Sample records for trending reverse faults

  1. Géométrie et cinématique post-oligocène des failles d'Aix et de la moyenne Durance (Provence, France)

    NASA Astrophysics Data System (ADS)

    Guignard, Pierre; Bellier, Olivier; Chardon, Dominique

    2005-02-01

    The southern termination of the left-lateral 'Moyenne Durance' Fault (FMD) consists in several segments, some being connected to WSW-trending south-verging reverse faults. To the south, the Aix fault is reactivated in a post-Oligocene strike-slip movement showing that these two faults might belong to the same system. This system seems to transfer, in turn, slip to the east-trending, south-verging Trévaresse reverse fault, allowing southward propagation of the Alpine deformation front in western Provence. Fault kinematics analysis shows lateral stress field change between the two faults. Strike-slip stress state is characterized by an average N150°E trending σ1 near the FMD termination, whilst strike-slip and reverse faulting stress states show north-trending σ to the south. To cite this article: P. Guignard et al., C. R. Geoscience 337 (2005).

  2. Association of the 1886 Charleston, South Carolina, earthquake and seismicity near Summervile with a 12º bend in the East Coast fault system and triple-fault junctions

    USGS Publications Warehouse

    Marple, R.; Miller, R.

    2006-01-01

    Seismic-reflection data were integrated with other geophysical, geologic, and seismicity data to better determine the location and nature of buried faults in the Charleston, South Carolina, region. Our results indicate that the 1886 Charleston, South Carolina, earthquake and seismicity near Summerville are related to local stresses caused by a 12?? bend in the East Coast fault system (ECFS) and two triple-fault junctions. One triple junction is formed by the intersection of the northwest-trending Ashley River fault with the two segments of the ECFS north and south of the bend. The other triple junction is formed by the intersection of the northeast-trending Summerville fault and a newly discovered northwest-trending Berkeley fault with the ECFS about 10 km north of the bend. The Summerville fault is a northwest-dipping border fault of the Triassic-age Jedburg basin that is undergoing reverse-style reactivation. This reverse-style reactivation is unusual because the Summerville fault parallels the regional stress field axis, suggesting that the reactivation is from stresses applied by dextral motion on the ECFS. The southwest-dip and reverse-type motion of the Berkeley fault are interpreted from seismicity data and a seismic-reflection profile in the western part of the study area. Our results also indicate that the East Coast fault system is a Paleozoic basement fault and that its reactivation since early Mesozoic time has fractured through the overlying allochthonous terranes.

  3. Study on the Evaluation Method for Fault Displacement: Probabilistic Approach Based on Japanese Earthquake Rupture Data - Principal fault displacements -

    NASA Astrophysics Data System (ADS)

    Kitada, N.; Inoue, N.; Tonagi, M.

    2016-12-01

    The purpose of Probabilistic Fault Displacement Hazard Analysis (PFDHA) is estimate fault displacement values and its extent of the impact. There are two types of fault displacement related to the earthquake fault: principal fault displacement and distributed fault displacement. Distributed fault displacement should be evaluated in important facilities, such as Nuclear Installations. PFDHA estimates principal fault and distributed fault displacement. For estimation, PFDHA uses distance-displacement functions, which are constructed from field measurement data. We constructed slip distance relation of principal fault displacement based on Japanese strike and reverse slip earthquakes in order to apply to Japan area that of subduction field. However, observed displacement data are sparse, especially reverse faults. Takao et al. (2013) tried to estimate the relation using all type fault systems (reverse fault and strike slip fault). After Takao et al. (2013), several inland earthquakes were occurred in Japan, so in this time, we try to estimate distance-displacement functions each strike slip fault type and reverse fault type especially add new fault displacement data set. To normalized slip function data, several criteria were provided by several researchers. We normalized principal fault displacement data based on several methods and compared slip-distance functions. The normalized by total length of Japanese reverse fault data did not show particular trend slip distance relation. In the case of segmented data, the slip-distance relationship indicated similar trend as strike slip faults. We will also discuss the relation between principal fault displacement distributions with source fault character. According to slip distribution function (Petersen et al., 2011), strike slip fault type shows the ratio of normalized displacement are decreased toward to the edge of fault. However, the data set of Japanese strike slip fault data not so decrease in the end of the fault. This result indicates that the fault displacement is difficult to appear at the edge of the fault displacement in Japan. This research was part of the 2014-2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (NRA), Japan.

  4. Taking apart the Big Pine fault: Redefining a major structural feature in southern California

    USGS Publications Warehouse

    Onderdonk, N.W.; Minor, S.A.; Kellogg, K.S.

    2005-01-01

    New mapping along the Big Pine fault trend in southern California indicates that this structural alignment is actually three separate faults, which exhibit different geometries, slip histories, and senses of offset since Miocene time. The easternmost fault, along the north side of Lockwood Valley, exhibits left-lateral reverse Quaternary displacement but was a north dipping normal fault in late Oligocene to early Miocene time. The eastern Big Pine fault that bounds the southern edge of the Cuyama Badlands is a south dipping reverse fault that is continuous with the San Guillermo fault. The western segment of the Big Pine fault trend is a north dipping thrust fault continuous with the Pine Mountain fault and delineates the northern boundary of the rotated western Transverse Ranges terrane. This redefinition of the Big Pine fault differs greatly from the previous interpretation and significantly alters regional tectonic models and seismic risk estimates. The outcome of this study also demonstrates that basic geologic mapping is still needed to support the development of geologic models. Copyright 2005 by the American Geophysical Union.

  5. Kinematics of the eastern flank of the Beartooth Mountains, Montana and Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connel, P.

    1991-03-01

    Three miles west of Red Lodge, Montana, well data, gravity data, and surface data indicate the Beartooth fault is dipping at 25{degree} to 30{degree} southwest and is trending northwest-southeast. South of the Maurice tear fault, the Beartooth fault changes to a north-south trend. The intersection of these two trends forms the Red Lodge 'corner.' With the northeast vergence of the Beartooth fault, the eastern flank of the mountains presents an interpretational dilemma between horizontal compression and vertical uplift models. The interpretation of reverse right-oblique slip has been applied to the north-south-trending segment of the Beartooth fault. This necessitates a reinterpretationmore » of the left-lateral strike-slip motion of the Maurice tear fault to include a component of reverse oblique motion. The Bennett Creek flatiron represents an asymmetric syncline created as part of a back-limb fold by early stages of northeast movement. As northeast vergence continued, the north-south segment of the Beartooth fault cut this structure, leaving the southeast continuation of the structure buried in the basin or under the basement overhang. These potential hydrocarbon traps are targets for future exploration. As the Beartooth fault is traced further southward, displacement begins to die out as it nears Clarks Fork Canyon. The Beartooth fault appears to propagate into the Canyon Mouth Anticline as fault displacement diminishes toward the Bighorn basin. Compressional features seen at the crest of the Canyon Mouth Anticline seem to negate a vertical component of movement previously suggested at this southeast corner of the Beartooth Block.« less

  6. Preliminary interpretation of industry two-dimensional seismic data from Susitna Basin, south-central Alaska

    USGS Publications Warehouse

    Lewis, Kristen A.; Potter, Christopher J.; Shah, Anjana K.; Stanley, Richard G.; Haeussler, Peter J.; Saltus, Richard W.

    2015-07-30

    The eastern seismic lines show evidence of numerous short-wavelength antiforms that appear to correspond to a series of northeast-trending lineations observed in aeromagnetic data, which have been interpreted as being due to folding of Paleogene volcanic strata. The eastern side of the basin is also cut by a number of reverse faults and thrust faults, the majority of which strike north-south. The western side of the Susitna Basin is cut by a series of regional reverse faults and is characterized by synformal structures in two fault blocks between the Kahiltna River and Skwentna faults. These synforms are progressively deeper to the west in the footwalls of the east-vergent Skwentna and northeast-vergent Beluga Mountain reverse faults. Although the seismic data are limited to the south, we interpret a potential regional south-southeast-directed reverse fault striking east-northeast on the east side of the basin that may cross the entire southern portion of the basin.

  7. A Structural Analysis of the Lewiston Basin, Clarkston, WA

    NASA Astrophysics Data System (ADS)

    Alloway, M.; Watkinson, A.; Reidel, S. P.

    2010-12-01

    The Lewiston Structure is located in southeastern Washington / west-central Idaho and is a generally E-W trending asymmetric, non-cylindrical anticline in the Columbia River Basalt Group (CRBG) that transfers displacement into the Limekiln fault system to the southeast. A serial cross-section analysis and 3-D construction of this structure shows how the fold varies along its trend and sheds light on the deformational history of the Lewiston Basin. Construction of the fold’s 3-D form shows that the fold’s wavelength increases and amplitude decreases eastward along its trend. Balanced cross-sections show approximately 5% shortening across the structure which is consistent with the Yakima Fold Belt (YFB). Although the structure is similar to the YFB, it does not form part of a belt and its local nature has been suggested to mark the cratonic boundary of the Cretaceous. Discovery of an angular unconformity in the Grande Ronde Basalt - reverse polarity unit 1 (GRB-R1) proves that the NE trending section of the fold was deforming during emplacement of R1 and allows separation of the fold into two structural domains. Analysis of the two domains using the Gauss method for heterogeneous fault-slip data indicate NW-SE shortening during R1 time and N-S shortening for post CRBG emplacement. Furthermore, slip data for strain-inversion and specification of spatial-distribution patterns help identify the existence of a transpressional tectonic environment. The nature of faulting associated with the Lewiston Structure is a topic of some debate, namely the presence of a reverse fault on the southern limb of the fold conspicuously hidden by the Snake River. The reverse fault under debate outcrops to the east of the field area and is GRB-R2 (reverse polarity unit 2) thrust over Pliocene gravels. Better control on unit thicknesses and map contacts rule out the possibility of a reverse fault exposed on the surface of the southern limb of the fold in the field area. This major fault dies out or becomes blind before reaching the ID-WA border and the conspicuous change in attitude from the north side of the river to the south is accommodated by an abrupt fold hinge beneath the river. Three-dimensional representation of how the structure varies along its trend, not to scale. A-A' crosses the location where the Snake River changes direction from E-W to S-N. G-G' was modified from Garwood and Bush (2005) and is outside of the field area.

  8. Study on conditional probability of surface rupture: effect of fault dip and width of seismogenic layer

    NASA Astrophysics Data System (ADS)

    Inoue, N.

    2017-12-01

    The conditional probability of surface ruptures is affected by various factors, such as shallow material properties, process of earthquakes, ground motions and so on. Toda (2013) pointed out difference of the conditional probability of strike and reverse fault by considering the fault dip and width of seismogenic layer. This study evaluated conditional probability of surface rupture based on following procedures. Fault geometry was determined from the randomly generated magnitude based on The Headquarters for Earthquake Research Promotion (2017) method. If the defined fault plane was not saturated in the assumed width of the seismogenic layer, the fault plane depth was randomly provided within the seismogenic layer. The logistic analysis was performed to two data sets: surface displacement calculated by dislocation methods (Wang et al., 2003) from the defined source fault, the depth of top of the defined source fault. The estimated conditional probability from surface displacement indicated higher probability of reverse faults than that of strike faults, and this result coincides to previous similar studies (i.e. Kagawa et al., 2004; Kataoka and Kusakabe, 2005). On the contrary, the probability estimated from the depth of the source fault indicated higher probability of thrust faults than that of strike and reverse faults, and this trend is similar to the conditional probability of PFDHA results (Youngs et al., 2003; Moss and Ross, 2011). The probability of combined simulated results of thrust and reverse also shows low probability. The worldwide compiled reverse fault data include low fault dip angle earthquake. On the other hand, in the case of Japanese reverse fault, there is possibility that the conditional probability of reverse faults with less low dip angle earthquake shows low probability and indicates similar probability of strike fault (i.e. Takao et al., 2013). In the future, numerical simulation by considering failure condition of surface by the source fault would be performed in order to examine the amount of the displacement and conditional probability quantitatively.

  9. Seismotectonics and fault structure of the California Central Coast

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2010-01-01

    I present and interpret new earthquake relocations and focal mechanisms for the California Central Coast. The relocations improve upon catalog locations by using 3D seismic velocity models to account for lateral variations in structure and by using relative arrival times from waveform cross-correlation and double-difference methods to image seismicity features more sharply. Focal mechanisms are computed using ray tracing in the 3D velocity models. Seismicity alignments on the Hosgri fault confirm that it is vertical down to at least 12 km depth, and the focal mechanisms are consistent with right-lateral strike-slip motion on a vertical fault. A prominent, newly observed feature is an ~25 km long linear trend of seismicity running just offshore and parallel to the coastline in the region of Point Buchon, informally named the Shoreline fault. This seismicity trend is accompanied by a linear magnetic anomaly, and both the seismicity and the magnetic anomaly end where they obliquely meet the Hosgri fault. Focal mechanisms indicate that the Shoreline fault is a vertical strike-slip fault. Several seismicity lineations with vertical strike-slip mechanisms are observed in Estero Bay. Events greater than about 10 km depth in Estero Bay, however, exhibit reverse-faulting mechanisms, perhaps reflecting slip at the top of the remnant subducted slab. Strike-slip mechanisms are observed offshore along the Hosgri–San Simeon fault system and onshore along the West Huasna and Rinconada faults, while reverse mechanisms are generally confined to the region between these two systems. This suggests a model in which the reverse faulting is primarily due to restraining left-transfer of right-lateral slip.

  10. Aksu-Dinar Fault System: Its bearing on the evolution of the Isparta Angle (SW Turkey)

    NASA Astrophysics Data System (ADS)

    Kaymakci, Nuretdin; Özacar, Arda; Langereis, Cornelis G.; Özkaptan, Murat; Gülyüz, Erhan; van Hinsbergen, Douwe J. J.; Uzel, Bora; McPhee, Peter; Sözbilir, Hasan

    2017-04-01

    The Isparta Angle is a triangular structure in SW Turkey with NE-SW trending western and NW-SE trending eastern flanks. Aksu Fault is located within the core of this structure and have been taken-up large E-W shortening and sinistral translation since the Late Miocene. It is an inherited structure which emplaced Antalya nappes over the Beydaǧları Platform during the late Eocene to Late Miocene and was reactivated by the Pliocene as a high angle reverse fault to accommodate the counter-clockwise rotation of Beydaǧları and SW Anatolia. On the other hand, the Dinar Fault is a normal fault with slight sinistral component has been active since Pliocene. These two structures are collinear and delimit areas with clockwise and counter-clockwise rotations. The areas to the north and east of these structures rotated clockwise while southern and western areas are rotated counter-clockwise. We claim that the Dinar-Aksu Fault System facilitate rotational deformation in the region as a scissor like mechanism about a pivot point north of Burdur. This mechanism resulted in the normal motion along the Dinar and reverse motion along the Aksu faults with combined sinistral translation component on both structures. We claim that the driving force for the motion of these faults and counter-clockwise rotation of the SW Anatolia seems to be slab-pull forces exerted by the east dipping Antalya Slab, a relic of Tethys oceanic lithosphere. The research for this paper is supported by TUBITAK - Grant Number 111Y239. Key words: Dinar Fault, Aksu Fault, Isparta Angle, SW Turkey, Burdur Pivot, Normal Fault, Reverse Fault

  11. États de contraintes et mécanismes d'ouverture et de fermeture des bassins permiens du Maroc hercynien. L'exemple des bassins des Jebilet et des RéhamnaStates of stresses and opening/closing mechanisms of the Permian basins in Hercynian Morocco. The example of the Jebilet and Réhamna Basins

    NASA Astrophysics Data System (ADS)

    Saidi, Amal; Tahiri, Abdelfatah; Ait Brahim, Lahcen; Saidi, Maraim

    The fracturing analysis in the Permian basins of Jebilet and Rehamna (Hercynian Morocco) and the underlying terranes allowed us to suggest a model for their opening. Three tectonic episodes are distinguished: a transtensional episode NNE-SSW-trending (Permian I), occurring during the opening along sinistral wrench faults N70-110-trending, associated with synsedimentary normal faults; a transpressive episode ESE-WNW-trending (Permian II), initiating the closure, the normal faults playing back reverse faults and the N70 trending faults dextral wrench faults; a compressional episode NNW-SSE (post-Permian, ante-Triassic), accentuating the closure and the deformation and putting an end to the Tardi-Hercynian compressive movements. To cite this article: A. Saidi et al., C. R. Geoscience 334 (2002) 221-226.

  12. Identification of new NE-trending deep-seated faults and tectonic pattern updating in northern Tunisia (Mogodos-Bizerte region), insights from field and seismic reflection data

    NASA Astrophysics Data System (ADS)

    Essid, El Mabrouk; Kadri, Ali; Inoubli, Mohamed Hedi; Zargouni, Fouad

    2016-07-01

    The northern Tunisia is occupied by the Tellian domain constituent the eastern end of the Maghrebides, Alpine fold-thrust belt. Study area includes partially the Tellian domain (Mogodos belt) and its foreland (Bizerte region). Most of this region outcrops consist of Numidian thrust sheet flysch attributed to the lower Oligocene-Burdigalian. In the study area, the major fault systems are still subject of discussion. The Numidian nappe structure, the distribution of basalt and Triassic outcrops within and at the front of this Tellian domain deserve more explanation. In this work we intend to update the structural scheme and the tectonic evolution of the northern Tunisia, taking into account salt tectonics and magmatism. The updated tectonic evolution will be integrated in the geodynamic framework of the Central Mediterranean. For this purpose, we have analyzed morphologic, seismic and structural data. The compilation of the results has allowed the identification of new regional NE-trending faults dipping towards the NW: the Bled el Aouana-Bizerte, the Sejnane-Ras Enjla and the Oued el Harka faults. They correspond to the reactivation of deep-seated normal faults splaying on the Triassic evaporites. This fault system constitutes the main component of the northern Tunisia structural scheme and has influenced its tectonic evolution marked by the main following stages. The Tellian thrust-sheets were immobilized at the uppermost Langhian. During the major Tortonian NW-trending compressive phase, these faults were reactivated with reverse kinematics and controlled the distribution of the post-nappes Neogene continental deposits. At the early Pleistocene, a compressive NNW-trending event has reactivated again these faults with sinistral-reverse movements and deformed the post-nappes Neogene series. Late Quaternary to Actual, the tectonic regime continues to be compressive with a NNW-trending maximum horizontal stress.

  13. The kinematic history of the Khlong Marui and Ranong Faults, southern Thailand

    NASA Astrophysics Data System (ADS)

    Watkinson, Ian; Elders, Chris; Hall, Robert

    2008-12-01

    The Khlong Marui Fault (KMF) and Ranong Fault (RF) are major NNE-trending strike-slip faults which dissect peninsular Thailand. They have been assumed to be conjugate to the NW-trending Three Pagodas Fault (TPF) and Mae Ping Fault (MPF) in Northern Thailand, which experienced a diachronous reversal in shear sense during India-Eurasia collision. It follows that the KMF and RF are expected to show the opposite shear sense and a slip sense reversal at a similar time to the TPF and MPF. New field data from the KMF and RF reveal two phases of ductile dextral shear separated by Campanian magmatism. Paleocene to Eocene post-kinematic granites date the end of this phase, while a brittle sinistral phase deforms the granites, and has exhumed the ductile fault rocks. The timing of these movements precludes formation of the faults in response to Himalayan extrusion tectonics. Instead, they formed near the southern margin of a Late Cretaceous-Paleocene orogen, and may have been influenced by variations in the rate of subduction ahead of India and Australia. North-south compression prior to reactivation of the subduction zone around southern Sundaland in the Eocene caused widespread deformation in the over-riding plate, including sinistral transpression on the KMF and RF.

  14. Subsurface structures of the active reverse fault zones in Japan inferred from gravity anomalies.

    NASA Astrophysics Data System (ADS)

    Matsumoto, N.; Sawada, A.; Hiramatsu, Y.; Okada, S.; Tanaka, T.; Honda, R.

    2016-12-01

    The object of our study is to examine subsurface features such as continuity, segmentation and faulting type, of the active reverse fault zones. We use the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013) in this study. We obtained the Bouguer anomalies through terrain corrections with 10 m DEM (Sawada et al. 2015) under the assumed density of 2670 kg/m3, a band-pass filtering, and removal of linear trend. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features, such as a first horizontal derivatives (HD), a first vertical derivatives (VD), a normalized total horizontal derivative (TDX), a dip angle (β), and a dimensionality index (Di). We analyzed 43 reverse fault zones in northeast Japan and the northern part of southwest Japan among major active fault zones selected by Headquarters for Earthquake Research Promotion. As the results, the subsurface structural boundaries clearly appear along the faults at 21 faults zones. The weak correlations appear at 13 fault zones, and no correlations are recognized at 9 fault zones. For example, in the Itoigawa-Shizuoka tectonic line, the subsurface structure boundary seems to extend further north than the surface trace. Also, a left stepping structure of the fault around Hakuba is more clearly observed with HD. The subsurface structures, which detected as the higher values of HD, are distributed on the east side of the surface rupture in the north segments and on the west side in the south segments, indicating a change of the dip direction, the east dipping to the west dipping, from north to south. In the Yokote basin fault zone, the subsurface structural boundary are clearly detected with HD, VD and TDX along the fault zone in the north segment, but less clearly in the south segment. Also, Di implies the existence of 3D-like structure with E-W trend around the segment boundary. The distribution of dip angle β along the fault zone implies a reverse faulting, corresponding to the faulting type of this fault zone reported by previous studies.

  15. Plio-Quaternary stress states in NE Iran: Kopeh Dagh and Allah Dagh-Binalud mountain ranges

    NASA Astrophysics Data System (ADS)

    Shabanian, Esmaeil; Bellier, Olivier; Abbassi, Mohammad R.; Siame, Lionel; Farbod, Yassaman

    2010-01-01

    NE Iran, including the Kopeh Dagh and Allah Dagh-Binalud deformation domains, comprises the northeastern boundary of the Arabia-Eurasia collision zone. This study focuses on the evolution of the Plio-Quaternary tectonic regimes of northeast Iran. We present evidence for drastic temporal changes in the stress state by inversion of both geologically and seismically determined fault slip vectors. The inversions of fault kinematics data reveal distinct temporal changes in states of stress during the Plio-Quaternary (since ˜ 5 Ma). The paleostress state is characterized by a regional transpressional tectonic regime with a mean N140 ± 10°E trending horizontal maximum stress axis ( σ1). The youngest (modern) state of stress shows two distinct strike-slip and compressional tectonic regimes with a regional mean of N030 ± 15°E trending horizontal σ1. The change from the paleostress to modern stress states has occurred through an intermediate stress field characterized by a mean regional N trending σ1. The inversion analysis of earthquake focal mechanisms reveals a homogeneous, transpressional tectonic regime with a regional N023 ± 5°E trending σ1. The modern stress state, deduced from the youngest fault kinematics data, is in close agreement with the present-day stress state given by the inversions of earthquake focal mechanisms. According to our data and the deduced results, in northeast Iran, the Arabia-Eurasia convergence is taken up by strike-slip faulting along NE trending left-lateral and NNW trending right-lateral faults, as well as reverse to oblique-slip reverse faulting along NW trending faults. Such a structural assemblage is involved in a mechanically compatible and homogeneous modern stress field. This implies that no strain and/or stress partitioning or systematic block rotations have occurred in the Kopeh Dagh and Allah Dagh-Binalud deformation domains. The Plio-Quaternary stress changes documented in this paper call into question the extrapolation of the present-day seismic and GPS-derived deformation rates over geological time intervals encompassing tens of millions of years.

  16. Black Butte Lake, Stony Creek, California Geologic and Seismologic Investigation.

    DTIC Science & Technology

    1986-01-01

    the tectonic basement. Using this fault mechanism , the folds result from drag on the reverse slip of the east block. Two other possible...trends and the few focal mechanisms that have been determined for earthquakes along them are suggestive of right-lateral, strike- slip fault - ing. Nearly...continuation of the Sites anticline, possibly offset eastward by high angle, lateral slip faulting . Fruto Syncline. The Fruto

  17. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    USGS Publications Warehouse

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  18. Paleoseismic Investigation of the Ranong and Khlong Marui faults, Chumphon Province, Southern Thailand

    NASA Astrophysics Data System (ADS)

    Fenton, C. H.; Sutiwanich, C.

    2005-12-01

    The Ranong and Khlong Marui faults are northeast-southwest trending structures in the Isthmus of Kra, southern Thailand, that apparently link the extensional regimes of the Mergui Basin in the Andaman Sea and the Gulf of Thailand. These faults are depicted commonly as strike-slip faults, acting as conjugate structures to the dominant northwest-southeast trending strike-slip faults, in Southeast Asia. These faults are parallel to the predominant structural grain in the Carboniferous rocks of peninsular Thailand. In addition, they appear to be bounding structures for several Tertiary basins, including the onshore parts of the Surat Thani basin and the offshore Chumphon basin. Initial remote sensing studies showed that both faults have relatively subdued geomorphic expressions. Field reconnaissance investigations indicated a lack of youthful tectonic geomorphology along the Khlong Marui fault and ambiguous evidence for recent movement along the Ranong fault. Fault exposures along both fault trends and on minor parallel faults in the region indicated that, rather than predominantly strike-slip motion, these faults have experienced up-to-the-west reverse movement. Because of its more youthful geomorphic expression, several sites along the Ranong fault were chosen for paleoseismic trenching. Initial trench exposures indicate an absence of Holocene movement. Some exposures indicate the possibility of Late Tertiary-Early Holocene vertical movement. These investigations are currently ongoing and we hope to report our conclusions at the Fall Meeting.

  19. Deformation style and controlling geodynamic processes at the eastern Guadalquivir foreland basin (Southern Spain)

    NASA Astrophysics Data System (ADS)

    Marín-Lechado, C.; Pedrera, A.; Peláez, J. A.; Ruiz-Constán, A.; González-Ramón, A.; Henares, J.

    2017-06-01

    The tectonic structure of the Guadalquivir foreland basin becomes complex eastward evolving from a single depocenter to a compartmented basin. The deformation pattern within the eastern Guadalquivir foreland basin has been characterized by combining seismic reflection profiles, boreholes, and structural field data to output a 3-D model. High-dipping NNE-SSW to NE-SW trending normal and reverse fault arrays deform the Variscan basement of the basin. These faults generally affect Tortonian sediments, which show syntectonic features sealed by the latest Miocene units. Curved and S-shaped fault traces are abundant and caused by the linkage of nearby fault segments during lateral fault propagation. Preexisting faults were reactivated either as normal or reverse faults depending on their position within the foreland. At Tortonian time, reverse faults deformed the basin forebulge, while normal faults predominated within the backbulge. Along-strike variation of the Betic foreland basin geometry is supported by an increasing mechanical coupling of the two plates (Alborán Domain and Variscan basement) toward the eastern part of the cordillera. Thus, subduction would have progressed in the western Betics, while it would have failed in the eastern one. There, the initially subducted Iberian paleomargin (Nevado-Filábride Complex) was incorporated into the upper plate promoting the transmission of collision-related compressional stresses into the foreland since the middle Miocene. Nowadays, compression is still active and produces low-magnitude earthquakes likely linked to NNE-SSW to NE-SW preexiting faults reactivated with reverse oblique-slip kinematics. Seismicity is mostly concentrated around fault tips that are frequently curved in overstepping zones.

  20. Study on the Evaluation Method for Fault Displacement: Probabilistic Approach Based on Japanese Earthquake Rupture Data - Distributed fault displacements -

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Tonagi, M.

    2016-12-01

    Distributed fault displacements in Probabilistic Fault Displace- ment Analysis (PFDHA) have an important rule in evaluation of important facilities such as Nuclear Installations. In Japan, the Nu- clear Installations should be constructed where there is no possibility that the displacement by the earthquake on the active faults occurs. Youngs et al. (2003) defined the distributed fault as displacement on other faults or shears, or fractures in the vicinity of the principal rup- ture in response to the principal faulting. Other researchers treated the data of distribution fault around principal fault and modeled according to their definitions (e.g. Petersen et al., 2011; Takao et al., 2013 ). We organized Japanese fault displacements data and constructed the slip-distance relationship depending on fault types. In the case of reverse fault, slip-distance relationship on the foot-wall indicated difference trend compared with that on hanging-wall. The process zone or damaged zone have been studied as weak structure around principal faults. The density or number is rapidly decrease away from the principal faults. We contrasted the trend of these zones with that of distributed slip-distance distributions. The subsurface FEM simulation have been carried out to inves- tigate the distribution of stress around principal faults. The results indicated similar trend compared with the distribution of field obser- vations. This research was part of the 2014-2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (S/NRA), Japan.

  1. Geometry and active tectonics of the Los Osos-Hosgri Fault Intersection in Estero Bay, CA: Reconciling seismicity patterns with near-surface geology

    NASA Astrophysics Data System (ADS)

    Watt, J. T.; Hardebeck, J.; Johnson, S. Y.; Kluesner, J.

    2016-12-01

    Characterizing active structures within structurally complex fault intersections is essential for unraveling the deformational history and for assessing the importance of fault intersections in regional earthquake hazard assessments. We employ an integrative, multi-scale geophysical approach to describe the 3D geometry and active tectonics of the offshore Los Osos fault (LOF) in Estero Bay, California. The shallow structure of the LOF, as imaged with multibeam and high-resolution seismic-reflection data, reveals a complex west-diverging zone of active faulting that bends into and joins the Hosgri fault. The down-dip geometry of the LOF as revealed by gravity, magnetic, and industry multi-channel seismic data, is vertical to steeply-dipping and varies along strike. As the LOF extends offshore, it is characterized by SW-side-up motion on a series of W-NW trending, steeply SW-dipping reverse faults. The LOF bends to the north ( 23°) as it approaches the Hosgri fault and dips steeply to the NE along a magnetic basement block. Inversion of earthquake focal mechanisms within Estero Bay yields maximum compressive stress axes that are near-horizontal and trend approximately N15E. This trend is consistent with dextral strike-slip faulting along NW-SE trending structures such as the Hosgri fault and northern LOF, and oblique dip-slip motion along the W-NW trending section of the LOF. Notably, NW-SE trending structures illuminated by seismicity in Estero Bay coincide with, but also appear to cross-cut, LOF structures imaged in the near-surface. We suggest this apparent disconnect reflects ongoing fault reorganization at a dynamic and inherently unstable fault intersection, in which the seismicity reflects active deformation at depth that is not clearly expressed in the near-surface geology. Direct connectivity between the Hosgri and Los Osos faults suggests a combined earthquake rupture is possible; however, the geometrical complexity along the offshore LOF may limit the extent of rupture.

  2. Characterization of the Hosgri Fault Zone and adjacent structures in the offshore Santa Maria Basin, south-central California: Chapter CC of Evolution of sedimentary basins/onshore oil and gas investigations - Santa Maria province

    USGS Publications Warehouse

    Willingham, C. Richard; Rietman, Jan D.; Heck, Ronald G.; Lettis, William R.

    2013-01-01

    The Hosgri Fault Zone trends subparallel to the south-central California coast for 110 km from north of Point Estero to south of Purisima Point and forms the eastern margin of the present offshore Santa Maria Basin. Knowledge of the attributes of the Hosgri Fault Zone is important for petroleum development, seismic engineering, and environmental planning in the region. Because it lies offshore along its entire reach, our characterizations of the Hosgri Fault Zone and adjacent structures are primarily based on the analysis of over 10,000 km of common-depth-point marine seismic reflection data collected from a 5,000-km2 area of the central and eastern parts of the offshore Santa Maria Basin. We describe and illustrate the along-strike and downdip geometry of the Hosgri Fault Zone over its entire length and provide examples of interpreted seismic reflection records and a map of the structural trends of the fault zone and adjacent structures in the eastern offshore Santa Maria Basin. The seismic data are integrated with offshore well and seafloor geologic data to describe the age and seismic appearance of offshore geologic units and marker horizons. We develop a basin-wide seismic velocity model for depth conversions and map three major unconformities along the eastern offshore Santa Maria Basin. Accompanying plates include maps that are also presented as figures in the report. Appendix A provides microfossil data from selected wells and appendix B includes uninterpreted copies of the annotated seismic record sections illustrated in the chapter. Features of the Hosgri Fault Zone documented in this investigation are suggestive of both lateral and reverse slip. Characteristics indicative of lateral slip include (1) the linear to curvilinear character of the mapped trace of the fault zone, (2) changes in structural trend along and across the fault zone that diminish in magnitude toward the ends of the fault zone, (3) localized compressional and extensional structures characteristic of constraining and releasing bends and stepovers, (4) changes in the sense and magnitude of vertical separation along strike within the fault zone, and (5) changes in downdip geometry between the major traces and segments of the fault zone. Characteristics indicative of reverse slip include (1) reverse fault geometries that occur across major strands of the fault zone and (2) fault-bend folds and localized thrust faults that occur along the northern and southern reaches of the fault. Analyses of high-resolution, subbottom profiler and side-scan sonar records indicate localized Holocene activity along most of the extent of the fault zone. Collectively, these features are the basis of our characterization of the Hosgri Fault Zone as an active, 110-km-long, convergent right-oblique slip (transpressional) fault with identified northern and southern terminations. This interpretation is consistent with recently published analyses of onshore geologic data, regional tectonic kinematic models, and instrumental seismicity.

  3. Exhumation of the Deylaman fault trend and its effects on the deformation style of the western Alborz belt in Iran

    NASA Astrophysics Data System (ADS)

    Hakimi Asiabar, Saeid; Bagheriyan, Siyamak

    2018-03-01

    The Alborz range in northern Iran stretches along the southern coast of the Caspian Sea and finally runs northeast and merges into the Pamir mountains in Afghanistan. Alborz mountain belt is a doubly vergent orogen formed along the northern edge of the Iranian plateau in response to the closure of the Neo-Tethys ocean and continental collision between Arabia and Eurasia. The south Caspian depression—the Alborz basin of Mesozoic age (with W-E trend) in northern Iran—inverted in response to the Arabia-Eurasia collision. Pre-existing extensional faults of the south Caspian-Alborz system preferentially reactivated as contractional faults because of tectonic inversion. These contractional structures tend to run parallel to the trends of pre-existing extensional faults and acquire W and WNW-ESE orientations across the previous accommodation zones that were imposed by the reactivation of adjacent extensional faults with different directions. The NNE to N dipping faults show evidences of reactivation. The Deylaman fault is one of the important faults of western Alborz in Iran and is an example of inversion tectonic style of deformation in the western Alborz mountain range. The Deylaman fault, with an E-W trend, contains three discontinuous fault segments in the area under investigation. These fault segments have evidence of oblique right-lateral reverse motion and links eastward to the dextral Kandavan thrust. The importance of this fault is due to its effect on sedimentation of several rock units from the Jurassic to Neogene in western Alborz; the rock facies on each side of this fault are very different and illustrate different parts of tectonic history.

  4. High-resolution mapping of two large-scale transpressional fault zones in the California Continental Borderland: Santa Cruz-Catalina Ridge and Ferrelo faults

    NASA Astrophysics Data System (ADS)

    Legg, Mark R.; Kohler, Monica D.; Shintaku, Natsumi; Weeraratne, Dayanthie S.

    2015-05-01

    New mapping of two active transpressional fault zones in the California Continental Borderland, the Santa Cruz-Catalina Ridge fault and the Ferrelo fault, was carried out to characterize their geometries, using over 4500 line-km of new multibeam bathymetry data collected in 2010 combined with existing data. Faults identified from seafloor morphology were verified in the subsurface using existing seismic reflection data including single-channel and multichannel seismic profiles compiled over the past three decades. The two fault systems are parallel and are capable of large lateral offsets and reverse slip during earthquakes. The geometry of the fault systems shows evidence of multiple segments that could experience throughgoing rupture over distances exceeding 100 km. Published earthquake hypocenters from regional seismicity studies further define the lateral and depth extent of the historic fault ruptures. Historical and recent focal mechanisms obtained from first-motion and moment tensor studies confirm regional strain partitioning dominated by right slip on major throughgoing faults with reverse-oblique mechanisms on adjacent structures. Transpression on west and northwest trending structures persists as far as 270 km south of the Transverse Ranges; extension persists in the southern Borderland. A logjam model describes the tectonic evolution of crustal blocks bounded by strike-slip and reverse faults which are restrained from northwest displacement by the Transverse Ranges and the southern San Andreas fault big bend. Because of their potential for dip-slip rupture, the faults may also be capable of generating local tsunamis that would impact Southern California coastlines, including populated regions in the Channel Islands.

  5. Fault reactivation: The Picuris-Pecos fault system of north-central New Mexico

    NASA Astrophysics Data System (ADS)

    McDonald, David Wilson

    The PPFS is a N-trending fault system extending over 80 km in the Sangre de Cristo Mountains of northern New Mexico. Precambrian basement rocks are offset 37 km in a right-lateral sense; however, this offset includes dextral strike-slip (Precambrian), mostly normal dip-slip (Pennsylvanian), mostly reverse dip-slip (Early Laramide), limited strike-slip (Late Laramide) and mostly normal dip-slip (Cenozoic). The PPFS is broken into at least 3 segments by the NE-trending Embudo fault and by several Laramide age NW-trending tear faults. These segments are (from N to S): the Taos, the Picuris, and the Pecos segments. On the east side of the Picuris segment in the Picuris Mountains, the Oligocene-Miocene age Miranda graben developed and represents a complex extension zone south of the Embudo fault. Regional analysis of remotely sensed data and geologic maps indicate that lineaments subparallel to the trace of the PPFS are longer and less frequent than lineaments that trend orthogonal to the PPFS. Significant cross cutting faults and subtle changes in fault trends in each segment are clear in the lineament data. Detailed mapping in the eastern Picuris Mountains showed that the favorably oriented Picuris segment was not reactivated in the Tertiary development of the Rio Grande rift. Segmentation of the PPFS and post-Laramide annealing of the Picuris segment are interpreted to have resulted in the development of the subparallel La Serna fault. The Picuris segment of the PPFS is offset by several E-ESE trending faults. These faults are Late Cenozoic in age and interpreted to be related to the uplift of the Picuris Mountains and the continuing sinistral motion on the Embudo fault. Differential subsidence within the Miranda graben caused the development of several synthetic and orthogonal faults between the bounding La Serna and Miranda faults. Analysis of over 10,000 outcrop scale brittle structures reveals a strong correlation between faults and fracture systems. The dominant trends are NNE to NNW related to the PPF, NE related to the Embudo fault, and ENE to ESE and NW related to Laramide and younger tectonic events. Recent faults are characterized by a significant increase in fracture density near the fault while ancient faults show a lesser increase. The results from this study suggest that in regions where sigma1 is vertical and sigma2 ≈ sigma 3, fractures orthogonal to the main faults are as likely as fractures parallel to the main faults.

  6. A distal earthquake cluster concurrent with the 2006 explosive eruption of Augustine Volcano, Alaska

    USGS Publications Warehouse

    Fisher, M.A.; Ruppert, N.A.; White, R.A.; Wilson, Frederic H.; Comer, D.; Sliter, R.W.; Wong, F.L.

    2009-01-01

    Clustered earthquakes located 25??km northeast of Augustine Volcano began about 6??months before and ceased soon after the volcano's 2006 explosive eruption. This distal seismicity formed a dense cluster less than 5??km across, in map view, and located in depth between 11??km and 16??km. This seismicity was contemporaneous with sharply increased shallow earthquake activity directly below the volcano's vent. Focal mechanisms for five events within the distal cluster show strike-slip fault movement. Cluster seismicity best defines a plane when it is projected onto a northeast-southwest cross section, suggesting that the seismogenic fault strikes northwest. However, two major structural trends intersect near Augustine Volcano, making it difficult to put the seismogenic fault into a regional-geologic context. Specifically, interpretation of marine multichannel seismic-reflection (MCS) data shows reverse faults, directly above the seismicity cluster, that trend northeast, parallel to the regional geologic strike but perpendicular to the fault suggested by the clustered seismicity. The seismogenic fault could be a reactivated basement structure.

  7. Kinematics, mechanics, and potential earthquake hazards for faults in Pottawatomie County, Kansas, USA

    USGS Publications Warehouse

    Ohlmacher, G.C.; Berendsen, P.

    2005-01-01

    Many stable continental regions have subregions with poorly defined earthquake hazards. Analysis of minor structures (folds and faults) in these subregions can improve our understanding of the tectonics and earthquake hazards. Detailed structural mapping in Pottawatomie County has revealed a suite consisting of two uplifted blocks aligned along a northeast trend and surrounded by faults. The first uplift is located southwest of the second. The northwest and southeast sides of these uplifts are bounded by northeast-trending right-lateral faults. To the east, both uplifts are bounded by north-trending reverse faults, and the first uplift is bounded by a north-trending high-angle fault to the west. The structural suite occurs above a basement fault that is part of a series of north-northeast-trending faults that delineate the Humboldt Fault Zone of eastern Kansas, an integral part of the Midcontinent Rift System. The favored kinematic model is a contractional stepover (push-up) between echelon strike-slip faults. Mechanical modeling using the boundary element method supports the interpretation of the uplifts as contractional stepovers and indicates that an approximately east-northeast maximum compressive stress trajectory is responsible for the formation of the structural suite. This stress trajectory suggests potential activity during the Laramide Orogeny, which agrees with the age of kimberlite emplacement in adjacent Riley County. The current stress field in Kansas has a N85??W maximum compressive stress trajectory that could potentially produce earthquakes along the basement faults. Several epicenters of seismic events (

  8. Transform fault earthquakes in the North Atlantic: Source mechanisms and depth of faulting

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.; Solomon, Sean C.

    1987-01-01

    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere.

  9. Focal mechanisms of recent earthquakes in the Southern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Park, Jong-Chan; Kim, Woohan; Chung, Tae Woong; Baag, Chang-Eob; Ree, Jin-Han

    2007-06-01

    We evaluate the stress field in and around the southern Korean Peninsula with focal mechanism solutions, using the data collected from 71 earthquakes (ML = 1.9-5.2) between 1999 and 2004. For this, the hypocentres were relocated and well-constrained fault plane solutions were obtained from the data set of 1270 clear P-wave polarities and 46 SH/P amplitude ratios. The focal mechanism solutions indicate that the prevailing faulting types in South Korea are strike-slip-dominant-oblique-slip faultings with minor reverse-slip component. The maximum principal stresses (σ1) estimated from fault-slip inversion analysis of the focal mechanism solutions show a similar orientation with E-W trend (269° -275°) and low-angle plunge (10° -25°) for all tectonic provinces in South Korea, consistent with the E-W trending maximum horizontal stress (σHmax) of the Amurian microplate reported from in situ stress measurements and earthquake focal mechanisms. The directions of the intermediate (σ2) and minimum (σ3) principal stresses of the Gyeongsang Basin are, however, about 90 deg off from those of the other tectonic provinces on a common σ2-σ3 plane, suggesting a permutation of σ2 and σ3. Our results incorporated with those from the kinematic studies of the Quaternary faults imply that NNW- to NE-striking faults (dextral strike-slip or oblique-slip with a reverse-slip component) are highly likely to generate earthquakes in South Korea.

  10. Variable deep structure of a midcontinent fault and fold zone from seismic reflection: La Salle deformation belt, Illinois basin

    USGS Publications Warehouse

    McBride, J.H.

    1997-01-01

    Deformation within the United States mid-continent is frequently expressed as quasilinear zones of faulting and folding, such as the La Salle deformation belt, a northwest-trending series of folds cutting through the center of the Illinois basin. Seismic reflection profiles over the southern La Salle deformation belt reveal the three-dimensional structural style of deformation in the lower Paleozoic section and uppermost Precambrian(?) basement. Individual profiles and structural contour maps show for the first time that the folds of the La Salle deformation belt are underlain at depth by reverse faults that disrupt and offset intrabasement structure, offset the top of interpreted Precambrian basement, and accommodate folding of overlying Paleozoic strata. The folds do not represent development of initial dips by strata deposited over a preexisting basement high. Rather, the structures resemble subdued "Laramide-style" forced folds, in that Paleozoic stratal reflectors appear to be flexed over a fault-bounded basement uplift with the basement-cover contact folded concordantly with overlying strata. For about 40 km along strike, the dominant faults reverse their dip direction, alternating between east and west. Less well expressed antithetic or back thrusts appear to be associated with the dominant faults and could together describe a positive flower structure. The overall trend of this part of the La Salle deformation belt is disrupted by along-strike discontinuities that separate distinct fold culminations. Observations of dual vergence and along-strike discontinuities suggest an original deformation regime possibly involving limited transpression associated with distant late Paleozoic Appalachian-Ouachita mountain building. Moderate-magnitude earthquakes located west of the western flank of the La Salle deformation belt have reverse and strike-slip mechanisms at upper trustai depths, which might be reactivating deep basement faults such as observed in this study. The La Salle deformation belt is not necessarily typical of other well-known major midcontinent fault and fold zones, such as the Nemaha ridge, over which Paleozoic and younger sediments appear to simply be draped.

  11. Investigation of possibility of surface rupture derived from PFDHA and calculation of surface displacement based on dislocation

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Irikura, K.

    2013-12-01

    A probability of surface rupture is important to configure the seismic source, such as area sources or fault models, for a seismic hazard evaluation. In Japan, Takemura (1998) estimated the probability based on the historical earthquake data. Kagawa et al. (2004) evaluated the probability based on a numerical simulation of surface displacements. The estimated probability indicates a sigmoid curve and increases between Mj (the local magnitude defined and calculated by Japan Meteorological Agency) =6.5 and Mj=7.0. The probability of surface rupture is also used in a probabilistic fault displacement analysis (PFDHA). The probability is determined from the collected earthquake catalog, which were classified into two categories: with surface rupture or without surface rupture. The logistic regression is performed for the classified earthquake data. Youngs et al. (2003), Ross and Moss (2011) and Petersen et al. (2011) indicate the logistic curves of the probability of surface rupture by normal, reverse and strike-slip faults, respectively. Takao et al. (2013) shows the logistic curve derived from only Japanese earthquake data. The Japanese probability curve shows the sharply increasing in narrow magnitude range by comparison with other curves. In this study, we estimated the probability of surface rupture applying the logistic analysis to the surface displacement derived from a surface displacement calculation. A source fault was defined in according to the procedure of Kagawa et al. (2004), which determined a seismic moment from a magnitude and estimated the area size of the asperity and the amount of slip. Strike slip and reverse faults were considered as source faults. We applied Wang et al. (2003) for calculations. The surface displacements with defined source faults were calculated by varying the depth of the fault. A threshold value as 5cm of surface displacement was used to evaluate whether a surface rupture reach or do not reach to the surface. We carried out the logistic regression analysis to the calculated displacements, which were classified by the above threshold. The estimated probability curve indicated the similar trend to the result of Takao et al. (2013). The probability of revere faults is larger than that of strike slip faults. On the other hand, PFDHA results show different trends. The probability of reverse faults at higher magnitude is lower than that of strike slip and normal faults. Ross and Moss (2011) suggested that the sediment and/or rock over the fault compress and not reach the displacement to the surface enough. The numerical theory applied in this study cannot deal with a complex initial situation such as topography.

  12. Late Quaternary strike-slip along the Taohuala Shan-Ayouqi fault zone and its tectonic implications in the Hexi Corridor and the southern Gobi Alashan, China

    NASA Astrophysics Data System (ADS)

    Yu, Jing-xing; Zheng, Wen-jun; Zhang, Pei-zhen; Lei, Qi-yun; Wang, Xu-long; Wang, Wei-tao; Li, Xin-nan; Zhang, Ning

    2017-11-01

    The Hexi Corridor and the southern Gobi Alashan are composed of discontinuous a set of active faults with various strikes and slip motions that are located to the north of the northern Tibetan Plateau. Despite growing understanding of the geometry and kinematics of these active faults, the late Quaternary deformation pattern in the Hexi Corridor and the southern Gobi Alashan remains controversial. The active E-W trending Taohuala Shan-Ayouqi fault zone is located in the southern Gobi Alashan. Study of the geometry and nature of slip along this fault zone holds crucial value for better understanding the regional deformation pattern. Field investigations combined with high-resolution imagery show that the Taohuala Shan fault and the E-W trending faults within the Ayouqi fault zone (F2 and F5) are left-lateral strike-slip faults, whereas the NW or WNW-trending faults within the Ayouqi fault zone (F1 and F3) are reverse faults. We collected Optically Stimulated Luminescence (OSL) and cosmogenic exposure age dating samples from offset alluvial fan surfaces, and estimated a vertical slip rate of 0.1-0.3 mm/yr, and a strike-slip rate of 0.14-0.93 mm/yr for the Taohuala Shan fault. Strata revealed in a trench excavated across the major fault (F5) in the Ayouqi fault zone and OSL dating results indicate that the most recent earthquake occurred between ca. 11.05 ± 0.52 ka and ca. 4.06 ± 0.29 ka. The geometry and kinematics of the Taohuala Shan-Ayouqi fault zone enable us to build a deformation pattern for the entire Hexi Corridor and the southern Gobi Alashan, which suggest that this region experiences northeastward oblique extrusion of the northern Tibetan Plateau. These left-lateral strike-slip faults in the region are driven by oblique compression but not associated with the northeastward extension of the Altyn Tagh fault.

  13. New Madrid Seismotectonic Study: activities during fiscal year 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buschbach, T.C.

    1985-04-01

    The New Madrid Seismotectonic Study is a coordinated program of geological, geophysical, and seismological investigations of the area within a 200-mile radius of New Madrid, Missouri. The study is designed to define the structural setting and tectonic history of the area in order to realistically evaluate earthquake risks in the siting of nuclear facilities. Our studies concentrated on defining boundaries of a proposed rift complex in the area, as well as establishing the relationships of the east-west trending fault systems with the northwest-trending faults of the Wabash Valley and New Madrid areas. There were 204 earthquakes located in 1983. Inmore » addition, the earthquake swarm in north-central Arkansas continued throughout the year, and 45,000 earthquakes have been recorded there since January, 1982. Current seismic activity in the Anna, Ohio, area appears to be related to the northwest-trending Fort Wayne rift and possibly with the rift's contact with a low-density pluton. Fault studies of the Rough Creek-Shawneetown Fault System showed mostly high-angle normal faults with a master fault that is a high-angle south-dipping reverse fault. Trenching of terrace deposits along the Kentucky River Fault System confirmed some anomalous conditions in terrace deposits previously indicated by electrical resistivity and augering programs. Thermal and chemical data from groundwater in the Mississippi Embayment appear to be useful in localizing deep faults that cut through the aquifers. Early indications from studies of jointing in Indiana are that the direction of major joint sets will be useful in determining regional stress directions. No Quaternary faulting was found in the Indiana or Illinois fault studies.« less

  14. Ground Deformation near active faults in the Kinki district, southwest Japan, detected by InSAR

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Ozawa, T.

    2016-12-01

    The Kinki district, southwest Japan, consists of ranges and plains between which active faults reside. The Osaka plain is in the middle of this district and is surrounded by the Rokko, Arima-Takatsuki, Ikoma, Kongo and Median Tectonic Line fault zones in the clockwise order. These faults are considered to be capable to generate earthquakes of larger magnitude than 7. The 1995 Kobe earthquake is the most recent activity of the Rokko fault (NE-SW trending dextral fault). Therefore the monitoring of ground deformation with high spatial resolution is essential to evaluate seismic hazards in this area. We collected and analyzed available SAR images such as ERS-1/2, Envisat, JERS-1, TerraSAR-X, ALOS/PALSAR and ALOS-2/PALSAR-2 to reveal ground deformation during these 20 years. We made DInSAR and PSInSAR analyses of these images using ASTER-GDEM ver.2. We detected three spots of subsidence along the Arima-Takatsuki fault (ENE-WSW trending dextral fault, east neighbor of the Rokko fault) after the Kobe earthquake, which continued up to 2010. Two of them started right after the Kobe earthquake, while the easternmost one was observed after 2000. However, we did not find them in the interferograms of ALOS-2/PALSAR-2 acquired during 2014 - 2016. Marginal uplift was recognized along the eastern part of the Rokko fault. PS-InSAR results of ALOS/PALSAR also revealed slight uplift north of the Rokko Mountain that uplift by 20 cm coseismically. These observations suggest that the Rokko Mountain might have uplifted during the postseismic period. We found subsidence on the eastern frank of the Kongo Mountain, where the Kongo fault (N-S trending reverse fault) exits. In the southern neighbor of the Median Tectonic Line (ENE-WSW trending dextral fault), uplift of > 5 mm/yr was found by Envisat and ALOS/PALSAR images. This area is shifted westward by 4 mm/yr as well. Since this area is located east of a seismically active area in the northwestern Wakayama prefecture, this deformation may generate E-W compressive stress, which is dominant in focal mechanism of most earthquakes, in the epicentral area.

  15. Relationship between displacement and gravity change of Uemachi faults and surrounding faults of Osaka basin, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Kusumoto, S.; Itoh, Y.; Takemura, K.

    2011-12-01

    The Osaka basin surrounded by the Rokko and Ikoma Ranges is one of the typical Quaternary sedimentary basins in Japan. The Osaka basin has been filled by the Pleistocene Osaka group and the later sediments. Several large cities and metropolitan areas, such as Osaka and Kobe are located in the Osaka basin. The basin is surrounded by E-W trending strike slip faults and N-S trending reverse faults. The N-S trending 42-km-long Uemachi faults traverse in the central part of the Osaka city. The Uemachi faults have been investigated for countermeasures against earthquake disaster. It is important to reveal the detailed fault parameters, such as length, dip and recurrence interval, so on for strong ground motion simulation and disaster prevention. For strong ground motion simulation, the fault model of the Uemachi faults consist of the two parts, the north and south parts, because of the no basement displacement in the central part of the faults. The Ministry of Education, Culture, Sports, Science and Technology started the project to survey of the Uemachi faults. The Disaster Prevention Institute of Kyoto University is carried out various surveys from 2009 to 2012 for 3 years. The result of the last year revealed the higher fault activity of the branch fault than main faults in the central part (see poster of "Subsurface Flexure of Uemachi Fault, Japan" by Kitada et al., in this meeting). Kusumoto et al. (2001) reported that surrounding faults enable to form the similar basement relief without the Uemachi faults model based on a dislocation model. We performed various parameter studies for dislocation model and gravity changes based on simplified faults model, which were designed based on the distribution of the real faults. The model was consisted 7 faults including the Uemachi faults. The dislocation and gravity change were calculated based on the Okada et al. (1985) and Okubo et al. (1993) respectively. The results show the similar basement displacement pattern to the Kusumoto et al. (2001) and no characteristic gravity change pattern. The Quantitative estimation is further problem.

  16. The January 2014 Northern Cuba Earthquake Sequence - Unusual Location and Unexpected Source Mechanism Variability

    NASA Astrophysics Data System (ADS)

    Braunmiller, J.; Thompson, G.; McNutt, S. R.

    2017-12-01

    On 9 January 2014, a magnitude Mw=5.1 earthquake occurred along the Bahamas-Cuba suture at the northern coast of Cuba revealing a surprising seismic hazard source for both Cuba and southern Florida where it was widely felt. Due to its location, the event and its aftershocks (M>3.5) were recorded only at far distances (300+ km) resulting in high-detection thresholds, low location accuracy, and limited source parameter resolution. We use three-component regional seismic data to study the sequence. High-pass filtered seismograms at the closest site in southern Florida are similar in character suggesting a relatively tight event cluster and revealing additional, smaller aftershocks not included in the ANSS or ISC catalogs. Aligning on the P arrival and low-pass filtering (T>10 s) uncovers a surprise polarity flip of the large amplitude surface waves on vertical seismograms for some aftershocks relative to the main shock. We performed regional moment tensor inversions of the main shock and its largest aftershocks using complete three-component seismograms from stations distributed throughout the region to confirm the mechanism changes. Consistent with the GCMT solution, we find an E-W trending normal faulting mechanism for the main event and for one immediate aftershock. Two aftershocks indicate E-W trending reverse faulting with essentially flipped P- and T-axes relative to the normal faulting events (and the same B-axes). Within uncertainties, depths of the two event families are indistinguishable and indicate shallow faulting (<10 km). One intriguing possible interpretation is that both families ruptured the same fault with reverse mechanisms compensating for overshooting. However, activity could also be spatially separated either vertically (with reverse mechanisms possibly below extension) or laterally. The shallow source depth and the 200-km long uplifted chain of islands indicate that larger, shallow and thus potentially tsunamigenic earthquakes could occur just offshore of northern Cuba posing a potential hazard to Florida and the Bahamas.

  17. Post-rift deformation of the Red Sea Arabian margin

    NASA Astrophysics Data System (ADS)

    Zanoni, Davide; Schettino, Antonio; Pierantoni, Pietro Paolo; Rasul, Najeeb

    2017-04-01

    Starting from the Oligocene, the Red Sea rift nucleated within the composite Neoproterozoic Arabian-Nubian shield. After about 30 Ma-long history of continental lithosphere thinning and magmatism, the first pulse of oceanic spreading occurred at around 4.6 Ma at the triple junction of Africa, Arabia, and Danakil plate boundaries and propagated southward separating Danakil and Arabia plates. Ocean floor spreading between Arabia and Africa started later, at about 3 Ma and propagated northward (Schettino et al., 2016). Nowadays the northern part of the Red Sea is characterised by isolated oceanic deeps or a thinned continental lithosphere. Here we investigate the deformation of thinned continental margins that develops as a consequence of the continental lithosphere break-up induced by the progressive oceanisation. This deformation consists of a system of transcurrent and reverse faults that accommodate the anelastic relaxation of the extended margins. Inversion and shortening tectonics along the rifted margins as a consequence of the formation of a new segment of ocean ridge was already documented in the Atlantic margin of North America (e.g. Schlische et al. 2003). We present preliminary structural data obtained along the north-central portion of the Arabian rifted margin of the Red Sea. We explored NE-SW trending lineaments within the Arabian margin that are the inland continuation of transform boundaries between segments of the oceanic ridge. We found brittle fault zones whose kinematics is consistent with a post-rift inversion. Along the southernmost transcurrent fault (Ad Damm fault) of the central portion of the Red Sea we found evidence of dextral movement. Along the northernmost transcurrent fault, which intersects the Harrat Lunayyir, structures indicate dextral movement. At the inland termination of this fault the evidence of dextral movement are weaker and NW-SE trending reverse faults outcrop. Between these two faults we found other dextral transcurrent systems that locally are associated with metre-thick reverse fault zones. Along the analysed faults there is evidence of tectonic reworking. Relict kinematic indicators or the sense of asymmetry of sigmoidal Miocene dykes may suggest that a former sinistral movement was locally accommodated by these faults. This evidence of inversion of strike-slip movement associated with reverse structures, mostly found at the inland endings of these lineaments, suggests an inversion tectonics that could be related to the progressive and recent oceanisation of rift segments. Schettino A., Macchiavelli C., Pierantoni P.P., Zanoni D. & Rasul N. 2016. Recent kinematics of the tectonic plates surrounding the Red Sea and Gulf of Aden. Geophysical Journal International, 207, 457-480. Schlische R.W., Withjack M.O. & Olsen P.E., 2003. Relative timing of CAMP, rifting, continental breakup, and basin inversion: tectonic significance, in The Central Atlantic Magmatic Province: Insights from Fragments of Pangea, eds Hames W., Mchone J.G., Renne P. & Ruppel C., American Geophysical Union, 33-59.

  18. The Quaternary thrust system of the northern Alaska Range

    USGS Publications Warehouse

    Bemis, Sean P.; Carver, Gary A.; Koehler, Richard D.

    2012-01-01

    The framework of Quaternary faults in Alaska remains poorly constrained. Recent studies in the Alaska Range north of the Denali fault add significantly to the recognition of Quaternary deformation in this active orogen. Faults and folds active during the Quaternary occur over a length of ∼500 km along the northern flank of the Alaska Range, extending from Mount McKinley (Denali) eastward to the Tok River valley. These faults exist as a continuous system of active structures, but we divide the system into four regions based on east-west changes in structural style. At the western end, the Kantishna Hills have only two known faults but the highest rate of shallow crustal seismicity. The western northern foothills fold-thrust belt consists of a 50-km-wide zone of subparallel thrust and reverse faults. This broad zone of deformation narrows to the east in a transition zone where the range-bounding fault of the western northern foothills fold-thrust belt terminates and displacement occurs on thrust and/or reverse faults closer to the Denali fault. The eastern northern foothills fold-thrust belt is characterized by ∼40-km-long thrust fault segments separated across left-steps by NNE-trending left-lateral faults. Altogether, these faults accommodate much of the topographic growth of the northern flank of the Alaska Range.Recognition of this thrust fault system represents a significant concern in addition to the Denali fault for infrastructure adjacent to and transecting the Alaska Range. Although additional work is required to characterize these faults sufficiently for seismic hazard analysis, the regional extent and structural character should require the consideration of the northern Alaska Range thrust system in regional tectonic models.

  19. Faulting along the southern margin of Reelfoot Lake, Tennessee

    USGS Publications Warehouse

    Van Arsdale, R.; Purser, J.; Stephenson, W.; Odum, J.

    1998-01-01

    The Reelfoot Lake basin, Tennessee, is structurally complex and of great interest seismologically because it is located at the junction of two seismicity trends of the New Madrid seismic zone. To better understand the structure at this location, a 7.5-km-long seismic reflection profile was acquired on roads along the southern margin of Reelfoot Lake. The seismic line reveals a westerly dipping basin bounded on the west by the Reelfoot reverse fault zone, the Ridgely right-lateral transpressive fault zone on the east, and the Cottonwood Grove right-lateral strike-slip fault in the middle of the basin. The displacement history of the Reelfoot fault zone appears to be the same as the Ridgely fault zone, thus suggesting that movement on these fault zones has been synchronous, perhaps since the Cretaceous. Since the Reelfoot and Ridgely fault systems are believed responsible for two of the mainshocks of 1811-1812, the fault history revealed in the Reelfoot Lake profile suggests that multiple mainshocks may be typical of the New Madrid seismic zone. The Ridgely fault zone consists of two northeast-striking faults that lie at the base of and within the Mississippi Valley bluff line. This fault zone has 15 m of post-Eocene, up-to-the-east displacement and appears to locally control the eastern limit of Mississippi River migration. The Cottonwood Grove fault zone passes through the center of the seismic line and has approximately 5 m up-to-the-east displacement. Correlation of the Cottonwood Grove fault with a possible fault scarp on the floor of Reelfoot Lake and the New Markham fault north of the lake suggests the Cottonwood Grove fault may change to a northerly strike at Reelfoot Lake, thereby linking the northeast-trending zones of seismicity in the New Madrid seismic zone.

  20. Mise en évidence d'un nouveau front de chevauchement dans l'Atlas tunisien oriental de Tunisie par sismique réflexion. Contexte structural régional et rôle du Trias salifère

    NASA Astrophysics Data System (ADS)

    Khomsi, Sami; Bédir, Mourad; Ben Jemia, M. Ghazi; Zouari, Hédi

    2004-11-01

    Structural interpretations of newly acquired seismic lines in northeastern Tunisia allow us to highlight a new thrust front for the Atlasic range of Tunisia, in contrast to the previously Zaghouan fault thrust Dorsale zone. This new thrust front takes place on weakness tectonic zones, materialized by inherited faults anchored on the pre-Triassic basement. This front seems to be a paleogeographic trend controlling structural style and basin fill with a synsedimentary activity. The front is expressed by reverse faults, thrust faults, back thrusting, and decollement structures. To cite this article: S. Khomsi et al., C. R. Geoscience 336 (2004).

  1. Location, structure, and seismicity of the Seattle fault zone, Washington: Evidence from aeromagnetic anomalies, geologic mapping, and seismic-reflection data

    USGS Publications Warehouse

    Blakely, R.J.; Wells, R.E.; Weaver, C.S.; Johnson, S.Y.

    2002-01-01

    A high-resolution aeromagnetic survey of the Puget Lowland shows details of the Seattle fault zone, an active but largely concealed east-trending zone of reverse faulting at the southern margin of the Seattle basin. Three elongate, east-trending magnetic anomalies are associated with north-dipping Tertiary strata exposed in the hanging wall; the magnetic anomalies indicate where these strata continue beneath glacial deposits. The northernmost anomaly, a narrow, elongate magnetic high, precisely correlates with magnetic Miocene volcanic conglomerate. The middle anomaly, a broad magnetic low, correlates with thick, nonmagnetic Eocene and Oligocene marine and fluvial strata. The southern anomaly, a broad, complex magnetic high, correlates with Eocene volcanic and sedimentary rocks. This tripartite package of anomalies is especially clear over Bainbridge Island west of Seattle and over the region east of Lake Washington. Although attenuated in the intervening region, the pattern can be correlated with the mapped strike of beds following a northwest-striking anticline beneath Seattle. The aeromagnetic and geologic data define three main strands of the Seattle fault zone identified in marine seismic-reflection profiles to be subparallel to mapped bedrock trends over a distance of >50 km. The locus of faulting coincides with a diffuse zone of shallow crustal seismicity and the region of uplift produced by the M 7 Seattle earthquake of A.D. 900-930.

  2. Large-scale splay faults on a strike-slip fault system: The Yakima Folds, Washington State

    USGS Publications Warehouse

    Pratt, Thomas L.

    2012-01-01

    The Yakima Folds (YF) comprise anticlines above reverse faults cutting flows of the Miocene Columbia River Basalt Group of central Washington State. The YF are bisected by the ~1100-km-long Olympic-Wallowa Lineament (OWL), which is an alignment of topographic features including known faults. There is considerable debate about the origin and earthquake potential of both the YF and OWL, which lie near six major dams and a large nuclear waste storage site. Here I show that the trends of the faults forming the YF relative to the OWL match remarkably well the trends of the principal stress directions at the end of a vertical strike-slip fault. This comparison and the termination of some YF against the OWL are consistent with the YF initially forming as splay faults caused by an along-strike decrease in the amount of strike-slip on the OWL. The hypothesis is that the YF faults initially developed as splay faults in the early to mid Miocene under NNW-oriented principal compressive stress, but the anticlines subsequently grew with thrust motion after the principal compressive stress direction rotated to N-S or NNE after the mid-Miocene. A seismic profile across one of the YF anticlines shows folding at about 7 km depth, indicating deformation of sub-basalt strata. The seismic profile and the hypothesized relationship between the YF and the OWL suggest that the structures are connected in the middle or lower crust, and that the faults forming the YF are large-scale splay faults associated with a major strike-slip fault system.

  3. Kinematics of the Torcal Shear Zone: transpressional tectonics shaping orogenic curves in the northern Gibraltar Arc.

    NASA Astrophysics Data System (ADS)

    Barcos, Leticia; Balanyá, Juan Carlos; Díaz-Azpiroz, Manuel; Expósito, Inmaculada; Jiménez-Bonilla, Alejandro

    2014-05-01

    Structural trend line patterns of orogenic arcs depict diverse geometries resulting from multiple factors such as indenter geometry, thickness of pre-deformational sequences and rheology of major decollement surfaces. Within them, salient-recess transitions often result in transpressive deformation bands. The Gibraltar Arc results from the Neogene collision of a composite metamorphic terrane (Alboran Domain, acting as a relative backstop) against two foreland margins (Southiberian and Maghrebian Domains). Within it, the Western Gibraltar Arc (WGA) is a protruded salient, 200 km in length cord, closely coinciding with the apex zone of the major arc. The WGA terminates at two transpressional zones. The main structure in the northern (Betic) end zone is a 70 km long and 4-5 km wide brittle deformation band, the so-called Torcal Shear Zone (TSZ). The TSZ forms a W-E topographic alignment along which the kinematic data show an overall dextral transpression. Within the TSZ strain is highly partitioned into mainly shortening, extensional and strike-slip structures. The strain partitioning is heterogeneous along the band and, accordingly, four distinct sectors can be identified. i) The Peñarrubia-Almargen Transverse Zone (PATZ), located at the W-end of the TSZ presents WNW-ESE folds and dextral faults, together with normal faults that accommodate extension parallel to the dominant structural trend. WNW ESE dextral faults might be related with synthetic splays at the lateral end of the TSZ. ii) The Sierra del Valle de Abdalajís (SVA) is characterized by WSW-ENE trending folds and dextral-reverse faults dipping to SSE, and NW-SE normal faults. The southern boundary of the SVA is a dextral fault zone. iii) The Torcal de Antequera Massif (TAM) presents two types of structural domains. Two outer domains located at both margins characterized by E-W trending, dextral strike-slip structures, and an inner domain, characterized by en echelon SE-vergent open folds and reverse shear zones as well as normal faults accommodating fold axis parallel extension. iiii) The Sierra de las Cabras-Camorolos sector, located at the E-end of the TSZ, is divided into two structural domains: a western domain, dominated by N120ºE dextral strike-slip faults, and an eastern domain structured by a WSW-ENE thrust system and normal faults with extension subparallel to the direction of the shortening structures. TSZ displacement at the lateral tip of this sector seems to be mainly accommodated by NNE trending thrusts in the northern TSZ block. The TSZ induces the near vertical extrusion of paleomargin rock units within the deformation band and the dextral deflection of the structural trend shaping the lateral end of the WGA salient. Our results suggest the TSZ started in the Upper Miocene and is still active. Moreover, the TSZ trends oblique to regional transport direction assessed both by field data and modelling. The estimated WNW-ESE far-field velocity vector in the TAM and the SVA points to the importance of the westward drift of the Internal Zones relative to the external wedge and fits well with the overall WGA kinematic frame. Nor the WGA salient neither the TSZ can be fully explained by the single Europe-Africa plate convergence.

  4. Seismic reflection images of shallow faulting, northernmost Mississippi embayment, north of the New Madrid seismic zone

    USGS Publications Warehouse

    McBride, J.H.; Nelson, W.J.

    2001-01-01

    High-resolution seismic reflection surveys document tectonic faults that displace Pleistocene and older strata just beyond the northeast termination of the New Madrid seismic zone, at the northernmost extent of the Mississippi embayment. These faults, which are part of the Fluorspar Area fault complex in southeastern Illinois, are directly in line with the northeast-trending seismic zone. The reflection data were acquired using an elastic weight-drop source recorded to 500 msec by a 48-geophone array (24-fold) with a 10-ft (??3.0m) station interval. Recognizable reflections were recorded to about 200 msec (100-150 m). The effects of multiple reflections, numerous diffractions, low apparent velocity (i.e., steeply dipping) noise, and the relatively low-frequency content of the recorded signal provided challenges for data processing and interpreting subtle fault offsets. Data processing steps that were critical to the detection of faults included residual statics, post-stack migration, deconvolution, and noise-reduction filtering. Seismic migration was crucial for detecting and mitigating complex fault-related diffraction patterns, which produced an apparent 'folding' of reflectors on unmigrated sections. Detected individual offsets of shallow reflectors range from 5 to 10 m for the top of Paleozoic bedrock and younger strata. The migrated sections generally indicate vertical to steeply dipping normal and reverse faults, which in places outline small horsts and/or grabens. Tilting or folding of stratal reflectors associated with faulting is also locally observed. At one site, the observed faulting is superimposed over a prominent antiformal structure, which may itself be a product of the Quaternary deformation that produced the steep normal and reverse faults. Our results suggest that faulting of the Paleozoic bedrock and younger sediments of the northern Mississippi embayment is more pervasive and less localized than previously thought.

  5. Reverse fault growth and fault interaction with frictional interfaces: insights from analogue models

    NASA Astrophysics Data System (ADS)

    Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio

    2017-04-01

    The association of faulting and folding is a common feature in mountain chains, fold-and-thrust belts, and accretionary wedges. Kinematic models are developed and widely used to explain a range of relationships between faulting and folding. However, these models may result not to be completely appropriate to explain shortening in mechanically heterogeneous rock bodies. Weak layers, bedding surfaces, or pre-existing faults placed ahead of a propagating fault tip may influence the fault propagation rate itself and the associated fold shape. In this work, we employed clay analogue models to investigate how mechanical discontinuities affect the propagation rate and the associated fold shape during the growth of reverse master faults. The simulated master faults dip at 30° and 45°, recalling the range of the most frequent dip angles for active reverse faults that occurs in nature. The mechanical discontinuities are simulated by pre-cutting the clay pack. For both experimental setups (30° and 45° dipping faults) we analyzed three different configurations: 1) isotropic, i.e. without precuts; 2) with one precut in the middle of the clay pack; and 3) with two evenly-spaced precuts. To test the repeatability of the processes and to have a statistically valid dataset we replicate each configuration three times. The experiments were monitored by collecting successive snapshots with a high-resolution camera pointing at the side of the model. The pictures were then processed using the Digital Image Correlation method (D.I.C.), in order to extract the displacement and shear-rate fields. These two quantities effectively show both the on-fault and off-fault deformation, indicating the activity along the newly-formed faults and whether and at what stage the discontinuities (precuts) are reactivated. To study the fault propagation and fold shape variability we marked the position of the fault tips and the fold profiles for every successive step of deformation. Then we compared precut models with isotropic models to evaluate the trends of variability. Our results indicate that the discontinuities are reactivated especially when the tip of the newly-formed fault is either below or connected to them. During the stage of maximum activity along the precut, the faults slow down or even stop their propagation. The fault propagation systematically resumes when the angle between the fault and the precut is about 90° (critical angle); only during this stage the fault crosses the precut. The reactivation of the discontinuities induces an increase of the apical angle of the fault-related fold and produces wider limbs compared to the isotropic reference experiments.

  6. Laramide structure of the central Sangre de Cristo Mountains and adjacent Raton Basin, southern Colorado

    USGS Publications Warehouse

    Lindsey, D.A.

    1998-01-01

    Laramide structure of the central Sangre de Cristo Mountains (Culebra Range) is interpreted as a system of west-dipping, basement-involved thrusts and reverse faults. The Culebra thrust is the dominant structure in the central part of the range; it dips 30 -55?? west and brings Precambrian metamorphic base-ment rocks over unmetamorphosed Paleozoic rocks. East of the Culebra thrust, thrusts and reverse faults break the basement and overlying cover rocks into north-trending fault blocks; these boundary faults probably dip 40-60?? westward. The orientation of fault slickensides indicates oblique (northeast) slip on the Culebra thrust and dip-slip (ranging from eastward to northward) movement on adjacent faults. In sedimentary cover rocks, east-vergent anticlines overlie and merge with thrusts and reverse faults; these anticlines are interpreted as fault-propagation folds. Minor east-dipping thrusts and reverse faults (backthrusts) occur in both the hanging walls and footwalls of thrusts. The easternmost faults and folds of the Culebra Range form a continuous structural boundary between the Laramide Sangre de Cristo highland and the Raton Basin. Boundary structures consist of west-dipping frontal thrusts flanked on the basinward side by poorly exposed, east-dipping backthrusts. The backthrusts are interpreted to overlie structural wedges that have been emplaced above blind thrusts in the basin margin. West-dipping frontal thrusts and blind thrusts are interpreted to involve basement, but backthrusts are rooted in basin-margin cover rocks. At shallow structural levels where erosion has not exposed a frontal thrust, the structural boundary of the basin is represented by an anticline or monocline. Based on both regional and local stratigraphic evidence, Laramide deformation in the Culebra Range and accompanying synorogenic sedimentation in the western Raton Basin probably took place from latest Cretaceous through early Eocene time. The earliest evidence of uplift and erosion of a highland is the appearance of abundant feldspar in the Late Cretaceous Vermejo Formation. Above the Vermejo, unconformities overlain by conglomerate indicate continued thrusting and erosion of highlands from late Cretaceous (Raton) through Eocene (Cuchara) time. Eocene alluvial-fan conglomerates in the Cuchara Formation may represent erosion of the Culebra thrust block. Deposition in the Raton Basin probably shifted north from New Mexico to southern Colorado from Paleocene to Eocene time as movement on individual thrusts depressed adjacent segments of the basin.

  7. The accident analysis of mobile mine machinery in Indian opencast coal mines.

    PubMed

    Kumar, R; Ghosh, A K

    2014-01-01

    This paper presents the analysis of large mining machinery related accidents in Indian opencast coal mines. The trends of coal production, share of mining methods in production, machinery deployment in open cast mines, size and population of machinery, accidents due to machinery, types and causes of accidents have been analysed from the year 1995 to 2008. The scrutiny of accidents during this period reveals that most of the responsible factors are machine reversal, haul road design, human fault, operator's fault, machine fault, visibility and dump design. Considering the types of machines, namely, dumpers, excavators, dozers and loaders together the maximum number of fatal accidents has been caused by operator's faults and human faults jointly during the period from 1995 to 2008. The novel finding of this analysis is that large machines with state-of-the-art safety system did not reduce the fatal accidents in Indian opencast coal mines.

  8. Topography and tectonics of the central New Madrid seismic zone: Results of numerical experiements using a three-dimensional boundary element program

    NASA Technical Reports Server (NTRS)

    Gomberg, Joan; Ellis, Michael

    1994-01-01

    We present results of a series of numerical experiments designed to test hypothetical mechanisms that derive deformation in the New Madrid seismic zone. Experiments are constrained by subtle topography and the distribution of seismicity in the region. We use a new boundary element algorithm that permits calcuation of the three-dimensional deformation field. Surface displacement fields are calculated for the New Madrid zone under both far-field (plate tectonics scale) and locally derived driving strains. Results demonstrate that surface displacement fields cannot distinguish between either a far-field simple or pure shear strain field or one that involves a deep shear zone beneath the upper crustal faults. Thus, neither geomorphic nor geodetic studies alone are expected to reveal the ultimate driving mechanism behind the present-day deformation. We have also tested hypotheses about strain accommodation within the New Madrid contractional step-over by including linking faults, two southwest dipping and one vertical, recently inferred from microearthquake data. Only those models with step-over faults are able to predict the observed topography. Surface displacement fields for long-term, relaxed deformation predict the distribution of uplift and subsidence in the contractional step-over remarkably well. Generation of these displacement fields appear to require slip on both the two northeast trending vertical faults and the two dipping faults in the step-over region, with very minor displacements occurring during the interseismic period when the northeast trending vertical faults are locked. These models suggest that the gently dippling central step-over fault is a reverse fault and that the steeper fault, extending to the southeast of the step-over, acts as a normal fault over the long term.

  9. Insights on the seismotectonics of the western part of northern Calabria (southern Italy) by integrated geological and geophysical data: Coexistence of shallow extensional and deep strike-slip kinematics

    NASA Astrophysics Data System (ADS)

    Ferranti, L.; Milano, G.; Pierro, M.

    2017-11-01

    We assess the seismotectonics of the western part of the border area between the Southern Apennines and Calabrian Arc, centered on the Mercure extensional basin, by integrating recent seismicity with a reconstruction of the structural frame from surface to deep crust. The analysis of low-magnitude (ML ≤ 3.5) events occurred in the area during 2013-2017, when evaluated in the context of the structural model, has revealed an unexpected complexity of seismotectonics processes. Hypocentral distribution and kinematics allow separating these events into three groups. Focal mechanisms of the shallower (< 9 km) set of events show extensional kinematics. These results are consistent with the last kinematic event recorded on outcropping faults, and with the typical depth and kinematics of normal faulting earthquakes in the axial part of southern Italy. By contrast, intermediate ( 9-17 km) and deep ( 17-23 km) events have fault plane solutions characterized by strike- to reverse-oblique slip, but they differ from each other in the orientation of the principal axes. The intermediate events have P axes with a NE-SW trend, which is at odds with the NW-SE trend recorded by strike-slip earthquakes affecting the Apulia foreland plate in the eastern part of southern Italy. The intermediate events are interpreted to reflect reactivation of faults in the Apulia unit involved in thrust uplift, and appears aligned along an WNW-ESE trending deep crustal, possibly lithospheric boundary. Instead, deep events beneath the basin, which have P-axis with a NW-SE trend, hint to the activity of a deep overthrust of the Tyrrhenian back-arc basin crust over the continental crust of the Apulia margin, or alternatively, to a tear fault in the underthrust Apulia plate. Results of this work suggest that extensional faulting, as believed so far, does not solely characterizes the seismotectonics of the axial part of the Southern Apennines.

  10. From Extension to Shortening: Tectonic Inversion Distributed in Time and Space in the Alboran Sea, Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Martínez-García, Pedro; Comas, Menchu; Lonergan, Lidia; Watts, Anthony B.

    2017-12-01

    2D seismic reflection data tied to biostratigraphical and log information from wells in the central and southeastern Alboran Sea have allowed us to constrain the spatial and temporal distribution of rifting and inversion. Normal faults, tilted basement blocks, and growth wedges reveal a thinned continental crust that formed in response to NW-SE extension. To the east, a secondary SW-NE trend of extension affects the transitional crust adjacent to the oceanic Algerian Basin. The maximum thickness of syn-rift sediments is 3.5 km, and the oldest recorded deposits are Serravallian. The WNW-ESE Yusuf fault formed a buttress separating and accommodating variable extension between two different tectonic domains: the thinned continental crust of Alboran and the oceanic spreading of the Algerian Basin. Late Tortonian to present-day NW-SE Africa/Eurasia plate convergence drove shortening and reactivation of some of the earlier extensional structures as reverse and strike-slip faults, forming complex, compartmentalised subbasins. Tectonic inversion coexisted with the formation of new faults and folds. Inversion was partial along the Habibas Basin and Al-Idrisi fault, but complete along the Alboran Ridge, where some SW-NE trending faults were perpendicular to the recent NW-SE plate convergence and were reactivated as thrusts. The WNW-ESE Yusuf fault is oblique to the convergence vector, and therefore, reactivation is mainly expressed as transpressional deformation. Volcanic rocks intruded along the Alboran Ridge and Yusuf faults during the latest stages of extension formed rheological anisotropies that localised the later inversion.

