Sample records for tremor

  1. Diagnosis and Treatment of Common Forms of Tremor

    PubMed Central

    Puschmann, Andreas; Wszolek, Zbigniew K.

    2014-01-01

    Tremor is the most common movement disorder presenting to an outpatient neurology practice and is defined as a rhythmical, involuntary oscillatory movement of a body part. The authors review the clinical examination, classification, and diagnosis of tremor. The pathophysiology of the more common forms of tremor is outlined, and treatment options are discussed. Essential tremor is characterized primarily by postural and action tremors, may be a neurodegenerative disorder with pathologic changes in the cerebellum, and can be treated with a wide range of pharmacologic and nonpharmacologic methods. Tremor at rest is typical for Parkinson’s disease, but may arise independently of a dopaminergic deficit. Enhanced physiologic tremor, intention tremor, and dystonic tremor are discussed. Further differential diagnoses described in this review include drug- or toxin-induced tremor, neuropathic tremor, psychogenic tremor, orthostatic tremor, palatal tremor, tremor in Wilson’s disease, and tremor secondary to cerebral lesions, such as Holmes’ tremor (midbrain tremor). An individualized approach to treatment of tremor patients is important, taking into account the degree of disability, including social embarrassment, which the tremor causes in the patient’s life. PMID:21321834

  2. Diagnosis and Management of Tremor.

    PubMed

    Louis, Elan D

    2016-08-01

    Tremor, which is a rhythmic oscillation of a body part, is among the most common involuntary movements. Rhythmic oscillations may manifest in a variety of ways; as a result, a rich clinical phenomenology surrounds tremor. For this reason, diagnosing tremor disorders can be particularly challenging. The aim of this article is to provide the reader with a straightforward approach to the diagnosis and management of patients with tremor. Scientific understanding of the pathophysiologic basis of tremor disorders has grown considerably in recent years with the use of a broad range of neuroimaging approaches and rigorous, controlled postmortem studies. The basal ganglia and cerebellum are structures that seem to play a prominent role. The diagnosis of tremor disorders is challenging. The approach to tremor involves a history and a neurologic examination that is focused on the nuances of tremor phenomenology, of which there are many. The evaluation should begin with a tremor history and a focused neurologic examination. The examination should attend to the many subtleties of tremor phenomenology. Among other things, the history and examination are used to establish whether the main type of tremor is an action tremor (ie, postural, kinetic, or intention tremor) or a resting tremor. The clinician should then formulate two sets of differential diagnoses: disorders in which action tremor is the predominant tremor versus those in which resting tremor is the main tremor. Among the most common of the former type are essential tremor, enhanced physiologic tremor, drug-induced tremor, dystonic tremor, orthostatic tremor, and cerebellar tremor. Parkinson disease is the most common form of resting tremor, along with drug-induced resting tremor. This article details the clinical features of each of these as well as other tremor disorders.

  3. The phenomenology of parkinsonian tremor.

    PubMed

    Deuschl, Günther; Papengut, Frank; Hellriegel, Helge

    2012-01-01

    The definition of Parkinsonian tremor covers all different forms occurring in Parkinson's disease. The most common form is rest tremor, labelled as typical Parkinsonian tremor. Other variants cover also postural and action tremors. Data support the notion that suppression of rest tremor may be more specific for PD tremors. Several differential diagnoses like rest tremor in ET, dystonic tremor, psychogenic tremor and Holmes' tremor may be misinterpreted as PD-tremor. Tests and clinical clues to separate them are presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Tremor entities and their classification: an update.

    PubMed

    Gövert, Felix; Deuschl, Günther

    2015-08-01

    This review focuses on important new findings in the field of tremor and illustrates the consequences for the current definition and classification of tremor. Since 1998 when the consensus criteria for tremor were proposed, new variants of tremors and new diagnostic methods were discovered that have changed particularly the concepts of essential tremor and dystonic tremor. Accumulating evidence exists that essential tremor is not a single entity rather different conditions that share the common symptom action tremor without other major abnormalities. Tremor is a common feature in patients with adult-onset focal dystonia and may involve several different body parts and forms of tremor. Recent advances, in particular, in the field of genetics, suggest that dystonic tremor may even be present without overt dystonia. Monosymptomatic asymmetric rest and postural tremor has been further delineated, and apart from tremor-dominant Parkinson's disease, there are several rare conditions including rest and action tremor with normal dopamine transporter imaging (scans without evidence of dopaminergic deficit) and essential tremor with tremor at rest. Increasing knowledge in the last decades changed the view on tremors and highlights several caveats in the current tremor classification. Given the ambiguous assignment between tremor phenomenology and tremor etiology, a more cautious definition of tremors on the basis of clinical assessment data is needed.

  5. Dystonia and Tremor: The Clinical Syndromes with Isolated Tremor

    PubMed Central

    Albanese, Alberto; Sorbo, Francesca Del

    2016-01-01

    Background Dystonia and tremor share many commonalities. Isolated tremor is part of the phenomenological spectrum of isolated dystonia and of essential tremor. The occurrence of subtle features of dystonia may allow one to differentiate dystonic tremor from essential tremor. Diagnostic uncertainty is enhanced when no features of dystonia are found in patients with a tremor syndrome, raising the question whether the observed phenomenology is an incomplete form of dystonia. Methods Known forms of syndromes with isolated tremor are reviewed. Diagnostic uncertainties between tremor and dystonia are put into perspective. Results The following isolated tremor syndromes are reviewed: essential tremor, head tremor, voice tremor, jaw tremor, and upper-limb tremor. Their varied phenomenology is analyzed and appraised in the light of a possible relationship with dystonia. Discussion Clinicians making a diagnosis of isolated tremor should remain vigilant for the detection of features of dystonia. This is in keeping with the recent view that isolated tremor may be an incomplete phenomenology of dystonia. PMID:27152246

  6. Somatosensory temporal discrimination in essential tremor and isolated head and voice tremors.

    PubMed

    Conte, Antonella; Ferrazzano, Gina; Manzo, Nicoletta; Leodori, Giorgio; Fabbrini, Giovanni; Fasano, Alfonso; Tinazzi, Michele; Berardelli, Alfredo

    2015-05-01

    The aim of this study was to investigate the somatosensory temporal discrimination threshold in patients with essential tremor (sporadic and familial) and to evaluate whether somatosensory temporal discrimination threshold values differ depending on the body parts involved by tremor. We also investigated the somatosensory temporal discrimination in patients with isolated voice tremor. We enrolled 61 patients with tremor: 48 patients with essential tremor (31 patients with upper limb tremor alone, nine patients with head tremor alone, and eight patients with upper limb plus head tremor; 22 patients with familial vs. 26 sporadic essential tremor), 13 patients with isolated voice tremor, and 45 healthy subjects. Somatosensory temporal discrimination threshold values were normal in patients with familial essential tremor, whereas they were higher in patients with sporadic essential tremor. When we classified patients according to tremor distribution, somatosensory temporal discrimination threshold values were normal in patients with upper limb tremor and abnormal only in patients with isolated head tremor. Temporal discrimination threshold values were also abnormal in patients with isolated voice tremor. Somatosensory temporal discrimination processing is normal in patients with familial as well as in patients with sporadic essential tremor involving the upper limbs. By contrast, somatosensory temporal discrimination is altered in patients with isolated head tremor and voice tremor. This study with somatosensory temporal discrimination suggests that isolated head and voice tremors might possibly be considered as separate clinical entities from essential tremor. © 2015 International Parkinson and Movement Disorder Society.

  7. Tremor associated with focal and segmental dystonia.

    PubMed

    Rudzińska, M; Krawczyk, M; Wójcik-Pędziwiatr, M; Szczudlik, A; Wasielewska, A

    2013-01-01

    Tremor occurs in 10-85% of patients with focal dystonia as so-called dystonic tremor or tremor associated with dystonia. The aim of this study was to assess the incidence and to characterize parameters of tremor accompanying focal and segmental dystonia. One hundred and twenty-three patients with diagnosis of focal and segmental dystonia together with 51 healthy controls were included in the study. For each participant, clinical examination and objective assessment (accelerometer, electromyography, graphic tablet) of hand tremor was performed. Frequency and severity of tremor were assessed in three positions: at rest (rest tremor); with hands extended (postural tremor); during 'finger-to-nose' test and during Archimedes spiral drawing (kinetic tremor). Based on the mass load test, type of tremor was determined as essential tremor type or enhanced physiological type. The incidence of tremor was significantly higher in dystonic patients as compared to controls (p = 0.0001). In clinical examination, tremor was found in 50% of dystonic patients, and in instrumental assessment in an additional 10-20%. The most frequent type of tremor was postural and kinetic tremor with 7 Hz frequency and featured essential tremor type. In the control group, tremor was detected in about 10% of subjects as 9-Hz postural tremor of enhanced physiological tremor type. No differences were found between patients with different types of dystonia with respect to the tremor incidence, type and parameters (frequency and severity). No correlations between tremor severity and dystonia severity were found either.

  8. The nature of tremor circuits in parkinsonian and essential tremor

    PubMed Central

    Cagnan, Hayriye; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Cheeran, Binith; Fitzgerald, James; Green, Alexander L.; Aziz, Tipu

    2014-01-01

    Tremor is a cardinal feature of Parkinson’s disease and essential tremor, the two most common movement disorders. Yet, the mechanisms underlying tremor generation remain largely unknown. We hypothesized that driving deep brain stimulation electrodes at a frequency closely matching the patient’s own tremor frequency should interact with neural activity responsible for tremor, and that the effect of stimulation on tremor should reveal the role of different deep brain stimulation targets in tremor generation. Moreover, tremor responses to stimulation might reveal pathophysiological differences between parkinsonian and essential tremor circuits. Accordingly, we stimulated 15 patients with Parkinson’s disease with either thalamic or subthalamic electrodes (13 male and two female patients, age: 50–77 years) and 10 patients with essential tremor with thalamic electrodes (nine male and one female patients, age: 34–74 years). Stimulation at near-to tremor frequency entrained tremor in all three patient groups (ventrolateral thalamic stimulation in Parkinson’s disease, P = 0.0078, subthalamic stimulation in Parkinson’s disease, P = 0.0312; ventrolateral thalamic stimulation in essential tremor, P = 0.0137; two-tailed paired Wilcoxon signed-rank tests). However, only ventrolateral thalamic stimulation in essential tremor modulated postural tremor amplitude according to the timing of stimulation pulses with respect to the tremor cycle (e.g. P = 0.0002 for tremor amplification, two-tailed Wilcoxon rank sum test). Parkinsonian rest and essential postural tremor severity (i.e. tremor amplitude) differed in their relative tolerance to spontaneous changes in tremor frequency when stimulation was not applied. Specifically, the amplitude of parkinsonian rest tremor remained unchanged despite spontaneous changes in tremor frequency, whereas that of essential postural tremor reduced when tremor frequency departed from median values. Based on these results we conclude that parkinsonian rest tremor is driven by a neural network, which includes the subthalamic nucleus and ventrolateral thalamus and has broad frequency-amplitude tolerance. We propose that it is this tolerance to changes in tremor frequency that dictates that parkinsonian rest tremor may be significantly entrained by low frequency stimulation without stimulation timing-dependent amplitude modulation. In contrast, the circuit influenced by low frequency thalamic stimulation in essential tremor has a narrower frequency-amplitude tolerance so that tremor entrainment through extrinsic driving is necessarily accompanied by amplitude modulation. Such differences in parkinsonian rest and essential tremor will be important in selecting future strategies for closed loop deep brain stimulation for tremor control. PMID:25200741

  9. Deep brain stimulation for the treatment of uncommon tremor syndromes.

    PubMed

    Ramirez-Zamora, Adolfo; Okun, Michael S

    2016-08-01

    Deep brain stimulation (DBS) has become a standard therapy for the treatment of select cases of medication refractory essential tremor and Parkinson's disease however the effectiveness and long-term outcomes of DBS in other uncommon and complex tremor syndromes has not been well established. Traditionally, the ventralis intermedius nucleus (VIM) of the thalamus has been considered the main target for medically intractable tremors; however alternative brain regions and improvements in stereotactic techniques and hardware may soon change the horizon for treatment of complex tremors. In this article, we conducted a PubMed search using different combinations between the terms 'Uncommon tremors', 'Dystonic tremor', 'Holmes tremor' 'Midbrain tremor', 'Rubral tremor', 'Cerebellar tremor', 'outflow tremor', 'Multiple Sclerosis tremor', 'Post-traumatic tremor', 'Neuropathic tremor', and 'Deep Brain Stimulation/DBS'. Additionally, we examined and summarized the current state of evolving interventions for treatment of complex tremor syndromes. Expert commentary: Recently reported interventions for rare tremors include stimulation of the posterior subthalamic area, globus pallidus internus, ventralis oralis anterior/posterior thalamic subnuclei, and the use of dual lead stimulation in one or more of these targets. Treatment should be individualized and dictated by tremor phenomenology and associated clinical features.

  10. Rest tremor in idiopathic adult-onset dystonia.

    PubMed

    Gigante, A F; Berardelli, A; Defazio, G

    2016-05-01

    Tremor in dystonia has been described as a postural or kinetic abnormality. In recent series, however, patients with idiopathic adult-onset dystonia also displayed rest tremor. The frequency and distribution of rest tremor were studied in a cohort of 173 consecutive Italian patients affected by various forms of idiopathic adult-onset dystonia attending our movement disorder clinic over 8 months. Examination revealed tremor in 59/173 patients (34%): 12 patients had head tremor, 34 patients had arm tremor, whilst 13 patients presented tremor in both sites. Head tremor was postural in all patients, whereas arm tremor was postural/kinetic in 28 patients, only at rest in one and both postural/kinetic and at rest in 18 patients. Patients with tremor were more likely to have segmental/multifocal dystonia. Patients who had rest tremor (either alone or associated with action tremor) had a higher age at dystonia onset and a greater frequency of dystonic arm involvement than patients with action tremor alone or without tremor. Both action and rest tremor are part of the tremor spectrum of adult-onset dystonia and are more frequently encountered in segmental/multifocal dystonia. The higher age at dystonia onset and the greater frequency of arm dystonia in patients with rest tremor may have pathophysiological implications and may account, at least in part, for the previous lack of identification of rest tremor as one possible type of tremor present in dystonia. © 2016 EAN.

  11. [Assessment of anti-tremorogenic drugs--nicotine-induced tail-tremor model].

    PubMed

    Suemaru, K; Kawasaki, H; Gomita, Y

    1997-06-01

    The repeated administration of nicotine at small doses, which do not produce whole body tremor or convulsion, causes tremor only in the tail (tail-tremor) of rats. The tremor is accompanied by locomotor hyperactivity without rigidity and immobility of the whole body, suggesting that the nicotine-induced tail-tremor model is useful for studying the mechanism underlying tremor associated with movement. The tail-tremor induced by nicotine was suppressed by mecamylamine, a nicotinic antagonist, but not by atropine or scopolamine, muscalinic antagonists. Moreover, the tail-tremor was suppressed by the beta-blockers propranolol and pindolol, as well as the benzodiazepines diazepam and clonazepam. Tremor at rest is observed only in Parkinson's disease, which is improved with anti-muscalinic drugs. Essential tremor is one of the typical tremors connected with movement (postural and kinetic tremor) and is improved with beta-blocker. These findings and results suggest that nicotine-induced tail-tremor is useful for the study of essential tremor in animal models.

  12. Tremor frequency characteristics in Parkinson's disease under resting-state and stress-state conditions.

    PubMed

    Lee, Hong Ji; Lee, Woong Woo; Kim, Sang Kyong; Park, Hyeyoung; Jeon, Hyo Seon; Kim, Han Byul; Jeon, Beom S; Park, Kwang Suk

    2016-03-15

    Tremor characteristics-amplitude and frequency components-are primary quantitative clinical factors for diagnosis and monitoring of tremors. Few studies have investigated how different patient's conditions affect tremor frequency characteristics in Parkinson's disease (PD). Here, we analyzed tremor characteristics under resting-state and stress-state conditions. Tremor was recorded using an accelerometer on the finger, under resting-state and stress-state (calculation task) conditions, during rest tremor and postural tremor. The changes of peak power, peak frequency, mean frequency, and distribution of power spectral density (PSD) of tremor were evaluated across conditions. Patients whose tremors were considered more than "mild" were selected, for both rest (n=67) and postural (n=25) tremor. Stress resulted in both greater peak powers and higher peak frequencies for rest tremor (p<0.001), but not for postural tremor. Notably, peak frequencies were concentrated around 5 Hz under stress-state condition. The distributions of PSD of tremor were symmetrical, regardless of conditions. Tremor is more evident and typical tremor characteristics, namely a lower frequency as amplitude increases, are different in stressful condition. Patient's conditions directly affect neural oscillations related to tremor frequencies. Therefore, tremor characteristics in PD should be systematically standardized across patient's conditions such as attention and stress levels. Copyright © 2016. Published by Elsevier B.V.

  13. Approach to a tremor patient

    PubMed Central

    Sharma, Soumya; Pandey, Sanjay

    2016-01-01

    Tremors are commonly encountered in clinical practice and are the most common movement disorders seen. It is defined as a rhythmic, involuntary oscillatory movement of a body part around one or more joints. In the majority of the population, tremor tends to be mild. They have varying etiology; hence, classifying them appropriately helps in identifying the underlying cause. Clinically, tremor is classified as occurring at rest or action. They can also be classified based on their frequency, amplitude, and body part involved. Parkinsonian tremor is the most common cause of rest tremor. Essential tremor (ET) and enhanced physiological tremor are the most common causes of action tremor. Isolated head tremor is more likely to be dystonic rather than ET. Isolated voice tremor could be considered to be a spectrum of ET. Psychogenic tremor is not a diagnosis of exclusion; rather, demonstration of various clinical signs is needed to establish the diagnosis. Severity of tremor and response to treatment can be assessed using clinical rating scales as well as using electrophysiological measurements. The treatment of tremor is symptomatic. Medications are effective in half the cases of essential hand tremor and in refractory patients; deep brain stimulation is an alternative therapy. Midline tremors benefit from botulinum toxin injections. It is also the treatment of choice in dystonic tremor and primary writing tremor. PMID:27994349

  14. Correlates Between Force and Postural Tremor in Older Individuals with Essential Tremor.

    PubMed

    Kavanagh, Justin J; Keogh, Justin W L

    2016-12-01

    Essential tremor (ET) is commonly associated with kinetic tremor. However, other forms of tremor, such as force and postural tremor, may occur in ET with less severity. This study objectively assessed force and postural tremor characteristics in ET with the purpose of identifying the relationships between these tremors. Ten individuals with ET (age 71 ± 5 years) and ten healthy controls (age 70 ± 5 years) participated in the study. Force tremor was quantified as fluctuations in index finger abduction force during isometric contractions at 10 % maximum voluntary contraction (MVC) and 60 % MVC. Postural tremor was quantified as index finger acceleration when the subjects held their entire arm unsupported, and when their arm was supported so that only the index finger could move. Time- and frequency-domain parameters were extracted from tremor data, and then correlations within, and between, tremor subtypes were examined. ET force tremor was dependent on contraction intensity whereas postural tremor was unaffected by the level of limb support. Significant correlations existed between frequency components of postural tremor and force tremor amplitude. Force tremor amplitude normalised to the level of contraction intensity correlated to the proportion of power for postural tremor. These correlations were observed for both contraction intensities and both levels of postural support. The proportion of power represents the output of central oscillators in ET patients and therefore correlated well to force tremor. Given that significant relationships existed between spectral features of postural tremor and the overall force tremor amplitude, it is clear that these tremor modalities are not completely independent in older adults with ET.

  15. Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation

    PubMed Central

    Cagnan, Hayriye; Brittain, John-Stuart; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Joint, Carole; Fitzgerald, James; Green, Alexander L.; Aziz, Tipu

    2013-01-01

    High frequency deep brain stimulation of the thalamus can help ameliorate severe essential tremor. Here we explore how the efficacy, efficiency and selectivity of thalamic deep brain stimulation might be improved in this condition. We started from the hypothesis that the effects of electrical stimulation on essential tremor may be phase dependent, and that, in particular, there are tremor phases at which stimuli preferentially lead to a reduction in the amplitude of tremor. The latter could be exploited to improve deep brain stimulation, particularly if tremor suppression could be reinforced by cumulative effects. Accordingly, we stimulated 10 patients with essential tremor and thalamic electrodes, while recording tremor amplitude and phase. Stimulation near the postural tremor frequency entrained tremor. Tremor amplitude was also modulated depending on the phase at which stimulation pulses were delivered in the tremor cycle. Stimuli in one half of the tremor cycle reduced median tremor amplitude by ∼10%, while those in the opposite half of the tremor cycle increased tremor amplitude by a similar amount. At optimal phase alignment tremor suppression reached 27%. Moreover, tremor amplitude showed a non-linear increase in the degree of suppression with successive stimuli; tremor suppression was increased threefold if a stimulus was preceded by four stimuli with a similar phase relationship with respect to the tremor, suggesting cumulative, possibly plastic, effects. The present results pave the way for a stimulation system that tracks tremor phase to control when deep brain stimulation pulses are delivered to treat essential tremor. This would allow treatment effects to be maximized by focussing stimulation on the optimal phase for suppression and by ensuring that this is repeated over many cycles so as to harness cumulative effects. Such a system might potentially achieve tremor control with far less power demand and greater specificity than current high frequency stimulation approaches, and may lower the risk for tolerance and rebound. PMID:24038075

  16. Power spectral density analysis of physiological, rest and action tremor in Parkinson’s disease patients treated with deep brain stimulation

    PubMed Central

    2013-01-01

    Background Observation of the signals recorded from the extremities of Parkinson’s disease patients showing rest and/or action tremor reveal a distinct high power resonance peak in the frequency band corresponding to tremor. The aim of the study was to investigate, using quantitative measures, how clinically effective and less effective deep brain stimulation protocols redistribute movement power over the frequency bands associated with movement, pathological and physiological tremor, and whether normal physiological tremor may reappear during those periods that tremor is absent. Methods The power spectral density patterns of rest and action tremor were studied in 7 Parkinson’s disease patients treated with (bilateral) deep brain stimulation of the subthalamic nucleus. Two tests were carried out: 1) the patient was sitting at rest; 2) the patient performed a hand or foot tapping movement. Each test was repeated four times for each extremity with different stimulation settings applied during each repetition. Tremor intermittency was taken into account by classifying each 3-second window of the recorded angular velocity signals as a tremor or non-tremor window. Results The distribution of power over the low frequency band (<3.5 Hz – voluntary movement), tremor band (3.5-7.5 Hz) and high frequency band (>7.5 Hz – normal physiological tremor) revealed that rest and action tremor show a similar power-frequency shift related to tremor absence and presence: when tremor is present most power is contained in the tremor frequency band; when tremor is absent lower frequencies dominate. Even under resting conditions a relatively large low frequency component became prominent, which seemed to compensate for tremor. Tremor absence did not result in the reappearance of normal physiological tremor. Conclusion Parkinson’s disease patients continuously balance between tremor and tremor suppression or compensation expressed by power shifts between the low frequency band and the tremor frequency band during rest and voluntary motor actions. This balance shows that the pathological tremor is either on or off, with the latter state not resembling that of a healthy subject. Deep brain stimulation can reverse the balance thereby either switching tremor on or off. PMID:23834737

  17. Effects of alprazolam on cortical activity and tremors in patients with essential tremor.

    PubMed

    Ibáñez, Jaime; González de la Aleja, Jesús; Gallego, Juan A; Romero, Juan P; Saíz-Díaz, Rosana A; Benito-León, Julián; Rocon, Eduardo

    2014-01-01

    Essential tremor (ET) is characterised by postural and action tremors with a frequency of 4-12 Hz. Previous studies suggest that the tremor activity originates in the cerebello-thalamocortical pathways. Alprazolam is a short-acting benzodiazepine that attenuates tremors in ET. The mechanisms that mediate the therapeutic action of alprazolam are unknown; however, in healthy subjects, benzodiazepines increase cortical beta activity. In this study, we investigated the effect of alprazolam both on beta and tremor-related cortical activity and on alterations in tremor presentation in ET patients. Therefore, we characterised the dynamics of tremor and cortical activity in ET patients after alprazolam intake. We recorded hand tremors and contralateral cortical activity in four recordings before and after a single dose of alprazolam. We then computed the changes in tremors, cortico-muscular coherence, and cortical activity at the tremor frequency and in the beta band. Alprazolam significantly attenuated tremors (EMG: 76.2 ± 22.68%), decreased cortical activity in the tremor frequency range and increased cortical beta activity in all patients (P<0.05). At the same time, the cortico-muscular coherence at the tremor frequency became non-significant (P<0.05). We also found a significant correlation (r = 0.757, P<0.001) between the reduction in tremor severity and the increased ratio of cortical activity in the beta band to the activity observed in the tremor frequency range. This study provides the first quantitative analysis of tremor reduction following alprazolam intake. We observed that the tremor severity decreased in association with an increased ratio of beta to tremor-related cortical activity. We hypothesise that the increase in cortical beta activity may act as a blocking mechanism and may dampen the pathological oscillatory activity, which in turn attenuates the observed tremor.

  18. [Disappearance of essential neck tremor after pontine base infarction].

    PubMed

    Urushitani, M; Inoue, H; Kawamura, K; Kageyama, T; Fujisawa, M; Nishinaka, K; Udaka, F; Kameyama, M

    1996-08-01

    Mechanism of essential tremor remains unknown. Central oscillators, postulated in thalamus, inferior olive, and spinal cord are thought to be important to form rhythmicity, and finally to stimulate spinal or medullary motor cells, leading trembling muscle contraction, tremor. Among several subtypes of essential familial tremor, including hand tremor, neck tremor, and voice tremor, essential neck tremor is a common disorder, and its pathophysiology seems different from that of typical essential hand tremor, since patients with essential hand tremor are responsive to beta blocker, whereas those with neck tremor are usually not. We experienced a 41-year-old left handed woman with essential neck tremor in whom neck titubation disappeared shortly after pontine base infarct. She was our patient in the outpatient clinic with the diagnosis of essential neck tremor. The tremor developed when she was teenage, and has been localized in the neck muscles. Alcohol intake had apparently diminished it transiently. Her mother also had the tremor in her neck. She was admitted to our hospital with sudden onset of right-sided limb weakness and speech disturbance. Neurological examination showed right hemiparesis including the ipsilateral face, scanning speech, and cerebellar limb ataxia on the same side. In addition, there was no tremor in her neck. Brain MR imaging revealed a pontine base infarct at the level of middle pons, which was consistent with paramedian artery territory. The hemiparesis and speech disturbance improved almost completely after treatment, and her neck tremor has never occurred in one year follow-up. In our patient, efficacy of alcohol imply that essential neck tremor and hand tremor had same central nervous pathway including central oscillator in common, and descending cortical fibers is seemingly associated with diminishing patient's tremor. Pathophysiology of essential neck tremor was discussed with reviewing previous literature.

  19. How typical are 'typical' tremor characteristics? Sensitivity and specificity of five tremor phenomena.

    PubMed

    van der Stouwe, A M M; Elting, J W; van der Hoeven, J H; van Laar, T; Leenders, K L; Maurits, N M; Tijssen, M A J

    2016-09-01

    Distinguishing between different tremor disorders can be challenging. Some tremor disorders are thought to have typical tremor characteristics: the current study aims to provide sensitivity and specificity for five 'typical' tremor phenomena. Retrospectively, we examined 210 tremor patients referred for electrophysiological recordings between January 2008 and January 2014. The final clinical diagnosis was used as the gold standard. The first step was to determine whether patients met neurophysiological criteria for their type of tremor. Once established, we focused on 'typical' characteristics: tremor frequency decrease upon loading (enhanced physiological tremor (EPT)), amplitude increase upon loading, distractibility and entrainment (functional tremor (FT)), and intention tremor (essential tremor (ET)). The prevalence of these phenomena in the 'typical' group was compared to the whole group. Most patients (87%) concurred with all core clinical neurophysiological criteria for their tremor type. We found a frequency decrease upon loading to be a specific (95%), but not a sensitive (42%) test for EPT. Distractibility and entrainment both scored high on sensitivity (92%, 91%) and specificity (94%, 91%) in FT, whereas a tremor amplitude increase was specific (92%), but not sensitive (22%). Intention tremor was a specific finding in ET (85%), but not a sensitive test (45%). Combination of characteristics improved sensitivity. In this study, we retrospectively determined sensitivity and specificity for five 'typical' tremor characteristics. Characteristics proved specific, but few were sensitive. These data on tremor phenomenology will help practicing neurologists to improve distinction between different tremor disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Variability of hand tremor in rest and in posture--a pilot study.

    PubMed

    Rahimi, Fariborz; Bee, Carina; South, Angela; Debicki, Derek; Jog, Mandar

    2011-01-01

    Previous, studies have demonstrated variability in the frequency and amplitude in tremor between subjects and between trials in both healthy individuals and those with disease states. However, to date, few studies have examined the composition of tremor. Efficacy of treatment for tremor using techniques such as Botulinum neurotoxin type A (BoNT A) injection may benefit from a better understanding of tremor variability, but more importantly, tremor composition. In the present study, we evaluated tremor variability and composition in 8 participants with either essential tremor or Parkinson disease tremor using kinematic recording methods. Our preliminary findings suggest that while individual patients may have more intra-trial and intra-task variability, overall, task effect was significant only for amplitude of tremor. Composition of tremor varied among patients and the data suggest that tremor composition is complex involving multiple muscle groups. These results may support the value of kinematic assessment methods and the improved understanding of tremor composition in the management of tremor.

  1. Tremor in dystonia.

    PubMed

    Pandey, Sanjay; Sarma, Neelav

    2016-08-01

    Tremor has been recognized as an important clinical feature in dystonia. Tremor in dystonia may occur in the body part affected by dystonia known as dystonic tremor or unaffected body regions known as tremor associated with dystonia. The most common type of tremor seen in dystonia patients is postural and kinetic which may be mistaken for familial essential tremor. Similarly familial essential tremor patients may have associated dystonia leading to diagnostic uncertainties. The pathogenesis of tremor in dystonia remains speculative, but its neurophysiological features are similar to dystonia which helps in differentiating it from essential tremor patients. Treatment of tremor in dystonia depends upon the site of involvement. Dystonic hand tremor is treated with oral pharmacological therapy and dystonic head, jaw and voice tremor is treated with injection botulinum toxin. Neurosurgical interventions such as deep brain stimulation and lesion surgery should be an option in patients not responding to the pharmacological treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Prevalence and characteristics of tremor in the NARCOMS multiple sclerosis registry: a cross-sectional survey

    PubMed Central

    Rinker, John R; Salter, Amber R; Walker, Harrison; Amara, Amy; Meador, William; Cutter, Gary R

    2015-01-01

    Objectives (1)To describe the prevalence and severity of tremor in patients with multiple sclerosis (MS) registered within a large North American MS registry; (2) to provide detailed descriptions on the characteristics and severity of tremor in a subset of registrants and (3) to compare several measures of tremor severity for strength of agreement. Setting The North American Research Committee on MS (NARCOMS) registry. Participants Registrants of NARCOMS reporting mild or greater tremor severity. Outcome measures We determined the cross-sectional prevalence of tremor in the NARCOMS registry over three semiannual updates between fall 2010 and fall 2011. A subset of registrants (n=552) completed a supplemental survey providing detailed descriptions of their tremor. Outcomes included descriptive characteristics of their tremors and correlations between outcome measures to determine the strength of agreement in assessing tremor severity. Results The estimated prevalence of tremor in NARCOMS ranged from 45% to 46.8%, with severe tremor affecting 5.5–5.9% of respondents. In the subset completing the supplemental survey, mild tremor severity was associated with younger age of MS diagnosis and tremor onset than those with moderate or severe tremor. However, tremor severity did not differ by duration of disease or tremor. Respondents provided descriptions of tremor symptoms on the Clinical Ataxia Rating Scale, which had a moderate to good (ρ=0.595) correlation with the Tremor Related Activities of Daily Living (TRADL) scale. Objectively scored Archimedes’ spirals had a weaker (ρ=0.358) correlation with the TRADL. Rates of unemployment, disability and symptomatic medication use increased with tremor severity, but were high even among those with mild tremor. Conclusions Tremor is common among NARCOMS registrants and severely disabling for some. Both ADL-based and symptom-descriptive measures of tremor severity can be used to stratify patients. PMID:25573524

  3. The Distribution and Severity of Tremor in Speech Structures of Persons with Vocal Tremor.

    PubMed

    Hemmerich, Abby L; Finnegan, Eileen M; Hoffman, Henry T

    2017-05-01

    Vocal tremor may be associated with cyclic oscillations in the pulmonary, laryngeal, velopharyngeal, or oral regions. This study aimed to correlate the overall severity of vocal tremor with the distribution and severity of tremor in structures involved. Endoscopic and clinical examinations were completed on 20 adults with vocal tremor and two age-matched controls during sustained phonation. Two judges rated the severity of vocal tremor and the severity of tremor affecting each of 13 structures. Participants with mild vocal tremor typically presented with tremor in three laryngeal structures, moderate vocal tremor in five structures (laryngeal and another region), and severe vocal tremor in eight structures affecting all regions. The severity of tremor was lowest (mean = 1.2 out of 3) in persons with mild vocal tremor and greater in persons with moderate (mean = 1.5) and severe vocal tremor (mean = 1.4). Laryngeal structures were most frequently (95%) and severely (1.7 out of 3) affected, followed by velopharynx (40% occurrence, 1.3 severity), pulmonary (40% occurrence, 1.1 severity), and oral (40% occurrence, 1.0 severity) regions. Regression analyses indicated tremor severity of the supraglottic structures, and vertical laryngeal movement contributed most to vocal tremor severity during sustained phonation (r = 0.77, F = 16.17, P < 0.0001). A strong positive correlation (r = 0.72) was found between the Tremor Index and the severity of the vocal tremor during sustained phonation. It is useful to obtain a wide endoscopic view of the larynx to visualize tremor, which is rarely isolated to the true vocal folds alone. Published by Elsevier Inc.

  4. Temporal discrimination in patients with dystonia and tremor and patients with essential tremor.

    PubMed

    Tinazzi, Michele; Fasano, Alfonso; Di Matteo, Alessandro; Conte, Antonella; Bove, Francesco; Bovi, Tommaso; Peretti, Alessia; Defazio, Giovanni; Fiorio, Mirta; Berardelli, Alfredo

    2013-01-01

    To investigate whether psychophysical techniques assessing temporal discrimination could help in differentiating patients who have tremor associated with dystonia or essential tremor. We tested somatosensory temporal discrimination thresholds (TDT) and temporal discrimination movement thresholds (TDMT) in 39 patients who had tremor associated with dystonia or essential tremor presenting with upper-limb tremor of comparable severity and compared their findings with those from a group of 25 sex- and age-matched healthy control subjects. TDT was higher in patients who had tremor associated with dystonia than in those with essential tremor and healthy controls (110.6 ± 31.3 vs 63.1 ± 15.2 vs 62.4 ± 9.2; p < 0.001). Conversely, TDMT was higher in patients with essential tremor than in those with tremor associated with dystonia and healthy controls (113.7 ± 14.7 vs 103.4 ± 11.3 vs 100.4 ± 4.2; p < 0.001). Combining the 2 tests in a pattern for essential tremor (abnormal TDMT/normal TDT) and tremor associated with dystonia (normal TDMT/abnormal TDT) yielded a positive predictive value (PPV) of 86.7% and a negative predictive value (NPV) of 70.8% for diagnosing essential tremor and a PPV of 100.0% and NPV of 74.1% for diagnosing tremor associated with dystonia. TDT and TDMT testing should prove a useful tool for differentiating tremor associated with dystonia and essential tremor. Our findings imply that the pathophysiologic mechanisms underlying tremor associated with dystonia differ from those for essential tremor.

  5. Harmaline Tremor: Underlying Mechanisms in a Potential Animal Model of Essential Tremor

    PubMed Central

    Handforth, Adrian

    2012-01-01

    Background Harmaline and harmine are tremorigenic β-carbolines that, on administration to experimental animals, induce an acute postural and kinetic tremor of axial and truncal musculature. This drug-induced action tremor has been proposed as a model of essential tremor. Here we review what is known about harmaline tremor. Methods Using the terms harmaline and harmine on PubMed, we searched for papers describing the effects of these β-carbolines on mammalian tissue, animals, or humans. Results Investigations over four decades have shown that harmaline induces rhythmic burst-firing activity in the medial and dorsal accessory inferior olivary nuclei that is transmitted via climbing fibers to Purkinje cells and to the deep cerebellar nuclei, then to brainstem and spinal cord motoneurons. The critical structures required for tremor expression are the inferior olive, climbing fibers, and the deep cerebellar nuclei; Purkinje cells are not required. Enhanced synaptic norepinephrine or blockade of ionic glutamate receptors suppresses tremor, whereas enhanced synaptic serotonin exacerbates tremor. Benzodiazepines and muscimol suppress tremor. Alcohol suppresses harmaline tremor but exacerbates harmaline-associated neural damage. Recent investigations on the mechanism of harmaline tremor have focused on the T-type calcium channel. Discussion Like essential tremor, harmaline tremor involves the cerebellum, and classic medications for essential tremor have been found to suppress harmaline tremor, leading to utilization of the harmaline model for preclinical testing of antitremor drugs. Limitations are that the model is acute, unlike essential tremor, and only approximately half of the drugs reported to suppress harmaline tremor are subsequently found to suppress tremor in clinical trials. PMID:23440018

  6. Unusual tremor syndromes: know in order to recognise.

    PubMed

    Ure, Robert J; Dhanju, Sanveer; Lang, Anthony E; Fasano, Alfonso

    2016-11-01

    Tremor is a common neurological condition in clinical practice; yet, few syndromes are widely recognised and discussed in the literature. As a result, there is an overdiagnosis of well-known causes, such as essential tremor. Many important unusual syndromes should be considered in the differential diagnosis of patients with tremor. The objective of this review is to provide broad clinical information to aid in the recognition and treatment of various unusual tremor syndromes in the adult and paediatric populations. The review comprised of a comprehensive online search using PubMed, Ovid database and Google Scholar to identify the available literature for each unusual tremor syndrome. The review includes fragile X-associated tremor/ataxia syndrome, spinocerebellar ataxia type 12, tremors caused by autosomal recessive cerebellar ataxias, myorhythmia, isolated tongue tremor, Wilson's disease, slow orthostatic tremor, peripheral trauma-induced tremor, tardive tremor and rabbit syndrome, paroxysmal tremors (hereditary chin tremor, bilateral high-frequency synchronous discharges, head tremor, limb-shaking transient ischaemic attack), bobble-head doll syndrome, spasmus nutans and shuddering attacks. Rare tremors generally present with an action tremor and a variable combination of postural and kinetic components with resting tremors less frequently seen. The phenomenology of myorhythmia is still vague and a clinical definition is proposed. The recognition of these entities should facilitate the correct diagnosis and guide the physician to a prompt intervention. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. Evolving Concepts in Posterior Subthalamic Area Deep Brain Stimulation for Treatment of Tremor: Surgical Neuroanatomy and Practical Considerations.

    PubMed

    Ramirez-Zamora, Adolfo; Smith, Heather; Kumar, Vignessh; Prusik, Julia; Phookan, Sujoy; Pilitsis, Julie G

    2016-01-01

    Although thalamic deep brain stimulation (DBS) has been established as an effective therapy for refractory tremor in Parkinson's disease and essential tremor, reports investigating the efficacy of posterior subthalamic area (PSA) DBS for severe, debilitating tremors continue to emerge. However, questions regarding the optimal anatomical target, surgical approach, programming paradigms and effectiveness compared to other targets remain. In this report, we aimed to review the current literature to assess different stereotactic techniques, anatomical considerations, adverse effects and stimulation settings in PSA DBS. A comprehensive literature review was performed searching for articles discussing tremors and PSA stimulation. We performed a quantitative analysis comparing different DBS tremor targets. Tremor improvement is consistently documented in most reports with an average reduction in tremor of 79% depending on the specific tremor syndrome. Tremor benefit in patients with multiple sclerosis (MS) tremor was significantly higher than for other stimulation targets. Transient paresthesias, imbalance, dizziness and dysarthria are the most common side effects with PSA DBS. PSA DBS is an effective and safe treatment for tremor control and should be considered in patients with refractory tremors with associated cerebellar or dystonic features, proximal tremors and MS tremor. © 2016 S. Karger AG, Basel.

  8. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits?

    PubMed Central

    Hallett, Mark; Deuschl, Günther; Toni, Ivan; Bloem, Bastiaan R.

    2012-01-01

    Tremor in Parkinson's disease has several mysterious features. Clinically, tremor is seen in only three out of four patients with Parkinson's disease, and tremor-dominant patients generally follow a more benign disease course than non-tremor patients. Pathophysiologically, tremor is linked to altered activity in not one, but two distinct circuits: the basal ganglia, which are primarily affected by dopamine depletion in Parkinson's disease, and the cerebello-thalamo-cortical circuit, which is also involved in many other tremors. The purpose of this review is to integrate these clinical and pathophysiological features of tremor in Parkinson's disease. We first describe clinical and pathological differences between tremor-dominant and non-tremor Parkinson's disease subtypes, and then summarize recent studies on the pathophysiology of tremor. We also discuss a newly proposed ‘dimmer-switch model’ that explains tremor as resulting from the combined actions of two circuits: the basal ganglia that trigger tremor episodes and the cerebello-thalamo-cortical circuit that produces the tremor. Finally, we address several important open questions: why resting tremor stops during voluntary movements, why it has a variable response to dopaminergic treatment, why it indicates a benign Parkinson's disease subtype and why its expression decreases with disease progression. PMID:22382359

  9. Effects of Alprazolam on Cortical Activity and Tremors in Patients with Essential Tremor

    PubMed Central

    Ibáñez, Jaime; González de la Aleja, Jesús; Gallego, Juan A.; Romero, Juan P.; Saíz-Díaz, Rosana A.; Benito-León, Julián; Rocon, Eduardo

    2014-01-01

    Background Essential tremor (ET) is characterised by postural and action tremors with a frequency of 4–12 Hz. Previous studies suggest that the tremor activity originates in the cerebello-thalamocortical pathways. Alprazolam is a short-acting benzodiazepine that attenuates tremors in ET. The mechanisms that mediate the therapeutic action of alprazolam are unknown; however, in healthy subjects, benzodiazepines increase cortical beta activity. In this study, we investigated the effect of alprazolam both on beta and tremor-related cortical activity and on alterations in tremor presentation in ET patients. Therefore, we characterised the dynamics of tremor and cortical activity in ET patients after alprazolam intake. Methods We recorded hand tremors and contralateral cortical activity in four recordings before and after a single dose of alprazolam. We then computed the changes in tremors, cortico-muscular coherence, and cortical activity at the tremor frequency and in the beta band. Results Alprazolam significantly attenuated tremors (EMG: 76.2±22.68%), decreased cortical activity in the tremor frequency range and increased cortical beta activity in all patients (P<0.05). At the same time, the cortico-muscular coherence at the tremor frequency became non-significant (P<0.05). We also found a significant correlation (r = 0.757, P<0.001) between the reduction in tremor severity and the increased ratio of cortical activity in the beta band to the activity observed in the tremor frequency range. Conclusions This study provides the first quantitative analysis of tremor reduction following alprazolam intake. We observed that the tremor severity decreased in association with an increased ratio of beta to tremor-related cortical activity. We hypothesise that the increase in cortical beta activity may act as a blocking mechanism and may dampen the pathological oscillatory activity, which in turn attenuates the observed tremor. PMID:24667763

  10. [Genetics of tremor].

    PubMed

    Kuhlenbäumer, G; Hopfner, F

    2018-04-01

    Tremor is a symptom of many diseases and can constitute a disease of its own: essential tremor. The genetics of essential tremor and differential diagnosis of monogenic diseases with the symptom tremor. Literature search and search of clinical genetics databases, e.g. OMIM, GeneReviews, MDSGene and the German Neurological Society (DGN) guidelines. The genetics of essential tremor remain unresolved in spite of large, adequately powered studies. Tremor is a symptom of differential diagnostic value in many movement disorders. A slight tremor might have been missed or not reported in many descriptions of movement disorders. Progress in the genetics of essential tremor probably requires a more detailed phenotyping allowing stratification into phenotypically defined subgroups. Tremor should always be included in the examination and description of movement disorders even if tremor is not a cardinal symptom. Tremor might be helpful in the differential diagnosis of hereditary dystonia, hereditary ataxia, spastic paraplegia and other movement disorders.

  11. Linking Essential Tremor to the Cerebellum-Animal Model Evidence.

    PubMed

    Handforth, Adrian

    2016-06-01

    In this review, we hope to stimulate interest in animal models as opportunities to understand tremor mechanisms within the cerebellar system. We begin by considering the harmaline model of essential tremor (ET), which has ET-like anatomy and pharmacology. Harmaline induces the inferior olive (IO) to burst fire rhythmically, recruiting rhythmic activity in Purkinje cells (PCs) and deep cerebellar nuclei (DCN). This model has fostered the IO hypothesis of ET, which postulates that factors that promote excess IO, and hence PC complex spike synchrony, also promote tremor. In contrast, the PC hypothesis postulates that partial PC cell loss underlies tremor of ET. We describe models in which chronic partial PC loss is associated with tremor, such as the Weaver mouse, and others with PC loss that do not show tremor, such as the Purkinje cell degeneration mouse. We postulate that partial PC loss with tremor is associated with terminal axonal sprouting. We then discuss tremor that occurs with large lesions of the cerebellum in primates. This tremor has variable frequency and is an ataxic tremor not related to ET. Another tremor type that is not likely related to ET is tremor in mice with mutations that cause prolonged synaptic GABA action. This tremor is probably due to mistiming within cerebellar circuitry. In the final section, we catalog tremor models involving neurotransmitter and ion channel perturbations. Some appear to be related to the IO hypothesis of ET, while in others tremor may be ataxic or due to mistiming. In summary, we offer a tentative framework for classifying animal action tremor, such that various models may be considered potentially relevant to ET, subscribing to IO or PC hypotheses, or not likely relevant, as with mistiming or ataxic tremor. Considerable further research is needed to elucidate the mechanisms of tremor in animal models.

  12. Deep brain stimulation in uncommon tremor disorders: indications, targets, and programming.

    PubMed

    Artusi, Carlo Alberto; Farooqi, Ashar; Romagnolo, Alberto; Marsili, Luca; Balestrino, Roberta; Sokol, Leonard L; Wang, Lily L; Zibetti, Maurizio; Duker, Andrew P; Mandybur, George T; Lopiano, Leonardo; Merola, Aristide

    2018-03-06

    In uncommon tremor disorders, clinical efficacy and optimal anatomical targets for deep brain stimulation (DBS) remain inadequately studied and insufficiently quantified. We performed a systematic review of PubMed.gov and ClinicalTrials.gov. Relevant articles were identified using the following keywords: "tremor", "Holmes tremor", "orthostatic tremor", "multiple sclerosis", "multiple sclerosis tremor", "neuropathy", "neuropathic tremor", "fragile X-associated tremor/ataxia syndrome", and "fragile X." We identified a total of 263 cases treated with DBS for uncommon tremor disorders. Of these, 44 had Holmes tremor (HT), 18 orthostatic tremor (OT), 177 multiple sclerosis (MS)-associated tremor, 14 neuropathy-associated tremor, and 10 fragile X-associated tremor/ataxia syndrome (FXTAS). DBS resulted in favorable, albeit partial, clinical improvements in HT cases receiving Vim-DBS alone or in combination with additional targets. A sustained improvement was reported in OT cases treated with bilateral Vim-DBS, while the two cases treated with unilateral Vim-DBS demonstrated only a transient effect. MS-associated tremor responded to dual-target Vim-/VO-DBS, but the inability to account for the progression of MS-associated disability impeded the assessment of its long-term clinical efficacy. Neuropathy-associated tremor substantially improved with Vim-DBS. In FXTAS patients, while Vim-DBS was effective in improving tremor, equivocal results were observed in those with ataxia. DBS of select targets may represent an effective therapeutic strategy for uncommon tremor disorders, although the level of evidence is currently in its incipient form and based on single cases or limited case series. An international registry is, therefore, warranted to clarify selection criteria, long-term results, and optimal surgical targets.

  13. Tremor in progressive supranuclear palsy.

    PubMed

    Fujioka, Shinsuke; Algom, Avi A; Murray, Melissa E; Sanchez-Contreras, Monica Y; Tacik, Pawel; Tsuboi, Yoshio; Van Gerpen, Jay A; Uitti, Ryan J; Rademakers, Rosa; Ross, Owen A; Wszolek, Zbigniew K; Dickson, Dennis W

    2016-06-01

    Tremor is thought to be a rare feature of progressive supranuclear palsy (PSP). We retrospectively reviewed the database of the CurePSP brain bank at Mayo Clinic Florida to retrieve all available clinical information for PSP patients. All patients underwent a standard neuropathological assessment and an immunohistochemical evaluation for tau and α-synuclein. DNA was genotyped for the MAPT H1/H2 haplotype. Of the 375 PSP patients identified, 344 had a documented presence or absence of tremor, which included 146 (42%) with tremor, including 29 (20%) with postural/action tremors, 16 (11%) with resting tremor, 7 (5%) with intention tremor, 20 (14%) with a combination of different types of tremor, and 74 (51%) patients who had tremor at some point during their illness, but details were unavailable. The tremor severity of 96% of the patients (54/55) who had this data was minimal to mild. The probability of observing a tremor during a neurological examination during the patient's illness was estimated to be ∼22%. PSP patients with postural/action tremors and PSP patients with resting tremor responded to carbidopa-levodopa therapy more frequently than PSP patients without tremor, although the therapy response was always transient. There were no significant differences in pathological findings between the tremor groups. Tremor is an inconspicuous feature of PSP; however, 42% (146/344) of the PSP patients in our study presented some form of tremor. Because there is no curative therapy for PSP, carbidopa/levodopa therapy should be tried for patients with postural, action, and resting tremor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Diagnosis and Management of Essential Tremor and Dystonic Tremor

    PubMed Central

    Gironell, Alexandre

    2009-01-01

    Essential tremor (ET) is the most common adult movement disorder. Traditionally considered as a benign disease, it can cause an important physical and psychosocial disability. Drug treatment for ET remains poor and often unsatisfactory. Current therapeutic strategies for ET are reviewed according to the level of discomfort caused by tremor. For mild tremor, nonpharmacological strategies consist of alcohol and acute pharmacological therapy; for moderate tremor, pharmacological therapies (propranolol, gabapentin, primidone, topiramate, alprazolam and other drugs); and for severe tremor, the role of functional surgery is emphasised (thalamic deep brain stimulation, thalamotomy). The more specific treatment of head tremor with the use of botulinum toxin is also discussed. Several points are discussed to guide the immediate research into this disease in the near future. Dystonic tremor is a common symptom in dystonia. Diagnostic criteria for dystonic tremor and differential diagnosis with psychogenic tremor and ET are described. Treatment of dystonic tremor matches the treatment of dystonia. In cases of symptomatic dystonic tremor similar to ET, therapeutic strategies would be the same as for ET. PMID:21179530

  15. Postural and Intention Tremors: A Detailed Clinical Study of Essential Tremor vs. Parkinson’s Disease

    PubMed Central

    Sternberg, Eliezer J.; Alcalay, Roy N.; Levy, Oren A.; Louis, Elan D.

    2013-01-01

    Background: An estimated 30–50% of essential tremor (ET) diagnoses are incorrect, and the true diagnosis in those patients is often Parkinson’s disease (PD) or other tremor disorders. There are general statements about the tremor in these ET and PD, but published data on the more subtle characteristics of tremor are surprisingly limited. Postural tremor may occur in both disorders, adding to the difficulty. There are several anecdotal impressions regarding specific features of postural tremor in ET vs. PD, including joint distribution (e.g., phalanges, metacarpal-phalangeal joints, wrist), tremor directionality (e.g., flexion-extension vs. pronation-supination), and presence of intention tremor. However, there is little data to support these impressions. Methods: In this cross-sectional study, 100 patients (ET, 50 PD) underwent detailed videotaped neurological examinations. Arm tremor was rated by a movement disorder neurologist who assessed severity and directionality across multiple joints. Results: During sustained arm extension, ET patients exhibited more wrist than metacarpal-phalangeal and phalangeal joint tremor than did PD patients (p < 0.001), and more wrist flexion-extension tremor than wrist pronation-supination tremor (p < 0.001). During the finger-nose-finger maneuver, intention tremor was present in approximately one in four (28%) ET patients vs. virtually none (4%) of the Parkinson’s patients (p < 0.001). Conclusions: We evaluated the location, severity, and directionality of postural tremor in ET and PD, and the presence of intention tremor, observing several clinical differences. We hope that detailed phenomenological data on tremor in ET and PD will help practicing physicians delineate the two diseases. PMID:23717300

  16. Quantitative methods for evaluating the efficacy of thalamic deep brain stimulation in patients with essential tremor.

    PubMed

    Wastensson, Gunilla; Holmberg, Björn; Johnels, Bo; Barregard, Lars

    2013-01-01

    Deep brain stimulation (DBS) of the thalamus is a safe and efficient method for treatment of disabling tremor in patient with essential tremor (ET). However, successful tremor suppression after surgery requires careful selection of stimulus parameters. Our aim was to examine the possible use of certain quantitative methods for evaluating the efficacy of thalamic DBS in ET patients in clinical practice, and to compare these methods with traditional clinical tests. We examined 22 patients using the Essential Tremor Rating Scale (ETRS) and quantitative assessment of tremor with the stimulator both activated and deactivated. We used an accelerometer (CATSYS tremor Pen) for quantitative measurement of postural tremor, and a eurythmokinesimeter (EKM) to evaluate kinetic tremor in a rapid pointing task. The efficacy of DBS on tremor suppression was prominent irrespective of the method used. The agreement between clinical rating of postural tremor and tremor intensity as measured by the CATSYS tremor pen was relatively high (rs = 0.74). The agreement between kinetic tremor as assessed by the ETRS and the main outcome variable from the EKM test was low (rs = 0.34). The lack of agreement indicates that the EKM test is not comparable with the clinical test. Quantitative methods, such as the CATSYS tremor pen, could be a useful complement to clinical tremor assessment in evaluating the efficacy of DBS in clinical practice. Future studies should evaluate the precision of these methods and long-term impact on tremor suppression, activities of daily living (ADL) function and quality of life.

  17. Prevalence and Correlates of Rest Tremor in Essential Tremor: Cross-Sectional Survey of 831 Patients Across Four Distinct Cohorts

    PubMed Central

    Louis, Elan D.; Hernandez, Nora; Michalec, Monika

    2015-01-01

    Background Essential tremor (ET) is among the most commonly encountered neurological disorders. Its hallmark feature is kinetic tremor. However, other tremors may also occur in ET patients, creating considerable diagnostic confusion among treating physicians. Hence, characterizing the prevalence and clinical accompaniments of these other tremors is of value. Surprisingly, there are few data on the prevalence of rest tremor in ET patients, and even fewer data on the clinical correlates of such tremor. Methods 831 patients in four distinct settings (population, genetics study, study of environmental epidemiology, brain bank) underwent a detailed videotaped neurological examination that was reviewed by a senior movement disorders neurologist. Rest tremor was evaluated in several positions (seated, standing, lying down). Results The prevalence of rest tremor while seated or standing was lowest in the population-based setting (1.9%), highest in the brain bank study (46.4%), and intermediate in the remaining two settings (9.6% and 14.7%, respectively). Rest tremor was restricted to the arms and was not observed in the legs. Rest tremor was associated with older age, longer disease duration (in some studies), greater tremor severity and, to some extent, the presence of cranial tremors. Conclusions Rest tremor can be a common clinical feature of ET. Its prevalence is highly dependent on the setting in which patients are evaluated, ranging from as low as 1% to nearly 50%. Rest tremor seems to emerge as a clinical feature with advancing disease. The anatomical substrates for this type of tremor remain unknown at present. PMID:25786561

  18. Global Examination of Triggered Tectonic Tremor following the 2017 Mw8.1 Tehuantepec Earthquake in Mexico

    NASA Astrophysics Data System (ADS)

    Chao, K.; Gonzalez-Huizar, H.; Tang, V.; Klaeser, R. D.; Mattia, M.; Van der Lee, S.

    2017-12-01

    Triggered tremor is one type of slow earthquake that activated by teleseismic surfaces waves of large magnitude earthquake. Observations of triggered tremor can help to evaluate the background ambient tremor rate and slow slip events in the surrounding region. The Mw 8.1 Tehuantepec earthquake in Mexico is an ideal tremor-triggering candidate for a global search for triggered tremor. Here, we examine triggered tremor globally following the M8.1 event and model the tremor-triggering potential. We examine 7,000 seismic traces and found a widely spread triggered tremor along the western coast of the North America occur during the surface waves of the Mw 8.1 event. Triggered tremor appeared in the San Jacinto Fault, San Andreas Fault around Parkfield, and Calaveras Fault in California, in Vancouver Island in Cascadia subduction zone, in Queen Charlotte Margin and Eastern Denali Fault in Canada, and in Alaska and Aleutian Arc. In addition, we observe a newly found triggered tremor source in Mt. Etna in Sicily Island, Italy. However, we do not find clear triggered tremor evidences in the tremor active regions in Japan, Taiwan, and in New Zealand. We model tremor-triggering potential at the triggering earthquake source and triggered tremor sources. Our modeling results suggest the source parameters of the M8.1 triggering events and the stress at the triggered fault zone are two critical factors to control tremor-triggering threshold.

  19. [Speech-related tremor of lips: a focal task-specific tremor].

    PubMed

    Morita, Shuhei; Takagi, Rieko; Miwa, Hideto; Kondo, Tomoyoshi

    2002-04-01

    We report a 66-year-old Japanese woman in whom tremor of lips appeared during speech. Her past and family histories were unremarkable. On neurological examination, there was no abnormal finding except the lip tremor. Results of laboratory findings were all within normal levels. Her MRI and EEG were normal. Surface EMG studies revealed that regular grouped discharges at a frequency of about 4-5 Hz appeared in the orbicularis oris muscle only during voluntary speaking. The tremor was not observed under conditions of a purposeless phonation or a vocalization of a simple word, suggesting that the tremor was not a vocal tremor but a task-specific tremor related to speaking. Administration of a beta-blocker and consumption of small amount of alcohol could effectively improve the tremor, possibly suggesting that this type of tremor might be a clinical variant of essential tremor.

  20. Is tremor related to celiac disease?

    PubMed

    Ameghino, Lucia; Rossi, Malco Damian; Cerquetti, Daniel; Merello, Marcelo

    2017-06-14

    Neurological features in celiac disease (CD) are not rare (5%-36%), but tremor is scarcely described. Subjects with CD and healthy controls completed an online survey using WHIGET tremor rating scale. One thousand five hundred and twelve subjects completed the survey, finally 674 CD patients and 290 healthy subjects were included. A higher prevalence of tremor in CD patients was observed in comparison to controls (28% vs 14%, P < 0.001). Frequency of family history of tremor in CD patients with and without tremor was 25% and 20% ( P = 0.2), while in the control group it was 41% and 10% ( P < 0.001). Controls with tremor showed a higher frequency of family history of tremor when compared to CD patients with tremor (41.5% vs 24.6%, P = 0.03). The results suggested that tremor in CD might be more frequent and possibly related to the disease itself and not due to associated essential tremor.

  1. Psychogenic Tremor: A Video Guide to Its Distinguishing Features

    PubMed Central

    Thenganatt, Mary Ann; Jankovic, Joseph

    2014-01-01

    Background Psychogenic tremor is the most common psychogenic movement disorder. It has characteristic clinical features that can help distinguish it from other tremor disorders. There is no diagnostic gold standard and the diagnosis is based primarily on clinical history and examination. Despite proposed diagnostic criteria, the diagnosis of psychogenic tremor can be challenging. While there are numerous studies evaluating psychogenic tremor in the literature, there are no publications that provide a video/visual guide that demonstrate the clinical characteristics of psychogenic tremor. Educating clinicians about psychogenic tremor will hopefully lead to earlier diagnosis and treatment. Methods We selected videos from the database at the Parkinson’s Disease Center and Movement Disorders Clinic at Baylor College of Medicine that illustrate classic findings supporting the diagnosis of psychogenic tremor. Results We include 10 clinical vignettes with accompanying videos that highlight characteristic clinical signs of psychogenic tremor including distractibility, variability, entrainability, suggestibility, and coherence. Discussion Psychogenic tremor should be considered in the differential diagnosis of patients presenting with tremor, particularly if it is of abrupt onset, intermittent, variable and not congruous with organic tremor. The diagnosis of psychogenic tremor, however, should not be simply based on exclusion of organic tremor, such as essential, parkinsonian, or cerebellar tremor, but on positive criteria demonstrating characteristic features. Early recognition and management are critical for good long-term outcome. PMID:25243097

  2. Scaling analysis of bilateral hand tremor movements in essential tremor patients.

    PubMed

    Blesic, S; Maric, J; Dragasevic, N; Milanovic, S; Kostic, V; Ljubisavljevic, Milos

    2011-08-01

    Recent evidence suggests that the dynamic-scaling behavior of the time-series of signals extracted from separate peaks of tremor spectra may reveal existence of multiple independent sources of tremor. Here, we have studied dynamic characteristics of the time-series of hand tremor movements in essential tremor (ET) patients using the detrended fluctuation analysis method. Hand accelerometry was recorded with (500 g) and without weight loading under postural conditions in 25 ET patients and 20 normal subjects. The time-series comprising peak-to-peak (PtP) intervals were extracted from regions around the first three main frequency components of power spectra (PwS) of the recorded tremors. The data were compared between the load and no-load condition on dominant (related to tremor severity) and non-dominant tremor side and with the normal (physiological) oscillations in healthy subjects. Our analysis shows that, in ET, the dynamic characteristics of the main frequency component of recorded tremors exhibit scaling behavior. Furthermore, they show that the two main components of ET tremor frequency spectra, otherwise indistinguishable without load, become significantly different after inertial loading and that they differ between the tremor sides (related to tremor severity). These results show that scaling, a time-domain analysis, helps revealing tremor features previously not revealed by frequency-domain analysis and suggest that distinct oscillatory central circuits may generate the tremor in ET patients.

  3. Blood harmane, blood lead, and severity of hand tremor: evidence of additive effects.

    PubMed

    Louis, Elan D; Factor-Litvak, Pam; Gerbin, Marina; Slavkovich, Vesna; Graziano, Joseph H; Jiang, Wendy; Zheng, Wei

    2011-03-01

    Tremor is a widespread phenomenon in human populations. Environmental factors are likely to play an etiological role. Harmane (1-methyl-9H-pyrido[3,4-β]indole) is a potent tremor-producing β-carboline alkaloid. Lead is another tremor-producing neurotoxicant. The effects of harmane and lead with respect to tremor have been studied in isolation. We tested the hypothesis that tremor would be particularly severe among individuals who had high blood concentrations of both of these toxicants. Blood concentrations of harmane and lead were each quantified in 257 individuals (106 essential tremor cases and 151 controls) enrolled in an environmental epidemiological study. Total tremor score (range = 0-36) was a clinical measure of tremor severity. The total tremor score ranged from 0 to 36, indicating that a full spectrum of tremor severities was captured in our sample. Blood harmane concentration correlated with total tremor score (p = 0.007), as did blood lead concentration (p = 0.045). The total tremor score was lowest in participants with both low blood harmane and lead concentrations (8.4 ± 8.2), intermediate in participants with high concentrations of either toxicant (10.5 ± 9.8), and highest in participants with high concentrations of both toxicants (13.7 ± 10.4) (p=0.01). Blood harmane and lead concentrations separately correlated with total tremor scores. Participants with high blood concentrations of both toxicants had the highest tremor scores, suggesting an additive effect of these toxicants on tremor severity. Given the very high population prevalence of tremor disorders, identifying environmental determinants is important for primary disease prevention. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Blood Harmane, Blood Lead, and Severity of Hand Tremor: Evidence of Additive Effects

    PubMed Central

    Louis, Elan D.; Factor-Litvak, Pam; Gerbin, Marina; Slavkovich, Vesna; Graziano, Joseph H; Jiang, Wendy; Zheng, Wei

    2010-01-01

    Background Tremor is a widespread phenomenon in human populations. Environmental factors are likely to play an etiological role. Harmane (1-methyl-9H-pyrido[3,4-β]indole) is a potent tremor-producing β-carboline alkaloid. Lead is another tremor-producing neurotoxicant. The effects of harmane and lead with respect to tremor have been studied in isolation. Objectives We tested the hypothesis that tremor would be particularly severe among individuals who had high blood concentrations of both of these toxicants. Methods Blood concentrations of harmane and lead were each quantified in 257 individuals (106 essential tremor cases and 151 controls) enrolled in an environmental epidemiological study. Total tremor score (range = 0 – 36) was a clinical measure of tremor severity. Results The total tremor score ranged from 0 – 36, indicating that a full spectrum of tremor severities was captured in our sample. Blood harmane concentration correlated with total tremor score (p = 0.007), as did blood lead concentration (p = 0.045). The total tremor score was lowest in participants with both low blood harmane and lead concentrations (8.4 ± 8.2), intermediate in participants with high concentrations of either toxicant (10.5 ± 9.8), and highest in participants with high concentrations of both toxicants (13.7 ± 10.4)(p = 0.01). Conclusions Blood harmane and lead concentrations separately correlated with total tremor scores. Participants with high blood concentrations of both toxicants had the highest tremor scores, suggesting an additive effect of these toxicants on tremor severity. Given the very high population prevalence of tremor disorders, identifying environmental determinants is important for primary disease prevention. PMID:21145352

  5. IgM-monoclonal gammopathy neuropathy and tremor: A first epidemiologic case control study

    PubMed Central

    Ahlskog, Matthew C.; Kumar, Neeraj; Mauermann, Michelle L.; Klein, Christopher J.

    2012-01-01

    Introduction Small case series suggest tremor occurs frequently in IgM-monoclonal gammopathy of undetermined significance (IgM-MGUS) neuropathy. Epidemiologic study to confirm this association is lacking. Whether the neuropathy or another remote IgM-effect is causal remains unsettled. Materials and methods An IgM-MGUS neuropathy case cohort (n=207) was compared to age, gender, and neuropathy impairment score (NIS) matched, other-cause neuropathy controls (n=414). Tremor details were extracted from structured neurologic evaluation. All patients underwent nerve conductions. Results Tremor occurrence was significantly higher in IgM-MGUS case cohort (29%) than in control cohort (9.2%) (p=0.001). In IgM-MGUS cases, tremor was associated with worse NIS (p=0.025) and demyelinating nerve conductions (p=0.020), but 11 of 60 (18%) IgM-MGUS cases with tremor had axonal neuropathy. In other-cause neuropathy controls, tremor was associated with axonal nerve conductions (p=0.03) but not with NIS severity (p=0.57). Tremor occurrence associated with older age in controls, (p=0.004) but not in IgM-MGUS cases (p=0.272). Most IgM-MGUS tremor cases (49/60) had a postural-kinetic tremor, 8 had rest tremor, 3 had mixed rest-action. Alternative causes of tremor was identified in 42% of IgM-MGUS cases, the most common type is inherited essential tremor 6/60 (p=0.04). Conclusions This first epidemiologic case-control study validates association between IgM-MGUS neuropathy and tremor. Among IgM-MGUS neuropathy cases, severity as well as type of neuropathy (demyelinating over axonal) correlated with tremor occurrence. IgM-MGUS paraproteinemia may increase tremor expression in persons recognized with common other risk factors for tremor. PMID:22475624

  6. Estimating small amplitude tremor sources

    NASA Astrophysics Data System (ADS)

    Katakami, S.; Ito, Y.; Ohta, K.

    2017-12-01

    Various types of slow earthquakes have been recently observed at both the updip and downdip edges of the coseismic slip areas [Obara and Kato, 2016]. Frequent occurrence of slow earthquakes may help us to reveal the physics underlying megathrust events as useful analogs. Maeda and Obara [2009] estimated spatiotemporal distribution of seismic energy radiation from low-frequency tremors. They applied their method to only the tremors, whose hypocenters had been decided with multiple station method. However, recently Katakami et al. (2016) identified a lot of continuous tremors with small amplitude that were not recorded multiple stations. These small events should be important to reveal the whole slow earthquake activity and to understand strain condition around a plate boundary in subduction zones. First, we apply the modified frequency scanning method (mFSM) at a single station to NIED Hi-net data in the southwestern Japan to understand whole tremor activity which were included weak signal tremors. Second, we developed a method to identify the tremor source area by using the difference of apparent tremor energy at each station by mFSM. We estimated the apparent source tremor energy after correcting both site amplification factor and geometrical spreading. Finally we calculate a tremor source area if the difference of apparent tremor energy between each pair of sites is the smallest. We checked a validity of this analysis by using only tremors which were already detected by envelope correlation method [Idehara et al., 2014]. We calculated the average amplitude as apparent tremor energy in 5 minutes window after occurring tremor at each station. Our results almost consistent to hypocenters which were determined the envelope correlation method. We successfully determined apparent tremor source areas of weak continuous tremors after estimating possible tremor occurrence time windows by using mFSM.

  7. Tectonic tremor activity associated with teleseismic and nearby earthquakes

    NASA Astrophysics Data System (ADS)

    Chao, K.; Obara, K.; Peng, Z.; Pu, H. C.; Frank, W.; Prieto, G. A.; Wech, A.; Hsu, Y. J.; Yu, C.; Van der Lee, S.; Apley, D. W.

    2016-12-01

    Tectonic tremor is an extremely stress-sensitive seismic phenomenon located in the brittle-ductile transition section of a fault. To better understand the stress interaction between tremor and earthquake, we conduct the following studies: (1) search for triggered tremor globally, (2) examine ambient tremor activities associated with distant earthquakes, and (3) quantify the temporal variation of ambient tremor activity before and after nearby earthquakes. First, we developed a Matlab toolbox to enhance the searching of triggered tremor globally. We have discovered new tremor sources in the inland faults in Kyushu, Kanto, and Hokkaido in Japan, southern Chile, Ecuador, and central Colombia in South America, and in South Italy. Our findings suggest that tremor is more common than previously believed and indicate the potential existence of ambient tremor in the triggered tremor active regions. Second, we adapt the statistical analysis to examine whether the long-term ambient tremor rate may affect by the dynamic stress of teleseismic earthquakes. We analyzed the data in Nankai, Hokkaido, Cascadia, and Taiwan. Our preliminary results did not show an apparent increase of ambient tremor rate after the passing of surface waves. Third, we quantify temporal changes in ambient tremor activity before and after the occurrence of local earthquakes under the southern Central Range of Taiwan with magnitudes of >=5.5 from 2004 to 2016. For a particular case, we found a temporal variation of tremor rate before and after the 2010/03/04 Mw6.3 earthquake, located about 20 km away from the active tremor source. The long-term increase in the tremor rate after the earthquake could have been caused by an increase in static stress following the mainshock. For comparison, clear evidence from seismic and GPS observations indicate a short-term increase in the tremor rate a few weeks before the mainshock. The increase in the tremor rate before the mainshock could correlate with stress changes in the earthquake rupture zone. Our study provides direct observations to imply that the stress-sensitive tectonic tremor may reflect stress variation during the nucleation process of a nearby earthquake.

  8. Tremor in School-Aged Children: A Cross-Sectional Study of Tremor in 819 Boys and Girls in Burgos, Spain

    PubMed Central

    Louis, Elan D.; Cubo, Esther; Trejo-Gabriel-Galán, José M.; Villaverde, Vanesa Ausín; Benito, Vanesa Delgado; Velasco, Sara Sáez; Vicente, Jesús Macarrón; Guevara, José Cordero; Benito-León, Julián

    2011-01-01

    Background Mild hand tremor occurs in most normal adults. There are no surveys of the prevalence or clinical correlates of such tremor among children. Methods A cross-sectional study of tics, tremor and other neurological disorders was conducted in Spanish children; thus, 819 schoolchildren in Burgos, Spain, drew Archimedes spirals with each hand. Tremor in spirals was rated (0–2) by a blinded neurologist and an overall tremor rating (0–4) was assigned. Results The mean age was 10.9 ± 3.1 years. A tremor rating of 1 (mild tremor) was present in either hand in 424 (51.7%) children, and in both hands in 88 (10.7%) children. Higher tremor ratings were very uncommon. The overall tremor rating was higher in boys than girls (1.31 ± 0.41 vs. 1.22 ± 0.34, p = 0.002) and correlated weakly yet significantly with age (ρ = 0.09, p = 0.01). Within subjects, the left hand spiral rating was greater than the right (p < 0.001). Conclusions In this cross-sectional study of 819 Spanish schoolchildren, mild tremor was commonly observed. As in adults, males had more tremor than females, tremor scores increased with age, and tremor scores were higher in the left than right arm, demonstrating that these clinical correlations seem to be more broadly generalizable to children. The functional significance of tremor in children, particularly as it relates to handwriting proficiency, deserves additional scrutiny. Copyright © 2011 S. Karger AG, Basel PMID:21894047

  9. Cerebello-cortical network fingerprints differ between essential, Parkinson's and mimicked tremors.

    PubMed

    Muthuraman, Muthuraman; Raethjen, Jan; Koirala, Nabin; Anwar, Abdul Rauf; Mideksa, Kidist G; Elble, Rodger; Groppa, Sergiu; Deuschl, Günter

    2018-06-01

    Cerebello-thalamo-cortical loops play a major role in the emergence of pathological tremors and voluntary rhythmic movements. It is unclear whether these loops differ anatomically or functionally in different types of tremor. We compared age- and sex-matched groups of patients with Parkinson's disease or essential tremor and healthy controls (n = 34 per group). High-density 256-channel EEG and multi-channel EMG from extensor and flexor muscles of both wrists were recorded simultaneously while extending the hands against gravity with the forearms supported. Tremor was thereby recorded from patients, and voluntarily mimicked tremor was recorded from healthy controls. Tomographic maps of EEG-EMG coherence were constructed using a beamformer algorithm coherent source analysis. The direction and strength of information flow between different coherent sources were estimated using time-resolved partial-directed coherence analyses. Tremor severity and motor performance measures were correlated with connection strengths between coherent sources. The topography of oscillatory coherent sources in the cerebellum differed significantly among the three groups, but the cortical sources in the primary sensorimotor region and premotor cortex were not significantly different. The cerebellar and cortical source combinations matched well with known cerebello-thalamo-cortical connections derived from functional MRI resting state analyses according to the Buckner-atlas. The cerebellar sources for Parkinson's tremor and essential tremor mapped primarily to primary sensorimotor cortex, but the cerebellar source for mimicked tremor mapped primarily to premotor cortex. Time-resolved partial-directed coherence analyses revealed activity flow mainly from cerebellum to sensorimotor cortex in Parkinson's tremor and essential tremor and mainly from cerebral cortex to cerebellum in mimicked tremor. EMG oscillation flowed mainly to the cerebellum in mimicked tremor, but oscillation flowed mainly from the cerebellum to EMG in Parkinson's and essential tremor. The topography of cerebellar involvement differed among Parkinson's, essential and mimicked tremors, suggesting different cerebellar mechanisms in tremorogenesis. Indistinguishable areas of sensorimotor cortex and premotor cerebral cortex were involved in all three tremors. Information flow analyses suggest that sensory feedback and cortical efferent copy input to cerebellum are needed to produce mimicked tremor, but tremor in Parkinson's disease and essential tremor do not depend on these mechanisms. Despite the subtle differences in cerebellar source topography, we found no evidence that the cerebellum is the source of oscillation in essential tremor or that the cortico-bulbo-cerebello-thalamocortical loop plays different tremorogenic roles in Parkinson's and essential tremor. Additional studies are needed to decipher the seemingly subtle differences in cerebellocortical function in Parkinson's and essential tremors.

  10. Longitudinal wearable tremor measurement system with activity recognition algorithms for upper limb tremor.

    PubMed

    Jeonghee Kim; Parnell, Claire; Wichmann, Thomas; DeWeerth, Stephen P

    2016-08-01

    Assessments of tremor characteristics by movement disorder physicians are usually done at single time points in clinic settings, so that the description of the tremor does not take into account the dependence of the tremor on specific behavioral situations. Moreover, treatment-induced changes in tremor or behavior cannot be quantitatively tracked for extended periods of time. We developed a wearable tremor measurement system with tremor and activity recognition algorithms for long-term upper limb behavior tracking, to characterize tremor characteristics and treatment effects in their daily lives. In this pilot study, we collected sensor data of arm movement from three healthy participants using a wrist device that included a 3-axis accelerometer and a 3-axis gyroscope, and classified tremor and activities within scenario tasks which resembled real life situations. Our results show that the system was able to classify the tremor and activities with 89.71% and 74.48% accuracies during the scenario tasks. From this results, we expect to expand our tremor and activity measurement in longer time period.

  11. Rest tremor in Parkinson's disease: Body distribution and time of appearance.

    PubMed

    Gigante, Angelo Fabio; Pellicciari, Roberta; Iliceto, Giovanni; Liuzzi, Daniele; Mancino, Paola Vincenza; Custodero, Giacomo Emanuele; Guido, Marco; Livrea, Paolo; Defazio, Giovanni

    2017-04-15

    To assess body distribution and timing of appearance of rest tremor in Parkinson's disease. Information was obtained by a computerized database containing historical information collected at the first visit and data collected during the subsequent follow-up visits. Information on rest tremor developed during the follow-up could be therefore obtained by our own observation in a proportion of patients. Among 289 patients, rest tremor was reported at disease onset in 65.4% of cases and detected at last follow-up examination in 74.4% of patients. Analysis of patients who did not report rest tremor at disease onset indicated that 26% of such patients (9% in the overall population) manifested rest tremor over the disease course. Rest tremor spread to new sites in 39% of patients who manifested rest tremor at disease onset. Regardless of tremor presentation at disease onset or during the follow-up, upper limb was the most frequent tremor localization. Over the follow-up, rest tremor developed faster in the upper limb than in other body sites. The risk of developing rest tremor during the follow-up was not affected by sex, side of motor symptom onset and site of tremor presentation. However, age of disease onset >63years was associated with an increased risk of rest tremor spread. This study provides new information about body distribution and timing of rest tremor appearance during the course of early stages of Parkinson's disease that may help clinicians in patients' counselling. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Primary bowing tremor: a task-specific movement disorder of string instrumentalists.

    PubMed

    Lederman, Richard J

    2012-12-01

    Fear of a tremulous or unsteady bow is widespread among string instrumentalists. Faulty technique and performance anxiety have generally been blamed. The cases of 4 high-level violinists and 1 violist, 3 women and 2 men, with uncontrollable bow tremor are presented. Age at onset was from 16 to 75 years, and symptom duration 8 months to 20 years at the time of neurological evaluation. The degree of tremor varied with type of bow stroke and even the portion of the bow contacting the string. Only 1 patient had a slight postural tremor of the opposite limb. In 3 of 5 the tremor was task-specific; the other 2 had mild and nontroubling tremor with other activities. The tremor appeared to worsen over time but then seemed to stabilize. The characteristics of this tremor appear to be distinguishable from the features of both essential tremor and focal dystonia; comparison is made with representative string players afflicted by these other disorders. Analogy of this tremor is made with primary writing tremor, a well-defined task-specific movement disorder also sharing at least some features with both essential tremor and writers' cramp, a focal dystonia. Hence, it was decided to call this primary bowing tremor. Clinical features, family history, diagnostic studies, and responsiveness to treatment of primary writing tremor are discussed to emphasize the similarity to primary bowing tremor. This appears to represent a previously unreported form of task-specific movement disorder of string instrumentalists.

  13. The occurrence of dystonia in upper-limb multiple sclerosis tremor.

    PubMed

    Van der Walt, A; Buzzard, K; Sung, S; Spelman, T; Kolbe, S C; Marriott, M; Butzkueven, H; Evans, A

    2015-12-01

    The pathophysiology of multiple sclerosis (MS) tremor is uncertain with limited phenotypical studies available. To investigate whether dystonia contributes to MS tremor and its severity. MS patients (n = 54) with and without disabling uni- or bilateral upper limb tremor were recruited (39 limbs per group). We rated tremor severity, writing and Archimedes spiral drawing; cerebellar dysfunction (SARA score); the Global Dystonia Scale (GDS) for proximal and distal upper limbs, dystonic posturing, mirror movements, geste antagoniste, and writer's cramp. Geste antagoniste, mirror dystonia, and dystonic posturing were more frequent and severe (p < 0.001) and dystonia scores were correlated with tremor severity in tremor compared to non-tremor patients. A 1-unit increase in distal dystonia predicted a 0.52-Bain unit (95% confidence interval (CI) 0.08-0.97), p = 0.022) increase in tremor severity and a 1-unit (95% CI 0.48-1.6, p = 0.001) increase in drawing scores. A 1-unit increase in proximal dystonia predicted 0.93-Bain unit increase (95% CI 0.45-1.41, p < 0.001) in tremor severity and 1.5-units (95% CI 0.62-2.41, p = 0.002) increase in the drawing score. Cerebellar function in the tremor limb and tremor severity was correlated (p < 0.001). Upper limb dystonia is common in MS tremor suggesting that MS tremor pathophysiology involves cerebello-pallido-thalamo-cortical network dysfunction. © The Author(s), 2015.

  14. Orthostatic tremor: a cerebellar pathology?

    PubMed Central

    Popa, Traian; García-Lorenzo, Daniel; Valabregue, Romain; Legrand, André-Pierre; Apartis, Emmanuelle; Marais, Lea; Degos, Bertrand; Hubsch, Cecile; Fernández-Vidal, Sara; Bardinet, Eric; Roze, Emmanuel; Lehéricy, Stéphane; Meunier, Sabine; Vidailhet, Marie

    2016-01-01

    Abstract See Muthuraman et al. (doi:10.1093/aww164) for a scientific commentary on this article. Primary orthostatic tremor is characterized by high frequency tremor affecting the legs and trunk during the standing position. Cerebellar defects were suggested in orthostatic tremor without direct evidence. We aimed to characterize the anatomo-functional defects of the cerebellar motor pathways in orthostatic tremor. We used multimodal neuroimaging to compare 17 patients with orthostatic tremor and 17 age- and gender-matched healthy volunteers. Nine of the patients with orthostatic tremor underwent repetitive transcranial stimulation applied over the cerebellum during five consecutive days. We quantified the duration of standing position and tremor severity through electromyographic recordings. Compared to healthy volunteers, grey matter volume in patients with orthostatic tremor was (i) increased in the cerebellar vermis and correlated positively with the duration of the standing position; and (ii) increased in the supplementary motor area and decreased in the lateral cerebellum, which both correlated with the disease duration. Functional connectivity between the lateral cerebellum and the supplementary motor area was abnormally increased in patients with orthostatic tremor, and correlated positively with tremor severity. After repetitive transcranial stimulation, tremor severity and functional connectivity between the lateral cerebellum and the supplementary motor area were reduced. We provide an explanation for orthostatic tremor pathophysiology, and demonstrate the functional relevance of cerebello-thalamo-cortical connections in tremor related to cerebellar defects. PMID:27329770

  15. Tremor

    MedlinePlus

    Tremors are unintentional trembling or shaking movements in one or more parts of your body. Most tremors occur in the hands. You can also have arm, head, face, vocal cord, trunk, and leg tremors. Tremors are most common in middle-aged and ...

  16. Contribution of inter-muscular synchronization in the modulation of tremor intensity in Parkinson's disease.

    PubMed

    He, Xin; Hao, Man-Zhao; Wei, Ming; Xiao, Qin; Lan, Ning

    2015-12-01

    Involuntary central oscillations at single and double tremor frequencies drive the peripheral neuromechanical system of muscles and joints to cause tremor in Parkinson's disease (PD). The central signal of double tremor frequency was found to correlate more directly to individual muscle EMGs (Timmermann et al. 2003). This study is aimed at investigating what central components of oscillation contribute to inter-muscular synchronization in a group of upper extremity muscles during tremor in PD patients. 11 idiopathic, tremor dominant PD subjects participated in this study. Joint kinematics during tremor in the upper extremity was recorded along with EMGs of six upper arm muscles using a novel experimental apparatus. The apparatus provided support for the upper extremity on a horizontal surface with reduced friction, so that resting tremor in the arm can be recorded with a MotionMonitor II system. In each subject, the frequencies of rhythmic firings in upper arm muscles were determined using spectral analysis. Paired and pool-averaged coherence analyses of EMGs for the group of muscles were performed to correlate the level of inter-muscular synchronization to tremor amplitudes at shoulder and elbow. The phase shift between synchronized antagonistic muscle pairs was calculated to aid coherence analysis in the muscle pool. Recorded EMG revealed that rhythmic firings were present in most recorded muscles, which were either synchronized to form phase-locked bursting cycles at a subject specific frequency, or unsynchronized with a random phase distribution. Paired coherence showed a stronger synchronization among a subset of recorded arm muscles at tremor frequency than that at double tremor frequency. Furthermore, the number of synchronized muscles in the arm was positively correlated to tremor amplitudes at elbow and shoulder. Pool-averaged coherence at tremor frequency also showed a better correlation with the amplitude of resting tremor than that of double tremor frequency, indicating that the neuromechanical coupling in peripheral neuromuscular system was stronger at tremor frequency. Both paired and pool-averaged coherences are more consistent indexes to correlate to tremor intensity in a group of upper extremity muscles of PD patients. The central drive at tremor frequency contributes mainly to synchronize peripheral muscles in the modulation of tremor intensity.

  17. San Andreas tremor cascades define deep fault zone complexity

    USGS Publications Warehouse

    Shelly, David R.

    2015-01-01

    Weak seismic vibrations - tectonic tremor - can be used to delineate some plate boundary faults. Tremor on the deep San Andreas Fault, located at the boundary between the Pacific and North American plates, is thought to be a passive indicator of slow fault slip. San Andreas Fault tremor migrates at up to 30 m s-1, but the processes regulating tremor migration are unclear. Here I use a 12-year catalogue of more than 850,000 low-frequency earthquakes to systematically analyse the high-speed migration of tremor along the San Andreas Fault. I find that tremor migrates most effectively through regions of greatest tremor production and does not propagate through regions with gaps in tremor production. I interpret the rapid tremor migration as a self-regulating cascade of seismic ruptures along the fault, which implies that tremor may be an active, rather than passive participant in the slip propagation. I also identify an isolated group of tremor sources that are offset eastwards beneath the San Andreas Fault, possibly indicative of the interface between the Monterey Microplate, a hypothesized remnant of the subducted Farallon Plate, and the North American Plate. These observations illustrate a possible link between the central San Andreas Fault and tremor-producing subduction zones.

  18. Slip rate and tremor genesis in Cascadia

    USGS Publications Warehouse

    Wech, Aaron G.; Bartlow, Noel M.

    2014-01-01

    At many plate boundaries, conditions in the transition zone between seismogenic and stable slip produce slow earthquakes. In the Cascadia subduction zone, these events are consistently observed as slow, aseismic slip on the plate interface accompanied by persistent tectonic tremor. However, not all slow slip at other plate boundaries coincides spatially and temporally with tremor, leaving the physics of tremor genesis poorly understood. Here we analyze seismic, geodetic, and strainmeter data in Cascadia to observe for the first time a large, tremor-generating slow earthquake change from tremor-genic to silent and back again. The tremor falls silent at reduced slip speeds when the migrating slip front pauses as it loads the stronger adjacent fault segment to failure. The finding suggests that rheology and slip-speed-regulated stressing rate control tremor genesis, and the same section of fault can slip both with and without detectable tremor, limiting tremor's use as a proxy for slip.

  19. Postural tremor and chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Cao, Yiming; Menon, Parvathi; Ching-Fen Chang, Florence; Mahant, Neil; Geevasinga, Nimeshan; Fung, Victor S C; Vucic, Steve

    2017-03-01

    Chronic inflammatory demyelinating polyneuropathy (CIDP) typically presents with a combination of sensory and motor impairments. Tremor is recognized as a common and debilitating feature in CIDP, although the underlying mechanisms are unclear. Clinical tremor severity and disability scores were collected prospectively in 25 CIDP patients and compared with 22 neuromuscular controls. Postural and kinetic tremor were significantly more frequent in CIDP patients (80%) than in neuromuscular controls (35%; P < 0.005). Tremor severity and tremor-related disability were also significantly greater in CIDP patients than in controls. Accelerometry data confirmed the presence of a 5.5 Hz postural tremor and a 5 Hz kinetic tremor. Tremor appears to be a common clinical feature of CIDP that results in significant disability. Sensory and motor impairment may be associated with development of tremor in CIDP. Muscle Nerve 55: 338-343, 2017. © 2016 Wiley Periodicals, Inc.

  20. Quantitative Assessment of Parkinsonian Tremor Based on an Inertial Measurement Unit

    PubMed Central

    Dai, Houde; Zhang, Pengyue; Lueth, Tim C.

