts

  10. Patterns and Drivers of Tree Mortality in Iberian Forests: Climatic Effects Are Modified by Competition

    PubMed Central

    Ruiz-Benito, Paloma; Lines, Emily R.; Gómez-Aparicio, Lorena; Zavala, Miguel A.; Coomes, David A.

    2013-01-01

    Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions. PMID:23451096

  11. Foliar Temperature-Respiration Response Functions for Broad-Leaved Tree Species in the Southern Appalachians

    Treesearch

    Paul V. Bolstad; Katherine Mitchell; James M. Vose

    1999-01-01

    We measured leaf respiration in 18 eastern deciduous forest tree species to determine if there were differences in temperature-respiration response functions among species or among canopy positions. Leaf respiration rates were measured in situ an4 on detached branches for Acer pensylvanicum L., A. rubrum L., Betula...

  12. Manage postharvest deficit irrigation of peach trees using canopy to air temperature

    USDA-ARS?s Scientific Manuscript database

    A field study was conducted to use mid-day canopy to air temperature difference (delta T) to manage postharvest deficit irrigation of peach trees in San Joaquin Valley of California and its performance was evaluated. Delta T thresholds were selected, based on previous years’ stem water potential and...

  13. Storage requirements for sugar maple seeds

    Treesearch

    Harry W. Yawney; Clayton M., Jr. Carl

    1974-01-01

    Sugar maple seeds, collected from three trees in northern Vermont, were stored at four temperatures (18, 7, 2, and -10ºC) in combination with four seed moisture contents (35, 25, 17, and 10 percent). Seed moisture content and storage temperature significantly affected keeping ability, and these factors were highly interrelated. Seeds from all trees kept best...

  14. Drought-associated tree mortality: Global patterns and insights from tree-ring studies in the southwestern U.S.A

    NASA Astrophysics Data System (ADS)

    Macalady, Alison Kelly

    Forests play an important role in the earth system, regulating climate, maintaining biodiversity, and provisioning human communities with water, food and fuel. Interactions between climate and forest dynamics are not well constrained, and high uncertainty characterizes projections of global warming impacts on forests and associated ecosystem services. Recently observed tree mortality and forest die-off forewarn an acceleration of forest change with rising temperature and increased drought. However, the processes leading to tree death during drought are poorly understood, limiting our ability to anticipate future forest dynamics. The objective of this dissertation was to improve understanding of drought-associated tree mortality through literature synthesis and tree-ring studies on trees that survived and died during droughts in the southwestern USA. Specifically, this dissertation 1) documented global tree mortality patterns and identified emerging trends and research gaps; 2) quantified relationships between growth, climate, competition and mortality of pinon pine during droughts in New Mexico; 3) investigated tree defense anatomy as a potentially key element in pinon avoidance of death; and, 4) characterized the climate sensitivity of pinon resin ducts in order to gain insight into potential trends in tree defenses with climate variability and change. There has been an increase in studies reporting tree mortality linked to drought, heat, and the associated activity of insects and pathogens. Cases span the forested continents and occurred in water, light and temperature-limited forests. We hypothesized that increased tree mortality may be an emerging global phenomenon related to rising temperatures and drought (Appendix A). Recent radial growth was 53% higher on average in pinon that survived versus died during two episodes of drought-associated mortality, and statistical models of mortality risk based on average growth, growth variability, and abrupt growth changes correctly classified the status of ˜70% of trees. Climate responses and competitive interactions partly explained growth differences between dying and surviving trees, with muted response to wet/cool conditions and enhanced sensitivity to competition from congeners linked to growth patterns associated with death. Discrimination and validation of models of mortality risk varied widely across sites and drought events, indicating shifting growth-mortality relationships and differences in mortality processes across space and time (Appendix B). Pre-formed defense anatomy is strongly associated with pinon survivorship over a range of sites and stand conditions. Models of mortality risk that account for both growth and resin duct attributes had ≈10 19 more support than models that contained only growth. The greatest improvement in classification was among trees from the 2000s drought, suggesting an enhanced role for tree defense allocation and/or bark beetle activity during recent warm versus historic cool drought. Accounting for defense characteristics and growth-defense allocation is likely to be important for improving representation of drought-associated mortality (Appendix C). Pinon resin duct chronologies contain climate responses that are coherent and distinct from those of radial growth. Growth responds positively and strongly to previous fall and current winter precipitation, and negatively to late spring and early summer temperature. A relatively equal positive resin duct response to winter precipitation and positive response to mid-to-late summer drought suggests that changes in climate will affect tree defense anatomy in complex ways, with the outcome determined by seasonal changes in precipitation and temperature (Appendix D).

  15. Late summer temperature reconstruction based on tree-ring density for Sygera Mountain, southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Mingyong; Duan, Jianping; Wang, Lily; Zhu, Haifeng

    2018-04-01

    Although several tree-ring density-based summer/late summer temperature reconstructions have been developed on the Tibetan Plateau (TP), the understanding of the local/regional characteristics of summer temperature fluctuations on a long-term scale in some regions is still limited. To improve our understanding in these aspects, more local or regional summer temperature reconstructions extending back over several centuries are required. In this study, a new mean latewood density (LWD) chronology from Abies georgei var. smithii from the upper tree line of Sygera Mountain on the southeastern TP was developed to reconstruct the late summer temperature variability since 1820 CE. The bootstrapped correlation analysis showed that the LWD chronology index was significantly and positively correlated with the late summer (August-September) mean temperatures (r1950-2008 = 0.63, p < 0.001) recorded at the nearest meteorological station and that this reconstruction has considerable potential to represent the late summer temperature variability at the regional scale. Our late summer temperature reconstruction revealed three obvious cold periods (i.e., 1872-1908, 1913-1937 and 1941-1966) and two relatively warm phases (i.e., 1821-1871 and 1970-2008) over the past two centuries. Comparisons of our reconstruction with other independent tree-ring-based temperature reconstructions, glacier fluctuations and historical documental records from neighboring regions showed good agreement in these relatively cold and warm intervals. Our reconstruction exhibits an overall increasing temperature trend since the 1960s, providing new evidence supporting the recent warming of the TP. Moreover, our results also indicate that the late summer temperature variability of Sygera Mountain on the southeastern TP has potential links with the Pacific Decadal Oscillation (PDO).

  16. Hardwood tree growth on amended mine soils in west virginia.

    PubMed

    Wilson-Kokes, Lindsay; Delong, Curtis; Thomas, Calene; Emerson, Paul; O'Dell, Keith; Skousen, Jeff

    2013-09-01

    Each year surface mining in Appalachia disrupts large areas of forested land. The Surface Mining Control and Reclamation Act requires coal mine operators to establish a permanent vegetative cover after mining, and current practice emphasizes soil compaction and planting of competitive forage grasses to stabilize the site and control erosion. These practices hinder recolonization of native hardwood trees on these reclaimed sites. Recently reclamation scientists and regulators have encouraged re-establishment of hardwood forests on surface mined land through careful selection and placement of rooting media and proper selection and planting of herbaceous and tree species. To evaluate the effect of rooting media and soil amendments, a 2.8-ha experimental plot was established, with half of the plot being constructed of weathered brown sandstone and half constructed of unweathered gray sandstone. Bark mulch was applied to an area covering both sandstone types, and the ends of the plot were hydroseeded with a tree-compatible herbaceous seed mix, resulting in eight soil treatments. Twelve hardwood tree species were planted, and soil chemical properties and tree growth were measured annually from 2007 to 2012. After six growing seasons, average tree volume index was higher for trees grown on brown sandstone (5333 cm) compared with gray sandstone (3031 cm). Trees planted in mulch outperformed trees on nonmulched treatments (volume index of 6187 cm vs. 4194 cm). Hydroseeding with a tree-compatible mix produced greater ground cover (35 vs. 15%) and resulted in greater tree volume index than nonhydroseed areas (5809 vs. 3403 cm). Soil chemical properties were improved by mulch and improved tree growth, especially on gray sandstone. The average pH of brown sandstone was 5.0 to 5.4, and gray sandstone averaged pH 6.9 to 7.7. The mulch treatment on gray sandstone resulted in tree growth similar to brown sandstone alone and with mulch. After 6 yr, tree growth on brown sandstone was about double the tree growth on gray sandstone, and mulch was a successful amendment to improve tree growth. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Development of a tree classifier for discrimination of surface mine activity from Landsat digital data

    NASA Technical Reports Server (NTRS)

    Solomon, J. L.; Miller, W. F.; Quattrochi, D. A.

    1979-01-01

    In a cooperative project with the Geological Survey of Alabama, the Mississippi State Remote Sensing Applications Program has developed a single purpose, decision-tree classifier using band-ratioing techniques to discriminate various stages of surface mining activity. The tree classifier has four levels and employs only two channels in classification at each level. An accurate computation of the amount of disturbed land resulting from the mining activity can be made as a product of the classification output. The utilization of Landsat data provides a cost-efficient, rapid, and accurate means of monitoring surface mining activities.

  18. Reconstructing seasonal climate from high-resolution carbon and oxygen isotope measurements across tree rings

    NASA Astrophysics Data System (ADS)

    Schubert, B.; Jahren, H.

    2014-12-01

    Intra-annual records of carbon (δ13C) and oxygen (δ18O) isotope measurements across tree rings reveal significant changes in δ13C and δ18O value across each growing season. We previously found that across a broad range of climate regimes, the seasonal change in δ13C measured within tree rings reflects changes in seasonal precipitation amount, and demonstrated its utility for quantifying seasonal paleo-precipitation from non-permineralized, fossil wood. Here we produce an equation relating intra-ring changes in δ18O to seasonal changes in temperature and precipitation amount, but the equation yields for unknowns (summer and winter precipitation amounts, and cold and warm month mean temperatures). By combining high-resolution δ13C and δ18O records with independent estimates of mean annual temperature and mean annual precipitation, we show how our general, global relationships could be used to quantify seasonal climate information from fossil sites. We validate our approach using high-resolution δ13C and δ18O data from trees growing at five modern sites (Hawaii, Alaska, Norway, Guyana, and Kenya). The reconstructed estimates of seasonal precipitation and temperature showed excellent agreement with the known climate data for each site (precipitation: R2 = 0.98; temperature: R2 = 0.91). These results confirm that across diverse sites and tree species, seasonal climate information can be accurately quantified using a combination of carbon and oxygen intra-ring isotope profiles.

  19. Recent climate hiatus revealed dual control by temperature and drought on the stem growth of Mediterranean Quercus ilex.

    PubMed

    Lempereur, Morine; Limousin, Jean-Marc; Guibal, Frédéric; Ourcival, Jean-Marc; Rambal, Serge; Ruffault, Julien; Mouillot, Florent

    2017-01-01

    A better understanding of stem growth phenology and its climate drivers would improve projections of the impact of climate change on forest productivity. Under a Mediterranean climate, tree growth is primarily limited by soil water availability during summer, but cold temperatures in winter also prevent tree growth in evergreen forests. In the widespread Mediterranean evergreen tree species Quercus ilex, the duration of stem growth has been shown to predict annual stem increment, and to be limited by winter temperatures on the one hand, and by the summer drought onset on the other hand. We tested how these climatic controls of Q. ilex growth varied with recent climate change by correlating a 40-year tree ring record and a 30-year annual diameter inventory against winter temperature, spring precipitation, and simulated growth duration. Our results showed that growth duration was the best predictor of annual tree growth. We predicted that recent climate changes have resulted in earlier growth onset (-10 days) due to winter warming and earlier growth cessation (-26 days) due to earlier drought onset. These climatic trends partly offset one another, as we observed no significant trend of change in tree growth between 1968 and 2008. A moving-window correlation analysis revealed that in the past, Q. ilex growth was only correlated with water availability, but that since the 2000s, growth suddenly became correlated with winter temperature in addition to spring drought. This change in the climate-growth correlations matches the start of the recent atmospheric warming pause also known as the 'climate hiatus'. The duration of growth of Q. ilex is thus shortened because winter warming has stopped compensating for increasing drought in the last decade. Decoupled trends in precipitation and temperature, a neglected aspect of climate change, might reduce forest productivity through phenological constraints and have more consequences than climate warming alone. © 2016 John Wiley & Sons Ltd.

  20. Range Condition Assessment Report for Naval Surface Warfare Center, Dahlgren Laboratory Ranges, Dahlgren, Virginia

    DTIC Science & Technology

    2010-09-01

    following alternative: vegetative soil cap, offsite disposal of sediments, and phytoremediation to control groundwater levels beneath the landfill. The...cap. These issues include poor condition of the phytoremediation trees on the surface of the landfill cap and blockage of the pond outfall structure...to be completed in January 2009. Based on the poor condition of the phytoremediation trees on the landfill cap, a supplemental tree planting

  1. Collecting, preparing, crossdating, and measuring tree increment cores

    USGS Publications Warehouse

    Phipps, R.L.

    1985-01-01

    Techniques for collecting and handling increment tree cores are described. Procedures include those for cleaning and caring for increment borers, extracting the sample from a tree, core surfacing, crossdating, and measuring. (USGS)

  2. Tree-hierarchy of DNA and distribution of Holliday junctions.

    PubMed

    Rozikov, U A

    2017-12-01

    We define a DNA as a sequence of [Formula: see text]'s and embed it on a path of Cayley tree. Using group representation of the Cayley tree, we give a hierarchy of a countable set of DNAs each of which 'lives' on the same Cayley tree. This hierarchy has property that each vertex of the Cayley tree belongs only to one of DNA. Then we give a model (energy, Hamiltonian) of this set of DNAs by an analogue of Ising model with three spin values (considered as DNA base pairs) on a set of admissible configurations. To study thermodynamic properties of the model of DNAs we describe corresponding translation invariant Gibbs measures (TIGM) of the model on the Cayley tree of order two. We show that there is a critical temperature [Formula: see text] such that (i) if temperature [Formula: see text] then there exists unique TIGM; (ii) if [Formula: see text] then there are two TIGMs; (iii) if [Formula: see text] then there are three TIGMs. Each such measure describes a phase of the set of DNAs. We use these results to study distributions of Holliday junctions and branches of DNAs. In case of very high and very low temperatures we give stationary distributions and typical configurations of the Holliday junctions.

  3. Ecological determinants of mean family age of angiosperm trees in forest communities in China

    NASA Astrophysics Data System (ADS)

    Qian, Hong; Chen, Shengbin

    2016-06-01

    Species assemblage in a local community is determined by the interplay of evolutionary and ecological processes. The Tropical Niche Conservatism hypothesis proposes mechanisms underlying patterns of biodiversity in biological communities along environmental gradients. This hypothesis predicts that, among other things, clades in areas with warm or wet environments are, on average, older than those in areas with cold or dry environments. Focusing on angiosperm trees in forests, this study tested the age-related prediction of the Tropical Niche Conservatism hypothesis. We related the mean family age of angiosperm trees in 57 local forests from across China with 23 current and paleo-environmental variables, which included all major temperature- and precipitation-related variables. Our study shows that the mean family age of angiosperm trees in local forests was positively correlated with temperature and precipitation. This finding is consistent with the age-related prediction of the Tropical Niche Conservatism hypothesis. Approximately 85% of the variance in the mean family age of angiosperm trees was explained by temperature-related variables, and 81% of the variance in the mean family age of angiosperm trees was explained by precipitation-related variables. Climatic conditions at the Last Glacial Maximum did not explain additional variation in mean family age after accounting for current environmental conditions.

  4. Tree- Rings Link Climate and Carbon Storage in a Northern Mixed Hardwood Forest

    NASA Astrophysics Data System (ADS)

    Chiriboga, A.

    2007-12-01

    The terrestrial biosphere is a variable sink for atmospheric carbon dioxide. It is important to understand how carbon storage in trees is affected by natural climate variability to better characterize the sink. Quantifying the sensitivity of forest carbon storage to climate will improve carbon budgets and have implications for forest management practices. Here we explore how climate variability affects the ability of a northern mixed hardwood forest in Michigan to sequester atmospheric carbon dioxide in woody tissues. This site is ideal for studies of carbon sequestration; The University of Michigan Biological Station is an Ameriflux site, and has detailed meteorological and biometric records, as well as CO2 flux data. We have produced an 82- year aspen (Populus grandidentata) tree-ring chronology for this site, and measured ring widths at several heights up the bole. These measurements were used to estimate annual wood volume, which represents carbon allocated to aboveground carbon stores. Standard dendroclimatological techniques are used to identify environmental factors (e.g. temperature or precipitation) that drive tree-ring increment variability in the past century, and therefore annual carbon storage in this forest. Preliminary results show that marker years within the tree- ring chronology correspond with years that have cold spring temperatures. This suggests that trees at this site are temperature sensitive.

  5. Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes.

    PubMed

    Petermann, Jana S; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W; Gossner, Martin M

    2016-01-01

    Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and functioning. We furthermore conclude that artificial tree-hole analogues represent a useful experimental alternative to test effects of changes in forest management on natural communities.

  6. Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes

    PubMed Central

    Petermann, Jana S.; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W.; Gossner, Martin M.

    2016-01-01

    Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and functioning. We furthermore conclude that artificial tree-hole analogues represent a useful experimental alternative to test effects of changes in forest management on natural communities. PMID:27187741

  7. Variation in photosynthesis and stomatal conductance among red maple (Acer rubrum) urban planted cultivars and wildtype trees in the southeastern United States.

    PubMed

    Lahr, Eleanor C; Dunn, Robert R; Frank, Steven D

    2018-01-01

    Photosynthesis is a fundamental process that trees perform over fluctuating environmental conditions. This study of red maple (Acer rubrum L.) characterizes photosynthesis, stomatal conductance, and water use efficiency in planted cultivars relative to wildtype trees. Red maple is common in cities, yet there is little understanding of how physiological processes affect the long-term growth, condition, and ecosystem services provided by urban trees. In the first year of our study, we measured leaf-level gas exchange and performed short-term temperature curves on urban planted cultivars and on suburban and rural wildtype trees. In the second year, we compared urban planted cultivars and urban wildtype trees. In the first year, urban planted trees had higher maximum rates of photosynthesis and higher overall rates of photosynthesis and stomatal conductance throughout the summer, relative to suburban or rural wildtype trees. Urban planted trees again had higher maximum rates of photosynthesis in the second year. However, urban wildtype trees had higher water use efficiency as air temperatures increased and similar overall rates of photosynthesis, relative to cultivars, in mid and late summer. Our results show that physiological differences between cultivars and wildtype trees may relate to differences in their genetic background and their responses to local environmental conditions, contingent on the identity of the horticultural variety. Overall, our results suggest that wildtype trees should be considered for some urban locations, and our study is valuable in demonstrating how site type and tree type can inform tree planting strategies and improve long-term urban forest sustainability.

  8. Xylogenesis in black spruce: does soil temperature matter?

    PubMed

    Lupi, Carlo; Morin, Hubert; Deslauriers, Annie; Rossi, Sergio

    2012-01-01

    In boreal ecosystems, an increase in soil temperature can stimulate plant growth. However, cambium phenology in trees was better explained by air than soil temperature, which suggested that soil temperature is not the main limiting factor affecting xylogenesis. Since soil temperature and snowmelt are correlated to air temperature, the question whether soil temperature directly limits xylogenesis in the stem will remain unresolved without experiments disentangling air and soil temperatures. This study investigated the effects of an increase of 4 °C in soil temperature and a consequent 1-week earlier snowmelt on growth of black spruce [Picea mariana (Mill.) BSP] in the boreal forest of Quebec, Canada. The soil of two natural stands at different altitudes was warmed up with heating cables during 2008-2010 and cambial phenology and xylem production were monitored weekly from April to October. The results showed no significant effect of the treatment on the phenological phases of cell enlargement and wall thickening and lignification. The number of cells produced in the xylem also did not differ between control and heated trees. These findings allowed the hypothesis of a direct influence of soil temperature on stem growth to be rejected and supported the evidence that, in the short term, air temperature is the main limiting factor for xylogenesis in trees of these environments.

  9. Are pileated woodpeckers attracted to red-cockaded woodpecker cavity trees?

    Treesearch

    Daniel Saenz; Richard N. Conner; James R. McCormick

    2002-01-01

    Pileated Woodpeckers (Dryocopus pileatus) cause damage to Red-cockaded Woodpecker (Picoides borealis) cavity trees in the form of cavity enlargement or other excavations on the surface of the pine tree. However, it is not known whether Pileated Woodpeckers excavate more frequently on Red-cockaded Woodpecker cavity trees than on...

  10. Wading bird guano contributes to Hg accumulation in tree island soils in the Florida Everglades.

    PubMed

    Zhu, Yingjia; Gu, Binhe; Irick, Daniel L; Ewe, Sharon; Li, Yuncong; Ross, Michael S; Ma, Lena Q

    2014-01-01

    Tree islands are habitat for wading birds and a characteristic landscape feature in the Everglades. A total of 93 surface soil and 3 soil core samples were collected from 7 degraded/ghost and 34 live tree islands. The mean Hg concentration in surface soils of ghost tree islands was low and similar to marsh soil. For live tree islands, Hg concentrations in the surface head region were considerably greater than those in mid and tail region, and marsh soils. Hg concentrations in bird guano (286 μg kg(-1)) were significantly higher than those in mammal droppings (105 μg kg(-1)) and plant leaves (53 μg kg(-1)). In addition, Hg concentrations and δ(15)N values displayed positive correlation in soils influenced by guano. During 1998-2010, estimated annual Hg deposition by guano was 148 μg m(-2) yr(-1) and ~8 times the atmospheric deposition. Published by Elsevier Ltd.

  11. Physiological girdling of pine trees via phloem chilling: proof of concept

    Treesearch

    Kurt Johnsen; Chris Maier; Felipe Sanchez; Peter Anderson; John Butnor; Richard Waring; Sune Linder

    2007-01-01

    Quantifying below-ground carbon (C) allocation is particularly difficult as methods usually disturb the root– mycorrhizal–soil continuum. We reduced C allocation below ground of loblolly pine trees by: (1) physically girdling trees and (2) physiologically girdling pine trees by chilling the phloem. Chilling reduced cambium temperatures by approximately 18 °C. Both...

  12. Real-Time Monitoring of Mountain Conifer Growth Response to Seasonal Climate and the Summer Monsoon in the Great Basin of North America

    NASA Astrophysics Data System (ADS)

    Strachan, S.; Biondi, F.

    2013-12-01

    Tree rings in the American intermountain west are often used for palaeoclimatic purposes, including reconstructions of precipitation, temperature, and drought. Specific seasonal phenomena such as the North American Monsoon (NAM) are also being identified in tree-ring studies as being related to certain growth features in the rings (such as early-onset 'false' latewood). These relationships have historically been developed using statistical relationships between tree-ring chronologies and regional weather observations. In zones near the periphery of the NAM, summertime precipitation may be more sporadic, yet localized vegetation assemblages in the northern Mojave desert and Great Basin regions indicate that these events are still important for some ecosystems which have established in areas where NAM activity is present. Major shifts in NAM behavior in the past may have been recorded by tree rings, and identifying the specific mechanisms/circumstances by which this occurs is critical for efforts seeking to model ecosystem response to climate changes. By establishing in-situ monitoring of climate/weather, soils, and tree-growth variables in Pinus ponderosa scopulorum and Pinus monophylla zones at study sites in eastern/southern Nevada, we are able to address these issues at very fine spatial and temporal scales. Data from two seasons of monitoring precipitation, solar radiation, air temperature, soil temperature, soil water content, tree sap flow, tree radial distance increment, and hourly imagery are presented. Point dendrometers along with sap flow sensors monitor growth in these ponderosa pine around the clock to help researchers understand tree-ring/climate relationships.

  13. Nitrogen nutrition of poplar trees.

    PubMed

    Rennenberg, H; Wildhagen, H; Ehlting, B

    2010-03-01

    Many forest ecosystems have evolved at sites with growth-limiting nitrogen (N) availability, low N input from external sources and high ecosystem internal cycling of N. By contrast, many poplar species are frequent constituents of floodplain forests where they are exposed to a significant ecosystem external supply of N, mainly nitrate, in the moving water table. Therefore, nitrate is much more important for N nutrition of these poplar species than for many other tree species. We summarise current knowledge of nitrate uptake and its regulation by tree internal signals, as well as acquisition of ammonium and organic N from the soil. Unlike herbaceous plants, N nutrition of trees is sustained by seasonal, tree internal cycling. Recent advances in the understanding of seasonal storage and mobilisation in poplar bark and regulation of these processes by temperature and daylength are addressed. To explore consequences of global climate change on N nutrition of poplar trees, responses of N uptake and metabolism to increased atmospheric CO(2) and O(3) concentrations, increased air and soil temperatures, drought and salt stress are highlighted.

  14. An evaluation of trees and shrubs for planting surface-mine spoils

    Treesearch

    William T. Plass

    1975-01-01

    Fifty-five tree and shrub species were evaluated on two surface-mine sites in eastern Kentucky. After 4 years' growth, comparison of survival and growth was used to identify the promising species for planting on acid surface-mine spoils. Three species of birch and three Eleagnus species survived and grew well on a range of sites. Noncommercial...

  15. Tropical forests are thermally buffered despite intensive selective logging.

    PubMed

    Senior, Rebecca A; Hill, Jane K; Benedick, Suzan; Edwards, David P

    2018-03-01

    Tropical rainforests are subject to extensive degradation by commercial selective logging. Despite pervasive changes to forest structure, selectively logged forests represent vital refugia for global biodiversity. The ability of these forests to buffer temperature-sensitive species from climate warming will be an important determinant of their future conservation value, although this topic remains largely unexplored. Thermal buffering potential is broadly determined by: (i) the difference between the "macroclimate" (climate at a local scale, m to ha) and the "microclimate" (climate at a fine-scale, mm to m, that is distinct from the macroclimate); (ii) thermal stability of microclimates (e.g. variation in daily temperatures); and (iii) the availability of microclimates to organisms. We compared these metrics in undisturbed primary forest and intensively logged forest on Borneo, using thermal images to capture cool microclimates on the surface of the forest floor, and information from dataloggers placed inside deadwood, tree holes and leaf litter. Although major differences in forest structure remained 9-12 years after repeated selective logging, we found that logging activity had very little effect on thermal buffering, in terms of macroclimate and microclimate temperatures, and the overall availability of microclimates. For 1°C warming in the macroclimate, temperature inside deadwood, tree holes and leaf litter warmed slightly more in primary forest than in logged forest, but the effect amounted to <0.1°C difference between forest types. We therefore conclude that selectively logged forests are similar to primary forests in their potential for thermal buffering, and subsequent ability to retain temperature-sensitive species under climate change. Selectively logged forests can play a crucial role in the long-term maintenance of global biodiversity. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  16. Do elevated temperature and CO2 generally have counteracting effects on phenolic phytochemistry of boreal trees?

    Treesearch

    T.O. Veteli; W.J. Mattson; P. Niemela; R. Julkunen-Tiitto; S. Kellomaki; K. Kuokkanen; A. Lavola

    2007-01-01

    Global climate change includes concomitant changes in many components of the abiotic flux necessary for plant life. In this paper, we investigate the combined effects of elevated CO2 (720 ppm) and temperature (+2 K) on the phytochemistry of three deciduous tree species. The analysis revealed that elevated CO2 generally...

  17. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone.

    PubMed

    Will, Rodney E; Wilson, Stuart M; Zou, Chris B; Hennessey, Thomas C

    2013-10-01

    Tree species growing along the forest-grassland ecotone are near the moisture limit of their range. Small increases in temperature can increase vapor pressure deficit (VPD) which may increase tree water use and potentially hasten mortality during severe drought. We tested a 40% increase in VPD due to an increase in growing temperature from 30 to 33°C (constant dewpoint 21°C) on seedlings of 10 tree species common to the forest-grassland ecotone in the southern Great Plains, USA. Measurement at 33 vs 30°C during reciprocal leaf gas exchange measurements, that is, measurement of all seedlings at both growing temperatures, increased transpiration for seedlings grown at 30°C by 40% and 20% for seedlings grown at 33°C. Higher initial transpiration of seedlings in the 33°C growing temperature treatment resulted in more negative xylem water potentials and fewer days until transpiration decreased after watering was withheld. The seedlings grown at 33°C died 13% (average 2 d) sooner than seedlings grown at 30°C during terminal drought. If temperature and severity of droughts increase in the future, the forest-grassland ecotone could shift because low seedling survival rate may not sufficiently support forest regeneration and migration. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?