  11. Role of N-S strike-slip faulting in structuring of north-eastern Tunisia; geodynamic implications

    NASA Astrophysics Data System (ADS)

    Arfaoui, Aymen; Soumaya, Abdelkader; Ben Ayed, Noureddine; Delvaux, Damien; Ghanmi, Mohamed; Kadri, Ali; Zargouni, Fouad

    2017-05-01

    Three major compressional events characterized by folding, thrusting and strike-slip faulting occurred in the Eocene, Late Miocene and Quaternary along the NE Tunisian domain between Bou Kornine-Ressas-Msella and Cap Bon Peninsula. During the Plio-Quaternary, the Grombalia and Mornag grabens show a maximum of collapse in parallelism with the NNW-SSE SHmax direction and developed as 3rd order distensives zones within a global compressional regime. Using existing tectonic and geophysical data supplemented by new fault-kinematic observations, we show that Cenozoic deformation of the Mesozoic sedimentary sequences is dominated by first order N-S faults reactivation, this sinistral wrench system is responsible for the formation of strike-slip duplexes, thrusts, folds and grabens. Following our new structural interpretation, the major faults of N-S Axis, Bou Kornine-Ressas-Messella (MRB) and Hammamet-Korbous (HK) form an N-S first order compressive relay within a left lateral strike-slip duplex. The N-S master MRB fault is dominated by contractional imbricate fans, while the parallel HK fault is characterized by a trailing of extensional imbricate fans. The Eocene and Miocene compression phases in the study area caused sinistral strike-slip reactivation of pre-existing N-S faults, reverse reactivation of NE-SW trending faults and normal-oblique reactivation of NW-SE faults, creating a NE-SW to N-S trending system of east-verging folds and overlaps. Existing seismic tomography images suggest a key role for the lithospheric subvertical tear or STEP fault (Slab Transfer Edge Propagator) evidenced below this region on the development of the MRB and the HK relay zone. The presence of extensive syntectonic Pliocene on top of this crustal scale fault may be the result of a recent lithospheric vertical kinematic of this STEP fault, due to the rollback and lateral migration of the Calabrian slab eastward.

  12. Mountain front migration and drainage captures related to fault segment linkage and growth: The Polopos transpressive fault zone (southeastern Betics, SE Spain)

    NASA Astrophysics Data System (ADS)

    Giaconia, Flavio; Booth-Rea, Guillermo; Martínez-Martínez, José Miguel; Azañón, José Miguel; Pérez-Romero, Joaquín; Villegas, Irene

    2013-01-01

    The Polopos E-W- to ESE-WNW-oriented dextral-reverse fault zone is formed by the North Alhamilla reverse fault and the North and South Gafarillos dextral faults. It is a conjugate fault system of the sinistral NNE-SSW Palomares fault zone, active from the late most Tortonian (≈7 Ma) up to the late Pleistocene (≥70 ky) in the southeastern Betics. The helicoidal geometry of the fault zone permits to shift SE-directed movement along the South Cabrera reverse fault to NW-directed shortening along the North Alhamilla reverse fault via vertical Gafarillos fault segments, in between. Since the Messinian, fault activity migrated southwards forming the South Gafarillos fault and displacing the active fault-related mountain-front from the north to the south of Sierra de Polopos; whilst recent activity of the North Alhamilla reverse fault migrated westwards. The Polopos fault zone determined the differential uplift between the Sierra Alhamilla and the Tabernas-Sorbas basin promoting the middle Pleistocene capture that occurred in the southern margin of the Sorbas basin. Continued tectonic uplift of the Sierra Alhamilla-Polopos and Cabrera anticlinoria and local subsidence associated to the Palomares fault zone in the Vera basin promoted the headward erosion of the Aguas river drainage that captured the Sorbas basin during the late Pleistocene.

  13. Application of Landsat imagery to problems of petroleum exploration in Qaidam Basin, China

    USGS Publications Warehouse

    Bailey, G.B.; Anderson, P.D.

    1982-01-01

    Tertiary and Quaternary nonmarine, petroleum-bearing sedimentary rocks have been extensively deformed by compressive forces. These forces created many folds which are current targets of Chinese exploration programs. Image-derived interpretations of folds, strike-slip faults, thrust faults, normal or reverse faults, and fractures compared very favorably, in terms of locations and numbers mapped, with Chinese data compiled from years of extensive field mapping. Many potential hydrocarbon trapping structures were precisely located. Orientations of major structural trends defined from Landsat imagery correlate well with those predicted for the area based on global tectonic theory. These correlations suggest that similar orientations exist in the eastern half of the basin where folded rocks are mostly obscured by unconsolidated surface sediments and where limited exploration has occurred.--Modified journal abstract.

  14. Neotectonics of the Dinarides-Pannonian Basin transition and possible earthquake sources in the Banja Luka epicentral area

    NASA Astrophysics Data System (ADS)

    Ustaszewski, Kamil; Herak, Marijan; Tomljenović, Bruno; Herak, Davorka; Matej, Srebrenka

    2014-12-01

    This study provides evidence for post-5 Ma shortening in the transition area between the Dinarides fold-and-thrust belt and the Pannonian Basin and reviews possible earthquake sources for the Banja Luka epicentral area (northern Bosnia and Herzegovina) where the strongest instrumentally recorded earthquake (ML 6.4) occurred on 27 October 1969. Geological, geomorphological and reflection seismic data provide evidence for a contractional reactivation of Late Palaeogene to Middle Miocene normal faults at slip rates below 0.1 mm/a. This reactivation postdates deposition of the youngest sediments in the Pannonian Basin of Pontian age (c. 5 Ma). Fault plane solutions for the main 1969 Banja Luka earthquake (ML 6.4) and its largest foreshock (ML 6.0) indicate reverse faulting along ESE-WNW-striking nodal planes and generally N-S trending pressure axes. The spatial distribution of epicentres and focal depths, analyses of the macroseismic field and fault-plane solutions for several smaller events suggest on-going shortening in the internal Dinarides. Seismic deformation of the upper crust is also associated with strike-slip faults, likely related to the NE-SW trending, sinistral Banja Luka fault. Possibly, this fault transfers contraction between adjacent segments of the Dinarides thrust system. The study area represents the seismically most active region of the Dinarides apart from the Adriatic Sea coast and the bend zone around Zagreb. We propose that on-going thrusting in the internal Dinarides thrust system takes up a portion of the current Adria-Europe convergence.

  15. Geological indicators of a suspected seismic source from Peninsular India

    NASA Astrophysics Data System (ADS)

    Singh, Yogendra; John, Biju; P, Ganapathy G.; S, Divyalakshmi K.

    2014-05-01

    An increase in seismicity in Peninsular India during the last few decades has initiated various studies for identifying seismogenic structures and their behaviour. Even though few earthquakes occurred at well defined structures many of them occurred at unexpected locations where no previous seismicity reported. However, studies subsequent to the 1993 Latur earthquake as well as the studies at different parts of peninsular India, have led to the identification of pre-existing faults that have activated in the past. Studies elsewhere in the cratonic hinderland also show that the damaging earthquakes occur on pre-existing faults with a recurrence period of tens of thousands of year Studies subsequent to 1989 Wadakkancheri earthquake (M=4.3) identified Desamangalam fault which are capable of generating earthquakes. However, it is noted that a number of later events are occurring much south of the Desamangalam fault. We identified a set of NW-SE trending lineaments which are influencing the drainage pattern of the area. A network of paleochannels is also observed in the remote sensing analysis and field studies in this area. Regionally these lineaments meeting one of the major lineaments in central Kerala called Periyar lineament, in the south. Charnockite rocks constitutes the major rock type of the region. These rocks at places developed strong foliation similar to the lineament direction. Detailed field studies identified oblique movement (reverse and strike slip component) along NW-SE trending faults which are dipping south-west. The studies also find NNE-SSW trending vertical faults showing strike-slip movement. The damage zones of each of these faults bears different mineral precipitations and gouge injections of episodic nature. The presence of loose gouge may indicate the faulting is a much later development in the brittle regime. The sense of movement of the observed faults may indicate that the various river/drainage abandonment observed in the area are due to the movement of these faults. The correlation of the ongoing earthquake activity with these faults and their sense of movement akin to the present stress condition of Peninsular India and its episodic nature as well as its influence on the drainage network of the area may indicate that these faults may be adjusting to the present tectonic regime and are capable of producing moderate events. Key words Peninsular India, stress regime, lineaments, brittle deformation

  16. Shear concentration in a collision zone: kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Angelier, J.; Chu, H.-T.; Lee, J.-C.

    1997-06-01

    Repeated measurements of active deformation were carried out at three sites along the active Chihshang Fault, a segment of the Longitudinal Valley Fault zone of eastern Taiwan (the present-day plate boundary between the Philippine Sea Plate and Eurasia). Reliable annual records of displacement along an active fault, were obtained based on detailed surveys of faulted concrete structures. Along the active Chihshang Fault striking N18°E, we determined average motion vectors trending N37°W with an average shortening of 2.2 cm/yr. Thus, the transverse component of motion related to westward thrusting is 1.8 cm/yr, whereas the left-lateral strike-slip component of motion is 1.3 cm/yr. The fault dips 39-45° to the east, so that the vertical displacement is 1.5-3 cm/yr and the actual oblique offset of the fault increases at a rate of 2.7-3.7 cm/yr. This is in good agreement with the results of regional geodetic and tectonic analyses in Taiwan, and consistent with the N54°W trend of convergence between the northernmost Luzon Arc and South China revealed by GPS studies. Our study provides an example of extreme shear concentration in an oblique collision zone. At Chihshang, the whole horizontal shortening of the Longitudinal Valley Fault, 2.2 cm/yr on average, occurs across a single, narrow fault zone, so that the whole reverse slip (about 2.7-3.7 cm/yr depending on fault dip) was entirely recorded by walls 20-200 m long where faults are tightly localized. This active faulting accounts for more than one fourth (27%) of the total shortening between the Luzon Arc and South China recorded through GPS analyses. Further surveys should indicate whether the decreasing shortening velocity across the fault is significant (revealing increasing earthquake risk due to stress accumulation) or not (revealing continuing fault creep and 'weak' behaviour of the Chihshang Fault).

  17. The October 6, 2008 Mw 6.3 magnitude Damxung earthquake, Yadong-Gulu rift, Tibet, and implications for present-day crustal deformation within Tibet

    NASA Astrophysics Data System (ADS)

    Wu, Zhong-hai; Ye, Pei-sheng; Barosh, Patrick J.; Wu, Zhen-han

    2011-03-01

    A Mw 6.3 magnitude earthquake occurred on October 6, 2008 in southern Damxung County within the N-S trending Yangyi graben, which forms the northern section of the Yadong-Gulu rift of south-central Tibet. The earthquake had a maximum intensity of IX at the village of Yangyi (also Yangying) (29°43.3'N; 90°23.6'E) and resulted in 10 deaths and 60 injured in this sparsely populated region. Field observations and focal mechanism solutions show normal fault movement occurred along the NNE-trending western boundary fault of the Yangyi graben, in agreement with the felt epicenter, pattern of the isoseismal contours, and distribution of aftershocks. The earthquake and its tectonic relations were studied in detail to provide data on the seismic hazard to the nearby city of Lhasa. The Damxung earthquake is one of the prominent events along normal and strike-slip faults that occurred widely about Tibet before and after the 2008 Mw 7.9 magnitude Wenchuan earthquake. Analysis of these recent M ⩾ 5.0 earthquake sequences demonstrate a kinematic relation between the normal, strike-slip, and reverse causative fault movements across the region. These earthquakes are found to be linked and the result of eastward extrusion of two large structural blocks of central Tibet. The reverse and oblique-slip surface faulting along the Longmenshan thrust belt at the eastern margin of the Tibetan Plateau causing the Wenchuan earthquake, was the result of eastward directed compression and crustal shortening due to the extrusion. Prior to it, east-west extensional deformation indicated by normal and strike-slip faulting events across central Tibet, had led to a build up of the compression to the east. The subsequent renewal of extensional deformational events in central Tibet appears related to some drag effect due to the crustal shortening of the Wenchuan event. Unraveling the kinematical relation between these earthquake swarms is a very helpful approach for understanding the migration of strong earthquakes across Tibet.

  18. Structural control on volcanoes and magma paths from local- to orogen-scale: The central Andes case

    NASA Astrophysics Data System (ADS)

    Tibaldi, A.; Bonali, F. L.; Corazzato, C.

    2017-03-01

    Assessing the parameters that control the location and geometry of magma paths is of paramount importance for the comprehension of volcanic plumbing systems and geo-hazards. We analyse the distribution of 1518 monogenic and polygenic volcanoes of Miocene-Quaternary age of the Central Volcanic Zone of the Andes (Chile-Bolivia-Argentina), and reconstruct the magma paths at 315 edifices by analysing the morphostructural characteristics of craters and cones. Then we compare these data with outcropping dykes, tectonic structures and state of stress. Most magma paths trend N-S, NW-SE, and NE-SW, in decreasing order of frequency. The N-S and NW-SE paths coexist in the northern and southern part of the study area, whereas N-S paths dominate east of the Salar de Atacama. Outcropping dykes show the same trends. The regional Holocene stress state is given by an E-W greatest horizontal principal stress. N-S and NNE-SSW reverse faults and folds affect deposits of 4.8, 3.2 and 1.3 Ma BP, especially in the central and southern study areas. A few NW-SE left-lateral strike-slip faults are present in the interior of the volcanic arc, part of which belong to the Calama-Olacapato-El Toro fault. The volcanic chain is also affected by several N-S- and NW-SE-striking normal faults that offset Pliocene and Quaternary deposits. The results indicate different scenarios of magma-tectonic interaction, given by N-S normal and reverse faults and N-S fold hinges that guide volcano emplacement and magma paths. Magma paths are also guided by strike-slip and normal NW-SE faults, especially in the northern part of the study area. Zones with verticalized strata, with bedding striking NE-SW, also acted as preferential magma paths. These data suggest that at convergence zones with continental crust, shallow magma paths can be more sensitive to the presence and geometry of upper crustal weakness zones than to the regional state of stress.

  19. Seismicity of the Earth 1900–2010 Himalaya and vicinity

    USGS Publications Warehouse

    Turner, Bethan; Jenkins, Jennifer; Turner, Rebecca; Parker, Amy; Sinclair, Alison; Davies, Sian; Hayes, Gavin P.; Villaseñor, Antonio; Dart, Rirchard L.; Tarr, Arthur C.; Furlong, Kevin P.; Benz, Harley M.

    2013-01-01

    Seismicity in the Himalaya region predominantly results from the collision of the India and Eurasia continental plates, which are converging at a relative rate of 40–50 mm/yr. Northward underthrusting of India beneath Eurasia generates numerous earthquakes and consequently makes this area one of the most seismically hazardous regions on Earth. The surface expression of the plate boundary is marked by the foothills of the north-south trending Sulaiman Range in the west, the Indo-Burmese Arc in the east, and the east-west trending Himalaya Front in the north of India. Along the western margin of the India plate, relative motions between India and Eurasia are accommodated by strike-slip, reverse, and oblique-slip faulting resulting in the complex Sulaiman Range fold and thrust belt, and the major translational Chaman Fault in Afghanistan. Beneath the Pamir‒Hindu Kush Mountains of northern Afghanistan, earthquakes occur to depths as great as 200 km as a result of remnant lithospheric subduction. Further north again, the Tian Shan is a seismically active intra-continental mountain belt defined by a series of east-west trending thrust faults thought to be related to the broad footprint of the India-Eurasia collision. Tectonics in northern India are dominated by motion along the Main Frontal Thrust and associated thrust faults of the India-Eurasia plate boundary, which have resulted in a series of large and devastating earthquakes in (and prior to) the 20th century. The Tibetan Plateau to the north of the main plate boundary is a broad region of uplift associated with the India-Eurasia collision, and is cut by a series of generally east-west trending strike-slip faults. These include the Kunlun, Haiyuan, and the Altyn Tagh faults, all of which are left-lateral structures, and the Kara-Koram right-lateral fault. Throughout the plateau, thrust faults accommodate the north-south compressional component of crustal shortening associated with the ongoing collision of India and Eurasia, while strike-slip and normal faults accommodate east-west extension. To the east, The Longmen Shan thrust belt marks the eastern margin of the Tibetan Plateau separating the complex tectonics of the plateau region from the relatively undeformed Sichuan Basin. Further south, the left-lateral Xiangshuihe-Xiaojiiang, right-lateral Red River and right-lateral Sagaing strike-slip fault systems accommodate deformation along the eastern margin of the India plate. Deep earthquakes have also occurred in the Indo-Burmese Arc region, thought to be an expression of eastward-directed subduction of the India plate, though whether subduction is ongoing is still debated.

  20. 3-D ore body modeling and structural settings of syn-to late orogenic Variscan hydrothermal mineralization, Siegerland district, Rhenish Massif, NW Germany

    NASA Astrophysics Data System (ADS)

    Peters, Meike; Hellmann, André; Meyer, Franz Michael

    2013-04-01

    The Siegerland district is located in the fold-and thrust-belt of the Rhenish Massif and hosts diverse syn-to late orogenic mineralization styles. Peak-metamorphism and deformation occurred at 312-316±10 Ma (Ahrendt et al., 1978) at temperature-pressure conditions of 280-320°C and 0.7-1.4 kbar (Hein, 1993). In addition to syn-orogenic siderite-quartz mineralization at least four different syn-to late orogenic mineralization stages are identified comprising Co-Ni-Cu-Au, Pb-Zn-Cu, Sb-Au, and hematite-digenite-bornite ores (Hellmann et al., 2012). The earliest type of syn-orogenic ore mineralization is formed by siderite-quartz veins, trending N-S, E-W and NE-SW. The vein systems are closely related to fold and reverse fault geometries (Hellmann et al., 2012). The most important structural feature is the first-order Siegen main reverse fault showing an offset into three major faults (Peters et al., 2012). The structural control on ore formation is demonstrated by the Co-Ni-Cu-Au mineralization generally hosted by NE-ENE trending reverse faults and associated imbrication zones that have reactivated the older siderite-quartz veins. In this study, we developed a 3-D model of the Alte Buntekuh ore bodies in the Siegerland district, using Datamine Studio3 to investigate the structural setting of Co-Ni-Cu-Au mineralization. The salient structural and spatial data for the 3-D model were taken from old mine level plans as well as from geological and topographical maps. The ore bodies are located immediately in the hanging wall of the southern branch of the Siegen main reverse fault (Peters et al., 2012). From the model it becomes obvious, that the earlier siderite-quartz veins, dipping steeply to the NW, are cross-cut and segmented by oppositely dipping oblique reverse faults. Individual ore body segments are rotated and displaced, showing a plunge direction to the SW. The 3-D model further reveals the presence of hook-like, folded vein arrays, highly enriched in cobalt mineralization. These vein-hooks are characterized by a dip direction to the W, which is opposite to the plunge of F1-folds. The vein-hooks are interpreted to have formed during oblique normal faulting. The compilation of historical mining and mineralogical information in combination with 3-D ore body modeling provides new insights into the structural evolution of mineralization and can be used to evaluate further mineral potential of the area, especially in currently non-explored depth levels. The 3-D ore body model is also vital for resource calculation and the design of a brown-fields drilling program. References Ahrendt, H., Hunziker, J.C. and Weber, K. (1978). Z. dt. geol. Ges. 129, 229-247 Hein, U.F. (1993). Min. Mag. 57, 451-476 Hellmann, A., Wagner, T. and Meyer, F.M. (2012). Conference proceedings GB 2012. http://www.geologicabelgica.be/PDF/GB/S13/S13_8_Hellmann.pdf Peters, M., Hellmann A. and Meyer, F.M. (2012). Conference proceedings GeoHannover 2012. Series of paper of the German Society of Geosciences, Vol. 80, 387.

  1. The Role of Wrench Tectonics In The Neogene-quaternary Evolution of The Western Hyblean Plateau (sicily)

    NASA Astrophysics Data System (ADS)

    Mattina, D.

    This study focussed on the kinematics and temporal variations of neotectonic-to-active structures on the margin of the Southern Apennines thrust front. The border between the thrustbelt contractional terranes and continental plateau hosts a number of strike- slip and, secondarily, normal structures of still disputed geometry. Based on newly- acquired data, this research opened new issues with respect to present-day kinematics of these fault systems, suggesting a new interpretation for the tectonic mechanisms underpinning the Hyblean plateau. Given its geodynamic environs, the present-day structural configuration of this plateau reflects a long tectonic history involving both intraplate extension and plate margin deformation. As a consequence, the platform area has been dominated by a complex interplay between extensional, compressional and strike-slip tectonics, expressed by subvertical faults that can be brokendown into two main trends: NE-SW and NNE- SSW. Fieldwork, integrated by interpretation of aerial photos and SPOT images, con- tributed to constrain and enhance a structural model of the region. The main NNE- SSW fault system (Scicli - Ragusa - Giarratana) is well exposed in the western part of the Hyblean plateau, called Ragusa Platform. This is an important structural feature which affects all domains present here and is characterised by vertical slip rates with a lateral component of motion. Structural analysis was primarily concentrated in this zone. Notably, a large set of structural elements, associated with a principal rigth-lateral NNE-SSW and NE-SW fault zone, was documented in the area and local transpressive elements, associated with these faults, are shown on the basis of their morphological evidence. A large bending and elevated area characterises the northern edge of the Ragusa platform and unveils the presence of several N-S striking reverse faults, with dextral lateral component of movement, and anticlinal folds. The detailed meso-structural analysis conducted on the Ragusa platform revealed the presence of non-coaxial compressive deformations, which in turn generated folds, re- verse faults and rare thrusts, involving the Upper Miocene - Lower Pleistocene de- posits. The structural analysis was conducted at the 1:25.000 scale, using the dis- persion of bedding data to define the orientation of the main structures. These data display a certain scattering but nevertheless allow to recognise a common trend; the 1 main fold system is characterised by structures trending~N-S. Subordinately, another set of folds is present; these are less developed and continuous than the previous sys- tem, forming fold with an average trend of about N 140E. The scattering of these structures is summarized in the structural model developed, including diagrams of some meso-folds recognized in the field. The presence of reverse faults is interpreted as flower structures and push-up systems which developed in a transpressive stress regime. In order to devise a tectonic model of the Hyblean plateau, the structural dataset was supplemented with a comparative morphological analysis, as revealed by fieldwork, satellite images, aerial photos and topographic data. Drainage network has been thor- oughly ascertained. In the case that the preferential directions of rivers were statisti- cally significant and different from those expected from non-structural controls (e.g. topographic and geographic trend), they were deemed to be a diagnostic tool to iden- tify the deformation system. This is based on the assumption of a strict structural control on the local hydrographic network and its evolution. The close relationship between the structural and morphological features underline the recent activity of the main fault trends. This study indicates that widespread occurrence of folds and reverse faulting can be ascribed to the transpressive regime, as a consequence of regional active wrenching capable of generating push-up and positive flower structures. Consequently, transform systems and brittle/ductile deformation is herewith envisaged to pertain to a single ma- jor deformation event. Within the central Mediterranean framework, the Scicli shear zone represents the on-shore strand of a major dextral transform system, documented off-shore to be the triggering mechanism responsible for the opening of the Sicily Strait. Such system also splits the western and eastern sectors of the Hyblean plateau, as indicated by differing kinematic evolutions. Present-day opening of the Pantelleria Rift, connected to a NE-SW extensional axis (Illies etl., 1981; Finetti et al., 1982; Boccaletti et al., 1987), activated the NNE trans- form system, whose on-shore expressions are highlighted by Scicli and Chiaramonte structures. Inception of activity for these fault systems is synchronous with the one characterizing the Rift (5 Ma; Ben-Avraham et al., 1991). Such line of evidence would enable to substantiate the Plio-Pleistocene shear mechanisms documented along these faults, indicating its viability within a regional stress field. Its likely s1, triggering con- traction at the plate boundary and causative of the rifting transtensional regime, would therefore be oriented NW-SE. 2

  2. Quaternary tectonic setting of South-Central coastal California

    USGS Publications Warehouse

    Lettis, William R.; Hanson, Kathryn L.; Unruh, Jeffrey R.; McLaren, Marcia; Savage, William U.; Keller, Margaret A.

    2004-01-01

    Recent geodetic, geologic, and seismologic studies show that the south-central coast of California is a region of active Quaternary deformation. Northeast-directed crustal shortening is occurring in a triangular-shaped region between the Hosgri-San Simeon fault system on the west, the Southern Coast Ranges on the northeast, and the western Transverse Ranges on the south. We informally call this region the Los Osos domain. In this study, we conducted detailed geological, seismological, and geophysical investigations to characterize the nature and rates of deformation in the domain. Locations of active and potentially active faults and folds are compiled at a scale of 1:250,000 for the entire domain based primarily on onshore geologic data and offshore geophysical data. Crustal shortening in the domain is accommodated by a series of prominent northwest-trending reverse faults and localized folding. The reverse faults separate distinct structural blocks that have little or no internal deformation. Hangingwall blocks are being uplifted at rates of up to 0.2 mm/yr. Footwall blocks are either static or slowly subsiding at rates of 0.1 mm/yr or less, except for localized areas of concentrated subsidence directly adjacent to some faults. The cumulative rate of crustal shortening is about 1 to 2 mm/yr across the northern part of the domain based on observed geologic deformation. Cumulative shortening across the central and southern parts of the domain is poorly constrained by geologic data and may approach 2 to 3 mm/yr. Historical and instrumental seismicity generally are spatially associated with the uplifted blocks and bordering reverse faults to depths of about 10 km. Together with near-surface geological data and deeper crustal geophysical imaging that show high-angle faulting, the seismicity data indicate that the reverse faults probably extend to the base of the seismogenic crust. The base of the seismogenic crust may correspond with a mid-crustal detachment or decollement surface into which the reverse faults root. We speculate that the detachment may coincide, in part, with the top of a northeast-dipping slab of oceanic crust that extends beneath the western margin of the continent or with the brittle-ductile transition above the subducted slab. The Los Osos domain of north-northeast/south-southwest crustal shortening is structurally detached from the offshore Hosgri Fault Zones. Both the pattern and regional extent of deformation in the Los Osos domain contrast sharply with that of the offshore Santa Maria Basin. The basin is undergoing minor east-northeast/west-southwest crustal shortening at rates of less than 0.1 mm/yr and is moving northwestward at a rate of about 1 to 3 mm/yr relative to the Los Osos domain along the San Simeon and Hosgri Fault Zones. Geodetic data and the kinematics of north-northeast-directed crustal shortening of the Los Osos domain east of the Hosgri Fault Zone show that the rate and cumulative amount of right-slip along the Hosgri Fault Zone progressively decrease southward. Quaternary deformation within the Los Osos domain is related to distributed dextral simple shear associated with Pacific-North American plate motion. Paleomagnetic data show that clockwise rotation of the western Transverse Ranges has occurred along the southern boundary of the domain during the past 6 m.y. During this time, the Salinian crustal block, which forms the eastern boundary of the Los Osos domain, has remained relatively stable. Internal shortening of the Los Osos domain has accommodated the relative motions of these bordering crustal blocks, particularly the rotation of the western Transverse Ranges.

  3. Systematic Underestimation of Earthquake Magnitudes from Large Intracontinental Reverse Faults: Historical Ruptures Break Across Segment Boundaries

    NASA Technical Reports Server (NTRS)

    Rubin, C. M.

    1996-01-01

    Because most large-magnitude earthquakes along reverse faults have such irregular and complicated rupture patterns, reverse-fault segments defined on the basis of geometry alone may not be very useful for estimating sizes of future seismic sources. Most modern large ruptures of historical earthquakes generated by intracontinental reverse faults have involved geometrically complex rupture patterns. Ruptures across surficial discontinuities and complexities such as stepovers and cross-faults are common. Specifically, segment boundaries defined on the basis of discontinuities in surficial fault traces, pronounced changes in the geomorphology along strike, or the intersection of active faults commonly have not proven to be major impediments to rupture. Assuming that the seismic rupture will initiate and terminate at adjacent major geometric irregularities will commonly lead to underestimation of magnitudes of future large earthquakes.

  4. Variable post-Paleozoic deformation detected by seismic reflection profiling across the northwestern "prong" of New Madrid seismic zone

    USGS Publications Warehouse

    McBride, J.H.; Pugin, Andre J.M.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.; Devera, J.A.; Denny, F.B.; Woolery, E.W.

    2003-01-01

    High-resolution shallow seismic reflection profiles across the northwesternmost part of the New Madrid seismic zone (NMSZ) and northwestern margin of the Reelfoot rift, near the confluence of the Ohio and Mississippi Rivers in the northern Mississippi embayment, reveal intense structural deformation that apparently took place during the late Paleozoic and/or Mesozoic up to near the end of the Cretaceous Period. The seismic profiles were sited on both sides of the northeast-trending Olmsted fault, defined by varying elevations of the top of Mississippian (locally base of Cretaceous) bedrock. The trend of this fault is close to and parallel with an unusually straight segment of the Ohio River and is approximately on trend with the westernmost of two groups of northeast-aligned epicenters ("prongs") in the NMSZ. Initially suspected on the basis of pre-existing borehole data, the deformation along the fault has been confirmed by four seismic reflection profiles, combined with some new information from drilling. The new data reveal (1) many high-angle normal and reverse faults expressed as narrow grabens and anticlines (suggesting both extensional and compressional regimes) that involved the largest displacements during the late Cretaceous (McNairy); (2) a different style of deformation involving probably more horizontal displacements (i.e., thrusting) that occurred at the end of this phase near the end of McNairy deposition, with some fault offsets of Paleocene and younger units; (3) zones of steeply dipping faults that bound chaotic blocks similar to that observed previously from the nearby Commerce geophysical lineament (CGL); and (4) complex internal deformation stratigraphically restricted to the McNairy, suggestive of major sediment liquefaction or landsliding. Our results thus confirm the prevalence of complex Cretaceous deformations continuing up into Tertiary strata near the northern terminus of the NMSZ. ?? 2003 Elsevier Science B.V. All rights reserved.

  5. Jurassic faults of southwest Alabama and offshore areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mink, R.M.; Tew, B.H.; Bearden, B.L.

    1991-03-01

    Four fault groups affecting Jurassic strata occur in the southwest and offshore Alabama areas. They include the regional basement rift trend, the regional peripheral fault trend, the Mobile graben fault system, and the Lower Mobile Bay fault system. The regional basement system rift and regional peripheral fault trends are distinct and rim the inner margin of the eastern Gulf Coastal Plain. The regional basement rift trend is genetically related to the breakup of Pangea and the opening of the Gulf of Mexico in the Late Triassic-Early Jurassic. This fault trend is thought to have formed contemporaneously with deposition of Latemore » Triassic-Early Jurassic Eagle Mills Formation and to displace pre-Mesozoic rocks. The regional peripheral fault trend consists of a group of en echelon extensional faults that are parallel or subparallel to regional strike of Gulf Coastal Plain strata and correspond to the approximate updip limit of thick Louann Salt. Nondiapiric salt features are associated with the trend and maximum structural development is exhibited in the Haynesville-Smackover section. No hydrocarbon accumulations have been documented in the pre-Jurassic strata of southwest and offshore Alabama. Productive hydrocarbon reservoirs occur in Jurassic strata along the trends of the fault groups, suggesting a significant relationship between structural development in the Jurassic and hydrocarbon accumulation. Hydrocarbon traps are generally structural or contain a major structural component and include salt anticlines, faulted salt anticlines, and extensional fault traps. All of the major hydrocarbon accumulations are associated with movement of the Louann Salt along the regional peripheral fault trend, the Mobile graben fault system, or the Lower Mobile Bay fault system.« less

  6. Fracture patterns in the Zagros fold-and-thrust belt, Kurdistan Region of Iraq

    NASA Astrophysics Data System (ADS)

    Reif, Daniel; Decker, Kurt; Grasemann, Bernhard; Peresson, Herwig

    2012-11-01

    Fracture data have been collected in the Kurdistan Region of Iraq, which is a poorly accessible and unexplored area of the Zagros. Pre to early folding NE-SW striking extensional fractures and NW-SE striking contractive elements represent the older set affecting the exposed multilayer of the area. These latter structures are early syn-folding and followed by folding-related mesostructural assemblages, which include elements striking parallel to the axial trend of major folds (longitudinal fractures). Bedding perpendicular joints and veins, and extensional faults belonging to this second fracture set are located in the outer arc of exposed anticlines, whilst longitudinal reverse faults locate in the inner arcs. Consistently, these elements are associated with syn-folding tangential longitudinal strain. The younger two sets are related to E-W extension and NNE-SSW to N-S shortening, frequently displaying reactivation of the older sets. The last shortening event, which is described along the entire Zagros Belt, probably relates with the onset of N-S compression induced by the northward movement of the Arabian plate relative to the Eurasian Plate. In comparison between the inferred palaeostrain directions and the kinematics of recent GPS measurements, we conclude that the N-S compression and the partitioning into NW-SE trending folds and NW to N trending strike-slip faults likely remained unchanged throughout the Neogene tectonic history of the investigated area.

  7. Subsurface geometry and evolution of the Seattle fault zone and the Seattle Basin, Washington

    USGS Publications Warehouse

    ten Brink, Uri S.; Molzer, P.C.; Fisher, M.A.; Blakely, R.J.; Bucknam, R.C.; Parsons, T.; Crosson, R.S.; Creager, K.C.

    2002-01-01

    The Seattle fault, a large, seismically active, east-west-striking fault zone under Seattle, is the best-studied fault within the tectonically active Puget Lowland in western Washington, yet its subsurface geometry and evolution are not well constrained. We combine several analysis and modeling approaches to study the fault geometry and evolution, including depth-converted, deep-seismic-reflection images, P-wave-velocity field, gravity data, elastic modeling of shoreline uplift from a late Holocene earthquake, and kinematic fault restoration. We propose that the Seattle thrust or reverse fault is accompanied by a shallow, antithetic reverse fault that emerges south of the main fault. The wedge enclosed by the two faults is subject to an enhanced uplift, as indicated by the boxcar shape of the shoreline uplift from the last major earthquake on the fault zone. The Seattle Basin is interpreted as a flexural basin at the footwall of the Seattle fault zone. Basin stratigraphy and the regional tectonic history lead us to suggest that the Seattle fault zone initiated as a reverse fault during the middle Miocene, concurrently with changes in the regional stress field, to absorb some of the north-south shortening of the Cascadia forearc. Kingston Arch, 30 km north of the Seattle fault zone, is interpreted as a more recent disruption arising within the basin, probably due to the development of a blind reverse fault.

  8. The Olmsted fault zone, southernmost Illinois: A key to understanding seismic hazard in the northern new Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.

    2005-01-01

    Geological deformation in the northern New Madrid seismic zone, near Olmsted, Illinois (USA), is analyzed using integrated compressional-wave (P) and horizontally polarized-wave (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-wave reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-wave images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate zone more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic zone. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-wave seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic zone. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns. ?? 2005 Elsevier B.V. All rights reserved.

  9. Late-Variscan Tectonic Inheritance and Salt Tectonics Interplay in the Central Lusitanian Basin

    NASA Astrophysics Data System (ADS)

    Nogueira, Carlos R.; Marques, Fernando O.

    2017-04-01

    Tectonic inheritance and salt structures can play an important role in the tectono-sedimentary evolution of basins. The Alpine regional stress field in west Iberia had a horizontal maximum compressive stress striking approximately NNW-SSE, related to the Late Miocene inversion event. However, this stress field cannot produce a great deal of the observed and mapped structures in the Lusitanian Basin. Moreover, many observed structures show a trend similar to well-known basement fault systems. The Central Lusitanian basin shows an interesting tectonic structure, the Montejunto structure, generally assigned to this inversion event. Therefore, special attention was paid to: (1) basement control of important observed structures; and (2) diapir tectonics (vertical maximum compressive stress), which can be responsible for significant vertical movements. Based on fieldwork, tectonic analysis and interpretation of geological maps (Portuguese Geological Survey, 1:50000 scale) and geophysical data, our work shows: (1) the Montejunto structure is a composite structure comprising an antiform with a curved hinge and middle Jurassic core, and bounding main faults; (2) the antiform can be divided into three main segments: (i) a northern segment with NNE-SSW trend showing W-dipping bedding bounded at the eastern border by a NNE-SSW striking fault, (ii) a curved central segment, showing the highest topography, with a middle Jurassic core and radial dipping bedding, (iii) a western segment with ENE-WSW trend comprising an antiform with a steeper northern limb and periclinal termination towards WSW, bounded to the south by ENE-WSW reverse faulting, (3) both fold and fault trends at the northern and western segments are parallel to well-known basement faults related to late-Variscan strike-slip systems with NNE-SSW and ENE-WSW trends; (4) given the orientation of Alpine maximum compressive stress, the northern segment border fault should be mostly sinistral strike-slip and the western segment border fault should be a pure thrust; (5) uplift along the northern and central segments may point out to the presence of a salt diapir at depth, aiding vertical movement and local uplift of the structure; (6) geometry of seismic units of the neighboring basins is consistent with halokinesis related to the antiform growth during the Jurassic; (7) sedimentary filling of the neighbouring basins shows relationship to antiform development and growth into a structural high before the Late Miocene Alpine event. These data suggest that: (1) pre-existing basement faults and their reactivation played important role on the development of Montejunto complex tectonic structure; (2) important vertical movements occurred as the result of regional and local (diapir) tectonics; (3) subsidence in neighbouring basins may have promoted maturation, and possible targets with strong potential for hydrocarbon trapping and accumulation may have also developed; (4) diapir tectonics initiated before the Cretaceous; (5) given the topography, and the geometry and inferred kinematics of all segments, it seems that the Montejunto structure formed in a restraining bend controlled by inherited late-Variscan basement faults.

  10. A 2006 earthquakes series at the Colima rift and its relationship to the Rivera-Cocos plate boundary

    NASA Astrophysics Data System (ADS)

    Yamamoto, J.; Jimenez, Z.

    2013-12-01

    From July 31 through 13 August 2006 a series of fourteen earthquakes (M 3.9 to 6.1) occurred in the western end of the Central Mexican Volcanic Belt (CMVB) in twenty five days period. The most prominent earthquake (Mw 6.1) occurred on 11 August 2006 at 14:30 UTC (9:30 local time) approximately at 18.37° N, 101.25° W and 81 km depth. The epicenter was less than 40 km from Huetamo, Michoacan a 41,250-inhabitant city and 60 km from the El Infiernillo dam embayment the third largest hydroelectric plant in Mexico. This earthquake was widely felt through out the region with minor to moderate reported damage. In Mexico City 250 km away from the epicenter the earthquake, produced alarm among the population and several buildings evacuated. The earthquake series developed into two activity clusters one centered in the coast and separated about 300 km from a second inland cluster. The initial coastal cluster consisted of a nearly linear activity distribution which includes two shallow-depth earthquakes and reverse faulting mechanism with a slight left lateral strike-slip component and a possible fault planes trending roughly east-west. Two normal faulting earthquakes located at the extremes of the graben system, and fault planes oriented in a nearly north-south direction followed. The earthquakes are located approximately between the trench and the coast along the El Gordo-Colima graben system, which has been proposed as the continuation of the diffuse boundary between the Rivera and Cocos plates. The reverse faulting earthquakes are congruent either, with the expected subduction of the Rivera or Cocos plate under the North America plate and the normal faulting earthquake that can be associated to motions in the graben.

  11. Paleoseismology of a possible fault scarp in Wenas Valley, central Washington

    USGS Publications Warehouse

    Sherrod, Brian L.; Barnett, Elizabeth A.; Knepprath, Nichole; Foit, Franklin F.

    2013-01-01

    In October 2009, two trenches excavated across an 11-kilometer-long scarp at Wenas Valley in central Washington exposed evidence for late Quaternary deformation. Lidar imagery of the Wenas Valley illuminated the west-northwest-trending, 2- to 8-meter-high scarp as it bisected alluvial fans developed at the mouths of canyons along the south side of Umtanum Ridge. The alignment of the scarp and aeromagnetic lineaments suggested that the scarp may be a product of and controlled by the same tectonic structure that produced the magnetic lineaments. Several large landslides mapped in the area demonstrated the potential for large mass-wasting events in the area. In order to test whether the scarp was the result of an earthquake-generated surface rupture or a landslide, trenches were excavated at Hessler Flats and McCabe Place. The profiles of bedrock and soil stratigraphy that underlie the scarp in each trench were photographed, mapped, and described, and a sequence of depositional and deformational events established for each trench. The McCabe Place trench exposed a sequence of volcaniclastic deposits overlain by soils and alluvial deposits separated by three unconformities. Six normal faults and two possible reverse faults deformed the exposed strata. Crosscutting relations indicated that up to five earthquakes occurred on a blind reverse fault, and a microprobe analysis of lapilli suggested that the earliest faulting occurred after 47,000 years before present. The Hessler Flat trench exposure revealed weathered bedrock that abuts loess and colluvium deposits and is overlain by soil, an upper sequence of loess, and colluvium. The latter two units bury a distinctive paloesol.

  12. The Colorado front range: anatomy of a Laramide uplift

    USGS Publications Warehouse

    Kellogg, Karl; Bryant, Bruce; Reed, John C.

    2004-01-01

    Along a transect across the Front Range from Denver to the Blue River valley near Dillon, the trip explores the geologic framework and Laramide (Late Cretaceous to early Eocene) uplift history of this basement-cored mountain range. Specific items for discussion at various stops are (1) the sedimentary and structural record along the upturned eastern margin of the range, which contains several discontinuous, east-directed reverse faults; (2) the western structural margin of the range, which contains a minimum of 9 km of thrust overhang and is significantly different in structural style from the eastern margin; (3) mid- to late-Tertiary modifications to the western margin of the range from extensional faulting along the northern Rio Grande rift trend; (4) the thermal and uplift history of the range as revealed by apatite fission track analysis; (5) the Proterozoic basement of the range, including the significance of northeast-trending shear zones; and (6) the geologic setting of the Colorado mineral belt, formed during Laramide and mid-Tertiary igneous activity.

  13. Surface faulting. A preliminary view

    USGS Publications Warehouse

    Sharp, R.V.

    1989-01-01

    This description of surface faulting near Spitak, Armenia, is based on a field inspection made December 22-26, 1988. The surface rupture west of Spitak, displacement of the ground surface, pre-earthquake surface expressions of the fault, and photolineaments in landsat images are described and surface faulting is compared to aftershocks. It is concluded that the 2 meters of maximum surface displacement fits well within the range of reliably measured maximum surface offsets for historic reverse and oblique-reverse faulting events throughout the world. By contrast, the presently known length of surface rupture near Spitak, between 8 and 13 km, is shorter than any other reverse or oblique-reverse event of magnitude greater than 6.0. This may be a reason to suppose that additional surface rupture might remain unmapped.

  14. Investigation of lineaments on Skylab and ERTS images of Peninsular Ranges, Southwestern California

    NASA Technical Reports Server (NTRS)

    Merifield, P. M. (Principal Investigator); Lamar, D. L.

    1974-01-01

    The author has identified the following significant results. Northwest trending faults such as the Elsinore and San Jacinto are prominently displayed on Skylab and ERTS images of the Peninsular Ranges, southern California. Northeast, north-south, and west-north-west trending lineaments and faults are also apparent on satellite imagery. Several of the lineaments represent previously unmapped faults. Other lineaments are due to erosion along foliation directions and sharp bends in basement rock contacts rather than faulting. The northeast trending Thing Valley fault appears to be offset by the south branch of the Elsinore fault near Agua Caliente Hot Springs. Larger horizontal displacement along the Elsinore fault further northwest may be distributed along several faults which branch from the Elsinore fault in the Peninsular Ranges. The northeast and west-northwest trending faults are truncated by the major northwest trending faults and appear to be restricted to basement terrane. Limited data on displacement direction suggests that the northeast and west-northwest trending faults formed in response to an earlier period of east-northeast, west-southwest crustal shortening. Such a stress system is consistent with the plate tectonic model of a subduction zone parallel to the continental margin suggested in the late Mesozoic and early Tertiary.

  15. Detection of hydrocarbon microseepage in a rain forest environment (Jurua Gas field, northern Brazil) using Landsat MSS data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, F.P.; Cunha, F.M.B.

    1990-05-01

    The Jurua gas field is the first important hydrocarbon accumulation found in the jungle-covered Solimoes basin. The tectonic framework in this area is characterized by a right-lateral transpressional zone (Jurua structural trend). Hydrocarbon traps are anticlines developed along the upthrown block of a reverse fault. The prospective 2,200-m-thick Paleozoic section is unconformably covered by a 2,800-m-thick pile of Mesozoic and Cenozoic continental sediments. Anomalous concentrations of hydrocarbons (C{sub 2}-C{sub 4}) in soil samples are concordantly aligned with the trace of the reverse fault crossing the gas field, indicating that this feature acted as a conduit for hydrocarbon microseepage. Gas-producing wellsmore » are located over a tabular watershed which coincides with the northeast-southwest Jurua structural trend. An unsupervised classification of Landsat MSS data over the gas field area reveals that one spectral class of vegetation is aligned with the Jurua structural trend. Field checking shows that the vegetation near the gas-producing well 1-JR-1-AM is not as dense as the forest outside the limits of the Jurua gas field. Two geologic factors may account for the vegetation anomaly over the gas field. (1) The northeast-southwest tabular watershed corresponds to a Pleistocene erosional surface associated with weathering products such as bauxite and laterite. The resulting soil is impermeable and low in nutrients. (2) The spectral behavior of vegetation may represent the response of plants to long-term anaerobic soil conditions brought about by gas leakage from the Paleozoic reservoir.« less

  16. Deformation associated with the Ste. Genevieve fault zone and mid-continent tectonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, A.; Baker, G.S.; Harrison, R.W.

    1992-01-01

    The Ste. Genevieve fault is a northwest-trending deformation zone on the northeast edge of the Ozark Dome in Missouri. The fault has been described as a high-angle block fault resulting from vertical uplift of Proterozoic basement rocks, and also as a left-lateral, strike-slip or transpressive wrench fault associated with the Reelfoot rift. Recent mapping across the fault zone documents significant changes in the style of deformation along strike, including variations in the number and the spacing of fault strands, changes in the orientation of rocks within and adjacent to the fault zone, and changes in the direction of stratigraphic offsetmore » between different fault slices. These data are inconsistent with existing Ste. Genevieve models of monoclinal folding over basement upthrusts. Mesoscopic structural analysis of rocks in and near the fault zone indicates highly deformed noncylindrical folds, faults with normal, reverse, oblique, and strike-slip components of movement, and complex joint systems. Fabric orientation, calcite shear fibers, and slickensides indicate that the majority of these mesoscopic structures are kinematically related to left-lateral oblique slip with the southwest side up. Within the fault zone are highly fractured rocks, microscopic to coarse-grained carbonate breccia, and siliciclastic cataclasite. Microscopic deformation includes twinning in carbonate rocks, deformation banding, undulose extinction, and strain-induced polygonization in quartz, tectonic stylolites, extension veining, microfractures, and grain-scale cataclasis. Data are consistent with models relating the Ste. Genevieve fault zone to left-lateral oblique slip possibly associated with New Madrid tectonism.« less

  17. Structural mapping based on potential field and remote sensing data, South Rewa Gondwana Basin, India

    NASA Astrophysics Data System (ADS)

    Chowdari, Swarnapriya; Singh, Bijendra; Rao, B. Nageswara; Kumar, Niraj; Singh, A. P.; Chandrasekhar, D. V.

    2017-08-01

    Intracratonic South Rewa Gondwana Basin occupies the northern part of NW-SE trending Son-Mahanadi rift basin of India. The new gravity data acquired over the northern part of the basin depicts WNW-ESE and ENE-WSW anomaly trends in the southern and northern part of the study area respectively. 3D inversion of residual gravity anomalies has brought out undulations in the basement delineating two major depressions (i) near Tihki in the north and (ii) near Shahdol in the south, which divided into two sub-basins by an ENE-WSW trending basement ridge near Sidi. Maximum depth to the basement is about 5.5 km within the northern depression. The new magnetic data acquired over the basin has brought out ENE-WSW to E-W trending short wavelength magnetic anomalies which are attributed to volcanic dykes and intrusive having remanent magnetization corresponding to upper normal and reverse polarity (29N and 29R) of the Deccan basalt magnetostratigrahy. Analysis of remote sensing and geological data also reveals the predominance of ENE-WSW structural faults. Integration of remote sensing, geological and potential field data suggest reactivation of ENE-WSW trending basement faults during Deccan volcanism through emplacement of mafic dykes and sills. Therefore, it is suggested that South Rewa Gondwana basin has witnessed post rift tectonic event due to Deccan volcanism.

  18. Contributions of gravity and field data on the structural scheme updating of the Tellian domain and its foreland (Nefza-Bizerte region, northern Tunisia)

    NASA Astrophysics Data System (ADS)

    Essid, El Mabrouk; Kadri, Ali; Balti, Hadhemi; Gasmi, Mohamed; Zargouni, Fouad

    2018-03-01

    The Nefza-Bizerte region, eastern part of the Tunisian Alpine chain, covers the thrust sheets domain called the Tell and its Atlassic foreland. The deep structures under the Tellian thrust sheets are not enough explored. The structural interpretation of magmatic rocks, Triassic outcrops and the depressions are still a subject of discussion. In this work, we intend to investigate deep faults and their eventual role in magmatism and Triassic salt setting up and to explain the depression genesis. Analysis of the Bouguer anomaly map and its derivatives reveals the main gravity lineaments, organized in major NE- and NW-trending systems. The NE-trending system, dipping towards the NW, is the main component of the structural scheme and has controlled the tectonic evolution of this area. After the immobilization of the Tellian thrust sheets during the uppermost Langhian, the Tell and its Atlassic foreland were affected by the Tortonian compressive event with a NW-trending maximum horizontal stress. The reverse kinematics of the NE-trending deep-seated faults created at their front continental environments filled later by post-nappes Neogene deposits. After the early Pleistocene, a NNW-directed compressional stress regime deformed the post-nappes Neogene series and generated NW-trending grabens. This coexistence of compression-extension continues until present day.

  19. Seismic hazard reappraisal from combined structural geology, geomorphology and cosmic ray exposure dating analyses: the Eastern Precordillera thrust system (NW Argentina)

    NASA Astrophysics Data System (ADS)

    Siame, L. L.; Bellier, O.; Sébrier, M.; Bourlès, D. L.; Leturmy, P.; Perez, M.; Araujo, M.

    2002-07-01

    Because earthquakes on large active thrust or reverse faults are not always accompanied with surface rupture, paleoseismological estimation of their associated seismic hazard is a difficult task. To improve the seismic hazard assessments in the Andean foreland of western Argentina (San Juan Province), this paper proposes a novel approach that combines structural geology, geomorphology and exposure age dating. The Eastern Precordillera of San Juan is probably one of the most active zones of thrust tectonics in the world. We concentrated on one major regional active reverse structure, the 145 km long Villicúm-Pedernal thrust, where this methodology allows one to: (1) constrain the Quaternary stress regime by inversion of geologically determined slip vectors on minor or major fault planes; (2) analyse the geometry and the geomorphic characteristics of the Villicúm-Pedernal thrust; and (3) estimate uplift and shortening rates through determination of in situ-produced 10Be cosmic ray exposure (CRE) ages of abandoned and uplifted alluvial terraces. From a structural point of view, the Villicúm-Pedernal thrust can be subdivided into three thrust portions constituting major structural segments separated by oblique N40°E-trending fault branches. Along the three segments, inversion of fault slip data shows that the development of the Eastern Precordillera between 31°S and 32°S latitude is dominated by a pure compressive reverse faulting stress regime characterized by a N110°+/- 10°E-trending compressional stress axis (σ1). A geomorphic study realized along the 18 km long Las Tapias fault segment combined with CRE ages shows that the minimum shortening rate calculated over the previous ~20 kyr is at least of the order of 1 mm yr-1. An earthquake moment tensor sum has also been used to calculate a regional shortening rate caused by seismic deformation. This analysis of the focal solutions available for the last 23 yr shows that the seismic contribution may be three times greater than the shortening rate we determined for the Las Tapias fault (i.e. ~3 mm yr-), suggesting that the San Juan region may have experienced a seismic crisis during the 20th century. Moreover, the ramp that controls the development of the Eastern Precordillera appears to be one of the main seismic sources in the San Juan area, particularly the 65 km long Villicúm-Las Tapias segment. A first-order evaluation of the seismic hazard parameters shows that this thrust segment can produce a maximum earthquake characterized by a moment magnitude of ~7.3 (+/-0.1) and a recurrence interval of 2.4 (+/-1.5) kyr. This part of the Villicúm-Pedernal ramp may have ruptured during the Ms= 7.4, 1944 San Juan earthquake producing very few surface ruptures and only distributed flexural slip deformation on to the Neogene foreland bedding planes between the Eastern Precordillera and Pie de Palo.

  20. The Eastern Tennessee Seismic Zone: Reactivation of an Ancient Continent-Continent Suture Zone

    NASA Astrophysics Data System (ADS)

    Powell, C. A.

    2014-12-01

    The eastern Tennessee seismic zone (ETSZ) may represent reactivation of an ancient shear zone that accommodated left-lateral, transpressive motion of the Amazon craton during the Grenville orogeny. Several different lines of evidence support this concept including velocity models for the crust, earthquake hypocenter alignments, focal mechanism solutions, potential field anomalies, paleomagnetic pole positions, and isotopic geochemical studies. The ETSZ trends NE-SW for about 300 km and displays remarkable correlation with the prominent New York - Alabama (NY-AL) aeromagnetic lineament. Vp and Vs models for the crust derived from a local ETSZ earthquake tomography study reveal the presence of a narrow, NE-SW trending, steeply dipping zone of low velocities that extends to a depth of at least 24 km and is associated with the vertical projection of the NY-AL aeromagnetic lineament. The low velocity zone is interpreted as a major basement fault. The recent Mw 4.2 Perry County eastern Kentucky earthquake occurred north of the ETSZ but has a focal depth and mechanism that are similar to those for ETSZ earthquakes. We investigate the possibility that the proposed ancient shear zone extends into eastern Kentucky using Bouguer and aeromagnetic maps. The southern end of the ETSZ is characterized by hypocenters that align along planes dipping at roughly 45 degrees and focal mechanisms that contain large normal faulting components. The NY-AL aeromagnetic lineament also changes trend in the southern end of the ETSZ and the exact location of the lineament is ambiguous. We suggest that the southern portion of the ETSZ involves reactivation of reverse faults (now as normal faults) that mark the ancient transition between a collisional to a more transpressive boundary between Amazonia and Laurentia during the formation of the super continent Rodinia.

  1. Crustal Structure of Northern Grenada Basin Call into Question the Origin of Arc Migration in the Lesser Antilles: Preliminary Results from GARANTI Cruise

    NASA Astrophysics Data System (ADS)

    Jean-Frederic, L.; Lallemand, S.; Marcaillou, B.; Klingelhoefer, F.; Agranier, A.; Arcay, D.; Audemard, F. A.; Bassetti, M. A.; Beslier, M. O.; Boucard, M.; Cornée, J. J.; Fabre, M.; Gay, A.; Graindorge, D.; Heuret, A.; Laigle, M.; Léticée, J. L.; Malengros, D.; Mercier de Lepinay, B.; Morena, P.; Münch, P.; Oliot, E.; Oregioni, D.; Padron, C.; Philippon, M. M.; Quillevere, F.; Ratzov, G.; Schenini, L.; Yates, B.; Zami, F.

    2017-12-01

    The Grenada Basin, a crescent-shape basin forming a back-arc relative to the Lesser Antilles arc, separate Aves Ridge, a remnant early paleogene arc, from Eocene-Oligocene and Late Miocene - actual Lesser Antilles arcs. In its northern part the shallowness and rough topography of the basin basement call into questioned the relevance of opening of a back arc basin for the northern Grenada Basin. During the GARANTI survey (May-June 2017 french R/V L'Atalante), we acquired two transversal (EW) and one basin parallel (NS), ca. 300km long, combined wide-angle seismic (WAS) and multichannel seismic reflection (MCS) lines, plus ca. 3500km of MCS together with multibeam bathymetric data and dredged 14 sites across Grenada basin. Part of these profiles are located in the northern Grenada Basin, north and south of Saba Bank carbonate plateform. South of Saba Bank, the existence of buried crustal faults extending across Aves Ridge and the basin suggest continuity of inherited structures between the two domains. Preliminary modeling of the WAS data along the northern line shows an about 35km thick crust across the Lesser Antilles arc and in the Grenada basin at that latitude, suggesting no or only little extension in the back arc. Along the western side of Saba Bank the north trending Aves Ridge is cut at low angle by steeply dipping reverse faults that vanish southward. North of Saba Bank our data merged with seismic profiles from the AntiTheSis project reveal transpressive deformation south of the Anegada passage, trending N40° to N110° extending toward the Lesser Antilles Eo-Oligocene outer-arc. Only few N90° trending faults extend toward the active arc. These faults trend at high angle with N140-160° intra-arc fault system observed further south. Dredge samples from transpressive ridges west of the outer arc provided mix arc volcanic rocks in foraminifers rich carbonate limestones of possibly mid-Cenozoic age. Our new data call into question the mechanisms that led to arc migration in the Lesser Antilles during mid Cenozoic.

  2. The Evergreen basin and the role of the Silver Creek fault in the San Andreas fault system, San Francisco Bay region, California

    USGS Publications Warehouse

    Jachens, Robert C.; Wentworth, Carl M.; Graymer, Russell W.; Williams, Robert; Ponce, David A.; Mankinen, Edward A.; Stephenson, William J.; Langenheim, Victoria

    2017-01-01

    The Evergreen basin is a 40-km-long, 8-km-wide Cenozoic sedimentary basin that lies mostly concealed beneath the northeastern margin of the Santa Clara Valley near the south end of San Francisco Bay (California, USA). The basin is bounded on the northeast by the strike-slip Hayward fault and an approximately parallel subsurface fault that is structurally overlain by a set of west-verging reverse-oblique faults which form the present-day southeastward extension of the Hayward fault. It is bounded on the southwest by the Silver Creek fault, a largely dormant or abandoned fault that splays from the active southern Calaveras fault. We propose that the Evergreen basin formed as a strike-slip pull-apart basin in the right step from the Silver Creek fault to the Hayward fault during a time when the Silver Creek fault served as a segment of the main route by which slip was transferred from the central California San Andreas fault to the Hayward and other East Bay faults. The dimensions and shape of the Evergreen basin, together with palinspastic reconstructions of geologic and geophysical features surrounding it, suggest that during its lifetime, the Silver Creek fault transferred a significant portion of the ∼100 km of total offset accommodated by the Hayward fault, and of the 175 km of total San Andreas system offset thought to have been accommodated by the entire East Bay fault system. As shown previously, at ca. 1.5–2.5 Ma the Hayward-Calaveras connection changed from a right-step, releasing regime to a left-step, restraining regime, with the consequent effective abandonment of the Silver Creek fault. This reorganization was, perhaps, preceded by development of the previously proposed basin-bisecting Mount Misery fault, a fault that directly linked the southern end of the Hayward fault with the southern Calaveras fault during extinction of pull-apart activity. Historic seismicity indicates that slip below a depth of 5 km is mostly transferred from the Calaveras fault to the Hayward fault across the Mission seismic trend northeast of the Evergreen basin, whereas slip above a depth of 5 km is transferred through a complex zone of oblique-reverse faults along and over the northeast basin margin. However, a prominent groundwater flow barrier and related land-subsidence discontinuity coincident with the concealed Silver Creek fault, a discontinuity in the pattern of seismicity on the Calaveras fault at the Silver Creek fault intersection, and a structural sag indicative of a negative flower structure in Quaternary sediments along the southwest basin margin indicate that the Silver Creek fault has had minor ongoing slip over the past few hundred thousand years. Two earthquakes with ∼M6 occurred in A.D. 1903 in the vicinity of the Silver Creek fault, but the available information is not sufficient to reliably identify them as Silver Creek fault events.

  3. Role of tectonic inheritance in the instauration of Tunisian Atlassic fold-and-thrust belt: Case of Bouhedma - Boudouaou structures

    NASA Astrophysics Data System (ADS)

    Ghanmi, Mohamed Abdelhamid; Ghanmi, Mohamed; Aridhi, Sabri; Ben Salem, Mohamed Sadok; Zargouni, Fouad

    2016-07-01

    Tectonic inversion in the Bouhedma-Boudouaou Mountains was investigated through recent field work and seismic lines interpretation calibrated with petroleum well data. Located to the Central-Southern Atlas of Tunisia, this area signed shortened intra-continental fold-and-thrust belts. Two dissymmetric anticlines characterize Bouhedma - Boudouaou major fold. These structures show a strong virgation respectively from E-W to NNE-SSW as a response to the interference between both tectonic inversion and tectonic inheritance. This complex geometry is driven by Mesozoic rifting, which marked an extensional inherited regime. A set of late Triassic-Early Jurassic E-W and NW-SE normal faults dipping respectively to the North and to the East seems to widely affect the overall geodynamic evolution of this domain. They result in major thickness changes across the hanging wall and the footwall blocks in response with the rifting activity. Tectonic inversion is inferred from convergence between African and European plates since late Cretaceous. During Serravalian - Tortonian event, NW-SE trending paroxysm led to: 1) folding of pre-inversion and syn-inversion strata, 2) reactivation of pre-existing normal faults to reverse ones and 3) orogeny of the main structures with NE-SW and E-W trending. The compressional feature still remains active during Quaternary event (Post-Villafranchian) with N-S trending compression. Contraction during inversion generates folding and internal deformation as well as Fault-Propagation-Fold and folding related strike.

  4. Earthquake Hazard Assessment Based on Geological Data: An approach from Crystalline Terrain of Peninsular India

    NASA Astrophysics Data System (ADS)

    John, B.

    2009-04-01

    Earthquake Hazard Assessment Based on Geological Data: An approach from Crystalline Terrain of Peninsular India Biju John National Institute of Rock Mechanics b_johnp@yahoo.co.in Peninsular India was for long considered as seismically stable. But the recent earthquake sequence of Latur (1993), Jabalpur (1997), Bhuj (2001) suggests this region is among one of the active Stable Continental Regions (SCRs) of the world, where the recurrence intervals is of the order of tens of thousands of years. In such areas, earthquake may happen at unexpected locations, devoid of any previous seismicity or dramatic geomorphic features. Even moderate earthquakes will lead to heavy loss of life and property in the present scenario. So it is imperative to map suspected areas to identify active faults and evaluate its activities, which will be a vital input to seismic hazard assessment of SCR area. The region around Wadakkanchery, Kerala, South India has been experiencing micro seismic activities since 1989. Subsequent studies, by the author, identified a 30 km long WNW-ESE trending reverse fault, dipping south (45°), that influenced the drainage system of the area. The macroscopic and microscopic studies of the fault rocks from the exposures near Desamangalam show an episodic nature of faulting. Dislocations of pegmatitic veins across the fault indicate a cumulative dip displacement of 2.1m in the reverse direction. A minimum of four episodes of faulting were identified in this fault based on the cross cutting relations of different structural elements and from the mineralogic changes of different generations of gouge zones. This suggests that an average displacement of 52cm per event might have occurred for each event. A cyclic nature of faulting is identified in this fault zone in which the inter-seismic period is characterized by gouge induration and fracture sealing aided by the prevailing fluids. Available empirical relations connecting magnitude with displacement and rupture length show that each event might have produced an earthquake of magnitude ≥ 6.0, which could be a damaging one to an area like peninsular India. Electron Spin Resonance dating of fault gouge indicates a major event around 430ka. In the present stress regime this fault can be considered as seismically active, because the orientation of the fault is favorable for reactivation.

  5. Revision of the geological context of the Port-au-Prince metropolitan area, Haiti: implications for slope failures and seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Terrier, M.; Bialkowski, A.; Nachbaur, A.; Prépetit, C.; Joseph, Y. F.

    2014-09-01

    Following the earthquake of 12 January 2010 in the Port-au-Prince area, the Haitian government, in close cooperation with BRGM, the French geological Survey, decided to undertake a seismic microzonation study of the metropolitan area of the capital in order to take more fully into account the seismic risk in the urbanization and planning of the city under reconstruction. As the first step of the microzonation project, a geological study has been carried out. Deposits of Miocene and Pliocene formations in a marine environment have been identified. These deposits are affected by the Enriquillo-Plantain Garden N80° E fault system and N110° E faults. Tectonic observations and morphological analysis indicate Quaternary activity of several faults mapped in the area of Port-au-Prince. These faults have a N110° trend and show a reverse-sinistral strike-slip motion. Moreover, on the basis of these geological results and of new topographical data, a hazard assessment of ground movements has been made. Along with the map of active faults, the hazard map of ground movements is an integral component of the seismic microzonation study.

  6. Accommodation by Varying Strain Regimes along the Northern Luzon Arc (Coastal Range, Taiwan) - Insights from Focal Mechanism Strain Inversions

    NASA Astrophysics Data System (ADS)

    O'Hara, D.; Lee, J.; Lewis, J. C.; Rau, R.

    2013-12-01

    Taiwan is the product of modern subduction polarity reversal coupled with arc-continent collision. The NW-moving Philippine Sea plate (PSP) subducts beneath the Eurasian plate (EUR) to the northeast of Taiwan at the Ryukyu trench, while overriding EUR south of Taiwan at the Manila trench, bringing the Luzon volcanic arc into collision with the deforming sediments of the Eurasian passive margin. The obliquity between the N-S trending Luzon Arc (LA) and NE-SW trending passive margin is causing the southward, temporal propagation of collision since ~6 Ma. The collided forearc and clastic sediments accreted by the advancing arc created the Coastal Range (CR), whose western-most extent lies at the suture zone between the two plates, the NNE-SSW trending Longitudinal Valley Fault (LVF). In order to understand the change in stress along the northern LA as it docks onto EUR, we inverted over 1900 relocated earthquake focal mechanism solutions within the on-land CR and offshore LA regions for spatial strain tensors. The focal mechanisms cover seismicity from 1991-2013, ranging in depths 0-112 km and magnitudes 2.22-6.92. For our analyses, we grouped the focal mechanisms based on 15' Latitudinal intervals along the study area and inverted the data for best-fit strain tensors using a micropolar continuum model of crustal deformation. Results suggest dominant compression in all regions with accommodation occurring through oblique reverse faults of varying dips. Trends of σ1 rotate clockwise (CW) from 100° in the south to 155° in the north. This CW rotation is also observed in the preferred nodal plane slip vector trends - from E-W orientation in the south to NW-SE in the north. The rotation of σ1 and slip vector trends creates varying degrees of obliquity with the direction normal (DN) to CR (112°). The trends in the southern part of the study area show obliquity counterclockwise (CCW) to DN; trends in the central part are near parallel to DN; and trends in the northern part show obliquity CW to DN. GPS vectors from 2008-2012 using an ITRF reference frame show similar changes in obliquity with GPS velocity trends oblique CCW and CW to DN in the southern and northern areas, respectively, and near parallel to DN in the central area. Our results suggest the accommodation of three varying strain regimes along the northern LA (CR) system - (1) strain partitioning within the Manila forearc basin due to the obliquity between N-S trending LA and NW trending convergence vector; (2) convergence-related strain in the central LVF and CR along NNE trending major thrust faults with a small oblique component due to the obliquity between DN and the convergence vector; and (3) strain partitioning along the Ryukyu trench and forearc basin due to the obliquity between northward subducting plate along the WNW- ESE trending Ryukyu trench and NW convergence vector. As a result, the different subducting characteristics of strain regimes correspond to the different stages of arc accretion/collision, from south to north: pre-collision, present collision, waning collision, and subduction.

  7. SAR-revealed slip partitioning on a bending fault plane for the 2014 Northern Nagano earthquake at the northern Itoigawa-Shizuoka tectonic line

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tomokazu; Morishita, Yu; Yarai, Hiroshi

    2018-05-01

    By applying conventional cross-track synthetic aperture radar interferometry (InSAR) and multiple aperture InSAR techniques to ALOS-2 data acquired before and after the 2014 Northern Nagano, central Japan, earthquake, a three-dimensional ground displacement field has been successfully mapped. Crustal deformation is concentrated in and around the northern part of the Kamishiro Fault, which is the northernmost section of the Itoigawa-Shizuoka tectonic line. The full picture of the displacement field shows contraction in the northwest-southeast direction, but northeastward movement along the fault strike direction is prevalent in the northeast portion of the fault, which suggests that a strike-slip component is a significant part of the activity of this fault, in addition to a reverse faulting. Clear displacement discontinuities are recognized in the southern part of the source region, which falls just on the previously known Kamishiro Fault trace. We inverted the SAR and GNSS data to construct a slip distribution model; the preferred model of distributed slip on a two-plane fault surface shows a combination of reverse and left-lateral fault motions on a bending east-dipping fault surface with a dip of 30° in the shallow part and 50° in the deeper part. The hypocenter falls just on the estimated deeper fault plane where a left-lateral slip is inferred, whereas in the shallow part, a reverse slip is predominant, which causes surface ruptures on the ground. The slip partitioning may be accounted for by shear stress resulting from a reverse fault slip with left-lateral component at depth, for which a left-lateral slip is suppressed in the shallow part where the reverse slip is inferred. The slip distribution model with a bending fault surface, instead of a single fault plane, produces moment tensor solution with a non-double couple component, which is consistent with the seismically estimated mechanism.

  8. Kinematics of rotating panels of E-W faults in the San Andreas system: what can we tell from geodesy?

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; Becker, T. W.

    2013-09-01

    Sets of E- to NE-trending sinistral and/or reverse faults occur within the San Andreas system, and are associated with palaeomagnetic evidence for clockwise vertical-axis rotations. These structures cut across the trend of active dextral faults, posing questions as to how displacement is transferred across them. Geodetic data show that they lie within an overall dextral shear field, but the data are commonly interpreted to indicate little or no slip, nor any significant rate of rotation. We model these structures as rotating by bookshelf slip in a dextral shear field, and show that a combination of sinistral slip and rotation can produce the observed velocity field. This allows prediction of rates of slip, rotation, fault-parallel extension and fault-normal shortening within the panel. We use this method to calculate the kinematics of the central segment of the Garlock Fault, which cuts across the eastern California shear zone at a high angle. We obtain a sinistral slip rate of 6.1 ± 1.1 mm yr-1, comparable to geological evidence, but higher than most previous geodetic estimates, and a rotation rate of 4.0 ± 0.7° Myr-1 clockwise. The western Transverse Ranges transect a similar shear zone in coastal and offshore California, but at an angle of only 40°. As a result, the faults, which were sinistral when they were at a higher angle to the shear zone, have been reactivated in a dextral sense at a low rate, and the rate of rotation of the panel has decreased from its long-term rate of ˜5° to 1.6° ± 0.2° Myr-1 clockwise. These results help to resolve some of the apparent discrepancies between geological and geodetic slip-rate estimates, and provide an enhanced understanding of the mechanics of intracontinental transform systems.

  9. Pluton emplacement within an extensional transfer zone during dextral strike-slip faulting: an example from the late Archaean Abitibi Greenstone Belt

    NASA Astrophysics Data System (ADS)

    Lacroix, S.; Sawyer, E. W.; Chown, E. H.

    1998-01-01

    The Lake Abitibi area within the late Archaean Abitibi Greenstone Belt exhibits an interlinked plutonic, structural and metamorphic evolution that may characterize segmented strike-slip faults at upper-to-mid-crustal levels. Along the major, southeastward propagating Macamic D2 dextral strike-slip fault, Theological and preexisting D1 structural heterogeneities induced the development of NNW-trending dextral-oblique splays which evolved into an extensional trailing fan and created an extensional, NNW-dipping stepover. Magma flowing upwards from deeper parts of the Macamic Fault spread towards the southeast at upper crustal levels along both the oblique-slip and extensional D2 splays, and built several plutons in a pull-apart domain between 2696 and 2690 Ma. Different emplacement and material transfer mechanisms operated simultaneously in different parts of the system, including fault dilation and wedging, lateral expansion, wall-rock ductile flow and stoping. Transfer of movement between D2 splays occurred under ductile conditions during syn-emplacement, amphibolite-grade metamorphism (500-700 °C). During cooling (< 2690 Ma), narrower brittle-ductile zones of greenschist-grade shearing were concentrated along the pluton-wall rock contacts, but the extensional stepover locked since both normal and reverse movements occurred along NNW-dipping faults. Pluton emplacement, contact metamorphism and propagation of D2 faults appear to have been closely linked during the Superior Province-wide late transpressional event.

  10. The Catfish Lake Scarp, Allyn, Washington preliminary field data and implications for earthquake hazards posed by the Tacoma Fault

    USGS Publications Warehouse

    Sherrod, Brian L.; Nelson, Alan R.; Kelsey, Harvey M.; Brocher, Thomas M.; Blakely, Richard J.; Weaver, Craig S.; Rountree, Nancy K.; Rhea, B. Susan; Jackson, Bernard S.

    2004-01-01

    The Tacoma fault bounds gravity and aeromagnetic anomalies for 50 km across central Puget lowland from Tacoma to western Kitsap County. Tomography implies at least 6 km of post-Eocene uplift to the north of the fault relative to basinal sedimentary rocks to the south. Coastlines north of the Tacoma fault rose about 1100 years ago during a large earthquake. Abrupt uplift up to several meters caused tidal flats at Lynch Cove, North Bay, and Burley Lagoon to turn into forested wetlands and freshwater marshes. South of the fault at Wollochet Bay, Douglas-fir forests sank into the intertidal zone and changed into saltmarsh. Liquefaction features found beneath the marsh at Burley Lagoon point to strong ground shaking at the time of uplift. Recent lidar maps of the area southwest of Allyn, Washington revealed a 4 km long scarp, or two closely spaced en-echelon scarps, which correspond closely to the Tacoma fault gravity and aeromagnetic anomalies. The scarp, named the Catfish Lake scarp, is north-side-up, trends east-west, and clearly displace striae left by a Vashon-age glacier. A trench across the scarp exposed evidence for postglacial folding and reverse slip. No organic material for radiocarbon dating was recovered from the trench. However, relationships in the trench suggest that the folding and faulting is postglacial in age.

  11. Elevation changes in the central transverse ranges near Ventura, California

    USGS Publications Warehouse

    Buchanan-Banks, J. M.; Castle, R.O.; Ziony, J.I.

    1975-01-01

    Profiles of elevation changes developed from repeated levelings in the east-trending Transverse Ranges near Ventura, California, reveal three general types of vertical movements: 1. (1) broadly defined regional tilting; 2. (2) sharply defined differential movements across recently active faults; and 3. (3) differential subsidence centering on producing oil fields. Down-to-the-southeast tilting is evident in profiles along the coast this sense of movement, however, is the inverse of that that may have prevailed during late Pleistocene time. Profiles along lines extending north and northwest from Ventura show prominent inflections formed by up-to-the-north differential movements that coincide roughly with the Red Mountain fault; this fault is a north-dipping reverse fault that displaces a Holocene(?) soil zone and along which scarps and sag ponds are preserved. A similar inflection coincides with the Padre Juan fault; post-Pleistocene activity on the Padre Juan, however, is uniquely indicated by the geodetic data. Contemporary integrity of the structural block extending northward from the Red Mountain fault is suggested by the apparent absence of differential movements across the Munson Creek, Tule Creek, Santa Ynez, and Arroyo Parida faults since at least 1934. Subsidence is recognized over both the Ventura and Rincon oil fields; although maximum subsidence has not been recorded in either case, 277 mm of differential subsidence was measured within the Ventura field between 1934 and 1968. ?? 1975.

  12. Insights into Near-Surface Structural Control of Hydrothermal Fluid Movement at Rabbit Creek Thermal Area, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Carr, B.; Elliot, M.; Sims, K. W. W.

    2017-12-01

    Recent geophysical imaging efforts at Yellowstone National Park have generated questions about the geologic controls of hydrothermal fluid movement within the parks thermal areas. Currently, faults and lava flow contacts are assumed to be the primary permeability pathways for deeper fluid migration to the surface. Although intuition dictates that these structures are responsible, few studies have definitively shown that this is true. Earlier geophysical imaging efforts of phase separation in Norris Geyser Basin have shown strong evidence for fractures and faulting conducting hydrothermal waters. However, no geologically mapped faults are at the surface to confirm these interpretations. Therefore, during the summer of 2017, UW surface geophysical data acquisition focused on understanding the geologic controls for a thermal area within the well-mapped Rabbit Creek Fault Zone (RCFZ). The RCFZ strikes N-S along the eastern edge of Midway Geyser Basin (i.e. the western edge of the Mallard Lake Dome) about 2.8 Km SE of Grand Prismatic spring. The section of the fault zone within the Rabbit Creek thermal area is exposed on the eastern valley wall and dips steeply to the west. Regardless at our site, this puts the two of the plateau rhyolites (i.e. the Biscuit Basin Flow and Mallard Lake flow) next to each other ( 100 m apart) with a small amount of overlying alluvial, glacial and hydrothermal deposits covering the actual fault trace. Interestingly, at least two mapped reverse faults from the Mallard Lake Dome trend NW-SE into the site and are interpreted to intersect to the RCFZ. At RCFZ, DC resistivity and seismic refraction profiling combined with Self-Potential, Magnetics, and Transient Electromagnetic soundings were acquired to provide images and in situ geophysical properties. These data highlight the variable fracturing and surface expressions of the hydrothermal fluids associated with the RCFZ and the NW trending fault zone associated with the Mallard Lake Dome. Therefore, the shallow geophysics at this one study area indicates faulting is the dominant control for hydrothermal waters reaching the surface.

  13. Investigation of the Hosgri Fault, offshore Southern California, Point Sal to Point Conception

    USGS Publications Warehouse

    Payne, C.M.; Swanson, O.E.; Schell, B.A.

    1979-01-01

    A high-resolution seismic reflection survey of the inner continental shelf between Point Sal and Point Conception has revealed faults that displace post-Wisconsin strata (less than 17,000-20,000 years). These faults are the Hosgri fault, the Offshore Lompoc fault, and smaller unnamed faults. Faults trending offshore from the adjacent shoreline such as the Pezzoni, Lions Head, Honda, and Pacifico faults, do not show post-Wisconsin activity. The Hosgri fault trends directly toward the coastline between Purisima Point and Point Arguello where it appears to merge with folds and smaller faults in the western Transverse Ranges. This trend of offshore structures toward the Point Arguello-Point Conception area is consistent with a hypothesis that the regional structural fabric of the southern California Coast Ranges and its adjacent offshore area merge with the Transverse Ranges.

  14. Geologic framework and hydrogeologic characteristics of the Edwards Aquifer recharge zone, Bexar County, Texas

    USGS Publications Warehouse

    Stein, W.G.; Ozuna, G.B.

    1995-01-01

    The faults in northern Bexar County are part of the Balcones fault zone. Although most of the faults in this area trend northeast, a smaller set of cross-faults trend northwest. Generally, the faults are en echelon and normal, with the downthrown blocks typically toward the coast.

  15. Multiple late Holocene earthquakes along the Reelfoot fault, central New Madrid seismic zone

    NASA Astrophysics Data System (ADS)

    Kelson, Keith I.; Simpson, Gary D.; Vanarsdale, Roy B.; Haraden, Colleen C.; Lettis, William R.

    1996-03-01

    The Reelfoot fault is an east vergent, reverse fault underlying the Lake County uplift, a low-amplitude, late Holocene anticline bordered on the east by the 32-km-long Reelfoot scarp. Fluvial deposits across the scarp define an 8-m-high, east facing monocline. Most near-surface deformation along the scarp is accommodated via folding rather than faulting. We interpret the scarp as a fault-propagation fold developed over a west dipping reverse fault interpreted from shallow seismic reflection data. Trench exposures provide evidence for three episodes of deformation along the Reelfoot fault within the past approximately 2400 years, between A.D. 780 and 1000, between A.D. 1260 and 1650, and during A.D. 1812. Our best estimate of the average recurrence interval for deformation along the scarp is 400-500 years. Each episode of deformation had a slightly different style. The third most recent event produced a small graben a few tens of centimeters deep in the hanging wall of the reverse fault. The second most recent earthquake produced about 1.3 m of throw in the graben, as well as folding along the updip projection of the reverse fault and development of the scarp. These relations suggest that graben development increased through time concomitant with growth of the monocline or that the events are of different magnitude. The 1811-1812 episode of deformation produced abundant liquefaction, prominent folding of fluvial strata along the scarp, and minor faulting in the graben.