    2015-01-01

    Quantitative assessment of parkinsonian tremor based on inertial sensors can provide reliable feedback on the effect of medication. In this regard, the features of parkinsonian tremor and its unique properties such as motor fluctuations and dyskinesia are taken into account. Least-square-estimation models are used to assess the severities of rest, postural, and action tremors. In addition, a time-frequency signal analysis algorithm for tremor state detection was also included in the tremor assessment method. This inertial sensor-based method was verified through comparison with an electromagnetic motion tracking system. Seven Parkinson’s disease (PD) patients were tested using this tremor assessment system. The measured tremor amplitudes correlated well with the judgments of a neurologist (r = 0.98). The systematic analysis of sensor-based tremor quantification and the corresponding experiments could be of great help in monitoring the severity of parkinsonian tremor. PMID:26426020

  1. Task Specific Tremors.

    PubMed

    Friedman, Joseph H

    2015-07-01

    A patient reported bilateral hand tremors when writing but not with other tasks. These "task specific" tremors are considered subcategories of essential tremor. Primary writing tremor, in which the tremor occurs only with writing, is probably the most common. The important teaching point is that the "standard" tremor assessment, watching the patient holding a sustained posture and touching his finger to the examiner's and then back to the nose is not adequate. Patients should be tested doing the activity that causes them the most difficulty.

  2. Beta 1 versus nonselective blockade in therapy of essential tremor.

    PubMed

    Larsen, T A; Teräväinen, H

    1983-01-01

    The beta 1-selective blocker metoprolol was compared to propranolol and a placebo in a double-blind crossover trial in 24 patients with essential tremor. Both beta blockers suppressed the essential tremor, but metoprolol, which caused a mean reduction of 32.0% in tremor intensity from the base-line value, was less effective than propranolol, which reduced mean tremor intensity by 41.3%. Subjective benefit for their tremor was found by 15 of the patients taking propranolol and by one taking metoprolol. The tremor frequency was not affected. No serious side effects were observed. Metoprolol may offer an alternative for those essential tremor patients who cannot tolerate propranolol.

  3. Medical Treatment of Essential Tremor

    PubMed Central

    Rajput, Ali H; Rajput, Alex

    2014-01-01

    Essential tremor (ET) is the most common pathological tremor characterized by upper limb action—postural tremor (PT)/kinetic tremor (KT). There are no specific neuropathological or biochemical abnormalities in ET. The disability is consequent to amplitude of KT, which may remain mild without handicap or may become disabling. The most effective drugs for sustained tremor control are propranolol and primidone. Symptomatic drug treatment must be individualized depending on the circumstances that provoke the tremor-related disability. Broad guidelines for treatment are discussed in this review. Patients may be treated intermittently only on stressful occasions with propranolol, clonazepam, or primidone monotherapy, or an alcoholic drink. Those with persistently disabling tremor need continued treatment. PMID:24812533

  4. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor.

    PubMed

    Buijink, A W G; Broersma, M; van der Stouwe, A M M; van Wingen, G A; Groot, P F C; Speelman, J D; Maurits, N M; van Rootselaar, A F

    2015-04-01

    Cerebellar circuits are hypothesized to play a central role in the pathogenesis of essential tremor. Rhythmic finger tapping is known to strongly engage the cerebellar motor circuitry. We characterize cerebellar and, more specifically, dentate nucleus function, and neural correlates of cerebellar output in essential tremor during rhythmic finger tapping employing functional MRI. Thirty-one propranolol-sensitive essential tremor patients with upper limb tremor and 29 healthy controls were measured. T2*-weighted EPI sequences were acquired. The task consisted of alternating rest and finger tapping blocks. A whole-brain and region-of-interest analysis was performed, the latter focusing on the cerebellar cortex, dentate nucleus and inferior olive nucleus. Activations were also related to tremor severity. In patients, dentate activation correlated positively with tremor severity as measured by the tremor rating scale part A. Patients had reduced activation in widespread cerebellar cortical regions, and additionally in the inferior olive nucleus, and parietal and frontal cortex, compared to controls. The increase in dentate activation with tremor severity supports involvement of the dentate nucleus in essential tremor. Cortical and cerebellar changes during a motor timing task in essential tremor might point to widespread changes in cerebellar output in essential tremor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The effect of inertial loading on wrist postural tremor in essential tremor.

    PubMed

    Héroux, M E; Pari, G; Norman, K E

    2009-05-01

    Determine the effect of inertial loading on the strength of motor unit entrainment and the synergistic/competitive interaction between central and mechanical reflex tremor components in subjects with essential tremor (ET). Twenty-three subjects with ET and 22 controls held their hand in an outstretched position while supporting sub-maximal loads (no-load, 5%, 15% and 25% 1-repetition maximum). Hand postural tremor and wrist extensor neuromuscular activity were recorded. Inertial loading resulted in a reduction in postural tremor in all ET subjects. The largest reduction in tremor amplitude occurred between 5% and 15% loads, which was associated with spectral separation of the mechanical reflex and central tremor components in a large number of ET subjects. Despite an increase in overall neuromuscular activity with inertial loading, EMG tremor spectral power did not increase with loading. The effect of inertial loading on postural tremor amplitude appears to be mediated in large part by its effect on the interaction between mechanical reflex and central tremor components. Also, ET is associated with a constant absolute level of motor unit entrainment. The amplitude of postural tremor is dependent on both central and peripheral factors, with proportionally greater motor unit entrainment occurring at low contraction intensities.

  6. Tremor analysis separates Parkinson's disease and dopamine receptor blockers induced parkinsonism.

    PubMed

    Shaikh, Aasef G

    2017-05-01

    Parkinson's disease, the most common cause of parkinsonism is often difficult to distinguish from its second most common etiology due to exposure to dopamine receptor blocking agents such as antiemetics and neuroleptics. Dual axis accelerometry was used to quantify tremor in 158 patients with parkinsonism; 62 had Parkinson's disease and 96 were clinically diagnosed with dopamine receptor blocking agent-induced parkinsonism. Tremor was measured while subjects rested arms (resting tremor), outstretched arms in front (postural tremor), and reached a target (kinetic tremor). Cycle-by-cycle analysis was performed to measure cycle duration, oscillation amplitude, and inter-cycle variations in the frequency. Patients with dopamine receptor blocker induced parkinsonism had lower resting and postural tremor amplitude. There was a substantial increase of kinetic tremor amplitude in both disorders. Postural and resting tremor in subjects with dopamine receptor blocking agent-induced parkinsonism was prominent in the abduction-adduction plane. In contrast, the Parkinson's disease tremor had equal amplitude in all three planes of motion. Tremor frequency was comparable in both groups. Remarkable variability in the width of the oscillatory cycles suggested irregularity in the oscillatory waveforms in both subtypes of parkinsonism. Quantitative tremor analysis can distinguish Parkinson's disease from dopamine receptor blocking agent-induced parkinsonism.

  7. Quantitatively measured tremor in hand-arm vibration-exposed workers.

    PubMed

    Edlund, Maria; Burström, Lage; Hagberg, Mats; Lundström, Ronnie; Nilsson, Tohr; Sandén, Helena; Wastensson, Gunilla

    2015-04-01

    The aim of the present study was to investigate the possible increase in hand tremor in relation to hand-arm vibration (HAV) exposure in a cohort of exposed and unexposed workers. Participants were 178 male workers with or without exposure to HAV. The study is cross-sectional regarding the outcome of tremor and has a longitudinal design with respect to exposure. The dose of HAV exposure was collected via questionnaires and measurements at several follow-ups. The CATSYS Tremor Pen(®) was used for measuring postural tremor. Multiple linear regression methods were used to analyze associations between different tremor variables and HAV exposure, along with predictor variables with biological relevance. There were no statistically significant associations between the different tremor variables and cumulative HAV or current exposure. Age was a statistically significant predictor of variation in tremor outcomes for three of the four tremor variables, whereas nicotine use was a statistically significant predictor of either left or right hand or both hands for all four tremor variables. In the present study, there was no evidence of an exposure-response association between HAV exposure and measured postural tremor. Increase in age and nicotine use appeared to be the strongest predictors of tremor.

  8. An approach to source characterization of tremor signals associated with eruptions and lahars

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroyuki; Mothes, Patricia; Ruiz, Mario; Maeda, Yuta

    2015-11-01

    Tremor signals are observed in association with eruption activity and lahar descents. Reduced displacement ( D R) derived from tremor signals has been used to quantify tremor sources. However, tremor duration is not considered in D R, which makes it difficult to compare D R values estimated for different tremor episodes. We propose application of the amplitude source location (ASL) method to characterize the sources of tremor signals. We used this method to estimate the tremor source location and source amplitude from high-frequency (5-10 Hz) seismic amplitudes under the assumption of isotropic S-wave radiation. We considered the source amplitude to be the maximum value during tremor. We estimated the cumulative source amplitude ( I s) as the offset value of the time-integrated envelope of the vertical seismogram of tremor corrected for geometrical spreading and medium attenuation in the 5-10-Hz band. For eruption tremor signals, we also estimated the cumulative source pressure ( I p) from an infrasonic envelope waveform corrected for geometrical spreading. We studied these parameters of tremor signals associated with eruptions and lahars and explosion events at Tungurahua volcano, Ecuador. We identified two types of eruption tremor at Tungurahua: noise-like inharmonic waveforms and harmonic oscillatory signals. We found that I s increased linearly with increasing source amplitude for lahar tremor signals and explosion events, but I s increased exponentially with increasing source amplitude for inharmonic eruption tremor signals. The source characteristics of harmonic eruption tremor signals differed from those of inharmonic tremor signals. We found a linear relation between I s and I p for both explosion events and eruption tremor. Because I p may be proportional to the total mass involved during an eruption episode, this linear relation suggests that I s may be useful to quantify eruption size. The I s values we estimated for inharmonic eruption tremor were consistent with previous estimates of volumes of tephra fallout. The scaling relations among source parameters that we identified will contribute to our understanding of the dynamic processes associated with eruptions and lahars. This new approach is applicable in analyzing tremor sources in real time and may contribute to early assessment of the size of eruptions and lahars.

  9. Dopamine controls Parkinson's tremor by inhibiting the cerebellar thalamus.

    PubMed

    Dirkx, Michiel F; den Ouden, Hanneke E M; Aarts, Esther; Timmer, Monique H M; Bloem, Bastiaan R; Toni, Ivan; Helmich, Rick C

    2017-03-01

    Parkinson's resting tremor is related to altered cerebral activity in the basal ganglia and the cerebello-thalamo-cortical circuit. Although Parkinson's disease is characterized by dopamine depletion in the basal ganglia, the dopaminergic basis of resting tremor remains unclear: dopaminergic medication reduces tremor in some patients, but many patients have a dopamine-resistant tremor. Using pharmacological functional magnetic resonance imaging, we test how a dopaminergic intervention influences the cerebral circuit involved in Parkinson's tremor. From a sample of 40 patients with Parkinson's disease, we selected 15 patients with a clearly tremor-dominant phenotype. We compared tremor-related activity and effective connectivity (using combined electromyography-functional magnetic resonance imaging) on two occasions: ON and OFF dopaminergic medication. Building on a recently developed cerebral model of Parkinson's tremor, we tested the effect of dopamine on cerebral activity associated with the onset of tremor episodes (in the basal ganglia) and with tremor amplitude (in the cerebello-thalamo-cortical circuit). Dopaminergic medication reduced clinical resting tremor scores (mean 28%, range -12 to 68%). Furthermore, dopaminergic medication reduced tremor onset-related activity in the globus pallidus and tremor amplitude-related activity in the thalamic ventral intermediate nucleus. Network analyses using dynamic causal modelling showed that dopamine directly increased self-inhibition of the ventral intermediate nucleus, rather than indirectly influencing the cerebello-thalamo-cortical circuit through the basal ganglia. Crucially, the magnitude of thalamic self-inhibition predicted the clinical dopamine response of tremor. Dopamine reduces resting tremor by potentiating inhibitory mechanisms in a cerebellar nucleus of the thalamus (ventral intermediate nucleus). This suggests that altered dopaminergic projections to the cerebello-thalamo-cortical circuit have a role in Parkinson's tremor.aww331media15307619934001. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Lessons from (triggered) tremor

    USGS Publications Warehouse

    Gomberg, Joan

    2010-01-01

    I test a “clock-advance” model that implies triggered tremor is ambient tremor that occurs at a sped-up rate as a result of loading from passing seismic waves. This proposed model predicts that triggering probability is proportional to the product of the ambient tremor rate and a function describing the efficacy of the triggering wave to initiate a tremor event. Using data mostly from Cascadia, I have compared qualitatively a suite of teleseismic waves that did and did not trigger tremor with ambient tremor rates. Many of the observations are consistent with the model if the efficacy of the triggering wave depends on wave amplitude. One triggered tremor observation clearly violates the clock-advance model. The model prediction that larger triggering waves result in larger triggered tremor signals also appears inconsistent with the measurements. I conclude that the tremor source process is a more complex system than that described by the clock-advance model predictions tested. Results of this and previous studies also demonstrate that (1) conditions suitable for tremor generation exist in many tectonic environments, but, within each, only occur at particular spots whose locations change with time; (2) any fluid flow must be restricted to less than a meter; (3) the degree to which delayed failure and secondary triggering occurs is likely insignificant; and 4) both shear and dilatational deformations may trigger tremor. Triggered and ambient tremor rates correlate more strongly with stress than stressing rate, suggesting tremor sources result from time-dependent weakening processes rather than simple Coulomb failure.

  11. Orthostatic tremor: a cerebellar pathology?

    PubMed

    Gallea, Cécile; Popa, Traian; García-Lorenzo, Daniel; Valabregue, Romain; Legrand, André-Pierre; Apartis, Emmanuelle; Marais, Lea; Degos, Bertrand; Hubsch, Cecile; Fernández-Vidal, Sara; Bardinet, Eric; Roze, Emmanuel; Lehéricy, Stéphane; Meunier, Sabine; Vidailhet, Marie

    2016-08-01

    SEE MUTHURAMAN ET AL DOI101093/AWW164 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Primary orthostatic tremor is characterized by high frequency tremor affecting the legs and trunk during the standing position. Cerebellar defects were suggested in orthostatic tremor without direct evidence. We aimed to characterize the anatomo-functional defects of the cerebellar motor pathways in orthostatic tremor. We used multimodal neuroimaging to compare 17 patients with orthostatic tremor and 17 age- and gender-matched healthy volunteers. Nine of the patients with orthostatic tremor underwent repetitive transcranial stimulation applied over the cerebellum during five consecutive days. We quantified the duration of standing position and tremor severity through electromyographic recordings. Compared to healthy volunteers, grey matter volume in patients with orthostatic tremor was (i) increased in the cerebellar vermis and correlated positively with the duration of the standing position; and (ii) increased in the supplementary motor area and decreased in the lateral cerebellum, which both correlated with the disease duration. Functional connectivity between the lateral cerebellum and the supplementary motor area was abnormally increased in patients with orthostatic tremor, and correlated positively with tremor severity. After repetitive transcranial stimulation, tremor severity and functional connectivity between the lateral cerebellum and the supplementary motor area were reduced. We provide an explanation for orthostatic tremor pathophysiology, and demonstrate the functional relevance of cerebello-thalamo-cortical connections in tremor related to cerebellar defects. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Design and validation of a high-order weighted-frequency fourier linear combiner-based Kalman filter for parkinsonian tremor estimation.

    PubMed

    Zhou, Y; Jenkins, M E; Naish, M D; Trejos, A L

    2016-08-01

    The design of a tremor estimator is an important part of designing mechanical tremor suppression orthoses. A number of tremor estimators have been developed and applied with the assumption that tremor is a mono-frequency signal. However, recent experimental studies have shown that Parkinsonian tremor consists of multiple frequencies, and that the second and third harmonics make a large contribution to the tremor. Thus, the current estimators may have limited performance on estimation of the tremor harmonics. In this paper, a high-order tremor estimation algorithm is proposed and compared with its lower-order counterpart and a widely used estimator, the Weighted-frequency Fourier Linear Combiner (WFLC), using 18 Parkinsonian tremor data sets. The results show that the proposed estimator has better performance than its lower-order counterpart and the WFLC. The percentage estimation accuracy of the proposed estimator is 85±2.9%, an average improvement of 13% over the lower-order counterpart. The proposed algorithm holds promise for use in wearable tremor suppression devices.

  13. Global search of triggered non-volcanic tremor

    NASA Astrophysics Data System (ADS)

    Chao, Tzu-Kai Kevin

    Deep non-volcanic tremor is a newly discovered seismic phenomenon with low amplitude, long duration, and no clear P- and S-waves as compared with regular earthquake. Tremor has been observed at many major plate-boundary faults, providing new information about fault slip behaviors below the seismogenic zone. While tremor mostly occurs spontaneously (ambient tremor) or during episodic slow-slip events (SSEs), sometimes tremor can also be triggered during teleseismic waves of distance earthquakes, which is known as "triggered tremor". The primary focus of my Ph.D. work is to understand the physical mechanisms and necessary conditions of triggered tremor by systematic investigations in different tectonic regions. In the first chapter of my dissertation, I conduct a systematic survey of triggered tremor beneath the Central Range (CR) in Taiwan for 45 teleseismic earthquakes from 1998 to 2009 with Mw ≥ 7.5. Triggered tremors are visually identified as bursts of high-frequency (2-8 Hz), non-impulsive, and long-duration seismic energy that are coherent among many seismic stations and modulated by the teleseismic surface waves. A total of 9 teleseismic earthquakes has triggered clear tremor in Taiwan. The peak ground velocity (PGV) of teleseismic surface waves is the most important factor in determining tremor triggering potential, with an apparent threshold of ˜0.1 cm/s, or 7-8 kPa. However, such threshold is partially controlled by the background noise level, preventing triggered tremor with weaker amplitude from being observed. In addition, I find a positive correlation between the PGV and the triggered tremor amplitude, which is consistent with the prediction of the 'clock-advance' model. This suggests that triggered tremor can be considered as a sped-up occurrence of ambient tremor under fast loading from the passing surface waves. Finally, the incident angles of surface waves also play an important rule in controlling the tremor triggering potential. The next chapter focuses on a systematic comparison of triggered tremor around the Calaveras Fault (CF) in northern California (NC), the Parkfield-Cholame section of the San Andreas Fault (SAF) in central California (CC), and the San Jacinto Fault (SJF) in southern California (SC). Out of 42 large (Mw ≥7.5) earthquakes between 2001 and 2010, only the 2002 Mw 7.9 Denali fault earthquake triggered clear tremor in NC and SC. In comparison, abundant triggered and ambient tremor has been observed in CC. Further analysis reveal that the lack of triggered tremor observations in SC and NC is not simply a consequence of their different background noise levels as compared to CC, but rather reflects different background tremor rates in these regions. In the final chapter, I systematically search for triggered tremor following the 2011 Mw9.0 Tohoku-Oki earthquake in the regions where ambient or triggered tremor has been found before. The main purpose is to check whether triggered tremor is observed in regions when certain conditions (e.g., surface wave amplitudes) are met. Triggered tremor is observed in southwest Japan, Taiwan, the Aleutian Arc, south-central Alaska, northern Vancouver Island, the Parkfield-Cholame section of the SAF in CC and the SJF in SC, and the North Island of New Zealand. Such a widespread triggering of tremor is not too surprising because of the large amplitude surface waves (minimum peak value of ˜0.1 cm/s) and the associated dynamic stresses (at least ˜7-8 kPa), which is one of the most important factors in controlling the triggering threshold. The triggered tremor in different region is located close to or nearby the ambient tremor active area. In addition, the amplitudes of triggered tremor have positive correlations with the amplitudes of teleseismic surface waves among many regions. Moreover, both Love and Rayleigh waves participate in triggering tremor in different regions, and their triggering potential is somewhat controlled by the incident angles. In summary, systematically surveys of triggered tremor in different tectonic regions reveal that triggered tremor shares similar physical mechanism (shear failure on the fault interface) as ambient tremor but with different loading conditions. The amplitude of the teleseismic surface wave is one of the most important factors in controlling the tremor triggering threshold. In addition, the frequency contents and incident angles of the triggering waves, and local fault geometry and ambient conditions also play certain roles in determining the triggering potential. On the other hand, the background noise level and seismic network coverage and station quality also could affect the apparent triggering threshold. (Abstract shortened by UMI.).

  14. Is Slow Slip a Cause or a Result of Tremor?

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Ampuero, J. P.

    2017-12-01

    While various modeling efforts have been conducted to reproduce subsets of observations of tremor and slow-slip events (SSE), a fundamental but yet unanswered question is whether slow slip is a cause or a result of tremor. Tremor is commonly regarded as driven by SSE. This view is mainly based on observations of SSE without detected tremors and on (frequency-limited) estimates of total tremor seismic moment being lower than 1% of their concomitant SSE moment. In previous studies we showed that models of heterogeneous faults, composed of seismic asperities embedded in an aseismic fault zone matrix, reproduce quantitatively the hierarchical patterns of tremor migration observed in Cascadia and Shikoku. To address the title question, we design two end-member models of a heterogeneous fault. In the SSE-driven-tremor model, slow slip events are spontaneously generated by the matrix (even in the absence of seismic asperities) and drive tremor. In the Tremor-driven-SSE model the matrix is stable (it slips steadily in the absence of asperities) and slow slip events result from the collective behavior of tremor asperities interacting via transient creep (local afterslip fronts). We study these two end-member models through 2D quasi-dynamic multi-cycle simulations of faults governed by rate-and-state friction with heterogeneous frictional properties and effective normal stress, using the earthquake simulation software QDYN (https://zenodo.org/record/322459). We find that both models reproduce first-order observations of SSE and tremor and have very low seismic to aseismic moment ratio. However, the Tremor-driven-SSE model assumes a simpler rheology than the SSE-driven-tremor model and matches key observations better and without fine tuning, including the ratio of propagation speeds of forward SSE and rapid tremor reversals and the decay of inter-event times of Low Frequency Earthquakes. These modeling results indicate that, in contrast to a common view, SSE could be a result of tremor activity. We also find that, despite important interactions between asperities, tremor activity rates are proportional to the underlying aseismic slip rate, supporting an approach to estimate SSE properties with high spatial-temporal resolutions via tremor activity.

  15. Upper-limb tremor suppression with a 7DOF exoskeleton power-assist robot.

    PubMed

    Kiguchi, Kazuo; Hayashi, Yoshiaki

    2013-01-01

    A tremor which is one of the involuntary motions is somewhat rhythmic motion that may occur in various body parts. Although there are several kinds of the tremor, an essential tremor is the most common tremor disorder of the arm. The essential tremor is a disorder of unknown cause, and it is common in the elderly. The essential tremor interferes with a patient's daily living activity, because it may occur during a voluntary motion. If a patient of an essential tremor uses an EMG-based controlled power-assist robot, the robot might misunderstand the user's motion intention because of the effect of the essential tremor. In that case, upper-limb power-assist robots must carry out tremor suppression as well as power-assist, since a person performs various precise tasks with certain tools by the upper-limb in daily living. Therefore, it is important to suppress the tremor at the hand and grasped tool. However, in the case of the tremor suppression control method which suppressed the vibrations of the hand and the tip of the tool, vibration of other part such as elbow might occur. In this paper, the tremor suppression control method for upper-limb power-assist robot is proposed. In the proposed method, the vibration of the elbow is suppressed in addition to the hand and the tip of the tool. The validity of the proposed method was verified by the experiments.

  16. Experimental support that ocular tremor in Parkinson's disease does not originate from head movement.

    PubMed

    Gitchel, George T; Wetzel, Paul A; Qutubuddin, Abu; Baron, Mark S

    2014-07-01

    Our recent report of ocular tremor in Parkinson's disease (PD) has raised considerable controversy as to the origin of the tremor. Using an infrared based eye tracker and a magnetic head tracker, we reported that ocular tremor was recordable in PD subjects with no apparent head tremor. However, other investigators suggest that the ocular tremor may represent either transmitted appendicular tremor or subclinical head tremor inducing the vestibulo-ocular reflex (VOR). The present study aimed to further investigate the origin of ocular tremor in PD. Eye movements were recorded in 8 PD subjects both head free, and with full head restraint by means of a head holding device and a dental impression bite plate. Head movements were recorded independently using both a high sensitivity tri-axial accelerometer and a magnetic tracking system, each synchronized to the eye tracker. Ocular tremor was observed in all 8 PD subjects and was not influenced by head free and head fixed conditions. Both magnetic tracking and accelerometer recordings supported that the ocular tremor was fully independent of head position. The present study findings support our initial findings that ocular tremor is a fundamental feature of PD unrelated to head movements. Although the utility of ocular tremor for diagnostic purposes requires validation, current findings in large cohorts of PD subjects suggest its potential as a reliable clinical biomarker. Published by Elsevier Ltd.

  17. MRI-guided focused ultrasound thalamotomy in non-ET tremor syndromes.

    PubMed

    Fasano, Alfonso; Llinas, Maheleth; Munhoz, Renato P; Hlasny, Eugen; Kucharczyk, Walter; Lozano, Andres M

    2017-08-22

    To report the 6-month single-blinded results of unilateral thalamotomy with MRI-guided focused ultrasound (MRgFUS) in patients with tremors other than essential tremor. Three patients with tremor due to Parkinson disease, 2 with dystonic tremor in the context of cervicobrachial dystonia and writer's cramp, and 1 with dystonia gene-associated tremor underwent MRgFUS targeting the ventro-intermedius nucleus (Vim) of the dominant hemisphere. The primary endpoint was the reduction of lateralized items of the Tremor Rating Scale of contralateral hemibody assessed by a blinded rater. All patients achieved a statistically significant, immediate, and sustained improvement of the contralateral tremor score by 42.2%, 52.0%, 55.9%, and 52.9% at 1 week and 1, 3, and 6 months after the procedure, respectively. All patients experienced transient side effects and 2 patients experienced persistent side effects at the time of last evaluation: hemitongue numbness and hemiparesis with hemihypoesthesia. Vim MRgFUS is a promising, incision-free, but nevertheless invasive technique to effectively treat tremors other than essential tremor. Future studies on larger samples and longer follow-up will further define its effectiveness and safety. NCT02252380. This study provides Class IV evidence that for patients with tremor not caused by essential tremor, MRgFUS of the Vim improves the tremor of the contralateral hemibody at 6 months. © 2017 American Academy of Neurology.

  18. Laryngoscopy evaluation protocol for the differentiation of essential and dystonic voice tremor.

    PubMed

    Moraes, Bruno Teixeira de; Biase, Noemi Grigoletto de

    2016-01-01

    Although syndromes that cause voice tremor have singular characteristics, the differential diagnosis of these diseases is a challenge because of the overlap of the existing signs and symptoms. To develop a task-specific protocol to assess voice tremor by means of nasofibrolaryngoscopy and to identify those tasks that can distinguish between essential and dystonic tremor syndromes. Cross-sectional study. The transnasal fiberoptic laryngoscopy protocol, which consisted of the assessment of palate, pharynx and larynx tremor during the performance of several vocal and non-vocal tasks with distinct phenomenological characteristics, was applied to 19 patients with voice tremor. Patients were diagnosed with essential or dystonic tremor according to the phenomenological characterization of each group. Once they were classified, the tasks associated with the presence of tremor in each syndrome were identified. The tasks that significantly contributed to the differential diagnosis between essential and dystonic tremor were /s/ production, continuous whistling and reduction of tremor in falsetto. These tasks were phenomenologically different with respect to the presence of tremor in the two syndromes. The protocol of specific tasks by means of transnasal fiberoptic laryngoscopy is a viable method to differentiate between essential and dystonic voice tremor syndromes through the following tasks: /s/ production, continuous whistling and reduction of tremor in falsetto. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  19. Effects of beta-blockers and nicardipine on oxotremorine-induced tremor in common marmosets.

    PubMed

    Mitsuda, M; Nomoto, M; Iwata, S

    1999-10-01

    Effects of beta-blockers (propranolol, arotinolol and nipradilol) and a Ca2+ channel blocker (nicardipine) on oxotremorine-induced tremor were studied in common marmosets. Generalized tremor was elicited by an intraperitoneal administration of 0.25 mg/kg oxotremorine. Intensity of the tremor was classified into 7 degrees, and it was evaluated every 10 min. The total intensity of oxotremorine-induced tremor for each drug was expressed as "points", which were the sum of tremor intensity scores evaluated every 10 min up to 190 min following the administration of oxotremorine. Beta-blockers significantly suppressed the tremor. On the other hand, the Ca2+ channel blocker exacerbated the tremor.

  20. Peripheral beta-adrenergic blockade treatment of parkinsonian tremor.

    PubMed

    Foster, N L; Newman, R P; LeWitt, P A; Gillespie, M M; Larsen, T A; Chase, T N

    1984-10-01

    The effect of nadolol, a peripherally acting beta-adrenergic blocker, on resting, postural, and intention tremor was examined in 8 patients with idiopathic Parkinson's disease whose motor symptoms, other than tremor, were well controlled with conventional medications. In a double-blind, placebo-controlled, crossover design, patients received 80 to 320 mg of nadolol for six weeks while continuing their previous therapeutic regimen. Accelerometer readings showed a 34% reduction (p less than 0.025) in tremor distance, but no change in tremor frequency, during nadolol therapy. Maximum benefit was achieved with a dose of 240 mg, when resting tremor improved 54%, postural tremor 32%, and intention tremor 54%. Physician ratings and patient reports supported the accelerometer results. Nadolol appears to be a safe, effective adjunct to current dopaminergic and anticholinergic therapy for severe tremor in Parkinson's disease.

  1. A role for locus coeruleus in Parkinson tremor

    PubMed Central

    Isaias, Ioannis U.; Marzegan, Alberto; Pezzoli, Gianni; Marotta, Giorgio; Canesi, Margherita; Biella, Gabriele E. M.; Volkmann, Jens; Cavallari, Paolo

    2012-01-01

    We analyzed rest tremor, one of the etiologically most elusive hallmarks of Parkinson disease (PD), in 12 consecutive PD patients during a specific task activating the locus coeruleus (LC) to investigate a putative role of noradrenaline (NA) in tremor generation and suppression. Clinical diagnosis was confirmed in all subjects by reduced dopamine reuptake transporter (DAT) binding values investigated by single photon computed tomography imaging (SPECT) with [123I] N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) tropane (FP-CIT). The intensity of tremor (i.e., the power of Electromyography [EMG] signals), but not its frequency, significantly increased during the task. In six subjects, tremor appeared selectively during the task. In a second part of the study, we retrospectively reviewed SPECT with FP-CIT data and confirmed the lack of correlation between dopaminergic loss and tremor by comparing DAT binding values of 82 PD subjects with bilateral tremor (n = 27), unilateral tremor (n = 22), and no tremor (n = 33). This study suggests a role of the LC in Parkinson tremor. PMID:22287946

  2. Effect of nipradilol, a beta-adrenergic blocker with vasodilating activity, on oxotremorine-induced tremor in mice.

    PubMed

    Iwata, S; Nomoto, M; Fukuda, T

    1996-10-01

    The effect of nipradilol, a nonselective beta-adrenergic receptor blocker with nitroglycerin-like vasodilating activity, on oxotremorine-induced tremor was studied in mice. General tremor in mice was elicited by 0.5 mg/kg oxotremorine. The tremor was quantified using a capacitance transducer, then analyzed by a signal processor. The strength of the tremor was expressed in "points". The point values of the tremor (mean +/- SE) in control mice for 5 mg/kg (+/-)-propranolol, 2.5 mg/kg arotinolol, 0.5 mg/kg nipradilol, 1.0 mg/kg nipradilol and 2.5 mg/kg nipradilol were 87 +/- 16, 42 +/- 6, 38 +/- 6, 99 +/- 28, 28 +/- 6 and 31 +/- 7, respectively. The strength of the tremor was reduced by all beta-blockers. Although 1.0 mg/kg nipradilol significantly reduced the tremor, further inhibition of the tremor was not obtained with dosages up to 2.5 mg/kg of the drug. In conclusion, nipradilol was effective for suppressing oxotremorine-induced tremor, as were other beta-blockers.

  3. Essential tremor

    MedlinePlus

    ... Tremor - familial; Benign essential tremor; Shaking - essential tremor Images Central nervous system and peripheral nervous system References Jankovic J. Parkinson disease and other movement disorders. In: Daroff ...

  4. Essential Tremor: What We Can Learn from Current Pharmacotherapy.

    PubMed

    Ondo, William

    2016-01-01

    The pathophysiology of essential tremor, especially at the cellular level, is poorly understood. Although no drug has been specifically designed to treat essential tremor, several medications improve tremor, and others worsen it. Studying the mechanism of actions of these medications can help our understanding of tremor pathophysiology and contribute to future rational drug design. We reviewed literature, concentrating on mechanisms of action, of various medications that mitigate tremor. Many medications have multiple mechanisms of actions, making simple correlations difficult. Medications that increase the duration of opening of gamma-aminobutyric acid (GABA)-A receptors are most consistently associated with tremor improvement. Interestingly, drugs that increase GABA availability have not been associated with improved tremor. Other mechanisms possibly associated with tremor improvement include antagonism of alpha-2 delta subunits associated with calcium channels, inhibition of carbonic anhydrase, and inhibition of the synaptic vesicle protein 2A. Drugs that block voltage-gaited sodium channels do not affect tremor. The ideal beta-adrenergic blocker requires B2 affinity (non-cardiac selective), has no sympathomimetic properties, does not require membrane stabilization properties, and may benefit from good central nervous system penetration. To date, serendipitous observations have provided most of our understanding of tremor cellular physiology. Based on similarities to currently effective drugs or rational approximations and inferences, several currently available agents should be considered for tremor trials.

  5. Discriminating Simulated Vocal Tremor Source Using Amplitude Modulation Spectra

    PubMed Central

    Carbonell, Kathy M.; Lester, Rosemary A.; Story, Brad H.; Lotto, Andrew J.

    2014-01-01

    Objectives/Hypothesis Sources of vocal tremor are difficult to categorize perceptually and acoustically. This paper describes a preliminary attempt to discriminate vocal tremor sources through the use of spectral measures of the amplitude envelope. The hypothesis is that different vocal tremor sources are associated with distinct patterns of acoustic amplitude modulations. Study Design Statistical categorization methods (discriminant function analysis) were used to discriminate signals from simulated vocal tremor with different sources using only acoustic measures derived from the amplitude envelopes. Methods Simulations of vocal tremor were created by modulating parameters of a vocal fold model corresponding to oscillations of respiratory driving pressure (respiratory tremor), degree of vocal fold adduction (adductory tremor) and fundamental frequency of vocal fold vibration (F0 tremor). The acoustic measures were based on spectral analyses of the amplitude envelope computed across the entire signal and within select frequency bands. Results The signals could be categorized (with accuracy well above chance) in terms of the simulated tremor source using only measures of the amplitude envelope spectrum even when multiple sources of tremor were included. Conclusions These results supply initial support for an amplitude-envelope based approach to identify the source of vocal tremor and provide further evidence for the rich information about talker characteristics present in the temporal structure of the amplitude envelope. PMID:25532813

  6. Analysis of the tremor in juvenile myoclonic epilepsy.

    PubMed

    Aydin-Özemir, Zeynep; Matur, Zeliha; Baykan, Betul; Bilgic, Başar; Tekturk, Pınar; Bebek, Nerses; Gurses, Candan; Hanagasi, Hasmet; Oge, Ali Emre

    2016-12-01

    We aimed to investigate juvenile myoclonic epilepsy (JME) patients complaining of tremor unrelated to valproate (VPA) treatment and evaluate if there were differences between JME patients with and without tremor and essential tremor (ET) patients to exclude comorbidity. Fifteen JME cases with the complaint of tremor, 14 JME patients without tremor, 14 patients with ET and 14 healthy subjects (HS) were included. Regularity, frequency and amplitude of the tremor and superimposed myoclonia were assessed by accelerometric analysis. Cortical SEPs evoked by the stimulation of the median nerve were recorded bilaterally. Clinical and neurophysiologic features were statistically compared between the groups. Amplitude of postural tremor of the left hand was significantly increased in the ET group compared to JME patients with tremor, but there were no differences regarding to frequency. Strikingly, there were superimposed irregular, low-amplitude inconstant myoclonic jerks located to distal part of the fingers in JME group with tremor. Initial frequency of myoclonic seizures was also significantly higher in this group compared to JME patients without tremor but this difference disappeared after treatment. The group of JME with tremor had the highest N20-P25 and P25-N35 amplitudes, followed by JME without tremor, ET and HS, respectively. Tremulous hand movements in JME resembled ET, but their amplitude was lower and characterized with accompanying irregular myoclonic jerks. The presence of tremor in JME patients should be taken into consideration to create more homogeneous groups in genetic and pathophysiological studies of JME. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Case Studies in Tremor.

    PubMed

    Shanker, Vicki L

    2016-08-01

    Tremor is a frequent patient complaint in the neurologist's office. Nevertheless, despite the routine nature of this office presentation, misdiagnosis of common tremors is not an infrequent practice. In addition, there are less common causes of tremor that can be missed if the clinician is not aware of key features. An organized and methodical history and neurologic examination are essential in developing the differential diagnosis in tremor patients and ultimately in achieving the correct diagnosis. Awareness of key historical features associated with tremor and knowledge of the movement disorders examination will improve tremor assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Differential diagnosis of common tremor syndromes

    PubMed Central

    Bhidayasiri, R

    2005-01-01

    Tremor is one of the most common involuntary movement disorders seen in clinical practice. In addition to the detailed history, the differential diagnosis is mainly clinical based on the distinction at rest, postural and intention, activation condition, frequency, and topographical distribution. The causes of tremor are heterogeneous and it can present alone (for example, essential tremor) or as a part of a neurological syndrome (for example, multiple sclerosis). Essential tremor and the tremor of Parkinson's disease are the most common tremors encountered in clinical practice. This article focuses on a practical approach to these different forms of tremor and how to distinguish them clinically. Evidence supporting various strategies used in the differentiation is then presented, followed by a review of formal guidelines or recommendations when they exist. PMID:16344298

  9. Fundamental Principles of Tremor Propagation in the Upper Limb.

    PubMed

    Davidson, Andrew D; Charles, Steven K

    2017-04-01

    Although tremor is the most common movement disorder, there exist few effective tremor-suppressing devices, in part because the characteristics of tremor throughout the upper limb are unknown. To clarify, optimally suppressing tremor requires a knowledge of the mechanical origin, propagation, and distribution of tremor throughout the upper limb. Here we present the first systematic investigation of how tremor propagates between the shoulder, elbow, forearm, and wrist. We simulated tremor propagation using a linear, time-invariant, lumped-parameter model relating joint torques and the resulting joint displacements. The model focused on the seven main degrees of freedom from the shoulder to the wrist and included coupled joint inertia, damping, and stiffness. We deliberately implemented a simple model to focus first on the most basic effects. Simulating tremorogenic joint torque as a sinusoidal input, we used the model to establish fundamental principles describing how input parameters (torque location and frequency) and joint impedance (inertia, damping, and stiffness) affect tremor propagation. We expect that the methods and principles presented here will serve as the groundwork for future refining studies to understand the origin, propagation, and distribution of tremor throughout the upper limb in order to enable the future development of optimal tremor-suppressing devices.

  10. Fundamental Principles of Tremor Propagation in the Upper Limb

    PubMed Central

    Davidson, Andrew D.; Charles, Steven K.

    2017-01-01

    Although tremor is the most common movement disorder, there exist few effective tremor-suppressing devices, in part because the characteristics of tremor throughout the upper limb are unknown. To clarify, optimally suppressing tremor requires a knowledge of the mechanical origin, propagation, and distribution of tremor throughout the upper limb. Here we present the first systematic investigation of how tremor propagates between the shoulder, elbow, forearm, and wrist. We simulated tremor propagation using a linear, time-invariant, lumped-parameter model relating joint torques and the resulting joint displacements. The model focused on the seven main degrees of freedom from the shoulder to the wrist and included coupled joint inertia, damping, and stiffness. We deliberately implemented a simple model to focus first on the most basic effects. Simulating tremorogenic joint torque as a sinusoidal input, we used the model to establish fundamental principles describing how input parameters (torque location and frequency) and joint impedance (inertia, damping, and stiffness) affect tremor propagation. We expect that the methods and principles presented here will serve as the groundwork for future refining studies to understand the origin, propagation, and distribution of tremor throughout the upper limb in order to enable the future development of optimal tremor-suppressing devices. PMID:27957608

  11. Sustained Medication Reduction Following Unilateral VIM Thalamic Stimulation for Essential Tremor.

    PubMed

    Resnick, Andrew S; Okun, Michael S; Malapira, Teresita; Smith, Donald; Vale, Fernando L; Sullivan, Kelly; Miller, Amber; Jahan, Israt; Zesiewicz, Theresa

    2012-01-01

    Deep brain stimulation (DBS) is an increasingly utilized therapeutic modality for the management of medication refractory essential tremor (ET). The aim of this study was to determine whether DBS allowed for anti-tremor medication reduction within the year after the procedure was performed. We conducted a retrospective chart review and telephone interviews on 34 consecutive patients who had been diagnosed with ET, and who had undergone unilateral DBS surgery. Of the 34 patients in our cohort, 31 patients (91%) completely stopped all anti-tremor medications either before surgery (21 patients, 62%) or in the year following DBS surgery (10 patients, 29%). Patients who discontinued tremor medications before DBS surgery did so because their tremors either became refractory to anti-tremor medication, or they developed adverse events to tremor medications. Patients who stopped tremor medications after DBS surgery did so due to sufficient tremor control. Only three patients (9%) who were taking tremor medications at the time of surgery continued the use of a beta-blocker post-operatively for the purpose of hypertension management in all cases. The data from this study indicate that medication cessation is common following unilateral DBS for ET.

  12. Sustained Medication Reduction Following Unilateral VIM Thalamic Stimulation for Essential Tremor

    PubMed Central

    Resnick, Andrew S.; Okun, Michael S.; Malapira, Teresita; Smith, Donald; Vale, Fernando L.; Sullivan, Kelly; Miller, Amber; Jahan, Israt; Zesiewicz, Theresa

    2012-01-01

    Background Deep brain stimulation (DBS) is an increasingly utilized therapeutic modality for the management of medication refractory essential tremor (ET). The aim of this study was to determine whether DBS allowed for anti-tremor medication reduction within the year after the procedure was performed. Methods We conducted a retrospective chart review and telephone interviews on 34 consecutive patients who had been diagnosed with ET, and who had undergone unilateral DBS surgery. Results Of the 34 patients in our cohort, 31 patients (91%) completely stopped all anti-tremor medications either before surgery (21 patients, 62%) or in the year following DBS surgery (10 patients, 29%). Patients who discontinued tremor medications before DBS surgery did so because their tremors either became refractory to anti-tremor medication, or they developed adverse events to tremor medications. Patients who stopped tremor medications after DBS surgery did so due to sufficient tremor control. Only three patients (9%) who were taking tremor medications at the time of surgery continued the use of a beta-blocker post-operatively for the purpose of hypertension management in all cases. Discussion The data from this study indicate that medication cessation is common following unilateral DBS for ET. PMID:23440408

  13. Global Search of Triggered Tectonic Tremor

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Aiken, C.; Chao, K.; Gonzalez-Huizar, H.; Wang, B.; Ojha, L.; Yang, H.

    2013-05-01

    Deep tectonic tremor has been observed at major plate-boundary faults around the Pacific Rim. While regular or ambient tremor occurs spontaneously or accompanies slow-slip events, tremor could be also triggered by large distant earthquakes and solid earth tides. Because triggered tremor occurs on the same fault patches as ambient tremor and is relatively easy to identify, a systematic global search of triggered tremor could help to identify the physical mechanisms and necessary conditions for tremor generation. Here we conduct a global search of tremor triggered by large teleseismic earthquakes. We mainly focus on major faults with significant strain accumulations where no tremor has been reported before. These includes subduction zones in Central and South America, strike-slip faults around the Caribbean plate, the Queen Charlotte-Fairweather fault system and the Denali fault in the western Canada and Alaska, the Sumatra-Java subduction zone, the Himalaya frontal thrust faults, as well as major strike-slip faults around Tibet. In each region, we first compute the predicted dynamic stresses σd from global earthquakes with magnitude>=5.0 in the past 20 years, and select events with σd > 1 kPa. Next, we download seismic data recorded by stations from local or global seismic networks, and identify triggered tremor as a high-frequency non-impulsive signal that is in phase with the large-amplitude teleseismic waves. In cases where station distributions are dense enough, we also locate tremor based on the standard envelope cross-correlation techniques. Finally, we calculate the triggering potential for the Love and Rayleigh waves with the local fault orientation and surface-wave incident angles. So far we have found several new places that are capable of generating triggered tremor. We will summarize these observations and discuss their implications on physical mechanisms of tremor and remote triggering.

  14. Tremor and hand-arm vibration syndrome (HAVS) in road maintenance workers.

    PubMed

    Bast-Pettersen, Rita; Ulvestad, Bente; Færden, Karl; Clemm, Thomas Aleksander C; Olsen, Raymond; Ellingsen, Dag Gunnar; Nordby, Karl-Christian

    2017-01-01

    The aim of this study was to evaluate postural and rest tremor among workers using vibrating hand tools, taking into account the possible effects of toxicants such as alcohol and tobacco. A further aim was to study workers diagnosed with hand-arm vibration syndrome (HAVS) at the time of examination. This study comprises 103 road maintenance workers, 55 exposed to vibrating hand tools (age 41.0 years; range 21-62) and 48 referents (age 38.5 years; range 19-64). They were examined with the CATSYS Tremor Pen ® . Exposure to vibrating tools and serum biomarkers of alcohol and tobacco consumption were measured. Cumulative exposure to vibrating tools was associated with increased postural (p < 0.01) and rest tremor (p < 0.05) and with a higher Center Frequency of postural tremor (p < 0.01) among smokers and users of smokeless tobacco. Rest tremor Center Frequency was higher than postural tremor frequency (p < 0.001). The main findings indicate an association between cumulative exposure to hand-held vibrating tools, tremor parameters and consumption of tobacco products. The hand position is important when testing for tremor. Rest tremor had a higher Center Frequency. Postural tremor was more strongly associated with exposure than rest tremor. The finding of increased tremor among the HAVS subjects indicated that tremor might be a part of the clinical picture of a HAVS diagnosis. As with all cross-sectional studies, inferences should be made with caution when drawing conclusions about associations between exposure and possible effects. Future research using longitudinal design is required to validate the findings of the present study.

  15. The cerebral basis of Parkinsonian tremor: A network perspective.

    PubMed

    Helmich, Rick C

    2018-02-01

    Tremor in Parkinson's disease is a poorly understood sign. Although it is one of the clinical hallmarks of the disease, its pathophysiology remains unclear. It is clear that tremor involves different neural mechanisms than bradykinesia and rigidity, the other core motor signs of Parkinson's disease. In particular, the role of dopamine in tremor has been heavily debated given clinical observations that tremor has a variable response to dopaminergic medication. From a neuroscience perspective, tremor is also a special sign; unlike other motor signs, it has a clear electrophysiological signature (frequency, phase, and power). These unique features of tremor, and newly available neuroimaging methods, have sparked investigations into the pathophysiology of tremor. In this review, evidence will be discussed for the idea that parkinsonian tremor results from increased interactions between the basal ganglia and the cerebello-thalamo-cortical circuit, driven by altered dopaminergic projections to nodes within both circuits, and modulated by context-dependent factors, such as psychological stress. Models that incorporate all of these features may help our understanding of the pathophysiology of tremor and interindividual differences between patients. One example that will be discussed in this article is the "dimmer-switch" model. According to this model, cerebral activity related to parkinsonian tremor first arises in the basal ganglia and is then propagated to the cerebello-thalamo-cortical circuit, where the tremor rhythm is maintained and amplified. In the future, detailed knowledge about the architecture of the tremor circuitry in individual patients ("tremor fingerprints") may provide new, mechanism-based treatments for this debilitating motor sign. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  16. Treatment of essential tremor with arotinolol.

    PubMed

    Kuroda, Y; Kakigi, R; Shibasaki, H

    1988-04-01

    We investigated the effect of arotinolol, a new peripherally acting beta-adrenergic blocker, in 15 patients with essential tremor. The patients received 30 mg per day of arotinolol for 8 weeks. Accelerometer readings showed a significant reduction in amplitude of postural tremor after treatment. Action tremor also improved to essentially the same degree as postural tremor. The present findings support the view that the therapeutic effect of beta-blockers in essential tremor is mediated by peripheral beta-adrenergic receptors.

  17. Essential Tremor: What We Can Learn from Current Pharmacotherapy

    PubMed Central

    Ondo, William

    2016-01-01

    Background The pathophysiology of essential tremor, especially at the cellular level, is poorly understood. Although no drug has been specifically designed to treat essential tremor, several medications improve tremor, and others worsen it. Studying the mechanism of actions of these medications can help our understanding of tremor pathophysiology and contribute to future rational drug design. Methods We reviewed literature, concentrating on mechanisms of action, of various medications that mitigate tremor. Results Many medications have multiple mechanisms of actions, making simple correlations difficult. Medications that increase the duration of opening of gamma-aminobutyric acid (GABA)-A receptors are most consistently associated with tremor improvement. Interestingly, drugs that increase GABA availability have not been associated with improved tremor. Other mechanisms possibly associated with tremor improvement include antagonism of alpha-2 delta subunits associated with calcium channels, inhibition of carbonic anhydrase, and inhibition of the synaptic vesicle protein 2A. Drugs that block voltage-gaited sodium channels do not affect tremor. The ideal beta-adrenergic blocker requires B2 affinity (non-cardiac selective), has no sympathomimetic properties, does not require membrane stabilization properties, and may benefit from good central nervous system penetration. Discussion To date, serendipitous observations have provided most of our understanding of tremor cellular physiology. Based on similarities to currently effective drugs or rational approximations and inferences, several currently available agents should be considered for tremor trials. PMID:26989572

  18. Co-Prevalence of Tremor with Spasmodic Dysphonia: A Case-Control Study

    PubMed Central

    White, Laura; Klein, Adam; Hapner, Edie; Delgaudio, John; Hanfelt, John; Jinnah, H. A.; Johns, Michael

    2011-01-01

    OBJECTIVES/HYPOTHESIS The aim of this study was to define the co-prevalence of tremor with spasmodic dysphonia (SD). STUDY DESIGN A single institution prospective, case-control study was performed from May 2010 to July 2010. METHODS Consecutive patients with SD (cases) and other voice disorders (controls) were enrolled prospectively. Each participant underwent a voice evaluation and an evaluation for tremor. RESULTS 146 voice disorder controls and 128 patients with SD were enrolled. 26% of patients with SD had vocal tremor, 21% had non-vocal tremor. Patients with SD were 2.8 times more likely to have co-prevalent tremor than the control group (OR = 2.81; 95% CI, 1.55 to 5.08) and only 35% of patients with SD had been seen by a neurologist for the evaluation of dystonia and tremor. CONCLUSIONS Tremor is highly prevalent in patients with SD. It is important for each patient diagnosed with SD to undergo an evaluation for tremor, this is especially important in patients diagnosed with vocal tremor. Level of evidence 3b. PMID:21792965

  19. Tremor amplitude and tremor frequency variability in Parkinson's disease is dependent on activity and synchronisation of central oscillators in basal ganglia.

    PubMed

    Bartolić, Andrej; Pirtosek, Zvezdan; Rozman, Janez; Ribaric, Samo

    2010-02-01

    Rest tremor is one of the four main clinical features of Parkinson's disease (PD), besides rigidity, bradykinesia and postural instability. While rigidity, bradykinesia and postural instability can be explained with changes in neurotransmitter concentrations and neuronal activity in basal ganglia, the pathogenesis of parkinsonian tremor is not fully understood. According to the leading hypothesis tremor is generated by neurons or groups of neurons in the basal ganglia which act as central oscillators and generate repetitive impulses to the muscles of the body parts involved. The exact morphological substrate for central oscillators and the mechanisms leading to their activation are still an object of debate. Peripheral neural structures exert modulatory influence on tremor amplitude, but not on tremor frequency. We hypothesise that rest tremor in PD is the result of two mechanisms: increased activity and increased synchronisation of central oscillators. We tested our hypothesis by demonstrating that the reduction in rest tremor amplitude is accompanied by increased variability of tremor frequency. The reduction of tremor amplitude is attributed to decreased activity and poor synchronisation of central oscillators in basal ganglia; the increased variability of tremor frequency is attributed to poor synchronisation of the central oscillators. In addition, we demonstrated that the recurrence of clinically visible rest tremor is accompanied by a reduction in tremor frequency variability. This reduction is attributed to increased synchronisation of central oscillators in basal ganglia. We argue that both mechanisms, increased activity of central oscillators and increased synchronisation of central oscillators, are equally important and we predict that tremor becomes clinically evident only when both mechanisms are active at the same time. In circumstances when one of the mechanisms is suppressed tremor amplitude becomes markedly reduced. On the one hand, if the number of active central oscillators is very low, the muscle-stimulating impulses are too weak to cause clinically evident tremor. On the other hand, if central oscillator synchronisation is poor, the impulses originating from different central oscillators are not in phase and thus cancel out, again leading to reduced stimulation of muscles and reduced tremor amplitude. Our hypothesis is supported by our measurements on patients with PD and by experimental data cited in the literature. The proposed two mechanisms could have clinical implications. New medical treatments, which would specifically target only one of the proposed mechanisms (oscillator activity or synchronisation), could be effective in reducing tremor amplitude and thus supplement established antiparkinsonian treatments.

  20. Tremor in X-linked recessive spinal and bulbar muscular atrophy (Kennedy's disease).

    PubMed

    Dias, Francisco A; Munhoz, Renato P; Raskin, Salmo; Werneck, Lineu César; Teive, Hélio A G

    2011-01-01

    To study tremor in patients with X-linked recessive spinobulbar muscular atrophy or Kennedy's disease. Ten patients (from 7 families) with a genetic diagnosis of Kennedy's disease were screened for the presence of tremor using a standardized clinical protocol and followed up at a neurology outpatient clinic. All index patients were genotyped and showed an expanded allele in the androgen receptor gene. Mean patient age was 37.6 years and mean number of CAG repeats 47 (44-53). Tremor was present in 8 (80%) patients and was predominantly postural hand tremor. Alcohol responsiveness was detected in 7 (88%) patients with tremor, who all responded well to treatment with a β-blocker (propranolol). Tremor is a common feature in patients with Kennedy's disease and has characteristics similar to those of essential tremor.

  1. Treatment of resting tremor by beta-adrenergic blockade.

    PubMed

    Foster, N L; Newman, R P; LeWitt, P A; Gillespie, M M; Chase, T N

    1984-10-01

    The effect of nadolol, a peripherally acting beta-adrenergic blocker, on resting tremor was examined in eight patients with idiopathic Parkinson's disease. With the use of a double-blind, placebo-controlled study of crossover design, patients received 80 to 320 mg of nadolol for 6 weeks while continuing their previous treatment regimen. Accelerometer readings showed a progressive reduction in tremor amplitude, but no change in tremor frequency, with increasing nadolol dosage. Maximum benefit was achieved at 240 mg, when resting tremor improved 50% (p less than 0.01). Physician ratings confirmed these findings. The results suggest that response to beta-adrenergic blockade may not be limited to postural or intention tremor and that such agents may not reliably differentiate between the tremor of Parkinson's disease and essential tremor.

  2. Postural Tremor and Ataxia Progression in Spinocerebellar Ataxias

    PubMed Central

    Gan, Shi-Rui; Wang, Jie; Figueroa, Karla P.; Pulst, Stefan M.; Tomishon, Darya; Lee, Danielle; Perlman, Susan; Wilmot, George; Gomez, Christopher M.; Schmahmann, Jeremy; Paulson, Henry; Shakkottai, Vikram G.; Ying, Sarah H.; Zesiewicz, Theresa; Bushara, Khalaf; Geschwind, Michael D.; Xia, Guangbin; Subramony, S. H.; Ashizawa, Tetsuo; Kuo, Sheng-Han

    2017-01-01

    Background Postural tremor can sometimes occur in spinocerebellar ataxias (SCAs). However, the prevalence and clinical characteristics of postural tremor in SCAs are poorly understood, and whether SCA patients with postural tremor have different ataxia progression is not known. Methods We studied postural tremor in 315 patients with SCA1, 2, 3, and 6 recruited from the Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA), which consists of 12 participating centers in the United States, and we evaluated ataxia progression in these patients from January 2010 to August 2012. Results Among 315 SCA patients, postural tremor was most common in SCA2 patients (SCA1, 5.8%; SCA2, 27.5%; SCA3, 12.4%; SCA6, 16.9%; p = 0.007). SCA3 patients with postural tremor had longer CAG repeat expansions than SCA3 patients without postural tremor (73.67 ± 3.12 vs. 70.42 ± 3.96, p = 0.003). Interestingly, SCA1 and SCA6 patients with postural tremor had a slower rate of ataxia progression (SCA1, β = –0.91, p < 0.001; SCA6, β = –1.28, p = 0.025), while SCA2 patients with postural tremor had a faster rate of ataxia progression (β = 1.54, p = 0.034). We also found that the presence of postural tremor in SCA2 patients could be influenced by repeat expansions of ATXN1 (β = –1.53, p = 0.037) and ATXN3 (β = 0.57, p = 0.018), whereas postural tremor in SCA3 was associated with repeat lengths in TBP (β = 0.63, p = 0.041) and PPP2R2B (β = –0.40, p = 0.032). Discussion Postural tremor could be a clinical feature of SCAs, and the presence of postural tremor could be associated with different rates of ataxia progression. Genetic interactions between ataxia genes might influence the brain circuitry and thus affect the clinical presentation of postural tremor. PMID:29057148

  3. Tremor Detection Using Parametric and Non-Parametric Spectral Estimation Methods: A Comparison with Clinical Assessment

    PubMed Central

    Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H.; Maurits, Natasha M.

    2016-01-01

    In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth under consideration (High Freq) performed similarly to non-parametric methods, but had the highest recall values, suggesting that this method could be employed for automatic tremor detection. PMID:27258018

  4. Postural Tremor and Ataxia Progression in Spinocerebellar Ataxias.

    PubMed

    Gan, Shi-Rui; Wang, Jie; Figueroa, Karla P; Pulst, Stefan M; Tomishon, Darya; Lee, Danielle; Perlman, Susan; Wilmot, George; Gomez, Christopher M; Schmahmann, Jeremy; Paulson, Henry; Shakkottai, Vikram G; Ying, Sarah H; Zesiewicz, Theresa; Bushara, Khalaf; Geschwind, Michael D; Xia, Guangbin; Subramony, S H; Ashizawa, Tetsuo; Kuo, Sheng-Han

    2017-01-01

    Postural tremor can sometimes occur in spinocerebellar ataxias (SCAs). However, the prevalence and clinical characteristics of postural tremor in SCAs are poorly understood, and whether SCA patients with postural tremor have different ataxia progression is not known. We studied postural tremor in 315 patients with SCA1, 2, 3, and 6 recruited from the Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA), which consists of 12 participating centers in the United States, and we evaluated ataxia progression in these patients from January 2010 to August 2012. Among 315 SCA patients, postural tremor was most common in SCA2 patients (SCA1, 5.8%; SCA2, 27.5%; SCA3, 12.4%; SCA6, 16.9%; p = 0.007). SCA3 patients with postural tremor had longer CAG repeat expansions than SCA3 patients without postural tremor (73.67 ± 3.12 vs. 70.42 ± 3.96, p = 0.003). Interestingly, SCA1 and SCA6 patients with postural tremor had a slower rate of ataxia progression (SCA1, β = -0.91, p < 0.001; SCA6, β = -1.28, p = 0.025), while SCA2 patients with postural tremor had a faster rate of ataxia progression (β = 1.54, p = 0.034). We also found that the presence of postural tremor in SCA2 patients could be influenced by repeat expansions of ATXN1 (β = -1.53, p = 0.037) and ATXN3 (β = 0.57, p = 0.018), whereas postural tremor in SCA3 was associated with repeat lengths in TBP (β = 0.63, p = 0.041) and PPP2R2B (β = -0.40, p = 0.032). Postural tremor could be a clinical feature of SCAs, and the presence of postural tremor could be associated with different rates of ataxia progression. Genetic interactions between ataxia genes might influence the brain circuitry and thus affect the clinical presentation of postural tremor.

  5. Exploring the effect of electrical muscle stimulation as a novel treatment of intractable tremor in Parkinson's disease.

    PubMed

    Jitkritsadakul, Onanong; Thanawattano, Chusak; Anan, Chanawat; Bhidayasiri, Roongroj

    2015-11-15

    As the pathophysiology of tremor in Parkinson disease (PD) involves a complex interaction between central and peripheral mechanisms, we propose that modulation of peripheral reflex mechanism by electrical muscle stimulation (EMS) may improve tremor temporarily. To determine the efficacy of EMS as a treatment for drug resistant tremor in PD patients. This study was a single-blinded, quasi-experimental study involving 34 PD patients with classic resting tremor as confirmed by tremor analysis. The EMS was given at 50Hz over the abductor pollicis brevis and interrosseus muscles for 10s with identified tremor parameters before and during stimulation as primary outcomes. Compared to before stimulation, we observed a significant reduction in the root mean square (RMS) of the angular velocity (p<0.001) and peak magnitude (p<0.001) of resting tremor while tremor frequency (p=0.126) and dispersion (p=0.284) remained unchanged during stimulation. The UPDRS tremor score decreased from 10.59 (SD=1.74) before stimulation to 8.85 (SD=2.19) during stimulation (p<0.001). The average percentage of improvement of the peak magnitude and RMS angular velocity was 49.57% (SD=38.89) and 43.81% (SD=33.15) respectively. 70.6% and 61.8% of patients experienced at least 30% tremor attenuation as calculated from the peak magnitude and RMS angular velocity respectively. Our study demonstrated the efficacy of EMS in temporarily improving resting tremor in medically intractable PD patients. Although tremor severity decreased, they were not completely eliminated and continued with a similar frequency, thus demonstrating the role of peripheral reflex mechanism in the modulation of tremor, but not as a generator. EMS should be further explored as a possible therapeutic intervention for tremor in PD. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Characterizing Orthostatic Tremor Using a Smartphone Application.

    PubMed

    Balachandar, Arjun; Fasano, Alfonso

    2017-01-01

    Orthostatic tremor is one of the few tremor conditions requiring an electromyogram for definitive diagnosis since leg tremor might not be visible to the naked eye. An iOS application (iSeismometer, ObjectGraph LLC, New York) using an Apple iPhone 5 (Cupertino, CA, USA) inserted into the patient's sock detected a tremor with a frequency of 16.4 Hz on both legs. The rapid and straightforward accelerometer-based recordings accomplished in this patient demonstrate the ease with which quantitative analysis of orthostatic tremor can be conducted and, importantly, demonstrates the potential application of this approach in the assessment of any lower limb tremor.

  7. Seismic wave triggering of nonvolcanic tremor, episodic tremor and slip, and earthquakes on Vancouver Island

    NASA Astrophysics Data System (ADS)

    Rubinstein, Justin L.; Gomberg, Joan; Vidale, John E.; Wech, Aaron G.; Kao, Honn; Creager, Kenneth C.; Rogers, Garry

    2009-02-01

    We explore the physical conditions that enable triggering of nonvolcanic tremor and earthquakes by considering local seismic activity on Vancouver Island, British Columbia during and immediately after the arrival of large-amplitude seismic waves from 30 teleseismic and 17 regional or local earthquakes. We identify tremor triggered by four of the teleseismic earthquakes. The close temporal and spatial proximity of triggered tremor to ambient tremor and aseismic slip indicates that when a fault is close to or undergoing failure, it is particularly susceptible to triggering of further events. The amplitude of the triggering waves also influences the likelihood of triggering both tremor and earthquakes such that large amplitude waves triggered tremor in the absence of detectable aseismic slip or ambient tremor. Tremor and energy radiated from regional/local earthquakes share the same frequency passband so that tremor cannot be identified during these smaller, more frequent events. We confidently identify triggered local earthquakes following only one teleseism, that with the largest amplitude, and four regional or local events that generated vigorous aftershock sequences in their immediate vicinity. Earthquakes tend to be triggered in regions different from tremor and with high ambient seismicity rates. We also note an interesting possible correlation between large teleseismic events and episodic tremor and slip (ETS) episodes, whereby ETS events that are "late" and have built up more stress than normal are susceptible to triggering by the slight nudge of the shaking from a large, distant event, while ETS events that are "early" or "on time" are not.

  8. Kinetic Tremor

    PubMed Central

    Louis, Elan D.

    2007-01-01

    Tremor is among the acute effects of nicotine exposure. Published studies have focused on smoking-related postural (static) hand tremor rather than kinetic tremor (tremor during hand use), and gender differences in smoking-related tremor have not been examined. In a group of adults who were sampled from a population (mean ± SD = 65.7 ± 11.5 years, range = 18 - 92 years), the investigator assessed whether the severity of postural and kinetic tremors differed in smokers versus non-smokers, and whether this difference was influenced by gender. Twenty-seven (9.9%) of 273 subjects were current smokers. Greater tremor was observed in smokers than non-smokers during a variety of activities (drawing a spiral, using a spoon, finger-nose-finger maneuver, all p < 0.05) and smokers had a higher total tremor score than non-smokers (5.15 ± 3.06 vs. 3.41 ± 2.88, p < 0.01), even after adjusting for age, caffeine intake and other potential confounding factors. The difference between smokers and non-smokers in terms of hand tremor was more apparent in women than in men. In women, the number of cigarettes smoked on the day of testing was weakly correlated with the total tremor score (r = 0.17, p = 0.03). In summary, smokers had more kinetic hand tremor than non-smokers. This difference between smokers and non-smokers was more apparent in women than in men. These results suggest that smoking habits should be considered carefully in order to avoid over- or underestimating the effects of occupational and non-occupational exposures to other tremor-producing neurotoxins. PMID:17267044

  9. Re-emergent tremor in Parkinson's disease.

    PubMed

    Belvisi, Daniele; Conte, Antonella; Bologna, Matteo; Bloise, Maria Carmela; Suppa, Antonio; Formica, Alessandra; Costanzo, Matteo; Cardone, Pierluigi; Fabbrini, Giovanni; Berardelli, Alfredo

    2017-03-01

    Re-emergent tremor (RET) is a postural tremor that appears after a variable delay in patients with Parkinson's disease (PD). The aim of the present study was to evaluate the occurrence and the clinical characteristics of RET in a population of patients with PD. We consecutively assessed 210 patients with PD. We collected the patients' demographic and clinical data. RET was clinically characterized in terms of latency, severity and body side affected. We also investigated a possible relationship with motor and non-motor symptoms and differences in the clinical features in patients with and without RET. RET was present in 42/210 patients. The mean latency of RET was 9.20 ± 6.8 seconds. Mean severity was 2.4 ± 1.9. RET was unilateral in 21 patients. Patients with RET had less severe speech, posture and gait disorders and upper limb and global bradykinesia than patients without RET. Similar findings were observed when we compared patients with RET with patients with tremor at rest associated with action tremor, patients with isolated action tremor and patients with no tremor. By contrast, patients with RET tremor did not clinically differ from those with isolated tremor at rest. Our results suggest that patients with RET and patients with isolated tremor at rest represent the same clinical subtype, whereas patients with action tremor (whether isolated or associated with tremor at rest) might belong to a distinct subtype that is clinically worse. Patients with RET represents a benign subtype of PD, even within the tremor-dominant phenotype. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. An Ambulatory Tremor Score for Parkinson's Disease.

    PubMed

    Braybrook, Michelle; O'Connor, Sam; Churchward, Philip; Perera, Thushara; Farzanehfar, Parisa; Horne, Malcolm

    2016-10-19

    While tremor in Parkinson's Disease (PD) can be characterised in the consulting room, its relationship to treatment and fluctuations can be clinically helpful. To develop an ambulatory assessment of tremor of PD. Accelerometry data was collected using the Parkinson's KinetiGraph System (PKG, Global Kinetics). An algorithm was developed, which could successfully distinguish been subjects with a resting or postural tremor that involved the wrist whose frequency was greater than 3 Hz. Percent of time that tremor was present (PTT) between 09 : 00 and 18 : 00 was calculated. This algorithm was applied to 85 people with PD who had been assessed clinically for the presence and nature of tremor. The Sensitivity and Selectivity of a PTT ≥0.8% was 92.5% and 92.9% in identifying tremor, providing that the tremor was not a fine kinetic and postural tremor or was not in the upper limb. A PTT >1% provide high likely hood of the presence of clinical meaningful tremor. These cut-offs were retested on a second cohort (n = 87) with a similar outcome. The Sensitivity and Selectivity of the combined group was 88.7% and 89.5% respectively. Using the PTT, 50% of 22 newly diagnosed patients had a PTT >1.0%.The PKG's simultaneous bradykinesia scores was used to find a threshold for the emergence of tremor. Tremor produced artefactual increase in the PKG's dyskinesia score in 1% of this sample. We propose this as a means of assessing the presence of tremor and its relationship to bradykinesia.

  11. Classification of involuntary movements in dogs: Tremors and twitches.

    PubMed

    Lowrie, Mark; Garosi, Laurent

    2016-08-01

    This review focuses on important new findings in the field of involuntary movements (IM) in dogs and illustrates the importance of developing a clear classification tool for diagnosing tremor and twitches. Developments over the last decade have changed our understanding of IM and highlight several caveats in the current tremor classification. Given the ambiguous association between tremor phenomenology and tremor aetiology, a more cautious definition of tremors based on clinical assessment is required. An algorithm for the characterisation of tremors is presented herein. The classification of tremors is based on the distinction between tremors that occur at rest and tremors that are action-related; tremors associated with action are divided into postural or kinetic. Controversial issues are outlined and thus reflect the open questions that are yet to be answered from an evidence base of peer-reviewed published literature. Peripheral nerve hyper-excitability (PNH; cramps and twitches) may manifest as fasciculations, myokymia, neuromyotonia, cramps, tetany and tetanus. It is anticipated that as we learn more about the aetiology and pathogenesis of IMs, future revisions to the classification will be needed. It is therefore the intent of this work to stimulate discussions and thus contribute to the development of IM research. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  12. The many roads to tremor.

    PubMed

    Brittain, John-Stuart; Brown, Peter

    2013-12-01

    Tremor represents one of the most prominent examples of aberrant synchronisation within the human motor system, and Essential Tremor (ET) is by far the most common tremor disorder. Yet, even within ET there is considerable variation, and patients may have contrasting amounts of postural and intention tremor. Recently, Pedrosa et al. (2013) challenged tremor circuits in a cohort of patients presenting with ET, by applying low-frequency deep brain stimulation within thalamus. This interventional approach provided strong evidence that distinct (yet possibly overlapping) neural substrates are responsible for postural and intention tremor in ET. Intention tremor, and not postural tremor, was exacerbated by low frequency stimulation, and the effect was localised in the region of the ventrolateral thalamus in such a way as to implicate cerebello-thalamic pathways. These results, taken in conjunction with the contemporary literature, reveal that pathological changes exaggerate oscillatory synchrony in selective components of an extensive and distributed motor network, and that synchronisation within these networks is further regulated according to motor state. Through a combination of pathological and more dynamic physiological factors, activity then spills out into the periphery in the form of tremor. The findings of Pedrosa et al. (2013) are timely as they coincide with an emerging notion that tremor may result through selective dysregulation within a broader tremorgenic network. © 2013.

  13. [Clinical subtypes of essential tremor and their electrophysiological and pharmacological differences].

    PubMed

    Koguchi, Y; Nakajima, M; Kawamura, M; Hirayama, K

    1995-02-01

    We divided 19 patients with essential tremor into two subtypes according to clinical characteristics of the tremor. Ten patients had pure postural tremor distributed in the hand(s), head, and face (group A). Nine patients had tremor extending to the voice or leg(s), associated with resting tremor and/or hyperkinesie volitionnelle of the hand(s) (group B). Their ages, the age of onset, and the duration of illness were not different between the two groups. Electrophysiologically, the tremor of group A patients had higher frequencies than that of group B patients, and had synchronized activities for antagonistic muscles. Four of group B patients had reciprocal antagonistic activities of the tremor. Inactive phase of tremor induced by an electrically-evoked muscle twitch was invariably within the range of the physiological silent period for group A patients, and prolonged beyond the range for four of group B patients. Pharmacologically, 78% of group A patients responded well to beta-blocker, which was effective for 25% of group B patients. Sixty per cent of beta-blocker-resistant group B patients responded well to phenobarbital. In conclusion, a peripheral mechanism, presumably beta-adrenergic drive, is important for the tremor in group A patients, while central pathogenic mechanisms are more important for the tremor of group B patients.

  14. Cognitive Stress Reduces the Effect of Levodopa on Parkinson's Resting Tremor.

    PubMed

    Zach, Heidemarie; Dirkx, Michiel F; Pasman, Jaco W; Bloem, Bastiaan R; Helmich, Rick C

    2017-03-01

    Resting tremor in Parkinson's disease (PD) increases markedly during cognitive stress. Dopamine depletion in the basal ganglia is involved in the pathophysiology of resting tremor, but it is unclear whether this contribution is altered under cognitive stress. We test the hypothesis that cognitive stress modulates the levodopa effect on resting tremor. Tremulous PD patients (n = 69) were measured in two treatment conditions (OFF vs. ON levodopa) and in two behavioral contexts (rest vs. cognitive co-activation). Using accelerometry, we tested the effect of both interventions on tremor intensity and tremor variability. Levodopa significantly reduced tremor intensity (across behavioral contexts), while cognitive co-activation increased it (across treatment conditions). Crucially, the levodopa effect was significantly smaller during cognitive co-activation than during rest. Resting tremor variability increased after levodopa and decreased during cognitive co-activation. Cognitive stress reduces the levodopa effect on Parkinson's tremor. This effect may be explained by a stress-related depletion of dopamine in the basal ganglia motor circuit, by stress-related involvement of nondopaminergic mechanisms in tremor (e.g., noradrenaline), or both. Targeting these mechanisms may open new windows for treatment. Clinical tremor assessments under evoked cognitive stress (e.g., counting tasks) may avoid overestimation of treatment effects in real life. © 2017 The Authors. CNS Neuroscience & Therapeutics Published by John Wiley & Sons Ltd.

  15. Impaired eye blink classical conditioning distinguishes dystonic patients with and without tremor.

    PubMed

    Antelmi, E; Di Stasio, F; Rocchi, L; Erro, R; Liguori, R; Ganos, C; Brugger, F; Teo, J; Berardelli, A; Rothwell, J; Bhatia, K P

    2016-10-01

    Tremor is frequently associated with dystonia, but its pathophysiology is still unclear. Dysfunctions of cerebellar circuits are known to play a role in the pathophysiology of action-induced tremors, and cerebellar impairment has frequently been associated to dystonia. However, a link between dystonic tremor and cerebellar abnormalities has not been demonstrated so far. Twenty-five patients with idiopathic isolated cervical dystonia, with and without tremor, were enrolled. We studied the excitability of inhibitory circuits in the brainstem by measuring the R2 blink reflex recovery cycle (BRC) and implicit learning mediated by the cerebellum by means of eyeblink classical conditioning (EBCC). Results were compared with those obtained in a group of age-matched healthy subjects (HS). Statistical analysis did not disclose any significant clinical differences among dystonic patients with and without tremor. Patients with dystonia (regardless of the presence of tremor) showed decreased inhibition of R2 blink reflex by conditioning pulses compared with HS. Patients with dystonic tremor showed a decreased number of conditioned responses in the EBCC paradigm compared to HS and dystonic patients without tremor. The present data show that cerebellar impairment segregates with the presence of tremor in patients with dystonia, suggesting that the cerebellum might have a role in the occurrence of dystonic tremor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Electrophysiological characteristics of task-specific tremor in 22 instrumentalists.

    PubMed

    Lee, André; Tominaga, Kenta; Furuya, Shinichi; Miyazaki, Fumio; Altenmüller, Eckart

    2015-03-01

    Our aim was to address three characteristics of task-specific tremor in musicians (TSTM): First, we quantified muscular activity of flexor and extensor muscles, of coactivation as well as tremor acceleration. Second, we compared muscular activity between task-dependent and position-dependent tremor. Third, we investigated, whether there is an overflow of muscular activity to muscles adjacent to the affected muscles in TSTM. Tremor acceleration and muscular activity were measured in the affected muscles and the muscles adjacent to the affected muscles in 22 patients aged 51.5 ± 11.4 years with a task-specific tremor. We assessed power of muscular oscillatory activity and calculated the coherence between EMG activity of affected muscles and tremor acceleration as well as between adjacent muscles and tremor acceleration. This was done for task-dependent and position-dependent tremor. We found the highest power and coherence of muscular oscillatory activity in the frequency range of 3-8 Hz for affected and adjacent muscles. No difference was found between task-dependent and position-dependent tremor in neither power nor coherence measures. Our results generalize previous results of a relation between coactivation and tremor among a variety of musicians. Furthermore, we found coherence of adjacent muscles and TSTM. This indicates that overflow exists in TSTM and suggests an association of TST with dystonia.

  17. Quantitative assessment of arm tremor in people with neurological disorders.

    PubMed

    Jeonghee Kim; Parnell, Claire; Wichmann, Thomas; DeWeerth, Stephen P

    2016-08-01

    Abnormal oscillatory movement (i.e. tremor) is usually evaluated with qualitative assessment by clinicians, and quantified with subjective scoring methods. These methods are often inaccurate. We utilized a quantitative and standardized task based on the Fitts' law to assess the performance of arm movement with tremor by controlling a gyration mouse on a computer. The experiment included the center-out tapping (COT) and rectangular track navigation (RTN) tasks. We report the results of a pilot study in which we collected the performance for healthy participants in whom tremor was simulated by imposing oscillatory movements to the arm with a vibration motor. We compared their movement speed and accuracy with and without the artificial "tremor." We found that the artificial tremor significantly affected the path efficiency for both tasks (COT: 56.8 vs. 46.2%, p <; 0.05; RTN: 94.2 vs. 67.4%, p <; 0.05), and we were able to distinguish the presence of tremor. From this result, we expect to quantify severity of tremor and the effectiveness therapy for tremor patients.

  18. Tremor in X-linked recessive spinal and bulbar muscular atrophy (Kennedy's disease)

    PubMed Central

    Dias, Francisco A; Munhoz, Renato P; Raskin, Salmo; Werneck, Lineu César; Teive, Hélio A G

    2011-01-01

    OBJECTIVE: To study tremor in patients with X-linked recessive spinobulbar muscular atrophy or Kennedy's disease. METHODS: Ten patients (from 7 families) with a genetic diagnosis of Kennedy's disease were screened for the presence of tremor using a standardized clinical protocol and followed up at a neurology outpatient clinic. All index patients were genotyped and showed an expanded allele in the androgen receptor gene. RESULTS: Mean patient age was 37.6 years and mean number of CAG repeats 47 (44-53). Tremor was present in 8 (80%) patients and was predominantly postural hand tremor. Alcohol responsiveness was detected in 7 (88%) patients with tremor, who all responded well to treatment with a β-blocker (propranolol). CONCLUSION: Tremor is a common feature in patients with Kennedy's disease and has characteristics similar to those of essential tremor. PMID:21808858

  19. Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Jiang, Jack J.

    2008-09-01

    Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds with vocal tremor, which can typically be characterized by low-frequency modulation and aperiodicity. Tremor voices from patients with disorders such as paresis, Parkinson's disease, hyperfunction, and adductor spasmodic dysphonia show low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of vocal tremor in patients with laryngeal diseases.

  20. Evaluating machine learning algorithms estimating tremor severity ratings on the Bain-Findley scale

    NASA Astrophysics Data System (ADS)

    Yohanandan, Shivanthan A. C.; Jones, Mary; Peppard, Richard; Tan, Joy L.; McDermott, Hugh J.; Perera, Thushara

    2016-12-01

    Tremor is a debilitating symptom of some movement disorders. Effective treatment, such as deep brain stimulation (DBS), is contingent upon frequent clinical assessments using instruments such as the Bain-Findley tremor rating scale (BTRS). Many patients, however, do not have access to frequent clinical assessments. Wearable devices have been developed to provide patients with access to frequent objective assessments outside the clinic via telemedicine. Nevertheless, the information they report is not in the form of BTRS ratings. One way to transform this information into BTRS ratings is through linear regression models (LRMs). Another, potentially more accurate method is through machine learning classifiers (MLCs). This study aims to compare MLCs and LRMs, and identify the most accurate model that can transform objective tremor information into tremor severity ratings on the BTRS. Nine participants with upper limb tremor had their DBS stimulation amplitude varied while they performed clinical upper-extremity exercises. Tremor features were acquired using the tremor biomechanics analysis laboratory (TREMBAL). Movement disorder specialists rated tremor severity on the BTRS from video recordings. Seven MLCs and 6 LRMs transformed TREMBAL features into tremor severity ratings on the BTRS using the specialists’ ratings as training data. The weighted Cohen’s kappa ({κ\\text{w}} ) defined the models’ rating accuracy. This study shows that the Random Forest MLC was the most accurate model ({κ\\text{w}}   =  0.81) at transforming tremor information into BTRS ratings, thereby improving the clinical interpretation of tremor information obtained from wearable devices.

  1. Electrical Stimulation of Afferent Pathways for the Suppression of Pathological Tremor

    PubMed Central

    Dideriksen, Jakob L.; Laine, Christopher M.; Dosen, Strahinja; Muceli, Silvia; Rocon, Eduardo; Pons, José L.; Benito-Leon, Julian; Farina, Dario

    2017-01-01

    Pathological tremors are involuntary oscillatory movements which cannot be fully attenuated using conventional treatments. For this reason, several studies have investigated the use of neuromuscular electrical stimulation for tremor suppression. In a recent study, however, we found that electrical stimulation below the motor threshold also suppressed tremor, indicating involvement of afferent pathways. In this study, we further explored this possibility by systematically investigating how tremor suppression by afferent stimulation depends on the stimulation settings. In this way, we aimed at identifying the optimal stimulation strategy, as well as to elucidate the underlying physiological mechanisms of tremor suppression. Stimulation strategies varying the stimulation intensity and pulse timing were tested in nine tremor patients using either intramuscular or surface stimulation. Significant tremor suppression was observed in six patients (tremor suppression > 75% was observed in three patients) and the average optimal suppression level observed across all subjects was 52%. The efficiency for each stimulation setting, however, varied substantially across patients and it was not possible to identify a single set of stimulation parameters that yielded positive results in all patients. For example, tremor suppression was achieved both with stimulation delivered in an out-of-phase pattern with respect to the tremor, and with random timing of the stimulation. Overall, these results indicate that low-current stimulation of afferent fibers is a promising approach for tremor suppression, but that further research is required to identify how the effect can be maximized in the individual patient. PMID:28420958

  2. Voice Tremor in Parkinson's Disease: An Acoustic Study.

    PubMed

    Gillivan-Murphy, Patricia; Miller, Nick; Carding, Paul

    2018-01-30

    Voice tremor associated with Parkinson disease (PD) has not been characterized. Its relationship with voice disability and disease variables is unknown. This study aimed to evaluate voice tremor in people with PD (pwPD) and a matched control group using acoustic analysis, and to examine correlations with voice disability and disease variables. Acoustic voice tremor analysis was completed on 30 pwPD and 28 age-gender matched controls. Voice disability (Voice Handicap Index), and disease variables of disease duration, Activities of Daily Living (Unified Parkinson's Disease Rating Scale [UPDRS II]), and motor symptoms related to PD (UPDRS III) were examined for relationship with voice tremor measures. Voice tremor was detected acoustically in pwPD and controls with similar frequency. PwPD had a statistically significantly higher rate of amplitude tremor (Hz) than controls (P = 0.001). Rate of amplitude tremor was negatively and significantly correlated with UPDRS III total score (rho -0.509). For pwPD, the magnitude and periodicity of acoustic tremor was higher than for controls without statistical significance. The magnitude of frequency tremor (Mftr%) was positively and significantly correlated with disease duration (rho 0.463). PwPD had higher Voice Handicap Index total, functional, emotional, and physical subscale scores than matched controls (P < 0.001). Voice disability did not correlate significantly with acoustic voice tremor measures. Acoustic analysis enhances understanding of PD voice tremor characteristics, its pathophysiology, and its relationship with voice disability and disease symptomatology. Copyright © 2018 The Voice Foundation. All rights reserved.

  3. Aging, hypertension and physiological tremor: the contribution of the cardioballistic impulse to tremorgenesis in older adults.

    PubMed

    Morrison, Steven; Sosnoff, Jacob J; Heffernan, Kevin S; Jae, Sae Young; Fernhall, Bo

    2013-03-15

    For older adults, an increase in physiological tremor is a common motor feature. This increase is believed to primarily reflect a general decline in function of the neuromuscular system. However, given that tremor is derived from a number of intrinsic sources, age-related changes in other physiological functions like the cardiac system may also negatively alter tremor output. The aim of this study was to examine what impact age and increased cardiac input (hypertension) have on physiological tremor. Heart rate, blood pressure, and postural/resting tremor were recorded in three groups; 1) young, healthy adults, 2) old, normotensive adults, and 3) old, hypertensive adults. The results demonstrated that the old hypertensive adults had greater postural tremor compared to the young healthy individuals. Coherence analysis revealed significant coupling between blood pressure-tremor and between heart rate-tremor for all individuals. The strength of this coupling was greatest for the older, hypertensive individuals. Together these results show that, for older adults, the combined effects of age and cardiac disease have the greatest impact on physiological tremor rather than any single factor alone. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Temporal variation of tectonic tremor activity in southern Taiwan around the 2010 ML6.4 Jiashian earthquake

    NASA Astrophysics Data System (ADS)

    Chao, Kevin; Peng, Zhigang; Hsu, Ya-Ju; Obara, Kazushige; Wu, Chunquan; Ching, Kuo-En; van der Lee, Suzan; Pu, Hsin-Chieh; Leu, Peih-Lin; Wech, Aaron

    2017-07-01

    Deep tectonic tremor, which is extremely sensitive to small stress variations, could be used to monitor fault zone processes during large earthquake cycles and aseismic processes before large earthquakes. In this study, we develop an algorithm for the automatic detection and location of tectonic tremor beneath the southern Central Range of Taiwan and examine the spatiotemporal relationship between tremor and the 4 March 2010 ML6.4 Jiashian earthquake, located about 20 km from active tremor sources. We find that tremor in this region has a relatively short duration, short recurrence time, and no consistent correlation with surface GPS data. We find a short-term increase in the tremor rate 19 days before the Jiashian main shock, and around the time when the tremor rate began to rise one GPS station recorded a flip in its direction of motion. We hypothesize that tremor is driven by a slow-slip event that preceded the occurrence of the shallower Jiashian main shock, even though the inferred slip is too small to be observed by all GPS stations. Our study shows that tectonic tremor may reflect stress variation during the prenucleation process of a nearby earthquake.

  5. Vocal tract characteristics in Parkinson's disease.

    PubMed

    Gillivan-Murphy, Patricia; Carding, Paul; Miller, Nick

    2016-06-01

    Voice tremor is strongly linked to the Parkinson's disease speech-voice symptom complex. Little is known about the underlying anatomic source(s) of voice tremor when it occurs. We review recent literature addressing this issue. Additionally we report findings from a study we conducted employing rating of vocal tract structures viewed using nasolaryngoscopy during vocal and nonspeech tasks. In Parkinson's disease, using laryngeal electromyography, tremor has not been identified in muscles in the vocal folds even when perceived auditorily. Preliminary findings using nasolaryngoscopy suggest that Parkinson's disease voice tremor is not associated with the vocal folds and may involve the palate, the global larynx, and the arytenoids. Tremor in the vertical larynx on /a/, and tremor in the arytenoid cartilages on /s/ differentiated patients with Parkinson's disease from neurologically healthy controls. Visual reliable detection of tremor when it is absent or borderline present, is challenging. Parkinson's disease voice tremor is likely to be related to oscillatory movement in structures across the vocal tract rather than just the vocal folds. To progress clinical practice, more refined tools for the visual rating of tremor would be beneficial. How far voice tremor represents a functionally significant factor for speakers would also add to the literature.

  6. Quality of life and its determinants in essential tremor.

    PubMed

    Chandran, Vijay; Pal, Pramod Kumar

    2013-01-01

    Despite Essential Tremor (ET) being the commonest movement disorder, there are few studies on the quality of life (QOL) in patients with ET, with most studies employing generic questionnaires. We studied QOL in 50 patients with ET attending the outpatient of a hospital using the Quality of life in Essential Tremor (QUEST) questionnaire a disease specific QOL instrument. The severity of tremor was assessed using a modified Fahn Tolosa Marin tremor rating scale (mFTMRS), co morbid anxiety and depression were studied using the Hamilton Anxiety (HARS) and Depression (HDRS) rating scales respectively. We also analyzed the influence of gender, age at presentation, age of onset, duration of tremor, distribution of tremor, family history and use of medications on the QOL. The mean age of onset of tremor was 32.2 ± 18.9 years, mean duration of tremor was 8.4 ± 10.0 years, mean QUEST summary index (QSI) was 24.2 ± 19.2; mean scores in each of the domains were as follows--physical 29.3 ± 26.7, psychosocial 36.4 ± 28.7, communication 23.9 ± 36.9, work & finance 23.5 ± 29.9, hobbies 6.8 ± 17.3. The QSI had significant positive correlation with the mFTMRS, HARS and HDRS. Gender, age at presentation, age of onset, duration of tremor, distribution of tremor, family history and use of medication did not influence the QOL. Psychosocial aspects are important in determining the QOL in patients with ET. Tremor severity, co morbid anxiety and depression are associated with a lower QOL whereas tremor characteristics like age of onset, duration, distribution do not influence the QOL. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Bilateral cerebellar activation in unilaterally challenged essential tremor.