    PubMed

    Drake, John E; Tjoelker, Mark G; Aspinwall, Michael J; Reich, Peter B; Barton, Craig V M; Medlyn, Belinda E; Duursma, Remko A

    2016-08-01

    Given the contrasting short-term temperature dependences of gross primary production (GPP) and autotrophic respiration, the fraction of GPP respired by trees is predicted to increase with warming, providing a positive feedback to climate change. However, physiological acclimation may dampen or eliminate this response. We measured the fluxes of aboveground respiration (Ra ), GPP and their ratio (Ra /GPP) in large, field-grown Eucalyptus tereticornis trees exposed to ambient or warmed air temperatures (+3°C). We report continuous measurements of whole-canopy CO2 exchange, direct temperature response curves of leaf and canopy respiration, leaf and branch wood respiration, and diurnal photosynthetic measurements. Warming reduced photosynthesis, whereas physiological acclimation prevented a coincident increase in Ra . Ambient and warmed trees had a common nonlinear relationship between the fraction of GPP that was respired above ground (Ra /GPP) and the mean daily temperature. Thus, warming significantly increased Ra /GPP by moving plants to higher positions on the shared Ra /GPP vs daily temperature relationship, but this effect was modest and only notable during hot conditions. Despite the physiological acclimation of autotrophic respiration to warming, increases in temperature and the frequency of heat waves may modestly increase tree Ra /GPP, contributing to a positive feedback between climate warming and atmospheric CO2 accumulation. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism.

    PubMed

    Adams, Henry D; Germino, Matthew J; Breshears, David D; Barron-Gafford, Greg A; Guardiola-Claramonte, Maite; Zou, Chris B; Huxman, Travis E

    2013-03-01

    Vegetation change is expected with global climate change, potentially altering ecosystem function and climate feedbacks. However, causes of plant mortality, which are central to vegetation change, are understudied, and physiological mechanisms remain unclear, particularly the roles of carbon metabolism and xylem function. We report analysis of foliar nonstructural carbohydrates (NSCs) and associated physiology from a previous experiment where earlier drought-induced mortality of Pinus edulis at elevated temperatures was associated with greater cumulative respiration. Here, we predicted faster NSC decline for warmed trees than for ambient-temperature trees. Foliar NSC in droughted trees declined by 30% through mortality and was lower than in watered controls. NSC decline resulted primarily from decreased sugar concentrations. Starch initially declined, and then increased above pre-drought concentrations before mortality. Although temperature did not affect NSC and sugar, starch concentrations ceased declining and increased earlier with higher temperatures. Reduced foliar NSC during lethal drought indicates a carbon metabolism role in mortality mechanism. Although carbohydrates were not completely exhausted at mortality, temperature differences in starch accumulation timing suggest that carbon metabolism changes are associated with time to death. Drought mortality appears to be related to temperature-dependent carbon dynamics concurrent with increasing hydraulic stress in P. edulis and potentially other similar species. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  20. A 2100-Year Reconstruction of July Rainfall Over Westcentral New Mexico

    NASA Astrophysics Data System (ADS)

    Stahle, D.; Cleaveland, M.; Therrell, M.; Grissino-Mayer, H.; Griffin, D.; Fye, F.

    2007-05-01

    We have developed a new 2,141-year long tree-ring chronology of latewood (LW) width from ancient Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosae) at El Malpais National Monument, New Mexico. This is one of the longest precipitation-sensitive tree-ring chronologies yet constructed for the American Southwest and has been used to develop the first continuous multi-millennial tree-ring reconstruction of July precipitation in the region of the North American Monsoon System (NAMS). Monthly average precipitation increases sharply in July over western New Mexico, marking the dramatic onset to the summer monsoon season. The LW chronology explains 44 percent of the interannual variability of July precipitation in the instrumental record for New Mexico climate divisions 1 and 4 (1960-2004), after removal of the linear dependence of LW width on earlywood width following Meko and Baisan (2001), and has passed statistical tests of verification on independent July precipitation data (1895-1959). The instrumental and tree-ring reconstructed July precipitation data are correlated with the concurrent 500 mb height field over western North America and with the sea surface temperature gradient from the central to eastern North Pacific. The reconstruction exhibits several severe sustained July droughts that exceed any witnessed during the instrumental era, and has significant spectral power at periods near 3-5, 20, and 70 years.

  1. Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime temperatures.

    PubMed

    Krause, G Heinrich; Cheesman, Alexander W; Winter, Klaus; Krause, Barbara; Virgo, Aurelio

    2013-06-15

    Global warming and associated increases in the frequency and amplitude of extreme weather events, such as heat waves, may adversely affect tropical rainforest plants via significantly increased tissue temperatures. In this study, the response to two temperature regimes was assessed in seedlings of the neotropical pioneer tree species, Ficus insipida. Plants were cultivated in growth chambers at strongly elevated daytime temperature (39°C), combined with either close to natural (22°C) or elevated (32°C) nighttime temperatures. Under both growth regimes, the critical temperature for irreversible leaf damage, determined by changes in chlorophyll a fluorescence, was approximately 51°C. This is comparable to values found in F. insipida growing under natural ambient conditions and indicates a limited potential for heat tolerance acclimation of this tropical forest tree species. Yet, under high nighttime temperature, growth was strongly enhanced, accompanied by increased rates of net photosynthetic CO2 uptake and diminished temperature dependence of leaf-level dark respiration, consistent with thermal acclimation of these key physiological parameters. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.

    PubMed

    Basler, David; Körner, Christian

    2014-04-01

    Spring phenology of temperate forest trees is optimized to maximize the length of the growing season while minimizing the risk of freezing damage. The release from winter dormancy is environmentally mediated by species-specific responses to temperature and photoperiod. We investigated the response of early spring phenology to temperature and photoperiod at different stages of dormancy release in cuttings from four temperate tree species in controlled environments. By tracking bud development, we were able to identify the onset of bud swelling and bud growth in Acer pseudoplatanus L., Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl. and Picea abies (L.) H. Karst. At a given early stage of dormancy release, the onset and duration of the bud swelling prior to bud burst are driven by concurrent temperature and photoperiod, while the maximum growth rate is temperature dependent only, except for Fagus, where long photoperiods also increased bud growth rates. Similarly, the later bud burst was controlled by temperature and photoperiod (in the photoperiod sensitive species Fagus, Quercus and Picea). We conclude that photoperiod is involved in the release of dormancy during the ecodormancy phase and may influence bud burst in trees that have experienced sufficient chilling. This study explored and documented the early bud swelling period that precedes and defines later phenological stages such as canopy greening in conventional phenological works. It is the early bud growth resumption that needs to be understood in order to arrive at a causal interpretation and modelling of tree phenology at a large scale. Classic spring phenology events mark visible endpoints of a cascade of processes as evidenced here.

  3. Distribution of Mercury Concentrations in Tree Rings and Surface Soils Adjacent to a Phosphate Fertilizer Plant in Southern Korea.

    PubMed

    Jung, Raae; Ahn, Young Sang

    2017-08-01

    This study aimed to determine mercury concentrations in tree rings and surface soils at distances of 4, 26 and 40 km from a fertilizer plant located in Yeosu City, Korea. Mercury concentrations in all tree rings were low prior to the establishment of the plant in 1977 and became elevated thereafter. The highest average mercury concentration in the tree rings was 11.96 ng g -1 at the Yeosu site located nearest to the plant, with the lowest average mercury concentration of 4.45 ng g -1 at the Suncheon site furthest away from the plant. In addition, the highest mercury content in the surface soil was 108.51 ng cm -3 at the Yeosu site, whereas the lowest mercury content in the surface soil was 31.47 ng cm -3 at the Suncheon site. The mercury levels decreased gradually with increasing distance from the plant.

  4. Variation of mobile carbon reserves in trees at the alpine treeline ecotone is under environmental control.

    PubMed

    Fajardo, Alex; Piper, Frida I; Pfund, Laura; Körner, Christian; Hoch, Günter

    2012-09-01

    In low temperature-adapted plants, including treeline trees, light-saturated photosynthesis is considerably less sensitive to temperature than growth. As a consequence, all plants tested so far show increased nonstructural carbohydrate (NSC) tissue concentrations when exposed to low temperatures. Reduced carbon supply is thus an unlikely cause for low temperature range limits of plants. For altitudinal treeline trees there is, however, a possibility that high NSC genotypes have been selected. Here, we explored this possibility using afforestations with single-provenance conifers along elevational gradients in the Southern Chilean Andes and the Swiss Alps. Tree growth was measured at each of four approximately equidistant elevations at and below the treeline. Additionally, at the same elevations, needle, branch and stem sapwood tissues were collected to determine NSC concentrations. Overall, growth decreased and NSC concentrations increased with elevation. Along with previous empirical and experimental studies, the findings of this study provide no indication of NSC reduction at the treeline; NSC increased in most species (each represented by one common population) towards their upper climatic limit. The disparity between carbon acquisition and structural carbon investment at low temperature (accumulation of NSC) thus does occur even among genotypes not adapted to treeline environments. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  5. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions.

    PubMed

    Moyes, Andrew B; Germino, Matthew J; Kueppers, Lara M

    2015-09-01

    Climate change is altering plant species distributions globally, and warming is expected to promote uphill shifts in mountain trees. However, at many cold-edge range limits, such as alpine treelines in the western United States, tree establishment may be colimited by low temperature and low moisture, making recruitment patterns with warming difficult to predict. We measured response functions linking carbon (C) assimilation and temperature- and moisture-related microclimatic factors for limber pine (Pinus flexilis) seedlings growing in a heating × watering experiment within and above the alpine treeline. We then extrapolated these response functions using observed microclimate conditions to estimate the net effects of warming and associated soil drying on C assimilation across an entire growing season. Moisture and temperature limitations were each estimated to reduce potential growing season C gain from a theoretical upper limit by 15-30% (c. 50% combined). Warming above current treeline conditions provided relatively little benefit to modeled net assimilation, whereas assimilation was sensitive to either wetter or drier conditions. Summer precipitation may be at least as important as temperature in constraining C gain by establishing subalpine trees at and above current alpine treelines as seasonally dry subalpine and alpine ecosystems continue to warm. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Ranking of tree-ring based temperature reconstructions of the past millennium

    NASA Astrophysics Data System (ADS)

    Esper, Jan; Krusic, Paul J.; Ljungqvist, Fredrik C.; Luterbacher, Jürg; Carrer, Marco; Cook, Ed; Davi, Nicole K.; Hartl-Meier, Claudia; Kirdyanov, Alexander; Konter, Oliver; Myglan, Vladimir; Timonen, Mauri; Treydte, Kerstin; Trouet, Valerie; Villalba, Ricardo; Yang, Bao; Büntgen, Ulf

    2016-08-01

    Tree-ring chronologies are widely used to reconstruct high-to low-frequency variations in growing season temperatures over centuries to millennia. The relevance of these timeseries in large-scale climate reconstructions is often determined by the strength of their correlation against instrumental temperature data. However, this single criterion ignores several important quantitative and qualitative characteristics of tree-ring chronologies. Those characteristics are (i) data homogeneity, (ii) sample replication, (iii) growth coherence, (iv) chronology development, and (v) climate signal including the correlation with instrumental data. Based on these 5 characteristics, a reconstruction-scoring scheme is proposed and applied to 39 published, millennial-length temperature reconstructions from Asia, Europe, North America, and the Southern Hemisphere. Results reveal no reconstruction scores highest in every category and each has their own strengths and weaknesses. Reconstructions that perform better overall include N-Scan and Finland from Europe, E-Canada from North America, Yamal and Dzhelo from Asia. Reconstructions performing less well include W-Himalaya and Karakorum from Asia, Tatra and S-Finland from Europe, and Great Basin from North America. By providing a comprehensive set of criteria to evaluate tree-ring chronologies we hope to improve the development of large-scale temperature reconstructions spanning the past millennium. All reconstructions and their corresponding scores are provided at http://www.blogs.uni-mainz.de/fb09climatology.

  7. Trees tell of past climates: but are they speaking less clearly today?

    PubMed Central

    Briffa, K. R.

    1998-01-01

    The annual growth of trees, as represented by a variety of ring-width, densitometric, or chemical parameters, represents a combined record of different environmental forcings, one of which is climate. Along with climate, relatively large-scale positive growth influences such as hypothesized 'fertilization' due to increased levels of atmospheric carbon dioxide or various nitrogenous compounds, or possibly deleterious effects of 'acid rain' or increased ultra-violet radiation, might all be expected to exert some influence on recent tree growth rates. Inferring the details of past climate variability from tree-ring data remains a largely empirical exercise, but one that goes hand-in-hand with the development of techniques that seek to identify and isolate the confounding influence of local and larger-scale non-climatic factors. By judicious sampling, and the use of rigorous statistical procedures, dendroclimatology has provided unique insight into the nature of past climate variability, but most significantly at interannual, decadal, and centennial timescales. Here, examples are shown that illustrate the reconstruction of annually resolved patterns of past summer temperature around the Northern Hemisphere, as well as some more localized reconstructions, but ones which span 1000 years or more. These data provide the means of exploring the possible role of different climate forcings; for example, they provide evidence of the large-scale effects of explosive volcanic eruptions on regional and hemispheric temperatures during the last 400 years. However, a dramatic change in the sensitivity of hemispheric tree-growth to temperature forcing has become apparent during recent decades, and there is additional evidence of major tree-growth (and hence, probably, ecosystem biomass) increases in the northern boreal forests, most clearly over the last century. These possibly anthropogenically related changes in the ecology of tree growth have important implications for modelling future atmospheric CO2 concentrations. Also, where dendroclimatology is concerned to reconstruct longer (increasingly above centennial) temperature histories, such alterations of 'normal' (pre-industrial) tree-growth rates and climate-growth relationships must be accounted for in our attempts to translate the evidence of past tree growth changes.

  8. Modeling tree growth and stable isotope ratios of white spruce in western Alaska.

    NASA Astrophysics Data System (ADS)

    Boucher, Etienne; Andreu-Hayles, Laia; Field, Robert; Oelkers, Rose; D'Arrigo, Rosanne

    2017-04-01

    Summer temperatures are assumed to exert a dominant control on physiological processes driving forest productivity in interior Alaska. However, despite the recent warming of the last few decades, numerous lines of evidence indicate that the enhancing effect of summer temperatures on high latitude forest populations has been weakening. First, satellite-derived indices of photosynthetic activity, such as the Normalized-Difference Vegetation Index (NDVI, 1982-2005), show overall declines in productivity in the interior boreal forests. Second, some white spruce tree ring series strongly diverge from summer temperatures during the second half of the 20th century, indicating a persistent loss of temperature sensitivity of tree ring proxies. Thus, the physiological response of treeline forests to ongoing climate change cannot be accurately predicted, especially from correlation analysis. Here, we make use of a process-based dendroecological model (MAIDENiso) to elucidate the complex linkages between global warming and increases in atmospheric CO2 concentration [CO2] with the response of treeline white spruce stands in interior Alaska (Seward). In order to fully capture the array of processes controlling tree growth in the area, multiple physiological indicators of white spruce productivity are used as target variables: NDVI images, ring widths (RW), maximum density (MXD) and newly measured carbon and oxygen stable isotope ratios from ring cellulose. Based on these data, we highlight the processes and mechanisms responsible for the apparent loss of sensitivity of white spruce trees to recent climate warming and [CO2] increase in order to elucidate the sensitivity and vulnerability of these trees to climate change.

  9. Instrumenting the Conifers: A Look at Daily Tree Growth and Locally Observed Environmental Conditions Across Four Mountain Sites in the Central Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Strachan, S.; Biondi, F.; Johnson, B. G.

    2012-12-01

    Tree growth is often used as a proxy for past environmental conditions or as an indicator of developing trends. Reconstructions of drought, precipitation, temperature, and other phenomena derived from tree-growth indices abound in scientific literature aimed at informing policy makers. Observations of tree recruitment or death in treeline populations are frequently tied to climatic fluctuation in cause-effect hypotheses. Very often these hypotheses are based on statistical relationships between annual-to-seasonal tree growth measurements and some environmental parameter measured or modeled off-site. Observation of daily tree growth in conjunction with in-situ environmental measurements at similar timescales takes us one step closer to quantifying the uncertainty in reconstruction or predictive studies. In four separate sites in two different mountain ranges in the central Great Basin, co-located observations of conifer growth activity and local atmospheric and soils conditions have been initiated. Species include Pinus longaeva (Great Basin bristlecone pine), Pinus flexilis (limber pine), Picea engelmannii (Engelmann spruce), Pinus monophylla (singleleaf pinyon pine), Pinus ponderosa (ponderosa pine), Abies concolor (white fir), and Pseudotsuga menziesii (Douglas-fir). Measurements of sub-hourly tree radial length change and sap flow activity are compared with a suite of in-situ observations including air temperature, precipitation, photosynthetically-active radiation (PAR), relative humidity, soil temperature, and soil moisture/water content. Subalpine study site located at 3360 m elevation in the Snake Range, Nevada

  10. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming.

    PubMed

    Sterck, Frank; Anten, Niels P R; Schieving, Feike; Zuidema, Pieter A

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and - the notoriously unknown - physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35°C) and ambient CO2 concentrations (390-800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  11. Tree-mediated methane emissions from tropical and temperate peatlands.

    NASA Astrophysics Data System (ADS)

    Pangala, S. R.; Gauci, V.; Hornibrook, E. R. C.; Gowing, D. J.

    2012-04-01

    Methane production and transport processes in peatlands are fairly well understood, but growing evidence for emission of methane through trees has highlighted the need to revisit methane transport processes. In wetland trees, morphological adaptations such as development of hypertrophied lenticels, aerenchyma and adventitious roots in response to soil anoxia mediates gas transport, transporting both oxygen from the atmosphere to oxygen-deprived roots and soil-produced methane from the root-zone to the atmosphere. Although, tree-mediated methane emissions from temperate tree species have been confirmed, methane emissions from tropical tree species and processes that control tree-mediated methane emissions remain unclear. This study explains the role of trees in transporting soil-produced methane to the atmosphere and uncovers the principal mechanisms of tree-mediated methane emissions. Methane emissions from eight tropical tree species and two temperate tree species were studied in situ. The mechanisms and controls on tree-mediated methane emissions were investigated using three year old common alder (Alnus glutinosa; 50 trees) grown under two artificially controlled water-table positions. Methane fluxes from whole mesocosms, the soil surface and tree stems were measured using static closed chambers. Both temperate and tropical tree species released significant quantities of methane, with tropical trees dominating ecosystem level methane fluxes. In temperate peatlands, both the methane gas transport mechanism and quantity of methane emitted from stems is tree-species dependent. In Alnus glutinosa, no correlations were observed between stomatal behaviour and tree-mediated methane emissions, however, stem methane emissions were positively correlated with both stem lenticel density and dissolved soil methane concentration. In Alnus glutinosa, no emissions were observed from leaf surfaces. The results demonstrate that exclusion of tree-mediated methane emissions from flux measurement campaigns in forested peatlands will lead to an underestimation of ecosystem-wide methane emissions.

  12. The response of mulberry trees after seedling hardening to summer drought in the hydro-fluctuation belt of Three Gorges Reservoir Areas.

    PubMed

    Huang, Xiaohui; Liu, Yun; Li, Jiaxing; Xiong, Xingzheng; Chen, Yang; Yin, Xiaohua; Feng, Dalan

    2013-10-01

    Interest has developed in the potential of mulberry (Morus alba), a woody perennial, for revegetating the hydro-fluctuation belt of the Three Gorges Reservoir due to its resistance to water-logging stress. To be useful, the trees must also be able to withstand dry conditions in summer when temperatures can be very high and droughts become severe quickly. Here, we report a study in which mulberry seedlings were grown in a greenhouse under a variety of simulated soil water conditions reflecting potential summer scenarios in the hydro-fluctuation belt of the Three Gorges Reservoir Area. We compared the responses of two pretreatment groups of mulberry seedlings to different levels of drought stress. The pretreatment groups differed with respect to drought hardening: the daily-managed (DM) group had relative soil moisture held constant in the range 70-80 %, while the drought-hardened (DH) group had relative soil moisture held constant at 40-50 %. Following the month-long pretreatment of seedlings, the two groups of young trees (DM and DH) were then respectively subjected to three levels of drought stress for a month: normal watering, moderate drought stress, and severe drought stress. A series of measurements comparing the physiological status of the plants in the two groups were then made, and the following results were obtained: (1) As drought stress increased, the heights, base diameters, root surface areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the mulberry trees in both groups (DM and DH) decreased significantly, while the specific root area and abscisic acid (ABA) contents had increasing trends. Root activity and instantaneous water use efficiency of mulberry trees in both groups (DM and DH) were all raised under drought stress conditions than under normal watering, but the root/shoot ratio and leaf water potential were lowered. (2) At the same level of soil water content, the heights, base diameters, root/shoot ratios, root surface areas, specific root areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the young mulberry trees in the DH were all significantly higher than those of the control group (DM). Leaf water potential, instantaneous water use efficiency, and abscisic acid content of DH were all significantly lower than DM. Under different degrees of drought stress, the growth of mulberry trees will be inhibited, but the trees can respond to the stress by increasing the root absorptive area and enhancing capacity for water retention. Mulberry trees demonstrate strong resistance to drought stress, and furthermore drought resistance can be improved by drought hardening during the seedling stage.

  13. Seasonal Terpene Variation in Needles of Pinus radiata (Pinales: Pinaceae) Trees Attacked by Tomicus piniperda (Coleoptera: Scolytinae) and the Effect of Limonene on Beetle Aggregation

    PubMed Central

    Romón, Pedro; Aparicio, Domitila; Palacios, Francisco; Iturrondobeitia, Juan Carlos; Hance, Thierry

    2017-01-01

    Abstract Concentrations of four monoterpenes were determined in needles of Pinus radiata (D.Don) (Pinales: Pinaceae) trees that were attacked or nonattacked by Tomicus piniperda (L.) (Coleoptera: Scolytinae). Compounds were identified and quantified by gas chromatography–mass spectrometry. The mean ambient temperature was obtained using climate-recording data loggers. The effect of limonene on field aggregation was also evaluated at three limonene release rates using Lindgren attractant-baited traps and trap logs. Attacked trees produced less α-pinene in March, July, and November than nonattacked trees, less β-pinene in July and November, and less limonene from May to November. Limonene reduced the attraction of T. piniperda to attractant-baited traps and trap logs. Results were linked to better responses to high temperatures, with respect to terpene contents, by the nonattacked trees after the spring attack. PMID:29117373

  14. In vivo observation of tree drought response with low-field NMR and neutron imaging

    DOE PAGES

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.; ...

    2016-05-06

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature inmore » the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. Lastly, these results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment.« less

  15. In vivo observation of tree drought response with low-field NMR and neutron imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature inmore » the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. Lastly, these results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment.« less

  16. Using Pb isotopes in surface media to distinguish anthropogenic sources from undercover uranium sources

    NASA Astrophysics Data System (ADS)

    Kyser, Kurt; Lahusen, Larry; Drever, Garth; Dunn, Colin; Leduc, Evelyne; Chipley, Don

    2015-09-01

    The response in elemental concentrations and Pb isotopes in various surface media from the Cigar West unconformity-type uranium deposit located at a depth of 450 m were measured to ascertain if element migration from the deposit can be detected at the surface. The media included clay-size fractions separated from the A2, B and C soil horizons, and tree cores and twigs from black spruce (Picea mariana) and jack pine (Pinus banksiana) trees. Lead isotopes were used to trace any effect on the surface media from the deposit at depth because the 207Pb/206Pb ratios in the ore are < 0.1, whereas the background values in the basin are > 0.7 and modern anthropogenic Pb from aerosols are near 0.9. The tree cores record their lowest and therefore most radiogenic 207Pb/206Pb ratios of < 0.7 near the surface projection of the deposit and associated structures, particularly in tree rings that predate any exploration and drilling activity in the area. The median 207Pb/206Pb ratios increase in the order C, B soil horizon clays, tree cores, A2 soil clays and twigs because of the increasing contribution of common Pb with high ratios from anthropogenic sources that affect the shallowest media the most. Although this anthropogenic Pb as well as that from the background dominates the composition of all media at the surface and the contribution from the deposit at depth is diminished toward the surface, ore-related Pb is still present as a few percent of the composition of pathfinder elements and Pb isotopes.

  17. Freezing Behavior of a Supercooled Water Droplet Impacting on Surface Using Dual-Luminescent Imaging Technique

    NASA Astrophysics Data System (ADS)

    Tanaka, Mio; Morita, Katsuaki; Yamamoto, Makoto; Sakaue, Hirotaka

    2015-11-01

    A collision of a supercooled-water droplet on an object creates ice accretion on its surface. These icing problems can be seen in any cold environments and may lead to severe damages on aircrafts, ships, power cables, trees, road signs, and architectures. To solve these problems, various studies on ice-prevention and ice-prediction techniques have been conducted. It is very important to know the detail freezing mechanism of supercooled water droplets to propose or improve those techniques. The icing mechanism of a single supercooled-water droplet impacting on object surface would give us great insights for constructing those techniques. In the present study, we use a dual-luminescent imaging technique to measure the time-resolved temperatures of a supercooled water droplet impacting with different speed. The technique we applied consists of high-speed color camera and two luminescent probes. We will report the current status of this experiment in the presentation.

  18. BOREAS RSS-17 Stem, Soil, and Air Temperature Data

    NASA Technical Reports Server (NTRS)

    Zimmerman, Reiner; McDonald, Kyle C.; Way, JoBea; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS RSS-17 team collected several data sets in support of its research in monitoring and analyzing environmental and phenological states using radar data. This data set consists of tree bole and soil temperature measurements from various BOREAS flux tower sites. Temperatures were measured with thermistors implanted in the hydroconductive tissue of the trunks of several trees at each site and at various depths in the soil. Data were stored on a data logger at intervals of either 1 or 2 hours. The majority of the data were acquired between early 1994 and early 1995. The primary product of this data set is the diurnal stem temperature measurements acquired for selected trees at five BOREAS tower sites. The data are provided in tabular ASCII format. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  19. Use of small scale electrical resistivity tomography to identify soil-root interactions during deficit irrigation

    NASA Astrophysics Data System (ADS)

    Vanella, D.; Cassiani, G.; Busato, L.; Boaga, J.; Barbagallo, S.; Binley, A.; Consoli, S.

    2018-01-01

    Plant roots activity affect the exchanges of mass and energy between the soil and atmosphere. However, it is challenging to monitor the activity of the root-zone because roots are not visible from the soil surface, and root systems undergo spatial and temporal variations in response to internal and external conditions. Therefore, measurements of the activity of root systems are interesting to ecohydrologists in general, and are especially important for specific applications, such as irrigation water management. This study demonstrates the use of small scale three-dimensional (3-D) electrical resistivity tomography (ERT) to monitor the root-zone of orange trees irrigated by two different regimes: (i) full rate, in which 100% of the crop evapotranspiration (ETc) is provided; and (ii) partial root-zone drying (PRD), in which 50% of ETc is supplied to alternate sides of the tree. We performed time-lapse 3-D ERT measurements on these trees from 5 June to 24 September 2015, and compared the long-term and short-term changes before, during, and after irrigation events. Given the small changes in soil temperature and pore water electrical conductivity, we interpreted changes of soil electrical resistivity from 3-D ERT data as proxies for changes in soil water content. The ERT results are consistent with measurements of transpiration flux and soil temperature. The changes in electrical resistivity obtained from ERT measurements in this case study indicate that root water uptake (RWU) processes occur at the 0.1 m scale, and highlight the impact of different irrigation schemes.

  20. A key for the Forest Service hardwood tree grades

    Treesearch

    Gary W. Miller; Leland F. Hanks; Harry V., Jr. Wiant

    1986-01-01

    A dichotomous key organizes the USDA Forest Service hardwood tree grade specifications into a stepwise procedure for those learning to grade hardwood sawtimber. The key addresses the major grade factors, tree size, surface characteristics, and allowable cull deductions in a series of paried choices that lead the user to a decision regarding tree grade.

  1. Maintenance cost, toppling risk and size of trees in a self-thinning stand.

    PubMed

    Larjavaara, Markku

    2010-07-07

    Wind routinely topples trees during storms, and the likelihood that a tree is toppled depends critically on its allometry. Yet none of the existing theories to explain tree allometry consider wind drag on tree canopies. Since leaf area index in crowded, self-thinning stands is independent of stand density, the drag force per unit land can also be assumed to be independent of stand density, with only canopy height influencing the total toppling moment. Tree stem dimensions and the self-thinning biomass can then be computed by further assuming that the risk of toppling over and stem maintenance per unit land area are independent of stand density, and that stem maintenance cost is a linear function of stem surface area and sapwood volume. These assumptions provide a novel way to understand tree allometry and lead to a self-thinning line relating tree biomass and stand density with a power between -3/2 and -2/3 depending on the ratio of maintenance of sapwood and stem surface. (c) 2010 Elsevier Ltd. All rights reserved.

  2. Atmospheric Inputs of Nitrogen, Carbon, and Phosphorus across an Urban Area: Unaccounted Fluxes and Canopy Influences

    NASA Astrophysics Data System (ADS)

    Decina, Stephen M.; Templer, Pamela H.; Hutyra, Lucy R.