  16. VLSI Implementation of Fault Tolerance Multiplier based on Reversible Logic Gate

    NASA Astrophysics Data System (ADS)

    Ahmad, Nabihah; Hakimi Mokhtar, Ahmad; Othman, Nurmiza binti; Fhong Soon, Chin; Rahman, Ab Al Hadi Ab

    2017-08-01

    Multiplier is one of the essential component in the digital world such as in digital signal processing, microprocessor, quantum computing and widely used in arithmetic unit. Due to the complexity of the multiplier, tendency of errors are very high. This paper aimed to design a 2×2 bit Fault Tolerance Multiplier based on Reversible logic gate with low power consumption and high performance. This design have been implemented using 90nm Complemetary Metal Oxide Semiconductor (CMOS) technology in Synopsys Electronic Design Automation (EDA) Tools. Implementation of the multiplier architecture is by using the reversible logic gates. The fault tolerance multiplier used the combination of three reversible logic gate which are Double Feynman gate (F2G), New Fault Tolerance (NFT) gate and Islam Gate (IG) with the area of 160μm x 420.3μm (67.25 mm2). This design achieved a low power consumption of 122.85μW and propagation delay of 16.99ns. The fault tolerance multiplier proposed achieved a low power consumption and high performance which suitable for application of modern computing as it has a fault tolerance capabilities.

  17. Seismic images and fault relations of the Santa Monica thrust fault, West Los Angeles, California

    USGS Publications Warehouse

    Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Okaya, D.

    2001-01-01

    In May 1997, the US Geological Survey (USGS) and the University of Southern California (USC) acquired high-resolution seismic reflection and refraction images on the grounds of the Wadsworth Veterans Administration Hospital (WVAH) in the city of Los Angeles (Fig. 1a,b). The objective of the seismic survey was to better understand the near-surface geometry and faulting characteristics of the Santa Monica fault zone. In this report, we present seismic images, an interpretation of those images, and a comparison of our results with results from studies by Dolan and Pratt (1997), Pratt et al. (1998) and Gibbs et al. (2000). The Santa Monica fault is one of the several northeast-southwest-trending, north-dipping, reverse faults that extend through the Los Angeles metropolitan area (Fig. 1a). Through much of area, the Santa Monica fault trends subparallel to the Hollywood fault, but the two faults apparently join into a single fault zone to the southwest and to the northeast (Dolan et al., 1995). The Santa Monica and Hollywood faults may be part of a larger fault system that extends from the Pacific Ocean to the Transverse Ranges. Crook et al. (1983) refer to this fault system as the Malibu Coast-Santa Monica-Raymond-Cucamonga fault system. They suggest that these faults have not formed a contiguous zone since the Pleistocene and conclude that each of the faults should be treated as a separate fault with respect to seismic hazards. However, Dolan et al. (1995) suggest that the Hollywood and Santa Monica faults are capable of generating Mw 6.8 and Mw 7.0 earthquakes, respectively. Thus, regardless of whether the overall fault system is connected and capable of rupturing in one event, individually, each of the faults present a sizable earthquake hazard to the Los Angeles metropolitan area. If, however, these faults are connected, and they were to rupture along a continuous fault rupture, the resulting hazard would be even greater. Although the Santa Monica fault represents a hazard to millions of people, its lateral extent and rupture history are not well known, due largely to limited knowledge of the fault location, geometry, and relationship to other faults. The Santa Monica fault has been obscured at the surface by alluvium and urbanization. For example, Dolan et al. (1995) could find only one 200-m-long stretch of the Santa Monica fault that was not covered by either streets or buildings. Of the 19-km length onshore section of the Santa Monica fault, its apparent location has been delineated largely on the basis of geomorphic features and oil-well drilling. Seismic imaging efforts, in combination with other investigative methods, may be the best approach in locating and understanding the Santa Monica fault in the Los Angeles region. This investigation and another recent seismic imaging investigation (Pratt et al., 1998) were undertaken to resolve the near-surface location, fault geometry, and faulting relations associated with the Santa Monica fault.

  18. Structure Of The Elevated Precambrian Terranes Rising Above The Brahmaputra Plains In Northeastern India.

    NASA Astrophysics Data System (ADS)

    Gaur, V. K.; Hazarika, N. K.; Mitra, S.; Priestley, K.

    2007-12-01

    We present new evidence for a thinner crust beneath most of the Shillong plateau as well as its northeast extension in Mikir Hills of northeastern India.Both these Precambrian terranes rise above the Brahmaputra plains whose crust is thicker in comparison by atleast 4~km. Although Bouger gravity over the Mikir Hills still remains to be determined, its near zero value over the ~1 km high plateau and the near normal upper mantle beneath the region, require that these elevated terranes must have been uplifted between reversed faults and continue to be supported by them under compression. The southern edge of the Shillong plateau is indeed marked by the prominent Dauki fault which swerves northeastward at the south eastern margin of the plateau to merge with the Naga thrusts that bound the Mikir Hills on the east. A similar fault bounding the plateau on the north as hypothesized by Bilham et al (2000) -the Oldham fault- is therfore required to swerve northeastward near the northeastern margin of the plateau to demarcate the Mikir Hills from the thicker crust Brahmaputra plains to its north and west. This could be explained by a strike slip offset of the Oldham fault caused by the as yet obsure but active tectonics of the NNW trending Kopili lineament that ensues from the inflexion in the Dauki-Naga thrust fault system.

  19. Basic research on machinery fault diagnostics: Past, present, and future trends

    NASA Astrophysics Data System (ADS)

    Chen, Xuefeng; Wang, Shibin; Qiao, Baijie; Chen, Qiang

    2018-06-01

    Machinery fault diagnosis has progressed over the past decades with the evolution of machineries in terms of complexity and scale. High-value machineries require condition monitoring and fault diagnosis to guarantee their designed functions and performance throughout their lifetime. Research on machinery Fault diagnostics has grown rapidly in recent years. This paper attempts to summarize and review the recent R&D trends in the basic research field of machinery fault diagnosis in terms of four main aspects: Fault mechanism, sensor technique and signal acquisition, signal processing, and intelligent diagnostics. The review discusses the special contributions of Chinese scholars to machinery fault diagnostics. On the basis of the review of basic theory of machinery fault diagnosis and its practical applications in engineering, the paper concludes with a brief discussion on the future trends and challenges in machinery fault diagnosis.

  20. The northwest trending north Boquerón Bay-Punta Montalva Fault Zone; A through going active fault system in southwestern Puerto Rico

    USGS Publications Warehouse

    Roig‐Silva, Coral Marie; Asencio, Eugenio; Joyce, James

    2013-01-01

    The North Boquerón Bay–Punta Montalva fault zone has been mapped crossing the Lajas Valley in southwest Puerto Rico. Identification of the fault was based upon detailed analysis of geophysical data, satellite images, and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (local magnitude greater than 5.0) with numerous locally felt earthquakes. Focal mechanism solutions suggest strain partitioning with predominantly east–west left-lateral displacements with small normal faults striking mostly toward the northeast. Northeast-trending fractures and normal faults can be found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, an east–west-trending 30-km-long fault-controlled depression. Areas of preferred erosion within the alluvial fan trend toward the west-northwest parallel to the onland projection of the North Boquerón Bay fault. The North Boquerón Bay fault aligns with the Punta Montalva fault southeast of the Lajas Valley. Both faults show strong southward tilting of Miocene strata. On the western end, the Northern Boquerón Bay fault is covered with flat-lying Holocene sediments, whereas at the southern end the Punta Montalva fault shows left-lateral displacement of stream drainage on the order of a few hundred meters.

  1. Evaluation of the Location and Recency of Faulting Near Prospective Surface Facilities in Midway Valley, Nye County, Nevada

    USGS Publications Warehouse

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2001-01-01

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern zone of fractures is within Quaternary alluvial sediments, but no bedrock was encountered in trenches and soil pits in this part of the prospective surface facilities site; thus, the direct association of this zone with one or more bedrock faults is uncertain. No displacement of lithologic contacts and soil horizons could be detected in the fractured Quaternary deposits. The results of these investigations imply the absence of any appreciable late Quaternary faulting activity at the prospective surface-facilities site.

  2. Geologic map of Lake Mead and surrounding regions, southern Nevada, southwestern Utah, and northwestern Arizona

    USGS Publications Warehouse

    Felger, Tracey J.; Beard, Sue

    2010-01-01

    Regional stratigraphic units and structural features of the Lake Mead region are presented as a 1:250,000 scale map, and as a Geographic Information System database. The map, which was compiled from existing geologic maps of various scales, depicts geologic units, bedding and foliation attitudes, faults and folds. Units and structural features were generalized to highlight the regional stratigraphic and tectonic aspects of the geology of the Lake Mead region. This map was prepared in support of the papers presented in this volume, Special Paper 463, as well as to facilitate future investigations in the region. Stratigraphic units exposed within the area record 1800 million years of geologic history and include Proterozoic crystalline rocks, Paleozoic and Mesozoic sedimentary rocks, Mesozoic plutonic rocks, Cenozoic volcanic and intrusive rocks, sedimentary rocks and surfi cial deposits. Following passive margin sedimentation in the Paleozoic and Mesozoic, late Mesozoic (Sevier) thrusting and Late Cretaceous and early Tertiary compression produced major folding, reverse faulting, and thrust faulting in the Basin and Range, and resulted in regional uplift and monoclinal folding in the Colorado Plateau. Cenozoic extensional deformation, accompanied by sedimentation and volcanism, resulted in large-magnitude high- and low-angle normal faulting and strike-slip faulting in the Basin and Range; on the Colorado Plateau, extension produced north-trending high-angle normal faults. The latest history includes integration of the Colorado River system, dissection, development of alluvial fans, extensive pediment surfaces, and young faulting.

  3. Structure of the Mina Deflection in Mono Lake, CA: Inferences from Paleoseismology

    NASA Astrophysics Data System (ADS)

    Sangani, Radhika Chandrakant

    Walker Lane, a zone of transcurrent faulting along the Sierran range front, is dominated by NNW trending normal faults. Within the Walker Lane, the Mina Deflection is a region of structural anomaly, where a significant component of regional displacement and seismicity is transferred from NNW-trending faults to ENE-trending faults of the Excelsior-Coledale domain. Geographically, the western boundary of the Mina Deflection lies along the western margin of Mono Basin. This is kinematically implied by the distributed tensional and shear stress in the NNW- and ENE- trending faults of the region. Transfer of strain from the NNW-trending, right-lateral oblique slip faults to the ENE-trending, primarily left-lateral faults is poorly understood. The nature of this transfer is complicated by the presence of the young volcanics of Mono Lake at the stepover bend. I undertook detailed study of the sub-km scale geometry and kinematics of the stepover bend, and its relation to nearby recent magmatic fluid flow within the Mono Lake. Fault orientations, slip rates and ages of most recent events allow for understanding strain transfer between faulting and volcanism. The results suggest that strain is transferred from the outer arc to the inner arc of the stepover bend. Within the inner arc, the magmatism on Paoha Island seems to have arisen from a sill-like intrusion. Furthermore, strain transfer is accomplished through sets of faults and fissures that variously act as large-scale Reidel shears and tension gashes allowing the migration of magmatic fluids from depth.

  4. The 2011 Virginia M5.8 earthquake: Insights from seismic reflection imaging into the influence of older structures on eastern U.S. seismicity

    USGS Publications Warehouse

    Pratt, Thomas L.; Horton, J. Wright; Spear, D.B.; Gilmer, A.K.; McNamara, Daniel E.

    2015-01-01

    The Mineral, Virginia (USA), earthquake of 23 August 2011 occurred at 6– 8 km depth within the allochthonous terranes of the Appalachian Piedmont Province, rupturing an ~N36°E striking reverse fault dipping ~50° southeast. This study used the Interstate Highway 64 seismic refl ection profi le acquired ~6 km southwest of the hypocenter to examine the structural setting of the earthquake. The profi le shows that the 2011 earthquake and its aftershocks are almost entirely within the early Paleozoic Chopawamsic volcanic arc terrane, which is bounded by listric thrust faults dipping 30°–40° southeast that sole out into an ~2-km-thick, strongly refl ective zone at 7– 12 km depth. Refl ectors above and below the southward projection of the 2011 earthquake focal plane do not show evidence for large displacement, and the updip projection of the fault plane does not match either the location or trend of a previously mapped fault or lithologic boundary. The 2011 earthquake thus does not appear to be a simple reactivation of a known Paleozoic thrust fault or a major Mesozoic rift basin-boundary fault. The fault that ruptured appears to be a new fault, a fault with only minor displacement, or to not extend the ~3 km from the aftershock zone to the seismic profi le. Although the Paleozoic structures appear to infl uence the general distribution of seismicity in the area, Central Virginia seismic zone earthquakes have yet to be tied directly to specifi c fault systems mapped at the surface or imaged on seismic profiles.

  5. Transpressional Tectonics across the N. American-Caribbean Plate Boundary: Preliminary Results of a Multichannel Seismic Survey of Lake Azuei, Haiti.

    NASA Astrophysics Data System (ADS)

    Hearn, C. K.; Cormier, M. H.; Sloan, H.; Wattrus, N. J.; Boisson, D.; Brown, B.; Guerrier, K.; King, J. W.; Knotts, P.; Momplaisir, R.; Sorlien, C. C.; Stempel, R.; Symithe, S. J.; Ulysse, S. M. J.

    2017-12-01

    On January 12, 2010, a Mw 7.0 earthquake struck Haiti, killing over 200,000 people and devastating the Capital city of Port-au-Prince and the surrounding regions. It ruptured a previously unknown blind-thrust fault that abuts the Enriquillo Plantain Garden Fault (EPGF), one of two transform faults that define the North American-Caribbean plate boundary. That earthquake highlighted how transpression across this complex boundary is accommodated by slip partitioning into strike-slip and compressional structures. Because the seismic hazard is higher for a rupture on a reverse or oblique-slip fault than on a vertical strike-slip fault, the need to characterize the geometry of that fault system is clear. Lake Azuei overlies this plate boundary 60 km east of the 2010 epicenter. The lake's 23 km long axis trends NW-SE, parallel to the Haitian fold-and-thrust belt and oblique to the EPGF. This tectonic context makes it an ideal target for investigating the partitioning of plate motion between strike-slip and compressional structures. In January 2017, we acquired 222 km of multichannel seismic (MCS) profiles in the lake, largely concurrent with subbottom seismic (CHIRP) profiles. The MCS data were acquired using a high-frequency BubbleGun source and a 75 m-long, 24-channel streamer, achieving a 24 seismic fold with a penetration of 200 m below lakebed. With the goal of resolving tectonic structures in 3-D, survey lines were laid out in a grid with profiles spaced 1.2 km apart. Additional profiles were acquired at the SE end of the lake where most of the tectonic activity is presumably occurring. The co-located CHIRP and MCS profiles document the continuity of tectonic deformation between the surficial sediments and the deeper strata. Preliminary processing suggests that a SW-dipping blind thrust fault, expressed updip as a large monocline fold, may control the western edge of the lake. Gentle, young folds that protrude from the flat lakebed are also imaged with the CHIRP data. No obvious strike-slip faults are revealed in the MCS or CHIRP imagery. This result is consistent with a published analysis of GPS measurements that suggests oblique convergence on a south-dipping reverse fault along the southern shore of the lake.

  6. Geomorphic Evidence of a Complex late-Cenozoic Uplift and Lateral Displacement History Along the 2013 M7.7 Baluchistan, Pakistan Strike-slip Rupture

    NASA Astrophysics Data System (ADS)

    Harbor, D. J.; Barnhart, W. D.

    2017-12-01

    The 2013 M7.7 Baluchistan earthquake in southern Pakistan ruptured 200 km of the north-dipping Hoshab reverse fault with dominantly lateral motion, clearly at odds with the regional topography created by previous reverse fault offsets. The kinematics of this earthquake led to the hypotheses that the Hoshab fault may alternatively slip in a reverse and lateral sense (bi-modal slip), and that the southeast Makran rotates as a uniform block around the fault (ball-and-socket rotation). Here, we use river profiles, regional relief, fault locations, and detailed geomorphic maps derived from optical imagery and DEMs to evaluate the recent uplift history of this region. We find that late Cenozoic fault zone geomorphology supports a spatially complex transition from lateral-dominated offsets in the NE to reverse-dominated offsets in the SW. Additionally, fault zone geomorphology suggests that the location of the Hoshab fault itself may change through time, leading to active incision of footwall alluvial fans and pediments. Stream profiles likewise record incision patterns that vary along the Hoshab fault. Incision and deposition in the SW are illustrative of relative footwall subsidence, consistent with recent uplift on the Hoshab fault; whereas incision and deposition in the NE are illustrative of relative footwall uplift consistent with ongoing regional uplift due to ball-and-socket rotations and dominantly lateral offsets along the northern Hoshab fault. The largest streams also record multiple, discrete, base-level drops, including the presence of convex-up river profiles in the hanging wall of the Hoshab fault. These profiles along hanging wall streams highlight a complex spatial and temporal history of reverse offset, lateral channel offset, and base-level resetting in regional streams that are altogether inconsistent with the kinematics of the 2013 earthquake alone, but that are consistent with the bi-modal slip model. Additionally, the evidence of footwall uplift in the NE is consistent with regional uplift due to ball-and-socket rotations superimposed on the Hoshab fault. These results indicate that the styles of fault slip in the Makran change in time and space in response to ongoing convergence and block rotations despite negligible uplift during the 2013 earthquake.

  7. Structural Analysis and Evolution of the Kashan (Qom-Zefreh) Fault, Central Iran

    NASA Astrophysics Data System (ADS)

    Safaei, H.; Taheri, A.; Vaziri-Moghaddam, H.

    The main objectives of this research were to identify the geometry and structure of the Qom-Zefreh fault and to determine the extent of its effects on stratigraphy and facies changes. The identification of movement mechanism of major faults in basement, extent and time of their activities are important effects for evaluation of paleogeography of the Iran plateau. In the Orumieh-Dokhtar volcanic band, there are nearly parallel faults to the Zagros Zone. These faults were formed during closure of the Neothetys and collision of the Arabic plate with crust of Iran. The Qom-Zefreh fault is one of these faults, which is known as having four different trend faults. The result indicates that, this fault is not divided in four segments with different trends but the major trend is of Central section, which is the Kashan segment with AZ140 trend and other segments are just related faults. Thus the name of the Kashan fault is recommended for this fault. The mechanism of the Kashan fault is dextral transpression and other related faults in the region are in good correlation with fractures in a dextral transpression system. The stratigraphic studies conducted on the present formations show the effect of fault movements in Upper Cretaceous sedimentary basin. Lack of noticeable changes in Lower Cretaceous sediments and before that indicates that, the fault system activity has been started from the Upper Cretaceous. Thus, based upon these results, the effect of the Neothetys sea closure in this region could be considered at least from the Upper Cretaceous.

  8. A study of Quaternary structures in the Qom region, West Central Iran

    NASA Astrophysics Data System (ADS)

    Babaahmadi, A.; Safaei, H.; Yassaghi, A.; Vafa, H.; Naeimi, A.; Madanipour, S.; Ahmadi, M.

    2010-12-01

    West Central Iran comprises numerous Quaternary faults. Having either strike-slip or thrust mechanisms, these faults are potentially active and therefore capable of creating destructive earthquakes. In this paper, we use satellite images as well as field trips to identify these active faults in the Qom region. The Qom and Indes faults are the main NW-trending faults along which a Quaternary restraining step-over zone has formed. Kamarkuh, Mohsen Abad, and Ferdows anticlines are potentially active structures that formed in this restraining step-over zone. There are some thrusts and anticlines, such as the Alborz anticline and Alborz fault, which are parallel to strike-slip faults such as the Qom fault, indicating deformation partitioning in the area. In addition to NW-trending structures, there is an important NE-trending fault known as the Qomrud fault that has deformed Quaternary deposits and affected Kushk-e-Nosrat fault, Alborz anticline, and Qomrud River. The results of this study imply that the major Quaternary faults of West Central Iran and their restraining step-over zones are potentially active.

  9. The influence of a reverse-reactivated normal fault on natural fracture geometries and relative chronologies at Castle Cove, Otway Basin

    NASA Astrophysics Data System (ADS)

    Debenham, Natalie; King, Rosalind C.; Holford, Simon P.

    2018-07-01

    Despite the ubiquity of normal faults that have undergone compressional inversion, documentation of the structural history of natural fractures around these structures is limited. In this paper, we investigate the geometries and relative chronologies of natural fractures adjacent to a reverse-reactivated normal fault, the Castle Cove Fault in the Otway Basin, southeast Australia. Local variations in strain resulted in greater deformation within the fault damage zone closer to the fault. Structural mapping within the damage zone reveals a complex tectonic history recording both regional and local perturbations in stress and a total of 11 fracture sets were identified, with three sets geometrically related to the Castle Cove Fault. The remaining fracture sets formed in response to local stresses at Castle Cove. Rifting in the late Cretaceous resulted in normal movement of the Castle Cove Fault and associated rollover folding, and the formation of the largest fracture set. Reverse-reactivation of the fault and associated anticlinal folding occurred during late Miocene to Pliocene compression. Rollover folding may have provided structural traps if seals were not breached by fractures, however anticlinal folding likely post-dated the main episodes of hydrocarbon generation and migration in the region. This study highlights the need to conduct careful reconstruction of the structural histories of fault zones that experienced complex reactivation histories when attempting to define off-fault fluid flow properties.

  10. Active faulting, earthquakes, and restraining bend development near Kerman city in southeastern Iran

    NASA Astrophysics Data System (ADS)

    Walker, Richard Thomas; Talebian, Morteza; Saiffori, Sohei; Sloan, Robert Alastair; Rasheedi, Ali; MacBean, Natasha; Ghassemi, Abbas

    2010-08-01

    We provide descriptions of strike-slip and reverse faulting, active within the late Quaternary, in the vicinity of Kerman city in southeastern Iran. The faults accommodate north-south, right-lateral, shear between central Iran and the Dasht-e-Lut depression. The regions that we describe have been subject to numerous earthquakes in the historical and instrumental periods, and many of the faults that are documented in this paper constitute hazards for local populations, including the city of Kerman itself (population ˜200,000). Faults to the north and east of Kerman are associated with the transfer of slip from the Gowk to the Kuh Banan right-lateral faults across a 40 km-wide restraining bend. Faults south and west of the city are associated with oblique slip on the Mahan and Jorjafk systems. The patterns of faulting observed along the Mahan-Jorjafk system, the Gowk-Kuh Banan system, and also the Rafsanjan-Rayen system further to the south, appear to preserve different stages in the development of these oblique-slip fault systems. We suggest that the faulting evolves through time. Topography is initially generated on oblique slip faults (as is seen on the Jorjafk fault). The shortening component then migrates to reverse faults situated away from the high topography whereas strike-slip continues to be accommodated in the high, mountainous, regions (as is seen, for example, on the Rafsanjan fault). The reverse faults may then link together and eventually evolve into new, through-going, strike-slip faults in a process that appears to be occurring, at present, in the bend between the Gowk and Kuh Banan faults.

  11. Event sand layers suggesting the possibility of tsunami deposits identified in the upper Holocene sequence nearby the Kuwana fault, central Japan

    NASA Astrophysics Data System (ADS)

    Niwa, Y.; Sugai, T.; Matsuzaki, H.

    2012-12-01

    The Kuwana fault is located on coastal area situated on inner part of the Ise Bay, central Japan, which opens to the Nankai Trough. This reverse fault displaces a late Pleistocene terrace surface with 1 to 2 mm/yr of average vertical slip rate, and a topset of delta at several meters, respectively. And, this fault is estimated to have generated two historical earthquakes (the AD 745 Tempyo and the AD 1586 Tensho earthquakes). We identified two event sand layers from upper Holocene sequence on the upthrown side of the Kuwana fault. Upper Holocene deposits in this study area show prograding delta sequence; prodelta mud, delta front sandy silt to sand, and flood plain sand/mud, respectively, from lower to upper. Two sand layers intervene in delta front sandy silt layer, respectively. Lower sand layer (S1) shows upward-coarsening succession, whereas upper sand layer (S2) upward-fining succession. These sand layers contain sharp contact, rip-up crust, and shell fragment, indicating strong stream flow. Radiocarbon ages show that these strong stream flow events occurred between 3000 and 1600 years ago. Decreasing of salinity is estimated from decreasing trend of electrical conductivity (EC) across S1. Based on the possibility that decreasing of salinity can be occurred by shallowing of water depth caused by coseismic uplift, and that S1 can be correlated with previously known faulting event on the Kuwana fault, S1 is considered to be tsunami deposits caused by faulting on the Kuwana fault. On the other hand, S2, which cannot be correlated with previously known faulting events on the Kuwana fault, may be tsunami deposits by ocean-trench earthquake or storm deposits. In the presentation, we will discuss more detail correlation of these sand deposits not only in the upthrown side of the Kuwana fault, but also downthrown side of the fault.

  12. The southern Whidbey Island fault: An active structure in the Puget Lowland, Washington

    USGS Publications Warehouse

    Johnson, S.Y.; Potter, C.J.; Armentrout, J.M.; Miller, J.J.; Finn, C.; Weaver, C.S.

    1996-01-01

    Information from seismic-reflection profiles, outcrops, boreholes, and potential field surveys is used to interpret the structure and history of the southern Whidbey Island fault in the Puget Lowland of western Washington. This northwest-trending fault comprises a broad (as wide as 6-11 km), steep, northeast-dipping zone that includes several splays with inferred strike-slip, reverse, and thrust displacement. Transpressional deformation along the southern Whidbey Island fault is indicated by alongstrike variations in structural style and geometry, positive flower structure, local unconformities, out-of-plane displacements, and juxtaposition of correlative sedimentary units with different histories. The southern Whidbey Island fault represents a segment of a boundary between two major crustal blocks. The Cascade block to the northeast is floored by diverse assemblages of pre-Tertiary rocks; the Coast Range block to the southwest is floored by lower Eocene marine basaltic rocks of the Crescent Formation. The fault probably originated during the early Eocene as a dextral strike-slip fault along the eastern side of a continental-margin rift. Bending of the fault and transpressional deformation began during the late middle Eocene and continues to the present. Oblique convergence and clockwise rotation along the continental margin are the inferred driving forces for ongoing deformation. Evidence for Quaternary movement on the southern Whidbey Island fault includes (1) offset and disrupted upper Quaternary strata imaged on seismic-reflection profiles; (2) borehole data that suggests as much as 420 m of structural relief on the Tertiary-Quaternary boundary in the fault zone; (3) several meters of displacement along exposed faults in upper Quaternary sediments; (4) late Quaternary folds with limb dips of as much as ???9??; (5) large-scale liquefaction features in upper Quaternary sediments within the fault zone; and (6) minor historical seismicity. The southern Whidbey Island fault should be considered capable of generating large earthquakes (Ms ???7) and represents a potential seismic hazard to residents of the Puget Lowland.

  13. Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockli, Daniel

    Geothermal plays in extensional and transtensional tectonic environments have long been a major target in the exploration of geothermal resources and the Dixie Valley area has served as a classic natural laboratory for this type of geothermal plays. In recent years, the interactions between normal faults and strike-slip faults, acting either as strain relay zones have attracted significant interest in geothermal exploration as they commonly result in fault-controlled dilational corners with enhanced fracture permeability and thus have the potential to host blind geothermal prospects. Structural ambiguity, complications in fault linkage, etc. often make the selection for geothermal exploration drilling targetsmore » complicated and risky. Though simplistic, the three main ingredients of a viable utility-grade geothermal resource are heat, fluids, and permeability. Our new geological mapping and fault kinematic analysis derived a structural model suggest a two-stage structural evolution with (a) middle Miocene N -S trending normal faults (faults cutting across the modern range), - and tiling Olio-Miocene volcanic and sedimentary sequences (similar in style to East Range and S Stillwater Range). NE-trending range-front normal faulting initiated during the Pliocene and are both truncating N-S trending normal faults and reactivating some former normal faults in a right-lateral fashion. Thus the two main fundamental differences to previous structural models are (1) N-S trending faults are pre-existing middle Miocene normal faults and (2) these faults are reactivated in a right-later fashion (NOT left-lateral) and kinematically linked to the younger NE-trending range-bounding normal faults (Pliocene in age). More importantly, this study provides the first constraints on transient fluid flow through the novel application of apatite (U-Th)/He (AHe) and 4He/ 3He thermochronometry in the geothermally active Dixie Valley area in Nevada.« less

  14. Oak Ridge fault, Ventura fold belt, and the Sisar decollement, Ventura basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeats, R.S.; Huftile, G.J.; Grigsby, F.B.

    1988-12-01

    The rootless Ventura Avenue, San Miguelito, and Rincon anticlines (Ventura fold belt) in Pliocene -Pleistocene turbidites are fault-propagation folds related to south-dipping reverse faults rising from a decollement in Miocene shale. To the east, the Sulfur Mountain anticlinorium overlies and is cut by the Sisar, Big Canyon, and Lion south-dipping thrusts that merge downward into the Sisar decollement in lower Miocene shale. Shortening of the Miocene and younger sequence is {approximately} 3 km greater than that of underlying competent Paleogens strata in the Ventura fold belt and {approximately} 7 km greater farther east at Sulfur Mountain. Cross-section balancing requires thatmore » this difference be taken up by the Paleogene sequence at the Oak Ridge fault to the south. Convergence is northeast to north-northeast on the base of earthquake focal mechanisms, borehole breakouts, and piercing-point offest of the South Mountain seaknoll by the Oak Ridge fault. A northeast-trending line connecting the west end of Oak Ridge and the east end of Sisar fault separates an eastern domain where late Quaternary displacement is taken up entirely on the Oak Ridge fault and a western domain where displacement is transferred to the Sisar decollement and its overlying rootless folds. This implies that (1) the Oak Ridge fault near the coast presents as much seismic risk as it does farther east, despite negligible near-surface late Quaternary movement; (2) ground-rupture hazard is high for the Sisar fault set in the upper Ojai Valley; and (3) the decollement itself could produce an earthquake analogous to the 1987 Whittier Narrows event in Low Angeles.« less

  15. Managing the Risk of Triggered Seismicity: Can We Identify (and Avoid) Potentially Active Faults? - A Practical Case Study in Oklahoma

    NASA Astrophysics Data System (ADS)

    Zoback, M. D.; Alt, R. C., II; Walsh, F. R.; Walters, R. J.

    2014-12-01

    It is well known that throughout the central and eastern U.S. there has been a marked increase in seismicity since 2009, at least some of which appears to increased wastewater injection. No area has seen a greater increase in seismicity than Oklahoma. In this paper, we utilize newly available information on in situ stress orientation and relative magnitudes, the distribution of high volume injection wells and knowledge of the intervals used for waste water disposal to identify the factors potentially contributing to the occurrence of triggered seismicity. While there are a number of sites where in situ stress data has been successfully used to identify potentially active faults, we are investigating whether this methodology can be implemented throughout a state utilizing the types of information frequently available in areas of oil and gas development. As an initial test of this concept, we have been compiling stress orientation data from wells throughout Oklahoma provided by private industry. Over fifty new high quality data points, principally drilling-induced tensile fractures observed in image logs, result in a greatly improved understanding of the stress field in much of the state. A relatively uniform ENE direction of maximum compressive stress is observed, although stress orientations (and possibly relative stress magnitudes) differ in the southern and southwestern parts of the state. The proposed methodology can be tested in the area of the NE-trending fault that produced the M 5+ earthquakes in the Prague, OK sequence in 2011, and the Meers fault in southwestern OK, that produced a M~7 reverse faulting earthquake about 1100 years ago. This methodology can also be used to essentially rule out slip on other major faults in the area, such as the ~N-S trending Nemaha fault system. Additional factors leading to the occurrence of relatively large triggered earthquakes in Oklahoma are 1) the overall increase in injection volumes throughout the state in recent years (especially in some particular areas) 2) the injection of waste water in a geologic formation laying directly above crystalline basement rocks and 3) the widespread distribution of injection wells.

  16. How do horizontal, frictional discontinuities affect reverse fault-propagation folding?

    NASA Astrophysics Data System (ADS)

    Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio

    2017-09-01

    The development of new reverse faults and related folds is strongly controlled by the mechanical characteristics of the host rocks. In this study we analyze the impact of a specific kind of anisotropy, i.e. thin mechanical and frictional discontinuities, in affecting the development of reverse faults and of the associated folds using physical scaled models. We perform analog modeling introducing one or two initially horizontal, thin discontinuities above an initially blind fault dipping at 30° in one case, and 45° in another, and then compare the results with those obtained from a fully isotropic model. The experimental results show that the occurrence of thin discontinuities affects both the development and the propagation of new faults and the shape of the associated folds. New faults 1) accelerate or decelerate their propagation depending on the location of the tips with respect to the discontinuities, 2) cross the discontinuities at a characteristic angle (∼90°), and 3) produce folds with different shapes, resulting not only from the dip of the new faults but also from their non-linear propagation history. Our results may have direct impact on future kinematic models, especially those aimed to reconstruct the tectonic history of faults that developed in layered rocks or in regions affected by pre-existing faults.

  17. Triple Junctions, Boninites, and a New Microplate in the Western Pacific

    NASA Astrophysics Data System (ADS)

    Flores, J. A.; Casey, J.

    2017-12-01

    A new microplate has been discovered while trying to correlate melting processes in subduction zones that are forming boninites along the southern Mariana Plate. The westward boundary between the Mariana plate and the Philippine Sea plate is along a well-defined back-arc spreading center. The southern extension of this spreading center to the intersection with the Mariana Trench does not have a recognized morphological boundary. Previous work has hypothesized that subduction beneath a spreading center provides conditions required for boninite petrogenesis. Therefore, the exact location of the trench-trench-ridge triple junction needs to be found and correlated with known boninite locations. The triple junction was found using fault plane solutions to constrain the southern boundary of the two plates as it transects across the forearc. Normal faults suggest the triple junction to be at approximately 11.9N 144.1W; slip direction of reverse faults associated with the subducting plate are dominantly north-south west of this junction and northwest-southeast on the east side. While locating the southern boundary, the nucleation of a new spreading center that creates a ridge-ridge-ridge triple junction was found. The main spreading center trends mostly north-south until about 12.5N 143W, where two other spreading centers meet. The western spreading zone trends mostly east-west and seems to be in its infancy whereas there is another spreading center trending northwest-southeast. It is this last spreading center that forms the trench-ridge-trench triple junction. Discovery of these triple junctions isolates a piece of lithosphere that we interpret to be a new microplate that we name the Challenger Microplate.

  18. Fault-zone structure and weakening processes in basin-scale reverse faults: The Moonlight Fault Zone, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Alder, S.; Smith, S. A. F.; Scott, J. M.

    2016-10-01

    The >200 km long Moonlight Fault Zone (MFZ) in southern New Zealand was an Oligocene basin-bounding normal fault zone that reactivated in the Miocene as a high-angle reverse fault (present dip angle 65°-75°). Regional exhumation in the last c. 5 Ma has resulted in deep exposures of the MFZ that present an opportunity to study the structure and deformation processes that were active in a basin-scale reverse fault at basement depths. Syn-rift sediments are preserved only as thin fault-bound slivers. The hanging wall and footwall of the MFZ are mainly greenschist facies quartzofeldspathic schists that have a steeply-dipping (55°-75°) foliation subparallel to the main fault trace. In more fissile lithologies (e.g. greyschists), hanging-wall deformation occurred by the development of foliation-parallel breccia layers up to a few centimetres thick. Greyschists in the footwall deformed mainly by folding and formation of tabular, foliation-parallel breccias up to 1 m wide. Where the hanging-wall contains more competent lithologies (e.g. greenschist facies metabasite) it is laced with networks of pseudotachylyte that formed parallel to the host rock foliation in a damage zone extending up to 500 m from the main fault trace. The fault core contains an up to 20 m thick sequence of breccias, cataclasites and foliated cataclasites preserving evidence for the progressive development of interconnected networks of (partly authigenic) chlorite and muscovite. Deformation in the fault core occurred by cataclasis of quartz and albite, frictional sliding of chlorite and muscovite grains, and dissolution-precipitation. Combined with published friction and permeability data, our observations suggest that: 1) host rock lithology and anisotropy were the primary controls on the structure of the MFZ at basement depths and 2) high-angle reverse slip was facilitated by the low frictional strength of fault core materials. Restriction of pseudotachylyte networks to the hanging-wall of the MFZ further suggests that the wide, phyllosilicate-rich fault core acted as an efficient hydrological barrier, resulting in a relatively hydrous footwall and fault core but a relatively dry hanging-wall.

  19. Recent faulting in the Gulf of Santa Catalina: San Diego to Dana Point

    USGS Publications Warehouse

    Ryan, H.F.; Legg, M.R.; Conrad, J.E.; Sliter, R.W.

    2009-01-01

    We interpret seismic-reflection profiles to determine the location and offset mode of Quaternary offshore faults beneath the Gulf of Santa Catalina in the inner California Continental Borderland. These faults are primarily northwest-trending, right-lateral, strike-slip faults, and are in the offshore Rose Canyon-Newport-Inglewood, Coronado Bank, Palos Verdes, and San Diego Trough fault zones. In addition we describe a suite of faults imaged at the base of the continental slope between Dana Point and Del Mar, California. Our new interpretations are based on high-resolution, multichannel seismic (MCS), as well as very high resolution Huntec and GeoPulse seismic-reflection profiles collected by the U.S. Geological Survey from 1998 to 2000 and MCS data collected by WesternGeco in 1975 and 1981, which have recently been made publicly available. Between La Jolla and Newport Beach, California, the Rose Canyon and Newport-Inglewood fault zones are multistranded and generally underlie the shelf break. The Rose Canyon fault zone has a more northerly strike; a left bend in the fault zone is required to connect with the Newport-Inglewood fault zone. A prominent active anticline at mid-slope depths (300-400 m) is imaged seaward of where the Rose Canyon fault zone merges with the Newport-Inglewood fault zone. The Coronado Bank fault zone is a steeply dipping, northwest-trending zone consisting of multiple strands that are imaged from south of the U.S.-Mexico border to offshore of San Mateo Point. South of the La Jolla fan valley, the Coronado Bank fault zone is primarily transtensional; this section of the fault zone ends at the La Jolla fan valley in a series of horsetail splays. The northern section of the Coronado Bank fault zone is less well developed. North of the La Jolla fan valley, the Coronado Bank fault zone forms a positive flower structure that can be mapped at least as far north as Oceanside, a distance of ??35 km. However, north of Oceanside, the Coronado Bank fault zone is more discontinuous and in places has no strong physiographic expression. The San Diego Trough fault zone consists of one or two well-defined linear fault strands that cut through the center of the San Diego Trough and strike N30??W. North of the La Jolla fan valley, this fault zone steps to the west and is composed of up to four fault strands. At the base of the continental slope, faults that show recency of movement include the San Onofre fault and reverse, oblique-slip faulting associated with the San Mateo and Carlsbad faults. In addition, the low-angle Oceanside detachment fault is imaged beneath much of the continental slope, although reflectors associated with the detachment are more prominent in the area directly offshore of San Mateo Point. North of San Mateo Point, the Oceanside fault is imaged as a northeast-dipping detachment surface with prominent folds deforming hanging-wall strata. South of San Mateo point, reflectors associated with the Oceanside detachment are often discontinuous with variable dip as imaged in WesternGeco MCS data. Recent motion along the Oceanside detachment as a reactivated thrust fault appears to be limited primarily to the area between Dana and San Mateo Points. Farther south, offshore of Carlsbad, an additional area of folding associated with the Carlsbad fault also is imaged near the base of the slope. These folds coincide with the intersection of a narrow subsurface ridge that trends at a high angle to and intersects the base of the continental slope. The complex pattern of faulting observed along the base of the continental slope associated with the San Mateo, San Onofre, and Carlsbad fault zones may be the result of block rotation. We propose that the clockwise rotation of a small crustal block between the Newport-Inglewood-Rose Canyon and Coronado Bank fault zones accounts for the localized enhanced folding along the Gulf of Santa Catalina margin. Prominent subsurface basement ridges imaged offshore of Dana Point m

  20. Crustal structure of the northern margin of the eastern Tien Shan, China, and its tectonic implications for the 1906 M~7.7 Manas earthquake

    USGS Publications Warehouse

    Wang, Chun-Yong; Yang, Zhu-En; Luo, Hai; Mooney, W.D.

    2004-01-01

    The Tien Shan orogenic belt is the most active intracontinental mountain belt in the world. We describe an 86-km-long N–S-trending deep seismic reflection profile (which passes through the southern Junggar basin) located on the northeastern Tien Shan piedmont. Two distinct anticlines beneath the northern margin of the Tien Shan are clearly imaged in the seismic section. In addition, we have imaged two detachment surfaces at depths of ∼7 and ∼16 km. The detachment surface at 16-km depth corresponds to the main detachment that converges with the steep angle reverse fault (the Junggar Southern Marginal Fault) on which the 1906 M~7.7 Manas earthquake occurred. A 12–14-km-thick sedimentary basin is imaged beneath the southern Junggar basin near Shihezi. The crust beneath the northern margin of the Tien Shan is 50–55-km thick, and decreases beneath the Junggar basin to 40–45-km thick. The crustal image of the deep seismic reflection profile is consistent with models derived from nearby seismic refraction data and Bouguer gravity anomalies in the same region. The faulting associated with the 1906 Manas earthquake also fits within the structural framework imaged by the seismic reflection profile. Present-day micro-seismicity shows a hypocentral depth-distribution between 5 and 35 km, with a peak at 20 km. We hypothesize that the 1906 Manas earthquake initiated at a depth of ∼20 km and propagated upwards, causing northward slip on the sub-horizontal detachments beneath the southern Junggar basin. Thus, in accord with regional geological mapping, the current shortening within the eastern Tien Shan is accommodated both by high-angle reverse faulting and detachment faulting that can be clearly imaged at depth in seismic reflection data.

  1. Shallow-depth location and geometry of the Piedmont Reverse splay of the Hayward Fault, Oakland, California

    USGS Publications Warehouse

    Catchings, Rufus D.; Goldman, Mark R.; Trench, David; Buga, Michael; Chan, Joanne H.; Criley, Coyn J.; Strayer, Luther M.

    2017-04-18

    The Piedmont Thrust Fault, herein referred to as the Piedmont Reverse Fault (PRF), is a splay of the Hayward Fault that trends through a highly populated area of the City of Oakland, California (fig. 1A). Although the PRF is unlikely to generate a large-magnitude earthquake, slip on the PRF or high-amplitude seismic energy traveling along the PRF may cause considerable damage during a large earthquake on the Hayward Fault. Thus, it is important to determine the exact location, geometry (particularly dip), and lateral extent of the PRF within the densely populated Oakland area. In the near surface, the PRF juxtaposes Late Cretaceous sandstone (of the Franciscan Complex Novato Quarry terrane of Blake and others, 1984) and an older Pleistocene alluvial fan unit along much of its mapped length (fig. 1B; Graymer and others, 1995). The strata of the Novato Quarry unit vary greatly in strike (NW, NE, and E), dip direction (NE, SW, E, and NW), dip angle (15° to 85°), and lithology (shale and sandstone), and the unit has been intruded by quartz diorite in places. Thus, it is difficult to infer the structure of the fault, particularly at depth, with conventional seismic reflection imaging methods. To better determine the location and shallow-depth geometry of the PRF, we used high-resolution seismic imaging methods described by Catchings and others (2014). These methods involve the use of coincident P-wave (compressional wave) and S-wave (shear wave) refraction tomography and reflection data, from which tomographic models of P- and S-wave velocity and P-wave reflection images are developed. In addition, the coincident P-wave velocity (VP) and S-wave velocity (VS) data are used to develop tomographic models of VP/VS ratios and Poisson’s ratio, which are sensitive to shallow-depth faulting and groundwater. In this study, we also compare measurements of Swave velocities determined from surface waves with those determined from refraction tomography. We use the combination of seismic methods to infer the fault location, dip, and the National Earthquake Hazards Reduction Program (NEHRP) site classification along the seismic profile. Our seismic study is a smaller part of a larger study of the PRF by Trench and others (2016).

  2. Deformation during terrane accretion in the Saint Elias orogen, Alaska

    USGS Publications Warehouse

    Bruhn, R.L.; Pavlis, T.L.; Plafker, G.; Serpa, L.

    2004-01-01

    The Saint Elias orogen of southern Alaska and adjacent Canada is a complex belt of mountains formed by collision and accretion of the Yakutat terrane into the transition zone from transform faulting to subduction in the northeast Pacific. The orogen is an active analog for tectonic processes that formed much of the North American Cordillera, and is also an important site to study (1) the relationships between climate and tectonics, and (2) structures that generate large- to great-magnitude earthquakes. The Yakutat terrane is a fragment of the North American plate margin that is partly subducted beneath and partly accreted to the continental margin of southern Alaska. Interaction between the Yakutat terrane and the North American and Pacific plates causes significant differences in the style of deformation within the terrane. Deformation in the eastern part of the terrane is caused by strike-slip faulting along the Fairweather transform fault and by reverse faulting beneath the coastal mountains, but there is little deformation immediately offshore. The central part of the orogen is marked by thrusting of the Yakutat terrane beneath the North American plate along the Chugach-Saint Elias fault and development of a wide, thin-skinned fold-and-thrust belt. Strike-slip faulting in this segment may he localized in the hanging wall of the Chugach-Saint Elias fault, or dissipated by thrust faulting beneath a north-northeast-trending belt of active deformation that cuts obliquely across the eastern end of the fold-and-thrust belt. Superimposed folds with complex shapes and plunging hinge lines accommodate horizontal shortening and extension in the western part of the orogen, where the sedimentary cover of the Yakutat terrane is accreted into the upper plate of the Aleutian subduction zone. These three structural segments are separated by transverse tectonic boundaries that cut across the Yakutat terrane and also coincide with the courses of piedmont glaciers that flow from the topographic backbone of the Saint Elias Mountains onto the coastal plain. The Malaspina fault-Pamplona structural zone separates the eastern and central parts of the orogen and is marked by reverse faulting and folding. Onshore, most of this boundary is buried beneath the western or "Agassiz" lobe of the Malaspina piedmont glacier. The boundary between the central fold-and-thrust belt and western zone of superimposed folding lies beneath the middle and lower course of the Bering piedmont glacier. ?? 2004 Geological Society of America.

  3. Relationships among in-situ stress, fractures and faults, and fluid flow: Monterey formation, Santa Maria Basin, California

    USGS Publications Warehouse

    Finkbeiner, T.; Barton, C.A.; Zoback, M.D.

    1997-01-01

    We used borehole televiewer (BHTV) data from four wells within the onshore and offshore Santa Maria basin, California, to investigate the relationships among fracture distribution, orientation, and variation with depth and in-situ stress. Our analysis of stress-induced well-bore breakouts shows a uniform northeast maximum horizontal stress (SH max) orientation in each well. This direction is consistent with the SH max direction determined from well-bore breakouts in other wells in this region, the northwest trend of active fold axes, and kinematic inversion of nearby earthquake focal plane mechanisms. In contrast to the uniformity of the stress field, fracture orientation, dip, and frequency vary considerably from well to well and within each well. With depth, fractures can be divided into distinct subsets on the basis of fracture frequency and orientation, which correlate with changes of lithology and physical properties. Although factors such as tectonic history, diagenesis, and structural variations obviously have influenced fracture distribution, integration of the in-situ stress and fracture data sets indicates that many of the fractures, faults, and bedding planes are active, small-scale strike-slip and reverse faults in the current northeast-trending transpressive stress field. In fact, we observed local breakout rotations in the wells, providing kinematic evidence for recent shear motion along fracture and bedding-parallel planes. Only in the onshore well do steeply dipping fractures strike parallel to SHmax. Drill-stem tests from two of the offshore wells indicate that formation permeability is greatly enhanced in sections of the wells where fractures are favorably oriented for shear failure in the modern stress field. Thus, relatively small-scale active faults provide important conduits along which fluids migrate.

  4. Structural architecture and tectonic evolution of the Maghara inverted basin, Northern Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Moustafa, Adel R.

    2014-05-01

    Large NE-SW oriented asymmetric inversion anticlines bounded on their southeastern sides by reverse faults affect the exposed Mesozoic and Cenozoic sedimentary rocks of the Maghara area (northern Sinai). Seismic data indicate an earlier Jurassic rifting phase and surface structures indicate Late Cretaceous-Early Tertiary inversion phase. The geometry of the early extensional fault system clearly affected the sense of slip of the inverted faults and the geometry of the inversion anticlines. Rift-parallel fault segments were reactivated by reverse slip whereas rift-oblique fault segments were reactivated as oblique-slip faults or lateral/oblique ramps. New syn-inversion faults include two short conjugate strike-slip sets dissecting the forelimbs of inversion anticlines and the inverted faults as well as a set of transverse normal faults dissecting the backlimbs. Small anticline-syncline fold pairs ornamenting the steep flanks of the inversion anticlines are located at the transfer zones between en echelon segments of the inverted faults.

  5. Spatial and Temporal Variations in Slip Partitioning During Oblique Convergence Experiments

    NASA Astrophysics Data System (ADS)

    Beyer, J. L.; Cooke, M. L.; Toeneboehn, K.

    2017-12-01

    Physical experiments of oblique convergence in wet kaolin demonstrate the development of slip partitioning, where two faults accommodate strain via different slip vectors. In these experiments, the second fault forms after the development of the first fault. As one strain component is relieved by one fault, the local stress field then favors the development of a second fault with different slip sense. A suite of physical experiments reveals three styles of slip partitioning development controlled by the convergence angle and presence of a pre-existing fault. In experiments with low convergence angles, strike-slip faults grow prior to reverse faults (Type 1) regardless of whether the fault is precut or not. In experiments with moderate convergence angles, slip partitioning is dominantly controlled by the presence of a pre-existing fault. In all experiments, the primarily reverse fault forms first. Slip partitioning then develops with the initiation of strike-slip along the precut fault (Type 2) or growth of a secondary reverse fault where the first fault is steepest. Subsequently, the slip on the first fault transitions to primarily strike-slip (Type 3). Slip rates and rakes along the slip partitioned faults for both precut and uncut experiments vary temporally, suggesting that faults in these slip-partitioned systems are constantly adapting to the conditions produced by slip along nearby faults in the system. While physical experiments show the evolution of slip partitioning, numerical simulations of the experiments provide information about both the stress and strain fields, which can be used to compute the full work budget, providing insight into the mechanisms that drive slip partitioning. Preliminary simulations of precut experiments show that strain energy density (internal work) can be used to predict fault growth, highlighting where fault growth can reduce off-fault deformation in the physical experiments. In numerical simulations of uncut experiments with a first non-planar oblique slip fault, strain energy density is greatest where the first fault is steepest, as less convergence is accommodated along this portion of the fault. The addition of a second slip-partitioning fault to the system decreases external work indicating that these faults increase the mechanical efficiency of the system.

  6. Style and rate of quaternary deformation of the Hosgri Fault Zone, offshore south-central coastal California

    USGS Publications Warehouse

    Hanson, Kathryn L.; Lettis, William R.; McLaren, Marcia; Savage, William U.; Hall, N. Timothy; Keller, Mararget A.

    2004-01-01

    The Hosgri Fault Zone is the southernmost component of a complex system of right-slip faults in south-central coastal California that includes the San Gregorio, Sur, and San Simeon Faults. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including shallow high-resolution and deep penetration seismic reflection data; geologic and geomorphic data along the Hosgri and San Simeon Fault Zones and the intervening San Simeon/Hosgri pull-apart basin; the distribution and nature of near-coast seismicity; regional tectonic kinematics; and comparison of the Hosgri Fault Zone with worldwide strike-slip, oblique-slip, and reverse-slip fault zones. These data show that the modern Hosgri Fault Zone is a convergent right-slip (transpressional) fault having a late Quaternary slip rate of 1 to 3 mm/yr. Evidence supporting predominantly strike-slip deformation includes (1) a long, narrow, linear zone of faulting and associated deformation; (2) the presence of asymmetric flower structures; (3) kinematically consistent localized extensional and compressional deformation at releasing and restraining bends or steps, respectively, in the fault zone; (4) changes in the sense and magnitude of vertical separation both along trend of the fault zone and vertically within the fault zone; (5) strike-slip focal mechanisms along the fault trace; (6) a distribution of seismicity that delineates a high-angle fault extending through the seismogenic crust; (7) high ratios of lateral to vertical slip along the fault zone; and (8) the separation by the fault of two tectonic domains (offshore Santa Maria Basin, onshore Los Osos domain) that are undergoing contrasting styles of deformation and orientations of crustal shortening. The convergent component of slip is evidenced by the deformation of the early-late Pliocene unconformity. In characterizing the style of faulting along the Hosgri Fault Zone, we assessed alternative tectonic models by evaluating (1) the cumulative effects of multiple deformational episodes that can produce complex, difficult-to-interpret fault geometries, patterns, and senses of displacement; (2) the difficult imaging of high-angle fault planes and horizontal fault separations on seismic reflection data; and (3) the effects of strain partitioning that yield coeval strike-slip faults and associated fold and thrust belts.

  7. Deformational History and Rotation of the Leeward Antilles Island Arc: Results of the BOLIVAR Project

    NASA Astrophysics Data System (ADS)

    Beardsley, A. G.; Avé Lallemant, H. G.

    2005-12-01

    The Leeward Antilles island arc is located offshore northern Venezuela and includes Aruba, Curaçao, and Bonaire (ABCs). The ABCs trend WNW-ESE parallel to the obliquely convergent Caribbean-South American plate boundary zone. Field work on the ABCs has provided new structural data supporting a minimum of 90° clockwise rotation of the islands within the diffuse plate boundary zone. Analysis of faulting, bedding, and cleavages suggest three phases of deformation (D1-D3). The oldest phase of deformation, D1, is characterized by northeast trending normal faults, northwest trending fold axes and cleavages, and northeast striking dextral strike-slip faults. East striking sinstral strike-slip faults are rare. The second phase of deformation, D2, is represented by west-northwest trending thrust faults, north-northeast striking normal faults, northwest trending dextral strike-slip faults, and northeast striking sinstral strike-slip faults. Finally, the youngest phase of deformation, D3, is characterized by northeast striking thrust faults, northwest striking normal faults, east-west dextral strike-slip faults, and north-northwest sinstral strike-slip faults. Quartz and calcite veins were also studied on the ABCs. Cross-cutting relationships in outcrop suggest three phases of veining (V1-V3). The oldest veins, V1, trend northeastward; V2 veins trend northward; and the youngest veins, V3, trend northwestward. Additionally, joints were measured on the ABCs. On Bonaire and Curaçao, joints trend approximately northeast while joints on Aruba are almost random with a slight preference for west-northwest. Fluid inclusion analysis of quartz and calcite veins provides additional information about the pressure and temperature conditions of the deformation phases. Preliminary results from the earliest veins (V1) show a single deformational event on Aruba and Bonaire. On Bonaire, they exhibit both hydrostatic and lithostatic pressure conditions. This new data supports three stages of deformation accompanied by rotation of the ABCs. The structures identified suggest a clockwise rotation of the principal stress orientation since the Late Cretaceous. D1 deformation and rotation occurred at the southeastern Caribbean plate margin beginning approximately 73 Ma on Aruba. Arc-parallel strike-slip motion rotated the islands clockwise 90° Internal deformation features of the island blocks are consistent with an obliquely convergent plate boundary. D2 deformation is characterized by clockwise block rotation facilitated by dextral strike-slip faults defining the northern and southern boundaries of the diffuse plate boundary zone. Most likely, D2 correlates to the Eocene change in plate motions due to convergence between North and South America, approximately 55 Ma. The youngest phase of deformation and rotation, D3, happens along the arcuate South Caribbean Deformed Belt. Since approximately 25 Ma, rotation and development of northwest trending pull-apart basins between the ABCs progressed. Northeastward motion of the Maracaibo block may also contribute to recent rotation of the island arc.

  8. Slow NE-SW to NNE-SSW extension in the Pasto Ventura region of the southern Puna Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, R.; Schoenbohm, L. M.; Cosca, M. A.

    2011-12-01

    Recent extension on the Puna Plateau of NW Argentina has been linked to lithospheric foundering, gravitational spreading, and edge effects. However, the timing, kinematics and rate of extension are poorly constrained. In the Pasto Ventura region, along the southern margin of the plateau, we map out two different groups of faults: (1) recently formed Quaternary normal faults and strike-slip faults; and (2) pre-Quaternary reverse faults reactivated in the Quaternary. The faults in Group (1) are relatively short (~1-2 km) normal and strike-slip faults that offset Quaternary geomorphic features. The orientation of these faults indicates NE-SW to NNE-SSW extension. The faults in Group (2) bound exposures of basement rock and are associated with basaltic cinder cones and lava flows. Previous studies indicate they were reverse faults which have been reactivated as normal faults. We applied kinematic GPS surveying and 40Ar/39Ar dating of three cinder cones displaced by two of Group-(2) faults. Kinematic analysis on vertical and horizontal offsets obtained by GPS survey shows that the one fault is now undergoing NE-SW to NNE-SSW extension, consistent with Group (1) fault kinematics. A cinder cone has been displaced 34-40 meters horizontally along this fault, yielding a slow extension rate of 0.02-0.04 mm/yr since 0.8-0.5 Ma. The shift from contraction to extension in the Pasto Ventura region is estimated to be between 7.8 and 0.5 Ma, but more likely between 7.8 and 4 Ma. A regional compilation of kinematics on the southern plateau from this study and existing data, although sparse, shows two spatial groups: the extension directions are N-S to NE-SW south of 26°S latitude, while they are NW-SE to NNW-SSW north of 26°S latitude. Mafic volcanism, thought to indicate the timing of the onset of extension in the Puna, shows a similar pattern, with the oldest ages (up to 7.3 Ma) clustered near 26°S latitude, becoming younger to both the north and the south. Kinematic and geochronologic data from the Pasto Ventura region are consistent with this trend. The pattern of ages of mafic volcanism and the fault kinematics imply that the removal of the lower lithosphere beneath the Puna Plateau occurred through the formation of a Rayleigh-Taylor type instability, or "driplet," located around 26°S at about 7.3 Ma. This driplet is probably relatively small since the extension rate observed on the surface is very slow. However, the pattern of extension directions indicates that the "driplet" located around 26°S was probably not perfectly cylindrical and/or the surficial extension pattern is also affected by other drivers, such as gravitational collapse, back-arc extension or other "driplets" located in the other regions.

  9. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake

    USGS Publications Warehouse

    Barnhart, William; Briggs, Richard; Reitman, Nadine G.; Gold, Ryan D.; Hayes, Gavin

    2015-01-01

    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip – normal, reverse, or strike-slip – until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200+ km 200+km"> 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  10. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake

    NASA Astrophysics Data System (ADS)

    Barnhart, W. D.; Briggs, R. W.; Reitman, N. G.; Gold, R. D.; Hayes, G. P.

    2015-06-01

    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip - normal, reverse, or strike-slip - until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200 + km 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  11. Tectonic controls on the hydrocarbon habitats of the Barito, Kutei, and Tarakan Basins, Eastern Kalimantan, Indonesia: major dissimilarities in adjoining basins

    NASA Astrophysics Data System (ADS)

    Satyana, Awang Harun; Nugroho, Djoko; Surantoko, Imanhardjo

    1999-04-01

    The Barito, Kutei, and Tarakan Basins are located in the eastern half of Kalimantan (Borneo) Island, Indonesia. The basins are distinguished by their different tectonic styles during Tertiary and Pleistocene times. In the Barito Basin, the deformation is a consequence of two distinct, separate, regimes. Firstly, an initial transtensional regime during which sinistral shear resulted in the formation of a series of wrench-related rifts, and secondly, a subsequent transpressional regime involving convergent uplift, reactivating old structures and resulting in wrenching, reverse faulting and folding within the basin. Presently, NNE-SSW and E-W trending structures are concentrated in the northeastern and northern parts of the basin, respectively. In the northeastern part, the structures become increasingly imbricated towards the Meratus Mountains and involve the basement. The western and southern parts of the Barito Basin are only weakly deformed. In the Kutei Basin, the present day dominant structural trend is a series of tightly folded, NNE-SSW trending anticlines and synclines forming the Samarinda Anticlinorium which is dominant in the eastern part of the basin. Deformation is less intense offshore. Middle Miocene to Recent structural growth is suggested by depositional thinning over the structures. The western basin area is uplifted, large structures are evident in several places. The origin of the Kutei structures is still in question and proposed mechanisms include vertical diapirism, gravitational gliding, inversion through regional wrenching, detachment folds over inverted structures, and inverted delta growth-fault system. In the Tarakan Basin, the present structural grain is typified by NNE-SSW normal faults which are mostly developed in the marginal and offshore areas. These structures formed on older NW-SE trending folds and are normal to the direction of the basin sedimentary thickening suggesting that they developed contemporaneously with deposition, as growth-faults, and may be the direct result of sedimentary loading by successive deltaic deposits. Older structures were formed in the onshore basin, characterized by the N-S trending folds resulting from the collision of the Central Range terranes to the west of the basin. Hydrocarbon accumulations in the three basins are strongly controlled by their tectonic styles. In the Barito Basin, all fields are located in west-verging faulted anticlines. The history of tectonic inversion and convergent uplift of the Meratus Mountains, isostatically, have caused the generation, migration, and trapping of hydrocarbons. In the Kutei Basin, the onshore Samarinda Anticlinorium and the offshore Mahakam Foldbelt are prolific petroleum provinces, within which most Indonesian giant fields are located. In the offshore, very gentle folds also play a role as hydrocarbon traps, in association with stratigraphic entrapment. These structures have recently become primary targets for exploratory drilling. In the Tarakan Basin, the prominent NW-SE anticlines, fragmented by NE-SW growth-faults, have proved to be petroleum traps. The main producing pools are located in the downthrown blocks of the faults. Diverse tectonic styles within the producing basins of Kalimantan compel separate exploration approaches to each basin. To discover new opportunities in exploration, it is important to understand the structural evolution of neighbouring basins.

  12. Structure, Quaternary history, and general geology of the Corral Canyon area, Los Angeles County, California

    USGS Publications Warehouse

    Yerkes, R.F.; Wentworth, Carl M.

    1965-01-01

    The Corral Canyon nuclear power plant site consists of about 305 acres near the mouth of Corral Canyon in the central Santa Monica Mountains; it is located on an east-trending segment of the Pacific Coast between Point Dume and Malibu Canyon, about 28 miles due west of Los Angeles. The Santa Monica Mountains are the southwesternmost mainland part of the Transverse Ranges province, the east-trending features of which transect the otherwise relatively uniform northwesterly trend of the geomorphic and geologic features of coastal California. The south margin of the Transverse Ranges is marked by the Santa Monica fault system, which extends eastward near the 34th parallel for at least 145 miles from near Santa Cruz Island to the San Andreas fault zone. In the central Santa Monica Mountains area the Santa Monica fault system includes the Malibu Coast fault and Malibu Coast zone of deformation on the north; from the south it includes an inferred fault--the Anacapa fault--considered to follow an east-trending topographic escarpmemt on the sea floor about 5 miles south of the Malibu Coast fault. The low-lying terrain south of the fault system, including the Los Angeles basin and the largely submerged Continental Borderland offshore, are dominated by northwest-trending structural features. The Malibu Coat zone is a wide, east-trending band of asymmetrically folded, sheared, and faulted bedrock that extends for more than 20 miles along the north margin of the Santa Monica fault system west of Santa Monica. Near the north margin of the Malibu Coast zone the north-dipping, east-trending Malibu Coast fault juxtaposes unlike, in part contemporaneous sedimentary rock sections; it is inferred to be the near-surface expression of a major crustal boundary between completely unrelated basement rocks. Comparison of contemporaneous structural features and stratigraphic sections (Late Cretaceous to middle Miocene sedimentary, rocks and middle Miocene volcanic and intrusive igneous rocks on the north; middle and upper Miocene sedimentary and middle Miocene volcanic rocks on the south) across the fault demonstrates that neither strike slip of less than 25 miles nor high-angle dip slip can account for this juxtaposition. Instead, the Malibu Coast fault is inferred to have been the locus of large-magnitude, north-south oriented, horizontal shortening (north, or upper, block thrust over south block). This movement occurred at or near the northern boundary of the Continental Borderland, the eastern boundary of which is inferred to be the northwest-trending known-active Newport-Inglewood zone of en echelon right lateral strike-slip faults in the western Los Angeles basin. Local structural features and their relation to regional features, such as those in the Malibu Coast zone, form the basis for the interpretation that the Malibu Coast fault has acted chiefly as a thrust fault. Within the Malibu Coast zone, on both sides of the Malibu Coast fault, structural features in rocks that range in age from Late Cretaceous to late Miocene are remarkably uniform in orientation. The predominant trend of bedding, axial surfaces of numerous asymmetric folds, locally pervasive shear surfaces, and faults is approximately east-west and their predominant dip is northward.. The axes of the folds plunge gently east or west. Evidence from faults and shears within the zone indicates that relative movement on most of these was north (upper) over south. Beyond the Malibu Coast zone to the north and south the rocks entirely lack the asymmetric folds, overturned beds, and the locally abundant shears that characterize the rocks within the zone; these rocks were therefore not subjected to the same deforming forces that existed near the Malibu Coast fault. Movement on the Malibu Coast fault and deformation in the Malibu Coast zone occurred chiefly during the interval between late Miocene and late Pleistocene time. The youngest-known faulting in the Malibu Coast zone is late Pl

  13. Relationships between tectonism, volcano-tectonism and volcanism: the Ischia island (Italy) case.

    NASA Astrophysics Data System (ADS)

    Marotta, E.; de Vita, S.; Orsi, G.; Sansivero, F.

    2005-12-01

    The resurgent calderas of Ischia, Campi Flegrei and Pantelleria are characterized by differentially displaced blocks, and distribution of later eruption vents in a well defined sector of the resurgent area. These features suggest a simple shearing block resurgence mechanism. Moreover, the studies carried out on Ischia and Campi Flegrei evidenced a very complex structural pattern due to deformation related to the local stress regime induced by magmatism and volcanism and also to reactivation of regional structures. In order to better define the relationships among tectonic, volcano-tectonic and caldera resurgence mechanism, a structural study has been carried out at Ischia, where the Mt. Epomeo has been uplifted of about 900 m in the past 30 ka. The measures taken on 1,400 planar surfaces (faults, joints and fracture cleavages) show that the resurgent area is composed of differentially displaced blocks whose uplifting is maximum for the Mt. Epomeo and decreases southeastward. The resurgent area has a poligonal shape resulting from the reactivation of regional faults and by the activation of faults directly related to volcano-tectonism. The limit of the resurgent area is not defined towards the north, as beach deposits displaced at variable elevation by E-W and NW-SE trending faults, are exposed along the coastline. The western sector is bordered by inward-dipping, high-angle reverse faults, whose directions vary from N40E to NS and N50W from NW to SW of the block, testifying a compressional stress regime active in this area. These features are cut by late outward-dipping normal faults due to gravitational readjustment of the slopes. Vertical faults border the block at NE ad SW with right transtensive and left transpressive movements, respectively. The area located to the east of the most uplifted block, characterized by a tensile stress regime, has been deformed by N-S, N40-70E and N15W trending normal faults, with maximum elongation direction along N50W. The results of our study and the volcanological data of the past 3 ka, suggest that the eastern part of the resurgent block is the area with highest probability of vent opening in case of renewal of volcanism. Occurrence of landslides just before and after eruptions, suggest that resurgence occurs through discontinuous vertical movements which likely trigger the volcanic activity.

  14. The 29 July 2014 (Mw 6.4) Southern Veracruz, Mexico Earthquake: Scenary Previous to Its Occurrence.

    NASA Astrophysics Data System (ADS)

    Yamamoto, J.

    2014-12-01

    On 29 July 2014 (10:46 UTC) a magnitude 6.4 (Mw) earthquake occurred at the southern Veracruz, Mexico region. The epicenter was preliminary located at 17.70° N and 95.63° W. It was a normal fault event with the slip on a fault that trend NNW and a focus approximately 117 km below the surface of the Gulf of Mexico costal plane. The earthquake was widely felt through centro and southern Mexico. In Oaxaca City 133 km to the south a person die of a hearth attack. No damages were reported. Most prominent moderate-sized earthquakes occurring in the southern Veracruz region since 1959 has been concentrated along two well defined seismic belts. One belt runs off the coast following nearly its contour. Here the earthquakes are shallow depth and mostly show a reverse fault mechanism. This belt of seismicity begins at the Los Tuxtlas volcanic field. Another seismic belt is located inland 70 km to the west. Here most earthquakes are of intermediate-depth (108-154 km) focus and normal faulting mechanism. The July 2014 earthquake is located near to this second seismic belt. In the present paper we discuss, within the regional geotectonic framework, the location and some aspects of the rupture process of the July 2014 earthquake.

  15. Uranophane at Silver Cliff mine, Lusk, Wyoming

    USGS Publications Warehouse

    Wilmarth, Verl R.; Johnson, D.H.

    1954-01-01

    The uranium deposit at the Silver Cliff mine near Lusk, Wyo., consists primarily of uranophane which occurs as fracture fillings and small replacement pockets in faulted and fractured calcareous sandstone of Cambrian (?) age. The country rock in the vicinity of the mine is schist of pre-Cambrian age intruded by pegmatite dikes and is unconformably overlain by almost horizontal sandstone of Cambrian(?) age. The mine is on the southern end of the Lusk Dome, a local structure probably related to the Hartville uplift. In the immediate vicinity of the mine, the dome is cut by the Silver Cliff fault, a north-trending high-angle reverse fault about 1,200 feet in length with a stratigraphic throw of 70 feet. Uranophane, metatorbernite, pitchblende, calcite, native silver, native copper, chalcocite, azurite, malachite, chrysocolla, and cuprite have been deposited in fractured sandstone. The fault was probably mineralized throughout its length, but because of erosion, the mineralized zone is discontinuous. The principal ore body is about 800 feet long. The width and depth of the mineralized zone are not accurately known but are at least 20 feet and 60 feet respectively. The uranium content of material sampled in the mine ranges from 0.001 to 0.23 percent uranium, whereas dump samples range from 0.076 to 3.39 percent uranium.

  16. The August 1st, 2014 ( M w 5.3) Moderate Earthquake: Evidence for an Active Thrust Fault in the Bay of Algiers (Algeria)

    NASA Astrophysics Data System (ADS)

    Benfedda, A.; Abbes, K.; Bouziane, D.; Bouhadad, Y.; Slimani, A.; Larbes, S.; Haddouche, D.; Bezzeghoud, M.

    2017-03-01

    On August 1st, 2014, a moderate-sized earthquake struck the capital city of Algiers at 05:11:17.6 (GMT+1). The earthquake caused the death of six peoples and injured 420, mainly following a panic movement among the population. Following the main shock, we surveyed the aftershock activity using a portable seismological network (short period), installed from August 2nd, 2014 to August 21st, 2015. In this work, first, we determined the main shock epicenter using the accelerograms recorded by the Algerian accelerograph network (under the coordination of the National Center of Applied Research in Earthquake Engineering-CGS). We calculated the focal mechanism of the main shock, using the inversion of the accelerograph waveforms in displacement that provides a reverse fault with a slight right-lateral component of slip and a compression axis striking NNW-SSE. The obtained scalar seismic moment ( M o = 1.25 × 1017 Nm) corresponds to a moment magnitude of M w = 5.3. Second, the analysis of the obtained aftershock swarm, of the survey, suggests an offshore ENE-WSW, trending and NNW dipping, causative active fault in the bay of Algiers, which may likely correspond to an offshore unknown segment of the Sahel active fault.

  17. Architecture of buried reverse fault zone in the sedimentary basin: A case study from the Hong-Che Fault Zone of the Junggar Basin

    NASA Astrophysics Data System (ADS)

    Liu, Yin; Wu, Kongyou; Wang, Xi; Liu, Bo; Guo, Jianxun; Du, Yannan

    2017-12-01

    It is widely accepted that the faults can act as the conduits or the barrier for oil and gas migration. Years of studies suggested that the internal architecture of a fault zone is complicated and composed of distinct components with different physical features, which can highly influence the migration of oil and gas along the fault. The field observation is the most useful methods of observing the fault zone architecture, however, in the petroleum exploration, what should be concerned is the buried faults in the sedimentary basin. Meanwhile, most of the studies put more attention on the strike-slip or normal faults, but the architecture of the reverse faults attracts less attention. In order to solve these questions, the Hong-Che Fault Zone in the northwest margin of the Junggar Basin, Xinjiang Province, is chosen for an example. Combining with the seismic data, well logs and drill core data, we put forward a comprehensive method to recognize the internal architectures of buried faults. High-precision seismic data reflect that the fault zone shows up as a disturbed seismic reflection belt. Four types of well logs, which are sensitive to the fractures, and a comprehensive discriminated parameter, named fault zone index are used in identifying the fault zone architecture. Drill core provides a direct way to identify different components of the fault zone, the fault core is composed of breccia, gouge, and serpentinized or foliated fault rocks and the damage zone develops multiphase of fractures, which are usually cemented. Based on the recognition results, we found that there is an obvious positive relationship between the width of the fault zone and the displacement, and the power-law relationship also exists between the width of the fault core and damage zone. The width of the damage zone in the hanging wall is not apparently larger than that in the footwall in the reverse fault, showing different characteristics with the normal fault. This study provides a comprehensive method in identifying the architecture of buried faults in the sedimentary basin and would be helpful in evaluating the fault sealing behavior.

  18. Fluid pathways from mantle wedge up to forearc seafloor in the coseismic slip area of the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Park, J. O.; Tsuru, T.; Fujie, G.; Kagoshima, T.; Sano, Y.

    2017-12-01

    A lot of fluids at subduction zones are exchanged between the solid Earth and ocean, affecting the earthquake and tsunami generation. New multi-channel seismic reflection and sub-bottom profiling data reveal normal and reverse faults as the fluid pathways in the coseismic slip area of the 2011 Tohoku earthquake (M9.0). Based on seismic reflection characteristics and helium isotope anomalies, we recognize variations in fluid pathways (i.e., faults) from the mantle wedge up to forearc seafloor in the Japan Trench margin. Some fluids are migrated from the mantle wedge along plate interface and then normal or reverse faults cutting through the overriding plate. Others from the mantle wedge are migrated directly up to seafloor along normal faults, without passing through the plate interface. Locations of the normal faults are roughly consistent with aftershocks of the 2011 Tohoku earthquake, which show focal mechanism of normal faulting. It is noticeable that landward-dipping normal faults developing down into Unit C (Cretaceous basement) from seafloor are dominant in the middle slope region where basal erosion is inferred to be most active. A high-amplitude, reverse-polarity reflection of the normal faults within Unit C suggests that the fluids are locally trapped along the faults in high pore pressures. The 2011 Tohoku mainshock and subsequent aftershocks could lead the pre-existing normal faults to be reactive and more porous so that the trapped fluids are easily transported up to seafloor through the faults. Elevated fluid pressures can decrease the effective normal stress for the fault plane, allowing easier slip of the landward-dipping normal fault and also enhancing its tsunamigenic potential.

  19. On the sensitivity of transtensional versus transpressional tectonic regimes to remote dynamic triggering by Coulomb failure

    USGS Publications Warehouse

    Hill, David P.

    2015-01-01

     Accumulating evidence, although still strongly spatially aliased, indicates that although remote dynamic triggering of small-to-moderate (Mw<5) earthquakes can occur in all tectonic settings, transtensional stress regimes with normal and subsidiary strike-slip faulting seem to be more susceptible to dynamic triggering than transpressional regimes with reverse and subsidiary strike-slip faulting. Analysis of the triggering potential of Love- and Rayleigh-wave dynamic stresses incident on normal, reverse, and strike-slip faults assuming Andersonian faulting theory and simple Coulomb failure supports this apparent difference for rapid-onset triggering susceptibility.

  20. Preliminary Earthquake Hazard Map of Afghanistan

    USGS Publications Warehouse

    Boyd, Oliver S.; Mueller, Charles S.; Rukstales, Kenneth S.

    2007-01-01

    Introduction Earthquakes represent a serious threat to the people and institutions of Afghanistan. As part of a United States Agency for International Development (USAID) effort to assess the resource potential and seismic hazards of Afghanistan, the Seismic Hazard Mapping group of the United States Geological Survey (USGS) has prepared a series of probabilistic seismic hazard maps that help quantify the expected frequency and strength of ground shaking nationwide. To construct the maps, we do a complete hazard analysis for each of ~35,000 sites in the study area. We use a probabilistic methodology that accounts for all potential seismic sources and their rates of earthquake activity, and we incorporate modeling uncertainty by using logic trees for source and ground-motion parameters. See the Appendix for an explanation of probabilistic seismic hazard analysis and discussion of seismic risk. Afghanistan occupies a southward-projecting, relatively stable promontory of the Eurasian tectonic plate (Ambraseys and Bilham, 2003; Wheeler and others, 2005). Active plate boundaries, however, surround Afghanistan on the west, south, and east. To the west, the Arabian plate moves northward relative to Eurasia at about 3 cm/yr. The active plate boundary trends northwestward through the Zagros region of southwestern Iran. Deformation is accommodated throughout the territory of Iran; major structures include several north-south-trending, right-lateral strike-slip fault systems in the east and, farther to the north, a series of east-west-trending reverse- and strike-slip faults. This deformation apparently does not cross the border into relatively stable western Afghanistan. In the east, the Indian plate moves northward relative to Eurasia at a rate of about 4 cm/yr. A broad, transpressional plate-boundary zone extends into eastern Afghanistan, trending southwestward from the Hindu Kush in northeast Afghanistan, through Kabul, and along the Afghanistan-Pakistan border. Deformation here is expressed as a belt of major, north-northeast-trending, left-lateral strike-slip faults and abundant seismicity. The seismicity intensifies farther to the northeast and includes a prominent zone of deep earthquakes associated with northward subduction of the Indian plate beneath Eurasia that extends beneath the Hindu Kush and Pamirs Mountains. Production of the seismic hazard maps is challenging because the geological and seismological data required to produce a seismic hazard model are limited. The data that are available for this project include historical seismicity and poorly constrained slip rates on only a few of the many active faults in the country. Much of the hazard is derived from a new catalog of historical earthquakes: from 1964 to the present, with magnitude equal to or greater than about 4.5, and with depth between 0 and 250 kilometers. We also include four specific faults in the model: the Chaman fault with an assigned slip rate of 10 mm/yr, the Central Badakhshan fault with an assigned slip rate of 12 mm/yr, the Darvaz fault with an assigned slip rate of 7 mm/yr, and the Hari Rud fault with an assigned slip rate of 2 mm/yr. For these faults and for shallow seismicity less than 50 km deep, we incorporate published ground-motion estimates from tectonically active regions of western North America, Europe, and the Middle East. Ground-motion estimates for deeper seismicity are derived from data in subduction environments. We apply estimates derived for tectonic regions where subduction is the main tectonic process for intermediate-depth seismicity between 50- and 250-km depth. Within the framework of these limitations, we have developed a preliminary probabilistic seismic-hazard assessment of Afghanistan, the type of analysis that underpins the seismic components of modern building codes in the United States. The assessment includes maps of estimated peak ground-acceleration (PGA), 0.2-second spectral acceleration (SA), and 1.0-secon

  1. Following the Cantabrian (Ventaniella) fault into the Bay of Biscay: a deeply incised canyon, a change of trend, and 20002 km of unstable continental slope

    NASA Astrophysics Data System (ADS)

    Fernandez Viejo, G.; Lopez-Fernandez, C.; Dominguez-Cuesta, M.

    2012-12-01

    The Cantabrian fault, known traditionally with the local name of Ventaniella fault is a long-lived rectilinear feature that runs in a NW-SE direction for more than 200 km across northwest Spain. Its origins are linked to the end of the Variscan orogeny, but its important role took place during the extensional processes of the Mesozoic that led Iberia to become a microplate separated from Europe and Africa. With the initiation of the alpine orogeny Iberia converges with Europe pushed from the south by Africa, and the Ventaniella fault acted as a dextral strike slip fault with an important reverse component. It has a relatively low topographic expression, although its NE block is slightly uplifted with respect to the SW one. Traditionally it has been mapped offshore following the trace of the Aviles canyon, a deeply incised canyon 7 miles from the coast, oblique to the E-W coast trend and which descents from 160 m in the continental shelf , down to 4750 m in the abyssal plain of the Bay of Biscay . All this incision occurs along just 50 km length of the narrow continental shelf in this area, making the Aviles canyon one of the steepest in the Atlantic. Through seismic reflection lines across the continental shelf and slope, a bathymetric model up to date and a 3D geological model the fault has been mapped into the sea integrating the seismicity associated to its SW block and the newest geological mapping on land. At the same time, what is observed in the northwest prolongation and termination of the fault against the oceanic crust of the abyssal plain is a continental slope that is full of mass-wasting processes along more than 80 km length, showing gravitational and submarine slide processes in an area that roughly occupies 2000 km 2 and involves a volume of unstable mass estimated in more than 1000 km3 . One of the biggest displaced masses made the Aviles canyon change its trend to N-S in an almost 90° bend close to the middle slope. Although the displaced masses are big, it does not seem to pose an immediate hazard, as they all show a short run-out distance and, being the actual seismicity of low grade, it is not enough to trigger the fall of the unstable slope. The Ventaniella fault runs in the continental shelf and slope in NW-SE direction, but it also has been deduced with the new data a secondary fault trace slightly more W-E, interpreted as a termination in horsetail of the main strike-slip feature. Both structures seem to be responsible for the seismicity and the mass wasting processes observed along this strip of the Cantabrian margin.