    PubMed

    Broersma, Marja; van der Stouwe, Anna M M; Buijink, Arthur W G; de Jong, Bauke M; Groot, Paul F C; Speelman, Johannes D; Tijssen, Marina A J; van Rootselaar, Anne-Fleur; Maurits, Natasha M

    2016-01-01

    Essential tremor (ET) is one of the most common hyperkinetic movement disorders. Previous research into the pathophysiology of ET suggested underlying cerebellar abnormalities. In this study, we added electromyography as an index of tremor intensity to functional Magnetic Resonance Imaging (EMG-fMRI) to study a group of ET patients selected according to strict criteria to achieve maximal homogeneity. With this approach we expected to improve upon the localization of the bilateral cerebellar abnormalities found in earlier fMRI studies. We included 21 propranolol sensitive patients, who were not using other tremor medication, with a definite diagnosis of ET defined by the Tremor Investigation Group. Simultaneous EMG-fMRI recordings were performed while patients were off tremor medication. Patients performed unilateral right hand and arm extension, inducing tremor, alternated with relaxation (rest). Twenty-one healthy, age- and sex-matched participants mimicked tremor during right arm extension. EMG power variability at the individual tremor frequency as a measure of tremor intensity variability was used as a regressor, mathematically independent of the block regressor, in the general linear model used for fMRI analysis, to find specific tremor-related activations. Block-related activations were found in the classical upper-limb motor network, both for ET patients and healthy participants in motor, premotor and supplementary motor areas. In ET patients, we found tremor-related activations bilaterally in the cerebellum: in left lobules V, VI, VIIb and IX and in right lobules V, VI, VIIIa and b, and in the brainstem. In healthy controls we found simulated tremor-related activations in right cerebellar lobule V. Our results expand on previous findings of bilateral cerebellar involvement in ET. We have identified specific areas in the bilateral somatomotor regions of the cerebellum: lobules V, VI and VIII.

  8. Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia.

    PubMed

    Cury, Rubens Gisbert; Fraix, Valerie; Castrioto, Anna; Pérez Fernández, Maricely Ambar; Krack, Paul; Chabardes, Stephan; Seigneuret, Eric; Alho, Eduardo Joaquim Lopes; Benabid, Alim-Louis; Moro, Elena

    2017-09-26

    To report on the long-term outcomes of deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus (VIM) in Parkinson disease (PD), essential tremor (ET), and dystonic tremor. One hundred fifty-nine patients with PD, ET, and dystonia underwent VIM DBS due to refractory tremor at the Grenoble University Hospital. The primary outcome was a change in the tremor scores at 1 year after surgery and at the latest follow-up (21 years). Secondary outcomes included the relationship between tremor score reduction over time and the active contact position. Tremor scores (Unified Parkinson's Disease Rating Scale-III, items 20 and 21; Fahn, Tolosa, Marin Tremor Rating Scale) and the coordinates of the active contacts were recorded. Ninety-eight patients were included. Patients with PD and ET had sustained improvement in tremor with VIM stimulation (mean improvement, 70% and 66% at 1 year; 63% and 48% beyond 10 years, respectively; p < 0.05). There was no significant loss of stimulation benefit over time ( p > 0.05). Patients with dystonia exhibited a moderate response at 1-year follow-up (41% tremor improvement, p = 0.027), which was not sustained after 5 years (30% improvement, p = 0.109). The more dorsal active contacts' coordinates in the right lead were related to a better outcome 1 year after surgery ( p = 0.029). During the whole follow-up, forty-eight patients (49%) experienced minor side effects, whereas 2 (2.0%) had serious events (brain hemorrhage and infection). VIM DBS is an effective long-term (beyond 10 years) treatment for tremor in PD and ET. Effects on dystonic tremor were modest and transient. This provides Class IV evidence. It is an observational study. © 2017 American Academy of Neurology.

  9. The long-term outcome of orthostatic tremor.

    PubMed

    Ganos, Christos; Maugest, Lucie; Apartis, Emmanuelle; Gasca-Salas, Carmen; Cáceres-Redondo, María T; Erro, Roberto; Navalpotro-Gómez, Irene; Batla, Amit; Antelmi, Elena; Degos, Bertrand; Roze, Emmanuel; Welter, Marie-Laure; Mestre, Tiago; Palomar, Francisco J; Isayama, Reina; Chen, Robert; Cordivari, Carla; Mir, Pablo; Lang, Anthony E; Fox, Susan H; Bhatia, Kailash P; Vidailhet, Marie

    2016-02-01

    Orthostatic tremor is a rare condition characterised by high-frequency tremor that appears on standing. Although the essential clinical features of orthostatic tremor are well established, little is known about the natural progression of the disorder. We report the long-term outcome based on the largest multicentre cohort of patients with orthostatic tremor. Clinical information of 68 patients with clinical and electrophysiological diagnosis of orthostatic tremor and a minimum follow-up of 5 years is presented. There was a clear female preponderance (76.5%) with a mean age of onset at 54 years. Median follow-up was 6 years (range 5-25). On diagnosis, 86.8% of patients presented with isolated orthostatic tremor and 13.2% had additional neurological features. At follow-up, seven patients who initially had isolated orthostatic tremor later developed further neurological signs. A total 79.4% of patients reported worsening of orthostatic tremor symptoms. These patients had significantly longer symptom duration than those without reported worsening (median 15.5 vs 10.5 years, respectively; p=0.005). There was no change in orthostatic tremor frequency over time. Structural imaging was largely unremarkable and dopaminergic neuroimaging (DaTSCAN) was normal in 18/19 cases. Pharmacological treatments were disappointing. Two patients were treated surgically and showed improvement. Orthostatic tremor is a progressive disorder with increased disability although tremor frequency is unchanged over time. In most cases, orthostatic tremor represents an isolated syndrome. Drug treatments are unsatisfactory but surgery may hold promise. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Temporal Variation of Tectonic Tremor Activity Associated with Nearby Earthquakes

    NASA Astrophysics Data System (ADS)

    Chao, K.; Van der Lee, S.; Hsu, Y. J.; Pu, H. C.

    2017-12-01

    Tectonic tremor and slow slip events, located downdip from the seismogenic zone, hold the key to recurring patterns of typical earthquakes. Several findings of slow aseismic slip during the prenucletion processes of nearby earthquakes have provided new insight into the study of stress transform of slow earthquakes in fault zones prior to megathrust earthquakes. However, how tectonic tremor is associated with the occurrence of nearby earthquakes remains unclear. To enhance our understanding of the stress interaction between tremor and earthquakes, we developed an algorithm for the automatic detection and location of tectonic tremor in the collisional tectonic environment in Taiwan. Our analysis of a three-year data set indicates a short-term increase in the tremor rate starting at 19 days before the 2010 ML6.4 Jiashian main shock (Chao et al., JGR, 2017). Around the time when the tremor rate began to rise, one GPS station recorded a flip in its direction of motion. We hypothesize that tremor is driven by a slow-slip event that preceded the occurrence of the shallower nearby main shock, even though the inferred slip is too small to be observed by all GPS stations. To better quantify what the necessary condition for tremor to response to nearby earthquakes is, we obtained a 13-year ambient tremor catalog from 2004 to 2016 in the same region. We examine the spatiotemporal relationship between tremor and 37 ML>=5.0 (seven events with ML>=6.0) nearby earthquakes located within 0.5 degrees to the active tremor sources. The findings from this study can enhance our understanding of the interaction among tremor, slow slip, and nearby earthquakes in the high seismic hazard regions.

  11. Dramatic response to levetiracetam in post-ischaemic Holmes’ tremor

    PubMed Central

    Striano, P; Elefante, Andrea; Coppola, Antonietta; Tortora, Fabio; Zara, Federico; Minetti, Carlo

    2009-01-01

    Holmes’ tremor refers to an unusual combination of rest, postural and kinetic tremor of extremities. Common causes of Holmes’ tremor include stroke, trauma, vascular malformations and multiple sclerosis, with lesions involving the thalamus, brain stem or cerebellum. Although some drugs (eg, levodopa and dopaminergic drugs, clonazepam and propranolol) have been occasionally reported to give some benefit, medical treatment of Holmes’ tremor is unsatisfactory, and many patients require thalamic surgery to achieve satisfactory control. We report a patient in whom post-ischaemic Holmes’ tremor dramatically responded to levetiracetam treatment. PMID:21686707

  12. ETS and tidal stressing: Fault weakening after main slip pulse

    NASA Astrophysics Data System (ADS)

    Houston, H.

    2013-12-01

    Time-varying stresses from solid Earth tides and ocean loading influence slow slip (Hawthorne and Rubin, 2010) and, consequently, the frequency of occurrence and intensity of tremor during ETS episodes (Rubinstein et al., 2008). This relationship can illuminate changes in the mechanical response of the rupture surfaces(s) during slip in ETS. I compare the influence of tidal loading when and after the propagating ETS slip front (estimated by tremor density in time) ruptures the fault at a given spot. Using estimates of slip fronts that I derived from tremor locations, I divide ETS tremor into two groups: that occurring within a day of the start of the inferred slip front and that occurring over several days thereafter. The tremor catalog used contains 50K waveform cross-correlation locations of tremor in 7 large ETS in northern Cascadia between 2005 and 2012. I calculate normal, shear and volumetric stresses due to the Earth and ocean tides at numerous locations on the inferred rupture plane of the ETS following the method of Hawthorne and Rubin (2010). The Coulomb stress increment at each tremor time and location is compared with tremor occurrence for the two groups of tremor. Unreasonable results appear if the effective frictional coefficient mu > 0.2, and results are most 'reasonable' when mu is very near or equal to zero. Following passage of the main slip pulse, tremor generation is notably more sensitive to tidal stressing. One kPa of encouraging tidal Coulomb stress boosts the occurrence of tremor after the main slip pulse by about 50% above the average value, while the same amount of discouraging stress decreases the occurrence of such tremor by a similar factor. The greater the encouraging or discouraging stress, the greater the effect. In contrast, tremor in the main slip pulse is much less affected by positive or negative tidal stresses. I interpret the greater sensitivity to tidal stressing of the tremor after the main slip pulse as a measure of the weakening of the fault plane following its initial rupture. Considering up- and down-dip sensitivities to tidal stress, tremor generation on the up-dip region is affected roughly 50% more by both positive and negative tidal stresses than tremor down-dip. Furthermore, for the down-dip tremor, there is less contrast in sensitivity to stress between the tremor at the main slip front and the later tremor, i.e., the fault downdip is both less sensitive to tidal stress and weakens less due to the rupture. These results are consistent with the timing and geometry of Rapid Tremor Reversals, which also indicate weakening of the fault after the main slip front has passed through a region (Houston et al., 2011). RTRs occur on updip parts of the fault, after the main slip front, and at times of encouraging tidal stress (Thomas et al., 2013).

  13. One central oscillatory drive is compatible with experimental motor unit behaviour in essential and Parkinsonian tremor

    NASA Astrophysics Data System (ADS)

    Dideriksen, Jakob L.; Gallego, Juan A.; Holobar, Ales; Rocon, Eduardo; Pons, Jose L.; Farina, Dario

    2015-08-01

    Objective. Pathological tremors are symptomatic to several neurological disorders that are difficult to differentiate and the way by which central oscillatory networks entrain tremorogenic contractions is unknown. We considered the alternative hypotheses that tremor arises from one oscillator (at the tremor frequency) or, as suggested by recent findings from the superimposition of two separate inputs (at the tremor frequency and twice that frequency). Approach. Assuming one central oscillatory network we estimated analytically the relative amplitude of the harmonics of the tremor frequency in the motor neuron output for different temporal behaviors of the oscillator. Next, we analyzed the bias in the relative harmonics amplitude introduced by superimposing oscillations at twice the tremor frequency. These findings were validated using experimental measurements of wrist angular velocity and surface electromyography (EMG) from 22 patients (11 essential tremor, 11 Parkinson’s disease). The ensemble motor unit action potential trains identified from the EMG represented the neural drive to the muscles. Main results. The analytical results showed that the relative power of the tremor harmonics in the analytical models of the neural drive was determined by the variability and duration of the tremor bursts and the presence of the second oscillator biased this power towards higher values. The experimental findings accurately matched the analytical model assuming one oscillator, indicating a negligible functional role of secondary oscillatory inputs. Furthermore, a significant difference in the relative power of harmonics in the neural drive was found across the patient groups, suggesting a diagnostic value of this measure (classification accuracy: 86%). This diagnostic power decreased substantially when estimated from limb acceleration or the EMG. Signficance. The results indicate that the neural drive in pathological tremor is compatible with one central network providing neural oscillations at the tremor frequency. Moreover, the regularity of this neural oscillation varies across tremor pathologies, making the relative amplitude of tremor harmonics a potential biomarker for diagnostic use.

  14. One central oscillatory drive is compatible with experimental motor unit behaviour in essential and Parkinsonian tremor.

    PubMed

    Dideriksen, Jakob L; Gallego, Juan A; Holobar, Ales; Rocon, Eduardo; Pons, Jose L; Farina, Dario

    2015-08-01

    Pathological tremors are symptomatic to several neurological disorders that are difficult to differentiate and the way by which central oscillatory networks entrain tremorogenic contractions is unknown. We considered the alternative hypotheses that tremor arises from one oscillator (at the tremor frequency) or, as suggested by recent findings from the superimposition of two separate inputs (at the tremor frequency and twice that frequency). Assuming one central oscillatory network we estimated analytically the relative amplitude of the harmonics of the tremor frequency in the motor neuron output for different temporal behaviors of the oscillator. Next, we analyzed the bias in the relative harmonics amplitude introduced by superimposing oscillations at twice the tremor frequency. These findings were validated using experimental measurements of wrist angular velocity and surface electromyography (EMG) from 22 patients (11 essential tremor, 11 Parkinson's disease). The ensemble motor unit action potential trains identified from the EMG represented the neural drive to the muscles. The analytical results showed that the relative power of the tremor harmonics in the analytical models of the neural drive was determined by the variability and duration of the tremor bursts and the presence of the second oscillator biased this power towards higher values. The experimental findings accurately matched the analytical model assuming one oscillator, indicating a negligible functional role of secondary oscillatory inputs. Furthermore, a significant difference in the relative power of harmonics in the neural drive was found across the patient groups, suggesting a diagnostic value of this measure (classification accuracy: 86%). This diagnostic power decreased substantially when estimated from limb acceleration or the EMG. SIGNFICANCE: The results indicate that the neural drive in pathological tremor is compatible with one central network providing neural oscillations at the tremor frequency. Moreover, the regularity of this neural oscillation varies across tremor pathologies, making the relative amplitude of tremor harmonics a potential biomarker for diagnostic use.

  15. Monochromatic infrasonic tremor driven by persistent degassing and convection at Villarrica Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Ripepe, M.; Marchetti, E.; Bonadonna, C.; Harris, A. J. L.; Pioli, L.; Ulivieri, G.

    2010-08-01

    Infrasonic data collected at Villarrica volcano (Chile) in March 2009 show a sustained, continuous, infrasonic oscillation (tremor) with a monochromatic low frequency content at ˜0.75 Hz. This tremor is extremely stable in time both at the summit and at a distal (˜4 km) small aperture array. Infrasonic tremor is characterized by discrete high amplitude bursts with a cyclic recurrence time of ˜40 s and is well correlated (0.93) with seismic tremor. These new data are compared with previous datasets collected in 2002 and 2004 during different levels of activity. All data show the same persistent infrasonic tremor and have the same strong correlation with seismic tremor. The stability and correlation of infrasonic and seismic tremor indicate the existence of a sustained and continuous process, which we suggest is related to the gravity-driven bubble column dynamics responsible for conduit convection.

  16. Quantification of sound instability in embouchure tremor based on the time-varying fundamental frequency.

    PubMed

    Lee, André; Voget, Jakob; Furuya, Shinichi; Morise, Masanori; Altenmüller, Eckart

    2016-05-01

    Task-specific tremor in musicians is an involuntary oscillating muscular activity mostly of the hand or the embouchure, which predominantly occurs while playing the instrument. In contrast to arm or hand tremors, which have been examined and objectified based on movement kinematics and muscular activity, embouchure tremor has not yet been investigated. To quantify and describe embouchure tremor we analysed sound production and investigated the fluctuation of the time-varying fundamental frequency of sustained notes. A comparison between patients with embouchure tremor and healthy controls showed a significantly higher fluctuation of the fundamental frequency for the patients in the high pitch with a tremor frequency range between 3 and 8 Hz. The present findings firstly provide further information about a scarcely described movement disorder and secondly further evaluate a new quantification method for embouchure tremor, which has recently been established for embouchure dystonia.

  17. Automated detection and characterization of harmonic tremor in continuous seismic data

    NASA Astrophysics Data System (ADS)

    Roman, Diana C.

    2017-06-01

    Harmonic tremor is a common feature of volcanic, hydrothermal, and ice sheet seismicity and is thus an important proxy for monitoring changes in these systems. However, no automated methods for detecting harmonic tremor currently exist. Because harmonic tremor shares characteristics with speech and music, digital signal processing techniques for analyzing these signals can be adapted. I develop a novel pitch-detection-based algorithm to automatically identify occurrences of harmonic tremor and characterize their frequency content. The algorithm is applied to seismic data from Popocatepetl Volcano, Mexico, and benchmarked against a monthlong manually detected catalog of harmonic tremor events. During a period of heightened eruptive activity from December 2014 to May 2015, the algorithm detects 1465 min of harmonic tremor, which generally precede periods of heightened explosive activity. These results demonstrate the algorithm's ability to accurately characterize harmonic tremor while highlighting the need for additional work to understand its causes and implications at restless volcanoes.

  18. A new method for the measurement of tremor at rest.

    PubMed

    Comby, B; Chevalier, G; Bouchoucha, M

    1992-01-01

    This paper establishes a standard method for measuring human tremor. The electronic instrument described is an application of this method. It solves the need for an effective and simple tremor-measuring instrument fit for wide distribution. This instrument consists of a piezoelectric accelerometer connected to an electronic circuit and to an LCD display. The signal is also analysed by a computer after accelerometer analogic/digital conversion in order to test the method. The tremor of 1079 healthy subjects was studied. Spectral analysis showed frequency peaks between 5.85 and 8.80 Hz. Chronic cigarette-smoking and coffee drinking did not modify the tremor as compared with controls. Relaxation session decreased tremor significantly in healthy subjects (P less than 0.01). This new tremor-measuring method opens new horizons in the understanding of physiological and pathological tremor, stress, anxiety and in the means to avoid or compensate them.

  19. Spike shape analysis of electromyography for parkinsonian tremor evaluation.

    PubMed

    Marusiak, Jarosław; Andrzejewska, Renata; Świercz, Dominika; Kisiel-Sajewicz, Katarzyna; Jaskólska, Anna; Jaskólski, Artur

    2015-12-01

    Standard electromyography (EMG) parameters have limited utility for evaluation of Parkinson disease (PD) tremor. Spike shape analysis (SSA) EMG parameters are more sensitive than standard EMG parameters for studying motor control mechanisms in healthy subjects. SSA of EMG has not been used to assess parkinsonian tremor. This study assessed the utility of SSA and standard time and frequency analysis for electromyographic evaluation of PD-related resting tremor. We analyzed 1-s periods of EMG recordings to detect nontremor and tremor signals in relaxed biceps brachii muscle of seven mild to moderate PD patients. SSA revealed higher mean spike amplitude, duration, and slope and lower mean spike frequency in tremor signals than in nontremor signals. Standard EMG parameters (root mean square, median, and mean frequency) did not show differences between the tremor and nontremor signals. SSA of EMG data is a sensitive method for parkinsonian tremor evaluation. © 2015 Wiley Periodicals, Inc.

  20. Improvement of mouse controlling in Essential tremor by a tremor filter: A case report.

    PubMed

    López-Blanco, Roberto; Méndez-Guerrero, Antonio; Velasco, Miguel A

    2018-07-15

    The interaction with electronic devices is crucial in our technological society. Hand kinetic tremor complicates mouse driving in Essential tremor patients. To solve this issue some technological solutions are available and accessible online. We present a 71-year-old patient with prominent mouse controlling tremor who improved with one of these systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Inhibition of Parkinsonian tremor with cutaneous afferent evoked by transcutaneous electrical nerve stimulation.

    PubMed

    Hao, Man-Zhao; Xu, Shao-Qin; Hu, Zi-Xiang; Xu, Fu-Liang; Niu, Chuan-Xin M; Xiao, Qin; Lan, Ning

    2017-07-14

    Recent study suggests that tremor signals are transmitted by way of multi-synaptic corticospinal pathway. Neurophysiological studies have also demonstrated that cutaneous afferents exert potent inhibition to descending motor commands by way of spinal interneurons. We hypothesize in this study that cutaneous afferents could also affect the transmission of tremor signals, thus, inhibit tremor in patients with PD. We tested this hypothesis by activating cutaneous afferents in the dorsal hand skin innervated by superficial radial nerve using transcutaneous electrical nerve stimulation (TENS). Eight patients with PD having tremor dominant symptom were recruited to participate in this study using a consistent experimental protocol for tremor inhibition. Resting tremor and electromyogram (EMG) of muscles in the upper extremity of these subjects with PD were recorded, while surface stimulation was applied to the dorsal skin of the hand. Fifteen seconds of data were recorded for 5 s prior to, during and post stimulation. Power spectrum densities (PSDs) of tremor and EMG signals were computed for each data segment. The peak values of PSDs in three data segments were compared to detect evidence of tremor inhibition. At stimulation intensity from 1.5 to 1.75 times of radiating sensation threshold, apparent suppressions of tremor at wrist, forearm and upper arm and in the EMGs were observed immediately at the onset of stimulation. After termination of stimulation, tremor and rhythmic EMG bursts reemerged gradually. Statistical analysis of peak spectral amplitudes showed a significant difference in joint tremors and EMGs during and prior to stimulation in all 8 subjects with PD. The average percentage of suppression was 61.56% in tremor across all joints of all subjects, and 47.97% in EMG of all muscles. The suppression appeared to occur mainly in distal joints and muscles. There was a slight, but inconsistent effect on tremor frequency in the 8 patients with PD tested. Our results provide direct evidence that tremor in the upper extremity of patients with PD can be inhibited to a large extent with evoked cutaneous reflexes via surface stimulation of the dorsal hand skin area innervated by the superficial radial nerve.

  2. Investigation of Potential Triggered Tremor in Latin America and the Caribbean

    NASA Astrophysics Data System (ADS)

    Gonzalez-Huizar, H.; Velasco, A. A.; Peng, Z.

    2012-12-01

    Recent observations have shown that seismic waves generate transient stresses capable of triggering earthquakes and tectonic (or non-volcanic) tremor far away from the original earthquake source. However, the mechanisms behind remotely triggered seismicity still remain unclear. Triggered tremor signals can be particularly useful in investigating remote triggering processes, since in many cases, the tremor pulses are very clearly modulated by the passing surface waves. The temporal stress changes (magnitude and orientation) caused by seismic waves at the tremor source region can be calculated and correlated with tremor pulses, which allows for exploring the stresses involved in the triggering process. Some observations suggest that triggered and ambient tremor signals are generated under similar physical conditions; thus, investigating triggered tremor might also provide important clues on how and under what conditions ambient tremor signals generate. In this work we present some of the results and techniques we employ in the research of potential cases of triggered tectonic tremor in Latin America and the Caribbean. This investigation includes: (1) the triggered tremor detection, with the use of specific signal filters; (2) localization of the sources, using uncommon techniques like time reversal signals; (3) and the analysis of the stress conditions under which they are generated, by modeling the triggering waves related dynamic stress. Our results suggest that tremor can be dynamically triggered by both Love and Rayleigh waves and in broad variety of tectonic environments depending strongly on the dynamic stress amplitude and orientation. Investigating remotely triggered seismicity offers the opportunity to improve our knowledge about deformation mechanisms and the physics of rupture.

  3. Deep Brain Stimulation of the Dentato-Rubro-Thalamic Tract: Outcomes of Direct Targeting for Tremor.

    PubMed

    Fenoy, Albert J; Schiess, Mya C

    2017-07-01

    Targeting the dentato-rubro-thalamic tract (DRTt) has been suggested to be efficacious in deep brain stimulation (DBS) for tremor suppression, both in case reports and post-hoc analyses. This prospective observational study sought to analyze outcomes after directly targeting the DRTt in tremor patients. 20 consecutively enrolled intention tremor patients obtained pre-operative MRI with diffusion tensor (dTi) sequences. Mean baseline tremor amplitude based on The Essential Tremor Rating Assessment Scale was recorded. The DRTt was drawn for each individual on StealthViz software (Medtronic) using the dentate nucleus as the seed region and the ipsilateral pre-central gyrus as the end region and then directly targeted during surgery. Intraoperative testing confirmed successful tremor control. Post-operative analysis of electrode position relative to the DRTt was performed, as was post-operative assessment of tremor improvement. The mean age of patients was 66.8 years; mean duration of tremor was 16 years. Mean voltage for the L electrode = 3.4 V; R = 2.6 V. Mean distance from the center of the active electrode contact to the DRTt was 0.9 mm on the L, and 0.8 mm on the R. Improvement in arm tremor amplitude from baseline after DBS was significant (P < 0.001). Direct targeting of the DRTt in DBS is an effective strategy for tremor suppression. Accounting for hardware, software, and model limitations, depiction of the DRTt allows for placement of electrode contacts directly within the fiber tract for modulation despite any anatomical variation, which reproducibly resulted in good tremor control. © 2017 International Neuromodulation Society.

  4. Tremor in the Elderly: Essential and Aging-Related Tremor

    PubMed Central

    Deuschl, Günthe; Petersen, Inge; Lorenz, Delia; Christensen, Kaare

    2016-01-01

    Isolated tremor in the elderly is commonly diagnosed as essential tremor (ET). The prevalence of tremor increases steeply with increasing age, whereas hereditary tremor is becoming less common. Moreover, late-manifesting tremor seems to be associated with dementia and earlier mortality. We hypothesize that different entities underlie tremor in the elderly. Two thousand four hundred forty-eight subjects from the Longitudinal Study of Aging Danish Twins older than 70 y answered screening questions for ET in 2001. Two thousan fifty-six (84%) participants drew Archimedes spirals to measure their tremor severity, and classical aging phenotypes were assessed. A subgroup of 276 individuals fulfilling either screening criteria for ET or being controls were personally assessed. Medications and mortality data are available. The spiral score increased with age. The spiral score correlated with tremor severity. For the whole cohort, mortality was significantly correlated with the spiral score, and higher spiral scores were associated with lower physical and cognitive functioning. Multivariate analysis identified higher spiral scores as an independent risk factor for mortality. In contrast, the ET patients did not show an increased but rather a lower mortality rate although it was not statistically significant. Consistent with a slower than normal aging, they were also physically and cognitively better functioning than controls. Because incident tremors beyond 70 y of age show worse aging parameters and mortality than controls and ET, we propose to label it ‘aging-related tremor’ (ART). This tremor starts later in life and is accompanied by subtle signs of aging both cognitively and physically. More detailed clinical features and pathogenesis warrant further assessment. PMID:26095699

  5. Effects of timolol and atenolol on benign essential tremor: placebo-controlled studies based on quantitative tremor recording.

    PubMed

    Dietrichson, P; Espen, E

    1981-08-01

    Two different beta-adrenoreceptor antagonists, atenolol and timolol, were separately compared with a placebo in the suppression of essential tremor. In two-week single-blind placebo-controlled studies with cross-over, timolol (5 mg twice daily) and atenolol (100 mg once daily) produced an equal reduction in sitting heart rate and sitting blood pressure. Timolol was effective in reducing tremor while atenolol failed to reduce tremor amplitude. These results indicate that essential tremor can be reduced but not blocked, by the adrenergic blocker timolol with both beta 1 and beta 2 blocking properties; but not by the relatively selective beta 1 blocking drug atenolol. Possibly, the tremor reduction is medicated by a peripheral effect on beta 2 adrenoreceptors.

  6. Treatment of Essential Tremor

    MedlinePlus

    ... successfully treats limb tremor is weakened by the research methods involved. DBS and thalamotomy each pose some risk. They are used only when tremor is very disabling and drugs do not ... is best? Research on treatments for essential tremor is limited. No ...

  7. Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique

    USGS Publications Warehouse

    Ryberg, T.; Haberland, C.H.; Fuis, G.S.; Ellsworth, W.L.; Shelly, D.R.

    2010-01-01

    Non-volcanic tremor (NVT) has been observed at several subduction zones and at the San Andreas Fault (SAF). Tremor locations are commonly derived by cross-correlating envelope-transformed seismic traces in combination with source-scanning techniques. Recently, they have also been located by using relative relocations with master events, that is low-frequency earthquakes that are part of the tremor; locations are derived by conventional traveltime-based methods. Here we present a method to locate the sources of NVT using an imaging approach for multiple array data. The performance of the method is checked with synthetic tests and the relocation of earthquakes. We also applied the method to tremor occurring near Cholame, California. A set of small-aperture arrays (i.e. an array consisting of arrays) installed around Cholame provided the data set for this study. We observed several tremor episodes and located tremor sources in the vicinity of SAF. During individual tremor episodes, we observed a systematic change of source location, indicating rapid migration of the tremor source along SAF. ?? 2010 The Authors Geophysical Journal International ?? 2010 RAS.

  8. Pathological ponto-cerebello-thalamo-cortical activations in primary orthostatic tremor during lying and stance.

    PubMed

    Schöberl, Florian; Feil, Katharina; Xiong, Guoming; Bartenstein, Peter; la Fougére, Christian; Jahn, Klaus; Brandt, Thomas; Strupp, Michael; Dieterich, Marianne; Zwergal, Andreas

    2017-01-01

    Primary orthostatic tremor is a rare neurological disease characterized mainly by a high frequency tremor of the legs while standing. The aim of this study was to identify the common core structures of the oscillatory circuit in orthostatic tremor and how it is modulated by changes of body position. Ten patients with orthostatic tremor and 10 healthy age-matched control subjects underwent a standardized neurological and neuro-ophthalmological examination including electromyographic and posturographic recordings. Task-dependent changes of cerebral glucose metabolism during lying and standing were measured in all subjects by sequential 18 F-fluorodeoxyglucose-positron emission tomography on separate days. Results were compared between groups and conditions. All the orthostatic tremor patients, but no control subject, showed the characteristic 13-18 Hz tremor in coherent muscles during standing, which ceased in the supine position. While lying, patients had a significantly increased regional cerebral glucose metabolism in the pontine tegmentum, the posterior cerebellum (including the dentate nuclei), the ventral intermediate and ventral posterolateral nucleus of the thalamus, and the primary motor cortex bilaterally compared to controls. Similar glucose metabolism changes occurred with clinical manifestation of the tremor during standing. The glucose metabolism was relatively decreased in mesiofrontal cortical areas (i.e. the medial prefrontal cortex, supplementary motor area and anterior cingulate cortex) and the bilateral anterior insula in orthostatic tremor patients while lying and standing. The mesiofrontal hypometabolism correlated with increased body sway in posturography. This study confirms and further elucidates ponto-cerebello-thalamo-primary motor cortical activations underlying primary orthostatic tremor, which presented consistently in a group of patients. Compared to other tremor disorders one characteristic feature in orthostatic tremor seems to be the involvement of the pontine tegmentum in the pathophysiology of tremor generation. High frequency oscillatory properties of pontine tegmental neurons have been reported in pathological oscillatory eye movements. It is remarkable that the characteristic activation and deactivation pattern in orthostatic tremor is already present in the supine position without tremor presentation. Multilevel changes of neuronal excitability during upright stance may trigger activation of the orthostatic tremor network. Based on the functional imaging data described in this study, it is hypothesized that a mesiofrontal deactivation is another characteristic feature of orthostatic tremor and plays a pivotal role in development of postural unsteadiness during prolonged standing. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Medical and surgical treatment of tremors.

    PubMed

    Schneider, Susanne A; Deuschl, Günther

    2015-02-01

    Tremor is a hyperkinetic movement disorder characterized by rhythmic oscillations of one or more body parts. Disease severity ranges from mild to severe with various degrees of impact on quality of life. Essential tremor and parkinsonian tremor are the most common etiologic subtypes. Treatment may be challenging; although several drugs are available, response may be unsatisfactory. For some tremor forms, controlled data are scarce or completely missing and treatment is often based on anecdotal evidence. In this article, we review the current literature on tremor treatment, with a focus on common forms. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Neural computational modeling reveals a major role of corticospinal gating of central oscillations in the generation of essential tremor.

    PubMed

    Qu, Hong-En; Niu, Chuanxin M; Li, Si; Hao, Man-Zhao; Hu, Zi-Xiang; Xie, Qing; Lan, Ning

    2017-12-01

    Essential tremor, also referred to as familial tremor, is an autosomal dominant genetic disease and the most common movement disorder. It typically involves a postural and motor tremor of the hands, head or other part of the body. Essential tremor is driven by a central oscillation signal in the brain. However, the corticospinal mechanisms involved in the generation of essential tremor are unclear. Therefore, in this study, we used a neural computational model that includes both monosynaptic and multisynaptic corticospinal pathways interacting with a propriospinal neuronal network. A virtual arm model is driven by the central oscillation signal to simulate tremor activity behavior. Cortical descending commands are classified as alpha or gamma through monosynaptic or multisynaptic corticospinal pathways, which converge respectively on alpha or gamma motoneurons in the spinal cord. Several scenarios are evaluated based on the central oscillation signal passing down to the spinal motoneurons via each descending pathway. The simulated behaviors are compared with clinical essential tremor characteristics to identify the corticospinal pathways responsible for transmitting the central oscillation signal. A propriospinal neuron with strong cortical inhibition performs a gating function in the generation of essential tremor. Our results indicate that the propriospinal neuronal network is essential for relaying the central oscillation signal and the production of essential tremor.

  11. White matter microstructure damage in tremor-dominant Parkinson's disease patients.

    PubMed

    Luo, ChunYan; Song, Wei; Chen, Qin; Yang, Jing; Gong, QiYong; Shang, Hui-Fang

    2017-07-01

    Resting tremor is one of the cardinal motor features of Parkinson's disease (PD). Several lines of evidence suggest resting tremor may have different underlying pathophysiological processes from those of bradykinesia and rigidity. The current study aims to identify white matter microstructural abnormalities associated with resting tremor in PD. We recruited 60 patients with PD (30 with tremor-dominant PD and 30 with nontremor-dominant PD) and 26 normal controls. All participants underwent clinical assessment and diffusion tensor MRI. We used tract-based spatial statistics to investigate white matter integrity across the entire white matter tract skeleton. Compared with both healthy controls and the nontremor-dominant PD patients, the tremor-dominant PD patients were characterized by increased mean diffusivity (MD) and axial diffusivity (AD) along multiple white matter tracts, mainly involving the cerebello-thalamo-cortical (CTC) pathway. The mean AD value in clusters with significant difference was correlated with resting tremor score in the tremor-dominant PD patients. There was no significant difference between the nontremor-dominant PD patients and controls. Our results support the notion that resting tremor in PD is a distinct condition in which significant microstructural white matter changes exist and provide evidence for the involvement of the CTC in tremor genesis of PD.

  12. Semiology of Tremors.

    PubMed

    Molina-Negro, P; Hardy, J

    1975-02-01

    Since the description by Galen in the 2nd Century, A.D., clinical neurology has acknowledged the existence of two types of tremor: that which occurs at rest and that occuring during the execution of movement. With the help of refined methods of analysis, E.M.G. and cinephotography, the authors have carried out a detailed clinical assessment in more than 400 patients. The basic criterion used to define a tremor was the classical definition of Dejerine: "An involuntary, rhythmical and symmetrical movement about an axis of equilibrium." As a result of this study, the conclusion has been reached that there are two types of tremor: postural tremor and tremor of attitude. Both are present while the limb remains immobile, whether by wilful design or when at rest in a position of posture and subject only to the action of gravity. During voluntary movement, tremor is not present. Irregular, asymmetrical and non-rhythmic oscillations may appear however - as in so-called intention tremor, of cerebellar origin - but this abnormal movement can hardly be called a real tremor. It is merely a manifestation of ataxia. As a consequence of this study, it is suggested that further understanding of the basic mechanism of tremor can be reached by the investigation of the central neural structures which are involved in the physiology of posture and attitude.

  13. Re-emergent tremor in Parkinson's disease: Clinical and accelerometric properties.

    PubMed

    Aytürk, Zübeyde; Yilmaz, Rezzak; Akbostanci, M Cenk

    2017-03-01

    Re-emergent tremor (RET) and the classical parkinsonian rest tremor were considered as two different phenomena of the same central tremor circuit. However, clinical and accelerometric characteristics of these tremors were not previously compared in a single study. We evaluated disease characteristics and accelerometric measurements of two tremor types in 42 patients with Parkinson's disease. Disease specific features and accelerometric measurements of peak frequency, amplitude at peak frequency and the root mean square (RMS) amplitude of two tremor types were compared. Eighteen patients had RET and the mean latency of the RET was 9.48 (±9.2)s. Groups of only rest tremor and RET did not differ significantly in age of disease onset, disease duration and severity and mean levodopa equivalent dose. Comparison of peak frequency and amplitude at peak frequency were not different between the groups, but RMS amplitude was significantly higher in the RET group (p=0.03). RMS amplitude of RET was also correlated with disease severity (r=.48, p=0.04). These results support the previous notion that rest tremor and RET are analogue, both are triggered by the same central ossilator with RET being only the suppression of the rest tremor due to arm repositioning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson’s disease

    PubMed Central

    Qasim, Salman E.; de Hemptinne, Coralie; Swann, Nicole C.; Miocinovic, Svjetlana; Ostrem, Jill L.; Starr, Philip A.

    2015-01-01

    The pathophysiology of rest tremor in Parkinson’s disease (PD) is not well understood, and its severity does not correlate with the severity of other cardinal signs of PD. We hypothesized that tremor-related oscillatory activity in the basal-ganglia-thalamocortical loop might serve as a compensatory mechanism for the excessive beta band synchronization associated with the parkinsonian state. We recorded electrocorticography (ECoG) from the sensorimotor cortex and local field potentials (LFP) from the subthalamic nucleus (STN) in patients undergoing lead implantation for deep brain stimulation (DBS). We analyzed differences in measures of network synchronization during epochs of spontaneous rest tremor, versus epochs without rest tremor, occurring in the same subjects. The presence of tremor was associated with reduced beta power in the cortex and STN. Cortico-cortical coherence and phase-amplitude coupling (PAC) decreased during rest tremor, as did basal ganglia-cortical coherence in the same frequency band. Cortical broadband gamma power was not increased by tremor onset, in contrast to the movement-related gamma increase typically observed at the onset of voluntary movement. These findings suggest that the cortical representation of rest tremor is distinct from that of voluntary movement, and support a model in which tremor acts to decrease beta band synchronization within the basal ganglia-cortical loop. PMID:26639855

  15. Tremors Triggered along the Queen Charlotte Fault

    NASA Astrophysics Data System (ADS)

    Aiken, C.; Peng, Z.; Chao, K.

    2012-12-01

    In the past decade, deep tectonic tremors have been observed in numerous tectonic environments surrounding the Pacific and Caribbean plates. In these regions, tremors triggered by both regional and distant earthquakes have also been observed. Despite the ubiquitous observations of triggered tremors, tremors triggered in differing strike-slip environments are less understood. Here, we conduct a preliminary search of tremors triggered by teleseismic earthquakes along the transpressive Queen Charlotte Fault (QCF) located between the Cascadia subduction zone and Alaska. Tectonic tremors have not been previously reported along the QCF. We select teleseismic earthquakes during the 1990-2012 period as having magnitude M ≥ 6.5 and occurring at least 1,000 km away from the region. We reduce the number of mainshocks by selecting those that generate greater than 1 kPa dynamic stress estimated from surface-wave magnitude equations [e.g. van der Elst and Brodsky, 2010]. Our mainshock waveforms are retrieved from the Canadian National Seismograph Network (CNSN), processed, and filtered for triggered tremor observations. We characterize triggered tremors as high-frequency signals visible among several stations and coincident with broadband surface wave peaks. So far, we have found tremors triggered along the QCF by surface waves of five great earthquakes - the 2002/11/03 Mw7.9 Denali Fault, 2004/12/26 Mw9.0 Sumatra, 2010/02/27 Mw8.8 Chile, 2011/03/11 Mw9.0 Japan, and 2012/04/11 Mw8.6 Sumatra earthquakes. We compare our results to tremors triggered by teleseismic earthquakes on strike-slip faults in central and southern California, as well as Cuba [Peng et al., 2012]. Among strike-slip faults in these regions, we also compare triggered tremor amplitudes to peak ground velocities from the mainshocks and compute dynamic stresses to determine a triggering threshold for the QCF. We find that in most cases tremors in the QCF are triggered primarily by the Love waves, and additional tremors are triggered by the subsequent Rayleigh waves. This is consistent with the near strike-parallel incidence for many triggering earthquakes, which tends to produce maximum triggering potential for vertical strike-slip faults. These results suggest a shear faulting mechanism is responsible for the triggered tremor on the QCF. The triggering threshold of dynamic stress is higher than that found at the Parkfield-Cholame section of the San Andreas Fault (2-3 KPa). This could be due to the sparse network coverage in the QCF, which may miss weak tremor signals triggered by smaller-size events. Our observations suggest that triggered tremor could occur in many places on major strike-slip faults around the world, although the necessary conditions for tremor generation are still not clear at this stage.

  16. The effect of cannabis on tremor in patients with multiple sclerosis.

    PubMed

    Fox, P; Bain, P G; Glickman, S; Carroll, C; Zajicek, J

    2004-04-13

    Disabling tremor is common in patients with multiple sclerosis (MS). Data from animal model experiments and subjective and small objective studies involving patients suggest that cannabis may be an effective treatment for tremor associated with MS. To our knowledge, there are no published double-blind randomized controlled trials of cannabis as a treatment for tremor in MS patients. The authors conducted a randomized double-blind placebo-controlled crossover trial to examine the effect of oral cannador (cannabis extract) on 14 patients with MS with upper limb tremors. There were eight women and six men, with a mean age of 45 years and mean Expanded Disability Status Scale score of 6.25. Patients were randomly assigned to receive each treatment and the doses escalated over a 2-week period before each assessment. The primary outcome was change on a tremor index, measured using a validated tremor rating scale. The study was powered to detect a functionally significant 50% improvement in the tremor index. Secondary outcomes included accelerometry, an ataxia scale, spiral drawing, finger tapping, and nine-hole pegboard test performance. Analysis of the data showed no significant improvement in any of the objective measures of upper limb tremor with cannabis extract compared to placebo. Finger tapping was faster on placebo compared to cannabis extract (p < 0.02). However, there was a nonsignificant trend for patients to experience more subjective relief from their tremors while on cannabis extract compared to placebo. Cannabis extract does not produce a functionally significant improvement in MS-associated tremor.

  17. Effects of timolol and atenolol on benign essential tremor: placebo-controlled studies based on quantitative tremor recording.

    PubMed Central

    Dietrichson, P; Espen, E

    1981-01-01

    Two different beta-adrenoreceptor antagonists, atenolol and timolol, were separately compared with a placebo in the suppression of essential tremor. In two-week single-blind placebo-controlled studies with cross-over, timolol (5 mg twice daily) and atenolol (100 mg once daily) produced an equal reduction in sitting heart rate and sitting blood pressure. Timolol was effective in reducing tremor while atenolol failed to reduce tremor amplitude. These results indicate that essential tremor can be reduced but not blocked, by the adrenergic blocker timolol with both beta 1 and beta 2 blocking properties; but not by the relatively selective beta 1 blocking drug atenolol. Possibly, the tremor reduction is medicated by a peripheral effect on beta 2 adrenoreceptors. Images PMID:7028921

  18. Cascadia subduction tremor muted by crustal faults

    USGS Publications Warehouse

    Wells, Ray; Blakely, Richard J.; Wech, Aaron G.; McCrory, Patricia A.; Michael, Andrew

    2017-01-01

    Deep, episodic slow slip on the Cascadia subduction megathrust of western North America is accompanied by low-frequency tremor in a zone of high fluid pressure between 30 and 40 km depth. Tremor density (tremor epicenters per square kilometer) varies along strike, and lower tremor density statistically correlates with upper plate faults that accommodate northward motion and rotation of forearc blocks. Upper plate earthquakes occur to 35 km depth beneath the faults. We suggest that the faults extend to the overpressured megathrust, where they provide fracture pathways for fluid escape into the upper plate. This locally reduces megathrust fluid pressure and tremor occurrence beneath the faults. Damping of tremor and related slow slip caused by fluid escape could affect fault properties of the megathrust, possibly influencing the behavior of great earthquakes.

  19. Pathophysiology and Management of Parkinsonian Tremor.

    PubMed

    Helmich, Rick C; Dirkx, Michiel F

    2017-04-01

    Parkinson's tremor is one of the cardinal motor symptoms of Parkinson's disease. The pathophysiology of Parkinson's tremor is different from that of other motor symptoms such as bradykinesia and rigidity. In this review, the authors discuss evidence suggesting that tremor is a network disorder that arises from distinct pathophysiological changes in the basal ganglia and in the cerebellothalamocortical circuit. They also discuss how interventions in this circuitry, for example, deep brain surgery and noninvasive brain stimulation, can modulate or even treat tremor. Future research may focus on understanding sources for the large variability between patients in terms of treatment response, on understanding the contextual factors that modulate tremor (stress, voluntary movements), and on focused interventions in the tremor circuitry. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Functional tremor.

    PubMed

    Schwingenschuh, P; Deuschl, G

    2016-01-01

    Functional tremor is the commonest reported functional movement disorder. A confident clinical diagnosis of functional tremor is often possible based on the following "positive" criteria: a sudden tremor onset, unusual disease course, often with fluctuations or remissions, distractibility of the tremor if attention is removed from the affected body part, tremor entrainment, tremor variability, and a coactivation sign. Many patients show excessive exhaustion during examination. Other somatizations may be revealed in the medical history and patients may show additional functional neurologic symptoms and signs. In cases where the clinical diagnosis remains challenging, providing a "laboratory-supported" level of certainty aids an early positive diagnosis. In rare cases, in which the distinction from Parkinson's disease is difficult, dopamine transporter single-photon emission computed tomography (DAT-SPECT) can be indicated. © 2016 Elsevier B.V. All rights reserved.

  1. Deep volcanic tremor and magma ascent mechanism under Kilauea, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aki, K.; Koyanagi, R.

    1981-08-10

    Deep harmonic tremor originating at depths around 40 km under Kilauea was studied using records accumulated since 1962 at the Hawaii Volcano Observatory of the U. S. Geological Survey. The deep source of the tremor was determined by onset times and confirmed by the relative amplitude across the island-wide network of seismometers. The period of tremor was conclusively shown to be determined by the source effect and not by the path or station site effect because the period would change considerably in time but maintained uniformity across the seismic net during the tremor episode. The tremor appeared to be primarilymore » composed of P waves. We interpret the observation period and amplitude in terms of the stationary crack model of Aki et al. (1977) and find that the seismic moment rates for deep tremors are considerably larger than those for shallow-tremors suggesting mor vigorous transport for the former. We propose a kinematic source model which may be more appropriate for deep tremor. According to this model, a measurable quantity called 'reduced displacement' is directly proportional to the rate of magma flow. A systematic search for deep tremor episodes was made for the period from 1962 through 1979, and the amplitude, period, and duration of the tremor were tabulated. We then constructed a cumulative reduced-displacement plot over the 18-year period. The result shows a generally steady process which does not seem to be significantly affected by major eruptions and large earthquakes near the surface. The total magma flow estimated from the reduced displacement is however, one order of magnitude smaller than that estimated by Swanson (1972). It may be that most channels transport magma aseismically, and only those with strong barriers generate tremor.« less

  2. Essential tremor quantification based on the combined use of a smartphone and a smartwatch: The NetMD study.

    PubMed

    López-Blanco, Roberto; Velasco, Miguel A; Méndez-Guerrero, Antonio; Romero, Juan Pablo; Del Castillo, María Dolores; Serrano, J Ignacio; Benito-León, Julián; Bermejo-Pareja, Félix; Rocon, Eduardo

    2018-06-01

    The use of wearable technology is an emerging field of research in movement disorders. This paper introduces a clinical study to evaluate the feasibility, clinical correlation and reliability of using a system based in smartwatches to quantify tremor in essential tremor (ET) patients and check its acceptance as clinical monitoring tool. The system is based on a commercial smartwatch and an Android smartphone. An investigational Android application controls the process of recording raw data from the smartwatch three-dimensional gyroscopes. Thirty-four ET patients were consecutively enrolled in the experiments and assessed along one year. Arm tremor was videofilmed and scored using the Fahn-Tolosa-Marin Tremor Rating Scale (FTM-TRS). Tremor intensity was quantified with the root mean square of angular velocity measured in the patients' wrists. Eighty-two assessments with smartwatches were performed. Spearman's correlation coefficients (ρ) between clinical tremor (FTM-TRS) scores and smartwatch measures for tremor intensity were 0.590 at rest; ρ = 0.738 in steady posture; ρ = 0.189 in finger-to-nose maneuvers; and ρ = 0.652 in pouring water task. Smartwatch reliability was checked by intraclass realiability coefficients: 0.85, 0.95, 0.91, 0.95 respectively. Most of patients showed good acceptance of the system. This commodity hardware contributes to quantify tremor objectively in a consulting-room by customized Android smart devices as clinical monitoring tool. The NetMD system for tremor analysis is feasible, well-correlated with clinical scores, reliable and well-accepted by patients to tremor follow-up. Therefore, it could be an option to objectively quantify tremor in ET patients during their regular follow-up. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Deep volcanic tremor and magma ascent mechanism under Kilauea, Hawaii

    USGS Publications Warehouse

    Aki, Keiiti; Koyanagi, Robert Y

    1981-01-01

    Deep harmonic tremor originating at depths around 40 km under Kilauea was studied using records accumulated since 1962 at the Hawaii Volcano Observatory of the U.S. Geological Survey. The deep source of the tremor was determined by onset times and confirmed by the relative amplitude across the island-wide network of seismometers. The period of tremor was conclusively shown to be determined by the source effect and not by the path or station site effect because the period would change considerably in time but maintained uniformity across the seismic net during the tremor episode. The tremor appeared to be primarily composed of P waves. We interpret the observed period and amplitude in terms of the stationary crack model of Aki et al. (1977) and find that the seismic moment rates for deep tremors are considerably larger than those for shallow-tremors suggesting more vigorous transport for the former. We propose a kinematic source model which may be more appropriate for deep tremor. According to this model, a measurable quantity called ‘reduced displacement’ is directly proportional to the rate of magma flow. A systematic search for deep tremor episodes was made for the period from 1962 through 1979, and the amplitude, period, and duration of the tremor were tabulated. We then constructed a cumulative reduced-displacement plot over the 18-year period. The result shows a generally steady process which does not seem to be significantly affected by major eruptions and large earthquakes near the surface. The total magma flow estimated from the reduced displacement is however, one order of magnitude smaller than that estimated by Swanson (1972). It may be that most channels transport magma aseismically, and only those with strong barriers generate tremor.

  4. Subclinical Tremor in Normal Controls with vs. without a Family History of Essential Tremor: Data from the United States and Turkey

    PubMed Central

    Louis, Elan D.; Dogu, Okan; Ottman, Ruth

    2009-01-01

    Background Mild action tremor is very common in the population. One fundamental question is whether this tremor is related to the neurological disease essential tremor (ET), which occurs in a much smaller segment of the population? ET is often genetic and variable phenotypic expression is well-documented in the literature. We determined whether normal controls who report a family history of ET have greater action tremor than normal controls who do not report such a history. Methods Controls, enrolled in two epidemiological studies (New York and Turkey), were examined in detail and action tremor was rated using a valid and reliable clinical rating scale, resulting in a total tremor score (range 0 – 36). Results In New York, the total tremor score was higher in 44/406 (10.8%) controls who reported a family history of ET than in 362/406 controls with no such history (4.25 ± 2.51 vs. 3.78 ± 2.93, p = 0.02). Controls who reported a first-degree relative with ET had the highest total tremor scores. In Turkey, the total tremor score was higher in 7/89 (7.9%) controls with a family history than in 82/89 controls with no family history (3.43 ± 4.54 vs. 1.13 ± 2.54, p = 0.048). All affected relatives in Turkey were first-degree. Conclusions These data suggest that some of the normal tremor exhibited by people in the population is likely to be subclinical, partially-expressed ET and that the sphere of ET is wider than is apparent from a consideration of clinically-diagnosed cases. PMID:19968704

  5. Resolving the detailed spatiotemporal slip evolution of deep tremor in western Japan

    NASA Astrophysics Data System (ADS)

    Ohta, K.; Ide, S.

    2017-12-01

    A quantitative evaluation of the slip evolution of tremor is essential to understand the generation mechanism of slow earthquakes. The recent studies have revealed the most part of tremor signals can be expressed as the superposition of low frequency earthquakes (LFE). However, it is still challenging to explain the entire waveforms of tremor, because a conventional slip inversion analysis is not available for tremor due to insufficient knowledge of source locations and Green's functions. Here we investigate the detailed spatiotemporal behavior of deep tremor in western Japan through the development and application of a new slip inversion method. We introduce synthetic template waveforms, which are typical tremor waveforms obtained by stacking LFE seismograms at arranged points along the plate interface. Using these synthetic template waveforms as substitutes for Green's functions, we invert the continuous tremor waveforms using an iterative deconvolution approach with Bayesian constraints. We apply this method to two tremor burst episodes in western and central Shikoku, Japan. The estimated slip distribution from a 12-day tremor burst episode in western Shikoku is heterogeneous, with several patchy areas of slip along the plate interface where rapid moment releases with durations of <100 s regularly occur. We attribute these heterogeneous spatiotemporal slip patterns to heterogeneous material properties along the plate interface. For central Shikoku, where we focus on a tremor burst episode that occurred coincidentally with a very low frequency earthquake (VLF), we observe that the source size of the VLF is much larger than that estimated from tremor activity in western Shikoku. These differences in the size of the slip region may dictate the visibility of VLF signals in observed seismograms, which has implications for the mechanics of slow earthquakes and subduction zone processes.

  6. Pathological tremor prediction using surface EMG and acceleration: potential use in “ON-OFF” demand driven deep brain stimulator design

    PubMed Central

    Basu, Ishita; Graupe, Daniel; Tuninetti, Daniela; Shukla, Pitamber; Slavin, Konstantin V.; Metman, Leo Verhagen; Corcos, Daniel M.

    2013-01-01

    Objective We present a proof of concept for a novel method of predicting the onset of pathological tremor using non-invasively measured surface electromyogram (sEMG) and acceleration from tremor-affected extremities of patients with Parkinson’s disease (PD) and Essential tremor (ET). Approach The tremor prediction algorithm uses a set of spectral (fourier and wavelet) and non-linear time series (entropy and recurrence rate) parameters extracted from the non-invasively recorded sEMG and acceleration signals. Main results The resulting algorithm is shown to successfully predict tremor onset for all 91 trials recorded in 4 PD patients and for all 91 trials recorded in 4 ET patients. The predictor achieves a 100% sensitivity for all trials considered, along with an overall accuracy of 85.7% for all ET trials and 80.2% for all PD trials. By using a Pearson’s chi-square test, the prediction results are shown to significantly differ from a random prediction outcome. Significance The tremor prediction algorithm can be potentially used for designing the next generation of non-invasive closed-loop predictive ON-OFF controllers for deep brain stimulation (DBS), used for suppressing pathological tremor in such patients. Such a system is based on alternating ON and OFF DBS periods, an incoming tremor being predicted during the time intervals when DBS is OFF, so as to turn DBS back ON. The prediction should be a few seconds before tremor re-appears so that the patient is tremor-free for the entire DBS ON-OFF cycle as well as the tremor-free DBS OFF interval should be maximized in order to minimize the current injected in the brain and battery usage. PMID:23658233

  7. Three-dimensional assessment of postural tremor during goal-directed aiming.

    PubMed

    Kelleran, K J; Morrison, S; Russell, D M

    2016-12-01

    The performance of fine motor tasks which require a degree of precision can be negatively affected by physiological tremor. This study examined the effect of different aiming positions on anterior-posterior (AP), medial-lateral (ML) and vertical (VT) postural tremor. Participants were required to aim a mock handgun at a target located in front of them at eye level. Changes in AP, ML and VT tremor from the forearm and gun barrel were assessed as a function of limb (i.e., whether one or both arms were used) and upper arm position (elbow bent or extended). Tremor was recorded using triaxial accelerometers. Results showed that, across all tasks, the ML and VT tremor for any point was characterized by two frequency peaks (between 1-4 and 8-12 Hz) with amplitude increasing from proximal (forearm) to distal (gun barrel). Interestingly, irrespective of the posture adopted, ML accelerations were of greater amplitude than VT oscillations. AP oscillations were markedly smaller compared to VT and ML tremor, did not display consistent frequency peaks, and were not altered by the arm conditions. Altering the aiming posture resulted in changes in VT and ML tremor amplitude, with oscillations being greater when using a single arm as compared to when two arms were used together. Similarly, tremor amplitude was reduced when the task was performed with the elbow bent compared to the straight arm condition. Overall, these results highlight that ML oscillations make as significant a contribution to the overall tremor dynamics as those observed in the VT direction. However, the origin of ML tremor is not simply the product of voluntary adjustments to maintain aim on the target, but also exhibits features similar to the neural generated 8-12-Hz tremor seen under postural conditions.

  8. Pathological tremor prediction using surface electromyogram and acceleration: potential use in ‘ON-OFF’ demand driven deep brain stimulator design

    NASA Astrophysics Data System (ADS)

    Basu, Ishita; Graupe, Daniel; Tuninetti, Daniela; Shukla, Pitamber; Slavin, Konstantin V.; Verhagen Metman, Leo; Corcos, Daniel M.

    2013-06-01

    Objective. We present a proof of concept for a novel method of predicting the onset of pathological tremor using non-invasively measured surface electromyogram (sEMG) and acceleration from tremor-affected extremities of patients with Parkinson’s disease (PD) and essential tremor (ET). Approach. The tremor prediction algorithm uses a set of spectral (Fourier and wavelet) and nonlinear time series (entropy and recurrence rate) parameters extracted from the non-invasively recorded sEMG and acceleration signals. Main results. The resulting algorithm is shown to successfully predict tremor onset for all 91 trials recorded in 4 PD patients and for all 91 trials recorded in 4 ET patients. The predictor achieves a 100% sensitivity for all trials considered, along with an overall accuracy of 85.7% for all ET trials and 80.2% for all PD trials. By using a Pearson’s chi-square test, the prediction results are shown to significantly differ from a random prediction outcome. Significance. The tremor prediction algorithm can be potentially used for designing the next generation of non-invasive closed-loop predictive ON-OFF controllers for deep brain stimulation (DBS), used for suppressing pathological tremor in such patients. Such a system is based on alternating ON and OFF DBS periods, an incoming tremor being predicted during the time intervals when DBS is OFF, so as to turn DBS back ON. The prediction should be a few seconds before tremor re-appears so that the patient is tremor-free for the entire DBS ON-OFF cycle and the tremor-free DBS OFF interval should be maximized in order to minimize the current injected in the brain and battery usage.

  9. Corticomuscular transmission of tremor signals by propriospinal neurons in Parkinson's disease.

    PubMed

    Hao, Manzhao; He, Xin; Xiao, Qin; Alstermark, Bror; Lan, Ning

    2013-01-01

    Cortical oscillatory signals of single and double tremor frequencies act together to cause tremor in the peripheral limbs of patients with Parkinson's disease (PD). But the corticospinal pathway that transmits the tremor signals has not been clarified, and how alternating bursts of antagonistic muscle activations are generated from the cortical oscillatory signals is not well understood. This paper investigates the plausible role of propriospinal neurons (PN) in C3-C4 in transmitting the cortical oscillatory signals to peripheral muscles. Kinematics data and surface electromyogram (EMG) of tremor in forearm were collected from PD patients. A PN network model was constructed based on known neurophysiological connections of PN. The cortical efferent signal of double tremor frequencies were integrated at the PN network, whose outputs drove the muscles of a virtual arm (VA) model to simulate tremor behaviors. The cortical efferent signal of single tremor frequency actuated muscle spindles. By comparing tremor data of PD patients and the results of model simulation, we examined two hypotheses regarding the corticospinal transmission of oscillatory signals in Parkinsonian tremor. Hypothesis I stated that the oscillatory cortical signals were transmitted via the mono-synaptic corticospinal pathways bypassing the PN network. The alternative hypothesis II stated that they were transmitted by way of PN multi-synaptic corticospinal pathway. Simulations indicated that without the PN network, the alternating burst patterns of antagonistic muscle EMGs could not be reliably generated, rejecting the first hypothesis. However, with the PN network, the alternating burst patterns of antagonist EMGs were naturally reproduced under all conditions of cortical oscillations. The results suggest that cortical commands of single and double tremor frequencies are further processed at PN to compute the alternating burst patterns in flexor and extensor muscles, and the neuromuscular dynamics demonstrated a frequency dependent damping on tremor, which may prevent tremor above 8 Hz to occur.

  10. Lead Exposure and Tremor among Older Men: The VA Normative Aging Study

    PubMed Central

    Power, Melinda C.; Sparrow, David; Spiro, Avron; Hu, Howard; Louis, Elan D.; Weisskopf, Marc G.

    2015-01-01

    Background: Tremor is one of the most common neurological signs, yet its etiology is poorly understood. Case–control studies suggest an association between blood lead and essential tremor, and that this association is modified by polymorphisms in the δ-aminolevulinic acid dehydrogenase (ALAD) gene. Objective: We aimed to examine the relationship between lead and tremor, including modification by ALAD, in a prospective cohort study, using both blood lead and bone lead—a biomarker of cumulative lead exposure. Methods: We measured tibia (n = 670) and patella (n = 672) bone lead and blood lead (n = 807) among older men (age range, 50–98 years) in the VA Normative Aging Study cohort. A tremor score was created based on an approach using hand-drawing samples. ALAD genotype was dichotomized as ALAD-2 carriers or not. We used linear regression adjusted for age, education, smoking, and alcohol intake to estimate the associations between lead biomarkers and tremor score. Results: In unadjusted analyses, there was a marginal association between quintiles of all lead biomarkers and tremor scores (p-values < 0.13), which did not persist in adjusted models. Age was the strongest predictor of tremor. Among those younger than the median age (68.9 years), tremor increased significantly with blood lead (p = 0.03), but this pattern was not apparent for bone lead. We did not see modification by ALAD or an association between bone lead and change in tremor score over time. Conclusion: Our results do not strongly support an association between lead exposure and tremor, and suggest no association with cumulative lead biomarkers, although there is some suggestion that blood lead may be associated with tremor among the younger men in our cohort. Citation: Ji JS, Power MC, Sparrow D, Spiro A III, Hu H, Louis ED, Weisskopf MG. 2015. Lead exposure and tremor among older men: the VA Normative Aging Study. Environ Health Perspect 123:445–450; http://dx.doi.org/10.1289/ehp.1408535 PMID:25633720

  11. Corticomuscular Transmission of Tremor Signals by Propriospinal Neurons in Parkinson's Disease

    PubMed Central

    Hao, Manzhao; He, Xin; Xiao, Qin; Alstermark, Bror; Lan, Ning

    2013-01-01

    Cortical oscillatory signals of single and double tremor frequencies act together to cause tremor in the peripheral limbs of patients with Parkinson's disease (PD). But the corticospinal pathway that transmits the tremor signals has not been clarified, and how alternating bursts of antagonistic muscle activations are generated from the cortical oscillatory signals is not well understood. This paper investigates the plausible role of propriospinal neurons (PN) in C3–C4 in transmitting the cortical oscillatory signals to peripheral muscles. Kinematics data and surface electromyogram (EMG) of tremor in forearm were collected from PD patients. A PN network model was constructed based on known neurophysiological connections of PN. The cortical efferent signal of double tremor frequencies were integrated at the PN network, whose outputs drove the muscles of a virtual arm (VA) model to simulate tremor behaviors. The cortical efferent signal of single tremor frequency actuated muscle spindles. By comparing tremor data of PD patients and the results of model simulation, we examined two hypotheses regarding the corticospinal transmission of oscillatory signals in Parkinsonian tremor. Hypothesis I stated that the oscillatory cortical signals were transmitted via the mono-synaptic corticospinal pathways bypassing the PN network. The alternative hypothesis II stated that they were transmitted by way of PN multi-synaptic corticospinal pathway. Simulations indicated that without the PN network, the alternating burst patterns of antagonistic muscle EMGs could not be reliably generated, rejecting the first hypothesis. However, with the PN network, the alternating burst patterns of antagonist EMGs were naturally reproduced under all conditions of cortical oscillations. The results suggest that cortical commands of single and double tremor frequencies are further processed at PN to compute the alternating burst patterns in flexor and extensor muscles, and the neuromuscular dynamics demonstrated a frequency dependent damping on tremor, which may prevent tremor above 8 Hz to occur. PMID:24278189

  12. Long-term outcome of deep brain stimulation in fragile X-associated tremor/ataxia syndrome.

    PubMed

    Weiss, Daniel; Mielke, Carina; Wächter, Tobias; Bender, Benjamin; Liscic, Rajka M; Scholten, Marlieke; Naros, Georgios; Plewnia, Christian; Gharabaghi, Alireza; Krüger, Rejko

    2015-03-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) presents as complex movement disorder including tremor and cerebellar ataxia. The efficacy and safety of deep brain stimulation of the nucleus ventralis intermedius of the thalamus in atypical tremor syndromes like FXTAS remains to be determined. Here, we report the long-term outcome of three male genetically confirmed FXTAS patients treated with bilateral neurostimulation of the nucleus ventralis intermedius for up to four years. All patients demonstrated sustained improvement of both tremor and ataxia - the latter included improvement of intention tremor and axial tremor. Kinematic gait analyses further demonstrated a regularization of the gait cycle. Initial improvements of hand functional disability were not sustained and reached the preoperative level of impairment within one to two years from surgery. Our data on patients with a genetic cause of tremor show favorable outcome and may contribute to improved patient stratification for neurostimulation therapy in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Using a Smart Phone as a Standalone Platform for Detection and Monitoring of Pathological Tremors

    PubMed Central

    Daneault, Jean-François; Carignan, Benoit; Codère, Carl Éric; Sadikot, Abbas F.; Duval, Christian

    2013-01-01

    Introduction: Smart phones are becoming ubiquitous and their computing capabilities are ever increasing. Consequently, more attention is geared toward their potential use in research and medical settings. For instance, their built-in hardware can provide quantitative data for different movements. Therefore, the goal of the current study was to evaluate the capabilities of a standalone smart phone platform to characterize tremor. Results: Algorithms for tremor recording and online analysis can be implemented within a smart phone. The smart phone provides reliable time- and frequency-domain tremor characteristics. The smart phone can also provide medically relevant tremor assessments. Discussion: Smart phones have the potential to provide researchers and clinicians with quantitative short- and long-term tremor assessments that are currently not easily available. Methods: A smart phone application for tremor quantification and online analysis was developed. Then, smart phone results were compared to those obtained simultaneously with a laboratory accelerometer. Finally, results from the smart phone were compared to clinical tremor assessments. PMID:23346053

  14. Proposing a Parkinson's disease-specific tremor scale from the MDS-UPDRS.

    PubMed

    Forjaz, Maria João; Ayala, Alba; Testa, Claudia M; Bain, Peter G; Elble, Rodger; Haubenberger, Dietrich; Rodriguez-Blazquez, Carmen; Deuschl, Günther; Martinez-Martin, Pablo

    2015-07-01

    This article proposes an International Parkinson and Movement Disorder Society (MDS)-UPDRS tremor-based scale and describes its measurement properties, with a view to developing an improved scale for assessing tremor in Parkinson's disease (PD). This was a cross-sectional, multicenter study of 435 PD patients. Rasch analysis was performed on the 11 MDS-UPDRS tremor items. Construct validity, precision, and test-retest reliability were also analyzed. After some modifications, which included removal of an item owing to redundancy, the obtained MDS-UPDRS tremor scale showed moderate reliability, unidimensionality, absence of differential item functioning, satisfactory convergent validity with medication, and better precision than the raw sum score. However, the scale displayed a floor effect and a need for more items measuring lower levels of tremor. The MDS-UPDRS tremor scale provides linear scores that can be used to assess tremor in PD in a valid, reliable way. The scale might benefit from modifications and studies that analyze its responsiveness. © 2015 International Parkinson and Movement Disorder Society.

  15. Effects of AIT-082, a purine derivative, on tremor induced by arecoline or oxotremorine in mice.

    PubMed

    Nannan, Gao; Runmei, Yang; Fusheng, Lin; Shoulan, Zhang; Guangqing, Lei

    2007-01-01

    The effects of AIT-082, a hypoxanthine derivative, on tremor in mice were investigated. The mice received intragastric administration of AIT-082 for consecutive 60 days at doses of 150, 300 and 600 mg.kg(-1). The results showed that AIT-082 not only effectively inhibited the tremor induced by arecoline or oxotremorine, but also alleviated the tremor intensity and significantly shortened the tremor durations. The inhibition of tremor was perhaps associated with the central cholinergic nerve depressant effects as well as the stimulation of proliferation and differentiation of nerve cells. Copyright (c) 2007 S. Karger AG, Basel.

  16. The tremorolytic action of beta-adrenoceptor blockers in essential, physiological and isoprenaline-induced tremor is mediated by beta-adrenoceptors located in a deep peripheral compartment.

    PubMed

    Abila, B; Wilson, J F; Marshall, R W; Richens, A

    1985-10-01

    The effects of intravenous propranolol 100 micrograms kg-1, sotalol 500 micrograms kg-1, timolol 7.8 micrograms kg-1, atenolol 125 micrograms kg-1 and placebo on essential, physiological and isoprenaline-induced tremor were studied. These beta-adrenoceptor blocker doses produced equal reduction of standing-induced tachycardia in essential tremor patients. Atenolol produced significantly less reduction of essential and isoprenaline-induced tremor than the non-selective drugs, confirming the importance of beta 2-adrenoceptor blockade in these effects. Propranolol and sotalol produced equal maximal inhibition of isoprenaline-induced tremor but propranolol was significantly more effective in reducing essential tremor. The rate of development of the tremorolytic effect was similar in essential, physiological and isoprenaline-induced tremors but all tremor responses developed significantly more slowly than the heart rate responses. It is proposed that these results indicate that the tremorolytic activity of beta-adrenoceptor blockers in essential, physiological and isoprenaline-induced tremor is exerted via the same beta 2-adrenoceptors located in a deep peripheral compartment which is thought to be in the muscle spindles.

  17. The tremorolytic action of beta-adrenoceptor blockers in essential, physiological and isoprenaline-induced tremor is mediated by beta-adrenoceptors located in a deep peripheral compartment.

    PubMed Central

    Abila, B; Wilson, J F; Marshall, R W; Richens, A

    1985-01-01

    The effects of intravenous propranolol 100 micrograms kg-1, sotalol 500 micrograms kg-1, timolol 7.8 micrograms kg-1, atenolol 125 micrograms kg-1 and placebo on essential, physiological and isoprenaline-induced tremor were studied. These beta-adrenoceptor blocker doses produced equal reduction of standing-induced tachycardia in essential tremor patients. Atenolol produced significantly less reduction of essential and isoprenaline-induced tremor than the non-selective drugs, confirming the importance of beta 2-adrenoceptor blockade in these effects. Propranolol and sotalol produced equal maximal inhibition of isoprenaline-induced tremor but propranolol was significantly more effective in reducing essential tremor. The rate of development of the tremorolytic effect was similar in essential, physiological and isoprenaline-induced tremors but all tremor responses developed significantly more slowly than the heart rate responses. It is proposed that these results indicate that the tremorolytic activity of beta-adrenoceptor blockers in essential, physiological and isoprenaline-induced tremor is exerted via the same beta 2-adrenoceptors located in a deep peripheral compartment which is thought to be in the muscle spindles. PMID:2866785

  18. Estimation of the phase response curve from Parkinsonian tremor.

    PubMed

    Saifee, Tabish A; Edwards, Mark J; Kassavetis, Panagiotis; Gilbertson, Tom

    2016-01-01

    Phase response curves (PRCs), characterizing the response of an oscillator to weak external perturbation, have been estimated from a broad range of biological oscillators, including single neurons in vivo. PRC estimates, in turn, provide an intuitive insight into how oscillatory systems become entrained and how they can be desynchronized. Here, we explore the application of PRC theory to the case of Parkinsonian tremor. Initial attempts to establish a causal effect of subthreshold transcranial magnetic stimulation applied to primary motor cortex on the filtered tremor phase were unsuccessful. We explored the possible explanations of this and demonstrate that assumptions made when estimating the PRC in a traditional setting, such as a single neuron, are not arbitrary when applied to the case of tremor PRC estimation. We go on to extract the PRC of Parkinsonian tremor using an iterative method that requires varying the definition of the tremor cycle and estimating the PRC at multiple peristimulus time samples. Justification for this method is supported by estimates of PRC from simulated single neuron data. We provide an approach to estimating confidence limits for tremor PRC and discuss the interpretational caveats introduced by tremor harmonics and the intrinsic variability of the tremor's period. Copyright © 2016 the American Physiological Society.

  19. Surgery for Dystonia and Tremor.

    PubMed

    Crowell, Jason L; Shah, Binit B

    2016-03-01

    Surgical procedures for dystonia and tremor have evolved over the past few decades, and our understanding of risk, benefit, and predictive factors has increased substantially in that time. Deep brain stimulation (DBS) is the most utilized surgical treatment for dystonia and tremor, though lesioning remains an effective option in appropriate patients. Dystonic syndromes that have shown a substantial reduction in severity secondary to DBS are isolated dystonia, including generalized, cervical, and segmental, as well as acquired dystonia such as tardive dystonia. Essential tremor is quite amenable to DBS, though the response of other forms of postural and kinetic tremor is not nearly as robust or consistent based on available evidence. Regarding targeting, DBS lead placement in the globus pallidus internus has shown marked efficacy in dystonia reduction. The subthalamic nucleus is an emerging target, and increasing evidence suggests that this may be a viable target in dystonia as well. The ventralis intermedius nucleus of the thalamus is the preferred target for essential tremor, though targeting the subthalamic zone/caudal zona incerta has shown promise and may emerge as another option in essential tremor and possibly other tremor disorders. In the carefully selected patient, DBS and lesioning procedures are relatively safe and effective for the management of dystonia and tremor.

  20. Estimation of the phase response curve from Parkinsonian tremor

    PubMed Central

    Saifee, Tabish A.; Edwards, Mark J.; Kassavetis, Panagiotis

    2015-01-01

    Phase response curves (PRCs), characterizing the response of an oscillator to weak external perturbation, have been estimated from a broad range of biological oscillators, including single neurons in vivo. PRC estimates, in turn, provide an intuitive insight into how oscillatory systems become entrained and how they can be desynchronized. Here, we explore the application of PRC theory to the case of Parkinsonian tremor. Initial attempts to establish a causal effect of subthreshold transcranial magnetic stimulation applied to primary motor cortex on the filtered tremor phase were unsuccessful. We explored the possible explanations of this and demonstrate that assumptions made when estimating the PRC in a traditional setting, such as a single neuron, are not arbitrary when applied to the case of tremor PRC estimation. We go on to extract the PRC of Parkinsonian tremor using an iterative method that requires varying the definition of the tremor cycle and estimating the PRC at multiple peristimulus time samples. Justification for this method is supported by estimates of PRC from simulated single neuron data. We provide an approach to estimating confidence limits for tremor PRC and discuss the interpretational caveats introduced by tremor harmonics and the intrinsic variability of the tremor's period. PMID:26561596

  1. Risk Factors for Tremor in a Population of Patients with Severe Mental Illness: An 18-year Prospective Study in a Geographically Representative Sample (The Curacao Extrapyramidal Syndromes Study XI)

    PubMed Central

    Mentzel, Charlotte L.; Bakker, P. Roberto; van Os, Jim; Drukker, Marjan; van den Oever, Michiel R. H.; Matroos, Glenn E.; Hoek, Hans W.; Tijssen, Marina AJ; van Harten, Peter N.

    2017-01-01

    Background The aim was to assess incidence, prevalence and risk factors of medication-induced tremor in African-Caribbean patients with severe mental illness (SMI). Method A prospective study of SMI patients receiving care from the only mental health service of the previous Dutch Antilles. Eight clinical assessments, over 18 years, focused on movement disorders, medication use, and resting tremor (RT) and (postural) action tremor (AT). Risk factors were modeled with logistic regression for both current (having) tremor and for tremor at the next time point (developing). The latter used a time-lagged design to assess medication changes prior to a change in tremor state. Results Yearly tremor incidence rate was 2.9% and mean tremor point prevalence was 18.4%. Over a third of patients displayed tremor during the study. Of the patients, 5.2% had AT with 25% of cases persisting to the next time point, while 17.1% of patients had RT of which 65.3% persisted. When tremor data were examined in individual patients, they often had periods of tremor interspersed with periods of no tremor. Having RT was associated with age (OR=1.07 per year; 95% confidence interval 1.03–1.11), sex (OR=0.17 for males; 0.05–0.78), cocaine use (OR=10.53; 2.22–49.94), dyskinesia (OR=0.90; 0.83–0.97), and bradykinesia (OR=1.16; 1.09–1.22). Developing RT was strongly associated with previous measurement RT (OR=9.86; 3.80–25.63), with previous RT severity (OR=1.22; 1.05–1.41), and higher anticholinergic load (OR= 1.24; 1.08–1.43). Having AT was associated with tremor-inducing medication (OR= 4.54; 1.90–10.86), cocaine use (OR=14.04; 2.38–82.96), and bradykinesia (OR=1.07; 1.01–1.15). Developing AT was associated with, previous AT severity (OR=2.62 per unit; 1.64–4.18) and tremor reducing medication (OR=0.08; 0.01–0.55). Conclusions Long-stay SMI patients are prone to developing tremors, which show a relapsing–remitting course. Differentiation between RT and AT is important as risk factors differ and they require different prevention and treatment strategies. PMID:28690921

  2. Pharmacological and Physiological Characterization of the Tremulous Jaw Movement Model of Parkinsonian Tremor: Potential Insights into the Pathophysiology of Tremor

    PubMed Central

    Collins-Praino, Lyndsey E.; Paul, Nicholas E.; Rychalsky, Kristen L.; Hinman, James R.; Chrobak, James J.; Senatus, Patrick B.; Salamone, John D.

    2011-01-01

    Tremor is a cardinal symptom of parkinsonism, occurring early on in the disease course and affecting more than 70% of patients. Parkinsonian resting tremor occurs in a frequency range of 3–7 Hz and can be resistant to available pharmacotherapy. Despite its prevalence, and the significant decrease in quality of life associated with it, the pathophysiology of parkinsonian tremor is poorly understood. The tremulous jaw movement (TJM) model is an extensively validated rodent model of tremor. TJMs are induced by conditions that also lead to parkinsonism in humans (i.e., striatal DA depletion, DA antagonism, and cholinomimetic activity) and reversed by several antiparkinsonian drugs (i.e., DA precursors, DA agonists, anticholinergics, and adenosine A2A antagonists). TJMs occur in the same 3–7 Hz frequency range seen in parkinsonian resting tremor, a range distinct from that of dyskinesia (1–2 Hz), and postural tremor (8–14 Hz). Overall, these drug-induced TJMs share many characteristics with human parkinsonian tremor, but do not closely resemble tardive dyskinesia. The current review discusses recent advances in the validation of the TJM model, and illustrates how this model is being used to develop novel therapeutic strategies, both surgical and pharmacological, for the treatment of parkinsonian resting tremor. PMID:21772815

  3. Parkinsonian rest tremor can be detected accurately based on neuronal oscillations recorded from the subthalamic nucleus.

    PubMed

    Hirschmann, J; Schoffelen, J M; Schnitzler, A; van Gerven, M A J

    2017-10-01

    To investigate the possibility of tremor detection based on deep brain activity. We re-analyzed recordings of local field potentials (LFPs) from the subthalamic nucleus in 10 PD patients (12 body sides) with spontaneously fluctuating rest tremor. Power in several frequency bands was estimated and used as input to Hidden Markov Models (HMMs) which classified short data segments as either tremor-free rest or rest tremor. HMMs were compared to direct threshold application to individual power features. Applying a threshold directly to band-limited power was insufficient for tremor detection (mean area under the curve [AUC] of receiver operating characteristic: 0.64, STD: 0.19). Multi-feature HMMs, in contrast, allowed for accurate detection (mean AUC: 0.82, STD: 0.15), using four power features obtained from a single contact pair. Within-patient training yielded better accuracy than across-patient training (0.84vs. 0.78, p=0.03), yet tremor could often be detected accurately with either approach. High frequency oscillations (>200Hz) were the best performing individual feature. LFP-based markers of tremor are robust enough to allow for accurate tremor detection in short data segments, provided that appropriate statistical models are used. LFP-based markers of tremor could be useful control signals for closed-loop deep brain stimulation. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  4. Development of a closed-loop system for tremor suppression in patients with Parkinson's disease.

    PubMed

    Xu, F L; Hao, M Z; Xu, S Q; Hu, Z X; Xiao, Q; Lan, N

    2016-08-01

    More than 70% of patients suffering Parkinson's disease (PD) exhibit resting tremor in their extremities, hampering their ability to perform daily activities. Based on our earlier studies on corticospinal transmission of tremor signals [10,11], we hypothesize that cutaneous afferents evoked by surface stimulation can produce an inhibitory effect on propriospinal neurons (PN), which in turn will suppress tremor signals passing through the PN. This paper presents the development of a closed-loop system for tremor suppression by transcutaneous electrical nerve stimulation (TENS) of sensory fibers beneath the skin. The closed-loop system senses EMGs of forearm muscles, and detects rhythmic bursting in the EMG signal. When a tremor is detected by the system, a command signal triggers a stimulator to output a train of bi-phasic, current regulated pulses to a pair of surface electrodes. The stimulation electrode is placed on the dorsal hand skin near the metacarpophalangeal joint of index finger, which is innervated by the superficial radial nerve that projects an inhibitory afferent to PNs of forearm muscles. We tested the closed-loop system in 3 normal subjects to verify the algorithm and in 2 tremor dominated PD subjects for feasibility of tremor detecting and suppression. Preliminary results indicate that the closed-loop system can detect tremor in all subjects, and tremor in PD patients was suppressed significantly by electrical stimulation of cutaneous afferents.

  5. Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson's disease.

    PubMed

    Qasim, Salman E; de Hemptinne, Coralie; Swann, Nicole C; Miocinovic, Svjetlana; Ostrem, Jill L; Starr, Philip A

    2016-02-01

    The pathophysiology of rest tremor in Parkinson's disease (PD) is not well understood, and its severity does not correlate with the severity of other cardinal signs of PD. We hypothesized that tremor-related oscillatory activity in the basal-ganglia-thalamocortical loop might serve as a compensatory mechanism for the excessive beta band synchronization associated with the parkinsonian state. We recorded electrocorticography (ECoG) from the sensorimotor cortex and local field potentials (LFP) from the subthalamic nucleus (STN) in patients undergoing lead implantation for deep brain stimulation (DBS). We analyzed differences in measures of network synchronization during epochs of spontaneous rest tremor, versus epochs without rest tremor, occurring in the same subjects. The presence of tremor was associated with reduced beta power in the cortex and STN. Cortico-cortical coherence and phase-amplitude coupling (PAC) decreased during rest tremor, as did basal ganglia-cortical coherence in the same frequency band. Cortical broadband gamma power was not increased by tremor onset, in contrast to the movement-related gamma increase typically observed at the onset of voluntary movement. These findings suggest that the cortical representation of rest tremor is distinct from that of voluntary movement, and support a model in which tremor acts to decrease beta band synchronization within the basal ganglia-cortical loop. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Motor network disruption in essential tremor: a functional and effective connectivity study.

    PubMed

    Buijink, Arthur W G; van der Stouwe, A M Madelein; Broersma, Marja; Sharifi, Sarvi; Groot, Paul F C; Speelman, Johannes D; Maurits, Natasha M; van Rootselaar, Anne-Fleur

    2015-10-01

    Although involvement of the cerebello-thalamo-cortical network has often been suggested in essential tremor, the source of oscillatory activity remains largely unknown. To elucidate mechanisms of tremor generation, it is of crucial importance to study the dynamics within the cerebello-thalamo-cortical network. Using a combination of electromyography and functional magnetic resonance imaging, it is possible to record the peripheral manifestation of tremor simultaneously with brain activity related to tremor generation. Our first aim was to study the intrinsic activity of regions within the cerebello-thalamo-cortical network using dynamic causal modelling to estimate effective connectivity driven by the concurrently recorded tremor signal. Our second aim was to objectify how the functional integrity of the cerebello-thalamo-cortical network is affected in essential tremor. We investigated the functional connectivity between cerebellar and cortical motor regions showing activations during a motor task. Twenty-two essential tremor patients and 22 healthy controls were analysed. For the effective connectivity analysis, a network of tremor-signal related regions was constructed, consisting of the left primary motor cortex, premotor cortex, supplementary motor area, left thalamus, and right cerebellar motor regions lobule V and lobule VIII. A measure of variation in tremor severity over time, derived from the electromyogram, was included as modulatory input on intrinsic connections and on the extrinsic cerebello-thalamic connections, giving a total of 128 models. Bayesian model selection and random effects Bayesian model averaging were used. Separate seed-based functional connectivity analyses for the left primary motor cortex, left supplementary motor area and right cerebellar lobules IV, V, VI and VIII were performed. We report two novel findings that support an important role for the cerebellar system in the pathophysiology of essential tremor. First, in the effective connectivity analysis, tremor variation during the motor task has an excitatory effect on both the extrinsic connection from cerebellar lobule V to the thalamus, and the intrinsic activity of cerebellar lobule V and thalamus. Second, the functional integrity of the motor network is affected in essential tremor, with a decrease in functional connectivity between cortical and cerebellar motor regions. This decrease in functional connectivity, related to the motor task, correlates with an increase in clinical tremor severity. Interestingly, increased functional connectivity between right cerebellar lobules I-IV and the left thalamus correlates with an increase in clinical tremor severity. In conclusion, our findings suggest that cerebello-dentato-thalamic activity and cerebello-cortical connectivity is disturbed in essential tremor, supporting previous evidence of functional cerebellar changes in essential tremor. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones

    USGS Publications Warehouse

    Brown, Justin R.; Beroza, Gregory C.; Ide, Satoshi; Ohta, Kazuaki; Shelly, David R.; Schwartz, Susan Y.; Rabbel, Wolfgang; Thorwart, M.; Kao, Honn

    2009-01-01

    Deep tremor under Shikoku, Japan, consists primarily, and perhaps entirely, of swarms of low-frequency earthquakes (LFEs) that occur as shear slip on the plate interface. Although tremor is observed at other plate boundaries, the lack of cataloged low-frequency earthquakes has precluded a similar conclusion about tremor in those locales. We use a network autocorrelation approach to detect and locate LFEs within tremor recorded at three subduction zones characterized by different thermal structures and levels of interplate seismicity: southwest Japan, northern Cascadia, and Costa Rica. In each case we find that LFEs are the primary constituent of tremor and that they locate on the deep continuation of the plate boundary. This suggests that tremor in these regions shares a common mechanism and that temperature is not the primary control on such activity.

  8. Analysis of nonvolcanic tremor on the San Andreas Fault near Parkfield, CA using U.S. Geological Survey Parkfield Seismic Array

    USGS Publications Warehouse

    Fletcher, Jon B.; Baker, Lawrence M.