    2018-02-01

    Rates of atmospheric deposition are declining across the United States, yet urban areas remain hotspots of atmospheric deposition. While past studies show elevated rates of inorganic nitrogen (N) deposition in cities, less is known about atmospheric inputs of organic N, organic carbon (C), and organic and inorganic phosphorus (P), all of which can affect ecosystem processes, water quality, and air quality. Further, the effect of the tree canopy on amounts and forms of nutrients reaching urban ground surfaces is not well-characterized. We measured growing season rates of total N, organic C, and total P in bulk atmospheric inputs, throughfall, and soil solution around the greater Boston area. We found that organic N constitutes a third of total N inputs, organic C inputs are comparable to rural inputs, and inorganic P inputs are 1.2 times higher than those in sewage effluent. Atmospheric inputs are enhanced two-to-eight times in late spring and are elevated beneath tree canopies, suggesting that trees augment atmospheric inputs to ground surfaces. Additionally, throughfall inputs may directly enter runoff when trees extend above impervious surfaces, as is the case with 26.1% of Boston's tree canopy. Our results indicate that the urban atmosphere is a significant source of elemental inputs that may impact urban ecosystems and efforts to improve water quality, particularly in terms of P. Further, as cities create policies encouraging tree planting to provide ecosystem services, locating trees above permeable surfaces to reduce runoff nutrient loads may be essential to managing urban biogeochemical cycling and water quality.

  3. Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico.

    PubMed

    Brienen, Roel J W; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-12-01

    [1] Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings ( δ 18 O tr ). Interannual variation in δ 18 O tr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ 13 C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ 18 O tr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18 O-depleted rain in the region and seem to have affected the δ 18 O tr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ 18 O tr of M . acantholoba can be used as a proxy for source water δ 18 O and that interannual variation in δ 18 O prec is caused by a regional amount effect. This contrasts with δ 18 O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in disentangling the processes influencing precipitation δ 18 O.

  4. Tree ring imprints of long-term changes in climate in western Himalaya, India.

    PubMed

    Yadav, R R

    2009-11-01

    Tree-ring analyses from semi-arid to arid regions in western Himalaya show immense potential for developing millennia long climate records. Millennium and longer ring-width chronologies of Himalayan pencil juniper (Juniperus polycarpos), Himalayan pencil cedar (Cedrus deodara) and Chilgoza pine (Pinus gerardiana) have been developed from different sites in western Himalaya. Studies conducted so far on various conifer species indicate strong precipitation signatures in ring-width measurement series. The paucity of weather records from stations close to tree-ring sampling sites poses diffi culty in calibrating tree-ring data against climate data especially precipitation for its strong spatial variability in mountain regions. However, for the existence of strong coherence in temperature, even in data from distant stations, more robust temperature reconstructions representing regional and hemispheric signatures have been developed. Tree-ring records from the region indicate multi-century warm and cool anomalies consistent with the Medieval Warm Period and Little Ice Age anomalies. Signifi cant relationships noted between mean premonsoon temperature over the western Himalaya and ENSO features endorse utility of climate records from western Himalayan region in understanding long-term climate variability and attribution of anthropogenic impact.

  5. Merging Multi-model CMIP5/PMIP3 Past-1000 Ensemble Simulations with Tree Ring Proxy Data by Optimal Interpolation Approach

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Luo, Yong; Xing, Pei; Nie, Suping; Tian, Qinhua

    2015-04-01

    Two sets of gridded annual mean surface air temperature in past millennia over the Northern Hemisphere was constructed employing optimal interpolation (OI) method so as to merge the tree ring proxy records with the simulations from CMIP5 (the fifth phase of the Climate Model Intercomparison Project). Both the uncertainties in proxy reconstruction and model simulations can be taken into account applying OI algorithm. For better preservation of physical coordinated features and spatial-temporal completeness of climate variability in 7 copies of model results, we perform the Empirical Orthogonal Functions (EOF) analysis to truncate the ensemble mean field as the first guess (background field) for OI. 681 temperature sensitive tree-ring chronologies are collected and screened from International Tree Ring Data Bank (ITRDB) and Past Global Changes (PAGES-2k) project. Firstly, two methods (variance matching and linear regression) are employed to calibrate the tree ring chronologies with instrumental data (CRUTEM4v) individually. In addition, we also remove the bias of both the background field and proxy records relative to instrumental dataset. Secondly, time-varying background error covariance matrix (B) and static "observation" error covariance matrix (R) are calculated for OI frame. In our scheme, matrix B was calculated locally, and "observation" error covariance are partially considered in R matrix (the covariance value between the pairs of tree ring sites that are very close to each other would be counted), which is different from the traditional assumption that R matrix should be diagonal. Comparing our results, it turns out that regional averaged series are not sensitive to the selection for calibration methods. The Quantile-Quantile plots indicate regional climatologies based on both methods are tend to be more agreeable with regional reconstruction of PAGES-2k in 20th century warming period than in little ice age (LIA). Lager volcanic cooling response over Asia and Europe in context of recent millennium are detected in our datasets than that revealed in regional reconstruction from PAGES-2k network. Verification experiments have showed that the merging approach really reconcile the proxy data and model ensemble simulations in an optimal way (with smaller errors than both of them). Further research is needed to improve the error estimation on them.

  6. Post-fire logging reduces surface woody fuels up to four decades following wildfire

    Treesearch

    David W. Peterson; Erich Kyle Dodson; Richy J. Harrod

    2015-01-01

    Severe wildfires create pulses of dead trees that influence future fuel loads, fire behavior, and fire effects as they decay and deposit surface woody fuels. Harvesting fire-killed trees may reduce future surface woody fuels and related fire hazards, but the magnitude and timing of post-fire logging effects on woody fuels have not been fully assessed. To address this...

  7. Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest

    NASA Astrophysics Data System (ADS)

    Karvatte, Nivaldo; Klosowski, Elcio Silvério; de Almeida, Roberto Giolo; Mesquita, Eduardo Eustáquio; de Oliveira, Caroline Carvalho; Alves, Fabiana Villa

    2016-12-01

    The objective of this paper was to perform a microclimate evaluation and determine the indexes of thermal comfort indexes, in sun and shade, in integrated crop-livestock-forest systems with different arrangements of eucalyptus and native trees, in the Brazilian Midwest. The experiment was conducted at Embrapa Beef Cattle in Campo Grande, state of Mato Grosso do Sul, Brazil, from July to September 2013. The evaluations were conducted on four consecutive days, from 8:00 a.m. to 5:00 p.m., local time (GMT -4:00), with 1 hour intervals, recording the microclimate parameters: air temperature (°C), black globe temperature (°C), wet bulb temperature (°C), relative humidity (%), and wind speed (m.s-1), for the subsequent calculation of the Temperature and Humidity Index, the Black Globe Temperature and Humidity Index, and the Radiant Thermal Load. The largest changes in microclimate parameters were found in the full sun, between 12:00 p.m. and 1:00 p.m., in less dense eucalyptus system, followed by the scattered native trees system, resulting in a maximum Temperature and Humidity Index of 81, Black Globe Temperature and Humidity Index of 88 and Radiant Thermal Load of 794 W m-2. Therefore, it is observed that with the presence of trees in pastures were possible reductions of up to 3.7 % in Temperature and Humidity Index, 10.2 % in the Black Globe Temperature and Humidity Index, and 28.3 % of the Radiant Thermal Load in the shade. Thus, one can conclude that the presence of trees and their arrangement in the systems provide better microclimate conditions and animal thermal comfort in pastures.

  8. Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest.

    PubMed

    Karvatte, Nivaldo; Klosowski, Elcio Silvério; de Almeida, Roberto Giolo; Mesquita, Eduardo Eustáquio; de Oliveira, Caroline Carvalho; Alves, Fabiana Villa

    2016-12-01

    The objective of this paper was to perform a microclimate evaluation and determine the indexes of thermal comfort indexes, in sun and shade, in integrated crop-livestock-forest systems with different arrangements of eucalyptus and native trees, in the Brazilian Midwest. The experiment was conducted at Embrapa Beef Cattle in Campo Grande, state of Mato Grosso do Sul, Brazil, from July to September 2013. The evaluations were conducted on four consecutive days, from 8:00 a.m. to 5:00 p.m., local time (GMT -4:00), with 1 hour intervals, recording the microclimate parameters: air temperature (°C), black globe temperature (°C), wet bulb temperature (°C), relative humidity (%), and wind speed (m.s -1 ), for the subsequent calculation of the Temperature and Humidity Index, the Black Globe Temperature and Humidity Index, and the Radiant Thermal Load. The largest changes in microclimate parameters were found in the full sun, between 12:00 p.m. and 1:00 p.m., in less dense eucalyptus system, followed by the scattered native trees system, resulting in a maximum Temperature and Humidity Index of 81, Black Globe Temperature and Humidity Index of 88 and Radiant Thermal Load of 794 W m -2 . Therefore, it is observed that with the presence of trees in pastures were possible reductions of up to 3.7 % in Temperature and Humidity Index, 10.2 % in the Black Globe Temperature and Humidity Index, and 28.3 % of the Radiant Thermal Load in the shade. Thus, one can conclude that the presence of trees and their arrangement in the systems provide better microclimate conditions and animal thermal comfort in pastures.

  9. Simulated Tree Growth across the Northern Hemisphere and the Seasonality of Climate Signals Encoded within Tree-ring Widths

    NASA Astrophysics Data System (ADS)

    Li, X.; St George, S.

    2013-12-01

    Both dendrochronological theory and regional and global networks of tree-ring width measurements indicate that trees can respond to climate variations quite differently from one location to another. To explain these geographical differences at hemispheric scale, we used a process-based model of tree-ring formation (the Vaganov-Shashkin model) to simulate tree growth at over 6000 locations across the Northern Hemisphere. We compared the seasonality and strength of climate signals in the simulated tree-ring records against parallel analysis conducted on a hemispheric network of real tree-ring observations, tested the ability of the model to reproduce behaviors that emerge from large networks of tree-ring widths and used the model outputs to explain why the network exhibits these behaviors. The simulated tree-ring records are consistent with observations with respect to the seasonality and relative strength of the encoded climate signals, and time-related changes in these climate signals can be predicted using the modeled relative growth rate due to temperature or soil moisture. The positive imprint of winter (DJF) precipitation is strongest in simulations from the American Southwest and northern Mexico as well as selected locations in the Mediterranean and central Asia. Summer (JJA) precipitation has higher positive correlations with simulations in the mid-latitudes, but some high-latitude coastal sites exhibit a negative association. The influence of summer temperature is mainly positive at high-latitude or high-altitude sites and negative in the mid-latitudes. The absolute magnitude of climate correlations are generally higher in simulations than in observations, but the pattern and geographical differences remain the same, demonstrating that the model has skill in reproducing tree-ring growth response to climate variability in the Northern Hemisphere. Because the model uses only temperature, precipitation and latitude as input and is not adjusted for species or other biological factors, the fact that the climate response of the simulations largely agrees with the observations may imply that climate, rather than biology, is the main factor that influences large-scale patterns of the climate information recorded by tree rings. Our results also suggest that the Vaganov-Shashkin model could be used to estimate the likely climate response of trees in ';frontier' areas that have not been sampled extensively. Seasonal Climate Correlations of Simulated Tree-ring Records

  10. Archaeological Investigations in the Upper Tombigbee Valley, Mississippi: Phase I. Volume 3.

    DTIC Science & Technology

    1983-01-01

    floodplain forest composed of mixed mesophytic species (Table 3.2). The Beech site exhibits a later successional stage as exemplified by the size of trees and...the old agricultural field and the floodplain forest, which is dominated locally by large hickory trees of at least four species . The terrace...expected as there was a living peach tree on the site at the time of the investigations. SURFACE COLLECTIONS (Figure 9.9 and 9.10 a-c) Surface

  11. Monitoring the Temperature of Tree Seedlings With the Thermochron iButton Data Logger

    Treesearch

    David S. Gasvoda; Richard W. Tinus; Karen E. Burr; Andy Trent

    2002-01-01

    Tracking the temperature of tree seedlings from the nursery to the planting site can be the key to evaluating possible physiological causes of morality after seedlings are planted. Seedlings enter and leave nursery storage with easily documented levels of cold hardiness, root growth potential, and general stress tolerance (Burr 1990: Ritchie and Tanaka 1990). The...

  12. The effect of high temperature interruptions during inductive period on the extent of flowering and on metabolic responses in olives (Olea europaea L.)

    USDA-ARS?s Scientific Manuscript database

    The effect of the duration of high temperature interruption and the timing of it’s occurrence during inductive period on the extent of inhibition of inflorescence production in ‘Arbequina’ olive trees was investigated. Trees kept under inductive conditions in different growth chambers were subjected...

  13. A global multiproxy database for temperature reconstructions of the Common Era.

    PubMed

    2017-07-11

    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.

  14. A global multiproxy database for temperature reconstructions of the Common Era

    USGS Publications Warehouse

    Emile-Geay, Julian; McKay, Nicholas P.; Kaufman, Darrell S.; von Gunten, Lucien; Wang, Jianghao; Anchukaitis, Kevin J.; Abram, Nerilie J.; Addison, Jason A.; Curran, Mark A.J.; Evans, Michael N.; Henley, Benjamin J.; Hao, Zhixin; Martrat, Belen; McGregor, Helen V.; Neukom, Raphael; Pederson, Gregory T.; Stenni, Barbara; Thirumalai, Kaustubh; Werner, Johannes P.; Xu, Chenxi; Divine, Dmitry V.; Dixon, Bronwyn C.; Gergis, Joelle; Mundo, Ignacio A.; Nakatsuka, T.; Phipps, Steven J.; Routson, Cody C.; Steig, Eric J.; Tierney, Jessica E.; Tyler, Jonathan J.; Allen, Kathryn J.; Bertler, Nancy A. N.; Bjorklund, Jesper; Chase, Brian M.; Chen, Min-Te; Cook, Ed; de Jong, Rixt; DeLong, Kristine L.; Dixon, Daniel A.; Ekaykin, Alexey A.; Ersek, Vasile; Filipsson, Helena L.; Francus, Pierre; Freund, Mandy B.; Frezzotti, M.; Gaire, Narayan P.; Gajewski, Konrad; Ge, Quansheng; Goosse, Hugues; Gornostaeva, Anastasia; Grosjean, Martin; Horiuchi, Kazuho; Hormes, Anne; Husum, Katrine; Isaksson, Elisabeth; Kandasamy, Selvaraj; Kawamura, Kenji; Koc, Nalan; Leduc, Guillaume; Linderholm, Hans W.; Lorrey, Andrew M.; Mikhalenko, Vladimir; Mortyn, P. Graham; Motoyama, Hideaki; Moy, Andrew D.; Mulvaney, Robert; Munz, Philipp M.; Nash, David J.; Oerter, Hans; Opel, Thomas; Orsi, Anais J.; Ovchinnikov, Dmitriy V.; Porter, Trevor J.; Roop, Heidi; Saenger, Casey; Sano, Masaki; Sauchyn, David; Saunders, K.M.; Seidenkrantz, Marit-Solveig; Severi, Mirko; Shao, X.; Sicre, Marie-Alexandrine; Sigl, Michael; Sinclair, Kate; St. George, Scott; St. Jacques, Jeannine-Marie; Thamban, Meloth; Thapa, Udya Kuwar; Thomas, E.; Turney, Chris; Uemura, Ryu; Viau, A.E.; Vladimirova, Diana O.; Wahl, Eugene; White, James W. C.; Yu, Z.; Zinke, Jens

    2017-01-01

    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850–2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.

  15. A global multiproxy database for temperature reconstructions of the Common Era

    PubMed Central

    Emile-Geay, Julien; McKay, Nicholas P.; Kaufman, Darrell S.; von Gunten, Lucien; Wang, Jianghao; Anchukaitis, Kevin J.; Abram, Nerilie J.; Addison, Jason A.; Curran, Mark A.J.; Evans, Michael N.; Henley, Benjamin J.; Hao, Zhixin; Martrat, Belen; McGregor, Helen V.; Neukom, Raphael; Pederson, Gregory T.; Stenni, Barbara; Thirumalai, Kaustubh; Werner, Johannes P.; Xu, Chenxi; Divine, Dmitry V.; Dixon, Bronwyn C.; Gergis, Joelle; Mundo, Ignacio A.; Nakatsuka, Takeshi; Phipps, Steven J.; Routson, Cody C.; Steig, Eric J.; Tierney, Jessica E.; Tyler, Jonathan J.; Allen, Kathryn J.; Bertler, Nancy A.N.; Björklund, Jesper; Chase, Brian M.; Chen, Min-Te; Cook, Ed; de Jong, Rixt; DeLong, Kristine L.; Dixon, Daniel A.; Ekaykin, Alexey A.; Ersek, Vasile; Filipsson, Helena L.; Francus, Pierre; Freund, Mandy B.; Frezzotti, Massimo; Gaire, Narayan P.; Gajewski, Konrad; Ge, Quansheng; Goosse, Hugues; Gornostaeva, Anastasia; Grosjean, Martin; Horiuchi, Kazuho; Hormes, Anne; Husum, Katrine; Isaksson, Elisabeth; Kandasamy, Selvaraj; Kawamura, Kenji; Kilbourne, K. Halimeda; Koç, Nalan; Leduc, Guillaume; Linderholm, Hans W.; Lorrey, Andrew M.; Mikhalenko, Vladimir; Mortyn, P. Graham; Motoyama, Hideaki; Moy, Andrew D.; Mulvaney, Robert; Munz, Philipp M.; Nash, David J.; Oerter, Hans; Opel, Thomas; Orsi, Anais J.; Ovchinnikov, Dmitriy V.; Porter, Trevor J.; Roop, Heidi A.; Saenger, Casey; Sano, Masaki; Sauchyn, David; Saunders, Krystyna M.; Seidenkrantz, Marit-Solveig; Severi, Mirko; Shao, Xuemei; Sicre, Marie-Alexandrine; Sigl, Michael; Sinclair, Kate; St. George, Scott; St. Jacques, Jeannine-Marie; Thamban, Meloth; Kuwar Thapa, Udya; Thomas, Elizabeth R.; Turney, Chris; Uemura, Ryu; Viau, Andre E.; Vladimirova, Diana O.; Wahl, Eugene R.; White, James W.C.; Yu, Zicheng; Zinke, Jens

    2017-01-01

    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850–2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python. PMID:28696409

  16. Evidence of hydraulic lift for pre-rainy season leaf out and dry-season stem water enrichment in Sclerocarya birrea, a tropical agroforestry tree

    NASA Astrophysics Data System (ADS)

    Ceperley, Natalie; Mande, Theophile; Rinaldo, Andrea; Parlange, Marc B.

    2014-05-01

    We use stable isotopes of water as tracers to follow water use by five Sclerocarya birrea trees in a catchment in South Eastern Burkina Faso interspersed with millet fields, gallery forest, Sudanian savanna, and fallow fields. Isotopic ratios were determined from water extracted from stems of the trees and sub-canopy soil of two of them, while nearby ground water, precipitation, and surface water was sampled weekly. A unique configuration of sensors connected with a wireless sensor network of meteorological stations measured sub-canopy shading, the temperature and humidity in the canopy, through-fall, and soil moisture under two of the trees. Both water extracted from sap and water extracted from soil is extremely enriched in the dry season, but drop to levels close to the ground water in February or March, which coincides with the growth of leaves. Dates of leaf out were confirmed by changes in δDH and δO18 concentrations of water, photographic documentation & pixel analysis, and analysis of sub-canopy radiation and proceeded the rise in humidity and flow that was later detected in the sub-canopy soil, the trunk of the tree (sap-flow), and atmosphere (canopy VPD). Examination of the isotopic signature suggests that size of tree plays an important role in duration and timing of this leaf-out as well as the degree of enrichment during the peak of the dry season. Further examination of the isotopic signatures of the roots suggested that the trees are performing hydraulic redistribution, or lifting the ground water and "sharing it" with the soil in the rooting zone in the dry season. The enriched level of xylem in this case is a product of water loss, and enrichment, along the travel path of the water from the roots to the tip of the stem, as evidenced by the variation according to size of tree. Vapor pressure deficit, soil water, and soil moisture interactions support this picture of interacting controls, separate from hydrologic triggers on the water movement in the tree.

  17. Water, gravity and trees: Relationship of tree-ring widths and total water storage dynamics

    NASA Astrophysics Data System (ADS)

    Creutzfeldt, B.; Heinrich, I.; Merz, B.; Blume, T.; Güntner, A.

    2012-04-01

    Water stored in the subsurface as groundwater or soil moisture is the main fresh water source not only for drinking water and food production but also for the natural vegetation. In a changing environment water availability becomes a critical issue in many different regions. Long-term observations of the past are needed to improve the understanding of the hydrological system and the prediction of future developments. Tree ring data have repeatedly proved to be valuable sources for reconstructing long-term climate dynamics, e.g. temperature, precipitation and different hydrological variables. In water-limited environments, tree growth is primarily influenced by total water stored in the subsurface and hence, tree-ring records usually contain information about subsurface water storage. The challenge is to retrieve the information on total water storage from tree rings, because a training dataset of water stored in the sub-surface is required for calibration against the tree-ring series. However, measuring water stored in the subsurface is notoriously difficult. We here present high-precision temporal gravimeter measurements which allow for the depth-integrated quantification of total water storage dynamics at the field scale. In this study, we evaluate the relationship of total water storage change and tree ring growth also in the context of the complex interactions of other meteorological forcing factors. A tree-ring chronology was derived from a Norway spruce stand in the Bavarian Forest, Germany. Total water storage dynamics were measured directly by the superconducting gravimeter of the Geodetic Observatory Wettzell for a 9-years period. Time series were extended to 63-years period by a hydrological model using gravity data as the only calibration constrain. Finally, water storage changes were reconstructed based on the relationship between the hydrological model and the tree-ring chronology. Measurement results indicate that tree-ring growth is primarily controlled by total water storage in the subsurface. But high uncertainties intervals of the correlation coefficient urges for the extension of the measurement period. This multi-disciplinary study, combining hydrology, dendrochronology and geodesy shows that temporal gravimeter measurements may give us the unique opportunity to retrieve the information of total water storage contained in tree-ring records to reconstruct total water storage dynamics. Knowing the relationship of water storage and tree-ring growth can also support the reconstruction of other climate records based on tree-ring series, help with hydrological model testing and can improve our knowledge of long-term variations of water storage in the past.

  18. Araucaria growth response to solar and climate variability in South Brazil

    NASA Astrophysics Data System (ADS)

    Prestes, Alan; Klausner, Virginia; Rojahn da Silva, Iuri; Ojeda-González, Arian; Lorensi, Caren

    2018-05-01

    In this work, the Sun-Earth-climate relationship is studied using tree growth rings of Araucaria angustifolia (Bertol.) O. Kuntze collected in the city of Passo Fundo, located in the state of Rio Grande do Sul (RS), Brazil. These samples were previously studied by Rigozo et al. (2008); however, their main interest was to search for the solar periodicities in the tree-ring width mean time series without interpreting the rest of the periodicities found. The question arises as to what are the drivers related to those periodicities. For this reason, the classical method of spectral analysis by iterative regression and wavelet methods are applied to find periodicities and trends present in each tree-ring growth, in Southern Oscillation Index (SOI), and in annual mean temperature anomaly between the 24 and 44° S. In order to address the aforementioned question, this paper discusses the correlation between the growth rate of the tree rings with temperature and SOI. In each tree-ring growth series, periods between 2 and 7 years were found, possibly related to the El Niño/La Niña phenomena, and a ˜ 23-year period was found, which may be related to temperature variation. These novel results might represent the tree-ring growth response to local climate conditions during its lifetime, and to nonlinear coupling between the Sun and the local climate variability responsible to the regional climate variations.

  19. Sub-Pixel Mapping of Tree Canopy, Impervious Surfaces, and Cropland in the Laurentian Great Lakes Basin Using MODIS Time-Series Data

    EPA Science Inventory

    This research examined sub-pixel land-cover classification performance for tree canopy, impervious surface, and cropland in the Laurentian Great Lakes Basin (GLB) using both timeseries MODIS (MOderate Resolution Imaging Spectroradiometer) NDVI (Normalized Difference Vegetation In...

  20. Equations for predicting internal log defect measurements of common Appalachian hardwoods

    Treesearch

    Ed Thomas

    2016-01-01

    As a hardwood tree develops, surface defects such as wounds and branch stubs are overgrown or encapsulated into the tree. Evidence of such a defect remains present on the tree for decades, or for the life of the tree, in the form of bumps and changes in bark pattern. During this process, the appearance of the defect on the tree changes. The defect becomes flatter, the...

  1. Leaf physiological responses of mature Norway Spruce trees exposed to elevated carbon dioxide and temperature

    NASA Astrophysics Data System (ADS)

    Lamba, Shubhangi; Uddling, Johan; Räntfors, Mats; Hall, Marianne; Wallin, Göran

    2014-05-01

    Leaf photosynthesis, respiration and stomatal conductance exert strong control over the exchange of carbon, water and energy between the terrestrial biosphere and the atmosphere. As such, leaf physiological responses to rising atmospheric CO2 concentration ([CO2]) and temperature have important implications for the global carbon cycle and rate of ongoing global warming, as well as for local and regional hydrology and evaporative cooling. It is therefore critical to improve the understanding of plant physiological responses to elevated [CO2] and temperature, in particular for boreal and tropical ecosystems. In order to do so, we examined physiological responses of mature boreal Norway spruce trees (ca 40-years old) exposed to elevated [CO2] and temperature inside whole-tree chambers at Flakaliden research site, Northern Sweden. The trees were exposed to a factorial combination of two levels of [CO2] (ambient and doubled) and temperature (ambient and +2.8 degree C in summer and +5.6 degree C in winter). Three replicates in each of the four treatments were used. It was found that photosynthesis was increased considerably in elevated [CO2], but was not affected by the warming treatment. The maximum rate of photosynthetic carboxylation was reduced in the combined elevated [CO2] and elevated temperature treatment, but not in single factor treatments. Elevated [CO2] also strongly increased the base rate of respiration and to a lesser extent reduced the temperature sensitivity (Q10 value) of respiration; responses which may be important for the carbon balance of these trees which have a large proportion of shaded foliage. Stomatal conductance at a given VPD was reduced by elevated temperature treatment, to a degree that mostly offset the higher vapour pressure deficit in warmed air with respect to transpiration. Elevated [CO2] did not affect stomatal conductance, and thus increased the ratio of leaf internal to external [CO2]. These results indicate that the large elevated [CO2]-induced increase in CO2 uptake is partly counteracted by substantial increases in autotrophic respiration in boreal spruce. Furthermore, stomatal results suggest conservative leaf-level water use of spruce under rising [CO2] and temperature.

  2. The behavior of the microwave emission of a conifer canopy during the fall-winter in Sodankylä, Finland

    NASA Astrophysics Data System (ADS)

    Li, Q.; Kelly, R. E. J.; Lemmetyinen, J.; Kontu, A.

    2017-12-01

    Spaceborne passive microwave (PM) systems are an important tool for estimating snow water equivalent (SWE) or snow depth (SD) in winter landscapes. However, because spaceborne radiometer footprints have a coarse spatial resolution, the measured upwelling brightness temperature (Tb) typically is a mixed signal propagated from multiple sources. Tree canopies can effectively attenuate microwave emission from the sub-canopy terrain beneath and can also have a strong emission signal. Therefore, these two combined observed processes decrease the sensitivity of the observed signal to SWE or SD. To evaluate the detailed behavior of the microwave emission from a forest landscape, the experiment focused on snow and vegetation radiative transfer processes was conducted at an established field site operated by the Finnish Meteorological Institute's Arctic Research Station in Sodankylä, Finland. In this experiment, downwelling Tbs from a target tree (Scots pine) was measured by an multi-frequency, dual polarization radiometer from Septermber 2016 to March 2017. A dendrometer and thermistor installed on the tree trunk at the height of 2 meters and 4 meters measured the sap flow and skin temperature of the tree. An adjacent weather station measured the air temperature. Snow cover conditions of the canopy was determined by an assessment web camera image time series. The three main findings are that first, the emissivity was positively correlated with tree skin temperatures below 0°C, but not when temperatures were at or greater than than 0°C. Furthermore, lower frequency channel observations were more sensitive to these physical temperatures than higher frequencies. Second, the Tb difference between horizontal and vertical polarizations were also negatively correlated with physical temperatures less than 0°C, but not when the physical temperatures were greater than 0°C. In addition, the Tb polarization differences of the lower frequency channels are more sensitive to temperature than for the higher frequency channels. Third, although the snow on the canopy can influence the microwave Tb response, this influence was found to be relatively small compared with other factors, suggesting that the difference of the canopy Tbs during the snow-covered and no-snow-covered periods were not statistically significant.

  3. Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects.