  2. Structural Analyses of the Kahiltna Terrane: A Kinematic Record of the Collision of the Talkeetna Superterrane

    NASA Astrophysics Data System (ADS)

    Bier, S. E.; Fisher, D.

    2002-12-01

    Macro-, meso-, and microscale structural analyses from several localities across the ~1000 km Kahiltna Terrane provide valuable kinematic insights into the late Cretaceous collision between the Talkeetna superterrane and North America. The Kahiltna Terrane, a Jurassic-Cretaceous flysch basin inboard of the Talkeetna superterrane (Wrangellia, Peninsular, and Alexander terranes), contains incremental strain indicators that record a history of oblique collision and subsequent deformation in a strike-slip regime. A comparison of structural data from localities across the Kahiltna terrane suggests a unique history not yet described in previous work on south-central Alaskan tectonics. Data was collected from the Reindeer Hills area, the northwestern Talkeetna Mountains, Denali National Park, the Peters Hills, and the Tordrillo Mountains. In the Reindeer Hills, a melange zone occurs as a series of exposures dismembered by ongoing strike slip faulting between the flysch of the Kahiltna terrane and the precollisional edge of the North American continent. This melange is characterized by fault-bounded blocks of Paleozoic limestone and sandstone within an argillite matrix with a conspicuous scaly fabric. The blocks range in size from 10 cm to tens of meters; and melange fish indicate a south-directed shear sense. The melange is overlain by a red and green (Triassic-Jurassic?) conglomerate along an unconformity that likely marks the base of a perched slope basin near the toe of an accretionary wedge. The strike of bedding and cleavage in this area trends EW. The fold axes trend NW-SE and folds verge to the south. In the northwest corner of the Talkeetna Mountains, the structure is dominated by north vergent folds and faults. The strike of bedding trends ~025°; whereas the strike of the cleavage is ~060°. Both cleavage and bedding dip to the southeast. The fold axes trend roughly NE-SW. North of the Denali Fault System, in Denali National Park, strike of bedding is ~122° and the dip is to the southwest. Folds can be divided into two sets: 1) tight folds with axes trending E-W and 2) open folds with axes that trend N-S. Cleavage is axial planar to the first set of folds. Crenulation cleavage that trends E-W may also be associated with the first set of folds. In the Peters Hills, reversals in facing direction indicate the presence of multiple macroscale folds. The strike of bedding and cleavage trend ~240° and dip to the northwest. Outcrop observations of smaller scale north-vergent folds and larger scale south-vergent folds suggest multiple deformation events. Stretching lineations trend NE-SW, and incremental strain indicators record indicate a dextral shearing event. The Kahiltna terrane exposed in the vicinity of the Tordrillo Mountains consists of alternating volcaniclastic sandstones and turbidite sequences. The strike of bedding and cleavage is ~240°, and they dip steeply to the northwest. Small isoclinal folds and faults indicate northwestward transport and deformation overprinted by large-scale open folds that verge to the east. Observations of the melange indicate precollisional northward-dipping subduction beneath an accretionary assemblage of Triassic(?) material. Structural observations from multiple localities across the Kahiltna terrane indicate northward-directed thrusting related to dextral transpression and oblique collision of the Talkeetna superterrane, with varying amounts of obliquity along the margin.

  3. The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore

    NASA Astrophysics Data System (ADS)

    Melia, S.; Hall, R.

    2017-12-01

    The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic analysis is underway to give a fresh understanding of the tectonic evolution of this complex zone of faulting and plate interaction.

  4. Basement control of structure in the Gettysburg rift basin, Pennsylvania and Maryland

    NASA Astrophysics Data System (ADS)

    Root, Samuel I.

    1989-09-01

    Jurassic faulting formed the 93 km long Gettysburg basin as an extensional half graben paralleling the basement structural grain. Preserved in the basin are rift-related Carnian to Rhaetian strata that were tilted 20-30° NW into a SE dipping, listric normal fault at the northwest border of the basin. Vertical displacement on the border fault approaches 10 km. The border fault developed parallel to the trend of the terminal Paleozoic Alleghenian South Mountain cleavage of the Blue Ridge basement along 80% of its extent. However, it is only roughly parallel to discordant to dip of the cleavage. Relationship of cleavage and later border faulting may be the result of persistent reactivation of the original Appalachian continental margin. Local complex structures in the half graben are related to reactivation of two subvertical, pre-Mesozoic faults that transect basement structural grain (cleavage) at a large angle. The northern Shippensburg fault was reactivated during basin normal faulting, offsetting the border fault in a right-lateral sense by 3.5 km and forming within the basin a fold and a fault sliver of basement. The southern Carbaugh-Marsh Creek fault was not reactivated, but is the locus of a 20°-30° change of trend of both the basement cleavage and later border fault. However, two large, NW trending, left-lateral wrench faults, antithetic to the Carbaugh-March Creek fault, developed here offsetting the border fault and forming en echelon folds and horst blocks of basement rock within the basin.

  5. Multidisciplinary approach for fault detection: Integration of PS-InSAR, geomorphological, stratigraphic and structural data in the Venafro intermontane basin (Central-Southern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Amato, Vincenzo; Aucelli, Pietro P. C.; Bellucci Sessa, Eliana; Cesarano, Massimo; Incontri, Pietro; Pappone, Gerardo; Valente, Ettore; Vilardo, Giuseppe

    2017-04-01

    A multidisciplinary methodology, integrating stratigraphic, geomorphological and structural data, combined with GIS-aided analysis and PS-InSAR interferometric data, was applied to characterize the relationships between ground deformations and the stratigraphic and the morphostructural setting of the Venafro intermontane basin. This basin is a morphostructural depression related to NW-SE and NE-SW oriented high angle normal faults bordering and crossing it. In particular, a well-known active fault crossing the plain is the Aquae Juliae Fault, whose recent activity is evidenced by archeoseismological data. The approach applied here reveals new evidence of possible faulting, acting during the Lower to Upper Pleistocene, which has driven the morphotectonic and the environmental evolution of the basin. In particular, the tectonic setting emerging from this study highlights the influence of the NW-SE oriented extensional phase during the late Lower Pleistocene - early Middle Pleistocene, in the generation of NE-SW trending, SE dipping, high-angle faults and NW-SE trending, high-angle transtensive faults. This phase has been followed by a NE-SW extensional one, responsible for the formation of NW-SE trending, both NW and SE dipping, high-angle normal faults, and the reactivation of the oldest NE-SW oriented structures. These NW-SE trending normal faults include the Aquae Juliae Fault and a new one, unknown until now, crossing the plain between the Venafro village and the Colle Cupone Mt. (hereinafter named the Venafro-Colle Cupone Fault, VCCF). This fault has controlled deposition of the youngest sedimentary units (late Middle Pleistocene to late Upper Pleistocene) suggesting its recent activity and it is well constrained by PS-InSAR data, as testified by the increase of the subsidence rate in the hanging wall block.

  6. What lies beneath: geophysical mapping of a concealed Precambrian intrusive complex along the Iowa–Minnesota border

    USGS Publications Warehouse

    Drenth, Benjamin J.; Anderson, Raymond R.; Schulz, Klaus J.; Feinberg, Joshua M.; Chandler, Val W.; Cannon, William F.

    2015-01-01

    Large-amplitude gravity and magnetic highs over northeast Iowa are interpreted to reflect a buried intrusive complex composed of mafic–ultramafic rocks, the northeast Iowa intrusive complex (NEIIC), intruding Yavapai province (1.8–1.72 Ga) rocks. The age of the complex is unproven, although it has been considered to be Keweenawan (∼1.1 Ga). Because only four boreholes reach the complex, which is covered by 200–700 m of Paleozoic sedimentary rocks, geophysical methods are critical to developing a better understanding of the nature and mineral resource potential of the NEIIC. Lithologic and cross-cutting relations interpreted from high-resolution aeromagnetic and airborne gravity gradient data are presented in the form of a preliminary geologic map of the basement Precambrian rocks. Numerous magnetic anomalies are coincident with airborne gravity gradient (AGG) highs, indicating widespread strongly magnetized and dense rocks of likely mafic–ultramafic composition. A Yavapai-age metagabbro unit is interpreted to be part of a layered intrusion with subvertical dip. Another presumed Yavapai unit has low density and weak magnetization, observations consistent with felsic plutons. Northeast-trending, linear magnetic lows are interpreted to reflect reversely magnetized diabase dikes and have properties consistent with Keweenawan rocks. The interpreted dikes are cut in places by normally magnetized mafic–ultramafic rocks, suggesting that the latter represent younger Keweenawan rocks. Distinctive horseshoe-shaped magnetic and AGG highs correspond with a known gabbro, and surround rocks with weaker magnetization and lower density. Here, informally called the Decorah complex, the source body has notable geophysical similarities to Keweenawan alkaline ring complexes, such as the Coldwell and Killala Lake complexes, and Mesoproterozoic anorogenic complexes, such as the Kiglapait, Hettasch, and Voisey’s Bay intrusions in Labrador. Results presented here suggest that much of the NEIIC is composed of such complexes, and broadly speaking, may be a discontinuous group of several intrusive bodies. Most units are cut by suspected northwest-trending faults imaged as magnetic lineaments, and one produces apparent sinistral fault separation of a dike in the eastern part of the survey area. The location, trend, and apparent sinistral sense of motion are consistent with the suspected faults being part of the Belle Plaine fault zone, a complex transform fault zone within the Midcontinent rift system that is here proposed to correspond with a major structural discontinuity.

  7. Recognition on space photographs of structural elements of Baja California

    NASA Technical Reports Server (NTRS)

    Hamilton, W.

    1971-01-01

    Gemini and Apollo photographs provide illustrations of known structural features of the peninsula and some structures not recognized previously. An apparent transform relationship between strike-slip and normal faulting is illustrated by the overlapping vertical photographs of northern Baja California. The active Agua Blanca right-lateral strike-slip fault trends east-southeastward to end at the north end of the Valle San Felipe and Valle Chico. The uplands of the high Sierra San Pedro Martir are a low-relief surface deformed by young faults, monoclines, and warps, which mostly produce west-facing steps and slopes; the topography is basically structural. The Sierra Cucapas of northeasternmost Baja California and the Colorado River delta of northwesternmost Sonora are broken by northwest-trending strike-slip faults. A strike-slip fault is inferred to trend northward obliquely from near Cabo San Lucas to La Paz, thence offshore until it comes ashore again as the Bahia Concepcion strike-slip fault.

  8. Holocene tectonics and fault reactivation in the foothills of the north Cascade Mountains, Washington

    USGS Publications Warehouse

    Sherrod, Brian L.; Barnett, Elizabeth; Schermer, Elizabeth; Kelsey, Harvey M.; Hughes, Jonathan; Foit, Franklin F.; Weaver, Craig S.; Haugerud, Ralph; Hyatt, Tim

    2013-01-01

    We use LiDAR imagery to identify two fault scarps on latest Pleistocene glacial outwash deposits along the North Fork Nooksack River in Whatcom County, Washington (United States). Mapping and paleoseismic investigation of these previously unknown scarps provide constraints on the earthquake history and seismic hazard in the northern Puget Lowland. The Kendall scarp lies along the mapped trace of the Boulder Creek fault, a south-dipping Tertiary normal fault, and the Canyon Creek scarp lies in close proximity to the south-dipping Canyon Creek fault and the south-dipping Glacier Extensional fault. Both scarps are south-side-up, opposite the sense of displacement observed on the nearby bedrock faults. Trenches excavated across these scarps exposed folded and faulted late Quaternary glacial outwash, locally dated between ca. 12 and 13 ka, and Holocene buried soils and scarp colluvium. Reverse and oblique faulting of the soils and colluvial deposits indicates at least two late Holocene earthquakes, while folding of the glacial outwash prior to formation of the post-glacial soil suggests an earlier Holocene earthquake. Abrupt changes in bed thickness across faults in the Canyon Creek excavation suggest a lateral component of slip. Sediments in a wetland adjacent to the Kendall scarp record three pond-forming episodes during the Holocene—we infer that surface ruptures on the Boulder Creek fault during past earthquakes temporarily blocked the stream channel and created an ephemeral lake. The Boulder Creek and Canyon Creek faults formed in the early to mid-Tertiary as normal faults and likely lay dormant until reactivated as reverse faults in a new stress regime. The most recent earthquakes—each likely Mw > 6.3 and dating to ca. 8050–7250 calendar years B.P. (cal yr B.P.), 3190–2980 cal. yr B.P., and 910–740 cal. yr B.P.—demonstrate that reverse faulting in the northern Puget Lowland poses a hazard to urban areas between Seattle (Washington) and Vancouver, British Columbia (Canada).

  9. Publications - PIR 2015-5-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    faults in the Bruin Bay fault system, Ursus Head, lower Cook Inlet Authors: Betka, P.M., and Gillis, R.J strike-slip and reverse-slip faults in the Bruin Bay fault system, Ursus Head, lower Cook Inlet, in

  10. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  11. Geodetically inferred coseismic and postseismic slip due to the M 5.4 31 October 2007 Alum Rock earthquake

    USGS Publications Warehouse

    Murray-Moraleda, J. R.; Simpson, R.W.

    2009-01-01

    On 31 October 2007 the M 5.4 Alum Rock earthquake occurred near the junction between the Hayward and Calaveras faults in the San Francisco Bay Area, producing coseismic and postseismic displacements recorded by 10 continuously operating Global Positioning System (GPS) instruments. The cumulative postseismic displacements over the four months following the earthquake are linearly related to the cumulative number of aftershocks and are comparable in magnitude to the coseis mic displacements. The postseismic signal suggests that, in addition to afterslip at seismogenic depths, localized right-lateral/reverse slip occurred on dipping shallow fault surfaces southwest of the Calaveras. The spatial distribution of slip inferred by inverting the GPS data is compatible with a model in which moderate Calaveras fault earthquakes rupture locked patches surrounded by areas of creep, afterslip, and microseismicity (Oppenheimer et al., 1990). If this model and existing Calaveras fault slip rate estimates are correct, a slip deficit remains on the 2007 Alum Rock rupture patch that may be made up by aseismic slip or slip in larger earthquakes. Recent studies (e.g., Manaker et al., 2005) suggest that at depth the Hayward and central Calaveras faults connect via a simple continuous surface illuminated by the Mission Seismic Trend (MST), implying that a damaging earthquake rupture could involve both faults (Graymer et al., 2008). If this geometry is correct, the combined coseismic and postseismic slip we infer for the 2007 Alum Rock event predicts static Coulomb stress increases of ???0:6 bar on the MST surface and on the northern Calaveras fault ???5 km northwest of the Alum Rock hypocenter.

  12. New Madrid seismotectonic study. Activities during fiscal year 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buschbach, T.C.

    1984-04-01

    The New Madrid Seismotectonic Study is a coordinated program of geological, geophysical, and seismological investigations of the area within a 200-mile radius of New Madrid, Missouri. The study is designed to define the structural setting and tectonic history of the area in order to realistically evaluate earthquake risks in the siting of nuclear facilities. Fiscal year 1982 included geological and geophysical studies aimed at better definition of the east-west trending fault systems - the Rough Creek and Cottage Grove systems - and the northwest-trending Ste. Genevieve faulting. A prime objective was to determine the nature and history of faulting andmore » to establish the relationship with that faulting and the northeast-trending faults of the Wabash Valley and New Madrid areas. 27 references, 61 figures.« less

  13. Seismotectonics of northeastern United States and adjacent Canada

    NASA Astrophysics Data System (ADS)

    Yang, Jih-Ping; Aggarwal, Yash Pal

    1981-06-01

    Data for local earthquakes recorded by a network of stations in northeastern United States and adjacent Canada were analyzed to study the seismicity, the relationship between earthquakes and known faults, the state of stress, and crustal and upper mantle velocity structure. In addition, portable seismographs were deployed in the field to study aftershocks. As a result, accurate locations for about 364 local earthquakes (2 ≤ mb ≤ 5) and 22 focal mechanism solutions were determined. A comparison of the spatial distribution of these events (1970-1979) with historical earthquakes (1534-1959) reveals that seismic activity in the northeast is relatively stationary in space: those areas that have had little or no seismicity historically are relatively aseismic today, whereas the historically active areas are also active today. The instrumental locations, historical seismicity, and focal mechanism solutions show an internal consistency that help us distinguish two distinct seismogenic provinces. (1) The Adirondack-western Quebec province is a northwesterly trending zone of seismic activity, about 200 km wide and at least 500 km long, extending from the SE Adirondacks into western Quebec, Canada. Thrust faulting on planes striking NNW to NW appears to predominate, and the inferred axis of maximum horizontal compression is largely uniform and trends WSW, nearly parallel to the calculated absolute plate motion of North America. Little or no seismicity is found where anorthosite outcrops at the surface. Correlations between gravity anomalies and earthquake locations suggest that seismic activity in this zone is localized to regions of steep NE or SW gradient in Bouguer anomalies. This zone does not appear to extend southeastward to Boston, as proposed by some workers. (2) The Appalachian province is a northeasterly trending zone of seismic activity extending from northern Virginia to New Brunswick, Canada. Highangle reverse or thrust faulting on N to NE trending planes appears to predominate. The western margin of this province, however, appears to be relatively aseismic. We attribute this relative lack of activity to one or more of the following: the presence of igneous activity postdating rifting of Africa from North America, the occurrence of intense metamorphism during the Acadian orogeny which may have annealed preexisting faults, and the predominance of ductile as opposed to brittle deformation in the geologic past. The inferred axis of maximum horizontal compression along the eastern margin of the Appalachians is rather uniform and trends W-WNW, almost perpendicular to the magnetic lineations offshore. We suggest that this W-WNW compression reflects the gravitational force arising from horizontal density variations in the oceanic lithosphere as it cools and moves away from spreading centers.

  14. Structural controls on the hydrogeology of the Costa Rica subduction thrust NW of the Osa Peninisula (Invited)

    NASA Astrophysics Data System (ADS)

    Bangs, N. L.; McIntosh, K. D.; Silver, E. A.; Kluesner, J.; Ranero, C. R.

    2013-12-01

    Three-dimensional seismic reflection data from the Costa Rica margin NW of the Osa peninsula have enabled us to map the subduction megathrust from the trench to ~12 km subseafloor beneath the shelf. The subduction thrust has a large, abrupt downdip transition in seismic reflection amplitude from very high to low amplitude 6 km subseafloor beneath the upper slope. This transition broadly corresponds with an increase in concentration of microseismic earthquakes potentially due to a significant increase in plate coupling (Bangs et al., 2012, AGU Fall Meeting, T13A-2587), thus linking seismic reflection amplitude to fluid content and mechanical coupling along the fault. A detailed look at the overriding plate reflectivity shows numerous high-amplitude, continuous seismic reflections through the upper plate, many of which are clearly reversed-polarity from the seafloor reflection and are thus likely active fluid conduits through the overriding margin wedge, the slope cover sediment, and the seafloor. Broadly, the structural grain of the margin wedge trends E-W and dips landward across the lower slope and onto the shelf, presumably due to stress imparted by subducting ridges. However, directly above the abrupt high-to-low plate-boundary reflection amplitude transition, structures within the overlying margin wedge reverse dip, steepen, and change strike to an ESE direction. Within this zone we interpret a set of parallel reflections with small offsets and reverse-polarity as high-angle reverse faults that act as fluid conduits leading directly into shallow fluid migration systems described by Bangs et al., 2012 (AGU Fall Meeting, T13A-2587) and Kluesner et al. [this meeting]. The coincidence between the plate-boundary reflection amplitude patterns and the change in structure implies that the fluid migration pathways that drain the plate interface are locally disrupted by overriding plate structure in two possible ways: 1) by focusing up dip fluid migration along the plate interface into a thinner but richer fluid zone along the subduction thrust, or 2) by creating a more direct, nearly vertical route along high-angle reverse faults through the overlying margin wedge to the seafloor (possibly shortened by a factor of two) and draining deeper portions of the plate-boundary more efficiently.

  15. Kinematic vicissitudes and the spatial distribution of the alteration zone related to the Byobuyama fault, central Japan. (Implication; Influence of another faults.)

    NASA Astrophysics Data System (ADS)

    Katori, T.; Kobayashi, K.

    2015-12-01

    The central Japan is one of the most concentrated area of active faults (Quaternary fault). These are roughly classified into two orthogonally-oriented fault sets of NE-SW and NW-SE strikes. The study area is located in Gifu prefecture, central Japan. In there, the basement rocks are composed mainly of Triassic-Jurassic accretionary prism (Mino belt), Cretaceous Nohi Rhyolite and Cretaceous granitic rocks. Miocene Mizunami G. and Pliocene-Pleistocene Toki Sand and Gravel F. unconformably cover the basement rocks. The Byobuyama fault, 32 km in length, is NE-SW strike and displaces perpendicularly the Toki Sand and Gravel F. by 500 m. The northeastern terminal of the fault has contact with the southern terminal of the Atera fault of NW-SE strike and offset their displacements each other. It is clear that the activity of the Byobuyama fault plays a role of the development of the complicated fault geometry system in the central Japan. In this study, we performed a broad-based investigation along the Byobuyama fault and collected samples. Actually, we observed 400 faults and analyzed 200 fault rocks. Based on these results, we obtained the following new opinion. 1. The Byobuyama fault has experienced following activities that can be divided to 3 stages at least under different stress field. 1) Movement with the sinisterly sense (preserved in cataclasite zone). 2) Dextral movement (preserved in fault gouge zone). 3) Reverse fault movement (due to the aggressive rise of mountains). In addition, the change from Stage 2 to Stage 3 is a continuous. 2. There is a relationship between the distance from the trace of the Byobuyama fault and the combination of alteration minerals included in the fault rocks. 3. In the central part of the Byobuyama fault (CPBF), fault plane trend and combination of alteration minerals shows specific features. The continuous change is considered to mean the presence of factors that interfere with the dextral movement of the Byobuyama fault. What is considered as one of the factors is the effect of the fault zone adjacent, especially the Atera fault. CPBF is located just southeast extension of the Akou fault, NW-SE strike. We think that this extension reaches up to CPBF. Based on the above, we make a presentation about interaction of two faults from the point of view of kinematic vicissitudes and alteration process.

  16. Early Jurassic extensional inheritance in the Lurestan region of the Zagros fold-and-thrust belt, Iran.

    NASA Astrophysics Data System (ADS)

    Tavani, Stefano; Parente, Mariano; Vitale, Stefano; Puzone, Francesco; Erba, Elisabetta; Bottini, Cinzia; Morsalnejad, Davoud; Mazzoli, Stefano

    2017-04-01

    It has long been recognized that the tectonic architecture of the Zagros mountain belt was strongly controlled by inherited structures previously formed within the Arabian plate. These preexisting features span in age from the pre-Cambrian to the Mesozoic, showing different trends and deformation styles. Yet, these structures are currently not fully understood. This uncertainty is partly related with the paucity of exposures, which rarely allows a direct observation of these important deformation features. The Lurestan Province of Iran provides a remarkable exception, since it is one of the few places of the Zagros mountain belt where exposures of Triassic and Jurassic rocks are widespread. In this area we carried out structural observations on Mesozoic extensional structures developed at the southern margin of the Neo-Tethyan basin. Syn-sedimentary extensional faults are hosted within the Triassic-Cretaceous succession, being particularly abundant in the Jurassic portion of the stratigraphy. Early to Middle Jurassic syn-sedimentary faults are observed in different paleogeographic domains of the area, and their occurrence is coherent with the subsequent transition from shallow-water to deep-sea basin environments, observed in a wide portion of the area. Most of the thrusts exposed in the area may indeed be interpreted as reactivated Jurassic extensional faults, or as reverse faults whose nucleation was controlled by the location of preexisting normal faults, as a result of positive inversion during crustal shortening and mountain building.

  17. Changes in tectonic stress field in the northern Sunda Shelf Basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjia, H.D.; Liew, K.K.

    1994-07-01

    The Tertiary hydrocarbon basins of the northern Sunda Shelf are underlain by continental and attenuated continental crust characterized by moderate to high average geothermic gradients in excess of 5[degrees]C/100 m. In the Malay basin, Oligocene and younger sediments are more than 12 km thick. The smaller basins (which are commonly half grabens) and probably also the main Malay basin were developed as pull-apart depressions associated with regional north-to-northwest-striking wrench faults. Initial basin subsidence took place during the Oligocene, but at least one small basin may have developed as early as the Jurassic. Sense of movement of the regional wrench faultsmore » was reversed during middle to late Miocene and in some of these faults, evidence was found for yet a younger phase of lateral displacement. These offsets range up to 45 km right-laterally along north-trending fault zones. During most of the Cenozoic, succeeding wrench faulting with sense of movement in the opposite direction caused structural inversion of the basin-filling sediments, which became folded. The regional wrench faults act as domain boundaries, each tectonic domain being characterized by different stress fields. The evolving stress system can be attributed to varying degrees of interference of plate motions coupled with changes in movement directions and/or rates of the Pacific plate Indian Ocean-Australian plate and possible expulsion of southeast Asian crustal slabs following the collision of the Indian subplate with the Eurasian plate.« less

  18. The Somma Vesuvius stress field induced by regional tectonics: evidences from seismological and mesostructural data

    NASA Astrophysics Data System (ADS)

    Bianco, F.; Castellano, M.; Milano, G.; Ventura, G.; Vilardo, G.

    1998-06-01

    A detailed structural and geophysical study of the Somma-Vesuvius volcanic complex was carried out by integrating mesostructural measurements, focal mechanisms and shear-wave splitting analysis. Fault-slip and focal mechanism analysis indicate that the volcano is affected by NW-SE-, NE-SW-trending oblique-slip faults and by E-W-trending normal faults. Magma chamber(s) responsible for plinian/sub-plinian eruptions (i.e. A.D. 79 and 1631) formed inside the area bounded by E-W-trending normal faults. The post-1631 fissural eruptions (i.e. 1794 and 1861) occurred along the main oblique-slip fault segments. The movements of the Vesuvius faults are mainly related to the regional stress field. A local stress field superposed to the regional one is also present but evidences of magma or gravity induced stresses are lacking. The local stress field acts inside the caldera area being related to fault reactivation processes. The present-day Vesuvius seismic activity is due to both regional and local stress fields. Shear-wave splitting analysis reveals an anisotropic volume due to stress induced cracks NW-SE aligned by faulting processes. Since the depth extent of the anisotropic volume is at least 6 km b.s.l., we deduce the NW-SE-trending oblique-slip fault system represents the main discontinuity on which lies the volcano. This discontinuity is responsible for the morphological lowering of the edifice in its southwestern side.

  19. Strike-slip deformation reflects complex partitioning of strain in the Nankai Accretionary Prism (SE Japan)

    NASA Astrophysics Data System (ADS)

    Azevedo, Marco C.; Alves, Tiago M.; Fonseca, Paulo E.; Moore, Gregory F.

    2018-01-01

    Previous studies have suggested predominant extensional tectonics acting, at present, on the Nankai Accretionary Prism (NAP), and following a parallel direction to the convergence vector between the Philippine Sea and Amur Plates. However, a complex set of thrusts, pop-up structures, thrust anticlines and strike-slip faults is observed on seismic data in the outer wedge of the NAP, hinting at a complex strain distribution across SE Japan. Three-dimensional (3D) seismic data reveal three main families of faults: (1) NE-trending thrusts and back-thrusts; (2) NNW- to N-trending left-lateral strike-slip faults; and (3) WNW-trending to E-W right-lateral strike-slip faults. Such a fault pattern suggests that lateral slip, together with thrusting, are the two major styles of deformation operating in the outer wedge of the NAP. Both styles of deformation reflect a transpressional tectonic regime in which the maximum horizontal stress is geometrically close to the convergence vector. This work is relevant because it shows a progressive change from faults trending perpendicularly to the convergence vector, to a broader partitioning of strain in the form of thrusts and conjugate strike-slip faults. We suggest that similar families of faults exist within the inner wedge of the NAP, below the Kumano Basin, and control stress accumulation and strain accommodation in this latter region.

  20. Neotectonic inversion of the Hindu Kush-Pamir mountain region

    USGS Publications Warehouse

    Ruleman, C.A.

    2011-01-01

    The Hindu Kush-Pamir region of southern Asia is one of Earth's most rapidly deforming regions and it is poorly understood. This study develops a kinematic model based on active faulting in this part of the Trans-Himalayan orogenic belt. Previous studies have described north-verging thrust faults and some strike-slip faults, reflected in the northward-convex geomorphologic and structural grain of the Pamir Mountains. However, this structural analysis suggests that contemporary tectonics are changing the style of deformation from north-verging thrusts formed during the initial contraction of the Himalayan orogeny to south-verging thrusts and a series of northwest-trending, dextral strike-slip faults in the modern transpressional regime. These northwest-trending fault zones are linked to the major right-lateral Karakoram fault, located to the east, as synthetic, conjugate shears that form a right-stepping en echelon pattern. Northwest-trending lineaments with dextral displacements extend continuously westward across the Hindu Kush-Pamir region indicating a pattern of systematic shearing of multiple blocks to the northwest as the deformation effects from Indian plate collision expands to the north-northwest. Locally, east-northeast- and northwest-trending faults display sinistral and dextral displacement, respectively, yielding conjugate shear pairs developed in a northwest-southeast compressional stress field. Geodetic measurements and focal mechanisms from historical seismicity support these surficial, tectono-morphic observations. The conjugate shear pairs may be structurally linked subsidiary faults and co-seismically slip during single large magnitude (> M7) earthquakes that occur on major south-verging thrust faults. This kinematic model provides a potential context for prehistoric, historic, and future patterns of faulting and earthquakes.

  1. Middle to Late Devonian-Carboniferous collapse basins on the Finnmark Platform and in the southwesternmost Nordkapp basin, SW Barents Sea

    NASA Astrophysics Data System (ADS)

    Koehl, Jean-Baptiste P.; Bergh, Steffen G.; Henningsen, Tormod; Faleide, Jan Inge

    2018-03-01

    The SW Barents Sea margin experienced a pulse of extensional deformation in the Middle-Late Devonian through the Carboniferous, after the Caledonian Orogeny terminated. These events marked the initial stages of formation of major offshore basins such as the Hammerfest and Nordkapp basins. We mapped and analyzed three major fault complexes, (i) the Måsøy Fault Complex, (ii) the Rolvsøya fault, and (iii) the Troms-Finnmark Fault Complex. We discuss the formation of the Måsøy Fault Complex as a possible extensional splay of an overall NE-SW-trending, NW-dipping, basement-seated Caledonian shear zone, the Sørøya-Ingøya shear zone, which was partly inverted during the collapse of the Caledonides and accommodated top-NW normal displacement in Middle to Late Devonian-Carboniferous times. The Troms-Finnmark Fault Complex displays a zigzag-shaped pattern of NNE-SSW- and ENE-WSW-trending extensional faults before it terminates to the north as a WNW-ESE-trending, NE-dipping normal fault that separates the southwesternmost Nordkapp basin in the northeast from the western Finnmark Platform and the Gjesvær Low in the southwest. The WNW-ESE-trending, margin-oblique segment of the Troms-Finnmark Fault Complex is considered to represent the offshore prolongation of a major Neoproterozoic fault complex, the Trollfjorden-Komagelva Fault Zone, which is made of WNW-ESE-trending, subvertical faults that crop out on the island of Magerøya in NW Finnmark. Our results suggest that the Trollfjorden-Komagelva Fault Zone dies out to the northwest before reaching the western Finnmark Platform. We propose an alternative model for the origin of the WNW-ESE-trending segment of the Troms-Finnmark Fault Complex as a possible hard-linked, accommodation cross fault that developed along the Sørøy-Ingøya shear zone. This brittle fault decoupled the western Finnmark Platform from the southwesternmost Nordkapp basin and merged with the Måsøy Fault Complex in Carboniferous times. Seismic data over the Gjesvær Low and southwesternmost Nordkapp basin show that the low-gravity anomaly observed in these areas may result from the presence of Middle to Upper Devonian sedimentary units resembling those in Middle Devonian, spoon-shaped, late- to post-orogenic collapse basins in western and mid-Norway. We propose a model for the formation of the southwesternmost Nordkapp basin and its counterpart Devonian basin in the Gjesvær Low by exhumation of narrow, ENE-WSW- to NE-SW-trending basement ridges along a bowed portion of the Sørøya-Ingøya shear zone in the Middle to Late Devonian-early Carboniferous. Exhumation may have involved part of a large-scale metamorphic core complex that potentially included the Lofoten Ridge, the West Troms Basement Complex and the Norsel High. Finally, we argue that the Sørøya-Ingøya shear zone truncated and decapitated the Trollfjorden-Komagelva Fault Zone during the Caledonian Orogeny and that the western continuation of the Trollfjorden-Komagelva Fault Zone was mostly eroded and potentially partly preserved in basement highs in the SW Barents Sea.

  2. The role of inherited structures in the evolution of the Meknassy Basin, Central Tunisia, based on geological-geophysical transects

    NASA Astrophysics Data System (ADS)

    Haji, Taoufik; Zouaghi, Taher; Boukadi, Noureddine

    2014-08-01

    This paper uses seismic data, well data, and surface geologic data to present a detailed description of the Meknassy Basin in the Atlas fold and thrust belt of central Tunisia. These data reveal that the Meknassy Basin is bounded by major faults, along which Triassic evaporites have been intruded. The anticlines and synclines of the basin are delimited by two N-S main faults (the North-South Axis and the Sidi Ali Ben Oun fault) and are subdivided by associated N120° and N45° trending fault-related anticlines. The Meknassy Basin is characterized by brittle structures associated with a deep asymmetric geometry that is organized into depressions and uplifts. Halokinesis of Triassic evaporites began during the Jurassic and continued during the Cretaceous period. During extensional deformation, salt movement controlled the sediment accumulation and the location of pre-compressional structures. During compressional deformation, the remobilization of evaporites accentuated the folded uplifts. A zone of decollement is located within the Triassic evaporites. The coeval strike-slip motion along the bounding master faults suggests that the Meknassy Basin was initiated as a pull-apart basin with intrusion of Triassic evaporites. The lozenge structure of the basin was caused by synchronous movements of the Sidi Ali Ben Oun fault and the North-South Axis (sinistral wrench faults) with movement of NW-SE first-order dextral strike-slip faults. Sediment distribution and structural features indicate that a major tectonic inversion has occurred at least since Late Cretaceous and Cenozoic. The transpressional movements are marked by reverse faults and folds associated with unconformities and with remobilization of Triassic evaporites. The formation of different structural features and the evolution of the Meknassy Basin and its neighboring uplifts have been controlled by conjugate dextral and sinistral strike-slip movements and thrust displacement.

  3. Structure of the Hat Creek graben region: Implications for the structure of the Hat Creek graben and transfer of right-lateral shear from the Walker Lane north of Lassen Peak, northern California, from gravity and magnetic anomalies

    USGS Publications Warehouse

    Langenheim, Victoria; Jachens, Robert C.; Clynne, Michael A.; Muffler, L. J. Patrick

    2016-01-01

    Interpretation of magnetic and new gravity data provides constraints on the geometry of the Hat Creek Fault, the amount of right-lateral offset in the area between Mt. Shasta and Lassen Peak, and confirmation of the influence of pre-existing structure on Quaternary faulting. Neogene volcanic rocks coincide with short-wavelength magnetic anomalies of both normal and reversed polarity, whereas a markedly smoother magnetic field occurs over the Klamath Mountains and its Paleogene cover. Although the magnetic field over the Neogene volcanic rocks is complex, the Hat Creek Fault, which is one of the most prominent normal faults in the region and forms the eastern margin of the Hat Creek Valley, is marked by the eastern edge of a north-trending magnetic and gravity high 20-30 km long. Modeling of these anomalies indicates that the fault is a steeply dipping (~75-85°) structure. The spatial relationship of the fault as modeled by the potential-field data, the youngest strand of the fault, and relocated seismicity suggests that deformation continues to step westward across the valley, consistent with a component of right-lateral slip in an extensional environment. Filtered aeromagnetic data highlight a concealed magnetic body of Mesozoic or older age north of Hat Creek Valley. The body’s northwest margin strikes northeast and is linear over a distance of ~40 km. Within the resolution of the aeromagnetic data (1-2 km), we discern no right-lateral offset of this body. Furthermore, Quaternary faults change strike or appear to end, as if to avoid this concealed magnetic body and to pass along its southeast edge, suggesting that pre-existing crustal structure influenced younger faulting, as previously proposed based on gravity data.

  4. Fault-Slip Data Analysis and Cover Versus Basement Fracture Patterns - Implications for Subsurface Technical Processes in Thuringia, Germany

    NASA Astrophysics Data System (ADS)

    Kasch, N.; Kley, J.; Navabpour, P.; Siegburg, M.; Malz, A.

    2014-12-01

    Recent investigations in Thuringia, Central Germany, focus on the potential for carbon sequestration, groundwater supply and geothermal energy. We report on the results of an integrated fault-slip data analysis to characterize the geometries and kinematics of systematic fractures in contrasting basement and cover rock lithologies. The lithostratigraphy of the area comprises locally exposed crystalline rocks and intermittently overlying Permian volcanic and clastic sedimentary rocks, together referred to as basement. A Late Permian sequence of evaporites, carbonates and shale constitutes the transition to the continuous sedimentary cover of Triassic age. Major NW-SE-striking fault zones and minor NNE-SSW-striking faults affect this stratigraphic succession. These characteristic narrow deforming areas (< 3 km width) build a dense network of individual fault strands with a close juxtaposition to wider (> 15 km) non-deforming areas suggesting localized zones of mechanical weakness, which can be confirmed by the frequent reactivation of single fault strands. Along the major fault zones, the basement and cover contain dominant inclined to sub-vertical NW-SE-striking fractures. These fractures indicate successive normal, dextral strike-slip and reverse senses of slip, evidencing events of NNE-SSW extension and contraction. Another system of mostly sub-vertical NNW-SSE- and NE-SW-striking conjugate strike-slip faults mainly developed within the cover implies NNE-SSW contraction and WNW-ESE extension. Earthquake focal mechanisms and in-situ stress measurements reveal a NW-SE trend for the modern SHmax. Nevertheless, fractures and fault-slip indicators are rare in the non-deforming areas, which characterizes Thuringia as a dual domain of (1) large unfractured areas and (2) narrow zones of high potential for technical applications. Our data therefore provide a basis for estimation of slip and dilation tendency of the contrasting fractures in the basement and cover under the present-day stress field, which must be taken into account for different subsurface technical approaches.

  5. Estimating Stresses, Fault Friction and Fluid Pressure from Topography and Coseismic Slip Models

    NASA Astrophysics Data System (ADS)

    Styron, R. H.; Hetland, E. A.

    2014-12-01

    Stress is a first-order control on the deformation state of the earth. However, stress is notoriously hard to measure, and researchers typically only estimate the directions and relative magnitudes of principal stresses, with little quantification of the uncertainties or absolute magnitude. To improve upon this, we have developed methods to constrain the full stress tensor field in a region surrounding a fault, including tectonic, topographic, and lithostatic components, as well as static friction and pore fluid pressure on the fault. Our methods are based on elastic halfspace techniques for estimating topographic stresses from a DEM, and we use a Bayesian approach to estimate accumulated tectonic stress, fluid pressure, and friction from fault geometry and slip rake, assuming Mohr-Coulomb fault mechanics. The nature of the tectonic stress inversion is such that either the stress maximum or minimum is better constrained, depending on the topography and fault deformation style. Our results from the 2008 Wenchuan event yield shear stresses from topography up to 20 MPa (normal-sinistral shear sense) and topographic normal stresses up to 80 MPa on the faults; tectonic stress had to be large enough to overcome topography to produce the observed reverse-dextral slip. Maximum tectonic stress is constrained to be >0.3 * lithostatic stress (depth-increasing), with a most likely value around 0.8, trending 90-110°E. Minimum tectonic stress is about half of maximum. Static fault friction is constrained at 0.1-0.4, and fluid pressure at 0-0.6 * total pressure on the fault. Additionally, the patterns of topographic stress and slip suggest that topographic normal stress may limit fault slip once failure has occurred. Preliminary results from the 2013 Balochistan earthquake are similar, but yield stronger constraints on the upper limits of maximum tectonic stress, as well as tight constraints on the magnitude of minimum tectonic stress and stress orientation. Work in progress on the Wasatch fault suggests that maximum tectonic stress may also be able to be constrained, and that some of the shallow rupture segmentation may be due in part to localized topographic loading. Future directions of this work include regions where high relief influences fault kinematics (such as Tibet).

  6. New High-Resolution 3D Imagery of Fault Deformation and Segmentation of the San Onofre and San Mateo Trends in the Inner California Borderlands

    NASA Astrophysics Data System (ADS)

    Holmes, J. J.; Driscoll, N. W.; Kent, G. M.; Bormann, J. M.; Harding, A. J.

    2015-12-01

    The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) fault complex is a dextral strike-slip system that extends primarily offshore approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC fault system Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC fault complex are the San Mateo and San Onofre fault trends along the continental slope. Previous work concluded that these were part of a strike-slip system that eventually merged with the NIRC complex. Others have interpreted these trends as deformation associated with the Oceanside Blind Thrust fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D P-Cable seismic surveys (3.125 m bin resolution) of the San Mateo and San Onofre trends as part of the Southern California Regional Fault Mapping project aboard the R/V New Horizon. Analysis of these volumes provides important new insights and constraints on the fault segmentation and transfer of deformation. Based on the new 3D sparker seismic data, our preferred interpretation for the San Mateo and San Onofre fault trends is they are transpressional features associated with westward jogs along right lateral fault strands splaying off the NIRC fault. Such a scenario also is consistent with observations from the 3D boomer volume along the shelf and upper slope that images westward stepping faults splaying off the NIRC system.

  7. Design of a fault-tolerant reversible control unit in molecular quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Bahadori, Golnaz; Houshmand, Monireh; Zomorodi-Moghadam, Mariam

    Quantum-dot cellular automata (QCA) is a promising emerging nanotechnology that has been attracting considerable attention due to its small feature size, ultra-low power consuming, and high clock frequency. Therefore, there have been many efforts to design computational units based on this technology. Despite these advantages of the QCA-based nanotechnologies, their implementation is susceptible to a high error rate. On the other hand, using the reversible computing leads to zero bit erasures and no energy dissipation. As the reversible computation does not lose information, the fault detection happens with a high probability. In this paper, first we propose a fault-tolerant control unit using reversible gates which improves on the previous design. The proposed design is then synthesized to the QCA technology and is simulated by the QCADesigner tool. Evaluation results indicate the performance of the proposed approach.

  8. Fault pattern at the northern end of the Death Valley - Furnace Creek fault zone, California and Nevada

    NASA Technical Reports Server (NTRS)

    Liggett, M. A. (Principal Investigator); Childs, J. F.

    1974-01-01

    The author has identified the following significant results. The pattern of faulting associated with the termination of the Death Valley-Furnace Creek Fault Zone in northern Fish Lake Valley, Nevada was studied in ERTS-1 MSS color composite imagery and color IR U-2 photography. Imagery analysis was supported by field reconnaissance and low altitude aerial photography. The northwest-trending right-lateral Death Valley-Furnace Creek Fault Zone changes northward to a complex pattern of discontinuous dip slip and strike slip faults. This fault pattern terminates to the north against an east-northeast trending zone herein called the Montgomery Fault Zone. No evidence for continuation of the Death Valley-Furnace Creek Fault Zone is recognized north of the Montgomery Fault Zone. Penecontemporaneous displacement in the Death Valley-Furnace Creek Fault Zone, the complex transitional zone, and the Montgomery Fault Zone suggests that the systems are genetically related. Mercury mineralization appears to have been localized along faults recognizable in ERTS-1 imagery within the transitional zone and the Montgomery Fault Zone.

  9. Late Quaternary alluviation and offset along the eastern Big Pine fault, southern California

    USGS Publications Warehouse

    DeLong, S.B.; Minor, S.A.; Arnold, L.J.

    2007-01-01

    Determining late Quaternary offset rates on specific faults within active mountain belts is not only a key component of seismic hazard analysis, but sheds light on regional tectonic development over geologic timescales. Here we report an estimate of dip-slip rate on the eastern Big Pine oblique-reverse fault in the upper Cuyama Valley within the western Transverse Ranges of southern California, and its relation to local landscape development. Optically stimulated luminescence (OSL) dating of sandy beds within coarse-grained alluvial deposits indicates that deposition of alluvium shed from the Pine Mountain massif occurred near the southern margin of the Cuyama structural basin at the elevation of the Cuyama River between 25 and 14??ka. This alluvial deposit has been offset ??? 10??m vertically by the eastern Big Pine fault, providing a latest Quaternary dip-slip rate estimate of ??? 0.9??m/ky based on a 50?? fault dip. Incision of the adjacent Cuyama River has exposed a section of older Cuyama River sediments beneath the Pine Mountain alluvium that accumulated between 45 and 30??ka on the down-thrown footwall block of the eastern Big Pine fault. Corroborative evidence for Holocene reverse-slip on the eastern Big Pine fault is ??? 1??m of incised bedrock that is characteristically exposed beneath 2-3.5??ka fill terraces in tributaries south of the fault. The eastern Big Pine fault in the Cuyama Valley area has no confirmed record of historic rupture; however, based on our results, we suggest the likelihood of multiple reverse-slip rupture events since 14??ka. ?? 2007 Elsevier B.V. All rights reserved.

  10. Quantitative analysis of a transpressional system, El Biod Arch, Ghadames Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, S.R.; Krantz, R.W.; Akkache, K.

    1996-12-31

    Trap definition within the northern extension of the Hassi Touareg - Rhourde El Baguel fault zone in the western Ghadames Basin of Algeria is difficult due to complex structural geometries. The fault zone consists of a narrow system of discontinuous. locally en echelon faults. Although north-trending to the south, the zone curves to a northeast trend to the north. Reserves associated with the southern portion of the system total 1500 MMBOR and 2 TCFG. Several lines of evidence support a strike-slip component of motion for the northern segment. Horizontal slickensides have been described in cores taken from wells within themore » fault trend. Fracture patterns measured from logs taken within the NE-SW fault trend show clusters expected for right-lateral Reidel shears. Although complicated by all evaporate sequence at mid-level in the stratigraphic section, we interpret downward converging faults imaged on recent 2D seismic as positive flower profiles. Map patterns are also interpreted as right-lateral, recognizing that the 2D grid cannot resolve all of the structural complexity. To confirm the component of strike-slip fault displacement, we applied a new quantitative method relating map view structural orientations to the shear magnitude, the degree of convergence or divergence, and the magnitudes of horizontal and vertical strains. Strike-slip to convergence ratios ranging from 2:1 to 3:1 were measured in the study area. Higher ratios (10:1) measured above the salt may indicate a detachment. These ratios also fit the regional tectonic pattern: to the south, where the fault zone trends due north, structural geometries support dip-slip inversion indicative of east-west shortening. Applying the same shortening vector to the northeast-trending part of the zone suggests oblique right-lateral motion, with a strike-slip to convergence ratio of 2:1.« less

  11. Quantitative analysis of a transpressional system, El Biod Arch, Ghadames Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, S.R.; Krantz, R.W.; Akkache, K.

    1996-01-01

    Trap definition within the northern extension of the Hassi Touareg - Rhourde El Baguel fault zone in the western Ghadames Basin of Algeria is difficult due to complex structural geometries. The fault zone consists of a narrow system of discontinuous. locally en echelon faults. Although north-trending to the south, the zone curves to a northeast trend to the north. Reserves associated with the southern portion of the system total 1500 MMBOR and 2 TCFG. Several lines of evidence support a strike-slip component of motion for the northern segment. Horizontal slickensides have been described in cores taken from wells within themore » fault trend. Fracture patterns measured from logs taken within the NE-SW fault trend show clusters expected for right-lateral Reidel shears. Although complicated by all evaporate sequence at mid-level in the stratigraphic section, we interpret downward converging faults imaged on recent 2D seismic as positive flower profiles. Map patterns are also interpreted as right-lateral, recognizing that the 2D grid cannot resolve all of the structural complexity. To confirm the component of strike-slip fault displacement, we applied a new quantitative method relating map view structural orientations to the shear magnitude, the degree of convergence or divergence, and the magnitudes of horizontal and vertical strains. Strike-slip to convergence ratios ranging from 2:1 to 3:1 were measured in the study area. Higher ratios (10:1) measured above the salt may indicate a detachment. These ratios also fit the regional tectonic pattern: to the south, where the fault zone trends due north, structural geometries support dip-slip inversion indicative of east-west shortening. Applying the same shortening vector to the northeast-trending part of the zone suggests oblique right-lateral motion, with a strike-slip to convergence ratio of 2:1.« less

  12. Geophysical basin structure of the Cotonou (Dahomey/Benin) basin, West African Gulf of Guinea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babalola, O.O.

    1990-05-01

    The frontier Cotonou basin (or Dahomey/Benin embayment), situated west of the prolific Niger Delta basin, appears from seismic, gravity, and aeromagnetic interpretation, as a series of grabens and troughs confined on the west and east by the Romanche and the Chain fracture zones, respectively. The Keta trough of the western basin rim was formed by a 2700-m southeasterly downthrow of the Adina fault. This trough is separated by a north-northeasterly fault from the Lome-Anecho gravity high. Eastward, the arcuate Allada-Adjohon trough is abutted on its southern flank by the northwest-trending Nokue-Afowo trough and separated from the northwesterly Ikorodu trough bymore » the 50-km-wide aeromagnetically inferred ro-Otta ridge. The Ikorodu trough is adjoined on the northwest by the Aiyetoro trough and on the southeast by the Yemoja offshore graben trending east northeast as the Seme oil-field structural trend. North of the regional northeasterly axial, gravity positive, structural divide (the continental precursor of the Charcot fracture zone) a series of half-grabens (notably the Aplahoue, Bohicon, and Keiou troughs), normal faulted eastward and downthrown in the west, dominate the landward western rim of the Cotonou basin. Graben-bounding faults control the upper valleys of the basin drainage, converge toward the regional intrabasin structural trend and continue into the Fenyi-koe fault and the Charcot fracture zone. These faults resulted from brittle dextral shear of continental crust oblique to local, preexisting north-northeast structural trends. In the eastern basin rim, preexisting north-northwest structural trends influenced the shearing stress regime to generate small, shallow, structurally bounded, east-northeast- and north-northwest trending grabens.« less

  13. Geometric and kinematic analysis of structural elements along north front of Bagharan Kuh Mountain, NE Iran

    NASA Astrophysics Data System (ADS)

    Samimi, S.; Gholami, E.

    2017-03-01

    At the end of the western part of Bagharan Kuh Mountain in the northeast of Iran, mountain growth has been stopped toward the west because of the stress having been consumed by the thrusting movements and region rising instead of shear movement. Chahkand fault zone is situated at the western part of this mountain; this fault zone includes several thrust sheets that caused upper cretaceous ophiolite rocks up to younger units, peridotite exposure and fault related fold developing in the surface. In transverse perpendicular to the mountain toward the north, reduction in the parameters like faults dip, amount of deformation, peridotite outcrops show faults growth sequence and thrust sheets growth from mountain to plain, thus structural vergence is toward the northeast in this fault zone. Deformation in the east part of the region caused fault propagation fold with axial trend of WNW-ESE that is compatible with trending of fault plane. In the middle part, two types of folds is observed; in the first type, folding occurred before faulting and folds was cut by back thrust activity; in the second type, faults activity caused fault related folds with N60-90W axial trend. In order to hanging wall strain balance, back thrusts have been developed in the middle and western part which caused popup and fault bend folds with N20-70E trend. Back thrusts activity formed footwall synclines, micro folds, foliations, and uplift in this part of the region. Kinematic analysis of faults show stress axis σ1 = N201.6, 7, σ2 = N292.6, 7.1, σ3 = N64.8, 79.5; stress axis obtained by fold analysis confirm that minimum stress (σ3) is close to vertical so it is compatible with fault analysis. Based on the results, deformation in this region is controlled by compressional stress regime. This stress state is consistent with the direction of convergence between the Arabian and Eurasian plates. Also study of transposition, folded veins, different movements on the fault planes and back thrusts confirm the progressive deformation is dominant in this region that it increases from the east to the west.

  14. Geophysical Investigations of a Sinkhole in the Amargosa Desert, Nevada

    NASA Astrophysics Data System (ADS)

    Sandberg, S. K.; Rogers, N. T.; Stamatakos, J. A.; LaFemina, P. C.; Connor, C. B.

    2001-12-01

    An unusual sinkhole (10 m opening, 20 m length, and 10 m depth) is exposed within the Quaternary alluvial fill in the Amargosa desert in southern Nevada, approximately 500 north-northeast of the Horse Tooth discharge deposit. We employed a variety of geophysical methods to investigate the structural setting of the sinkhole in order to evaluate formative hypotheses, including the possible role of groundwater discharge. Geophysical methods included total-field magnetics, very low frequency electromagnetics (VLF), terrain conductivity (horizontal loop electromagnetics), spontaneous polarization (SP), transient electromagnetics (TEM), mise-a-la-masse resistivity, and magnetometric resistivity (MMR). Total-field magnetic data were collected at two scales. A regional coverage of an area approximately 1.4 km by 1.4 km surrounding the sinkhole consisted of lines spaced 100 m apart. Data along the lines were gathered at 3-5 m intervals. Measurement locations were controlled by real-time differential GPS readings. A local magnetic survey of the area immediately adjacent to the sinkhole consisted of profiles 20 m apart, with a discrete station spacing of 2 m. Magnetic anomalies up to 1500 nT are identifiable based on strong normal- and reversed-polarity remanent magnetizations in the underlying bedrock tuff. Formation of the sinkhole appears to be related to complex interaction of N-S and NW-SE faults. Magnetic anomalies depict complexly faulted tuff dominated by north-south striking extensional faults. Similar fault patterns occur near the Horse Tooth discharge deposit. Near the sinkhole, a NW-trending magnetic anomaly appears to be associated with the surficial expression of the sinkhole. Terrain conductivity data show near-surface structure and lithologic changes at the sinkhole. VLF data, when converted to current density, show similar trends. However, VLF current density modeled from deeper in the section indicates a NW-SE range-front fault to the west of the sinkhole. Mise-a-la-masse data also distinctly show a response from this fault. Profiles of TEM central loop soundings were inverted to depth sections that provide details of the fault blocks in section. A comparison between magnetics data and TEM depth sections allows a detailed view the range-front fault. The SP method did not provide a coherent response near the sinkhole, possibly because the present groundwater depth is 16 m, below the depth of resolution for SP. Work supported by the U.S. NRC (Contract NRC-02-97-009). This work is an independent product of the CNWRA and does not necessarily reflect the views or regulatory positions of the NRC.

  15. Analysis of November 3, 2010 Kraljevo Earthquake (Mw=5.4) and Its Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    Knezevic Antonijevic, S.; Arroucau, P.; Vlahovic, G.

    2011-12-01

    A Mw=5.4 earthquake occurred on November 3, 2010 near the City of Kraljevo, Serbia (lat. 43.765 N, long. 20.713 E) and was followed by a sequence of more than 650 aftershocks with magnitude greater than 1.0. Despite the moderate magnitude of the event, two people were killed, many other were injured, and the total damage to the city is estimated to more than 150 million dollars. Changes in ground water circulation, liquefaction features and rockfalls have also been reported in some places. The earthquake occurred on the southern rim of the Pannonian Basin, in SE-NW-trending Čačak-Kraljevo Basin, also known as West Morava graben. This basin was formed by activation of several deep and secondary shallower faults during Lower Miocene and represents the largest of the intradinaric depressions. Depths proposed by different agencies for the mainshock range between 2 and 30 km. Moment tensor solutions show a mostly strike-slip component on an EW or NS trending fault, with either normal or reverse component depending on the solutions. In order to better characterize the location and source characteristics of that earthquake, we obtained data from seismological institutions of Serbia, Montenegro, Croatia, Greece, Albania, Romania and Italy and we manually picked P and S wave arrival times and first motion polarities on the available seismograms for the entire mainshock-aftershock sequence. More than 100 events were precisely relocated and focal mechanisms were determined in the best cases. Our results confirm that Kraljevo earthquake probably involved the activation in strike-slip regime of an EW-trending fault located in the northern rim of the West Morava Graben, while the seismicity of the past decades was mostly confined to the southern rim of that basin. Key words: Seismotectonic, Balkan region, Serbia, Čačak-Kraljevo Basin, aftershock sequence, earthquake location, focal mechanism

  16. Structural control on the CO2 release west of Mt. Epomeo resurgent block (Ischia, Italy)

    NASA Astrophysics Data System (ADS)

    de Vita, S.; Marotta, E.; Ventura, G.; Chiodini, G.

    2003-04-01

    Volcanism at Ischia started more than 150 ka B.P. and continued until the last eruption occurred in 1302 A.D. Ischia is dominated by the caldera forming eruption of Mt. Epomeo Green Tuff (55 ka), which was followed by block resurgence inside the caldera from 33 ka B.P. Resurgence influenced the volcanic activity determining the conditions for magma ascent mainly along the eastern edge of the resurgent block. The resurgent area has a poligonal shape resulting from reactivation of regional faults and by activation of faults related to volcanotectonism. The western sector is bordered by inward dipping, high angle strike-slip/reverse faults testifying a compressional stress regime in this area. These features are cut by late outward dipping normal faults due to gravitational stress. The activity of the volcanic system is testified by seismicity and thermal manifestations. Fumarolic activity concentrates along the faults that borders westward the Mt. Epomeo resurgent block, where the Green Tuff overlies fractured lavas. The structural data show that, outside the most active degassing zone, fractures show a NNW-SSE strike and dip toward Mt. Epomeo. These fractures delimit the northern sector of Mt. Epomeo and show strike and dip consistent with the inward dipping reverse faults. Inside the degassing area fractures show a NW-SE strike and dip outward Mt. Epomeo. These gravity-related faults cut the lavas where the hydrothermal circulation is active. The dip direction of the NW-SE striking fractures within the degassing zone is not consistent with that of the strike-slip/reverse faults (i.e. towards NE) but agrees well with that of the gravity-induced faults (dip direction towards SW). Inside the degassing zone, NW-SE striking faults with lengths not exceeding the hydrothermalized extension occur. This arrangement indicate that the syn-resurgence faults act as permeability barriers, whereas the youngest faults act as the main fluid pathway.

  17. Combined Application of Shallow Seismic Reflection and High-resolution Refraction Exploration Approach to Active Fault Survey, Central Orogenic Belt, China

    NASA Astrophysics Data System (ADS)

    Lin, S.; Luo, D.; Yanlin, F.; Li, Y.

    2016-12-01

    Shallow Seismic Reflection (SSR) is a major geophysical exploration method with its exploration depth range, high-resolution in urban active fault exploration. In this paper, we carried out (SSR) and High-resolution refraction (HRR) test in the Liangyun Basin to explore a buried fault. We used NZ distributed 64 channel seismic instrument, 60HZ high sensitivity detector, Geode multi-channel portable acquisition system and hammer source. We selected single side hammer hit multiple overlay, 48 channels received and 12 times of coverage. As there are some coincidence measuring lines of SSR and HRR, we chose multi chase and encounter observation system. Based on the satellite positioning, we arranged 11 survey lines in our study area with total length for 8132 meters. GEOGIGA seismic reflection data processing software was used to deal with the SSR data. After repeated tests from the aspects of single shot record compilation, interference wave pressing, static correction, velocity parameter extraction, dynamic correction, eventually got the shallow seismic reflection profile images. Meanwhile, we used Canadian technology company good refraction and tomographic imaging software to deal with HRR seismic data, which is based on nonlinear first arrival wave travel time tomography. Combined with drilling geological profiles, we explained 11 measured seismic profiles. Results show 18 obvious fault feature breakpoints, including 4 normal faults of south-west, 7 reverse faults of south-west, one normal fault of north-east and 6 reverse faults of north-east. Breakpoints buried depth is 15-18 meters, and the inferred fault distance is 3-12 meters. Comprehensive analysis shows that the fault property is reverse fault with northeast incline section, and fewer branch normal faults presenting southwest incline section. Since good corresponding relationship between the seismic interpretation results, drilling data and SEM results on the property, occurrence, broken length of the fault, we considered the Liangyun fault to be an active fault which has strong activity during the Neogene Pliocene and early Pleistocene, Middle Pleistocene period. The combined application of SSR and HRR can provide more parameters to explain the seismic results, and improve the accuracy of the interpretation.

  18. Miocene stratigraphy and structure of Sabine Pass, West Cameron, and East Cameron outer continental shelf areas, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, S.Y.; Watkins, J.S.

    Mapping of Miocene stratigraphy and structure of the Sabine Pass, West Cameron, and East Cameron areas of the western Louisiana outer continental shelf - based on over 1300 mi of seismic data on a 4-mi grid, paleotops from 60 wells, and logs from 35 wells - resulted in time-structure and isochron maps at six intervals from the upper Pliocene to lower Miocene. The most pronounced structural features are the fault systems, which trend east-northeast to east along the Miocene stratigraphic trend. Isolated normal faults with small displacements characterize the inner inner shelf, whereas interconnected faults with greater displacements characterize themore » outer inner shelf. The inner inner shelf faults exhibit little growth, but expansion across the interconnected outer inner shelf fault ranges up to 1 sec two-way traveltime. The interconnected faults belong to two structurally independent fault families. The innermost shelf faults appear to root in the sediment column. A third set of faults located in the Sabine Pass area trends north-south. This fault set is thought to be related to basement movement and/or basement structure. Very little salt is evident in the area. A single diapir is located in West Cameron Block 110 and vicinity. There is little evidence of deep salt. Overall sediment thickness probably exceeds 20,000 ft, with the middle Miocene accounting for 8000 ft.« less

  19. Assessing earthquake hazards with fault trench and LiDAR maps in the Puget Lowland, Washington, USA (Invited)

    NASA Astrophysics Data System (ADS)

    Nelson, A. R.; Bradley, L.; Personius, S. F.; Johnson, S. Y.

    2010-12-01

    Deciphering the earthquake histories of faults over the past few thousands of years in tectonically complex forearc regions relies on detailed site-specific as well as regional geologic maps. Here we present examples of site-specific USGS maps used to reconstruct earthquake histories for faults in the Puget Lowland. Near-surface faults and folds in the Puget Lowland accommodate 4-7 mm/yr of north-south shortening resulting from northward migration of forearc blocks along the Cascadia convergent margin. The shortening has produced east-trending uplifts, basins, and associated reverse faults that traverse urban areas. Near the eastern and northern flanks of the Olympic Mountains, complex interactions between north-south shortening and mountain uplift are reflected by normal, oblique-slip, and reverse surface faults. Holocene oblique-slip movement has also been mapped on Whidbey Island and on faults in the foothills of the Cascade Mountains in the northeastern lowland. The close proximity of lowland faults to urban areas may pose a greater earthquake hazard there than do much longer but more distant plate-boundary faults. LiDAR imagery of the densely forested lowland flown over the past 12 years revealed many previously unknown 0.5-m to 6-m-high scarps showing Holocene movement on upper-plate faults. This imagery uses two-way traveltimes of laser light pulses to detect as little as 0.2 m of relative relief on the forest floor. The returns of laser pulses with the longest travel times yield digital elevation models of the ground surface, which we vertically exaggerate and digitally shade from multiple directions at variable transparencies to enhance identification of scarps. Our maps include imagery at scales of 1:40,000 to 1:2500 with contour spacings of 100 m to 0.5 m. Maps of the vertical walls of fault-scarp trenches show complex stratigraphies and structural relations used to decipher the histories of large surface-rupturing earthquakes. These logs (field mapping at 1:8 to 1:20 scales) of 25 trenches are included in five published (and one in preparation) maps along with lithologic descriptions of stratigraphic units and tables of 14C, structural, and stratigraphic data. Maps include soil profile data, topographic profiles across scarps, structural orientation data, or photographs of trench sites or trench walls. Stratigraphy and 14C ages suggest that earthquake recurrence varies from less than a century to many thousands of years. Interpretation and synthesis of such data are reserved for journal papers, which commonly cannot accommodate the detailed, large-format information shown on the maps. Many thanks to Brian Sherrod, Harvey Kelsey, Jason Buck, Ray Wells, Liz Schermer, Rob Witter, Rich Koehler, Rich Briggs, Robert Bogar, Gary Henley, Dave Harding, Koji Okumura, Silvio Pezzopane, Bob Bucknam, Zeb Maharrey, Bill Laprade, Ralph Haugerud, Lee Liberty, Michael Polenz, Eliza Nemser, Trenton Cladouhos, and many others for days to many weeks of effort in our trenches over the past 12 years.

  20. A reassessment of the Archean-Mesoproterozoic tectonic development of the southeastern Chhattisgarh Basin, Central India through detailed aeromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Sridhar, M.; Ramesh Babu, V.; Markandeyulu, A.; Raju, B. V. S. N.; Chaturvedi, A. K.; Roy, M. K.

    2017-08-01

    We constrained the geological framework over polydeformed Paleoproterozoic Sonakhan Greenstone Belt and addressed the tectonic evolution of Singhora basin in the fringes of Bastar Craton, central India by utilizing aeromagnetic data interpretation, 2.5D forward modelling and 3D magnetic susceptibility inversions. The Sonakhan Greenstone Belt exposes volcano-sedimentary sequences of the Sonakhan Group within NNW-SSE to NW-SE trending linear belts surrounded by granite gneisses, which are unconformably overlain by sedimentary rocks of Chhattisgarh Basin. The orientations of aeromagnetic anomalies are coincident with geological trends and appear to correlate with lithology and geologic structure. Regional magnetic anomalies and lineaments reveal both NNW-SSE and NE-SW trends. Prominent E-W trending linear, high amplitude magnetic anomalies are interpreted as the Trans-Chhattisgarh Aeromagnetic Lineament (TCAL). NW-SE trending aeromagnetic signatures related to Sonakhan Greenstone Belt extends below the Singhora sedimentary rocks and forms the basement in the west. The analysis suggests that TCAL is a block fault with northern block down-thrown and affected the basement rocks comprising the Sonakhan Greenstone Belt and Samblapur Granitoids. The episode of faulting represented by the TCAL is pre-Singhora sedimentation and played a vital role in basin evolution. The basement configuration image generated by estimates of depth to magnetic basement suggests a complex pattern of NNE-SSW to NE-SW trending depressions separated by a linear N-S trending basement ridge. It is inferred from the 3D magnetic susceptibility inversion that the thickness of sediments is more towards the eastern basin margin and the N-S ridge is a manifestation of post sedimentary faulting. Results of 2.5D modelling of a WNW-ESE profile across the Singhora Basin combined with results from 3D inversion suggest suggests the basin subsidence was controlled by NE-SW trending regional faults in an active system. The basin geometry evolved by E-W block faulting overprinted by NE-SW trending pre- to syn-depositional normal faults generating NE-SW depression, which are affected by N-S trend post-sedimentary faulting. Though the present work relates the basin evolution with the initiation of rift basin, it warrants further work to establish the deformation within the basin pertaining to the proximal thrust and uplift along the craton fringe.

  1. Fault Structural Control on Earthquake Strong Ground Motions: The 2008 Wenchuan Earthquake as an Example

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zhang, Dongli; Li, Xiaojun; Huang, Bei; Zheng, Wenjun; Wang, Yuejun

    2018-02-01

    Continental thrust faulting earthquakes pose severe threats to megacities across the world. Recent events show the possible control of fault structures on strong ground motions. The seismogenic structure of the 2008 Wenchuan earthquake is associated with high-angle listric reverse fault zones. Its peak ground accelerations (PGAs) show a prominent feature of fault zone amplification: the values within the 30- to 40-km-wide fault zone block are significantly larger than those on both the hanging wall and the footwall. The PGA values attenuate asymmetrically: they decay much more rapidly in the footwall than in the hanging wall. The hanging wall effects can be seen on both the vertical and horizontal components of the PGAs, with the former significantly more prominent than the latter. All these characteristics can be adequately interpreted by upward extrusion of the high-angle listric reverse fault zone block. Through comparison with a low-angle planar thrust fault associated with the 1999 Chi-Chi earthquake, we conclude that different fault structures might have controlled different patterns of strong ground motion, which should be taken into account in seismic design and construction.

  2. Major Crustal Fault Zone Trends and Their Relation to Mineral Belts in the North-Central Great Basin, Nevada

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sampson, Jay A.; Williams, Jackie M.

    2007-01-01

    The Great Basin physiographic province covers a large part of the western United States and contains one of the world's leading gold-producing areas, the Carlin Trend. In the Great Basin, many sedimentary-rock-hosted disseminated gold deposits occur along such linear mineral-occurrence trends. The distribution and genesis of these deposits is not fully understood, but most models indicate that regional tectonic structures play an important role in their spatial distribution. Over 100 magnetotelluric (MT) soundings were acquired between 1994 and 2001 by the U.S. Geological Survey to investigate crustal structures that may underlie the linear trends in north-central Nevada. MT sounding data were used to map changes in electrical resistivity as a function of depth that are related to subsurface lithologic and structural variations. Two-dimensional (2-D) resistivity modeling of the MT data reveals primarily northerly and northeasterly trending narrow 2-D conductors (1 to 30 ohm-m) extending to mid-crustal depths (5-20 km) that are interpreted to be major crustal fault zones. There are also a few westerly and northwesterly trending 2-D conductors. However, the great majority of the inferred crustal fault zones mapped using MT are perpendicular or oblique to the generally accepted trends. The correlation of strike of three crustal fault zones with the strike of the Carlin and Getchell trends and the Alligator Ridge district suggests they may have been the root fluid flow pathways that fed faults and fracture networks at shallower levels where gold precipitated in favorable host rocks. The abundant northeasterly crustal structures that do not correlate with the major trends may be structures that are open to fluid flow at the present time.

  3. Determination of the fault plane and rupture size of the 2013 Santa Cruz earthquake, Bolivia, 5.2 Mw, by relative location of the aftershocks

    NASA Astrophysics Data System (ADS)

    Rivadeneyra-Vera, C.; Assumpção, M.; Minaya, E.; Aliaga, P.; Avila, G.

    2016-11-01

    The Central Andes of southern Bolivia is a highly seismic region with many active faults, that could generate earthquakes up to 8.9 Mw. In 2013, an earthquake of 5.2 Mw occurred in Santa Cruz de la Sierra, in the sub-Andean belt, close to the Mandeyapecua fault, one of the most important reverse faults in Bolivia. Five larger aftershocks were reported by the International Seismological Centre (ISC) and 33 smaller aftershocks were recorded by the San Calixto Observatory (OSC) in the two months after the mainshock. Distances between epicenters of the events were up to 36 km, which is larger than expected for an earthquake of this magnitude. Using data from South American regional stations and the relative location technique with Rayleigh waves, the epicenters of the five larger aftershocks of the Santa Cruz series were determined in relation to the mainshock. This method enabled to achieve epicentral locations with uncertainties smaller than 1 km. Additionally, using data of three Bolivian stations (MOC, SIV and LPAZ) eight smaller aftershocks, recorded by the OSC, were relocated through correlation of P and S waves. The results show a NNW-SSE trend of epicenters and suggest an E dipping plane. The maximum distance between the aftershocks is 14 km, which is not consistent with the expected subsurface rupture length, in accordance with the magnitude of the mainshock. The events are located away from the Mandeyapecua fault and show an opposite dip, demonstrating that these events were generated by another fault in the area, that had not been well studied yet.

  4. Imaging active faulting in a region of distributed deformation from the joint clustering of focal mechanisms and hypocentres: Application to the Azores-western Mediterranean region

    NASA Astrophysics Data System (ADS)

    Custódio, Susana; Lima, Vânia; Vales, Dina; Cesca, Simone; Carrilho, Fernando

    2016-04-01

    The matching between linear trends of hypocentres and fault planes indicated by focal mechanisms (FMs) is frequently used to infer the location and geometry of active faults. This practice works well in regions of fast lithospheric deformation, where earthquake patterns are clear and major structures accommodate the bulk of deformation, but typically fails in regions of slow and distributed deformation. We present a new joint FM and hypocentre cluster algorithm that is able to detect systematically the consistency between hypocentre lineations and FMs, even in regions of distributed deformation. We apply the method to the Azores-western Mediterranean region, with particular emphasis on western Iberia. The analysis relies on a compilation of hypocentres and FMs taken from regional and global earthquake catalogues, academic theses and technical reports, complemented by new FMs for western Iberia. The joint clustering algorithm images both well-known and new seismo-tectonic features. The Azores triple junction is characterised by FMs with vertical pressure (P) axes, in good agreement with the divergent setting, and the Iberian domain is characterised by NW-SE oriented P axes, indicating a response of the lithosphere to the ongoing oblique convergence between Nubia and Eurasia. Several earthquakes remain unclustered in the western Mediterranean domain, which may indicate a response to local stresses. The major regions of consistent faulting that we identify are the mid-Atlantic ridge, the Terceira rift, the Trans-Alboran shear zone and the north coast of Algeria. In addition, other smaller earthquake clusters present a good match between epicentre lineations and FM fault planes. These clusters may signal single active faults or wide zones of distributed but consistent faulting. Mainland Portugal is dominated by strike-slip earthquakes with fault planes coincident with the predominant NNE-SSW and WNW-ESE oriented earthquake lineations. Clusters offshore SW Iberia are predominantly strike-slip or reverse, confirming previous suggestions of slip partitioning.

  5. Structural evolution and tectonic style of the Tunisian central Atlas; role of inherited faults in compressive tectonics (Ghoualguia anticline)

    NASA Astrophysics Data System (ADS)

    Briki, Haithem; Ahmadi, Riadh; Smida, Rabiaa; Rekhiss, Farhat

    2018-04-01

    Geological mapping, field cross sections, structural analyses and new subsurface data were used to characterize the geometry and tectonic setting of the Ghoualguia structure, which is an E-W-trending anticline located between the Kalaa Khasba and Rouhia troughs of the central Tunisian Atlas. The results show an important NE-SW extensional phase during the Mesozoic, as demonstrated by synsedimentary normal faults (NW-SE and E-W) and thickness variations. In the Aouled Mdoua area, the absence of Paleocene-Eocene rocks indicates that the eastern and western parts of the Ghoualguia structure were separated by high topography. In addition, the angular unconformity observed between the Upper Cretaceous unit (Abiod Fm.) and the upper Eocene series (Souar Fm.) provide evidence of a tilted-block structure delineated by North-South faults. A major compressional phase during the middle to late Miocene created various detachment levels that originated mainly in the Triassic and Cretaceous deposits. Faults were reactivated as thrust and strike-slip faults, creating fault-related fold structures. In the core of the Ghoualguia fold, an original S-dipping normal fault underwent reverse movement as a back thrust. Fault-slip data indicate that the area records a major NE-SW extensional phase that took place during the late Miocene and Pliocene. A balanced cross section provides insight into the existence of two main detachment levels rooted in the Triassic (depth ± 6 km) and the lower Cretaceous (depth ± 2.5 km). The balanced cross section highlights a shortening of about 2.5 km along cross section and 1.5 km in the central part of the Ghoualguia anticline. This work underlines the predominant role of the inherited Mesozoic structures during the evolution of the Atlassic range and their influence on the geometry of the central Tunisian atlas.

  6. Morphostructural study of the Belledonne faults system (French Alps).

    NASA Astrophysics Data System (ADS)

    Billant, Jérémy; Bellier, Olivier; Hippolyte, Jean-Claude; Godard, Vincent; Manchuel, Kevin

    2016-04-01

    The NE trending Belledonne faults system, located in the Alps, is a potentially active faults system that extends from the Aiguilles Rouges and Mont Blanc massifs in the NE to the Vercors massif in the SW (subalpine massifs). It includes the Belledonne border fault (BBF), defined by an alignment of micro earthquakes (ML≤3.5) along the eastern part of the Grésivaudan valley (Thouvenot et al., 2003). Focal mechanisms and their respective depths tend to confirm a dextral strike-slip faulting at crustal scale. In the scope of the Sigma project (http://projet-sigma.com/index.html, EDF), this study aims at better constraining the geometry, kinematic and seismogenic potential of the constitutive faults of the Belledonne fault system, by using a multidisciplinary approach that includes tectonics, geomorphology and geophysics. Fault kinematic analysis along the BBF (Billant et al., 2015) and the Jasneuf fault allows the determination of a strike-slip tectonic regime characterised by an ENE trending σ1 stress axes, which is consistent with stress state deduced from the focal mechanisms. Although no morphological anomalies could be related to recent faulting along the BBF, new clues of potential Quaternary deformations were observed along the other faults of the system: -right lateral offset of morphologic markers (talwegs...) along the NE trending Arcalod fault located at the north-eastern terminations of the BBF; -left lateral offset of the valley formed by the Isère glacier along the NW trending Brion fault which is consistent with its left-lateral slip inferred from the focal mechanisms; -fault scarps and right lateral offsets of cliffs bordering a calcareous plateau and talwegs along the four fault segments of the NE trending Jasneuf fault located at the south-western termination of the BBF in the Vercors massif. Some offsets were measured using a new method that does not require the identification of piercing points and take advantage of the high resolution topographic data that we obtained using photogrammetry. Fault slip rates cannot be reliably assessed because of the lack of morphologic features that can be dated. For the Arcalod and Brion faults, when considering that the observed offset are inherited from Würm, the calculated fault slip rates are much larger than those deduced for other faults in France suggesting that the studied morphologic markers are older than the Würm. For the Jasneuf fault, assuming a constant long term (since Messinian) fault slip rate, the comparison of the long term offset (measured using cliff offsets) and short term offset (measured using stream offsets and fault scarps) yields a fault slip rate which is of 0.13±0.03 mm/yr. The extension of the fault is poorly constrained and we can not ascertain the prolongation of the Jasneuf fault outside of the Vercors plateau nor in depth. Nevertheless, if this fault is limited to the sedimentary cover and do not extend outside of the Vercors plateau, it could generate Mw 5.7 earthquakes each ~500 years. On the other hand we can not exclude that a large part of the deformation could be accommodated by aseismic creep as indicated by pressure solution features (Gratier et al.,2003).

  7. Structural development and stress evolution of an arcuate fold-and-thrust system, southwestern Greater Caucasus, Republic of Georgia

    NASA Astrophysics Data System (ADS)

    Tibaldi, A.; Bonali, F. L.; Russo, E.; Pasquarè Mariotto, F. A.

    2018-05-01

    The southern front of the Greater Caucasus is quite rectilinear in plan view, with the exception of part of the Rioni Basin, where marine and continental deposits of Cretaceous-Neogene age were locally folded and uplifted; this resulted in the formation of an arcuate fold-and-thrust system that extends 45 km into the foreland. Although previous studies suggested that this system has developed only since Miocene times, our new detailed and systematic field measurements of brittle and ductile structures show a very complex history, consisting in four main phases of brittle deformation and folding, dated from Eocene to Quaternary times. We collected microtectonic data at 248 faults, and calculated the related paleostress tensors. The first two phases which we document here, predated folding and were characterised by dominant transcurrent faulting and subordinate reverse motions; the greatest principal stress σ1 was perpendicular and later parallel to the mountain belt. Afterwards, NW-SE, E-W and NE-SW trending, south-vergent asymmetrical folds started to form. In the western sector of the study area, folds are sinuous in plan view, whereas to the east they show a left-stepping, en-échelon geometry. Another two, brittle deformation phases took place after the folding, due to the activity of a set of right-lateral, strike-slip faults that strike NW-SE and NE-SW, respectively, as well as by left-lateral strike-slip faults, mostly striking NW-SE, NE-SW and NNE-SSW. These two additional phases were produced by a NE-SW to N-S trending σ1. The arcuate belt is marked by along-strike variations in the tectonic regime and deformation geometry, plus belt-parallel stretching. Based on our field data, integrated with published analogue models, we suggest a possible explanation for the Rioni structure, in terms of the oblique, asymmetric indentation of an upper crustal blocks moving to the SSW.

  8. Fore-arc Deformation in the Paola Basin Segment (Offshore Western Calabria) of the Tyrrhenian-Ionian Subduction System

    NASA Astrophysics Data System (ADS)

    Pepe, F.; Corradino, M.; Nicolich, R.; Barreca, G.; Bertotti, G.; Ferranti, L.; Monaco, C.