    2010-01-01

    Reports by Nadeau and Dolenc (2005) that tremor had been detected near Cholame Valley spawned an effort to use UPSAR (U. S. Geological Survey Parkfield Seismic Array) to study characteristics of tremor. UPSAR was modified to record three channels of velocity at 40–50 sps continuously in January 2005 and ran for about 1 month, during which time we recorded numerous episodes of tremor. One tremor, on 21 January at 0728, was recorded with particularly high signal levels as well as another episode 3 days later. Both events were very emergent, had a frequency content between 2 and 8 Hz, and had numerous high-amplitude, short-duration arrivals within the tremor signal. Here using the first episode as an example, we discuss an analysis procedure, which yields azimuth and apparent velocity of the tremor at UPSAR. We then provide locations for both tremor episodes. The emphasis here is how the tremor episode evolves. Twelve stations were operating at the time of recording. Slowness of arrivals was determined using cross correlation of pairs of stations; the same method used in analyzing the main shock data from 28 September 2004. A feature of this analysis is that 20 s of the time series were used at a time to calculate correlation; the longer windows resulted in more consistent estimates of slowness, but lower peak correlations. These values of correlation (peaks of about 0.25), however, are similar to that obtained for the S wave of a microearthquake. Observed peaks in slowness were traced back to source locations assumed to lie on the San Andreas fault. Our inferred locations for the two tremor events cluster near the locations of previously observed tremor, south of the Cholame Valley. Tremor source depths are in the 14–24 km range, which is below the seismogenic brittle zone, but above the Moho. Estimates of error do not preclude locations below the Moho, however. The tremor signal is very emergent but contains packets that are several times larger than the background tremor signal and lasts about 5 s. These impulsive wavelets are similar to low-frequency earthquakes signals seen in Japan but appear to be broader band rather than just higher in low-frequency energy. They may be more appropriately called high-energy tremor (HET). HET signals at UPSAR correlate well with the record of this event from station GHIB of the HRSN borehole array at Parkfield and HETs typically have a higher cross-correlation coefficient than the rest of the tremor event. The amplitudes of a large HET are consistent with a magnitude of 0.1 when compared with a M2.3 event that had about the same epicenter. Polarizations of the tremor episode at UPSAR are mostly just north of east. Both linearity and azimuth evolve over time suggesting a change in tremor source location over time and linearity is typically higher at the HETs.

  9. Non-volcanic tremor driven by large transient shear stresses

    USGS Publications Warehouse

    Rubinstein, J.L.; Vidale, J.E.; Gomberg, J.; Bodin, P.; Creager, K.C.; Malone, S.D.

    2007-01-01

    Non-impulsive seismic radiation or 'tremor' has long been observed at volcanoes and more recently around subduction zones. Although the number of observations of non-volcanic tremor is steadily increasing, the causative mechanism remains unclear. Some have attributed non-volcanic tremor to the movement of fluids, while its coincidence with geodetically observed slow-slip events at regular intervals has led others to consider slip on the plate interface as its cause. Low-frequency earthquakes in Japan, which are believed to make up at least part of non-volcanic tremor, have focal mechanisms and locations that are consistent with tremor being generated by shear slip on the subduction interface. In Cascadia, however, tremor locations appear to be more distributed in depth than in Japan, making them harder to reconcile with a plate interface shear-slip model. Here we identify bursts of tremor that radiated from the Cascadia subduction zone near Vancouver Island, Canada, during the strongest shaking from the moment magnitude Mw = 7.8, 2002 Denali, Alaska, earthquake. Tremor occurs when the Love wave displacements are to the southwest (the direction of plate convergence of the overriding plate), implying that the Love waves trigger the tremor. We show that these displacements correspond to shear stresses of approximately 40 kPa on the plate interface, which suggests that the effective stress on the plate interface is very low. These observations indicate that tremor and possibly slow slip can be instantaneously induced by shear stress increases on the subduction interface - effectively a frictional failure response to the driving stress. ??2007 Nature Publishing Group.

  10. Non-volcanic tremor driven by large transient shear stresses.

    PubMed

    Rubinstein, Justin L; Vidale, John E; Gomberg, Joan; Bodin, Paul; Creager, Kenneth C; Malone, Stephen D

    2007-08-02

    Non-impulsive seismic radiation or 'tremor' has long been observed at volcanoes and more recently around subduction zones. Although the number of observations of non-volcanic tremor is steadily increasing, the causative mechanism remains unclear. Some have attributed non-volcanic tremor to the movement of fluids, while its coincidence with geodetically observed slow-slip events at regular intervals has led others to consider slip on the plate interface as its cause. Low-frequency earthquakes in Japan, which are believed to make up at least part of non-volcanic tremor, have focal mechanisms and locations that are consistent with tremor being generated by shear slip on the subduction interface. In Cascadia, however, tremor locations appear to be more distributed in depth than in Japan, making them harder to reconcile with a plate interface shear-slip model. Here we identify bursts of tremor that radiated from the Cascadia subduction zone near Vancouver Island, Canada, during the strongest shaking from the moment magnitude M(w) = 7.8, 2002 Denali, Alaska, earthquake. Tremor occurs when the Love wave displacements are to the southwest (the direction of plate convergence of the overriding plate), implying that the Love waves trigger the tremor. We show that these displacements correspond to shear stresses of approximately 40 kPa on the plate interface, which suggests that the effective stress on the plate interface is very low. These observations indicate that tremor and possibly slow slip can be instantaneously induced by shear stress increases on the subduction interface-effectively a frictional failure response to the driving stress.

  11. What is It? Difficult to Pigeon Hole Tremor: a Clinical–Pathological Study of a Man with Jaw Tremor

    PubMed Central

    Louis, Elan D.; Bain, Peter G.; Hallett, Mark; Jankovic, Joseph; Vonsattel, Jean-Paul G.

    2013-01-01

    Background The phenomenology of tremor is broad and its classification is complicated. Furthermore, the full range of tremor phenomenology with respect to specific neurological and neurodegenerative diseases has not been fully elaborated. Case Report This right-handed man had a chief complaint of jaw tremor, which began approximately 20 years prior to death at age 101 years. He had been diagnosed with essential tremor (ET) by a local doctor. His examination at age 100 years was notable for marked jaw tremor at rest in the absence of other clear features of parkinsonism, mild kinetic tremor of the hands and, in the last year of life, a score of 22/41 on a cognitive screen. A senior movement disorder neurologist raised doubt about the “ET” diagnosis. The history and videotaped examination were reviewed by three additional senior tremor experts, who raised a number of diagnostic possibilities. A complete postmortem examination was performed by a senior neuropathologist, and was notable for the presence of tufted astrocytes, AT8-labeled glial cytoplasmic inclusions, and globose neuronal tangles. These changes were widespread and definitive. A neuropathological diagnosis of progressive supranuclear palsy was assigned. Discussion This case presents with mixed and difficult to clinically classify tremor phenomenology and other neurological findings. The postmortem diagnosis was not predicted based on the clinical features, and it is possible that it does not account for all of the features. The case raises many interesting issues and provides a window into the complexity of the interpretation, nosology, and classification of tremor phenomenology. PMID:23864988

  12. Is postural tremor size controlled by interstitial potassium concentration in muscle?

    PubMed Central

    Lakie, M; Hayes, N; Combes, N; Langford, N

    2004-01-01

    Objectives: To determine whether factors associated with postural tremor operate by altering muscle interstitial K+. Methods: An experimental approach was used to investigate the effects of procedures designed to increase or decrease interstitial K+. Postural physiological tremor was measured by conventional means. Brief periods of ischaemic muscle activity were used to increase muscle interstitial K+. Infusion of the ß2 agonist terbutaline was used to decrease plasma (and interstitial) K+. Blood samples were taken for the determination of plasma K+. Results: Ischaemia rapidly reduced tremor size, but only when the muscle was active. The ß2 agonist produced a slow and progressive rise in tremor size that was almost exactly mirrored by a slow and progressive decrease in plasma K+. Conclusions: Ischaemic reduction of postural tremor has been attributed to effects on muscle spindles or an unexplained effect on muscle. This study showed that ischaemia did not reduce tremor size unless there was accompanying muscular activity. An accumulation of K+ in the interstitium of the ischaemic active muscle may blunt the response of the muscle and reduce its fusion frequency, so that the force output becomes less pulsatile and tremor size decreases. When a ß2 agonist is infused, the rise in tremor mirrors the resultant decrease in plasma K+. Decreased plasma K+ reduces interstitial K+ concentration and may produce greater muscular force fluctuation (more tremor). Many other factors that affect postural tremor size may exert their effect by altering plasma K+ concentration, thereby changing the concentration of K+ in the interstitial fluid. PMID:15201362

  13. Validation of Digital Spiral Analysis as Outcome Parameter for Clinical Trials in Essential Tremor

    PubMed Central

    Haubenberger, Dietrich; Kalowitz, Daniel; Nahab, Fatta B.; Toro, Camilo; Ippolito, Dominic; Luckenbaugh, David A.; Wittevrongel, Loretta; Hallett, Mark

    2014-01-01

    Essential tremor, one of the most prevalent movement disorders, is characterized by kinetic and postural tremor affecting activities of daily living. Spiral drawing is commonly used to visually rate tremor intensity, as part of the routine clinical assessment of tremor and as a tool in clinical trials. We present a strategy to quantify tremor severity from spirals drawn on a digitizing tablet. We validate our method against a well-established visual spiral rating method and compare both methods on their capacity to capture a therapeutic effect, as defined by the change in clinical essential tremor rating scale after an ethanol challenge. Fifty-four Archimedes spirals were drawn using a digitizing tablet by nine ethanol-responsive patients with essential tremor before and at five consecutive time points after the administration of ethanol in a standardized treatment intervention. Quantitative spiral tremor severity was estimated from the velocity tremor peak amplitude after numerical derivation and Fourier transformation of pen-tip positions. In randomly ordered sets, spirals were scored by seven trained raters, using Bain and Findley’s 0 to 10 rating scale. Computerized scores correlated with visual ratings (P < 0.0001). The correlation was significant at each time point before and after ethanol (P < 0.005). Quantitative ratings provided better sensitivity than visual rating to capture the effects of an ethanol challenge (P < 0.05). Using a standardized treatment approach, we were able to demonstrate that spirography time-series analysis is a valid, reliable method to document tremor intensity and a more sensitive measure for small effects than currently available visual spiral rating methods. PMID:21714004

  14. Intraoperative tremor in surgeons and trainees.

    PubMed

    Verrelli, David I; Qian, Yi; Wilson, Michael K; Wood, James; Savage, Craig

    2016-09-01

    Tremor may be expected to interfere with the performance of fine motor tasks such as surgery. While tremor is readily quantified in inactive subjects, it is more challenging to measure tremor as the subjects perform complex tasks. The objective of this work was to quantify tremor during the performance of a realistic simulated surgery. Our novel surgical simulator incorporates a force sensor that allows identification and quantification of the intraoperative effects of tremor on the manipulandum. We have collected preliminary data from trainees and experienced surgeons carrying out multiple simulated anastomoses on silicone vessels, mimicking a procedure such as distal coronary anastomosis. We calculated transient and overall tremor intensity, and tested for a hypothesized 'learning effect'. Several of the recordings of intraoperative force data manifested distinctive features corresponding to substantial oscillation in the range of 8-12 Hz. We attribute this to enhanced physiological tremor. These early results indicate a significant reduction in the transmission of surgeon's tremor to the operative field from the first attempt to later attempts (P = 0.039, standardized effect size = 0.91), which may be associated with increasing confidence. This new method does not just quantify tremor, but quantifies the transmission of tremor to a manipulandum in the operative field during high-fidelity simulated coronary surgery. This may be used to assess and provide feedback on the performance of trainees and experienced surgeons, along with other fields in which fine motor skills are of vital importance. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  15. Control of lithium tremor with propranolol.

    PubMed

    Lapierre, Y D

    1976-04-03

    Lithium tremor is an irregular, nonrhythmic tremor of the distal extremities, variable in both intensity and frequency. It is clinically differentiated from essential tremor and tremors due to anxiety and neuroleptics. The pathophysiologic mechanisms are hypothesized to be of perpheral origin. Five patients were successfully treated with propranolol. In general, the dosage of propranolol must be individually adjusted and is usually from 30 to 40 mg daily in divided doses. This blocker of beta-adrenergic receptors remains effective with long-term administration and increases in dosage are not required.

  16. Infrasonic component of volcano-seismic eruption tremor

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Fee, David

    2014-03-01

    Air-ground and ground-air elastic wave coupling are key processes in the rapidly developing field of seismoacoustics and are particularly relevant for volcanoes. During a sustained explosive volcanic eruption, it is typical to record a sustained broadband signal on seismometers, termed eruption tremor. Eruption tremor is usually attributed to a subsurface seismic source process, such as the upward migration of magma and gases through the shallow conduit and vent. However, it is now known that sustained explosive volcanic eruptions also generate powerful tremor signals in the atmosphere, termed infrasonic tremor. We investigate infrasonic tremor coupling down into the ground and its contribution to the observed seismic tremor. Our methodology builds on that proposed by Ichihara et al. (2012) and involves cross-correlation, coherence, and cross-phase spectra between waveforms from nearly collocated seismic and infrasonic sensors; we apply it to datasets from Mount St. Helens, Tungurahua, and Redoubt Volcanoes.

  17. Brittle and ductile friction and the physics of tectonic tremor

    USGS Publications Warehouse

    Daub, Eric G.; Shelly, David R.; Guyer, Robert A.; Johnson, P.A.

    2011-01-01

    Observations of nonvolcanic tremor provide a unique window into the mechanisms of deformation and failure in the lower crust. At increasing depths, rock deformation gradually transitions from brittle, where earthquakes occur, to ductile, with tremor occurring in the transitional region. The physics of deformation in the transition region remain poorly constrained, limiting our basic understanding of tremor and its relation to earthquakes. We combine field and laboratory observations with a physical friction model comprised of brittle and ductile components, and use the model to provide constraints on the friction and stress state in the lower crust. A phase diagram is constructed that characterizes under what conditions all faulting behaviors occur, including earthquakes, tremor, silent transient slip, and steady sliding. Our results show that tremor occurs over a range of ductile and brittle frictional strengths, and advances our understanding of the physical conditions at which tremor and earthquakes take place.

  18. A zero phase adaptive fuzzy Kalman filter for physiological tremor suppression in robotically assisted minimally invasive surgery.

    PubMed

    Sang, Hongqiang; Yang, Chenghao; Liu, Fen; Yun, Jintian; Jin, Guoguang; Chen, Fa

    2016-12-01

    Hand physiological tremor of surgeons can cause vibration at the surgical instrument tip, which may make it difficult for the surgeon to perform fine manipulations of tissue, needles, and sutures. A zero phase adaptive fuzzy Kalman filter (ZPAFKF) is proposed to suppress hand tremor and vibration of a robotic surgical system. The involuntary motion can be reduced by adding a compensating signal that has the same magnitude and frequency but opposite phase with the tremor signal. Simulations and experiments using different filters were performed. Results show that the proposed filter can avoid the loss of useful motion information and time delay, and better suppress minor and varying tremor. The ZPAFKF can provide less error, preferred accuracy, better tremor estimation, and more desirable compensation performance, to suppress hand tremor and decrease vibration at the surgical instrument tip. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Diagnoses behind patients with hard-to-classify tremor and normal DaT-SPECT: a clinical follow up study.

    PubMed

    Menéndez-González, Manuel; Tavares, Francisco; Zeidan, Nahla; Salas-Pacheco, José M; Arias-Carrión, Oscar

    2014-01-01

    The [(123)I]ioflupane-a dopamine transporter radioligand-SPECT (DaT-SPECT) has proven to be useful in the differential diagnosis of tremor. Here, we investigate the diagnoses behind patients with hard-to-classify tremor and normal DaT-SPECT. Therefore, 30 patients with tremor and normal DaT-SPECT were followed up for 2 years. In 18 cases we were able to make a diagnosis. The residual 12 patients underwent a second DaT-SPECT, were then followed for additional 12 months and thereafter the diagnosis was reconsidered again. The final diagnoses included cases of essential tremor, dystonic tremor, multisystem atrophy, vascular parkinsonism, progressive supranuclear palsy, corticobasal degeneration, fragile X-associated tremor ataxia syndrome, psychogenic parkinsonism, iatrogenic parkinsonism and Parkinson's disease. However, for 6 patients the diagnosis remained uncertain. Larger series are needed to better establish the relative frequency of the different conditions behind these cases.

  20. Propranolol, clonidine, urapidil and trazodone infusion in essential tremor: a double-blind crossover trial.

    PubMed

    Caccia, M R; Osio, M; Galimberti, V; Cataldi, G; Mangoni, A

    1989-05-01

    Accelerometric tremorgrams were recorded from 25 subjects affected by essential tremor and analysed by a Berg-Fourier frequency analyser before and during venous infusion of the following drugs: propranolol (beta-blocker), clonidine (alpha-presynaptic adrenergic agonist), urapidil (alpha-postsynaptic blocker), trazodone (adrenolytic agent) and placebo. The washout interval between infusions was 3 days. Recordings and data analyses were performed in a double-blind crossover trial. Tremor was classified as: at rest; postural (arms hyperextended); and intention (finger-nose test). Analysis of the results showed that propranolol and clonidine reduced significantly (P = 0.01 and P = 0.009, respectively) the power spectrum of postural tremor, but left at rest and intention tremors unchanged. No significant effects on the tremor power spectrum were observed after placebo, urapidil or trazodone administration. None of the drugs had any effect on tremor frequency.

  1. Measurement of tremor transmission during microsurgery.

    PubMed

    Verrelli, David I; Qian, Yi; Wood, James; Wilson, Michael K

    2016-12-01

    Tremor is a major impediment to performing fine motor tasks, as in microsurgery. However, conventional measurements do not involve tasks representative of microsurgery. We developed a low-cost surgical simulator incorporating a force transducer capable of detecting and quantifying the effects of tremor upon high-fidelity silicone replicas of cardiac vessels and substrate muscle. Experienced and trainee surgeons performed simulated anastomoses on this rig. We characterized procedures in terms of tremor intensity, based on Lomb-Scargle periodograms. Distinctive force oscillations occurred at 8-12 Hz, characteristic of enhanced physiological tremor, yielding peaks in power spectral density. These early results suggest a significantly lower transmission of tremor to the operative field by the experienced surgeon in comparison to the trainees. This new device quantifies the action of tremor upon a manipulandum during a complex task, which may be used for assessment and providing feedback to trainee surgeons. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Shooting performance is related to forearm temperature and hand tremor size.

    PubMed

    Lakie, M; Villagra, F; Bowman, I; Wilby, R

    1995-08-01

    The changes in postural tremor of the hand and the subsequent effect on shooting performance produced by moderate cooling and heating of the forearm were studied in six subjects. Cooling produced a large decrease in tremor size of the ipsilateral hand, whereas warming the limb produced an increase in tremor size. Cooling or warming the forearm did not change the peak frequency of tremor significantly, which was quite stable for each subject. The improvement in shooting performance after cooling the forearm, as measured by grouping pattern of the shots, reached statistical significance and warming caused a significant worsening. This measure of performance was shown to correlate (r = 0.776) inversely with tremor size. The causes and implications of these changes are discussed. It is suggested that local cooling may be useful for people who wish temporarily to reduce tremor in order to improve dexterity for shooting and for other purposes.

  3. Strongly gliding harmonic tremor during the 2009 eruption of Redoubt Volcano

    USGS Publications Warehouse

    Hotovec, Alicia J.; Prejean, Stephanie G.; Vidale, John E.; Gomberg, Joan S.

    2013-01-01

    During the 2009 eruption of Redoubt Volcano, Alaska, gliding harmonic tremor occurred prominently before six nearly consecutive explosions during the second half of the eruptive sequence. The fundamental frequency repeatedly glided upward from < 1 Hz to as high as 30 Hz in less than 10 min, followed by a relative seismic quiescence of 10 to 60 s immediately prior to explosion. High frequency (5 to 20 Hz) gliding returned during the extrusive phase, and lasted for 20 min to 3 h at a time. Although harmonic tremor is not uncommon at volcanoes, tremor at such high frequencies is a rare observation. These frequencies approach or exceed the plausible upper limits of many models that have been suggested for volcanic tremor. We also analyzed the behavior of a swarm of repeating earthquakes that immediately preceded the first instance of pre-explosion gliding harmonic tremor. We find that these earthquakes share several traits with upward gliding harmonic tremor, and favor the explanation that the gliding harmonic tremor at Redoubt Volcano is created by the superposition of increasingly frequent and regular, repeating stick–slip earthquakes through the Dirac comb effect.

  4. Spatio-temporal Variations in Slow Earthquakes along the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ide, S.; Maury, J.; Cruz-Atienza, V. M.; Kostoglodov, V.

    2017-12-01

    Slow earthquakes in Mexico have been investigated independently in different areas. Here, we review differences in tremor behavior and slow slip events along the entire subduction zone to improve our understanding of its segmentation. Some similarities are observed between the Guerrero and Oaxaca areas. By combining our improved tremor detection capabilities with previous results, we suggest that there is no gap in tremor between Guerrero and Oaxaca. However some differences between Michoacan and Guerrero are seen (e.g., SSE magnitude, tremor zone width, tremor rate), suggesting that these two areas behave differently. Tremor initiation shows clear tidal sensitivity along the entire subduction zone. Tremor in Guerrero is sensitive to small tidal normal stress as well as shear stress suggesting the subduction plane may include local variations in dip. Estimation of the energy rate shows similar values along the subduction zone interface. The scaled tremor energy estimates are similar to those calculated in Nankai and Cascadia, suggesting a common mechanism. Along-strike differences in slow deformation may be related to variations in the subduction interface that yield different geometrical and temperature profiles.

  5. Tremor in multiple sclerosis: The intriguing role of the cerebellum.

    PubMed

    Ayache, Samar S; Chalah, Moussa A; Al-Ani, Tarik; Farhat, Wassim H; Zouari, Hela G; Créange, Alain; Lefaucheur, Jean-Pascal

    2015-11-15

    Tremor is frequently encountered in multiple sclerosis (MS) patients. However, its underlying pathophysiological mechanisms remain poorly understood. Our aim was to assess the potential role of the cerebellum and brain stem structures in the generation of MS tremor.We performed accelerometric (ACC) and electromyographic(EMG) assessment of tremor in 32MS patients with manual clumsiness. In addition to clinical examination, patients underwent a neurophysiological exploration of the brainstem and cerebellar functions,which consisted of blink and masseter inhibitory reflexes, cerebello-thalamo-cortical inhibition (CTCi), and somatosensory evoked potentials. Tremor was clinically visible in 18 patients and absent in 14. Patients with visible tremor had more severe score of ataxia and clinical signs of cerebellar dysfunction, as well as a more reduced CTCi on neurophysiological investigation. However, ACC and EMG recordings confirmed the presence of a real rhythmic activity in only one patient. In most MS patients, the clinically visible tremor corresponded to a pseudorhythmic activity without coupling between ACC and EMG recordings. Cerebellar dysfunction may contribute to the occurrence of this pseudorhythmic activity mimicking tremor during posture and movement execution.

  6. Spatiotemporal Variations in Slow Earthquakes Along the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Maury, J.; Ide, S.; Cruz-Atienza, V. M.; Kostoglodov, V.

    2018-02-01

    Slow earthquakes in Mexico have been investigated independently in different areas. Here we review differences in tremor behavior and slow slip events along the entire subduction zone to improve our understanding of its segmentation. Some similarities are observed between the Guerrero and Oaxaca areas. By combining our improved tremor detection capabilities with previous results, we suggest that there is no gap in tremor between Guerrero and Oaxaca. However, some differences between Michoacan and Guerrero are seen (e.g., SSE magnitude, tremor zone width, and tremor rate), suggesting that these two areas behave differently. Tremor initiation shows clear tidal sensitivity along the entire subduction zone. Tremor in Guerrero is sensitive to small tidal normal stress as well as shear stress, suggesting that the subduction plane may include local variations in dip. Estimation of the energy rate shows similar values along the subduction zone interface. The scaled tremor energy estimates are similar to those calculated in Nankai and Cascadia, suggesting a common mechanism. Along-strike differences in slow deformation may be related to variations in the subduction interface that yield different geometrical and temperature profiles.

  7. Task-specific kinetic finger tremor affects the performance of carrom players.

    PubMed

    Kahathuduwa, Chanaka N; Weerasinghe, Vajira S; Dassanayake, Tharaka L; Priyadarshana, Rajeewa; Dissanayake, Arunika L; Perera, Christine

    2016-01-01

    We aimed to determine the effect of task-specific kinetic finger tremor, as indexed by surface electromyography (EMG), on the accuracy of a carrom stroke. Surface EMG of extensor digitorum communis muscle of the playing arm was recorded during rest, isometric contraction and stroke execution in 17 male carrom players with clinically observed finger tremor and 18 skill- and age-matched controls. Log-transformed power spectral densities (LogPSDs) of surface EMG activity (signifying tremor severity) at a 1-s pre-execution period correlated with angular error of the stroke. LogPSDs in 4-10 Hz range were higher in players with tremor than controls during pre-execution (P < 0.001), but not during the resting state (P = 0.067). Pre-execution tremor amplitude correlated with angular deviation (r = 0.45, P = 0.007). For the first time, we document a task-specific kinetic finger tremor in carrom players. This finger tremor during the immediate pre-execution phase appears to be a significant determinant of stroke accuracy.

  8. Essential pitfalls in "essential” tremor

    PubMed Central

    Espay, AJ; Lang, AE; Erro, R; Merola, A; Fasano, A; Berardelli, A; Bhatia, KP

    2016-01-01

    While essential tremor has been considered the most common movement disorder, it has largely remained a diagnosis of exclusion: many tremor and non-tremor features must be absent for the clinical diagnosis to stand. The clinical features of “essential tremor” overlap with or may be part of other tremor disorders and, not surprisingly, this prevalent familial disorder has remained without a gene identified, without a consistent natural history, and without an acceptable pathology or pathophysiologic underpinning. The collective evidence suggests that under the rubric of essential tremor there exists multiple unique diseases, some of which represent cerebellar dysfunction, but for which there is no intrinsic “essence” other than a common oscillatory behavior on posture and action. One approach may be to use the term “essential tremor” only as a transitional node in the deep phenotyping of tremor disorders based on historical, phenomenological, and neurophysiological features, to facilitate its etiologic diagnosis or serve for future gene- and biomarker-discovery efforts. This approach deemphasizes essential tremor as a diagnostic entity and facilitates the understanding of the underlying disorders in order to develop biologically tailored diagnostic and therapeutic strategies. PMID:28116753

  9. Tremor-tide correlations and near-lithostatic pore pressure on the deep San Andreas fault.

    PubMed

    Thomas, Amanda M; Nadeau, Robert M; Bürgmann, Roland

    2009-12-24

    Since its initial discovery nearly a decade ago, non-volcanic tremor has provided information about a region of the Earth that was previously thought incapable of generating seismic radiation. A thorough explanation of the geologic process responsible for tremor generation has, however, yet to be determined. Owing to their location at the plate interface, temporal correlation with geodetically measured slow-slip events and dominant shear wave energy, tremor observations in southwest Japan have been interpreted as a superposition of many low-frequency earthquakes that represent slip on a fault surface. Fluids may also be fundamental to the failure process in subduction zone environments, as teleseismic and tidal modulation of tremor in Cascadia and Japan and high Poisson ratios in both source regions are indicative of pressurized pore fluids. Here we identify a robust correlation between extremely small, tidally induced shear stress parallel to the San Andreas fault and non-volcanic tremor activity near Parkfield, California. We suggest that this tremor represents shear failure on a critically stressed fault in the presence of near-lithostatic pore pressure. There are a number of similarities between tremor in subduction zone environments, such as Cascadia and Japan, and tremor on the deep San Andreas transform, suggesting that the results presented here may also be applicable in other tectonic settings.

  10. Physiological and harmonic components in neural and muscular coherence in Parkinsonian tremor.

    PubMed

    Wang, Shouyan; Aziz, Tipu Z; Stein, John F; Bain, Peter G; Liu, Xuguang

    2006-07-01

    To differentiate physiological from harmonic components in coherence analysis of the tremor-related neural and muscular signals by comparing power, cross-power and coherence spectra. Influences of waveform, burst-width and additional noise on generating harmonic peaks in the power, cross-power and coherence spectra were studied using simulated signals. The local field potentials (LFPs) of the subthalamic nucleus (STN) and the EMGs of the contralateral forearm muscles in PD patients with rest tremor were analysed. (1) Waveform had significant effect on generating harmonics; (2) noise significantly decreased the coherence values in a frequency-dependent fashion; and (3) cross-spectrum showed high resistance to harmonics. Among six examples of paired LFP-EMG signals, significant coherence appeared at the tremor frequency only, both the tremor and double tremor frequencies and the double-tremor frequency only. In coherence analysis of neural and muscular signals, distortion in waveform generates significant harmonic peaks in the coherence spectra and the coherence values of both physiological and harmonic components are modulated by extra noise or non-tremor related activity. The physiological or harmonic nature of a coherence peak at the double tremor frequency may be differentiated when the coherence spectra are compared with the power and in particular the cross-power spectra.

  11. Resistance Training Reduces Force Tremor and Improves Manual Dexterity in Older Individuals With Essential Tremor.

    PubMed

    Kavanagh, Justin J; Wedderburn-Bisshop, Jacob; Keogh, Justin W L

    2016-01-01

    Although symptoms of Essential Tremor (ET) are typically controlled with medication, it is of interest to explore additional therapies to assist with functionality. The purpose of this study was to determine if a generalized upper limb resistance training (RT) program improves manual dexterity and reduces force tremor in older individuals with ET. Ten Essential Tremor and 9 controls were recruited into a dual group, pretest-posttest intervention study. Participants performed 6 weeks of upper-limb RT, and battery of manual dexterity and isometric force tremor assessments were performed before and after the RT to determine the benefits of the program. The six-week, high-load, RT program produced strength increases in each limb for the ET and healthy older group. These changes in strength aligned with improvements in manual dexterity and tremor-most notably for the ET group. The least affected limb and the most affected limb exhibited similar improvements in functional assessments of manual dexterity, whereas reductions in force tremor amplitude following the RT program were restricted to the most affected limb of the ET group. These findings suggest that generalized upper limb RT program has the potential to improve aspects of manual dexterity and reduce force tremor in older ET patients.

  12. On the Origin of Tremor in Parkinson’s Disease

    PubMed Central

    Dovzhenok, Andrey; Rubchinsky, Leonid L.

    2012-01-01

    The exact origin of tremor in Parkinson’s disease remains unknown. We explain why the existing data converge on the basal ganglia-thalamo-cortical loop as a tremor generator and consider a conductance-based model of subthalamo-pallidal circuits embedded into a simplified representation of the basal ganglia-thalamo-cortical circuit to investigate the dynamics of this loop. We show how variation of the strength of dopamine-modulated connections in the basal ganglia-thalamo-cortical loop (representing the decreasing dopamine level in Parkinson’s disease) leads to the occurrence of tremor-like burst firing. These tremor-like oscillations are suppressed when the connections are modulated back to represent a higher dopamine level (as it would be the case in dopaminergic therapy), as well as when the basal ganglia-thalamo-cortical loop is broken (as would be the case for ablative anti-parkinsonian surgeries). Thus, the proposed model provides an explanation for the basal ganglia-thalamo-cortical loop mechanism of tremor generation. The strengthening of the loop leads to tremor oscillations, while the weakening or disconnection of the loop suppresses them. The loop origin of parkinsonian tremor also suggests that new tremor-suppression therapies may have anatomical targets in different cortical and subcortical areas as long as they are within the basal ganglia-thalamo-cortical loop. PMID:22848541

  13. Short pauses in thalamic deep brain stimulation promote tremor and neuronal bursting.

    PubMed

    Swan, Brandon D; Brocker, David T; Hilliard, Justin D; Tatter, Stephen B; Gross, Robert E; Turner, Dennis A; Grill, Warren M

    2016-02-01

    We conducted intraoperative measurements of tremor during DBS containing short pauses (⩽50 ms) to determine if there is a minimum pause duration that preserves tremor suppression. Nine subjects with ET and thalamic DBS participated during IPG replacement surgery. Patterns of DBS included regular 130 Hz stimulation interrupted by 0, 15, 25 or 50 ms pauses. The same patterns were applied to a model of the thalamic network to quantify effects of pauses on activity of model neurons. All patterns of DBS decreased tremor relative to 'off'. Patterns with pauses generated less tremor reduction than regular high frequency DBS. The model revealed that rhythmic burst-driver inputs to thalamus were masked during DBS, but pauses in stimulation allowed propagation of bursting activity. The mean firing rate of bursting-type model neurons as well as the firing pattern entropy of model neurons were both strongly correlated with tremor power across stimulation conditions. The temporal pattern of stimulation influences the efficacy of thalamic DBS. Pauses in stimulation resulted in decreased tremor suppression indicating that masking of pathological bursting is a mechanism of thalamic DBS for tremor. Pauses in stimulation decreased the efficacy of open-loop DBS for suppression of tremor. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Striations, duration, migration and tidal response in deep tremor.

    PubMed

    Ide, Satoshi

    2010-07-15

    Deep tremor in subduction zones is thought to be caused by small repeating shear slip events on the plate interface with significant slow components. It occurs at a depth of about 30 kilometres and provides valuable information on deep plate motion and shallow stress accumulation on the fault plane of megathrust earthquakes. Tremor has been suggested to repeat at a regular interval, migrate at various velocities and be modulated by tidal stress. Here I show that some time-invariant interface property controls tremor behaviour, using precise location of tremor sources with event duration in western Shikoku in the Nankai subduction zone, Japan. In areas where tremor duration is short, tremor is more strongly affected by tidal stress and migration is inhibited. Where tremor lasts longer, diffusive migration occurs with a constant diffusivity of 10(4) m(2) s(-1). The control property may be the ratio of brittle to ductile areas, perhaps determined by the influence of mantle wedge serpentinization on the plate interface. The spatial variation of the controlling property seems to be characterized by striations in tremor source distribution, which follows either the current or previous plate subduction directions. This suggests that the striations and corresponding interface properties are formed through the subduction of inhomogeneous structure, such as seamounts, for periods as long as ten million years.

  15. Serotonergic modulation of nicotine-induced kinetic tremor in mice.

    PubMed

    Kunisawa, Naofumi; Iha, Higor A; Nomura, Yuji; Onishi, Misaki; Matsubara, Nami; Shimizu, Saki; Ohno, Yukihiro

    2017-06-01

    We previously demonstrated that nicotine elicited kinetic tremor by elevating the neural activity of the inferior olive via α7 nicotinic acetylcholine (nACh) receptors. Since α7 nACh receptors reportedly facilitate synaptic monoamine release, we explored the role of 5-HT receptors in induction and/or modulation of nicotine tremor. Treatment of mice with nicotine induced kinetic tremor that normally appeared during movement. The 5-HT 1A agonist, 8-hydroxydipropylaminotetraline (8-OH-DPAT), significantly enhanced nicotine-induced tremor and the action of 8-OH-DPAT was antagonized by WAY-100135 (5-HT 1A antagonist). In addition, the cerebral 5-HT depletion by repeated treatment with p-chlorophenylalanine did not reduce, but rather potentiated the facilitatory effects of 8-OH-DPAT. In contrast, the 5-HT 2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI), significantly attenuated nicotine tremor, which was antagonized by ritanserin (5-HT 2 antagonist). The 5-HT 3 agonist SR-57227 did not affect nicotine-induced tremor. Furthermore, when testing the direct actions of 5-HT antagonists, nicotine tremor was inhibited by WAY-100135, but was unaffected by ritanserin, ondansetron (5-HT 3 antagonist) or SB-258585 (5-HT 6 antagonist). These results suggest that postsynaptic 5-HT 1A receptors are involved in induction of nicotine tremor mediated by α7 nACh receptors. In addition, 5-HT 2 receptors have an inhibitory modulatory role in induction of nicotine tremor. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  16. Toward Expanding Tremor Observations in the Northern San Andreas Fault System in the 1990s

    NASA Astrophysics Data System (ADS)

    Damiao, L. G.; Dreger, D. S.; Nadeau, R. M.; Taira, T.; Guilhem, A.; Luna, B.; Zhang, H.

    2015-12-01

    The connection between tremor activity and active fault processes continues to expand our understanding of deep fault zone properties and deformation, the tectonic process, and the relationship of tremor to the occurrence of larger earthquakes. Compared to tremors in subduction zones, known tremor signals in California are ~5 to ~10 smaller in amplitude and duration. These characteristics, in addition to scarce geographic coverage, lack of continuous data (e.g., before mid-2001 at Parkfield), and absence of instrumentation sensitive enough to monitor these events have stifled tremor detection. The continuous monitoring of these events over a relatively short time period in limited locations may lead to a parochial view of the tremor phenomena and its relationship to fault, tectonic, and earthquake processes. To help overcome this, we have embarked on a project to expand the geographic and temporal scope of tremor observation along the Northern SAF system using available continuous seismic recordings from a broad array of 100s of surface seismic stations from multiple seismic networks. Available data for most of these stations also extends back into the mid-1990s. Processing and analysis of tremor signal from this large and low signal-to-noise dataset requires a heavily automated, data-science type approach and specialized techniques for identifying and extracting reliable data. We report here on the automated, envelope based methodology we have developed. We finally compare our catalog results with pre-existing tremor catalogs in the Parkfield area.

  17. Non-contact measurement of tremor for the characterisation of Parkinsonian individuals: comparison between Kinect and Laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Casacanditella, L.; Cosoli, G.; Ceravolo, MG; Tomasini, EP

    2017-08-01

    Parkinson’s disease is a progressive neurodegenerative disorder affecting the central nervous system. One of its main and most evident symptoms is the tremor, which usually manifests at rest with varying intensity during time. An important diagnostic challenge is the differential diagnosis between Parkinson’s disease and the other most widely represented tremor syndrome, i.e. Essential (or senile) tremor. At present there are no standard methods for the quantification of tremor and the diagnosis of both Parkinson’s disease and Essential tremor is mainly done on the base of clinical criteria and by using rating scales. The aim of this work is to objectively and non-invasively assess the tremor linked to the quoted diseases, using non-contact techniques: Laser Doppler Vibrometer (LDV) and Kinect for Windows device. Two subjects with Parkinson’s disease and one with Essential tremor were tested in different conditions: at rest, during a cognitive task, with forward stretched arms and in “Wing position”. The results from data processing in terms of tremor frequency seem to be comparable, with a mean deviation of 0.31 Hz. Furthermore, the values computed are consistent with what is stated in the literature (i.e. 4-12 Hz). So, both LDV and Kinect device can be considered suitable to be used as an objective means for the assessment and monitoring of Parkinson’s disease tremor, helping the clinician in the choice of the most suitable treatment for the patients.

  18. Distinguishing the central drive to tremor in Parkinson's disease and essential tremor.

    PubMed

    Brittain, John-Stuart; Cagnan, Hayriye; Mehta, Arpan R; Saifee, Tabish A; Edwards, Mark J; Brown, Peter

    2015-01-14

    Parkinson's disease (PD) and essential tremor (ET) are the two most common movement disorders. Both have been associated with similar patterns of network activation leading to the suggestion that they may result from similar network dysfunction, specifically involving the cerebellum. Here, we demonstrate that parkinsonian tremors and ETs result from distinct patterns of interactions between neural oscillators. These patterns are reflected in the tremors' derived frequency tolerance, a novel measure readily attainable from bedside accelerometry. Frequency tolerance characterizes the temporal evolution of tremor by quantifying the range of frequencies over which the tremor may be considered stable. We found that patients with PD (N = 24) and ET (N = 21) were separable based on their frequency tolerance, with PD associated with a broad range of stable frequencies whereas ET displayed characteristics consistent with a more finely tuned oscillatory drive. Furthermore, tremor was selectively entrained by transcranial alternating current stimulation applied over cerebellum. Narrow frequency tolerances predicted stronger entrainment of tremor by stimulation, providing good evidence that the cerebellum plays an important role in pacing those tremors. The different patterns of frequency tolerance could be captured with a simple model based on a broadly coupled set of neural oscillators for PD, but a more finely tuned set of oscillators in ET. Together, these results reveal a potential organizational principle of the human motor system, whose disruption in PD and ET dictates how patients respond to empirical, and potentially therapeutic, interventions that interact with their underlying pathophysiology. Copyright © 2015 Brittain et al.

  19. Low-dose acute vanillin is beneficial against harmaline-induced tremors in rats.

    PubMed

    Abdulrahman, Al Asmari; Faisal, Kunnathodi; Meshref, Ali Al Amri; Arshaduddin, Mohammed

    2017-03-01

    To study the effect of pretreatment with low doses of vanillin, a flavoring agent used as a food additive, on harmaline-induced tremor in rats. Sprague Dawley rats (110 ± 5 g) were divided into groups of six animals each. Vanillin (6.25 mg, 12.5 mg, and 25 mg/kg) was administered by gavage to different groups of rats, 30 minutes before the induction of tremor. Harmaline (10 mg/kg, i.p.) was used for the induction of tremor. The latency of onset, duration, tremor intensity, tremor index, and spontaneous locomotor activity were recorded. A separate batch of animals was used for the determination of serotonin (5HT) and 5 hydroxyindole acetic acid (5HIAA) levels in the brain. Harmaline treatment resulted in characteristic tremor that lasted for more than 2 hours and decreased the locomotor activity of rats. Pre-treatment with vanillin significantly reduced the duration, intensity, and tremor index of harmaline-treated animals. Vanillin treatment also significantly attenuated harmaline-induced decrease in the locomotor activity. An increase in 5HT levels and the changes in 5HIAA/5HT ratio observed in harmaline treated rats were significantly corrected in vanillin pretreated animals. Vanillin in low doses reduces harmaline-induced tremor in rats, probably through its modulating effect on serotonin levels in the brain. These findings suggest a beneficial effect of vanillin in essential tremor.

  20. Treating post-traumatic tremor with deep brain stimulation: report of five cases.

    PubMed

    Issar, Neil M; Hedera, Peter; Phibbs, Fenna T; Konrad, Peter E; Neimat, Joseph S

    2013-12-01

    Post-traumatic tremor is one of the most common movement disorders resulting from severe head trauma. However, literature regarding successful deep brain stimulation (DBS) treatment is scarce, resulting in ambiguity regarding the optimal lead location. Most cases support the ventral intermediate nucleus, but there is evidence to defend DBS of the zona incerta, ventral oralis anterior/posterior, and/or a combination of these targets. We report five patients with disabling post-traumatic tremor treated with DBS of the ventral intermediate nucleus and of the globus pallidus internus. Patients were referred to the Vanderbilt Movement Disorders Division, and surgical intervention was determined by a DBS Multidisciplinary Committee. Standard DBS procedure was followed. Patients 1-4 sustained severe diffuse axonal injuries. Patients 1-3 underwent unilateral ventral intermediate nucleus DBS for contralateral tremor, while Patient 4 underwent bilateral ventral intermediate nucleus DBS. Patients 1-3 experienced good tremor reduction, while Patient 4 experienced moderate tremor reduction with some dystonic posturing of the hands. Patient 5 had dystonic posturing of the right upper extremity with tremor of the left upper extremity. He was treated with bilateral DBS of the globus pallidus internus and showed good tremor reduction at follow-up. Unilateral or bilateral DBS of the ventral intermediate nucleus and bilateral DBS of the globus pallidus internus may be effective and safe treatment modalities for intractable post-traumatic tremor. Further studies are needed to clarify the optimal target for surgical treatment of post-traumatic tremor. Published by Elsevier Ltd.

  1. Distinguishing the Central Drive to Tremor in Parkinson's Disease and Essential Tremor

    PubMed Central

    Brittain, John-Stuart; Cagnan, Hayriye; Mehta, Arpan R.; Saifee, Tabish A.; Edwards, Mark J.

    2015-01-01

    Parkinson's disease (PD) and essential tremor (ET) are the two most common movement disorders. Both have been associated with similar patterns of network activation leading to the suggestion that they may result from similar network dysfunction, specifically involving the cerebellum. Here, we demonstrate that parkinsonian tremors and ETs result from distinct patterns of interactions between neural oscillators. These patterns are reflected in the tremors' derived frequency tolerance, a novel measure readily attainable from bedside accelerometry. Frequency tolerance characterizes the temporal evolution of tremor by quantifying the range of frequencies over which the tremor may be considered stable. We found that patients with PD (N = 24) and ET (N = 21) were separable based on their frequency tolerance, with PD associated with a broad range of stable frequencies whereas ET displayed characteristics consistent with a more finely tuned oscillatory drive. Furthermore, tremor was selectively entrained by transcranial alternating current stimulation applied over cerebellum. Narrow frequency tolerances predicted stronger entrainment of tremor by stimulation, providing good evidence that the cerebellum plays an important role in pacing those tremors. The different patterns of frequency tolerance could be captured with a simple model based on a broadly coupled set of neural oscillators for PD, but a more finely tuned set of oscillators in ET. Together, these results reveal a potential organizational principle of the human motor system, whose disruption in PD and ET dictates how patients respond to empirical, and potentially therapeutic, interventions that interact with their underlying pathophysiology. PMID:25589772

  2. Resolving the Detailed Spatiotemporal Slip Evolution of Deep Tremor in Western Japan

    NASA Astrophysics Data System (ADS)

    Ohta, Kazuaki; Ide, Satoshi

    2017-12-01

    We study the detailed spatiotemporal behavior of deep tremor in western Japan through the development and application of a new slip inversion method. Although many studies now recognize tremor as shear slip along the plate interface manifested in low-frequency earthquake (LFE) swarms, a conventional slip inversion analysis is not available for tremor due to insufficient knowledge of source locations and Green's functions. Here we introduce synthetic template waveforms, which are typical tremor waveforms obtained by stacking LFE seismograms at arranged points along the plate interface. Using these synthetic template waveforms as substitutes for Green's functions, we invert the continuous tremor waveforms using an iterative deconvolution approach with Bayesian constraints. We apply this method to two tremor burst episodes in western and central Shikoku, Japan. The estimated slip distribution from a 12 day tremor burst episode in western Shikoku is heterogeneous, with several patchy areas of slip along the plate interface where rapid moment releases with durations of <100 s regularly occur. We attribute these heterogeneous spatiotemporal slip patterns to heterogeneous material properties along the plate interface. For central Shikoku, where we focus on a tremor burst episode that occurred coincidentally with a very low frequency earthquake (VLF), we observe that the source size of the VLF is much larger than that estimated from tremor activity in western Shikoku. These differences in the size of the slip region may dictate the visibility of VLF signals in observed seismograms, which has implications for the mechanics of slow earthquakes and subduction zone processes.

  3. A teaching videotape for the assessment of essential tremor.

    PubMed

    Louis, E D; Barnes, L; Wendt, K J; Ford, B; Sangiorgio, M; Tabbal, S; Lewis, L; Kaufmann, P; Moskowitz, C; Comella, C L; Goetz, C C; Lang, A E

    2001-01-01

    Teaching videotapes, developed to aid in the evaluation of several movement disorders, have not been used in essential tremor research. As part of the Washington Heights-Inwood Genetic Study of Essential Tremor (WHIGET), we developed a reliable and valid tremor rating scale. Because this rating scale is currently being used by investigators at other centers, we developed a teaching videotape to aid in the consistent application of this scale. To develop a teaching videotape for a revised version of the WHIGET Tremor Rating Scale and to assess the interrater agreement among raters who used this videotape to rate tremor. The revised WHIGET Tremor Rating Scale was used to rate action tremor from 0 to 4 during six tests: arm extension, pouring, drinking, using a spoon, finger-to-nose, and drawing spirals. A 22-minute teaching videotape was developed that includes a 29-item educational section and a self-assessment section consisting of 20 examples of tremor ratings chosen by the two WHIGET study neurologists. Eight raters, including senior movement disorder specialists, movement disorder fellows, general neurologists, and a movement disorder nurse practitioner, independently viewed the videotape and rated tremor during the self-assessment section. Interobserver reliability was assessed with weighted kappa statistics (kappa(w)). Eight raters each rated 20 items (160 ratings total). Total kappa(w) was 0.97 (nearly perfect agreement). Interrater reliability was as follows: kappa(w) = 0.99 (movement disorder specialists), kappa(w) = 0.98 (movement disorder fellows), and kappa(w) = 0.97 (general neurologists); all kappa(w) were nearly perfect. This teaching videotape may be used to improve the uniform application of the revised WHIGET Tremor Rating Scale by raters with various levels of experience in movement disorders.

  4. Parkinsonian Rest Tremor Is Associated With Modulations of Subthalamic High-Frequency Oscillations.

    PubMed

    Hirschmann, Jan; Butz, Markus; Hartmann, Christian J; Hoogenboom, Nienke; Özkurt, Tolga E; Vesper, Jan; Wojtecki, Lars; Schnitzler, Alfons

    2016-10-01

    High frequency oscillations (>200 Hz) have been observed in the basal ganglia of PD patients and were shown to be modulated by the administration of levodopa and voluntary movement. The objective of this study was to test whether the power of high-frequency oscillations in the STN is associated with spontaneous manifestation of parkinsonian rest tremor. The electromyogram of both forearms and local field potentials from the STN were recorded in 11 PD patients (10 men, age 58 [9.4] years, disease duration 9.2 [6.3] years). Patients were recorded at rest and while performing repetitive hand movements before and after levodopa intake. High-frequency oscillation power was compared across epochs containing rest tremor, tremor-free rest, or voluntary movement and related to the tremor cycle. We observed prominent slow (200-300 Hz) and fast (300-400 Hz) high-frequency oscillations. The ratio between slow and fast high-frequency oscillation power increased when tremor became manifest. This increase was consistent across nuclei (94%) and occurred in medication ON and OFF. The ratio outperformed other potential markers of tremor, such as power at individual tremor frequency, beta power, or low gamma power. For voluntary movement, we did not observe a significant difference when compared with rest or rest tremor. Finally, rhythmic modulations of high-frequency oscillation power occurred within the tremor cycle. Subthalamic high-frequency oscillation power is closely linked to the occurrence of parkinsonian rest tremor. The balance between slow and fast high-frequency oscillation power combines information on motor and medication state. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  5. An autocorrelation method to detect low frequency earthquakes within tremor

    USGS Publications Warehouse

    Brown, J.R.; Beroza, G.C.; Shelly, D.R.

    2008-01-01

    Recent studies have shown that deep tremor in the Nankai Trough under western Shikoku consists of a swarm of low frequency earthquakes (LFEs) that occur as slow shear slip on the down-dip extension of the primary seismogenic zone of the plate interface. The similarity of tremor in other locations suggests a similar mechanism, but the absence of cataloged low frequency earthquakes prevents a similar analysis. In this study, we develop a method for identifying LFEs within tremor. The method employs a matched-filter algorithm, similar to the technique used to infer that tremor in parts of Shikoku is comprised of LFEs; however, in this case we do not assume the origin times or locations of any LFEs a priori. We search for LFEs using the running autocorrelation of tremor waveforms for 6 Hi-Net stations in the vicinity of the tremor source. Time lags showing strong similarity in the autocorrelation represent either repeats, or near repeats, of LFEs within the tremor. We test the method on an hour of Hi-Net recordings of tremor and demonstrates that it extracts both known and previously unidentified LFEs. Once identified, we cross correlate waveforms to measure relative arrival times and locate the LFEs. The results are able to explain most of the tremor as a swarm of LFEs and the locations of newly identified events appear to fill a gap in the spatial distribution of known LFEs. This method should allow us to extend the analysis of Shelly et al. (2007a) to parts of the Nankai Trough in Shikoku that have sparse LFE coverage, and may also allow us to extend our analysis to other regions that experience deep tremor, but where LFEs have not yet been identified. Copyright 2008 by the American Geophysical Union.

  6. Complex Non-volcanic Tremor in Guerrero Mexico Triggered by the 2010 Mw 8.8 Chilean Earthquake

    NASA Astrophysics Data System (ADS)

    Zigone, D.; Campillo, M.; Husker, A. L.; Kostoglodov, V.; Payero, J. S.; Frank, W.; Shapiro, N. M.; Voisin, C.; Cougoulat, G.; Cotte, N.

    2010-12-01

    In this study we analyze the tremors triggered in Guerrero region (Mexico) by the 2010 magnitude 8.8 Chilean Earthquake using mini-seismic array data from the French-Mexican G-GAP project and broadband data from the Servicio Sismologico Nacional of Mexico. The strong dynamic shaking by the earthquake produced the first observed triggered non-volcanic tremors (NVT) in Mexico so far with at least 3 different types of tremors at different time scales. There was a slow slip event (SSE) occurring at the time of the earthquake, which may have increased the probability of tremor triggering in the region. The first type of observed triggered tremors occurred during the S waves, Love waves and Rayleigh waves as already reported in other subductions zones and continental faults (Miyazawa and Mori, 2005, 2006; Rubinstein et al., 2007; Gomberg et al., 2008; Peng et al, 2009…). The greatest amount of energy and duration accompanies the long-period Rayleigh waves, with smaller bursts during the S and Love waves. For this particular tremor we observed the dispersion of Rayleigh waves in the envelopes of triggered tremors, which indicates a very strong modulation of the source by the passing surface wave. An unexpected short-term tremor occurred approximately one hour later of the arrival of the surface waves on the coastal stations. The NVT has only been previously observed at distances > 100 km inland. It also has a shorter frequency range (3-6 Hz) than other NVT (1-10 Hz) observed in the region. Finally, we observed a significant increase of so-called ambient tremor activity with higher intensity than all triggered NVT during the days after the earthquake. This study adds new types of tremors to the lexicon of triggered NVT observed in the world.

  7. Continuous Monitoring of Essential Tremor Using a Portable System Based on Smartwatch.

    PubMed

    Zheng, Xiaochen; Vieira Campos, Alba; Ordieres-Meré, Joaquín; Balseiro, Jose; Labrador Marcos, Sergio; Aladro, Yolanda

    2017-01-01

    Essential tremor (ET) shows amplitude fluctuations throughout the day, presenting challenges in both clinical and treatment monitoring. Tremor severity is currently evaluated by validated rating scales, which only provide a timely and subjective assessment during a clinical visit. Motor sensors have shown favorable performances in quantifying tremor objectively. A new highly portable system was used to monitor tremor continuously during daily lives. It consists of a smartwatch with a triaxial accelerometer, a smartphone, and a remote server. An experiment was conducted involving eight ET patients. The average effective data collection time per patient was 26 (±6.05) hours. Fahn-Tolosa-Marin Tremor Rating Scale (FTMTRS) was adopted as the gold standard to classify tremor and to validate the performance of the system. Quantitative analysis of tremor severity on different time scales is validated. Significant correlations were observed between neurologist's FTMTRS and patient's FTMTRS auto-assessment scores ( r  = 0.84; p  = 0.009), between the device quantitative measures and the scores from the standardized assessments of neurologists ( r  = 0.80; p  = 0.005) and patient's auto-evaluation ( r  = 0.97; p  = 0.032), and between patient's FTMTRS auto-assessment scores day-to-day ( r  = 0.87; p  < 0.001). A graphical representation of four patients with different degrees of tremor was presented, and a representative system is proposed to summarize the tremor scoring at different time scales. This study demonstrates the feasibility of prolonged and continuous monitoring of tremor severity during daily activities by a highly portable non-restrictive system, a useful tool to analyze efficacy and effectiveness of treatment.

  8. Neuroimaging essentials in essential tremor: A systematic review

    PubMed Central

    Sharifi, Sarvi; Nederveen, Aart J.; Booij, Jan; van Rootselaar, Anne-Fleur

    2014-01-01

    Background Essential tremor is regarded to be a disease of the central nervous system. Neuroimaging is a rapidly growing field with potential benefits to both diagnostics and research. The exact role of imaging techniques with respect to essential tremor in research and clinical practice is not clear. A systematic review of the different imaging techniques in essential tremor is lacking in the literature. Methods We performed a systematic literature search combining the terms essential tremor and familial tremor with the following keywords: imaging, MRI, VBM, DWI, fMRI, PET and SPECT, both in abbreviated form as well as in full form. We summarize and discuss the quality and the external validity of each study and place the results in the context of existing knowledge regarding the pathophysiology of essential tremor. Results A total of 48 neuroimaging studies met our search criteria, roughly divided into 19 structural and 29 functional and metabolic studies. The quality of the studies varied, especially concerning inclusion criteria. Functional imaging studies indicated cerebellar hyperactivity during rest and during tremor. The studies also pointed to the involvement of the thalamus, the inferior olive and the red nucleus. Structural studies showed less consistent results. Discussion and conclusion Neuroimaging techniques in essential tremor give insight into the pathophysiology of essential tremor indicating the involvement of the cerebellum as the most consistent finding. GABAergic dysfunction might be a major premise in the pathophysiological hypotheses. Inconsistencies between studies can be partly explained by the inclusion of heterogeneous patient groups. Improvement of scientific research requires more stringent inclusion criteria and application of advanced analysis techniques. Also, the use of multimodal neuroimaging techniques is a promising development in movement disorders research. Currently, the role of imaging techniques in essential tremor in daily clinical practice is limited. PMID:25068111

  9. Differences in postural tremor dynamics with age and neurological disease.

    PubMed

    Morrison, Steven; Newell, Karl M; Kavanagh, Justin J

    2017-06-01

    The overlap of dominant tremor frequencies and similarly amplified tremor observed for Parkinson's disease (PD) and essential tremor (ET) means differentiating between these pathologies is often difficult. As tremor exhibits non-linear properties, employing both linear and non-linear analyses may help distinguish between the tremor dynamics of aging, PD and ET. This study was designed to examine postural tremor in healthy older adults, PD and ET using standard linear and non-linear metrics. Hand and finger postural tremor was recorded in 15 healthy older adults (64 ± 6 years), 15 older individuals with PD (63 ± 6 years), and 10 persons with ET (68 ± 7 years). Linear measures of amplitude, frequency, and between-limb coupling (coherence) were performed. Non-linear measures of regularity (ApEn) and coupling (Cross-ApEn) were also used. Additionally, receiver operating characteristic analyses were performed for those measures that were significantly different between all groups. The results revealed that the linear measures only showed significant differences between the healthy adults and ET/PD persons, but no differences between the two neurological groups. Coherence showed higher bilateral coupling for ET but no differences in inter-limb coupling between PD and healthy subjects. However, ApEn values for finger tremor revealed significant differences between all groups, with tremor for ET persons being more regular (lower ApEn) overall. Similarly, Cross-ApEn results also showed differences between all groups, with ET persons showing strongest inter-limb coupling followed by PD and elderly. Overall, our findings point to the diagnostic potential for non-linear measures of coupling and tremor structure as biomarkers for discriminating between ET, PD and healthy persons.

  10. Validation of "laboratory-supported" criteria for functional (psychogenic) tremor.

    PubMed

    Schwingenschuh, Petra; Saifee, Tabish A; Katschnig-Winter, Petra; Macerollo, Antonella; Koegl-Wallner, Mariella; Culea, Valeriu; Ghadery, Christine; Hofer, Edith; Pendl, Tamara; Seiler, Stephan; Werner, Ulrike; Franthal, Sebastian; Maurits, Natasha M; Tijssen, Marina A; Schmidt, Reinhold; Rothwell, John C; Bhatia, Kailash P; Edwards, Mark J

    2016-04-01

    In a small group of patients, we have previously shown that a combination of electrophysiological tests was able to distinguish functional (psychogenic) tremor and organic tremor with excellent sensitivity and specificity. This study aims to validate an electrophysiological test battery as a tool to diagnose patients with functional tremor with a "laboratory-supported" level of certainty. For this prospective data collection study, we recruited 38 new patients with functional tremor (mean age 37.9 ± 24.5 years; mean disease duration 5.9 ± 9.0 years) and 73 new patients with organic tremor (mean age 55.4 ± 25.4 years; mean disease duration 15.8 ± 17.7 years). Tremor was recorded at rest, posture (with and without loading), action, while performing tapping tasks (1, 3, and 5 Hz), and while performing ballistic movements with the less-affected hand. Electrophysiological tests were performed by raters blinded to the clinical diagnosis. We calculated a sum score for all performed tests (maximum of 10 points) and used a previously suggested cut-off score of 3 points for a diagnosis of laboratory-supported functional tremor. We demonstrated good interrater reliability and test-retest reliability. Patients with functional tremor had a higher average score on the test battery when compared with patients with organic tremor (3.6 ± 1.4 points vs 1.0 ± 0.8 points; P < .001), and the predefined cut-off score for laboratory-supported functional tremor yielded a test sensitivity of 89.5% and a specificity of 95.9%. We now propose this test battery as the basis of laboratory-supported criteria for the diagnosis of functional tremor, and we encourage its use in clinical and research practice. © 2016 International Parkinson and Movement Disorder Society.

  11. Remotely triggered nonvolcanic tremor in Sumbawa, Indonesia

    NASA Astrophysics Data System (ADS)

    Fuchs, Florian; Lupi, Matteo; Miller, Stephen

    2015-04-01

    Nonvolcanic (or tectonic) tremor is a seismic phenomenom which can provide important information about dynamics of plate boundaries but the underlying mechanisms are not well understood. Tectonic tremor is often associated with slow-slip (termed episodic tremor and slip) and understanding the mechanisms driving tremor presents an important challenge because it is likely a dominant aspect of the evolutionary processes leading to tsunamigenic, megathrust subduction zone earthquakes. Tectonic tremor is observed worldwide, mainly along major subduction zones and plate boundaries such as in Alaska/Aleutians, Cascadia, the San Andreas Fault, Japan or Taiwan. We present, for the first time, evidence for triggered tremor beneath the island of Sumbawa, Indonesia. The island of Sumbawa, Indonesia, is part of the Lesser Sunda Group about 250 km north of the Australian/Eurasian plate collision at the Java Trench with a convergence rate of approximately 70 mm/yr. We show surface wave triggered tremor beneath Sumbawa in response to three teleseismic earthquakes: the Mw9.0 2011 Tohoku earthquake and two oceanic strike-slip earthquakes (Mw 8.6 and Mw8.2) offshore of Sumatra in 2012. Tremor amplitudes scale with ground motion and peak at 180 nm/s ground velocity on the horizontal components. A comparison of ground motion of the three triggering events and a similar (nontriggering) Mw7.6 2012 Philippines event constrains an apparent triggering threshold of approximately 1 mm/s ground velocity or 8 kPa dynamic stress. Surface wave periods of 45-65 s appear optimal for triggering tremor at Sumbawa which predominantly correlates with Rayleigh waves, even though the 2012 oceanic events have stronger Love wave amplitudes and triggering potential. Rayleigh wave triggering, low-triggering amplitudes, and the tectonic setting all favor a model of tremor generated by localized fluid transport. We could not locate the tremor because of minimal station coverage, but data indicate several potential source volumes including the Flores Thrust, the Java subduction zone, or Tambora volcano.

  12. Infrequent triggering of tremor along the San Jacinto Fault near Anza, California

    USGS Publications Warehouse

    Wang, Tien-Huei; Cochran, Elizabeth S.; Agnew, Duncan Carr; Oglesby, David D.

    2013-01-01

    We examine the conditions necessary to trigger tremor along the San Jacinto fault (SJF) near Anza, California, where previous studies suggest triggered tremor occurs, but observations are sparse. We investigate the stress required to trigger tremor using continuous broadband seismograms from 11 stations located near Anza, California. We examine 44 Mw≥7.4 teleseismic events between 2001 and 2011; these events occur at a wide range of back azimuths and hypocentral distances. In addition, we included one smaller‐magnitude, regional event, the 2009 Mw 6.5 Gulf of California earthquake, because it induced extremely high strains at Anza. We find the only episode of triggered tremor occurred during the 3 November 2002 Mw 7.8 Denali earthquake. The tremor episode lasted 300 s, was composed of 12 tremor bursts, and was located along SJF at the northwestern edge of the Anza gap at approximately 13 km depth. The tremor episode started at the Love‐wave arrival, when surface‐wave particle motions are primarily in the transverse direction. We find that the Denali earthquake induced the second highest stress (~35  kPa) among the 44 teleseismic events and 1 regional event. The dominant period of the Denali surface wave was 22.8 s, at the lower end of the range observed for all events (20–40 s), similar to periods shown to trigger tremor in other locations. The surface waves from the 2009 Mw 6.5 Gulf of California earthquake had the highest observed strain, yet a much shorter dominant period of 10 s and did not trigger tremor. This result suggests that not only the amplitude of the induced strain, but also the period of the incoming surface wave, may control triggering of tremors near Anza. In addition, we find that the transient‐shear stress (17–35 kPa) required to trigger tremor along the SJF at Anza is distinctly higher than what has been reported for the well‐studied San Andreas fault.

  13. Ambient Tremor, But No Triggered Tremor at the Northern Costa Rica Subduction Zone

    NASA Astrophysics Data System (ADS)

    Swiecki, Z.; Schwartz, S. Y.

    2010-12-01

    Non-volcanic tremor (NVT) has been found to be triggered during the passage of surface waves from various teleseismic events in locations around the world including Cascadia, Southwest Japan, Taiwan, and California. In this study we examine the northern Costa Rica subduction zone for evidence of triggered tremor. The Nicoya Peninsula segment of the northern Costa Rica margin experiences both slow-slip and tremor and is thus a prime candidate for triggered tremor observations. Eleven teleseismic events with magnitudes (Mw) greater than 8 occurring between 2006 and 2010 were examined using data from both broadband and short period sensors deployed on the Nicoya Peninsula, Costa Rica. Waveforms from several large regional events were also considered. The largest teleseismic and regional events (27 February 2010 Chile, Mw 8.8 and 28 May 2009 Honduras, Mw 7.3) induced peak ground velocities (PGV) at the NIcoya stations of ~2 and 6 mm/s, respectively; larger than PGVs in other locations that have triggered tremor. Many of the earthquakes examined occurred during small episodes of background ambient tremor. In spite of this, no triggered tremor was observed during the passage of seismic waves from any event. This is significant because other studies have demonstrated that NVT is not triggered everywhere by all events above some threshold magnitude, indicating that unique conditions are required for its occurrence. The lack of triggered tremor at the Costa Rica margin can help to better quantify the requisite conditions and triggering mechanisms. An inherent difference between the Costa Rica margin and the other subduction zones where triggered tremor exists is its erosional rather than accretionary nature. Its relatively low sediment supply likely results in a drier, lower pore fluid pressure, stronger and less compliant thrust interface that is less receptive to triggering tremor from external stresses generated by teleseismic or strong local earthquakes. Another important factor is Costa Rica’s relatively cool subduction zone structure where temperatures required for the fluid generating basalt/ecloginte reaction are not reached until far below tremor producing depths.

  14. Oculopalatal tremor explained by a model of inferior olivary hypertrophy and cerebellar plasticity

    PubMed Central

    Shaikh, Aasef G.; Hong, Simon; Liao, Ke; Tian, Jing; Solomon, David; Zee, David S.; Leigh, R. John

    2010-01-01

    The inferior olivary nuclei clearly play a role in creating oculopalatal tremor, but the exact mechanism is unknown. Oculopalatal tremor develops some time after a lesion in the brain that interrupts inhibition of the inferior olive by the deep cerebellar nuclei. Over time the inferior olive gradually becomes hypertrophic and its neurons enlarge developing abnormal soma-somatic gap junctions. However, results from several experimental studies have confounded the issue because they seem inconsistent with a role for the inferior olive in oculopalatal tremor, or because they ascribe the tremor to other brain areas. Here we look at 3D binocular eye movements in 15 oculopalatal tremor patients and compare their behaviour to the output of our recent mathematical model of oculopalatal tremor. This model has two mechanisms that interact to create oculopalatal tremor: an oscillator in the inferior olive and a modulator in the cerebellum. Here we show that this dual mechanism model can reproduce the basic features of oculopalatal tremor and plausibly refute the confounding experimental results. Oscillations in all patients and simulations were aperiodic, with a complicated frequency spectrum showing dominant components from 1 to 3 Hz. The model’s synchronized inferior olive output was too small to induce noticeable ocular oscillations, requiring amplification by the cerebellar cortex. Simulations show that reducing the influence of the cerebellar cortex on the oculomotor pathway reduces the amplitude of ocular tremor, makes it more periodic and pulse-like, but leaves its frequency unchanged. Reducing the coupling among cells in the inferior olive decreases the oscillation’s amplitude until they stop (at ∼20% of full coupling strength), but does not change their frequency. The dual-mechanism model accounts for many of the properties of oculopalatal tremor. Simulations suggest that drug therapies designed to reduce electrotonic coupling within the inferior olive or reduce the disinhibition of the cerebellar cortex on the deep cerebellar nuclei could treat oculopalatal tremor. We conclude that oculopalatal tremor oscillations originate in the hypertrophic inferior olive and are amplified by learning in the cerebellum. PMID:20080879

  15. Deep Tectonic Tremor in Haiti triggered by the 2010/02/27 Mw8.8 Maule, Chile earthquake

    NASA Astrophysics Data System (ADS)

    Aiken, C.; Peng, Z.; Douilly, R.; Calais, E.; Deschamps, A.; Haase, J. S.

    2013-05-01

    Tectonic tremors have been observed along major plate-boundary faults around the world. In most of these regions, tremors occur spontaneously (i.e. ambient) or as a result of small stress perturbations from passing surface waves (i.e. triggered). Because tremors are located below the seismogenic zone, a detailed study of their behavior could help to better understand how tectonic movement is accommodated in the deep root of major faults, and the relationship with large earthquakes. Here, we present evidence of triggered tremor in southern Haiti around the aftershock zone of the 2010/01/12 Mw7.0 Haiti earthquake. Following the January mainshock, several groups have installed land and ocean bottom seismometers to record aftershock activity (e.g., De Lepinay et al., 2011). In the following month, the 2010/02/27 Mw8.8 Maule, Chile earthquake occurred and was recorded in the southern Haiti region by these seismic stations. We apply a 5-15 Hz band-pass filter to all seismograms to identify local high-frequency signals during the Chile teleseismic waves. Tremor is identified as non-impulsive bursts with 10-20 s durations that is coherent among different stations and is modulated by surface waves. We also convert the seismic data into audible sounds and use them to distinguish between local aftershocks and deep tremor. We locate the source of the tremor bursts using an envelope cross-correlation method based on travel time differences. Because tremor depth is not well constrained with this method, we set it to 20 km, close to the recent estimate of Moho depth in this region (McNamara et al., 2012). Most tremors are located south of the surface expression of the Enriquillo-Plantain Garden Fault (EPGF), a high-angle southward dipping left-lateral strike-slip fault that marks the boundary between the Gonave microplate and the Caribbean plate, although the location errors are large. Tremor peaks are mostly modulated by Love wave velocity, which is consistent with left-lateral shear motion induced by the normal incidence of Love wave on a near-vertical strike-slip fault. Our ongoing efforts include comparing tremor and aftershock locations with the same envelope techniques, and identifying tremor at other times. If the tremor locations are reliable, the results pose interesting questions about stress changes following the Haiti mainshock that lead to triggered seismicity on the shallow south dipping Trois Baies fault (De Lepinay et al., 2011, Douilly et al, 2013), and triggered tremor on the EPGF, where no aftershocks were recorded.

  16. Control of lithium tremor with propranolol.

    PubMed Central

    Lapierre, Y. D.

    1976-01-01

    Lithium tremor is an irregular, nonrhythmic tremor of the distal extremities, variable in both intensity and frequency. It is clinically differentiated from essential tremor and tremors due to anxiety and neuroleptics. The pathophysiologic mechanisms are hypothesized to be of perpheral origin. Five patients were successfully treated with propranolol. In general, the dosage of propranolol must be individually adjusted and is usually from 30 to 40 mg daily in divided doses. This blocker of beta-adrenergic receptors remains effective with long-term administration and increases in dosage are not required. PMID:1260604

  17. Observations of volcanic tremor during January-February 2005 eruption of Mt. Veniaminof, Alaska

    USGS Publications Warehouse

    De Angelis, Slivio; McNutt, Stephen R.

    2007-01-01

    Mt. Veniaminof, Alaska Peninsula, is a stratovolcano with a summit ice-filled caldera containing a small intracaldera cone and active vent. From January 2 to February 21, 2005, Mt. Veniaminof erupted. The eruption was characterized by numerous small ash emissions (VEI 0 to 1) and accompanied by low-frequency earthquake activity and volcanic tremor. We have performed spectral analyses of the seismic signals in order to characterize them and to constrain their source. Continuous tremor has durations of minutes to hours with dominant energy in the band 0.5– 4.0 Hz, and spectra characterized by narrow peaks either irregularly (non-harmonic tremor) or regularly spaced (harmonic tremor). The spectra of non-harmonic tremor resemble those of low-frequency events recorded simultaneously with surface ash explosions, suggesting that the source mechanisms might be similar or related. We propose that non-harmonic tremor at Mt. Veniaminof results from the coalescence of gas bubbles while low-frequency events are related to the disruption of large gas pockets within the conduit. Harmonic tremor, characterized by regular and quasisinusoidal waveforms, has duration of hours. Spectra containing up to five harmonics suggest the presence of a resonating source volume that vibrates in a longitudinal acoustic mode. An interesting feature of harmonic tremor is that frequency is observed to change over time; spectral lines move towards higher or lower values while the harmonic nature of the spectra is maintained. Factors controlling the variable characteristics of harmonic tremor include changes in acoustic velocity at the source and variations of the effective size of the resonator.

  18. Cognitive and neuropsychiatric features of orthostatic tremor: A case-control comparison.

    PubMed

    Benito-León, Julián; Louis, Elan D; Puertas-Martín, Verónica; Romero, Juan Pablo; Matarazzo, Michele; Molina-Arjona, José Antonio; Domínguez-González, Cristina; Sánchez-Ferro, Álvaro

    2016-02-15

    Evidence suggests that the cerebellum could play a role in the pathophysiology of orthostatic tremor. The link between orthostatic tremor and the cerebellum is of interest, especially in light of the role the cerebellum plays in cognition, and it raises the possibility that orthostatic tremor patients could have cognitive deficits consistent with cerebellar dysfunction. Our aim was to examine whether orthostatic tremor patients had cognitive deficits and distinct personality profiles when compared with matched controls. Sixteen consecutive orthostatic tremor patients (65.7 ± 13.3 years) and 32 healthy matched controls underwent a neuropsychological battery and the Personality Assessment Inventory. In linear regression models, the dependent variable was each one of the neuropsychological test scores or the Personality Assessment Inventory subscales and the independent variable was orthostatic tremor vs. Adjusted for age in years, sex, years of education, comorbidity index, current smoker, and depressive symptoms, diagnosis (orthostatic tremor vs. healthy control) was associated with poor performance on tests of executive function, visuospatial ability, verbal memory, visual memory, and language tests, and on a number of the Personality Assessment Inventory subscales (somatic concerns, anxiety related disorders, depression, and antisocial features). Older-onset OT (>60 years) patients had poorer scores on cognitive and personality testing compared with their younger-onset OT counterparts. Orthostatic tremor patients have deficits in specific aspects of neuropsychological functioning, particularly those thought to rely on the integrity of the prefrontal cortex, which suggests involvement of frontocerebellar circuits. Cognitive impairment and personality disturbances could be disease-associated nonmotor manifestations of orthostatic tremor. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Triggering of tremors and slow slip event in Guerrero, Mexico, by the 2010 Mw 8.8 Maule, Chile, earthquake

    NASA Astrophysics Data System (ADS)

    Zigone, Dimitri; Rivet, Diane; Radiguet, Mathilde; Campillo, Michel; Voisin, Christophe; Cotte, Nathalie; Walpersdorf, Andrea; Shapiro, Nikolai M.; Cougoulat, Glenn; Roux, Philippe; Kostoglodov, Vladimir; Husker, Allen; Payero, Juan S.

    2012-09-01

    We investigate the triggering of seismic tremor and slow slip event in Guerrero (Mexico) by the February 27, 2010 Maule earthquake (Mw 8.8). Triggered tremors start with the arrival of S wave generated by the Maule earthquake, and keep occurring during the passing of ScS, SS, Love and Rayleigh waves. The Rayleigh wave dispersion curve footprints the high frequency energy envelope of the triggered tremor, indicating a strong modulation of the source of tremors by the passing surface wave. This correlation and modulation by the passing waves is progressively lost with time over a few hours. The tremor activity continues during the weeks/months after the earthquake. GPS time series suggest that the second sub-event of the 2009-2010 SSE in Guerrero is actually triggered by the Maule earthquake. The southward displacement of the GPS stations starts coincidently with the earthquake and tremors. The long duration of tremors indicate a continuing deformation process at depth, which we propose to be the second sub-event of the 2009-2010 SSE. We show a quasi-systematic correlation between surface displacement rate measured by GPS and tremor activity, suggesting that the NVT are controlled by the variations in the slip history of the SSE. This study shows that two types of tremors emerge: (1) Those directly triggered by the passing waves and (2) those triggered by the stress variations associated with slow slip. This indicates the prominent role of aseismic creep in the Mexican subduction zone response to a large teleseismic earthquake, possibly leading to large-scale stress redistribution.

  20. Effects of peripheral cooling on intention tremor in multiple sclerosis

    PubMed Central

    Feys, P; Helsen, W; Liu, X; Mooren, D; Albrecht, H; Nuttin, B; Ketelaer, P

    2005-01-01

    Objective: To investigate the effect of peripheral sustained cooling on intention tremor in patients with multiple sclerosis (MS). MS induced upper limb intention tremor affects many functional activities and is extremely difficult to treat. Materials/Methods: Deep (18°C) and moderate (25°C) cooling interventions were applied for 15 minutes to 23 and 11 tremor arms of patients with MS, respectively. Deep and moderate cooling reduced skin temperature at the elbow by 13.5°C and 7°C, respectively. Evaluations of physiological variables, the finger tapping test, and a wrist step tracking task were performed before and up to 30 minutes after cooling. Results: The heart rate and the central body temperature remained unchanged throughout. Both cooling interventions reduced overall tremor amplitude and frequency proportional to cooling intensity. Tremor reduction persisted during the 30 minute post cooling evaluation period. Nerve conduction velocity was decreased after deep cooling, but this does not fully explain the reduction in tremor amplitude or the effects of moderate cooling. Cooling did not substantially hamper voluntary movement control required for accurate performance of the step tracking task. However, changes in the mechanical properties of muscles may have contributed to the tremor amplitude reduction. Conclusions: Cooling induced tremor reduction is probably caused by a combination of decreased nerve conduction velocity, changed muscle properties, and reduced muscle spindle activity. Tremor reduction is thought to relate to decreased long loop stretch reflexes, because muscle spindle discharge is temperature dependent. These findings are clinically important because applying peripheral cooling might enable patients to perform functional activities more efficiently. PMID:15716530

  1. Voice Tremor Outcomes of Subthalamic Nucleus and Zona Incerta Deep Brain Stimulation in Patients With Parkinson Disease.

    PubMed

    Karlsson, Fredrik; Malinova, Elin; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; Nordh, Erik

    2018-01-17

    We aimed to study the effect of deep brain stimulation (DBS) in the subthalamic nucleus (STN) and caudal zona incerta (cZi) on level of perceived voice tremor in patients with Parkinson disease (PD). This is a prospective nonrandomized design with consecutive patients. Perceived voice tremor was assessed in patients with PD having received either STN-DBS (8 patients, 5 bilateral and 3 unilateral, aged 43.1-73.6 years; median = 61.2 years) or cZi-DBS (14 bilateral patients, aged 39.0-71.9 years; median = 56.6 years) 12 months before the assessment. Sustained vowels that were produced OFF and ON stimulation (with simultaneous l-DOPA medication) were assessed perceptually in terms of voice tremor by two raters on a four-point rating scale. The assessments were repeated five times per sample and rated in a blinded and randomized procedure. Three out of the 22 patients (13%) were concluded to have voice tremor OFF stimulation. Patients with PD with STN-DBS showed mild levels of perceived voice tremor OFF stimulation and a group level improvement. Patients with moderate/severe perceived voice tremor and cZi-DBS showed marked improvements, but there was no overall group effect. Six patients with cZi-DBS showed small increases in perceived voice tremor severity. STN-DBS decreased perceived voice tremor on a group level. cZi-DBS decreased perceived voice tremor in patients with PD with moderate to severe preoperative levels of the symptom. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Beta-Adrenergic Modulation of Tremor and Corticomuscular Coherence in Humans

    PubMed Central

    Baker, Mark R.; Baker, Stuart N.

    2012-01-01

    Coherence between the bioelectric activity of sensorimotor cortex and contralateral muscles can be observed around 20 Hz. By contrast, physiological tremor has a dominant frequency around 10 Hz. Although tremor has multiple sources, it is partly central in origin, reflecting a component of motoneuron discharge at this frequency. The motoneuron response to ∼20 Hz descending input could be altered by non-linear interactions with ∼10 Hz motoneuron firing. We investigated this further in eight healthy human subjects by testing the effects of the beta-adrenergic agents propranolol (non-selective β-antagonist) and salbutamol (β2-agonist), which are known to alter the size of physiological tremor. Corticomuscular coherence was assessed during an auxotonic precision grip task; tremor was quantified using accelerometry during index finger extension. Experiments with propranolol used a double-blind, placebo-controlled crossover design. A single oral dose of propranolol (40 mg) significantly increased beta band (15.3–32.2 Hz) corticomuscular coherence compared with placebo, but reduced tremor in the 6.2–11.9 Hz range. Salbutamol (2.5 mg) was administered by inhalation. Whilst salbutamol significantly increased tremor amplitude as expected, it did not change corticomuscular coherence. The opposite direction of the effects of propranolol on corticomuscular coherence and tremor, and the fact that salbutamol enhances tremor but does not affect coherence, implies that the magnitude of corticomuscular coherence is little influenced by non-linear interactions with 10 Hz oscillations in motoneurons or the periphery. Instead, we suggest that propranolol and salbutamol may affect both tremor and corticomuscular coherence partly via a central site of action. PMID:23185297

  3. Tremor-genic slow slip regions may be deeper and warmer and may slip slower than non-tremor-genic regions

    USGS Publications Warehouse

    Montgomery-Brown, Emily; Syracuse, Ellen M.

    2015-01-01

    Slow slip events (SSEs) are observed worldwide and often coincide with tectonic tremor. Notable examples of SSEs lacking observed tectonic tremor, however, occur beneath Kīlauea Volcano, Hawaii, the Boso Peninsula, Japan, near San Juan Bautista on the San Andreas Fault, California, and recently in Central Ecuador. These SSEs are similar to other worldwide SSEs in many ways (e.g., size or duration), but lack the concurrent tectonic tremor observed elsewhere; instead, they trigger swarms of regular earthquakes. We investigate the physical conditions that may distinguish these non-tremor-genic SSEs from those associated with tectonic tremor, including slip velocity, pressure, temperature, fluids, and fault asperities, although we cannot eliminate the possibility that tectonic tremor may be obscured in highly attenuating regions. Slip velocities of SSEs at Kīlauea Volcano (∼10−6 m/s) and Boso Peninsula (∼10−7 m/s) are among the fastest SSEs worldwide. Kīlauea Volcano, the Boso Peninsula, and Central Ecuador are also among the shallowest SSEs worldwide, and thus have lower confining pressures and cooler temperatures in their respective slow slip zones. Fluids also likely contribute to tremor generation, and no corresponding zone of high vp/vs has been noted at Kīlauea or Boso. We suggest that the relatively faster slip velocities at Kīlauea Volcano and the Boso Peninsula result from specific physical conditions that may also be responsible for triggering swarms of regular earthquakes adjacent to the slow slip, while different conditions produce slower SSE velocities elsewhere and trigger tectonic tremor.

  4. Volcanic tremor masks its seismogenic source: Results from a study of noneruptive tremor recorded at Mount St. Helens, Washington

    USGS Publications Warehouse

    Denlinger, Roger P.; Moran, Seth C.

    2014-01-01

    On 2 October 2004, a significant noneruptive tremor episode occurred during the buildup to the 2004–2008 eruption of Mount St. Helens (Washington). This episode was remarkable both because no explosion followed, and because seismicity abruptly stopped following the episode. This sequence motivated us to consider a model for volcanic tremor that does not involve energetic gas release from magma but does involve movement of conduit magma through extension on its way toward the surface. We found that the tremor signal was composed entirely of Love and Rayleigh waves and that its spectral bandwidth increased and decreased with signal amplitude, with broader bandwidth signals containing both higher and lower frequencies. Our modeling results demonstrate that the forces giving rise to this tremor were largely normal to conduit walls, generating hybrid head waves along conduit walls that are coupled to internally reflected waves. Together these form a crucial part of conduit resonance, giving tremor wavefields that are largely a function of waveguide geometry and velocity. We find that the mechanism of tremor generation fundamentally masks the nature of the seismogenic source giving rise to resonance. Thus multiple models can be invoked to explain volcanic tremor, requiring that information from other sources (such as visual observations, geodesy, geology, and gas geochemistry) be used to constrain source models. With concurrent GPS and field data supporting rapid rise of magma, we infer that tremor resulted from drag of nearly solid magma along rough conduit walls as magma was forced toward the surface.

  5. Multiple Resting-State Networks Are Associated With Tremors and Cognitive Features in Essential Tremor.

    PubMed

    Fang, Weidong; Chen, Huiyue; Wang, Hansheng; Zhang, Han; Liu, Mengqi; Puneet, Munankami; Lv, Fajin; Cheng, Oumei; Wang, Xuefeng; Lu, Xiurong; Luo, Tianyou

    2015-12-01

    The heterogeneous clinical features of essential tremor indicate that the dysfunctions of this syndrome are not confined to motor networks, but extend to nonmotor networks. Currently, these neural network dysfunctions in essential tremor remain unclear. In this study, independent component analysis of resting-state functional MRI was used to study these neural network mechanisms. Thirty-five essential tremor patients and 35 matched healthy controls with clinical and neuropsychological tests were included, and eight resting-state networks were identified. After considering the structure and head-motion factors and testing the reliability of the selected resting-state networks, we assessed the functional connectivity changes within or between resting-state networks. Finally, image-behavior correlation analysis was performed. Compared to healthy controls, essential tremor patients displayed increased functional connectivity in the sensorimotor and salience networks and decreased functional connectivity in the cerebellum network. Additionally, increased functional network connectivity was observed between anterior and posterior default mode networks, and a decreased functional network connectivity was noted between the cerebellum network and the sensorimotor and posterior default mode networks. Importantly, the functional connectivity changes within and between these resting-state networks were correlated with the tremor severity and total cognitive scores of essential tremor patients. The findings of this study provide the first evidence that functional connectivity changes within and between multiple resting-state networks are associated with tremors and cognitive features of essential tremor, and this work demonstrates a potential approach for identifying the underlying neural network mechanisms of this syndrome. © 2015 International Parkinson and Movement Disorder Society.

  6. Analysis of dystonic tremor in musicians using empirical mode decomposition.

    PubMed

    Lee, A; Schoonderwaldt, E; Chadde, M; Altenmüller, E

    2015-01-01

    Test the hypotheses that tremor amplitude in musicians with task-specific dystonia is higher at the affected finger (dystonic tremor, DT) or the adjacent finger (tremor associated with dystonia, TAD) than (1) in matched fingers of healthy musicians and non-musicians and (2) within patients in the unaffected and non-adjacent fingers of the affected side within patients. We measured 21 patients, 21 healthy musicians and 24 non-musicians. Participants exerted a flexion-extension movement. Instantaneous frequency and amplitude values were obtained with empirical mode decomposition and a Hilbert-transform, allowing to compare tremor amplitudes throughout the movement at various frequency ranges. We did not find a significant difference in tremor amplitude between patients and controls for either DT or TAD. Neither differed tremor amplitude in the within-patient comparisons. Both hypotheses were rejected and apparently neither DT nor TAD occur in musician's dystonia of the fingers. This is the first study assessing DT and TAD in musician's dystonia. Our finding suggests that even though MD is an excellent model for malplasticity due to excessive practice, it does not seem to provide a good model for DT. Rather it seems that musician's dystonia may manifest itself either as dystonic cramping without tremor or as task-specific tremor without overt dystonic cramping. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Tremor pattern differentiates drug-induced resting tremor from Parkinson disease.

    PubMed

    Nisticò, R; Fratto, A; Vescio, B; Arabia, G; Sciacca, G; Morelli, M; Labate, A; Salsone, M; Novellino, F; Nicoletti, A; Petralia, A; Gambardella, A; Zappia, M; Quattrone, A

    2016-04-01

    DAT-SPECT, is a well-established procedure for distinguishing drug-induced parkinsonism from Parkinson's disease (PD). We investigated the usefulness of blink reflex recovery cycle (BRrc) and of electromyographic parameters of resting tremor for the differentiation of patients with drug-induced parkinsonism with resting tremor (rDIP) from those with resting tremor due to PD. This was a cross-sectional study. In 16 patients with rDIP and 18 patients with PD we analysed electrophysiological parameters (amplitude, duration, burst and pattern) of resting tremor. BRrc at interstimulus intervals (ISI) of 100, 150, 200, 300, 400, 500 and 750 msec was also analysed in patients with rDIP, patients with PD and healthy controls. All patients and controls underwent DAT-SPECT. Rest tremor amplitude was higher in PD patients than in rDIP patients (p < 0.001), while frequency and burst duration were higher in rDIP than in PD (p < 0.001, p < 0.003, respectively). Resting tremor showed a synchronous pattern in all patients with rDIP, whereas it had an alternating pattern in all PD patients (p < 0.001). DAT-SPECT was normal in rDIP patients while it was markedly abnormal in patients with PD. In the absence of DAT-SPECT, the pattern of resting tremor can be considered a useful investigation for differentiating rDIP from PD. Copyright © 2016. Published by Elsevier Ltd.