    PubMed

    Pincebourde, Sylvain; Sinoquet, Herve; Combes, Didier; Casas, Jerome

    2007-05-01

    1. One major gap in our ability to predict the impacts of climate change is a quantitative analysis of temperatures experienced by organisms under natural conditions. We developed a framework to describe and quantify the impacts of local climate on the mosaic of microclimates and physiological states of insects within tree canopies. This approach was applied to a leaf mining moth feeding on apple leaf tissues. 2. Canopy geometry was explicitly considered by mapping the 3D position and orientation of more than 26 000 leaves in an apple tree. Four published models for canopy radiation interception, energy budget of leaves and mines, body temperature and developmental rate of the leaf miner were integrated. Model predictions were compared with actual microclimate temperatures. The biophysical model accurately predicted temperature within mines at different positions within the tree crown. 3. Field temperature measurements indicated that leaf and mine temperature patterns differ according to the regional climatic conditions (cloudy or sunny) and depending on their location within the canopy. Mines in the sun can be warmer than those in the shade by several degrees and the heterogeneity of mine temperature was incremented by 120%, compared with that of leaf temperature. 4. The integrated model was used to explore the impact of both warm and exceptionally hot climatic conditions recorded during a heat wave on the microclimate heterogeneity at canopy scale. During warm conditions, larvae in sunlight-exposed mines experienced nearly optimal growth conditions compared with those within shaded mines. The developmental rate was increased by almost 50% in the sunny microhabitat compared with the shaded location. Larvae, however, experienced optimal temperatures for their development inside shaded mines during extreme climatic conditions, whereas larvae in exposed mines were overheating, leading to major risks of mortality. 5. Tree canopies act as both magnifiers and reducers of the climatic regime experienced in open air outside canopies. Favourable and risky spots within the canopy do change as a function of the climatic conditions at the regional scale. The shifting nature of the mosaic of suitable and risky habitats may explain the observed uniform distribution of leaf miners within tree canopies.

  4. Long-term changes in tree-ring – climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid 1980s

    PubMed Central

    Oberhuber, Walter; Kofler, Werner; Pfeifer, Klaus; Seeber, Andrea; Gruber, Andreas; Wieser, Gerhard

    2011-01-01

    Although growth limitation of trees at Alpine and high-latitude timberlines by prevailing summer temperature is well established, loss of thermal response of radial tree growth during last decades has repeatedly been addressed. We examined long-term variability of climate-growth relationships in ring width chronologies of Stone pine (Pinus cembra L.) by means of moving response functions (MRF). The study area is situated in the timberline ecotone (c. 2000 – 2200 m a.s.l.) on Mt. Patscherkofel (Tyrol, Austria). Five site chronologies were developed within the ecotone with constant sample depth (≥ 19 trees) throughout most of the time period analysed. MRF calculated for the period 1866-1999 and 1901-1999 for c. 200 and c. 100 yr old stands, respectively, revealed that mean July temperature is the major and long-term stable driving force of Pinus cembra radial growth within the timberline ecotone. However, since the mid 1980s, radial growth in timberline and tree line chronologies strikingly diverges from the July temperature trend. This is probably a result of extreme climate events (e.g. low winter precipitation, late frost) and/or increasing drought stress on cambial activity. The latter assumption is supported by a < 10 % increase in annual increments of c. 50 yr old trees at the timberline and at the tree line in 2003 compared to 2002, when extraordinary hot and dry conditions prevailed during summer. Furthermore, especially during the second half of the 20th century, influence of climate variables on radial growth show abrupt fluctuations, which might also be a consequence of climate warming on tree physiology. PMID:21532976

  5. Dual impacts of climate change: forest migration and turnover through life history.

    PubMed

    Zhu, Kai; Woodall, Christopher W; Ghosh, Souparno; Gelfand, Alan E; Clark, James S

    2014-01-01

    Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would expect relative recruitment to be higher in cold and dry climates as a result of tree migration with juveniles located further poleward than adults. Alternatively, relative recruitment could be higher in warm and wet climates as a result of higher tree population turnover with increased temperature and precipitation. Using the USDA Forest Service's Forest Inventory and Analysis data at regional scales, we jointly modeled juvenile and adult abundance distributions for 65 tree species in climate space of the eastern United States. We directly compared the optimal climate conditions for juveniles and adults, identified the climates where each species has high relative recruitment, and synthesized relative recruitment patterns across species. Results suggest that for 77% and 83% of the tree species, juveniles have higher optimal temperature and optimal precipitation, respectively, than adults. Across species, the relative recruitment pattern is dominated by relatively more abundant juveniles than adults in warm and wet climates. These different abundance-climate responses through life history are consistent with faster population turnover and inconsistent with the geographic trend of large-scale tree migration. Taken together, this juvenile-adult analysis suggests that tree species might respond to climate change by having faster turnover as dynamics accelerate with longer growing seasons and higher temperatures, before there is evidence of poleward migration at biogeographic scales.

  6. Variation of maximum tree height and annual shoot growth of Smith fir at various elevations in the Sygera Mountains, southeastern Tibetan Plateau.

    PubMed

    Wang, Yafeng; Čufar, Katarina; Eckstein, Dieter; Liang, Eryuan

    2012-01-01

    Little is known about tree height and height growth (as annual shoot elongation of the apical part of vertical stems) of coniferous trees growing at various altitudes on the Tibetan Plateau, which provides a high-elevation natural platform for assessing tree growth performance in relation to future climate change. We here investigated the variation of maximum tree height and annual height increment of Smith fir (Abies georgei var. smithii) in seven forest plots (30 m×40 m) along two altitudinal transects between 3,800 m and 4,200/4,390 m above sea level (a.s.l.) in the Sygera Mountains, southeastern Tibetan Plateau. Four plots were located on north-facing slopes and three plots on southeast-facing slopes. At each site, annual shoot growth was obtained by measuring the distance between successive terminal bud scars along the main stem of 25 trees that were between 2 and 4 m high. Maximum/mean tree height and mean annual height increment of Smith fir decreased with increasing altitude up to the tree line, indicative of a stress gradient (the dominant temperature gradient) along the altitudinal transect. Above-average mean minimum summer (particularly July) temperatures affected height increment positively, whereas precipitation had no significant effect on shoot growth. The time series of annual height increments of Smith fir can be used for the reconstruction of past climate on the southeastern Tibetan Plateau. In addition, it can be expected that the rising summer temperatures observed in the recent past and anticipated for the future will enhance Smith fir's growth throughout its altitudinal distribution range.

  7. Assessing trait-based scaling theory in tropical and temperate forests spanning a broad temperature gradients

    NASA Astrophysics Data System (ADS)

    Enquist, B. J.

    2017-12-01

    Tropical and temperate elevation gradients are natural laboratories to assess how changing climate can influence tropical forests. However, there is a need for theory and integrated data collection to scale from traits to ecosystems. We assess predictions of a novel trait-based metabolic scaling theory including whether observed shifts in forest traits across a broad tropical temperature gradient is consistent with local phenotypic optima and adaptive compensation for temperature. We tested a new anaytical theory - Trait Driver Theory - that is capable of scaling from traits to entire stands and ecosystems across several elevation gradients spanning 3300m. Each gradient consists of thousands of tropical and temperate tree trait measures taken from forest plots. In several of these plots, in particular in southern Perú, gross and net primary productivity (GPP and NPP) were measured. We measured multiple traits linked to variation in tree growth and assessed their frequency distributions within and across the elevation gradient. We paired these trait measures across individuals within forests with simultaneous measures of ecosystem net and gross primary productivity. Consistent with theory, variation in forest NPP and GPP primarily scaled with forest biomass but the secondary effect of temperature on productivity was much less than expected. This weak temperature dependency appears to reflect directional shifts in several mean community traits that underlie tree growth with decreases in site temperature. The observed shift in traits of trees that dominant more cold environments appear to reflect `adaptive/acclimatory' compensation for the kinetic effects of temperature on leaf photosynthesis and tree growth. Forest trait distributions across the gradient showed peaked and skewed distributions, consistent with the importance of local filtering of optimal growth traits and recent shifts in species composition and dominance due to warming from climate change. Trait-based metabolic scaling theory provides a basis to predict how shifts in climate have and will influence the trait composition and ecosystem functioning of temperate and tropical forests.

  8. Too hot to sleep? Sleep behaviour and surface body temperature of Wahlberg's Epauletted Fruit Bat.

    PubMed

    Downs, Colleen T; Awuah, Adwoa; Jordaan, Maryna; Magagula, Londiwe; Mkhize, Truth; Paine, Christine; Raymond-Bourret, Esmaella; Hart, Lorinda A

    2015-01-01

    The significance of sleep and factors that affect it have been well documented, however, in light of global climate change the effect of temperature on sleep patterns has only recently gained attention. Unlike many mammals, bats (order: Chiroptera) are nocturnal and little is known about their sleep and the effects of ambient temperature (Ta) on their sleep. Consequently we investigated seasonal temperature effects on sleep behaviour and surface body temperature of free-ranging Wahlberg's epauletted fruit bat, Epomophorus wahlbergi, at a tree roost. Sleep behaviours of E. wahlbergi were recorded, including: sleep duration and sleep incidences (i.e. one eye open and both eyes closed). Sleep differed significantly across all the individuals in terms of sleep duration and sleep incidences. Individuals generally spent more time awake than sleeping. The percentage of each day bats spent asleep was significantly higher during winter (27.6%), compared with summer (15.6%). In summer, 20.7% of the sleeping bats used one eye open sleep, and this is possibly the first evidence of one-eye-sleep in non-marine mammals. Sleep duration decreased with extreme heat as bats spent significantly more time trying to cool by licking their fur, spreading their wings and panting. Skin temperatures of E. wahlbergi were significantly higher when Ta was ≥35°C and no bats slept at these high temperatures. Consequently extremely hot days negatively impact roosting fruit bats, as they were forced to be awake to cool themselves. This has implications for these bats given predicted climate change scenarios.

  9. Too Hot to Sleep? Sleep Behaviour and Surface Body Temperature of Wahlberg’s Epauletted Fruit Bat

    PubMed Central

    Downs, Colleen T.; Awuah, Adwoa; Jordaan, Maryna; Magagula, Londiwe; Mkhize, Truth; Paine, Christine; Raymond-Bourret, Esmaella; Hart, Lorinda A.

    2015-01-01

    The significance of sleep and factors that affect it have been well documented, however, in light of global climate change the effect of temperature on sleep patterns has only recently gained attention. Unlike many mammals, bats (order: Chiroptera) are nocturnal and little is known about their sleep and the effects of ambient temperature (Ta) on their sleep. Consequently we investigated seasonal temperature effects on sleep behaviour and surface body temperature of free-ranging Wahlberg’s epauletted fruit bat, Epomophorus wahlbergi, at a tree roost. Sleep behaviours of E. wahlbergi were recorded, including: sleep duration and sleep incidences (i.e. one eye open and both eyes closed). Sleep differed significantly across all the individuals in terms of sleep duration and sleep incidences. Individuals generally spent more time awake than sleeping. The percentage of each day bats spent asleep was significantly higher during winter (27.6%), compared with summer (15.6%). In summer, 20.7% of the sleeping bats used one eye open sleep, and this is possibly the first evidence of one-eye-sleep in non-marine mammals. Sleep duration decreased with extreme heat as bats spent significantly more time trying to cool by licking their fur, spreading their wings and panting. Skin temperatures of E. wahlbergi were significantly higher when Ta was ≥35°C and no bats slept at these high temperatures. Consequently extremely hot days negatively impact roosting fruit bats, as they were forced to be awake to cool themselves. This has implications for these bats given predicted climate change scenarios. PMID:25775371

  10. Climatic Stress during Stand Development Alters the Sign and Magnitude of Age-Related Growth Responses in a Subtropical Mountain Pine.

    PubMed

    Ruiz-Benito, Paloma; Madrigal-González, Jaime; Young, Sarah; Mercatoris, Pierre; Cavin, Liam; Huang, Tsurng-Juhn; Chen, Jan-Chang; Jump, Alistair S

    2015-01-01

    The modification of typical age-related growth by environmental changes is poorly understood, In part because there is a lack of consensus at individual tree level regarding age-dependent growth responses to climate warming as stands develop. To increase our current understanding about how multiple drivers of environmental change can modify growth responses as trees age we used tree ring data of a mountain subtropical pine species along an altitudinal gradient covering more than 2,200 m of altitude. We applied mixed-linear models to determine how absolute and relative age-dependent growth varies depending on stand development; and to quantify the relative importance of tree age and climate on individual tree growth responses. Tree age was the most important factor for tree growth in models parameterised using data from all forest developmental stages. Contrastingly, the relationship found between tree age and growth became non-significant in models parameterised using data corresponding to mature stages. These results suggest that although absolute tree growth can continuously increase along tree size when trees reach maturity age had no effect on growth. Tree growth was strongly reduced under increased annual temperature, leading to more constant age-related growth responses. Furthermore, young trees were the most sensitive to reductions in relative growth rates, but absolute growth was strongly reduced under increased temperature in old trees. Our results help to reconcile previous contrasting findings of age-related growth responses at the individual tree level, suggesting that the sign and magnitude of age-related growth responses vary with stand development. The different responses found to climate for absolute and relative growth rates suggest that young trees are particularly vulnerable under warming climate, but reduced absolute growth in old trees could alter the species' potential as a carbon sink in the future.

  11. Study of traffic-related pollutant removal from street canyon with trees: dispersion and deposition perspective.

    PubMed

    Morakinyo, Tobi Eniolu; Lam, Yun Fat

    2016-11-01

    Numerical experiments involving street canyons of varying aspect ratio with traffic-induced pollutants (PM 2.5 ) and implanted trees of varying aspect ratio, leaf area index, leaf area density distribution, trunk height, tree-covered area, and tree planting pattern under different wind conditions were conducted using a computational fluid dynamics (CFD) model, ENVI-met. Various aspects of dispersion and deposition were investigated, which include the influence of various tree configurations and wind condition on dispersion within the street canyon, pollutant mass at the free stream layer and street canyon, and comparison between mass removal by surface (leaf) deposition and mass enhancement due to the presence of trees. Results revealed that concentration level was enhanced especially within pedestrian level in street canyons with trees relative to their tree-free counterparts. Additionally, we found a dependence of the magnitude of concentration increase (within pedestrian level) and decrease (above pedestrian level) due to tree configuration and wind condition. Furthermore, we realized that only ∼0.1-3 % of PM 2.5 was dispersed to the free stream layer while a larger percentage (∼97 %) remained in the canyon, regardless of its aspect ratio, prevailing wind condition, and either tree-free or with tree (of various configuration). Lastly, results indicate that pollutant removal due to deposition on leaf surfaces is potentially sufficient to counterbalance the enhancement of PM 2.5 by such trees under some tree planting scenarios and wind conditions.

  12. Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information

    NASA Astrophysics Data System (ADS)

    Björklund, J. A.; Gunnarson, B. E.; Seftigen, K.; Esper, J.; Linderholm, H. W.

    2014-04-01

    Here we explore two new tree-ring parameters, derived from measurements of wood density and blue intensity (BI). The new proxies show an increase in the interannual summer temperature signal compared to established proxies, and present the potential to improve long-term performance. At high latitudes, where tree growth is mainly limited by low temperatures, radiodensitometric measurements of wood density, specifically maximum latewood density (MXD), provides a temperature proxy that is superior to that of tree-ring widths. The high cost of developing MXD has led to experimentation with a less expensive method using optical flatbed scanners to produce a new proxy, herein referred to as maximum latewood blue absorption intensity (abbreviated MXBI). MXBI is shown to be very similar to MXD on annual timescales but less accurate on centennial timescales. This is due to the fact that extractives, such as resin, stain the wood differentially from tree to tree and from heartwood to sapwood. To overcome this problem, and to address similar potential problems in radiodensitometric measurements, the new parameters Δblue intensity (ΔBI) and Δdensity are designed by subtracting the ambient BI/density in the earlywood, as a background value, from the latewood measurements. As a case-study, based on Scots pine trees from Northern Sweden, we show that Δdensity can be used as a quality control of MXD values and that the reconstructive performance of warm-season mean temperatures is more focused towards the summer months (JJA - June, July, August), with an increase by roughly 20% when also utilising the interannual information from the earlywood. However, even though the new parameter ΔBI experiences an improvement as well, there are still puzzling dissimilarities between Δdensity and ΔBI on multicentennial timescales. As a consequence, temperature reconstructions based on ΔBI will presently only be able to resolve information on decadal-to-centennial timescales. The possibility of trying to calibrate BI into a measure of lignin content or density, similarly to how radiographic measurements are calibrated into density, could be a solution. If this works, only then can ΔBI be used as a reliable proxy in multicentennial-scale climate reconstructions.

  13. Response of Tree Rings Growth to Various Climatological Indices in the Sierra Nevada Mountains

    NASA Astrophysics Data System (ADS)

    Shamir, E.; Kaliff, R.; Graham, R.; Lepley, K. S.; Meko, D. M.; Touchan, R.

    2017-12-01

    Tree rings properties have been used to reconstruct historic regional climatological proxies. In this study, we examine whether tree rings can inform us on the basin scale spatial variability of the snow pack and soil moisture. Cores from seven sites and nine tree species of conifers were sampled in a vertical transect along the American River watershed at the Sierra Nevada Mountains. The tree cores were then cross-dated and chronologies of total ring width, early wood width, late wood width and late wood density measured by blue intensity methodology were developed. For each sampling site, a high-resolution land surface model was implemented to simulate 6-hour climatological time series of snow and soil moisture that are congruent in time and space for 1912- 2016. These time series were then used to derive independent indices that represent key climatological features that were thought to impact the tree growth. These indices include for example the duration of the dormancy season (winter), the duration of the growth season (spring), the duration of the dry season (summer) and the available seasonal soil moisture at the root zone. A comprehensive analysis of these indices with respect to the tree chronologies revealed that although different sites responded differently to these indices, all the sites were relatively insensitive to the winter temperature. Initial results suggest that warming condition and early spring onset as during the recent (2012-2015) drought increase growth in the high elevation that had a short winter with ample moisture while suppressing growth in lower elevation that experiences long dry summers. It is also interesting to note that the growth at the high elevation sites was found to be associated with the available moisture from the previous year, while in lower elevations growth responded to moisture conditions of the current year.

  14. Examining Basin-Scale Water and Climate Relations across the Pampa del Tamarugal, Atacama Desert through Spatial Analysis of Hydrogen, Carbon and Oxygen Isotopes in Tree Rings

    NASA Astrophysics Data System (ADS)

    Olson, E. J.; Dodd, J. P.; Rivera, M. A.

    2016-12-01

    Arid regions are extremely sensitive to variations hydroclimate. However, our understanding of past hydroclimate variations in these regions is often limited by a paucity of spatially resolved proxy data. The Atacama Desert of northern Chile is one of the driest regions on Earth, and hydroclimatic processes in the Atacama Desert may be a useful proxy for understanding the implications of expanding global aridity. In order to assess the ability of tree-ring isotope studies to record changes in hydrology and terrestrial climate in the Atacama Desert, oxygen (δ18O), carbon (δ13C) and hydrogen (δ2H) isotope values in tree rings of Prosopis tamarugo are analyzed for the modern period (1954-2014) when anthropogenic change to regional groundwater levels have been most notable. Samples of wood cellulose were collected throughout the Pampa del Tamarugal basin from 14 individuals and used to create an interpolated surface of isotope variations. The isotope data were then compared to groundwater depth from well monitoring data provided by the Dirección de General de Agua of Chile. There is a significant correlation between groundwater level and isotope values with best agreement occurring during the past two decades for δ18O (r = 0.58), δ13C (r = 0.55), and δ2H (r = 0.66) values. This spatial correlation analysis reveals that tree ring a-cellulose isotope values are a suitable proxy for reconstructing groundwater depth in the Pampa del Tamarugal Basin. A stepwise multiregression analysis between δ18O values of cellulose and several other environmental variables including groundwater level, relative humidity, and temperature suggest that groundwater depth is the dominate control of variation in the modern δ18O tree ring record. The response of tree cellulose to the hydroclimate in this region suggests that tree ring isotope variations may be used to reconstruct past hydroclimate conditions in arid regions throughout the globe.

  15. Missing Rings in Pinus halepensis – The Missing Link to Relate the Tree-Ring Record to Extreme Climatic Events

    PubMed Central

    Novak, Klemen; de Luis, Martin; Saz, Miguel A.; Longares, Luis A.; Serrano-Notivoli, Roberto; Raventós, Josep; Čufar, Katarina; Gričar, Jožica; Di Filippo, Alfredo; Piovesan, Gianluca; Rathgeber, Cyrille B. K.; Papadopoulos, Andreas; Smith, Kevin T.

    2016-01-01

    Climate predictions for the Mediterranean Basin include increased temperatures, decreased precipitation, and increased frequency of extreme climatic events (ECE). These conditions are associated with decreased tree growth and increased vulnerability to pests and diseases. The anatomy of tree rings responds to these environmental conditions. Quantitatively, the width of a tree ring is largely determined by the rate and duration of cell division by the vascular cambium. In the Mediterranean climate, this division may occur throughout almost the entire year. Alternatively, cell division may cease during relatively cool and dry winters, only to resume in the same calendar year with milder temperatures and increased availability of water. Under particularly adverse conditions, no xylem may be produced in parts of the stem, resulting in a missing ring (MR). A dendrochronological network of Pinus halepensis was used to determine the relationship of MR to ECE. The network consisted of 113 sites, 1,509 trees, 2,593 cores, and 225,428 tree rings throughout the distribution range of the species. A total of 4,150 MR were identified. Binomial logistic regression analysis determined that MR frequency increased with increased cambial age. Spatial analysis indicated that the geographic areas of south-eastern Spain and northern Algeria contained the greatest frequency of MR. Dendroclimatic regression analysis indicated a non-linear relationship of MR to total monthly precipitation and mean temperature. MR are strongly associated with the combination of monthly mean temperature from previous October till current February and total precipitation from previous September till current May. They are likely to occur with total precipitation lower than 50 mm and temperatures higher than 5°C. This conclusion is global and can be applied to every site across the distribution area. Rather than simply being a complication for dendrochronology, MR formation is a fundamental response of trees to adverse environmental conditions. The demonstrated relationship of MR formation to ECE across this dendrochronological network in the Mediterranean basin shows the potential of MR analysis to reconstruct the history of past climatic extremes and to predict future forest dynamics in a changing climate. PMID:27303421

  16. Missing Rings in Pinus halepensis - The Missing Link to Relate the Tree-Ring Record to Extreme Climatic Events.

    PubMed

    Novak, Klemen; de Luis, Martin; Saz, Miguel A; Longares, Luis A; Serrano-Notivoli, Roberto; Raventós, Josep; Čufar, Katarina; Gričar, Jožica; Di Filippo, Alfredo; Piovesan, Gianluca; Rathgeber, Cyrille B K; Papadopoulos, Andreas; Smith, Kevin T

    2016-01-01

    Climate predictions for the Mediterranean Basin include increased temperatures, decreased precipitation, and increased frequency of extreme climatic events (ECE). These conditions are associated with decreased tree growth and increased vulnerability to pests and diseases. The anatomy of tree rings responds to these environmental conditions. Quantitatively, the width of a tree ring is largely determined by the rate and duration of cell division by the vascular cambium. In the Mediterranean climate, this division may occur throughout almost the entire year. Alternatively, cell division may cease during relatively cool and dry winters, only to resume in the same calendar year with milder temperatures and increased availability of water. Under particularly adverse conditions, no xylem may be produced in parts of the stem, resulting in a missing ring (MR). A dendrochronological network of Pinus halepensis was used to determine the relationship of MR to ECE. The network consisted of 113 sites, 1,509 trees, 2,593 cores, and 225,428 tree rings throughout the distribution range of the species. A total of 4,150 MR were identified. Binomial logistic regression analysis determined that MR frequency increased with increased cambial age. Spatial analysis indicated that the geographic areas of south-eastern Spain and northern Algeria contained the greatest frequency of MR. Dendroclimatic regression analysis indicated a non-linear relationship of MR to total monthly precipitation and mean temperature. MR are strongly associated with the combination of monthly mean temperature from previous October till current February and total precipitation from previous September till current May. They are likely to occur with total precipitation lower than 50 mm and temperatures higher than 5°C. This conclusion is global and can be applied to every site across the distribution area. Rather than simply being a complication for dendrochronology, MR formation is a fundamental response of trees to adverse environmental conditions. The demonstrated relationship of MR formation to ECE across this dendrochronological network in the Mediterranean basin shows the potential of MR analysis to reconstruct the history of past climatic extremes and to predict future forest dynamics in a changing climate.

  17. Effect of Over-Tree Evaporative Cooling in Orchards on Microclimate and Accuracy of Insect Model Predictions.

    PubMed

    Chambers, Ute; Jones, Vincent P

    2015-12-01

    Orchard design and management practices can alter microclimate and, thus, potentially affect insect development. If sufficiently large, these deviations in microclimate can compromise the accuracy of phenology model predictions used in integrated pest management (IPM) programs. Sunburn causes considerable damage in the Pacific Northwest, United States, apple-producing region. Common prevention strategies include the use of fruit surface protectants, evaporative cooling (EC), or both. This study focused on the effect of EC on ambient temperatures and model predictions for four insects (codling moth, Cydia pomonella L.; Lacanobia fruitworm, Lacanobia subjuncta Grote and Robinson; oblique-banded leafroller, Choristoneura rosaceana Harris; and Pandemis leafroller, Pandemis pyrusana Kearfott). Over-tree EC was applied in July and August when daily maximum temperatures were predicted to be ≥30°C between 1200-1700 hours (15/15 min on/off interval) in 2011 and between 1200-1800 hours (15/10 min on/off interval, or continuous on) in 2012. Control plots were sprayed once with kaolin clay in early July. During interval and continuous cooling, over-tree cooling reduced average afternoon temperatures compared with the kaolin treatment by 2.1-3.2°C. Compared with kaolin-treated controls, codling moth and Lacanobia fruitworm egg hatch in EC plots was predicted to occur up to 2 d and 1 d late, respectively. The presence of fourth-instar oblique-banded leafroller and Pandemis leafroller was predicted to occur up to 2 d and 1 d earlier in EC plots, respectively. These differences in model predictions were negligible, suggesting that no adjustments in pest management timing are needed when using EC in high-density apple orchards. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Low-altitude permafrost research in an overcooled talus slope-rock glacier system in the Romanian Carpathians (Detunata Goală, Apuseni Mountains)

    NASA Astrophysics Data System (ADS)

    Popescu, Răzvan; Vespremeanu-Stroe, Alfred; Onaca, Alexandru; Vasile, Mirela; Cruceru, Nicolae; Pop, Olimpiu

    2017-10-01

    Ground and air temperature monitoring, geophysical soundings and dendrological investigations were applied to a basaltic talus slope-rock glacier system from Detunata site in the Apuseni Mountains (Western Romanian Carpathians) to verify the presence of sporadic permafrost at 1020-1110 m asl, well below the regional limit of mountain permafrost. The near 0 °C mean annual ground surface temperatures imposed by the large negative annual thermal anomalies of the ground (up to 7.4 °C), together with the high resistivity values and the occurrence of trees with severe growth anomalies, support the presence of permafrost at this location. Temperature measurements and ground air circulation experiments proved that the so-called "chimney effect" is the main process favoring the ground overcooling and allowed for the construction of a model of ground air circulation in complex morphology deposits. The texture and porosity of the debris were quantified along with the local morphology in order to evaluate their role upon the chimney circulation. The debris porosity was found to be very high promoting intense ground overcooling during the cold season, including the periods of high snow cover due to the development of snow funnels. It efficiently reduces the heat transfer during summer thus contributing essentially to permafrost preservation. In compound morphologies, the depressed and low-lying features are the cold zones subjected to winter overcooling and summer chill, while the high-positioned and convex-up landforms become warm air evacuation features with positive thermal anomalies. Tree-ring measurements showed that the growth of cold-affected trees is higher during colder intervals (years to decades) probably as a consequence of the weakened katabatic air outflow during cooler summers. The dendrological analysis of multi-centennial spruces and their growth rates also provided palaeoclimatic inferences for the last 200 years. Dendrological data describe the multi-centennial chimney circulation and its response to climate variability.

  19. [Diagnosing Low Health and Wood Borer Attacked Trees of Chinese Arborvitae by Using Thermography].