    2017-12-01

    The 3D stratigraphic architecture and Late Neogene to Recent tectonic evolution of the Paola Basin (offshore western Calabria), a segment in the fore-arc of the Tyrrhenian-Ionian subduction system, is reconstructed by using a grid of high-penetration reflection seismics. Oligocene to Messinian deposits are interpreted all along the profile. They tend to fossilize preexisting topography and reach the largest thicknesses between (fault controlled) basement highs. Plio-Quaternary deposits are found over the entire area and display variations in thickness and tectonic style. They are thicken up to 4.5 km in the depocenter of the basin, and decrease both in the east and west termination of the lines. The Paola Basin can be partitioned into two sectors with different tectonic deformation, separated by a NNW-SSE elongated area that coincides with the basin depocenter. Tectonic features associated with strike-slip restraining and releasing bends are widely spread over the western sector of the basin. Overall, they form an approximately NS-trending and geomorphically prominent ridge separating the Paola Basin from the Marsili abyssal plain. A high-angle, NNE-trending, normal fault system develops on the south-west tip of the basin, where the faults offset the Messinian horizon of ca. 500 m. Data suggest that limited vertical slip occurs along reverse faults detected at the border and inside the sedimentary infilling of the Paola Basin, reaching thickness of more than 3.8s two way travel time. The reflection sequence pattern can be interpreted as a result of the infilling of the thrust-top basin related to a prograding system, located between a growth ramp-anticline to the west and a culmination of basement-thrust sheets to the East. We propose that the Paola Basin developed near the northern edge of the Ionian slab where tearing of the lithosphere is expected. Also, the strike-slip fault system is a kinematic consequence of obliquely convergent subduction settings, where interplate strain is partitioned into arc-parallel strike-slip zones within the fore-arc, arc or back-arc region.

  9. Late Quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    USGS Publications Warehouse

    Brogan, George E.; Kellogg, Karl; Slemmons, D. Burton; Terhune, Christina L.

    1991-01-01

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest-trending pull-apart basin. The largest late Quaternary scarps along the Furnace Creek fault zone, with vertical separation of late Pleistocene surfaces of as much as 64 m (meters), are in Fish Lake Valley. Despite the predominance of normal faulting along the Death Valley fault zone, vertical offset of late Pleistocene surfaces along the Death Valley fault zone apparently does not exceed about 15 m. Evidence for four to six separate late Holocene faulting events along the Furnace Creek fault zone and three or more late Holocene events along the Death Valley fault zone are indicated by rupturing of Q1B (about 200-2,000 years old) geomorphic surfaces. Probably the youngest neotectonic feature observed along the Death Valley-Furnace Creek fault system, possibly historic in age, is vegetation lineaments in southernmost Fish Lake Valley. Near-historic faulting in Death Valley, within several kilometers south of Furnace Creek Ranch, is represented by (1) a 2,000-year-old lake shoreline that is cut by sinuous scarps, and (2) a system of young scarps with free-faceted faces (representing several faulting events) that cuts Q1B surfaces.

  10. Post-Paleogene Deformation in central Anatolia, South of Ankara (Turkey)

    NASA Astrophysics Data System (ADS)

    Rojay, Bora

    2014-05-01

    The closure of the northern Neo-Tethys took place between Eurasia in the north and northern edge of Afro- Arabian plate in the south since the Early Cretaceous is documented in central Anatolia. It is mated by Cretaceous ophiolitic mélanges thrusted over southwards on to the upper Cretaceous-Paleogene fore-arc and foreland sequences along the northern margins of Haymana and Tuzgölü basins, respectively. Two main deformation episodes are recognized in the region. These include post-Cretaceous-pre Miocene compressional regime and Miocene to mid-Pliocene transcurrent regime dominated extensional deformation. The first regime is characterize by NW-SE directed compressional and contractional deformation dominated by south vergent, large wave length, asymmetric to overturned folds and associated thrust/reverse faults. Some of these reverse faults were reactivated as strike-slip faults with reverse components as evidenced by cross-cutting relationships and overprinting slickensides observed extensively in the field. Along these reactivated faults, echelon calcite veins, fault parallel meter thick silica walls with repeated phases of deformation are very common. Following the Miocene, the region is affected by a NNE-SSW to NE-SW directed extension, possibly resulted from the interaction of Tuzgölü Fault with the northwards convex splays of dextral North Anatolian Fault extending into the region. As a conclusion, the Paleogene sequences with ophiolitic mélanges are deformed under NNE-SSW directed compression related to the development of dextral strike slip tectonics during post-Paleogene-pre-Miocene period. Keywords:fault plane slip data, transcurrent regime, post-Paleogene, central Anatolia.

  11. The Rome trough and evolution of the Iapetean margin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, D.; Hamilton-Smith, T.; Drahovzal, J.A.

    1991-08-01

    Recent structural mapping of the Rome trough suggests a complex structure very different from the symmetrical and laterally continuous graben commonly depicted. Early and Middle Cambrian extension in the Rome trough of eastern Kentucky and adjacent areas resulted in a series of alternately facing half-grabens with variable displacement. These half-grabens are bounded by southwest-northeast-trending normal faults (e.g., Kentucky River and Warfield faults), which are laterally continuous only on the order to tens of kilometers. The Rome trough is laterally segmented by north-south-trending faults (e.g., Lexington fault) commonly expressed as flexures in younger rocks (e.g., Burning Springs anticline and Floyd Countymore » channel). Many of these north-south-trending faults have significant left-lateral displacement, and probably represent reactivated thrust faults of the Grenville tectonic front. The Rome trough and the associated Mississippi Valley, Rough Creek, and Birmingham fault systems were initiated during an Early Cambrian shift in sea-floor spreading from the Blue Ridge-Pine Mountain rift to the Ouachita rift along the Alabama-Oklahoma transform fault. These fault systems have been proposed as having originated from extensional stress propagated northward from the Ouachita rift across the transform fault. In the alternate model proposed here, faulting was brittle, extensional failure resulting form subsidence and flexure of the continental margin to the east. Following initiation of sea-floor spreading at the Blue Ridge-Pine Mountain rift in the latest Proterozoic, margin subsidence in the presence of the Alabama-Oklahoma transform boundary and the inherited Grenville tectonic front resulted in this interior cratonic fault system.« less

  12. The Investigation of Active Tectonism Offshore Cide-Sinop, Southern Black Sea by Seismic Reflection and Bathymetric Data

    NASA Astrophysics Data System (ADS)

    Alp, Y. I.; Ocakoglu, N.; Kılıc, F.; Ozel, A. O.

    2017-12-01

    The active tectonism offshore Cide-Sinop at the Southern Black Sea shelf area was first time investigated by multi-beam bathymetric and multi-channel seismic reflection data under the Research Project of The Scientific and Technological Research Council of Turkey (TUBİTAK-ÇAYDAG-114Y057). The multi-channel seismic reflection data of about 700 km length were acquired in 1991 by Turkish Petroleum Company (TP). Multibeam bathymetric data were collected between 2002-2008 by the Turkish Navy, Department of Navigation, Hydrography and Oceanography (TN-DNHO). Conventional data processing steps were applied as follows: in-line geometry definition, shot-receiver static correction, editing, shot muting, gain correction, CDP sorting, velocity analysis, NMO correction, muting, stacking, predictive deconvolution, band-pass filtering, finite-difference time migration, and automatic gain correction. Offshore area is represented by a quite smooth and large shelf plain with an approx. 25 km wide and the water depth of about -100 m. The shelf gently deepens and it is limited by the shelf break with average of -120 m contour. The seafloor morphology is charasterised by an erosional surface. Structurally, E-W trending strike-slip faults with generally compression components and reverse/thrust faults have been regionally mapped for the first time. Most of these faults deform all seismic units and reach the seafloor delimiting the morphological highs and submarine plains. Thus, these faults are intepreted as active faults. These results support the idea that the area is under the active compressional tectonic regime

  13. Type of faulting and orientation of stress and strain as a function of space and time in Kilauea's south flank, Hawaii

    USGS Publications Warehouse

    Gillard, D.; Wyss, M.; Okubo, P.

    1996-01-01

    Earthquake focal mechanisms of events occurring between 1972 and 1992 in the south flank of Kilauea volcano, Hawaii, are used to infer the state of stress and strain as a function of time and space. We have determined 870 fault plane solutions from P wave first motion polarities for events with magnitudes ML ??? 2.5 and depth ranging between 6 and 12 km. Faulting is characterized by a mixture of decollement, reverse, and normal faults. Most large earthquakes with magnitude M 7 rupture the decollement plane, since it is the only surface large enough to generate magnitude 7 or larger earthquakes. The percentage of reverse faulting events is high compared to the decollement and normal faulting mechanisms for the period 1972-1983. The percentage of decollement type focal mechanisms becomes dominant after 1983. This pattern of faulting activity suggests that pressure was building up within Kilauea's rift zone prior to the 1983 Puu'Oo eruption. Overall, a single stress orientation with the maximum compressive stress oriented SE perpendicular to the rift and dipping at 45?? is compatible with the coeval existence of decollement, reverse, and normal faults. However, in a crustal volume east of longitude 155??10'W, we find a change of the orientation of ??1 from nearly horizontal to plunging 45?? SE occurring in 1979. This stress rotation suggests magma movements within the aseismic part of Kilauea's east rift zone. The strain and stress orientations are coaxial in the south flank except within the volume where the stress rotation is observed. We observe a change in the relationship between stress and strain directions caused either by the shifting of seismic activity from reverse faults to decollements, while stress stays constant, or by a rotation of stress, while strain remains constant. Assuming that the model of a noncohesive Coulomb wedge is appropriate for Kilauea's south flank, we find that high pore pressures are prevalent along the decollement and within the wedge for a coefficient of friction equal to 0.85.

  14. Tectonic setting of the Wooded Island earthquake swarm, eastern Washington

    USGS Publications Warehouse

    Blakely, Richard J.; Sherrod, Brian L.; Weaver, Craig S.; Rohay, Alan C.; Wells, Ray E.

    2012-01-01

    Magnetic anomalies provide insights into the tectonic implications of a swarm of ~1500 shallow (~1 km deep) earthquakes that occurred in 2009 on the Hanford site,Washington. Epicenters were concentrated in a 2 km2 area nearWooded Island in the Columbia River. The largest earthquake (M 3.0) had first motions consistent with slip on a northwest-striking reverse fault. The swarm was accompanied by 35 mm of vertical surface deformation, seen in satellite interferometry (InSAR), interpreted to be caused by ~50 mm of slip on a northwest-striking reverse fault and associated bedding-plane fault in the underlying Columbia River Basalt Group (CRBG). A magnetic anomaly over exposed CRBG at Yakima Ridge 40 km northwest of Wooded Island extends southeastward beyond the ridge to the Columbia River, suggesting that the Yakima Ridge anticline and its associated thrust fault extend southeastward in the subsurface. In map view, the concealed anticline passes through the earthquake swarm and lies parallel to reverse faults determined from first motions and InSAR data. A forward model of the magnetic anomaly near Wooded Island is consistent with uplift of concealed CRBG, with the top surface <200 m below the surface. The earthquake swarm and the thrust and bedding-plane faults modeled from interferometry all fall within the northeastern limb of the faulted anticline. Although fluids may be responsible for triggering the Wooded Island earthquake swarm, the seismic and aseismic deformation are consistent with regional-scale tectonic compression across the concealed Yakima Ridge anticline.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blakely, R. J.; Sherrod, B. L.; Weaver, C. S.

    Magnetic anomalies provide insights into the tectonic implications of a swarm of ~1500 shallow (~1 km deep) earthquakes that occurred in 2009 on the Hanford site, Washington. Epicenters were concentrated in a 2 km 2 area near Wooded Island in the Columbia River. The largest earthquake (M 3.0) had first motions consistent with slip on a northwest-striking reverse fault. The swarm was accompanied by 35 mm of vertical surface deformation, seen in satellite interferometry (InSAR), interpreted to be caused by ~50 mm of slip on a northwest-striking reverse fault and associated bedding-plane fault in the underlying Columbia River Basalt Groupmore » (CRBG). A magnetic anomaly over exposed CRBG at Yakima Ridge 40 km northwest of Wooded Island extends southeastward beyond the ridge to the Columbia River, suggesting that the Yakima Ridge anticline and its associated thrust fault extend southeastward in the subsurface. In map view, the concealed anticline passes through the earthquake swarm and lies parallel to reverse faults determined from first motions and InSAR data. A forward model of the magnetic anomaly near Wooded Island is consistent with uplift of concealed CRBG, with the top surface <200 m below the surface. The earthquake swarm and the thrust and bedding-plane faults modeled from interferometry all fall within the northeastern limb of the faulted anticline. Finally, although fluids may be responsible for triggering the Wooded Island earthquake swarm, the seismic and aseismic deformation are consistent with regional-scale tectonic compression across the concealed Yakima Ridge anticline.« less

  16. Structural Analysis of Active North Bozgush Fault Zone (NW Iran)

    NASA Astrophysics Data System (ADS)

    Saber, R.; Isik, V.; Caglayan, A.

    2013-12-01

    NW Iran is one of the seismically active regions between Zagros Thrust Belt at the south and Caucasus at the north. Not only large magnitude historical earthquakes (Ms>7), but also 1987 Bozgush, 1997 Ardebil (Mw 6.1) and 2012 Ahar-Varzagan (Mw 6.4) earthquakes reveal that the region is seismically active. The North Bozgush Fault Zone (NBFZ) in this region has tens of kilometers in length and hundreds of meters in width. The zone has produced some large and destructive earthquakes (1593 M:6.1 and 1883 M:6.2). The NBFZ affects the Cenozoic units and along this zone Eocene units thrusted over Miocene and/or Plio-Quaternary sedimentary units. Together with morphologic features (stream offsets and alluvial fan movements) affecting the young unites reveal that the zone is active. The zone is mainly characterized by strike-slip faults with reverse component and reverse faults. Reverse faults striking N55°-85°E and dip of 40°-50° to the SW while strike-slip faults show right lateral slip with N60°-85°W and N60°-80°E directions. Our structural data analysis in NBFZ indicates that the axis direction of σ2 principal stress is vertical and the stress ratio (R) is 0.12. These results suggest that the tectonic regime along the North Bozgush Fault Zone is transpressive. Obtained other principal stresses (σ1, σ3) results are compatible with stress directions and GPS velocity suggested for NW Iran.

  17. Evolving transpressional strain fields along the San Andreas fault in southern California: implications for fault branching, fault dip segmentation and strain partitioning

    NASA Astrophysics Data System (ADS)

    Bergh, Steffen; Sylvester, Arthur; Damte, Alula; Indrevær, Kjetil

    2014-05-01

    The San Andreas fault in southern California records only few large-magnitude earthquakes in historic time, and the recent activity is confined primarily on irregular and discontinuous strike-slip and thrust fault strands at shallow depths of ~5-20 km. Despite this fact, slip along the San Andreas fault is calculated to c. 35 mm/yr based on c.160 km total right lateral displacement for the southern segment of the fault in the last c. 8 Ma. Field observations also reveal complex fault strands and multiple events of deformation. The presently diffuse high-magnitude crustal movements may be explained by the deformation being largely distributed along more gently dipping reverse faults in fold-thrust belts, in contrast to regions to the north where deformation is less partitioned and localized to narrow strike-slip fault zones. In the Mecca Hills of the Salton trough transpressional deformation of an uplifted segment of the San Andreas fault in the last ca. 4.0 My is expressed by very complex fault-oblique and fault-parallel (en echelon) folding, and zones of uplift (fold-thrust belts), basement-involved reverse and strike-slip faults and accompanying multiple and pervasive cataclasis and conjugate fracturing of Miocene to Pleistocene sedimentary strata. Our structural analysis of the Mecca Hills addresses the kinematic nature of the San Andreas fault and mechanisms of uplift and strain-stress distribution along bent fault strands. The San Andreas fault and subsidiary faults define a wide spectrum of kinematic styles, from steep localized strike-slip faults, to moderate dipping faults related to oblique en echelon folds, and gently dipping faults distributed in fold-thrust belt domains. Therefore, the San Andreas fault is not a through-going, steep strike-slip crustal structure, which is commonly the basis for crustal modeling and earthquake rupture models. The fault trace was steep initially, but was later multiphase deformed/modified by oblique en echelon folding, renewed strike-slip movements and contractile fold-thrust belt structures. Notably, the strike-slip movements on the San Andreas fault were transformed outward into the surrounding rocks as oblique-reverse faults to link up with the subsidiary Skeleton Canyon fault in the Mecca Hills. Instead of a classic flower structure model for this transpressional uplift, the San Andreas fault strands were segmented into domains that record; (i) early strike-slip motion, (ii) later oblique shortening with distributed deformation (en echelon fold domains), followed by (iii) localized fault-parallel deformation (strike-slip) and (iv) superposed out-of-sequence faulting and fault-normal, partitioned deformation (fold-thrust belt domains). These results contribute well to the question if spatial and temporal fold-fault branching and migration patterns evolving along non-vertical strike-slip fault segments can play a role in the localization of earthquakes along the San Andreas fault.

  18. Late Quaternary Faulting along the San Juan de los Planes Fault Zone, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Busch, M. M.; Coyan, J. A.; Arrowsmith, J.; Maloney, S. J.; Gutierrez, G.; Umhoefer, P. J.

    2007-12-01

    As a result of continued distributed deformation in the Gulf Extensional Province along an oblique-divergent plate margin, active normal faulting is well manifest in southeastern Baja California. By characterizing normal-fault related deformation along the San Juan de los Planes fault zone (SJPFZ) southwest of La Paz, Baja California Sur we contribute to understanding the patterns and rates of faulting along the southwest gulf-margin fault system. The geometry, history, and rate of faulting provide constraints on the relative significance of gulf-margin deformation as compared to axial system deformation. The SJPFZ is a major north-trending structure in the southern Baja margin along which we focused our field efforts. These investigations included: a detailed strip map of the active fault zone, including delineation of active scarp traces and geomorphic surfaces on the hanging wall and footwall; fault scarp profiles; analysis of bedrock structures to better understand how the pattern and rate of strain varied during the development of this fault zone; and a gravity survey across the San Juan de los Planes basin to determine basin geometry and fault behavior. The map covers a N-S swath from the Gulf of California in the north to San Antonio in the south, an area ~45km long and ~1-4km wide. Bedrock along the SJPFZ varies from Cretaceous Las Cruces Granite in the north to Cretaceous Buena Mujer Tonalite in the south and is scarred by shear zones and brittle faults. The active scarp-forming fault juxtaposes bedrock in the footwall against Late Quaternary sandstone-conglomerate. This ~20m wide zone is highly fractured bedrock infused with carbonate. The northern ~12km of the SJPFZ, trending 200°, preserves discontinuous scarps 1-2km long and 1-3m high in Quaternary units. The scarps are separated by stretches of bedrock embayed by hundreds of meters-wide tongues of Quaternary sandstone-conglomerate, implying low Quaternary slip rate. Further south, ~2 km north of the Los Planes highway, the fault steps to the right 2km with no overlap. The fault is inactive until ~3km south of the Los Planes highway where scarp heights in the Quaternary sediments rise to ~3-11m for ~11km with an average trend of 160°, implying increasing slip rate. The fault then steps left 2km with no overlap, trending 145°. Scarp heights range from 3-6m in the step. The southernmost 9km of the fault zone, trending 200°, is marked by discontinuous scarps and embayed bedrock, reflecting diminished fault activity. The footwall landscape in this area is characterized by a broad, gently-sloping, low-relief pediment surface with thin Quaternary cover, disrupted by inselberg-like hills. The young scarp-forming fault appears to have reactivated older faults to rupture this pediment, reflecting the episodic nature of slip along this fault zone. Preliminary OSL ages of the youngest faulted deposit imply a Late Pleistocene-Holocene slip rate of 0.1-1mm/yr. The SJPFZ is thus characterized by reactivation of pre-existing faults to rupture a pre-existing low relief erosional landscape. Whereas the entire region might have experienced the quiescent period that allowed for development of the low- relief, stable surface along the SJPFZ, we speculate that while the SJPFZ was dormant, other faults within the gulf-margin system were actively accommodating strain.

  19. Transpressional Structure in Chiayi Area, Taiwan: Insight from the 2017 ML5.1 Zhongpu Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Feng, K. F.; Huang, H. H.

    2017-12-01

    The Chiayi area is located at the deformation front of active fold-and-thrust belt of Taiwan, where the fault system is composed primarily of a series of north-south-trending east-dipping thrusts and also an east-west-trending strike-slip fault (Meishan Fault, MSF) with right-lateral faulting. On 24th May 2017, a ML 5.1 earthquake occurred at Zhongpu, Chiayi (namely Zhongpu earthquake), however, shows a left-lateral strike-slip faulting distinct from the known structure in the area. The distribution of the reported aftershocks is difficult to distinguish the actual fault plane. To determine the fault plane of this abnormal earthquake and investigate its structural relationships to the regional tectonics, we relocate the earthquake sequence and estimate the rupture directivity of the mainshock by using the 3-D double difference hypocenter relocation method (Lin, 2013) and the 3-D directivity moment tensor inversion method (DMT, Huang et al., 2017, submitted). The DMT results show that the rupture directivity of the Zhongpu earthquake is west- and down-ward along the east-west fault plane, which also agrees with east-west-distributed aftershocks after relocation. As a result, the Zhongpu earthquake reveals an undiscovered east-west-trending structure which is sub-parallel with the MSF but with opposite faulting direction, exhibiting a complex transpressional tectonic regime in the Chiayi area.

  20. Investigations of stacking fault density in perpendicular recording media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piramanayagam, S. N., E-mail: prem-SN@dsi.a-star.edu.sg; Varghese, Binni; Yang, Yi

    In magnetic recording media, the grains or clusters reverse their magnetization over a range of reversal field, resulting in a switching field distribution. In order to achieve high areal densities, it is desirable to understand and minimize such a distribution. Clusters of grains which contain stacking faults (SF) or fcc phase have lower anisotropy, an order lower than those without them. It is believed that such low anisotropy regions reverse their magnetization at a much lower reversal field than the rest of the material with a larger anisotropy. Such clusters/grains cause recording performance deterioration, such as adjacent track erasure andmore » dc noise. Therefore, the observation of clusters that reverse at very low reversal fields (nucleation sites, NS) could give information on the noise and the adjacent track erasure. Potentially, the observed clusters could also provide information on the SF. In this paper, we study the reversal of nucleation sites in granular perpendicular media based on a magnetic force microscope (MFM) methodology and validate the observations with high resolution cross-section transmission electron microscopy (HRTEM) measurements. Samples, wherein a high anisotropy CoPt layer was introduced to control the NS or SF in a systematic way, were evaluated by MFM, TEM, and magnetometry. The magnetic properties indicated that the thickness of the CoPt layer results in an increase of nucleation sites. TEM measurements indicated a correlation between the thickness of CoPt layer and the stacking fault density. A clear correlation was also observed between the MFM results, TEM observations, and the coercivity and nucleation field of the samples, validating the effectiveness of the proposed method in evaluating the nucleation sites which potentially arise from stacking faults.« less

  1. Magnetic anomalies northeast of Cape Adare, northern Victoria Land (Antarctica), and their relation to onshore structures

    USGS Publications Warehouse

    Damaske, D.; Läufer, A.L.; Goldmann, F.; Möller, H.-D.; Lisker, F.

    2007-01-01

    An aeromagnetic survey was flown over the offshore region northeast of Cape Adare and the magnetic anomalies compared to onshore structures between Pennell Coast and Tucker Glacier. The magnetic anomalies show two nearly orthogonal major trends. NNW-SSE trending anomalies northeast of Cape Adare represent seafloor spreading within the Adare Trough. A connection of these anomalies to the Northern Basin of the Ross Sea is not clear. Onshore faults are closely aligned to offshore anomalies. Main trends are NW-SE to NNW-SSE and NE-SW to NNESSW. NNW-SSE oriented dextral-transtensional to extensional faults parallel the Adare Peninsula and Adare Trough anomalies. NE-SW trending normal faults appear to segment the main Hallett volcanic bodies.

  2. Integration of multi-source and multi-scale datasets for 3D structural modeling for subsurface exploration targeting, Luanchuan Mo-polymetallic district, China

    NASA Astrophysics Data System (ADS)

    Wang, Gongwen; Ma, Zhenbo; Li, Ruixi; Song, Yaowu; Qu, Jianan; Zhang, Shouting; Yan, Changhai; Han, Jiangwei

    2017-04-01

    In this paper, multi-source (geophysical, geochemical, geological and remote sensing) datasets were used to construct multi-scale (district-, deposit-, and orebody-scale) 3D geological models and extract 3D exploration criteria for subsurface Mo-polymetallic exploration targeting in the Luanchuan district in China. The results indicate that (i) a series of region-/district-scale NW-trending thrusts controlled main Mo-polymetallic forming, and they were formed by regional Indosinian Qinling orogenic events, the secondary NW-trending district-scale folds and NE-trending faults and the intrusive stock structure are produced based on thrust structure in Caledonian-Indosinian orogenic events; they are ore-bearing zones and ore-forming structures; (ii) the NW-trending district-scale and NE-trending deposit-scale normal faults were crossed and controlled by the Jurassic granite stocks in 3D space, they are associated with the magma-skarn Mo polymetallic mineralization (the 3D buffer distance of ore-forming granite stocks is 600 m) and the NW-trending hydrothermal Pb-Zn deposits which are surrounded by the Jurassic granite stocks and constrained by NW-trending or NE-trending faults (the 3D buffer distance of ore-forming fault is 700 m); and (iii) nine Mo polymetallic and four Pb-Zn targets were identified in the subsurface of the Luanchuan district.

  3. Growth of Fault-Cored Anticlines by Flexural Slip Folding: Analysis by Boundary Element Modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Kaj M.

    2018-03-01

    Fault-related folds develop due to a combination of slip on the associated fault and distributed deformation off the fault. Under conditions that are sufficient for sedimentary layering to act as a stack of mechanical layers with contact slip, buckling can dramatically amplify the folding process. We develop boundary element models of fault-related folding of viscoelastic layers embedded with a reverse fault to examine the influence of such layering on fold growth. The strength of bedding contacts, the thickness and stiffness of layering, and fault geometry all contribute significantly to the resulting fold form. Frictional contact strength between layers controls the degree of localization of slip within fold limbs; high contact friction in relatively thin bedding tends to localize bedding slip within narrow kink bands on fold limbs, and low contact friction tends to produce widespread bedding slip and concentric fold form. Straight ramp faults tend to produce symmetric folds, whereas listric faults tend to produce asymmetric folds with short forelimbs and longer backlimbs. Fault-related buckle folds grow exponentially with time under steady loading rates. At early stages of folding, fold growth is largely attributed to slip on the fault, but as the fold increases amplitude, a larger portion of the fold growth is attributed to distributed slip across bedding contacts on the limbs of the fold. An important implication for geologic and earthquake studies is that not all surface deformation associated with blind reverse faults may be attributed to slip on the fault during earthquakes.

  4. Oblique transfer of extensional strain between basins of the middle Rio Grande rift, New Mexico: Fault kinematic and paleostress constraints

    USGS Publications Warehouse

    Minor, Scott A.; Hudson, Mark R.; Caine, Jonathan S.; Thompson, Ren A.

    2013-01-01

    The structural geometry of transfer and accommodation zones that relay strain between extensional domains in rifted crust has been addressed in many studies over the past 30 years. However, details of the kinematics of deformation and related stress changes within these zones have received relatively little attention. In this study we conduct the first-ever systematic, multi-basin fault-slip measurement campaign within the late Cenozoic Rio Grande rift of northern New Mexico to address the mechanisms and causes of extensional strain transfer associated with a broad accommodation zone. Numerous (562) kinematic measurements were collected at fault exposures within and adjacent to the NE-trending Santo Domingo Basin accommodation zone, or relay, which structurally links the N-trending, right-stepping en echelon Albuquerque and Española rift basins. The following observations are made based on these fault measurements and paleostresses computed from them. (1) Compared to the typical northerly striking normal to normal-oblique faults in the rift basins to the north and south, normal-oblique faults are broadly distributed within two merging, NE-trending zones on the northwest and southeast sides of the Santo Domingo Basin. (2) Faults in these zones have greater dispersion of rake values and fault strikes, greater dextral strike-slip components over a wide northerly strike range, and small to moderate clockwise deflections of their tips. (3) Relative-age relations among fault surfaces and slickenlines used to compute reduced stress tensors suggest that far-field, ~E-W–trending σ3 stress trajectories were perturbed 45° to 90° clockwise into NW to N trends within the Santo Domingo zones. (4) Fault-stratigraphic age relations constrain the stress perturbations to the later stages of rifting, possibly as late as 2.7–1.1 Ma. Our fault observations and previous paleomagnetic evidence of post–2.7 Ma counterclockwise vertical-axis rotations are consistent with increased bulk sinistral-normal oblique shear along the Santo Domingo rift segment in Pliocene and later time. Regional geologic evidence suggests that the width of active rift faulting became increasingly confined to the Santo Domingo Basin and axial parts of the adjoining basins beginning in the late Miocene. We infer that the Santo Domingo clockwise stress perturbations developed coevally with the oblique rift segment mainly due to mechanical interactions of large faults propagating toward each other from the adjoining basins as the rift narrowed. Our results suggest that negligible bulk strike-slip displacement has been accommodated along the north-trending rift during much of its development, but uncertainties in the maximum ages of fault slip do not allow us to fully evaluate and discriminate between earlier models that invoked northward or southward rotation and translation of the Colorado Plateau during early (Miocene) rifting.

  5. Role of the Kazerun fault system in active deformation of the Zagros fold-and-thrust belt (Iran)

    NASA Astrophysics Data System (ADS)

    Authemayou, Christine; Bellier, Olivier; Chardon, Dominique; Malekzade, Zaman; Abassi, Mohammad

    2005-04-01

    Field structural and SPOT image analyses document the kinematic framework enhancing transfer of strike-slip partitioned motion from along the backstop to the interior of the Zagros fold-and-thrust belt in a context of plate convergence slight obliquity. Transfer occurs by slip on the north-trending right-lateral Kazerun Fault System (KFS) that connects to the Main Recent Fault, a major northwest-trending dextral fault partitioning oblique convergence at the rear of the belt. The KFS formed by three fault zones ended by bent orogen-parallel thrusts allows slip from along the Main Recent Fault to become distributed by transfer to longitudinal thrusts and folds. To cite this article: C. Authemayou et al., C. R. Geoscience 337 (2005).

  6. Geology of the continental margin beneath Santa Monica Bay, Southern California, from seismic-reflection data

    USGS Publications Warehouse

    Fisher, M.A.; Normark, W.R.; Bohannon, R.G.; Sliter, R.W.; Calvert, A.J.

    2003-01-01

    We interpret seismic-reflection data, which were collected in Santa Monica Bay using a 70-in3 generator-injector air gun, to show the geologic structure of the continental shelf and slope and of the deep-water, Santa Monica and San Pedro Basins. The goal of this research is to investigate the earthquake hazard posed to urban areas by offshore faults. These data reveal that northwest of the Palos Verdes Peninsula, the Palos Verdes Fault neither offsets the seafloor nor cuts through an undeformed sediment apron that postdates the last sea level rise. Other evidence indicates that this fault extends northwest beneath the shelf in the deep subsurface. However, other major faults in the study area, such as the Dume and San Pedro Basin Faults, were active recently, as indicated by an arched seafloor and offset shallow sediment. Rocks under the lower continental slope are deformed to differing degrees on opposite sides of Santa Monica Canyon. Northwest of this canyon, the continental slope is underlain by a little-deformed sediment apron; the main structures that deform this apron are two lower-slope anticlines that extend toward Point Dume and are cored by faults showing reverse or thrust separation. Southeast of Santa Monica Canyon, lower-slope rocks are deformed by a complex arrangement of strike-slip, normal, and reverse faults. The San Pedro Escarpment rises abruptly along the southeast side of Santa Monica Canyon. Reverse faults and folds underpinning this escarpment steepen progressively southeastward. Locally they form flower structures and cut downward into basement rocks. These faults merge downward with the San Pedro Basin fault zone, which is nearly vertical and strike slip. The escarpment and its attendant structures diverge from this strike-slip fault zone and extend for 60 km along the margin, separating the continental shelf from the deep-water basins. The deep-water Santa Monica Basin has large extent but is filled with only a thin (less than 1.5-km) section of what are probably post-Miocene rocks and sediment. Extrapolating ages obtained from Ocean Drilling Program site 1015 indicates that this sedimentary cover is Quaternary, possibly no older than 600 ka. Folds and faults along the base of the San Pedro Escarpment began to form during 8-13 ka ago. Refraction-velocity data show that high-velocity rocks, probably the Catalina Schist or Miocene volcanic rocks, underlie the sedimentary section. The San Pedro Basin developed along a strike-slip fault, widens to the southeast, and is deformed by faults having apparent reverse separation and by folds near Redondo Canyon and the Palos Verdes Peninsula.

  7. Near-surface structural model for deformation associated with the February 7, 1812, New Madrid, Missouri, earthquake

    USGS Publications Warehouse

    Odum, J.K.; Stephenson, W.J.; Shedlock, K.M.; Pratt, T.L.

    1998-01-01

    The February 7, 1812, New Madrid, Missouri, earthquake (M [moment magnitude] 8) was the third and final large-magnitude event to rock the northern Mississippi Embayment during the winter of 1811-1812. Although ground shaking was so strong that it rang church bells, stopped clocks, buckled pavement, and rocked buildings up and down the eastern seaboard, little coseismic surface deformation exists today in the New Madrid area. The fault(s) that ruptured during this event have remained enigmatic. We have integrated geomorphic data documenting differential surficial deformation (supplemented by historical accounts of surficial deformation and earthquake-induced Mississippi River waterfalls and rapids) with the interpretation of existing and recently acquired seismic reflection data, to develop a tectonic model of the near-surface structures in the New Madrid, Missouri, area. This model consists of two primary components: a northnorthwest-trending thrust fault and a series of northeast-trending, strike-slip, tear faults. We conclude that the Reelfoot fault is a thrust fault that is at least 30 km long. We also infer that tear faults in the near surface partitioned the hanging wall into subparallel blocks that have undergone differential displacement during episodes of faulting. The northeast-trending tear faults bound an area documented to have been uplifted at least 0.5 m during the February 7, 1812, earthquake. These faults also appear to bound changes in the surface density of epicenters that are within the modern seismicity, which is occurring in the stepover zone of the left-stepping right-lateral strike-slip fault system of the modern New Madrid seismic zone.

  8. Fault strength in Marmara region inferred from the geometry of the principle stress axes and fault orientations: A case study for the Prince's Islands fault segment

    NASA Astrophysics Data System (ADS)

    Pinar, Ali; Coskun, Zeynep; Mert, Aydin; Kalafat, Dogan

    2015-04-01

    The general consensus based on historical earthquake data point out that the last major moment release on the Prince's islands fault was in 1766 which in turn signals an increased seismic risk for Istanbul Metropolitan area considering the fact that most of the 20 mm/yr GPS derived slip rate for the region is accommodated mostly by that fault segment. The orientation of the Prince's islands fault segment overlaps with the NW-SE direction of the maximum principle stress axis derived from the focal mechanism solutions of the large and moderate sized earthquakes occurred in the Marmara region. As such, the NW-SE trending fault segment translates the motion between the two E-W trending branches of the North Anatolian fault zone; one extending from the Gulf of Izmit towards Çınarcık basin and the other extending between offshore Bakırköy and Silivri. The basic relation between the orientation of the maximum and minimum principal stress axes, the shear and normal stresses, and the orientation of a fault provides clue on the strength of a fault, i.e., its frictional coefficient. Here, the angle between the fault normal and maximum compressive stress axis is a key parameter where fault normal and fault parallel maximum compressive stress might be a necessary and sufficient condition for a creeping event. That relation also implies that when the trend of the sigma-1 axis is close to the strike of the fault the shear stress acting on the fault plane approaches zero. On the other hand, the ratio between the shear and normal stresses acting on a fault plane is proportional to the coefficient of frictional coefficient of the fault. Accordingly, the geometry between the Prince's islands fault segment and a maximum principal stress axis matches a weak fault model. In the frame of the presentation we analyze seismological data acquired in Marmara region and interpret the results in conjuction with the above mentioned weak fault model.

  9. Late oligocene and miocene faulting and sedimentation, and evolution of the southern Rio Grande rift, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Mack, Greg H.; Seager, William R.; Kieling, John

    1994-08-01

    The distribution of nonmarine lithofacies, paleocurrents, and provenance data are used to define the evolution of late Oligocene and Miocene basins and complementary uplifts in the southern Rio Grande rift in the vicinity of Hatch, New Mexico, USA. The late Oligocene-middle Miocene Hayner Ranch Formation, which consists of a maximum of 1000 m of alluvial-fan, alluvial-flat, and lacustrine-carbonate lithofacies, was deposited in a narrow (12 km), northwest-trending, northeast-tilted half graben, whose footwall was the Caballo Mountains block. Stratigraphic separation on the border faults of the Caballo Mountains block was approximately 1615 m. An additional 854 m of stratigraphic separation along the Caballo Mountains border faults occurred during deposition of the middle-late Miocene Rincon Valley Formation, which is composed of up to 610 m of alluvial-fan, alluvial-flat, braided-fluvial, and gypsiferous playa lithofacies. Two new, north-trending fault blocks (Sierra de las Uvas and Dona Ana Mountains) and complementary west-northwest-tilted half graben also developed during Rincon Valley time, with approximately 549 m of stratigraphic separation along the border fault of the Sierra de las Uvas block. In latest Miocene and early Pliocene time, following deposition of the Rincon Valley Formation, movement continued along the border faults of the Caballo Mountains, Dona Ana Mountains, and Sierra de las Uvas blocks, and large parts of the Hayner Ranch and Rincon Valley basins were segmented into smaller fault blocks and basins by movement along new, largely north-trending faults. Analysis of the Hayner Ranch and Rincon Valley Formations, along with previous studies of the early Oligocene Bell Top Formation and late Pliocene-early Pleistocene Camp Rice Formation, indicate that the traditional two-stage model for development of the southern Rio Grande rift should be abandoned in favor of at least four episodes of block faulting beginning 35 Ma ago. With the exception of two northwest-trending border faults of the Caballo Mountains block that may be reactivated along Eocene compressional structures, the majority of border faults and complementary basins throughout the history of the southern Rio Grande rift were north-trending, which challenges the conventional idea of a clockwise change in stress through time.

  10. Displacement-length scaling of brittle faults in ductile shear.

    PubMed

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  11. Displacement–length scaling of brittle faults in ductile shear

    PubMed Central

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  12. Influence of fault trend, fault bends, and fault convergence on shallow structure, geomorphology, and hazards, Hosgri strike-slip fault, offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.

    2012-12-01

    We mapped a ~94-km-long portion of the right-lateral Hosgri Fault Zone from Point Sal to Piedras Blancas in offshore central California using high-resolution seismic reflection profiles, marine magnetic data, and multibeam bathymetry. The database includes 121 seismic profiles across the fault zone and is perhaps the most comprehensive reported survey of the shallow structure of an active strike-slip fault. These data document the location, length, and near-surface continuity of multiple fault strands, highlight fault-zone heterogeneity, and demonstrate the importance of fault trend, fault bends, and fault convergences in the development of shallow structure and tectonic geomorphology. The Hosgri Fault Zone is continuous through the study area passing through a broad arc in which fault trend changes from about 338° to 328° from south to north. The southern ~40 km of the fault zone in this area is more extensional, resulting in accommodation space that is filled by deltaic sediments of the Santa Maria River. The central ~24 km of the fault zone is characterized by oblique convergence of the Hosgri Fault Zone with the more northwest-trending Los Osos and Shoreline Faults. Convergence between these faults has resulted in the formation of local restraining and releasing fault bends, transpressive uplifts, and transtensional basins of varying size and morphology. We present a hypothesis that links development of a paired fault bend to indenting and bulging of the Hosgri Fault by a strong crustal block translated to the northwest along the Shoreline Fault. Two diverging Hosgri Fault strands bounding a central uplifted block characterize the northern ~30 km of the Hosgri Fault in this area. The eastern Hosgri strand passes through releasing and restraining bends; the releasing bend is the primary control on development of an elongate, asymmetric, "Lazy Z" sedimentary basin. The western strand of the Hosgri Fault Zone passes through a significant restraining bend and dies out northward where we propose that its slip transfers to active structures in the Piedras Blancas fold belt. Given the continuity of the Hosgri Fault Zone through our study area, earthquake hazard assessments should incorporate a minimum rupture length of 110 km. Our data do not constrain lateral slip rates on the Hosgri, which probably vary along the fault (both to the north and south) as different structures converge and diverge but are likely in the geodetically estimated range of 2 to 4 mm/yr. More focused mapping of lowstand geomorphic features (e.g., channels, paleoshorelines) has the potential to provide better constraints. The post-Last-Glacial Maximum unconformity is an important surface for constraining vertical deformation, yielding local fault offset rates that may be as high as 1.4 mm/yr and off-fault deformation rates as high as 0.5 mm/yr. These vertical rates are short-term and not sustainable over longer geologic time, emphasizing the complex evolution and dynamics of strike-slip zones.

  13. New thermochronological constraints on the timing of shear from the Khlong Marui and Ranong faults, Peninsular Thailand: implications for Himalayan lateral extrusion.

    NASA Astrophysics Data System (ADS)

    Watkinson, I.; Elders, C.; Hall, R.

    2009-04-01

    New Ar-Ar data from the strike-slip faults of Peninsular Thailand indicate rapid uplift of mid-crustal ductile shear zones during the Eocene. The cooling ages are consistent with a northwards younging pattern of Ar-Ar cooling ages from the NW-trending Three Pagodas and Mae Ping faults in Northern Thailand, to the Ailao Shan-Red River fault in Vietnam and Yunnan, taken to reflect the northwards movement of India during the Cenozoic. The peninsular structures: the Khlong Marui fault (KMF) and Ranong fault (RF), are major NNE trending strike-slip faults of respectively 220 km and 420 km length. Exposed mylonitic rocks bear consistently dextral kinematic indicators, unlike the sinistral mylonites of the NW-trending structures to the north. Brittle strike-slip and dip-slip faults overprint all the shear zones. Rocks ranging from low grade mylonites to syn-kinematic amphibolite facies migmatites from the RF and KMF yield similar biotite Ar-Ar cooling ages, suggesting that uplift from all depths in the shear zone was rapid. Retrograde shear fabrics in places show that dextral shear may have continued during uplift. While the new thermochronological data show that the peninsular mylonites cooled during the Eocene, constraint from pre- and post-kinematic granitoids strongly suggests that ductile shear occurred during the Late-Cretaceous to Paleocene. Since this is well before the onset of India-Eurasia collision, much of the ductile shear must pre-date that orogeny, and therefore cannot be related to Himalayan lateral extrusion, as has been speculated. The regional cooling pattern, however, shows that Indian indentation may have triggered progressive northward exhumation of mylonitic rocks. If the model of the peninsular faults is applied to the NW-trending faults in northern Thailand, then a pre-Himalayan history may also be recorded by those mylonites, rather than a simple, lateral extrusion-related history.

  14. Moment tensor solutions for the Iberian-Maghreb region during the IberArray deployment (2009-2013)

    NASA Astrophysics Data System (ADS)

    Martín, R.; Stich, D.; Morales, J.; Mancilla, F.

    2015-11-01

    We perform regional moment tensor inversion for 84 earthquakes that occurred in the Iberian-Maghreb region during the second and third leg of IberArray deployment (2009-2013). During this period around 300 seismic broadband stations were operating in the area, reducing the interstation spacing to ~ 50 km over extended areas. We use the established processing sequence of the IAG moment tensor catalogue, increasing to 309 solutions with this update. New moment tensor solutions present magnitudes ranging from Mw 3.2 to 6.3 and source depths from 2 to 620 km. Most solutions correspond to Northern Algeria, where a compressive deformation pattern is consolidated. The Betic-Rif sector shows a progression of faulting styles from mainly shear faulting in the east via predominantly extension in the central sector to reverse and strike-slip faulting in the west. At the SW Iberia margin, the predominance of strike-slip and reverse faulting agrees with the expected transpressive character of the Eurasian-Nubia plate boundary. New strike-slip and oblique reverse solutions in the Trans-Alboran Shear Zone reflect its left-lateral regime. The most significant improvement corresponds to the Atlas Mountains and the surroundings of the Gibraltar Arc with scarce previous solutions. Reverse and strike-slip faulting solutions in the Atlas System display the accommodation of plate convergence by shortening in the belt. At the Gibraltar Arc, several new solutions were obtained at lower crustal and subcrustal depths. These mechanisms show substantial heterogeneity, covering the full range of faulting styles with highly variable orientations of principal stress axes, including opposite strike slip faulting solutions at short distance. The observations are not straightforward to explain by a simple geodynamic scenario and suggest the interplay of different processes, among them plate convergence in old oceanic lithospheric with large brittle thickness at the SW Iberia margin, as well as delamination of thickened continental lithosphere beneath the Betic-Rif arc.

  15. Along-Strike Variation in Geometry and Kinematics of a Major, Active Intracontinental Thrust System: the Pred-Terskey Fault Zone, Kyrgyz Tien Shan, Central Asia

    NASA Astrophysics Data System (ADS)

    Burgette, R. J.; Weldon, R. J.; Abdrakhmatov, K. Y.; Ormukov, C.

    2004-12-01

    The Pred-Terskey fault zone defines the southern margin of the Issyk-Kul basin, extending eastward over 250 km from at least the Chu River to the Kazakhstan border, and appears to be one of the most active zones in the Kyrgyz Tien Shan. Despite a diversity of structural styles and changes of vergence at the surface, the lateral continuity and overall geometry of the zone is consistent with a single north vergent thrust at depth, which uplifts the Terskey Range and generally tilts the south margin of the basin to the north. This northward tilting of the margin is probably due to a flattening of the fault as it approaches the surface. In spite of historical quiescence, it is likely capable of producing great earthquakes. We have conducted detailed field mapping coupled with terrace profiling and dating at seven representative, well-exposed areas of the fault zone. Based on these field observations and satellite image and air photo interpretation along the entire zone, we identify three major divisions in structural style expressed at the surface. The western segment is typified by the Tura-Su, Ak-Terek and Ton areas. A series of left-stepping, south-vergent, basement-involved reverse faults and folds are uplifting the southern margin of the Issyk-Kul basin in this area. The resulting uphill-facing scarps have trapped and diverted many of the rivers flowing north from the Terskey Range. Tertiary strata and Quaternary geomorphic surfaces show consistent, progressive northward tilting across the entire zone. The west-central segment is represented by the Kajy-Say area. South-vergent reverse faults and a north-vergent backthrust have uplifted an arcuate granite block. Offshore of this area, the lake floor descends to a sharp break in slope with a low relief area at a depth of about 650 m. Late Quaternary geomorphic features do not show evidence of tilting. In contrast to the areas east and west, the major north-dipping thrust is likely planar over this segment and daylights at the lake floor break in slope. The east-central segment is exemplified by the Barskaun and Jety Oguz areas. A high angle reverse fault juxtaposes Paleozoic rock against Tertiary sediments. To the north, a thrust fault with a sinuous trace places north-dipping Tertiary rock over the nearly horizontal basin floor. Quaternary terraces in the hanging wall of this fault record progressive northward tilting. North of the thrust fault a series of anticlines are growing out of the basin sediments. The eastern segment, which includes the Jergalan River valley, lacks a low angle thrust fault at the basin margin. Along this segment, the basement reverse fault uplifts Paleozoic rock against Quaternary basin sediment. To the north of this range-bounding structure, late Quaternary terraces are offset by south-vergent scarps. We are calculating geologic slip rates for each of the seven sites along the Pred-Terskey zone by dating terraces and constructing structural models consistent with both the rock and terrace records. Based on preliminary radiocarbon dates, a prominent Jety Oguz River terrace is 50 +/- 10 ka. The terrace is tilted 0.5° relative to the modern river, and with the low angle fault branching off of the basement reverse fault at dips ranging between 45° and 90° , the slip rate of this fault is 6 +/- 4 mm/yr. This is consistent with the GPS shortening rate across the Pred-Terskey zone at this longitude.

  16. Plate Margin Deformation and Active Tectonics Along the Northern Edge of the Yakutat Terrane in the Saint Elias Orogen, Alaska and Yukon, Canada

    NASA Technical Reports Server (NTRS)

    Bruhn, Ronald L.; Sauber, Jeanne; Cotton, Michele M.; Pavlis, Terry L.; Burgess, Evan; Ruppert, Natalia; Forster, Richard R.

    2012-01-01

    The northwest directed motion of the Pacific plate is accompanied by migration and collision of the Yakutat terrane into the cusp of southern Alaska. The nature and magnitude of accretion and translation on upper crustal faults and folds is poorly constrained, however, due to pervasive glaciation. In this study we used high-resolution topography, geodetic imaging, seismic, and geologic data to advance understanding of the transition from strike-slip motion on the Fairweather fault to plate margin deformation on the Bagley fault, which cuts through the upper plate of the collisional suture above the subduction megathrust. The Fairweather fault terminates by oblique-extensional splay faulting within a structural syntaxis, allowing rapid tectonic upwelling of rocks driven by thrust faulting and crustal contraction. Plate motion is partly transferred from the Fairweather to the Bagley fault, which extends 125 km farther west as a dextral shear zone that is partly reactivated by reverse faulting. The Bagley fault dips steeply through the upper plate to intersect the subduction megathrust at depth, forming a narrow fault-bounded crustal sliver in the obliquely convergent plate margin. Since . 20 Ma the Bagley fault has accommodated more than 50 km of dextral shearing and several kilometers of reverse motion along its southern flank during terrane accretion. The fault is considered capable of generating earthquakes because it is linked to faults that generated large historic earthquakes, suitably oriented for reactivation in the contemporary stress field, and locally marked by seismicity. The fault may generate earthquakes of Mw <= 7.5.

  17. Peripheral structures of the Rio Grande Rift in the Sangre de Cristo Mountains, around the Colorado-New Mexico border

    NASA Astrophysics Data System (ADS)

    Fridrich, C. J.; Workman, J. B.

    2009-12-01

    Recently active faults of the Rio Grande rift near the Colorado-New Mexico border are almost entirely limited to the San Luis basin. In contrast, the early (≈26 to ≈10 Ma) structure of the rift in this area is significantly broader. A wide zone of abandoned, peripheral extensional structures is exposed on the eastern flank of the San Luis basin—in the west half of the Sangre de Cristo Mountains, known in this area as the southern Culebra and northern Taos Ranges. New detailed mapping shows that the eastern limit of the zone of early peripheral extension is marked by an aligned series of north-trending grabens, including the Devil’s Park, Valle Vidal, and Moreno Valley basins. Master faults of these intermontaine basins are partly localized along, and evidently reactivated moderate- to high-angle Laramide (≈70 to ≈40 Ma) reverse faults of the Sangre de Cristo Mountains. Between these grabens and the San Luis basin lies a structural zone that varies in style from block faulting, in the north, to more closely spaced tilted-domino-style faulting in the Latir volcanic field, to the south. Additional early rift structures include several long northwest-striking faults, the largest of which are interpreted to have accommodated significant right-lateral strike-slip, based on abrupt southwestward increase in the magnitude of extension across them. These faults evidently transferred strain from the axial part of the rift into the zone of early peripheral extension, and accommodated lateral changes in structural style. Throughout the area of early peripheral extension, there is a correlation between the magnitude of local volcanism and the degree of extension; however, it is unclear if extension drove volcanism—via mantle upwelling, or if extension was maximized where the crust was weakest, owing to the presence of magma and hot rock at shallow depths.

  18. The enigma of the Arthur's Pass, New Zealand, earthquake 1. Reconciling a variety of data for an unusual earthquake sequence

    USGS Publications Warehouse

    Abercrombie, R.E.; Webb, T.H.; Robinson, R.; McGinty, P.J.; Mori, J.J.; Beavan, R.J.

    2000-01-01

    The 1994 Arthur's Pass earthquake (Mw6.7) is the largest in a recent sequence of earthquakes in the central South Island, New Zealand. No surface rupture was observed the aftershock distribution was complex, and routine methods of obtaining the faulting orientation of this earthquake proved contradictory. We use a range of data and techniques to obtain our preferred solution, which has a centroid depth of 5 km, Mo=1.3??1019 N m, and a strike, dip, and rake of 221??, 47??, 112??, respectively. Discrepancies between this solution and the Harvard centroid moment tensor, together with the Global Positioning System (GPS) observations and unusual aftershock distribution, suggest that the rupture may not have occurred on a planar fault. A second, strike slip, subevent on a more northerly striking plane is suggested by these data but neither the body wave modeling nor regional broadband recordings show any complexity or late subevents. We relocate the aftershocks using both one-dimensional and three-dimensional velocity inversions. The depth range of the aftershocks (1-10 km) agrees well with the preferred mainshock centroid depth. The aftershocks near the hypocenter suggest a structure dipping toward the NW, which we interpret to be the mainshock fault plane. This structure and the Harper fault, ???15 km to the south appear to have acted as boundaries to the extensive aftershock zone trending NNW-SSE Most of the ML???5 aftershocks, including the two largest (ML6.1 and ML5.7), clustered near the Harper fault and have strike slip mechanisms consistent with motion on this fault and its conjugates. Forward modeling of the GPS data suggests that a reverse slip mainshock, combined with strike slip aftershock faulting in the south, is able to match the observed displacements. The occurrence of this earthquake sequence implies that the level of seismic hazard in the central South Island is greater than previous estimates. Copyright 2000 by the American Geophysical Union.

  19. A dense, intersecting array of normal faults on the outer shelf off Southern Costa Rica, associated with subducting Quepos ridge

    NASA Astrophysics Data System (ADS)

    Silver, E. A.; Kluesner, J. W.; Gibson, J. C.; Bangs, N. L.; McIntosh, K. D.; von Huene, R.; Orange, D.; Ranero, C. R.

    2012-12-01

    Use of narrow, fixed swath multibeam data with high sounding densities has allowed order of magnitude improvement in image resolution with EM122 multibeam and backscatter data, as part of a 3D seismic study west of the Osa Peninsula. On the outer shelf, along the projection of the subducting Quepos Ridge, we mapped a dense array of faults cutting an arcuate, well-layered set of outcropping beds in the backscatter imagery (mosaicked at 2 m), with roughly N-S and E-W trends. The N-S trends dominate, and show inconsistent offsets, implying that the faults are normal and not strike-slip. The faults also show normal displacement in the 3D seismic data, consistent with the surface interpretation. The outcropping beds (of late Pleistocene age, based on Expedition 334 drilling), may have been truncated during the late Pleistocene low sea-level stand. The outermost shelf (edged by arcuate bathymetric contours) does not show these folded beds, as it was below wave base and buried by a thin sediment layer. However, narrow lines of small pockmarks and mounds follow the fault trends exactly, indicating that fluid flow through the faults is expressed at the surface, including a gas plume that extends to the sea-surface. The almost unprecedented increase in resolution of the EM122 data allows us to infer that the N-S, E-W grid of faults overlying the NE-trending Quepos Ridge projection (and NE directed subduction) formed by extensional arching above the ridge, not by collisional slip lines at a rigid indenter (as proposed earlier based on sandbox models). The extensional fault pattern also facilitates fluid and gas flow through the sedimentary section.

  20. A Geologic and Geomorphic Mapping Approach to Understanding the Kinematic Role of Faulting in the Little San Bernardino Mountains in the Evolution of the San Andreas Fault System in Southern California

    NASA Astrophysics Data System (ADS)

    Powell, R. E.; Matti, J. C.

    2006-12-01

    The Little San Bernardino Mountains (LSBM) constitute a pivotal yet poorly understood structural domain along the right-lateral San Andreas Fault (SAF) in southern California. The LSBM, forming a dramatic escarpment between the eastern Transverse Ranges (ETR) and the Salton Trough, contain an array of N- to NW-trending faults that occupy the zone of intersections between the SAF and the coevolving E-trending left-slip faults of the ETR. One of the N-trending faults within the LSBM domain, the West Deception Canyon Fault, previously has been identified as the locus of the Joshua Tree earthquake (Mw 6.1) of 23 April 1992. That earthquake was the initial shock in the ensuing Landers earthquake sequence. During the evolution of the plate-margin shearing associated with the opening of the Gulf of California since about 5 Ma, the left-lateral faults of the ETR have provided the kinematic transition between the S end of the broad Eastern California Shear Zone (ECSZ) which extends northward through the Mojave Desert and along Walker Lane and the SAF proper in southern California. The long-term geologic record of cumulative displacement on the sinistral ETR faults and the dextral SAF and Mojave Desert faults indicates that these conjugate fault sets have mutually accommodated one another rather than exhibit cross-cutting relations. In contrast, the linear array of earthquakes that make up the dextral 1992 Landers sequence extends across the sinistral Pinto Mountain Fault and has been cited by some as evidence that ECSZ is coalescing southward along the N-trending dextral faults of the northern LSBM to join the ECSZ directly to southern SAF. To gain a better understanding of the array of faults in the LSBM, we are combining mapping within the crystalline basement terrane of the LSBM with mapping both of uplifted remnants of erosional surfaces developed on basement rocks and of volcanic and sedimentary rocks deposited on those surfaces. Our preliminary findings indicate the presence of both easterly and westerly dipping normal faults along the LSBM. Some of these faults offset a prominent uplifted erosion plain and overlying late Miocene basalt as well as younger strata that contain clasts of rocks not found locally, including rounded to very well rounded clasts of indurated sandstone, silicic hypabyssal, volcanic, and volcaniclastic rocks, gray- and greenschist, and quartzite. This distinctive clast assemblage is consistent with a western source subsequently displaced along the SAF. Taken together, these observations suggest that the long-term kinematic role(s) played by NW- to N- trending faults in the LSBM is more complex than that suggested by the simple transecting linear trend defined by the Landers earthquake sequence. By evaluating our findings in the context of our previously published palinspastic reconstructions of the SAF system, we are attempting to distinguish between two scenarios - not necessarily mutually exclusive - for the kinematic role of the LSBM faults, each scenario involving right-oblique extensional slip: (1) They developed initially about 5 Ma as a system of faults subparallel to the then newly forming part of the SAF associated with the opening of the Gulf of California. (2) They accommodate extension in the domains of acute intersection between the mutually developing right-lateral SAF and left-lateral ETR faults. In either of these scenarios, the LSBM faults are related to the opening of the Gulf of California since about 5 Ma and display an important history that predates their hypothesized very recent incorporation into a throughgoing dextral ECSZ.

  1. A structural transect across the Mongolian Western Altai: Active transpressional mountain building in central Asia

    NASA Astrophysics Data System (ADS)

    Dickson Cunningham, W.; Windley, Brian F.; Dorjnamjaa, D.; Badamgarov, G.; Saandar, M.

    1996-02-01

    We present results from the first detailed geological transect across the Mongolian Western Altai using modern methods of structural geology and fault kinematic analysis. Our purpose was to document the structures responsible for Cenozoic uplift of the range in order to better understand processes of intracontinental mountain building. Historical right-lateral strike-slip and oblique-slip earthquakes have previously been documented from the Western Altai, and many mountain fronts are marked by active fault scarps indicating current tectonic activity and uplift. The dominant structures in the range are long (>200 km) NNW trending right-lateral strike-slip faults. Our transect can be divided into three separate domains that contain active, right-lateral strike-slip master faults and thrust faults with opposing vergence. The current deformation regime is thus transpressional. Each domain has an asymmetric flower structure cross-sectional geometry, and the transect as a whole is interpreted as three separate large flower structures. The mechanism of uplift along the transect appears to be horizontal and vertical growth of flower structures rooted into the dominant right-lateral strike-slip faults. The major Bulgan Fault forms the southern structural boundary to the range and is a 3.5-km-wide brittle-ductile zone that has accommodated reverse and left-lateral strike-slip displacements. It appears to be linked to the North Gobi Fault Zone to the east and Irtysh Fault zone to the west and thus may be over 900 km in length. Two major ductile left-lateral extensional shear zones were identified in the interior of the range that appear to be preserved structures related to a regional Paleozoic or Mesozoic extensional event. Basement rocks along the transect are dominantly metavolcanic, metasedimentary, or intrusive units probably representing a Paleozoic accretionary prism and arc complex. The extent to which Cenozoic uplift has been accommodated by reactivation of older structures and inversion of older basins is unknown and will require further study. As previously suggested by others, Cenozoic uplift of the Altai is interpreted to be due to NE-SW directed compressional stress resulting from the Indo-Eurasian collision 2500 km to the south.

  2. Palaeomagnetic constraints on the evolution of the Atlantis Massif oceanic core complex (Mid-Atlantic Ridge, 30°N)

    NASA Astrophysics Data System (ADS)

    Morris, Antony; Pressling, Nicola; Gee, Jeffrey; John, Barbara; MacLeod, Christopher

    2010-05-01

    Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. They represent a fundamental component of the seafloor spreading system at slow and ultraslow axes. For example, recent analyses suggest that detachment faults may underlie more than 50% of the Mid Atlantic Ridge (MAR) and may take up most of the overall plate divergence at times when magma supply to the ridge system is reduced. The most extensively studied oceanic core complex is Atlantis Massif, located at 30°N on the MAR. This forms an inside-corner bathymetric high at the intersection of the Atlantis Transform Fault and the MAR. The central dome of the massif exposes the corrugated detachment fault surface and was drilled during IODP Expedition 304/305. This sampled a 1.4 km faulted and complexly layered footwall section dominated by gabbroic lithologies with minor ultramafic rocks. The core (Hole U1309D) reflects the interplay between magmatism and deformation prior to, during, and subsequent to a period of footwall displacement and denudation associated with slip on the detachment fault. Palaeomagnetic analyses demonstrate that the gabbroic sequences at Atlantis Massif carry highly stable remanent magnetizations that provide valuable information on the evolution of the section. Thermal demagnetization experiments recover high unblocking temperature components of reversed polarity (R1) throughout the gabbroic sequences. In a number of intervals, however, the gabbros exhibit a complex remanence structure with the presence of intermediate temperature normal (N1) and lower temperature reversed (R2) polarity components, suggesting an extended period of remanence acquisition during different polarity intervals. Sharp break-points between different polarity components suggest that they were acquired by a thermal mechanism. There appears to be no correlation between remanence structure and either the igneous stratigraphy or the distribution of alteration in the core. Instead, the remanence data are more consistent with a model in which the lower crustal section acquired magnetizations of different polarity during a protracted cooling history spanning two geomagnetic reversals. Differences in the width of blocking temperature spectra between samples appear to control the number of components present; samples with narrow and high temperature spectra record only R1 components, whereas those with broader blocking temperature spectra record multicomponent (R1-N1 and R1-N1-R2) remanences. The common occurrence of detachment faults in slow and ultra-slow spreading oceanic crust suggests they accommodate a significant component of plate divergence. However, the sub-surface geometry of oceanic detachment faults remains unclear. Competing models involve either: (a) displacement on planar, low-angle faults with little tectonic rotation; or (b) progressive shallowing by rotation of initially steeply dipping faults as a result of flexural unloading (the "rolling-hinge" model). We resolve this debate using paleomagnetic remanences as a marker for tectonic rotation of the Atlantis Massif footwall. Previous ODP/IODP palaeomagnetic studies have been restricted to analysis of magnetic inclination data, since hard-rock core pieces are azimuthally unoriented and free to rotate in the core barrel. For the first time we have overcome this limitation by independently reorienting core pieces to a true geographic reference frame by correlating structures in individual pieces with those identified from oriented imagery of the borehole wall. This allows reorientation of paleomagnetic data and subsequent tectonic interpretation without the need for a priori assumptions on the azimuth of the rotation axis. Results indicate a 46°±6° counterclockwise rotation of the footwall around a MAR-parallel horizontal axis trending 011°±6°. This provides unequivocal confirmation of the key prediction of flexural, rolling-hinge models for oceanic core complexes, whereby faults initiate at higher dips and rotate to their present day low angle geometries.

  3. Growth faults and salt tectonics in Houston diapir province: relative timing and exploration significance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, T.E.

    1983-09-01

    Oil and gas accumulation in Gulf Coast Tertiary strata is contolled mainly by regional growth faults and by salt-related structures. Salt forms the most prominent set of structures in the Houston diapir province of southeast Texas. Recent work in three study areas shows that the Tertiary growth-fault trends, so well displayed along strike to the south-west, continue through this salt basin as well, but they have been deformed by later salt movement. In the Katy area, seismic data disclose early (pre-Wilcox) salt pillows downdip of the Cretaceous reef trend. Salt stocks were injected upward from the pillows during Clayborne deposition,more » and were flanked by deep withdrawal basins and turtle structures. In Brazoria County, a major lower Frio growth-fault trend affecting the Houston delta system, was deformed by later salt domes, by a salt-withdrawal basin, and by a possible turtle structure at Chocolate Bayou. A productive geopressured aquifer exists in the salt-withdrawal basin bounded by the previously formed growth faults. In Jefferson County, in contrast, salt-tectonic activity and growth faulting appear to have been coeval. Early salt-cored ridges continued to rise throughout Frio deposition; growth faults occur both updip and downdip. Hydrocarbons accumulated over the salt domes in growth-fault anticlines and in stratigraphic traps. Recognition that shelf-margin growth faulting preceded the development of the present pattern of domes and basins has important implications for hydrocarbon exploration. Growth faults may be migration paths for hydrocarbons; furthermore, early formed traps, distorted by salt movement, may still be found to contain hydrocarbons.« less

  4. Testing Pixel Translation Digital Elevation Models to Reconstruct Slip Histories: An Example from the Agua Blanca Fault, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Wilson, J.; Wetmore, P. H.; Malservisi, R.; Ferwerda, B. P.; Teran, O.

    2012-12-01

    We use recently collected slip vector and total offset data from the Agua Blanca fault (ABF) to constrain a pixel translation digital elevation model (DEM) to reconstruct the slip history of this fault. This model was constructed using a Perl script that reads a DEM file (Easting, Northing, Elevation) and a configuration file with coordinates that define the boundary of each fault segment. A pixel translation vector is defined as a magnitude of lateral offset in an azimuthal direction. The program translates pixels north of the fault and prints their pre-faulting position to a new DEM file that can be gridded and displayed. This analysis, where multiple DEMs are created with different translation vectors, allows us to identify areas of transtension or transpression while seeing the topographic expression in these areas. The benefit of this technique, in contrast to a simple block model, is that the DEM gives us a valuable graphic which can be used to pose new research questions. We have found that many topographic features correlate across the fault, i.e. valleys and ridges, which likely have implications for the age of the ABF, long term landscape evolution rates, and potentially provide conformation for total slip assessments The ABF of northern Baja California, Mexico is an active, dextral strike slip fault that transfers Pacific-North American plate boundary strain out of the Gulf of California and around the "Big Bend" of the San Andreas Fault. Total displacement on the ABF in the central and eastern parts of the fault is 10 +/- 2 km based on offset Early-Cretaceous features such as terrane boundaries and intrusive bodies (plutons and dike swarms). Where the fault bifurcates to the west, the northern strand (northern Agua Blanca fault or NABF) is constrained to 7 +/- 1 km. We have not yet identified piercing points on the southern strand, the Santo Tomas fault (STF), but displacement is inferred to be ~4 km assuming that the sum of slip on the NABF and STF is approximately equal to that to the east. The ABF has varying kinematics along strike due to changes in trend of the fault with respect to the nearly east-trending displacement vector of the Ensenada Block to the north of the fault relative to a stable Baja Microplate to the south. These kinematics include nearly pure strike slip in the central portion of the ABF where the fault trends nearly E-W, and minor components of normal dip-slip motion on the NABF and eastern sections of the fault where the trends become more northerly. A pixel translation vector parallel to the trend of the ABF in the central segment (290 deg, 10.5 km) produces kinematics consistent with those described above. The block between the NABF and STF has a pixel translation vector parallel the STF (291 deg, 3.5 km). We find these vectors are consistent with the kinematic variability of the fault system and realign several major drainages and ridges across the fault. This suggests these features formed prior to faulting, and they yield preferred values of offset: 10.5 km on the ABF, 7 km on the NABF and 3.5 km on the STF. This model is consistent with the kinematic model proposed by Hamilton (1971) in which the ABF is a transform fault, linking extensional regions of Valle San Felipe and the Continental Borderlands.

  5. Seismotectonic Models of the Three Recent Devastating SCR Earthquakes in India

    NASA Astrophysics Data System (ADS)

    Mooney, W. D.; Kayal, J.

    2007-12-01

    During the last decade, three devastating earthquakes, the Killari 1993 (Mb 6.3), Jabalpur 1997 (Mb 6.0) and the Bhuj 2001 (Mw 7.7) occurred in the Stable Continental Region (SCR), Peninsular India. First, the September 30, 1993 Killari earthquake (Mb 6.3) occurred in the Deccan province of central India, in the Latur district of Maharashtra state. The local geology in the area is obscured by the late Cretaceous-Eocene basalt flows, referred to as the Deccan traps. This makes it difficult to recognize the geological surface faults that could be associated with the Killari earthquake. The epicentre was reported at 18.090N and 76.620E, and the focal depth at 7 +/- 1 km was precisely estimated by waveform inversion (Chen and Kao, 1995). The maximum intensity reached to VIII and the earthquake caused a loss of about 10,000 lives and severe damage to property. The May 22, 1997 Jabalpur earthquake (Mb 6.0), epicentre at 23.080N and 80.060E, is a well studied earthquake in the Son-Narmada-Tapti (SONATA) seismic zone. A notable aspects of this earthquake is that it was the first significant event in India to be recorded by 10 broadband seismic stations which were established in 1996 by the India Meteorological Department (IMD). The focal depth was well estimated using the "converted phases" of the broadband seismograms. The focal depth was given in the lower crust at a depth of 35 +/- 1 km, similar to the moderate earthquakes reported from the Amazona ancient rift system in SCR of South America. Maximum MSK intensity of the Jabalpur earthquake reached to VIII in the MSK scale and this earthquake killed about 50 people in the Jabalpur area. Finally, the Bhuj earthquake (MW 7.7) of January 26, 2001 in the Gujarat state, northwestern India, was felt across the whole country, and killed about 20,000 people. The maximum intensity level reached X. The epicenter of the earthquake is reported at 23.400N and 70.280E, and the well estimated focal depth at 25 km. A total of about 3000 aftershocks (M> 1.0) were recorded until mid April, 2001. About 500 aftershocks (M>2.0) are well located; the epicenter map shows an aftershock cluster area, about 60 km x 30 km, between 70.0-70.60E and 23.3-23.60N; almost all the aftershocks occurred within the high intensity (IX) zone. The source area of the main shock and most of the aftershocks are at a depth range of 20-25 km. The fault-plane solutions suggest that the main shock originated at the base of the paleo-rift zone by a south dipping, hidden reverse fault; the rupture propagated both NE and NW. The aftershocks occurred by left-lateral strike-slip motion along the NE trending fault, compatible with the main shock solution, and by pure reverse to right-lateral, strike-slip motion along the NW trending conjugate fault. Understanding these earthquake sequences may shed new light in on the tectonics and active faults in the source regions.

  6. The role of thin, mechanical discontinuities on the propagation of reverse faults: insights from analogue models

    NASA Astrophysics Data System (ADS)

    Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio

    2016-04-01

    Fault-related folding kinematic models are widely used to explain accommodation of crustal shortening. These models, however, include simplifications, such as the assumption of constant growth rate of faults. This value sometimes is not constant in isotropic materials, and even more variable if one considers naturally anisotropic geological systems. , This means that these simplifications could lead to incorrect interpretations of the reality. In this study, we use analogue models to evaluate how thin, mechanical discontinuities, such as beddings or thin weak layers, influence the propagation of reverse faults and related folds. The experiments are performed with two different settings to simulate initially-blind master faults dipping at 30° and 45°. The 30° dip represents one of the Andersonian conjugate fault, and 45° dip is very frequent in positive reactivation of normal faults. The experimental apparatus consists of a clay layer placed above two plates: one plate, the footwall, is fixed; the other one, the hanging wall, is mobile. Motor-controlled sliding of the hanging wall plate along an inclined plane reproduces the reverse fault movement. We run thirty-six experiments: eighteen with dip of 30° and eighteen with dip of 45°. For each dip-angle setting, we initially run isotropic experiments that serve as a reference. Then, we run the other experiments with one or two discontinuities (horizontal precuts performed into the clay layer). We monitored the experiments collecting side photographs every 1.0 mm of displacement of the master fault. These images have been analyzed through PIVlab software, a tool based on the Digital Image Correlation method. With the "displacement field analysis" (one of the PIVlab tools) we evaluated, the variation of the trishear zone shape and how the master-fault tip and newly-formed faults propagate into the clay medium. With the "strain distribution analysis", we observed the amount of the on-fault and off-fault deformation with respect to the faulting pattern and evolution. Secondly, using MOVE software, we extracted the positions of fault tips and folds every 5 mm of displacement on the master fault. Analyzing these positions in all of the experiments, we found that the growth rate of the faults and the related fold shape vary depending on the number of discontinuities in the clay medium. Other results can be summarized as follows: 1) the fault growth rate is not constant, but varies especially while the new faults interacts with precuts; 2) the new faults tend to crosscut the discontinuities when the angle between them is approximately 90°; 3) the trishear zone change its shape during the experiments especially when the main fault interacts with the discontinuities.

  7. Abrupt along-strike change in tectonic style: San Andreas fault zone, San Francisco Peninsula

    USGS Publications Warehouse

    Zoback, M.L.; Jachens, R.C.; Olson, J.A.

    1999-01-01

    Seismicity and high-resolution aeromagnetic data are used to define an abrupt change from compressional to extensional tectonism within a 10- to 15-km-wide zone along the San Andreas fault on the San Francisco Peninsula and offshore from the Golden Gate. This 100-km-long section of the San Andreas fault includes the hypocenter of the Mw = 7.8 1906 San Francisco earthquake as well as the highest level of persistent microseismicity along that ???470-km-long rupture. We define two distinct zones of deformation along this stretch of the fault using well-constrained relocations of all post-1969 earthquakes based a joint one-dimensional velocity/hypocenter inversion and a redetermination of focal mechanisms. The southern zone is characterized by thrust- and reverse-faulting focal mechanisms with NE trending P axes that indicate "fault-normal" compression in 7- to 10-km-wide zones of deformation on both sides of the San Andreas fault. A 1- to 2-km-wide vertical zone beneath the surface trace of the San Andreas is characterized by its almost complete lack of seismicity. The compressional deformation is consistent with the young, high topography of the Santa Cruz Mountains/Coast Ranges as the San Andreas fault makes a broad restraining left bend (???10??) through the southernmost peninsula. A zone of seismic quiescence ???15 km long separates this compressional zone to the south from a zone of combined normal-faulting and strike-slip-faulting focal mechanisms (including a ML = 5.3 earthquake in 1957) on the northernmost peninsula and offshore on the Golden Gate platform. Both linear pseudo-gravity gradients, calculated from the aeromagnetic data, and seismic reflection data indicate that the San Andreas fault makes an abrupt ???3-km right step less than 5 km offshore in this northern zone. A similar right-stepping (dilatational) geometry is also observed for the subparallel San Gregorio fault offshore. Persistent seismicity and extensional tectonism occur within the San Andreas right stepover region and at least 15 km along-strike both to the SE and NW. The 1906 San Francisco earthquake may have nucleated within the San Andreas right stepover, which may help explain the bilateral nature of rupture of this event. Our analysis suggests two seismic hazards for the San Francisco Peninsula in addition to the hazard associated with a M = 7 to 8 strike-slip earthquake along the San Andreas fault: the potential for a M ??? 6 normal-faulting earthquake just 5-8 km west of San Francisco and a M = 6+ thrust faulting event in the southern peninsula.

  8. Active Tectonics of the Iran Plateau and South Caspian Basin

    NASA Astrophysics Data System (ADS)

    Priestely, K.; Jackson, J.; Maggi, A.; Talebian, M.; Walker, R.

    2002-12-01

    We use observations of surface faulting, well-constrained earthquake focal mechanisms and centroid depths, and velocity structure to investigate the present-day deformation and kinematics of the region. Current deformation is primarily concentrated in three seismically active belts: the Zagros Mountains of southwest Iran,the Talesh-Alborz-Kopeh Dag Mountains of northern Iran, and the Apsheron-Balkhan Sill in the central Caspian Sea. These belts are separated by seismically inactive regions that act as semi-rigid blocks. The extent to which the active shortening is divided between the three belts is still uncertain. Earthquake locations in the region, particularly their focal depths which are determined from teleseismic arrival times, are poor, and reported subcrustal earthquakes have been cited as evidence for present-day subduction beneath the Zagros. A detailed analysis of earthquake focal depths in the Zagros and elsewhere in the region confirms that no substantial subcrustal earthquakes occur in this part of the Middle East except beneath the Makran subduction zone in the south and the Apsheron-Balkhan Sill in the north. The present-day N-S deformation across the Zagros is partitioned with right-lateral, strike-slip motion on the NW-SE striking Main Recent Fault, and NE-SW shortening across the Zagros. Shortening in the Zagros is accommodated by folding in the sediments (0-10 km depth), moderate earthquakes on high-angle reverse faults striking parallel to the surface folds (~10-20 km depth), and aseismic thickening of the lower crust (~20-45 km depth). The south Caspian basin is essentially free of earthquakes and acts as a rigid block which strongly influences the nature of the deformation in the surrounding active belts. No significant subcrustal earthquakes occur in the Talesh, Alborz, or Kopeh Dag Mountains which bound the northeast, south and west sides of the south Caspian basin, but substantial subcrustal seismicity occurs beneath the Apsheron-Balkhan Sill on the north side of the basin. Earthquakes in the Kopeh Dag occur primarily on reverse or right-lateral strike-slip, NW trending faults. The Kopeh Dag structures continue to the NW towards the Apsheron-Balkhan Sill but become increasingly buried by sediment. Focal mechanisms of earthquakes in the Alborz show either reverse motion or left-lateral strike-slip motion on faults parallel to the regional strike of the belt. Earthquakes in the Talesh indicate thrusting on almost flat faults at depths of 15-26 km with slip vectors directed towards the Caspian. We believe that the subcrustal earthquakes occurring beneath the Apsheron-Balkhan Sill indicate the onset of subduction of the high velocity (high density) south Caspian crust beneath the continental crust of the central Caspian. The conjugate right-lateral and left-lateral components in the Kopeh Dag and eastern Alborz suggest that the South Caspian Basin has a westward component of motion relative to both Eurasia and Iran. This motion enhances westward underthrusting of the basin beneath the Talesh Mountains of Iran and Azerbaijan.

  9. Geologic Map of the Goleta Quadrangle, Santa Barbara County, California

    USGS Publications Warehouse

    Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Brandt, Theodore R.

    2007-01-01

    This map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying those parts of the Santa Barbara coastal plain and adjacent southern flank of the Santa Ynez Mountains within the Goleta 7 ?? quadrangle at a compilation scale of 1:24,000 (one inch on the map = 2,000 feet on the ground) and with a horizontal positional accuracy of at least 20 m. The Goleta map overlaps an earlier preliminary geologic map of the central part of the coastal plain (Minor and others, 2002) that provided coverage within the coastal, central parts of the Goleta and contiguous Santa Barbara quadrangles. In addition to new mapping in the northern part of the Goleta quadrangle, geologic mapping in other parts of the map area has been revised from the preliminary map compilation based on new structural interpretations supplemented by new biostratigraphic data. All surficial and bedrock map units are described in detail in the accompanying map pamphlet. Abundant biostratigraphic and biochronologic data based on microfossil identifications are presented in expanded unit descriptions of the marine Neogene Monterey and Sisquoc Formations. Site-specific fault-kinematic observations (including slip-sense determinations) are embedded in the digital map database. The Goleta quadrangle is located in the western Transverse Ranges physiographic province along an east-west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The Santa Barbara coastal plain surface, which spans the central part of the quadrangle, includes several mesas and hills that are geomorphic expressions of underlying, potentially active folds and partly buried oblique and reverse faults of the Santa Barbara fold and fault belt (SBFFB). Strong earthquakes have occurred offshore within 10 km of the Santa Barbara coastal plain in 1925 (6.3 magnitude), 1941 (5.5 magnitude) and 1978 (5.1 magnitude). These and numerous smaller seismic events located beneath and offshore of the coastal plain, likely occurred on reverse-oblique-slip faults that are similar to, or continuous with, Quaternary reverse faults crossing the coastal plain. Thus, faults of the SBFFB pose a significant earthquake hazard to the approximately 200,000 people living within the major coastal population centers of Santa Barbara and Goleta. In addition, numerous Quaternary landslide deposits along the steep southern flank of the Santa Ynez Mountains indicate the potential for continued slope failures and mass movements in developed areas. Folded, faulted, and fractured sedimentary rocks in the subsurface of the coastal plain and adjacent Santa Barbara Channel are sources and form reservoirs for economic deposits of oil and gas, some of which are currently being extracted offshore. Shallow, localized sedimentary aquifers underlying the coastal plain provide limited amounts of water for the urban areas, but the quality of some of this groundwater is compromised by coastal salt-water contamination. The present map compilation provides a set of uniform geologic digital coverages that can be used for analysis and interpretation of these and other geologic hazards and resources in the Goleta region.

  10. The Maurice field: New gas reserves from buried structure along the Oligocene trend of southwestern Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prescott, M.P.