  8. Tremor

    MedlinePlus

    ... recommend the use of weights, splints, other adaptive equipment, and special plates and utensils for eating. Speech- ... on tremor also is available from the following organizations: International Essential Tremor Foundation P.O. Box 14005 ...

  9. Deep brain stimulation or thalamotomy in fragile X-associated tremor/ataxia syndrome? Case report.

    PubMed

    Tamás, Gertrúd; Kovács, Norbert; Varga, Noémi Ágnes; Barsi, Péter; Erőss, Loránd; Molnár, Mária Judit; Balás, István

    2016-01-01

    We present the case of a 66-year-old man who has been treated for essential tremor since the age of 58. He developed mild cerebellar gait ataxia seven years after tremor onset. Moderate, global brain atrophy was identified on MRI scans. At the age of 68, only temporary tremor relief could be achieved by bilateral deep brain stimulation of the ventral intermedius nucleus of the thalamus. Bilateral stimulation of the subthalamic nucleus also resulted only in transient improvement. In the meantime, progressive gait ataxia and tetraataxia developed accompanied by other cerebellar symptoms, such as nystagmus and scanning speech. These correlated with progressive development of bilateral symmetric hyperintensity of the middle cerebellar peduncles on T2 weighted MRI scans. Genetic testing revealed premutation of the FMR1 gene, establishing the diagnosis of fragile X-associated tremor/ataxia syndrome. Although this is a rare disorder, it should be taken into consideration during preoperative evaluation of essential tremor. Postural tremor ceased two years later after thalamotomy on the left side, while kinetic tremor of the right hand also improved. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. Wrist sensor-based tremor severity quantification in Parkinson's disease using convolutional neural network.

    PubMed

    Kim, Han Byul; Lee, Woong Woo; Kim, Aryun; Lee, Hong Ji; Park, Hye Young; Jeon, Hyo Seon; Kim, Sang Kyong; Jeon, Beomseok; Park, Kwang S

    2018-04-01

    Tremor is a commonly observed symptom in patients of Parkinson's disease (PD), and accurate measurement of tremor severity is essential in prescribing appropriate treatment to relieve its symptoms. We propose a tremor assessment system based on the use of a convolutional neural network (CNN) to differentiate the severity of symptoms as measured in data collected from a wearable device. Tremor signals were recorded from 92 PD patients using a custom-developed device (SNUMAP) equipped with an accelerometer and gyroscope mounted on a wrist module. Neurologists assessed the tremor symptoms on the Unified Parkinson's Disease Rating Scale (UPDRS) from simultaneously recorded video footages. The measured data were transformed into the frequency domain and used to construct a two-dimensional image for training the network, and the CNN model was trained by convolving tremor signal images with kernels. The proposed CNN architecture was compared to previously studied machine learning algorithms and found to outperform them (accuracy = 0.85, linear weighted kappa = 0.85). More precise monitoring of PD tremor symptoms in daily life could be possible using our proposed method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Median Filtering Methods for Non-volcanic Tremor Detection

    NASA Astrophysics Data System (ADS)

    Damiao, L. G.; Nadeau, R. M.; Dreger, D. S.; Luna, B.; Zhang, H.

    2016-12-01

    Various properties of median filtering over time and space are used to address challenges posed by the Non-volcanic tremor detection problem. As part of a "Big-Data" effort to characterize the spatial and temporal distribution of ambient tremor throughout the Northern San Andreas Fault system, continuous seismic data from multiple seismic networks with contrasting operational characteristics and distributed over a variety of regions are being used. Automated median filtering methods that are flexible enough to work consistently with these data are required. Tremor is characterized by a low-amplitude, long-duration signal-train whose shape is coherent at multiple stations distributed over a large area. There are no consistent phase arrivals or mechanisms in a given tremor's signal and even the durations and shapes among different tremors vary considerably. A myriad of masquerading noise, anthropogenic and natural-event signals must also be discriminated in order to obtain accurate tremor detections. We present here results of the median methods applied to data from four regions of the San Andreas Fault system in northern California (Geysers Geothermal Field, Napa, Bitterwater and Parkfield) to illustrate the ability of the methods to detect tremor under diverse conditions.

  12. Stimulating at the right time: phase-specific deep brain stimulation.

    PubMed

    Cagnan, Hayriye; Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J; Denison, Timothy; Brown, Peter

    2017-01-01

    SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  13. Stimulating at the right time: phase-specific deep brain stimulation

    PubMed Central

    Cagnan, Hayriye; Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J; Denison, Timothy; Brown, Peter

    2017-01-01

    Abstract See Moll and Engel (doi:10.1093/aww308) for a scientific commentary on this article. Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson’s disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient’s tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects. PMID:28007997

  14. Effect on finger tremor of withdrawal of long-term treatment with propranolol or atenolol.

    PubMed Central

    Wharrad, H J; Birmingham, A T; Wilson, C G; Williams, E J; Roland, J M

    1984-01-01

    The effect of the withdrawal of long-term beta-adrenoceptor blockade on pulse rate and finger tremor was studied in 27 patients who had been treated for 2 years following an uncomplicated myocardial infarction with either atenolol, propranolol or placebo. During treatment, pulse rate was significantly lower in patients treated with propranolol or atenolol compared with placebo. Compared with the response in the placebo group the mean increase in tremor on withdrawal of propranolol was statistically significant for postural and for work tremor in both hands. A significant increase in tremor on withdrawal of atenolol occurred only in the postural position and in a narrow frequency band (left hand, 7-11 Hz; right hand, 7-9 Hz). The differences in the effect on tremor of withdrawal of treatment with propranolol or atenolol in doses which produced similar reductions in heart rate, emphasise the beta 2 classification of peripheral receptors associated with normal muscle tremor but do not exclude the involvement of beta 1-adrenoceptors. PMID:6487471

  15. The nature of primary vocal tremor.

    PubMed

    Hachinski, V C; Thomsen, I V; Buch, N H

    1975-08-01

    Three elderly women with marked progressive voice tremor, without other neurological symptoms, and negative family histories were investigated. All had a 4-5 Hz respiratory tremor in expiration and, to a lesser degree, in inspiration; and all had vocal tremulousness synchronous with their respiratory irregularity. Articulation of phonemes was normal. In two cases the neurological examination was otherwise normal; in the third case there was a minimal 71/2 Hz tremor in the left thumb and index finger. Simultaneous speech and vocal air pressure recordings, as well as cinematographic studies of the vocal apparatus and diaphragm were carried out. It is suggested that these cases represent primarily an action tremor of respiration, that they belong in the spectrum of essential tremor, and hence may be amenable to treatment with propranolol.

  16. Development of Tremor Suppression Control System Using Adaptive Filter and Its Application to Meal-assist Robot

    NASA Astrophysics Data System (ADS)

    Yano, Ken'ichi; Ohara, Eiichi; Horihata, Satoshi; Aoki, Takaaki; Nishimoto, Yutaka

    A robot that supports independent living by assisting with eating and other activities which use the operator's own hand would be helpful for people suffering from tremors of the hand or any other body part. The proposed system using adaptive filter estimates tremor frequencies with a time-varying property and individual differences online. In this study, the estimated frequency is used to adjusting the tremor suppression filter which insulates the voluntary motion signal from the sensor signal containing tremor components. These system are integrated into the control system of the Meal-Assist Robot. As a result, the developed system makes it possible for the person with a tremor to manipulate the supporting robot without causing operability to deteriorate and without hazards due to improper operation.

  17. Long-Term Effective Thalamic Deep Brain Stimulation for Neuropathic Tremor in Two Patients with Charcot-Marie-Tooth Disease.

    PubMed

    Cabañes-Martínez, Lidia; Del Álamo de Pedro, Marta; de Blas Beorlegui, Gema; Bailly-Bailliere, Ignacio Regidor

    2017-01-01

    It has been described that many Charcot-Marie-Tooth syndrome type 2 patients are affected by a very disabling type of tremor syndrome, the pathophysiology of which remains unclear. Deep brain stimulation (DBS) has been successfully applied to treat most types of tremors by implanting electrodes in the ventral intermediate nucleus of the thalamus (Vim). We used DBS applied to the Vim in 2 patients with severe axonal inherited polyneuropathies who developed a disabling tremor. Both patients responded positively to stimulation, with a marked reduction of the tremor and with an improvement of their quality of life. We report 2 cases of tremor associated with a hereditary neuropathy with a good response to DBS. © 2017 S. Karger AG, Basel.

  18. Spatio-temporal distribution of energy radiation from low frequency tremor

    NASA Astrophysics Data System (ADS)

    Maeda, T.; Obara, K.

    2007-12-01

    Recent fine-scale hypocenter locations of low frequency tremors (LFTs) estimated by cross-correlation technique (Shelly et al. 2006; Maeda et al. 2006) and new finding of very low frequency earthquake (Ito et al. 2007) suggest that these slow events occur at the plate boundary associated with slow slip events (Obara and Hirose, 2006). However, the number of tremor detected by above technique is limited since continuous tremor waveforms are too complicated. Although an envelope correlation method (ECM) (Obara, 2002) enables us to locate epicenters of LFT without arrival time picks, however, ECM fails to locate LFTs precisely especially on the most active stage of tremor activity because of the low-correlation of envelope amplitude. To reveal total energy release of LFT, here we propose a new method for estimating the location of LFTs together with radiated energy from the tremor source by using envelope amplitude. The tremor amplitude observed at NIED Hi-net stations in western Shikoku simply decays in proportion to the reciprocal of the source-receiver distance after the correction of site- amplification factor even though the phases of the tremor are very complicated. So, we model the observed mean square envelope amplitude by time-dependent energy radiation with geometrical spreading factor. In the model, we do not have origin time of the tremor since we assume that the source of the tremor continuously radiates the energy. Travel-time differences between stations estimated by the ECM technique also incorporated in our locating algorithm together with the amplitude information. Three-component 1-hour Hi-net velocity continuous waveforms with a pass-band of 2-10 Hz are used for the inversion after the correction of site amplification factors at each station estimated by coda normalization method (Takahashi et al. 2005) applied to normal earthquakes in the region. The source location and energy are estimated by applying least square inversion to the 1-min window iteratively. As a first application of our method, we estimated the spatio-temporal distribution of energy radiation for 2006 May episodic tremor and slip event occurred in western Shikoku, Japan, region. Tremor location and their radiated energy are estimated for every 1 minute. We counted the number of located LFTs and summed up their total energy at each grid having 0.05-degree spacing at each day to figure out the spatio-temporal distribution of energy release of tremors. The resultant spatial distribution of radiated energy is concentrated at a specific region. Additionally, we see the daily change of released energy, both of location and amount, which corresponds to the migration of tremor activity. The spatio-temporal distribution of energy radiation of tremors is in good agreement with a spatio-temporal slip distribution of slow slip event estimated from Hi-net tiltmeter record (Hirose et al. 2007). This suggests that small continuous tremors occur associated with a rupture process of slow slip.

  19. Essential tremor.

    PubMed Central

    Murray, T. J.

    1981-01-01

    Essential tremor, including the juvenile and senile variations, may be a result of a disorder of the servomechanism that controls physiologic tremor. Hands and arms are affected most commonly, and the tremor can vary in amplitude as well as frequency. Long-term treatment with propranolol has been helpful for some patients, although older patients are less likely to benefit. Other drugs and behaviour modification therapy have been less successful. Surgical treatment is effective but should probably be reserved for severe cases. An effective instrument for measuring the subjective and objective aspects of the tremor is still needed, as is an effective long-term method of treatment. PMID:7018658

  20. Complex behavior and source model of the tremor at Arenal volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Lesage, Philippe; Mora, Mauricio M.; Alvarado, Guillermo E.; Pacheco, Javier; Métaxian, Jean-Philippe

    2006-09-01

    Typical records of volcanic tremor and explosion quakes at Arenal volcano are analyzed with a high-resolution time-frequency method. The main characteristics of these seismic signals are: (1) numerous regularly spaced spectral peaks including both odd and even overtones; (2) frequency gliding in the range [0.9-2] Hz of the fundamental peak; (3) frequency jumps with either positive or negative increments; (4) tremor episodes with two simultaneous systems of spectral peaks affected by independent frequency gliding; (5) progressive transitions between spasmodic tremor and harmonic tremor; (6) lack of clear and systematic relationship between the occurrence of explosions and tremor. Some examples of alternation between two states of oscillation characterized by different fundamental frequencies are also observed. Some tremor and explosion codas are characterized by acoustic and seismic waves with identical spectral content and frequency gliding, which suggests a common excitation process. We propose a source model for the tremor at Arenal in which intermittent gas flow through fractures produces repetitive pressure pulses. The repeating period of the pulses is stabilized by a feedback mechanism associated with standing or traveling waves in the magmatic conduit. The pressure pulses generate acoustic waves in the atmosphere and act as excitation of the interface waves in the conduit. When the repeating period of the pulses is stable enough, they produce regularly spaced spectral peaks by the Dirac comb effect and hence harmonic tremor. When the period stability is lost, because of failures in the feedback mechanism, the tremor becomes spasmodic. The proposed source model of tremor is similar to the sound emission process of a clarinet. Fractures in the solid or viscous layer capping the lava pool in the crater act as the clarinet reed, and the conduit filled with low velocity bubbly magma is equivalent to the pipe of the musical instrument. The frequency gliding is related to variations of the pressure in the conduit, which modify the gas fraction, the wave velocity and, possibly, the length of the resonator. Moreover, several observations suggest that two seismic sources, associated with two magmatic conduits, are active in Arenal volcano. They could explain in particular the apparent independence of tremor and explosions and the episodes of tremor displaying two simultaneous systems of spectral peaks.

  1. A Kinematic Model of Slow Slip Constrained by Tremor-Derived Slip Histories in Cascadia

    NASA Astrophysics Data System (ADS)

    Schmidt, D. A.; Houston, H.

    2016-12-01

    We explore new ways to constrain the kinematic slip distributions for large slow slip events using constraints from tremor. Our goal is to prescribe one or more slip pulses that propagate across the fault and scale appropriately to satisfy the observations. Recent work (Houston, 2015) inferred a crude representative stress time history at an average point using the tidal stress history, the static stress drop, and the timing of the evolution of tidal sensitivity of tremor over several days of slip. To convert a stress time history into a slip time history, we use simulations to explore the stressing history of a small locked patch due to an approaching rupture front. We assume that the locked patch releases strain through a series of tremor bursts whose activity rate is related to the stressing history. To test whether the functional form of a slip pulse is reasonable, we assume a hypothetical slip time history (Ohnaka pulse) timed with the occurrence of tremor to create a rupture front that propagates along the fault. The duration of the rupture front for a fault patch is constrained by the observed tremor catalog for the 2010 ETS event. The slip amplitude is scaled appropriately to match the observed surface displacements from GPS. Through a forward simulation, we evaluate the ability of the tremor-derived slip history to accurately predict the pattern of surface displacements observed by GPS. We find that the temporal progression of surface displacements are well modeled by a 2-4 day slip pulse, suggesting that some of the longer duration of slip typically found in time-dependent GPS inversions is biased by the temporal smoothing. However, at some locations on the fault, the tremor lingers beyond the passage of the slip pulse. A small percentage (5-10%) of the tremor appears to be activated ahead of the approaching slip pulse, and tremor asperities experience a driving stress on the order of 10 kPa/day. Tremor amplitude, rather than just tremor counts, is needed to better refine the pattern of slip across the fault.

  2. Mapping Yakutat Subduction with Tectonic Tremor

    NASA Astrophysics Data System (ADS)

    Wech, A.

    2015-12-01

    Subduction of the Yakutat microplate (YAK) in south-central Alaska may be responsible for regional high topography, large slip during the 1964 earthquake, and the anomalous gap in arc volcanism, but the exact geodynamics and its relationship with the underlying Pacific Plate (PP) are not fully understood. Refraction data support distinct subducting layers, and both GPS and body wave tomography suggest the YAK extends from the Cook Inlet volcanoes in the west to the Wrangell volcanic field in the east. Earthquakes, however, are limited to normal faulting within the PP with an abrupt eastern boundary 80 km west of the inferred YAK edge, and more recent active source seismic data suggest subduction of one homogenous thickened oceanic plateau. Here, I perform a search for tectonic tremor to investigate the role of tremor and slow slip in the system. I scan continuous waveforms from 2007-2015 using all available data from permanent and campaign seismic stations in south-central Alaska. Using envelope cross-correlation, I detect and locate ~9,000 tectonic tremor epicenters, providing a map of the transition zone downdip of the 1964 earthquake. Tremor epicenters occur downdip of discrete slow slip events, and tremor rates do not correlate temporally with slow slip behavior. Depth resolution is poor, but horizontal locations are well constrained and spatially correlate with the velocity images of the YAK. Likewise, tremor extends 80 km further east than intraslab seismicity. Tremor swarms occur intermittently and manifest as ambient tremor. I interpret tremor to mark slow, semi-continuous slip occurring at the boundary between the YAK and North American plates, whose interface continues beyond the eastern edge of the PP. In this model, the YAK is welded to the underlying PP in the west, but extends past the eastern terminus of the PP. This geometry explains the correlation between tremor and the YAK, the discrepancy between deep seismicity and tremor, and the paucity of thrust events - convergence is accommodated by the YAK-North America interface, while earthquakes mark deformation within the PP. Finally, the model corroborates the eastern edge of the YAK and its role in controlling Wrangell magmatism and the gap in Aleutian arc volcanism.

  3. Tectonic Tremor along the San Jacinto Fault Zone near Anza, California

    NASA Astrophysics Data System (ADS)

    Brown, J. R.

    2013-12-01

    In several tectonic settings where it is observed, low frequency tremor is proven as a useful tool to probe slow fault slip at depth (e.g., southwest Japan, Cascadia, Parkfield). However, tremor is difficult to detect due to its long durations and low amplitudes close to the noise band. This is particularly true in southern California where cultural noise sources are both spatially and temporally pervasive. Visually scanning continuous seismic recordings of the Southern California Seismic Network from 2001-2011 we find three pervasive occurrences of tremor: fall 2001, summer 2005 and summer 2010. In this presentation we focus on our analysis of the summer 2010 tremors on account of the enhanced instrumentation from the EarthScope Plate Boundary Observatory. During summer 2010 we detect ~240 hours of tremor-like signals in vicinity of the San Jacinto fault zone (SJFZ) near Anza. Visual inspection of continuous recordings up to 100 km northeast and southwest of the SJFZ do not record tremor-like signals indicating the source is both weak and local. Tremor is discriminated from other noise sources by calculating their spectral shapes to assure the signals are distinct from local noise sources and earthquakes. Similar to tremor spectra in other settings, the tremor signals in vicinity of the SJFZ are spectrally flat up to 9 Hz. In order to characterize the tremor source, we employ a combination of running autocorrelation and matched-filter techniques to detect and locate low frequency earthquakes (LFE) along the SJFZ one hour at a time. The autocorrelation of the north and vertical components of 14 stations detects over 13500 LFEs. We identify S-wave arrivals using the cross-correlation of 6 s windows for event pairs using the north component. Preliminary analysis of S-waves reveals a localized swarm of LFE epicenters extending 5 to 10 km SE of the Anza Gap with a horizontal error of +/- 4 km. Tremor depths are poorly constrained due to the lack of clear P-wave arrivals. The LFE epicenters reveal a zone of slow slip activity to the SE of the Anza Gap during early summer of 2010.

  4. Cataloging tremor at Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Thelen, W. A.; Wech, A.

    2013-12-01

    Tremor is a ubiquitous seismic feature on Kilauea volcano, which emanates from at least three distinct sources. At depth, intermittent tremor and earthquakes thought to be associated with the underlying plumbing system of Kilauea (Aki and Koyanagi, 1981) occurs approximately 40 km below and 40 km SW of the summit. At the summit of the volcano, nearly continuous tremor is recorded close to a persistently degassing lava lake, which has been present since 2008. Much of this tremor is correlated with spattering at the lake surface, but tremor also occurs in the absence of spattering, and was observed at the summit of the volcano prior to the appearance of the lava lake, predominately in association with inflation/deflation events. The third known source of tremor is in the area of Pu`u `O`o, a vent that has been active since 1983. The exact source location and depth is poorly constrained for each of these sources. Consistently tracking the occurrence and location of tremor in these areas through time will improve our understanding of the plumbing geometry beneath Kilauea volcano and help identify precursory patterns in tremor leading to changes in eruptive activity. The continuous and emergent nature of tremor precludes the use of traditional earthquake techniques for automatic detection and location of seismicity. We implement the method of Wech and Creager (2008) to both detect and localize tremor seismicity in the three regions described above. The technique uses an envelope cross-correlation method in 5-minute windows that maximizes tremor signal coherency among seismic stations. The catalog is currently being built in near-realtime, with plans to extend the analysis to the past as time and continuous data availability permits. This automated detection and localization method has relatively poor depth constraints due to the construction of the envelope function. Nevertheless, the epicenters distinguish activity among the different source regions and serve as starting points for more sophisticated location techniques using cross-correlation and/or amplitude-based locations. The resulting timelines establish a quantitative baseline of behavior for each source to better understand and forecast Kilauea activity.

  5. Frequency-dependent moment release of very low frequency earthquakes in the Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Takeo, A.; Houston, H.

    2014-12-01

    Episodic tremor and slip (ETS) has been observed in Cascadia subduction zone at two different time scales: tremor at a high-frequency range of 2-8 Hz and slow slip events at a geodetic time-scale of days-months. The intermediate time scale is needed to understand the source spectrum of slow earthquakes. Ghosh et al. (2014, IRIS abs) recently reported the presence of very low frequency earthquakes (VLFEs) in Cascadia. In southwest Japan, VLFEs are usually observed at a period range around 20-50 s, and coincide with tremors (e.g., Ito et al. 2007). In this study, we analyzed VLFEs in and around the Olympic Peninsula to confirm their presence and estimate their moment release. We first detected VLFE events by using broadband seismograms with a band-pass filter of 20-50 s. The preliminary result shows that there are at least 16 VLFE events with moment magnitudes of 3.2-3.7 during the M6.8 2010 ETS. The focal mechanisms are consistent with the thrust earthquakes at the subducting plate interface. To detect signals of VLFEs below noise level, we further stacked long-period waveforms at the peak timings of tremor amplitudes for tremors within a 10-15 km radius by using tremor catalogs in 2006-2010, and estimated the focal mechanisms for each tremor source region as done in southwest Japan (Takeo et al. 2010 GRL). As a result, VLFEs could be detected for almost the entire tremor source region at a period range of 20-50 s with average moment magnitudes in each 5-min tremor window of 2.4-2.8. Although the region is limited, we could also detect VLFEs at a period range of 50-100 s with average moment magnitudes of 3.0-3.2. The moment release at 50-100 s is 4-8 times larger than that at 20-50 s, roughly consistent with an omega-squared spectral model. Further study including tremor, slow slip events and characteristic activities, such as rapid tremor reversal and tremor streaks, will reveal the source spectrum of slow earthquakes in a broader time scale from 0.1 s to days.

  6. Exploring a Common Origin for Slow Slip and Tremor in Cascadia

    NASA Astrophysics Data System (ADS)

    Szeliga, W. M.; Melbourne, T. I.; Tahtinen, H.

    2013-12-01

    The close spatial and temporal proximity of many slow faulting phenomena has led to the hypothesis that they are manifestations of a common process. However, the exact nature of this common process is unknown and forms a framework for basic questions about the relationship between episodic tremor and slip. To investigate the possibility of a common origin for tremor and slow slip, we attempt to use one phenomena to describe the other, by using existing catalogs of tremor location and duration to predict geodetically observable surface deformation. Our surface deformation predictions are constructed by assuming that each burst of tremor occurs at the epicenter listed in the catalog, and is assigned a hypocentral depth corresponding to the most current knowledge of the location of the plate interface. Each tremor burst is modeled as a purely dip slip elastic point source dislocation with a moment linearly proportional to duration. The resulting displacement, tilt and strain time series faithfully reproduce observations of the 2010 ETS event along the Cascadia margin, with the exception of observations immediately above the line separating uplift from subsidence. Along this line, which runs N-S through the Straits of Juan de Fuca near Sequim, predicted displacements are uniquely sensitive to the precise location of tremor. We present evidence that, in order to satisfy the surface observations everywhere as well as tremor timing, displacement along the plate interface must occur upwards of 20 km up-dip of catalog tremor locations. At least two interpretations for this requirement are possible: 1. that existing algorithms for tremor epicentral location are systematically biased or 2. that tremor and slip occur simultaneously at different, but nearby, locations on the plate interface. Further, we present evidence that previously estimated coefficients for duration-versus-moment scaling relationships have been overestimated by a factor of 3.

  7. Tremor - self-care

    MedlinePlus

    ... may help you stop drinking. Managing Your Tremor Day-to-day Tremors can worsen over time. They may begin ... do your daily activities. To help in your day-to-day: Buy clothes with Velcro fasteners instead ...

  8. Illicit stimulant use in humans is associated with a long-term increase in tremor.

    PubMed

    Flavel, Stanley C; Koch, Jenna D; White, Jason M; Todd, Gabrielle

    2012-01-01

    Use of illicit stimulants such as methamphetamine, cocaine, and ecstasy is a significant health problem. The United Nations Office on Drugs and Crime estimates that 14-57 million people use stimulants each year. Chronic use of illicit stimulants can cause neurotoxicity in animals and humans but the long-term functional consequences are not well understood. Stimulant users self-report problems with tremor whilst abstinent. Thus, the aim of the current study was to investigate the long-term effect of stimulant use on human tremor during rest and movement. We hypothesized that individuals with a history of stimulant use would exhibit abnormally large tremor during rest and movement. Tremor was assessed in abstinent ecstasy users (n = 9; 22 ± 3 yrs) and abstinent users of amphetamine-like drugs (n = 7; 33 ± 9 yrs) and in two control groups: non-drug users (n = 23; 27 ± 8 yrs) and cannabis users (n = 12; 24 ± 7 yrs). Tremor was measured with an accelerometer attached to the index finger at rest (30 s) and during flexion and extension of the index finger (30 s). Acceleration traces were analyzed with fast-Fourier transform. During movement, tremor amplitude was significantly greater in ecstasy users than in non-drug users (frequency range 3.9-13.3 Hz; P<0.05), but was unaffected in cannabis users or users of amphetamine-like drugs. The peak frequency of tremor did not significantly differ between groups nor did resting tremor. In conclusion, abstinent ecstasy users exhibit an abnormally large tremor during movement. Further work is required to determine if the abnormality translates to increased risk of movement disorders in this population.

  9. Illicit Stimulant Use in Humans Is Associated with a Long-Term Increase in Tremor

    PubMed Central

    Flavel, Stanley C.; Koch, Jenna D.; White, Jason M.; Todd, Gabrielle

    2012-01-01

    Use of illicit stimulants such as methamphetamine, cocaine, and ecstasy is a significant health problem. The United Nations Office on Drugs and Crime estimates that 14–57 million people use stimulants each year. Chronic use of illicit stimulants can cause neurotoxicity in animals and humans but the long-term functional consequences are not well understood. Stimulant users self-report problems with tremor whilst abstinent. Thus, the aim of the current study was to investigate the long-term effect of stimulant use on human tremor during rest and movement. We hypothesized that individuals with a history of stimulant use would exhibit abnormally large tremor during rest and movement. Tremor was assessed in abstinent ecstasy users (n = 9; 22±3 yrs) and abstinent users of amphetamine-like drugs (n = 7; 33±9 yrs) and in two control groups: non-drug users (n = 23; 27±8 yrs) and cannabis users (n = 12; 24±7 yrs). Tremor was measured with an accelerometer attached to the index finger at rest (30 s) and during flexion and extension of the index finger (30 s). Acceleration traces were analyzed with fast-Fourier transform. During movement, tremor amplitude was significantly greater in ecstasy users than in non-drug users (frequency range 3.9–13.3 Hz; P<0.05), but was unaffected in cannabis users or users of amphetamine-like drugs. The peak frequency of tremor did not significantly differ between groups nor did resting tremor. In conclusion, abstinent ecstasy users exhibit an abnormally large tremor during movement. Further work is required to determine if the abnormality translates to increased risk of movement disorders in this population. PMID:23272201

  10. Biomechanical Loading as an Alternative Treatment for Tremor: A Review of Two Approaches

    PubMed Central

    Rocon, Eduardo; Gallego, Juan Álvaro; Belda-Lois, Juan Manuel; Benito-León, Julián; Luis Pons, José

    2012-01-01

    Background Tremor is the most common movement disorder and strongly increases in incidence and prevalence with aging. Although not life threatening, upper-limb tremors hamper the independence of 65% of people suffering from them affected persons, greatly impacting their quality of life. Current treatments include pharmacotherapy and surgery (thalamotomy and deep brain stimulation). However, these options are not sufficient for approximately 25% of patients. Therefore, further research and new therapeutic options are required to effectively manage pathological tremor. Methods This paper presents findings of two research projects in which two different wearable robots for tremor management were developed based on force loading and validated. The first consisted of a robotic exoskeleton that applied forces to tremulous limbs and consistently attenuated mild and severe tremors. The second was a neuroprosthesis based on transcutaneous neurostimulation. A total of 22 patients suffering from parkinsonian or essential tremor (ET) of different severities were recruited for experimental validation, and both systems were evaluated using standard tasks employed for neurological examination. The inclusion criterion was a postural and/or kinetic pathological upper-limb tremor resistant to medication. Results The results demonstrate that both approaches effectively suppressed tremor in most patients, although further research is required. The work presented here is based on clinical evidence from a small number of patients (n = 10 for robotic exoskeleton and n = 12 for the neuroprosthesis), but most had a positive response to the approaches. In summary, biomechanical loading is non-invasive and painless. It may be effective in patients who are insufficiently responsive (or have adverse reactions) to drugs or in whom surgery is contraindicated. Discussion This paper identifies and evaluates biomechanical loading approaches to tremor management and discusses their potential. PMID:23439994

  11. Interarytenoid muscle botox injection for treatment of adductor spasmodic dysphonia with vocal tremor.

    PubMed

    Kendall, Katherine A; Leonard, Rebecca J

    2011-01-01

    Up to one-third of patients presenting with adductor spasmodic dysphonia will have an associated vocal tremor. These patients may not respond fully to treatment using thyroarytenoid (TA) muscle botulinum toxin (Botox) injection. Treatment failures are attributed to the involvement of multiple muscle groups in the tremor. This study evaluates the results of combined interarytenoid (IA) and TA muscle Botox injection in a group of 27 patients with adductor spasmodic dysphonia and vocal tremor and in four patients with severe vocal tremor alone. Patient-satisfaction data were reviewed retrospectively. Pre- and postinjection acoustic data were collected prospectively. Acoustic measures of fundamental frequency and cycle-by-cycle variability in frequency (jitter) and intensity (shimmer) were obtained from 15 patients' sustained vowel productions. Measures were collected after TA muscle injection, alone, and after combined TA and IA (TA+IA) muscle injections. In addition, two experienced voice clinicians blindly assessed tremor severity from recordings made for each patient in the two conditions. Patients were also queried regarding their satisfaction with the results of the injections and whether they desired to continue receiving TA+IA treatment. Significant improvement in all acoustic measures except for % jitter was observed after the TA+IA muscle injections. Listeners identified voice samples after TA+IA muscle injections as demonstrating less tremor in 73% of the paired comparisons. Sixty-seven percent of the patients with spasmodic dysphonia and vocal tremor wished to continue to receive IA muscle injections. Only one patient with severe vocal tremor wished to continue with injections. The addition of an IA muscle Botox injection to the treatment of patients with a combination adductor spasmodic dysphonia and vocal tremor may improve voice outcomes. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  12. Space-Time Variations in Tidal Stress and Cascadia Tremor Amplitude

    NASA Astrophysics Data System (ADS)

    Klaus, A. J.; Creager, K. C.; Sweet, J.; Wech, A.

    2011-12-01

    We present a new analysis of the influence of tidal stresses on the amplitude of non-volcanic tremor in Washington State. Tremor counts (Thomas et al., 2009), tremor amplitude (Rubinstein et al., 2008), and strain (Hawthorne and Rubin, 2010) are modulated by tidal stresses in Cascadia as well as in California. However, tremor amplitudes have not yet been extensively studied in Cascadia. Furthermore, Hawthorne and Rubin's Cascadia-wide tidal stress model (2010) allows us to look at the tremor-tide relationship in more detail than ever before. The ability to look at the tidal modulation of tremor amplitude in space as well as time will increase our understanding of this phenomenon and may provide information about the frictional properties of the plate interface. We focus on the August 2010 episodic tremor and slip (ETS) event recorded by the Array of Arrays, a seismic experiment on the Olympic Peninsula. The instrument response is deconvolved, seismograms band-pass filtered at 1.5-5.5 Hz and envelopes are made in 5-minute windows. An inverse problem compensates for site corrections and source-receiver distances to produce, for any given time, a single amplitude measurement at the source. Source locations are determined using an envelope waveform cross-correlation method. Then, we compare the amplitudes, catalog of tremor locations, and the tidal stress at the desired location and time. Amplitudes during the August 2010 ETS event are clearly modulated by tidal stresses. Viewed in the frequency domain, there are clear peaks in the tremor amplitude spectrum at several tidal periods, most prominently the 12.4 and 24 hour periods. Comparison with Hawthorne and Rubin's tidal stress model shows that higher amplitudes are associated with positive shear stress in the downdip direction and, less strongly, with more compressional normal stress.

  13. Mitochondrial serine protease HTRA2 p.G399S in a kindred with essential tremor and Parkinson disease.

    PubMed

    Unal Gulsuner, Hilal; Gulsuner, Suleyman; Mercan, Fatma Nazli; Onat, Onur Emre; Walsh, Tom; Shahin, Hashem; Lee, Ming K; Dogu, Okan; Kansu, Tulay; Topaloglu, Haluk; Elibol, Bulent; Akbostanci, Cenk; King, Mary-Claire; Ozcelik, Tayfun; Tekinay, Ayse B

    2014-12-23

    Essential tremor is one of the most frequent movement disorders of humans and can be associated with substantial disability. Some but not all persons with essential tremor develop signs of Parkinson disease, and the relationship between the conditions has not been clear. In a six-generation consanguineous Turkish kindred with both essential tremor and Parkinson disease, we carried out whole exome sequencing and pedigree analysis, identifying HTRA2 p.G399S as the allele likely responsible for both conditions. Essential tremor was present in persons either heterozygous or homozygous for this allele. Homozygosity was associated with earlier age at onset of tremor (P < 0.0001), more severe postural tremor (P < 0.0001), and more severe kinetic tremor (P = 0.0019). Homozygotes, but not heterozygotes, developed Parkinson signs in the middle age. Among population controls from the same Anatolian region as the family, frequency of HTRA2 p.G399S was 0.0027, slightly lower than other populations. HTRA2 encodes a mitochondrial serine protease. Loss of function of HtrA2 was previously shown to lead to parkinsonian features in motor neuron degeneration (mnd2) mice. HTRA2 p.G399S was previously shown to lead to mitochondrial dysfunction, altered mitochondrial morphology, and decreased protease activity, but epidemiologic studies of an association between HTRA2 and Parkinson disease yielded conflicting results. Our results suggest that in some families, HTRA2 p.G399S is responsible for hereditary essential tremor and that homozygotes for this allele develop Parkinson disease. This hypothesis has implications for understanding the pathogenesis of essential tremor and its relationship to Parkinson disease.

  14. Botulinum Toxin in Parkinson Disease Tremor: A Randomized, Double-Blind, Placebo-Controlled Study With a Customized Injection Approach.

    PubMed

    Mittal, Shivam Om; Machado, Duarte; Richardson, Diana; Dubey, Divyanshu; Jabbari, Bahman

    2017-09-01

    In essential tremor and Parkinson disease (PD) tremor, administration of onabotulinumtoxinA via a fixed injection approach improves the tremor, but many patients (30%-70%) develop moderate to severe hand weakness, limiting the use of onabotulinumtoxinA in clinical practice. To evaluate the safety and efficacy of incobotulinumtoxinA (IncoA) injection for the treatment of tremor in PD. In this double-blind, placebo-controlled, crossover trial, 30 patients each received 7 to 12 (mean, 9) IncoA injections into hand and forearm muscles using a customized approach. The study was performed from June 1, 2012, through June 30, 2015, and participants were followed for 24 weeks. Treatment efficacy was evaluated by the tremor subsets of the Unified Parkinson's Disease Rating Scale and the Patient Global Impression of Change 4 and 8 weeks after each of the 2 sets of treatments. Hand strength was assessed using an ergometer. There was a statistically significant improvement in clinical rating scores of rest tremor and tremor severity 4 and 8 weeks after the IncoA injection and of action/postural tremor at 8 weeks. There was a significant improvement in patient perception of improvement at 4 and 8 weeks in the IncoA group. There was no statistically significant difference in grip strength at 4 weeks between the 2 groups. Injection of IncoA via a customized approach improved PD tremor on a clinical scale and patient perception, with a low occurrence of significant hand weakness. clinicaltrials.gov Identifier: NCT02419313. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  15. Essential Tremor Is More Than a Tremor

    MedlinePlus

    ... Donate Prev Next IETF > About Essential Tremor > Video Video Click to share on Facebook (Opens in new ... of this life-altering neurological condition. Meet our video volunteers: Recent News Cala Health Receives FDA Clearance ...

  16. Design and validation of a neuroprosthesis for the treatment of upper limb tremor.

    PubMed

    Gallego, J A; Rocon, E; Belda-Lois, J M; Koutsou, A D; Mena, S; Castillo, A; Pons, J L

    2013-01-01

    Pathological tremor is the most prevalent movement disorder. In spite of the existence of various treatments for it, tremor poses a functional problem to a large proportion of patients. This paper presents the design and implementation of a novel neuroprosthesis for tremor management. The paper starts by reviewing a series of design criteria that were established after analyzing users needs and the expected functionality of the system. Then, it summarizes the design of the neuroprosthesis, which was built to meet the criteria defined previously. Experimental results with a representative group of 12 patients show that the neuroprosthesis provided significant (p < 0.001) and systematic tremor attenuation (in average 52.33 ± 25.48 %), and encourage its functional evaluation as a potential new treatment for tremor in a large cohort of patients.

  17. Tremor evidence for dynamically triggered creep events on the deep San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Shelly, D. R.; Hill, D. P.; Aiken, C.

    2010-12-01

    Deep tectonic tremor has been observed along major subduction zones and the San Andreas fault (SAF) in central and southern California. It appears to reflect deep fault slip, and it is often seen to be triggered by small stresses, including passing seismic waves from large regional and teleseismic earthquakes. Here we examine tremor activity along the Parkfield-Cholame section of the SAF from mid-2001 to early 2010, scrutinizing its relationship with regional and teleseismic earthquakes. Based on similarities in the shape and timing of seismic waveforms, we conclude that triggered and ambient tremor share common sources and a common physical mechanism. Utilizing this similarity in waveforms, we detect tremor triggered by numerous large events, including previously unreported triggering from the recent 2009 Mw7.3 Honduras, 2009 Mw8.1 Samoa, and 2010 Mw8.8 Chile earthquakes at teleseismic distances, and the relatively small 2007 Mw5.4 Alum Rock and 2008 Mw5.4 Chino Hills earthquakes at regional distances. We also find multiple examples of systematic migration in triggered tremor, similar to ambient tremor migration episodes observed at other times. Because these episodes propagate much more slowly than the triggering waves, the migration likely reflects a small, triggered creep event. As with ambient tremor bursts, triggered tremor at times persists for multiple days, probably indicating a somewhat larger creep event. This activity provides a clear example of delayed dynamic triggering, with a mechanism perhaps also relevant for triggering of regular earthquakes.

  18. Triggered tremor sweet spots in Alaska

    NASA Astrophysics Data System (ADS)

    Gomberg, Joan; Prejean, Stephanie

    2013-12-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor "sweet spots"—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (< 0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  19. Triggered tremor sweet spots in Alaska

    USGS Publications Warehouse

    Gomberg, Joan; Prejean, Stephanie

    2013-01-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor “sweet spots”—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (<~0.03 Hz), may enhance the probability of triggering tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  20. Wavelet coherence analysis: A new approach to distinguish organic and functional tremor types.

    PubMed

    Kramer, G; Van der Stouwe, A M M; Maurits, N M; Tijssen, M A J; Elting, J W J

    2018-01-01

    To distinguish tremor subtypes using wavelet coherence analysis (WCA). WCA enables to detect variations in coherence and phase difference between two signals over time and might be especially useful in distinguishing functional from organic tremor. In this pilot study, polymyography recordings were studied retrospectively of 26 Parkinsonian (PT), 26 functional (FT), 26 essential (ET), and 20 enhanced physiological (EPT) tremor patients. Per patient one segment of 20 s in duration, in which tremor was present continuously in the same posture, was selected. We studied several coherence and phase related parameters, and analysed all possible muscle combinations of the flexor and extensor muscles of the upper and fore arm. The area under the receiver operating characteristic curve (AUC-ROC) was applied to compare WCA and standard coherence analysis to distinguish tremor subtypes. The percentage of time with significant coherence (PTSC) and the number of periods without significant coherence (NOV) proved the most discriminative parameters. FT could be discriminated from organic (PT, ET, EPT) tremor by high NOV (31.88 vs 21.58, 23.12 and 10.20 respectively) with an AUC-ROC of 0.809, while standard coherence analysis resulted in an AUC-ROC of 0.552. EMG-EMG WCA analysis might provide additional variables to distinguish functional from organic tremor. WCA might prove to be of additional value to discriminate between tremor types. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  1. Fluid Dynamic Analysis of Volcanic Tremor,

    DTIC Science & Technology

    1982-10-01

    information regarding the fluid system Fiske (1969) Kilauea volcano : The 1967-68 summit configuration, tremor magnitudes and source loca- eruption...Koyanagi (1981) Deep volcanic tremor logicalSociety of America, vol. 40, p. 175-194. and magma ascent mechanism under Kilauea , Hawaii . Omori, F...dynamics Seismology Tremors Volcanoes 40 M\\ TlACT (amhue ai revers if5 neeeeiy md ide~Wify by block number) Low-frequency (< 10 Hz) volcanic earthquakes

  2. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip.

    PubMed

    Shelly, David R; Beroza, Gregory C; Ide, Satoshi; Nakamula, Sho

    2006-07-13

    Non-volcanic seismic tremor was discovered in the Nankai trough subduction zone in southwest Japan and subsequently identified in the Cascadia subduction zone. In both locations, tremor is observed to coincide temporally with large, slow slip events on the plate interface downdip of the seismogenic zone. The relationship between tremor and aseismic slip remains uncertain, however, largely owing to difficulty in constraining the source depth of tremor. In southwest Japan, a high quality borehole seismic network allows identification of coherent S-wave (and sometimes P-wave) arrivals within the tremor, whose sources are classified as low-frequency earthquakes. As low-frequency earthquakes comprise at least a portion of tremor, understanding their mechanism is critical to understanding tremor as a whole. Here, we provide strong evidence that these earthquakes occur on the plate interface, coincident with the inferred zone of slow slip. The locations and characteristics of these events suggest that they are generated by shear slip during otherwise aseismic transients, rather than by fluid flow. High pore-fluid pressure in the immediate vicinity, as implied by our estimates of seismic P- and S-wave speeds, may act to promote this transient mode of failure. Low-frequency earthquakes could potentially contribute to seismic hazard forecasting by providing a new means to monitor slow slip at depth.

  3. Deep brain stimulation for the treatment of uncommon tremor syndromes

    PubMed Central

    Ramirez-Zamora, Adolfo; Okun, Michael S.

    2016-01-01

    ABSTRACT Introduction: Deep brain stimulation (DBS) has become a standard therapy for the treatment of select cases of medication refractory essential tremor and Parkinson’s disease however the effectiveness and long-term outcomes of DBS in other uncommon and complex tremor syndromes has not been well established. Traditionally, the ventralis intermedius nucleus (VIM) of the thalamus has been considered the main target for medically intractable tremors; however alternative brain regions and improvements in stereotactic techniques and hardware may soon change the horizon for treatment of complex tremors. Areas covered: In this article, we conducted a PubMed search using different combinations between the terms ‘Uncommon tremors’, ‘Dystonic tremor’, ‘Holmes tremor’ ‘Midbrain tremor’, ‘Rubral tremor’, ‘Cerebellar tremor’, ‘outflow tremor’, ‘Multiple Sclerosis tremor’, ‘Post-traumatic tremor’, ‘Neuropathic tremor’, and ‘Deep Brain Stimulation/DBS’. Additionally, we examined and summarized the current state of evolving interventions for treatment of complex tremor syndromes. Expert c ommentary: Recently reported interventions for rare tremors include stimulation of the posterior subthalamic area, globus pallidus internus, ventralis oralis anterior/posterior thalamic subnuclei, and the use of dual lead stimulation in one or more of these targets. Treatment should be individualized and dictated by tremor phenomenology and associated clinical features. PMID:27228280

  4. Development of method for quantifying essential tremor using a small optical device.

    PubMed

    Chen, Kai-Hsiang; Lin, Po-Chieh; Chen, Yu-Jung; Yang, Bing-Shiang; Lin, Chin-Hsien

    2016-06-15

    Clinical assessment scales are the most common means used by physicians to assess tremor severity. Some scientific tools that may be able to replace these scales to objectively assess the severity, such as accelerometers, digital tablets, electromyography (EMG) measurement devices, and motion capture cameras, are currently available. However, most of the operational modes of these tools are relatively complex or are only able to capture part of the clinical information; furthermore, using these tools is sometimes time consuming. Currently, there is no tool available for automatically quantifying tremor severity in clinical environments. We aimed to develop a rapid, objective, and quantitative system for measuring the severity of finger tremor using a small portable optical device (Leap Motion). A single test took 15s to conduct, and three algorithms were proposed to quantify the severity of finger tremor. The system was tested with four patients diagnosed with essential tremor. The proposed algorithms were able to quantify different characteristics of tremor in clinical environments, and could be used as references for future clinical assessments. A portable, easy-to-use, small-sized, and noncontact device (Leap Motion) was used to clinically detect and record finger movement, and three algorithms were proposed to describe tremor amplitudes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Adaptation of feedforward movement control is abnormal in patients with cervical dystonia and tremor.

    PubMed

    Avanzino, Laura; Ravaschio, Andrea; Lagravinese, Giovanna; Bonassi, Gaia; Abbruzzese, Giovanni; Pelosin, Elisa

    2018-01-01

    It is under debate whether the cerebellum plays a role in dystonia pathophysiology and in the expression of clinical phenotypes. We investigated a typical cerebellar function (anticipatory movement control) in patients with cervical dystonia (CD) with and without tremor. Twenty patients with CD, with and without tremor, and 17 healthy controls were required to catch balls of different load: 15 trials with a light ball, 25 trials with a heavy ball (adaptation) and 15 trials with a light ball (post-adaptation). Arm movements were recorded using a motion capture system. We evaluated: (i) the anticipatory adjustment (just before the impact); (ii) the extent and rate of the adaptation (at the impact) and (iii) the aftereffect in the post-adaptation phase. The anticipatory adjustment was reduced during adaptation in CD patients with tremor respect to CD patients without tremor and controls. The extent and rate of adaptation and the aftereffect in the post-adaptation phase were smaller in CD with tremor than in controls and CD without tremor. Patients with cervical dystonia and tremor display an abnormal predictive movement control. Our findings point to a possible role of cerebellum in the expression of a clinical phenotype in dystonia. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  6. Atypical Porcine Pestivirus: A Possible Cause of Congenital Tremor Type A-II in Newborn Piglets.

    PubMed

    de Groof, Ad; Deijs, Martin; Guelen, Lars; van Grinsven, Lotte; van Os-Galdos, Laura; Vogels, Wannes; Derks, Carmen; Cruijsen, Toine; Geurts, Victor; Vrijenhoek, Mieke; Suijskens, Janneke; van Doorn, Peter; van Leengoed, Leo; Schrier, Carla; van der Hoek, Lia

    2016-10-04

    Congenital tremor type A-II in piglets has been regarded as a transmissible disease since the 1970s, possibly caused by a very recently-described virus: atypical porcine pestivirus (APPV). Here, we describe several strains of APPV in piglets with clinical signs of congenital tremor (10 of 10 farms tested). Piglets on a farm with no history of congenital tremor were PCR-negative for the virus. To demonstrate a causal relationship between APPV and disease, three gilts were inoculated via intramuscular injection at day 32 of pregnancy. In two of the three litters, vertical transmission of the virus occurred. Clinical signs of congenital tremor were observed in APPV-infected newborns, yet also two asymptomatic carriers were among the offspring. Piglets of one litter were PCR-negative for the virus, and these piglets were all without congenital tremors. Long-term follow up of farm piglets born with congenital tremors showed that the initially high viremia in serum declines at five months of age, but shedding of the virus in feces continues, which explains why the virus remains present at affected farms and causes new outbreaks. We conclude that trans-placental transmission of APPV and subsequent infection of the fetuses is a very likely cause of congenital tremor type A-II in piglets.

  7. Cortical tremor: a variant of cortical reflex myoclonus.

    PubMed

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  8. Cross-spectral analysis of physiological tremor and muscle activity. I. Theory and application to unsynchronized electromyogram.

    PubMed

    Timmer, J; Lauk, M; Pfleger, W; Deuschl, G

    1998-05-01

    We investigate the relationship between the extensor electromyogram (EMG) and tremor times series in physiological hand tremor by cross-spectral analysis. Special attention is directed to the phase spectrum and the effects of observational noise. We calculate the theoretical phase spectrum for a second-order linear stochastic process and compare the results to measured tremor data recorded from subjects who did not show a synchronized EMG activity in the corresponding extensor muscle. The results show that physiological tremor is well described by the proposed model and that the measured EMG represents a Newtonian force by which the muscle acts on the hand.

  9. Long-term detection of Parkinsonian tremor activity from subthalamic nucleus local field potentials.

    PubMed

    Houston, Brady; Blumenfeld, Zack; Quinn, Emma; Bronte-Stewart, Helen; Chizeck, Howard

    2015-01-01

    Current deep brain stimulation paradigms deliver continuous stimulation to deep brain structures to ameliorate the symptoms of Parkinson's disease. This continuous stimulation has undesirable side effects and decreases the lifespan of the unit's battery, necessitating earlier replacement. A closed-loop deep brain stimulator that uses brain signals to determine when to deliver stimulation based on the occurrence of symptoms could potentially address these drawbacks of current technology. Attempts to detect Parkinsonian tremor using brain signals recorded during the implantation procedure have been successful. However, the ability of these methods to accurately detect tremor over extended periods of time is unknown. Here we use local field potentials recorded during a deep brain stimulation clinical follow-up visit 1 month after initial programming to build a tremor detection algorithm and use this algorithm to detect tremor in subsequent visits up to 8 months later. Using this method, we detected the occurrence of tremor with accuracies between 68-93%. These results demonstrate the potential of tremor detection methods for efficacious closed-loop deep brain stimulation over extended periods of time.

  10. Maximal force and tremor changes across the menstrual cycle.

    PubMed

    Tenan, Matthew S; Hackney, Anthony C; Griffin, Lisa

    2016-01-01

    Sex hormones have profound effects on the nervous system in vitro and in vivo. The present study examines the effect of the menstrual cycle on maximal isometric force (MVC) and tremor during an endurance task. Nine eumenorrheic females participated in five study visits across their menstrual cycle. In each menstrual phase, an MVC and an endurance task to failure were performed. Tremor across the endurance task was quantified as the coefficient of variation in force and was assessed in absolute time and relative percent time to task failure. MVC decreases 23% from ovulation to the mid luteal phase of the menstrual cycle. In absolute time, the mid luteal phase has the highest initial tremor, though the early follicular phase has substantially higher tremor than other phases after 150 s of task performance. In relative time, the mid luteal phase has the highest level of tremor throughout the endurance task. Both MVC and tremor during an endurance task are modified by the menstrual cycle. Performance of tasks and sports which require high force and steadiness to exhaustion may be decreased in the mid luteal phase compared to other menstrual phases.

  11. Tremor in the tension developed isometrically by soleus during the tonic vibration reflex in the decerebrate cat.

    PubMed Central

    Cussons, P D; Matthews, P B; Muir, R B

    1979-01-01

    1. Irregularities in the development of tension during the tonic vibration reflex of the soleus muscle of the decerebrate cat have been analysed into their frequency components. The reflex was recorded isometrically and elicited by longitudinal vibration, normally at 150 Hz. The amplitude of vibration was set so as to elicit a maximal reflex response, suggesting 1:1 driving of the majority of the Ia afferents at the frequency of vibration. 2. The resulting power spectrum regularly showed a well marked tremor peak separated by a trough from any slow irregularities. The predominant frequency of this tremor varied from 4 to 11 Hz in different preparations, with a mean of 7.4 Hz; on average, frequencies within 1.7 Hz on either side contained over half the power of the predominant frequency. Altering the frequency of vibration did not alter the distribution of tremor frequencies. 3. The root mean square value of the tension irregularities, over the range 4-14 Hz, varied from 12 to 110 mN in different preparations (median value, 23 mN); this was superimposed on mean active reflex tensions varying from 2 to 10 N. 4. The 'tremor' due to a single motor unit was estimated from spectral analysis of tetanic contractions of the whole muscle and decreased with increasing frequency of activation. Comparison of the single unit values with the tremor seen during vibration in the same preparations showed that equivalent amounts of tremor to the latter could typically have been produced by the continued synchronous contraction of about five 'average' motor units firing at the predominant tremor frequency. 5. When a tonic stretch reflex was present its tremor frequencies did not differ consistently from those of the tonic vibration reflex. On average, the tremor was smaller for the stretch reflex than for the tonic vibration reflex; the difference was usually slight and might have been related to the stretch refex tension being smaller. 6. Evidence was obtained that the tremor was not due to any insecurity of 1:1 driving of the Ia afferents by the vibration. First, the tremor did not increase when the amplitude of vibration was decreased sufficiently to ensure that the degree of 1:1 driving must have been reduced. Secondly, the introduction of a comparable 'artificial tremor' by sinusoidally oscillating the muscle at low frequency did not produce the e.m.g. response that would have been expected if the applied 'tremor' had been modulating the firing of the Ia or any other group of afferents. 7. It is concluded that the observed tremor cannot be attributed to 'oscillation in the stretch reflex arc', though without prejudice to the role of this mechanism under other conditions and especially when the recording is not isometric. However, the genesis of the tremor has not been established and much of it might result simply from the chance synchronization of motor units that are firing below their tetanic fusion frequency. PMID:158643

  12. Tremor, the curious third wheel of fault motion (Invited)

    NASA Astrophysics Data System (ADS)

    Vidale, J. E.

    2009-12-01

    The known universe of tectonic fault behavior has gained a new neighborhood in the last few years. Before, faults were considered to either conform to the reasonably well-understood earthquake cycle or else slide steadily. In the earthquake cycle, a fault stays locked for the years while stress is accumulating, then cracks and slides, releasing about 0.1-10 MPa of the stress on the fault. The crack spreads across the fault at roughly the shear wave velocity, kilometers per second. Sliding across the crack occurs at rates on the order of a meter per second. Deeper than the locked portion, faults were assumed to move stealthily and steadily. Disrupting this orderly bipartite universe has been tremor - a prolonged, noise-like, 1-10 Hz rumbling that has been spotted below the locked portion of a variety of faults. In subduction zones, often tremor is coincident with slow and low-stress-drop slip that takes many orders of magnitude longer to complete than garden-variety earthquakes, with the rupture progression estimated in km per day rather than per second. The so-called episodic tremor and slip (ETS) is seen to strike at much more regular intervals than old-fashioned quakes. Speculation and disjoint observations abound. Probably the observations represent just the most easily observed portions of a process that moves with power at all frequencies. The spectrum of tremor radiation is less “red” than that of earthquakes for periods shorter than their duration. Near-lithostatic pore pressure may play an important role in lubricating ETS activity. ETS activity appears generally restricted to only some major faults. Strong passing surface waves from distant great earthquakes trigger pulsations of tremor. Strong nearby earthquakes can cause weeks of stronger than normal tremor. The ebb and flow of diurnal tides cause a rise and fall in tremor amplitude. Tremor can contain earthquake-like short bursts of energy, even dozens of discrete pops, all with the less red spectra that marks tremor. The tremor moments in the Cascadia population follow the frequency scaling laid down by this lecture's namesake, the Gutenberg-Richter distribution, just like normal earthquakes. More practically, tremor is loading dangerous faults, such as near Seattle and Los Angeles, at unsteady rates, perhaps allowing estimations of variable levels of danger. Tremor probably silhouettes where the fault is locked, with alarming implications in some places. We can hope that tremor evolves through the earthquake cycle of the locked zone above in a way revealing the approach of feared events. It is a rare phenomenon that attracts so much inquiry, yet remains so obscure. No doubt, by AGU time, our seismic flashlights will have illuminated a few more juicy tidbits, and with luck bring us closer to the secret of tremor, which still lingers in an unlit corner.

  13. Data Mining for Tectonic Tremor in a Large Global Seismogram Database using Preprocessed Data Quality Measurements

    NASA Astrophysics Data System (ADS)

    Rasor, B. A.; Brudzinski, M. R.

    2013-12-01

    The collision of plates at subduction zones yields the potential for disastrous earthquakes, yet the processes that lead up to these events are still largely unclear and make them difficult to forecast. Recent advancements in seismic monitoring has revealed subtle ground vibrations termed tectonic tremor that occur as long-lived swarms of narrow bandwidth activity, different from local earthquakes of comparable amplitude that create brief signals of broader, higher frequency. The close proximity of detected tremor events to the lower edge of the seismogenic zone along the subduction interface suggests a potential triggering relationship between tremor and megathrust earthquakes. Most tremor catalogs are constructed with detection methods that involve an exhausting download of years of high sample rate seismic data, as well as large computation power to process the large data volume and identify temporal patterns of tremor activity. We have developed a tremor detection method that employs the underutilized Quality Analysis Control Kit (QuACK), originally built to analyze station performance and identify instrument problems across the many seismic networks that contribute data to one of the largest seismogram databases in the world (IRIS DMC). The QuACK dataset stores seismogram amplitudes at a wide range of frequencies calculated every hour since 2005 for most stations achieved in the IRIS DMC. Such a preprocessed dataset is advantageous considering several tremor detection techniques use hourly seismic amplitudes in the frequency band where tremor is most active (2-5 Hz) to characterize the time history of tremor. Yet these previous detection techniques have relied on downloading years of 40-100 sample-per-second data to make the calculations, which typically takes several days on a 36-node high-performance cluster to calculate the amplitude variations for a single station. Processing times are even longer for a recently developed detection algorithm that utilize the ratio of amplitudes between tremor frequencies and those of local earthquakes (10-15 Hz) and surface waves (0.02-0.1 Hz). Using the QuACK dataset, we can make the more advanced calculations in a fraction of the time. This method works well to quickly detect tremor in the Cascadia region by finding similar times of increased tremor activity when comparing across a variety of stations within a 100km radius of a reference station. We confirm the legitimacy of this method by demonstrating comparable results to several previously developed tremor detection techniques despite a much shorter processing time. The rapid processing time has allowed us to refine the detection algorithm by seeking more optimal frequency bands by comparing results from our technique and others, using several stations across the Cascadia subduction zone. As we move forward, we will apply the method to other subduction zones, and ultimately to the vast set of seismic data stored at the IRIS DMC for which tremor has not been previously investigated.

  14. Genetics Home Reference: Pelizaeus-Merzbacher-like disease type 1

    MedlinePlus

    ... scale (dysmetria), tremors that occur mainly during movement (intention tremors), and head and neck tremors (titubation). People ... Available from http://www.ncbi.nlm.nih.gov/books/NBK470716/ Citation on PubMed Orthmann-Murphy JL, Freidin ...

  15. Integration of Osteopathic Manual Treatments in Management of Cervical Dystonia with Tremor: A Case Series

    PubMed Central

    Halimi, Miriam; Leder, Adena; Mancini, Jayme D.

    2017-01-01

    Background Cervical dystonia, also known as spasmodic torticollis, is a chronic disorder in which patients exhibit involuntary repetitive contractions of neck muscles resulting in abnormal postures or movements. Occasionally, there is also a dystonic head tremor. The underlying mechanisms for cervical dystonia and dystonic tremor are not clear, and treatments are limited. Case Report In the present cases, two females with head tremor starting in adolescence developed worsening symptoms of cervical dystonia with dystonic tremor in their 60s. On osteopathic physical examination, both had a vertical type strain to the sphenobasilar synchondrosis. Discussion Vertical strains are more frequently found in patients after head trauma, congenital or later in life, than in healthy patients, and head trauma may have been a precipitating factor in these patients. There were improvements in cervical dystonia symptoms, including tremor, in both patients after osteopathic manual treatment. PMID:28119789

  16. Ambient tremors in a collisional orogenic belt

    USGS Publications Warehouse

    Chuang, Lindsay Yuling; Chen, Kate Huihsuan; Wech, Aaron G.; Byrne, Timothy; Peng, Wei

    2014-01-01

    Deep-seated tectonic tremors have been regarded as an observation tied to interconnected fluids at depth, which have been well documented in worldwide subduction zones and transform faults but not in a collisional mountain belt. In this study we explore the general features of collisional tremors in Taiwan and discuss the possible generation mechanism. In the 4 year data, we find 231 ambient tremor episodes with durations ranging from 5 to 30 min. In addition to a coseismic slip-induced stress change from nearby major earthquake, increased tremor rate is also highly correlated with the active, normal faulting earthquake swarms at the shallower depth. Both the tremor and earthquake swarm activities are confined in a small, area where the high attenuation, high thermal anomaly, the boundary between high and low resistivity, and localized veins on the surfaces distributed, suggesting the involvement of fluids from metamorphic dehydration within the orogen.

  17. [Idiopathic rabbit syndrome: a case report].

    PubMed

    Miwa, H; Sasaki, Y; Hatori, K; Tanaka, S; Mizuno, Y

    1999-10-01

    We report a patient with idiopathic oromandibular tremor resembling rabbit syndrome. The patient is a 36-year-old Japanese woman without any past and medical histories. On neurological examination, there was no abnormal finding except the oromandibular tremor. The tremor was confined to the jaw and perioral muscles. There was no extremity tremor. Laboratory findings were all normal, as well as her MRI and EEG. Surface EMG studies revealed that regular grouped discharges at a frequency of about 6 Hz appeared in the masseter, the orbicularis oris, and the digastric, and that the alternative contractions were found between the masseter and the digastric. Oral administration of tiapride was effective, but diazepam, trihexyphenydil, levodopa, and a beta-blocker were without effect. Although she had not taken neuroleptics, the appearance of the tremor was identical to the rabbit syndrome. The efficacy of the dopamine blockade may suggest that an abnormal basal ganglia function contributes to the pathophysiologic mechanism underlying this type of tremor.

  18. Afterslip, tremor, and the Denali fault earthquake

    USGS Publications Warehouse

    Gomberg, Joan; Prejean, Stephanie; Ruppert, Natalia

    2012-01-01

    We tested the hypothesis that afterslip should be accompanied by tremor using observations of seismic and aseismic deformation surrounding the 2002 M 7.9 Denali fault, Alaska, earthquake (DFE). Afterslip happens more frequently than spontaneous slow slip and has been observed in a wider range of tectonic environments, and thus the existence or absence of tremor accompanying afterslip may provide new clues about tremor generation. We also searched for precursory tremor, as a proxy for posited accelerating slip leading to rupture. Our search yielded no tremor during the five days prior to the DFE or in several intervals in the three months after. This negative result and an array of other observations all may be explained by rupture penetrating below the presumed locked zone into the frictional transition zone. While not unique, such an explanation corroborates previous models of megathrust and transform earthquake ruptures that extend well into the transition zone.

  19. Backprojection of volcanic tremor

    USGS Publications Warehouse

    Haney, Matthew M.

    2014-01-01

    Backprojection has become a powerful tool for imaging the rupture process of global earthquakes. We demonstrate the ability of backprojection to illuminate and track volcanic sources as well. We apply the method to the seismic network from Okmok Volcano, Alaska, at the time of an escalation in tremor during the 2008 eruption. Although we are able to focus the wavefield close to the location of the active cone, the network array response lacks sufficient resolution to reveal kilometer-scale changes in tremor location. By deconvolving the response in successive backprojection images, we enhance resolution and find that the tremor source moved toward an intracaldera lake prior to its escalation. The increased tremor therefore resulted from magma-water interaction, in agreement with the overall phreatomagmatic character of the eruption. Imaging of eruption tremor shows that time reversal methods, such as backprojection, can provide new insights into the temporal evolution of volcanic sources.

  20. Reversible Holmes' tremor due to spontaneous intracranial hypotension.

    PubMed

    Iyer, Rajesh Shankar; Wattamwar, Pandurang; Thomas, Bejoy

    2017-07-27

    Holmes' tremor is a low-frequency hand tremor and has varying amplitude at different phases of motion. It is usually unilateral and does not respond satisfactorily to drugs and thus considered irreversible. Structural lesions in the thalamus and brainstem or cerebellum are usually responsible for Holmes' tremor. We present a 23-year-old woman who presented with unilateral Holmes' tremor. She also had hypersomnolence and headache in the sitting posture. Her brain imaging showed brain sagging and deep brain swelling due to spontaneous intracranial hypotension (SIH). She was managed conservatively and had a total clinical and radiological recovery. The brain sagging with the consequent distortion of the midbrain and diencephalon was responsible for this clinical presentation. SIH may be considered as one of the reversible causes of Holmes' tremor. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Ground-motion prediction from tremor

    USGS Publications Warehouse

    Baltay, Annemarie S.; Beroza, Gregory C.

    2013-01-01

    The widespread occurrence of tremor, coupled with its frequency content and location, provides an exceptional opportunity to test and improve strong ground-motion attenuation relations for subduction zones. We characterize the amplitude of thousands of individual 5 min tremor events in Cascadia during three episodic tremor and slip events to constrain the distance decay of peak ground acceleration (PGA) and peak ground velocity (PGV). We determine the anelastic attenuation parameter for ground-motion prediction equations (GMPEs) to a distance of 150 km, which is sufficient to place important constraints on ground-motion decay. Tremor PGA and PGV show a distance decay that is similar to subduction-zone-specific GMPEs developed from both data and simulations; however, the massive amount of data present in the tremor observations should allow us to refine distance-amplitude attenuation relationships for use in hazard maps, and to search for regional variations and intrasubduction zone differences in ground-motion attenuation.

  2. Feasibility study of spectral pattern recognition reveals distinct classes of volcanic tremor

    NASA Astrophysics Data System (ADS)

    Unglert, K.; Jellinek, A. M.

    2017-04-01

    Systematic investigations of the similarities and differences among volcanic tremor at a range of volcano types may hold crucial information about the plausibility of inferred source mechanisms, which, in turn, may be important for eruption forecasting. However, such studies are rare, in part because of an intrinsic difficulty with identifying tremor signals within very long time series of volcano seismic data. Accordingly, we develop an efficient tremor detection algorithm and identify over 12,000h of volcanic tremor on 24 stations at Kīlauea, Okmok, Pavlof, and Redoubt volcanoes. We estimate spectral content over 5-minute tremor windows, and apply a novel combination of Principal Component Analysis (PCA) and hierarchical clustering to identify patterns in the tremor spectra. Analyzing several stations from a given volcano together reveals different styles of tremor within individual volcanic settings. In addition to identifying tremor properties common to all stations in a given network, we find localized tremor signals including those related to processes such as lahars or dike intrusions that are only observed on some of the stations within a network. Subsequent application of our analysis to a combination of stations from the different volcanoes reveals that at least three main tremor classes can be detected across all settings. Whereas a regime with a ridge of high power distributed over 1-2Hz and a gradual decay of spectral power towards higher frequencies is observed dominantly at three volcanoes (Kīlauea, Okmok, Redoubt) with magma reservoirs centered at less than 5km below sea level (b.s.l.), a spectrum with a steeper slope and a narrower peak at 1-2Hz is observed only in association with open vents (Kīlauea and Pavlof). A third regime with a peak at approximately 3Hz is confined to two stratovolcanoes (Pavlof and Redoubt). These observations suggest generic relationships between the spectral character of the observed signals and volcano characteristics such as magma viscosity, storage depths, and the physical properties of volcanic edifices. Similarities among the spectral patterns detected at stations 4km and 8-10km distance from the centers of volcanic activity, respectively, indicate that path effects do not strongly influence spectral shapes at distances of a few kilometers from the inferred source of the signals. Our preliminary work shows that a global comparison of tremor is feasible. Our results suggest that further work on data from a larger sample and diverse range of volcano types will reveal additional classes of tremor signals and plausibly identify fingerprints of source processes that are specific to volcano type, but independent of volcano location.

  3. Seismic tremors and magma wagging during explosive volcanism.

    PubMed

    Jellinek, A Mark; Bercovici, David

    2011-02-24

    Volcanic tremor is a ubiquitous feature of explosive eruptions. This oscillation persists for minutes to weeks and is characterized by a remarkably narrow band of frequencies from about 0.5 Hz to 7 Hz (refs 1-4). Before major eruptions, tremor can occur in concert with increased gas flux and related ground deformation. Volcanic tremor is thus of particular value for eruption forecasting. Most models for volcanic tremor rely on specific properties of the geometry, structure and constitution of volcanic conduits as well as the gas content of the erupting magma. Because neither the initial structure nor the evolution of the magma-conduit system will be the same from one volcano to the next, it is surprising that tremor characteristics are so consistent among different volcanoes. Indeed, this universality of tremor properties remains a major enigma. Here we employ the contemporary view that silicic magma rises in the conduit as a columnar plug surrounded by a highly vesicular annulus of sheared bubbles. We demonstrate that, for most geologically relevant conditions, the magma column will oscillate or 'wag' against the restoring 'gas-spring' force of the annulus at observed tremor frequencies. In contrast to previous models, the magma-wagging oscillation is relatively insensitive to the conduit structure and geometry, which explains the narrow band of tremor frequencies observed around the world. Moreover, the model predicts that as an eruption proceeds there will be an upward drift in both the maximum frequency and the total signal frequency bandwidth, the nature of which depends on the explosivity of the eruption, as is often observed.

  4. Nonvolcanic Deep Tremors in the Transform Plate Bounding San Andreas Fault Zone

    NASA Astrophysics Data System (ADS)

    Nadeau, R. M.; Dolenc, D.

    2004-12-01

    Recently, deep ( ˜ 20 to 40 km) nonvolcanic tremor activity has been observed on convergent plate boundaries in Japan and in the Cascadia region of North America (Obara, 2002; Rodgers and Dragert, 2003; Szeliga et al., 2004). Because of the abundance of available fluids from subduction processes in these convergent zones, fluids are believed to play an important role in the generation of the tremor activity. The transient rates of tremor activity in these regions are also observed to correlate either with the occurrence of larger earthquakes (Obara, 2002) or with geodetically determined transient creep events that release large amounts of strain energy deep beneath the locked Cascadia megathrust (M.M. Miller et al., 2002; Rodgers and Dragert, 2003; Szeliga et al., 2004). These associations suggest that nonvolcanic tremor activity may participate in a fundamental mode of deep moment release and in the triggering of large subduction zone events (Rodgers and Dragert, 2003). We report the discovery of deep ( ˜ 20 to 45 km) nonvolcanic tremor activity on the transform plate bounding San Andreas Fault (SAF) in central California where, in contrast to subduction zones, long-term deformation directions are horizontal and fluid availability from subduction zone processes is absent. The source region of the SAF tremors lies beneath the epicentral region of the great 1857 magnitude (M) ˜ 8, Fort Tejon earthquake whose rupture zone is currently locked (Sieh, 1978). Activity rate transients of the tremors occurring since early 2001 also correlate with seismicity rate variations above the tremor source region.

  5. Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression.

    PubMed

    Coenen, Volker A; Mädler, Burkhard; Schiffbauer, Hagen; Urbach, Horst; Allert, Niels

    2011-04-01

    Deep brain stimulation (DBS) has been proven to alleviate tremor of various origins. Distinct regions have been targeted. One explanation for good clinical tremor control might be the involvement of the dentatorubrothalamic tract (DRT) as has been suggested in superficial (thalamic) and inferior (posterior subthalamic) target regions. Beyond a correlation with atlas data and the postmortem evaluation of patients treated with lesion surgery, proof for the involvement of DRT in tremor reduction in the living, the scope of this work, is elusive. To report a case of unilateral refractory tremor in tremor-dominant Parkinson disease treated with thalamic DBS. Preoperative diffusion tensor imaging (DTI) was performed. Correlation with individual DBS electrode contact locations was obtained through postoperative fusion of helical computed tomography (CT) data with DTI fiber tracking. Tremor was alleviated effectively. An evaluation of the active electrode contact position revealed clear involvement of the DRT in tremor control. A closer evaluation of clinical effects and side effects revealed a highly detailed individual fiber map of the subthalamic region with DTI fiber tracking. This is the first time the involvement of the DRT in tremor reduction through DBS has been shown in the living. The combination of DTI with postoperative CT and the evaluation of the electrophysiological environment of distinct electrode contacts led to an individual detailed fiber map and might be extrapolated to refined DTI-based targeting strategies in the future. Data acquisition for a larger study group is the topic of our ongoing research.

  6. Emotion modulation of the startle reflex in essential tremor: Blunted reactivity to unpleasant and pleasant pictures.

    PubMed

    Lafo, Jacob A; Mikos, Ania; Mangal, Paul C; Scott, Bonnie M; Trifilio, Erin; Okun, Michael S; Bowers, Dawn

    2017-01-01

    Essential tremor is a highly prevalent movement disorder characterized by kinetic tremor and mild cognitive-executive changes. These features are commonly attributed to abnormal cerebellar changes, resulting in disruption of cerebellar-thalamo-cortical networks. Less attention has been paid to alterations in basic emotion processing in essential tremor, despite known cerebellar-limbic interconnectivity. In the current study, we tested the hypothesis that a psychophysiologic index of emotional reactivity, the emotion modulated startle reflex, would be muted in individuals with essential tremor relative to controls. Participants included 19 essential tremor patients and 18 controls, who viewed standard sets of unpleasant, pleasant, and neutral pictures for six seconds each. During picture viewing, white noise bursts were binaurally presented to elicit startle eyeblinks measured over the orbicularis oculi. Consistent with past literature, controls' startle eyeblink responses were modulated according to picture valence (unpleasant > neutral > pleasant). In essential tremor participants, startle eyeblinks were not modulated by emotion. This modulation failure was not due to medication effects, nor was it due to abnormal appraisal of emotional picture content. Neuroanatomically, it remains unclear whether diminished startle modulation in essential tremor is secondary to aberrant cerebellar input to the amygdala, which is involved in priming the startle response in emotional contexts, or due to more direct disruption between the cerebellum and brainstem startle circuitry. If the former is correct, these findings may be the first to reveal dysregulation of emotional networks in essential tremor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Development of a system for measurement and analysis of tremor using a three-axis accelerometer.

    PubMed

    Mamorita, N; Iizuka, T; Takeuchi, A; Shirataka, M; Ikeda, N

    2009-01-01

    The aim of the study was to develop a low-cost and compact system for analysis of tremor using a three-axis accelerometer (the Wii Remote (Nintendo)). To analyze tremor, we hypothesized that the influence of gravitational acceleration should be separated from that of movement. This hypothesis was tested experimentally and we also attempted to record and analyze tremor using our system in a clinical ward. A system for tremor measurement and analysis was developed using the three-axis accelerometer built into the Wii Remote. The frequency and amplitude of mechanical oscillation were calculated using methods for frequency analysis of the axis of largest variance and an estimation of tremor amplitude. The system consists of a program for measurement and analysis of Wii Remote acceleration (Tremor Analyzer), a Wii Remote, a Bluetooth USB adapter and a Web camera. The Tremor Analyzer has a GUI (graphical user interface) that is divided into five seg- ments. The sampling period of the analyzer is 30 msec. To confirm the hypothesis, mechanical oscillations were fed to the Wii Remote. The peak frequency of the power spectrum and the frequency of the oscillation generator were in good agreement, except at 1 Hz (0.01 G) and 2 Hz (0.02 G). With a change in the sum of squares of the three axes from 1.0 to 1.8 (G), the estimated and generated amplitude (0.3 cm) were in close agreement. This system using a Wii Remote is capable of analyzing frequency and estimated amplitude of tremor between 3 Hz and 15 Hz.

  8. Network-Based Detection and Classification of Seismovolcanic Tremors: Example From the Klyuchevskoy Volcanic Group in Kamchatka

    NASA Astrophysics Data System (ADS)

    Soubestre, Jean; Shapiro, Nikolai M.; Seydoux, Léonard; de Rosny, Julien; Droznin, Dmitry V.; Droznina, Svetlana Ya.; Senyukov, Sergey L.; Gordeev, Evgeniy I.

    2018-01-01

    We develop a network-based method for detecting and classifying seismovolcanic tremors. The proposed approach exploits the coherence of tremor signals across the network that is estimated from the array covariance matrix. The method is applied to four and a half years of continuous seismic data recorded by 19 permanent seismic stations in the vicinity of the Klyuchevskoy volcanic group in Kamchatka (Russia), where five volcanoes were erupting during the considered time period. We compute and analyze daily covariance matrices together with their eigenvalues and eigenvectors. As a first step, most coherent signals corresponding to dominating tremor sources are detected based on the width of the covariance matrix eigenvalues distribution. Thus, volcanic tremors of the two volcanoes known as most active during the considered period, Klyuchevskoy and Tolbachik, are efficiently detected. As a next step, we consider the daily array covariance matrix's first eigenvector. Our main hypothesis is that these eigenvectors represent the principal components of the daily seismic wavefield and, for days with tremor activity, characterize dominant tremor sources. Those daily first eigenvectors, which can be used as network-based fingerprints of tremor sources, are then grouped into clusters using correlation coefficient as a measure of the vector similarity. As a result, we identify seven clusters associated with different periods of activity of four volcanoes: Tolbachik, Klyuchevskoy, Shiveluch, and Kizimen. The developed method does not require a priori knowledge and is fully automatic; and the database of the network-based tremor fingerprints can be continuously enriched with newly available data.

  9. Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation

    PubMed Central

    Birdno, Merrill J.; Kuncel, Alexis M.; Dorval, Alan D.; Turner, Dennis A.; Gross, Robert E.

    2012-01-01

    Deep brain stimulation (DBS) provides dramatic tremor relief when delivered at high-stimulation frequencies (more than ∼100 Hz), but its mechanisms of action are not well-understood. Previous studies indicate that high-frequency stimulation is less effective when the stimulation train is temporally irregular. The purpose of this study was to determine the specific characteristics of temporally irregular stimulus trains that reduce their effectiveness: long pauses, bursts, or irregularity per se. We isolated these characteristics in stimulus trains and conducted intraoperative measurements of postural tremor in eight volunteers. Tremor varied significantly across stimulus conditions (P < 0.015), and stimulus trains with pauses were significantly less effective than stimulus trains without (P < 0.002). There were no significant differences in tremor between trains with or without bursts or between trains that were irregular or periodic. Thus the decreased effectiveness of temporally irregular DBS trains is due to long pauses in the stimulus trains, not the degree of temporal irregularity alone. We also conducted computer simulations of neuronal responses to the experimental stimulus trains using a biophysical model of the thalamic network. Trains that suppressed tremor in volunteers also suppressed fluctuations in thalamic transmembrane potential at the frequency associated with cerebellar burst-driver inputs. Clinical and computational findings indicate that DBS suppresses tremor by masking burst-driver inputs to the thalamus and that pauses in stimulation prevent such masking. Although stimulation of other anatomic targets may provide tremor suppression, we propose that the most relevant neuronal targets for effective tremor suppression are the afferent cerebellar fibers that terminate in the thalamus. PMID:21994263

  10. What is This Thing Called Tremor?

    NASA Astrophysics Data System (ADS)

    Rubin, A. M.; Bostock, M. G.

    2017-12-01

    Tremor has many enigmatic attributes. The LFEs that comprise it have a dearth of large events, implying a characteristic scale. Bostock et al. (2015) found LFE duration beneath Vancouver Island to be nearly independent of magnitude. That duration ( 0.4 s), multiplied by a shear wave speed, defines a length scale far larger than the spatial separation between consecutive but non-colocated detections. If one LFE ruptures multiple brittle patches in a ductile matrix its propagation speed can be slowed to the extent that consecutive events don't overlap, but then why aren't there larger and smaller LFEs with larger and smaller durations? Perhaps there are. Tremor seismograms from Vancouver Island are often saturated with direct arrivals, by which we mean time lags between events shorter than typical event durations. Direct evidence of this, given the small coda amplitude of LFE stacks, is that seismograms at stations many kilometers apart often track each other wiggle for wiggle. We see this behavior over the full range tremor amplitudes, from close to the noise level on a tremor-free day to 10 times larger. If the LFE magnitude-frequency relation is time-independent, this factor of 10 implies that the LFE occurrence rate during loud tremor is 10^2=100 times that during quiet tremor (>250 LFEs per second). We investigate the implications of this by comparing observed seismograms to synthetics made from the superposition of "LFEs" that are Poissonian in time over a range of average rates. We find that provided the LFEs have a characteristic scale (whether exponential or power law), saturation completely obscures the moment-duration scaling of the contributing events; that is, the moment-duration scaling of LFEs may be identical to that of regular earthquakes. Nonetheless, there are subtle differences between our synthetics and real seismograms, remarkably independent of tremor amplitude, that remain to be explained. Foremost among these is a slightly greater affinity of tremor for the positive than the negative LFE template. In this respect tremor appears most similar to "slightly saturated" synthetics, implying a time-dependent moment-frequency distribution (larger LFEs when tremor is loud). One possibility is that tremor consists of aborted earthquakes quenched by reflections from the base of the high Vp/Vs layer.

  11. A Novel Posture for Better Differentiation Between Parkinson's Tremor and Essential Tremor

    PubMed Central

    Zhang, Bin; Huang, Feifei; Liu, Jun; Zhang, Dingguo

    2018-01-01

    Due to a lack of reliable non-invasive bio-markers, misdiagnosis between Parkinson's disease and essential tremor is common. Although some assistive engineering approaches have been proposed, little acceptance has been obtained for these methods lack well-studied mechanisms and involve operator-dependent procedures. Aiming at a better differentiation between the two tremor causes, we present a novel posture, termed arm-rested posture, to ameliorate the quality of recorded tremor sequences. To investigate its efficacy, the posture was compared with another common posture, called arm-stretching posture, in fundamental aspects of tremor intensity and dominant frequency. A tremor-affected cohort comprising 50 subjects (PD = 26, ET = 24) with inhomogeneous tremor manifestation were recruited. From each subject, acceleration data of 5 min in terms of each posture were recorded. In the overall process, no operator-dependent procedures, such as data screening, was employed. The differentiation performance of the two postures were assessed by the index of discrimination coefficient and a receiver operating characteristic analysis based on binary logistic regression. The results of the differentiation assessment consistently demonstrate a better performance with the arm-rested posture than with the arm-stretching posture. As a by-product, factors of disease stage (incipient, progressed stage), spectrum estimate (PSD, bispectrum) and recording length (5–300s) were investigated. The significant effect of disease stage was only found in PD in terms of tremor intensity [F(1, 516) = 7.781, P < 0.05]. The bispectrum estimate was found to have better performance than the PSD estimate in extracting dominant frequency in terms of the discrimination coefficient. By extending the recording length, we noticed an increase in the performance of dominant frequency. The best result of the arm-rested posture was obtained with the maximum recording length of 300 s (area under the curve: 0.944, sensitivity: 92%, 1-specificity: 0%, accuracy: 96%), which is better than that of the arm-stretching posture in the same condition (area under the curve: 0.734, sensitivity: 54%, 1-specificity: 12%, accuracy: 72%). Thus, we conclude that the arm-rested posture can assist in improving tremor differentiation between Parkinson's disease and essential tremor and may act as a universal tool to analyze tremor for both clinical and research purpose. PMID:29867328

  12. Detailed Tremor Migration Styles in Guerrero, Mexico Imaged with Cross-station Cross-correlations

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Rubin, A. M.

    2015-12-01

    Tremor occurred downdip of the area that slipped the most during the 2006 slow slip event (SSE) in Guerrero, Mexico, as opposed to Cascadia, where tremor locations and rupture zones of SSEs largely overlap. Here we obtain high resolution tremor locations by applying cross-station cross-correlations [Armbruster et al., 2014] to seismic data from the Meso-America Subduction Experiment deployment. A few 3-station detectors are adopted to capture detailed deformation styles in the tremor "transient zone" and the downdip "sweet spot" as defined in Frank et al., 2014. Similar to Cascadia, tremor activities in our study region were comprised mostly of short tremor bursts lasting minutes to hours. Many of these bursts show clear migration patterns with propagation velocities of hundreds of km/day, comparable to those in Cascadia. However, the propagation of the main tremor front was often not in a simple unilateral fashion. Before the 2006 SSE, we observe 4 large tremor episodes during which both the transient zone and the sweet spot participated, consistent with previous findings [Frank et al., 2014]. The transient zone usually became active a few days after the sweet spot. We find many along-dip migrations with recurrence intervals of about a half day within a region about 10 km along strike and 35 km along dip in the sweet spot, suggesting possible tidal modulation, after the main front moved beyond this region. These migrations appear not to originate at the main front, in contrast to tremor migrations from a few km to tens of km across observed in Cascadia [Rubin and Armbruster, 2013; Peng et al., 2015; Peng and Rubin, submitted], but possibly similar to Shikoku, Japan [Shelly et al., 2007]. We do not observe obvious half-day periodicity for the migrations farther downdip within the sweet spot. During the SSE, the recurrence interval of tremor episodes decreased significantly in both the transient zone and the sweet spot, with that of the former being much shorter. Within the sweet spot, the number of tremor events and the rupture area of each episode also decreased relative to the large pre-SSE episodes. The updip portion of the sweet spot often became active before the downdip portion, consistent with loading from farther updip where the slow slip was concentrated. In contrast, the pre-SSE episodes generally originated farther downdip.

  13. Tremor Frequency Assessment by iPhone® Applications: Correlation with EMG Analysis.

    PubMed

    Araújo, Rui; Tábuas-Pereira, Miguel; Almendra, Luciano; Ribeiro, Joana; Arenga, Marta; Negrão, Luis; Matos, Anabela; Morgadinho, Ana; Januário, Cristina

    2016-10-19

    Tremor frequency analysis is usually performed by EMG studies but accelerometers are progressively being more used. The iPhone® contains an accelerometer and many applications claim to be capable of measuring tremor frequency. We tested three applications in twenty-two patients with a diagnosis of PD, ET and Holmes' tremor. EMG needle assessment as well as accelerometry was performed at the same time. There was very strong correlation (Pearson >0.8, p < 0.001) between the three applications, the EMG needle and the accelerometry. Our data suggests the apps LiftPulse®, iSeismometer® and Studymytremor® are a reliable alternative to the EMG for tremor frequency assessment.

  14. Nicotine evokes kinetic tremor by activating the inferior olive via α7 nicotinic acetylcholine receptors.

    PubMed

    Kunisawa, Naofumi; Iha, Higor A; Shimizu, Saki; Tokudome, Kentaro; Mukai, Takahiro; Kinboshi, Masato; Serikawa, Tadao; Ohno, Yukihiro

    2016-11-01

    Nicotinic acetylcholine (nACh) receptors are implicated in the pathogenesis of movement disorders (e.g., tremor) and epilepsy. Here, we performed behavioral and immunohistochemical studies using mice and rats to elucidate the mechanisms underlying nicotine-induced tremor. Treatments of animals with nicotine (0.5-2mg/kg, i.p.) elicited kinetic tremor, which was completely suppressed by the nACh receptor antagonist mecamylamine (MEC). The specific α7 nACh receptor antagonist methyllycaconitine (MLA) also inhibited nicotine-induced tremor, whereas the α4β2 nACh antagonist dihydro-β-erythroidine (DHβE) or the peripheral α3β4 nACh antagonist hexamethonium showed no effects. Mapping analysis of Fos protein expression, a biological marker of neural excitation, revealed that a tremorgenic dose (1mg/kg) of nicotine region-specifically elevated Fos expression in the piriform cortex (PirC), medial habenula, solitary nucleus and inferior olive (IO) among 44 brain regions examined. In addition, similarly to the tremor responses, nicotine-induced Fos expression in the PirC and IO was selectively antagonized by MLA, but not by DHβE. Furthermore, an electrical lesioning of the IO, but not the PirC, significantly suppressed the induction of nicotine tremor. The present results suggest that nicotine elicits kinetic tremor in rodents by activating the IO neurons via α7 nACh receptors. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Analyzing the continuous volcanic tremors detected during the 2015 phreatic eruption of the Hakone volcano

    NASA Astrophysics Data System (ADS)

    Yukutake, Yohei; Honda, Ryou; Harada, Masatake; Doke, Ryosuke; Saito, Tatsuhiko; Ueno, Tomotake; Sakai, Shin'ichi; Morita, Yuichi

    2017-12-01

    In the present study, we analyze the seismic signals from a continuous volcanic tremor that occurred during a small phreatic eruption of the Hakone volcano, in the Owakudani geothermal region of central Japan, on June 29, 2015. The signals were detected for 2 days, from June 29 to July 1, at stations near the vents. The frequency component of the volcanic tremors showed a broad peak within 1-6 Hz. The characteristics of the frequency component did not vary with time and were independent of the amplitude of the tremor. The largest amplitude was observed at the end of the tremor activity, 2 days after the onset of the eruption. We estimated the location of the source using a cross-correlation analysis of waveform envelopes. The locations of volcanic tremors are determined near the vents of eruption and the surface, with the area of the upper extent of an open crack estimated using changes in the tilt. The duration-amplitude distribution of the volcanic tremor was consistent with the exponential scaling law rather than the power law, suggesting a scale-bound source process. This result suggests that the volcanic tremor originated from a similar physical process occurring practically in the same place. The increment of the tremor amplitude was coincident with the occurrence of impulsive infrasonic waves and vent formations. High-amplitude seismic phases were observed prior to the infrasonic onsets. The time difference between the seismic and infrasonic onsets can be explained assuming a common source located at the vent. This result suggests that both seismic and infrasonic waves are generated when a gas slug bursts at that location. The frequency components of the seismic phases observed just before the infrasonic onset were generally consistent with those of the tremor signals without infrasonic waves. The burst of a gas slug at the surface vent may be a reasonable model for the generation mechanism of the volcanic tremor and the occurrence of impulsive infrasonic signals.[Figure not available: see fulltext.