    PubMed

    Wang, Fei; Wu, De-jun; Zhai, Guo-feng; Zang, Li-peng

    2015-12-01

    Water and energy metabolism of plants is very important actions in their lives. Although the studies about these actions by using thermography were often reported, seldom were found in detecting the health status of forest trees. In this study, we increase the measurement accuracy and comparability of thermo-images by creating the difference indices. Based on it, we exam the water and energy status in stem of Chinese arborvitae (Platycladus orientalis (L.) Franco) by detecting the variance of far infrared spectrum between sap-wood and heart-wood of the cross-section of felling trees and the cores from an increment borer using thermography. The results indicate that the sap rate between sapwood and heartwood is different as the variance of the vigor of forest trees. Meanwhile, the image temperature of scale leaves from Chinese arborvitae trees with different vigor is also dissimilar. The far infrared spectrum more responds the sap status not the wood percentage in comparing to the area rate between sapwood and heartwood. The image temperature rate can be used in early determining the health status of Chinese arborvitae trees. The wood borers such as Phloeosinus aubei Perris and Semanotus bifasciatus Motschulsky are the pests which usually attack the low health trees, dying trees, wilted trees, felled trees and new cultivated trees. This measuring technique may be an important index to diagnose the health and vigor status after a large number of measurements for Chinese arborvitae trees. Therefore, there is potential to be an important index to check the tree vigor and pest damage status by using this technique. It will be a key in the tending and management of ecological and public Chinese arborvitae forest.

  20. Spatial variability of biotic and abiotic tree establishment constraints across a treeline ecotone in the Alaska range.

    PubMed

    Stueve, Kirk M; Isaacs, Rachel E; Tyrrell, Lucy E; Densmore, Roseann V

    2011-02-01

    Throughout interior Alaska (U.S.A.), a gradual warming trend in mean monthly temperatures occurred over the last few decades (approximatlely 2-4 degrees C). The accompanying increases in woody vegetation at many alpine treeline (hereafter treeline) locations provided an opportunity to examine how biotic and abiotic local site conditions interact to control tree establishment patterns during warming. We devised a landscape ecological approach to investigate these relationships at an undisturbed treeline in the Alaska Range. We identified treeline changes between 1953 (aerial photography) and 2005 (satellite imagery) in a geographic information system (GIS) and linked them with corresponding local site conditions derived from digital terrain data, ancillary climate data, and distance to 1953 trees. Logistic regressions enabled us to rank the importance of local site conditions in controlling tree establishment. We discovered a spatial transition in the importance of tree establishment controls. The biotic variable (proximity to 1953 trees) was the most important tree establishment predictor below the upper tree limit, providing evidence of response lags with the abiotic setting and suggesting that tree establishment is rarely in equilibrium with the physical environment or responding directly to warming. Elevation and winter sun exposure were important predictors of tree establishment at the upper tree limit, but proximity to trees persisted as an important tertiary predictor, indicating that tree establishment may achieve equilibrium with the physical environment. However, even here, influences from the biotic variable may obscure unequivocal correlations with the abiotic setting (including temperature). Future treeline expansion will likely be patchy and challenging to predict without considering the spatial variability of influences from biotic and abiotic local site conditions.

  1. Spatial variability of biotic and abiotic tree establishment constraints across a treeline ecotone in the Alaska Range

    USGS Publications Warehouse

    Stueve, K.M.; Isaacs, R.E.; Tyrrell, L.E.; Densmore, R.V.

    2011-01-01

    Throughout interior Alaska (USA), a gradual warming trend in mean monthly temperatures occurred over the last few decades (;2-48C). The accompanying increases in woody vegetation at many alpine treeline (hereafter treeline) locations provided an opportunity to examine how biotic and abiotic local site conditions interact to control tree establishment patterns during warming. We devised a landscape ecological approach to investigate these relationships at an undisturbed treeline in the Alaska Range. We identified treeline changes between 1953 (aerial photography) and 2005 (satellite imagery) in a geographic information system (GIS) and linked them with corresponding local site conditions derived from digital terrain data, ancillary climate data, and distance to 1953 trees. Logistic regressions enabled us to rank the importance of local site conditions in controlling tree establishment. We discovered a spatial transition in the importance of tree establishment controls. The biotic variable (proximity to 1953 trees) was the most important tree establishment predictor below the upper tree limit, providing evidence of response lags with the abiotic setting and suggesting that tree establishment is rarely in equilibrium with the physical environment or responding directly to warming. Elevation and winter sun exposure were important predictors of tree establishment at the upper tree limit, but proximity to trees persisted as an important tertiary predictor, indicating that tree establishment may achieve equilibrium with the physical environment. However, even here, influences from the biotic variable may obscure unequivocal correlations with the abiotic setting (including temperature). Future treeline expansion will likely be patchy and challenging to predict without considering the spatial variability of influences from biotic and abiotic local site conditions. ?? 2011 by the Ecological Society of America.

  2. World-Wide and Regional Examination of Substrates Facilitating Timberline Expansion

    NASA Astrophysics Data System (ADS)

    Johnson, A. C.; Yeakley, J. A.

    2010-12-01

    Upward advance of timberlines, associated with climate warming, is occurring in the Pacific Northwest (PNW) as well as many other mountainous regions of the world. Examination of seedling establishment and survival of sensitive seedlings, rather than examination of older resilient trees, may give a clearer understanding of current climatic factors affecting potential expansion of timberline. Our investigation of seedling establishment along timberline edges in the PNW indicates that trees often germinate on small landforms known as microsites. Microsites include small convexities or concavities on the soil surface having a scale of centimeters to meters, but also include associations with slope, aspect, rocks or plants, or substrates dominated by mineral soil or wood. Growing on favorable microsites helps seedlings cope with some of the stresses that exist at high elevation sites including wind, cold temperatures, high radiation, drought, animal predation, and infestation by fungal pathogens found in snow and soil. Microsites, by providing warmer substrates, adequate moisture, and shelter, allow plants to function more affectively in mountain environments. Our summary of microsite type and associated timberline advance in a world-wide context indicates that factors such as snow accumulation, summer rainfall, and availability of microsites, will control timberline advance. In windswept timberline locations, rocks and plants provide shelter from wind and reduce the likelihood of night frost. In arid climates, concave microsites aid in snow deposition providing needed moisture to seedlings during periods of drought. In contrast, convex microsites and wood substrates, typical sites of regeneration in the PNW where precipitation typically exceeds 150 cm per year, facilitate early snow melt, thereby increasing growing season. Large trees at the edge of timberline fall into alpine meadows, decay, and provide sites for seedling establishment. These sites commonly called nurse logs, much better known as key microsites in lower elevation forests, have been found to be conspicuous sites of timberline forest regeneration extending from the forest edge into alpine meadows. Nurse logs appear to be particularly important sites of regeneration in wetter alpine areas of the world such as the North Cascade Mountains of Washington in the PNW. Depending upon aspect and slope, one tree can potentially advance timberline close to 20 meters, a typical length of a tree growing at timberline. Nurse log temperature during the growing season is significantly greater than the adjacent soil, particularly in areas with reduced overstory canopy. Increased substrate temperature, associated with increased root growth, has been found to facilitate growth of seedlings. Further, the water holding capacity of rotten logs, which often surpasses that of soils, aids in seedling growth during summer droughts.

  3. Exposure of trees to drought-induced die-off is defined by a common climatic threshold across different vegetation types

    PubMed Central

    Mitchell, Patrick J; O'Grady, Anthony P; Hayes, Keith R; Pinkard, Elizabeth A

    2014-01-01

    Increases in drought and temperature stress in forest and woodland ecosystems are thought to be responsible for the rise in episodic mortality events observed globally. However, key climatic drivers common to mortality events and the impacts of future extreme droughts on tree survival have not been evaluated. Here, we characterize climatic drivers associated with documented tree die-off events across Australia using standardized climatic indices to represent the key dimensions of drought stress for a range of vegetation types. We identify a common probabilistic threshold associated with an increased risk of die-off across all the sites that we examined. We show that observed die-off events occur when water deficits and maximum temperatures are high and exist outside 98% of the observed range in drought intensity; this threshold was evident at all sites regardless of vegetation type and climate. The observed die-off events also coincided with at least one heat wave (three consecutive days above the 90th percentile for maximum temperature), emphasizing a pivotal role of heat stress in amplifying tree die-off and mortality processes. The joint drought intensity and maximum temperature distributions were modeled for each site to describe the co-occurrence of both hot and dry conditions and evaluate future shifts in climatic thresholds associated with the die-off events. Under a relatively dry and moderate warming scenario, the frequency of droughts capable of inducing significant tree die-off across Australia could increase from 1 in 24 years to 1 in 15 years by 2050, accompanied by a doubling in the occurrence of associated heat waves. By defining commonalities in drought conditions capable of inducing tree die-off, we show a strong interactive effect of water and high temperature stress and provide a consistent approach for assessing changes in the exposure of ecosystems to extreme drought events. PMID:24772285

  4. Tree-ring growth patterns and climatic signals along a vertical transect of larch sites in the Simplon and Rhône Valleys (Switzerland)

    NASA Astrophysics Data System (ADS)

    Riechelmann, Dana F. C.; Esper, Jan

    2017-04-01

    State-of-the-art millennial long temperature reconstructions from the European Alps integrate wood samples of Larix decidua Mill. from the Lötschental and Simplon regions in Switzerland (Büntgen et al., 2005; 2006). Some of the oldest samples that enable the extension of the time-series back into the first millennium AD are obtained from old buildings in Simplon Village, through the precise location of these samples and the elevation of sampling sites remain unknown. We here evaluate the growth characteristics of larch tree-ring width data along a vertical transect in the Simplon and Rhône valleys. 330 trees from nine sites in 985, 1100, 1400, 1575, 1710, 1712, 1900, 2020, and 2150 m asl have been sampled and analysed for their climate signals. The results indicate a stronger temperature signal in the tree-ring width with increasing elevation. The lower the sites the more a drought signal is imprinted in the ring width data. The intermediate site at 1400 m asl does not show any pronounced climate signal. A comparison of growth patterns of living-tree sites with samples from the historical buildings in Simplon Village (Riechelmann et al., 2013) indicates the construction timber to origin from intermediate to higher elevations. We therefore do not expect strong temperature signal from these timbers. References: Büntgen, U., Esper, J., Frank, D.C., Nicolussi, K., Schmidhalter, M., 2005. A 1052-year tree-ring proxy for Alpine summer temperatures. Climate Dynamics 25: 141-153. Büntgen, U., Frank, D.C., Nievergelt, D., Esper J., 2006. Summer temperature variations in the European Alps, A.D. 755-2004. Journal of Climate 19: 5606-5623. Riechelmann, D.F.C., Schmidhalter, M., Büntgen, U., Esper, J., 2013. Extending a high-elevation larch ring width chronology from the Simplon region in the Swiss Alps over the past millenium. TRACE 11:103-108.

  5. Utility of Thermal Infrared Satellite Data For Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Xian, G.; Crane, M.; Granneman, B.

    2006-12-01

    Urban landscapes are comprised of a variety of surfaces that are characterized by contrasting radiative, thermal, aerodynamic, and moisture properties. These different surfaces possess diverse physical and thermal attributes that directly influence surface energy balance and our ability to determine surface characteristics in urban areas. Reflectance properties obtained from satellite imagery have proven useful for mapping urban land use and land cover change, as well as ecosystem health. Landsat reflectance bands are commonly used in regression tree models to generate linear equations that correspond to distinct land surface materials. However, urban land cover is generally a heterogeneous mix of bare soil, vegetation, rock, and anthropogenic impervious surfaces. Surface temperature obtained from satellite thermal infrared bands provides valuable information about surface biophysical properties and radiant thermal characteristics of land cover elements, especially for urban environments. This study demonstrates the improved characterization of land cover conditions for Seattle, Washington, and Las Vegas, Nevada, that were achieved by using both the reflectance and thermal bands of Landsat Enhanced Thematic Mapper Plus (ETM+) data. Including the thermal band in the image analysis increased the accuracy of discriminating cover types in heterogeneous landscapes with extreme contrasts, especially for mixed pixels at the urban interface.

  6. Photosynthetic capacity and leaf nitrogen decline along a controlled climate gradient in provenances of two widely distributed Eucalyptus species.

    PubMed

    Crous, Kristine Y; Drake, John E; Aspinwall, Michael J; Sharwood, Robert E; Tjoelker, Mark G; Ghannoum, Oula

    2018-05-27

    Climate is an important factor limiting tree distributions and adaptation to different thermal environments may influence how tree populations respond to climate warming. Given the current rate of warming, it has been hypothesized that tree populations in warmer, more thermally stable climates may have limited capacity to respond physiologically to warming compared to populations from cooler, more seasonal climates. We determined in a controlled environment how several provenances of widely distributed Eucalyptus tereticornis and E. grandis adjusted their photosynthetic capacity to +3.5°C warming along their native distribution range (~16-38°S) and whether climate of seed origin of the provenances influenced their response to different growth temperatures. We also tested how temperature optima (T opt ) of photosynthesis and J max responded to higher growth temperatures. Our results showed increased photosynthesis rates at a standardized temperature with warming in temperate provenances, while rates in tropical provenances were reduced by about 40% compared to their temperate counterparts. Temperature optima of photosynthesis increased as provenances were exposed to warmer growth temperatures. Both species had ~30% reduced photosynthetic capacity in tropical and subtropical provenances related to reduced leaf nitrogen and leaf Rubisco content compared to temperate provenances. Tropical provenances operated closer to their thermal optimum and came within 3% of the T opt of J max during the daily temperature maxima. Hence, further warming may negatively affect C uptake and tree growth in warmer climates, whereas eucalypts in cooler climates may benefit from moderate warming. © 2018 John Wiley & Sons Ltd.

  7. Photosynthetic functions of cembran pines and dwarf pines during winter at timberline as regulated by different temperatures, snowcover and light.

    PubMed

    Lehner, Gabriele; Lütz, Cornelius

    2003-02-01

    Trees at timberline in the high Alps are exposed to a variety of climatic conditions. Most climatic stresses occur during winter and spring, when frost, occasionally low snow cover, and high irradiation interact. In this study, we follow reactions of photosynthesis from high winter to spring in two dominating tree species of the alpine timberline, which may indicate the status of stress response to a changing environment. The results indicate a level of physiological stability in trees, which are important for stabilising natural high mountain ecosystems. Trees of Pinus cembra and of Pinus mugo were selected at altitudes between 1850 m a.s.l. and 1950 m a.s.l. near innsbruck, Austria. At six sampling times from January to May, fast chlorophyll fluorescence was measured in the field and twigs were collected for further investigation in the laboratory. The following measurements were taken: photosynthetic oxygen formation, needle chlorophyll and carotenoid determination, and kinetic studies of the xanthophyll cycle. In general, both tree species showed similar results in most parameters studied. P. mugo seems to have some advantages if winter precipitation is high, when, because of its growth habitus, most needles will be snow covered. Primary photochemistry (trapping per reaction centre) in PS II does not change with sampling dates despite the fact that temperature and light are changing. However, first events in electron transport and whole needle photosynthesis are strongly affected by light and temperature conditions during the days before sampling. The kinetics of the xanthophyll cycle indicate not only light, but also strong temperature effects. P. mugo photosynthesis seems to have a higher stability under changing weather. Both tree species are well prepared to start with photosynthesis in winter, if favourable conditions, like foehn events, occur.

  8. Interspecific variation in growth responses to climate and competition of five eastern tree species.

    PubMed

    Rollinson, Christine R; Kaye, Margot W; Canham, Charles D

    2016-04-01

    Climate and competition are often presented from two opposing views of the dominant driver of individual tree growth and species distribution in temperate forests, such as those in the eastern United States. Previous studies have provided abundant evidence indicating that both factors influence tree growth, and we argue that these effects are not independent of one another and rather that interactions between climate, competition, and size best describe tree growth. To illustrate this point, we describe the growth responses of five common eastern tree species to interacting effects of temperature, precipitation, competition, and individual size using maximum likelihood estimation. Models that explicitly include interactions among these four factors explained over half of the variance in annual growth for four out of five species using annual climate. Expanding temperature and precipitation analyses to include seasonal interactions resulted in slightly improved models with a mean R2 of 0.61 (SD 0.10). Growth responses to individual factors as well their interactions varied greatly among species. For example, growth sensitivity to temperature for Quercus rubra increased with maximum annual precipitation, but other species showed no change in sensitivity or slightly reduced annual growth. Our results also indicate that three-way interactions among individual stem size, competition, and temperature may determine which of the five co-occurring species in our study could have the highest growth rate in a given year. Continued consideration and quantification of interactions among climate, competition, and individual-based characteristics are likely to increase understanding of key biological processes such as tree growth. Greater parameterization of interactions between traditionally segregated factors such as climate and competition may also help build a framework to reconcile drivers of individual-based processes such as growth with larger-scale patterns of species distribution.

  9. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    PubMed Central

    Sterck, Frank; Anten, Niels P. R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25–35°C) and ambient CO2 concentrations (390–800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10–20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  10. Determining the Role of Sediment Deposition and Transport in the Formation and Maintenance of Tree Islands in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Mitchell-Bruker, S.; Childers, D.; Ross, M.; Leonard, L.; Solo-Gabriel, H.; Stothoff, S.

    2002-05-01

    Tree islands are a prominent feature in the Everglades ridge and slough wetlands. These tree islands are believed to be a remnant of the historical pre-drainage flow system. Within Everglades National Park, hardwood hammock and bayhead tree islands commonly form as teardrop-shaped mounds, rising above the sawgrass marsh. These tree islands are usually oriented along the direction of surface water flow, with the highest elevation and widest part of the island at the upstream head. The island narrows as it descends into the marsh at the downstream end, terminating in a tail that sometimes includes a zone of dead or dying sawgrass. The shape and orientation of the tree islands suggests that surface water flow has been instrumental in their formation, however occasional flow measurements indicate that the slow moving water of the Everglades does not provide sufficient energy to transport even moderate amounts of suspended sediment. This low flow velocity, coupled with the extremely low turbidity of the Everglades water suggests that if sediment transport and deposition processes are instrumental in forming tree islands, the process is probably occurring over short distances and long time intervals. It is also possible that concentration and transport of nutrients is an important element in tree island formation. Because the Everglades marsh is a low nutrient environment, processes that create areas of increased phosphorous concentration result in changes in the vegetation. Because many hardwood hammock and bayhead tree islands have heads that are situated on bedrock highs, the higher and drier elevation of the head allows for trees to grow. These trees could concentrate phosphorous either by acting as wildlife attractors, or by acting as \\x8Dphosphorous pumpsŒ, transporting groundwater with high concentrations of phosphorous through the roots to the tree. We are characterizing vegetation, litter fall, sediments, surface water flow, hydrologic gradients and nutrient gradients on tree islands and in the surrounding marsh. These data will be analyzed using statistical and hydrologic models to test the hypothesis that surface water flow is an essential force in forming and maintaining tree islands. A sediment and nutrient transport model is being developed to apply these data to scenarios for flow in a vegetated wetland. By constraining model parameters to the limits supported by these data, the full range of possible flow and transport scenarios can be tested in the model. These model results, along with statistical analysis will be used to support or reject the hypothesis that sediment and nutrient transport are key components in the formation of hardwood hammock and bay head tree islands.

  11. Topography and age mediate the growth responses of Smith fir to climate warming in the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, B.; Wang, Y.; Zhu, H.; Liang, E.; Camarero, J. J.

    2016-10-01

    The Tibetan Plateau holds some of the world's highest undisturbed natural treelines and timberlines. Such extreme environments constitute potentially valuable monitoring sites of the effects of climate warming on high-elevation forests. Here, we analyze a network of 21 Smith fir forests situated in the Sygera Mountains, southeastern Tibetan Plateau, using tree-ring width (TRW) and basal area increment (BAI) chronologies. Sampled sites encompassed a wide elevation gradient, from 3600 to 4400 m, including some treeline sites and diverse aspects and tree ages. In comparison with TRW series, BAI series better capture the long-term warming signal. Previous November and current April and summer temperatures are the dominant climatic factors controlling Smith fir radial growth. The mean inter-series correlations of TRW increased upwards, but the forest limit presented the highest potential to reconstruct past temperature variability. Moreover, the growth responses of young trees were less stable than those of trees older than 100 years. Climate warming is accelerating radial growth of Smith fir forest subjected to mesic conditions. Collectively, these findings confirm that the effects of site elevation and tree age should be considered when quantifying climate-growth relationships. The type of tree-ring data (BAI vs. TRW) is also relevant since BAI indices seem to be a better climatic proxy of low-frequency temperature signals than TRW indices. Therefore, site (e.g., elevation) and tree (e.g., age) features should be considered to properly evaluate the effects of climate warming on growth of high-elevation forests.

  12. Tree physiology and bark beetles

    Treesearch

    Michael G. Ryan; Gerard Sapes; Anna Sala; Sharon Hood

    2015-01-01

    Irruptive bark beetles usually co-occur with their co-evolved tree hosts at very low (endemic) population densities. However, recent droughts and higher temperatures have promoted widespread tree mortality with consequences for forest carbon, fire and ecosystem services (Kurz et al., 2008; Raffa et al., 2008; Jenkins et al., 2012). In this issue of New Phytologist,...

  13. Climate ready urban trees for Central Valley cities

    Treesearch

    E.G. McPherson; A.M. Berry

    2015-01-01

    Urban forests provide many societal and ecological services to cities and their inhabitants. Many species of trees are under stress due to anthropogenic and natural climate changes. Projected climatic shifts will change temperature, precipitation, and the incidences of pest and disease outbreaks. The tolerance of urban trees to these stressors varies considerably among...

  14. Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models

    USGS Publications Warehouse

    Tipton, John; Hooten, Mevin B.; Pederson, Neil; Tingley, Martin; Bishop, Daniel

    2016-01-01

    Reconstruction of pre-instrumental, late Holocene climate is important for understanding how climate has changed in the past and how climate might change in the future. Statistical prediction of paleoclimate from tree ring widths is challenging because tree ring widths are a one-dimensional summary of annual growth that represents a multi-dimensional set of climatic and biotic influences. We develop a Bayesian hierarchical framework using a nonlinear, biologically motivated tree ring growth model to jointly reconstruct temperature and precipitation in the Hudson Valley, New York. Using a common growth function to describe the response of a tree to climate, we allow for species-specific parameterizations of the growth response. To enable predictive backcasts, we model the climate variables with a vector autoregressive process on an annual timescale coupled with a multivariate conditional autoregressive process that accounts for temporal correlation and cross-correlation between temperature and precipitation on a monthly scale. Our multi-scale temporal model allows for flexibility in the climate response through time at different temporal scales and predicts reasonable climate scenarios given tree ring width data.

  15. Oak Forest Responses to Episodic-Seasonal-Drought, Chronic Multi-year Precipitation Change and Acute Drought Manipulations in a Region With Deep Soils and High Precipitation

    NASA Astrophysics Data System (ADS)

    Hanson, Paul J.; Wullschleger, Stan D.; Todd, Donald E.; Auge, Robert M.; Froberg, Mats; Johnson, Dale W.

    2010-05-01

    Implications of episodic-seasonal drought (extremely dry late summers), chronic multi-year precipitation manipulations (±33 percent over 12 years) and acute drought (-100 percent over 3 years) were evaluated for the response of vegetation and biogeochemical cycles for an upland-oak forest. The Quercus-Acer forest is located in eastern Tennessee on deep acidic soils with mean annual temperatures of 14.2 °C and abundant precipitation (1352 mm y-1). The multi-year observations and chronic manipulations were conducted from 1993 through 2005 using understory throughfall collection troughs and redistribution gutters and pipes. Acute manipulations of dominant canopy trees (Quercus prinus; Liriodendron tulipifera) were conducted from 2003 through 2005 using full understory tents. Regional and severe late-summer droughts were produced reduced stand water use and photosynthetic carbon gain as expected. Likewise, seedlings and saplings exhibited reduced survival and cumulative growth reductions. Conversely, multi-year chronic increases or decreases in precipitation and associated soil water deficits did not reduce large tree basal area growth for the tree species present. The resilience of canopy trees to chronic-change was the result of a disconnect between carbon allocation to tree growth (an early-season phenomenon) and late-season drought occurrence. Acute precipitation exclusion from the largest canopy trees also produced limited physiological responses and minimal cumulative growth reductions. Lateral root water sources were removed through trenching and could not explain the lack of response to extreme soil drying. Therefore, deep rooting the primary mechanism for large-tree resilience to severe drought. Extensive trench-based assessments of rooting depth suggested that ‘deep' water supplies were being obtained from limited numbers of deep fine roots. Observations of carbon stocks in organic horizons demonstrated accumulation with precipitation reductions and drying, but no change in mineral soil carbon pools attributable to changing precipitation. Measured changes in nitrogen and other element pools suggested that long term immobilization of elements with chronic drying would lead to reduced growth, but that deep rooting access to the key base cations would moderate such effects by providing a source of minerals to be cycled in near surface soils. Cumulative changes in canopy foliar production were evident over time showing sustained or even increased production with chronic drying. This unexpected response is hypothesized to result from the retention of nutrients in highly-rooted surface horizons made available for plant uptake during spring mineralization.

  16. Reaction of wood radius of multiple tree species to changing environmental conditions

    NASA Astrophysics Data System (ADS)

    Merganicova, Katarina; Merganic, Jan; Sitkova, Zuzana; Lestianska, Adriana; Strelcova, Katarina; Valent, Peter; Jezik, Marek

    2017-04-01

    Dendrometers are frequently used to study the radial dynamics of forest trees. Since the fluctuations of tree stem radius are caused by multiple factors including changes in tree water status and the actual tree growth, the methods used to derive the radial growth from dendrometer data provide us with the estimates of diurnal radial increments rather than their precise values. In addition, dendrometers react to environmental conditions themselves, which can in some cases cause misinterpretation of measured values. In the presented study we aimed at analysing the reaction of band dendrometers and wood radius of 7 different tree species on changing environmental conditions. The data come from a controlled experiment performed in the climate chambers, in which we placed 5 stand-alone dendrometers and 30 wooden pieces representing 7 different tree species equipped with band dendrometers. Air temperature and air humidity were controlled inside the chambers and their impact on wood radius and dendrometers was analysed. The results showed that both wooden pieces and dendrometers reacted to changes in air temperature and air humidity, while the reaction was species specific and dependent on the actual water status of wooden pieces. The overall trend of measured radial changes of wooden pieces followed the changes in temperature, i.e. the increase in temperature caused the increase in the measured radii. The change in air humidity explained less than 50% of the variation in radial measurements. The obtained results indicate that although the band dendrometers applied in the study were able to measure values with the precision of one micrometre, the differences between the measurements of up to ten micrometres need not represent the actual changes in stem radius, but may only reflect the reactions of the instrument to surrounding conditions. Hence, the measurements by dendrometers must always be examined thoroughly with regard to all the multiple effects before any conclusions based on them are stated.

  17. Monitoring moisture content, temperature, and humidity in whole-tree pine chip piles

    Treesearch

    John Klepac; Dana Mitchell; Jason Thompson

    2015-01-01

    Two whole-tree chip piles were monitored for moisture content, temperature, and relative humidity from October 8th, 2010 to March 16th, 2011 at a location in south Alabama. Initial moisture content samples were collected immediately after chips were delivered to the study location on October 8th for Pile 1 and October 22nd for Pile 2. During pile construction, Lascar...

  18. Evidence for climate-driven synchrony of marine and terrestrial ecosystems in northwest Australia.

    PubMed

    Ong, Joyce J L; Rountrey, Adam N; Zinke, Jens; Meeuwig, Jessica J; Grierson, Pauline F; O'Donnell, Alison J; Newman, Stephen J; Lough, Janice M; Trougan, Mélissa; Meekan, Mark G

    2016-08-01

    The effects of climate change are difficult to predict for many marine species because little is known of their response to climate variations in the past. However, long-term chronologies of growth, a variable that integrates multiple physical and biological factors, are now available for several marine taxa. These allow us to search for climate-driven synchrony in growth across multiple taxa and ecosystems, identifying the key processes driving biological responses at very large spatial scales. We hypothesized that in northwest (NW) Australia, a region that is predicted to be strongly influenced by climate change, the El Niño Southern Oscillation (ENSO) phenomenon would be an important factor influencing the growth patterns of organisms in both marine and terrestrial environments. To test this idea, we analyzed existing growth chronologies of the marine fish Lutjanus argentimaculatus, the coral Porites spp. and the tree Callitris columellaris and developed a new chronology for another marine fish, Lethrinus nebulosus. Principal components analysis and linear model selection showed evidence of ENSO-driven synchrony in growth among all four taxa at interannual time scales, the first such result for the Southern Hemisphere. Rainfall, sea surface temperatures, and sea surface salinities, which are linked to the ENSO system, influenced the annual growth of fishes, trees, and corals. All four taxa had negative relationships with the Niño-4 index (a measure of ENSO status), with positive growth patterns occurring during strong La Niña years. This finding implies that future changes in the strength and frequency of ENSO events are likely to have major consequences for both marine and terrestrial taxa. Strong similarities in the growth patterns of fish and trees offer the possibility of using tree-ring chronologies, which span longer time periods than those of fish, to aid understanding of both historical and future responses of fish populations to climate variation. © 2016 John Wiley & Sons Ltd.