    1990-09-01

    Significant new gas reserves have recently been discovered in the Marginulina texana sands along the Oligocene trend at the Maurice field. Detailed subsurface maps and seismic data are presented to exhibit the extent and nature of this local buried structure and to demonstrate future opportunities along the Oligocene trend. Since discovery in 1988, the MARG. TEX. RC has extended the Maurice field one-half mile south and has encountered over 170 ft of Marginulina texana pay Estimated reserves are in the order of 160 BCFG with limits of the reservoir still unknown. This reserve addition would increase the estimated ultimate ofmore » the Maurice field by over 70% from 220 BCFG to 380 BCFG. Cross sections across the field depict the new reservoir trap as a buried upthrown fault closure with an anticipated gas column of 700 ft. Interpretation of the origin of this local structure is that of a buried rotated fault block on an overall larger depositional structure. Detailed subsurface maps at the Marginulina texana and the overlying Miogypsinoides level are presented. These maps indicate that one common fault block is productive from two different levels. The deeper Marginulina texana sands are trapped on north dip upthrown to a southern boundary fault, Fault B. The overlying Miogypsinoides sands are trapped on south dip downthrown to a northern boundary fault, Fault A. The northern boundary fault, Fault A, was the Marginulina texana expansion fault and rotated that downthrown section to north dip. Because of the difference in dip between the two levels, the apex of the deeper Marginulina texana fault closure is juxtaposed by one mile south relative to the overlying Miogypsinoides fault closure. Analysis indicates that important structural growth occur-red during Marginulina texana deposition with a local unconformity covering the apex of the upthrown fault closure. State-of-the-art reconnaissance seismic data clearly exhibit this buried rotated fault block.« less

  11. Triggered surface slips in southern California associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, earthquake

    USGS Publications Warehouse

    Rymer, Michael J.; Treiman, Jerome A.; Kendrick, Katherine J.; Lienkaemper, James J.; Weldon, Ray J.; Bilham, Roger; Wei, Meng; Fielding, Eric J.; Hernandez, Janis L.; Olson, Brian P.E.; Irvine, Pamela J.; Knepprath, Nichole; Sickler, Robert R.; Tong, Xiaopeng; Siem, Martin E.

    2011-01-01

    Triggered slip in the Yuha Desert area occurred along more than two dozen faults, only some of which were recognized before the April 4, 2010, El Mayor-Cucapah earthquake. From east to northwest, slip occurred in seven general areas: (1) in the Northern Centinela Fault Zone (newly named), (2) along unnamed faults south of Pinto Wash, (3) along the Yuha Fault (newly named), (4) along both east and west branches of the Laguna Salada Fault, (5) along the Yuha Well Fault Zone (newly revised name) and related faults between it and the Yuha Fault, (6) along the Ocotillo Fault (newly named) and related faults to the north and south, and (7) along the southeasternmost section of the Elsinore Fault. Faults that slipped in the Yuha Desert area include northwest-trending right-lateral faults, northeast-trending left-lateral faults, and north-south faults, some of which had dominantly vertical offset. Triggered slip along the Ocotillo and Elsinore Faults appears to have occurred only in association with the June 14, 2010 (Mw5.7), aftershock. This aftershock also resulted in slip along other faults near the town of Ocotillo. Triggered offset on faults in the Yuha Desert area was mostly less than 20 mm, with three significant exceptions, including slip of about 50–60 mm on the Yuha Fault, 40 mm on a fault south of Pinto Wash, and about 85 mm on the Ocotillo Fault. All triggered slips in the Yuha Desert area occurred along preexisting faults, whether previously recognized or not.

  12. Tertiary and Quaternary tectonic faulting in southernmost Illinois

    USGS Publications Warehouse

    Nelson, W.J.; Denny, F.B.; Devera, J.A.; Follmer, L.R.; Masters, J.M.

    1997-01-01

    Tertiary and/or Quaternary tectonic faulting is documented in three areas of southernmost Illinois: the Fluorspar Area Fault Complex (FAFC) in Pope and Massac Counties, the Ste. Genevieve Fault Zone (SGFZ) in Alexander and Union Counties, and the Commerce Fault Zone (CFZ) in Alexander County. In the FAFC, faults that strike NE and NNE displace Mounds Gravel (late Miocene to early Pleistocene) and, locally, the Metropolis terrace gravel (Pleistocene; pre-Woodfordian). No Woodfordian or younger deposits are deformed. Faults typically outline narrow, linear grabens that formed under tension with a component of strike slip. North-south to NW-trending vertical faults near the southeast end of the SGFZ displace Eocene sediments. Again, faults outline narrow grabens and show indications of strike slip. Deformed Quaternary sediments have not been observed. The CFZ, which trends northeast, displaces Mounds Gravel in Illinois and units as young as Peoria Silt (Woodfordian) in Missouri. Quaternary movement has been interpreted as right-lateral strike-slip. The CFZ coincides with a subtle gravity and magnetic lineament and seems to reflect a major feature in the basement. Surface expression in Illinois is subtle, but mafic and ultramafic intrusions, hydrothermal alteration and small faults align with the Commerce geophysical lineament. Earthquake foci in Missouri and Illinois lie on or close to the CFZ; some focal mechanisms fit the fault trend. Among these structures, only the CFZ exhibits slip that conforms to the current stress field (principal compressive stress axis E-W to ENE-WSW). Possibly, the stress field changed during Neogene time. Alternatively, high fluid pressures or local stress concentrations may have induced slip on less favorably oriented fractures. Tighter constraints are needed on timing, magnitude, and direction of Neogene displacement. ?? 1997 Elsevier Science B.V.

  13. Assessment of the geodynamical setting around the main active faults at Aswan area, Egypt

    NASA Astrophysics Data System (ADS)

    Ali, Radwan; Hosny, Ahmed; Kotb, Ahmed; Khalil, Ahmed; Azza, Abed; Rayan, Ali

    2013-04-01

    The proper evaluation of crustal deformations in the Aswan region especially around the main active faults is crucial due to the existence of one major artificial structure: the Aswan High Dam. This construction created one of the major artificial lakes: Lake Nasser. The Aswan area is considered as an active seismic area in Egypt since many recent and historical felted earthquakes occurred such as the impressive earthquake occurred on November 14, 1981 at Kalabsha fault with a local magnitude ML=5.7. Lately, on 26 December 2011, a moderate earthquake with a local magnitude Ml=4.1 occurred at Kalabsha area too. The main target of this study is to evaluate the active geological structures that can potentially affect the Aswan High Dam and that are being monitored in detail. For implementing this objective, two different geophysical tools (magnetic, seismic) in addition to the Global Positioning System (GPS) have been utilized. Detailed land magnetic survey was carried out for the total component of geomagnetic field using two proton magnetometers. The obtained magnetic results reveal that there are three major faults parallel {F1 (Kalabsha), F2 (Seiyal) and F3} affecting the area. The most dominant magnetic trend strikes those faults in the WNW-ESE direction. The seismicity and fault plain solutions of the 26 December 2011 earthquake and its two aftershocks have been investigated. The source mechanisms of those events delineate two nodal plains. The trending ENE-WSW to E-W is consistent with the direction of Kalabsha fault and its extension towards east for the events located over it. The trending NNW-SSE to N-S is consistent with the N-S fault trending. The movement along the ENE-WSW plain is right lateral, but it is left lateral along the NNW-SSE plain. Based on the estimated relative motions using GPS, dextral strike-slip motion at the Kalabsha and Seiyal fault systems is clearly identified by changing in the velocity gradient between south and north stations. However, at the area between Kalabha and Seiyal faults, the movement has been changed in a different direction which is consistent with the other set of faults (N-S).

  14. The structure and stratigraphy of the Pen Argyl Member of the Martinsburg Formation in Lehigh and Berks counties, Pennsylvania

    USGS Publications Warehouse

    Lash, Gary George

    1978-01-01

    The Pen Argyl Member, the upper claystone slate member of the Martinsburg Formation, was studied in three quadrangles in Lehigh and Berks Counties, Pennsylvania. Graptolites collected from the Pen Argyl Member at Lehigh Gap indicate a lower Upper Ordovician (Edenian-Maysvillian) age for the Pen Argyl Member. The Pen Argyl Member in this area is located on the normal limb and in the brow of the large, recumbent Musconetcong nappe. It is a deep water flysch deposit emplaced by turbidity currents from a southeasterly source. Sedimentologic and structural evidence show that the Pen Argyl member overlies the sandy middle Ramseyburg Member, thus supporting the tripartite subdivision of the Martinsburg Formation. Field and thin section study indicates that the penetrative slaty cleavage formed in an indurated rock probably by pressure solution and neocrystallization under lower greenschist facies metamorphism. Strain-slip cleavage formed as a result of a stress couple operating parallel to the slaty cleavage that transposed the slaty cleavage into a more spaced cleavage. Both cleavages are believed to have formed within the same stress continuum and in close succession. Analysis of the folds in the Pen Argyl Member indicate six phases of major and minor folding. The earliest folding, F1, resulted in the development of the recumbent nappe. F2 folds can only be determined statistically; these axes plunge either northeast or southwest Asymmetric folds, F3, and associated F4 crenulations formed within the same stress continuum. F5 folds are large open folds and are exemplified by the Mosservi!le anticline. Kink folds, F6 and associated crenulations are fault related and were the last folds to form. Faults in the Pen Argyl Member range from small displacements along slaty cleavage to large reverse faults. The largest of these, the Eckville fault, is recognized throughout the three quadrangle area. It is a high angle reverse fault that separates the Shochary sequence from the Pen Argyl member to the north. Detailed fabric analysis of the Pen Argyl Member indicates that (1) the strike of the slaty cleavage is consistent throughout the study area, (2) bedding strikes are undulose indicating that the rocks were folded prior to slaty cleavage development, (3) slaty cleavage-bedding intersections indicate an early northeast-southwest fold set and a later east-west trend of fold axes, and (4) slaty cleavage-strain-slip cleavage intersections indicate two periods of strain-slip cleavage development, the later period being fault related. Synthesis of field work and fabric data suggest that the Pen Argyl Member was deposited in the waning stages of flysch deposition during the Taconic orogeny. The nappe, F1, was formed at this time as a result of stress generated by plate convergence to the southeast. Further Taconian deformation of the normal limb of the nappe resulted in the northeast-southwest plunging F2 folds. Initial Alleghenian deformation resulted in the F3 asymmetric folds and slaty cleavage, S1. Later in the same stress continuum the F4 crenulations and strain-slip cleavage, S2, formed. Subsequently, F5 open folding occurred. Kink folds and crenulations, F6, and strain-slip cleavage, S3, formed in conjunction with late Alleghenian reverse faults such as the Eckville fault.

  15. Palaeomagnetic constraints on the evolution of the Atlantis Massif oceanic core complex (Mid-Atlantic Ridge, 30°N)

    NASA Astrophysics Data System (ADS)

    Morris, A.; Pressling, N.; Gee, J. S.

    2012-04-01

    Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. They represent a fundamental component of the seafloor spreading system at slow and ultraslow axes. One of the most extensively studied oceanic core complexes is Atlantis Massif, located at 30°N at the intersection of the Atlantis Transform Fault and the Mid Atlantic Ridge (MAR). The central dome of the massif exposes the corrugated detachment fault surface and was drilled during IODP Expedition 304/305 (Hole U1309D). This sampled a 1.4 km faulted and complexly layered footwall section dominated by gabbroic lithologies with minor ultramafic rocks. Palaeomagnetic analyses demonstrate that the gabbroic sequences at Atlantis Massif carry highly stable remanent magnetizations that provide valuable information on the evolution of the section. Thermal demagnetization experiments recover high unblocking temperature components of reversed polarity (R1) throughout the gabbroic sequences. Correlation of structures observed on oriented borehole (FMS) images and those recorded on unoriented core pieces allows reorientation of R1 remanences. The mean remanence direction in true geographic coordinates constrains the tectonic rotation experienced by the Atlantis Massif footwall, indicating a 46°±6° counterclockwise around a MAR-parallel horizontal axis trending 011°±6°. The detachment fault therefore initiated at a steep dip of >50° and then rotated flexurally to its present day low angle geometry (consistent with a 'rolling-hinge' model for detachment evolution). In a number of intervals, the gabbros exhibit a complex remanence structure with the presence of additional intermediate temperature normal (N1) and lower temperature reversed (R2) polarity components, suggesting an extended period of remanence acquisition during different polarity intervals. Sharp break-points between different polarity components suggest that they were acquired by a thermal mechanism. There appears to be no correlation between remanence structure and either the igneous stratigraphy or the distribution of alteration in the core. Instead, the remanence data are consistent with a model in which the lower crustal section acquired magnetizations of different polarity during a protracted cooling history spanning two geomagnetic reversals. The crystallization age of the section (1.2 Ma; derived from Pb/U zircon dating) suggests that the R1 component was acquired during geomagnetic polarity chron C1r.2r, N1 during chron C1r.1n (Jaramillo) and R2 during chron C1r.1r. By considering the maximum time intervals available for acquisition of the N1 and R2 components and correcting laboratory unblocking temperatures accordingly, the data provide additional constraints on the thermal evolution of the Atlantis Massif footwall.

  16. Palaeomagnetic constraints on the evolution of the Atlantis Massif oceanic core complex (Mid-Atlantic Ridge, 30°N)

    NASA Astrophysics Data System (ADS)

    Morris, A.; Pressling, N.; Gee, J. S.

    2011-12-01

    Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. They represent a fundamental component of the seafloor spreading system at slow and ultraslow axes. One of the most extensively studied oceanic core complexes is Atlantis Massif, located at 30°N at the intersection of the Atlantis Transform Fault and the Mid Atlantic Ridge (MAR). The central dome of the massif exposes the corrugated detachment fault surface and was drilled during IODP Expedition 304/305 (Hole U1309D). This sampled a 1.4 km faulted and complexly layered footwall section dominated by gabbroic lithologies with minor ultramafic rocks. Palaeomagnetic analyses demonstrate that the gabbroic sequences at Atlantis Massif carry highly stable remanent magnetizations that provide valuable information on the evolution of the section. Thermal demagnetization experiments recover high unblocking temperature components of reversed polarity (R1) throughout the gabbroic sequences. Correlation of structures observed on oriented borehole (FMS) images and those recorded on unoriented core pieces allows reorientation of R1 remanences. The mean remanence direction in true geographic coordinates constrains the tectonic rotation experienced by the Atlantis Massif footwall, indicating a 46°±6° counterclockwise around a MAR-parallel horizontal axis trending 011°±6°. The detachment fault therefore initiated at a steep dip of >50° and then rotated flexurally to its present day low angle geometry (consistent with a 'rolling-hinge' model for detachment evolution). In a number of intervals, the gabbros exhibit a complex remanence structure with the presence of additional intermediate temperature normal (N1) and lower temperature reversed (R2) polarity components, suggesting an extended period of remanence acquisition during different polarity intervals. Sharp break-points between different polarity components suggest that they were acquired by a thermal mechanism. There appears to be no correlation between remanence structure and either the igneous stratigraphy or the distribution of alteration in the core. Instead, the remanence data are consistent with a model in which the lower crustal section acquired magnetizations of different polarity during a protracted cooling history spanning two geomagnetic reversals. The crystallization age of the section (1.2 Ma; derived from Pb/U zircon dating) suggests that the R1 component was acquired during geomagnetic polarity chron C1r.2r, N1 during chron C1r.1n (Jaramillo) and R2 during chron C1r.1r. By considering the maximum time intervals available for acquisition of the N1 and R2 components and correcting laboratory unblocking temperatures accordingly, the data provide additional constraints on the thermal evolution of the Atlantis Massif footwall.

  17. Alternating seismic uplift and subsidence in the late Holocene at Madang, Papua New Guinea: Evidence from raised reefs

    USGS Publications Warehouse

    Tudhope, A.W.; Buddemeier, R.W.; Chilcott, C.P.; Berryman, K.R.; Fautin, D.G.; Jebb, M.; Lipps, J.H.; Pearce, R.G.; Scoffin, T.P.; Shimmield, G.B.

    2000-01-01

    Well-preserved mid-late Holocene coral reefs are exposed in low coastal cliffs in the vicinity of the Madang lagoon on the north coast of Papua New Guinea. Results from U/Th and 14C dating of corals, surveying, and field mapping indicate several major changes in relative sea level over this period. Specifically, there is evidence for a relative sea level fall of ??? 4.5 m about 3000 calendar years B.P., followed by relative sea level rises of ???1.5 m about 2400 calendar years B.P. and ??? 0.5 m about 1200 calendar years B.P. and a subsequent relative sea level fall of ??? 3 m some time in the past 1000 years. Since regional eustatic sea levels are believed to have been dropping gradually over this time frame, these observed changes in relative sea level are interpreted as reflecting alternating tectonic uplift and subsidence. Furthermore, the detailed structure and age relationships of the coral deposits indicate that both uplift and subsidence occurred rapidly, most probably as coseismic events with vertical displacements of 0.5 to 4.5 m. These events may be related to rupture on NW-SE trending reverse faults which have been mapped in the nearby Adelbert Range and possibly on NE trending cross faults which have been inferred from seismicity. This interpretation implies a much greater degree of tectonic instability and potential seismic hazard in the region than previously recognized, although the inferred coseismic vertical displacements are shown to be consistent with present-day local seismicity. In a broader context, the study illustrates how detailed analysis of vertical changes in coral reef structure and assemblages may be used as a sensitive indicator of changing relative sea level, capable of resolving century timescale events and reversals. Copyright 2000 by the American Geophysical Union.

  18. Evaluation of Alternative Seismic Source Characterization Models for the Inner Borderlands of Southern California

    NASA Astrophysics Data System (ADS)

    Hanson, K. L.; Angell, M.; Foxall, W.; Rietman, J.

    2002-12-01

    Alternative source characterizations for seismic hazard analysis are developed to capture the range of plausible fault geometries and interactions between postulated thrusts (i.e., the Oceanside blind thrust (OBT) and San Joaquin Hills blind fault (SJBF)) and strike-slip faults (Rose Canyon (RC)-Newport Inglewood (NI) faults) along the Southern California inner borderlands. Evaluation of 2D and high-resolution shallow seismic data show evidence for a relatively continuous zone of deformation (OZD) linking the RC and NI, both of which are active strike-slip faults, based on seismicity and paleoseismic data. Geodetic data are consistent with NNW-shear and show little or no convergence across the inner borderland, or evidence of a regional "driving" force that would reactivate a large seismogenic thrust (see Moriwaki and others, this volume). Fault and fold deformation observed along the OZD between the RC and NI is consistent with transpressional right lateral slip along a N20W-trending fault zone. Evidence to support reactivation of the entire OBT in the current tectonic environment is not demonstrated. Seismicity and possible late Pleistocene/Holocene reverse faults and associated folding can be explained by localized contraction in left steps or bends in a transpressional right-slip tectonic environment. Clockwise rotation of crustal blocks in the inner borderland (which is not inconsistent with geodetic data suggesting a component of extension across the southern inner borderland) could account for the greater intensity of contractional structures in the hanging wall of the northern OBT west of the OZD. This might explain the local reactivation of portions of the OBT, but would not require reactivation of the entire detachment. Much of the contractional deformation observed in the inner borderland (e.g., the San Mateo thrust belt) could have occurred during the Pliocene. Regional coastal uplift, which has been cited as evidence that the Oceanside and Thirtymile Bank thrusts are active on a regional basis, may be attributed to other processes, such as rift shoulder thermal isostasy (e.g., Kier et.al, Tectonics 2002). We present relative weights for three alternative source models that consider a throughgoing strike-slip fault system (inactive OBT), a regional blind thrust (OBT), or an oblique fault in which strain is partitioned updip onto a strike-slip (offshore strike-slip fault) and reactivated thrust (OBT).

  19. Flexure in the Corinth rift: reconciling marine terraces, rivers, offshore data and fault modeling

    NASA Astrophysics Data System (ADS)

    de Gelder, G.; Fernández-Blanco, D.; Jara-Muñoz, J.; Melnick, D.; Duclaux, G.; Bell, R. E.; Lacassin, R.; Armijo, R.

    2016-12-01

    The Corinth rift (Greece) is an exceptional area to study the large-scale mechanics of a young rift system, due to its extremely high extension rates and fault slip rates. Late Pleistocene activity of large normal faults has created a mostly asymmetric E-W trending graben, mainly driven by N-dipping faults that shape the southern margin of the Corinth Gulf. Flexural footwall uplift of these faults is evidenced by Late Pleistocene coastal fan deltas that are presently up to 1700m in elevation, a drainage reversal of some major river systems, and flights of marine terraces that have been uplifted along the southern margin of the Gulf. To improve constraints on this footwall uplift, we analysed the extensive terrace sequence between Xylokastro and Corinth - uplifted by the Xylokastro Fault - using 2m-resolution digital surface models developed from Pleiades satellite imagery (acquired through the Isis and Tosca programs of the French CNES). We refined and improved the spatial uplift pattern and age correlation of these terraces, through a detailed analysis of the shoreline angles using the graphical interface TerraceM, and 2D numerical modeling of terrace formation. We combine the detailed record of flexure provided by this analysis with a morphometric analysis of the major river systems along the southern shore, obtaining constraints of footwall uplift on a longer time scale and larger spatial scale. Flexural subsidence of the hanging wall is evidenced by offshore seismic sections, for which we depth-converted a multi-channel seismic section north of the Xylokastro Fault. We use the full profile of the fault geometry and its associated deformation pattern as constraints to reproduce the long-term flexural wavelength and uplift/subsidence ratio through fault modeling. Using PyLith, an open-source finite element code for quasi-static viscoelastic simulations, we find that a steep-dipping planar fault to the brittle-ductile transition provides the best fit to reproduce the observed deformation pattern on- and offshore. The combined results of this study allow us to compare flexural normal faulting on different scales, and recorded in different elements of the Corinth rift, allowing us to put forward a comprehensive discussion on the deformation mechanisms and the mechanical behavior of this crustal scale feature.

  20. The 2016 Mihoub (north-central Algeria) earthquake sequence: Seismological and tectonic aspects

    NASA Astrophysics Data System (ADS)

    Khelif, M. F.; Yelles-Chaouche, A.; Benaissa, Z.; Semmane, F.; Beldjoudi, H.; Haned, A.; Issaadi, A.; Chami, A.; Chimouni, R.; Harbi, A.; Maouche, S.; Dabbouz, G.; Aidi, C.; Kherroubi, A.

    2018-06-01

    On 28 May 2016 at 23:54 (UTC), an Mw5.4 earthquake occurred in Mihoub village, Algeria, 60 km southeast of Algiers. This earthquake was the largest event in a sequence recorded from 10 April to 15 July 2016. In addition to the permanent national network, a temporary network was installed in the epicentral region after this shock. Recorded event locations allow us to give a general overview of the sequence and reveal the existence of two main fault segments. The first segment, on which the first event in the sequence was located, is near-vertical and trends E-W. The second fault plane, on which the largest event of the sequence was located, dips to the southeast and strikes NE-SW. A total of 46 well-constrained focal mechanisms were calculated. The events located on the E-W-striking fault segment show mainly right-lateral strike-slip (strike N70°E, dip 77° to the SSE, rake 150°). The events located on the NE-SW-striking segment show mainly reverse faulting (strike N60°E, dip 70° to the SE, rake 130°). We calculated the static stress change caused by the first event (Md4.9) of the sequence; the result shows that the fault plane of the largest event in the sequence (Mw5.4) and most of the aftershocks occurred within an area of increased Coulomb stress. Moreover, using the focal mechanisms calculated in this work, we estimated the orientations of the main axes of the local stress tensor ellipsoid. The results confirm previous findings that the general stress field in this area shows orientations aligned NNW-SSE to NW-SE. The 2016 Mihoub earthquake sequence study thus improves our understanding of seismic hazard in north-central Algeria.

  1. Mountain Meadows Dacite: Oligocene intrusive complex that welds together the Los Angeles Basin, northwestern Peninsular Ranges, and central Transverse Ranges, California

    USGS Publications Warehouse

    McCulloh, Thane H.; Beyer, Larry A.; Morin, Ronald W.

    2001-01-01

    Dikes and irregular intrusive bodies of distinctive Oligocene biotite dacite and serially related hornblende latite and felsite occur widely in the central and eastern San Gabriel Mountains, southern California, and are related to the Telegraph Peak granodiorite pluton. Identical dacite is locally present beneath Middle Miocene Topanga Group Glendora Volcanics at the northeastern edge of the Los Angeles Basin, where it is termed Mountain Meadows Dacite. This study mapped the western and southwestern limits of the dacite distribution to understand the provenance of derived redeposited clasts, to perceive Neogene offsets on several large strike-slip faults, to test published palinspastic reconstructions, and to better understand the tectonic boundaries that separate contrasting pre-Tertiary rock terranes where the Peninsular Ranges meet the central and western Transverse Ranges and the Los Angeles Basin. Transported and redeposited clasts of dacite-latite occur in deformed lower Miocene and lower middle Miocene sandy conglomerates (nonmarine, nearshore, and infrequent upper bathyal) close to the northern and northeastern margins of the Los Angeles Basin for a distance of nearly 60 km. Tie-lines between distinctive source suites and clast occurrences indicate that large tracts of the ancestral San Gabriel Mountains were elevated along range-bounding faults as early as 16–15 Ma. The tie-lines prohibit very large strike-slip offsets on those faults. Transport of eroded dacite began south of the range as early as 18 Ma. Published and unpublished data about rocks adjacent to the active Santa Monica-Hollywood-Raymond oblique reverse left-lateral fault indicate that cumulative left slip totals 13–14 km and total offset postdates 7 Ma. This cumulative slip, with assembly of stratigraphic and paleogeographic data, invalidates prior estimates of 60 to 90 km of left slip on these faults beginning about 17–16 Ma. A new and different palinspastic reconstruction of a region southwest of the San Andreas Fault Zone is proposed. Our reconstruction incorporates 20° of clockwise rotation of tracts north of the Raymond Fault from the easternmost Santa Monica Mountains to the Vasquez Creek Fault (San Gabriel south branch). We interpret the Vasquez Creek Fault as a reverse and right-lateral tear fault. Right slip on the tear becomes reverse dip slip on the northeast-striking Clamshell-Sawpit fault complex, interpreted as an offset part of the Mount Lukens Fault. This explains the absence of evidence for lateral offset of the Glendora Volcanics and associated younger marine strata where those are broken farther east by the eastern Sierra Madre reverse fault system. About 34 km of right slip is suggested for all breaks of the San Gabriel fault system. New paleogeographic maps of the Paleogene basin margin and of a Middle Miocene marine embayment and strandline derive in part from our palinspastic reconstruction. These appealingly simple maps fit well with data from the central Los Angeles Basin to the south and southwest.

  2. New insights into the tectonic evolution of the Boconó Fault, Mérida Andes, Venezuela

    NASA Astrophysics Data System (ADS)

    Backé, G.

    2006-12-01

    The Boconó fault is a major right-lateral strike-slip fault that cuts along strike the Mérida Andes in Venezuela. The uplift of this mountain range started in the Miocene as a consequence of the relative oblique convergence between two lithospheric units named the Maracaibo block to the northwest and the Guyana shield to the southeast. Deformation in the Mérida Andes is partitioned between a strike-slip component along the Boconó fault and shortening perpendicular to the belt. Distinctive features define the Boconó fault: it is shifted southward relative to the chain axis and it does not have a continuous and linear trace but is composed of several fault segments of different orientations striking N35°E to N65°E. Quaternary fault strike-slip motion has been evidenced by various independent studies. However, onset of the strike-slip motion, fault offset and geometry at depth remains a matter of debate. Our work, based on morphostructural analyses of satellite and digital elevation model imagery, provides new data on both the geometry and the tectonic evolution of this major structure. We argue that the Boconó fault affects only the upper crust and connects at depth to a décollement. Consequently, it can not be considered as a plate boundary. The Boconó fault does however form the boundary between two different tectonic areas in the central part of the Mérida Andes as revealed by the earthquake focal mechanisms. South of the Boconó fault, the focal mechanisms are mainly compressional and reverse oblique-slip in agreement with NW SE shortening in the foothills. North of the Boconó fault, extensional and strike-slip deformation dominates. Microtectonic measurements collected in the central part of the Boconó fault are characterized by polyphased tectonics. The dextral shearing along the fault is superimposed to reverse oblique-slip to reverse motion, showing that initiation of transcurrent movement is more likely to have occurred after a certain amount of shortening. The present day strain partitioning along the Mérida Andes seems to be younger than the rise of the chain and coeval with the initiation of right-lateral shearing along the Boconó fault, which would have then initiated in the Pliocene. The Mérida Andes can be therefore considered as a case study of the kinematic evolution of a major strike-slip fault.

  3. Deciphering Stress State of Seismogenic Faults in Oklahoma and Kansas Based on High-resolution Stress Maps

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Chen, X.; Haffener, J.; Trugman, D. T.; Carpenter, B.; Reches, Z.

    2017-12-01

    Induced seismicity in Oklahoma and Kansas delineates clear fault trends. It is assumed that fluid injection reactivates faults which are optimally oriented relative to the regional tectonic stress field. We utilized recently improved earthquake locations and more complete focal mechanism catalogs to quantitatively analyze the stress state of seismogenic faults with high-resolution stress maps. The steps of analysis are: (1) Mapping the faults by clustering seismicity using a nearest-neighbor approach, manually picking the fault in each cluster and calculating the fault geometry using principal component analysis. (2) Running a stress inversion with 0.2° grid spacing to produce an in-situ stress map. (3) The fault stress state is determined from fault geometry and a 3D Mohr circle. The parameter `understress' is calculated to quantify the criticalness of these faults. If it approaches 0, the fault is critically stressed; while understress=1 means there is no shear stress on the fault. Our results indicate that most of the active faults have a planar shape (planarity>0.8), and dip steeply (dip>70°). The fault trends are distributed mainly in conjugate set ranges of [50°,70°] and [100°,120°]. More importantly, these conjugate trends are consistent with mapped basement fractures in southern Oklahoma, suggesting similar basement features from regional tectonics. The fault length data shows a loglinear relationship with the maximum earthquake magnitude with an expected maximum magnitude range from 3.2 to 4.4 for most seismogenic faults. Based on 3D local Mohr circle, we find that 61% of the faults have low understress (<0.2); while several faults with high understress (>0.5) are located within highest-rate injection zones and therefore are likely to be influenced by high pore pressure. The faults that hosted the largest earthquakes, M5.7 Prague and M5.8 Pawnee are critically stressed (understress < 0.08), whereas the fault of M5 Fairview earthquake is only moderately stressed (understress > 0.2). These differences may help in understanding earthquake sequences, for example, the predominantly aftershock-type sequence for Prague and Pawnee earthquakes, compared to predominantly swarm-type behavior for Fairview earthquake. These results provide ways to quantitatively evaluate local earthquake hazard.

  4. Triggered reverse fault and earthquake due to crustal unloading, northwest Transverse Ranges, California.

    USGS Publications Warehouse

    Yerkes, R.F.; Ellsworth, W.L.; Tinsley, J.C.

    1983-01-01

    A reverse-right-oblique surface rupture, associated with a ML 2.5 earthquake, formed in a diatomite quarry near Lompoc, California, in the northwesternmost Transverse Ranges on April 7, 1981. The 575-m-long narrow zone of ruptures formed in clay interbeds in diatomite and diatomaceous shale of the Neogene Monterey Formation. The ruptures parallel bedding, dip 39o-59oS, and trend about N84oE on the north limb of an open symmetrical syncline. Maximum net slip was 25 cm; maximum reverse dip slip was 23 cm, maximum right-lateral strike slip was about 9 cm, and average net slip was about 12 cm. The seismic moment of the earthquake is estimated at 1 to 2 X 1018 dyne/cm and the static stress drop at about 3 bar. The removal of an average of about 44 m of diatomite resulted in an average load reduction of about 5 bar, which decreased the normal stress by about 3.5 bar and increased the shear stress on the tilted bedding plane by about 2 bar. The April 7, 1981, event was a very shallow bedding-plane rupture, apparently triggered by crustal unloading. -Authors

  5. Map and Database of Probable and Possible Quaternary Faults in Afghanistan

    USGS Publications Warehouse

    Ruleman, C.A.; Crone, A.J.; Machette, M.N.; Haller, K.M.; Rukstales, K.S.

    2007-01-01

    The U.S. Geological Survey (USGS) with support from the U.S. Agency for International Development (USAID) mission in Afghanistan, has prepared a digital map showing the distribution of probable and suspected Quaternary faults in Afghanistan. This map is a key component of a broader effort to assess and map the country's seismic hazards. Our analyses of remote-sensing imagery reveal a complex array of tectonic features that we interpret to be probable and possible active faults within the country and in the surrounding border region. In our compilation, we have mapped previously recognized active faults in greater detail, and have categorized individual features based on their geomorphic expression. We assigned mapped features to eight newly defined domains, each of which contains features that appear to have similar styles of deformation. The styles of deformation associated with each domain provide insight into the kinematics of the modern tectonism, and define a tectonic framework that helps constrain deformational models of the Alpine-Himalayan orogenic belt. The modern fault movements, deformation, and earthquakes in Afghanistan are driven by the collision between the northward-moving Indian subcontinent and Eurasia. The patterns of probable and possible Quaternary faults generally show that much of the modern tectonic activity is related to transfer of plate-boundary deformation across the country. The left-lateral, strike-slip Chaman fault in southeastern Afghanistan probably has the highest slip rate of any fault in the country; to the north, this slip is distributed onto several fault systems. At the southern margin of the Kabul block, the style of faulting changes from mainly strike-slip motion associated with the boundary between the Indian and Eurasian plates, to transpressional and transtensional faulting. North and northeast of the Kabul block, we recognized a complex pattern of potentially active strike-slip, thrust, and normal faults that form a conjugate shear system in a transpressional region of the Trans-Himalayan orogenic belt. The general patterns and orientations of faults and the styles of deformation that we interpret from the imagery are consistent with the styles of faulting determined from focal mechanisms of historical earthquakes. Northwest-trending strike-slip fault zones are cut and displaced by younger, southeast-verging thrust faults; these relations define the interaction between northwest-southeast-oriented contraction and northwest-directed extrusion in the western Himalaya, Pamir, and Hindu Kush regions. Transpression extends into north-central Afghanistan where north-verging contraction along the east-west-trending Alburz-Marmul fault system interacts with northwest-trending strike-slip faults. Pressure ridges related to thrust faulting and extensional basins bounded by normal faults are located at major stepovers in these northwest-trending strike-slip systems. In contrast, young faulting in central and western Afghanistan indicates that the deformation is dominated by extension where strike-slip fault zones transition into regions of normal faults. In addition to these initial observations, our digital map and database provide a foundation that can be expanded, complemented, and modified as future investigations provide more detailed information about the location, characteristics, and history of movement on Quaternary faults in Afghanistan.

  6. Seismic evidence of Quaternary faulting in the Benton Hills area, southeast Missouri

    USGS Publications Warehouse

    Palmer, J.R.; Shoemaker, M.; Hoffman, D.; Anderson, N.L.; Vaughn, J.D.; Harrison, R.W.

    1997-01-01

    Two reflection seismic profiles at English Hill, across the southern edge of the Benton Hills escarpment, southeast Missouri, establish that geologic structures at English Hill are of tectonic origin. The lowland area to the south of the escarpment is relatively undisturbed. The geology at English Hill is structurally complex, and reflection seismic and geologic data indicate extensive and episodic faulting of Paleozoic, Cretaceous, Tertiary, and Quaternary strata. The individual faults have near-vertical fault surfaces with maximum vertical separations on the order of 15 m. They appear to be clustered in north-northeast trending zones that essentially parallel one of the dominant Benton Hills structural trends. These observations suggest that previously mapped Quaternary faults at English Hill are deep-seated and tectonic in origin. This paper documents recent faulting at English Hill and is the first time late Quaternary, surface-rupture faulting has been recognized in the middle Mississippi River Valley region outside of the New Madrid seismic zone. This has important implications for earthquake assessment in the midcontinent.

  7. Geometry and kinematics of the Triassic rift basin in Jameson Land (East Greenland)

    NASA Astrophysics Data System (ADS)

    Guarnieri, Pierpaolo; Brethes, Anaïs.; Rasmussen, Thorkild M.

    2017-04-01

    The Triassic rift basin along the east Greenland margin described in this paper is represented by NE-SW trending basins and highs segmented by NW-SE trending transfer zones. Coarse-grained sediments along the eastern side of Jameson Land are shown to be hosted in half-graben structures belonging to the Carlsberg Fjord Basin that is bounded by NW dipping normal faults mapped and described after fieldwork in the Klitdal area in Liverpool Land. New aeromagnetic and electromagnetic data together with new drill cores allow the reinterpretation of available seismic lines showing the continuation of the Triassic rift basin toward the SW where it is buried under the Upper Triassic postrift sediments and the Jurassic successions of the Jameson Land Basin. The N-S trending Liverpool Land, interpreted as the boundary block of the Triassic basin, is shown to represent a structural high inherited from the Late Carboniferous tectonics and faulted during the Triassic rifting. The Carlsberg Fjord Basin and the Klitdal Fault System described in this paper should be seen as analogues to the Helgeland Basin in the Norwegian offshore that is bounded by the Ylvingen Fault Zone and to the Papa and West of Shetlands Basins that are bounded by the Spine Fault. The Triassic rift zone and transfer faults on both conjugate margins show a straightforward correlation with the trends of the initial spreading line and fracture zones of the northeast Atlantic indicating a possible inheritance of the Triassic rifting.

  8. Fault structure and mechanics of the Hayward Fault, California from double-difference earthquake locations

    USGS Publications Warehouse

    Waldhauser, F.; Ellsworth, W.L.

    2002-01-01

    The relationship between small-magnitude seismicity and large-scale crustal faulting along the Hayward Fault, California, is investigated using a double-difference (DD) earthquake location algorithm. We used the DD method to determine high-resolution hypocenter locations of the seismicity that occurred between 1967 and 1998. The DD technique incorporates catalog travel time data and relative P and S wave arrival time measurements from waveform cross correlation to solve for the hypocentral separation between events. The relocated seismicity reveals a narrow, near-vertical fault zone at most locations. This zone follows the Hayward Fault along its northern half and then diverges from it to the east near San Leandro, forming the Mission trend. The relocated seismicity is consistent with the idea that slip from the Calaveras Fault is transferred over the Mission trend onto the northern Hayward Fault. The Mission trend is not clearly associated with any mapped active fault as it continues to the south and joins the Calaveras Fault at Calaveras Reservoir. In some locations, discrete structures adjacent to the main trace are seen, features that were previously hidden in the uncertainty of the network locations. The fine structure of the seismicity suggest that the fault surface on the northern Hayward Fault is curved or that the events occur on several substructures. Near San Leandro, where the more westerly striking trend of the Mission seismicity intersects with the surface trace of the (aseismic) southern Hayward Fault, the seismicity remains diffuse after relocation, with strong variation in focal mechanisms between adjacent events indicating a highly fractured zone of deformation. The seismicity is highly organized in space, especially on the northern Hayward Fault, where it forms horizontal, slip-parallel streaks of hypocenters of only a few tens of meters width, bounded by areas almost absent of seismic activity. During the interval from 1984 to 1998, when digital waveforms are available, we find that fewer than 6.5% of the earthquakes can be classified as repeating earthquakes, events that rupture the same fault patch more than one time. These most commonly are located in the shallow creeping part of the fault, or within the streaks at greater depth. The slow repeat rate of 2-3 times within the 15-year observation period for events with magnitudes around M = 1.5 is indicative of a low slip rate or a high stress drop. The absence of microearthquakes over large, contiguous areas of the northern Hayward Fault plane in the depth interval from ???5 to 10 km and the concentrations of seismicity at these depths suggest that the aseismic regions are either locked or retarded and are storing strain energy for release in future large-magnitude earthquakes.

  9. Stratigraphy and structure along the Pensacola Arch/Conecuh Embayment margin in northwest Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, J.G.

    1993-03-01

    Stratigraphic and structural analysis of deep borehole data along the Pensacola Arch/Conecuh Embayment margin in eastern Santa Rosa County, Florida reveals a northeast-trending basement normal fault that is downthrown to the northwest. The fault functioned as a border fault of a half-graben (or graben ) that developed during continental rifting of Pangea in the Late Triassic and Early Jurassic. The upthrown or horst block was a paleotopographic high that formed the southeastern boundary of the Middle to Late Jurassic Conecuh Embayment. A second, younger basement fault trends approximately perpendicular to the half-graben border fault. Late Triassic synrift continental sediments, depositedmore » on the downthrown block of the half-graben, pinch-out abruptly to the southeast pre-Mesozoic Suwannee Basin basement. The border fault is located approximately where the Triassic sedimentary wedge pinches out. Middle to Upper Jurassic drift-stage strata of the Conecuh embayment progressively onlap the post-rift unconformity toward the southeast. Upper Jurassic Smackover Formation carbonates and evaporites apparently overstep Triassic deposits and rest directly on Suwannee Basin quartzitic sandstone near their depositional limit at the Pensacola Arch. The Smackover Formation thins significantly toward the southeast in association with the Triassic pinch-out and half-graben border fault. The pinch-out trend of the Smackover Formation suggests a northeast-southwest orientation for the Triassic border fault and supports a horst-block origin for the Pensacola Arch.« less

  10. Cenozoic pull-apart basins in southwest Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruppel, E.T.

    1991-06-01

    Faults and fault zones bounding the mountain ranges of southwest Montana commonly have been described as normal faults, and the region has been considered to be a northern extension of the Basin and Range. New geologic mapping suggests, however, that Cenozoic movements along most of the zones of steep faults in southwest Montana and in east-central Idaho have been strike-slip, and the intermontane basins appear to be pull-aparts. The principal fault zones trend about north, northwest, east, and north-northeast; the north-trending zones are Cenozoic in age, but the others are of Archean ancestry and are rooted in basement rocks. Thesemore » faults break the region into rhomboidal mountain blocks separated by broad basins with parallel sides. The basins are as much as 5,000 m deep, and their floors are deeply indented by centers of subsidence wherre they are crossed by major fault zones. The basins are floored by Archean or Proterozoic rocks and are filled with tuffaceous sedimentary rocks of late Oligocene to late Miocene age. The Big Hole basin and the smaller basins in upper Grasshopper Creek and Horse Prairie are interpreted to be pull-aparts between zones of east-trending right-lateral faults. The cratonic basins farther east in southwest Montana are interpreted to be basement-floored openings between mountain blocks that have been separated by subcrustal flow to the northwest. The interpretations suggest that significant accumulations of oil or gas are not likely to be found in this region.« less

  11. Near Surface Structure of the Frijoles Strand of the San Gregorio Fault, Point Año Nuevo, San Mateo County, California, from Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Catchings, R. D.; Rymer, M. J.; Goldman, M.; Weber, G. E.

    2012-12-01

    The San Gregorio Fault Zone (SGFZ) is one of the major faults of the San Andreas Fault (SAF) system in the San Francisco Bay region of California. The SGFZ is nearly 200 km long, trends subparallel to the SAF, and is located primarily offshore with two exceptions- between Point Año Nuevo and San Gregorio Beach and between Pillar Point and Moss Beach. It has a total width of 2 to 3 km and is comprised of seven known fault strands with Quaternary activity, five of which also demonstrate late Holocene activity. The fault is clearly a potential source of significant earthquakes and has been assigned a maximum likely magnitude of 7.3. To better understand the structure, geometry, and shallow-depth P-wave velocities associated with the SGFZ, we acquired a 585-m-long, high-resolution, combined seismic reflection and refraction profile across the Frijoles strand of the SGFZ at Point Año Nuevo State Park. Both P- and S-wave data were acquired, but here we present only the P-wave data. We used two 60-channel Geometrics RX60 seismographs and 120 40-Hz single-element geophones connected via cable to record Betsy Seisgun seismic sources (shots). Both shots and geophones were approximately co-located and spaced at 5-m intervals along the profile, with the shots offset laterally from the geophones by 1 m. We measured first-arrival refractions from all shots and geophones to develop a seismic refraction tomography velocity model of the upper 70 m. P-wave velocities range from about 600 m/s near the surface to more than 2400 m/s at 70 m depth. We used the refraction tomography image to infer the depth to the top of the groundwater table on the basis of the 1500 m/s velocity contour. The image suggests that the depth, along the profile, to the top of groundwater varies by about 18 m, with greater depth on the west side of the fault. At about 46 m depth, a 60- to 80-m-wide, low-velocity zone, which is consistent with faulting, is observed southwest of the Frijoles strand of the SGFZ. Projection of this low-velocity zone to the surface location of the Frijoles strand suggests a 45° southwest dip on the fault. We also stacked the seismic data to generate a reflection image of the subsurface along the profile. Our seismic reflection image also shows evidence of a southwest-dipping main trace, as well as a second fault located approximately 183 m west of the main Frijoles strand. It appears that there is a component of reverse motion in the upper 200 m. Due to the presence of offset reflectors near the top of the image, we infer that faulting extends to the near surface, but the age of the most recent ruptures cannot be determined without additional paleoseismic investigations. The width and complexity (including reverse motion) of the faults inferred in our seismic images suggests that rupture and strong shaking may occur over a relatively wide area during the next large-magnitude earthquake on the Frijoles strand of the SGFZ.

  12. Complex surface rupturing and related formation mechanisms in the Xiaoyudong area for the 2008 Mw 7.9 Wenchuan Earthquake, China

    NASA Astrophysics Data System (ADS)

    Tan, Xi-bin; Yuan, Ren-mao; Xu, Xi-wei; Chen, Gui-hua; Klinger, Yann; Chang, Chung-Pai; Ren, Jun-jie; Xu, Chong; Li, Kang

    2012-09-01

    The large oblique reverse slip shock of the 2008 Mw = 7.9 Wenchuan earthquake, China, produced one of the longest and most complicated surface ruptures ever known. The complexity is particularly evident in the Xiaoyudong area, where three special phenomena occurred: the 7 km long Xiaoyudong rupture perpendicular to the Beichuan-Yingxiu fault; the occurrence of two parallel faults rupturing simultaneously, and apparent discontinuity of the Beichuan-Yingxiu rupture. This paper systematically documents these co-seismic rupture phenomena for the Xiaoyudong area. The discussion and results are based on field investigations and analyses of faulting mechanisms and prevalent stress conditions. The results show that the Beichuan-Yingxiu fault formed a 3.5 km wide restraining stepover at the Xiaoyudong area. The Xiaoyudong fault is not a tear fault suggested by previous researches, but a frontal reverse fault induced by the oblique compression at this stepover; it well accommodates the 'deformation gap' of the Beichuan-Yingxiu fault in the Xiaoyudong area. Further, stress along the Peng-Guan fault plane doubles due to a change in dip angle of the Beichuan-Yingxiu fault across the Xiaoyudong restraining stepover. This resulted in two faults rupturing the ground's surface simultaneously, to the north of the Xiaoyudong area. These results are helpful in deepening our understanding of the dynamic processes that produced surface ruptures during the Wenchuan earthquake. Furthermore, the results suggest more attention be focused on the influence of dextral slip component, the change of the control fault's attitude, and property differences in rocks on either side of faults when discussing the formation mechanism of surface ruptures.

  13. Neogene contraction between the San Andreas fault and the Santa Clara Valley, San Francisco Bay region, California

    USGS Publications Warehouse

    McLaughlin, R.J.; Langenheim, V.E.; Schmidt, K.M.; Jachens, R.C.; Stanley, R.G.; Jayko, A.S.; McDougall, K.A.; Tinsley, J.C.; Valin, Z.C.

    1999-01-01

    In the southern San Francisco Bay region of California, oblique dextral reverse faults that verge northeastward from the San Andreas fault experienced triggered slip during the 1989 M7.1 Loma Prieta earthquake. The role of these range-front thrusts in the evolution of the San Andreas fault system and the future seismic hazard that they may pose to the urban Santa Clara Valley are poorly understood. Based on recent geologic mapping and geophysical investigations, we propose that the range-front thrust system evolved in conjunction with development of the San Andreas fault system. In the early Miocene, the region was dominated by a system of northwestwardly propagating, basin-bounding, transtensional faults. Beginning as early as middle Miocene time, however, the transtensional faulting was superseded by transpressional NE-stepping thrust and reverse faults of the range-front thrust system. Age constraints on the thrust faults indicate that the locus of contraction has focused on the Monte Vista, Shannon, and Berrocal faults since about 4.8 Ma. Fault slip and fold reconstructions suggest that crustal shortening between the San Andreas fault and the Santa Clara Valley within this time frame is ~21%, amounting to as much as 3.2 km at a rate of 0.6 mm/yr. Rates probably have not remained constant; average rates appear to have been much lower in the past few 100 ka. The distribution of coseismic surface contraction during the Loma Prieta earthquake, active seismicity, late Pleistocene to Holocene fluvial terrace warping, and geodetic data further suggest that the active range-front thrust system includes blind thrusts. Critical unresolved issues include information on the near-surface locations of buried thrusts, the timing of recent thrust earthquake events, and their recurrence in relation to earthquakes on the San Andreas fault.

  14. Is Downtown Seattle on the Hanging Wall of the Seattle Fault?

    NASA Astrophysics Data System (ADS)

    Pratt, T. L.

    2008-12-01

    The Seattle fault is an ~80-km-long thrust or reverse fault that trends east-west beneath the Puget Lowland of western Washington State, and is interpreted to extend beneath the Seattle urban area just south of the downtown area. The fault ruptured about A.D. 930 in a large earthquake that uplifted parts of the Puget Sound shoreline as much as 7 m, caused a tsunami in Puget Sound and extensive landslides throughout the area. Seismic reflection profiles indicate that the fault has 3 or more fault splays that together form the Seattle fault zone. Models for the Seattle fault zone vary considerably, but most models place the northern edge of the Seattle fault zone south of the downtown area. These interpretations require that the fault zone shifts about 2 km to the south in the Seattle area relative to its location to the east (Bellevue) and west (Bainbridge Island). Potential field anomalies, particularly prominent magnetic highs associated with dipping, shallow conglomerate layers, are not continuous in the downtown Seattle area as observed to the east and west. Compilation and re-interpretation of all the existing seismic profiles in the area indicate that the northern strand of the Seattle fault, specifically a fold associated with the northernmost, blind fault strand, lies beneath the northern part of downtown Seattle, about 1.5 to 2 km farther north than has previously been interpreted. This study focuses on one previously unpublished seismic profile in central Puget Sound that shows a remarkable image of the Seattle fault, with shallow subhorizontal layers disrupted or folded by at least two thrust faults and several shallow backthrusts. These apparently Holocene layers are arched gently upwards, with the peak of the anticline in line with Alki and Restoration Points on the east and west sides of Puget Sound, respectively. The profile shows that the shallow part of the northern fault strand dips to the south at about 35 degrees, consistent with the 35 to 40 degree dip previously interpreted from tomography data. A second fault strand about 2 km south of the northern strand causes gentle folding of the Holocene strata. Two prominent backthrusts occur on the south side of the anticline, with the southern backthrust on strike with a prominent scarp on the eastern shoreline. A large erosional paleochannel beneath west Seattle and the Duwamish waterway extends beneath Elliot Bay and obscures potential field anomalies and seismic reflection evidence for the fault strands. However, hints of fault-related features on the profiles in Elliot Bay, and clear images in Lake Washington, indicate that the fault strands extend beneath the city of Seattle in the downtown area. If indeed the northern strand of the Seattle fault lies beneath the northern part of downtown Seattle, the downtown area may experience ground deformation during a major Seattle fault earthquake and that focusing of energy in the fault zone may occur farther north than previously estimated.

  15. Using 10Be erosion rates and fluvial channel morphology to constrain fault throw rates in the southwestern Sacramento River Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Cyr, A. J.

    2013-12-01

    The Sacramento - San Joaquin River Delta, California, USA, is a critical region for California water resources, agriculture, and threatened or endangered species. This landscape is affected by an extensive set of levees that enclose artificial islands created for agricultural use. In addition to their importance for sustaining agriculture, this levee system also supports extensive transport and power transmission infrastructure and urban/suburban development. These levees are susceptible to damage from even moderate ground shaking by either a large earthquake on one of the high-activity faults in the nearby San Francisco Bay region, or even a moderate earthquake on one of the low-activity faults in the Delta region itself. However, despite this danger the earthquake hazards in this region are poorly constrained due to our lack of understanding of faults in and near the Delta region. As part of an effort to better constrain the seismic hazard associated with known, but poorly constrained, faults in the region, a geomorphic analysis of the Dunnigan Hills, northwest of Woodland, CA, is being combined with cosmogenic 10Be catchment-averaged erosion rates. The Dunnigan Hills are a low-relief (maximum elevation 87 m) landscape generated by fault-bend folding above the west-vergent Sweitzer reverse fault that soles into a blind east-vergent reverse fault. These faults have been imaged by seismic reflection data, and local microseismicity indicates that this system is actively propagating to the east. However, the throw rates on the faults in this system remain unconstrained, despite the potential for significant shaking such as that experienced in the nearby April, 1892 earthquake sequence between Winters and Vacaville, Ca, ~25 km to the south, which has been estimated at magnitude 6.0 or greater. Geomorphic and cosmogenic 10Be analyses from 12 catchments draining the eastern flank of the Dunnigan Hills will be used to infer vertical rock uplift rates to better constrain activity on the west-vergent Sweitzer fault and the east-vergent blind reverse fault. All of the sampled catchments are underlain exclusively by Tehama Sandstone. Moreover, there are no mapped surface traces of faults in the sampled catchments. This minimizes the possibility of changes in lithogic resistance to impact the erosion rates and channel analyses. These analyses, combined with fault geometries derived from published seismic reflection data and structural cross sections, allows us to constrain the throw rates on these faults and thus better evaluate the associated seismic hazard.

  16. Pliocene to Recent Tectonic Activity of the Reşadiye Peninsula and the Relationship Between the Recent Earthquakes Occurred in the Gulf of Gökova: Preliminary Results.

    NASA Astrophysics Data System (ADS)

    Kahraman, Burcu; Özsayın, Erman; Üner, Serkan; Dirik, Kadir

    2013-04-01

    The E-W trending Reşadiye peninsula located at the southwestern part of the Anatolian Plate is an important horst developed between Gökova and Hisarönü Grabens. NW-trending the Datça Graben is the prominent structure comprising on the Reşadiye peninsula and records the significant fingerprints of palaeogeographical and kinematical characteristics from Pliocene to recent. The Datça Graben is controlled by NW-trending the Karaköy fault in the south and E-W trending the Kızlan fault in the north. Basement rocks of the graben are composed of ophiolitic rocks of the Lycian Nappes and Jurassic marine carbonates. The basinfill initiates with Early Pliocene Kızılaǧaç formation consisting conglomerates and continues with transgressive sequence (Yıldırımlı formation) composed of conglomerates, sandstones and marls with ignimbrite intercalations. Late Pliocene age was attributed to this formation based on the gastropoda and pelecypoda fauna according to previous studies. These units are unconformably overlain by Quaternary Karaköy formation consisting red blocky conglomerates. Pyroclastics of Quaternary age (161 ka) cover the older units. Alluvium, alluvial fan deposits and terrace deposits are the youngest units of the study area. To state the tectonic evolution of the Datça Graben, bedding planes and palaeostress analysis of the fault-slip data were used. The palaeostress analyses of the Kızlan fault clearly represent N-S tensional stress regime with pure normal fault characteristics. Due to the thick colluvium and alluvial fans, any fault-slip data were collected from the Karaköy fault. Considering the same stress regime is viable for the southwestern margin of the graben, fault planes ought to have normal fault characteristics with minor strike-slip component. SW-dipping bedding planes and SW-bearing palaeocurrent measurements show that Karaköy fault occurred before the Kızlan fault and the basin was first formed as a half-graben during Early Pliocene and continued till Late Pliocene. As the Kızlan fault juxtaposes the Kızılaǧaç and Yıldırımlı formations, Late Pliocene age is attributed to the fault. Focal mechanism solutions of recent earthquakes occurred in the Gökova Bay show N-S extension which is compatible with the palaeostress analyses of the Kızlan fault. This situation represents the ongoing activity along the northern margin of the Datça Graben.

  17. Control of Precambrian basement deformation zones on emplacement of the Laramide Boulder batholith and Butte mining district, Montana, United States

    USGS Publications Warehouse

    Berger, Byron R.; Hildenbrand, Thomas G.; O'Neill, J. Michael

    2011-01-01

    What are the roles of deep Precambrian basement deformation zones in the localization of subsequent shallow-crustal deformation zones and magmas? The Paleoproterozoic Great Falls tectonic zone and its included Boulder batholith (Montana, United States) provide an opportunity to examine the importance of inherited deformation fabrics in batholith emplacement and the localization of magmatic-hydrothermal mineral deposits. Northeast-trending deformation fabrics predominate in the Great Falls tectonic zone, which formed during the suturing of Paleoproterozoic and Archean cratonic masses approximately 1,800 mega-annum (Ma). Subsequent Mesoproterozoic to Neoproterozoic deformation fabrics trend northwest. Following Paleozoic through Early Cretaceous sedimentation, a Late Cretaceous fold-and-thrust belt with associated strike-slip faulting developed across the region, wherein some Proterozoic faults localized thrust faulting, while others were reactivated as strike-slip faults. The 81- to 76-Ma Boulder batholith was emplaced along the reactivated central Paleoproterozoic suture in the Great Falls tectonic zone. Early-stage Boulder batholith plutons were emplaced concurrent with east-directed thrust faulting and localized primarily by northwest-trending strike-slip and related faults. The late-stage Butte Quartz Monzonite pluton was localized in a northeast-trending pull-apart structure that formed behind the active thrust front and is axially symmetric across the underlying northeast-striking Paleoproterozoic fault zone, interpreted as a crustal suture. The modeling of potential-field geophysical data indicates that pull-apart?stage magmas fed into the structure through two funnel-shaped zones beneath the batholith. Renewed magmatic activity in the southern feeder from 66 to 64 Ma led to the formation of two small porphyry-style copper-molybdenum deposits and ensuing world-class polymetallic copper- and silver-bearing veins in the Butte mining district. Vein orientations parallel joints in the Butte Quartz Monzonite that, in turn, mimic Precambrian deformation fabrics found outside the district. The faults controlling the Butte veins are interpreted to have formed through activation under shear of preexisting northeast-striking joints as master faults from which splay faults formed along generally east-west and northwest joint plane orientations.

  18. Cenozoic stratigraphy and structure of the Chesapeake Bay region

    USGS Publications Warehouse

    Powars, David S.; Edwards, Lucy E.; Kidwell, Susan M.; Schindler, J. Stephen

    2015-01-01

    The Salisbury embayment is a broad tectonic downwarp that is filled by generally seaward-thickening, wedge-shaped deposits of the central Atlantic Coastal Plain. Our two-day field trip will take us to the western side of this embayment from the Fall Zone in Washington, D.C., to some of the bluffs along Aquia Creek and the Potomac River in Virginia, and then to the Calvert Cliffs on the western shore of the Chesapeake Bay. We will see fluvial-deltaic Cretaceous deposits of the Potomac Formation. We will then focus on Cenozoic marine deposits. Transgressive and highstand deposits are stacked upon each other with unconformities separating them; rarely are regressive or lowstand deposits preserved. The Paleocene and Eocene shallow shelf deposits consist of glauconitic, silty sands that contain varying amounts of marine shells. The Miocene shallow shelf deposits consist of diatomaceous silts and silty and shelly sands. The lithology, thickness, dip, preservation, and distribution of the succession of coastal plain sediments that were deposited in our field-trip area are, to a great extent, structurally controlled. Surficial and subsurface mapping using numerous continuous cores, auger holes, water-well data, and seismic surveys has documented some folds and numerous high-angle reverse and normal faults that offset Cretaceous and Cenozoic deposits. Many of these structures are rooted in early Mesozoic and/or Paleozoic NE-trending regional tectonic fault systems that underlie the Atlantic Coastal Plain. On Day 1, we will focus on two fault systems (stops 1–2; Stafford fault system and the Skinkers Neck–Brandywine fault system and their constituent fault zones and faults). We will then see (stops 3–5) a few of the remaining exposures of largely unlithified marine Paleocene and Eocene strata along the Virginia side of the Potomac River including the Paleocene-Eocene Thermal Maximum boundary clay. These exposures are capped by fluvial-estuarine Pleistocene terrace deposits. On Day 2, we will see (stops 6–9) the classic Miocene section along the ~25 miles (~40 km) of Calvert Cliffs in Maryland, including a possible fault and structural warping. Cores from nearby test holes will also be shown to supplement outcrops.

  19. The 2008 M7.9 Wenchuan earthquake - a human-caused event

    NASA Astrophysics Data System (ADS)

    Klose, C. D.

    2013-12-01

    A catalog of global human-caused earthquakes shows statistical evidence that the triggering of earthquakes by large-scale geoengineering activities depends on geological and tectonic constrains (in Klose 2013). Such geoengineering activities also include the filling of water reservoirs. This presentation illuminates mechanical and statistical aspects of the 2008 M7.9 Wenchuan earthquake in light of the hypothesis of being NOT human-caused. However, available data suggest that the Wenchuan earthquake was triggered by the filling of the Zipungpu water reservoir 30 months prior to the mainshock. The reservoir spatially extended parallel and near to the main Beichuan fault zone in a highly stressed reverse fault regime. It is mechanically evident that reverse faults tend to be very trigger-sensitive due to mass shifts (static loads) that occur on the surface of the Earth's crust. These circumstances made a triggering of a seismic event of this magnitude at this location possible (in Klose 2008, 2012). The data show that the Wenchuan earthquake is not an outlier. From a statistical view point, the earthquake falls into the upper range of the family of reverse fault earthquakes that were caused by humans worldwide.

  20. Fault imprint in clay units: magnetic fabric, structural and mineralogical signature

    NASA Astrophysics Data System (ADS)

    Moreno, Eva; Homberg, Catherine; Schnyder, Johann; Person, Alain; du Peloux1, Arthur; Dick, Pierre

    2014-05-01

    Fault-induced deformations in clay units can be difficult to decipher because strain markers are not always visible at outcrop scale or using geophysical methods. Previous studies have indicated that the anisotropy of magnetic susceptibility (ASM) provides a powerful and rapid technique to investigate tectonic deformation in clay units even when they appear quite homogenous and undeformed at the outcrop scale (Lee et al. 1990, Mattei et al. 1997). We report here a study based on ASM, structural analysis and magnetic and clay mineralogy from two boreholes (TF1 and ASM1)drilled horizontally in the Experimental Station of Tournemire of the Institute for Radiological Protection and Nuclear Safety (IRSN) in Aveyron (France). The boreholes intersect a N-S trending strike-slip fault from west to east. The ASM study indicates the evolution of the magnetic fabric from the undeformed host rock to the fault core. Also, all the fractures cutting the studied interval of the core have been measured as well as the slip vectors which are generally well preserved. In the two boreholes, the undeformed sediments outside the fault zone are characterized by an oblate fabric, a sub-vertical minimum susceptibility axis (k3) perpendicular to the bedding plane and without magnetic lineation. Within the fault zone, a tilt in the bedding plane has been observed in two boreholes TF1 and ASM1. In addition, in the TF1 core, the fault area presents a tectonic fabric characterized by a triaxial AMS ellipsoid. Moreover, the magnetic lineation increases and k3 switches from a vertical to a sub-horizontal plane. This kind of fabric has not been observed in borehole ASM1. The structural analysis of the individual fractures making the fault zone indicates a complex tectonic history with different imprint in the two fault segments cut by the two boreholes. The large majority of fractures correspond to dextral strike-slip faults but normal and reverse movements were observed and are more or less frequent depending on the borehole. Notably, many fractures are low angle faults (dip<45°) and may bear both strike-slip or normal striae. The mineralogical study based on X-ray diffraction analysis, have pointed out some variations in clay minerals associations nearby the deformed zones that may be the result of fluid circulation along the fault system which is in agreement with the presence of goethite determined by low magnetic temperature measurements. This multi-proxi study, combining ASM, petrostructural and mineralogical approaches has highlighted the heterogeneity of the fault, but also its past role as a drain to fluid circulation.

  1. Meso-Cenozoic intraplate contraction in Central and Western Europe: a unique tectonic event?

    NASA Astrophysics Data System (ADS)

    Kley, Jonas; Jähne, Fabian; Malz, Alexander

    2014-05-01

    From the British Isles to Poland, Europe experienced contractional deformation in Late Cretaceous and Paleogene time. The closest contemporaneous plate margins were the incipient Mid-Atlantic rift in the west and northwest, and the Mediterranean system of subduction zones in the south. Each of these plate margins was located more than 1000 km away from the site of deformation. This tectonic event thus represents an outstanding example of large-scale intraplate shortening and may serve as a template for comparison with modern examples. Its effects are seen in a ca. 500 km wide strip that stretches in NW-SE-direction along the Tornquist Line, a regional fault zone separating thick lithosphere of the Baltic Shield from much thinner lithosphere to the southwest. Most faults and folds also trend NW-SE, but some are linked by large N-S-striking transfer zones. In the southeast, the shortening structures are truncated by the Neogene Carpathian thrust front; their original extent is unknown. In the west, the fault zones fan out into more northerly trends in the Central North Sea and more easterly trends in the Channel area before dying out on the shelf. Late Cretaceous (ca. 90-70 Ma) shortening dominates from Poland to the North Sea, while the main shortening event in Southern Britain is of Paleogene age. Many Late Cretaceous to Paleogene structures have been conditioned by Permian or Triassic through Early Cretaceous extensional faulting, whereas some large basement uplifts and reverse faults have no demonstrable inheritance from earlier extension. The thick, mobile Zechstein salt has modified extensional and contractional structures, but both extend beyond its depositional borders. Even where thick evaporates underlie the Mesozoic sedimentary cover, the basement is typically involved in the deformation, except for localized thin-skinned imbricate thrusting and salt-cored anticlines. Different structural styles do not appear to correlate with the magnitude of shortening which is similar for transects across the inverted Lower Saxony Basin and areas of predominant basement thrusting. Bulk contraction of the entire deformed belt is unlikely to exceed a few tens of kilometers, corresponding to <<10% of horizontal shortening. Shortening rate estimates are around 1 mm/yr both for well-constrained local structures and for order-of-magnitude estimates of the entire belt, suggesting that a limited number of faults were active at any given time. Space geodetic data indicate similar modern shortening rates across Central Europe on a decade scale, but there is no geologic evidence for focused deformation comparable to the Mesozoic event. Fold orientations, fault slip data and stylolite teeth indicate relatively uniform, SSW-NNE-directed shortening. This direction is consistent with the convergence direction of Africa, Iberia and Eurasia that was established between ca. 120 Ma and 85 Ma in the course of global plate motion reorganization. The European short-lived pulse of intraplate deformation was apparently caused by a switch to near-orthogonal convergence across former transform boundaries, whereas modern examples of intraplate shortening seem to be bound to coeval orogens.

  2. The 2013 Mw 6.2 Khaki-Shonbe (Iran) Earthquake: Seismic Shortening of the Zagros Sedimentary Cover

    NASA Astrophysics Data System (ADS)

    Elliott, J. R.; Bergman, E.; Copley, A.; Ghods, A.; Nissen, E.; Oveisi, B.; Walters, R. J.

    2014-12-01

    The 2013 Mw 6.2 Khaki-Shonbe earthquake occurred in the Simply Folded Belt of the Zagros Mountains, Iran. This is the largest earthquake in the Zagros since the November 1990 Mw 6.4 Furg (Hormozgan) thrust faulting event, and therefore the largest in the period for which dense InSAR ground displacements are available. It is also the biggest seismic event to have occurred in the Simply Folded Belt since the March 1977 Mw 6.7 Khurgu earthquake. This earthquake therefore potentially provides valuable insights into a range of controversies: (1) the preponderance of earthquake faulting in the crystalline basement versus the sedimentary cover and the potential importance of lithology in controlling and limiting seismic rupture; (2) the nature of surface folding and whether or not there is a one-to-one relationship between buried reverse faults and surface anticlines; and (3) the presence or absence of large pulses of aseismic slip triggered by mainshock rupture. We combine seismological solutions and aftershock relocations with satellite interferometric ground displacements and observations from the field to determine the geometry of faulting and its relationship with the structure, stratigraphy and tectonics of the Central Zagros. The earthquake rupture involved reverse slip on two along-strike southwest dipping fault segments, the rupture initiating at the northern and bottom end of the larger north-west segment. These faults verge away from the foreland and towards the high range interior, contrary to the fault geometries depicted in many structural cross-sections of the Zagros. The slip measured on the reverse segments occurred over two mutually exclusive depth ranges, 10-5 km and 4-2 km, resulting in long (16 km), narrow (7 km) rupture segments. Conversely, aftershocks are found to cluster in the depth range 8-16 km, beneath the main rupture segment. This indicates only significant reverse slip and coseismic shortening in the sedimentary cover, with the slip distribution likely to be lithologically controlled in depth by the Hormuz salt at the base of the sedimentary cover, and the Kazhdumi Formation mudrocks at upper-levels (5 km), and aftershocks constrained largely beneath the main coseismic rupture planes.

  3. Mesozoic magmatism and timing of epigenetic Pb-Zn-Ag mineralization in the western Fortymile mining district, east-central Alaska: Zircon U-Pb geochronology, whole-rock geochemistry, and Pb isotopes

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Aleinkoff, J.N.; Day, W.C.; Mortensen, J.K.

    2015-01-01

    Epigenetic Pb-Zn-Ag ± Cu prospects in the western Fortymile district are spatially associated with splays of the northeast-trending Kechumstuk sinistral-normal fault zone and with ca. 68-66 Ma felsic intrusions and dikes. The similarity between Pb isotope compositions of feldspars from the Late Cretaceous igneous bodies and sulfides from the epithermal prospects suggests a Late Cretaceous age for most of the mineralization. Fluid flow along the faults undoubtedly played a major role in mineralization. We interpret displacement on the northeast-trending faults to be a far-field effect of dextral translation along Late Cretaceous plate-scale boundaries and faults that were roughly parallel to the subsequently developed Denali and Tintina fault systems, which currently bound the region.

  4. Contemporary recent extension and compression in the central Andes

    NASA Astrophysics Data System (ADS)

    Tibaldi, A.; Bonali, F. L.

    2018-02-01

    Although extension in the high Andes vs. compression in the lowlands has already been widely discussed in the literature, for the first time we recognized both extensional and contractional structures that developed contemporaneously during late Pliocene-Quaternary times in a wide area of the central Andean chain (about 90,000 km2), where crustal earthquake data are missing. This area comprises north-eastern Chile, south-western Bolivia and north-western Argentina, and extends from the Puna Plateau to the Altiplano-volcanic belt. Late Pliocene-Quaternary folds, with hinge lines trending NNE-SSW to N-S, are mostly located along the westernmost part of the volcanic belt and the eastern part of the Western Cordillera. Locally, there are coeval reverse faults, parallel to the folds, which reach up to the surface; particularly, the Miscanti Ridge, Tolocha Fault and La Casualidad Ridge may be the morphostructural expression of tens-km-long fault-propagation folds, which locally show topographic scarps hundreds of meters high. North and east of the contractional structures, we found evidence of late Pliocene-Quaternary normal faults striking N-S in the southern part of the study area, and NW-SE in the northern part. Well-developed grabens are present in the higher areas of the volcanic belt and in the transition zone with the Puna Plateau. The surface rupture zones of normal fault swarms range 8-24 km in length, with single fault strands up to 18 km long, which are typical of tectonic structures. The distribution in space and time of the studied contractional and extensional structures indicates that they originated in the same time period; we thus address the challenging question regarding the possible origin of the stress sources, by analysing possible causes such as volcanotectonics, high topography, orogeny collapse, and gravitational spreading of the orogen, in relation also with the role played by inherited structures. We finally analyse the relations between the different structures and magma upwelling, and the potential for seismic hazard.

  5. Sinkhole Geohazard In Deformed Sulphates at Marina di Lesina (Gargano Promontory, Italy): a Combination of Anthropogenic, Lithologic, and Structural Causes

    NASA Astrophysics Data System (ADS)

    Gabbianelli, G.; Antonellini, M.; Mancini, F.; Stecchi, F.; Castellarin, A.

    2009-04-01

    Sinkhole development and collapse of underground caves within a gypsum substrate is focused in proximity to the beach resort of Marina di Lesina on the Adriatic coast of Southern Italy. This situation constitutes a serious geohazard for the local community and a threat to the development of the tourist activity. Fast sinkhole development has been reported in the last two decades both in terms of newly formed cavities and of widening of already existing ones. Morphologically, the apparent sinkholes are small (from a few meters to a few tens of meters) and restricted to the area of the harbour canal. The substratum of the area consists of evaporite and carbonate platfom sediments of the Apulian margin, Triassic to Cretaceous in age, above which there is a thin layer (2 to 4 m) of Quaternary fine to medium sand deposits. Sheared marls, sub-volcanic igneous rocks, and bituminous limestone connected to a fault scarp, as well as small salt diapirs have been observed in proximity to the city. Below the urban area of Marina di Lesina, the platform sediments consist of fractured, sheared, and karstified sulfates (Burano Formation). Given solubility larger than that of carbonate rock, sulfates is a focus for the dissolution process. From a structural point of view, the Marina di Lesina area is probably in a push-up step between two secondary segments of East-West trending left lateral strike-slip faults with the same trend of the Mattinata fault system. The presence of a push-up structure is confirmed by the existing geological maps, the morphological, and the altimetry data available for the area that point out the presence of arcuate relief structures next to the Pietre Nere (Black Rocks) Head. These high relief areas are probable NW-SE oriented high angle reverse faults in the compressional quadrant of the southernmost strike-slip fault segment. The area within a push-up step is undergoing an intense compressive stress that results in strong pressure solution phenomena, uplift, fracturing, and shearing. This specific structural setting is likely to cause the intense deformation localization of the sulphates ( mainly gypsum) observed in the boreholes drilled around the city. It is well known that the presence of structures, such as fault and fractures, focuses fluid flow and intensifies the dissolution and the karst evolution processes. An alignment of the sinkholes as well as their shape anisotropy, west of the harbour canal, suggests also a strong structural control. Considering the combined effects of a gypsum lithology very sensitive to dissolution and the probable structural localization of faults and fractures in a fault step, it becomes apparent that Marina di Lesina is an area prone to strong karst development. Sinkhole formation and growth can be further enhanced by any anthropogenic activity especially those aimed to control the surface drainage, the infiltration of the water in the subsurface, the height of the watertable or the intrusion of seawater inland. The excavation of the harbour canal, in particular, seems to have enhanced the dissolution process as witnessed by the alignment of the sinkholes with the trend of the canal. The ongoing research of IGRG (Integrated Geosciences Research Group) at the University of Bologna is aimed to characterize the lithologic, structural, hydrologic, and anthropogenic drivers causing karst development, also for minimizing the risk on the urbanizated area and connected to sinkhole-related subsidence and collapse.

  6. Resolving the fault systems with the magnetotelluric method in the western Ilan plain of NE Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, P. Y.; Chen, C. S.

    2017-12-01

    In the study we attempt to use the magnetotelluric (MT) surveys to delineate the basement topography of the western part of the Ilan plain. The triangular plain is located on the extension part of the Okinawa Trough, and is thought to be a subsidence basin bounded by the Hsueshan Range in the north and the Central Range in the south. The basement of the basin is composed of Tertiary metamorphic rocks such as argillites and slates. The recent extension of the Okinawa Trough started from approximately 0.1 Ma and involved ENE- and WSW-trending normal faults that may extended into the Ilan plain area. However, high sedimentation rates as well as the frequent human activities have resulted in unconsolidated sediments with a thickness of over 100 meters, and caused the difficulties in observing the surface traces of the active faults in the area. Hence we deployed about 70 MT stations across the southwestern tip of the triangular plain. We also tried to resolve the subsurface faults the relief variations of the basement with the inverted resistivity images, since the saturated sediments are relatively conductive and the consolidated rocks are resistive. With the inverted MT images, we found that there are a series of N-S trending horsts and grabens in addition to the ENE-WSW normal fault systems. The ENE-WSW trending faults are dipping mainly toward the north in our study area in the western tip of the Ilan plain. The preliminary results suggest that a younger N-S trending normal fault system may modify the relief of the basement in the recent stage after the activation of the ENE-WSW normal faults. The findings of the MT resistivity images provide new information to further review the tectonic explanations of the region in the future.

  7. Neotectonics and seismicity of a slowly deforming segment of the Adria-Europe convergence zone - the northern Dinarides fold-and-thrust belt

    NASA Astrophysics Data System (ADS)

    Ustaszewski, Kamil; Herak, Marijan; Tomljenović, Bruno; Herak, Davorka; Matej, Srebrenka

    2014-05-01

    With GPS-derived shortening rates of c. 3-5 mm/a, the Adria-Europe convergence zone across the fold-and-thrust belt of the Dinarides (Balkan Peninsula) is a slowly deforming plate boundary by global standards. We have analysed the active tectonics and instrumental seismicity of the northernmost segment of this fold-and-thrust belt at its border to the Pannonian Basin. This area hosts a Maastrichtian collisional suture formed by closure of Mesozoic fragments of the Neotethys, overprinted by Miocene back-arc extension, which led to the exhumation of greenschist- to amphibolite-grade rocks in several core complexes. Geological, geomorphological and reflection seismic data provide evidence for a compressive or transpressive reactivation of extensional faults after about 5 Ma. The study area represents the seismically most active region of the Dinarides apart from the Adriatic Sea coast and the area around Zagreb. The strongest instrumentally recorded earthquake (27 October 1969) affected the city of Banja Luka (northern Bosnia and Herzegovina). Fault plane solutions for the main shock (ML 6.4) and its largest foreshock (ML 6.0) indicate reverse faulting along ESE-WNW-striking nodal planes and generally N-S trending pressure axes. The spatial distribution of epicentres and focal depths, analyses of the macroseismic field and fault-plane solutions for several smaller events suggest on-going shortening in the internal Dinarides. Our results therefore imply that current Adria-Europe convergence is widely distributed across c. 300 km, rendering the entire Dinarides fold-and-thrust belt a slowly deforming plate boundary.

  8. Extensional tectonics and collapse structures in the Suez Rift (Egypt)

    NASA Technical Reports Server (NTRS)

    Chenet, P. Y.; Colletta, B.; Desforges, G.; Ousset, E.; Zaghloul, E. A.

    1985-01-01

    The Suez Rift is a 300 km long and 50 to 80 km wide basin which cuts a granitic and metamorphic shield of Precambrian age, covered by sediments of Paleozoic to Paleogene age. The rift structure is dominated by tilted blocks bounded by NW-SE normal faults. The reconstruction of the paleostresses indicates a N 050 extension during the whole stage of rifting. Rifting began 24 My ago with dikes intrusions; main faulting and subsidence occurred during Early Miocene producing a 80 km wide basin (Clysmic Gulf). During Pliocene and Quaternary times, faulting is still active but subsidence is restricted to a narrower area (Present Gulf). On the Eastern margin of the gulf, two sets of fault trends are predominant: (1) N 140 to 150 E faults parallel to the gulf trend with pure dip-slip displacement; and (2) cross faults, oriented NOO to N 30 E that have a strike-slip component consistent with the N 050 E distensive stress regime. The mean dip cross fault is steeper (70 to 80 deg) than the dip of the faults parallel to the Gulf (30 to 70 deg). These two sets of fault define diamond shaped tilted block. The difference of mechanical behavior between the basement rocks and the overlying sedimentary cover caused structural disharmony and distinct fault geometries.

  9. Deep Seismic Reflection Images across a Major Reactivated Fracture Zone in the Wharton Basin: Implications for the Location of the Plate Boundary between India and Australia

    NASA Astrophysics Data System (ADS)

    Carton, H. D.; Singh, S. C.; Hananto, N. D.; Martin, J.; Djajadihardja, Y. S.; Udrekh, U.; Franke, D.; Gaedicke, C.

    2012-12-01

    The equatorial Indian Ocean has long been recognized to be hosting extensive "intra-plate" deformation. To west of the Ninety-East Ridge (NER), The Central Indian Ocean Basin is characterized by N-S compression in a broad region with E-W trending folds and high-angle reverse faulting. To the east of NER in the Wharton Basin, deformation mainly occurs along reactivated N5°E-trending oceanic fracture zones with left-lateral strike-slip motion. Near longitude 93°E in the Wharton Basin runs a major reactivated fracture zone, along which the epicenters of the two recent Mw=8.6 and Mw=8.2 strike-slip earthquakes of April 11, 2012, and an Mw=7.2 foreshock that occurred in January 2012 are aligned. The April 11 events are the largest known oceanic events occurring away from the main plate boundaries. They ruptured a 20-40 km thick section of the oceanic lithosphere, i.e. down to depths at which no direct images of fault zones have been obtained so far. Deep seismic reflection data acquired in the Mw=8.6 earthquake rupture zone ~100 km north of the epicenter shows the presence of sub-Moho reflectivity down to 37 km depth in the oceanic mantle. We interpret these events as reflections off the earthquake-generating fault plane in the oceanic mantle, in accordance with results suggesting that brittle deformation of the oceanic lithosphere extends well into the mantle down to the 600°C isotherm. The fracture zone near 93°E separates lithospheres of contrasting crustal thicknesses (3.5-4.5 km versus 6 km) with a 10 Ma age difference, and therefore seems to act as a rheological boundary. We find that the deep reflections could originate from either a plane trending approximately N105°E, at high angle to the fracture zone, or from the fracture zone itself if the dip of the fault surface decreases from nearly vertical in the sediments to about 45° in the oceanic mantle. We propose that this fracture zone is a major tectonic boundary in the Wharton Basin, and that the three 2012 earthquakes ruptured a large section of it as part of a poorly-defined diffuse plate boundary between the Indian and Australian plates, with slip occurring on this re-activated N-S fracture zone and on fossil E-W spreading-related faults. Over 1000 km of this plate boundary could have ruptured since the great 2004 Sumatra earthquake.