  16. Essential Tremor with Aspartic Acidemia.

    PubMed

    Miura, Shiroh; Fujioka, Ryuta; Taniwaki, Takayuki

    2017-05-08

    We describe two cases of typical essential tremor with aspartic acidemia and mildly increased concentrations of plasma glutamic acid. Although this is a preliminary report, we emphasize the possibility of using amino acids, including aspartic acid, as biomarkers for the detection of essential tremor.

  17. What many years of tremor reveals about the Mexican Sweet Spot

    NASA Astrophysics Data System (ADS)

    Husker, A. L.; Avila, L.; Gonzalez, G.; Frank, W.; Kostoglodov, V.

    2017-12-01

    Different temporary seismic deployments have detected and located tectonic tremor in Mexico. These different temporary studies have lasted for a maximum of a few years. However, the long-term SSE's occur every 4 years. The permanent network is too sparse to locate SSEs, however one station is located in the main tremor region and has very low noise. We use spectral detection to create a catalog from its installation in March 2009 to the present. The catalog corresponds with the catalog determined during the temporary GGAP seismic network deployment, which gives us confidence that the single station detection works. Two separate large long term SSEs (2009-2010 and 2014) occur in this time span. We find a good correlation between the tremor and slip at the beginning of the SSEs. However, we find differences in both in the later stages of the SSEs. The 2009-2010 SSE appeared to be ending towards the end of 2009, however it was reactivated by the Feb. 27, 2010 M8.8 Chilean earthquake. The tremor showed a small many day burst (similar to other bursts) associated with the earthquake, but did not resume the high continuous tremor rate associated with the beginning of the SSE or seen during other large SSEs. The tremor rate at the end of the 2014 SSE stayed high for many months after the SSE and did not return to the background inter-SSE rate until the middle of 2015, about 6 months after the SSE ended. The background tremor rate is roughly 1 hour/day and remains constant over the entire period. This rate is actually comprised of many bursts that can last for up to 2 weeks with up to 80 hours of tremor during that time. The very constant long-term tremor rate made up of bursts can be explained by a simple stick-slip model.

  18. Focal mechanisms and tidal modulation for tectonic tremors in Taiwan

    NASA Astrophysics Data System (ADS)

    Ide, S.; Yabe, S.; Tai, H. J.; Chen, K. H.

    2015-12-01

    Tectonic tremors in Taiwan have been discovered beneath the southern Central Range, but their hosting structure has been unknown. Here we constrain the focal mechanism of underground deformation related to tremors, using moment tensor inversion in the very low frequency band and tidal stress analysis. Three types of seismic data are used for two analysis steps: detection of tremors and the moment tensor inversion. Short-period seismograms from CWBSN are used for tremor detection. Broadband seismograms from BATS and the TAIGER project are used for both steps. About 1000 tremors were detected using an envelope correlation method in the high frequency band (2-8 Hz). Broadband seismograms are stacked relative to the tremor timing, and inverted for a moment tensor in the low frequency band (0.02-0.05 Hz). The best solution was obtained at 32 km depth, as a double-couple consistent with a low-angle thrust fault dipping to the east-southeast, or a high-angle thrust with a south-southwest strike. Almost all tremors occur when tidal shear stress is positive and normal stress is negative (clamping). Since the clamping stress is high for a high-angle thrust fault, the low-angle thrust fault is more likely to be the fault plane. Tremor rate increases non-linearly with increasing shear stress, suggesting a velocity strengthening friction law. The high tidal sensitivity is inconsistent with horizontal slip motion suggested by previous studies, and normal faults that dominates regional shallow earthquakes. Our results favor thrust slip on a low-angle fault dipping to the east-southeast, consistent with the subduction of the Eurasian plate. The tremor region is characterized by a deep thermal anomaly with decrease normal stress. This region has also experienced enough subduction to produce metamorphic fluids. A large amount of fluid and low vertical stress may explain the high tidal sensitivity.

  19. Tremor-related activity of neurons in the 'motor' thalamus: changes in firing rate and pattern in the MPTP vervet model of parkinsonism.

    PubMed

    Guehl, D; Pessiglione, M; François, C; Yelnik, J; Hirsch, E C; Féger, J; Tremblay, L

    2003-06-01

    The pathophysiology of parkinsonian tremor remains a matter of debate with two opposing hypotheses proposing a peripheral and a central origin, respectively. A central origin of tremor could arise either from a rhythmic activity of the internal segment of the globus pallidus (GPi) or from a structure such as the thalamus, outside the basal ganglia. In this study, single-unit recordings were performed in three 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys within the GPi and within three territories of the motor thalamus (delimited by their afferent inputs from the GPi, the substantia nigra and the cerebellum, respectively). For each recorded neuron, we compared the variations in firing rate and pattern in tremor and no tremor periods. Tremor either occurred spontaneously or was induced by external stimulation. When the animals entered into a tremor period we observed: (i) an increase in the mean firing rate in about half of the recorded neurons of the motor thalamus; and (ii), a change from an irregular to a rhythmic discharge within the range of tremor frequency (5-7 Hz) in about 10% of the recorded neurons of the motor thalamus (pallidal and cerebellar territories) and the GPi. Most of the thalamic neurons that exhibited a rhythmic discharge during tremor were found to be sensitive to external stimulation. Because the changes in firing rate occurred predominantly in the motor thalamus and not in the GPi, and because a fast rhythmic discharge of 10-15 Hz was frequently observed in the GPi and not in the motor thalamus, we conclude that thalamic activity is not a simple reproduction of basal ganglia output. Moreover, we suggest that thalamic processing of basal ganglia outputs could participate in the genesis of tremor, and that this thalamic processing could be influenced by sensory inputs and/or changes in attentional level elicited by external stimulation.

  20. Seismic activity in the Sunnyside mining district, Carbon and Emery Counties, Utah, during 1968

    USGS Publications Warehouse

    Dunrud, C. Richard; Maberry, John O.; Hernandez, Jerome H.

    1970-01-01

    More than 20,000 local earth tremors were recorded by the seismic monitoring network in the Sunnyside mining district during 1968. This is about 40 percent of the number of tremors recorded by the network in 1967. In 1968 a total of 281 tremors were of sufficient magnitude to be located accurately--about 50 percent of the number of tremors in 1967 that were located accurately. As in previous years, nearly all the earth tremors originated near, or within a few thousand feet of, the mine workings. This distribution indicates that mine-induced stress changes caused most of the seismic activity. However, over periods of weeks and months there were significant changes in the distribution of seismic activity caused by tremors that were not directly related to mining but probably were caused by adjustment of natural stresses 6r by a complex combination of both natural and mine-induced stress changes. In 1968 the distribution of tremor hypocenters varied considerably with time, relative to active mining areas and to faults present in the mine workings. During the first 6 months, most tremors originated along or near faults that trend close to or through the active mine workings. However, in the last 6 months, the tremor hypocenters tended to concentrate in the rock mass closer to, or around, the active mining areas. This shift in concentration of seismic activity with time has been noted throughout the district many times since recording began in 1963, and is apparently caused by spontaneous releases of stored strain energy resulting from mine-induced stress changes. These spontaneous releases of strain energy, together with rock creep, apparently are the mechanism of adjustment within the rock mass toward equilibrium conditions, which are continually disrupted by mining. Although potentially hazardous bumps were rare in the Sunnyside mining district during 1968, smaller bumps and rock falls were more common in a given active mining area whenever hypocenters of larger-magnitude earth tremors concentrated near it.

  1. Functional lesional neurosurgery for tremor-a protocol for a systematic review and meta-analysis.

    PubMed

    Schreglmann, Sebastian R; Krauss, Joachim K; Chang, Jin Woo; Bhatia, Kailash P; Kägi, Georg

    2017-05-09

    The recent introduction of incision-less lesional neurosurgery using Gamma Knife and MRI-guided focused ultrasound has revived interest in lesional treatment options for tremor disorders. Preliminary literature researches reveal that the consistency of treatment effects after lesional neurosurgery for tremor has not formally been assessed yet. Similarly, the efficacy of different targets for lesional treatment and incidence of persistent side effects of lesional neurosurgical interventions has not been comprehensively assessed. This work therefore aims to describe a suitable process how to review the existing literature on efficacy and persistent side effects of lesional neurosurgical treatment for tremor due to Parkinson's disease, essential tremor, multiple sclerosis and midbrain/rubral tremor. We will search electronic databases (Medline, Cochrane) and reference lists of included articles for studies reporting lesional interventions for tremor in cohorts homogeneous for tremor aetiology and intervention (technique and target). We will include cohorts with a minimum number of five subjects and follow-up of 2 months. One investigator will perform the initial literature search and two investigators then independently decide which references to include for final efficacy and safety analysis. After settling of disagreement, data will be extracted from articles using a standardised template. We will perform a random-effect meta-analysis calculating standardised mean differences (Hedge's g) for comparison in Forest plots and subgroup analysis after assessment of heterogeneity using I 2 statistics. This study will summarise the available evidence on the efficacy of lesional interventions for the most frequent tremor disorders, as well as for the incidence rate of persisting side effects after unilateral lesional treatment. This data will be useful to guide future work on incision-less lesional interventions for tremor. This study has been registered with the PROSPERO database (no. CRD42016048049). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Increased thalamic centrality and putamen-thalamic connectivity in patients with parkinsonian resting tremor.

    PubMed

    Gu, Quanquan; Cao, Hengyi; Xuan, Min; Luo, Wei; Guan, Xiaojun; Xu, Jingjing; Huang, Peiyu; Zhang, Minming; Xu, Xiaojun

    2017-01-01

    Evidence has indicated a strong association between hyperactivity in the cerebello-thalamo-motor cortical loop and resting tremor in Parkinson's disease (PD). Within this loop, the thalamus serves as a central hub based on its structural centrality in the generation of resting tremor. To study whether this thalamic abnormality leads to an alteration at the whole-brain level, our study investigated the role of the thalamus in patients with parkinsonian resting tremor in a large-scale brain network context. Forty-one patients with PD (22 with resting tremor, TP and 19 without resting tremor, NTP) and 45 healthy controls (HC) were included in this resting-state functional MRI study. Graph theory-based network analysis was performed to examine the centrality measures of bilateral thalami across the three groups. To further provide evidence to the central role of the thalamus in parkinsonian resting tremor, the seed-based functional connectivity analysis was then used to quantify the functional interactions between the basal ganglia and the thalamus. Compared with the HC group, patients with the TP group exhibited increased degree centrality ( p  < .04), betweenness centrality ( p  < .01), and participation coefficient ( p  < .01) in the bilateral thalami. Two of these alterations (degree centrality and participation coefficient) were significantly correlated with tremor severity, especially in the left hemisphere ( p  < .02). The modular analysis showed that the TP group had more intermodular connections between the thalamus and the regions within the cerebello-thalamo-motor cortical loop. Furthermore, the data revealed significantly enhanced functional connectivity between the putamen and the thalamus in the TP group ( p  = .027 corrected for family-wise error). These findings suggest increased thalamic centrality as a potential tremor-specific imaging measure for PD, and provide evidence for the altered putamen-thalamic interaction in patients with resting tremor.

  3. Frictional-faulting model for harmonic tremor before Redoubt Volcano eruptions

    NASA Astrophysics Data System (ADS)

    Dmitrieva, Ksenia; Hotovec-Ellis, Alicia J.; Prejean, Stephanie; Dunham, Eric M.

    2013-08-01

    Seismic unrest, indicative of subsurface magma transport and pressure changes within fluid-filled cracks and conduits, often precedes volcanic eruptions. An intriguing form of volcano seismicity is harmonic tremor, that is, sustained vibrations in the range of 0.5-5Hz. Many source processes can generate harmonic tremor. Harmonic tremor in the 2009 eruption of Redoubt Volcano, Alaska, has been linked to repeating earthquakes of magnitudes around 0.5-1.5 that occur a few kilometres beneath the vent. Before many explosions in that eruption, these small earthquakes occurred in such rapid succession--up to 30 events per second--that distinct seismic wave arrivals blurred into continuous, high-frequency tremor. Tremor abruptly ceased about 30 s before the explosions. Here we introduce a frictional-faulting model to evaluate the credibility and implications of this tremor mechanism. We find that the fault stressing rates rise to values ten orders of magnitude higher than in typical tectonic settings. At that point, inertial effects stabilize fault sliding and the earthquakes cease. Our model of the Redoubt Volcano observations implies that the onset of volcanic explosions is preceded by active deformation and extreme stressing within a localized region of the volcano conduit, at a depth of several kilometres.

  4. Characteristics of Tremor During the Entire July 2004 Cascadia Episodic Tremor and Slip event

    NASA Astrophysics Data System (ADS)

    McCausland, W. A.; Malone, S.; La Rocca, M.; Creager, K.

    2005-12-01

    The July 2004 Cascadia episodic tremor and slip (ETS) event was recorded and analyzed using three geographically distributed small aperture seismic arrays (600m) located near Sooke, BC, Sequim, WA, and on Lopez Island, WA. We analyzed the tremor sequence in the 1 to 6 Hz frequency band in overlapping windows (12s length)using zero-lag cross correlation and polarization analysis in order to obtain a continuous record of the back-azimuth, slowness, and particle motion of tremor sources throughout the ETS episode. During periods without tremor, the average interstation correlations for each array range between 0.2 and 0.4, and observed azimuths are randomly distributed. During periods of strong tremor, the average correlation for each array is typically between 0.5 and 0.8, and azimuths are stable over periods of minutes. Observed apparent velocities are greater than 4 km/s and polarization analysis indicates that the wave-field is composed primarily of SH-waves, both of which are consistent with a deep source of shear wave energy. Azimuths and slownesses are consistent with previously obtained hypocentral locations and apparent velocities calculated using the relative arrival times of energy bursts on Pacific Northwest Seismograph Network.

  5. Tremor reveals stress shadowing, deep postseismic creep, and depth-dependent slip recurrence on the lower-crustal San Andreas fault near Parkfield

    USGS Publications Warehouse

    Shelly, David R.; Johnson, Kaj M.

    2011-01-01

    The 2003 magnitude 6.5 San Simeon and the 2004 magnitude 6.0 Parkfield earthquakes induced small, but significant, static stress changes in the lower crust on the central San Andreas fault, where recently detected tectonic tremor sources provide new constraints on deep fault creep processes. We find that these earthquakes affect tremor rates very differently, consistent with their differing transferred static shear stresses. The San Simeon event appears to have cast a "stress shadow" north of Parkfield, where tremor activity was stifled for 3-6 weeks. In contrast, the 2004 Parkfield earthquake dramatically increased tremor activity rates both north and south of Parkfield, allowing us to track deep postseismic slip. Following this event, rates initially increased by up to two orders of magnitude for the relatively shallow tremor sources closest to the rupture, with activity in some sources persisting above background rates for more than a year. We also observe strong depth dependence in tremor recurrence patterns, with shallower sources generally exhibiting larger, less-frequent bursts, possibly signaling a transition toward steady creep with increasing temperature and depth. Copyright 2011 by the American Geophysical Union.

  6. Episodic tremor and slip explained by fluid-enhanced microfracturing and sealing

    NASA Astrophysics Data System (ADS)

    Bernaudin, M.; Gueydan, F.

    2017-12-01

    A combination of non-volcanic tremor and transient slow slip events behaviors is commonly observed at plate interface, between locked/seismogenic zone at low depths and stable/ductile creep zone at larger depths. This association defines Episodic Tremor and Slip, systematically highlighted by over-pressurized fluids and near failure shear stress conditions. Here we propose a new mechanical approach that provides for the first time a mechanical and field-based explanation of the observed association between non-volcanic tremor and slow slip events. In contrast with more classical rate-and-state models, this physical model uses a ductile rheology with grain size sensitivity, fluid-driven microfracturing and sealing (e.g. grain size reduction and grain growth) and related pore fluid pressure fluctuations. We reproduce slow slip events by transient ductile strain localization as a result of fluid-enhanced microfracturing and sealing. Moreover, occurrence of macrofracturing during transient strain localization and local increase in pore fluid pressure well simulate non-volcanic tremor. Our model provides therefore a field-based explanation of episodic tremor and slip and moreover predicts the depth and temperature ranges of their occurrence in subduction zones. It implies furthermore that non-volcanic tremor and slow slip events are physically related.

  7. Treatment of lithium induced tremor with atenolol.

    PubMed

    Davé, M

    1989-03-01

    This is the first report on the successful treatment of one patient with lithium induced tremor with hydrophilic atenolol, which is a relatively selective beta 1 adrenergic receptor blocker. Atenolol's advantages over lipophilic beta blockers in the treatment of lithium induced tremor are discussed.

  8. Facial emotion recognition is inversely correlated with tremor severity in essential tremor.

    PubMed

    Auzou, Nicolas; Foubert-Samier, Alexandra; Dupouy, Sandrine; Meissner, Wassilios G

    2014-04-01

    We here assess limbic and orbitofrontal control in 20 patients with essential tremor (ET) and 18 age-matched healthy controls using the Ekman Facial Emotion Recognition Task and the IOWA Gambling Task. Our results show an inverse relation between facial emotion recognition and tremor severity. ET patients also showed worse performance in joy and fear recognition, as well as subtle abnormalities in risk detection, but these differences did not reach significance after correction for multiple testing.

  9. Long-Term Efficacy of Constant Current Deep Brain Stimulation in Essential Tremor.

    PubMed

    Rezaei Haddad, Ali; Samuel, Michael; Hulse, Natasha; Lin, Hsin-Ying; Ashkan, Keyoumars

    2017-07-01

    Ventralis intermedius deep brain stimulation is an established intervention for medication-refractory essential tremor. Newer constant current stimulation technology offers theoretical advantage over the traditional constant voltage systems in terms of delivering a more biologically stable therapy. There are no previous reports on the outcomes of constant current deep brain stimulation in the treatment of essential tremor. This study aimed to evaluate the long-term efficacy of ventralis intermedius constant current deep brain stimulation in patients diagnosed with essential tremor. Essential tremor patients implanted with constant current deep brain stimulation for a minimum of three years were evaluated. Clinical outcomes were assessed using the Fahn-Tolosa-Marin tremor rating scale at baseline and postoperatively at the time of evaluation. The quality of life in the patients was assessed using the Quality of Life in Essential Tremor questionnaire. Ten patients were evaluated with a median age at evaluation of 74 years (range 66-79) and a mean follow up time of 49.7 (range 36-78) months since starting stimulation. Constant current ventralis intermedius deep brain stimulation was well tolerated and effective in all patients with a mean score improvement from 50.7 ± 5.9 to 17.4 ± 5.7 (p = 0.0020) in the total Fahn-Tolosa-Marin rating scale score (65.6%). Furthermore, the total combined mean Quality of Life in Essential Tremor score was improved from 56.2 ± 4.9 to 16.8 ± 3.5 (p value = 0.0059) (70.1%). This report shows that long-term constant current ventralis intermedius deep brain stimulation is a safe and effective intervention for essential tremor patients. © 2017 International Neuromodulation Society.

  10. Iron accumulation and dysregulation in the putamen in fragile X-associated tremor/ataxia syndrome.

    PubMed

    Ariza, Jeanelle; Rogers, Hailee; Hartvigsen, Anna; Snell, Melissa; Dill, Michael; Judd, Derek; Hagerman, Paul; Martínez-Cerdeño, Verónica

    2017-04-01

    Fragile X-associated tremor/ataxia syndrome is an adult-onset disorder associated with premutation alleles of the FMR1 gene. This disorder is characterized by progressive action tremor, gait ataxia, and cognitive decline. Fragile X-associated tremor/ataxia syndrome pathology includes dystrophic white matter and intranuclear inclusions in neurons and astrocytes. We previously demonstrated that the transport of iron into the brain is altered in fragile X-associated tremor/ataxia syndrome; therefore, we also expect an alteration of iron metabolism in brain areas related to motor control. Iron is essential for cell metabolism, but uncomplexed iron leads to oxidative stress and contributes to the development of neurodegenerative diseases. We investigated a potential iron modification in the putamen - a structure that participates in motor learning and performance - in fragile X-associated tremor/ataxia syndrome. We used samples of putamen obtained from 9 fragile X-associated tremor/ataxia syndrome and 9 control cases to study iron localization using Perl's method, and iron-binding proteins using immunostaining. We found increased iron deposition in neuronal and glial cells in the putamen in fragile X-associated tremor/ataxia syndrome. We also found a generalized decrease in the amount of the iron-binding proteins transferrin and ceruloplasmin, and decreased number of neurons and glial cells that contained ceruloplasmin. However, we found increased levels of iron, transferrin, and ceruloplasmin in microglial cells, indicating an attempt by the immune system to remove the excess iron. Overall, found a deficit in proteins that eliminate extra iron from the cells with a concomitant increase in the deposit of cellular iron in the putamen in Fragile X-associated tremor/ataxia syndrome. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  11. A phase coherence approach to identifying co-located earthquakes and tremor

    NASA Astrophysics Data System (ADS)

    Hawthorne, J. C.; Ampuero, J.-P.

    2018-05-01

    We present and use a phase coherence approach to identify seismic signals that have similar path effects but different source time functions: co-located earthquakes and tremor. The method used is a phase coherence-based implementation of empirical matched field processing, modified to suit tremor analysis. It works by comparing the frequency-domain phases of waveforms generated by two sources recorded at multiple stations. We first cross-correlate the records of the two sources at a single station. If the sources are co-located, this cross-correlation eliminates the phases of the Green's function. It leaves the relative phases of the source time functions, which should be the same across all stations so long as the spatial extent of the sources are small compared with the seismic wavelength. We therefore search for cross-correlation phases that are consistent across stations as an indication of co-located sources. We also introduce a method to obtain relative locations between the two sources, based on back-projection of interstation phase coherence. We apply this technique to analyse two tremor-like signals that are thought to be composed of a number of earthquakes. First, we analyse a 20 s long seismic precursor to a M 3.9 earthquake in central Alaska. The analysis locates the precursor to within 2 km of the mainshock, and it identifies several bursts of energy—potentially foreshocks or groups of foreshocks—within the precursor. Second, we examine several minutes of volcanic tremor prior to an eruption at Redoubt Volcano. We confirm that the tremor source is located close to repeating earthquakes identified earlier in the tremor sequence. The amplitude of the tremor diminishes about 30 s before the eruption, but the phase coherence results suggest that the tremor may persist at some level through this final interval.

  12. Tremor severity and age: a cross-sectional, population-based study of 2,524 young and midlife normal adults.

    PubMed

    Louis, Elan D; Hafeman, Danella; Parvez, Faruque; Liu, Xinhua; Alcalay, Roy N; Islam, Tariqul; Ahmed, Alauddin; Siddique, Abu Bakar; Patwary, Tazul Islam; Melkonian, Stephanie; Argos, Maria; Levy, Diane; Ahsan, Habibul

    2011-07-01

    Mild action tremor occurs in most normal people. Yet this tremor mainly has been studied within the context of advanced age rather than among the vast bulk of adults who are not elderly. Whether this tremor worsens during young and middle age is unknown. Using cross-sectional data from a large population-based study of young and midlife normal adults (age range, 18-60 years), we assessed whether increasing age is associated with more severe action tremor. Two thousand five hundred and twenty-four adults in Araihazar, Bangladesh, drew an Archimedes spiral with each hand. Tremor in spirals was rated (0-3) by a blinded neurologist, and a spiral score (range, 0-6) was assigned. Spiral score was correlated with age (r = 0.06, P = .004). With each advancing decade, the spiral score increased (P = .002) so that the spiral score in participants in the highest age group (age 60) was approximately twice that of participants in the youngest age group (age 18-19); P = .003. In the regression model that adjusted for potential confounders (sex, cigarettes, medications, asthma inhalers, and tea and betel nut use), spiral score was associated with age (P = .0045). In this cross-sectional, population-based study of more than 2500 young and midlife normal adults, there was a clear association between age and tremor severity. Although the magnitude of the correlation coefficient was modest, tremor severity was higher with each passing decade. These data suggest that age-dependent increase in tremor amplitude is not restricted to older people but occurs in all adult age groups. Copyright © 2011 Movement Disorder Society.

  13. Validation of a telephone screening tool for spasmodic dysphonia and vocal fold tremor.

    PubMed

    Johnson, David M; Hapner, Edie R; Klein, Adam M; Pethan, Madeleine; Johns, Michael M

    2014-11-01

    The objective of this study was to ascertain whether clinicians can reliably distinguish between spasmodic dysphonia (SD)/vocal tremor and other voice disorders by telephone, despite this modality's limited frequency response. Randomized, single-blinded, and prospective study. Voice-disordered patients with (n = 22) and without (n = 17) SD and/or vocal tremor recorded standardized utterances via landline telephone. A laryngologist and two speech-language pathologists blinded to the diagnoses rated each recording as "yes" or "no" to "SD or tremor present?," and if "yes" categorized into adductor, abductor, tremor only, or adductor with tremor subtypes. Twenty-one recordings were presented twice at random so intrarater reliability could be assessed. All ratings were compared with gold standard diagnosis by a second laryngologist who performed a full examination, including videostroboscopy, on each patient. For the comparison "SD or tremor" yes versus no, sensitivity, specificity, positive predictive value, and negative predictive value are 90%, 95%, 96%, and 89%, respectively. Interrater reliability (Cohen kappa) compared with the gold standard ranged from 0.70 to 0.93 (substantial to almost perfect agreement). Cronbach alpha among three raters was 0.90 for this comparison. Intrarater reliability (number matched/number inspected) was very high, ranging from 0.97 to 1.0. Comparing gold standard and telephone rating of SD/tremor subtypes, kappa ranged from 0.48 to 0.60 (moderate agreement). Cronbach alpha among three raters was 0.88 for this comparison. Intrarater reliability ranged from 0.84 to 0.97. SD and tremor can be reliably distinguished from other voice disorders over the telephone. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. Ambient seismic noise interferometry in Hawai'i reveals long-range observability of volcanic tremor

    USGS Publications Warehouse

    Ballmer, Silke; Wolfe, Cecily; Okubo, Paul G.; Haney, Matt; Thurber, Clifford H.

    2013-01-01

    The use of seismic noise interferometry to retrieve Green's functions and the analysis of volcanic tremor are both useful in studying volcano dynamics. Whereas seismic noise interferometry allows long-range extraction of interpretable signals from a relatively weak noise wavefield, the characterization of volcanic tremor often requires a dense seismic array close to the source. We here show that standard processing of seismic noise interferometry yields volcanic tremor signals observable over large distances exceeding 50 km. Our study comprises 2.5 yr of data from the U.S. Geological Survey Hawaiian Volcano Observatory short period seismic network. Examining more than 700 station pairs, we find anomalous and temporally coherent signals that obscure the Green's functions. The time windows and frequency bands of these anomalous signals correspond well with the characteristics of previously studied volcanic tremor sources at Pu'u 'Ō'ō and Halema'uma'u craters. We use the derived noise cross-correlation functions to perform a grid-search for source location, confirming that these signals are surface waves originating from the known tremor sources. A grid-search with only distant stations verifies that useful tremor signals can indeed be recovered far from the source. Our results suggest that the specific data processing in seismic noise interferometry—typically used for Green's function retrieval—can aid in the study of both the wavefield and source location of volcanic tremor over large distances. In view of using the derived Green's functions to image heterogeneity and study temporal velocity changes at volcanic regions, however, our results illustrate how care should be taken when contamination by tremor may be present.

  15. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    USGS Publications Warehouse

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  16. Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected

    USGS Publications Warehouse

    Hill, David P.

    2012-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  17. Thalamic DBS with a constant-current device in essential tremor: A controlled clinical trial.

    PubMed

    Wharen, Robert E; Okun, Michael S; Guthrie, Barton L; Uitti, Ryan J; Larson, Paul; Foote, Kelly; Walker, Harrison; Marshall, Frederick J; Schwalb, Jason; Ford, Blair; Jankovic, Joseph; Simpson, Richard; Dashtipour, Khashayar; Phibbs, Fenna; Neimat, Joseph S; Stewart, R Malcolm; Peichel, DeLea; Pahwa, Rajesh; Ostrem, Jill L

    2017-07-01

    This study of thalamic deep brain stimulation (DBS) investigated whether a novel constant-current device improves tremor and activities of daily living (ADL) in patients with essential tremor (ET). A prospective, controlled, multicenter study was conducted at 12 academic centers. We investigated the safety and efficacy of unilateral and bilateral constant-current DBS of the ventralis intermedius (VIM) nucleus of the thalamus in patients with essential tremor whose tremor was inadequately controlled by medications. The primary outcome measure was a rater-blinded assessment of the change in the target limb tremor score in the stimulation-on versus stimulation-off state six months following surgery. Multiple secondary outcomes were assessed at one-year follow-up, including motor, mood, and quality-of-life measures. 127 patients were implanted with VIM DBS. The blinded, primary outcome variable (n = 76) revealed a mean improvement of 1.25 ± 1.26 points in the target limb tremor rating scale (TRS) score in the arm contralateral to DBS (p < 0.001). Secondary outcome variables at one year revealed significant improvements (p ≤ 0.001) in quality of life, depression symptoms, and ADL scores. Forty-seven patients had a second contralateral VIM-DBS, and this group demonstrated reduction in second-sided tremor at 180 days (p < 0.001). Serious adverse events related to the surgery included infection (n = 3), intracranial hemorrhage (n = 3), and device explantation (n = 3). Unilateral and bilateral constant-current VIM DBS significantly improves upper extremity tremor, ADL, quality of life, and depression in patients with severe ET. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Postural hand tremor and incident hypertension in young to middle-aged adults: the Bogalusa heart study.

    PubMed

    Hu, Tian; Guralnik, Jack M; Yao, Lu; Gustat, Jeanette; Harville, Emily W; Webber, Larry S; Chen, Wei; He, Jiang; Whelton, Paul K; Bazzano, Lydia A

    2016-07-01

    Hand tremor and blood pressure (BP) are both increased by adrenergic stimulation and reduced by β-blockade, indicating that they may share a common underlying pathophysiology. We prospectively examined the relationship between postural hand tremor and incident hypertension in a community-based cohort of 715 (184 blacks and 531 whites) adults without hypertension and not using medications to control tremor (e.g. β-blockers). At baseline, tremor was measured with participants holding a laser pointer aimed at a sheet of Polaroid film 8 feet away with arm outstretched for 8 s in a darkened room, and characterized by the width of the circle diameter encompassing all exposures and enumeration of exposure dots in the same area. Incident hypertension was defined as new elevation of BP (SBP ≥ 140 or DBP ≥ 90 mmHg, based on an average of six readings over two visits) or antihypertensive medication use. During a median follow-up of 6.4 years, 198 (69 blacks and 129 whites) participants developed hypertension. Tremor measurements (by quartile) were positively associated with incident hypertension after adjustment for baseline demographics, lifestyle characteristics, and BP. There was significant interaction by race (P = 0.01). Among whites, tremor was positively associated with incident hypertension [hazard ratio highest vs. lowest quartile: 2.50 (95% confidence interval: 1.40-4.48) dot method and 3.24 (1.78-5.90) circular method; both P trend <0.01]. Among blacks, tremor was not associated with hypertension. In this community-based cohort, postural hand tremor was strongly associated with the risk of incident hypertension among whites and merits further study as a potential indicator of risk for hypertension.

  19. 21 CFR 882.1950 - Tremor transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tremor transducer. 882.1950 Section 882.1950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1950 Tremor transducer. (a...

  20. 21 CFR 882.1950 - Tremor transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tremor transducer. 882.1950 Section 882.1950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1950 Tremor transducer. (a...

  1. Motor and Executive Function Profiles in Adult Residents Environmentally Exposed to Manganese

    EPA Science Inventory

    Objective: Exposure to elevated levels of manganese (Mn) may be associated with tremor, motor and executive dysfunction (EF), clinically resembling Parkinson’s disease (PD). PD research has identified tremor-dominant (TD) and non-tremor dominant (NTD) profiles. NTD PD pres...

  2. Possible deep fault slip preceding the 2004 Parkfield earthquake, inferred from detailed observations of tectonic tremor

    USGS Publications Warehouse

    Shelly, David R.

    2009-01-01

    Earthquake predictability depends, in part, on the degree to which sudden slip is preceded by slow aseismic slip. Recently, observations of deep tremor have enabled inferences of deep slow slip even when detection by other means is not possible, but these data are limited to certain areas and mostly the last decade. The region near Parkfield, California, provides a unique convergence of several years of high-quality tremor data bracketing a moderate earthquake, the 2004 magnitude 6.0 event. Here, I present detailed observations of tectonic tremor from mid-2001 through 2008 that indicate deep fault slip both before and after the Parkfield earthquake that cannot be detected with surface geodetic instruments. While there is no obvious short-term precursor, I find unidirectional tremor migration accompanied by elevated tremor rates in the 3 months prior to the earthquake, which suggests accelerated creep on the fault ∼16 km beneath the eventual earthquake hypocenter.

  3. Precise location of San Andreas Fault tremors near Cholame, California using seismometer clusters: Slip on the deep extension of the fault?

    USGS Publications Warehouse

    Shelly, D.R.; Ellsworth, W.L.; Ryberg, T.; Haberland, C.; Fuis, G.S.; Murphy, J.; Nadeau, R.M.; Burgmann, R.

    2009-01-01

    We examine a 24-hour period of active San Andreas Fault (SAF) tremor and show that this tremor is largely composed of repeated similar events. Utilizing this similarity, we locate the subset of the tremor with waveforms similar to an identified low frequency earthquake (LFE) "master template," located using P and S wave arrivals to be ???26 km deep. To compensate for low signal-to-noise, we estimate event-pair differential times at "clusters" of nearby stations rather than at single stations. We find that the locations form a near-linear structure in map view, striking parallel to the SAF and near the surface trace. Therefore, we suggest that at least a portion of the tremor occurs on the deep extension of the fault, likely reflecting shear slip, similar to subduction zone tremor. If so, the SAF may extend to the base of the crust, ???10 km below the deepest regular earthquakes on the fault. ?? 2009 by the American Geophysical Union.

  4. Remotely triggered microearthquakes and tremor in central California following the 2010 Mw 8.8 Chile earthquake

    USGS Publications Warehouse

    Peng, Zhigang; Hill, David P.; Shelly, David R.; Aiken, Chastity

    2010-01-01

    We examine remotely triggered microearthquakes and tectonic tremor in central California following the 2010 Mw 8.8 Chile earthquake. Several microearthquakes near the Coso Geothermal Field were apparently triggered, with the largest earthquake (Ml 3.5) occurring during the large-amplitude Love surface waves. The Chile mainshock also triggered numerous tremor bursts near the Parkfield-Cholame section of the San Andreas Fault (SAF). The locally triggered tremor bursts are partially masked at lower frequencies by the regionally triggered earthquake signals from Coso, but can be identified by applying high-pass or matched filters. Both triggered tremor along the SAF and the Ml 3.5 earthquake in Coso are consistent with frictional failure at different depths on critically-stressed faults under the Coulomb failure criteria. The triggered tremor, however, appears to be more phase-correlated with the surface waves than the triggered earthquakes, likely reflecting differences in constitutive properties between the brittle, seismogenic crust and the underlying lower crust.

  5. Therapeutic effects of arotinolol, a beta-adrenergic blocker, on tremor in MPTP-induced parkinsonian monkeys.

    PubMed

    Kuno, S; Mizuta, E; Nishida, J; Takechi, M

    1992-10-01

    The effect of arotinolol, a peripherally acting beta-adrenergic-blocking agent, on postural or kinetic tremor was studied in monkeys with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Male cynomolgus monkeys (Macaca fascicularis) were treated with three injections of MPTP hydrochloride (0.3 mg/kg, i.v.) at an interval of 3-4 days, followed by several injections of the same dose every 7 days. Four monkeys with persistent parkinsonian symptoms manifested for greater than 1 year were used. The animals developed mild to moderate degrees of postural or kinetic tremor, and their motor activity was reduced. Arotinolol (20-30 mg/kg, s.c.) significantly suppressed postural tremor in a dose-dependent manner. Propranolol (20-30 mg/kg) was also effective in suppressing the tremor. However, the application of propranolol induced emesis, whereas arotinolol had no adverse effects. These results suggest that arotinolol is a useful adjunct to dopaminergic therapy for tremor in Parkinson's disease.

  6. Tectonic tremor and LFEs on a reverse fault in Taiwan

    DOE PAGES

    Aguiar, Ana C.; Chao, Kevin; Beroza, Gregory C.

    2017-06-16

    In this paper, we compare low-frequency earthquakes (LFEs) from triggered and ambient tremor under the southern Central Range, Taiwan. We apply the PageRank algorithm used by Aguiar and Beroza (2014) that exploits the repetitive nature of the LFEs to find repeating LFEs in both ambient and triggered tremor. We use these repeaters to create LFE templates and find that the templates created from both tremor types are very similar. To test their similarity, we use both interchangeably and find that most of both the ambient and triggered tremor match the LFE templates created from either data set, suggesting that LFEsmore » for both events have a common origin. Finally, we locate the LFEs by using local earthquake P wave and S wave information and find that LFEs from triggered and ambient tremor locate to between 20 and 35 km on what we interpret as the deep extension of the Chaochou-Lishan Fault.« less

  7. Transducer-based evaluation of tremor

    PubMed Central

    Haubenberger, Dietrich; Abbruzzese, Giovanni; Bain, Peter G; Bajaj, Nin; Benito-León, Julián; Bhatia, Kailash P; Deuschl, Günther; Forjaz, Maria João; Hallett, Mark; Louis, Elan D; Lyons, Kelly E; Mestre, Tiago A; Raethjen, Jan; Stamelou, Maria; Tan, Eng-King; Testa, Claudia M; Elble, Rodger J

    2016-01-01

    The Movement Disorder Society (MDS) established a task force on tremor that reviewed the use of transducer-based measures in the quantification and characterization of tremor. Studies of accelerometry, electromyography, activity monitoring, gyroscopy, digitizing tablet-based measures, vocal acoustic analysis, and several other transducer-based methods were identified by searching PubMed.gov. The availability, use, acceptability, reliability, validity, and responsiveness were reviewed for each measure using the following criteria: 1) used in the assessment of tremor, 2) used in published studies by people other than the developers, and 3) adequate clinimetric testing. Accelerometry, gyroscopy, electromyography, and digitizing tablet-based measures fulfilled all three criteria. Compared to rating scales, transducers are far more sensitive to changes in tremor amplitude and frequency, but they do not appear to be more capable of detecting a change that exceeds random variability in tremor amplitude (minimum detectable change). The use of transducer-based measures requires careful attention to their limitations and validity in a particular clinical or research setting. PMID:27273470

  8. What does tremor really look like? Initial results from an 84-element array

    NASA Astrophysics Data System (ADS)

    Vidale, J. E.; Sweet, J.; Creager, K. C.; Ghosh, A.

    2008-12-01

    Aspiring to see more intimate details, we placed an 84-element short-period vertical-component array with an aperture of 1km on a hard rock mountain over the path of Cascadia tremor. This site is coincident with a stellar 6-station three-component CAFE array (see talk by K. Creager). Texans, which are convenient to deploy but require recycling for fresh batteries every four days, recorded the seismograms. We recorded 8 days in March and 17 days in May 2008. We find most of the arrivals at high frequencies, especially in the stacks, are P-waves, due to the network constitution. The March week contains only six intermittent hours of tremor detectable by the usual envelope analysis of data from the regional network, but array beamforming shows much more continuous activity, and extending about a half day longer. We also pick up a later episode of weak tremor that contains probably the first glance of low-frequency earthquake in Cascadia (see abstract by J. Sweet). The May field season recorded full-blown tremor passing directly underneath in startling detail. The tremor source region in preliminary images is more compact than the cloud of locations determined from envelope correlation, but also with an apparently persistent patchwork of regions that do and do not generate tremor. Further analysis and future deployments with multiple dense arrays show great promise for getting to the bottom of the issue of tremor generation.

  9. Vocal Tremor Analysis with the Vocal Demodulator.

    ERIC Educational Resources Information Center

    Winholtz, William S.; Ramig, Lorraine Olson

    1992-01-01

    This paper describes the Vocal Demodulator as a new device for analysis of vocal tremor. The Vocal Demodulator produces amplitude-demodulated and frequency-demodulated outputs and measures the frequency and level of low-frequency tremor components in sustained phonation. The paper describes quantification of the demodulation process, validation…

  10. Recent Findings on the Nature of Episodic Tremor and Slip Along the Northern Cascadia Margin

    NASA Astrophysics Data System (ADS)

    Dragert, H.; Wang, K.; Kao, H.

    2008-12-01

    Episodic Tremor and Slip (ETS), as observed along the northern Cascadia margin, has been defined empirically as repeated, transient ground motions at a plate margin, roughly opposite to longer-term interseismic deformation, occurring synchronously with low-frequency, emergent seismic signals. Although the exact causal processes are still a matter of debate, recent improvements in the monitoring of these transient events provide clearer constraints for the location and the migration of both tremor and slip. In areal distribution, the tremors continue to occur in a band overlying the 25 to 55 km depth contours of the nominal subducting plate interface. The previously reported extended depth distribution of tremor is also observed for the most recent tremor episodes, as is the coincidence of peak tremor activity with a band of seismic reflectors that is commonly interpreted to be positioned above the plate interface. In these episodes, tremors migrate along strike of the subduction zone from the southeast to the northwest at speeds ranging from 5 to 13 km/day. Tremor data also show changes in migration speed during the course of a single episode. No systematic migration in depth has yet been resolved. Denser GPS monitoring and the introduction of borehole strainmeters have also led to a better definition of the ETS surface deformations patterns, including those derived from the vertical GPS component. Inversion of the GPS data, constrained by limiting slip to the currently accepted plate interface, results in an area of slip that parallels the strike of the subduction zone, overlapping with but narrower than the band of tremor distribution and displaced slightly seaward. Inversion constrained by a shallower occurrence of slip, on or near the reflector band, results in a broader distribution of slip with reduced magnitudes. This would be more commensurate with the wider distribution of tremor. The current GPS deformation data are unable to tell whether the slip could be distributed over a thick shear zone. However, the time series of borehole strain indicate that the along-strike propagating slip patch likely has a sharp propagating front, supporting the notion that slip occurs along a thin slip zone or a single decollement. Consequently, a working model for ETS is that the dominant slip occurs repeatedly along a well-defined weak zone but the synchronous tremor occurs not only within this zone but also in a surrounding volume whose material properties have been altered by an abundance of fluids and the presence of high pore pressures.

  11. Exercise-induced hand tremor: a possible test for beta 2-adrenoceptor selectivity in man?

    PubMed Central

    Abila, B; Wilson, J F; Marshall, R W; Richens, A

    1986-01-01

    The effects of intravenous doses of propranolol, sotalol, timolol, atenolol and placebo on exercise-induced tachycardia and exercise-induced increases in hand tremor were assessed in four healthy volunteers. All active drugs produced significant reductions in exercise-induced tachycardia. Exercise caused consistent significant increases in hand tremor which were blocked by the three non-cardioselective drugs but not by atenolol or placebo. The blockade of exercise-induced hand tremor is suggested as a possible test for the assessment of the selectivity of beta-adrenoceptor blockade in man. PMID:2874824

  12. Beats produced between a rhythmic applied force and the resting tremor of Parkinsonism.

    PubMed Central

    Walsh, E G

    1979-01-01

    Rhythmic forces have been applied to the wrist of patients with Parkinsonism tremor by means of a printed motor. The tremor rate was not altered to that of the applied force. On the contrary, beats were established, the rate of which depended on the difference in rate between the tremor and the applied rhythm. Most of the observations have been for horizontal motion of the hand but similar phenomena have been seen for vertical movements, and for other parts of the body--for example, foot, elbow, finger joint, and head. The observations are regarded as supporting the view that the tremorgenic mechanism is central. There was no electromyographic evidence of servo driving or servo assistance in the genesis of the tremor. PMID:762588

  13. Jaw tremor as a physiological biomarker of bruxism.

    PubMed

    Laine, C M; Yavuz, Ş U; D'Amico, J M; Gorassini, M A; Türker, K S; Farina, D

    2015-09-01

    To determine if sleep bruxism is associated with abnormal physiological tremor of the jaw during a visually-guided bite force control task. Healthy participants and patients with sleep bruxism were given visual feedback of their bite force and asked to trace triangular target trajectories (duration=20s, peak force <35% maximum voluntary force). Bite force control was quantified in terms of the power spectra of force fluctuations, masseter EMG activity, and force-to-EMG coherence. Patients had greater jaw force tremor at ∼8 Hz relative to controls, along with increased masseter EMG activity and force-to-EMG coherence in the same frequency range. Patients also showed lower force-to-EMG coherence at low frequencies (<3 Hz), but greater coherence at high frequencies (20-40 Hz). Finally, patients had greater 6-10 Hz force tremor during periods of descending vs. ascending force, while controls showed no difference in tremor with respect to force dynamics. Patients with bruxism have abnormal jaw tremor when engaged in a visually-guided bite force task. Measurement of jaw tremor may aid in the detection/evaluation of bruxism. In light of previous literature, our results also suggest that bruxism is marked by abnormal or mishandled peripheral feedback from the teeth. Copyright © 2015. Published by Elsevier Ireland Ltd.

  14. Voice handicap in essential tremor: a comparison with normal controls and Parkinson's disease.

    PubMed

    Louis, Elan D; Gerbin, Marina

    2013-01-01

    Although voice tremor is one of the most commonly noted clinical features of essential tremor (ET), there are nearly no published data on the handicap associated with it. The Voice Handicap Index (VHI) was self-administered by participants enrolled in a research study at Columbia University Medical Center. The VHI quantifies patients' perceptions of handicap due to voice difficulties. Data from 98 ET cases were compared with data from 100 controls and 85 patients with another movement disorder (Parkinson's disease, PD). Voice tremor was present on examination in 25 (25.5%) ET cases; 12 had mild voice tremor (ETMild VT) and 13 had marked voice tremor (ETMarked VT). VHI scores were higher in ET cases than controls (p = 0.02). VHI scores among ETMarked VT were similar to those of PD cases; both were significantly higher than controls (p<0.001). The three VHI subscale scores (physical, functional, emotional) were highest in ETMarked VT, with values that were similar to those observed in PD. The voice handicap associated with ET had multiple (i.e., physical, functional, and emotional) dimensions. Moreover, ET cases with marked voice tremor on examination had a level of self-reported voice handicap that was similar to that observed in patients with PD.

  15. Gabapentin can improve postural stability and quality of life in primary orthostatic tremor.

    PubMed

    Rodrigues, Julian P; Edwards, Dylan J; Walters, Susan E; Byrnes, Michelle L; Thickbroom, Gary; Stell, Rick; Mastaglia, Frank L

    2005-07-01

    Primary orthostatic tremor (OT) is characterized by leg tremor and instability on standing. High frequency (13-18 Hz) tremor bursting is present in leg muscles during stance, and posturography has shown greater than normal sway. We report on an open-label add-on study of gabapentin in 6 patients with OT. Six patients were studied with surface electromyography, force platform posturography, and a modified Parkinson's disease questionnaire (PDQ-39) quality of life (QOL) scale before and during treatment with gabapentin 300 mg t.d.s. If on other medications for OT, these were continued unchanged. Of the 6 patients, 4 reported a subjective benefit of 50 to 75% with gabapentin, 3 of whom showed reduced tremor amplitude and postural sway of up to 70%. Dynamic balance improved in all 3 patients who completed the protocol. QOL data from 5 patients showed improvement in all cases. No adverse effects were noted. Gabapentin may improve tremor, stability, and QOL in patients with OT, and symptomatic response correlated with a reduction in tremor amplitude and postural sway. The findings confirm previous reports of symptomatic benefit with gabapentin and provide justification for larger controlled clinical trials. Further work is required to establish the optimal dosage and to validate the methods used to quantify the response to treatment. Copyright 2005 Movement Disorder Society.

  16. Cerebral toxoplasmosis in Acquired Immunodeficiency Syndrome (AIDS) patients also provides unifying pathophysiologic hypotheses for Holmes tremor.

    PubMed

    Lekoubou, Alain; Njouoguep, Rodrigue; Kuate, Callixte; Kengne, André Pascal

    2010-06-03

    Holmes tremor is a rare symptomatic movement disorder. Currently suggested pathophysiological mechanisms of the disease are mostly derived from stroke cases. Although rare, cerebral toxoplasmosis may strengthen the pathophysiologic mechanism of disease. A case of Holmes tremor secondary to cerebral toxoplasmosis in an AIDS patient is presented. A relevant literature search was performed, using pubmed and several entries for Holmes tremor as labelled in the literature. The unifying feature of our case and those of the literature is the involvement of either the cerebello-thalamo-cortical and/or the dentato-rubro-olivary pathways. The abscess or the extension of surrounding edema beyond these two circuits may account for the superimposed dysfunction of the nigrostriatal system in some but not all cases. The short delay observed in our observation and the dramatic response to treatment may indirectly support the secondary neuronal degeneration theory in the mechanism of Holmes tremor. Cases of cerebral toxoplasmosis in AIDS patients also provide arguments for the role of the thalamo-cortical and/or the dentato-rubro-olivary pathways dysfunction in the pathogenesis of Holmes tremor. Involvement of the nigro-striatal pathway may not be crucial in the development of this syndrome. Our case also brings additional indirect arguments for the role of secondary neuronal degeneration in the mechanism of Holmes tremor.

  17. Methodology for estimating human perception to tremors in high-rise buildings

    NASA Astrophysics Data System (ADS)

    Du, Wenqi; Goh, Key Seng; Pan, Tso-Chien

    2017-07-01

    Human perception to tremors during earthquakes in high-rise buildings is usually associated with psychological discomfort such as fear and anxiety. This paper presents a methodology for estimating the level of perception to tremors for occupants living in high-rise buildings subjected to ground motion excitations. Unlike other approaches based on empirical or historical data, the proposed methodology performs a regression analysis using the analytical results of two generic models of 15 and 30 stories. The recorded ground motions in Singapore are collected and modified for structural response analyses. Simple predictive models are then developed to estimate the perception level to tremors based on a proposed ground motion intensity parameter—the average response spectrum intensity in the period range between 0.1 and 2.0 s. These models can be used to predict the percentage of occupants in high-rise buildings who may perceive the tremors at a given ground motion intensity. Furthermore, the models are validated with two recent tremor events reportedly felt in Singapore. It is found that the estimated results match reasonably well with the reports in the local newspapers and from the authorities. The proposed methodology is applicable to urban regions where people living in high-rise buildings might feel tremors during earthquakes.

  18. Intraoperative acceleration measurements to quantify improvement in tremor during deep brain stimulation surgery.

    PubMed

    Shah, Ashesh; Coste, Jérôme; Lemaire, Jean-Jacques; Taub, Ethan; Schüpbach, W M Michael; Pollo, Claudio; Schkommodau, Erik; Guzman, Raphael; Hemm-Ode, Simone

    2017-05-01

    Deep brain stimulation (DBS) surgery is extensively used in the treatment of movement disorders. Nevertheless, methods to evaluate the clinical response during intraoperative stimulation tests to identify the optimal position for the implantation of the chronic DBS lead remain subjective. In this paper, we describe a new, versatile method for quantitative intraoperative evaluation of improvement in tremor with an acceleration sensor that is mounted on the patient's wrist during surgery. At each anatomical test position, the improvement in tremor compared to the initial tremor is estimated on the basis of extracted outcome measures. This method was tested on 15 tremor patients undergoing DBS surgery in two centers. Data from 359 stimulation tests were acquired. Our results suggest that accelerometric evaluation detects tremor changes more sensitively than subjective visual ratings. The effective stimulation current amplitudes identified from the quantitative data (1.1 ± 0.8 mA) are lower than those identified by visual evaluation (1.7 ± 0.8 mA) for similar improvement in tremor. Additionally, if these data had been used to choose the chronic implant position of the DBS lead, 15 of the 26 choices would have been different. These results show that our method of accelerometric evaluation can potentially improve DBS targeting.

  19. Frictional-faulting model for harmonic tremor before Redoubt Volcano eruptions

    USGS Publications Warehouse

    Dmitrieva, Ksenia; Hotovec-Ellis, Alicia J.; Prejean, Stephanie G.; Dunham, Eric M.

    2013-01-01

    Seismic unrest, indicative of subsurface magma transport and pressure changes within fluid-filled cracks and conduits, often precedes volcanic eruptions. An intriguing form of volcano seismicity is harmonic tremor, that is, sustained vibrations in the range of 0.5–5 Hz. Many source processes can generate harmonic tremor. Harmonic tremor in the 2009 eruption of Redoubt Volcano, Alaska, has been linked to repeating earthquakes of magnitudes around 0.5–1.5 that occur a few kilometres beneath the vent. Before many explosions in that eruption, these small earthquakes occurred in such rapid succession—up to 30 events per second—that distinct seismic wave arrivals blurred into continuous, high-frequency tremor. Tremor abruptly ceased about 30 s before the explosions. Here we introduce a frictional-faulting model to evaluate the credibility and implications of this tremor mechanism. We find that the fault stressing rates rise to values ten orders of magnitude higher than in typical tectonic settings. At that point, inertial effects stabilize fault sliding and the earthquakes cease. Our model of the Redoubt Volcano observations implies that the onset of volcanic explosions is preceded by active deformation and extreme stressing within a localized region of the volcano conduit, at a depth of several kilometres.

  20. Muscle-Cooling Intervention to Reduce Fatigue and Fatigue-Induced Tremor in Novice and Experienced Surgeons: A Preliminary Investigation.

    PubMed

    Jensen, Lauren; Dancisak, Michael; Korndorffer, James

    2016-10-01

    A localized, intermittent muscle-cooling protocol was implemented to determine cooling garment efficacy in reducing upper extremity muscular fatigue and tremor in novice ( n  = 10) and experienced surgeons ( n  = 9). Subjects wore a muscle-cooling garment while performing multiple trials of a forearm exercise and paired suturing task to induce muscular fatigue and exercise-induced tremor. A reduction in tremor amplitude and an extension in time to fatigue were expected with muscle cooling as compared with control trials. Each subject completed an intervention session (5°C cooling condition) and a control session (32°C or thermal neutral condition). A paired samples t test indicated that tremor amplitude was significantly reduced ( t [8] = 1.89458; p  < 0.05) in experienced surgeons in two dimensions (up and down, and back and forth). Tremor amplitude was reduced in novice surgeons but the effect was not significant. Time to fatigue and suture time improved in both cohorts with muscle cooling, but the effect did not reach significance. Results from the pilot work suggest muscle cooling as an intervention for reduction of fatigue and tremor is very promising, warranting further investigation. Surgical specialties that require prolonged procedures might benefit more from this intervention.

  1. Moment tensor inversion of tremor events at Arenal Volcano (Costa Rica)

    NASA Astrophysics Data System (ADS)

    Davi, Rosalia; O'Brien, Gareth; Lokmer, Ivan; Bean, Christopher; Lesage, Philippe; de Barros, Louis

    2010-05-01

    Arenal is a small, andesitic stratovolcano located in north-western Costa Rica, 97 km from the capital San Josè. Arenal's explosive activity is preceded, and accompanied, by different types of seismic events such as long period events, explosions, tremor and sporadic tectonic swarms. Tremor is the most common type of event recorded at Arenal with durations of up to several hours. Both spasmodic (1-6 Hz) and harmonic (0.9-2 Hz) tremor are observed with no clear difference in the genesis of each; the former can progressively evolve into the latter and vice-versa. However, the origin of the tremor is, at present, not fully understood. In order to retrieve the source mechanism generating these types of events, a moment tensor inversion is performed. A dataset recorded on the volcano, during a seismic experiment carried out in 2005, is used for the inversion. This dataset consists of ten days of data, from which two main groups of tremor at different frequencies (group one at 0.8-1.5 Hz and group two at 1.8-2.5 Hz) have been selected. A major difficulty in any inversion of tremor is that a clear onset can rarely be determined and hence retrieving the direct arrivals from the source is impossible. Usually, these arrivals are heavily contaminated by scattered waves. On Arenal the initial part of the tremor bands can be isolated, therefore offering a good opportunity to invert tremor for the source mechanism. The Green's functions used in the inversion were calculated using 3D numerical simulations including the real topography of the volcano and the best estimation of the velocity model available for Arenal. This velocity model was retrieved from seismic refraction experiments and sounding using the SPAC method. For each day, different tremor starting bands have been selected and divided into the groups mentioned above. For each band a source location is determined by performing a grid search through a volume of 4735 possible source points located under the crater summit. From the evaluation of the misfit values, a common source location is determined. The source appears to be located in shallow position, (less than 200 meters deep) under the crater summit. The source mechanisms for each tremor bands are retrieved for each day using the inversion procedure.

  2. Unusual Volcanic Tremor Observations in Fogo Island, Cape Verde

    NASA Astrophysics Data System (ADS)

    Custodio, S. I.; Heleno, S. I.

    2004-12-01

    Volcanic tremor is a ground motion characterized by well-defined frequencies, and has traditionally been explained by the movement of fluids, namely magma, in conduits or cracks (Chouet, 1996). Thus tremor has the potential to reveal key aspects of volcanic structure and dynamics. Two types of previously unreported seismic signals have been observed in Fogo volcano: a) tide-modulated seismic noise and volcanic tremor, and b) high-frequency low-attenuation harmonic tremor. Amplitude modulation of seismic noise can be detected by simple eye-inspection of raw data in some stations of the VIGIL Network, Fogo Volcano. A more detailed analysis shows that certain frequency bands which we interpret as volcanic tremor, mainly in the range 2.0-3.0Hz, are preferentially modulated. The main frequency of modulation is 1.93 c.p.d., which corresponds to M2, the semi-diurnal lunar harmonic. Air pressure and temperature, which are continuously monitored in Fogo Island, have been analyzed and cannot explain the observed periodicity. Thus we conclude that seismic noise and tremor amplitudes are controlled by tides (Custodio et al., 2003). A relation between the tidal modulation and hydrothermal systems activity is suspected and under investigation. High-frequency (HF) tremor (5-20 Hz) has been recorded simultaneously in several stations in Fogo Island and even in different islands of the Cape Verde archipelago (up to distances of 120 km). In volcanic environments high-frequency motions are normally recorded in a small area close to the source, due to the strong attenuation of seismic waves. Non-volcanic origins for HF tremor were examined: cultural noise, whale vocalizations, ship noise, electronic/processing artifacts and path and/or site effects were all considered and dismissed. Emergent arrivals and strong site effects render source location a difficult task, but the analysis of wave polarizations and amplitude distributions seems to point to an offshore source. Two alternative mechanisms are presently being considered: a) propagation in the ocean sound channel of T-waves generated by resonance in a shallow conduit/chamber, and b) existence of a deep strong source, such as a large fluid-filled crack, capable of producing tremor with a complex pattern that propagates to large distances.

  3. Spatial distribution of non volcanic tremors offshore eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Xie, X. S.; Lin, J. Y.; Hsu, S. K.; Lee, C. H.; Liang, C. W.

    2012-04-01

    Non-volcanic tremor (NVT), originally identified in the subduction zone of the southwest Japan, have been well studied in the circum-Pacific subduction zones and the transform plate boundary in California. Most studies related NVT to the release of fluids, while some others associated them with slow-slip events, and can be triggered instantaneously by the surface waves of teleseismic events. Taiwan is located at a complex intersection of the Philippines Sea Plate and the Eurasian Plate. East of Taiwan, the Philippine Sea plate subducts northward beneath the Ryukyu arc. The major part of the island results from the strong convergence between the two plates and the convergent boundary is along the Longitudinal Valley. Moreover, an active strike-slip fault along the Taitung Canyon was reported in the offshore eastern Taiwan. In such complicate tectonic environments, NVT behavior could probably bring us more information about the interaction of all the geological components in the area. In this study, we analyze the seismic signals recorded by the Ocean bottom Seismometer (OBS) deployed offshore eastern Taiwan in September 2009. TAMS (Tremor Active Monitor System) software was used to detect the presence of NVT. 200 tremor-like signals were obtained from the 3 weeks recording period. We use the SSA (Source-Scanning Algorithm) to map the possible distribution of the tremor. In total, 180 tremors were located around the eastern offshore Taiwan. The tremors are mainly distributed in two source areas: one is along the Taitung Canyon, and the other is sub-parallel to the Ryukyu Trench, probably along the plate interface. Many tremors are located at depth shallower than 5 km, which suggests a possible existence of a weak basal detachment along the sea bottom. Other tremors with larger depth may be related to the dehydration of the subducting sea plate as suggested by the former studies. Limited by the short recording period of the OBS experiment, we could not obtain any possible repeating interval and the spatial migration about the tremor occurrence. However, the presence of NVT offshore eastern Taiwan shown in our study still brings us valuable understanding about the undergoing tectonic processes in the marine area.

  4. A review of primary writing tremor.

    PubMed

    Rana, Abdul Qayyum; Vaid, Haris M

    2012-03-01

    A task-specific tremor (TST) is a rare form of movement disorder that appears while performing or attempting to perform a particular task. Primary writing tremor (PWT) is the most common form of TST which only occurs during the act of writing and hinders it. (Bain PG, Findley LJ, Britton TC, Rothwell JC, Gresty MA, Thompson PD, Marsden CD. MRC Human Movement, and Balance Unit, Institute of Neurology, London, UK. Primary writing tremor. Brain. 1995;118(6):1461-72.) Primary writing tremor type B is present not only during the act of writing but also when the hand assumes a writing posture. (Bain PG, Findley LJ, Britton TC, Rothwell JC, Gresty MA, Thompson PD, Marsden CD. MRC Human Movement and Balance Unit, Institute of Neurology, London, UK. Primary writing tremor. Brain. 1995;118(6):1461-72.) We first of all describe a remarkable case study of a 50-year old, right-handed male who started experiencing a primary writing tremor in his right hand about a year ago. This case was found to be of particular interest because the patient had it relatively difficult when attempting to write numbers as opposed to writing letters. This review further discusses the clinical manifestations of PWT. In addition, three main hypotheses have been proposed for the causation of PWT, although the exact pathophysiology of PWT still remains unknown. It has been suggested that PWT is a separate entity, a variant of essential tremor and not a separate entity, or a type of dystonia. The various treatment options for PWT are discussed including botulinum toxin and oral pharmacotherapy.

  5. Tremor–genic slow slip regions may be deeper and warmer and may slip slower than non–tremor–genic regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery-Brown, E. K.; Syracuse, E. M.

    The slow slip events (SSEs) are observed worldwide and often coincide with tectonic tremor. Notable examples of SSEs lacking observed tectonic tremor, however, occur beneath Kilauea Volcano, Hawaii, the Boso Peninsula, Japan, {near San Juan Bautista on the San Andreas Fault, California, and recently in Central Ecuador. These SSEs are similar to other worldwide SSEs in many ways (e.g., size or duration), but lack the concurrent tectonic tremor observed elsewhere; instead they trigger swarms of regular earthquakes. We investigate the physical conditions that may distinguish these non-tremor-genic SSEs from those associated with tectonic tremor including: slip velocity, pressure, temperature, fluidsmore » and fault asperities, although we cannot eliminate the possibility that tectonic tremor may be obscured in highly attenuating regions. Slip velocities of SSEs at Kilauea Volcano (~10⁻⁶ m/s) and Boso Peninsula (~10⁻⁷ m/s) are among the fastest SSEs worldwide. Kilauea Volcano, the Boso Peninsula and Central Ecuador are also among the shallowest SSEs worldwide, and thus have lower confining pressures and cooler temperatures in their respective slow slip zones. {Fluids also likely contribute to tremor generation, and no corresponding zone of high v p/v s has been noted at Kilauea or Boso. We suggest that the relatively faster slip velocities at Kilauea Volcano and the Boso Peninsula result from specific physical conditions that may also be responsible for triggering swarms of regular earthquakes adjacent to the slow slip, while different conditions produce slower SSE velocities elsewhere and trigger tectonic tremor.« less

  6. Seismic‐wave attenuation determined from tectonic tremor in multiple subduction zones

    USGS Publications Warehouse

    Yabe, Suguru; Baltay, Annemarie S.; Ide, Satoshi; Beroza, Gregory C.

    2014-01-01

    Tectonic tremor provides a new source of observations that can be used to constrain the seismic attenuation parameter for ground‐motion prediction and hazard mapping. Traditionally, recorded earthquakes of magnitude ∼3–8 are used to develop ground‐motion prediction equations; however, typical earthquake records may be sparse in areas of high hazard. In this study, we constrain the distance decay of seismic waves using measurements of the amplitude decay of tectonic tremor, which is plentiful in some regions. Tectonic tremor occurs in the frequency band of interest for ground‐motion prediction (i.e., ∼2–8  Hz) and is located on the subducting plate interface, at the lower boundary of where future large earthquakes are expected. We empirically fit the distance decay of peak ground velocity from tremor to determine the attenuation parameter in four subduction zones: Nankai, Japan; Cascadia, United States–Canada; Jalisco, Mexico; and southern Chile. With the large amount of data available from tremor, we show that in the upper plate, the lower crust is less attenuating than the upper crust. We apply the same analysis to intraslab events in Nankai and show the possibility that waves traveling from deeper intraslab events experience more attenuation than those from the shallower tremor due to ray paths that pass through the subducting and highly attenuating oceanic crust. This suggests that high pore‐fluid pressure is present in the tremor source region. These differences imply that the attenuation parameter determined from intraslab earthquakes may underestimate ground motion for future large earthquakes on the plate interface.

  7. Insights into the causal relationship between slow slip and tectonic tremor in Guerrero, Mexico

    NASA Astrophysics Data System (ADS)

    Villafuerte, Carlos; Cruz-Atienza, Víctor M.

    2017-08-01

    Similar to other subduction zones, tectonic tremors (TTs) and slow-slip events (SSEs) take place in the deep segment of the plate interface in Guerrero, Mexico. However, their spatial correlation in this region is not as clear as the episodic tremor and slip observed in Cascadia and Japan. In this study we provide insights into the causal relationship between TTs and SSEs in Guerrero by analyzing the evolution of the deformation fields induced by the long-term 2006 SSE together with new locations of TTs and low-frequency earthquakes (LFEs). Unlike previous studies we find that the SSE slip rate modulates the TT and LFE activity in the whole tremor region. This means that the causal relationship between the SSE and the TT activity directly depends on the stressing rate history of the tremor asperities that is modulated by the surrounding slip rate. We estimated that the frictional strength of the asperities producing tremor downdip in the sweet spot is around 3.2 kPa, which is 2.3 times smaller than the corresponding value updip in the transient zone, partly explaining the overwhelming tremor activity of the sweet spot despite that the slow slip there is smaller. Based on the LFE occurrence-rate history during the interlong-term SSE period, we determined that the short-term SSEs in Guerrero take place further downdip (about 35 km) than previously estimated, with maximum slip of about 8 mm in the sweet spot. This new model features a continuum of slow slip extending across the entire tremor region of Guerrero.

  8. Tremor–genic slow slip regions may be deeper and warmer and may slip slower than non–tremor–genic regions

    DOE PAGES

    Montgomery-Brown, E. K.; Syracuse, E. M.

    2015-09-17

    The slow slip events (SSEs) are observed worldwide and often coincide with tectonic tremor. Notable examples of SSEs lacking observed tectonic tremor, however, occur beneath Kilauea Volcano, Hawaii, the Boso Peninsula, Japan, {near San Juan Bautista on the San Andreas Fault, California, and recently in Central Ecuador. These SSEs are similar to other worldwide SSEs in many ways (e.g., size or duration), but lack the concurrent tectonic tremor observed elsewhere; instead they trigger swarms of regular earthquakes. We investigate the physical conditions that may distinguish these non-tremor-genic SSEs from those associated with tectonic tremor including: slip velocity, pressure, temperature, fluidsmore » and fault asperities, although we cannot eliminate the possibility that tectonic tremor may be obscured in highly attenuating regions. Slip velocities of SSEs at Kilauea Volcano (~10⁻⁶ m/s) and Boso Peninsula (~10⁻⁷ m/s) are among the fastest SSEs worldwide. Kilauea Volcano, the Boso Peninsula and Central Ecuador are also among the shallowest SSEs worldwide, and thus have lower confining pressures and cooler temperatures in their respective slow slip zones. {Fluids also likely contribute to tremor generation, and no corresponding zone of high v p/v s has been noted at Kilauea or Boso. We suggest that the relatively faster slip velocities at Kilauea Volcano and the Boso Peninsula result from specific physical conditions that may also be responsible for triggering swarms of regular earthquakes adjacent to the slow slip, while different conditions produce slower SSE velocities elsewhere and trigger tectonic tremor.« less

  9. Endoscope-Assisted Microsurgical Removal of an Intraventricular Ependymal Cyst That Manifested with Tremor.

    PubMed

    Kutlay, Murat; Yavan, Ibrahim; Kural, Cahit; Ozer, Ilker; Daneyemez, Mehmet K; Izci, Yusuf

    2016-06-01

    Intraventricular ependymal cysts (ECs) are rare, histologically benign neuroepithelial cysts. Most of these cysts are clinically silent and discovered incidentally. Rarely, they become symptomatic, leading to obstruction of the cerebrospinal fluid circulation. ECs located inside the ventricles may manifest with signs of increased intracranial pressure. A 32-year-old woman presented with a 6-year history of tremor affecting her left hand. In the last month, she had been experiencing headache as well, and the tremor of the left hand was affecting her quality of life. The patient demonstrated a fine resting and intention tremor of the left hand and a voice tremor. Magnetic resonance imaging revealed a large cystic, nonenhancing lesion within the right lateral ventricle. The fluid within the cyst was isointense to cerebrospinal fluid on all sequences. Because of the rapid progression of her symptoms and no response to medication, surgical decompression of the cyst was considered. The cyst was removed by an endoscope-assisted microsurgical technique. Her postoperative course was uneventful. A marked reduction in her tremor was noted in the immediate postoperative period. Histopathologic diagnosis was of an EC. During the follow-up period, the patient's tremor, although still present, had improved dramatically. At 6 months postoperatively, she could hold a drinking glass without spilling. This is a unique case of an intraventricular EC that manifested with tremor, which improved by endoscope-assisted microsurgical removal of the cyst. This case also supports the important role of endoscopic surgery in the treatment of intraventricular cystic lesions. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Multiple coincident eruptive seismic tremor sources during the 2014-2015 eruption at Holuhraun, Iceland

    NASA Astrophysics Data System (ADS)

    Eibl, Eva P. S.; Bean, Christopher J.; Jónsdóttir, Ingibjörg; Höskuldsson, Armann; Thordarson, Thorvaldur; Coppola, Diego; Witt, Tanja; Walter, Thomas R.

    2017-04-01

    We analyze eruptive tremor during one of the largest effusive eruptions in historical times in Iceland (2014/2015 Holuhraun eruption). Seismic array recordings are compared with effusion rates deduced from Moderate Resolution Imaging Spectroradiometer recordings and ground video monitoring data and lead to the identification of three coexisting eruptive tremor sources. This contrasts other tremor studies that generally link eruptive tremor to only one source usually associated with the vent. The three sources are (i) a source that is stable in back azimuth and shows bursts with ramp-like decrease in amplitude at the beginning of the eruption: we link it to a process below the open vents where the bursts correlate with the opening of new vents and temporary increases in the lava fountaining height; (ii) a source moving by a few degrees per month while the tremor amplitude suddenly increases and decreases: back azimuth and slowness correlate with the growing margins of the lava flow field, whilst new contact with a river led to fast increases of the tremor amplitude; and (iii) a source moving by up to 25° southward in 4 days that cannot be related to any observed surface activity and might be linked to intrusions. We therefore suggest that eruptive tremor amplitudes/energies are used with caution when estimating eruptive volumes, effusion rates, or the eruption explosivity as multiple sources can coexist during the eruption phase. Our results suggest that arrays can monitor both the growth of a lava flow field and the activity in the vents.

  11. Listener Perception of Respiratory-Induced Voice Tremor

    ERIC Educational Resources Information Center

    Farinella, Kimberly A.; Hixon, Thomas J.; Hoit, Jeannette D.; Story, Brad H.; Jones, Patricia A.

    2006-01-01

    Purpose: The purpose of this study was to determine the relation of respiratory oscillation to the perception of voice tremor. Method: Forced oscillation of the respiratory system was used to simulate variations in alveolar pressure such as are characteristic of voice tremor of respiratory origin. Five healthy men served as speakers, and 6…

  12. Metoprolol and propranolol in essential tremor: a double-blind, controlled study.

    PubMed Central

    Calzetti, S; Findley, L J; Gresty, M A; Perucca, E; Richens, A

    1981-01-01

    Single oral doses of propranolol (120 mg), metoprolol (150 mg) and placebo were given in a randomised, double-blind fashion to 23 patients with essential tremor. Both beta blockers were significantly more effective than placebo in reducing the magnitude of tremor. The decrease in tremor produced by metoprolol (47, sem 9%, n = 23) was not significantly different from that observed propranolol (55, sem 5%, n = 23). Tachycardia on standing was antagonised by both drugs to a similar extent. These findings suggest that metoprolol may represent a valuable alternative to propranolol in the treatment of essential tremor. The data is consistent with the hypothesis that the tremorolytic effect of beta blockers in these patients may be unrelated to peripheral beta-2 adreno-receptor blockade, being possibly mediated by other central or peripheral modes of action of these drugs. However, it cannot be excluded that at the dose used, metoprolol had lost its relative cardio-selectivity and that the reduction in tremor was mediated by competitive antagonism at beta-2 receptor sites in skeletal muscle. PMID:7031187

  13. The effect of a therapeutic lithium level on a stroke-related cerebellar tremor.

    PubMed

    Orleans, Rachel A; Dubin, Marc J; Kast, Kristopher A

    2018-01-24

    Lithium is a mood stabiliser used in the treatment of acute mania, bipolar disorder and as augmentation for unipolar major depression. Tremor is a common adverse effect associated with lithium at both therapeutic and toxic serum levels. We present a case of dose-dependent changes in the quality and intensity of a stroke-related, chronic cerebellar tremor with lithium treatment at serum levels within the therapeutic range. On admission, the patient in this case had a baseline fine, postural tremor, which increased in frequency and evolved to include myoclonic jerks once lithium therapy was initiated. Although the patient's serum lithium level was never in the toxic range, his tremor returned to baseline on reduction of his serum lithium level. This case highlights that a pre-existing, baseline tremor may lower the threshold for developing myoclonus. It also suggests that caution may be warranted with lithium therapy in the setting of known cerebellar disease. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Transducer-based evaluation of tremor.

    PubMed

    Haubenberger, Dietrich; Abbruzzese, Giovanni; Bain, Peter G; Bajaj, Nin; Benito-León, Julián; Bhatia, Kailash P; Deuschl, Günther; Forjaz, Maria João; Hallett, Mark; Louis, Elan D; Lyons, Kelly E; Mestre, Tiago A; Raethjen, Jan; Stamelou, Maria; Tan, Eng-King; Testa, Claudia M; Elble, Rodger J

    2016-09-01

    The International Parkinson and Movement Disorder Society established a task force on tremor that reviewed the use of transducer-based measures in the quantification and characterization of tremor. Studies of accelerometry, electromyography, activity monitoring, gyroscopy, digitizing tablet-based measures, vocal acoustic analysis, and several other transducer-based methods were identified by searching PubMed.gov. The availability, use, acceptability, reliability, validity, and responsiveness were reviewed for each measure using the following criteria: (1) used in the assessment of tremor; (2) used in published studies by people other than the developers; and (3) adequate clinimetric testing. Accelerometry, gyroscopy, electromyography, and digitizing tablet-based measures fulfilled all three criteria. Compared to rating scales, transducers are far more sensitive to changes in tremor amplitude and frequency, but they do not appear to be more capable of detecting a change that exceeds random variability in tremor amplitude (minimum detectable change). The use of transducer-based measures requires careful attention to their limitations and validity in a particular clinical or research setting. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  15. How to treat tremor.

    PubMed

    Rektor, Ivan; Rektorová, Irena; Suchý, Václav

    2004-05-01

    This paper presents an example of 18(th) century medical thinking. The author, Dr Georg Ernst Stahl (1659-1734) was the founder of the phlogiston theory in the field of chemistry, a medical professor, and a court physician in Saxony and Prussia. His description includes a definition of tremor, the internal and external causes of tremor, the types of tremor, the diagnostic and prognostic signs, and the treatment. From a present (contemporary) point of view, some compounds that were then used in treatment may have had a limited therapeutic effect on some kinds of tremor. Protopin has an anticholinergic and GABA-ergic effect, and rhoeadin (tetrahydrobenzazepin) may have had an effect similar to that of neuroleptics. Nevertheless, it is not clear whether the recommended quantity of these compounds was sufficient for a clinical effect. Most of the prescribed drugs could only have had a placebo effect.

  16. Primary writing tremor.

    PubMed

    Bain, P G; Findley, L J; Britton, T C; Rothwell, J C; Gresty, M A; Thompson, P D; Marsden, C D

    1995-12-01

    Primary writing tremor (PWT) is considered to be a type of task-specific tremor in which tremor predominantly occurs and interferes with handwriting. We describe the clinical and neurophysiological features of 21 patients (20 male and one female) with PWT. Mean age at tremor onset was 50.1 years. A family history of PWT was obtained from seven patients. Ten patients obtained benefit from drug treatment (mainly propranalol or primidone) and seven responded to alcohol. The writing speeds of the patients (mean +/- SEM: 73.1 +/- 6.6 letters per minute) when using their preferred hand were significantly reduced (Student's t test: P < 0.001) compared with those of healthy control subjects (mean +/- SEM: 127.7 +/- 6.4). Surface polymyography performed during writing showed 4.1-7.3 Hz rhythmic activity predominantly in the intrinsic hand and forearm muscles. Alternating, extensor activation alone, skipping from alternating to extensor activation, and co-contracting EMG patterns were recorded from the flexor and extensor muscles of the forearm. There was no evidence for excessive 'overflow' of this rhythmic EMG activity, as similar activity was detected in comparable muscle groups of healthy control subjects. Accelerometry confirmed that the frequency of PWT ranged from 4.1-7.3 Hz (median 5.5 Hz) and that normal subjects wrote with a 4.0-7.7 Hz oscillation (median 4.6 Hz). Forearm reciprocal inhibition was normal in PWT (n = 13), and thus patients with PWT can be distinguished from those with writer's cramp in whom decreased presynaptic inhibition has been found. Patients were sub-classified as having either type A (n = 11) or B (n = 10) PWT depending on whether tremor appeared during writing (type A: task induced tremor) or whilst writing and adopting the hand position used in writing (type B: positionally sensitive tremor). However, the only differences between these two groups were that a co-contracting EMG pattern and tremor induced by tendon taps to the volar aspect of the wrist were present in type B but not type A cases.

  17. Comparison of mibefradil and derivative NNC 55-0396 effects on behavior, cytochrome P450 activity, and tremor in mouse models of essential tremor

    PubMed Central

    Quesada, Arnulfo; Bui, Peter H.; Homanics, Gregg E.; Hankinson, Oliver; Handforth, Adrian

    2014-01-01

    NNC 55-0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2, 3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride], is a mibefradil derivative that retains potent in vitro T-type calcium channel antagonist efficacy. We compared the two compounds for behavioral toxicity, effects on cytochrome P450 activity, and efficacy against tremor in the γ-aminobutyric acid type A (GABAA) receptor subunit α1-null mouse, and the harmaline tremor model of essential tremor in wild-type mice. NNC 55-0396 was better tolerated than mibefradil in the horizontal wire test of sedation/motor function, with 3/6 failing at 300 and 30 mg/kg respectively. To assess for a potential interaction with harmaline, mice were given the drugs, followed by harmaline or vehicle, and tested 30 min later in the inverted wire grid test. Mibefradil exacerbated, whereas NNC 55-0396 ameliorated harmaline-induced test deficits. In mouse liver microsomes, NNC 55-0396 was a less potent inhibitor of harmaline O-demethylation than mibefradil (Ki: 0.95 and 0.29 µM respectively), and also less potent at inhibiting testosterone 6-β-hydroxylation (Ki: 0.71 and 0.12 µM respectively). In the GABAA α1-null model, NNC 55-0396 but not mibefradil, (each at 20 mg/kg), suppressed tremor while NNC 55-0396 at 12.5 mg/kg suppressed harmaline-induced tremor by half by 20–100 min, whereas mibefradil at the same dose did not significantly affect tremor. In contrast to mibefradil, NNC 55-0396 is well tolerated and suppresses tremor, and exerts less cytochrome P450 inhibition. These results suggest potential clinical utility for NNC 55-0396 or similar derivatives as a T-type calcium antagonist. PMID:21256842

  18. Hcn1 Is a Tremorgenic Genetic Component in a Rat Model of Essential Tremor

    PubMed Central

    Ohno, Yukihiro; Shimizu, Saki; Tatara, Ayaka; Imaoku, Takuji; Ishii, Takahiro; Sasa, Masashi; Serikawa, Tadao; Kuramoto, Takashi

    2015-01-01

    Genetic factors are thought to play a major role in the etiology of essential tremor (ET); however, few genetic changes that induce ET have been identified to date. In the present study, to find genes responsible for the development of ET, we employed a rat model system consisting of a tremulous mutant strain, TRM/Kyo (TRM), and its substrain TRMR/Kyo (TRMR). The TRM rat is homozygous for the tremor (tm) mutation and shows spontaneous tremors resembling human ET. The TRMR rat also carries a homozygous tm mutation but shows no tremor, leading us to hypothesize that TRM rats carry one or more genes implicated in the development of ET in addition to the tm mutation. We used a positional cloning approach and found a missense mutation (c. 1061 C>T, p. A354V) in the hyperpolarization-activated cyclic nucleotide-gated 1 channel (Hcn1) gene. The A354V HCN1 failed to conduct hyperpolarization-activated currents in vitro, implicating it as a loss-of-function mutation. Blocking HCN1 channels with ZD7288 in vivo evoked kinetic tremors in nontremulous TRMR rats. We also found neuronal activation of the inferior olive (IO) in both ZD7288-treated TRMR and non-treated TRM rats and a reduced incidence of tremor in the IO-lesioned TRM rats, suggesting a critical role of the IO in tremorgenesis. A rat strain carrying the A354V mutation alone on a genetic background identical to that of the TRM rats showed no tremor. Together, these data indicate that body tremors emerge when the two mutant loci, tm and Hcn1A354V, are combined in a rat model of ET. In this model, HCN1 channels play an important role in the tremorgenesis of ET. We propose that oligogenic, most probably digenic, inheritance is responsible for the genetic heterogeneity of ET. PMID:25970616

  19. Functional Ability Improved in Essential Tremor by IncobotulinumtoxinA Injections Using Kinematically Determined Biomechanical Patterns – A New Future

    PubMed Central

    Samotus, Olivia; Rahimi, Fariborz; Lee, Jack; Jog, Mandar

    2016-01-01

    Objective Effective treatment for functional disability caused by essential tremor is a significant unmet need faced by many clinicians today. Current literature regarding focal therapy by botulinum toxin type A (BoNT-A) injections uses fixed dosing regimens, which cannot be individualized, provides only limited functional benefit and unacceptable muscle weakness commonly occurs. This 38-week open label study, the longest to-date, demonstrates how kinematic technology addressed all these issues by guiding muscle selection. Method Participants (n = 24) were assessed at weeks 0, 6, 16, 22, 32, and 38 and injected with incobotulinumtoxinA at weeks 0, 16, and 32. Clinical assessments including UPDRS tremor items, Fahn-Tolosa-Marin (FTM) tremor rating scale assessing tremor severity, writing and functional ability, quality of life questionnaire (QUEST) and objective kinematic assessments were completed at every visit. Participants performed two postural and two weight-bearing scripted tasks with motion sensors placed over the wrist, elbow and shoulder joints. These sensors captured angular tremor amplitude (RMS units) and acceleration joint motion that was segmented into directional components: flexion-extension (F/E), pronation-supination and radial-ulnar at the wrist, F/E at the elbow, and F/E and adduction-abduction at the shoulder. Injection parameters were determined using kinematics, followed by the clinician’s determination of which muscles would contribute to the specific upper limb tremor biomechanics and dosing per participant. Results Multi-joint biomechanical recordings allowed individualized muscle selection and showed significant improvement in whole-arm function, FTM parts A-C scores, at week 6 which continued throughout the study. By week 38, the total FTM score statistically significantly reduced from 16.2±4.6 at week 0 to 9.5±6.3 (p<0.0005). UPDRS item 21 score rating action tremor was significantly reduced from 2.6±0.5 at week 0 to 1.6±1.1 (p = 0.01) at week 32. Quality of life (QUEST) significantly improved from 40.3±15.8 at week 0 to 31.1±15.3 (p = 0.035) at week 32 and to 27.8±15.3 (p = 0.028) at week 38. Kinematics provided an objective, secondary outcome measure, which showed a significant decrease in tremor amplitude in the wrist and shoulder joints (p<0.05). Eight participants (40%) self-reported mild weakness in injected muscles but had no interference in arm function. Conclusion Kinematic tremor assessments provide the injector unique insight to objectively individualize and personalize injection parameters demonstrating BoNT-A effectively alleviates functional disability caused by essential tremor. Kinematic technology is a promising method for standardizing assessments and for focal upper limb tremor treatment. Trial Registration ClinicalTrials.gov NCT02427646 PMID:27101283

  20. Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes

    USGS Publications Warehouse

    Shelly, David R.; Peng, Zhigang; Hill, David P.; Aiken, Chastity

    2011-01-01

    The passage of radiating seismic waves generates transient stresses in the Earth's crust that can trigger slip on faults far away from the original earthquake source. The triggered fault slip is detectable in the form of earthquakes and seismic tremor. However, the significance of these triggered events remains controversial, in part because they often occur with some delay, long after the triggering stress has passed. Here we scrutinize the location and timing of tremor on the San Andreas fault between 2001 and 2010 in relation to distant earthquakes. We observe tremor on the San Andreas fault that is initiated by passing seismic waves, yet migrates along the fault at a much slower velocity than the radiating seismic waves. We suggest that the migrating tremor records triggered slow slip of the San Andreas fault as a propagating creep event. We find that the triggered tremor and fault creep can be initiated by distant earthquakes as small as magnitude 5.4 and can persist for several days after the seismic waves have passed. Our observations of prolonged tremor activity provide a clear example of the delayed dynamic triggering of seismic events. Fault creep has been shown to trigger earthquakes, and we therefore suggest that the dynamic triggering of prolonged fault creep could provide a mechanism for the delayed triggering of earthquakes. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  1. Optimal digital filtering for tremor suppression.

    PubMed

    Gonzalez, J G; Heredia, E A; Rahman, T; Barner, K E; Arce, G R

    2000-05-01

    Remote manually operated tasks such as those found in teleoperation, virtual reality, or joystick-based computer access, require the generation of an intermediate electrical signal which is transmitted to the controlled subsystem (robot arm, virtual environment, or a cursor in a computer screen). When human movements are distorted, for instance, by tremor, performance can be improved by digitally filtering the intermediate signal before it reaches the controlled device. This paper introduces a novel tremor filtering framework in which digital equalizers are optimally designed through pursuit tracking task experiments. Due to inherent properties of the man-machine system, the design of tremor suppression equalizers presents two serious problems: 1) performance criteria leading to optimizations that minimize mean-squared error are not efficient for tremor elimination and 2) movement signals show ill-conditioned autocorrelation matrices, which often result in useless or unstable solutions. To address these problems, a new performance indicator in the context of tremor is introduced, and the optimal equalizer according to this new criterion is developed. Ill-conditioning of the autocorrelation matrix is overcome using a novel method which we call pulled-optimization. Experiments performed with artificially induced vibrations and a subject with Parkinson's disease show significant improvement in performance. Additional results, along with MATLAB source code of the algorithms, and a customizable demo for PC joysticks, are available on the Internet at http:¿tremor-suppression.com.