  19. Biogeomorphic and pedogenic impact of trees in three soil regions

    NASA Astrophysics Data System (ADS)

    Pawlik, Łukasz; Šamonil, Pavel

    2017-04-01

    Vegetation is an important factor of soil formation which together with topography, geology, climate and time modulates chemical and physical soil characteristics. Tree/soils/regolith interaction was recognized in recently uprooted trees and relict treethrow mounds and pits. In our present study we focus on effects of individual standing trees in pedogenesis and biogeomorphic processes. Constant pressure of tree root systems, changing hydric and temperature regime, together with rhizospheric microbes and root mycorrhizal associations may cause multiscale alterations to regolith and soils. We hypothesize different soil chemical properties under old tree stumps compared to unaffected control pedon resulted from affected pedogenetical pathways at the analyzed microsites. The present project highlights changes in soil properties under tree stumps in three different soil regions: Haplic Cambisols (Turbacz Reserve, Gorce Mts., Poland, hereafter HC), Entic Podzols (Zofin Reserve, Novohradske Mts., the Czech Republic, hereafter EP), Albic Podzols (Upper Peninsula, Michigan, USA, hereafter AP). These three regions represent different degrees of soil weathering and leaching. Pedons under fir, beech and hemlock stumps, as well as unaffected control pedons were sampled and laboratory analyzed for several chemical properties; active and exchangeable soil reaction, oxidized carbon, total nitrogen, and various forms of Fe, Al, Mn and Si. At the same time we studied age of the sampled tree stumps, as well as age of their death using radiocarbon technique and dendrochronology. While no effects of the soil-trees interactions can be visible on hillslope surface, we found important evidence of biomechanical activities of tree roots (e.g. root channels) and biochemical changes which add to the discussion about biogeomorphic and pedogenic significance of trees and tree roots as drivers of biomechanical weathering and soil processes in the decadal and centennial time scales. Preliminary results from the first site at Turbacz (fir tree stump) indicate some significant differences with higher amount of Cox, clay and C-THS (carbon content in total humus substances), pHH2O and Fe in the control soil profile as compared to stump soil profiles. Content of various chemical indicators were more homogenous between soil profiles at the second microsite (beech). There were significant differences between soil regions for the following chemical properties: N (nitrogen) (AP vs. EP), Cox (oxidized carbon) (AP vs. EP), C-HA (carbon content in humic acids) (AP vs. HC), C-FA (carbon content in fulvic acids) (AP vs. EP), Fed (crystalline forms of iron) (AP and EP vs. HC).

  20. Fine Root Abundance and Dynamics of Stone Pine (Pinus cembra) at the Alpine Treeline Is Not Impaired by Self-shading

    PubMed Central

    Kubisch, Petra; Leuschner, Christoph; Coners, Heinz; Gruber, Andreas; Hertel, Dietrich

    2017-01-01

    Low temperatures are crucial for the formation of the alpine treeline worldwide. Since soil temperature in the shade of tree canopies is lower than in open sites, it was assumed that self-shading may impair the trees’ root growth performance. While experiments with tree saplings demonstrate root growth impairment at soil temperatures below 5–7°C, field studies exploring the soil temperature – root growth relationship at the treeline are missing. We recorded soil temperature and fine root abundance and dynamics in shaded and sun-exposed areas under canopies of isolated Pinus cembra trees at the alpine treeline. In contrast to the mentioned assumption, we found more fine root biomass and higher fine root growth in colder than in warmer soil areas. Moreover, colder areas showed higher fine root turnover and thus lower root lifespan than warmer places. We conclude that P. cembra balances enhanced fine root mortality in cold soils with higher fine root activity and by maintaining higher fine root biomass, most likely as a response to shortage in soil resource supply. The results from our study highlight the importance of in situ measurements on mature trees to understand the fine root response and carbon allocation pattern to the thermal growth conditions at the alpine treeline. PMID:28469633

  1. Five centuries of Central European temperature extremes reconstructed from tree-ring density and documentary evidence

    NASA Astrophysics Data System (ADS)

    Battipaglia, Giovanna; Frank, David; Büntgen, Ulf; Dobrovolný, Petr; Brázdil, Rudolf; Pfister, Christian; Esper, Jan

    2010-06-01

    Future climate change will likely influence the frequency and intensity of weather extremes. As such events are by definition rare, long records are required to understand their characteristics, drivers, and consequences on ecology and society. Herein we provide a unique perspective on regional-scale temperature extremes over the past millennium, using three tree-ring maximum latewood density (MXD) chronologies from higher elevations in the European Alps. We verify the tree-ring-based extremes using documentary evidences from Switzerland, the Czech Republic, and Central Europe that allowed the identification of 44 summer extremes over the 1550-2003 period. These events include cold temperatures in 1579, 1628, 1675, and 1816, as well as warm ones in 1811 and 2003. Prior to 1550, we provide new evidence for cold (e.g., 1068 and 1258) and warm (e.g., 1333) summers derived from the combined MXD records and thus help to characterize high-frequency temperature variability during medieval times. Spatial coherence of the reconstructed extremes is found over Switzerland, with most signatures even extending across Central Europe. We discuss potential limitations of the tree-ring and documentary archives, including the ( i) ability of MXD to particularly capture extremely warm temperatures, ( ii) methodological identification and relative definition of extremes, and ( iii) placement of those events in the millennium-long context of low-frequency climate change.

  2. Seasonal Prediction of Regional Surface Air Temperature and First-flowering Date in South Korea using Dynamical Downscaling

    NASA Astrophysics Data System (ADS)

    Ahn, J. B.; Hur, J.

    2015-12-01

    The seasonal prediction of both the surface air temperature and the first-flowering date (FFD) over South Korea are produced using dynamical downscaling (Hur and Ahn, 2015). Dynamical downscaling is performed using Weather Research and Forecast (WRF) v3.0 with the lateral forcing from hourly outputs of Pusan National University (PNU) coupled general circulation model (CGCM) v1.1. Gridded surface air temperature data with high spatial (3km) and temporal (daily) resolution are obtained using the physically-based dynamical models. To reduce systematic bias, simple statistical correction method is then applied to the model output. The FFDs of cherry, peach and pear in South Korea are predicted for the decade of 1999-2008 by applying the corrected daily temperature predictions to the phenological thermal-time model. The WRF v3.0 results reflect the detailed topographical effect, despite having cold and warm biases for warm and cold seasons, respectively. After applying the correction, the mean temperature for early spring (February to April) well represents the general pattern of observation, while preserving the advantages of dynamical downscaling. The FFD predictabilities for the three species of trees are evaluated in terms of qualitative, quantitative and categorical estimations. Although FFDs derived from the corrected WRF results well predict the spatial distribution and the variation of observation, the prediction performance has no statistical significance or appropriate predictability. The approach used in the study may be helpful in obtaining detailed and useful information about FFD and regional temperature by accounting for physically-based atmospheric dynamics, although the seasonal predictability of flowering phenology is not high enough. Acknowledgements This work was carried out with the support of the Rural Development Administration Cooperative Research Program for Agriculture Science and Technology Development under Grant Project No. PJ009953 and Project No. PJ009353, Republic of Korea. Reference Hur, J., J.-B. Ahn, 2015. Seasonal Prediction of Regional Surface Air Temperature and First-flowering Date over South Korea, Int. J. Climatol., DOI: 10.1002/joc.4323.

  3. Insect-induced tree mortality of boreal forests in eastern Canada under a changing climate.

    PubMed

    Zhang, Xiongqing; Lei, Yuancai; Ma, Zhihai; Kneeshaw, Dan; Peng, Changhui

    2014-06-01

    Forest insects are major disturbances that induce tree mortality in eastern coniferous (or fir-spruce) forests in eastern North America. The spruce budworm (SBW) (Choristoneura fumiferana [Clemens]) is the most devastating insect causing tree mortality. However, the relative importance of insect-caused mortality versus tree mortality caused by other agents and how this relationship will change with climate change is not known. Based on permanent sample plots across eastern Canada, we combined a logistic model with a negative model to estimate tree mortality. The results showed that tree mortality increased mainly due to forest insects. The mean difference in annual tree mortality between plots disturbed by insects and those without insect disturbance was 0.0680 per year (P < 0.0001, T-test), and the carbon sink loss was about 2.87t C ha(-1) year(-1) larger than in natural forests. We also found that annual tree mortality increased significantly with the annual climate moisture index (CMI) and decreased significantly with annual minimum temperature (T min), annual mean temperature (T mean) and the number of degree days below 0°C (DD0), which was inconsistent with previous studies (Adams et al. 2009; van Mantgem et al. 2009; Allen et al. 2010). Furthermore, the results for the trends in the magnitude of forest insect outbreaks were consistent with those of climate factors for annual tree mortality. Our results demonstrate that forest insects are the dominant cause of the tree mortality in eastern Canada but that tree mortality induced by insect outbreaks will decrease in eastern Canada under warming climate.

  4. Insect-induced tree mortality of boreal forests in eastern Canada under a changing climate

    PubMed Central

    Zhang, Xiongqing; Lei, Yuancai; Ma, Zhihai; Kneeshaw, Dan; Peng, Changhui

    2014-01-01

    Forest insects are major disturbances that induce tree mortality in eastern coniferous (or fir-spruce) forests in eastern North America. The spruce budworm (SBW) (Choristoneura fumiferana [Clemens]) is the most devastating insect causing tree mortality. However, the relative importance of insect-caused mortality versus tree mortality caused by other agents and how this relationship will change with climate change is not known. Based on permanent sample plots across eastern Canada, we combined a logistic model with a negative model to estimate tree mortality. The results showed that tree mortality increased mainly due to forest insects. The mean difference in annual tree mortality between plots disturbed by insects and those without insect disturbance was 0.0680 per year (P < 0.0001, T-test), and the carbon sink loss was about 2.87t C ha−1 year−1 larger than in natural forests. We also found that annual tree mortality increased significantly with the annual climate moisture index (CMI) and decreased significantly with annual minimum temperature (Tmin), annual mean temperature (Tmean) and the number of degree days below 0°C (DD0), which was inconsistent with previous studies (Adams et al. 2009; van Mantgem et al. 2009; Allen et al. 2010). Furthermore, the results for the trends in the magnitude of forest insect outbreaks were consistent with those of climate factors for annual tree mortality. Our results demonstrate that forest insects are the dominant cause of the tree mortality in eastern Canada but that tree mortality induced by insect outbreaks will decrease in eastern Canada under warming climate. PMID:25360275

  5. Results of 30-year-old plantations on surface mines in the Central States

    Treesearch

    W. Clark Ashby; Clay A. Kolar; Nelson F. Rogers

    1980-01-01

    Twenty-eight tree species have grown successfully on surface-mined lands in the Central States. Variability in species performance can be related to geographic area, type of rooting medium, and associated species. Many planted stands have been vigorously invaded by volunteer trees, as well as by other plants and animals.

  6. Transpiration of urban trees and its cooling effect in a high latitude city.

    PubMed

    Konarska, Janina; Uddling, Johan; Holmer, Björn; Lutz, Martina; Lindberg, Fredrik; Pleijel, Håkan; Thorsson, Sofia

    2016-01-01

    An important ecosystem service provided by urban trees is the cooling effect caused by their transpiration. The aim of this study was to quantify the magnitude of daytime and night-time transpiration of common urban tree species in a high latitude city (Gothenburg, Sweden), to analyse the influence of weather conditions and surface permeability on the tree transpiration, and to find out whether tree transpiration contributed to daytime or nocturnal cooling. Stomatal conductance and leaf transpiration at day and night were measured on mature street and park trees of seven common tree species in Gothenburg: Tilia europaea, Quercus robur, Betula pendula, Acer platanoides, Aesculus hippocastanum, Fagus sylvatica and Prunus serrulata. Transpiration increased with vapour pressure deficit and photosynthetically active radiation. Midday rates of sunlit leaves ranged from less than 1 mmol m(-2) s(-1) (B. pendula) to over 3 mmol m(-2) s(-1) (Q. robur). Daytime stomatal conductance was positively related to the fraction of permeable surfaces within the vertically projected crown area. A simple estimate of available rainwater, comprising of precipitation sum and fractional surface permeability within the crown area, was found to explain 68% of variation in midday stomatal conductance. Night-time transpiration was observed in all studied species and amounted to 7 and 20% of midday transpiration of sunlit and shaded leaves, respectively. With an estimated night-time latent heat flux of 24 W m(-2), tree transpiration significantly increased the cooling rate around and shortly after sunset, but not later in the night. Despite a strong midday latent heat flux of 206 W m(-2), a cooling effect of tree transpiration was not observed during the day.

  7. Transpiration of urban trees and its cooling effect in a high latitude city

    NASA Astrophysics Data System (ADS)

    Konarska, Janina; Uddling, Johan; Holmer, Björn; Lutz, Martina; Lindberg, Fredrik; Pleijel, Håkan; Thorsson, Sofia

    2016-01-01

    An important ecosystem service provided by urban trees is the cooling effect caused by their transpiration. The aim of this study was to quantify the magnitude of daytime and night-time transpiration of common urban tree species in a high latitude city (Gothenburg, Sweden), to analyse the influence of weather conditions and surface permeability on the tree transpiration, and to find out whether tree transpiration contributed to daytime or nocturnal cooling. Stomatal conductance and leaf transpiration at day and night were measured on mature street and park trees of seven common tree species in Gothenburg: Tilia europaea, Quercus robur, Betula pendula, Acer platanoides, Aesculus hippocastanum, Fagus sylvatica and Prunus serrulata. Transpiration increased with vapour pressure deficit and photosynthetically active radiation. Midday rates of sunlit leaves ranged from less than 1 mmol m-2 s-1 ( B. pendula) to over 3 mmol m-2 s-1 ( Q. robur). Daytime stomatal conductance was positively related to the fraction of permeable surfaces within the vertically projected crown area. A simple estimate of available rainwater, comprising of precipitation sum and fractional surface permeability within the crown area, was found to explain 68 % of variation in midday stomatal conductance. Night-time transpiration was observed in all studied species and amounted to 7 and 20 % of midday transpiration of sunlit and shaded leaves, respectively. With an estimated night-time latent heat flux of 24 W m-2, tree transpiration significantly increased the cooling rate around and shortly after sunset, but not later in the night. Despite a strong midday latent heat flux of 206 W m-2, a cooling effect of tree transpiration was not observed during the day.

  8. Does the spatial arrangement of vegetation and anthropogenic land cover features matter? Case studies of urban warming and cooling in Phoenix and Las Vegas

    NASA Astrophysics Data System (ADS)

    Myint, S. W.; Zheng, B.; Fan, C.; Kaplan, S.; Brazel, A.; Middel, A.; Smith, M.

    2014-12-01

    While the relationship between fractional cover of anthropogenic and vegetation features and the urban heat island has been well studied, the effect of spatial arrangements (e.g., clustered, dispersed) of these features on urban warming or cooling are not well understood. The goal of this study is to examine if and how spatial configuration of land cover features influence land surface temperatures (LST) in urban areas. This study focuses on Phoenix, AZ and Las Vegas, NV that have undergone dramatic urban expansion. The data used to classify detailed urban land cover types include Geoeye-1 (Las Vegas) and QuickBird (Phoenix). The Geoeye-1 image (3 m resolution) was acquired on October 12, 2011 and the QuickBird image (2.4 m resolution) was taken on May 29, 2007. Classification was performed using object based image analysis (OBIA). We employed a spatial autocorrelation approach (i.e., Moran's I) that measures the spatial dependence of a point to its neighboring points and describes how clustered or dispersed points are arranged in space. We used Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired over Phoenix (daytime on June 10, 2011 and nighttime on October 17, 2011) and Las Vegas (daytime on July 6, 2005 and nighttime on August 27, 2005) to examine daytime and nighttime LST with regards to the spatial arrangement of anthropogenic and vegetation features. We spatially correlate Moran's I values of each land cover per surface temperature, and develop regression models. The spatial configuration of grass and trees shows strong negative correlations with LST, implying that clustered vegetation lowers surface temperatures more effectively. In contrast, a clustered spatial arrangement of anthropogenic land-cover features, especially impervious surfaces, significantly elevates surface temperatures. Results from this study suggest that the spatial configuration of anthropogenic and vegetation features influence urban warming and cooling.

  9. Anthropogenic nitrogen deposition alters growth responses of European beech (Fagus sylvativa L.) to climate change.

    PubMed

    Hess, Carsten; Niemeyer, Thomas; Fichtner, Andreas; Jansen, Kirstin; Kunz, Matthias; Maneke, Moritz; von Wehrden, Henrik; Quante, Markus; Walmsley, David; von Oheimb, Goddert; Härdtle, Werner

    2018-02-01

    Global change affects the functioning of forest ecosystems and the services they provide, but little is known about the interactive effects of co-occurring global change drivers on important functions such as tree growth and vitality. In the present study we quantified the interactive (i.e. synergistic or antagonistic) effects of atmospheric nitrogen (N) deposition and climatic variables (temperature, precipitation) on tree growth (in terms of tree-ring width, TRW), taking forest ecosystems with European beech (Fagus sylvatica L.) as an example. We hypothesised that (i) N deposition and climatic variables can evoke non-additive responses of the radial increment of beech trees, and (ii) N loads have the potential to strengthen the trees' sensitivity to climate change. In young stands, we found a synergistic positive effect of N deposition and annual mean temperature on TRW, possibly linked to the alleviation of an N shortage in young stands. In mature stands, however, high N deposition significantly increased the trees' sensitivity to increasing annual mean temperatures (antagonistic effect on TRW), possibly due to increased fine root dieback, decreasing mycorrhizal colonization or shifts in biomass allocation patterns (aboveground vs. belowground). Accordingly, N deposition and climatic variables caused both synergistic and antagonistic effects on the radial increment of beech trees, depending on tree age and stand characteristics. Hence, the nature of interactions could mediate the long-term effects of global change drivers (including N deposition) on forest carbon sequestration. In conclusion, our findings illustrate that interaction processes between climatic variables and N deposition are complex and have the potential to impair growth and performance of European beech. This in turn emphasises the importance of multiple-factor studies to foster an integrated understanding and models aiming at improved projections of tree growth responses to co-occurring drivers of global change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Bark flammability as a fire-response trait for subalpine trees

    PubMed Central

    Frejaville, Thibaut; Curt, Thomas; Carcaillet, Christopher

    2013-01-01

    Relationships between the flammability properties of a given plant and its chances of survival after a fire still remain unknown. We hypothesize that the bark flammability of a tree reduces the potential for tree survival following surface fires, and that if tree resistance to fire is provided by a thick insulating bark, the latter must be few flammable. We test, on subalpine tree species, the relationship between the flammability of bark and its insulating ability, identifies the biological traits that determine bark flammability, and assesses their relative susceptibility to surface fires from their bark properties. The experimental set of burning properties was analyzed by Principal Component Analysis to assess the bark flammability. Bark insulating ability was expressed by the critical time to cambium kill computed from bark thickness. Log-linear regressions indicated that bark flammability varies with the bark thickness and the density of wood under bark and that the most flammable barks have poor insulating ability. Susceptibility to surface fires increases from gymnosperm to angiosperm subalpine trees. The co-dominant subalpine species Larix decidua (Mill.) and Pinus cembra (L.) exhibit large differences in both flammability and insulating ability of the bark that should partly explain their contrasted responses to fires in the past. PMID:24324473

  11. Mapping pyrophilic percentages across the northeastern United States using witness trees, with focus on four national forests

    Treesearch

    Melissa A. Thomas-Van Gundy; Gregory J. Nowacki; Charles V. Cogbill

    2015-01-01

    Witness trees provide information fundamental for restoration ecology, often serving as baselines for forest composition and structure. Furthermore, when categorized by fire relations, witness trees can shed light on past disturbance regimes. Kriging was applied to witness-tree point data to form a contiguous surface of pyrophilic percentage for four national forests...

  12. Tree and forest effects on air quality and human health in the United States

    Treesearch

    David J. Nowak; Satoshi Hirabayashi; Allison Bodine; Eric Greenfield

    2014-01-01

    Trees remove air pollution by the interception of particulate matter on plant surfaces and the absorption of gaseous pollutants through the leaf stomata. However, the magnitude and value of the effects of trees and forests on air quality and human health across the United States remains unknown. Computer simulations with local environmental data reveal that trees and...

  13. [Determination of 235U/238U isotope ratios in camphor tree bark samples by MC-ICP-MS after separation of uranium from matrix elements].

    PubMed

    Wang, Xiao-Ping; Zhang, Ji-Long

    2007-07-01

    Twelve camphor (cinnamomum camphora) tree bark samples were collected from Hiroshima and Kyoto, and the matrix element composition and morphology of the outer surface of these camphor tree bark samples were studied by EDXS and SEM respectively. After a dry decomposition, DOWEX 1-X8 anion exchange resin was used to separate uranium from matrix elements in these camphor tree bark samples. Finally, 235U/238 U isotope ratios in purified uranium solutions were determined by MC-ICP-MS. It was demonstrated that the outer surface of these camphor tree bark samples is porous and rough, with Al, Ca, Fe, K, Mg, Si, C, O and S as its matrix element composition. Uranium in these camphor tree bark samples can be efficiently separated and quantitatively recovered from the matrix element composition. Compared with those collected from Kyoto, the camphor tree bark samples collected from Hiroshima have significantly higher uranium contents, which may be due to the increased aerosol mass concentration during the city reconstruction. Moreover, the 235 U/23.U isotope ratios in a few camphor tree bark samples collected from Hiroshima are slightly higher than 0.007 25.

  14. A monthly global paleo-reanalysis of the atmosphere from 1600 to 2005 for studying past climatic variations

    PubMed Central

    Franke, Jörg; Brönnimann, Stefan; Bhend, Jonas; Brugnara, Yuri

    2017-01-01

    Climatic variations at decadal scales such as phases of accelerated warming or weak monsoons have profound effects on society and economy. Studying these variations requires insights from the past. However, most current reconstructions provide either time series or fields of regional surface climate, which limit our understanding of the underlying dynamics. Here, we present the first monthly paleo-reanalysis covering the period 1600 to 2005. Over land, instrumental temperature and surface pressure observations, temperature indices derived from historical documents and climate sensitive tree-ring measurements were assimilated into an atmospheric general circulation model ensemble using a Kalman filtering technique. This data set combines the advantage of traditional reconstruction methods of being as close as possible to observations with the advantage of climate models of being physically consistent and having 3-dimensional information about the state of the atmosphere for various variables and at all points in time. In contrast to most statistical reconstructions, centennial variability stems from the climate model and its forcings, no stationarity assumptions are made and error estimates are provided. PMID:28585926

  15. Summer heterothermy in Rafinesque's big-eared bats (Corynorhinus rafinesquii) roosting in tree cavities in bottomland hardwood forests.

    PubMed

    Johnson, Joseph S; Lacki, Michael J

    2013-07-01

    Many small mammals are heterothermic endotherms capable of maintaining an elevated core body temperature or reducing their thermoregulatory set point to enter a state of torpor. Torpor can confer substantial energy savings, but also incurs ecological costs, such as hindering allocation of energy towards reproduction. We placed temperature-sensitive radio transmitters on 44 adult Rafinesque's big-eared bats (Corynorhinus rafinesquii) and deployed microclimate dataloggers inside 34 day roosts to compare the use of torpor by different sex and reproductive classes of bats during the summer. We collected 324 bat-days of skin-temperature data from 36 females and 4 males. Reproductive females employed fewer torpor bouts per day than non-reproductive females and males (P < 0.0001), and pregnant and lactating females had higher average (P < 0.0001) and minimum (P < 0.0001) skin temperatures than non-reproductive females. Pregnant females spent less time torpid (P < 0.0001) than non-reproductive females, but lactating females used relatively deep, long torpor bouts. Microclimates varied inside tree species with different configurations of entrances to the roost cavity (P < 0.0001). Bats spent more time torpid when roosting in water tupelo (Nyssa aquatica) trees possessing only a basal entrance to the cavity (P = 0.001). Of the tree species used as roosts, water tupelo cavities exhibited the least variable daytime and nighttime temperatures. These data demonstrate that use of summer torpor is not uniform among sex and reproductive classes in Rafinesque's big-eared bat, and variation in microclimate among tree roosts due to species and structural characteristics facilitates the use of different thermoregulatory strategies in these bats.

  16. Evaluation of Climate Change in northeastern China by means of d13C in tree-rings in the Great Xiang'An mountains region

    NASA Astrophysics Data System (ADS)

    Zhang, Qiqin; Lopez Caceres, Maximo Larry; Sugimoto, Atsuko; Wang, Xiaochun; Liu, Binhui

    2017-04-01

    The northeastern forest region of China represents one of the southern boundary of the Asian boreal forest and also represents the boundary between humid- semi humid area and arid- semi arid area of China. These forests are mainly dominated by larch (Larix gmelinii) stands with small areas covered by birch and pine forests. Increases in air temperature and precipitation caused by climate change are expected to have a great effect on forest ecosystems boundaries. Accordingly, from 1963-2006, air temperature has increased 1.5℃ in this region. Tree-ring chronologies are commonly used as indicator of climate changes and in recent decades the combination with carbon stable isotopes has shown a higher resolution in the results. Since this combine technique has not been used in northeastern China, we applied this combined technique to reconstruct the climate in the Great Xing'an mountains of northeastern China. Preliminary results showed that tree growth has increased in the middle and southernmost site in the last century while in the northernmost site it decreased for the same period which is in agreement with the mean air temperature increase from south to north in this region under negligible changes in precipitation regime. In contrast, tree-ring δ13C shows a gradual but steady increase along the three sites selected for our study, however the highest being observed in the middle site which experience the largest increased in air temperature in the last decade. This appears to indicate that increases in air temperature produced a stress in the stomatal conductance that so far has translated into tree ring growth decline.

  17. Tree root dynamics in montane and sub-alpine mixed forest patches.

    PubMed

    Wang, Y; Kim, J H; Mao, Z; Ramel, M; Pailler, F; Perez, J; Rey, H; Tron, S; Jourdan, C; Stokes, A

    2018-02-28

    The structure of heterogeneous forests has consequences for their biophysical environment. Variations in the local climate significantly affect tree physiological processes. We hypothesize that forest structure also alters tree root elongation and longevity through temporal and spatial variations in soil temperature and water potential. We installed rhizotrons in paired vegetation communities of closed forest (tree islands) and open patches (canopy gaps), along a soil temperature gradient (elevations of 1400, 1700 and 2000 m) in a heterogeneous mixed forest. We measured the number of growing tree roots, elongation and mortality every month over 4 years. The results showed that the mean daily root elongation rate (RER) was not correlated with soil water potential but was significantly and positively correlated with soil temperature between 0 and 8 °C only. The RER peaked in spring, and a smaller peak was usually observed in the autumn. Root longevity was dependent on altitude and the season in which roots were initiated, and root diameter was a significant factor explaining much of the variability observed. The finest roots usually grew faster and had a higher risk of mortality in gaps than in closed forest. At 2000 m, the finest roots had a higher risk of mortality compared with the lower altitudes. The RER was largely driven by soil temperature and was lower in cold soils. At the treeline, ephemeral fine roots were more numerous, probably in order to compensate for the shorter growing season. Differences in soil climate and root dynamics between gaps and closed forest were marked at 1400 and 1700 m, but not at 2000 m, where canopy cover was more sparse. Therefore, heterogeneous forest structure and situation play a significant role in determining root demography in temperate, montane forests, mostly through impacts on soil temperature.

  18. Preparation of Tea Tree Oil/Poly(styrene-butyl methacrylate) Microspheres with Sustained Release and Anti-Bacterial Properties

    PubMed Central

    Lin, Guanquan; Chen, Huayao; Zhou, Hongjun; Zhou, Xinhua; Xu, Hua

    2018-01-01

    Using butyl methacrylate (BMA) and styrene (St) as monomers and divinylbenzene (DVB) as a crosslinking agent, P(St-BMA) microspheres were prepared by suspension polymerization. Tea tree oil (TTO) microspheres were prepared by adsorbing TTO on P(St-BMA) microspheres. The structure and surface morphology of P(St-BMA) microspheres and TTO microspheres were characterized by Fourier transformed infrared spectroscopy (FTIR), optical microscopy, and Thermogravimetric analysis (TGA). In doing so, the structural effect of P(St-BMA) microspheres on oil absorption and sustained release properties could be investigated. The results show that the surface of the P(St-BMA) microspheres in the process of TTO microsphere formation changed from initially concave to convex. The TTO microspheres significantly improved the stability of TTO, which was found to completely decompose as the temperature of the TTO increased from about 110 °C to 150 °C. The oil absorption behavior, which was up to 3.85 g/g, could be controlled by adjusting the monomer ratio and the amount of crosslinking agent. Based on Fickian diffusion, the sustained release behavior of TTO microspheres was consistent with the Korsmeyer-Pappas kinetic model. After 13 h of natural release, the anti-bacterial effect of the TTO microspheres was found to be significantly improved compared to TTO. PMID:29723967

  19. Final report on "Modeling Diurnal Variations of California Land Biosphere CO2 Fluxes"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fung, Inez

    In Mediterranean climates, the season of water availability (winter) is out of phase with the season of light availability and atmospheric demand for moisture (summer). Multi-year half-hourly observations of sap flow velocities in 26 evergreen trees in a small watershed in Northern California show that different species of evergreen trees have different seasonalities of transpiration: Douglas-firs respond immediately to the first winter rain, while Pacific madrones have peak transpiration in the dry summer. Using these observations, we have derived species-specific parameterization of normalized sap flow velocities in terms of insolation, vapor pressure deficit and near-surface soil moisture. A simple 1-Dmore » boundary layer model showed that afternoon temperatures may be higher by 1 degree Celsius in an area with Douglas-firs than with Pacific madrones. The results point to the need to develop a new representation of subsurface moisture, in particular pools beneath the organic soil mantle and the vadose zone. Our ongoing and future work includes coupling our new parameterization of transpiration with new representation of sub-surface moisture in saprolite and weathered bedrock. The results will be implemented in a regional climate model to explore vegetation-climate feedbacks, especially in the dry season.« less

  20. Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe

    PubMed Central

    Väliranta, M.; Salonen, J. S.; Heikkilä, M.; Amon, L.; Helmens, K.; Klimaschewski, A.; Kuhry, P.; Kultti, S.; Poska, A.; Shala, S.; Veski, S.; Birks, H. H.