  10. Geologic implications of new zircon U-Pb ages from the White Mountain Peak Metavolcanic Complex, eastern California

    NASA Astrophysics Data System (ADS)

    Scherer, Hannah H.; Ernst, W. G.; Brooks Hanson, R.

    2008-04-01

    The NNW-trending White-Inyo Range includes intrusive and volcanic rocks on the eastern flank of the Sierran volcano-plutonic arc. The NE-striking, steeply SE-dipping Barcroft reverse fault separates folded, metamorphosed Mesozoic White Mountain Peak mafic and felsic volcanic flows, volcanogenic sedimentary rocks, and minor hypabyssal plugs on the north from folded, well-bedded Neoproterozoic-Cambrian marble and siliciclastic strata on the south. The 163 ± 2 Ma Barcroft Granodiorite rose along this fault, and thermally recrystallized its wall rocks. However, new SHRIMP-RG ages of magmatic zircons from three White Mountain Peak volcanogenic metasedimentary rocks and a metafelsite document stages of effusion at ˜115-120 Ma as well as at ˜155-170 Ma. The U-Pb data confirm the interpretation by Hanson et al. (1987) that part of the metasedimentary-metavolcanic pile was laid down after Late Jurassic intrusion of the Barcroft pluton. The Lower Cretaceous, largely volcanogenic metasedimentary section lies beneath a low-angle thrust fault, the upper plate of which includes interlayered Late Jurassic mafic and felsic metavolcanic rocks and the roughly coeval Barcroft pluton. Late Jurassic and Early Cretaceous volcanism in this sector of the Californian continental margin, combined with earlier petrologic, structural, and geochronologic studies, indicates that there was no gap in igneous activity at this latitude of the North American continental margin.

  11. Tectonic meaning of anomalous fault-slip strain solutions in the Southern Volcanic Zone of the Andes: insights to assess the structural permeability of the Liquiñe-Ofqui Fault System and the Andean Transverse Faults (39°-40°S)

    NASA Astrophysics Data System (ADS)

    Sepúlveda, J.; Roquer, T.; Arancibia, G.; Veloso, E. A.; Morata, D.; Molina Piernas, E.

    2017-12-01

    Oblique subduction between the Nazca and South American plates produces the Southern Volcanic Zone (33-46°S) (SVZ), an active tectono-magmatic-hydrothermal setting. Tectonics of the SVZ is controlled by the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). The LOFS is an active intra-arc 1200-km-long fault system, with dextral and dextral-normal faults that strike NS-NNE to NE-ENE. The ATF include a group of active NW-striking sinistral faults and morphotectonic lineaments. Here, deformation is partitioned into a margin-parallel and a margin-orthogonal components, accommodated along and across the arc and forearc, respectively. In the inter-seismic period, shortening in the arc is NE-trending, whereas in the co- and post-seismic periods shortening switches to NW-trending. In order to determine the kinematics and style of deformation in the northern termination of the LOFS and its interaction with the ATF, we measured 81 fault-slip data at the Liquiñe (39ºS) and Maihue (40ºS) areas. Here, hot springs occur above fractured granitic rocks, where structural permeability given by fracture meshes is the main hydraulic conductivity. Considering the high sensitivity of fault systems regarding the rupture under prevailing stress and/or fluid overpressure conditions, to stablish past and present strain conditions is critical to assess a potential fractured geothermal system. Results at Liquiñe display two strain regimes (P and T axes): 1) P=259/01, T=169/01; 2) P= 182/23, T= 275/07. Likewise, Maihue shows two regimes: 1) P= 143/12, T=235/07; 2) P=228/12, T= 136/07. In both areas, the first solutions agree with the regional regime within the SVZ, i.e. NE-trending shortening in the arc. However, the second solutions seem to be anomalous with respect to the regional strain regime. At Liquiñe, NS-trending shortening may be associated with a buttress effect at the northern termination of the LOFS. At Maihue, NW-trending shortening may be related to strain changes during the co-seismic period or it is a reminiscence of local strain switches. These anomalous strain solutions should be considered when constraining the tectonics of the SVZ and its role to enhance the subsurface hydraulic conductivity. ACKNOWLEDGEMENTS: FONDAP-CONICYT Project 15090013 (CEGA), VRI-PUENTE P1703/2017 Project.

  12. Uemachi flexure zone investigated by borehole database and numeical simulation

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Takemura, K.

    2014-12-01

    The Uemachi fault zone extending north and south, locates in the center of the Osaka City, in Japan. The Uemachi fault is a blind reverse fault and forms the flexure zone. The effects of the Uemachi flexure zone are considered in constructing of lifelines and buildings. In this region, the geomorphological survey is difficult because of the regression of transgression. Many organizations have carried out investigations of fault structures. Various surveys have been conducted, such as seismic reflection survey in and around Osaka. Many borehole data for construction conformations have been collected and the geotechnical borehole database has been constructed. The investigation with several geological borehole data provides the subsurface geological information to the geotechnical borehole database. Various numerical simulations have been carried out to investigate the growth of a blind reverse fault in unconsolidated sediments. The displacement of the basement was given in two ways. One is based on the fault movement, such as dislocation model, the other is a movement of basement block of hanging wall. The Drucker-Prager and elastic model were used for the sediment and basement, respectively. The simulation with low and high angle fault movements, show the good agree with the actual distribution of the marine clay inferred from borehole data in the northern and southern Uemachi fault flexure zone, respectively. This research is partly funded by the Comprehensive Research on the Uemachi Fault Zone (from FY2010 to FY2012) by The Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  13. Age and origin of base and precious metal veins of the Coeur d'Alene mining district, Idaho

    USGS Publications Warehouse

    Fleck, R.J.; Criss, R.E.; Eaton, G.F.; Cleland, R.W.; Wavra, C.S.; Bond, W.D.

    2002-01-01

    Ore-bearing quartz-carbonate veins of the Coeur d'Alene mining district yield 87Sr/86Sr ratios of 0.74 to >1.60 for low Rb/Sr, carbonate gangue minerals, similar to current ranges measured in Middle Proterozoic, high Rb/Sr rocks of the Belt Supergroup. Stable isotope and fluid inclusion studies establish a genetic relationship between vein formation and metamorphic-hydrothermal systems of the region. These extraordinary 87Sr/86Sr ratios require accumulation of radiogenic 87Sr in a high Rb/Sr system over an extended period prior to incorporation of Sr into the hydrothermal veins. Evaluation of the age and composition of potential sources of highly radiogenic Sr indicates that the ore-bearing veins of the Coeur d'Alene district formed during the Cretaceous from components scavenged from rocks of the Belt Supergroup, the primary host rocks of the district. Proterozoic Pb isotope ratios observed in galena from many Coeur d'Alene veins were established when Pb separated from uranium during deposition or diagenesis of the Belt Supergroup at 1400 to 1500 Ma, possibly as disseminated syngenetic deposits. K-Ar and Rb-Sr apparent ages and ??18O values of Belt Supergroup rocks decrease from the Coeur d'Alene district toward the Idaho and Kaniksu batholiths, approximately normal to the trends of metamorphic isograds, fold axes, foliation, and the major reverse faults of the district. Isoclinal folding, thrust faulting, high-temperature metamorphism, granitic plutonism, and regional-scale metamorphic-hydrothermal activity is documented in the region between 140 and 45 Ma, representing the only such combination of events in the Coeur d'Alene region subsequent to about 1300 Ma. The Sr and oxygen results and geologic evidence favor formation of the ore-bearing carbonate veins by fluids related to a complex metamorphic-hydrothermal system during the Cretaceous. Pb with Proterozoic isotopic compositions was probably mobilized and incorporated like other metals into the hydrothermal veins during this event. The ore-bearing veins were sheared and displaced during early Tertiary northwest-trending dextral strike-slip faulting along the Osburn fault and related structures of the Lewis and Clark line.

  14. Normal-Faulting in Madagascar: Another Round of Continental Rifting?

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Pratt, M. J.; Tsiriandrimanana, R.; Andriampenomanana Ny Ony, F. S. T.; Nyblade, A.; Durrheim, R. J.; Tilmann, F. J.; Rumpker, G.; Rambolamanana, G.; Aleqabi, G. I.; Shore, P.

    2017-12-01

    Analyses of seismicity and seismic structure within Madagascar suggest the current occurrence of crustal extension, which may be related to continental rifting associated with a diffuse boundary between the Somalia and Lwandle tectonic plates. Madagascar has participated in two major rifting events as part of the break-up of Gondwana: the break-away of Greater India (Madagascar, India, the Seychelles) away from mainland Africa during the Jurassic and the break-away of India from Madagascar during the Cretaceous. Seismic activity and the structures obtained from it, using data from the 2-year (2011-2013) MACOMO project, suggest that this break-up may not be finished, and that continental rifts may be developing again. There are fairly high levels of intraplate seismicity within Madagascar: over 800 events located during the 22 months of the deployment. For comparison, a 2-year deployment of seismometers within the upper Midwest of the U.S. yielded just 12 intraplate earthquakes. While the Madagascar seismicity occurs across the island, it is strongly concentrated in the central region, where Cenozoic volcanism has occurred through the Holocene, and earthquakes align along N-S-trending lineations associated with N-S-trending pull-apart graben structures. The thickness of the crust is still >40 km in this region, but it is underlain by a large low-velocity structure within the lithosphere and asthenosphere that is observed in our studies of surface-wave, body-wave, and Pn-phase tomography. Normal faulting is not observed everywhere on the island, however; seismicity in the north is largely strike-slip, and seismicity in the south appears to be largely reverse faulting. Several studies have suggested that the diffuse boundary between the Somalia and Lwandle plates runs roughly E-W across Madagascar. Extensional faulting seems to predominate only within central Madagascar, likely associated with the current volcanic activity, which also appears to be associated with the delamination of the northern half of Madagascar's subcrustal lithosphere. If so, it may be that the volcanism, seismicity, and extension are all occurring syntectonically, and that we may be witnessing the development of another continental rift involving Madagascar.

  15. Structural imaging of the East Beni Sueif Basin, north eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Salem, E.; Sehim, A.

    2017-12-01

    The East Beni Sueif Basin is the only tested hydrocarbon-bearing basin on the eastern side of the Nile in Egypt. The basin is located around 150 km to the south of Cairo. This work introduces the first attempt of seismic interpretation and structural patterns of this basin, for which subsurface published works are lacking. Structural imaging of the area is achieved through interpretation of pre-stack time migration (PSTM) seismic cube and data sets of seven wells. The penetrated sedimentary section is represented by Albian-Middle Eocene sediments. The East Beni Sueif Basin is a type of the whole graben-system and is bounded by two NW-SE bounding faults. These faults had continued activity in an extensional regime associated with fault-propagating folds. The basin is traversed by a N75°E-trending fault system at basement level. This fault system separates the basin into two structural provinces. The Northwestern Province is deeper and shows more subsidence with a predominance of NW-trending longitudinal faults and N60·W oblique faults to the basin trend. The Southeastern Province is shallow and crossed by N14·W-trending faults which are slightly oblique to the basin axis. Albian time had witnessed the main extensional tectonic phase and resulted in major subsidence along basin-bounding faults associated with growth thickening of basal deposits. During Senonian time, the basin experienced a mild phase of transtensional tectonics, which formed negative-flower structures entrapping different folds along the N75°E and N60·W faults. The timing and style of these structures are similar to the Syrian-Arc structures in several Western Desert oil fields. The basin emerged during the Paleocene with scoured and eroded top Cretaceous sediments. Subsidence was resumed during the Early Eocene and resulted in 1500 m-thick carbonate sediments. Lastly, a mild extensional activity possibly occurred during the Oligocene-Miocene time. Despite the possible restricted potentiality of the source rock, the main hydrocarbon accumulation risk is attributed to retention in traps of long-span tectonic history. Reaching of main faults to surface through brittle carbonate cap rocks and limited thickness of the shale in the reservoir section risk hydrocarbon sealing. Buried structures of passive setting during the Tertiary show a minor trapping risk.

  16. Campaign GPS Measurements from 2000-2010 in the Sierra Block South of Long Valley Caldera, CA, USA

    NASA Astrophysics Data System (ADS)

    Cervelli, P. F.; Langbein, J. O.; Perkins, J. P.; Svarc, J. L.; Owen, S. E.

    2010-12-01

    Long Valley Caldera, source of the 700 km3 Bishop Tuff eruption (760,000 years before present), experiences a complex interaction of tectonic and magmatic forces. Sitting at the boundary of the Basin and Range and the Sierra Nevada, this area falls within the Eastern California Shear Zone, which accommodates about 12 mm/yr of dextral shear accounting for 15-25% of the relative motion between the Pacific and North American Plates. Very recent (10 - 20 years before present) volcanic unrest, including uplift of the caldera’s resurgent dome and several seismic crises interpreted as shallow dike intrusions, has also contributed its own strain signal. The mountainous region south of Long Valley Caldera (the so-called “Sierra Nevada Block”) is an area of persistent seismicity, including four >M6 earthquakes that occurred in 1980. The Holocene, east-dipping Hilton Creek normal fault cuts the eastern part of this region, though most of the seismicity lies to the west of this fault. Focal mechanisms for the larger earthquakes range from strike-slip to normal, and including several non-double-couple events. In the summer of 2010 we reoccupied a network of campaign GPS benchmarks within the Sierra Block, last visited in 2000 or 2002. During the 8+ years between occupations about 10 cm of northwestward displacement, relative to fixed North America, was observed. To isolate departures from the regional trend, we first calculated the average velocity and its spatial gradient from nearby campaign and continuous GPS stations surrounding the Sierra Block, and then subtracted this trend from our own observations. The resultant residual velocities are for the most part within their error ellipses, suggesting no statistically significant difference from the regional trend. One distinct exception is a cluster of five stations centered near the surface trace of the Hilton Creek Fault, about 5 km south of the caldera’s edge. However, the westward motion of these stations is inconsistent with creep on the Hilton Creek Fault, provided that the sense of slip is normal rather than reverse. The anomalous deformation occurs near a two-legged, orthogonal pattern of hypocenters, most of which are aftershocks that followed a series of three moderate earthquakes: two M5.1s on June 9 and July 14, 1998, and a M5.6 on May 15, 1999. The northern leg of this pattern trends NW/SE, consists of aftershocks from the June 9, 1998 earthquake, and aligns with the right-lateral focal mechanism of that event. The eastern leg trends SW/NE, consists of aftershocks from the May 15, 1999 earthquake, and aligns with the mainly left-lateral focal mechanism of that event. The focal mechanism for the remaining earthquake, that of July 14, 1998, is dominantly normal, with a north-trending strike that does not align with either leg of the hypocenter pattern. However, the aftershocks following the July 14, 1998 earthquake do occur mostly along the pattern’s eastern leg.

  17. Active Deformation of Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of Preexisting Precambrian Shear Zone Fabric

    NASA Astrophysics Data System (ADS)

    Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.

    2018-03-01

    We integrated temporal aeromagnetic data and recent earthquake data to address the long-standing question on the role of preexisting Precambrian structures in modulating strain accommodation and subsequent ruptures leading to seismic events within the East African Rift System. We used aeromagnetic data to elucidate the relationship between the locations of the 2009 Mw 6.0 Karonga, Malawi, earthquake surface ruptures and buried basement faults along the hinge zone of the half-graben comprising the North Basin of the Malawi Rift. Through the application of derivative filters and depth-to-magnetic-source modeling, we identified and constrained the trend of the Precambrian metamorphic fabrics and correlated them to the three-dimensional structure of buried basement faults. Our results reveal an unprecedented detail of the basement fabric dominated by high-frequency WNW to NW trending magnetic lineaments associated with the Precambrian Mughese Shear Zone fabric. The high-frequency magnetic lineaments are superimposed by lower frequency NNW trending magnetic lineaments associated with possible Cenozoic faults. Surface ruptures associated with the 2009 Mw 6.0 Karonga earthquake swarm aligned with one of the NNW-trending magnetic lineaments defining a normal fault that is characterized by right-stepping segments along its northern half and coalesced segments on its southern half. Fault geometries, regional kinematics, and spatial distribution of seismicity suggest that seismogenic faults reactivated the basement fabric found along the half-graben hinge zone. We suggest that focusing of strain accommodation and seismicity along the half-graben hinge zone is facilitated and modulated by the presence of the basement fabric.

  18. Counterclockwise rotations in the Late Eocene-Oligocene volcanic fields of San Luis Potosí and Sierra de Guanajuato (eastern Mesa Central, Mexico)

    NASA Astrophysics Data System (ADS)

    Andreani, Louis; Gattacceca, Jerôme; Rangin, Claude; Martínez-Reyes, Juventino; Demory, François

    2014-12-01

    We used paleomagnetic and structural data to investigate the late Eocene-Oligocene tectonic evolution of the Mesa Central area in Mexico. The Mesa Central was affected by NW-trending faults (Tepehuanes-San Luis fault system) coeval with a Late Eocene-Oligocene ignimbrite flare-up and by post-27 Ma NNE-trending grabens related to the Basin and Range. We obtained reliable paleomagnetic directions from 61 sites within the Late Eocene-Oligocene volcanic series (~ 30 to ~ 27 Ma) of the San Luis Potosí volcanic field and Sierra de Guanajuato. For each site we also measured the anisotropy of magnetic susceptibility (AMS). Tilt corrections were made using AMS data for 33 sites where in situ bedding measurements were not available. Paleomagnetic directions indicate counterclockwise rotations of about 10° with respect to stable North America after 30-25 Ma. Structural data suggest that the volcanic succession was mainly affected by normal faults. However, we also found evidences for oblique or horizontal striae showing a left-lateral component along NW-trending faults and a right lateral component along NE-trending faults. Both motions are consistent with a N-S extension oblique to the Tepehuanes-San Luis fault system. Previous paleomagnetic studies in northern and southern Mexico show the prevalence of minor left-lateral shear components along regional-scale transpressional and transtensional lineaments. Our paleomagnetic data may reflect thus small vertical-axis rotations related to a minor shear component coeval with the Oligocene intra-arc extension in central Mexico.

  19. Fault distribution in the Precambrian basement of South Norway

    NASA Astrophysics Data System (ADS)

    Gabrielsen, Roy H.; Nystuen, Johan Petter; Olesen, Odleiv

    2018-03-01

    Mapping of the structural pattern by remote sensing methods (Landsat, SPOT, aerial photography, potential field data) and field study of selected structural elements shows that the cratonic basement of South Norway is strongly affected by a regular lineament pattern that encompasses fault swarms of different orientation, age, style, attitude and frequency. Albeit counting numerous fault and fracture populations, the faults are not evenly distributed and N-S to NNE-SSW/NNW-SSE and NE-SE/ENE-WSW-systems are spatially dominant. N-S to NNW-SSE structures can be traced underneath the Caledonian nappes to the Western Gneiss Region in western and central South Norway, emphasizing their ancient roots. Dyke swarms of different ages are found within most of these zones. Also, the Østfold, Oslo-Trondheim and the Mandal-Molde lineament zones coincide with trends of Sveconorwegian post-collision granites. We conclude that the N-S-trend includes the most ancient structural elements, and that the trend can be traced back to the Proterozoic (Svecofennian and Sveconorwegian) orogenic events. Some of the faults may have been active in Neoproterozoic times as marginal faults of rift basins at the western margin of Baltica. Remnants of such fault activity have survived in the cores of many of the faults belonging to this system. The ancient systems of lineaments were passively overridden by the Caledonian fold-and-thrust system and remained mostly, but note entirely inactive throughout the Sub-Cambrian peneplanation and the Caledonian orogenic collapse in the Silurian-Devonian. The system was reactivated in extension from Carboniferous times, particularly in the Permian with the formation of the Oslo Rift and parts of it remain active to the Present, albeit by decreasing extension and fault activity.

  20. Origin and evolution of the Seattle Fault and Seattle Basin, Washington

    USGS Publications Warehouse

    Johnson, S.Y.; Potter, C.J.; Armentrout, J.M.

    1994-01-01

    Analysis of seismic reflection data reveals that the Seattle basin (Washington) is markedly asymmetric and consists of ~9-10 km of Eocene and younger deposits. The basin began as a discrete geologic element in the late Eocene (~40 Ma), the result of a reorganization in regional fault geometry and kinematics. In this reorganization, dextral offset on the Puget fault southeast of Seattle stepped eastward, and the Seattle fault began as a restraining transfer zone. North-vergent reverse or thrust faulting on the Seattle fault forced flexural subsidence in the Seattle basin to the north. Offset on the Seattle fault and subsidence of the Seattle basin have continued to the present. -Authors

  1. Structure of the San Fernando Valley region, California: implications for seismic hazard and tectonic history

    USGS Publications Warehouse

    Langenheim, V.E.; Wright, T.L.; Okaya, D.A.; Yeats, R.S.; Fuis, G.S.; Thygesen, K.; Thybo, H.

    2011-01-01

    Industry seismic reflection data, oil test well data, interpretation of gravity and magnetic data, and seismic refraction deep-crustal profiles provide new perspectives on the subsurface geology of San Fernando Valley, home of two of the most recent damaging earthquakes in southern California. Seismic reflection data provide depths to Miocene–Quaternary horizons; beneath the base of the Late Miocene Modelo Formation are largely nonreflective rocks of the Middle Miocene Topanga and older formations. Gravity and seismic reflection data reveal the North Leadwell fault zone, a set of down-to-the-north faults that does not offset the top of the Modelo Formation; the zone strikes northwest across the valley, and may be part of the Oak Ridge fault system to the west. In the southeast part of the valley, the fault zone bounds a concealed basement high that influenced deposition of the Late Miocene Tarzana fan and may have localized damage from the 1994 Northridge earthquake. Gravity and seismic refraction data indicate that the basin underlying San Fernando Valley is asymmetric, the north part of the basin (Sylmar subbasin) reaching depths of 5–8 km. Magnetic data suggest a major boundary at or near the Verdugo fault, which likely started as a Miocene transtensional fault, and show a change in the dip sense of the fault along strike. The northwest projection of the Verdugo fault separates the Sylmar subbasin from the main San Fernando Valley and coincides with the abrupt change in structural style from the Santa Susana fault to the Sierra Madre fault. The Simi Hills bound the basin on the west and, as defined by gravity data, the boundary is linear and strikes ~N45°E. That northeast-trending gravity gradient follows both the part of the 1971 San Fernando aftershock distribution called the Chatsworth trend and the aftershock trends of the 1994 Northridge earthquake. These data suggest that the 1971 San Fernando and 1994 Northridge earthquakes reactivated portions of Miocene normal faults.

  2. The continuation of the Kazerun fault system across the Sanandaj-Sirjan zone (Iran)

    NASA Astrophysics Data System (ADS)

    Safaei, Homayon

    2009-08-01

    The Kazerun (or Kazerun-Qatar) fault system is a north-trending dextral strike-slip fault zone in the Zagros mountain belt of Iran. It probably originated as a structure in the Panafrican basement. This fault system played an important role in the sedimentation and deformation of the Phanerozoic cover sequence and is still seismically active. No previous studies have reported the continuation of this important and ancient fault system northward across the Sanandaj-Sirjan zone. The Isfahan fault system is a north-trending dextral strike-slip fault across the Sanandaj-Sirjan zone that passes west of Isfahan city and is here recognized for the first time. This important fault system is about 220 km long and is seismically active in the basement as well as the sedimentary cover sequence. This fault system terminates to the south near the Main Zagros Thrust and to the north at the southern boundary of the Urumieh-Dokhtar zone. The Isfahan fault system is the boundary between the northern and southern parts of Sanandaj-Sirjan zone, which have fundamentally different stratigraphy, petrology, geomorphology, and geodynamic histories. Similarities in the orientations, kinematics, and geologic histories of the Isfahan and Kazerun faults and the way they affect the magnetic basement suggest that they are related. In fact, the Isfahan fault is a continuation of the Kazerun fault across the Sanandaj-Sirjan zone that has been offset by about 50 km of dextral strike-slip displacement along the Main Zagros Thrust.

  3. The relationship of near-surface active faulting to megathrust splay fault geometry in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Finn, S.; Liberty, L. M.; Haeussler, P. J.; Northrup, C.; Pratt, T. L.

    2010-12-01

    We interpret regionally extensive, active faults beneath Prince William Sound (PWS), Alaska, to be structurally linked to deeper megathrust splay faults, such as the one that ruptured in the 1964 M9.2 earthquake. Western PWS in particular is unique; the locations of active faulting offer insights into the transition at the southern terminus of the previously subducted Yakutat slab to Pacific plate subduction. Newly acquired high-resolution, marine seismic data show three seismic facies related to Holocene and older Quaternary to Tertiary strata. These sediments are cut by numerous high angle normal faults in the hanging wall of megathrust splay. Crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A distinct boundary coinciding beneath the Hinchinbrook Entrance causes a systematic fault trend change from N30E in southwestern PWS to N70E in northeastern PWS. The fault trend change underneath Hinchinbrook Entrance may occur gradually or abruptly and there is evidence for similar deformation near the Montague Strait Entrance. Landward of surface expressions of the splay fault, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes. Surface exposures of Tertiary rocks throughout PWS along with new apatite-helium dates suggest long-term and regional uplift with localized, fault-controlled subsidence.

  4. Moment tensor inversion of recent local moderate sized Van Earthquakes: seismicity and active tectonics of the Van region : Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Kalafat, D.; Suvarikli, M.; Ogutcu, Z.; Kekovali, K.; Ocal, M. F.; Gunes, Y.; Pinar, A.

    2013-12-01

    The study area of the present research, the Van Region is located at the norththern end of the collision zone between the Anatolia and Arabian plates. Therefore, the southeast border of the Anatolian plate collides with the Arabian plate along the Bitlis Suture Zone. This zone is formed by collision of Arabian and in large scale Eurasian plates at mid-Miocen age. This type of thrust generation as a result of compressional regime extends east-west. The largest recorded earthquakes have all taken place along Southern Turkey (e.g. Lice, 1971; Varto, 1966; Caldiran, 1976). On the 23th of October 2011, an earthquake shook the Van Lake, Eastern Turkey, following a seismic sequence of more than three months in an unprecedented episode for this region characterized by null or low seismicity. The October 23, 2011 Van-Ercis Earthquake (Mw=7.1) was the most devastating resulting in loss of life and destruction. In order to study the aftershocks' activity of this main event, we installed and kept a seismic network of 10 broad-band (BB) stations in the area for an interval of nearly fifteen months. We characterized the seismogenic structure of the zone by calculating a minimum 1-D local velocity model and obtaining precise hypocentre locations. We also calculated fault plane solutions for more than 200 moderate sized earthquakes based on first motion polarities and commonly Moment Tensor Inversion Methods. The seismogenic zone would be localized at aproximately 10 km depth. Generally, the distribution of the important moderate earthquakes and the aftershock distribution shows that the E-W and NE-SW oriented fault segments cause the earthquake activities. Aftershock events are located along the eastern border of Lake Van and mainly between 5 and 10 km depth and disposed in two alignments: a ~E-W-trending alignment that matches with the trace of the Van Trust fault Zone and a NE-trending which could correspond to an structure not previously seen. Selected focal mechanisms show a strong trust faulting which coincides with the nature of the Van fault. We were currently analysing an archive of over 5000 local events recorded by the KOERI seismic network of over 20 broadband stations between 2010 and 2013 in the whole Van Region. The Van Earthquake initiated and caused an increase in seismic activity of the region. Van Earthquake and its important aftershocks fault mechanism solutions show that the region is under compression and reverse faulting is a result of this regime which is effective on the active compressional tectonics of the region. This study was supported by Bogazici University Research Projects Commission under SRP/BAP project No. 6040.

  5. Seismic interpretation of the deep structure of the Wabash Valley Fault System

    USGS Publications Warehouse

    Bear, G.W.; Rupp, J.A.; Rudman, A.J.

    1997-01-01

    Interpretations of newly available seismic reflection profiles near the center of the Illinois Basin indicate that the Wabash Valley Fault System is rooted in a series of basement-penetrating faults. The fault system is composed predominantly of north-northeast-trending high-angle normal faults. The largest faults in the system bound the 22-km wide 40-km long Grayville Graben. Structure contour maps drawn on the base of the Mount Simon Sandstone (Cambrian System) and a deeper pre-Mount Simon horizon show dip-slip displacements totaling at least 600 meters across the New Harmony fault. In contrast to previous interpretations, the N-S extent of significant fault offsets is restricted to a region north of 38?? latitude and south of 38.35?? latitude. This suggests that the graben is not a NE extension of the structural complex composed of the Rough Creek Fault System and the Reelfoot Rift as previously interpreted. Structural complexity on the graben floor also decreases to the south. Structural trends north of 38?? latitude are offset laterally across several large faults, indicating strike-slip motions of 2 to 4 km. Some of the major faults are interpreted to penetrate to depths of 7 km or more. Correlation of these faults with steep potential field gradients suggests that the fault positions are controlled by major lithologic contacts within the basement and that the faults may extend into the depth range where earthquakes are generated, revealing a potential link between specific faults and recently observed low-level seismicity in the area.

  6. Centrifugal compressor fault diagnosis based on qualitative simulation and thermal parameters

    NASA Astrophysics Data System (ADS)

    Lu, Yunsong; Wang, Fuli; Jia, Mingxing; Qi, Yuanchen

    2016-12-01

    This paper concerns fault diagnosis of centrifugal compressor based on thermal parameters. An improved qualitative simulation (QSIM) based fault diagnosis method is proposed to diagnose the faults of centrifugal compressor in a gas-steam combined-cycle power plant (CCPP). The qualitative models under normal and two faulty conditions have been built through the analysis of the principle of centrifugal compressor. To solve the problem of qualitative description of the observations of system variables, a qualitative trend extraction algorithm is applied to extract the trends of the observations. For qualitative states matching, a sliding window based matching strategy which consists of variables operating ranges constraints and qualitative constraints is proposed. The matching results are used to determine which QSIM model is more consistent with the running state of system. The correct diagnosis of two typical faults: seal leakage and valve stuck in the centrifugal compressor has validated the targeted performance of the proposed method, showing the advantages of fault roots containing in thermal parameters.

  7. Identification and interpretation of tectonic features from ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Abdel-Gawad, M. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Many criteria of active or recent fault movements are observable in the imagery. It was observed that where earthquake epicenter clusters occur, evidence of recent fault movements is generally observed. The opposite was not necessarily true as there are areas where evidence of recent faulting is observed, often along major known faults which are peculiarly devoid of significant seismicity. A tentative conclusion is that the seismicity pattern alone can often be a misleading criteria for potential earthquake hazards. The feasibility of recognizing geomorphic criteria of recent fault movement from ERTS-1 imagery suggests that ERTS imagery should be used to map potentially active faults and utilize this data to develop better criteria for the identification of areas prone to future earthquakes. An apparent correlation was observed between the distribution of mercury deposits in the California Coast Range Province and transverse fault zones trending west-northwest oblique to the trend of the San Andreas system. The significance of this correlation and the full extent of its implication on mercury exploration is under study.

  8. Kinematics of the New Madrid seismic zone, central United States, based on stepover models

    USGS Publications Warehouse

    Pratt, Thomas L.

    2012-01-01

    Seismicity in the New Madrid seismic zone (NMSZ) of the central United States is generally attributed to a stepover structure in which the Reelfoot thrust fault transfers slip between parallel strike-slip faults. However, some arms of the seismic zone do not fit this simple model. Comparison of the NMSZ with an analog sandbox model of a restraining stepover structure explains all of the arms of seismicity as only part of the extensive pattern of faults that characterizes stepover structures. Computer models show that the stepover structure may form because differences in the trends of lower crustal shearing and inherited upper crustal faults make a step between en echelon fault segments the easiest path for slip in the upper crust. The models predict that the modern seismicity occurs only on a subset of the faults in the New Madrid stepover structure, that only the southern part of the stepover structure ruptured in the A.D. 1811–1812 earthquakes, and that the stepover formed because the trends of older faults are not the same as the current direction of shearing.

  9. The brittle stage of the exhumation of a metamorphic core complex: Naxos, Cyclades, Greece and some general rules

    NASA Astrophysics Data System (ADS)

    Neubauer, F.; Cao, S.

    2012-04-01

    Structures of hangingwall units of major detachment systems in extensional settings leading to metamorphic core complexes are equally important to the generally well-studied footwall rocks. Here, we describe hanging-wall structures of the North-Cycladic Detachment System on Naxos Island of the Aegean Sea and found that they well monitor the structural evolution of hanging blocks complementary to the footwall structures, vertical fluid flow as well as late-stage inversion of the whole extensional system. On Naxos, Upper Oligocene-Miocene and Pliocene sedimentary successions are deposited on the hangingwall unit, which is largely an ophiolite. The Upper Oligocene-Miocene and Pliocene sedimentary successions are separated by a hiatus arguing for a two-step evolution. Whereas the first step, Miocene, indicate moderate subsidence and relief, and only denudation of the hangingwall unit, the Pliocene conglomerates indicate a sharply increasing relief and an over-steepened topography. Hydrothermal systems developed in hangingwall rock succession (e.g. Miocene at Steladia) play an important role and resulted in large-scale silica precipitation and associated alteration similar as these found in subvolcanic epithermal systems. This constrains a close link between footwall granodiorite intrusion and near-surface processes. The Pliocene coarse boulder conglomerate with its abundant first appearance of granite/granodiorite, and subsequent marble-rich debris on distant places like Palatia indicate a sudden erosion and high-gradient relief leading to erosion of the mantle of the migmatite dome during Pliocene. On Naxos, we recognize, therefore, a three-stage tectonic evolution in the hangingwall unit: (i) moderate subsidence of an Upper Oligocene-Miocene basin, in part below sea level; (2) a second stage with deposition of Pliocene coarse conglomerates, and (iii) post-Pliocene faulting affecting the conglomerates. During the second stage, surface exposure of the metamorphic core complex was reached resulting in catastrophic alluvial fans. Structural data from the Upper Oligocene-Miocene rocks indicate that NNE-SSW extension still prevailed up to the Miocene/Pliocene boundary. Together with structural data from Pliocene conglomerates, we can distinguish between three major events: The first stage is characterized by mostly NNE-dipping and subordinate SSW-dipping normal faults indicating together ca. NNE-SSW extension. A second palaeostress tensor group (B) mainly comprises ca. NW-trending dextral and WSW-trending sinistral strike-slip faults indicating together ca. E-W strike-slip compression and monitor, therefore, inversion and compression perpendicular to the previous extension direction. The third palaeostress tensor group (C) is characterized by dominating mostly NE-trending subvertical sinistral strike-slip faults and steep NNW-trending dextral strike-slip faults constituting together ca. N-S strike-slip compression. In a few cases, S- to SW-dipping reverse faults also occur. On a general level, our study allows for the following major conclusions: (1) Structures of hangingwall units of major detachments above metamorphic core complexes are equally important compared to the generally well-studied footwall rocks. They allow date several tectonic events not necessarily found in footwall rocks. (2) On Naxos, we can distinguish between three major tectonic events, which are in accordance with large-scale tectonic processes in the Aegean Sea: (a) ca. NNE-SSW extension; (b) ca. E-W strike-slip compression and monitor therefore inversion and compression perpendicular to the previous extension direction, and (c) N-S strike-slip compression.

  10. Palinspastic reconstruction of southeastern California and southwestern Arizona for the middle Miocene

    NASA Technical Reports Server (NTRS)

    Richard, Stephen M.

    1992-01-01

    A paleogeographic reconstruction of southeastern California and southwestern Arizona at 10 Ma was made based on available geologic and geophysical data. Clockwise rotation of 39 deg was reconstructed in the eastern Transverse Ranges, consistent with paleomagnetic data from late Miocene volcanic rocks, and with slip estimates for left-lateral faults within the eastern Transverse Ranges and NW-trending right lateral faults in the Mojave Desert. This domain of rotated rocks is bounded by the Pinto Mountain fault on the north. In the absence of evidence for rotation of the San Bernardino Mountains or for significant right slip faults within the San Bernardino Mountains, the model requires that the late Miocene Pinto Mountain fault become a thrust fault gaining displacement to the west. The Squaw Peak thrust system of Meisling and Weldon may be a western continuation of this fault system. The Sheep Hole fault bounds the rotating domain on the east. East of this fault an array of NW-trending right slip faults and south-trending extensional transfer zones has produced a basin and range physiography while accumulating up to 14 km of right slip. This maximum is significantly less than the 37.5 km of right slip required in this region by a recent reconstruction of the central Mojave Desert. Geologic relations along the southern boundary of the rotating domain are poorly known, but this boundary is interpreted to involve a series of curved strike slip faults and non-coaxial extension, bounded on the southeast by the Mammoth Wash and related faults in the eastern Chocolate Mountains. Available constraints on timing suggest that Quaternary movement on the Pinto Mountain and nearby faults is unrelated to the rotation of the eastern Transverse Ranges, and was preceded by a hiatus during part of Pliocene time which followed the deformation producing the rotation. The reconstructed Clemens Well fault in the Orocopia Mountains, proposed as a major early Miocene strand of the San Andreas fault, projects eastward towards Arizona, where early Miocene rocks and structures are continuous across its trace. The model predicts a 14 deg clockwise rotation and 55 km extension along the present trace of the San Andreas fault during late Miocene and early Pliocene time. Palinspastic reconstructions of the San Andreas system based on this proposed reconstruction may be significantly modified from current models.

  11. Geologic Map of the Santa Barbara Coastal Plain Area, Santa Barbara County, California

    USGS Publications Warehouse

    Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Gurrola, Larry D.; Keller, Edward A.; Brandt, Theodore R.

    2009-01-01

    This report presents a newly revised and expanded digital geologic map of the Santa Barbara coastal plain area at a compilation scale of 1:24,000 (one inch on the map to 2,000 feet on the ground)1 and with a horizontal positional accuracy of at least 20 m. The map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying and adjacent to the coastal plain within the contiguous Dos Pueblos Canyon, Goleta, Santa Barbara, and Carpinteria 7.5' quadrangles. The new map supersedes an earlier preliminary geologic map of the central part of the coastal plain (Minor and others, 2002; revised 2006) that provided coastal coverage only within the Goleta and Santa Barbara quadrangles. In addition to new mapping to the west and east, geologic mapping in parts of the central map area has been significantly revised from the preliminary map compilation - especially north of downtown Santa Barbara in the Mission Ridge area - based on new structural interpretations supplemented by new biostratigraphic data. All surficial and bedrock map units, including several new units recognized in the areas of expanded mapping, are described in detail in the accompanying pamphlet. Abundant new biostratigraphic and biochronologic data based on microfossil identifications are presented in expanded unit descriptions of the marine Neogene Monterey and Sisquoc Formations. Site-specific fault kinematic observations embedded in the digital map database are more complete owing to the addition of slip-sense determinations. Finally, the pamphlet accompanying the present report includes an expanded and refined summary of stratigraphic and structural observations and interpretations that are based on the composite geologic data contained in the new map compilation. The Santa Barbara coastal plain is located in the western Transverse Ranges physiographic province along an east-west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The coastal plain surface includes several mesas and hills that are geomorphic expressions of potentially active folds and partly buried oblique and reverse faults of the Santa Barbara fold and fault belt (SBFFB) that transects the coastal plain. Strong earthquakes have occurred offshore within 10 km of the Santa Barbara coastal plain in 1925 (6.3 magnitude), 1941 (5.5 magnitude), and 1978 (5.1 magnitude). These and numerous smaller seismic events located beneath and offshore of the coastal plain, likely occurred on reverse-oblique-slip faults that are similar to, or continuous with, Quaternary reverse faults crossing the coastal plain. Thus, faults of the SBFFB pose a significant earthquake hazard to the approximately 200,000 people living within the major coastal population centers of Santa Barbara, Goleta, and Carpinteria. In addition, numerous Quaternary landslide deposits along the steep southern flank of the Santa Ynez Mountains indicate the potential for continued slope failures and mass movements in developed areas. Folded, faulted, and fractured sedimentary rocks in the subsurface of the coastal plain and adjacent Santa Barbara Channel are sources and form reservoirs for economic deposits of oil and gas, some of which are currently being extracted offshore. Shallow, localized sedimentary aquifers underlying the coastal plain provide limited amounts of water for the urban areas, but the quality of some of this groundwater is compromised by coastal salt-water contamination. The present map compilation provides a set of uniform geologic digital coverages that can be used for analysis and interpretation of these and other geologic hazards and resources in the coastal plain region.

  12. The Genesis of Precious and Base Metal Mineralization at the Miguel Auza Deposit, Zacatecas, Mexico

    NASA Astrophysics Data System (ADS)

    Findley, A. A.; Olivo, G. R.; Godin, L.

    2009-05-01

    The Miguel Auza mine located in Zacatecas State, Mexico, is a vein-type polymetallic epithermal deposit hosted in deformed argillite, siltstone and, greywacke of the Cretaceous Caracol Formation. Silver-rich base metal veins (0.2 m to >1.5 m wide) are spatially associated with the NE-striking, steeply SE- dipping (70-80°) Miguel Auza fault over a strike length of 1.6 km and a depth of 460 m. A 2 km2 monzonitic stock located in the proximity of the mineralized zones, has previously been interpreted as the source of the mineralizing fluids. Four distinct structural stages are correlated with hydrothermal mineral deposition: (I) The Pre-ore stage is characterized by normal faulting, fracturing of host rock, and rotation of bedding planes. This stage consists of quartz, illite, chlorite, +/- pyrite alteration of sedimentary wall rocks. (II) The Pyrite-vein stage is associated with reverse-sense reactivation of early normal faults, dilation of bedding planes/fractures, and deposition of generally barren calcite + pyrite veinlets. (III) The Main-ore stage is related to the development of reverse-fault- hosted massive sulphide veins. During this stage three phases of mineral deposition are recorded: early pyrite and arsenopyrite, intermediate chalcopyrite, pyrite, arsenopyrite, and base metals, and late base metals and Ag-bearing minerals. Associated gangue minerals during the main ore stage are quartz, muscovite, calcite and chlorite. (IV) The Post-ore stage involves late NW-SE striking block faulting, brecciation and calcite veining. Later supergene oxidation of veins led to deposition of Fe-oxides and hydroxides, commonly filling fractures or replacing early-formed sulphide assemblages. The various vein types display classic epithermal textures including open space filling, banding, comb quartz and brecciation. The Ag-bearing minerals comprise pyrargyrite [Ag3(Sb,As)S3], argentotennantite [(Cu,Ag)10(Zn,Fe)2(Sn,As)4S13], polybasite-pearceite [(Ag,Cu)16(Sb,As)2S11], and acanthite [AgS2]; associated sulphides include galena, sphalerite, chalcopyrite, arsenopyrite and pyrite. In the main ore zone, base metal sulphides are commonly intergrown with the Ag-bearing sulfosalts. Analyses of galena show no significant silver values indicating that silver grades are exclusively associated with the Ag-bearing sulfosalts and sulphides. The distribution of the Sb/(Sb + As) ratios in the silver sulfosalts indicate that the ore forming fluid(s) was consistently antimony-rich during the Ag-rich ore deposition with no significant variation laterally, vertically, or along strike of the vein systems. However, Ag/(Ag + Cu) values in argentotennantite decrease along-strike from NE to SW and with depth. Compositions of argentotennantite + pyrargyrite + sphalerite indicate a primary depositional temperature around 325-350° C for the late phase of the Main-ore stage. Compositions of sphalerite also show an increasing trend in FeS (mol %) along strike of the deposit from NE to SW. The geometric relationship between the various structures, vein types, and the regional Miguel Auza fault zone suggest episodic reverse-sense reactivation of normal faults. It is argued that the structural evolution of the area, and, in particular, the Main-ore stage, provided transport pathways for metal-rich fluids and controlled the orientations of ore-bearing veins. Variations in mineral chemistry suggest that the rocks in the NE sector interacted with hotter fluids than in the SW part of the deposit.

  13. Earthquake scaling laws for rupture geometry and slip heterogeneity

    NASA Astrophysics Data System (ADS)

    Thingbaijam, Kiran K. S.; Mai, P. Martin; Goda, Katsuichiro

    2016-04-01

    We analyze an extensive compilation of finite-fault rupture models to investigate earthquake scaling of source geometry and slip heterogeneity to derive new relationships for seismic and tsunami hazard assessment. Our dataset comprises 158 earthquakes with a total of 316 rupture models selected from the SRCMOD database (http://equake-rc.info/srcmod). We find that fault-length does not saturate with earthquake magnitude, while fault-width reveals inhibited growth due to the finite seismogenic thickness. For strike-slip earthquakes, fault-length grows more rapidly with increasing magnitude compared to events of other faulting types. Interestingly, our derived relationship falls between the L-model and W-model end-members. In contrast, both reverse and normal dip-slip events are more consistent with self-similar scaling of fault-length. However, fault-width scaling relationships for large strike-slip and normal dip-slip events, occurring on steeply dipping faults (δ~90° for strike-slip faults, and δ~60° for normal faults), deviate from self-similarity. Although reverse dip-slip events in general show self-similar scaling, the restricted growth of down-dip fault extent (with upper limit of ~200 km) can be seen for mega-thrust subduction events (M~9.0). Despite this fact, for a given earthquake magnitude, subduction reverse dip-slip events occupy relatively larger rupture area, compared to shallow crustal events. In addition, we characterize slip heterogeneity in terms of its probability distribution and spatial correlation structure to develop a complete stochastic random-field characterization of earthquake slip. We find that truncated exponential law best describes the probability distribution of slip, with observable scale parameters determined by the average and maximum slip. Applying Box-Cox transformation to slip distributions (to create quasi-normal distributed data) supports cube-root transformation, which also implies distinctive non-Gaussian slip distributions. To further characterize the spatial correlations of slip heterogeneity, we analyze the power spectral decay of slip applying the 2-D von Karman auto-correlation function (parameterized by the Hurst exponent, H, and correlation lengths along strike and down-slip). The Hurst exponent is scale invariant, H = 0.83 (± 0.12), while the correlation lengths scale with source dimensions (seismic moment), thus implying characteristic physical scales of earthquake ruptures. Our self-consistent scaling relationships allow constraining the generation of slip-heterogeneity scenarios for physics-based ground-motion and tsunami simulations.

  14. Modeling Finite Faults Using the Adjoint Wave Field

    NASA Astrophysics Data System (ADS)

    Hjörleifsdóttir, V.; Liu, Q.; Tromp, J.

    2004-12-01

    Time-reversal acoustics, a technique in which an acoustic signal is recorded by an array of transducers, time-reversed, and retransmitted, is used, e.g., in medical therapy to locate and destroy gallstones (for a review see Fink, 1997). As discussed by Tromp et al. (2004), time-reversal techniques for locating sources are closely linked to so-called `adjoint methods' (Talagrand and Courtier, 1987), which may be used to evaluate the gradient of a misfit function. Tromp et al. (2004) illustrate how a (finite) source inversion may be implemented based upon the adjoint wave field by writing the change in the misfit function, δ χ, due to a change in the moment-density tensor, δ m, as an integral of the adjoint strain field ɛ x,t) over the fault plane Σ : δ χ = ∫ 0T∫_Σ ɛ x,T-t) :δ m(x,t) d2xdt. We find that if the real fault plane is located at a distance δ h in the direction of the fault normal hat n, then to first order an additional factor of ∫ 0T∫_Σ δ h (x) ∂ n ɛ x,T-t):m(x,t) d2xdt is added to the change in the misfit function. The adjoint strain is computed by using the time-reversed difference between data and synthetics recorded at all receivers as simultaneous sources and recording the resulting strain on the fault plane. In accordance with time-reversal acoustics, all the resulting waves will constructively interfere at the position of the original source in space and time. The level of convergence will be deterimined by factors such as the source-receiver geometry, the frequency of the recorded data and synthetics, and the accuracy of the velocity structure used when back propagating the wave field. The terms ɛ x,T-t) and ∂ n ɛ x,T-t):m(x,t) can be viewed as sensitivity kernels for the moment density and the faultplane location respectively. By looking at these quantities we can make an educated choice of fault parametrization given the data in hand. The process can then be repeated to invert for the best source model, as demonstrated by Tromp et al. (2004) for the magnitude of a point force. In this presentation we explore the applicability of adjoint methods to estimating finite source parameters. Fink, M. (1997), Time reversed acoustics, Physics Today, 50(3), 34--40. Talagrand, O., and P.~Courtier (1987), Variational assimilation of meteorological observations with the adjoint vorticity equatuation. I: Theory, Q. J. R. Meteorol. Soc., 113, 1311--1328. Tromp, J., C.~Tape, and Q.~Liu (2004), Waveform tomography, adjoint methods, time reversal, and banana-doughnut kernels, Geophys. Jour. Int., in press

  15. Structural character of the Ghost Dance fault, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Spengler, R.W.; Braun, C.A.; Linden, R.M.; Martin, L.G.; Ross-Brown, D. M.; Blackburn, R.L.

    1993-01-01

    Detailed structural mapping of an area that straddles the southern part of the Ghost Dance Fault has revealed the presence of several additional subparallel to anastomosing faults. These faults, mapped at a scale of 1:240, are: 1) dominantly north trending, 2) present on both the upthrown and downthrown sides of the surface trace of the Ghost Dance fault, 3) near-vertical features that commonly offset strata down to the west by 3 to 6 m (10 to 20 ft), and 4) commonly spaced 15 to 46 m (50 to 150 ft) apart. The zone also exhibits a structural fabric, containing an abundance of northwest-trending fractures. The width of the zone appears to be at least 213 m (700 ft) near the southernmost boundary of the study area but remains unknown near the northern extent of the study area, where the width of the study area is only 183 m (600 ft).

  16. New paleomagnetic results from Cretaceous rocks of the Gyaring Co fault region, central Tibet

    NASA Astrophysics Data System (ADS)

    Finn, D.; Zhao, X.; Lippert, P. C.; Yin, A.; Li, Y.; Wang, C.; Meng, J.; Zhang, S.; Li, H.

    2010-12-01

    Conjugate strike-slip faults are widespread features throughout the Alpine-Himalayan collision zone. They often exhibit V-shapes in map view and trend 60-75° from the maximum compressive-stress (σ1). Andersonian fault mechanics, however, predict faults to form X-shaped at ~30° from σ1. Consequently, V-shaped conjugate faults have been thought to initiate at ~30° to σ1, and subsequently rotate into their current orientation through continued shortening. Alternatively, the Paired General Shear Zone (PGSZ) model may explain development of conjugate strike-slip faults in their modern orientations, predicting no rotation. Strike-slip faulting produces rigid-body motion and internal deformation quantifiable by paleomagnetism when integrated with structural information. We wonder if paleomagnetic studies of the fault-bounded blocks in central Tibet would allow us to differentiate the two competing models for the formation of V-shaped conjugate faults. We collected over 300 paleomagnetic samples (40 sites) from stratigraphic sections in Shengza and Nima areas of central Tibet. The rocks we collected range from Jurassic to Oligocene, and are mainly grey limestones and red sediments including siltstone, mudstone, sandstone, and conglomerate, offering opportunity of applying paleomagnetic fold and conglomerate tests to check the stability of the remanent magnetization. Up to present, useful results were obtained for 150 of the early Cretaceous limestone and sandstone samples (Langshan and Duoni formations, respectively). We have characterized the stable components of natural remanent magnetization (NRM) of these samples through detailed thermal (mainly) and alternating field (AF) demagnetization. We have also conducted rock magnetic investigation to identify the magnetic carriers in these rocks. Most limestone and red sandstones exhibit two distinctive components of magnetization. The lower unblocking-temperature component is an overprint. The higher unblocking-temperature component is the characteristic component (ChRM), is well defined in vector demagnetization plots with both normal and reversed polarities and carried by magnetite and hematite. The site-mean directions pass the local fold test at more than 95% confidence level. Our new results indicate that there has been no rotation of this region relative to Eurasia, Mongolia, and the North and South China blocks since the lower Cretaceous. Thus paleomagnetic evidence appears to favor the PGSZ model and supports geological estimates for the shortening north of the Bangong suture zone, leading to an improved tectonic interpretation of the region.

  17. Neogene Development of the Terror Rift, western Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Sauli, C.; Sorlien, C. C.; Busetti, M.; De Santis, L.; Wardell, N.; Henrys, S. A.; Geletti, R.; Wilson, T. J.; Luyendyk, B. P.

    2015-12-01

    Terror Rift is a >300 km-long, 50-70 km-wide, 14 km-deep sedimentary basin at the edge of the West Antarctic Rift System, adjacent to the Transantarctic Mountains. It is cut into the broader Victoria Land Basin (VLB). The VLB experienced 100 km of mid-Cenozoic extension associated with larger sea floor spreading farther north. The post-spreading (Neogene) development of Terror Rift is not well understood, in part because of past use of different stratigraphic age models. We use the new Rossmap seismic stratigraphy correlated to Cape Roberts and Andrill cores in the west and to DSDP cores in the distant East. This stratigraphy, and new fault interpretations, was developed using different resolutions of seismic reflection data included those available from the Seismic Data Library System. Depth conversion used a new 3D velocity model. A 29 Ma horizon is as deep as 8 km in the south, and a 19 Ma horizon is >5 km deep there and 4 km-deep 100 km farther north. There is a shallower northern part of Terror Rift misaligned with the southern basin across a 50 km right double bend. It is bounded by steep N-S faults down-dropping towards the basin axis. Between Cape Roberts and Ross Island, the Oligocene section is also progressively-tilted. This Oligocene section is not imaged within northern Terror Rift, but the simplest hypothesis is that some of the Terror Rift-bounding faults were active at least during Oligocene through Quaternary time. Many faults are normal separation, but some are locally vertical or even reverse-separation in the upper couple of km. However, much of the vertical relief of the strata is due to progressive tilting (horizontal axis rotation) and not by shallow faulting. Along the trend of the basin, the relief alternates between tilting and faulting, with a tilting margin facing a faulted margin across the Rift, forming asymmetric basins. Connecting faults across the basin form an accommodation zone similar to other oblique rifts. The Neogene basin is shallow to non-existent 300 km north of Ross Island, near -74° 30' latitude. We propose that the Neogene history of Terror Rift has been highly-oblique right-lateral, terminating northward into right lateral faults of northern Victoria Land.

  18. High resolution seismic imaging of faults beneath Limón Bay, northern Panama Canal, Republic of Panama

    USGS Publications Warehouse

    Pratt, Thomas L.; Holmes, Mark; Schweig, Eugene S.; Gomberg, Joan S.; Cowan, Hugh A.

    2003-01-01

    High-resolution seismic reflection profiles from Limo??n Bay, Republic of Panama, were acquired as part of a seismic hazard investigation of the northern Panama Canal region. The seismic profiles image gently west and northwest dipping strata of upper Miocene Gatu??n Formation, unconformably overlain by a thin (<20 m) sequence of Holocene muds. Numerous faults, which have northeast trends where they can be correlated between seismic profiles, break the upper Miocene strata. Some of the faults have normal displacement, but on many faults, the amount and type of displacement cannot be determined. The age of displacement is constrained to be Late Miocene or younger, and regional geologic considerations suggest Pliocene movement. The faults may be part of a more extensive set of north- to northeast-trending faults and fractures in the canal region of central Panama. Low topography and the faults in the canal area may be the result of the modern regional stress field, bending of the Isthmus of Panama, shearing in eastern Panama, or minor deformation of the Panama Block above the Caribbean subduction zone. For seismic hazard analysis of the northern canal area, these faults led us to include a source zone of shallow faults proximal to northern canal facilities. ?? 2003 Elsevier B.V. All rights reserved.

  19. Surface faulting along the Superstition Hills fault zone and nearby faults associated with the earthquakes of 24 November 1987

    USGS Publications Warehouse

    Sharp, R.V.

    1989-01-01

    The M6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9km; the maximum observed surface slip, 12.5cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is ~54cm. The average left-lateral slip for the conjugate faults trending northeastward is ~23cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4km. -from Authors

  20. Structural analysis of hanging wall and footwall blocks within the Río Guanajibo fold-and-thrust belt in Southwest Puerto Rico

    NASA Astrophysics Data System (ADS)

    Laó-Dávila, Daniel A.; Llerandi-Román, Pablo A.

    2017-01-01

    The Río Guanajibo fold-and-thrust belt (RGFT), composed of Cretaceous serpentinite and volcano-sedimentary rocks, represents the deformation front of a contractional event in SW Puerto Rico during the Paleogene. Previous studies inferred structural and stratigraphic relationships from poorly exposed outcrops. New road cuts exposed the Yauco (YF) and El Rayo Formations (ERF) providing insights on the deformation of the hanging wall and footwall. We described the nature and orientation of faults and folds and analyzed the kinematic indicators to characterize the deformation. The YF occurs in the hanging wall and shows a sequence of folded, medium-bedded mudstone and thinly bedded shale and sandstone. Major folds strike NW-SE and are gentle with steeply inclined axial planes and sub-horizontal fold axes. Minor folds are open with moderately inclined axial planes and gently to moderately inclined SE-plunging fold axes. NW-SE striking reverse and thrust faults cut layers and show movement to the SW. Steep left-lateral faults strike NW-SE and NE-SW, and smaller right-lateral strike-slip faults strike NNE-SSW. At the footwall, the ERF consists of bioclastic limestone and polymictic orthoconglomerates and paraconglomerates. Reverse and strike-slip faults cut along lithological contacts. Results suggest that the hanging wall and footwall accommodated strain along preexisting weaknesses, which are dependent on lithology and sedimentary structures. The kinematic analysis suggests that shortening in the NE-SW direction was partitioned between folding and interlayer shortening, accommodated by flexural slip, and reverse and left-lateral faults that resulted from contraction. The RGFT represents the Paleogene back arc deformation of a bivergent thrust system.

  1. Fault trends on the seaward slope of the Aleutian Trench: Implications for a laterally changing stress field tied to a westward increase in oblique convergence

    USGS Publications Warehouse

    Mortera-Gutierrez, C. A.; Scholl, D. W.; Carlson, R.L.

    2003-01-01

    Normal faults along the seaward trench slope (STS) commonly strike parallel to the trench in response to bending of the oceanic plate into the subduction zone. This is not the circumstance for the Aleutian Trench, where the direction of convergence gradually changes westward, from normal to transform motion. GLORIA side-scan sonar images document that the Aleutian STS is dominated by faults striking oblique to the trench, west of 179??E and east of 172??W. These images also show a pattern of east-west trending seafloor faults that are aligned parallel to the spreading fabric defined by magnetic anomalies. The stress-strain field along the STS is divided into two domains west and east, respectively, of 179??E. Over the western domain, STS faults and nodal planes of earthquakes are oriented oblique (9??-46??) to the trench axis and (69??-90??) to the magnetic fabric. West of 179??E, STS fault strikes change by 36?? from the E-W trend of STS where the trench-parallel slip gets larger than its orthogonal component of convergence. This rotation indicates that horizontal stresses along the western domain of the STS are deflected by the increasing obliquity in convergence. An analytical model supports the idea that strikes of STS faults result from a superposition of stresses associated with the dextral shear couple of the oblique convergence and stresses caused by plate bending. For the eastern domain, most nodal planes of earthquakes strike parallel to the outer rise, indicating bending as the prevailing mechanism causing normal faulting. East of 172??W, STS faults strike parallel to the magnetic fabric but oblique (10??-26??) to the axis of the trench. On the basis of a Coulomb failure criterion the trench-oblique strikes probably result from reactivation of crustal faults generated by spreading. Copyright 2003 by the American Geophysical Union.

  2. Spatial heterogeneity of stress and driving fluid pressure ratio inferred from mineral vein orientation along seismogenic megasplay fault (Nobeoka Thrust, Japan)

    NASA Astrophysics Data System (ADS)

    Otsubo, M.; Miyakawa, A.; Kawasaki, R.; Sato, K.; Yamaguchi, A.; Kimura, G.

    2015-12-01

    Fault zones including the damage zone and the fault core have a controlling influence on the crust's mechanical and fluid flow properties (e.g., Faulkner et al., 2010). In the Nankai subduction zone, southwest Japan, the velocity structures indicate the contrast of the pore fluid pressure between hanging wall and footwall of the megasplay fault (Tsuji et al., 2014). Nobeoka Thrust, which is an on-land example of an ancient megasplay fault, provides an excellent record of deformation and fluid flow at seismogenic depths (Kondo et al., 2005; Yamaguchi et al., 2011). Yamaguchi et al. (2011) showed that the microchemical features of syn-tectonic mineral veins along fault zones of the Nobeoka Thrust. The inversion approaches by using the mineral vein orientations can provide stress regimes and fluid driving pressure ratio (Jolly and Sanderson, 1997) at the time of fracture opening (e.g., Yamaji et al., 2010). In this study, we show (1) stress regimes in co- and post seismic period of the Nobeoka Thrust and (2) spatial heterogeneity of the fluid driving pressure ratio by using the mineral veins (extension veins) around the fault zone in the Nobeoka Thrust. We applied the inversion approach proposed by Sato et al. (2013) to estimate stress regimes by using the mineral vein orientations. The estimated stresses are the normal faulting stress regimes of which sigma 3 axes are almost horizontal and trend NNW-SSE in both the hanging wall and the footwall. The stress regimes are the negative stress for the reverse faulting stress regime that Kawasaki et al. (2014) estimated from the minor faults in the core samples of the Nobeoka Thrust Drilling Project (Hamahashi et al., 2013). And, the orientation of the sigma 3 axes of the estimated stress regime is parallel to the slip direction of the Nobeoka Thrust (Top to SSE; Kondo et al., 2005). These facts indicate the normal faulting stress regime at the time of fracture opening is the secondary stress generated by the slip of the Nobeoka Thrust. We estimated the fluid driving pressure ratio P* at the time of fracture opening by using the Mohr circle analysis that has been carried out using the vein orientation data. The estimated P* are 0.05 and 0.15-0.40 in the hanging wall and footwall, respectively. These results indicate that there are spatial differences of pore fluid pressure in the interseismic period.

  3. Karstic slope "breathing": morpho-structural influence and hazard implications

    NASA Astrophysics Data System (ADS)

    Devoti, Roberto; Falcucci, Emanuela; Gori, Stefano; Eliana Poli, Maria; Zanferrari, Adriano; Braitenberg, Carla; Fabris, Paolo; Grillo, Barbara; Zuliani, David

    2016-04-01

    The study refers to the active slope deformation detected by GPS and tiltmeter stations in the Cansiglio karstic plateau located in the western Carnic Prealps (NE Italy). The observed transient deformation clearly correlates with the rainfall, so that the southernmost border of the Plateau reacts instantly to heavy rains displaying a "back and forth" deformation up to a few centimeters wide, with different time constants, demonstrating a response to different catchment volumes. We carried out a field survey along the southern Cansiglio slope, to achieve structural characterization of the relief and to verify the possible relation between structural features and the peculiar geomorphological setting dominated by widespread karstic features. The Cansiglio plateau develops on the frontal ramp anticline of the Cansiglio thrust, an about ENE-WSW trending, SSE-verging, low angle thrust, belonging to the Neogene-Quaternary front of the eastern Southern Alps. The Cansiglio thrust outcrops at the base of the Cansiglio plateau, where it overlaps the Mesozoic carbonates on the Miocene-Quaternary terrigenous succession. All along its length cataclastic limestone largely outcrop. The Cansiglio thrust is bordered by two transfer zones probably inherited from the Mesozoic paleogeography: the Caneva fault in the west and the Col Longone fault in the east. The carbonatic massif is also characterized by a series of about northward steeply dipping reverse minor faults and a set of subvertical joints parallel to the axes of the Cansiglio anticline. Other NNW-SSE and NNE-SSW conjugate faults and fractures perpendicular to the Cansiglio southern slope are also identified. This structural setting affect pervasively the whole slope and may determine centimetre- to metre-scale rock prisms. Interestingly, along the topmost portion of the slope, some dolines and swallow holes show an incipient coalescence, that trends parallel to the massif front and to the deformation zones related to the reverse fault. Such a dolines alignment forms a ridge parallel elongated trench, about 4 km long, which is a typical morpho-structural feature of slopes undergoing large scale gravitational instability (deep seated gravitational slope deformations). The trench is interrupted towards the NE by several coalescent and slide scarps. Such geomorphic evidence testifies to the occurrence of landslides events (mainly rockslides and rock falls) that sourced from the top portion of the slope, as local collapses of the sector affected by the trench. Our observations, as a whole, suggest that morpho-structural framework of the Cansiglio south-eastern slope is highly influenced by tectonic features related to the complex tectonic deformation. The structural setting is locally favoring the nucleation of karstic landforms (dolines, swallow holes and ipokarstic features). Moreover, the presence of widespread tectonic features lead gravitational instability affecting the slope, linked to the high local relief of the mountain front, may trigger collapse of sectors of the slope in rock falls phenomena. In this perspective, therefore, the continuous "back and forth" movements of the slope observed by GPS time series analysis induced by rainfall may progressively weaken the slope and render it prone to landsliding.

  4. Interpretation of the Seattle uplift, Washington, as a passive-roof duplex

    USGS Publications Warehouse

    Brocher, T.M.; Blakely, R.J.; Wells, R.E.

    2004-01-01

    We interpret seismic lines and a wide variety of other geological and geophysical data to suggest that the Seattle uplift is a passive-roof duplex. A passive-roof duplex is bounded top and bottom by thrust faults with opposite senses of vergence that form a triangle zone at the leading edge of the advancing thrust sheet. In passive-roof duplexes the roof thrust slips only when the floor thrust ruptures. The Seattle fault is a south-dipping reverse fault forming the leading edge of the Seattle uplift, a 40-km-wide fold-and-thrust belt. The recently discovered, north-dipping Tacoma reverse fault is interpreted as a back thrust on the trailing edge of the belt, making the belt doubly vergent. Floor thrusts in the Seattle and Tacoma fault zones, imaged as discontinuous reflections, are interpreted as blind faults that flatten updip into bedding plane thrusts. Shallow monoclines in both the Seattle and Tacoma basins are interpreted to overlie the leading edges of thrust-bounded wedge tips advancing into the basins. Across the Seattle uplift, seismic lines image several shallow, short-wavelength folds exhibiting Quaternary or late Quaternary growth. From reflector truncation, several north-dipping thrust faults (splay thrusts) are inferred to core these shallow folds and to splay upward from a shallow roof thrust. Some of these shallow splay thrusts ruptured to the surface in the late Holocene. Ages from offset soils in trenches across the fault scarps and from abruptly raised shorelines indicate that the splay, roof, and floor thrusts of the Seattle and Tacoma faults ruptured about 1100 years ago.

  5. Evidence of Quaternary and recent activity along the Kyaukkyan Fault, Myanmar

    NASA Astrophysics Data System (ADS)

    Crosetto, Silvia; Watkinson, Ian M.; Soe Min; Gori, Stefano; Falcucci, Emanuela; Nwai Le Ngal

    2018-05-01

    Cenozoic right-lateral shear between the eastern Indian margin and Eurasia is expressed by numerous N-S trending fault systems inboard of the Sunda trench, including the Sagaing Fault. The most easterly of these fault systems is the prominent ∼500 km long Kyaukkyan Fault, on the Shan Plateau. Myanmar's largest recorded earthquake, Mw 7.7 on 23rd May 1912, focused near Maymyo, has been attributed to the Kyaukkyan Fault, but the area has experienced little significant seismicity since then. Despite its demonstrated seismic potential and remarkable topographic expression, questions remain about the Kyaukkyan Fault's neotectonic history.

  6. Precambrian basement geologic map of Montana; an interpretation of aeromagnetic anomalies

    USGS Publications Warehouse

    Sims, P.K.; O'Neill, J. M.; Bankey, Viki; Anderson, E.

    2004-01-01

    Newly compiled aeromagnetic anomaly data of Montana, in conjunction with the known geologic framework of basement rocks, have been combined to produce a new interpretive geologic basement map of Montana. Crystalline basement rocks compose the basement, but are exposed only in the cores of mountain ranges in southwestern Montana. Principal features deduced from the map are: (1) A prominent northeast-trending, 200-km-wide zone of spaced negative anomalies, which extends more than 700 km from southwestern Montana's Beaverhead Mountains to the Canadian border and reflects suturing of the Archean Mexican Hat Block against the Archean Wyoming Province along the Paleoproterozoic Trans-Montana Orogen (new name) at about 1.9-1.8 Ga; (2) North-northwest-trending magnetic lows in northeastern Montana, which reflect the 1.9-1.8 Ga Trans-Hudson Orogen and truncate the older Trans-Montana Zone; and (3) Subtle northwest- and west-trending negative anomalies in central and western Montana, which represent the northernmost segment of brittle-ductile transcurrent faults of the newly recognized Mesoproterozoic Trans-Rocky Mountain fault system. Structures developed in the Proterozoic provided zones of crustal weakness reactivated during younger Proterozoic and Phanerozoic igneous and tectonic activity. For example, the Trans-Montana Zone guided basement involved thrust faulting in southwestern Montana during the Sevier Orogeny. The Boulder Batholith and associated ore deposits and the linear belt of alkaline intrusions to the northeast were localized along a zone of weakness between the Missouri River suture and the Dillon shear zone of the Trans-Montana Orogen. The northwest-trending faults of Trans-Rocky Mountain system outline depocenters for sedimentary rocks in the Belt Basin. This fault system provided zones of weakness that guided Laramide uplifts during basement crustal shortening. Northwest-trending zones have been locally reactivated during Neogene basin-range extension.

  7. 2-D Density and Directional Analysis of Fault Systems in the Zagros Region (Iran) on a Regional Scale

    NASA Astrophysics Data System (ADS)

    Hashemi, Seyed Naser; Baizidi, Chavare

    2018-04-01

    In this paper, 2-D spatial variation of the frequency and length density and frequency-length relation of large-scale faults in the Zagros region (Iran), as a typical fold-and-thrust belt, were examined. Moreover, the directional analysis of these faults as well as the scale dependence of the orientations was studied. For this purpose, a number of about 8000 faults with L ≥ 1.0 km were extracted from the geological maps covering the region, and then, the data sets were analyzed. The overall pattern of the frequency/length distribution of the total faults of the region acceptably fits with a power-law relation with exponent 1.40, with an obvious change in the gradient in L = 12.0 km. In addition, maps showing the spatial variation of fault densities over the region indicate that the maximum values of the frequency and length density of the faults are attributed to the northeastern part of the region and parallel to the suture zone, respectively, and the fault density increases towards the central parts of the belt. Moreover, the directional analysis of the fault trends gives a dominant preferred orientation trend of 300°-330° and the assessment of the scale dependence of the fault directions demonstrates that larger faults show higher degrees of preferred orientations. As a result, it is concluded that the evolutionary path of the faulting process in this region can be explained by increasing the number of faults rather than the growth in the fault lengths and also it seems that the regional-scale faults in this region are generated by a nearly steady-state tectonic stress regime.

  8. Early tectonic evolution of the Thomson Orogen in Queensland inferred from constrained magnetic and gravity data

    NASA Astrophysics Data System (ADS)

    Spampinato, Giovanni P. T.; Betts, Peter G.; Ailleres, Laurent; Armit, Robin J.

    2015-05-01

    The crustal architecture as well as the kinematic evolution of the Thomson Orogen in Queensland is poorly resolved because the region is concealed under thick Phanerozoic sedimentary basins and the basement geology is known from limited drill holes. Combined potential field and seismic interpretation indicates that the Thomson Orogen is characterized by prominent regional NE- and NW-trending structural grain defined by long wavelength and low amplitude geophysical anomalies. The 'smooth' magnetic signature is interpreted to reflect deeply buried source bodies in the mid- to lower crust. Short wavelength positive magnetic features that correlate with negative gravity anomalies are interpreted to represent shallower granitic intrusions. They appear to be focused along major fault zones that might have controlled the locus for magmatism. The eastern Thomson Orogen is characterized by a prominent NE structural grain and orthogonal faults and fold interference patterns resulting in a series of troughs and highs. The western Thomson Orogen consists of a series of NW-trending structures interpreted to reflect reverse faults. Sedimentation and basin development are interpreted to have initiated in the Neoproterozoic to Early Cambrian during E-W- to ENE-WSW extension, possibly related to the Rodinia break-up. This extensional event was followed by Late Cambrian shortening recorded in the Maneroo Platform and the Diamantina River Domain which possibly correlates with the Delamerian Orogeny. Renewed deposition and volcanism occurred during the Ordovician and may have continued until Late Silurian, resulting in thinned Proterozoic basement crust and extensive basin systems that formed in a distal continental back-arc environment. Our interpretation places the Thomson Orogen to the west of the Neoproterozoic passive margin preserved in the Anakie Inlier. The region is likely to represent the internal extensional architecture during the Rodinia break-up that has been subsequently extensively modified by multiple extensional basin forming events and transient episodes of crustal shortening and basin inversion.

  9. Factors affecting the recognition of faults exposed in exploratory trenches

    USGS Publications Warehouse

    Bonilla, Manuel G.; Lienkaemper, James J.

    1991-01-01

    Trenching-a widely used method for evaluating fault activity-has limitations that can mislead investigators. Some segments of fault strands in trench walls may not be visible, and this nonvisibility can lead to incorrect interpretations of time of most recent displacement and recurrence intervals on a fault. We examined the logs of 163 trench exposures and tabulated data on more than 1,200 fault strands to investigate three categories of nonvisibility: (1) strands with obscure (invisible or poorly visible) segments, (2) strands that die out upward, and (3) strands that die out downward. About 14 percent of all the strands have obscure segments. Of the 143 strands on which it is possible to recognize dieout up (limited to strands for which position of ground surface at time of faulting is known), 45 percent do die out upward, and the fraction exceeds 70 percent for strike-slip and reverse faults. Thus a fault strand overlain by an apparently undisturbed deposit is not necessarily older than the deposit. More than 30 percent of all the strands die out downward, providing more evidence that fault strands can end for reasons other than being covered by deposits younger than the fault. Analysis of trench-log data revealed various relations between geologic factors and nonvisibility of fault strands. For example, fault type affects the incidence of nonvisibility, which is generally most common on strike-slip faults, less common on reverse faults, and least common on normal fau Its. The type of material penetrated by the fault also influences nonvisibility, which tends to be more common in soil horizons and sand, and less common in gravel. Dieout down is weakly influenced by fault displacement, decreasing in frequency with increase in displacement; the frequencies of obscure segments and dieout up do not vary consistently with fault displacement. Frequency of obscure segments generally decreases with increase in length of obscure segments, and frequency of dieout up generally decreases with depth of dieout up. Length of obscure segments and depth of dieout up are typically less than the effective thickness of associated beds. On the basis of few data, obscure segments seem to be more common on faults with younger, rather than older, ages of latest displacement. Our study revealed additional relations not directly related to nonvisibility. For example, the median widths of faults crossed by the trenches vary by fault type, strike-slip faults being narrower than dip-slip faults. In the shallow and mostly unconsolidated materials cut by the trenches, fault widths show only an erratic and, at best, weak relationship to fault displacements. Hanging walls are deformed more frequently than footwalls in dip-slip faults, but both walls are deformed at more than 30 percent of the exposures. We tabulated several phenomena that may indicate faulting or provide evidence of prehistorical earthquakes. Rotation of pebbles was identified in 41 percent of the exposures having gravel in the fault zone; type of fault has no strong influence on the incidence of pebble rotation. Fissures were recorded at 52 percent of the exposures and were more common in strike-slip and normal faults than in reverse fau Its. Gouge was reported at 1 5 percent of the exposures; fault type has no significant influence on its frequency. Slickensides were noted at 10 percent of the exposures, and fault type has an unknown influence on their incidence. Slickensides in unconsolidated materials were restricted to clay, silt, and gouge. Other mechanical or hydrologic effects related to faulting or earthquakesrubble, breccia, mixing, crushing, polishing, water barriers, c;ind probable liquefaction effects-were reported at fewer than 1 0 percent of the exposures.

  10. Active backstop faults in the Mentawai region of Sumatra, Indonesia, revealed by teleseismic broadband waveform modeling

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Bradley, Kyle Edward; Wei, Shengji; Wu, Wenbo

    2018-02-01

    Two earthquake sequences that affected the Mentawai islands offshore of central Sumatra in 2005 (Mw 6.9) and 2009 (Mw 6.7) have been highlighted as evidence for active backthrusting of the Sumatran accretionary wedge. However, the geometry of the activated fault planes is not well resolved due to large uncertainties in the locations of the mainshocks and aftershocks. We refine the locations and focal mechanisms of medium size events (Mw > 4.5) of these two earthquake sequences through broadband waveform modeling. In addition to modeling the depth-phases for accurate centroid depths, we use teleseismic surface wave cross-correlation to precisely relocate the relative horizontal locations of the earthquakes. The refined catalog shows that the 2005 and 2009 "backthrust" sequences in Mentawai region actually occurred on steeply (∼60 degrees) landward-dipping faults (Masilo Fault Zone) that intersect the Sunda megathrust beneath the deepest part of the forearc basin, contradicting previous studies that inferred slip on a shallowly seaward-dipping backthrust. Static slip inversion on the newly-proposed fault fits the coseismic GPS offsets for the 2009 mainshock equally well as previous studies, but with a slip distribution more consistent with the mainshock centroid depth (∼20 km) constrained from teleseismic waveform inversion. Rupture of such steeply dipping reverse faults within the forearc crust is rare along the Sumatra-Java margin. We interpret these earthquakes as 'unsticking' of the Sumatran accretionary wedge along a backstop fault separating imbricated material from the stronger Sunda lithosphere. Alternatively, the reverse faults may have originated as pre-Miocene normal faults of the extended continental crust of the western Sunda margin. Our waveform modeling approach can be used to further refine global earthquake catalogs in order to clarify the geometries of active faults.

  11. Seismic constraints and coulomb stress changes of a blind thrust fault system, 1: Coalinga and Kettleman hills, California

    USGS Publications Warehouse

    Lin, Jian; Stein, Ross S.

    2006-01-01

    This report reviews the seismicity and surface ruptures associated with the 1982-1985 earthquake sequence in the Coalinga region in California, and the role of Coulomb stress in triggering the mainshock sequence and aftershocks. The 1982-1985 New Idria, Coalinga, and Kettleman Hills earthquakes struck on a series of west-dipping, en echelon blind thrust faults. Each earthquake was accompanied by uplift of a Quaternary anticline atop the fault, and each was accompanied by a vigorous aftershock sequence. Aftershocks were widely dispersed, and are seen above and below the thrust fault, as well as along the up-dip and down-dip projection of the main thrust fault. For the Coalinga and Kettleman Hills earthquakes, high-angle reverse faults in the core of the anticlines are evident in seismic reflection profiles, and many of these faults are associated with small aftershocks. The shallowest aftershocks extended to within 3-4 km of the ground surface. There is no compelling evidence for aftershocks associated with flexural slip faulting. No secondary surface rupture was found on any of the anticlines. In contrast, the 1983 Nu?ez rupture struck on a high-angle reverse fault 10 km west of the Coalinga epicenter, and over a 40-80-day period, up to 1 m of oblique surface slip occurred. The slip on this Holocene fault likely extended from the ground surface to a depth of 8-10 km. We argue that both the Nu?ez and Kettleman earthquakes were triggered by stresses imparted by the Coalinga mainshock, which was the largest of the four events in the sequence.

  12. The magnitude 6.7 Northridge, California, earthquake of 17 January 1994

    USGS Publications Warehouse

    Jones, L.; Aki, K.; Boore, D.; Celebi, M.; Donnellan, A.; Hall, J.; Harris, R.; Hauksson, E.; Heaton, T.; Hough, S.; Hudnut, K.; Hutton, K.; Johnston, M.; Joyner, W.; Kanamori, H.; Marshall, G.; Michael, A.; Mori, J.; Murray, M.; Ponti, D.; Reasenberg, P.; Schwartz, D.; Seeber, L.; Shakal, A.; Simpson, R.; Thio, H.; Tinsley, J.; Todorovska, M.; Trifunac, M.; Wald, D.; Zoback, M.L.

    1994-01-01

    The most costly American earthquake since 1906 struck Los Angeles on 17 January 1994. The magnitude 6.7 Northridge earthquake resulted from more than 3 meters of reverse slip on a 15-kilometer-long south-dipping thrust fault that raised the Santa Susana mountains by as much as 70 centimeters. The fault appears to be truncated by the fault that broke in the 1971 San Fernando earthquake at a depth of 8 kilometers. Of these two events, the Northridge earthquake caused many times more damage, primarily because its causative fault is directly under the city. Many types of structures were damaged, but the fracture of welds in steel-frame buildings was the greatest surprise. The Northridge earthquake emphasizes the hazard posed to Los Angeles by concealed thrust faults and the potential for strong ground shaking in moderate earthquakes.The most costly American earthquake since 1906 struck Los Angeles on 17 January 1994. The magnitude 6.7 Northridge earthquake resulted from more than 3 meters of reverse slip on a 15-kilometer-long south-dipping thrust fault that raised the Santa Susana mountains by as much as 70 centimeters. The fault appears to be truncated by the fault that broke in the 1971 San Fernando earthquake at a depth of 8 kilometers. Of these two events, the Northridge earthquake caused many times more damage, primarily because its causative fault is directly under the city. Many types of structures were damaged, but the fracture of welds in steel-frame buildings was the greatest surprise. The Northridge earthquake emphasizes the hazard posed to Los Angeles by concealed thrust faults and the potential for strong ground shaking in moderate earthquakes.