  2. Intermittent tremor migrations beneath Guerrero, Mexico, and implications for fault healing within the slow slip zone

    NASA Astrophysics Data System (ADS)

    Peng, Yajun; Rubin, Allan M.

    2017-01-01

    Slow slip events exhibit significant complexity in slip evolution and variations in recurrence intervals. Behavior that varies systematically with recurrence interval is likely to reflect different extents of fault healing between these events. Here we use high-resolution tremor catalogs beneath Guerrero, Mexico, to investigate the mechanics of slow slip. We observe complex tremor propagation styles, including rapid tremor migrations propagating either along the main tremor front or backward, reminiscent of those in northern Cascadia. We also find many migrations that originate well behind the front and repeatedly occupy the same source region during a tremor episode, similar to those previously reported from Shikoku, Japan. These migrations could be driven by slow slip in the surrounding regions, with recurrence intervals possibly modulated by tides. The propagation speed of these migrations decreases systematically with time since the previous migration over the same source area. Tremor amplitudes seem consistent with changes in the propagation speeds being controlled primarily by changes in the slip speeds. One interpretation is that the high propagation speeds and inferred high slip speeds during the migrations with short recurrence intervals are caused by incomplete healing within the host rock adjacent to the shear zone, which could lead to high permeability and reduced dilatant strengthening of the fault gouge. Similar processes may operate in other slow slip source regions such as Cascadia.

  3. Simulations of tremor-related creep reveal a weak crustal root of the San Andreas Fault

    USGS Publications Warehouse

    Shelly, David R.; Bradley, Andrew M.; Johnson, Kaj M.

    2013-01-01

    Deep aseismic roots of faults play a critical role in transferring tectonic loads to shallower, brittle crustal faults that rupture in large earthquakes. Yet, until the recent discovery of deep tremor and creep, direct inference of the physical properties of lower-crustal fault roots has remained elusive. Observations of tremor near Parkfield, CA provide the first evidence for present-day localized slip on the deep extension of the San Andreas Fault and triggered transient creep events. We develop numerical simulations of fault slip to show that the spatiotemporal evolution of triggered tremor near Parkfield is consistent with triggered fault creep governed by laboratory-derived friction laws between depths of 20–35 km on the fault. Simulated creep and observed tremor northwest of Parkfield nearly ceased for 20–30 days in response to small coseismic stress changes of order 104 Pa from the 2003 M6.5 San Simeon Earthquake. Simulated afterslip and observed tremor following the 2004 M6.0 Parkfield earthquake show a coseismically induced pulse of rapid creep and tremor lasting for 1 day followed by a longer 30 day period of sustained accelerated rates due to propagation of shallow afterslip into the lower crust. These creep responses require very low effective normal stress of ~1 MPa on the deep San Andreas Fault and near-neutral-stability frictional properties expected for gabbroic lower-crustal rock.

  4. One-pass deep brain stimulation of dentato-rubro-thalamic tract and subthalamic nucleus for tremor-dominant or equivalent type Parkinson's disease.

    PubMed

    Coenen, Volker Arnd; Rijntjes, Michel; Prokop, Thomas; Piroth, Tobias; Amtage, Florian; Urbach, Horst; Reinacher, Peter Christoph

    2016-04-01

    Refractory tremor in tremor-dominant (TD) or equivalent-type (EQT) idiopathic Parkinson's syndrome (IPS) poses the challenge of choosing the best target region to for deep brain stimulation (DBS). While the subthalamic nucleus is typically chosen in younger patients as the target for dopamine-responsive motor symptoms, it is more complicated if tremor does not (fully) respond under trial conditions. In this report, we present the first results from simultaneous bilateral DBS of the DRT (dentato-rubro-thalamic tract) and the subthalamic nucleus (STN) in two elderly patients with EQT and TD IPS and dopamine-refractory tremor. Two patients received bilateral octopolar DBS electrodes in the STN additionally traversing the DRT region. Achieved electrode positions were determined with helical CT, overlaid onto DTI tractography data, and compared with clinical data of stimulation response. Both patients showed immediate and sustained improvement of their tremor, bilaterally. The proposed approach appears to be safe and feasible and a combined stimulation of the two target regions was performed tailored to the patients' symptoms. Clinically, no neuropsychiatric effects were seen. Our pilot data suggest a viable therapeutic option to treat the subgroup of TD and EQT IPS and with tremor as the predominant symptom. A clinical study to further investigate this approach ( www.clinicaltrials.gov ; NCT02288468) is the focus of our ongoing research.

  5. Caudal Zona Incerta/VOP Radiofrequency Lesioning Guided by Combined Stereotactic MRI and Microelectrode Recording for Posttraumatic Midbrain Resting-Kinetic Tremor.

    PubMed

    Contreras Lopez, William Omar; Azevedo, Angelo R; Cury, Rubens G; Alencar, Francisco; Neville, Iuri S; Reis, Paul R; Navarro, Jessie; Monaco, Bernardo; da Silva, Fabio E Fernandes; Teixeira, Manoel J; Fonoff, Erich T

    2016-02-01

    Reporting the outcome of two patients who underwent unilateral ablative stereotactic surgery to treat pharmacologic resistant posttraumatic tremor (PTT). We present two patients (31 and 47 years old) with refractory PTT severely affecting their quality of life. Under stereotactic guidance, refined by T2-weighted magnetic resonance imaging and double-channel multiunit microelectrode recording (MER), three sequential radiofrequency lesions were performed in the caudal zona incerta (cZi) up to the base of thalamus (VOP). Effects of cZi/VOP lesion were prospectively rated with a tremor rating scale. Both patients demonstrated intraoperative tremor suppression with sustained results up to 18 months follow-up, with improvement of 92% and 84%, respectively, on the tremor rating scale. Tremor improvement was associated with enhancement functionality and quality of life for the patients. The patients returned to their work after the procedure. No adverse effects were observed up to the last follow-up. Radiofrequency lesion of the cZi/VOP target was effective for posttraumatic tremor in both cases. The use of T2-weighted images and MER was found helpful in increasing the precision and safety of the procedure, because it leads the RF probe by relying on neighbor structures based on thalamus and subthalamic nucleus. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The influence of pitch and loudness changes on the acoustics of vocal tremor.

    PubMed

    Dromey, Christopher; Warrick, Paul; Irish, Jonathan

    2002-10-01

    The effect of tremor on phonation is to modulate an otherwise steady sound source in its amplitude, fundamental frequency, or both. The severity of untreated vocal tremor has been reported to change under certain conditions that may be related to muscle tension. In order to better understand the phenomenon of vocal tremor, its acoustic properties were examined as individuals volitionally altered their pitch and loudness. These voice conditions were anticipated to alter the tension of the intrinsic laryngeal muscles. The voices of 10 individuals with a diagnosis of vocal tremor were recorded before participating in a longitudinal treatment study. They produced vowels at low and high pitch and loudness levels as well as in a comfortable voice condition. Acoustic analyses quantified the amplitude and frequency modulations of the speakers' voices across the various conditions. Individual speakers varied in the way the pitch and loudness changes affected their tremor, but the following statistically significant effects for the speakers as a group were observed: Higher pitch phonation was associated with a more rapid rate for both amplitude and frequency modulations. Amplitude modulation become faster for louder phonation. Low-pitched phonotion led to decreases in the extent of amplitude tremor. Varying pitch led to dramatic changes in the phase relationship between amplitude and frequency modulation in some of the speakers, whereas this effect was not apparent in other speakers.

  7. Eye movement abnormalities in essential tremor

    PubMed Central

    Plinta, Klaudia; Krzak-Kubica, Agnieszka; Zajdel, Katarzyna; Falkiewicz, Marcel; Dylak, Jacek; Ober, Jan; Szczudlik, Andrzej; Rudzińska, Monika

    2016-01-01

    Abstract Essential tremor (ET) is the most prevalent movement disorder, characterized mainly by an action tremor of the arms. Only a few studies published as yet have assessed oculomotor abnormalities in ET and their results are unequivocal. The aim of this study was to assess the oculomotor abnormalities in ET patients compared with the control group and to find the relationship between oculomotor abnormalities and clinical features of ET patients. We studied 50 ET patients and 42 matched by age and gender healthy controls. Saccadometer Advanced (Ober Consulting, Poland) was used to investigate reflexive, pace-induced and cued saccades and conventional electrooculography for evaluation of smooth pursuit and fixation. The severity of the tremor was assessed by the Clinical Rating Scale for Tremor. Significant differences between ET patients and controls were found for the incidence of reflexive saccades dysmetria and deficit of smooth pursuit. Reflexive saccades dysmetria was more frequent in patients in the second and third phase of ET compared to the first phase. The reflexive saccades latency increase was correlated with severity of the tremor. In conclusion, oculomotor abnormalities were significantly more common in ET patients than in healthy subjects. The most common oculomotor disturbances in ET were reflexive saccades dysmetria and slowing of smooth pursuit. The frequency of reflexive saccades dysmetria increased with progression of ET. The reflexive saccades latency increase was related to the severity of tremor. PMID:28149393

  8. Cost-effectiveness of focused ultrasound, radiosurgery, and DBS for essential tremor.

    PubMed

    Ravikumar, Vinod K; Parker, Jonathon J; Hornbeck, Traci S; Santini, Veronica E; Pauly, Kim Butts; Wintermark, Max; Ghanouni, Pejman; Stein, Sherman C; Halpern, Casey H

    2017-08-01

    Essential tremor remains a very common yet medically refractory condition. A recent phase 3 study demonstrated that magnetic resonance-guided focused ultrasound thalamotomy significantly improved upper limb tremor. The objectives of this study were to assess this novel therapy's cost-effectiveness compared with existing procedural options. Literature searches of magnetic resonance-guided focused ultrasound thalamotomy, DBS, and stereotactic radiosurgery for essential tremor were performed. Pre- and postoperative tremor-related disability scores were collected from 32 studies involving 83 magnetic resonance-guided focused ultrasound thalamotomies, 615 DBSs, and 260 stereotactic radiosurgery cases. Utility, defined as quality of life and derived from percent change in functional disability, was calculated; Medicare reimbursement was employed as a proxy for societal cost. Medicare reimbursement rates are not established for magnetic resonance-guided focused ultrasound thalamotomy for essential tremor; therefore, reimbursements were estimated to be approximately equivalent to stereotactic radiosurgery to assess a cost threshold. A decision analysis model was constructed to examine the most cost-effective option for essential tremor, implementing meta-analytic techniques. Magnetic resonance-guided focused ultrasound thalamotomy resulted in significantly higher utility scores compared with DBS (P < 0.001) or stereotactic radiosurgery (P < 0.001). Projected costs of magnetic resonance-guided focused ultrasound thalamotomy were significantly less than DBS (P < 0.001), but not significantly different from radiosurgery. Magnetic resonance-guided focused ultrasound thalamotomy is cost-effective for tremor compared with DBS and stereotactic radiosurgery and more effective than both. Even if longer follow-up finds changes in effectiveness or costs, focused ultrasound thalamotomy will likely remain competitive with both alternatives. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  9. Subthalamic and Cortical Local Field Potentials Associated with Pilocarpine-Induced Oral Tremor in the Rat

    PubMed Central

    Long, Lauren L.; Podurgiel, Samantha J.; Haque, Aileen F.; Errante, Emily L.; Chrobak, James J.; Salamone, John D.

    2016-01-01

    Tremulous jaw movements (TJMs) are rapid vertical deflections of the lower jaw that resemble chewing but are not directed at any particular stimulus. In rodents, TJMs are induced by neurochemical conditions that parallel those seen in human Parkinsonism, including neurotoxic or pharmacological depletion of striatal dopamine (DA), DA antagonism, and cholinomimetic administration. Moreover, TJMs in rodents can be attenuated by antiparkinsonian agents, including levodopa (L-DOPA), DA agonists, muscarinic antagonists, and adenosine A2A antagonists. In human Parkinsonian patients, exaggerated physiological synchrony is seen in the beta frequency band in various parts of the cortical/basal ganglia/thalamic circuitry, and activity in the tremor frequency range (3–7 Hz) also has been recorded. The present studies were undertaken to determine if tremor-related local field potential (LFP) activity could be recorded from motor cortex (M1) or subthalamic nucleus (STN) during the TJMs induced by the muscarinic agonist pilocarpine, which is a well-known tremorogenic agent. Pilocarpine induced a robust TJM response that was marked by rhythmic electromyographic (EMG) activity in the temporalis muscle. Compared to periods with no tremor activity, TJM epochs were characterized by increased LFP activity in the tremor frequency range in both neocortex and STN. Tremor activity was not associated with increased synchrony in the beta frequency band. These studies identified tremor-related LFP activity in parts of the cortical/basal ganglia circuitry that are involved in the pathophysiology of Parkinsonism. This research may ultimately lead to identification of the oscillatory neural mechanisms involved in the generation of tremulous activity, and promote development of novel treatments for tremor disorders. PMID:27378874

  10. Pretherapeutic Functional Imaging Allows Prediction of Head Tremor Arrest After Thalamotomy for Essential Tremor: The Role of Altered Interconnectivity Between Thalamolimbic and Supplementary Motor Circuits.

    PubMed

    Tuleasca, Constantin; Régis, Jean; Najdenovska, Elena; Witjas, Tatiana; Girard, Nadine; Champoudry, Jérôme; Faouzi, Mohamed; Thiran, Jean-Philippe; Cuadra, Meritxell Bach; Levivier, Marc; Van De Ville, Dimitri

    2018-04-01

    To correlate pretherapeutic resting-state functional magnetic resonance imaging (rs-fMRI) measures with pretherapeutic head tremor presence and/or further improvement 1 year after stereotactic radiosurgical thalamotomy (SRS-T) for essential tremor (ET). We prospectively collected head tremor scores (range, 0-3) and rs-fMRI data for a cohort of 17 consecutive ET patients in pretherapeutic and 1 year after SRS-T states. We additionally acquired rs-fMRI data for a healthy control (HC) group (n = 12). Group-level independent component analysis (n = 17 for pretherapeutic rs-fMRI) was applied to decompose neuroimaging data into 20 large-scale brain networks using a standard approach. Through spatial regression, we projected 1 year after SRS-T and HC rs-fMRI time points, on the same 20 brain networks. Pretherapeutic interconnectivity (IC) strength between the network including bilateral thalamus and limbic system with left supplementary motor area predicted head tremor improvement at 1 year after SRS-T (family-wise corrected P < 0.001, cluster size K c  = 146). For the statistically significant cluster, IC strength was strongest in HCs (mean, 4.6; median, 3.8) compared with pre- (mean, 0.1; median, 0.2) or posttherapeutic (mean, -0.2; median, 0.09) states. Baseline measures of IC between bilateral thalamus and limbic system with left supplementary motor area may predict head tremor arrest after thalamotomy. However, procedures such as SRS-T, for this particular clinical feature, do not align patients to HCs in terms of functional brain connectivity. We postulate that supplementary motor area is modulating head tremor appearance, by abnormal connectivity with the thalamolimbic system. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Array observations and analyses of Cascadia deep tremor

    NASA Astrophysics Data System (ADS)

    McCausland, W. A.; Malone, S.; Creager, K.; Crosson, R.; La Rocca, M.; Saccoretti, G.

    2004-12-01

    The July 8-24, 2004 Cascadia Episodic Tremor and Slip (ETS) event was observed using three small aperture seismic arrays located near Sooke, BC, Sequim, WA, and on Lopez Island, WA. Initial tremor burst epicenters located in the Strait of Juan de Fuca and were calculated using the relative arrivals of band-passed, rectified regional network signals. Most subsequent epicenters migrated to the northwest along Vancouver Island and a few occurred in the central to southern Puget Sound. Tremor bursts lasting on the order of a few seconds can be identified across the stations of any of the three arrays. Individual bursts from distinct back-azimuths often occur within five seconds of each other, indicating the presence of spatially distributed but near simultaneous tremor. None of this was visible at such a fine scale using Pacific Northwest Seismograph Network (PNSN). Several array processing techniques, including beam-forming, zero-lag cross correlation and multiple signal classification (MUSIC), are being investigated to determine the optimal technique for exploring the temporal and spatial evolution of the tremor signals during the whole ETS. The back-azimuth and slowness of consecutive time windows for a one half-hour period of strong tremor were calculated using beam-forming with a linear stack, with an nth-root stack, and using zero-lag cross-correlation. Results for each array and each method yield consistent estimates of back azimuth and slowness. Beam-forming with a nonlinear stack produces results similar to the linear case but with larger uncertainty. Among the arrays, the back-azimuths give a reasonable estimate of the tremor epicenter that is consistent with the network determined epicentral locations.

  12. A novel control architecture for physiological tremor compensation in teleoperated systems.

    PubMed

    Ghorbanian, A; Zareinejad, M; Rezaei, S M; Sheikhzadeh, H; Baghestan, K

    2013-09-01

    Telesurgery delivers surgical care to a 'remote' patient by means of robotic manipulators. When accurate positioning of the surgeon's tool is required, as in microsurgery, physiological tremor causes unwanted imprecision during a surgical operation. Accurate estimation/compensation of physiological tremor in teleoperation systems has been shown to improve performance during telesurgery. A new control architecture is proposed for estimation and compensation of physiological tremor in the presence of communication time delays. This control architecture guarantees stability with satisfactory transparency. In addition, the proposed method can be used for applications that require modifications in transmitted signals through communication channels. Stability of the bilateral tremor-compensated teleoperation is preserved by extending the bilateral teleoperation to the equivalent trilateral Dual-master/Single-slave teleoperation. The bandlimited multiple Fourier linear combiner (BMFLC) algorithm is employed for real-time estimation of the operator's physiological tremor. Two kinds of stability analysis are employed. In the model-base controller, Llewellyn's Criterion is used to analyze the teleoperation absolute stability. In the second method, a nonmodel-based controller is proposed and the stability of the time-delayed teleoperated system is proved by employing a Lyapunov function. Experimental results are presented to validate the effectiveness of the new control architecture. The tremorous motion is measured by accelerometer to be compensated in real time. In addition, a Needle-Insertion setup is proposed as a slave robot for the application of brachytherapy, in which the needle penetrates in the desired position. The slave performs the desired task in two classes of environments (free motion of the slave and in the soft tissue). Experiments show that the proposed control architecture effectively compensates the user's tremorous motion and the slave follows only the master's voluntary motion in a stable manner. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Semiautomated tremor detection using a combined cross-correlation and neural network approach

    USGS Publications Warehouse

    Horstmann, Tobias; Harrington, Rebecca M.; Cochran, Elizabeth S.

    2013-01-01

    Despite observations of tectonic tremor in many locations around the globe, the emergent phase arrivals, low‒amplitude waveforms, and variable event durations make automatic detection a nontrivial task. In this study, we employ a new method to identify tremor in large data sets using a semiautomated technique. The method first reduces the data volume with an envelope cross‒correlation technique, followed by a Self‒Organizing Map (SOM) algorithm to identify and classify event types. The method detects tremor in an automated fashion after calibrating for a specific data set, hence we refer to it as being “semiautomated”. We apply the semiautomated detection algorithm to a newly acquired data set of waveforms from a temporary deployment of 13 seismometers near Cholame, California, from May 2010 to July 2011. We manually identify tremor events in a 3 week long test data set and compare to the SOM output and find a detection accuracy of 79.5%. Detection accuracy improves with increasing signal‒to‒noise ratios and number of available stations. We find detection completeness of 96% for tremor events with signal‒to‒noise ratios above 3 and optimal results when data from at least 10 stations are available. We compare the SOM algorithm to the envelope correlation method of Wech and Creager and find the SOM performs significantly better, at least for the data set examined here. Using the SOM algorithm, we detect 2606 tremor events with a cumulative signal duration of nearly 55 h during the 13 month deployment. Overall, the SOM algorithm is shown to be a flexible new method that utilizes characteristics of the waveforms to identify tremor from noise or other seismic signals.

  14. Semiautomated tremor detection using a combined cross-correlation and neural network approach

    NASA Astrophysics Data System (ADS)

    Horstmann, T.; Harrington, R. M.; Cochran, E. S.

    2013-09-01

    Despite observations of tectonic tremor in many locations around the globe, the emergent phase arrivals, low-amplitude waveforms, and variable event durations make automatic detection a nontrivial task. In this study, we employ a new method to identify tremor in large data sets using a semiautomated technique. The method first reduces the data volume with an envelope cross-correlation technique, followed by a Self-Organizing Map (SOM) algorithm to identify and classify event types. The method detects tremor in an automated fashion after calibrating for a specific data set, hence we refer to it as being "semiautomated". We apply the semiautomated detection algorithm to a newly acquired data set of waveforms from a temporary deployment of 13 seismometers near Cholame, California, from May 2010 to July 2011. We manually identify tremor events in a 3 week long test data set and compare to the SOM output and find a detection accuracy of 79.5%. Detection accuracy improves with increasing signal-to-noise ratios and number of available stations. We find detection completeness of 96% for tremor events with signal-to-noise ratios above 3 and optimal results when data from at least 10 stations are available. We compare the SOM algorithm to the envelope correlation method of Wech and Creager and find the SOM performs significantly better, at least for the data set examined here. Using the SOM algorithm, we detect 2606 tremor events with a cumulative signal duration of nearly 55 h during the 13 month deployment. Overall, the SOM algorithm is shown to be a flexible new method that utilizes characteristics of the waveforms to identify tremor from noise or other seismic signals.

  15. Local vibration inhibits H-reflex but does not compromise manual dexterity and does not increase tremor.

    PubMed

    Budini, Francesco; Laudani, Luca; Bernardini, Sergio; Macaluso, Andrea

    2017-10-01

    The present work aimed at investigating the effects of local vibration on upper limb postural and kinetic tremor, on manual dexterity and on spinal reflex excitability. Previous studies have demonstrated a decrease in spinal reflex excitability and in force fluctuations in the lower limb but an increase in force fluctuation in the upper limbs. As hand steadiness is of vital importance in many daily-based tasks, and local vibration may also be applied in movement disorders, we decided to further explore this phenomenon. Ten healthy volunteers (26±3years) were tested for H reflex, postural and kinetic tremor and manual dexterity through a Purdue test. EMG was recorded from flexor carpi radialis (FCR) and extensor digitorum communis (EDC). Measurements were repeated at baseline, after a control period during which no vibration was delivered and after vibration. Intervention consisted in holding for two minutes a vibrating handle (frequency 75Hz, displacement∼7mm), control consisted in holding for two minutes the same handle powered off. Reflex excitability decreased after vibration whilst postural tremor and manual dexterity were not affected. Peak kinetic tremor frequency increased from baseline to control measurements (P=0.002). Co-activation EDC/FCR increased from control to vibration (P=0.021). These results show that two minutes local vibration lead to a decrease in spinal excitability, did not compromise manual dexterity and did not increase tremor; however, in contrast with expectations, tremor did not decrease. It is suggested that vibration activated several mechanisms with opposite effects, which resulted in a neutral outcome on postural and kinetic tremor. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A kinematic model of patchy slip at depth explains observed tremor waveforms on the San Andreas fault near Parkfield, California

    NASA Astrophysics Data System (ADS)

    Gottschaemmer, E.; Harrington, R. M.; Cochran, E. S.; Bohlen, T.

    2011-12-01

    Recent observations of both triggered and ambient tremor suggest that tremor results from simple shear-failure. Tremor episodes on the San Andreas fault near Parkfield are thought to be comprised of clusters of individual events with frequencies between 2-8 Hz. Such low frequency earthquakes (LFEs) occur at depths where the frictional properties of the fault surface are primarily slip-strengthening with imbedded patches of slip weakening material that slip seismically when the surrounding fault creeps in a slow-slip event. Here we show new tremor waveforms from a temporary deployment of 13 broadband seismometers spaced at a maximum on the order of 30 km near Cholame, California are consistent with a series of small seismically slipping patches surrounded by an aseismic region along a fault surface. We model individual seismic events kinematically as small shear failures (M ~ 1) at depths exceeding 15 km. We use stress drop values of 1 MPa, based on a slip to fault area ratio. We simulate tremor recorded at the surface by our temporary array centered near Cholame, for frequencies up to 8 Hz using a staggered-grid finite-difference scheme to solve the elastic equations of motion, and the 3D velocity and density model from Thurber et al. (2006). Our simulations indicate that multiple seismically slipping patches in an aseismic region successfully recreate tremor characteristics observed in multiple studies, including individual tremor bursts, individual events, and episodic behavior. The kinematic model presented here will help to constrain the distribution and amplitude of the seismically slipping patches at depth, which will then be used in a dynamic model with variable frictional properties.

  17. Effects of volcanic tremor on noise-based measurements of temporal velocity changes at Hawaiian volcanoes

    NASA Astrophysics Data System (ADS)

    Ballmer, S.; Wolfe, C. J.; Okubo, P.; Haney, M. M.; Thurber, C. H.

    2011-12-01

    Green's functions calculated with ambient seismic noise may aid in volcano research and monitoring. The continuous character of ambient seismic noise and hence of the reconstructed Green's functions has enabled measurements of short-term (~days) temporal perturbations in seismic velocities. Very small but clear velocity decreases prior to some volcanic eruptions have been documented and motivate our present study. We apply this method to Hawaiian volcanoes using data from the USGS Hawaiian Volcano Observatory (HVO) seismic network. In order to obtain geologically relevant and reliable results, stable Green's functions need to be recovered from the ambient noise. Station timing problems, changes in noise source directivity, as well as changes in the source's spectral content are known biases that critically affect the Green's functions' stability and hence need to be considered. Here we show that volcanic tremor is a potential additional bias. During the time period of our study (2007-present), we find that volcanic tremor is a common feature in the HVO seismic data. Pu'u O'o tremor is continuously present before a dike intrusion into Kilauea's east rift zone in June 2007 and Halema'uma'u tremor occurs before and during resumed Kilauea summit activity from early 2008 and onward. For the frequency band considered (0.1-0.9 Hz), we find that these active tremor sources can drastically modify the recovered Green's functions for station pairs on the entire island at higher (> 0.5 Hz) frequencies, although the effect of tremor appears diminished at lower frequencies. In this presentation, we perform measurements of temporal velocity changes using ambient noise Green's functions and explore how volcanic tremor affects the results. Careful quality assessment of reconstructed Green's functions appears to be essential for the desired high precision measurements.

  18. Superselective Thalamotomy in the Most Lateral Part of the Ventralis Intermedius Nucleus for Controlling Essential and Parkinsonian Tremor.

    PubMed

    Hirato, Masafumi; Miyagishima, Takaaki; Takahashi, Akio; Yoshimoto, Yuhei

    2018-01-01

    The minimum and essential thalamic areas for reducing tremor were investigated in cases treated by superselective thalamotomy in the most lateral part of the ventralis intermedius nucleus (mlp-VIM). Stereotactic superselective VIM thalamotomy with depth microrecording was performed in 21 patients with essential tremor (ET) and 15 patients with tremor-dominant Parkinson disease (PD). A very small and narrow (axial plane) therapeutic lesion was formed as a square on the sagittal plane and inverse V on the axial plane in the mlp-VIM, which covered the kinesthetic response area topographically related to tremor. Patients with ET were followed up for 4.7 ± 3.0 years and patients with PD for 7.9 ± 3.9 years. Almost complete tremor control was achieved in all patients immediately after surgery and continued for up to 8 years. A few adverse events were recognized but disappeared within 1 month without 1 patient with thalamic hemorrhage. The medial border of the therapeutic lesion was significantly more lateral in both patients with ET and patients with PD than the calculated standard target point and was in patients with PD than in patients with ET. The mean width was only about 2.4 mm. The individual differences of the adequate location of the therapeutic lesion were significantly greater in the ET than in the PD group. The important area for reducing tremor was small and narrow and was located in the mlp-VIM, where the proprioceptive ascending signals from the tremor-dominant body part are conducted. Superselective thalamotomy in the mlp-VIM was safe and effective for the long-term in patients with ET and PD. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault

    USGS Publications Warehouse

    Shelly, David R.

    2010-01-01

    The San Andreas fault is one of the most extensively studied faults in the world, yet its physical character and deformation mode beneath the relatively shallow earthquake-generating portion remain largely unconstrained. Tectonic ‘non-volcanic’ tremor, a recently discovered seismic signal probably generated by shear slip on the deep extension of some major faults, can provide new insight into the deep fate of such faults, including that of the San Andreas fault near Parkfield, California. Here I examine continuous seismic data from mid-2001 to 2008, identifying tremor and decomposing the signal into different families of activity based on the shape and timing of the waveforms at multiple stations. This approach allows differentiation between activities from nearby patches of the deep fault and begins to unveil rich and complex patterns of tremor occurrence. I find that tremor exhibits nearly continuous migration, with the most extensive episodes propagating more than 20 kilometres along fault strike at rates of 15–80 kilometres per hour. This suggests that the San Andreas fault remains a localized through-going structure, at least to the base of the crust, in this area. Tremor rates and recurrence behaviour changed markedly in the wake of the 2004 magnitude-6.0 Parkfield earthquake, but these changes were far from uniform within the tremor zone, probably reflecting heterogeneous fault properties and static and dynamic stresses decaying away from the rupture. The systematic recurrence of tremor demonstrated here suggests the potential to monitor detailed time-varying deformation on this portion of the deep San Andreas fault, deformation which unsteadily loads the shallower zone that last ruptured in the 1857 magnitude-7.9 Fort Tejon earthquake.

  20. Tidal modulation of nonvolcanic tremor.

    PubMed

    Rubinstein, Justin L; La Rocca, Mario; Vidale, John E; Creager, Kenneth C; Wech, Aaron G

    2008-01-11

    Episodes of nonvolcanic tremor and accompanying slow slip recently have been observed in the subduction zones of Japan and Cascadia. In Cascadia, such episodes typically last a few weeks and differ from "normal" earthquakes in their source location and moment-duration scaling. The three most recent episodes in the Puget Sound/southern Vancouver Island portion of the Cascadia subduction zone were exceptionally well recorded. In each episode, we saw clear pulsing of tremor activity with periods of 12.4 and 24 to 25 hours, the same as the principal lunar and lunisolar tides. This indicates that the small stresses associated with the solid-earth and ocean tides influence the genesis of tremor much more effectively than they do the genesis of normal earthquakes. Because the lithostatic stresses are 10(5) times larger than those associated with the tides, we argue that tremor occurs on very weak faults.

  1. Singularity spectrum of intermittent seismic tremor at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Shaw, H.R.; Chouet, B.

    1989-01-01

    Fractal singularity analysis (FSA) is used to study a 22-yr record of deep seismic tremor (30-60 km depth) for regions below Kilauea Volcano on the assumption that magma transport and fracture can be treated as a system of coupled nonlinear oscillators. Tremor episodes range from 1 to 100 min (cumulative duration = 1.60 ?? 104 min; yearly average - 727 min yr-1; mean gradient = 24.2 min yr-1km-1). Partitioning of probabilities, Pi, in the phase space of normalized durations, xi, are expressed in terms of a function f(??), where ?? is a variable exponent of a length scale, l. Plots of f(??) vs. ?? are called multifractal singularity spectra. The spectrum for deep tremor durations is bounded by ?? values of about 0.4 and 1.9 at f = O; fmax ???1.0 for ?? ??? 1. Results for tremor are similar to those found for systems transitional between complete mode locking and chaos. -Authors

  2. Autosomal dominant cortical tremor, myoclonus and epilepsy.

    PubMed

    Striano, Pasquale; Zara, Federico

    2016-09-01

    The term 'cortical tremor' was first introduced by Ikeda and colleagues to indicate a postural and action-induced shivering movement of the hands which mimics essential tremor, but presents with the electrophysiological findings of cortical reflex myoclonus. The association between autosomal dominant cortical tremor, myoclonus and epilepsy (ADCME) was first recognized in Japanese families and is now increasingly reported worldwide, although it is described using different acronyms (BAFME, FAME, FEME, FCTE and others). The disease usually takes a benign course, although drug-resistant focal seizures or slight intellectual disability occur in some cases. Moreover, a worsening of cortical tremor and myoclonus is common in advanced age. Although not yet recognized by the International League Against Epilepsy (ILAE), this is a well-delineated epilepsy syndrome with remarkable features that clearly distinguishes it from other myoclonus epilepsies. Moreover, genetic studies of these families show heterogeneity and different susceptible chromosomal loci have been identified.

  3. Strength and coordination training are both effective in reducing the postural tremor amplitude of older adults.

    PubMed

    Keogh, Justin W L; Morrison, Steve; Barrett, Rod

    2010-01-01

    The current study investigated the effect of 2 different types of unilateral resistance training on the postural tremor output of 19 neurologically healthy men age 70-80 yr. The strength- (n = 7) and coordination-training (n = 7) groups trained twice a week for 6 wk, performing dumbbell biceps curls, wrist flexions, and wrist extensions, while the control group (n = 5) maintained their normal activities. Changes in index-finger tremor (RMS amplitude, peak, and proportional power) and upper limb muscle coactivation were assessed during 4 postural conditions that were performed separately with the trained and untrained limbs. The 2 training groups experienced significantly greater reductions in mean RMS tremor amplitude, peak, and proportional tremor power 8-12 Hz and upper limb muscle coactivation, as well as greater increases in strength, than the control group. These results further demonstrate the benefits of resistance training for improving function in older adults.

  4. Effect of propranolol in head tremor: quantitative study following single-dose and sustained drug administration.

    PubMed

    Calzetti, S; Sasso, E; Negrotti, A; Baratti, M; Fava, R

    1992-12-01

    The effect of the beta-adrenoceptor antagonist propranolol has been investigated in nine patients suffering from isolated (six patients) or prominent (three patients) essential tremor of the head. In a double-blind, placebo-controlled study the tremorolytic efficacy of propranolol has been assessed by a quantitative accelerometric method after a single oral dose (120 mg) and following 2 weeks of sustained treatment with two different dosage regimens of the drug (120 and 240 mg daily). As compared with placebo, a significant reduction in tremor magnitude was found following a single oral dose but not on sustained administration of the beta-blocker at either dosage. The results suggest that the efficacy of sustained propranolol on isolated or prominent essential head tremor is less predictable and satisfactory than expected on the basis of the single-dose response, as compared with hand tremor.

  5. Holmes' tremor as a delayed complication of thalamic stroke.

    PubMed

    Martins, William Alves; Marrone, Luiz Carlos Porcello; Fussiger, Helena; Vedana, Viviane Maria; Cristovam, Rafael do Amaral; Taietti, Marjorye Z; Marrone, Antonio Carlos Huf

    2016-04-01

    Movement disorders are not commonly associated with stroke. Accordingly, thalamic strokes have rarely been associated with tremor, pseudo-athetosis and dystonic postures. We present a 75-year-old man who developed a disabling tremor 1 year after a posterolateral thalamic stroke. This tremor had low frequency (3-4 Hz), did not disappear on focus and was exacerbated by maintaining a static posture and on target pursuit, which made it very difficult to perform basic functions. MRI demonstrated an old ischemic lesion at the left posterolateral thalamus. Treatment with levodopa led to symptom control. Lesions in the midbrain, cerebellum and thalamus may cause Holmes' tremor. Delayed onset of symptoms is usually seen, sometimes appearing 2 years after the original injury. This may be due to maturation of a complex neuronal network, leading to slow dopaminergic denervation. Further studies are needed to improve our understanding of this unique disconnection syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiar, Ana C.; Chao, Kevin; Beroza, Gregory C.

    In this paper, we compare low-frequency earthquakes (LFEs) from triggered and ambient tremor under the southern Central Range, Taiwan. We apply the PageRank algorithm used by Aguiar and Beroza (2014) that exploits the repetitive nature of the LFEs to find repeating LFEs in both ambient and triggered tremor. We use these repeaters to create LFE templates and find that the templates created from both tremor types are very similar. To test their similarity, we use both interchangeably and find that most of both the ambient and triggered tremor match the LFE templates created from either data set, suggesting that LFEsmore » for both events have a common origin. Finally, we locate the LFEs by using local earthquake P wave and S wave information and find that LFEs from triggered and ambient tremor locate to between 20 and 35 km on what we interpret as the deep extension of the Chaochou-Lishan Fault.« less

  7. Precise tremor source locations and amplitude variations along the lower-crustal central San Andreas Fault

    USGS Publications Warehouse

    Shelly, David R.; Hardebeck, Jeanne L.

    2010-01-01

    We precisely locate 88 tremor families along the central San Andreas Fault using a 3D velocity model and numerous P and S wave arrival times estimated from seismogram stacks of up to 400 events per tremor family. Maximum tremor amplitudes vary along the fault by at least a factor of 7, with by far the strongest sources along a 25 km section of the fault southeast of Parkfield. We also identify many weaker tremor families, which have largely escaped prior detection. Together, these sources extend 150 km along the fault, beneath creeping, transitional, and locked sections of the upper crustal fault. Depths are mostly between 18 and 28 km, in the lower crust. Epicenters are concentrated within 3 km of the surface trace, implying a nearly vertical fault. A prominent gap in detectible activity is located directly beneath the region of maximum slip in the 2004 magnitude 6.0 Parkfield earthquake.

  8. Fragile X-associated tremor/ataxia syndrome.

    PubMed

    Hoem, Gry; Koht, Jeanette

    2017-10-31

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a hereditary neurodegenerative disorder caused by a mutation on the X chromosome. The major signs and symptoms are tremor, ataxia and parkinsonism. Up to one in 2 000 persons over 50 years of age will develop the syndrome. There is reason to believe that too few individuals in Norway undergo testing for this condition.

  9. Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip.

    PubMed

    Rogers, Garry; Dragert, Herb

    2003-06-20

    We found that repeated slow slip events observed on the deeper interface of the northern Cascadia subduction zone, which were at first thought to be silent, have unique nonearthquake seismic signatures. Tremorlike seismic signals were found to correlate temporally and spatially with slip events identified from crustal motion data spanning the past 6 years. During the period between slips, tremor activity is minor or nonexistent. We call this associated tremor and slip phenomenon episodic tremor and slip (ETS) and propose that ETS activity can be used as a real-time indicator of stress loading of the Cascadia megathrust earthquake zone.

  10. Essential tremor: electrophysiological and pharmacological evidence for a subdivision.

    PubMed Central

    Deuschl, G; Lücking, C H; Schenck, E

    1987-01-01

    Forty five patients with essential tremor have been investigated by means of clinical examination, polygraphic EMG records and testing of long-latency reflexes. Clinically there were no differences between the patients, whereas the electrophysiological investigations suggested two subtypes. One group of patients may be characterised by normal long-latency reflexes and synchronous tremor bursts in antagonists or activity of the antigravity muscle alone. The second group had abnormal long-latency reflexes and reciprocal EMG activity in antagonists. It is suggested that these two groups represent distinct subgroups of essential tremor. Patients of the first group responded well to propranolol, whereas those of the second group did not. PMID:3694203

  11. The aetiology of mirror writing: a new hypothesis.

    PubMed Central

    Tashiro, K; Matsumoto, A; Hamada, T; Moriwaka, F

    1987-01-01

    Twenty-eight cases of mirror writing were seen during a period of three and a half years. These consisted of 12 patients with essential tremor, nine with Parkinson's disease, three with spino-cerebellar degeneration and four other cases. There were no cases of hemiparesis, aphasia, apraxia, agnosia or confusion. Fragmentary reversals were excluded from this study. Since essential tremor, Parkinsonian tremor and cerebellar tremor can be abolished by a stereotaxic produce applied to the thalamus, a common neural pathway via the thalamic nuclei may exist in these disorders. The existence is therefore proposed of some neural mechanism that controls the higher cerebral function of writing via the thalamus. PMID:3437291

  12. Deep Brain Stimulation for Essential Vocal Tremor: A Technical Report.

    PubMed

    Ho, Allen L; Choudhri, Omar; Sung, C Kwang; DiRenzo, Elizabeth E; Halpern, Casey H

    2015-03-01

    Essential vocal tremor (EVT) is the presence of a tremulous voice that is commonly associated with essential tremor. Patients with EVT often report a necessary increase in vocal effort that significantly worsens with stress and anxiety and can significantly impact quality of life despite optimal medical and behavioral treatment options. Deep brain stimulation (DBS) has been proposed as an effective therapy for vocal tremor, but very few studies exist in the literature that comprehensively evaluate the efficacy of DBS for specifically addressing EVT. We present a technical report on our multidisciplinary, comprehensive operative methodology for treatment of EVT with frameless, awake deep brain stimulation (DBS).

  13. Deep Brain Stimulation for Essential Vocal Tremor: A Technical Report

    PubMed Central

    Choudhri, Omar; Sung, C. Kwang; DiRenzo, Elizabeth E; Halpern, Casey H

    2015-01-01

    Essential vocal tremor (EVT) is the presence of a tremulous voice that is commonly associated with essential tremor. Patients with EVT often report a necessary increase in vocal effort that significantly worsens with stress and anxiety and can significantly impact quality of life despite optimal medical and behavioral treatment options. Deep brain stimulation (DBS) has been proposed as an effective therapy for vocal tremor, but very few studies exist in the literature that comprehensively evaluate the efficacy of DBS for specifically addressing EVT. We present a technical report on our multidisciplinary, comprehensive operative methodology for treatment of EVT with frameless, awake deep brain stimulation (DBS). PMID:26180680

  14. [A Case of Psychogenic Tremor during Awake Craniotomy].

    PubMed

    Kujirai, Kazumasa; Kamata, Kotoe; Uno, Toshihiro; Hamada, Keiko; Ozaki, Makoto

    2016-01-01

    A 31-year-old woman with a left frontal and parietal brain tumor underwent awake craniotomy. Propofol/remifentanil general anesthesia was induced. Following craniotomy, anesthetic administrations ceased. The level of consciousness was sufficient and she was not agitated. However, the patient complained of nausea 70 minutes into the awake phase. Considering the adverse effects of antiemetics and the upcoming surgical strategy, we did not give any medications. Nausea disappeared spontaneously while the operation was suspended. When surgical intervention extended to the left caudate nucleus, involuntary movement, classified as a tremor, with 5-6 Hz frequency, abruptly occurred on her left forearm. The patient showed emotional distress. Tremor appeared on her right forearm and subsequently spread to her lower extremities. Intravenous midazolam and fentanyl could not reduce her psychological stress. Since the tremor disturbed microscopic observation, general anesthesia was induced. Consequently, the tremor disappeared and did not recur. Based on the anatomical ground and the medication status, her involuntary movement was diagnosed as psychogenic tremor. Various factors can induce involuntary movements. In fact, intraoperative management of nausea and vomiting takes priority during awake craniotomy, but we should be reminded that some antiemetics potentially induce involuntary movement that could be caused by surgery around basal ganglia.

  15. Effects of strong mining tremors, and assessment of the buildings' resistance to the dynamic impacts

    NASA Astrophysics Data System (ADS)

    Bryt-Nitarska, Izabela

    2018-04-01

    A particularly important element in the assessment of the actual state of the threats which is caused by conducting the mining exploitation of seams bumping under the urban areas is to diagnose the condition of the land development after hard shocks. In the buildings, for which the impact of the mining activities, including the tremors, is not taken into account at the stage of design and formulation of the strength and use conditions, conclusions from the structure behaviour under the tremor influence are an essential part of the assessment of the possibility for transferring the further dynamic impacts. The use of conclusions from the in situ research has its role in anticipating the behaviour of the buildings in case of the forecast of the mining tremors effects in the regions of their impacts. These conclusions should also provide ground for the assumptions to the scope of the building prevention necessary to be taken in case of forecasting the tremors with big intensity. Based on the analysis of effects which occurred in the land development after the highenergy mining tremors, the elements of the dynamic resistance assessment for the buildings with traditional structure were discussed.

  16. Simulating the Evolving Behavior of Secondary Slow Slip Fronts

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Rubin, A. M.

    2017-12-01

    High-resolution tremor catalogs of slow slip events reveal secondary slow slip fronts behind the main front that repetitively occupy the same source area during a single episode. These repetitive fronts are most often observed in regions with high tremor density. Their recurrence intervals gradually increase from being too short to be tidally modulated (tens of minutes) to being close to tidal periods (about 12 or 24 hours). This could be explained by a decreasing loading rate from creep in the surrounding regions (with few or no observable tremor events) as the main front passes by. As the recurrence intervals of the fronts increase, eventually they lock in on the tidal periods. We attempt to simulate this numerically using a rate-and-state friction law that transitions from velocity-weakening at low slip speeds to velocity strengthening at high slip speeds. Many small circular patches with a cutoff velocity an order of magnitude higher than that of the background are randomly placed on the fault, in order to simulate the average properties of the high-density tremor zone. Preliminary results show that given reasonable parameters, this model produces similar propagation speeds of the forward-migrating main front inside and outside the high-density tremor zone, consistent with observations. We will explore the behavior of the secondary fronts that arise in this model, in relation to the local density of the small tremor-analog patches, the overall geometry of the tremor zone and the tides.

  17. Prevalence of Essential Tremor on Arosa Island, Spain: a Community-based, Door-to-Door Survey.

    PubMed

    Seijo-Martínez, Manuel; Del Río, María Castro; Alvarez, Jose Ramon Rodríguez; Prado, Ramon Suarez; Salgado, Eugenio Torres; Esquete, Javier Paz; Sobrido-Gómez, Maria Jesus

    2013-01-01

    The prevalence of essential tremor (ET) is still not well understood and the various studies performed to date have generated highly variable results. Few epidemiologic studies on the prevalence of ET have been reported from Spain. A one-stage door-to-door survey was conducted on Arosa Island, northwestern Spain, to determine the prevalence of ET in the population aged 65 years and older. The diagnostic criteria for ET were the presence of non-dystonic head tremor or moderate- to severe-amplitude tremor on at least four tests of the revised Washington Heights-Inwood Genetic Study of Essential Tremor (WHIGET) Scale. A total of 65 individuals with ET (28 males, 37 females) were identified, resulting in a crude prevalence of 8.63% (adjusted rate 8.42%). Prevalence increased with advancing age. There were no significant differences in prevalence between sexes in any of the age groups. Among the prevalent cases, 12.3% (n = 8) had been previously diagnosed. Only 29.2% (n = 19) reported functional disability caused by tremor. A family history of tremor was reported in 35.4% (n = 23). The prevalence of ET was higher than that seen in similar populations in Spain and other countries. A high proportion of those with ET were previously undiagnosed. Since Arosa Island has been a relatively isolated area, these results might indicate a predominant role, at least in the elderly, for genetic factors in the development of ET.

  18. Prevalence of Essential Tremor on Arosa Island, Spain: a Community-based, Door-to-Door Survey

    PubMed Central

    Seijo-Martínez, Manuel; del Río, María Castro; Álvarez, Jose Ramon Rodríguez; Prado, Ramon Suarez; Salgado, Eugenio Torres; Esquete, Javier Paz; Sobrido-Gómez, Maria Jesus

    2013-01-01

    Background The prevalence of essential tremor (ET) is still not well understood and the various studies performed to date have generated highly variable results. Few epidemiologic studies on the prevalence of ET have been reported from Spain. Methods A one-stage door-to-door survey was conducted on Arosa Island, northwestern Spain, to determine the prevalence of ET in the population aged 65 years and older. The diagnostic criteria for ET were the presence of non-dystonic head tremor or moderate- to severe-amplitude tremor on at least four tests of the revised Washington Heights-Inwood Genetic Study of Essential Tremor (WHIGET) Scale. Results A total of 65 individuals with ET (28 males, 37 females) were identified, resulting in a crude prevalence of 8.63% (adjusted rate 8.42%). Prevalence increased with advancing age. There were no significant differences in prevalence between sexes in any of the age groups. Among the prevalent cases, 12.3% (n = 8) had been previously diagnosed. Only 29.2% (n = 19) reported functional disability caused by tremor. A family history of tremor was reported in 35.4% (n = 23). Discussion The prevalence of ET was higher than that seen in similar populations in Spain and other countries. A high proportion of those with ET were previously undiagnosed. Since Arosa Island has been a relatively isolated area, these results might indicate a predominant role, at least in the elderly, for genetic factors in the development of ET. PMID:24116344

  19. Stereotactic radiosurgery for tremor: systematic review.

    PubMed

    Martínez-Moreno, Nuria E; Sahgal, Arjun; De Salles, Antonio; Hayashi, Motohiro; Levivier, Marc; Ma, Lijun; Paddick, Ian; Régis, Jean; Ryu, Sam; Slotman, Ben J; Martínez-Álvarez, Roberto

    2018-02-23

    OBJECTIVE The aim of this systematic review is to offer an objective summary of the published literature relating to stereotactic radiosurgery (SRS) for tremor and consensus guideline recommendations. METHODS This systematic review was performed up to December 2016. Article selection was performed by searching the MEDLINE (PubMed) and EMBASE electronic bibliographic databases. The following key words were used: "radiosurgery" and "tremor" or "Parkinson's disease" or "multiple sclerosis" or "essential tremor" or "thalamotomy" or "pallidotomy." The search strategy was not limited by study design but only included key words in the English language, so at least the abstract had to be in English. RESULTS A total of 34 full-text articles were included in the analysis. Three studies were prospective studies, 1 was a retrospective comparative study, and the remaining 30 were retrospective studies. The one retrospective comparative study evaluating deep brain stimulation (DBS), radiofrequency thermocoagulation (RFT), and SRS reported similar tremor control rates, more permanent complications after DBS and RFT, more recurrence after RFT, and a longer latency period to clinical response with SRS. Similar tremor reduction rates in most of the reports were observed with SRS thalamotomy (mean 88%). Clinical complications were rare and usually not permanent (range 0%-100%, mean 17%, median 2%). Follow-up in general was too short to confirm long-term results. CONCLUSIONS SRS to the unilateral thalamic ventral intermediate nucleus, with a dose of 130-150 Gy, is a well-tolerated and effective treatment for reducing medically refractory tremor, and one that is recommended by the International Stereotactic Radiosurgery Society.

  20. Tremor cells in the human thalamus: differences among neurological disorders.

    PubMed

    Brodkey, Jason A; Tasker, Ronald R; Hamani, Clement; McAndrews, Mary Pat; Dostrovsky, Jonathan O; Lozano, Andres M

    2004-07-01

    Thalamic neurons firing at frequencies synchronous with tremor are thought to play a critical role in the generation and maintenance of tremor. The authors studied the incidence and locations of neurons with tremor-related activity (TRA) in the thalamus of patients with varied pathological conditions-including Parkinson disease (PD), essential tremor (ET), multiple sclerosis (MS), and cerebellar disorders--to determine whether known differences in the effectiveness of thalamic stereotactic procedures for these tremors could be correlated to differences in the incidence or locations of TRA cells. Seventy-five operations were performed in 61 patients during which 686 TRA cells were recorded from 440 microelectrode trajectories in the thalamus. The locations of the TRA cells in relation to electrophysiologically defined thalamic nuclei and the commissural coordinates were compared among patient groups. The authors found that TRA cells are present in patients with each of these disorders and that these cells populate several nuclei in the ventral lateral tier of the thalamus. There were no large differences in the locations of TRA cells among the different diagnostic classes, although there was a difference in the incidence of TRA cells in patients with PD, who had greater than 3.8 times more cells per thalamic trajectory than patients with ET and approximately five times more cells than patients with MS or cerebellar disorders. There was an increased incidence of TRA in the thalamus of patients with PD. The location of thalamic TRA cells in patients with basal ganglia and other tremor disorders was similar.

  1. Parkinsonism in fragile X-associated tremor/ataxia syndrome (FXTAS): revisited.

    PubMed

    Niu, Yu-Qiong; Yang, Jin-Chen; Hall, Deborah A; Leehey, Maureen A; Tassone, Flora; Olichney, John M; Hagerman, Randi J; Zhang, Lin

    2014-04-01

    Parkinsonian features have been used as a minor diagnostic criterion for fragile X-associated tremor/ataxia syndrome (FXTAS). However, prior studies have examined parkinsonism (defined as having bradykinesia with at least rest tremor or postural instability) mostly in premutation carriers without a diagnosis of FXTAS. The current study was intended to elaborate this important aspect of the FXTAS spectrum, and to quantify the relationships between parkinsonism, FXTAS clinical staging and genetic/molecular measures. Thirty eight (38) FXTAS patients and 10 age-matched normal controls underwent a detailed neurological examination that included all but one item (i.e. rigidity) of the motor section of the Unified Parkinson's Disease Rating Scale (UPDRS). The FXTAS patient group displayed substantially higher prevalence of parkinsonian features including body bradykinesia (57%) and rest tremor (26%), compared to the control group. Furthermore, parkinsonism was identified in 29% of FXTAS patients. Across all patients, body bradykinesia scores significantly correlated with FXTAS clinical stage, FMR1 mRNA level, and ataxic gait of cerebellar origin, while postural instability was associated with intention tremor. Parkinsonian features in FXTAS appear to be characterized as bradykinesia concurrent with cerebellar gait ataxia, postural instability accompanied by intention tremor, and frequent rest tremor, representing distinctive patterns that highlight the need for further clinical studies including genetic testing for the FMR1 premutation. The association between FMR1 mRNA level and bradykinesia implicates pathophysiological mechanisms which may link FMR1 mRNA toxicity, dopamine deficiency and parkinsonism in FXTAS. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Disorders of Upper Limb Movements in Ataxia-Telangiectasia

    PubMed Central

    Shaikh, Aasef G.; Zee, David S.; Mandir, Allen S.; Lederman, Howard M.; Crawford, Thomas O.

    2013-01-01

    Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task), while arms were outstretched (postural task), and at rest. Almost all ataxia-telangiectasia subjects (79/80) had abnormal involuntary movements, such as rhythmic oscillations (tremor), slow drifts (dystonia or athetosis), and isolated rapid movements (dystonic jerks or myoclonus). All patients with involuntary movements had both kinetic and postural tremor, while 48 (61%) also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia. PMID:23826191

  3. Disorders of Upper Limb Movements in Ataxia-Telangiectasia.

    PubMed

    Shaikh, Aasef G; Zee, David S; Mandir, Allen S; Lederman, Howard M; Crawford, Thomas O

    2013-01-01

    Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task), while arms were outstretched (postural task), and at rest. Almost all ataxia-telangiectasia subjects (79/80) had abnormal involuntary movements, such as rhythmic oscillations (tremor), slow drifts (dystonia or athetosis), and isolated rapid movements (dystonic jerks or myoclonus). All patients with involuntary movements had both kinetic and postural tremor, while 48 (61%) also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia.

  4. Fractal hierarchies of magma transport in Hawaii and critical self-organization of tremor

    NASA Astrophysics Data System (ADS)

    Shaw, Herbert R.; Chouet, Bernard

    1991-06-01

    A hierarchical model of magma transport in Hawaii is developed from the seismic records of deep (30-60 km) and intermediate-depth (5-15 km) harmonic tremor between January 1, 1962, and December 31, 1983. We find two kinds of spatial distributions of magma fractions at depths below 5 km, defined by the fractal dimension D3, where the subscript is the embedding dimension. The first is a focused distribution with D3 = 0.28, and the second is a dispersed distribution with D3 = 1.52. The former dimension reflects conduitlike structures where the magma flow converges toward a summit magma chamber and the fractal dimension tends to zero. The latter dimension reflects multifractal clustering of dendritic fractures where hypocentral domains represent subsets of fractures within spherical domains with an average radius of about 1 km. These geometries constitute a percolation network of clustered intermittent fracture and magma transport. The magma volume of the average fracture is about 2 × 104 m3. A tremor model of magma transport is developed from mass balances of percolation that are proportional to tremor durations. It gives reasonable magma fractions and residence times for a vertical drift velocity of 4 km yr-1 and yields patterns of intermittency that are in accord with singularity analyses of the 22-year time series record. According to the model, sustained tremor is generated by the relaxation oscillations of the percolation network with a dominant frequency of about 1 Hz to obtain internally consistent values of fracture geometry, fracture opening force, and magma supply rate. Calculated tremor frequencies are higher in fracture networks of small volume in harmony with the observed relation between seismic amplitude and dominant frequency of tremor. Tectonic relaxation times of rock stresses versus magma pressures are in fair agreement with the average length of tremor episodes and average period of tremor intermittencies. These observations suggest that a high degree of self-organization is characteristic of the nonlinear dynamics of fracture percolation and coupled tremor processes. Logarithms of frequencies (in hertz) of high-amplitude tremor (1-s period), mean tremor duration (28-min period), and mean onset interval (14-day period) are 0, -3.2, and -6.1, implying broadband maxima in the frequency spectrum of transport at intervals of 103. The next longer period of this sequence, which corresponds to eruptions and shallow intrusions, is about 32 years (10 -9 Hz), comparable to the average eruption intermission of Mauna Loa during the last 150 years (about 20 years). This and other evidence suggest that spatiotemporal universality extends from small to large scales in Hawaiian and other magmatic systems. The apparent universal scaling of frequencies may be more than 15 decades in time (1 s to about 60 m.y.) and 10 decades in length (0.1 mm to 103 km).

  5. Study of Tectonic Tremor in Depth: Triggering Stress Observation and Model of the Triggering Mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Tien-Huei

    Non-volcanic tremor (NVT) has been discovered in recent years due to advances in seismic instruments and increased density of seismic networks. The NVT is a special kind of seismic signal indicative of the physical conditions and the failure mechanism on the source on the fault where NVT occurs. The detection methods used and the sensitivity of them relies on the density, distance and instrumentation of the station network available. How accurately the tremor is identified in different regions varies greatly among different studies. Therefore, there has not been study that rigorously documents tectonic tremors in different regions under limited methods and data. Meanwhile, many incidences of NVTs are observed during or after small but significant strain change induced by teleseismic, regional or local earthquake. The understanding of the triggering mechanisms critical for tremor remains unclear. In addition, characteristics of the triggering of NVT in different regions are rarely compared because of the short time frame after the discovery of the triggered NVTs. We first explore tectonic tremor based on observations to learn about its triggering, frequency of occurrence, location and spectral characteristics. Then, we numerically model the triggering of instability on the estimated tremor-source, under assumptions fine-tuned according to previous studies (Thomas et al., 2009; Miyazawa et al., 2005; Hill, 2008; Ito, 2009; Rubinstein et al., 2007; Peng and Chao, 2008). The onset of the slip reveals that how and when the external loading triggers tremor. It also holds the information to the background stress conditions under which tremor source starts with. We observe and detect tremor in two regions: Anza and Cholame, along San Jacinto Fault (SJF) and San Andreas Fault (SAF) respectively. These two sections of the faults, relative to general fault zone on which general earthquakes occur, are considered transition zones where slip of slow rates occurs. Slip events including NVT occur on these sections have slower slip rates than that of the general earthquakes (Rubin, 2008; Ide, 2008). In Azna region, we use envelope and waveform cross-correlation to detect tremor. We investigate the stress required to trigger tremor and tremor spectrum using continuous broadband seismograms from 11 stations located near Anza, California. We examine 44 Mw≥7.4 teleseismic events between 2001 and 2011, in addition to one regional earthquake of smaller-magnitude, the 2009 Mw 6.5 Gulf of California earthquake, because it induced extremely high strain at Anza. The result suggests that not only the amplitude of the induced strain, but also the period of the incoming surface wave, may control triggering of tremor near Anza. In addition, we find that the transient-shear stress (17--35 kPa) required to trigger tremor along the SJF at Anza is distinctly higher than what has been reported for the well-studied SAF (Gulihem et al. 2010). We model slip initiation using the analytical solution of rate-and-state friction. We verify the correctness of this method by comparing the results with that from the dynamic model, implemented using the Multi-Dimensional Spectral Boundary Integral Code (MDSBI) written by Eric M. Dunham from Sanford University. We find that the analytical result is consistent with that of the dynamic model. We set up a patch model with which the source stress and frictional conditions best resemble the current estimates of the tremor source. The frictional regime of this patch is rate-weakening. The initial normal and shear stress, and friction parameters are suggested by previous observations of tectonic tremors both in this and other studies (Brown et al., 2005; Shelly et al., 2006; Miyazawa, 2008; Ben-Zion, 2012). Our dynamic loading first consists of simple harmonic stress change with fixed periods, simplifying the transient stress history to resemble teleseismic earthquakes. We tested the period and amplitude of such periodic loading. We find that the period of the transient shear stress is less important relative to the amplitude. The triggering depends mainly on the ratio between amplitude of the shear stress loading and the background normal stress. We define a range of ratio indicative of the occurrence of the triggering. We later test the triggering of the instability using the shear stress history from 44 large teleseismic earthquakes (data equivalent to those used in Chapter 1). With the constraints of these observations, we find that the background normal stress should be in the range of ˜400-700 kPa. The background normal stress suggested agrees with the common hypothesis that the tremor source is under low normal stress. In addition, our results provide a first estimation of the background normal stress with numerical method. We also demonstrate how our model find constrains on the background physical stress or frictional conditions, with several true incidences that transient shear stress triggers or not-triggers tremor. (Abstract shortened by UMI.).

  6. Tremor Hypocenters Form a Narrow Zone at the Plate Interface in Two Areas of SW Japan

    NASA Astrophysics Data System (ADS)

    Armbruster, J. G.

    2015-12-01

    The tremor detectors developed for accurately locating tectonic tremor in Cascadia [Armbruster et al., JGR 2014] have been applied to data from the HINET seismic network in Japan. In the overview by Obara [Science 2002] there are three strong sources of tectonic tremor in southwest Japan: Shikoku, Kii Pen. and Tokai. The daily epicentral distributions of tremor on the HINET web site allow the identification of days when tremor in each source is active. The worst results were obtained in Shikoku, in spite of the high level of tremor activity observed there by others. This method requires a clear direct arrival of the S and P waves at the stations for coherence to be seen, so scattering and shear wave splitting are possible reasons for poor results there. Relatively wide station spacing, 19-30 km, is another possible reason. The best results were obtained in Tokai with stations STR, HRY and TYE spacing 18-19 km, and Kii Pen. with stations KRT, HYS and KAW spacing 15-22 km. In both of those areas the three station detectors see strong episodes of tremor. If detections with three stations are located by constraining them to the plate interface, a pattern of persistent sources is seen, with some intense sources. This is similar to what was seen in Cascadia. Detections with four stations give S and P arrival times of high accuracy. In Tokai the hypocenters form a narrow, 2-3 km thick, zone dipping to the north, consistent with the plate interface there. In Kii Pen. the hypocenters dip to the northwest in a thin, 2-3 km thick, zone but approximately 5 km shallower than a plate interface model for this area [Yoshioka and Murakami, GJI 2007]. The overlap of tremor sources in the 12 years analyzed here suggests relative hypocentral location errors as small as 2-3 km. We conclude that the methods developed in Cascadia will work in Japan but the typical spacing of HINET stations, ~20 km, is greater than the optimum distance found in analysis of data from Cascadia, 8 to 15 km.

  7. Investigating Complex Slow Slip Evolution with High-Resolution Tremor Catalogs and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Rubin, A. M.

    2016-12-01

    Significant complexities of episodic slip and tremor (ETS) have been revealed by short tremor bursts lasting minutes to hours, many of which show clear migration patterns. In Cascadia, large-scale rapid tremor reversals (RTRs) extend tens of km along strike, repeatedly occupying the same general source area during an ETS episode [e.g. Thomas et al, 2013; Peng and Rubin, 2016]. We also observe repetitive tremor bursts occurring well behind the main front in Guerrero, Mexico. In contrast to RTRs, these bursts do not originate from the main front, and generally propagate along the slip direction, similar to those reported from Shikoku, Japan [Shelly et al., 2007]. Both types of bursts occur intermittently, with recurrence intervals gradually increasing to tidal periods. However, even the tidally-modulated bursts are unlikely to be driven solely by tidal forcing. Since the stress must decrease during each burst, while the local maxima of the tidal stress remain nearly constant, each tidal peak stress cannot supply the stress drop for the next repetition. Here we explore the possibility that these repetitive bursts are driven by surrounding tremor-less slow slip. We develop a numerical model governed by a rate-and-state friction law that transitions from velocity-weakening to velocity-strengthening with increasing slip speed. A region with a larger transitional velocity than the background is used to represent the tremor zone. For this zone to slip intermittently, its stiffness needs to be sufficiently large that the slip during each burst is less than the total slip of the background during an episode, but smaller than its own critical stiffness. This critical stiffness decreases as the ratio of the background loading rate to the transitional cutoff velocity increases; from elasticity this ratio decreases as the main front moves across the model tremor zone. With these considerations, we successfully reproduce the burst-like behavior with increasingly large recurrence intervals in the model tremor zone during a single slow slip event. Future work will include investigating the propagation velocities of these bursts, which in Guerrero decrease systematically with increasing time since the previous migration through the same region, and tidal modulation of their recurrence intervals.

  8. S-wave triggering of tremor beneath the Parkfield, California, section of the San Andreas fault by the 2011 Tohoku, Japan earthquake: observations and theory

    USGS Publications Warehouse

    Hill, David P.; Peng, Zhigang; Shelly, David R.; Aiken, Chastity

    2013-01-01

    The dynamic stresses that are associated with the energetic seismic waves generated by the Mw 9.0 Tohoku earthquake off the northeast coast of Japan triggered bursts of tectonic tremor beneath the Parkfield section of the San Andreas fault (SAF) at an epicentral distance of ∼8200  km. The onset of tremor begins midway through the ∼100‐s‐period S‐wave arrival, with a minor burst coinciding with the SHSH arrival, as recorded on the nearby broadband seismic station PKD. A more pronounced burst coincides with the Love arrival, followed by a series of impulsive tremor bursts apparently modulated by the 20‐ to 30‐s‐period Rayleigh wave. The triggered tremor was located at depths between 20 and 30 km beneath the surface trace of the fault, with the burst coincident with the S wave centered beneath the fault 30 km northwest of Parkfield. Most of the subsequent activity, including the tremor coincident with the SHSH arrival, was concentrated beneath a stretch of the fault extending from 10 to 40 km southeast of Parkfield. The seismic waves from the Tohoku epicenter form a horizontal incidence angle of ∼14°, with respect to the local strike of the SAF. Computed peak dynamic Coulomb stresses on the fault at tremor depths are in the 0.7–10 kPa range. The apparent modulation of tremor bursts by the small, strike‐parallel Rayleigh‐wave stresses (∼0.7  kPa) is likely enabled by pore pressure variations driven by the Rayleigh‐wave dilatational stress. These results are consistent with the strike‐parallel dynamic stresses (δτs) associated with the S, SHSH, and surface‐wave phases triggering small increments of dextral slip on the fault with a low friction (μ∼0.2). The vertical dynamic stresses δτd do not trigger tremor with vertical or oblique slip under this simple Coulomb failure model.

  9. Magnetic Resonance-Guided Focused Ultrasound Neurosurgery for Essential Tremor: A Health Technology Assessment

    PubMed Central

    Schaink, Alexis; Li, Chunmei; Gajic-Veljanoski, Olga; Wells, David; Higgins, Caroline

    2018-01-01

    Background The standard treatment option for medication-refractory essential tremor is invasive neurosurgery. A new, noninvasive alternative is magnetic resonance-guided focused ultrasound (MRgFUS) neurosurgery. We aimed to determine the effectiveness, safety, and cost-effectiveness of MRgFUS neurosurgery for the treatment of moderate to severe, medication-refractory essential tremor in Ontario. We also spoke with people with essential tremor to gain an understanding of their experiences and thoughts regarding treatment options, including MRgFUS neurosurgery. Methods We performed a systematic review of the clinical literature published up to April 11, 2017, that examined MRgFUS neurosurgery alone or compared with other interventions for the treatment of moderate to severe, medication-refractory essential tremor. We assessed the risk of bias of each study and the quality of the body of evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria. We performed a systematic review of the economic literature and created Markov cohort models to assess the cost-effectiveness of MRgFUS neurosurgery compared with other treatment options, including no surgery. We also estimated the budget impact of publicly funding MRgFUS neurosurgery in Ontario for the next 5 years. To contextualize the potential value of MRgFUS neurosurgery as a treatment option for essential tremor, we spoke with people with essential tremor and their families. Results Nine studies met our inclusion criteria for the clinical evidence review. In noncomparative studies, MRgFUS neurosurgery was found to significantly improve tremor severity and quality of life and to significantly reduce functional disability (GRADE: very low). It was also found to be significantly more effective than a sham procedure (GRADE: high). We found no significant difference in improvements in tremor severity, functional disability, or quality of life between MRgFUS neurosurgery and deep brain stimulation (GRADE: very low). We found no significant difference in improvement in tremor severity compared with radiofrequency thalamotomy (GRADE: low). MRgFUS neurosurgery has a favourable safety profile. We estimated that MRgFUS neurosurgery has a mean cost of $23,507 and a mean quality-adjusted survival of 3.69 quality-adjusted life-years (QALYs). We also estimated that the mean costs and QALYs of radiofrequency thalamotomy and deep brain stimulation are $14,978 and 3.61 QALYs, and $57,535 and 3.94 QALYs, respectively. For people ineligible for invasive neurosurgery, we estimated the incremental cost-effectiveness ratio (ICER) of MRgFUS neurosurgery compared with no surgery as $43,075 per QALY gained. In people eligible for invasive neurosurgery, the ICER of MRgFUS neurosurgery compared with radiofrequency thalamotomy is $109,795 per QALY gained; when deep brain stimulation is compared with MRgFUS neurosurgery, the ICER is $134,259 per QALY gained. Of note however, radiofrequency thalamotomy is performed very infrequently in Ontario. We also estimated that the budget impact of publicly funding MRgFUS neurosurgery in Ontario at the current case load (i.e., 48 cases/year) would be about $1 million per year for the next 5 years. People with essential tremor who had undergone MRgFUS neurosurgery reported positive experiences with the procedure. The tremor reduction they experienced improved their ability to perform activities of daily living and improved their quality of life. Conclusions MRgFUS neurosurgery is an effective and generally safe treatment option for moderate to severe, medication-refractory essential tremor. It provides a treatment option for people ineligible for invasive neurosurgery and offers a noninvasive option for all people considering neurosurgery. For people ineligible for invasive neurosurgery, MRgFUS neurosurgery is cost-effective compared with no surgery. In people eligible for invasive neurosurgery, MRgFUS neurosurgery may be one of several reasonable options. Publicly funding MRgFUS neurosurgery for the treatment of moderate to severe, medication-refractory essential tremor in Ontario at the current case load would have a net budget impact of about $1 million per year for the next 5 years. People with essential tremor who had undergone MRgFUS neurosurgery reported positive experiences. They liked that it was a noninvasive procedure and reported a substantial reduction in tremor that resulted in an improvement in their quality of life. PMID:29805721

  10. Deciphering Okmok Volcano's restless years (2002-2005)

    NASA Astrophysics Data System (ADS)

    Reyes, Celso Guillermo

    Okmok Volcano is an active island-arc shield volcano located in the central Aleutian islands of Alaska. It is defined by a 10-km-diameter caldera that formed in two cataclysmic eruptions, the most recent being ˜2050 years ago. Subsequent eruptions created several cinder cones within the caldera. The youngest of these, Cone A, was the active vent from 1815 through its 1997 eruption. On July 12 2008 Okmok erupted from new vents located northwest of Cone D. Between 2001 and 2004, geodetic measurements showed caldera inflation. These studies suggested that new magma might be entering the system. In 2002, a newly installed seismic network recorded quasi-periodic ("banded") seismic tremor signals occurring at the rate of two or more episodes per hour. This tremor was a near-continuous signal from the day the seismic network was installed. Although the volcano was not erupting, it was clearly in a state of unrest. This unrest garnered considerable attention because the volcano had erupted just six years prior. The seismic tremor potentially held insight as to whether the unrest was a remnant of the 1997 eruption, or whether it signaled a possible rejuvenation of activity and the potential for eruption. To determine the root cause and implications of this remarkable seismic tremor sequence, I created a catalog of over ˜17,000 tremor events recorded between 2003 and mid-2005. Tremor patterns evolved on the scale of days, but remained the dominant seismic signal. In order to facilitate the analysis of several years of data I created a MATLAB toolbox, known as "The Waveform Suite". This toolbox made it feasible for me to work with several years of digital data and forego my introductory analyses that were based on paper "helicorder" records. I first attempted to locate the tremor using the relative amplitudes of the seismograms to determine where the tremor was being created. Candidate tremor locations were constrained to a few locations along a corridor between Cone A and the caldera center. I then determined theoretical ratios between a reference station and stations nearby the candidate sources. Results suggested that the signal originated in the shallow portion of the corridor connecting the surface of Cone A to the top of the central magma chamber. This study also suggested that the source migrated along this corridor. I integrated the tremor patterns with other studies and proposed that heat and pressure from continued injections of magma were responsible for maintaining an open venting system at Cone A. The tremor resulted from the boiling of a shallow hydrothermal system in the vicinity of Cone A and volatiles potentially coming from the magma itself. The tremor catalog demonstrates that the seismic signal waned during the study period suggesting that fewer fresh volatiles entered the system, which may have allowed the pathways connecting the magma and volatiles to the surface to close up. By the time new magma entered the system in 2006, this network of pathways was closed, forcing the volatiles to seek a new exit. In hindsight, the 2003--2005 period of varied and waning seismic tremor, and the inferred end of massive open venting, may have been a pivotal era at Okmok that eventually led to the 2008 eruption.

  11. Primary writing tremor: motor cortex reorganisation and disinhibition.

    PubMed

    Byrnes, Michelle L; Mastaglia, Frank L; Walters, Susan E; Archer, Sarah-Anne R; Thickbroom, Gary W

    2005-01-01

    Primary writing tremor (PWT) is a task-specific tremor of uncertain origin. There has been debate as to whether PWT represents a variant of essential tremor or a tremulous form of focal dystonia related to writer's cramp. In writer's cramp there is evidence of changes in intracortical inhibition (ICI), as well as cortical motor reorganisation. To study corticomotor organisation and short-latency ICI in a patient with typical task-specific PWT. Transcranial magnetic stimulation mapping of the corticomotor representation of the hand and studies of ICI using paired-pulse stimulation were performed in a 47-year-old right-handed woman with a pure task-specific writing tremor. The motor maps for the hand were displaced posteriorly on both sides and reverted to a normal position after treatment with botulinum toxin. Short-latency ICI was reduced for the dominant hand. The findings indicate reorganisation and disinhibition of the corticomotor projection to the hand and point to the participation of cortical centres in the origin of PWT.

  12. Acoustic waves in the atmosphere and ground generated by volcanic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichihara, Mie; Lyons, John; Oikawa, Jun

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted alsomore » to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.« less

  13. Soldier Performance and Mood States Following a Strenuous Road March

    DTIC Science & Technology

    1990-01-01

    13) and the more intense the exercise, the greater the elevation (14). Reductions in heart rate through the use of beta - blockers can substantially...extreme physical fatigue. Shooting accuracy degraded severely under these conditions. An increase in body tremors due to fatigue or elevated post...exercise (9) and this may effect shooting accuracy. Muscle tremors increase after brief or prolonged muscular contractions (10, 11) and such tremors

  14. Internal tremor in Parkinson's disease, multiple sclerosis, and essential tremor.

    PubMed

    Cochrane, Graham D; Rizvi, Syed; Abrantes, Ana; Crabtree, Brigid; Cahill, Jonathan; Friedman, Joseph H

    2015-10-01

    Internal tremor (IT) is a poorly recognized symptom that has been described in Parkinson's disease (PD). Described as a feeling of tremor in the extremities or trunk without actual movement, ITs are not debilitating but can be bothersome to patients. The origin of the sensation is unknown., and ITs may be prevalent in other diseases than PD. The present study sought to expand knowledge about IT by confirming their presence in PD, and determining their prevalence in Multiple Sclerosis (MS), and Essential Tremor (ET). A survey was developed in order to determine the prevalence of IT in PD, MS, and ET and to learn what associations with various disease characteristics were present. The survey was administered to 89 consecutive PD, 70 MS, and 11 ET patients. ITs were found to be a prevalent symptom in all three disorders (32.6% of PD, 35.9% of MS, and 54.5% of ET subjects reported experiencing ITs). ITs were found to be associated both with the subjects' perceived levels of anxiety and the presence of visible tremors. ITs appear to be a common symptom in all three disorders studied. These results need to be confirmed and compared to appropriate control populations. Copyright © 2015. Published by Elsevier Ltd.

  15. The 2011 unrest at Katla volcano: Characterization and interpretation of the tremor sources

    NASA Astrophysics Data System (ADS)

    Sgattoni, Giulia; Gudmundsson, Ólafur; Einarsson, Páll; Lucchi, Federico; Li, Ka Lok; Sadeghisorkhani, Hamzeh; Roberts, Roland; Tryggvason, Ari

    2017-05-01

    A 23-hour tremor burst was recorded on July 8-9th 2011 at the Katla subglacial volcano, one of the most active and hazardous volcanoes in Iceland. This was associated with deepening of cauldrons on the ice cap and a glacial flood that caused damage to infrastructure. Increased earthquake activity within the caldera started a few days before and lasted for months afterwards and new seismic activity started on the southern flank. No visible eruption broke the ice and the question arose as to whether this episode relates to a minor subglacial eruption with the tremor being generated by volcanic processes, or by the flood. The tremor signal consisted of bursts with varying amplitude and duration. We have identified and described three different tremor phases, based on amplitude and frequency features. A tremor phase associated with the flood was recorded only at stations closest to the river that flooded, correlating in time with rising water level observed at gauging stations. Using back-projection of double cross-correlations, two other phases have been located near the active ice cauldrons and are interpreted to be caused by volcanic or hydrothermal processes. The greatly increased seismicity and evidence of rapid melting of the glacier may be explained by a minor sub-glacial eruption. A less plausible interpretation is that the tremor was generated by hydrothermal boiling and/or explosions with no magma involved. This may have been induced by pressure drop triggered by the release of water when the glacial flood started. All interpretations require an increase of heat released by the volcano.

  16. Morphometric and functional MRI changes in essential tremor with and without resting tremor.

    PubMed

    Nicoletti, Valentina; Cecchi, Paolo; Frosini, Daniela; Pesaresi, Ilaria; Fabbri, Serena; Diciotti, Stefano; Bonuccelli, Ubaldo; Cosottini, Mirco; Ceravolo, Roberto

    2015-03-01

    The etiopathogenesis of essential tremor (ET) is still debated, since the predominant role of circuit dysfunction or brain degenerative changes has not been clearly established. The relationship with Parkinson's Disease (PD) is also controversial and resting tremor occurs in up to 20 % of ET. We investigated the morphological and functional changes associated with ET and we assessed potential differences related to the presence (ET+R) or absence (ET-R) of resting tremor. 32 ET patients (18 ET+R; 14 ET-R) and 12 healthy controls (HC) underwent 3T-MRI protocol including Spoiled Gradient T1-weighted sequence for Voxel-Based Morphometry (VBM) analysis and functional MRI during continuous writing of "8" with right dominant hand. VBM analysis revealed no gray and white matter atrophy comparing ET patients to HC and ET+R to ET-R patients. HC showed a higher BOLD response with respect to ET patients in cerebellum and other brain areas pertaining to cerebello-thalamo-cortical circuit. Between-group activation maps showed higher activation in precentral gyrus bilaterally, right superior and inferior frontal gyri, left postcentral gyrus, superior and inferior parietal gyri, mid temporal and supramarginal gyri, cerebellum and internal globus pallidus in ET-R compared to ET+R patients. Our findings support that the dysfunction of cerebello-thalamo-cortical network is associated with ET in absence of any morphometric changes. The dysfunction of GPi in ET+R patients, consistently with data reported in PD resting tremor, might suggest a potential role of this structure in this type of tremor.

  17. The Effect of Parkinson Disease Tremor Phenotype on Cepstral Peak Prominence and Transglottal Airflow in Vowels and Speech.

    PubMed

    Burk, Brittany R; Watts, Christopher R

    2018-02-19

    The physiological manifestations of Parkinson disease are heterogeneous, as evidenced by disease subtypes. Dysphonia has been well documented as an early and progressively significant impairment associated with the disease. The purpose of this study was to investigate how acoustic and aerodynamic measures of vocal function were affected by Parkinson tremor subtype (phenotype) in an effort to better understand the heterogeneity of voice impairment severity in Parkinson disease. This is a prospective case-control study. Thirty-two speakers with Parkinson disease assigned to tremor and nontremor phenotypes and 10 healthy controls were recruited. Sustained vowels and connected speech were recorded from each speaker. Acoustic measures of cepstral peak prominence (CPP) and aerodynamic measures of transglottal airflow (TAF) were calculated from the recorded acoustic and aerodynamic waveforms. Speakers with a nontremor dominant phenotype exhibited significantly (P < 0.05) lower CPP and higher TAF in vowels compared with the tremor dominant phenotype and control speakers, who were not different from each other. No significant group differences were observed for CPP or TAF in connected speech. When producing vowels, participants with nontremor dominant phenotype exhibited reduced phonation periodicity and elevated TAF compared with tremor dominant and control participants. This finding is consistent with differential limb-motor and cognitive impairments between tremor and nontremor phenotypes reported in the extant literature. Results suggest that sustained vowel production may be sensitive to phonatory control as a function of Parkinson tremor phenotype in mild to moderate stages of the disease. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  18. Clustering of dystonia in some pedigrees with autosomal dominant essential tremor suggests the existence of a distinct subtype of essential tremor

    PubMed Central

    2010-01-01

    Background There is an ongoing debate whether essential tremor (ET) represents a monosymptomatic disorder or other neurologic symptoms are compatible with the diagnosis of ET. Many patients with clinically definite ET develop dystonia. It remains unknown whether tremor associated with dystonia represent a subtype of ET. We hypothesized that ET with dystonia represents a distinct subtype of ET. Methods We studied patients diagnosed with familial ET and dystonia. We included only those patients whose first-degree relatives met diagnostic criteria for ET or dystonia with tremor. This cohort was ascertained for the presence of focal, segmental, multifocal, hemidystonia or generalized dystonia, and ET. Results We included 463 patients from 97 kindreds with autosomal dominant mode of inheritance (AD), defined by the vertical transmission of the disease. ET was the predominant phenotype in every ascertained family and each was phenotypically classified as AD ET. "Pure" ET was present in 365 individuals. Focal or segmental dystonia was present in 98 of the 463 patients; 87 of the 98 patients had ET associated with dystonia, one had dystonic tremor and ten had isolated dystonia. The age of onset and tremor severity did not differ between patients with "pure" ET and ET associated with dystonia. We did not observe a random distribution of dystonia in AD ET pedigrees and all patients with dystonia associated with ET were clustered in 28% of all included pedigrees (27/97, p < 0.001). Conclusions Our results suggest that familial ET associated with dystonia may represent a distinct subtype of ET. PMID:20670416

  19. Volcanic tremor and frequency gliding during dike intrusions at Kı¯lauea—A tale of three eruptions

    NASA Astrophysics Data System (ADS)

    Unglert, K.; Jellinek, A. M.

    2015-02-01

    To characterize syneruptive/intrusive deviations from background volcanic tremor at Kı¯lauea, Hawai`i, we analyze the spatial and temporal properties of broadband tremor during dike intrusions into the East Rift Zone (ERZ) in 2007 and 2011, as well as during explosive eruptive activity at Kı¯lauea's summit in 2008. Background tremor was similar for each event, and the 2008 explosions did not affect its properties. In contrast, the intrusions were accompanied by departures from this background in the form of two phases of seismicity that were separated in space and time. In both 2007 and 2011, Phase I was characterized by a quick succession of discrete events, which were most intense at the onset of intrusion near the presumed locations of the dikes intruding into the ERZ. Phase II, marked by continuous broadband tremor around the summit, followed 10-14 h later. In 2007, Phase II tremor was accompanied by a monotonic downward shift (glide) of spectral peaks between ˜0.6 and 1.5 Hz over at least 15 h. During Phase II in 2011, a gradual upward and subsequent symmetric downward glide between ˜0.6 and 6.6 Hz occurred over 5-10 h, respectively. The spectra during both phases differed from the background and 2008, as well as from each other, indicating different physical mechanisms. Phase I in 2007 and 2011 is probably related to the mechanics of dike intrusion. Phase II tremor may be characteristic for evolving magma-bubble dynamics related to the geometry of the plumbing system and the style of magma flow.

  20. Infrasonic harmonic tremor and degassing bursts from Halema'uma'u Crater, Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Fee, David; Garcés, Milton; Patrick, Matt; Chouet, Bernard; Dawson, Phil; Swanson, Donald A.

    2010-01-01

    The formation, evolution, collapse, and subsequent resurrection of a vent within Halema'uma'u Crater, Kilauea Volcano, produced energetic and varied degassing signals recorded by a nearby infrasound array between 2008 and early 2009. After 25 years of quiescence, a vent-clearing explosive burst on 19 March 2008 produced a clear, complex acoustic signal. Near-continuous harmonic infrasonic tremor followed this burst until 4 December 2008, when a period of decreased degassing occurred. The tremor spectra suggest volume oscillation and reverberation of a shallow gas-filled cavity beneath the vent. The dominant tremor peak can be sustained through Helmholtz oscillations of the cavity, while the secondary tremor peak and overtones are interpreted assuming acoustic resonance. The dominant tremor frequency matches the oscillation frequency of the gas emanating from the vent observed by video. Tremor spectra and power are also correlated with cavity geometry and dynamics, with the cavity depth estimated at ~219 m and volume ~3 x 106 m3 in November 2008. Over 21 varied degassing bursts were observed with extended burst durations and frequency content consistent with a transient release of gas exciting the cavity into resonance. Correlation of infrasound with seismicity suggests an open system connecting the atmosphere to the seismic excitation process at depth. Numerous degassing bursts produced very long period (0.03-0.1 Hz) infrasound, the first recorded at Kilauea, indicative of long-duration atmospheric accelerations. Kilauea infrasound appears controlled by the exsolution of gas from the magma, and the interaction of this gas with the conduits and cavities confining it.

  1. Brain SPECT can differentiate between essential tremor and early-stage tremor-dominant Parkinson's disease.

    PubMed

    Song, In-Uk; Park, Jeong-Wook; Chung, Sung-Woo; Chung, Yong-An

    2014-09-01

    There are no confirmatory or diagnostic tests or tools to differentiate between essential tremor (ET) and tremor in idiopathic Parkinson's disease (PD). Although a number of imaging studies have indicated that there are differences between ET and PD, the functional imaging study findings are controversial. Therefore, we analyzed regional cerebral blood flow (CBF) by perfusion brain single-photon emission computed tomography (SPECT) to identify differences between ET and tremor-dominant Parkinson's disease (TPD). We recruited 33 patients with TPD, 16 patients with ET, and 33 healthy controls. We compared the severity of tremor symptoms by comparing the Fahn-Tolosa-Marin rating scale (FTM) score and the tremor score from Unified Parkinson's Disease Rating Scale (UPDRS) between TPD and ET patients. Subjects were evaluated by neuropsychological assessments, MRI and perfusion SPECT of the brain. Total FTM score was significantly higher in ET patients than TPD patients. However, there was no significant difference in FTM Part A scores between the two patient groups, while the scores for FTM Part B and C were significantly higher in ET patients than TPD patients. Brain SPECT analysis of the TPD group demonstrated significant hypoperfusion of both the lentiform nucleus and thalamus compared to the ET group. Brain perfusion SPECT may be a useful clinical method to differentiate between TPD and ET even during early-phase PD, because the lentiform nucleus and thalamus show differences in regional perfusion between these two groups during this time period. Additionally, we found evidence of cerebellar dysfunction in both TPT and ET. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Temporal evolution of oscillations and synchrony in GPi/muscle pairs in Parkinson's disease.

    PubMed

    Hurtado, José M; Rubchinsky, Leonid L; Sigvardt, Karen A; Wheelock, Vicki L; Pappas, Conrad T E

    2005-03-01

    Both standard spectral analysis and time-dependent phase correlation techniques were applied to 27 pairs of tremor-related single units in the globus pallidus internus (GPi) and EMG of patients with Parkinson's disease (PD) undergoing stereotactic neurosurgery. Over long time-scales (approximately 60 s), GPi tremor-related units were statistically coherent with restricted regions of the peripheral musculature displaying tremor. The distribution of pooled coherence across all pairs supports a classification of GPi cell/EMG oscillatory pairs into coherent or noncoherent. Analysis using approximately 2-s sliding windows shows that oscillatory activity in both GPi tremor units and muscles occurs intermittently over time. For brain/muscle pairs that are coherent, there is partial overlap in the times of oscillatory activity but, in most cases, no significant correlation between the times of oscillatory subepisodes in the two signals. Phase locking between coherent pairs occurs transiently; however, the phase delay is similar for different phase-locking subepisodes. Noncoherent pairs also show episodes of transient phase locking, but they occurred less frequently, and no preferred phase delay was seen across subepisodes. Tremor oscillations in pallidum and EMGs are punctuated by phase slips, which were classified as synchronizing or desynchronizing depending on their effect on phase locking. In coherent pairs, the incidence of synchronizing slips is higher than desynchronizing slips, whereas no significant difference was seen for noncoherent pairs. The results of this quantitative characterization of parkinsonian tremor provide a foundation for hypotheses about the structure and dynamical functioning of basal ganglia motor control networks involved in tremor generation.