    2015-01-01

    Holocene summer temperature reconstructions from northern Europe based on sedimentary pollen records suggest an onset of peak summer warmth around 9,000 years ago. However, pollen-based temperature reconstructions are largely driven by changes in the proportions of tree taxa, and thus the early-Holocene warming signal may be delayed due to the geographical disequilibrium between climate and tree populations. Here we show that quantitative summer-temperature estimates in northern Europe based on macrofossils of aquatic plants are in many cases ca. 2 °C warmer in the early Holocene (11,700–7,500 years ago) than reconstructions based on pollen data. When the lag in potential tree establishment becomes imperceptible in the mid-Holocene (7,500 years ago), the reconstructed temperatures converge at all study sites. We demonstrate that aquatic plant macrofossil records can provide additional and informative insights into early-Holocene temperature evolution in northernmost Europe and suggest further validation of early post-glacial climate development based on multi-proxy data syntheses. PMID:25858780

  1. Alpine forest-tundra ecotone response to temperature change,Sayan Mountains, Siberia

    NASA Technical Reports Server (NTRS)

    Ranson, K Jon; Kharuk, Vyetcheslav I.

    2007-01-01

    Models of climate change predict shifts of vegetation zones. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. There is evidence of vegetation change on the northern treeline However, observations on alpine tree line response are controversial. In this NEESPI related study we show that during the past three decades in the forest-tundra ecotone of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure, regeneration propagation into the alpine tundra, and transformation of prostrate Siberian pine and fir into arboreal forms. We found that these changes occurred since the mid 1980s, and strongly correlates with positive temperature (and to a lesser extent, precipitation) trends. Improving climate for forest growth( i.e., warmer temperatures and increased precipitation) provides competitive advantages to Siberian pine in the alpine forest-tundra ecotone, as well as in areas typically dominated by larch, where it has been found to be forming a secondary canopy layer. Substitution of deciduous conifer, larch, for evergreen conifers, decreases albedo and provides positive feedback for temperature increase.

  2. Influence of water temperature on acetylcholinesterase activity in the pacific tree frog (Hyla regilla)

    USGS Publications Warehouse

    Johnson, Catherine S.; Schwarzbach, Steven E.; Henderson, John D.; Wilson, Barry W.; Tjeerdema, Ronald S.

    2005-01-01

    This investigation evaluated whether acetylcholinesterase (AChE) in Pacific tree frogs (Hyla regilla) from different geographical locations was influenced by different temperatures during early aquatic life stages, independent of pesticide exposure. Tadpoles were collected from both a California coastal pond and a Sierra Nevada mountain range pond, USA. Groups of frogs from each location were raised in temperatures representative of either the Sierra Nevada (8°C) or the coastal (19°C) location. Metamorphs from both locations raised as tadpoles at 19°C had AChE activities of 42.3 and 38.7 nm/min/mg protein, while those raised as tadpoles at 8°C had activities of 26.9 and 28.2 nm/min/mg protein. A two-way analysis of variance revealed temperature to be the significant factor in determining AChE activity (F = 22.3, p < 0.001), although origin was not important (F = 0.09, p = 0.75). Interpretations regarding the influence of pesticides upon AChE activity in Pacific tree frogs must consider the influence of environmental temperature to enable cross-population comparisons.

  3. Vegetative and reproductive phenology of a floodplain tree species Barringtonia acutangula from North East India.

    PubMed

    Nath, Shikhasmita; Nath, Arun Jyoti; Das, Ashesh Kumar

    2016-03-01

    Vegetative and reproductive phenology of Barringtonia acutangula, a floodplain tree species was studied at Chatla floodplain, Assam North East India with the aim to investigate vegetative and reproductive phenology under stressful environment of seasonal submergence and to assess the impact of environmental variables (temperature and precipitation) on tree phenophases. Quantitative assessment was made at 15 day interval for all the phenophases (leaf initiation, leaf-fall, flowering and fruiting) by tagging 40 (forty) trees over aperiod of two years (2012-14).To test seasonal influence on the phenology of Barringtonia acutangula different phenophases were correlated with environmental variables and statistical spearman's rank correlation coefficient was employed. Aridity index was computed that delineate influence of rainfall and temperature together on any phenophases. Leaf initiation showed positively significant correlation with temperature (r(s) = 0.601, p = < .05) during the year 2012-2013 whereas it was significantly correlated with rainfall (r(s) = 0.583, p = < .05) and aridity index (r(s) = 0.583, p = < .05) during the year 2013-2014. Leaf-fall was significant negatively correlated with temperature (r(s) = -0.623, p = < .05), rainfall (r(s) = -0.730, p = < .01) and aridity index (r(s) = -0.730, p = < .01) for both the studied years. Flowering was significantly influenced by temperature (r(s) = 0.639, p = < .05), rainfall (r(s) = 0.890, p = < .01) and aridity index (r(s) = 0.890, p = < .01) while in one month lag flowering was significantly correlated with rainfall (r(s) = 0.678, p = < .01) in 2012-13. Fruiting was also positively significant with temperature (r(s) = 0.795, P < .05), rainfall (r(s) = 0.835, P < .01) and aridity index (r(s) = 0.835, P < .01) for both the years. During one month lag period fruiting was positively correlated with temperature, rainfall and aridity index in both the years. Temperature, rainfall and aridity index were major determinants of the various vegetative and reproductive phenology of B. acutangula and any changes in these variables in future due to climate change, might have profound effect on phenophases of this tree species.

  4. Pan-Tropical Analysis of Climate Effects on Seasonal Tree Growth

    PubMed Central

    Wagner, Fabien; Rossi, Vivien; Aubry-Kientz, Mélaine; Bonal, Damien; Dalitz, Helmut; Gliniars, Robert; Stahl, Clément; Trabucco, Antonio; Hérault, Bruno

    2014-01-01

    Climate models predict a range of changes in tropical forest regions, including increased average temperatures, decreased total precipitation, reduced soil moisture and alterations in seasonal climate variations. These changes are directly related to the increase in anthropogenic greenhouse gas concentrations, primarily CO2. Assessing seasonal forest growth responses to climate is of utmost importance because woody tissues, produced by photosynthesis from atmospheric CO2, water and light, constitute the main component of carbon sequestration in the forest ecosystem. In this paper, we combine intra-annual tree growth measurements from published tree growth data and the corresponding monthly climate data for 25 pan-tropical forest sites. This meta-analysis is designed to find the shared climate drivers of tree growth and their relative importance across pan-tropical forests in order to improve carbon uptake models in a global change context. Tree growth reveals significant intra-annual seasonality at seasonally dry sites or in wet tropical forests. Of the overall variation in tree growth, 28.7% was explained by the site effect, i.e. the tree growth average per site. The best predictive model included four climate variables: precipitation, solar radiation (estimated with extrasolar radiation reaching the atmosphere), temperature amplitude and relative soil water content. This model explained more than 50% of the tree growth variations across tropical forests. Precipitation and solar radiation are the main seasonal drivers of tree growth, causing 19.8% and 16.3% of the tree growth variations. Both have a significant positive association with tree growth. These findings suggest that forest productivity due to tropical tree growth will be reduced in the future if climate extremes, such as droughts, become more frequent. PMID:24670981

  5. Pan-tropical analysis of climate effects on seasonal tree growth.

    PubMed

    Wagner, Fabien; Rossi, Vivien; Aubry-Kientz, Mélaine; Bonal, Damien; Dalitz, Helmut; Gliniars, Robert; Stahl, Clément; Trabucco, Antonio; Hérault, Bruno

    2014-01-01

    Climate models predict a range of changes in tropical forest regions, including increased average temperatures, decreased total precipitation, reduced soil moisture and alterations in seasonal climate variations. These changes are directly related to the increase in anthropogenic greenhouse gas concentrations, primarily CO2. Assessing seasonal forest growth responses to climate is of utmost importance because woody tissues, produced by photosynthesis from atmospheric CO2, water and light, constitute the main component of carbon sequestration in the forest ecosystem. In this paper, we combine intra-annual tree growth measurements from published tree growth data and the corresponding monthly climate data for 25 pan-tropical forest sites. This meta-analysis is designed to find the shared climate drivers of tree growth and their relative importance across pan-tropical forests in order to improve carbon uptake models in a global change context. Tree growth reveals significant intra-annual seasonality at seasonally dry sites or in wet tropical forests. Of the overall variation in tree growth, 28.7% was explained by the site effect, i.e. the tree growth average per site. The best predictive model included four climate variables: precipitation, solar radiation (estimated with extrasolar radiation reaching the atmosphere), temperature amplitude and relative soil water content. This model explained more than 50% of the tree growth variations across tropical forests. Precipitation and solar radiation are the main seasonal drivers of tree growth, causing 19.8% and 16.3% of the tree growth variations. Both have a significant positive association with tree growth. These findings suggest that forest productivity due to tropical tree growth will be reduced in the future if climate extremes, such as droughts, become more frequent.

  6. Spatiotemporal throughfall patterns beneath an urban tree row

    NASA Astrophysics Data System (ADS)

    Bogeholz, P.; Van Stan, J. T., II; Hildebrandt, A.; Friesen, J.; Dibble, M.; Norman, Z.

    2016-12-01

    Much recent research has focused on throughfall patterns in natural forests as they can influence the heterogeneity of surface ecohydrological and biogeochemical processes. However, to the knowledge of the authors, no work has assessed how urban forest structures affect the spatiotemporal variability of throughfall water flux. Urbanization greatly alters not only a significant portion of the land surface, but canopy structure, with the most typical urban forest configuration being landscaped tree rows along streets, swales, parking lot medians, etc. This study examines throughfall spatiotemporal patterns for a landscaped tree row of Pinus elliottii (Engelm., slash pine) on Georgia Southern University's campus (southeastern, USA) using 150 individual observations per storm. Throughfall correlation lengths beneath this tree row were similar to, but appeared to be more stable across storm size than, observations in past studies on natural forests. Individual tree overlap and the planting interval also may more strongly drive throughfall patterns in tree rows. Meteorological influences beyond storm magnitude (intensity, intermittency, wind conditions, and atmospheric moisture demand) are also examined.

  7. Increased Frequency of Large Blowdown Formation in Years With Hotter Dry Seasons in the Northwestern Amazon

    NASA Astrophysics Data System (ADS)

    Rifai, S. W.; Anderson, L. O.; Bohlman, S.

    2015-12-01

    Blowdowns, which are large tree mortality events caused by downbursts, create large pulses of carbon emissions in the short term and alter successional dynamics and species composition of forests, thus affecting long term biogeochemical cycling of tropical forests. Changing climate, especially increasing temperatures and frequency of extreme climate events, may cause changes in the frequency of blowdowns, but there has been little spatiotemporal analysis to associate the interannual variation in the frequency of blowdowns with annual climate parameters. We mapped blowdowns greater than 25 ha using a time series of Landsat images from 1984-2012 in the northwestern Amazon to estimate the annual size distribution of these blowdowns. The difference in forest area affected by blowdowns between the years with the highest and lowest blowdown activity were on the order of 10 - 30 times greater depending on location. Spatially, we found the probability of large blowdowns to be higher in regions with higher annual rainfall. Temporally, we found a positive correlation between the probability of large blowdown events and maximum dry season air temperature (R2 = 0.1-0.46). Mean and maximum blowdown size also increased with maximum dry season air temperature. The strength of these relationships varied between scene locations which may be related to cloud cover obscuring the land surface in the satellite images, or biophysical characteristics of the sites. Potentially, elevated dry season temperatures during the transition from the dry season to the wet season (October - December) may exacerbate atmospheric instabilities, which promote downburst occurrences. Most global circulation models predict dry season air temperatures to increase 2-5 ℃ in the northwestern Amazon by 2050. Should the blowdown disturbance regime continue increasing with elevated dry season temperatures, the northwestern Amazon is likely to experience more catastrophic tree mortality events which has direct consequences for both the carbon emissions and carbon storage capacity of the northwestern Amazon.

  8. Diurnal patterns in Scots pine stem oleoresin pressure in a boreal forest.

    PubMed

    Rissanen, K; Hölttä, T; Vanhatalo, A; Aalto, J; Nikinmaa, E; Rita, H; Bäck, J

    2016-03-01

    Coniferous tree stems contain large amounts of oleoresin under positive pressure in the resin ducts. Studies in North-American pines indicated that the stem oleoresin exudation pressure (OEP) correlates negatively with transpiration rate and soil water content. However, it is not known how the OEP changes affect the emissions of volatile vapours from the trees. We measured the OEP, xylem diameter changes indicating changes in xylem water potential and monoterpene emissions under field conditions in mature Scots pine (Pinus sylvestris L.) trees in southern Finland. Contrary to earlier reports, the diurnal OEP changes were positively correlated with temperature and transpiration rate. OEP was lowest at the top part of the stem, where water potentials were also more negative, and often closely linked to ambient temperature and stem monoterpene emissions. However, occasionally OEP was affected by sudden changes in vapour pressure deficit (VPD), indicating the importance of xylem water potential on OEP as well. We conclude that the oleoresin storage pools in tree stems are in a dynamic relationship with ambient temperature and xylem water potential, and that the canopy monoterpene emission rates may therefore be also regulated by whole tree processes and not only by the conditions prevailing in the upper canopy. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  9. Comparison of optical properties of chromophoric dissolved organic matter (CDOM) in alpine lakes above or below the tree line: insights into sources of CDOM.

    PubMed

    Su, Yaling; Chen, Feizhou; Liu, Zhengwen

    2015-05-01

    Here we investigated absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in 15 alpine lakes located below or above the tree line to determine its source and composition. The results indicate that the concentrations of CDOM in below-tree-line lakes are significantly higher than in above-tree-line lakes, as evidenced from the absorption coefficients of a250 and a365. The intensities of the protein-like and humic-like fluorescence in below-tree-line lakes are higher than in above-tree-line lakes as well. Three fluorescent components were identified using parallel factor analysis (PARAFAC) modelling. Component 1 is probably associated with biological degradation of terrestrial humic component. The terrestrial humic-like component 2 is only found in below-tree-line lakes. The protein-like or phenolic component 3 is dominant in above-tree-line lakes, which is probably more derived from autochthonous origin. In this study, (1) higher a250/a365 and S275-295 values indicate smaller molecular weights of CDOM in above-tree-line lakes than in below-tree-line lakes, and smaller molecular weights at the surface than at 2.0 m depth; (2) SUVA254 and FI255 results provide evidence of lower percent aromaticity of CDOM in above-tree-line lakes; and (3) FI310 and FI370 suggest a strong allochthonous origin at the surface in below-tree-line lakes, and more contribution from autochthonous biological and aquatic bacterial origin in above-tree-line lakes.

  10. Climate Controls on Tree Growth Across Species and Sites in Northeastern Arizona

    NASA Astrophysics Data System (ADS)

    Schwan, M. R.; Guiterman, C. H.; Anchukaitis, K. J.

    2016-12-01

    Understanding how forests will respond to ongoing climate change is important for conservation and resource management. Conifer forests in the US Southwest are predicted to be particularly at risk from increased drought and higher temperatures projected to occur in the region. Tree-ring studies shed light on how trees respond to climate, but there remains considerable uncertainty as to which climate factors are most important, and which species are most at risk. Confounding climate and environmental factors, biological differences among species, and biogeography often complicate cross-species analysis. Here we present a multi-species, multivariate analysis of tree growth response to climate variability. We analyze data from three coexisting conifer tree species at two sites near Canyon de Chelly, Arizona. We use a high-resolution PRISM gridded climate dataset to determine the growth responses across species and sites to temperature and precipitation. We identify both common and differential responses in our data and use these to infer possible risks these forest communities may face under a changing climate.

  11. Seasonal Terpene Variation in Needles of Pinus radiata (Pinales: Pinaceae) Trees Attacked by Tomicus piniperda (Coleoptera: Scolytinae) and the Effect of Limonene on Beetle Aggregation.

    PubMed

    Romón, Pedro; Aparicio, Domitila; Palacios, Francisco; Iturrondobeitia, Juan Carlos; Hance, Thierry; Goldarazena, Arturo

    2017-09-01

    Concentrations of four monoterpenes were determined in needles of Pinus radiata (D.Don) (Pinales: Pinaceae) trees that were attacked or nonattacked by Tomicus piniperda (L.) (Coleoptera: Scolytinae). Compounds were identified and quantified by gas chromatography-mass spectrometry. The mean ambient temperature was obtained using climate-recording data loggers. The effect of limonene on field aggregation was also evaluated at three limonene release rates using Lindgren attractant-baited traps and trap logs. Attacked trees produced less α-pinene in March, July, and November than nonattacked trees, less β-pinene in July and November, and less limonene from May to November. Limonene reduced the attraction of T. piniperda to attractant-baited traps and trap logs. Results were linked to better responses to high temperatures, with respect to terpene contents, by the nonattacked trees after the spring attack. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  12. Influence of drought on radial stem growth of Scots pine (Pinus sylvestris) in an inner Alpine environment

    NASA Astrophysics Data System (ADS)

    Oberhuber, Walter; Gruber, Andreas

    2010-05-01

    Radial stem growth indices of trees are known to be valuable long-term measures of overall tree vigor and are frequently applied to identify the climatic factors limiting tree growth. Based on several tree-ring studies conducted within inner-Alpine dry valleys, it is well established that growth of Pinus sylvestris is primarily limited by spring precipitation (April through June) and severe drought results in abrupt growth reductions and increased tree mortality. However, the record breaking heat-wave in summer 2003 had only minor impact on growth of drought exposed coniferous trees within the dry inner-Alpine valley of the Inn river (750 m a.s.l., Tyrol, Austria), where mean annual precipitation and temperature amount to 716 mm and 7.3 °C, respectively. To examine short-term influences of drought stress on growth processes more closely, we determined the influence of meteorological factors (air temperature, precipitation) and soil moisture on intra-annual dynamics of tree ring development and stem radial growth in Pinus sylvestris at two sites differing in soil moisture characteristics (xeric and dry-mesic). Radial stem development was continuously followed during 2007 and 2008 by band dendrometers and repeated micro-sampling of the developing tree ring of mature trees. In 2007, when air temperature at the beginning of the growing season in April exceeded long-term mean by 6.4 °C, cambial cell division started in early April at both study plots. A delayed onset of cambial activity of c. 2 wk was found in 2008, when average climate conditions prevailed in spring, suggesting that resumption of cambial cell division after winter dormancy is temperature-controlled. Wood formation stopped c. 4 wk earlier at the xeric compared to dry-mesic site in both study years, which indicates a strong influence of drought stress on cell differentiation processes. This is supported by radial widths of earlywood cells, which were found to be significantly narrower at the xeric compared to the dry-mesic site (P < 0.05). Furthermore, early culmination of radial growth was found at both study plots around mid-May, prior to occurrence of more favourable climatic conditions, i.e. an increase in precipitation during summer. We suggest that early achievement of maximum growth rate in spring can be regarded as an adaptation to cope with extreme environmental conditions prevailing within the study area, which require an early switch of carbon allocation to belowground organs to ensure adequate resource acquisition on the drought prone substrate. Sustainably reduced tree vigor, higher tree mortality and strikingly reduced stem growth of shallowly rooted trees support our reasoning. In conclusion, our results suggest that in Pinus sylvestris exposed to dry inner-Alpine climate (i) a temperature threshold rather than water availability triggers onset of aboveground stem growth in spring, and (ii) recurring drought periods combined with nutrient deficiency of shallow, stony soils cause elevated carbohydrate requirements of the root system and associated symbiotic mycorrhizal hyphae to maintain the capability of absorbing scarce water und nutrient resources at the expense of aboveground stem growth.

  13. A Newly Identified Role of the Deciduous Forest Floor in the Timing of Green-Up

    NASA Astrophysics Data System (ADS)

    Lapenis, Andrei G.; Lawrence, Gregory B.; Buyantuev, Alexander; Jiang, Shiguo; Sullivan, Timothy J.; McDonnell, Todd C.; Bailey, Scott

    2017-11-01

    Plant phenology studies rarely consider controlling factors other than air temperature. We evaluate here the potential significance of physical and chemical properties of soil (edaphic factors) as additional important controls on phenology. More specifically, we investigate causal connections between satellite-observed green-up dates of small forest watersheds and soil properties in the Adirondack Mountains of New York, USA. Contrary to the findings of previous studies, where edaphic controls of spring phenology were found to be marginal, our analyses show that at least three factors manifest themselves as significant controls of seasonal patterns of variation in vegetated land surfaces observed from remote sensing: (1) thickness of the forest floor, (2) concentration of exchangeable soil potassium, and (3) soil acidity. For example, a thick forest floor appears to delay the onset of green-up. Watersheds with elevated concentrations of potassium are associated with early surface greening. We also found that trees growing in strongly acidified watersheds demonstrate delayed green-up dates. Overall, our work demonstrates that, at the scale of small forest watersheds, edaphic factors can explain a significant percentage of the observed spatial variation in land surface phenology that is comparable to the percentage that can be explained by climatic and landscape factors. We conclude that physical and chemical properties of forest soil play important roles in forest ecosystems as modulators of climatic drivers controlling the rate of spring soil warming and the transition of trees out of winter dormancy.

  14. A prognostic pollen emissions model for climate models (PECM1.0)

    NASA Astrophysics Data System (ADS)

    Wozniak, Matthew C.; Steiner, Allison L.

    2017-11-01

    We develop a prognostic model called Pollen Emissions for Climate Models (PECM) for use within regional and global climate models to simulate pollen counts over the seasonal cycle based on geography, vegetation type, and meteorological parameters. Using modern surface pollen count data, empirical relationships between prior-year annual average temperature and pollen season start dates and end dates are developed for deciduous broadleaf trees (Acer, Alnus, Betula, Fraxinus, Morus, Platanus, Populus, Quercus, Ulmus), evergreen needleleaf trees (Cupressaceae, Pinaceae), grasses (Poaceae; C3, C4), and ragweed (Ambrosia). This regression model explains as much as 57 % of the variance in pollen phenological dates, and it is used to create a climate-flexible phenology that can be used to study the response of wind-driven pollen emissions to climate change. The emissions model is evaluated in the Regional Climate Model version 4 (RegCM4) over the continental United States by prescribing an emission potential from PECM and transporting pollen as aerosol tracers. We evaluate two different pollen emissions scenarios in the model using (1) a taxa-specific land cover database, phenology, and emission potential, and (2) a plant functional type (PFT) land cover, phenology, and emission potential. The simulated surface pollen concentrations for both simulations are evaluated against observed surface pollen counts in five climatic subregions. Given prescribed pollen emissions, the RegCM4 simulates observed concentrations within an order of magnitude, although the performance of the simulations in any subregion is strongly related to the land cover representation and the number of observation sites used to create the empirical phenological relationship. The taxa-based model provides a better representation of the phenology of tree-based pollen counts than the PFT-based model; however, we note that the PFT-based version provides a useful and climate-flexible emissions model for the general representation of the pollen phenology over the United States.

  15. Dominant controls of transpiration along a hillslope transect inferred from ecohydrological measurements and thermodynamic limits

    NASA Astrophysics Data System (ADS)

    Renner, Maik; Hassler, Sibylle K.; Blume, Theresa; Weiler, Markus; Hildebrandt, Anke; Guderle, Marcus; Schymanski, Stanislaus J.; Kleidon, Axel

    2016-05-01

    We combine ecohydrological observations of sap flow and soil moisture with thermodynamically constrained estimates of atmospheric evaporative demand to infer the dominant controls of forest transpiration in complex terrain. We hypothesize that daily variations in transpiration are dominated by variations in atmospheric demand, while site-specific controls, including limiting soil moisture, act on longer timescales. We test these hypotheses with data of a measurement setup consisting of five sites along a valley cross section in Luxembourg. Both hillslopes are covered by forest dominated by European beech (Fagus sylvatica L.). Two independent measurements are used to estimate stand transpiration: (i) sap flow and (ii) diurnal variations in soil moisture, which were used to estimate the daily root water uptake. Atmospheric evaporative demand is estimated through thermodynamically constrained evaporation, which only requires absorbed solar radiation and temperature as input data without any empirical parameters. Both transpiration estimates are strongly correlated to atmospheric demand at the daily timescale. We find that neither vapor pressure deficit nor wind speed add to the explained variance, supporting the idea that they are dependent variables on land-atmosphere exchange and the surface energy budget. Estimated stand transpiration was in a similar range at the north-facing and the south-facing hillslopes despite the different aspect and the largely different stand composition. We identified an inverse relationship between sap flux density and the site-average sapwood area per tree as estimated by the site forest inventories. This suggests that tree hydraulic adaptation can compensate for heterogeneous conditions. However, during dry summer periods differences in topographic factors and stand structure can cause spatially variable transpiration rates. We conclude that absorption of solar radiation at the surface forms a dominant control for turbulent heat and mass exchange and that vegetation across the hillslope adjusts to this constraint at the tree and stand level. These findings should help to improve the description of land-surface-atmosphere exchange at regional scales.

  16. Tree rings of Scots pine ( Pinus sylvestris L.) as a source of information about past climate in northern Poland

    NASA Astrophysics Data System (ADS)

    Koprowski, Marcin; Przybylak, Rajmund; Zielski, Andrzej; Pospieszyńska, Aleksandra

    2012-01-01

    Scots pine ( Pinus sylvestris) is a very common tree in Polish forests, and therefore was widely used as timber. A relatively large amount of available wood allowed a long-term chronology to be built up and used as a source of information about past climate. The analysis of reconstructed indexed values of mean temperature in 51-year moving intervals allowed the recognition of the coldest periods in the years 1207-1346, 1383-1425, 1455-1482, 1533-1574, 1627-1646, and 1694-1785. The analysis of extreme wide and narrow rings forms a complementary method of examining climatic data within tree rings. The tree ring widths, early wood and late wood widths of 16 samples were assessed during the period 1581-1676. The most apparent effect is noted in the dry summer of 1616. According to previous research and our findings, temperature from February to March seems to be one of the most stable climatic factors which influenced pine growth in Poland. Correlation coefficients in the calibration and validation procedure gave promising results for temperature reconstruction from the pine chronology.

  17. Tree rings of Scots pine (Pinus sylvestris L.) as a source of information about past climate in northern Poland.

    PubMed

    Koprowski, Marcin; Przybylak, Rajmund; Zielski, Andrzej; Pospieszyńska, Aleksandra

    2012-01-01

    Scots pine (Pinus sylvestris) is a very common tree in Polish forests, and therefore was widely used as timber. A relatively large amount of available wood allowed a long-term chronology to be built up and used as a source of information about past climate. The analysis of reconstructed indexed values of mean temperature in 51-year moving intervals allowed the recognition of the coldest periods in the years 1207-1346, 1383-1425, 1455-1482, 1533-1574, 1627-1646, and 1694-1785. The analysis of extreme wide and narrow rings forms a complementary method of examining climatic data within tree rings. The tree ring widths, early wood and late wood widths of 16 samples were assessed during the period 1581-1676. The most apparent effect is noted in the dry summer of 1616. According to previous research and our findings, temperature from February to March seems to be one of the most stable climatic factors which influenced pine growth in Poland. Correlation coefficients in the calibration and validation procedure gave promising results for temperature reconstruction from the pine chronology.

  18. Redistribution of soil nitrogen, carbon and organic matter by mechanical disturbance during whole-tree harvesting in northern hardwoods

    USGS Publications Warehouse

    Ryan, D.F.; Huntington, T.G.; Wayne, Martin C.

    1992-01-01

    To investigate whether mechanical mixing during harvesting could account for losses observed from forest floor, we measured surface disturbance on a 22 ha watershed that was whole-tree harvested. Surface soil on each 10 cm interval along 81, randomly placed transects was classified immediately after harvesting as mineral or organic, and as undisturbed, depressed, rutted, mounded, scarified, or scalped (forest floor scraped away). We quantitatively sampled these surface categories to collect soil in which preharvest forest floor might reside after harvest. Mechanically mixed mineral and organic soil horizons were readily identified. Buried forest floor under mixed mineral soil occurred in 57% of mounds with mineral surface soil. Harvesting disturbed 65% of the watershed surface and removed forest floor from 25% of the area. Mechanically mixed soil under ruts with organic or mineral surface soil, and mounds with mineral surface soil contained organic carbon and nitrogen pools significantly greater than undisturbed forest floor. Mechanical mixing into underlying mineral soil could account for the loss of forest floor observed between the preharvest condition and the second growing season after whole-tree harvesting. ?? 1992.

  19. Ecohydrologic Changes due to Tree Expansion into Tundra in the Polar Urals, Russia

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Wang, J.; El Sharif, H. A.; Liu, D.; Sheshukov, A. Y.; Mazepa, V.; Shiyatov, S.; Sokolov, A.

    2017-12-01

    The Arctic has been warming at an accelerating rate over the last several decades and the changing climate has caused the invasion of trees and shrubs into tundra across the polar regions of Alaska, Canada, and Russia. These vegetation changes may have the potential to impact regional hydrology and climate. This study aims to develop mechanistic and quantitative understanding of implications of forest encroachment into tundra. Specifically, for several areas with well-documented larch and spruce expansion in the Polar Urals and southern Yamal Peninsula of Russia over 1960-2010s, we hypothesize that the encroachment process alters the seasonality of energy budget characterized by enhanced total evapotranspiration and concomitant subsurface warming. We are collecting a comprehensive set of field observational data on micrometeorology, snow conditions, radiative fluxes, tree sap flows, soil temperature, moisture, and heat fluxes, and active layer thickness. A novel model of maximum entropy production (MEP) is used to derive the surface energy budgets as the partition of radiative fluxes into turbulent and conductive heat fluxes across the ecotone interface. We are presenting preliminary findings that illustrate the identified differences of seasonal snow and heat budget regimes for two contrasting sites: one of which has experienced a recent tree encroachment, while for the other this process has not yet occurred. Observed and modeled heat fluxes are used to inform a comprehensive physical model to study the impact of vegetation encroachment process on the permafrost dynamics.

  20. Tomicus piniperda (Coleaoptera: Scolytidae) Within and Between Tree Movement When Migrating to Overwintering Sites

    Treesearch

    Ye Hui; Robert A. Haack; Toby R. Petrice

    2002-01-01

    Tomicus piniperda (L.) (Coleoptera: Scolytidae) is a univoltine bark beetle that conducts maturation feeding inside shoots of pine (Pinus) trees during summer and fall. In the northern portion of its range, where freezing winter temperatures occur, adults overwinter in the outer bark at the base of live pine trees. In the present...

  1. Detecting and Predicting Climatic Variation from Old-Growth Baldcypress

    Treesearch

    Gregory A. Reams; Paul C. van Deusen

    1998-01-01

    Tree-ring data can extend back in time for thousands of years allowing researchers to reconstruct certain environmental factors that have left an imprint or signal in the tree-ring record. Typically, these factors include reconstructions of annual precipitation or temperature for months or seasons to which a particular tree species is sensitive. Over the last several...

  2. Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in tropical tree seedlings.

    PubMed

    Cheesman, Alexander W; Winter, Klaus

    2013-09-01

    Predictions of how tropical forests will respond to future climate change are constrained by the paucity of data on the performance of tropical species under elevated growth temperatures. In particular, little is known about the potential of tropical species to acclimate physiologically to future increases in temperature. Seedlings of 10 neo-tropical tree species from different functional groups were cultivated in controlled-environment chambers under four day/night temperature regimes between 30/22 °C and 39/31 °C. Under well-watered conditions, all species showed optimal growth at temperatures above those currently found in their native range. While non-pioneer species experienced catastrophic failure or a substantially reduced growth rate under the highest temperature regime employed (i.e. daily average of 35 °C), growth in three lowland pioneers showed only a marginal reduction. In a subsequent experiment, three species (Ficus insipida, Ormosia macrocalyx, and Ochroma pyramidale) were cultivated at two temperatures determined as sub- and superoptimal for growth, but which resulted in similar biomass accumulation despite a 6°C difference in growth temperature. Through reciprocal transfer and temperature adjustment, the role of thermal acclimation in photosynthesis and respiration was investigated. Acclimation potential varied among species, with two distinct patterns of respiration acclimation identified. The study highlights the role of both inherent temperature tolerance and thermal acclimation in determining the ability of tropical tree species to cope with enhanced temperatures.

  3. Landform features and seasonal precipitation predict shallow groundwater influence on temperature in headwater streams

    USGS Publications Warehouse

    Johnson, Zachary C.; Snyder, Craig D.; Hitt, Nathaniel P.

    2017-01-01

    Headwater stream responses to climate change will depend in part on groundwater‐surface water exchanges. We used linear modeling techniques to partition likely effects of shallow groundwater seepage and air temperature on stream temperatures for 79 sites in nine focal watersheds using hourly air and water temperature measurements collected during summer months from 2012 to 2015 in Shenandoah National Park, Virginia, USA. Shallow groundwater effects exhibited more variation within watersheds than between them, indicating the importance of reach‐scale assessments and the limited capacity to extrapolate upstream groundwater influences from downstream measurements. Boosted regression tree (BRT) models revealed intricate interactions among geomorphological landform features (stream slope, elevation, network length, contributing area, and channel confinement) and seasonal precipitation patterns (winter, spring, and summer months) that together were robust predictors of spatial and temporal variation in groundwater influence on stream temperatures. The final BRT model performed well for training data and cross‐validated samples (correlation = 0.984 and 0.760, respectively). Geomorphological and precipitation predictors of groundwater influence varied in their importance between watersheds, suggesting differences in spatial and temporal controls of recharge dynamics and the depth of the groundwater source. We demonstrate an application of the final BRT model to predict groundwater effects from landform and precipitation covariates at 1075 new sites distributed at 100 m increments within focal watersheds. Our study provides a framework to estimate effects of groundwater seepage on stream temperature in unsampled locations. We discuss applications for climate change research to account for groundwater‐surface water interactions when projecting future thermal thresholds for stream biota.

  4. Landform features and seasonal precipitation predict shallow groundwater influence on temperature in headwater streams

    NASA Astrophysics Data System (ADS)

    Johnson, Zachary C.; Snyder, Craig D.; Hitt, Nathaniel P.

    2017-07-01

    Headwater stream responses to climate change will depend in part on groundwater-surface water exchanges. We used linear modeling techniques to partition likely effects of shallow groundwater seepage and air temperature on stream temperatures for 79 sites in nine focal watersheds using hourly air and water temperature measurements collected during summer months from 2012 to 2015 in Shenandoah National Park, Virginia, USA. Shallow groundwater effects exhibited more variation within watersheds than between them, indicating the importance of reach-scale assessments and the limited capacity to extrapolate upstream groundwater influences from downstream measurements. Boosted regression tree (BRT) models revealed intricate interactions among geomorphological landform features (stream slope, elevation, network length, contributing area, and channel confinement) and seasonal precipitation patterns (winter, spring, and summer months) that together were robust predictors of spatial and temporal variation in groundwater influence on stream temperatures. The final BRT model performed well for training data and cross-validated samples (correlation = 0.984 and 0.760, respectively). Geomorphological and precipitation predictors of groundwater influence varied in their importance between watersheds, suggesting differences in spatial and temporal controls of recharge dynamics and the depth of the groundwater source. We demonstrate an application of the final BRT model to predict groundwater effects from landform and precipitation covariates at 1075 new sites distributed at 100 m increments within focal watersheds. Our study provides a framework to estimate effects of groundwater seepage on stream temperature in unsampled locations. We discuss applications for climate change research to account for groundwater-surface water interactions when projecting future thermal thresholds for stream biota.

  5. Exchange of soil moisture between patches of wild-olive and pasture sustains evapotranspiration of a Mediterranean ecosystem in both wet and dry seasons

    NASA Astrophysics Data System (ADS)

    Curreli, M.; Montaldo, N.; Oren, R.

    2017-12-01

    Partitioning evapotranspiration in water-limited environments, such as Mediterranean ecosystems, could give information on vegetation and hydraulic dynamics. Indeed, in such ecosystems, trees may survive prolonged droughts by uptake of water by dimorphic root system: deep roots and shallower lateral roots, extending beyond the crown into inter-trees grassy areas. The water exchange between under canopy areas and treeless patches plays a crucial role on sustaining tree and grass physiological performance during droughts. The study has been performed at the Orroli site, Sardinia (Italy). The landscape is covered by patchy vegetation: wild olives trees in clumps and herbaceous species, drying to bare soil in summer. The climate is characterized by long droughts from May to October and rain events concentrated in the autumn and winter, whit a mean yearly rain of about 700 mm. A 10 m micrometeorological tower equipped with eddy-covariance system has been used for measuring water and energy surface fluxes, as well as key state variables (e.g. temperature, radiations, humidity and wind velocity). Soil moisture was measured with five soil water reflectometers (two below the olive canopy and three in the pasture). To estimate plant water use in the context of soil water dynamic, 33 Granier-type thermal dissipation probes were installed 40 cm aboveground, in representative trees over the eddy covariance footprint. Early analyses show that wild olive continue to transpire even as the soil dries and the pasture desiccates. This reveled hydraulic redistribution system through the plant and the soil, and allows to quantify the reliance of the system on horizontally and vertically differentiated soil compartments. Results shows that during light hours, until transpiration decreases in midday, shallow roots uptake deplete the shallow water content. As transpiration decreases, hydraulically redistributed water provides for both transpiration of wild olives and recharge of shallow soil layers in the inter-tree areas. This consents trees to remain physiologically active during very dry conditions and represent a mechanism of facilitation of the coexistence of tree-grass system.

  6. Temperatures and cooling rates recorded in REE in coexisting pyroxenes in ophiolitic and abyssal peridotites

    NASA Astrophysics Data System (ADS)

    Dygert, Nick; Liang, Yan

    2015-06-01

    Mantle peridotites from ophiolites are commonly interpreted as having mid-ocean ridge (MOR) or supra-subduction zone (SSZ) affinity. Recently, an REE-in-two-pyroxene thermometer was developed (Liang et al., 2013) that has higher closure temperatures (designated as TREE) than major element based two-pyroxene thermometers for mafic and ultramafic rocks that experienced cooling. The REE-in-two-pyroxene thermometer has the potential to extract meaningful cooling rates from ophiolitic peridotites and thus shed new light on the thermal history of the different tectonic regimes. We calculated TREE for available literature data from abyssal peridotites, subcontinental (SC) peridotites, and ophiolites around the world (Alps, Coast Range, Corsica, New Caledonia, Oman, Othris, Puerto Rico, Russia, and Turkey), and augmented the data with new measurements for peridotites from the Trinity and Josephine ophiolites and the Mariana trench. TREE are compared to major element based thermometers, including the two-pyroxene thermometer of Brey and Köhler (1990) (TBKN). Samples with SC affinity have TREE and TBKN in good agreement. Samples with MOR and SSZ affinity have near-solidus TREE but TBKN hundreds of degrees lower. Closure temperatures for REE and Fe-Mg in pyroxenes were calculated to compare cooling rates among abyssal peridotites, MOR ophiolites, and SSZ ophiolites. Abyssal peridotites appear to cool more rapidly than peridotites from most ophiolites. On average, SSZ ophiolites have lower closure temperatures than abyssal peridotites and many ophiolites with MOR affinity. We propose that these lower temperatures can be attributed to the residence time in the cooling oceanic lithosphere prior to obduction. MOR ophiolites define a continuum spanning cooling rates from SSZ ophiolites to abyssal peridotites. Consistent high closure temperatures for abyssal peridotites and the Oman and Corsica ophiolites suggests hydrothermal circulation and/or rapid cooling events (e.g., normal faulting, unroofing) control the late thermal histories of peridotites from transform faults and slow and fast spreading centers with or without a crustal section.

  7. Sensitivity of Photosynthetic Gas Exchange and Growth of Lodgepole Pine to Climate Variability Depends on the Age of Pleistocene Glacial Surfaces

    NASA Astrophysics Data System (ADS)

    Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with δ13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that growth and photosynthetic gas exchange parameters are sensitive to glacial till surfaces, which is evident by the different responses to SWEmax and Tair across sites.

  8. Isolation and identification of symbiotic bacteria from the skin, mouth, and rectum of wild and captive tree shrews.

    PubMed

    Li, Gui; Lai, Ren; Duan, Gang; Lyu, Long-Bao; Zhang, Zhi-Ye; Liu, Huang; Xiang, Xun

    2014-11-18

    Endosymbionts influence many aspects of their hosts' health conditions, including physiology, development, immunity, metabolism, etc. Tree shrews (Tupaia belangeri chinensis) have attracted increasing attention in modeling human diseases and therapeutic responses due to their close relationship with primates. To clarify the situation of symbiotic bacteria from their body surface, oral cavity, and anus, 12 wild and 12 the third generation of captive tree shrews were examined. Based on morphological and cultural characteristics, physiological and biochemical tests, as well as the 16S rDNA full sequence analysis, 12 bacteria strains were isolated and identified from the wild tree shrews: body surface: Bacillus subtilis (detection rate 42%), Pseudomonas aeruginosa (25%), Staphlococcus aureus (33%), S. Epidermidis (75%), Micrococcus luteus (25%), Kurthia gibsonii (17%); oral cavity: Neisseria mucosa (58%), Streptococcus pneumonia (17%); anus: Enterococcus faecalis (17%), Lactococus lactis (33%), Escherichia coli (92%), Salmonella typhosa (17%); whereas, four were indentified from the third generation captive tree shrews: body surface: S. epidermidis (75%); oral cavity: N.mucosa (67%); anus: L. lactis (33%), E. coli (100%). These results indicate that S. epidermidis, N. mucosa, L. lactis and E. coli were major bacteria in tree shrews, whereas, S. aureus, M. luteus, K. gibsonii, E. faecalis and S. typhosa were species-specific flora. This study facilitates the future use of tree shrews as a standard experimental animal and improves our understanding of the relationship between endosymbionts and their hosts.

  9. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing

    USGS Publications Warehouse

    Kokaly, R.F.; Rockwell, B.W.; Haire, S.L.; King, T.V.V.

    2007-01-01

    Forest fires leave behind a changed ecosystem with a patchwork of surface cover that includes ash, charred organic matter, soils and soil minerals, and dead, damaged, and living vegetation. The distributions of these materials affect post-fire processes of erosion, nutrient cycling, and vegetation regrowth. We analyzed high spatial resolution (2.4??m pixel size) Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data collected over the Cerro Grande fire, to map post-fire surface cover into 10 classes, including ash, soil minerals, scorched conifer trees, and green vegetation. The Cerro Grande fire occurred near Los Alamos, New Mexico, in May 2000. The AVIRIS data were collected September 3, 2000. The surface cover map revealed complex patterns of ash, iron oxide minerals, and clay minerals in areas of complete combustion. Scorched conifer trees, which retained dry needles heated by the fire but not fully combusted by the flames, were found to cover much of the post-fire landscape. These scorched trees were found in narrow zones at the edges of completely burned areas. A surface cover map was also made using Landsat Enhanced Thematic Mapper plus (ETM+) data, collected September 5, 2000, and a maximum likelihood, supervised classification. When compared to AVIRIS, the Landsat classification grossly overestimated cover by dry conifer and ash classes and severely underestimated soil and green vegetation cover. In a comparison of AVIRIS surface cover to the Burned Area Emergency Rehabilitation (BAER) map of burn severity, the BAER high burn severity areas did not capture the variable patterns of post-fire surface cover by ash, soil, and scorched conifer trees seen in the AVIRIS map. The BAER map, derived from air photos, also did not capture the distribution of scorched trees that were observed in the AVIRIS map. Similarly, the moderate severity class of Landsat-derived burn severity maps generated from the differenced Normalized Burn Ratio (dNBR) calculation had low agreement with the AVIRIS classes of scorched conifer trees. Burn severity and surface cover images were found to contain complementary information, with the dNBR map presenting an image of degree of change caused by fire and the AVIRIS-derived map showing specific surface cover resulting from fire.

  10. Chapter 9: Planting hardwood tree seedlings on reclaimed mine land in the Appalachian region

    Treesearch

    V. Davis; J. Franklin; C. Zipper; P. Angel

    2017-01-01

    The Forestry Reclamation Approach (FRA) is a method of reclaiming surface coal mines to forested postmining land use (Chapter 2, this volume). "Use proper tree planting techniques" is Step 5 of the FRA; when used with the other FRA steps, proper tree planting can help to ensure successful reforestation. Proper care and planting of tree seedlings is essential...

  11. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    NASA Astrophysics Data System (ADS)

    Bohn, Friedrich J.; May, Felix; Huth, Andreas

    2018-03-01

    Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP). It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q) and a species distribution index (ΩAWP). ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length). The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a development, one could plant below the closed canopy of even-aged, pioneer trees a climax-species-rich understorey that will build the canopy of the mature forest. This study highlights that forest structure and species composition are both relevant for understanding the temperature sensitivity of wood production.

  12. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species

    Treesearch

    K. K. Christensen-Dalsgaard; M. T. Tyree; P. G. Mussone

    2011-01-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus...

  13. Modeling the survival kinetics of Salmonella in tree nuts for use in risk assessment.

    PubMed

    Santillana Farakos, Sofia M; Pouillot, Régis; Anderson, Nathan; Johnson, Rhoma; Son, Insook; Van Doren, Jane

    2016-06-16

    Salmonella has been shown to survive in tree nuts over long periods of time. This survival capacity and its variability are key elements for risk assessment of Salmonella in tree nuts. The aim of this study was to develop a mathematical model to predict survival of Salmonella in tree nuts at ambient storage temperatures that considers variability and uncertainty separately and can easily be incorporated into a risk assessment model. Data on Salmonella survival on raw almonds, pecans, pistachios and walnuts were collected from the peer reviewed literature. The Weibull model was chosen as the baseline model and various fixed effect and mixed effect models were fit to the data. The best model identified through statistical analysis testing was then used to develop a hierarchical Bayesian model. Salmonella in tree nuts showed slow declines at temperatures ranging from 21°C to 24°C. A high degree of variability in survival was observed across tree nut studies reported in the literature. Statistical analysis results indicated that the best applicable model was a mixed effect model that included a fixed and random variation of δ per tree nut (which is the time it takes for the first log10 reduction) and a fixed variation of ρ per tree nut (parameter which defines the shape of the curve). Higher estimated survival rates (δ) were obtained for Salmonella on pistachios, followed in decreasing order by pecans, almonds and walnuts. The posterior distributions obtained from Bayesian inference were used to estimate the variability in the log10 decrease levels in survival for each tree nut, and the uncertainty of these estimates. These modeled uncertainty and variability distributions of the estimates can be used to obtain a complete exposure assessment of Salmonella in tree nuts when including time-temperature parameters for storage and consumption data. The statistical approach presented in this study may be applied to any studies that aim to develop predictive models to be implemented in a probabilistic exposure assessment or a quantitative microbial risk assessment. Published by Elsevier B.V.

  14. Decreasing Indian summer monsoon on the northern Indian sub-continent during the last 180 years: evidence from five tree-ring cellulose oxygen isotope chronologies

    NASA Astrophysics Data System (ADS)

    Xu, Chenxi; Sano, Masaki; Priyadarshan Dimri, Ashok; Ramesh, Rengaswamy; Nakatsuka, Takeshi; Shi, Feng; Guo, Zhengtang

    2018-05-01

    We have constructed a regional tree-ring cellulose oxygen isotope (δ18O) record for the northern Indian sub-continent based on two new records from northern India and central Nepal and three published records from northwestern India, western Nepal and Bhutan. The record spans the common interval from 1743 to 2008 CE. Correlation analysis reveals that the record is significantly and negatively correlated with the three regional climatic indices: all India rainfall (AIR; r = -0.5, p < 0.001, n = 138), Indian monsoon index (IMI; r = -0.45, p < 0.001, n = 51) and the intensity of monsoonal circulation (r = -0.42, p < 0.001, n = 51). The close relationship between tree-ring cellulose δ18O and the Indian summer monsoon (ISM) can be explained by oxygen isotope fractionation mechanisms. Our results indicate that the regional tree-ring cellulose δ18O record is suitable for reconstructing high-resolution changes in the ISM. The record exhibits significant interannual and long-term variations. Interannual changes are closely related to the El Niño-Southern Oscillation (ENSO), which indicates that the ISM was affected by ENSO in the past. However, the ISM-ENSO relationship was not consistent over time, and it may be partly modulated by Indian Ocean sea surface temperature (SST). Long-term changes in the regional tree-ring δ18O record indicate a possible trend of weakened ISM intensity since 1820. Decreasing ISM activity is also observed in various high-resolution ISM records from southwest China and Southeast Asia, and may be the result of reduced land-ocean thermal contrasts since 1820 CE.

  15. Dormancy release of Norway spruce under climatic warming: testing ecophysiological models of bud burst with a whole-tree chamber experiment.

    PubMed

    Hänninen, Heikki; Slaney, Michelle; Linder, Sune

    2007-02-01

    Ecophysiological models predicting timing of bud burst were tested with data gathered from 40-year-old Norway spruce (Picea abies (L.) Karst.) trees growing in northern Sweden in whole-tree chambers under climatic conditions predicted to prevail in 2100. Norway spruce trees, with heights between 5 and 7 m, were enclosed in individual chambers that provided a factorial combination of ambient (365 micromol mol-1) or elevated (700 micromol mol-1) atmospheric CO2 concentration, [CO2], and ambient or elevated air temperature. Temperature elevation above ambient ranged from +2.8 degrees C in summer to +5.6 degrees C in winter. Compared with control trees, elevated air temperature hastened bud burst by 2 to 3 weeks, whereas elevated [CO2] had no effect on the timing of bud burst. A simple model based on the assumption that bud rest completion takes place on a fixed calendar day predicted timing of bud burst more accurately than two more complicated models in which bud rest completion is caused by accumulated chilling. Together with some recent studies, the results suggest that, in adult trees, some additional environmental cues besides chilling are required for bud rest completion. Although it appears that these additional factors will protect trees under predicted climatic warming conditions, increased risk of frost damage associated with earlier bud burst cannot be ruled out. Inconsistent and partially anomalous results obtained in the model fitting show that, in addition to phenological data gathered under field conditions, more specific data from growth chamber and greenhouse experiments are needed for further development and testing of the models.

  16. Differential Impact of Passive versus Active Irrigation on Urban Forests in Semiarid Regions

    NASA Astrophysics Data System (ADS)

    Luketich, A. M.; Papuga, S. A.; Crimmins, M.

    2017-12-01

    The network of trees within a city provides a variety of ecosystem services such as flood mitigation and reduced heat island effects. To maintain these `urban forests' in semiarid cities, the use of scarce water resources for irrigation is often necessary. Rainwater harvesting has been widely adopted in Tucson, AZ as a sustainable water source for trees, but the effects of passive water harvesting versus active irrigation on tree canopy productivity and microclimate is largely unquantified. We hypothesize that regardless of whether trees are passively or actively irrigated, deep soil moisture will be elevated compared to natural conditions; however, we expect that increased deep soil moisture conditions will be more frequent using active irrigation. Additionally, we hypothesize that similar to natural settings, urban trees will need access deep soil moisture for transpiration. Therefore, we expect that actively irrigated trees will have more periods of transpiration than passively irrigated trees and that this will result in elevated and sustained phenological activity. We also expect that this difference will translate to more ecosystem services for a longer portion of the year in actively irrigated urban forests. Here, we compare key ecohydrological indicators of passive and active irrigation systems at two sites in Tucson, AZ. Our measurements include soil moisture, transpiration, air temperature, soil temperature, below- and within- canopy temperatures, and canopy phenology. Our first year of results suggest there are differences in transpiration, canopy greening and microclimate between the two irrigation techniques and that the magnitude of these differences are highly seasonal. This research can help to improve understanding of the practices and function of green infrastructure in semiarid cities and inform models that attempt to aggregate the influence of these urban forests for understanding watershed management strategies.

  17. Tree Resin Composition, Collection Behavior and Selective Filters Shape Chemical Profiles of Tropical Bees (Apidae: Meliponini)

    PubMed Central

    Leonhardt, Sara D.; Schmitt, Thomas; Blüthgen, Nico

    2011-01-01

    The diversity of species is striking, but can be far exceeded by the chemical diversity of compounds collected, produced or used by them. Here, we relate the specificity of plant-consumer interactions to chemical diversity applying a comparative network analysis to both levels. Chemical diversity was explored for interactions between tropical stingless bees and plant resins, which bees collect for nest construction and to deter predators and microbes. Resins also function as an environmental source for terpenes that serve as appeasement allomones and protection against predators when accumulated on the bees' body surfaces. To unravel the origin of the bees' complex chemical profiles, we investigated resin collection and the processing of resin-derived terpenes. We therefore analyzed chemical networks of tree resins, foraging networks of resin collecting bees, and their acquired chemical networks. We revealed that 113 terpenes in nests of six bee species and 83 on their body surfaces comprised a subset of the 1,117 compounds found in resins from seven tree species. Sesquiterpenes were the most variable class of terpenes. Albeit widely present in tree resins, they were only found on the body surface of some species, but entirely lacking in others. Moreover, whereas the nest profile of Tetragonula melanocephala contained sesquiterpenes, its surface profile did not. Stingless bees showed a generalized collecting behavior among resin sources, and only a hitherto undescribed species-specific “filtering” of resin-derived terpenes can explain the variation in chemical profiles of nests and body surfaces from different species. The tight relationship between bees and tree resins of a large variety of species elucidates why the bees' surfaces contain a much higher chemodiversity than other hymenopterans. PMID:21858119

  18. Determination of the Solar Ultraviolet Transmission in Tree Shade.

    ERIC Educational Resources Information Center

    Parisi, Alfio V.; Kimlin, Michael G.

    1999-01-01

    Presents an activity in which the amount of solar ultraviolet radiation in tree shade is measured at different times of the day and compared with changes in illumination levels and temperature. (Author/WRM)

  19. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: I. DECIDUOUS TREES.

    PubMed

    Strycharz, S; Newman, L

    2009-02-01

    Phytoremediation of trichloroethylene (TCE) can be accomplished using fast-growing, deep-rooting trees. The most commonly used tree for phytoremediation of TCE has been the hybrid poplar. This study looks at native southeastern trees of the United States as alternatives to the use of hybrid poplar. The use of native trees for phytoremediation allows for simultaneous restoration of contaminated sites. A 2-mo, greenhouse-based study was conducted to determine if sycamore (Plantanus L.), eastern cottonwood (Populus deltoides), sweetgum (Liquidambar styraciflua L.), and willow (Salix sachalinensis) trees possess the ability to degrade TCE by assessing TCE metabolite formation in the plant tissue. In addition to the metabolic capabilities of each tree species, growth parameters were measured including change in height, water usage, total fresh weight of each tissue type, and calculated total leaf surface area. Willow trees had the greatest increase in height among all trees tested; however, at higher concentrations TCE inhibits growth. Sycamore trees had the highest overall leaf surface area and total biomass, which correlated with sycamore trees also having the highest average water usage over the course of the experiment. Carbon tubes used to sample transpiration gases from sycamore, sweetgum, and cottonwood trees did not contain detectable levels of TCE. Tenex sample collection tubes used to sample willow trees during TCE exposure showed average TCE concentrations of up to 0.354 ng TCE cm -2 leaf tissue. All exposed trees contained TCE in the root, stem, and leaf tissues. The concentration of TCE remaining in tissues at the conclusion of the experiment varied, with the highest levels found in the roots and the lowest levels found in the leaves. Metabolites were also observed in different tissue types of all trees tested. The highest concentrations of trichloroacetic acid were observed in the leaves of the sycamore trees and cottonwood trees. Based on the growth parameters tested and the ability to metabolize TCE, sycamore and native cottonwood species are the best candidates for phytoremediation from this study.

  20. Linking definitions, mechanisms, and modeling of drought-induced tree death.

    PubMed

    Anderegg, William R L; Berry, Joseph A; Field, Christopher B

    2012-12-01

    Tree death from drought and heat stress is a critical and uncertain component in forest ecosystem responses to a changing climate. Recent research has illuminated how tree mortality is a complex cascade of changes involving interconnected plant systems over multiple timescales. Explicit consideration of the definitions, dynamics, and temporal and biological scales of tree mortality research can guide experimental and modeling approaches. In this review, we draw on the medical literature concerning human death to propose a water resource-based approach to tree mortality that considers the tree as a complex organism with a distinct growth strategy. This approach provides insight into mortality mechanisms at the tree and landscape scales and presents promising avenues into modeling tree death from drought and temperature stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

Top