  3. Environmental exposure to manganese in air: Associations with tremor and motor function.

    PubMed

    Bowler, Rosemarie M; Beseler, Cheryl L; Gocheva, Vihra V; Colledge, Michelle; Kornblith, Erica S; Julian, Jaime R; Kim, Yangho; Bollweg, George; Lobdell, Danelle T

    2016-01-15

    Manganese (Mn) inhalation has been associated with neuropsychological and neurological sequelae in exposed workers. Few environmental epidemiologic studies have examined the potentially neurotoxic effects of Mn exposure in ambient air on motor function and hand tremor in adult community residents. Mn exposed residents were recruited in two Ohio towns: Marietta, a town near a ferro-manganese smelter, and East Liverpool, a town adjacent to a facility processing, crushing, screening, and packaging Mn products. Chronic (≥ 10 years) exposure to ambient air Mn in adult residents and effects on neuropsychological and neurological outcomes were investigated. Participants from Marietta (n=100) and East Liverpool (n=86) were combined for analyses. AERMOD dispersion modeling of fixed-site outdoor air monitoring data estimated Mn inhalation over a ten year period. Adult Mn-exposed residents' psychomotor ability was assessed using Finger Tapping, Hand Dynamometer, Grooved Pegboard, and the Computerized Adaptive Testing System (CATSYS) Tremor system. Bayesian structural equation modeling was used to assess associations between air-Mn and motor function and tremor. Air-Mn exposure was significantly correlated in bivariate analyses with the tremor test (CATSYS) for intensity, center frequency and harmonic index. The Bayesian path analysis model showed associations of air-Mn with the CATSYS non-dominant center frequency and harmonic index; while the Bayesian structural equation model revealed associations between air-Mn and lower Finger Tapping scores. Household income was significantly associated with motor dysfunction but not with tremor. Tremor and motor function were associated with higher exposure to airborne Mn. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Abundant spontaneous VLFE activities in Cascadia during ETS and inter-ETS time periods

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Hutchison, A. A.; Hawthorne, J.

    2017-12-01

    Very low frequency earthquakes (VLFEs) are discrete seismic events associated with episodic tremor and slip (ETS) events. They are rich in 20-50s energy and depleted in higher frequencies compared to regular local earthquakes of similar magnitudes. VLFEs can be as large as Mw 4.0, and potentially release much more seismic moment than the tremor/LFE activities, making them a critical event determining stress evolution during slow earthquakes [Ghosh et al., 2015]. Their underlying physics and relationship with tremor/LFE, however, are still unclear. In Cascadia, the majority of the VLFEs found so far are clustered near the areas of high geodetic slip during ETS events [Ghosh et al., 2015; Hutchison and Ghosh, 2016]. Interestingly, we found VLFE activity has its own dynamics and can occur independent of tremor/LFE activity. For example, during the 2014 ETS event in northern Cascadia, VLFEs are found to be asynchronous with tremor activity, both in space and time [Hutchison and Ghosh, 2016]. We use a matched filter technique to detect thousands of VLFEs over an ETS-cycle, and perhaps more interestingly, even between ETS events. VLFE activities peak during ETS events, but significant VLFE activity is detected during the inter-ETS time period. Analyses of strainmeter data near the VLFE locations suggest statistically significant strain rate increases during VLFE time periods compared to the background. We suggest that VLFE is a distinct type of seismic radiation different from tremor/LFE, and can operate independently from tremor activities. This is in contrast to a model suggesting that VLFE signals may be a result of many LFE signals arriving at seismic stations in a short time period [Gomberg et al., 2016]. We are making a consistent catalog of VLFE in Cascadia for longer time period. Systematic study of VLFEs is going to provide new insights into the mechanism of slow earthquakes and its relationship with tremor/LFE and slow slip.

  5. Polarization Analysis of the September 2005 Northern Cascadia Episodic Tremor and Slip Event

    NASA Astrophysics Data System (ADS)

    Wech, A. G.; Creager, K. C.

    2006-12-01

    The region of Northern Cascadia, extending from the Olympic Mountains and Puget Sound to southern Vancouver Island, down-dip of the subduction "locked" zone has repeatedly experienced episodes of slow slip. This episodic slip, observed to take place over a period of two to several weeks, is accompanied by a seismic tremor signal. Based on the average recurrence interval of 14 months, the last episodic tremor and slip (ETS) event was expected to occur in September, 2005. Indeed, it began on September 3. In order to record this event, we deployed an array of 11 three-component seismometers on the northern side of the Olympic Peninsula augmenting Pacific Northwest Seismographic Network stations as well as the first few EarthScope BigFoot stations and Plate Boundary Observatory borehole seismometers. This seismic array was comprised of six short-period and five broadband instruments with average spacings of 500 m and 2200 m respectively. In conjunction with this Earthscope seismic deployment, we also installed a dense network of 29 temporary, continuous GPS stations across the entire Olympic Peninsula to integrate seismic and geodetic observations. Based on past geodetic observations, a dominant assumption for the source of tremor is fault-slip in the direction of subduction, which can be tested using polarization of the seismic tremor. Using waveform cross- correlation to invert for the direction of slowness, we observed the tremor signal to migrate directly under our array. As the source passed beneath the array, tremor polarization stabilized to coincide with the direction of subduction. During a four day period starting September 8, the normalized eigenvalue associated with the dominant linear polarization jumped from ~0.7 to a stable 0.9 value. Also during this time, the polarization azimuth stabilized to a value of 57 +/- 8 degrees, close to the angle of subduction (56 degrees) suggesting that the tremor is caused by slip in the direction of relative plate motion on one or more faults.

  6. Differential diagnosis between Parkinson's disease and essential tremor using the smartphone's accelerometer.

    PubMed

    Barrantes, Sergi; Sánchez Egea, Antonio J; González Rojas, Hernán A; Martí, Maria J; Compta, Yaroslau; Valldeoriola, Francesc; Simo Mezquita, Ester; Tolosa, Eduard; Valls-Solè, Josep

    2017-01-01

    The differential diagnosis between patients with essential tremor (ET) and those with Parkinson's disease (PD) whose main manifestation is tremor may be difficult unless using complex neuroimaging techniques such as 123I-FP-CIT SPECT. We considered that using smartphone's accelerometer to stablish a diagnostic test based on time-frequency differences between PD an ET could support the clinical diagnosis. The study was carried out in 17 patients with PD, 16 patients with ET, 12 healthy volunteers and 7 patients with tremor of undecided diagnosis (TUD), who were re-evaluated one year after the first visit to reach the definite diagnosis. The smartphone was placed over the hand dorsum to record epochs of 30 s at rest and 30 s during arm stretching. We generated frequency power spectra and calculated receiver operating characteristics curves (ROC) curves of total spectral power, to establish a threshold to separate subjects with and without tremor. In patients with PD and ET, we found that the ROC curve of relative energy was the feature discriminating better between the two groups. This threshold was then used to classify the TUD patients. We could correctly classify 49 out of 52 subjects in the category with/without tremor (97.96% sensitivity and 83.3% specificity) and 27 out of 32 patients in the category PD/ET (84.38% discrimination accuracy). Among TUD patients, 2 of 2 PD and 2 of 4 ET were correctly classified, and one patient having PD plus ET was classified as PD. Based on the analysis of smartphone accelerometer recordings, we found several kinematic features in the analysis of tremor that distinguished first between healthy subjects and patients and, ultimately, between PD and ET patients. The proposed method can give immediate results for the clinician to gain valuable information for the diagnosis of tremor. This can be useful in environments where more sophisticated diagnostic techniques are unavailable.

  7. Temporal and spectral characteristics of seismicity observed at Popocatepetl volcano, central Mexico

    USGS Publications Warehouse

    Arciniega-Ceballos, A.; Valdes-Gonzalez, C.; Dawson, P.

    2000-01-01

    Popocatepetl volcano entered an eruptive phase from December 21, 1994 to March 30, 1995, which was characterized by ash and fumarolic emissions. During this eruptive episode, the observed seismicity consisted of volcano-tectonic (VT) events, long-period (LP) events and sustained tremor. Before the initial eruption on December 21, VT seismicity exhibited no increase in number until a swarm of VT earthquakes was observed at 01:31 hours local time. Visual observations of the eruption occurred at dawn the next morning. LP activity increased from an average of 7 events a day in October 1994 to 22 events per day in December 1994. At the onset of the eruption, LP activity peaked at 49 events per day. LP activity declined until mid-January 1995 when no events were observed. Tremor was first observed about one day after the initial eruption and averaged 10 h per episode. By late February 1995, tremor episodes became more intermittent, lasting less than 5 min, and the number of LP events returned to pre-eruption levels (7 events per day). Using a spectral ratio technique, low-frequency oceanic microseismic noise with a predominant peak around 7 s was removed from the broadband seismic signal of tremor and LP events. Stacks of corrected tremor episodes and LP events show that both tremor and LP events contain similar frequency features with major peaks around 1.4 Hz. Frequency analyses of LP events and tremor suggest a shallow extended source with similar radiation pattern characteristics. The distribution of VT events (between 2.5 and 10 km) also points to a shallow source of the tremor and LP events located in the first 2500 m beneath the crater. Under the assumption that the frequency characteristics of the signals are representative of an oscillator we used a fluid-filled-crack model to infer the length of the resonator.

  8. Hilbert-Huang transform based instrumental assessment of intention tremor in multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Carpinella, Ilaria; Cattaneo, Davide; Ferrarin, Maurizio

    2015-08-01

    Objective. This paper describes a method to extract upper limb intention tremor from gyroscope data, through the Hilbert-Huang transform (HHT), a technique suitable for the study of nonlinear and non-stationary processes. The aims of the study were to: (i) evaluate the method’s ability to discriminate between healthy controls and MS subjects; (ii) validate the proposed procedure against clinical tremor scores assigned using Fahn’s tremor rating scale (FTRS); and (iii) compare the performance of the HHT-based method with that of linear band-pass filters. Approach. HHT was applied on gyroscope data collected on 20 MS subjects and 13 healthy controls (CO) during finger-to-nose tests (FNTs) instrumented with an inertial sensor placed on the hand. The results were compared to those obtained after traditional linear filtering. The tremor amplitude was quantified with instrumental indexes (TIs) and clinical FTRS ratings. Main results. The TIs computed after HHT-based filtering discriminated between CO and MS subjects with clinically-detected intention tremor (MS_T). In particular, TIs were significantly higher in the final part of the movement (TI2) with respect to the first part (TI1), and, for all components (X, Y, Z), MST showed a TI2 significantly higher than in CO subjects. Moreover, the HHT detected subtle alterations not visible from clinical ratings, as TI2 (Z-component) was significantly increased in MS subjects without clinically-detected tremor (MS_NT). The method’s validity was demonstrated by significant correlations between clinical FTRS scores and TI2 related to X (rs = 0.587, p = 0.006) and Y (rs = 0.682, p < 0.001) components. Contrarily, fewer differences among the groups and no correlation between instrumental and clinical indexes emerged after traditional filtering. Significance. The present results supported the use of the HHT-based procedure for a fully-automated quantitative and objective measure of intention tremor in MS, which can overcome the limitations of clinical scales and provide supplementary information about this sign.

  9. Quality of life in Essential Tremor Questionnaire (QUEST): development and initial validation.

    PubMed

    Tröster, Alexander I; Pahwa, Rajesh; Fields, Julie A; Tanner, Caroline M; Lyons, Kelly E

    2005-09-01

    Essential tremor (ET) can diminish functioning and quality of life (QOL) but generic QOL measures may be relatively insensitive to ET and its therapies. We sought to develop an ET-specific measure that might be more sensitive, acceptable to patients, relatively brief, and easily used. A sample of 200 patients (average age 70 years, range 30-91; average disease duration 15 years) rated the extent to which tremor impacts a function or state, tremor severity in various body parts, perceived health, and overall QOL. Responses to this initial questionnaire were subjected to principal components analysis (PCA). Inspection of factor coordinates, Eigenvalues, variance accounted for, and correlation matrices were used to select items for confirmatory PCA. Final scale reliability was assessed using Cronbach's alpha. Validity was evaluated by correlations between QOL scales and self-rated tremor severity. PCA of 65 initial items yielded 11 factors accounting for 71% of variance. Six factors were discarded. Two items were eliminated for not loading on a factor and 33 for perceived redundancy. Confirmatory PCA of the retained 30 items yielded an almost identical factor structure (six factors, 70% of variance accounted for, and similar item loadings). Because two factors had very few items loading on them, these two factors were combined into one scale. The final measure has five scales: Physical, Psychosocial, Communication, Hobbies/Leisure, and Work/Finance. Reliability was excellent for the whole instrument and four scales (> or =0.89), and good for the Work/Finance scale (0.79). Severity of voice and head tremor were the best correlates of Communication (0.70 and 0.35), while the Physical scale was related to right and left upper extremity tremor (0.59 and 0.56). Scales correlated more highly with patients' rating of their overall QOL than their health perception. A brief, 30-item, ET-specific QOL scale with excellent reliability was developed. Preliminary validity data are encouraging. The Quality of Life in Essential Tremor Questionnaire (QUEST) promises to facilitate QOL measurement in ET.

  10. Intrinsic signature of essential tremor in the cerebello-frontal network

    PubMed Central

    Popa, Traian; García-Lorenzo, Daniel; Valabregue, Romain; Legrand, André-Pierre; Marais, Lea; Degos, Bertrand; Hubsch, Cecile; Fernández-Vidal, Sara; Bardinet, Eric; Roze, Emmanuel; Lehéricy, Stéphane; Vidailhet, Marie; Meunier, Sabine

    2015-01-01

    See Raethjen and Muthuraman (doi:10.1093/brain/awv238) for a scientific commentary on this article. Essential tremor is a movement disorder characterized by tremor during voluntary movements, mainly affecting the upper limbs. The cerebellum and its connections to the cortex are known to be involved in essential tremor, but no task-free intrinsic signatures of tremor related to structural cerebellar defects have so far been found in the cortical motor network. Here we used voxel-based morphometry, tractography and resting-state functional MRI at 3 T to compare structural and functional features in 19 patients with essential tremor and homogeneous symptoms in the upper limbs, and 19 age- and gender-matched healthy volunteers. Both structural and functional abnormalities were found in the patients' cerebellum and supplementary motor area. Relative to the healthy controls, the essential tremor patients' cerebellum exhibited less grey matter in lobule VIII and less effective connectivity between each cerebellar cortex and the ipsilateral dentate nucleus. The patient's supplementary motor area exhibited (i) more grey matter; (ii) a lower amplitude of low-frequency fluctuation of the blood oxygenation level-dependent signal; (iii) less effective connectivity between each supplementary motor area and the ipsilateral primary motor hand area, and (iv) a higher probability of connection between supplementary motor area fibres and the spinal cord. Structural and functional changes in the supplementary motor area, but not in the cerebellum, correlated with clinical severity. In addition, changes in the cerebellum and supplementary motor area were interrelated, as shown by a correlation between the lower amplitude of low-frequency fluctuation in the supplementary motor area and grey matter loss in the cerebellum. The structural and functional changes observed in the supplementary motor area might thus be a direct consequence of cerebellar defects: the supplementary motor area would attempt to reduce tremor in the motor output by reducing its communication with M1 hand areas and by directly modulating motor output via its corticospinal projections. PMID:26115677

  11. Repeating Seismic Events Indicate Stick-slip Behavior Before the Rausu Landslide

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Mori, J. J.; Matsushi, Y.

    2016-12-01

    The characteristics of seismic signals generated by the mass movement are considered to reflect the physical properties of the movement, and the use of seismic data for landslide study attracts more attention recently. Here we analyzed the seismic data associated with 2015 Rausu landslide, and found intermittent tremors before the substantial mass movement. The Rausu landslide started moving before 6:30 on April 24 based on the eyewitnesses, and the large deformation occurred between 11:30 and 16:30 on the day. The size of the landslide is about 380 times 260 m and depth of 15-30m, and the sliding distance is 10-20 m. The coastal seafloor uplifted and emerged above the level of high-tide due to the buckling of the layers at the toe of the landslide. A seismogram near the Rausu landslide (0.85km North) recorded curious intermittent tremors one day before the substantial mass movement. Each tremor has almost identical waveforms, and the amplitude increases linearly as a function of time. The tremors continued about 20 hours, and on the next day, a large deformation was observed. This tremor sequence is considered to be an evidence of the stick-slip movement of the landslide before the large failure occurs. The identical waveforms suggest that the source location and mechanism are very similar in the sequence, which indicates the tremors are generated at a particular small area. The amplitude and interval of the tremors may reflect the physical properties of the slip surface. The constant interval of the tremor occurrence suggests that the shear stress accumulation was very stable at the precursory creeping stage. This is the first observation suggesting that the heterogeneous structure such as asperities on the slip surface play an important role to control the movement of landslide, and adding a new aspect on the conventional understanding of the mechanism to control the mass movement.

  12. Beta-blocker therapy for tremor in Parkinson's disease.

    PubMed

    Crosby, N J; Deane, K H O; Clarke, C E

    2003-01-01

    The tremor of Parkinson's disease can cause considerable disability for the individual concerned. Traditional antiparkinsonian therapies such as levodopa have only a minor effect on tremor. Beta-blockers are used to attenuate other forms of tremor such as Essential Tremor or the tremor associated with anxiety. It is thought that beta-blockers may be of use in controlling the tremor of Parkinson's disease. To compare the efficacy and safety of adjuvant beta-blocker therapy against placebo for the treatment of tremor in patients with Parkinson's disease. Electronic searches of MEDLINE, EMBASE, SCISEARCH, BIOSIS, GEROLIT, OLDMEDLINE, LILACS, MedCarib, PASCAL, JICST-EPLUS, RUSSMED, DISSERTATION ABSTRACTS, SIGLE, ISI-ISTP, Aslib Index to Theses, The Cochrane Controlled Trials Register, Clinicaltrials.gov, metaRegister of Controlled Trials, NIDRR, NRR and CENTRAL were conducted. Grey literature was hand searched and the reference lists of identified studies and reviews examined. The manufacturers of beta-blockers were contacted. Randomised controlled trials of adjuvant beta-blocker therapy versus placebo in patients with a clinical diagnosis of idiopathic Parkinson's disease. Data was abstracted independently by two of the authors onto standardised forms and disagreements were resolved by discussion. Four randomised controlled trials were found comparing beta-blocker therapy with placebo in patients with idiopathic Parkinson's disease. These were double-blind cross-over studies involving a total of 72 patients. Three studies did not present data from the first arm, instead presenting results as combined data from both treatment arms and both placebo arms. The risk of a carry-over effect into the second arm meant that these results were not analysed. The fourth study presented data from each arm. This was in the form of a mean total score for tremor for each group. Details of the baseline scores, the numbers of patients in each group and standard deviations were not provided, meaning that the magnitude and significance of any changes due to therapy could not be calculated. One study reported a substantial fall in heart rate in 14 of the 22 patients, with one patient withdrawing after his heart rate dropped to 56 beats per minute (baseline heart rate was not reported). In view of this lack of evidence, it is impossible to determine whether beta-blocker therapy is effective and safe for the treatment of tremor in Parkinson's disease. The high frequency of bradycardia in one trial raises some concerns about the prescription of beta-blockers to normotensive elderly patients but the study was too small for the true degree of risk to be calculated.

  13. Could Wearable and Mobile Technology Improve the Management of Essential Tremor?

    PubMed Central

    Daneault, Jean-Francois

    2018-01-01

    Essential tremor (ET) is the most common movement disorder. Individuals exhibit postural and kinetic tremor that worsens over time and patients may also exhibit other motor and non-motor symptoms. While millions of people are affected by this disorder worldwide, several barriers impede an optimal clinical management of symptoms. In this paper, we discuss the impact of ET on patients and review major issues to the optimal management of ET; from the side-effects and limited efficacy of current medical treatments to the limited number of people who seek treatment for their tremor. Then, we propose seven different areas within which mobile and wearable technology may improve the clinical management of ET and review the current state of research in these areas. PMID:29725318

  14. The comparative effects of ICI 118551 and propranolol on essential tremor.

    PubMed Central

    Jefferson, D; Wharrad, H J; Birmingham, A T; Patrick, J M

    1987-01-01

    1. The effects of the selective beta 2-adrenoceptor antagonist ICI 118551 on essential tremor, heart rate and blood pressure were compared with those of propranolol. 2. ICI 118551 (150 mg daily for 7 days) and propranolol (120 mg daily for 7 days) were about equally effective in reducing essential tremor (by about 40%) and were more effective than placebo. 3. When compared with the effect of placebo, propranolol reduced blood pressure and exercise heart rate whereas ICI 118551 had no significant effect on blood pressure and produced a small but significant reduction in exercise-induced tachycardia. 4. ICI 118551 may be useful in the management of essential tremor while having fewer cardiovascular side-effects than non-selective beta-adrenoceptor antagonists. PMID:2894217

  15. Selective adrenergic beta-2-receptor blocking drug, ICI-118.551, is effective in essential tremor.

    PubMed

    Teräväinen, H; Huttunen, J; Larsen, T A

    1986-07-01

    Eighteen patients with essential tremor were treated for 2 days with a non-selective adrenergic beta-blocking drug (dl-propranolol, 80 mg X 3), a beta-2-selective blocker (ICI-118.551, 50 mg X 3) and placebo (X 3) in a randomized double blind cross-over study. Postural hand tremor was recorded with an accelerometer before administration of the drugs and at the end of each treatment period. Compared with placebo, both the beta-blocking drugs caused a statistically significant decrease in tremor intensity and they possessed approximately similar antitremor potency. Subjective benefit was reported by 12 of the 18 patients receiving ICI-118.551, 13 when on propranolol and 3 when on placebo.

  16. Tectonic Tremor analysis with the Taiwan Chelungpu-Fault Drilling Program (TCDP) downhole seismometer array

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Hillers, G.; Ma, K.; Campillo, M.

    2011-12-01

    We study tectonic tremor activity in the Taichung area, Taiwan, analyzing continuous seismic records from 6 short-period sensors of the TCDP borehole array situated around 1 km depth. The low background noise level facilitates the detection of low-amplitude tectonic tremor and low-frequency earthquake (LFE) waveforms. We apply a hierarchical analysis to first detect transient amplitude increases, and to subsequently verify its tectonic origin, i.e. to associate it with tremor signals. The frequency content of tremor usually exceeds the background noise around 2-8 Hz; hence, in the first step, we use BHS1, BHS4 and BHS7 (top, center, bottom sensor) records to detect amplitude anomalies in this frequency range. We calculate the smoothed spectra of 30 second non-overlapping windows taken daily from 5 night time hours to avoid increased day time amplitudes associated with cultural activities. Amplitude detection is then performed on frequency dependent median values of 5 minute advancing, 10 minute long time windows, yielding a series of threshold dependent increased-energy spectra-envelopes, indicating teleseismic waveforms, potential tremor records, or other transients related to anthropogenic or natural sources. To verify the transients' tectonic origin, potential tremor waveforms detected by the amplitude method are manually picked in the time domain. We apply the Brown et al. (2008) LFE matched filter technique to three-component data from the 6 available sensors. Initial few-second templates are taken from the analyst-picked, minute-long segments, and correlated component-wise with 24-h data. Significantly increased similarity between templates and matched waveform segments is detected using the array-average 7-fold MAD measure. Harvested waveforms associated with this initial `weak' detection are stacked, and the thus created master templates are used in an iterative correlation procedure to arrive at robust LFE detections. The increased similarity of waveforms, showing essentially no moveout across the array, suggests a common source and path effect, therefore increasing the likelihood of a tectonic origin. Preliminary results from a pilot analysis confirm the existence of tremor-like signals in the tremor-typical frequency range. We present results from a comprehensive analysis of at least 2 years of continuous data. A limited resolution location procedure is applied, testament to the receiver geometry, and the inferred locations are discussed in relation to the tectonic situation.

  17. Tidal modulation of slow slip events in the Nankai trough subduction zone detected by borehole strainmeters

    NASA Astrophysics Data System (ADS)

    Kikuchi, J.; Ide, S.; Matsumoto, N.

    2016-12-01

    Slow slip events (SSEs) often occur in the Nankai subduction zone, Japan, within a band-like zone extended from the center of Honshu to western Shikoku. SSEs are believed as shear slip on the plate interface, where the frictional property changes from velocity weakening to strengthening in the dip direction. Therefore the dynamics of SSEs may give some hints on the depth dependent friction and plate subduction. The tidal modulation of SSEs has been identified by statistical analysis using strain data of Plate Boundary Observatory, in the Cascadia subduction zone [Hawthorne & Rubin, 2010]. Here, we perform similar statistical analyses using strain data recorded at borehole stations maintained by National Institute of Advanced Industrial Science and Technology, in western Japan. The correlation between the oscillation in SSEs and tidal stress was confirmed statistically. In Nankai subduction zone, it is known that SSEs are accompanied with high activity of deep tectonic tremors [Hirose & Obara, 2006]. These tremors have been known to be sensitive to tidal stress [Nakata et al., 2008]. Therefore, the tidal modulation of SSEs is another representation of tidal modulation of tremors. To clarify the relation between SSEs and tremors, we investigate whether strain changes corresponding to SSEs can be explained only by tremors activity. For an SSE occurred in Aug. 2010 in Bungo channel, we assume that the seismic moment of the SSE is 1.6 × 1018 Nm (Mw 6.1) based on the inversion of GNSS data [Nishimura et al., 2013], and that this moment is released by 715 tremors that occur during this SSE [Idehara et al., 2014]. In this case, each tremor is assigned with seismic moment of 2.2 × 1015 Nm (Mw 4.2). Then the strain change at the observation station by these tremors is calculated using the Okada [1992] method, assuming a half space and focal mechanism consistent with the regional plate motion. The calculated strain is qualitatively similar with the observed strain, suggesting that tremors almost directly represent SSE, as suggested by previous studies [e.g., Hirose & Obara, 2006]. However, the correspondence is not always apparent. For example, a similar analysis in the eastern Kii peninsula yields significant difference between observation and calculation.

  18. Using Tectonic Tremor to Constrain Seismic-wave Attenuation in Cascadia

    NASA Astrophysics Data System (ADS)

    Littel, G.; Thomas, A.; Baltay, A.

    2017-12-01

    In addition to fast, seismic slip, many subduction zones also host slow, largely aseismic slip, accompanied by a weak seismic signal known as tectonic tremor. Tremor is a small amplitude, low-frequency seismic signal that originates at the plate interface, down-dip of where large earthquakes typically occur. The Cascadia subduction zone has not seen a large megathrust earthquake since 1700, yet its recurrence interval of 350-500 years motivates heightened interest in understanding the seismic hazard of the region. Of great importance is to understand the degree to which waves are attenuated as they leave the plate interface and travel towards populated regions of interest. Ground motion prediction equations (GMPEs) relate ground motion to a number of parameters, including earthquake magnitude, depth, style of faulting, and anelastic attenuation, and are typically determined empirically from earthquake ground motion recordings. In Cascadia, however, earthquakes of the moderate size typically used to constrain GMPEs occur relatively infrequently compared to tectonic tremor events, which, in contrast, occur periodically approximately every 10-19 months. Studies have shown that the abundant tectonic tremor in Cascadia, despite its small amplitudes, can be used to constrain seismic wave attenuation in GMPEs. Here we quantify seismic wave attenuation and determine its spatial variations in Cascadia by performing an inversion using tremor ground motion amplitudes, taken as peak ground acceleration (PGA) and peak ground velocity (PGV) from 1 min window waveforms of each individual tremor event. We estimate the anelastic attenuation parameter for varying regional sections along the Cascadia margin. Changes in seismic-wave attenuation along the Cascadia Subduction Zone could result in significantly different ground motions in the event of a very large earthquake, hence quantifying attenuation may help to better estimate the severity of shaking in densely populated metropolitan areas such as Vancouver, Seattle and Portland.

  19. Differences Between Men and Women in Balance and Tremor in Relation to Plantar Fascia Laxity During the Menstrual Cycle.

    PubMed

    Lee, Haneul; Petrofsky, Jerrold

    2018-03-01

      Although much attention has been paid to the effect of estrogen on the knee ligaments, little has been done to examine the ligaments in the foot, such as the plantar fascia, and how they may be altered during the menstrual cycle.   To (1) examine sex differences in plantar fascia thickness and laxity and postural sway and (2) identify any menstrual cycle effects on plantar fascia laxity, postural sway, and neuromuscular tremor between menstruation and the ovulation phase.   Case-control study.   Research laboratory.   Fifteen healthy women (age = 25.9 ± 1.8 years) and 15 healthy men (age = 27.3 ± 2.0 years) volunteered to participate in this study.   We asked participants to perform 8 balance tasks on a force platform while we assessed postural sway and tremor.   Plantar fascia length and thickness unloaded and loaded with body weight were measured via ultrasound. Postural sway and tremor were measured using a force platform.   Plantar fascia length and thickness with pressure were greater in ovulating women compared with men ( P < .001), but no differences were found between women during menstruation and men. Postural sway and tremor were greater at ovulation than during menstruation ( P < .05), and men had less sway than ovulating women on the 3 most difficult balance tasks ( P < .01).   Plantar fascia laxity was increased and postural sway and tremor were decreased at ovulation compared with menstruation in women. Postural sway and tremor in men were the same as in women during menstruation. These findings support the need to be aware of the effect of sex hormones on balance to prevent lower extremity injuries during sport activities.

  20. Tremor, remote triggering and earthquake cycle

    NASA Astrophysics Data System (ADS)

    Peng, Z.

    2012-12-01

    Deep tectonic tremor and episodic slow-slip events have been observed at major plate-boundary faults around the Pacific Rim. These events have much longer source durations than regular earthquakes, and are generally located near or below the seismogenic zone where regular earthquakes occur. Tremor and slow-slip events appear to be extremely stress sensitive, and could be instantaneously triggered by distant earthquakes and solid earth tides. However, many important questions remain open. For example, it is still not clear what are the necessary conditions for tremor generation, and how remote triggering could affect large earthquake cycle. Here I report a global search of tremor triggered by recent large teleseismic earthquakes. We mainly focus on major subduction zones around the Pacific Rim. These include the southwest and northeast Japan subduction zones, the Hikurangi subduction zone in New Zealand, the Cascadia subduction zone, and the major subduction zones in Central and South America. In addition, we examine major strike-slip faults around the Caribbean plate, the Queen Charlotte fault in northern Pacific Northwest Coast, and the San Andreas fault system in California. In each place, we first identify triggered tremor as a high-frequency non-impulsive signal that is in phase with the large-amplitude teleseismic waves. We also calculate the dynamic stress and check the triggering relationship with the Love and Rayleigh waves. Finally, we calculate the triggering potential with the local fault orientation and surface-wave incident angles. Our results suggest that tremor exists at many plate-boundary faults in different tectonic environments, and could be triggered by dynamic stress as low as a few kPas. In addition, we summarize recent observations of slow-slip events and earthquake swarms triggered by large distant earthquakes. Finally, we propose several mechanisms that could explain apparent clustering of large earthquakes around the world.

  1. Characteristics of Helicopter-Generated and Volcano-Related Seismic Tremor Signals

    NASA Astrophysics Data System (ADS)

    Eibl, Eva P. S.; Lokmer, Ivan; Bean, Christopher J.; Akerlie, Eggert; Vogfjörd, Kristin S.

    2017-04-01

    In volcanic environments it is crucial to distinguish between man-made seismic signals and signals created by the volcano. We compare volcanic, seismic signals with helicopter generated, seismic signals recorded in the last 2.5 years in Iceland. In both cases a long-lasting, emergent seismic signal, that can be referred to as seismic tremor, was generated. In the case of a helicopter, the rotating blades generate pressure pulses that travel through the air and excite Rayleigh waves at up to 40 km distance depending on wind speed, wind direction and topographic features. The longest helicopter related seismic signal we recorded was at the order of 40 minutes long. The tremor usually has a fundamental frequency of more than 10 Hz and overtones at integers of the fundamental frequency. Changes in distance lead to either increases or decreases of the frequency due to the Doppler Effect and are strongest for small source-receiver distances. The volcanic tremor signal was recorded during the Bardarbunga eruption at Holuhraun in 2014/15. For volcano-related seismic signals it is usually more difficult to determine the source process that generated the tremor. The pre-eruptive tremor persists for 2 weeks, while the co-eruptive tremor lasted for 6 months. We observed no frequency changes, most energy between 1 and 2 Hz and no or very little energy above 5 Hz. We compare the different characteristics of helicopter-related and volcano-related seismic signals and discuss how they can be distinguished. In addition we discuss how we can determine if a frequency change is related to a moving source or change in repeat time or a change in the geometry of the resonating body.

  2. Pretherapeutic functional neuroimaging predicts tremor arrest after thalamotomy.

    PubMed

    Tuleasca, C; Najdenovska, E; Régis, J; Witjas, T; Girard, N; Champoudry, J; Faouzi, M; Thiran, J-P; Bach Cuadra, M; Levivier, M; Van De Ville, D

    2018-05-01

    Essential tremor (ET) represents the most common movement disorder. Drug-resistant ET can benefit from standard stereotactic procedures (deep brain stimulation or radiofrequency thalamotomy) or alternatively minimally invasive high-focused ultrasound or radiosurgery. All aim at same target, thalamic ventro-intermediate nucleus (Vim). The study included a cohort of 17 consecutive patients, with ET, treated only with left unilateral stereotactic radiosurgical thalamotomy (SRS-T) between September 2014 and August 2015. The mean time to tremor improvement was 3.32 months (SD 2.7, 0.5-10). Neuroimaging data were collected at baseline (n = 17). Standard tremor scores, including activities of daily living (ADL) and tremor score on treated hand (TSTH), were completed pretherapeutically and 1 year later. We further correlate these scores with baseline inter-connectivity in twenty major large-scale brain networks. We report as predictive three networks, with the interconnected statistically significant clusters: primary motor cortex interconnected with inferior olivary nucleus, bilateral thalamus interconnected with motor cerebellum lobule V 2 (ADL), and anterior default-mode network interconnected with Brodmann area 10 3 (TSTH). For all, more positive pretherapeutic interconnectivity correlated with higher drop in points on the respective scores. Age, disease duration, or time-to-response after SRS-T were not statistically correlated with pretherapeutic brain connectivity measures (P > .05). The same applied to pretherapeutic tremor scores, after using the same methodology described above. Our findings have clinical implications for predicting clinical response after SRS-T. Here, using pretherapeutic magnetic resonance imaging and data processing without prior hypothesis, we show that pretherapeutic network(s) interconnectivity strength predicts tremor arrest in drug-naïve ET, following stereotactic radiosurgical thalamotomy. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. The Phenotypic Spectrum of DYT24 Due to ANO3 Mutations

    PubMed Central

    Stamelou, Maria; Charlesworth, Gavin; Cordivari, Carla; Schneider, Susanne A; Kägi, Georg; Sheerin, Una-Marie; Rubio-Agusti, Ignacio; Batla, Amit; Houlden, Henry; Wood, Nicholas W; Bhatia, Kailash P

    2014-01-01

    Genes causing primary dystonia are rare. Recently, pathogenic mutations in the anoctamin 3 gene (ANO3) have been identified to cause autosomal dominant craniocervical dystonia and have been assigned to the dystonia locus dystonia-24 (DYT24). Here, we expand on the phenotypic spectrum of DYT24 and provide demonstrative videos. Moreover, tremor recordings were performed, and back-averaged electroencephalography, sensory evoked potentials, and C-reflex studies were carried out in two individuals who carried two different mutations in ANO3. Ten patients from three families are described. The age at onset ranged from early childhood to the forties. Cervical dystonia was the most common site of onset followed by laryngeal dystonia. The characteristic feature in all affected individuals was the presence of tremor, which contrasts DYT24 from the typical DYT6 phenotype. Tremor was the sole initial manifestation in some individuals with ANO3 mutations, leading to misdiagnosis as essential tremor. Electrophysiology in two patients with two different mutations showed co-contraction of antagonist muscles, confirming dystonia, and a 6-Hz arm tremor at rest, which increased in amplitude during action. In one of the studied patients, clinically superimposed myoclonus was observed. The duration of the myoclonus was in the range of 250 msec at about 3 Hz, which is more consistent with subcortical myoclonus. In summary, ANO3 causes a varied phenotype of young-onset or adult-onset craniocervical dystonia with tremor and/or myoclonic jerks. Patients with familial cervical dystonia who also have myoclonus-dystonia as well as patients with prominent tremor and mild dystonia should be tested for ANO3 mutations. © 2014 The Authors. Movement Disorders published by International Parkinson and Movement Disorder Society PMID:24442708

  4. Restoring Neurological Physiology: The Innovative Role of High-Energy MR-Guided Focused Ultrasound (HIMRgFUS). Preliminary Data from a New Method of Lesioning Surgery.

    PubMed

    Giugno, Antonella; Maugeri, Rosario; Graziano, Francesca; Gagliardo, Cesare; Franzini, Angelo; Catalano, Carlo; Midiri, Massimo; Iacopino, Domenico Gerardo

    2017-01-01

    Tremor is a disabling condition, common to several neurodegenerative diseases. Lesioning procedures and deep brain stimulation, respectively, of the ventralis intermedius nucleus for intentional tremor, and of the subthalamic nucleus for parkinsonian resting tremor, have been introduced in clinical practice for patients refractory to medical treatment. The combination of high-energy focused ultrasound (HIFUS) with sophisticated magnetic resonance (MR) instrumentation, together with accurate knowledge of the stereotactic brain coordinates, represents a revolution in neuromodulation. At the Neurosurgical Clinic and the Radiology Department of the University of Palermo,, two patients affected by severe and refractory forms of intentional tremor were treated by MRI-guided FUS (MRgFUS) with a unique 1.5 T MR scanner prototype that uses FUS. This apparatus is the only one of its type in the world." This is the first Italian experience, and the second in Europe, of treatment with MRI-gFUS for intentional tremor. But this is the very first experience in which a 1.5 T MRI apparatus was used. In both patients, the treatment completely abolished the tremor on the treated side, with results being excellent and stable after 7 and 5 months, respectively; no side effects were encountered. MRgFUS, recently introduced in clinical practice, and widely used at several clinical centers, has been shown to be a valid therapeutic alternative in the treatment of tremor in several neurodegenerative diseases. It is virtually safe, noninvasive, and very efficacious. We report this technique in which a 1.5 T MR scanner was used. Further investigations with long-term follow up and larger clinical series are needed.

  5. Octanoic acid in alcohol-responsive essential tremor

    PubMed Central

    McCrossin, Gayle; Lungu, Codrin; Considine, Elaine; Toro, Camilo; Nahab, Fatta B.; Auh, Sungyoung; Buchwald, Peter; Grimes, George J.; Starling, Judith; Potti, Gopal; Scheider, Linda; Kalowitz, Daniel; Bowen, Daniel; Carnie, Andrea; Hallett, Mark

    2013-01-01

    Objective: To assess safety and efficacy of an oral, single, low dose of octanoic acid (OA) in subjects with alcohol-responsive essential tremor (ET). Methods: We conducted a double-blind, placebo-controlled, crossover, phase I/II clinical trial evaluating the effect of 4 mg/kg OA in 19 subjects with ET. The primary outcome was accelerometric postural tremor power of the dominant hand 80 minutes after administration. Secondary outcomes included digital spiral analysis, pharmacokinetic sampling, as well as safety measures. Results: OA was safe and well tolerated. Nonserious adverse events were mild (Common Terminology Criteria for Adverse Events grade 1) and equally present after OA and placebo. At the primary outcome, OA effects were not different from placebo. Secondary outcome analyses of digital spiral analysis, comparison across the entire time course in weighted and nonweighted accelerometry, as well as nondominant hand tremor power did not show a benefit of OA over placebo. The analysis of individual time points showed that OA improved tremor at 300 minutes (dominant hand, F1,16 = 5.49, p = 0.032 vs placebo), with a maximum benefit at 180 minutes after OA (both hands, F1,16 = 6.1, p = 0.025). Conclusions: Although the effects of OA and placebo at the primary outcome were not different, secondary outcome measures suggest superiority of OA in reducing tremor at later time points, warranting further trials at higher dose levels. Classification of evidence: This study provides Class I evidence that a single 4-mg/kg dose of OA is not effective in reducing postural tremor in patients with ET at a primary outcome of 80 minutes, but is effective for a secondary outcome after 180 minutes. PMID:23408867

  6. Nintendo Wii assessment of Hoehn and Yahr score with Parkinson's disease tremor.

    PubMed

    Koçer, Abdulkadir; Oktay, Ayse Betul

    2016-01-01

    Diagnosis of Parkinson's Disease (PD) by analyzing the resting tremor were much studied by using different accelerometer based methods, however the quantitative assessment of Hoehn and Yahr Scale (HYS) score with a machine learning based system has not been previously addressed. In this study, we aimed to propose a system to automatically assess the HYS score of patients with PD. The system was evaluated and tested on a dataset containing 55 subjects where 35 of them were patients and 20 of them were healthy controls. The resting tremor data were gathered with the 3 axis accelerometer of the Nintendo Wii (Wiimote). The clinical disability of the PD was graded from 1 to 5 by the HYS and tremor was recorded twice from the more affected side in each patient and from the dominant extremity in each control for a 60 seconds period. The HYS scores were learned with Support Vector Machines (SVM) from the features of the tremor data. Thirty-two of the subjects with PD were classified correctly and 18 of the normal subjects were also classified correctly by our system. The system had average 0.89 accuracy rate (Range: 81-100% changing according to grading by HYS). We compared quantitative measurements of hand tremor in PD patients, with staging of PD based on accelerometer data gathered using the Wii sensor. Our results showed that the machine learning based system with simple features could be helpful for diagnosis of PD and estimate HYS score. We believed that this portable and easy-to-use Wii sensor measure might also be applicable in the continuous monitoring of the resting tremor with small modifications in routine clinical use.

  7. Pharmacotherapy of Essential Tremor

    PubMed Central

    Hedera, Peter; Cibulčík, František; Davis, Thomas L.

    2013-01-01

    Essential tremor (ET) is a common movement disorder but its pathogenesis remains poorly understood. This has limited the development of effective pharmacotherapy. The current therapeutic armamentaria for ET represent the product of careful clinical observation rather than targeted molecular modeling. Here we review their pharmacokinetics, metabolism, dosing, and adverse effect profiles and propose a treatment algorithm. We also discuss the concept of medically refractory tremor, as therapeutic trials should be limited unless invasive therapy is contraindicated or not desired by patients. PMID:24385718

  8. Writing tremor secondary to ischemic stroke: a report on a case with a remarkable response to topiramate.

    PubMed

    Paviolo, Juan P; Raina, Gabriela B; Conti, Eugenia; Micheli, Federico

    2015-01-01

    Writing tremor (WT) is a task-specific tremor that occurs only or mostly while writing with the dominant hand. Secondary cases are extremely uncommon. We report on a patient who, after developing a WT after an ischemic stroke, had a remarkable response to topiramate (TPM). A 65-year-old right-handed man with a history of arterial hypertension, dyslipidemia, and coronary heart disease presented dizziness and headache followed by a loss of consciousness and then a right hemiparesis. He regained his strength on the fifth day. Fourteen days after stroke, he developed a WT as well as other complications with activities such as welding (he is a welder) and using a spoon. He was treated with 50 mg/d of TPM with marked improvement in WT. A few weeks after TPM was discontinued, the WT symptoms reappeared and he was retreated, showing the same beneficial reaction.Electromyographic record showed a 5- to 6-Hz tremor in his right hand, and a magnetic resonance imaging showed bilateral small frontoparietal subcortical infarcts. Primary WT pathophysiology is not well known, and secondary WT as a result of stroke is even less considered. Although patients with essential tremor benefit with TPM and WT could be a variant of essential tremor, we used TPM with our patient and there was a marked benefit.

  9. Dentate nucleus iron deposition is a potential biomarker for tremor-dominant Parkinson’s disease

    PubMed Central

    He, Naying; Huang, Pei; Ling, Huawei; Langley, Jason; Liu, Chunlei; Ding, Bei; Huang, Juan; Xu, Hongmin; Zhang, Yong; Zhang, Zhongping; Hu, Xiaoping; Chen, Shengdi; Yan, Fuhua

    2016-01-01

    Parkinson disease (PD) is a heterogeneous neurodegenerative disorder with variable clinicopathologic phenotypes and underlying neuropathologic mechanisms. Each clinical phenotype has a unique set of motor symptoms. Tremor is the most frequent initial motor symptom of PD and is the most difficult symptom to treat. The dentate nucleus (DN) is a deep iron rich nucleus in the cerebellum and may be involved in PD tremor. In this study, we test the hypothesis that DN iron may be elevated in tremor dominant PD patients using quantitative susceptibility mapping. Forty-three patients with PD [19 tremor dominant (TD)/24 akinetic-rigid dominant (AR)] and 48 healthy gender- and age-matched controls were recruited. Multi-echo gradient echo data were collected for each subject on a 3.0 T MR system. Inter-group susceptibility differences in bilateral DN were investigated and correlations of clinical features with susceptibility were also examined. In contrast to the AR group, the TD group was found to have increased susceptibility in the bilateral DN, when compared to healthy controls. In addition, susceptibility was positively correlated with tremor score in drug naive PD patients. These findings indicate that iron load within DN may make an important contribution to motor phenotypes in PD. Moreover, our results suggest that TD and AR phenotypes of PD can be differentiated on the basis of the susceptibility of the DN at least on the group level. PMID:27192177

  10. Linking Essential Tremor to the Cerebellum: Clinical Evidence.

    PubMed

    Benito-León, Julián; Labiano-Fontcuberta, Andrés

    2016-06-01

    Essential tremor (ET) might be a family of diseases unified by the presence of kinetic tremor, but also showing etiological, pathological, and clinical heterogeneity. In this review, we will describe the most significant clinical evidence, which suggests that ET is linked to the cerebellum. Data for this review were identified by searching PUBMED (January 1966 to May 2015) crossing the terms "essential tremor" (ET) and "cerebellum," which yielded 201 entries, 11 of which included the term "cerebellum" in the article title. This was supplemented by articles in the author's files that pertained to this topic. The wide spectrum of clinical features of ET that suggest that it originates as a cerebellar or cerebellar outflow problem include the presence of intentional tremor, gait and balance abnormalities, subtle features of dysarthria, and oculomotor abnormalities, as well as deficits in eye-hand coordination, motor learning deficits, incoordination during spiral drawing task, abnormalities in motor timing and visual reaction time, impairment of social abilities, improvement in tremor after cerebellar stroke, efficacy of deep brain stimulation (which blocks cerebellar outflow), and cognitive dysfunction. It is unlikely, however, that cerebellar dysfunction, per se, fully explains ET-associated dementia, because the cognitive deficits that have been described in patients with cerebellar lesions are generally mild. Overall, a variety of clinical findings suggest that in at least a sizable proportion of patients with ET, there is an underlying abnormality of the cerebellum and/or its pathways.

  11. Extending Alaska's plate boundary: tectonic tremor generated by Yakutat subduction

    USGS Publications Warehouse

    Wech, Aaron G.

    2016-01-01

    The tectonics of the eastern end of the Alaska-Aleutian subduction zone are complicated by the inclusion of the Yakutat microplate, which is colliding into and subducting beneath continental North America at near-Pacific-plate rates. The interaction among these plates at depth is not well understood, and further east, even less is known about the plate boundary or the source of Wrangell volcanism. The drop-off in Wadati-Benioff zone (WBZ) seismicity could signal the end of the plate boundary, the start of aseismic subduction, or a tear in the downgoing plate. Further compounding the issue is the possible presence of the Wrangell slab, which is faintly outlined by an anemic, eastward-dipping WBZ beneath the Wrangell volcanoes. In this study, I performed a search for tectonic tremor to map slow, plate-boundary slip in south-central Alaska. I identified ∼11,000 tremor epicenters, which continue 85 km east of the inferred Pacific plate edge marked by WBZ seismicity. The tremor zone coincides with the edges of the downgoing Yakutat terrane, and tremors transition from periodic to continuous behavior as they near the aseismic Wrangell slab. I interpret tremor to mark slow, semicontinuous slip occurring at the interface between the Yakutat and North America plates. The slow slip region lengthens the megathrust interface beyond the WBZ and may provide evidence for a connection between the Yakutat slab and the aseismic Wrangell slab.

  12. Intermittent bilateral coherence in physiological and essential hand tremor.

    PubMed

    Chakraborty, Soma; Kopecká, Jana; Šprdlík, Otakar; Hoskovcová, Martina; Ulmanová, Olga; Růžička, Evžen; Zapotocky, Martin

    2017-04-01

    To investigate the prevalence and the temporal structure of bilateral coherence in physiological (PT) and essential (ET) hand tremor. Triaxial accelerometric recordings from both hands in 30 healthy subjects and 34 ET patients were analyzed using spectral coherence and wavelet coherence methods. In 12 additional healthy subjects, the relation between the hand tremor and the chest wall acceleration was evaluated using partial coherence analysis. The majority of both PT and ET subjects displayed significant bilateral coherence. While in PT, bilateral coherence was most frequently found in resting hand position (97% of subjects), in ET the prevalence was comparable for resting (54%) and postural (49%-57%) positions. In both PT and ET, epochs of strong coherence lasting several to a dozen seconds were separated by intervals of insignificant coherence. In PT, bilateral coherence at the main tremor frequency (8-12Hz) was coupled with the ballistocardiac rhythm. The oscillations of the two hands are intermittently synchronized in both PT and ET. We propose that in postural PT, bilateral coherence at the main tremor frequency arises from transient simultaneous entrainment of the left and right hand oscillations to ballistocardiac forcing. Bilateral coherence of hand kinematics provides a sensitive measure of synchronizing influences on the left and right tremor oscillators. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  13. Scaling analysis of the effects of load on hand tremor movements in essential tremor

    NASA Astrophysics Data System (ADS)

    Blesić, S.; Stratimirović, Dj.; Milošević, S.; Marić, J.; Kostić, V.; Ljubisavljević, M.

    2011-05-01

    In this paper we have used the Wavelet Transform (WT) and the Detrended Fluctuation Analysis (DFA) methods to analyze hand tremor movements in essential tremor (ET), in two different recording conditions (before and after the addition of wrist-cuff load). We have analyzed the time series comprised of peak-to-peak (PtP) intervals, extracted from regions around the first three main frequency components of the power spectra (PwS) of the recorded tremors, in order to substantiate results related to the effects of load on ET, to distinguish between multiple sources of ET, and to separate the influence of peripheral factors on ET. Our results show that, in ET, the dynamical characteristics, that is, values of respective scaling exponents, of the main frequency component of recorded tremors change after the addition of load. Our results also show that in all the observed cases the scaling behavior of the calculated functions changes as well-the calculated WT scalegrams and DFA functions display a shift in the position of the crossover when the load is added. We conclude that the difference in behavior of the WT and DFA functions between different conditions in ET could be associated with the expected pathology in ET, or with some additional mechanism that controls movements in ET patients, and causes the observed changes in scaling behavior.

  14. Drug-induced tremor

    MedlinePlus

    ... Drugs that can cause tremor include the following: Cancer medicines such as thalidomide and cytarabine Seizure medicines such as valproic acid (Depakote) and sodium valproate (Depakene) Asthma medicines such as theophylline and ...

  15. Relative Source Locations of Continuous Tremor Before and After the Subplinian Events at Shinmoe-dake, in 2011

    NASA Astrophysics Data System (ADS)

    Ichihara, M.; Matsumoto, S.

    2017-11-01

    Volcano monitoring systems are not always ready to resolve signals at the onset of eruptive activity. This study makes use of stations installed later to calibrate the performance of the stations that had been operated before the eruption. Seven stations recorded continuous volcanic tremor before and during the subplinian eruptions of Shinmoe-dake, Japan, in 2011. We estimated the source locations of the tremor using the amplitude distribution. The stability of the analysis was obtained by careful selection of time windows in which signals from a single source are dominated. The site effects and the regional attenuation factor were evaluated using tremor recorded after the major eruptions by a dense seismic array and a good number of stations. A tremor source changed its depth beneath the crater for 1 week before the major eruption, rising from a depth of a few kilometer to the water layer 3 times, each of which occurred following shallow inflation and minor eruptions. It is interpreted as migration of gas probably with magma, which further transported heat to the water layer and triggered the subplinian eruptions.

  16. A wide depth distribution of seismic tremors along the northern Cascadia margin.

    PubMed

    Kao, Honn; Shan, Shao-Ju; Dragert, Herb; Rogers, Garry; Cassidy, John F; Ramachandran, Kumar

    2005-08-11

    The Cascadia subduction zone is thought to be capable of generating major earthquakes with moment magnitude as large as M(w) = 9 at an interval of several hundred years. The seismogenic portion of the plate interface is mostly offshore and is currently locked, as inferred from geodetic data. However, episodic surface displacements-in the direction opposite to the long-term deformation motions caused by relative plate convergence across a locked interface-are observed about every 14 months with an unusual tremor-like seismic signature. Here we show that these tremors are distributed over a depth range exceeding 40 km within a limited horizontal band. Many occurred within or close to the strong seismic reflectors above the plate interface where local earthquakes are absent, suggesting that the seismogenic process for tremors is fluid-related. The observed depth range implies that tremors could be associated with the variation of stress field induced by a transient slip along the deeper portion of the Cascadia interface or, alternatively, that episodic slip is more diffuse than originally suggested.

  17. Models of tremor and low-frequency earthquake swarms on Montserrat

    NASA Astrophysics Data System (ADS)

    Neuberg, J.; Luckett, R.; Baptie, B.; Olsen, K.

    2000-08-01

    Recent observations from Soufrière Hills volcano in Montserrat reveal a wide variety of low-frequency seismic signals. We discuss similarities and differences between hybrid earthquakes and long-period events, and their role in explosions and rockfall events. These events occur usually in swarms, and occasionally merge into tremor, an observation that can shed further light on the generation and composition of harmonic tremor. We use a 2D finite difference method to model major features of low-frequency seismic signatures and compare them with the observations. A depth-dependent velocity model for a fluid-filled conduit is introduced which accounts for the varying gas-content in the magma, and the impact on the seismic signals is discussed. We carefully analyse episodes of tremor that show shifting spectral lines and model those in terms of changes in the gas content of the magma as well as in terms of a time-dependent triggering mechanism of low-frequency resonances. In this way we explain the simultaneous occurrence of low-frequency events and tremor with a spectral content comprising integer harmonics.

  18. 5-hydroxytryptamine and Lyme disease. Opportunity for a novel therapy to reduce the cerebellar tremor?

    PubMed

    Maximov, G K; Maximov, K G; Chokoeva, A A; Lotti, T; Wollina, U; Patterson, J W; Guarneri, C; Tana, C; Fioranelli, M; Roccia, M G; Kanazawa, N; Tchernev, G

    2016-01-01

    Lyme boreliosis is caused by the spirochete Borrelia burdorferi, which is transmitted by ticks. A 59 year-old woman developed pyrexia, strong headaches, ataxia, dysarthria and tremor of the limbs after a tick bite. She was unable to work and eat on her own. She was hospitalized three times and diagnosed with cerebellar intention tremor, cerebellar ataxia, dysarthria, bilateral horizontal gaze paralysis and a central lesion of the left facial nerve. There were no pyramidal, sensory or psychiatric disturbances. The brain MRI showed multifocal leucoencephalopathy with many hyperintense areas in both hemispheres, as well as in the left superior pedunculus cerebellaris. Diagnosis was confirmed by serologic examination. Treatment with cephtriaxone, doxycycline, methylprednisolone, cephixime and ciprofloxacine was administered without effect on the tremor, ataxia and horizontal gaze paralysis. Treatment was then administered with 5-hydroxytriptamine (5-HT) in increased doses. The result of the three-month treatment with 5-HT was a gradual diminution of the tremor and the ataxia and an increase in the ability to eat, walk and work independently.

  19. Propranolol as an adjunct therapy for hyperthyroid tremor.

    PubMed

    Henderson, J M; Portmann, L; Van Melle, G; Haller, E; Ghika, J A

    1997-01-01

    We evaluated the use of propranolol as an adjunct to carbimazole in the treatment of hyperthyroid tremor and tachycardia in a double-blind, cross-over and placebo-controlled study. Seven patients were given carbimazole plus either placebo or propranolol (40 mg) for 1 month and then switched to the alternative adjunct treatment for a further month. All patients showed significant improvements (p < 0.001) of heart rate and tremor amplitude after 1 or 2 months from baseline. One month after the baseline, the mean improvements of heart rate were 23% for the carbimazole + placebo group and 38% for carbimazole + propranolol group. Tremor also improved during the 1st month of the study by 31% in the carbimazole + placebo group versus 59% in the carbimazole + propranolol group. Whereas further improvements were observed in both variables in those receiving propranolol as the second adjunct treatment, this was not the case in those who received placebo during the same period. These findings confirm that the beta-blocker propranolol is a useful adjunct in the early treatment of both the tremor and tachycardia of hyperthyroidism.

  20. Delayed dynamic triggering of deep tremor along the Parkfield-Cholame section of the San Andreas Fault following the 2014 M6.0 South Napa earthquake

    USGS Publications Warehouse

    Peng, Zhigang; Shelly, David R.; Ellsworth, William L.

    2015-01-01

    Large, distant earthquakes are known to trigger deep tectonic tremor along the San Andreas Fault and in subduction zones. However, there are relatively few observations of triggering from regional distance earthquakes. Here we show that a small tremor episode about 12–18 km NW of Parkfield was triggered during and immediately following the passage of surface waves from the 2014 Mw 6.0 South Napa main shock. More notably, a major tremor episode followed, beginning about 12 h later, and centered SE of Parkfield near Cholame. This major episode is one of the largest seen over the past several years, containing intense activity for ~3 days and taking more than 3 weeks to return to background levels. This episode showed systematic along-strike migration at ~5 km/d, suggesting that it was driven by a slow-slip event. Our results suggest that moderate-size earthquakes are capable of triggering major tremor and deep slow slip at regional distances.

  1. Comparison of ground motion from tremors and explosions in deep gold mines

    USGS Publications Warehouse

    McGarr, A.; Bicknell, J.; Churcher, J.; Spottiswoode, S.

    1990-01-01

    Seismic body waves, from tamped chemical explosions, two with yields of 50 and one of 150 kg, were compared with corresponding data from three mining-induced tremors with a view to testing methods of discriminating between the two types of events. It is concluded that for events of fixed low-frequency spectral asymptotes, the explosions typically have higher corner frequencies than tremors or earthquakes, although counterexamples certainly exist. Interestingly, the 150-kg explosion was identified as such on the basis of P and S wave polarities that are incompatible with the normally expected double-couple source model; instead these initial motions are consistent with an explosion in conjunction with normal faulting. The body wave spectra of this explosion and those of a nearby tremor, however, were indistinguishable. -from Authors

  2. Imaging different components of a tectonic tremor sequence in southwestern Japan using an automatic statistical detection and location method

    NASA Astrophysics Data System (ADS)

    Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige

    2018-06-01

    In this study, we demonstrate the capability of an automatic network-based detection and location method to extract and analyse different components of tectonic tremor activity by analysing a 9-day energetic tectonic tremor sequence occurring at the downdip extension of the subducting slab in southwestern Japan. The applied method exploits the coherency of multiscale, frequency-selective characteristics of non-stationary signals recorded across the seismic network. Use of different characteristic functions, in the signal processing step of the method, allows to extract and locate the sources of short-duration impulsive signal transients associated with low-frequency earthquakes and of longer-duration energy transients during the tectonic tremor sequence. Frequency-dependent characteristic functions, based on higher-order statistics' properties of the seismic signals, are used for the detection and location of low-frequency earthquakes. This allows extracting a more complete (˜6.5 times more events) and time-resolved catalogue of low-frequency earthquakes than the routine catalogue provided by the Japan Meteorological Agency. As such, this catalogue allows resolving the space-time evolution of the low-frequency earthquakes activity in great detail, unravelling spatial and temporal clustering, modulation in response to tide, and different scales of space-time migration patterns. In the second part of the study, the detection and source location of longer-duration signal energy transients within the tectonic tremor sequence is performed using characteristic functions built from smoothed frequency-dependent energy envelopes. This leads to a catalogue of longer-duration energy sources during the tectonic tremor sequence, characterized by their durations and 3-D spatial likelihood maps of the energy-release source regions. The summary 3-D likelihood map for the 9-day tectonic tremor sequence, built from this catalogue, exhibits an along-strike spatial segmentation of the long-duration energy-release regions, matching the large-scale clustering features evidenced from the low-frequency earthquake's activity analysis. Further examination of the two catalogues showed that the extracted short-duration low-frequency earthquakes activity coincides in space, within about 10-15 km distance, with the longer-duration energy sources during the tectonic tremor sequence. This observation provides a potential constraint on the size of the longer-duration energy-radiating source region in relation with the clustering of low-frequency earthquakes activity during the analysed tectonic tremor sequence. We show that advanced statistical network-based methods offer new capabilities for automatic high-resolution detection, location and monitoring of different scale-components of tectonic tremor activity, enriching existing slow earthquakes catalogues. Systematic application of such methods to large continuous data sets will allow imaging the slow transient seismic energy-release activity at higher resolution, and therefore, provide new insights into the underlying multiscale mechanisms of slow earthquakes generation.

  3. Imaging different components of a tectonic tremor sequence in southwestern Japan using an automatic statistical detection and location method

    NASA Astrophysics Data System (ADS)

    Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige

    2018-02-01

    In this study, we demonstrate the capability of an automatic network-based detection and location method to extract and analyse different components of tectonic tremor activity by analysing a 9-day energetic tectonic tremor sequence occurring at the down-dip extension of the subducting slab in southwestern Japan. The applied method exploits the coherency of multi-scale, frequency-selective characteristics of non-stationary signals recorded across the seismic network. Use of different characteristic functions, in the signal processing step of the method, allows to extract and locate the sources of short-duration impulsive signal transients associated with low-frequency earthquakes and of longer-duration energy transients during the tectonic tremor sequence. Frequency-dependent characteristic functions, based on higher-order statistics' properties of the seismic signals, are used for the detection and location of low-frequency earthquakes. This allows extracting a more complete (˜6.5 times more events) and time-resolved catalogue of low-frequency earthquakes than the routine catalogue provided by the Japan Meteorological Agency. As such, this catalogue allows resolving the space-time evolution of the low-frequency earthquakes activity in great detail, unravelling spatial and temporal clustering, modulation in response to tide, and different scales of space-time migration patterns. In the second part of the study, the detection and source location of longer-duration signal energy transients within the tectonic tremor sequence is performed using characteristic functions built from smoothed frequency-dependent energy envelopes. This leads to a catalogue of longer-duration energy sources during the tectonic tremor sequence, characterized by their durations and 3-D spatial likelihood maps of the energy-release source regions. The summary 3-D likelihood map for the 9-day tectonic tremor sequence, built from this catalogue, exhibits an along-strike spatial segmentation of the long-duration energy-release regions, matching the large-scale clustering features evidenced from the low-frequency earthquake's activity analysis. Further examination of the two catalogues showed that the extracted short-duration low-frequency earthquakes activity coincides in space, within about 10-15 km distance, with the longer-duration energy sources during the tectonic tremor sequence. This observation provides a potential constraint on the size of the longer-duration energy-radiating source region in relation with the clustering of low-frequency earthquakes activity during the analysed tectonic tremor sequence. We show that advanced statistical network-based methods offer new capabilities for automatic high-resolution detection, location and monitoring of different scale-components of tectonic tremor activity, enriching existing slow earthquakes catalogues. Systematic application of such methods to large continuous data sets will allow imaging the slow transient seismic energy-release activity at higher resolution, and therefore, provide new insights into the underlying multi-scale mechanisms of slow earthquakes generation.

  4. A Cerebellar Tremor in a Patient with Human Immunodeficiency Virus-1 Associated with Progressive Multifocal Leukoencephalopathy

    PubMed Central

    Kim, Hee-Jin; Lee, Jae-Jung; Lee, Phil Hyu

    2009-01-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system (CNS) caused by JC virus infection in oligodendrocytes, especially in patients with acquired immunodeficiency syndrome (AIDS). Movement disorders associated with PML are very rare. Here, we report a case of PML in an AIDS patient who presented with a cerebellar tremor, caused by lesions in the cerebellar outflow tract. A cerebellar tremor can be a rare clinical manifestation in patients with PML. PMID:24868366

  5. Metabolic Acetate Therapy Improves Phenotype in the Tremor Rat Model of Canavan Disease

    DTIC Science & Technology

    2010-05-13

    treated and untreated female tremor rats (pɘ.05). PA Phosphatidic acid , PC phosphatidylcholine, SM sphingomyelin, PI phosphatidylinositol, PE...was used to confirm the ASPA-deficient phenotype of homozygous tremor rats. The ASPA antibodies were generated against an 18 amino acid sequence from... acid ; 40:50:2:0.2 v/v) solvent front advanced 2/3rds plate height and dried. Solvent system 2 (diethyl ether: hexane; 6:94 v/v) was run the full plate

  6. Plate tectonics. Seismological detection of slab metamorphism.

    PubMed

    Julian, Bruce

    2002-05-31

    The occurrence of more or less continuous ground vibrations ("volcanic tremor") is an important indicator of volcanic activity. But results from the "Hi-net" seismic network in Japan reported by Obara show that continuous ground vibrations can occur far away from any volcanic activity. In his Perspective, Julian discusses the idea that this tremor is excited by flow of metamorphic fluids. He also identifies other possible locations where such a tremor may be detected and explains what may be learnt from measuring it.

  7. Methodological Issues in Clinical Drug Development for Essential Tremor

    PubMed Central

    Carranza, Michael A.; Snyder, Madeline R.; Elble, Rodger J.; Boutzoukas, Angelique E.; Zesiewicz, Theresa A.

    2012-01-01

    Essential tremor (ET) is one of the most common tremor disorders in the world. Despite this, only two medications have received Level A recommendations from the American Academy of Neurology to treat it (primidone and propranolol). Even though these medications provide relief to a large group of ET patients, up to 50% of patients are non-responders. Additional medications to treat ET are needed. This review discusses some of the methodological issues that should be addressed for quality clinical drug development in ET. PMID:23440401

  8. Genetics Home Reference: essential tremor

    MedlinePlus

    ... types of activities, such as eating, drinking, or writing. Essential tremor can also occur when the muscles are opposing gravity, such as when the hands are extended. It is usually not evident at ...

  9. Seismic Study of Tremor, Deep Long-Period Earthquakes, and Basin Amplification of Ground Motion

    NASA Astrophysics Data System (ADS)

    Han, Jiangang

    In this thesis, we use seismic data and seismological tools to investigate three topics, (1) triggering between slow slip (tremor as proxy) and nearby small earthquakes, (2) mechanisms of deep-long period earthquakes beneath Mount St. Helens, and (3) ground motion amplification in Seattle Basin. In Chapter 1, we investigate 12-year earthquake and tremor catalogs for southwest Japan, and find nearby small intraslab earthquakes are weakly correlated with tremor. In particular, intraslab earthquakes tend to be followed by tremor more often than expected at random, while the excess number of tremor before earthquakes is not as significant. The underlying triggering mechanism of tremor and inferred slow slip by earthquakes is most likely to be the dynamic stress changes (several to several tens of kPa) rather than the much smaller static stress changes. In Chapter 2, we use the catalog DLPs as templates to search for repeating events at Mount St. Helens (MSH). We have detected 277 DLPs, compared to only 22 events previously in the catalog from 2007 to 2016. Three templates from the catalog are single events, while all other templates produced matches, identifying loci of repeated activity. Overall, the detected DLPs show no significant correlation with either the subduction zone tremor and slow slip (ETS) west of MSH, or the shallow seismicity. Temporal analysis shows an elevated rate of DLPs at time of compressional tidal stress, suggesting their possible association with magmatic and/or fluid activity. We observed variable S wave polarization of the DLPs from the most productive DLP source region, indicating their source mechanisms are not identical. In Chapter 3, we use noise correlation to retrieve the empirical green's functions (EGFs) in Seattle Basin. Consistent amplitudes measured from noise EGFs, teleseismic S wave and numerical simulations all suggest the usefulness of the amplitude of EGFs. For surface wave with period of 5-10 sec propagating from west to east, the ground motion is amplified by a factor of up to 3 within the basin. The bias of EGFs from noise heterogeneity and uncertainties of synthetics due to inaccuracy of velocity model are still to be investigated.

  10. Broadband Array Analysis of the 2005 Episodic Tremor and Slip Event in Northern Cascadia

    NASA Astrophysics Data System (ADS)

    Wech, A.; Creager, K.; McCausland, W.; Frassetto, A.; Qamar, A.; Derosier, S.; Carmichael, J.; Malone, S.; Johnson, D.

    2005-12-01

    The region of Cascadia from the Olympic Mountains through southern Vancouver Island and down-dip of the subduction megathrust has repeatedly experienced episodes of slow slip. This episodic slip, which has been observed to take place over a period of two to several weeks, is accompanied by a seismic tremor signal. Based on the average recurrence interval of 14 months, the next episodic tremor and slip (ETS) event should occur within six weeks of mid-September, 2005. Indeed, it appears to have begun on September 3, as this abstract was being written. In order to record this anticipated event, we deployed an array of 11 three-component seismometers on the northern side of the Olympic Peninsula augmenting Pacific Northwest Seismographic Network stations as well as the first few EarthScope BigFoot stations and Plate Boundary Observatory borehole seismometers. This seismic array was comprised of six short-period and five broadband instruments with spacings of 500 m and 2200 m respectively. In conjunction with this Earthscope seismic deployment, we also installed a dense network of 29 temporary, continuous GPS stations across the entire Olympic Peninsula to integrate seismic and geodetic observations. One of the primary goals of this research is to utilize the broadband instrumentation in the array to investigate the possible correlation of low frequency energy with the rest of the tremor activity. ETS has been carefully investigated at high-frequency (seismic tremor at 2-6 Hz) and very low-frequency (slip occurring over weeks, observed by GPS). An important goal of this experiment is to investigate the possibility that the tremor generates intermediate, low-frequency signals. Preliminary analysis of short-period array recordings of the July, 2004 ETS event suggests that the tremor displays signs of lower-frequency energy (~0.5 Hz) correlated with its higher frequency activity. Our array should enable us to distinguish low- frequency signals originating in the direction of high-frequency tremor from noise in other directions. We will present an analysis of the low-frequency energy associated with this slip event.

  11. Alarm systems detect volcanic tremor and earthquake swarms during Redoubt eruption, 2009

    NASA Astrophysics Data System (ADS)

    Thompson, G.; West, M. E.

    2009-12-01

    We ran two alarm algorithms on real-time data from Redoubt volcano during the 2009 crisis. The first algorithm was designed to detect escalations in continuous seismicity (tremor). This is implemented within an application called IceWeb which computes reduced displacement, and produces plots of reduced displacement and spectrograms linked to the Alaska Volcano Observatory internal webpage every 10 minutes. Reduced displacement is a measure of the amplitude of volcanic tremor, and is computed by applying a geometrical spreading correction to a displacement seismogram. When the reduced displacement at multiple stations exceeds pre-defined thresholds and there has been a factor of 3 increase in reduced displacement over the previous hour, a tremor alarm is declared. The second algorithm was to designed to detect earthquake swarms. The mean and median event rates are computed every 5 minutes based on the last hour of data from a real-time event catalog. By comparing these with thresholds, three swarm alarm conditions can be declared: a new swarm, an escalation in a swarm, and the end of a swarm. The end of swarm alarm is important as it may mark a transition from swarm to continuous tremor. Alarms from both systems were dispatched using a generic alarm management system which implements a call-down list, allowing observatory scientists to be called in sequence until someone acknowledged the alarm via a confirmation web page. The results of this simple approach are encouraging. The tremor alarm algorithm detected 26 of the 27 explosive eruptions that occurred from 23 March - 4 April. The swarm alarm algorithm detected all five of the main volcanic earthquake swarm episodes which occurred during the Redoubt crisis on 26-27 February, 21-23 March, 26 March, 2-4 April and 3-7 May. The end-of-swarm alarms on 23 March and 4 April were particularly helpful as they were caused by transitions from swarm to tremor shortly preceding explosive eruptions; transitions which were detected much earlier by the swarm algorithm than they were by the tremor algorithm.

  12. Geometry and Pore Pressure Shape the Pattern of the Tectonic Tremors Activity on the Deep San Andreas Fault with Periodic, Period-Multiplying Recurrence Intervals

    NASA Astrophysics Data System (ADS)

    Mele Veedu, D.; Barbot, S.

    2014-12-01

    A never before recorded pattern of periodic, chaotic, and doubled, earthquake recurrence intervals was detected in the sequence of deep tectonic tremors of the Parkfield segment of the San Andreas Fault (Shelly, 2010). These observations may be the most puzzling seismological observations of the last decade: The pattern was regularly oscillating with a period doubling of 3 and 6 days from mid-2003 until it was disrupted by the 2004 Mw 6.0 Parkfield earthquake. But by the end of 2007, the previous pattern resumed. Here, we assume that the complex dynamics of the tremors is caused by slip on a single asperity on the San Andreas Fault with homogeneous friction properties. We developed a three-dimensional model based on the rate-and-state friction law with a single patch and simulated fault slip during all stages of the earthquake cycle using the boundary integral method of Lapusta & Liu (2009). We find that homogeneous penny-shaped asperities cannot induce the observed period doubling, and that the geometry itself of the velocity-weakening asperity is critical in enabling the characteristic behavior of the Parkfield tremors. We also find that the system is sensitive to perturbations in pore pressure, such that the ones induced by the 2004 Parkfield earthquake are sufficient to dramatically alter the dynamics of the tremors for two years, as observed by Shelly (2010). An important finding is that tremor magnitude is amplified more by macroscopic slip duration on the source asperity than by slip amplitude, indicative of a time-dependent process for the breakage of micro-asperities that leads to seismic emissions. Our simulated event duration is in the range of 25 to 150 seconds, closely comparable to the event duration of a typical Parkfield tectonic tremor. Our simulations reproduce the unique observations of the Parkfield tremor activity. This study vividly illustrates the critical role of geometry in shaping the dynamics of fault slip evolution on a seismogenic fault.

  13. Loss of Balance between Striatal Feedforward Inhibition and Corticostriatal Excitation Leads to Tremor.

    PubMed

    Oran, Yael; Bar-Gad, Izhar

    2018-02-14

    Fast-spiking interneurons (FSIs) exert powerful inhibitory control over the striatum and are hypothesized to balance the massive excitatory cortical and thalamic input to this structure. We recorded neuronal activity in the dorsolateral striatum and globus pallidus (GP) concurrently with the detailed movement kinematics of freely behaving female rats before and after selective inhibition of FSI activity using IEM-1460 microinjections. The inhibition led to the appearance of episodic rest tremor in the body part that depended on the somatotopic location of the injection within the striatum. The tremor was accompanied by coherent oscillations in the local field potential (LFP). Individual neuron activity patterns became oscillatory and coherent in the tremor frequency. Striatal neurons, but not GP neurons, displayed additional temporal, nonoscillatory correlations. The subsequent reduction in the corticostriatal input following muscimol injection to the corresponding somatotopic location in the primary motor cortex led to disruption of the tremor and a reduction of the LFP oscillations and individual neuron's phase-locked activity. The breakdown of the normal balance of excitation and inhibition in the striatum has been shown previously to be related to different motor abnormalities. Our results further indicate that the balance between excitatory corticostriatal input and feedforward FSI inhibition is sufficient to break down the striatal decorrelation process and generate oscillations resulting in rest tremor typical of multiple basal ganglia disorders. SIGNIFICANCE STATEMENT Fast-spiking interneurons (FSIs) play a key role in normal striatal processing by exerting powerful inhibitory control over the network. FSI malfunctions have been associated with abnormal processing of information within the striatum that leads to multiple movement disorders. Here, we study the changes in neuronal activity and movement kinematics following selective inhibition of these neurons. The injections led to the appearance of episodic rest tremor, accompanied by coherent oscillations in neuronal activity, which was reversed following corticostriatal inhibition. These results suggest that the balance between corticostriatal excitation and feedforward FSI inhibition is crucial for maintaining the striatal decorrelation process, and that its breakdown leads to the formation of oscillations resulting in rest tremor typical of multiple basal ganglia disorders. Copyright © 2018 the authors 0270-6474/18/381699-12$15.00/0.

  14. Deep Brain Stimulation for Tremor Tractographic Versus Traditional (DISTINCT): Study Protocol of a Randomized Controlled Feasibility Trial.

    PubMed

    Sajonz, Bastian Elmar Alexander; Amtage, Florian; Reinacher, Peter Christoph; Jenkner, Carolin; Piroth, Tobias; Kätzler, Jürgen; Urbach, Horst; Coenen, Volker Arnd

    2016-12-22

    Essential tremor is a movement disorder that can result in profound disability affecting the quality of life. Medically refractory essential tremor can be successfully reduced by deep brain stimulation (DBS) traditionally targeting the thalamic ventral intermediate nucleus (Vim). Although this structure can be identified with magnetic resonance (MR) imaging nowadays, Vim-DBS electrodes are still implanted in the awake patient with intraoperative tremor testing to achieve satisfactory tremor control. This can be attributed to the fact that the more effective target of DBS seems to be the stimulation of fiber tracts rather than subcortical nuclei like the Vim. There is evidence that current coverage of the dentatorubrothalamic tract (DRT) results in good tremor control in Vim-DBS. Diffusion tensor MR imaging (DTI) tractography-assisted stereotactic surgery targeting the DRT would therefore not rely on multiple trajectories and intraoperative tremor testing in the awake patient, bearing the potential of more patient comfort and reduced operation-related risks. This is the first randomized controlled trial comparing DTI tractography-assisted stereotactic surgery targeting the DRT in general anesthesia with stereotactic surgery of thalamic/subthalamic region as conventionally used. This clinical pilot trial aims at demonstrating safety of DTI tractography-assisted stereotactic surgery in general anesthesia and proving its equality compared to conventional stereotactic surgery with intraoperative testing in the awake patient. The Deep Brain Stimulation for Tremor Tractographic Versus Traditional (DISTINCT) trial is a single-center investigator-initiated, randomized, controlled, observer-blinded trial. A total of 24 patients with medically refractory essential tremor will be randomized to either DTI tractography-assisted stereotactic surgery targeting the DRT in general anesthesia or stereotactic surgery of the thalamic/subthalamic region as conventionally used. The primary objective is to assess the tremor reduction, obtained by the Fahn-Tolosa-Marin Tremor Rating Scale in the 2 treatment groups. Secondary objectives include (among others) assessing the quality of life, optimal electrode contact positions, and safety of the intervention. The study protocol has been approved by the independent ethics committee of the University of Freiburg. Recruitment to the DISTINCT trial opened in September 2015 and is expected to close in June 2017. At the time of manuscript submission the trial is open to recruitment. The DISTINCT trial is the first to compare DTI tractography-assisted stereotactic surgery with target point of the DRT in general anesthesia to stereotactic surgery of the thalamic/subthalamic region as conventionally used. It can serve as a cornerstone for the evolving technique of DTI tractography-assisted stereotactic surgery. ClinicalTrials.gov NCT02491554; https://clinicaltrials.gov/ct2/show/NCT02491554 (Archived by WebCite at http://www.webcitation.org/6mezLnB9D). German Clinical Trials Register DRKS00008913; http://drks-neu.uniklinik-freiburg.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00008913 (Archived by WebCite at http://www.webcitation.org/6mezCtxhS). ©Bastian Elmar Alexander Sajonz, Florian Amtage, Peter Christoph Reinacher, Carolin Jenkner, Tobias Piroth, Jürgen Kätzler, Horst Urbach, Volker Arnd Coenen. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 22.12.2016.

  15. Multi-asperity models of slow slip and tremor

    NASA Astrophysics Data System (ADS)

    Ampuero, Jean Paul; Luo, Yingdi; Lengline, Olivier; Inbal, Asaf

    2016-04-01

    Field observations of exhumed faults indicate that fault zones can comprise mixtures of materials with different dominant deformation mechanisms, including contrasts in strength, frictional stability and hydrothermal transport properties. Computational modeling helps quantify the potential effects of fault zone heterogeneity on fault slip styles from seismic to aseismic slip, including slow slip and tremor phenomena, foreshocks sequences and swarms, high- and low-frequency radiation during large earthquakes. We will summarize results of ongoing modeling studies of slow slip and tremor in which fault zone structure comprises a collection of frictionally unstable patches capable of seismic slip (tremorgenic asperities) embedded in a frictionally stable matrix hosting aseismic transient slips. Such models are consistent with the current view that tremors result from repeated shear failure of multiple asperities as Low Frequency Earthquakes (LFEs). The collective behavior of asperities embedded in creeping faults generate a rich spectrum of tremor migration patterns, as observed in natural faults, whose seismicity rate, recurrence time and migration speed can be mechanically related to the underlying transient slow slip rate. Tremor activity and slow slip also responds to periodic loadings induced by tides or surface waves, and models relate tremor tidal sensitivity to frictional properties, fluid pressure and creep rate. The overall behavior of a heterogeneous fault is affected by structural parameters, such as the ratio of stable to unstable materials, but also by time-dependent variables, such as pore pressure and loading rate. Some behaviors are well predicted by homogenization theory based on spatially-averaged frictional properties, but others are somewhat unexpected, such as seismic slip behavior found in asperities that are much smaller than their nucleation size. Two end-member regimes are obtained in rate-and-state models with velocity-weakening asperities embedded in a matrix with either (A) velocity-strengthening friction or (B) a transition from velocity-weakening to velocity-strengthening at increasing slip velocity. The most conventional regime is tremor driven by slow slip. However, if the interaction between asperities mediated by intervening transient creep is strong enough, a regime of slow slip driven by tremors emerges. These two regimes lead to different statistics of inter-event times of LFE sequences, which we confront to observations from LFE catalogs in Mexico, Cascadia and Parkfield. These models also suggest that the depth dependence of tremor and slow slip behavior, for instance their shorter recurrence time and weaker amplitude with increasing depth, are not necessarily related to depth dependent size distribution of asperities, but could be due to depth-dependence of the properties of the intervening creep materials. Simplified fracture mechanics models illustrate how the resistance of the fault zone matrix can control the effective distance of interaction between asperities, and lead to transitions between Gutenberg-Richter to size-bounded (exponential) frequency-magnitude distributions. Structural fault zone properties such as the thickness of the damage zone can also introduce characteristic length scales that may affect the size distribution of tremors. Earthquake cycle simulations on heterogeneous faults also provide insight into the conditions that allow asperities to generate foreshock activity and high-frequency radiation during large earthquakes.

  16. Atenolol vs. propranolol in essential tremor. A controlled, quantitative study.

    PubMed

    Larsen, T A; Teräväinen, H; Calne, D B

    1982-11-01

    The beta-1 selective, hydrophilic adrenoceptor blocking drug atenolol (100 mg daily) was compared to the non-selective, lipid-soluble beta-blocker propranolol (240 mg daily), and to placebo, in a double-blind cross-over study in 24 patients with essential tremor. Atenolol and propranolol caused a similar decrease in heart rate. Both beta-blockers also suppressed the tremor intensity; there was no significant difference between them, but both were significantly better than placebo. These drugs did not affect tremor frequency. Twelve of the patients preferred propranolol subjectively, one preferred atenolol and none preferred placebo. No marked side-effects were observed. It was concluded that atenolol and other cardio-selective blockers offer an alternative for patients unable to tolerate the non-selective drugs. The site of action and receptor sub-type involved have still to be determined.

  17. Volcanic tremor and plume height hysteresis from Pavlof Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Fee, David; Haney, Matthew M.; Matoza, Robin S.; Van Eaton, Alexa R.; Cervelli, Peter; Schneider, David J.; Iezzi, Alexandra M.

    2017-01-01

    The March 2016 eruption of Pavlof Volcano, Alaska, produced an ash plume that caused the cancellation of more than 100 flights in North America. The eruption generated strong tremor that was recorded by seismic and remote low-frequency acoustic (infrasound) stations, including the EarthScope Transportable Array. The relationship between the tremor amplitudes and plume height changes considerably between the waxing and waning portions of the eruption. Similar hysteresis has been observed between seismic river noise and discharge during storms, suggesting that flow and erosional processes in both rivers and volcanoes can produce irreversible structural changes that are detectable in geophysical data. We propose that the time-varying relationship at Pavlof arose from changes in the tremor source related to volcanic vent erosion. This relationship may improve estimates of volcanic emissions and characterization of eruption size and intensity.

  18. Annual modulation of non-volcanic tremor in northern Cascadia

    USGS Publications Warehouse

    Pollitz, Fred; Wech, Aaron G.; Kao, Honn; Burgmann, Roland

    2013-01-01

    Two catalogs of episodic tremor events in northern Cascadia, one from 2006 to 2012 and the other from 1997 to 2011, reveal two systematic patterns of tremor occurrence in southern Vancouver Island: (1) most individual events tend to occur in the third quarter of the year; (2) the number of events in prolonged episodes (i.e., episodic tremor and slip events), which generally propagate to Vancouver Island from elsewhere along the Cascadia subduction zone, is inversely correlated with the amount of precipitation that occurred in the preceding 2 months. We rationalize these patterns as the product of hydrologic loading of the crust of southern Vancouver Island and the surrounding continental region, superimposed with annual variations from oceanic tidal loading. Loading of the Vancouver Island crust in the winter (when the land surface receives ample precipitation) and unloading in the summer tends to inhibit and enhance downdip shear stress, respectively. Quantitatively, for an annually variable surface load, the predicted stress perturbation depends on mantle viscoelastic rheology. A mechanical model of downdip shear stress on the transition zone beneath Vancouver Island—driven predominantly by the annual hydrologic cycle—is consistent with the 1997–2012 tremor observations, with peak-to-peak downdip shear stress of about 0.4 kPa. This seasonal dependence of tremor occurrence appears to be restricted to southern Vancouver Island because of its unique situation as an elongated narrow-width land mass surrounded by ocean, which permits seasonal perturbations in shear stress at depth.

  19. Seismic moulin tremor

    NASA Astrophysics Data System (ADS)

    Roeoesli, Claudia; Walter, Fabian; Ampuero, Jean-Paul; Kissling, Edi

    2016-08-01

    Through glacial moulins, meltwater is routed from the glacier surface to its base. Moulins are a main feature feeding subglacial drainage systems and thus influencing basal motion and ice dynamics, but their geometry remains poorly known. Here we show that analysis of the seismic wavefield generated by water falling into a moulin can help constrain its geometry. We present modeling results of hour-long seimic tremors emitted from a vertical moulin shaft, observed with a seismometer array installed at the surface of the Greenland Ice Sheet. The tremor was triggered when the moulin water level exceeded a certain height, which we associate with the threshold for the waterfall to hit directly the surface of the moulin water column. The amplitude of the tremor signal changed over each tremor episode, in close relation to the amount of inflowing water. The tremor spectrum features multiple prominent peaks, whose characteristic frequencies are distributed like the resonant modes of a semiopen organ pipe and were found to depend on the moulin water level, consistent with a source composed of resonant tube waves (water pressure waves coupled to elastic deformation of the moulin walls) along the water-filled moulin pipe. Analysis of surface particle motions lends further support to this interpretation. The seismic wavefield was modeled as a superposition of sustained wave radiation by pressure sources on the side walls and at the bottom of the moulin. The former was found to dominate the wave field at close distance and the latter at large distance to the moulin.

  20. CaV3.1 is a tremor rhythm pacemaker in the inferior olive

    PubMed Central

    Park, Young-Gyun; Park, Hye-Yeon; Lee, C. Justin; Choi, Soonwook; Jo, Seonmi; Choi, Hansol; Kim, Yang-Hann; Shin, Hee-Sup; Llinas, Rodolfo R.; Kim, Daesoo

    2010-01-01

    The rhythmic motor pathway activation by pacemaker neurons or circuits in the brain has been proposed as the mechanism for the timing of motor coordination, and the abnormal potentiation of this mechanism may lead to a pathological tremor. Here, we show that the potentiation of CaV3.1 T-type Ca2+ channels in the inferior olive contributes to the onset of the tremor in a pharmacological model of essential tremor. After administration of harmaline, 4- to 10-Hz synchronous neuronal activities arose from the IO and then propagated to cerebellar motor circuits in wild-type mice, but those rhythmic activities were absent in mice lacking CaV3.1 gene. Intracellular recordings in brain-stem slices revealed that the CaV3.1-deficient inferior olive neurons lacked the subthreshold oscillation of membrane potentials and failed to trigger 4- to 10-Hz rhythmic burst discharges in the presence of harmaline. In addition, the selective knockdown of CaV3.1 gene in the inferior olive by shRNA efficiently suppressed the harmaline-induced tremor in wild-type mice. A mathematical model constructed based on data obtained from patch-clamping experiments indicated that harmaline could efficiently potentiate CaV3.1 channels by changing voltage-dependent responsiveness in the hyperpolarizing direction. Thus, CaV3.1 is a molecular pacemaker substrate for intrinsic neuronal oscillations of inferior olive neurons, and the potentiation of this mechanism can be considered as a pathological cause of essential tremor. PMID:20498062

Top