  13. Seismic Hazards of the Upper Mississippi Embayment

    DTIC Science & Technology

    1998-01-01

    displacement of the Mississippi River; uplift of the Lake County uplift, Tiptonville dome, Blytheville arch; subsidence of Reelfoot Lake , Big Lake , and Lake St...slip faults within the Blytheville arch and western margin of the Reelfoot rift that are linked by the southwest dipping Reelfoot reverse fault. The...Bootheel lineament and back thrusts of the Reelfoot fault may also have slipped in 1811-12. Geomorphic effects of the 1811-12 sequence include

  14. Fault-dominated deformation in an ice dam during annual filling and drainage of a marginal lake

    USGS Publications Warehouse

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Anderson, S.P.; Anderson, R. Scott; Fountain, A.G.; Malm, A.

    2005-01-01

    Ice-dammed Hidden Creek Lake, Alaska, USA, outbursts annually in about 2-3 days. As the lake fills, a wedge of water penetrates beneath the glacier, and the surface of this 'ice dam' rises; the surface then falls as the lake drains. Detailed optical surveying of the glacier near the lake allows characterization of ice-dam deformation. Surface uplift rate is close to the rate of lake-level rise within about 400 m of the lake, then decreases by 90% over about 100 m. Such a steep gradient in uplift rate cannot be explained in terms of ice-dam flexure. Moreover, survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. Evidently, the zone of steep uplift gradient is a fault zone, with the faults penetrating the entire thickness of the ice dam. Fault motion is in a reverse sense as the lake fills, but in a normal sense as the lake drains. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.

  15. Geologic setting of the proposed West Flank Forge Site, California: Suitability for EGS research and development

    USGS Publications Warehouse

    Sabin, Andrew; Blake, Kelly; Lazaro, Mike; Blankenship, Douglas; Kennedy, Mack; McCullough, Jess; DeOreo, S.B.; Hickman, Stephen H.; Glen, Jonathan; Kaven, Joern; Williams, Colin F.; Phelps, Geoffrey; Faulds, James E.; Hinz, Nicholas H.; Calvin, Wendy M.; Siler, Drew; Robertson-Tait, Ann

    2017-01-01

    The proposed West Flank FORGE site is within the China Lake Naval Air Weapons Station (NAWS), China Lake, CA. The West Flank is west of the Coso geothermal field, an area of China Lake NAWS dominated by the Quaternary Coso volcanic field largely comprised of rhyolite domes and their volcaniclastic and epiclastic horizons. The largest dome flow complex, Sugarloaf Mountain, marks the northwestern margin of the geothermal field. The West Flank is situated due west of Sugarloaf. The geologic setting of the West Flank was determined from one deep well (83-11) drilled as a potential production hole in 2009. The bottom-hole temperature (BHT) of well 83-11 approaches 600 oF (315˚C), but flow tests demonstrate very low, non-commercial permeabilities. With the exception of the upper 600 feet of volcaniclastic alluvium, well 83-11 is completed in granitic basement. The West Flank possesses the primary attributes of a FORGE site: non-commercial permeability (<10-16m2), a 175˚ to 225˚C temperature range in crystalline rocks, and a location outside an existing geothermal fieldThe Coso Mountains host the Coso volcanic field and are within a right-releasing stepover between the dextral Airport Lake (ALF) and Little Lake fault zones (LLFZ) and the Wild Horse Mesa and Owens Valley faults. Two distinct fault populations have been identified at Coso: WNW-trending and antithetical, NE-trending strike-slip faults and N- to NNE-trending normal faults. These faults are both high permeability drilling targets at depth within the main (productive) geothermal field and they locally segment the field into distinct hydrothermal regimes. The West Flank may be segmented from the rest of the field by one such northerly trending fault. The overall minimum principal stress orientation in the main geothermal field varies from 103˚ to 108˚; however, the minimum horizontal principal stress in 83-11 is rotated to 081˚.

  16. Fernandina caldera collapse morphology in geometric and dynamic comparison to sandbox models, subsidence sinks over nuclear-explosion cavities, and some other calderas

    NASA Astrophysics Data System (ADS)

    Howard, K. A.

    2009-12-01

    The 1968 collapse structure of Fernandina caldera (1.5 km3 collapsed) and also the smaller Darwin Bay caldera in Galápagos each closely resembles morphologically the structural zoning of features found in depressions collapsed into nuclear-explosion cavities (“sinks” of Houser, 1969) and in coherent sandbox-collapse models. Coherent collapses characterized by faulting, folding, and organized structure contrast with spalled pit craters (and lab experiments with collapsed powder) where disorganized piles of floor rubble result from tensile failure of the roof. Subsidence in coherent mode, whether in weak sand in the lab, stronger desert alluvium for nuclear-test sinks, or in hard rock for calderas, exhibits consistent morphologic zones. Characteristically in the sandbox and the nuclear-test analogs these include a first-formed central plug that drops along annular reverse faults. This plug and a surrounding inward-tilted or monoclinal ring (hanging wall of the reverse fault) contract as the structure expands outward by normal faulting, wherein peripheral rings of distending material widen the upper part of the structure along inward-dipping normal faults and compress inner zones and help keep them intact. In Fernandina, a region between the monocline and the outer zone of normal faulting is interpreted, by comparison to the analogs, to overlie the deflation margin of an underlying magma chamber. The same zoning pattern is recognized in structures ranging from sandbox subsidence features centimeters across, to Alae lave lake and nuclear-test sinks tens to hundreds of meters across, to Fenandina’s 2x4 km-wide collapse, to Martian calderas tens of kilometers across. Simple dimensional analysis using the height of cliffs as a proxie for material strength implies that the geometric analogs are good dynamic analogs, and validates that the pattern of both reverse and normal faulting that has been reported consistently from sandbox modeling applies widely to calderas.

  17. Imaging the complexity of an active normal fault system: The 1997 Colfiorito (central Italy) case study

    USGS Publications Warehouse

    Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.

    2003-01-01

    Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.

  18. Flower-strucutre deformation pattern of theTian Shan mountains as revealed by Late Quaternary geological and modern Geodesy slip rates

    NASA Astrophysics Data System (ADS)

    Wu, C.; Zhang, P.; Zheng, W.; Wang, H.; Zhang, Z.; Ren, Z.; Zheng, D.; Yu, J.; Wu, G.

    2017-12-01

    The deformation pattern and strain distribution of the Tian Shan is a hot issue.Previous studies mainly focus on the thrust-fold systems on both sides of Tian Shan, the strike-slip faults within the mountains are rarely reported. The understanding about the deformation characteristics of Tian Shan is not complete for lacking information of these strike-slip faults.Our studies show the NEE trending structures of Maidan fault and Nalati fault in the southwestern Tian Shan are all active during the Holence. These faults are characterized by sinistral strike-slip and thrust movement. The minimum average sinistral strike-slip rate of the Maidan fault is 1.07 ± 0.13 mm/yr. During the late Quaternary, the average shortening rate and sinistral strike-slip rate of the Nalati fault are 2.1 ±0.4 mm/yr and 2.56 ±0.25 mm/yr, respectively . In the interior of the Tian Shan area, two groups of strike-slip faults were developed. The NEE trending faults with sinistral strike-slipmovement, and the NWW trending faults with dextral strike-slip movement show the shape of "X"in geometrical structure. The piedmont thrust faults and the thrust strike-slip faults in the interior mountain constitute the tectonic framework of Tian Shan. Threegroups of active fault systems are the main seismogenic and geological structures, which control the current tectonic deformation pattern of Tian Shan (Figure 1). GPS observation data also showthe similar deformation characteristics with the geological results (Figures 2, 3). In addition to the crustal shortening, there is a certain strike-slip shear movement in the interior of the Tian Shan.The strike-slip rate defined by the geological and GPS data is approximately consistent with each other near the same longitude. We suggest the two groups of strike-slip faults in the interior of mountains is a set of conjugate structures. The whole Tian Shan forms a large flower-structure in a profile view. The complete tectonic deformation of the Tian Shan mountains consists ofthe shortening deformationof the N-S direction and the lateral extrusion of the E-W direction (Figure 2). The late Cenozoic deformation of the Tian Shan mountains is due to the northward subduction of Tarim Block. Although the activedeformation of the Tian Shan decrease eastward, the geological sturcutrein eastern Tian Shan is similar.

  19. On abrupt transpression to transtension transition in the South Baikal rift system (Tunka - South Baikal segment)

    NASA Astrophysics Data System (ADS)

    Sankov, Vladimir; Parfeevets, Anna; Lukhnev, Andrey; Miroshnitchenko, Andrey; Ashurkov, Sergey; Sankov, Alexey; Usynin, Leonid; Eskin, Alexander; Bryzhak, Evgeny

    2013-04-01

    This work addresses to relation of transpression and extension stress-strain conditions in intracontinental rift system. In our investigation we use a new structural, shallow geophysics, GPS geodetic data and paleostress reconstructions. The surroundings of southern tip of Siberian platform is the region of three Late Cenozoic structures conjugation: sublatitudinal Obruchev fault (OF) controlling the northern boundary of the South Baikal basin, NW trending Main Sayan fault (MSF) as the strike-slip boundary between Siberian platform and East Sayan block and WNW trending eastern segment of Tunka fault (TF) as part of the Tunka basins system northern boundary. A new evidences of superposition of compression and extension fault structures were revealed near the southern extremity of Baikal lake. We've find a very close vicinity of Late Pleistocene - Holocene strike-slip, thrust and normal faulting in the MSF and OF junction zone. The on-land Holocene normal faulting can be considered as secondary fault paragenesis within the main strike-slip zone (Sankov et al., 2009). Active strike-slip, thrust and reverse faulting characterize the MSF and TF junction zone. The transpression conditions are replaced very sharply by transtension and extension ones in eastern direction from zone of structures conjugation - the active normal faulting is dominated within the South Baikal basin. The Bystraya rift basin located in the west shows the tectonic inversion since Middle Pleistocene as a result of the strike-slip movements partitioning between TF and MSF and inset of edition compression stress. The active strike-slip and intrabasin extension conditions are dominated father to the west in Tunka basin. The results of our GPS measurements show the present day convergence and east movements of Khamar-Daban block and eastern Tunka basins relative to Siberian platform along MSF and TF with NE-SW shortening domination. The clear NW-SE divergence across Baikal basin is documented. Holocene and present-day left lateral relative motions of about 3 mm/yr (Sankov et al., 2004) between of Siberian platform and its mounting frame are accommodated along south-eastern segment of MSF. We consider two main factors of sharp transition between transpression and transtension to extension conditions in Tunka-South Baikal segment of Baikal rift system. The first one is the influence of geometry of southern tip of Siberian platform as a first order ancient lithosphere heterogeneity in agreement with (Petit et al., 1996). The second factor is the interaction in this region of two tectonic forces driving the Cenozoic geodynamics. The initial opening of the Tunka and South Baikal basins since Oligocene time as well as father Baikal rift system development caused by long lived asthenosphere flow along NW-SE direction (Sankov et al., 2011). The addition NE-SW compression started during Pliocene (Parfeevets, Sankov, 2006) as the result of the Hindustan and Eurasia convergence. The former caused transpression deformations and clockwise horizontal block rotations along south-western boundary of the platform with their SE movements to the "free space" opened by the divergence of Siberian platform and Transbaikal block (Sankov et al., 2002, 2005).

  20. Plate convergence and deformation, North Luzon Ridge, Philippines

    NASA Astrophysics Data System (ADS)

    Lewis, Stephen D.; Hayes, Dennis E.

    1989-10-01

    Marine geophysical and earthquake seismology data indicate that the North Luzon Ridge, a volcano-capped bathymetrie ridge system that extends between Luzon and Taiwan, is presently undergoing deformation in response to the relative motion between the Asian and Philippine Sea plates. Plate motion models predict convergence along the western side of the Philippine Sea plate, from Japan in the north to Indonesia in the south, and most of this plate margin is defined by active subduction zones. However, the western boundary of the Philippine Sea plate adjacent to the North Luzon Ridge shows no evidence of an active WNW-dipping subduction zone; this is in marked contrast to the presence of both the Philippine Trench/East Luzon Trough subduction zones to the south and the Ryukyu Trench subduction zone to the north. Crustal shortening, in response to ongoing plate convergence in the North Luzon Ridge region, apparently takes place through a complex pattern of strike-slip and thrust faulting, rather than by the typical subduction of oceanic lithosphere along a discreet zone. The curvilinear bathymetrie trends within the North Luzon Ridge represent the traces of active faults. The distribution of these faults, mapped by both multichannel and single-channel seismic reflection methods and earthquake seismicity patterns and focal mechanism solutions, suggest that right-lateral, oblique-slip faulting occurs along NE-trending faults, and left-lateral, oblique-slip faulting takes place on N- and NNW-trending faults. The relative plate convergence accommodated by the deformation of the North Luzon Ridge will probably be taken up in the future by the northward-propagating East Luzon Trough subduction zone.

  1. 3D seismic detection of shallow faults and fluid migration pathways offshore Southern Costa Rica: Application of neural-network meta-attributes

    NASA Astrophysics Data System (ADS)

    Kluesner, J. W.; Silver, E. A.; Nale, S. M.; Bangs, N. L.; McIntosh, K. D.

    2013-12-01

    We employ a seismic meta-attribute workflow to detect and analyze probable faults and fluid-pathways in 3D within the sedimentary section offshore Southern Costa Rica. During the CRISP seismic survey in 2011 we collected an 11 x 55 km grid of 3D seismic reflection data and high-resolvability EM122 multibeam data, with coverage extending from the incoming plate to the outer-shelf. We mapped numerous seafloor seep indicators, with distributions ranging from the lower-slope to ~15 km landward of the shelf break [Kluesner et al., 2013, G3, doi:10.1002/ggge.20058; Silver et al., this meeting]. We used the OpendTect software package to calculate meta-attribute volumes from the 3D seismic data in order to detect and visualize seismic discontinuities in 3D. This methodology consists of dip-steered filtering to pre-condition the data, followed by combining a set of advanced dip-steered seismic attributes into a single object probability attribute using a user-trained neural-network pattern-recognition algorithm. The parameters of the advanced seismic attributes are set for optimal detection of the desired geologic discontinuity (e.g. faults or fluid-pathways). The product is a measure of probability for the desired target that ranges between 0 and 1, with 1 representing the highest probability. Within the sedimentary section of the CRISP survey the results indicate focused fluid-migration pathways along dense networks of intersecting normal faults with approximately N-S and E-W trends. This pattern extends from the middle slope to the outer-shelf region. Dense clusters of fluid-migration pathways are located above basement highs and deeply rooted reverse faults [see Bangs et al., this meeting], including a dense zone of fluid-pathways imaged below IODP Site U1413. In addition, fault intersections frequently show an increased signal of fluid-migration and these zones may act as major conduits for fluid-flow through the sedimentary cover. Imaged fluid pathways root into high-backscatter pockmarks and mounds on the seafloor, which are located atop folds and clustered along intersecting fault planes. Combining the fault and fluid-pathway attribute volumes reveals qualitative first order information on fault seal integrity within the CRISP survey region, highlighting which faults and/or fault sections appear to be sealing or leaking within the sedimentary section. These results provide 3D insight into the fluid-flow behavior offshore southern Costa Rica and suggest that fluids escaping through the deeper crustal rocks are predominantly channeled along faults in the sedimentary cover, especially at fault intersections.

  2. Fault-scale controls on rift geometry: the Bilila-Mtakataka Fault, Malawi

    NASA Astrophysics Data System (ADS)

    Hodge, M.; Fagereng, A.; Biggs, J.; Mdala, H. S.

    2017-12-01

    Border faults that develop during initial stages of rifting determine the geometry of rifts and passive margins. At outcrop and regional scales, it has been suggested that border fault orientation may be controlled by reactivation of pre-existing weaknesses. Here, we perform a multi-scale investigation on the influence of anisotropic fabrics along a major developing border fault in the southern East African Rift, Malawi. The 130 km long Bilila-Mtakataka fault has been proposed to have slipped in a single MW 8 earthquake with 10 m of normal displacement. The fault is marked by an 11±7 m high scarp with an average trend that is oblique to the current plate motion. Variations in scarp height are greatest at lithological boundaries and where the scarp switches between following and cross-cutting high-grade metamorphic foliation. Based on the scarp's geometry and morphology, we define 6 geometrically distinct segments. We suggest that the segments link to at least one deeper structure that strikes parallel to the average scarp trend, an orientation consistent with the kinematics of an early phase of rift initiation. The slip required on a deep fault(s) to match the height of the current scarp suggests multiple earthquakes along the fault. We test this hypothesis by studying the scarp morphology using high-resolution satellite data. Our results suggest that during the earthquake(s) that formed the current scarp, the propagation of the fault toward the surface locally followed moderately-dipping foliation well oriented for reactivation. In conclusion, although well oriented pre-existing weaknesses locally influence shallow fault geometry, large-scale border fault geometry appears primarily controlled by the stress field at the time of fault initiation.

  3. Winnetka deformation zone: Surface expression of coactive slip on a blind fault during the Northridge earthquake sequence, California. Evidence that coactive faulting occurred in the Canoga Park, Winnetka, and Northridge areas during the 17 January 1994, Northridge, California earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruikshank, K.M.; Johnson, A.M.; Fleming, R.W.

    1996-12-31

    Measurements of normalized length changes of streets over an area of 9 km{sup 2} in San Fernando Valley of Los Angeles, California, define a distinctive strain pattern that may well reflect blind faulting during the 1994 Northridge earthquake. Strain magnitudes are about 3 {times} 10{sup {minus}4}, locally 10{sup {minus}3}. They define a deformation zone trending diagonally from near Canoga Park in the southwest, through Winnetka, to near Northridge in the northeast. The deformation zone is about 4.5 km long and 1 km wide. The northwestern two-thirds of the zone is a belt of extension of streets, and the southeastern one-thirdmore » is a belt of shortening of streets. On the northwest and southeast sides of the deformation zone the magnitude of the strains is too small to measure, less than 10{sup {minus}4}. Complete states of strain measured in the northeastern half of the deformation zone show that the directions of principal strains are parallel and normal to the walls of the zone, so the zone is not a strike-slip zone. The magnitudes of strains measured in the northeastern part of the Winnetka area were large enough to fracture concrete and soils, and the area of larger strains correlates with the area of greater damage to such roads and sidewalks. All parts of the pattern suggest a blind fault at depth, most likely a reverse fault dipping northwest but possibly a normal fault dipping southeast. The magnitudes of the strains in the Winnetka area are consistent with the strains produced at the ground surface by a blind fault plane extending to depth on the order of 2 km and a net slip on the order of 1 m, within a distance of about 100 to 500 m of the ground surface. The pattern of damage in the San Fernando Valley suggests a fault segment much longer than the 4.5 km defined by survey data in the Winnetka area. The blind fault segment may extend several kilometers in both directions beyond the Winnetka area. This study of the Winnetka area further supports observations that a large earthquake sequence can include rupture along both a main fault and nearby faults with quite different senses of slip. Faults near the main fault that approach the ground surface or cut the surface in an area have the potential of moving coactively in a major earthquake. Movement on such faults is associated with significant damage during an earthquake. The fault that produced the main Northridge shock and the faults that moved coactively in the Northridge area probably are parts of a large structure. Such interrelationships may be key to understanding earthquakes and damage caused by tectonism.« less

  4. Impact of sea-level rise on earthquake and landslide triggering offshore the Alentejo margin (SW Iberia)

    NASA Astrophysics Data System (ADS)

    Neves, M. C.; Roque, C.; Luttrell, K. M.; Vázquez, J. T.; Alonso, B.

    2016-12-01

    Earthquakes and submarine landslides are recurrent and widespread manifestations of fault activity offshore SW Iberia. The present work tests the effects of sea-level rise on offshore fault systems using Coulomb stress change calculations across the Alentejo margin. Large-scale faults capable of generating large earthquakes and tsunamis in the region, especially NE-SW trending thrusts and WNW-ESE trending dextral strike-slip faults imaged at basement depths, are either blocked or unaffected by flexural effects related to sea-level changes. Large-magnitude earthquakes occurring along these structures may, therefore, be less frequent during periods of sea-level rise. In contrast, sea-level rise promotes shallow fault ruptures within the sedimentary sequence along the continental slope and upper rise within distances of <100 km from the coast. The results suggest that the occurrence of continental slope failures may either increase (if triggered by shallow fault ruptures) or decrease (if triggered by deep fault ruptures) as a result of sea-level rise. Moreover, observations of slope failures affecting the area of the Sines contourite drift highlight the role of sediment properties as preconditioning factors in this region.

  5. Tectonic Constraints on the Evolution of Geothermal Systems in the Central Andean Volcanic Zone (CAVZ)

    NASA Astrophysics Data System (ADS)

    Veloso, E. E.; Tardani, D.; Aron, F.; Elizalde, J. D.; Sanchez-Alfaro, P.; Godoy, B.

    2017-12-01

    South of 19°S, geothermal fields and Pliocene-to-Holocene volcanic centers of the Central Andean Volcanic Zone are spatially associated with distinct, large-scale fault systems disrupting the volcanic arc, which control the architecture and dynamics of the fluids reservoirs at shallow crustal levels. Based on an extensive compilation of structural, lithological and isotopic data, and satellite imagery band-ratio analyses, we produced detailed maps of 13 areas comprising 19 identified and/or potential geothermal fields, to examine if particular local-scale tectonic configurations are associated to fluids migrating from different crustal levels. We defined three main tectonic environments according to the specific, kilometer-scale structural arrangement and its spatial relation to the geothermal surface manifestations. T1, dominated by left-lateral, pure strike-slip motion on a NW-trending duplex-like geometry with geothermal fields located along the faults - in turn distributed into five major subparallel zones cutting across the orogenic belt between ca. 20° and 27°S. T2, dominated by shortening on a series of N-trending thrust faults and fault-propagated folds, cut and displaced by the above mentioned NW-trending faults, with geothermal fields hosted at fault intersections and at fold hinges. And T3, characterized by transtension accommodated by NW-to-WNW-trending left-lateral/normal faults, with hot-springs lying along the fault traces. Interestingly, each of the independently defined tectonic environments has distinctive helium (in fluids) and strontium (in lavas) isotopic signatures and estimated geothermal reservoir temperatures. T1 shows a large 4He contribution, low 87Sr/86Sr ratio and temperatures varying between ca. 220°-310°C; T3 low 4He and high 87Sr/86Sr ratio and temperature (260°-320°C); T2 isotopic values fall between T1 and T3, yet showing the lowest (130°-250°C) temperatures. We suggest that these particular isotopic signatures are due to a strong structural control on the hot reservoir location and meteoric water content, T3 allowing deeper hot fluid provenances and T1 more meteoric influx.

  6. Differential Extension, Displacement Transfer, and the South to North Decrease in Displacement on the Furnace Creek - Fish Lake Valley Fault System, Western Great Basin.

    NASA Astrophysics Data System (ADS)

    Katopody, D. T.; Oldow, J. S.

    2015-12-01

    The northwest-striking Furnace Creek - Fish Lake Valley (FC-FLV) fault system stretches for >250 km from southeastern California to western Nevada, forms the eastern boundary of the northern segment of the Eastern California Shear Zone, and has contemporary displacement. The FC-FLV fault system initiated in the mid-Miocene (10-12 Ma) and shows a south to north decrease in displacement from a maximum of 75-100 km to less than 10 km. Coeval elongation by extension on north-northeast striking faults within the adjoining blocks to the FC-FLV fault both supply and remove cumulative displacement measured at the northern end of the transcurrent fault system. Elongation and displacement transfer in the eastern block, constituting the southern Walker Lane of western Nevada, exceeds that of the western block and results in the net south to north decrease in displacement on the FC-FLV fault system. Elongation in the eastern block is accommodated by late Miocene to Pliocene detachment faulting followed by extension on superposed, east-northeast striking, high-angle structures. Displacement transfer from the FC-FLV fault system to the northwest-trending faults of the central Walker Lane to the north is accomplished by motion on a series of west-northwest striking transcurrent faults, named the Oriental Wash, Sylvania Mountain, and Palmetto Mountain fault systems. The west-northwest striking transcurrent faults cross-cut earlier detachment structures and are kinematically linked to east-northeast high-angle extensional faults. The transcurrent faults are mapped along strike for 60 km to the east, where they merge with north-northwest faults forming the eastern boundary of the southern Walker Lane. The west-northwest trending transcurrent faults have 30-35 km of cumulative left-lateral displacement and are a major contributor to the decrease in right-lateral displacement on the FC-FLV fault system.

  7. Modular Adder Designs Using Optimal Reversible and Fault Tolerant Gates in Field-Coupled QCA Nanocomputing

    NASA Astrophysics Data System (ADS)

    Bilal, Bisma; Ahmed, Suhaib; Kakkar, Vipan

    2018-02-01

    The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular automata (QCA) nanotechnology. Firstly, a new 3 × 3 reversible and universal gate, RG-QCA, is proposed and implemented in QCA technology using conventional 3-input majority voter based logic. Further the gate is optimized by using explicit interaction of cells and this optimized gate is then used to design an optimized modular full adder in QCA. Another configuration of RG-QCA gate, CRG-QCA, is then proposed which is a 4 × 4 gate and includes the fault tolerant characteristics and parity preserving nature. The proposed CRG-QCA gate is then tested to design a fault tolerant full adder circuit. Extensive comparisons of gate and adder circuits are drawn with the existing literature and it is envisaged that our proposed designs perform better and are cost efficient in QCA technology.

  8. Constraints on the development of orogenic style gold mineralisation at Mineral de Talca, Coastal Range, central Chile: evidence from a combined structural, mineralogical, S and Pb isotope and geochronological study

    NASA Astrophysics Data System (ADS)

    Firth, Emily A.; Holwell, David A.; Oliver, Nicholas H. S.; Mortensen, James K.; Rovardi, Matthew P.; Boyce, Adrian J.

    2015-08-01

    Mineral de Talca is a rare occurrence of Mesozoic, gold-bearing quartz vein mineralisation situated within the Coastal Range of northern Chile. Quartz veins controlled by NNW-SSE-trending faults are hosted by Devonian-Carboniferous metasediments of greenschist facies and younger, undeformed granitoid and gabbro intrusions. The principal structural control in the area is the easterly dipping, NNW-SSE-trending El Teniente Fault, which most likely developed as an extensional normal fault in the Triassic but was later reactivated as a strike-slip fault during subsequent compression. A dilational zone in the El Teniente Fault appears to have focussed fluid flow, and an array of NW-SE-trending veins is present as splays off the El Teniente Fault. Mineralised quartz veins typically up to a metre thick occur in three main orientations: (1) parallel to and within NNW-SSE-trending, E-dipping faults throughout the area; (2) along NW-SE-trending, NE-dipping structures which may also host andesite dykes; and (3) rarer E-W-trending, subvertical veins. All mineralised quartz veins show evidence of multiple fluid events with anastomosing and crosscutting veins and veinlets, some of which contain up to 3.5 vol.% base metal sulphides. Mineralogically, Au is present in three textural occurrences, identified by 3D CT scanning: (1) with arsenopyrite and pyrite in altered wall rock and along the margins of some of the veins; (2) with Cu-Pb-Zn sulphides within quartz veins; and (3) as nuggets and clusters of native Au within quartz. Fluid inclusion work indicates the presence of CO2-CH4-bearing fluids with homogenisation temperatures of ˜350 °C and aqueous fluids with low-moderate salinities (0.4-15.5 wt% NaCl eq.) with homogenisation temperatures in the range of 161-321 °C. The presence of Au with arsenopyrite and pyrite in structurally controlled quartz veins and in greenschist facies rocks with evidence of CO2-bearing fluids is consistent with an orogenic style classification for the mineralisation. However, the significant amounts of base metals and the moderate salinity of some of the fluids and the proximity to felsic granitoid intrusions have raised the possibility of an intrusion-related origin for the mineralisation. Vein sulphides display S isotope signatures (δ34S +2.1 to +4.3 ‰) that are intermediate between the host rock metasediments (δ34S +5.3 to +7.5 ‰) and the local granitoids (δ34S +1.3 to +1.4 ‰), indicating a distinct crustal source of some of the S in the veins and possibly a mixed magmatic-crustal S source. The local granite and granodiorite give U-Pb zircon ages of 219.6 ± 1 and 221.3 ± 2.8 Ma, respectively. Lead isotopic compositions of galena in the veins are consistent, suggesting derivation from a homogeneous source. Differences, however, between the isotopic signatures of the veins and igneous feldspars from nearby intrusions imply that these bodies were not the source of the metals though an igneous source from depth cannot be discounted. The Triassic age of the granitoids is consistent with emplacement during regional crustal extension, with the El Teniente Fault formed as an easterly dipping normal fault. The change to a compressional regime in the mid-Jurassic caused reactivation of the El Teniente Fault as a strike-slip fault and provided a structural setting suitable for orogenic style mineralisation. The intrusions may, however, have provided a structural competency contrast that focused the mineralising fluids in a dilational jog along the El Teniente Fault to form WNW-trending veins. As such, the mineralisation is classified as orogenic style, and the identification of the key mineralogical, isotopic and structural features has implications for exploration and the development of similar deposits along the Coastal Range.

  9. Late Quaternary faulting in the Cabo San Lucas-La Paz Region, Baja California

    NASA Astrophysics Data System (ADS)

    Busch, M.; Arrowsmith, J. R.; Umhoefer, P. J.; Gutiérrez, G. M.; Toke, N.; Brothers, D.; Dimaggio, E.; Maloney, S.; Zielke, O.; Buchanan, B.

    2006-12-01

    While Baja California drifts, active deformation on and just offshore indicates that spreading is not completely localized to the rift axis in the Gulf of California. Using on and offshore data, we characterize normal faulting- related deformation in the Cabo San Lucas-La Paz area. We mapped sections of the north trending faults in a 150 km long left-stepping fault array. Starting in the south, the San Jose del Cabo fault (east dipping) bounds the ~2 km high Sierra La Laguna. It is >70 km long with well defined 1-10 meter fault scarps cutting the youngest late Quaternary geomorphic surfaces. Our preliminary mapping along the north central section exhibits extensive late Quaternary terraces with riser heights of tens of meters above Holocene terraces. The San Jose del Cabo fault trace becomes diffuse and terminates in the area of Los Barriles. Moving northward, the fault system steps to the west, apparently transferring slip to the faults of San Juan de Los Planes and Saltito, which then step left again across the La Paz basin to the NNW trending Carrizal Fault. It has an on shore length of > 60 km. We produced a 25 km detailed strip map along the northern segment. It is embayed by convex east arcs several km long and 100 m deep. In the south, few-m-high scarps cut a pediment of thin Quaternary cover over tertiary volcanic rocks. The escarpment along the fault is hundreds of meters high and scarps 1-10 m high where it goes offshore in the north. Near Bonfil, a quarry cut exposes the fault zone. It comprises a 5-10 m wide bedrock shear zone with sheared tertiary volcanic units. On the footwall, the lower silty and sandy units have moderately well developed pedogenic carbonate, whereas the upper coarse gravel does not. These late Quaternary units appear to be faulted by one to three earthquakes. Finally, we mapped the Saltito fault zone NNE of La Paz. It is a NW trending structure with well developed 5- 10 meter high bedrock scarps defining its NW 5 km and slightly concave east with a 500 m left. Along all the fault zones studied, offset geomorphic surfaces indicate late Pleistocene to Holocene offset. These surfaces can be exploited to determine slip rates and produce a regional chronosequence to test for synchroneity of climatically modulated variations in sediment supply and transport capacity. In addition, a shallow marine geophysics and coring extends our mapping and provides important age control and improved stratigraphic assessment of fault activity.

  10. Current crustal deformation of the Taiwan orogen reassessed by cGPS strain-rate estimation and focal mechanism stress inversion

    NASA Astrophysics Data System (ADS)

    Chen, Sean Kuanhsiang; Wu, Yih-Min; Hsu, Ya-Ju; Chan, Yu-Chang

    2017-07-01

    We study internal deformation of the Taiwan orogen, a young arc-continental collision belt, which the spatial heterogeneity remains unclear. We aim to ascertain heterogeneity of the orogenic crust in depth when specifying general mechanisms of the Taiwan orogeny. To reach this goal, we used updated data of continuous GPS (cGPS) and earthquake focal mechanisms to reassess geodetic strain-rate and seismic stress fields of Taiwan, respectively. We updated the both data sets from 1990 to 2015 to provide large amount of constraints on surficial and internal deformation of the crust for a better understanding. We estimated strain-rate tensors by calculating gradient tensors of cGPS station velocities in horizontal 0.1°-spacing grids via Delaunay triangulation. We determined stress tensors within a given horizontal and vertical grid cell of 0.1° and 10 km, respectively, by employing the spatial and temporal stress inversion. To minimize effects of the 1999 Mw 7.6 Chi-Chi earthquake on trends of the strain and stress, we modified observational possible bias of the cGPS velocities after the earthquake and removed the first 15-month focal mechanisms within the fault rupture zone. We also calculated the Anderson fault parameter (Aϕ) based on stress ratios and rake angles to quantitatively describe tectonic regimes of Taiwan. By examining directions of seismic compressive axes and styles of faulting, our results indicate that internal deformation of the crust is presently heterogeneous in the horizontal and vertical spaces. Directions of the compressive axes are fan-shaped oriented between N10°W and N110°W in the western and mid-eastern Taiwan at the depths of 0-20 km and near parallel to orientations of geodetic compressional axes. The orientations agreed with predominantly reverse faulting in the western Taiwan at the same depth range, implying a brittle deformation regime against the Peikang Basement High. Orientations of the compressive axes most rotated counter-clockwise at the depths of 20-40 km, coinciding with transition of styles of faulting from reverse to strike-slip faulting along the depths as revealed by variation of the Aϕ values. The features indicate that internal deformation of the upper crust is primarily driven by the same compressional mechanism. It implies that geodetic strains could detect the deformation from surface down to a maximal depth of 20 km in most regimes of Taiwan. We find that heterogeneity in orientations of compressive axes and styles of faulting is strong in two regimes at the northern and southern Central Range, coinciding to areas of the orogenic thinned/thickened crust. Conversely, the heterogeneity is weak in the central Western Foothills at surrounding area of root of the overthickened crust. This observation, coupled with regional seismological observations, may imply that vertical deformation from crustal thickening and thinning and thinning-related dynamics from mantle flows may have joint influence on degree of stress heterogeneity.

  11. Earthquake activity along the Himalayan orogenic belt

    NASA Astrophysics Data System (ADS)

    Bai, L.; Mori, J. J.

    2017-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trevena, A.S.; Varga, R.J.; Collins, I.D.

    Salin basin of central Myanmar is a tertiary fore-arc basin that extends over 10,000 mi{sup 2} and contains 30,000+ ft of siliciclastic rocks. In the western Salin basin, Tertiary deltaic and fluvial formations contain thousands of feet of lithic sandstones that alternate with transgressive shallow marine shales. Facies and paleocurrent studies indicate deposition by north-to-south prograding tidal deltas and associated fluvial systems in a semi-restricted basin. Presence of serpentinite and volcanic clasts in Tertiary sandstones may imply that the basin was bounded to the east by the volcanic arc and to the west by a fore-arc accretionary ridge throughout muchmore » of the Cenozoic. Salin basin is currently defined by a regional north/south-trending syncline with uplifts along the eastern and western margins. Elongate folds along the eastern basin margin verge to the east and lie above the reverse faults that dip west; much of Myanmar's present hydrocarbon production is from these structures. Analogous structures occur along the western margin, but verge to the west and are associated with numerous hydrocarbon seeps and hand-dug wells. These basin-bounding structures are the result of fault-propagation folding. In the western Salin basin, major detachments occur within the shaly Tabyin and Laungshe formations. Fault ramps propagated through steep forelimbs on the western sides of the folds, resulting in highly asymmetric footwall synclines. Stratigraphic and apatite fission track data are consistent with dominantly Plio-Pleistocene uplift, with limited uplift beginning approximately 10 Ma. Paleostress analysis of fault/slickenside data indicates that fold and thrust structures formed during regional east/west compression and are not related in any simple way to regional transpression as suggested by plate kinematics.« less

  13. Geology of the southwestern Pasco Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-09-01

    The objective of this study was to define those aspects of the stratigraphic, structural, and tectonic setting which are important to the integrity of a deep-mined waste-isolation cavern in the Columbia River basalts. Three principal structural features received the focus of the field effort in the 1,485-square-kilometer area. These are the northern end of the Horse Heaven uplift, the linear ridges of the Badger Mountain-Red Mountain trend, and the Rattlesnake uplift. The thickest sequence of basalt exposed in the study area is on the steep, northeastern slope of Rattlesnake Mountain; about 485 meters of stratigraphic section can be examined inmore » the field area. Subsidence and weak deformation of the southwestern Pasco Basin area during Yakima time can be recognized in the disposition of flows and interbeds. In the southwestern Pasco Basin, most of the topographically expressed basalt bedrock mountains, ridges, hills, and knolls have developed since spreading of the Saddle Mountains flows. Deformation since Ice Harbor time (about 8 million years ago) has been by folding, faulting, and in some structures, by a combination of both. The doubly plunging anticlinal folds of Badger Mountain, Red Mountain, and easternmost Rattlesnake Hills have vertical structural amplitudes in the 80 to 200-meter range. The high-angle, possibly reverse Badger Mountain fault has offset up to 60 meters; offset is downward on the northeast. Rattlesnake Mountain is, in part, a tilted fault-block structure. The western end of the Rattlesnake uplift, Rattlesnake Hills, is principally a broad anticline with numerous minor folds and faults. Geomorphic relations suggest that the post-Ice Harbor structural movement in the study area is of one episode. 65 figures, 8 tables.« less

  14. Evaluation of the evolving stress field of the Yellowstone volcanic plateau, 1988 to 2010, from earthquake first-motion inversions

    NASA Astrophysics Data System (ADS)

    Russo, E.; Waite, G. P.; Tibaldi, A.

    2017-03-01

    Although the last rhyolite eruption occurred around 70 ka ago, the silicic Yellowstone volcanic field is still considered active due to high hydrothermal and seismic activity and possible recent magma intrusions. Geodetic measurements document complex deformation patterns in crustal strain and seismic activity likewise reveal spatial and temporal variations in the stress field. We use earthquake data recorded between 1988 and 2010 to investigate these variations and their possible causes in more detail. Earthquake relocations and a set of 369 well-constrained, double-couple, focal mechanism solutions were computed. Events were grouped according to location and time to investigate trends in faulting. The majority of the events have normal-faulting solutions, subordinate strike-slip kinematics, and very rarely, reverse motions. The dominant direction of extension throughout the 0.64 Ma Yellowstone caldera is nearly ENE, consistent with the perpendicular direction of alignments of volcanic vents within the caldera, but our study also reveals spatial and temporal variations. Stress-field solutions for different areas and time periods were calculated from earthquake focal mechanism inversion. A well-resolved rotation of σ3 was found, from NNE-SSW near the Hebgen Lake fault zone, to ENE-WSW near Norris Junction. In particular, the σ3 direction changed throughout the years around Norris Geyser Basin, from being ENE-WSW, as calculated in the study by Waite and Smith (2004), to NNE-SSW, while the other σ3 directions are mostly unchanged over time. The presence of ;chocolate tablet; structures, with two sets of nearly perpendicular normal faults, was identified in many stages of the deformation history both in the Norris Geyser Basin area and inside the caldera.

  15. Imaging the Crust in the Northern Sector of the 2009 L'Aquila Seismic Sequence through Oil Exploration Data Interpretation

    NASA Astrophysics Data System (ADS)

    Grazia Ciaccio, Maria; Improta, Luigi; Patacca, Etta; Scandone, Paolo; Villani, Fabio

    2010-05-01

    The 2009 L'Aquila seismic sequence activated a complex, about 40 km long, NW-trending and SW-dipping normal fault system, consisting of three main faults arranged in right-lateral en-echelon geometry. While the northern sector of the epicentral area was extensively investigated by oil companies, only a few scattered, poor-quality commercial seismic profiles are available in the central and southern sector. In this study we interpret subsurface commercial data from the northern sector, which is the area where is located the source of the strong Mw5.4 aftershock occurred on the 9th April 2009. Our primary goals are: (1) to define a reliable framework of the upper crust structure, (2) to investigate how the intense aftershock activity, the bulk of which is clustered in the 5-10 km depth range, relates to the Quaternary extensional faults present in the area. The investigated area lies between the western termination of the W-E trending Gran Sasso thrust system to the south, the SW-NE trending Mt. Sibillini thrust front (Ancona-Anzio Line Auctt.) to the north and west, and by the NNW-SSE trending, SW-dipping Mt. Gorzano normal fault to the east. In this area only middle-upper Miocene deposits are exposed (Laga Flysch and underlying Cerrogna Marl), but commercial wells have revealed the presence of a Triassic-Miocene sedimentary succession identical to the well known Umbria-Marche stratigraphic sequence. We have analyzed several confidential seismic reflection profiles, mostly provided by ENI oil company. Seismic lines are tied to two public wells, 5766 m and 2541 m deep. Quality of the reflection imaging is highly variable. A few good quality stack sections contain interpretable signal down to 4.5-5.5 s TWT, corresponding to depths exceeding 10-12 km and thus allowing crustal imaging at seismogenic depths. Key-reflectors for the interpretation correspond to: (1) the top of the Miocene Cerrogna marls, (2) the top of the Upper Albian-Oligocene Scaglia Group, (3) the Aptian-Albian Fucoid Marl horizon, (4) the top of the upper Jurassic "Calcari ad Aptici" Formation, (5) the top of the upper Triassic dolomites plus evaporites of the Burano Formation. Strong but discontinuous deep reflectors can be reasonably attributed to the Paleozoic-Trassic clastic sequence underlying the evaporites. Neogene compression is responsible for a system of NNW-SSE trending fault-propagation folds which have often grown on top of popup-like structures. Extensional features include shallow-seated low-angle faults, likely related to gravitational readjustments on top of compressional features, and younger NNW-SSE trending high-angle faults. The major high-angle fault in the investigated area is represented by the Mt. Gorzano Fault, a regional structure the surface trace of which is at least 20 km long. The Mt. Gorzano Fault is a listric fault that dips around 60° in the first 2 s TWT and flattens at greater depths until it becomes sub-horizontal at about 5 s TWT, i.e. at a depth averaging 12 kilometers. Depth converted sections, calibrated by well data, indicate that the bulk of the aftershock activity is confined between the Triassic dolomites plus evaporites and the underlying Paleozoic-Triassic terrigenous deposits, without affecting the overlying carbonates. Events alignment revealed by accurate Double-Difference relative locations suggests that the Mw5.4 aftershock activated a 12 km-long segment of the Mt. Gorzano Fault at depths ranging from 5 to 10-12 kilometers. Aftershocks cluster in the hanging-wall of the deep portion of the fault recognized in the stack sections, whose geometry is consistent with the fault plane highlighted by earthquakes alignment.

  16. Unfaulting the Sardarapat Ridge, Southwest Armenia

    NASA Astrophysics Data System (ADS)

    Wetmore, P.; Connor, C.; Connor, L. J.; Savov, I. P.; Karakhanyan, A.

    2012-12-01

    Armenia is located near the core of contractional deformation associated with the collision between the Arabian and Eurasian tectonic plates. Several studies of this region, including portions of adjacent Georgia, Iran, and Turkey, have indicated that 1-2 mm/yr of intra-plate, north-south shortening is primarily accommodated by a network of E-W trending thrust faults, and NW-trending (dextral) and NE-trending (sinistral) strike-slip faults. One proposed fault in this network, the Sardarapat Fault (SF), was investigated as part of a regional seismic hazard assessment ahead of the installation of a replacement reactor at the Armenian Nuclear Power Plant (ANPP). The SF is primarily defined by the Sardarapat Ridge (SR), which is a WNW-trending, 40-70 m high topographic feature located just north of the Arax River and the Turkey-Armenia border. The stratigraphy comprising this ridge includes alluvium overlying several meters of lacustrine deposits above a crystal-rich basaltic lava flow that yields an Ar-Ar age of 0.9 +/- 0.02 Ma. The alluvial sediments on the ridge contain early Bronze age (3832-3470 BP) artifacts at an elevation 25 m above those of the surrounding alluvial plane. This has lead to the suggestion that the SR is bound to the south (the steepest side) by the SF, which is uplifting the ridge at a rate of 0.7 mm/yr. However, despite the prominence and trend of the ridge there are no unequivocal observations, such as scarps or exposures of fault rocks, to support the existence of the SF. The goal of the investigation of the SR area was to test various models for the formation of the ridge including faulting and combined volcanic and erosional processes. We therefore collected gravimetric, magnetic, magneto-tellurics (MT), and transient electromagnetic (TEM) data across an area of ~400 km2, and used correlations of stratigraphic data from coreholes drilled proximal to the study area to define the geometry of the contact between the basement and basin fill to help constrain modeling of the geophysical data. Additionally, the archeological sites where artifacts were observed within the upper-most fluvial deposits were revisited and assessed anew. The results of this investigation include: 1) the presence of a 20 mgal gravity gradient trending SW-NE oblique to the trend of the ridge; 2) the observation that magnetic data, including MT and TEM, do not identify faults in the shallow subsurface; and 3) artifacts are not in the stratigraphic section with the alluvial sediments. These results do not support a fault model to explain uplift of the SR. Gravity and TEM data do suggest a NW-trending boundary between differing basement types at depth crossing the SR obliquely near the NW terminus. This structure does not appear to have any surface expression, nor is it associated with topography on the basement-basin fill contact. An alternative for the SR may be that the long linear, basaltic lava-cored ridge actually represents a lava flow that exploited an earlier channel of the Arax River. It was subsequently buried and later erosion inverted the topography of this region, preferentially removing the unconsolidated sediments.

  17. Tectonics earthquake distribution pattern analysis based focal mechanisms (Case study Sulawesi Island, 1993–2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismullah M, Muh. Fawzy, E-mail: mallaniung@gmail.com; Lantu,; Aswad, Sabrianto

    Indonesia is the meeting zone between three world main plates: Eurasian Plate, Pacific Plate, and Indo – Australia Plate. Therefore, Indonesia has a high seismicity degree. Sulawesi is one of whose high seismicity level. The earthquake centre lies in fault zone so the earthquake data gives tectonic visualization in a certain place. This research purpose is to identify Sulawesi tectonic model by using earthquake data from 1993 to 2012. Data used in this research is the earthquake data which consist of: the origin time, the epicenter coordinate, the depth, the magnitude and the fault parameter (strike, dip and slip). Themore » result of research shows that there are a lot of active structures as a reason of the earthquake in Sulawesi. The active structures are Walannae Fault, Lawanopo Fault, Matano Fault, Palu – Koro Fault, Batui Fault and Moluccas Sea Double Subduction. The focal mechanism also shows that Walannae Fault, Batui Fault and Moluccas Sea Double Subduction are kind of reverse fault. While Lawanopo Fault, Matano Fault and Palu – Koro Fault are kind of strike slip fault.« less

  18. The electrical resistivity signature of a fault controlling gold mineralization and the implications for Mesozoic mineralization: a case study from the Jiaojia Fault, eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Lü, Qingtian; Yan, Jiayong; Hu, Hao; Fu, GuangMing

    2017-08-01

    We use 3D audio magnetotelluric method to the south segment of Jiaojia fault belt, and obtain the 3D electrical model of this area. Regional geophysical data were combined in an analysis of strata and major structural distribution in the study area, and included the southern segment of the Jiaojia fault zone transformed into two fault assemblages. Together with the previous studies of the ore-controlling action of the Jiaojia fault belt and deposit characteristics, the two faults are considered to be favorable metallogenic provinces, because some important features coupled with them, such as the subordinate fault intersection zone and several fault assemblages in one fault zone. It was also suggested the control action of later fault with reversed downthrows to the ore distribution. These studies have enabled us to predict the presence of two likely target regions of mineralization, and are prospecting breakthrough in the southern section of Jiaojia in the Shandong Peninsula, China.

  19. Seafloor morphology related to recent tectonics in the Alboran Sea Basin

    NASA Astrophysics Data System (ADS)

    Vázquez, Juan-Tomás; Estrada, Ferran; Vegas, Ramon; Ercilla, Gemma; Medialdea, Teresa; d'Acremont, Elia; Alonso, Belen; Fernández-Salas, Luis-Miguel; Gómez-Ballesteros, María; Somoza, Luis; Bárcenas, Patricia; Palomino, Desirée; Gorini, Christian

    2014-05-01

    A detailed geomorphological study of the northern part of the Alboran Sea Basin has been realized based on the combined analysis of multibeam swath bathymetric data and medium to very high resolution seismic profiles (singled Sparker, Airgun, TOPAS and Atlas PARASOUND P35). This has enabled us to define several tectonic-related seafloor features and their role in the recent tectonics. The observed morpho-tectonic features correspond to: i) lineal scarps with a wide range of dimensions and following several trends ,WNW-ESE, NE-SW, NNE-SSW and N-S; ii) NE-SW to NNE-SSW-oriented compressive ridges; iii) ENE-WSW to NE-SW-striking antiforms; iv) NNE-SSW-oriented lineal depressions; v) rhomb-shaped depressions; vi) lineal valleys, canyons and gullies with WNW-ESE, and N-S orientations; and vii) N-S directed dissected valleys, canyons and gullies. Three families of faults and related folds, with NE-SW, WNW-ESE and NNE-SSW to N-S have been interpreted within this geomorphological scheme. The NE-SW family corresponds to: a) major scarps in both flanks of the Alboran Ridge and b) the offshore prolongation of La Serrata Fault, and both have been considered as a set of sinistral strike-slip faults. To this family, some compressive ridges, antiforms and occasionally reverse faults have been correlated. The WNW-ESE family corresponds to a set of faulted valleys (occasionally with rhomb-shaped depressions), fault scarps and linear inflection points occurring in the northern Alboran margin and the Yusuf-Habibas corridor. This family has been interpreted as transtensive dextral strike-slip faults. The NNE-SSW to N-S family corresponds to a penetrative system of linear fault scarps and tectonic depressions that cross-cut the Alboran Ridge and the Djibouti-Motril marginal plateau. This family can be considered as more recent since it offsets the other two families and shows a minor importance with regard to the main reliefs. This communication is a contribution to the Spanish R + D + I projects MONTERA (CTM2009-14157-C02) and MOWER (CTM2012-39599-C03), the Project MOSAIC of scientific excellence of Andalusia(P06-RNM-01594) and the European ESF projects EUROFLEET SARAS and TOPOMED_SPAIN (CGL2008-03474-E).

  20. Coulomb Fault Mechanics at Work in the Proterozoic: Strike-Slip Faults and Regional-Scale Veining in the Mt. Isa Inlier, Australia

    NASA Astrophysics Data System (ADS)

    Begbie, M. J.; Sibson, R. H.; Ghisetti, F. C.

    2005-12-01

    The Proterozoic Mt Isa inlier, comprising greenschist to amphibolite facies metamorphic assemblages intruded by granites during the Isan Orogeny (1590-1500 Ma), is disrupted by brittle, late- or post-orogenic strike-slip faults. The faults occur in two mutually cross-cutting sets; a set of NE-SW subvertical dextral strike-slip faults, and a conjugate set of NW-SE sinistral faults. These faults thus define a regional stress field with σ1 oriented approximately E-W and σ3 oriented approximately N-S. Locally, the faults outcrop as linear blade-like ridges of silicified microbreccias-cataclasites and quartz veining that extends for kilometres across the semi-arid terrain. The informally named Spinifex Fault is one of the dextral set of subvertical faults. This fault is a classic example of coulomb fault mechanics at work in the Proterozoic. The Spinifex Fault trends ~065° across an outcropping granitic pluton, the margins of which it offsets dextrally by ~0.75 km. Locally within the pluton, the fault refracts to ~075° across an amphibolite layer. In the surrounding granitic pluton the fault trace is comparatively inconspicuous and unmineralized but where it transects the amphibolite it is defined by an upstanding ridge of silicified microbreccia-cataclasite (~10 m thick). Associated with the Spinifex Fault is a swarm of predominantly extensional subvertical quartz veins (cm to m thick) trending 090-95° and a series of mineralised fault splays trending 070-080°. Extension veins define the σ1-σ2 plane, with the Spinifex fault lying at an angle of ~25-30° to the inferred σ1. These veins are composed of colloform and crustiform banded quartz, brecciated fragments of quartz vein and wallrock that are typically rimmed with cockade overgrowths and bladed quartz after calcite pseudomorphs. Mineralised fault splays are < 50 m or so wide with a composite brittle fabric comprising: (1) bounding subvertical cataclastic `walls' <10 m or so thick made up of silicified microbreccias and cataclasites containing vein fragments; (2) innumerable subvertical quartz veins (cm to m thick) lying subparallel to the bounding shear zones with textures ranging from pure dilation to multiply recemented breccias of wallrock and quartz fragments; (3) irregular non-systematic veins; and (4) occasional minor faults from the complementary set. Mutual cross-cutting relationships between all the structural components indicate penecontemporaneous development within the inferred stress field. Slickenfibers and striations along fault components indicate predominantly strike slip motion on subvertical planes. Homogenisation temperatures from quartz hosted fluid inclusions cluster at ~210°C while vein textures record histories of incremental hydrothermal deposition under low effective stress, probably in the epizonal environment (<1-2 km depth). This regional study demonstrates the existence of a rather uniform stress province, corresponding to an Andersonian regime and initiation of faults in accord with the coulomb failure criterion.

  1. Climatic and Tectonic Controls on Topography in the Northern Basin and Range

    NASA Astrophysics Data System (ADS)

    Foster, D.; Brocklehurst, S. H.; Gawthorpe, R. L.

    2006-12-01

    This study takes advantage of the relatively simple tectonics of the normal fault-bounded Lost River and Lemhi Ranges and the Beaverhead Mountains, eastern Idaho, USA, to assess the roles of climate, erosion, and tectonics in topographic evolution through a combination of digital topographic analyses and field observations. These ranges transect the southern limit of Quaternary glaciation, and drainage basins record a range of glacial extents and histories, allowing for comparisons between climatic and tectonic controls. At a catchment scale, topography is controlled by both the degree of glaciation, and the response of the drainage system to range-front faulting. The range-bounding normal faults are segmented along-strike, and fault uplift rates vary systematically, being greatest at the fault centres. Here catchments predominantly drain normal to the range-front fault, although the trend of some catchments is influenced by pre-existing tectonic fabrics related to Cretaceous (northeast-southwest trending) and early Miocene (northwest-southeast trending) extension. For catchments that drain through fault segment boundaries, one of two general morphologies occurs. Either large drainage basins form, capturing drainage area from neighbouring basins, or, when fault segment boundaries are en echelon, a series of small drainage basins may form as catchments as the inboard- and outboard- footwalls interact and respond to fault linkage. Quaternary glaciation affected all but the southern portions of each of the ranges, most extensively at the north-eastern range flank. Increased extent of glaciation within a catchment results in wider valley floors, steeper valley walls, and greater relief at elevations close to the ELA. Cirque formation occurs preferentially on the north-eastern range flank, where glaciers are sheltered from both solar radiation and snow re-distribution by the prevailing winds. Snow accumulation is promoted in this setting by the increased influx of wind-blown snow from the western side of the range crest, and large moraines extend beyond the eastern range front. For portions of the ranges affected by glaciation, range mean heights decrease along-strike by 1-2m per km to the north-west, similar to the rate of decrease in ELA and in the trend of cirque floor elevations. This suggests that a glacial "buzzsaw" effect controls the range mean heights.

  2. Three-dimensional fault framework of the 2014 South Napa Earthquake, San Francisco Bay region, California

    NASA Astrophysics Data System (ADS)

    Graymer, R. W.

    2014-12-01

    Assignment of the South Napa earthquake to a mapped fault is difficult, as it occurred where three large, northwest-trending faults converge and may interact in the subsurface. The surface rupture did not fall on the main trace of any of these faults, but instead between the Carneros and West Napa faults and northwest along strike from the northern mapped end of the Franklin Fault. The 2014 rupture plane appears to be nearly vertical, based on focal mechanisms of the mainshock and connection of the surface trace/rupture to the relocated hypocenter (J. Hardebeck, USGS). 3D surfaces constructed from published data show that the Carneros Fault is a steeply west-dipping fault that runs just west of the near-vertical 2014 rupture plane. The Carneros Fault does not appear to have been involved in the earthquake, although relocated aftershocks suggest possible minor triggered slip. The main West Napa Fault is also steeply west-dipping and that its projection intersects the 2014 rupture plane at around the depth of the mainshock hypocenter. UAVSAR data (A. Donnellan, JPL) and relocated aftershocks suggest that the main West Napa Fault experienced triggered slip/afterslip along a length of roughly 20 km. It is possible that the 2014 rupture took place along a largely unrecognized westerly strand of the West Napa Fault. The Franklin Fault is a steeply east-dipping fault (with a steeply west-dipping subordinate trace east of Mare Island) that has documented late Quaternary offset. Given the generally aligned orientation of the 3D fault surfaces, an alternative interpretation is that the South Napa earthquake occurred on the northernmost reach of the Franklin Fault within it's 3D junction with the West Napa Fault. This interpretation is supported, but not proven, by a short but prominent linear feature in the UAVSAR data at Slaughterhouse Point west of Vallejo, along trend south-southeast of the observed coseismic surface rupture.

  3. Structure and Stratigraphy of the Rift Basins in the Northern Gulf of California: Results from Analysis of Seismic Reflection and Borehole Data.

    NASA Astrophysics Data System (ADS)

    Martín, A.; González, M.; Helenes, J.; García, J.; Aragón, M.; Carreño, A.

    2008-12-01

    The northern Gulf of California contains two parallel, north-south trending rift basin systems separated by a basement-high. The interpretation of several exploration wells, and ~4500 km of seismic reflection data from PEMEX (Mexican national oil company) indicate that the tectonically active basins to the west (Wagner- Consag and Upper Delfin basins) may have initiated synchronously with the now abandoned Tiburón- Tepoca-Altar basins to the east in the Sonora margin. In both basin systems the lower sequence (A) is marine mudstone-siltstone, has parallel reflectors and a largely uniform thickness that reaches up to1.5 km, and gradually pinches out toward the lateral margins. This suggests that the unit was deposited prior to their segmentation by transtensional faulting. Marine microfossils from borehole samples from sequence A in the Tiburón and Consag basins indicates middle Miocene (>11.2 Ma) proto-Gulf conditions. Sequence B conformably overlies sequence A, and is characterized by up to 2 km growth strata with a fanning geometry that show a clear genetic relationship to the major transtensional faults that control the segmentation of the two basin systems. Sequence C in the Tiburón and Tepoca basins is comparatively thin (<800 m) and includes several unconformities, but is much less affected by faulting. In contrast, sequence C in the active Wagner, Consag and Upper Delfin basin is a much thicker (up to 2 km) growth sequence with abundant volcanic intrusions. Marked variations in sequence C in the different basin systems clearly demonstrate a major westward shift of deformation and subsidence at this time. The modern depocenter in Wagner-Consag basins is controlled by the Consag and Wagner faults, which trend parallel to the north ~20 km apart, and show opposite normal offset. These two faults merge at an oblique angle (70°-50°, respectively) into the Cerro Prieto transform fault to the north and likely accommodate an important amount of dextral shear. To the south the Consag and Wagner faults connect with a diffuse zone of deformation defined by a series of NE trending faults with moderate normal displacement in the Upper Delfin basin. These NE-trending faults intersect the northern strand of the Ballenas transform fault along the Baja California margin, whereas the eastern end of the NE-trending faults is poorly defined along the western flank of the central antiform. In summary, sequence A was likely deposited across most of the northern gulf in the late Miocene, sequence B marks the onset of two discrete transtensional basin systems controlled by both low and high-angle faults in late Miocene-Pliocene time, and sequence C marks the regional migration of plate- margin shearing to its present location in the western gulf. Thermal effects associated with abundant volcanism and sedimentation along the western margin of the gulf likely controlled the asymmetric partitioning plate margin and shearing during the most recent phase of oblique rifting.

  4. The Story of a Yakima Fold and How It Informs Late Neogene and Quaternary Backarc Deformation in the Cascadia Subduction Zone, Manastash Anticline, Washington, USA

    NASA Astrophysics Data System (ADS)

    Kelsey, Harvey M.; Ladinsky, Tyler C.; Staisch, Lydia; Sherrod, Brian L.; Blakely, Richard J.; Pratt, Thomas L.; Stephenson, William J.; Odum, Jack K.; Wan, Elmira

    2017-10-01

    The Yakima folds of central Washington, USA, are prominent anticlines that are the primary tectonic features of the backarc of the northern Cascadia subduction zone. What accounts for their topographic expression and how much strain do they accommodate and over what time period? We investigate Manastash anticline, a north vergent fault propagation fold typical of structures in the fold province. From retrodeformation of line- and area-balanced cross sections, the crust has horizontally shortened by 11% (0.8-0.9 km). The fold, and by inference all other folds in the fold province, formed no earlier than 15.6 Ma as they developed on a landscape that was reset to negligible relief following voluminous outpouring of Grande Ronde Basalt. Deformation is accommodated on two fault sets including west-northwest striking frontal thrust faults and shorter north to northeast striking faults. The frontal thrust fault system is active with late Quaternary scarps at the base of the range front. The fault-cored Manastash anticline terminates to the east at the Naneum anticline and fault; activity on the north trending Naneum structures predates emplacement of the Grande Ronde Basalt. The west trending Yakima folds and west striking thrust faults, the shorter north to northeast striking faults, and the Naneum fault together constitute the tectonic structures that accommodate deformation in the low strain rate environment in the backarc of the Cascadia Subduction Zone.

  5. The story of a Yakima fold and how it informs Late Neogene and Quaternary backarc deformation in the Cascadia subduction zone, Manastash anticline, Washington, USA

    USGS Publications Warehouse

    Kelsey, Harvey M.; Ladinsky, Tyler C.; Staisch, Lydia; Sherrod, Brian; Blakely, Richard J.; Pratt, Thomas; Stephenson, William; Odum, Jackson K.; Wan, Elmira

    2017-01-01

    The Yakima folds of central Washington, USA, are prominent anticlines that are the primary tectonic features of the backarc of the northern Cascadia subduction zone. What accounts for their topographic expression and how much strain do they accommodate and over what time period? We investigate Manastash anticline, a north vergent fault propagation fold typical of structures in the fold province. From retrodeformation of line- and area-balanced cross sections, the crust has horizontally shortened by 11% (0.8–0.9 km). The fold, and by inference all other folds in the fold province, formed no earlier than 15.6 Ma as they developed on a landscape that was reset to negligible relief following voluminous outpouring of Grande Ronde Basalt. Deformation is accommodated on two fault sets including west-northwest striking frontal thrust faults and shorter north to northeast striking faults. The frontal thrust fault system is active with late Quaternary scarps at the base of the range front. The fault-cored Manastash anticline terminates to the east at the Naneum anticline and fault; activity on the north trending Naneum structures predates emplacement of the Grande Ronde Basalt. The west trending Yakima folds and west striking thrust faults, the shorter north to northeast striking faults, and the Naneum fault together constitute the tectonic structures that accommodate deformation in the low strain rate environment in the backarc of the Cascadia Subduction Zone.

  6. Geophysical setting of the Wabash Valley fault system

    USGS Publications Warehouse

    Hildenbrand, T.G.; Ravat, D.

    1997-01-01

    Interpretation of existing regional magnetic and gravity data and new local high-resolution aeromagnetic data provides new insights on the tectonic history and structural development of the Wabash Valley Fault System in Illinois and Indiana. Enhancement of short-wavelength magnetic anomalies reveal numerous NW- to NNE-trending ultramafic dikes and six intrusive complexes (including those at Hicks Dome and Omaha Dome). Inversion models indicate that the interpreted dikes are narrow (???3 m), lie at shallow depths (500 km long and generally >50 km wide) and with deep basins (locally >3 km thick), the ancestral Wabash Valley faults express, in comparison, minor tectonic structures and probably do not represent a failed rift arm. There is a lack of any obvious relation between the Wabash Valley Fault System and the epicenters of historic and prehistoric earthquakes. Five prehistoric earthquakes lie conspicuously near structures associated with the Commerce geophysical lineament, a NE-trending magnetic and gravity lineament lying oblique to the Wabash Valley Fault System and possibly extending over 600 km from NE Arkansas to central Indiana.

  7. Structural character of the Ghost Dance Fault, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spengler, R.W.; Braun, C.A.; Linden, R.M.

    1993-12-31

    Detailed structural mapping of an area that straddles the southern part of the Ghost Dance Fault has revealed the presence of several additional subparallel to anastomosing faults. These faults, mapped at a scale of 1:240, are: (1) dominantly north-trending, (2) present on both the upthrown and downthrown sides of the surface trace of the Ghost Dance fault, (3) near-vertical features that commonly offset strata down to the west by 3 to 6 m (10 to 20 ft), and (4) commonly spaced 15 to 46 m (50 to 150 ft) apart. The zone also exhibits a structural fabric, containing an abundancemore » of northwest-trending fractures. The width of the zone appears to be at least 213 m (700 ft) near the southernmost boundary of the study area but remains unknown near the northern extent of the study area, where the width of the study area is only 183 m (600 ft).« less

  8. Focal Mechanisms of Recent Earthquakes in the Southern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Park, J.; Kim, W.; Chung, T.; Baag, C.; Ree, J.

    2005-12-01

    There has been a lack of seismic data in the Korean Peninsula mainly because it is in a seismically stable area within the Eurasian plate (or Amurian microplate) and because a network of seismic stations has been poor until recently. Consequently, first motion studies on the peninsula showed a large uncertainty or covered only local areas. Also, a tectonic province map constructed based on pre-Cenozoic tectonic events in Korea has been used for a seismic zonation. To solve these problems, we made focal mechanism solutions for 71 earthquakes (ML = 1.9 to 5.2) occurred in and around the peninsula from 1999 to 2004 and collected by a new dense seismic network established since 1995. For this, we relocated the hypocenters and obtained fault plane solutions with errors of fault parameter less than 15° from the data set of 1,270 clear P-wave polarities and from 46 SH/P amplitude ratios. The focal mechanism solutions show that subhorizontal ENE P- and subhorizontal NNW T-axes are predominant, representing the common direction of P- and T-axes within the Amurian plate. The faulting mechanisms are mostly strike-slip faulting or strike-slip-dominant-oblique-slip faulting with a reverse-slip component, although normal-slip-dominant-oblique-slip faultings occur locally probably due to a local reorientation of stress. These results incorporated with those from the kinematic studies of the Quaternary faults imply that NNE-striking faults (dextral strike-slip or oblique-slip with a reverse-slip component) are highly likely to generate earthquakes in South Korea. The spatial distribution of the maximum horizontal stress direction and faulting types does not correlate with the preexisting tectonic province map of Korea, and a new construction of seismic zonation map is required for a better seismic evaluation.

  9. Structural controls on fractured coal reservoirs in the southern Appalachian Black Warrior foreland basin

    USGS Publications Warehouse

    Groshong, R.H.; Pashin, J.C.; McIntyre, M.R.

    2009-01-01

    Coal is a nearly impermeable rock type for which the production of fluids requires the presence of open fractures. Basin-wide controls on the fractured coal reservoirs of the Black Warrior foreland basin are demonstrated by the variability of maximum production rates from coalbed methane wells. Reservoir behavior depends on distance from the thrust front. Far from the thrust front, normal faults are barriers to fluid migration and compartmentalize the reservoirs. Close to the thrust front, rates are enhanced along some normal faults, and a new trend is developed. The two trends have the geometry of conjugate strike-slip faults with the same ??1 direction as the Appalachian fold-thrust belt and are inferred to be the result of late pure-shear deformation of the foreland. Face cleat causes significant permeability anisotropy in some shallow coal seams but does not produce a map-scale production trend. ?? 2008 Elsevier Ltd. All rights reserved.

  10. Systematic data interpretation of remote sensing in the reception of hydrocarbons, volume 1. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Demiranda, F. P. (Principal Investigator)

    1984-01-01

    The utilization of MSS-LANDSAT and RADAR imagery in the definition of morphostructural anomalies, which are indicative of hydrocarbon entrapment sites in the limit of the Middle and Lower Amazons basins was systemized. The identification and classification of the morphostructural anomalies were accomplished by means of the drainage network interpretation, based on the criteria previously proposed. Thirty anomalies were recognized, being subdivided into twenty domes, two fault controlled domes, six structural depressions, one fault controlled structural depression and one structure developed on a tilted fault block. Many anomalies are not randomly located. Rather, they seem to be aligned according to directions ENE and NNW, suggesting the presence of morphstructural trends in this part of the Amazons Basin. Significant orientations of lineaments were determined through statistical analysis, which defined many regional trends. The directions coincide with morphostructural trends orientations and with the directions of important structures in the Precambrian basement.

  11. Preliminary Results from Acoustic Survey Offshore Kefken, Southwestern Black Sea Margin

    NASA Astrophysics Data System (ADS)

    Dondurur, Derman; Karaca, Onur; Nasıf, Aslıhan

    2017-04-01

    In March 2016, different marine acoustic datasets were collected aboard of R/V K. Piri Reis research vessel of Dokuz Eylül University within the scope of Turkish Research Council (Tübitak) Project (115Y218) to reveal submarine morphology and seismo-acoustical structure of the continental shelf and upper slope of Şile-Kefken region in the southwest of the Black Sea. A total of 1564 km high resolution seismic, multibeam bathymetry and Chirp sub-bottom profiler data were collected. Seismic data was collected using a 1500 m long digital streamer with 240 active channels. Group and shot intervals were 6.25 m and 25 m, respectively. Collected data were analyzed by means of (i) stratigraphic and (ii) structural components, and (iii) the structure of upper slope and shelf break. The stratigraphic elements in the region indicate the existence of Eocene and younger units. A distinctive acoustical basement in the seismic data observed throughout the shelf which is interpreted as uplifted Cretaceous basement of the Black Sea, that is Akveren or Yemişliçay Formation. The basement also outcrops around the Kefken Island. Chirp data is used to map the shallow stratigraphy of the shelf including the Holocene sediment distribution which exists on a very restricted area on the shelf. To the east, there is a large outcrop zone offshore Kefken where no Holocene sediments are observed. Initial evaluation of the collected data indicates that there is no present day delta formation in the area due to a few weak streams observed in the study area. The penetration of Chirp data in the western and the southern parts of the shelf area is very limited while it increases towards to upper continental slope to the North, and east of Kefken Cape. The acoustic data suggests that the study area is under the influence of the Pontide overthrust. Possible existence of reverse faults of Pontide overthrust is evident on the seismic data from southwestern shelf. In addition to the reverse faults to the SW, the whole shelf is highly affected by a northwards trending strike slip fault system with a significant vertical slip. Canyon heads and shelf break is deformed by numerous near vertical normal faults. Multibeam bathymetric data indicate that the upper slope is formed by highly steep canyon heads with several small scale gullies connecting to the thalweg at low angles.

  12. Geology and fluorspar deposits, Northgate district, Colorado

    USGS Publications Warehouse

    Steven, Thomas A.

    1960-01-01

    The fluorspar deposits in the Northgate district, Jackson County, Colo., are among the largest in Western United States. The mines were operated intermittently during the 1920's and again during World War II, but production during these early periods of operation was not large. Mining was begun on a larger scale in 1951, and the district has assumed a prominent position among the fluorspar producers in the United States. Within the Northgate district, Precambrian metamorphic and igneous rocks crop out largely in the Medicine Bow Mountains, and later sedimentary rocks underlie North Park and fill old stream valleys in the mountains. The metamorphic rocks constitute a gneiss complex that formed under progressively changing conditions of regional metamorphism. They consist principally of hornblende-plagioclase gneiss (hornblende gneiss), quartz monzonite gneiss, pegmatite, biotite-garnet-quartz-plagioclase gneiss (biotite-garnet gneiss), hornblende-biotite-quartz-plagioclase gneiss (hornblende-biotite gneiss) and mylonite gneiss. The igneous rocks comprise some local fine-grained dacite porphyry dikes near the west margin of the district, and a quartz monzonitic stock and associated dikes in the central and eastern parts of the district. The sedimentary rocks in the district range in age from Permian to Recent. Folded Permian and Mesozoic rocks underlie the basin of North Park, and consist in sequence from oldest to youngest, of Satanka(?) shale (0-50 feet of brick-red shale) and Forelle(?) limestone (8-15 feet of pink to light-gray laminated limestone) of Permian age, Chugwater formation of Permian and Triassic age (690 feet of red silty shale and sandstone), Sundance formation of Late Jurassic age (145 feet of sandstone containing some shale and limestone), Morrison formation of Late Jurassic age (445 feet of variegated shale and minor sandstone and limestone), Dakota group as used by Lee (1927), now considered to be of Early Cretaceous age in this area (200-320 feet of pebbly sandstone, sandstone, and shale), Ben ton shale of Early and Late Cretaceous age (665 feet of dark-gray thin-bedded shale), Niobrara formation of Late Cretaceous age (865 feet of yellow to gray limy siltstone and shale), and Pierre shale of Late Cretaceous age (more than 60 feet of dark-gray fissile shale). Unconformities separate the Chugwater and Sundance formations, and the Morrison formation and the Dakota group.Nonmarine strata of the White River formation of Oligocene age and the North Park formation of Miocene and Pliocene (?) age fill Tertiary valleys cut in the Precambrian rocks of the mountain areas, and Quaternary terrace gravel, alluvium, and dune sand mantle much of the floor of North Park. The main outlines of the modern Rocky Mountains formed during the Laramide orogeny in late Mesozoic and early Tertiary time. Most of the Laramide structures that can be recognized in the Northgate district involve the sedimentary rocks underlying North Park which are folded into northwest-trending anticlines and synclines. The folds are open and in most the beds dip 60° or less. Yet many anticlines are cut by reverse faults of widely different trends and directions of offset. Transverse faults offset some of the folds, and the character of folding commonly is markedly different on opposing sides of these faults. The North Park basin is cut off on the north by the east-trending Independence Mountain fault, a north-dipping reverse fault along which hard Precambrian rocks have been thrust up across the trend of the earlier Laramide structures. The North Park basin is still a major structure where it is interrupted by the Independence Mountain fault, and the original basin must have extended much farther north. Disrupted gradients at the base of pre-White River valleys suggest that the Northgate district and adjacent areas may have been deformed in middle Tertiary time, but the evidence is not conclusive. A more definite period of deformation took place in Pliocene time following deposition of the North Park formation. North Park strata in south-central North Park were folded into a northwest-trending syncline, and the central part of the Northgate district probably was warped up along a north- or northwestward-trending axis. Four north- to northwestward-trending faults cut the Precambrian rocks and White River formation on Pinkham Mountain and the area to the southeast. Similar faults 2½ and 15 miles west of the Northgate district cut rocks of the North Park formation, and all probably formed during the Pliocene period of deformation. The known commercial fluorspar deposits are localized along the two larger faults of the Northgate district, and they have been studied in detail. The White River formation in early Oligocene time covered a hilly terrain drained by southward-flowing streams. By late Miocene, the northward-flowing streams had cut to about the same levels reached by the pre-White River streams and had partly exhumed and modified the older terrain. During late Miocene and early Pliocene (?) time, the Northgate area was buried beneath the clays, sands, and gravels of the North Park formation. Subsequent erosion removed the higher part of the North Park formation, cut a surface of low relief across the exhumed Precambrian rocks, and removed all topographic evidence of the Pliocene period of deformation. The present courses of the major streams were superimposed across the buried terrains during this period of erosion. Rejuvenation during middle Pleistocene caused all major streams to become incised in sharp canyons. Copper minerals occur in small concentrations in some of the pegmatite masses in the gneiss complex. The copper-rich masses rarely exceed a few feet in diameter and constitute only a small part of the associated pegmatite body.Vermiculite is exposed in prospect pits and mine workings along the west margin of the Northgate district. All the venniculite that was seen is associated with small masses of horablendite, massive chlorite, or serpentinite where these masses are near or are cut by pegmatite bodies. Some of the deposits may be potential producers of commercial-grade vermiculite, but most are small and erratic in shape or grade.Fluorspar is the main mineral commodity that has been produced from the Northgate district. It was deposited during two distinct periods of mineralization, but only the younger deposits have been productive. Small bodies of silicified breccia containing minor coarsely crystalline fluorite occur along the Independence Mountain fault, and in a few places along other Laramide faults. The fluorspar is an integral part of the fault breccia and apparently was deposited while the enclosing fault was still active. The largest deposits of fluorspar in the Northgate district occur along the late Tertiary (?) faults on Pinkham Mountain. The fluorspar consists typically of botryoidal layers that formed as successive encrustations along open fractures, or as finely granular aggregates replacing and cementing fault gouge and White River formation. Many incompletely filled cavities, called water courses, still exist. Fluorite is the principal vein material; fragments of country rock constitute the chief impurity although finely granular quartz or chalcedony is common locally. Soft powdery manganese oxide coats many fractures and in places is associated with a fine white clay. Fluorspar was deposited in or adjacent to open spaces along the late Tertiary (?) faults. Fractures in hard granitic rocks tended to remain open after faulting and were the favored sites for fluorspar deposition; fractures in the less competent hornblende and hornblende-biotite gneiss and schist generally were tight and little fluorspar was deposited. The White River rocks, although soft, were permeable and were widely impregnated or replaced by fluorspar. Both of the main vein zones are along faults that have predominant rightlateral strike-slip displacement. As they theoretically should be, the vein zones are narrower and contain less fluorspar where the containing fault is deflected to the left than where the fault is deflected to the right and the fractures remained open. The crustified, vuggy structure of the fluorspar and the common association with chalcedony or finely granular quartz suggest deposition in a very shallow environment, but no direct evidence bearing on the depth at which the fluorspar formed was seen. Fluorspar was deposited throughout a vertical range of 600 feet or more on each of the main vein zones, and for a vertical range of 1,050 feet for the district as a whole. None of the deposits had been bottomed at the time this report was prepared. Exploration at depth beneath known ore bodies is favorable for developing large tonnages of fluorspar. The best possibilities for finding new ore bodies near the surface are along the northwestern and southeastern parts of the Fluorine-Camp Creek vein zone where large bodies of granitic rocks are intersected by the fault. These areas are generally mantled by a thick overburden, and have been inadequately tested so far.

  13. Reactivation versus reworking of the active continental margin during the Zagros collision: Mahallat-Muteh-Laybid complexes, Sanandaj-Sirjan zone, Iran

    NASA Astrophysics Data System (ADS)

    Aflaki, Mahtab; Shabanian, Esmaeil; Davoodi, Zeinab; Mohajjel, Mohammad

    2017-06-01

    Reactivation of long-lived basement faults has significant influences on further deformation of collision zones. Three major inherited pre-collisional NW-, N- and NE-trending basement discontinuities have played important roles on the structural and tectono-sedimentary evolution of the Iranian micro-continent in the northeastern part of the Gondwana super-continent. Sanandaj-Sirjan zone (SSZ), known as the metamorphic belt of the Zagros orogeny, marks the SW margin of the Central Iran. SSZ is formed as a result of the Arabia-Eurasia collision and its general trend of deformation coincides with the NW structural trend of the collision. The NE-trending Mahallat, Muteh and Laybid complexes in the middle part of the NW-trending SSZ are the exception and have a trend almost normal to the NW-trending Zagros. A combined methodology of remote sensing, geometric and kinematics analyses complemented by field work was used to reconstruct the history of deformation in the Zagros hinterland since the earlier stages of collision to the present-day. Our results reveal the key role of the preexisting discontinuities of the Iranian basement in both the kinematics and structural pattern of the middle part of the SSZ. These basement faults have acted as main boundary conditions changing the collisional fabric perpendicular to its overall trend. Progressive deformation and the related changes during collision have caused drastic changes in the kinematics of the boundary faults. The establishment of dextral transtension in the SSZ has had secondary influences on the pattern of deformation by local clockwise rotation and localized dextral shear in the southern parts of the area of interest. This study highlights the significance of long-lived pre-existing structures in the deformation of collision zones. Such basement faults are capable to change both the pattern and kinematics of deformation of the adjacent areas involved in a continental collision.

  14. Deformation and seismicity of Taiwan.

    PubMed

    Vita-Finzi, C

    2000-10-10

    14C-dated Holocene coastal uplift, conventional and satellite geodetic measurements, and coseismic and aseismic fault slip reveal the pattern of distributed deformation at Taiwan resulting from convergence between the Philippine Sea plate and Eurasia; as in other subduction orogenic settings, the locus of strain release and accumulation is strongly influenced by changes in fault geometry across strike. Uplift evidence from the islands of Lutao and Lanhsu is consistent with progressive oblique collision between the Luzon arc and the Chinese continental margin. In the Coastal Range, geodetic and seismic records show that shortening is taken up serially by discontinuous slip on imbricate faults. The geodetic data point to net extension across the Central Range, but deformed Holocene shorelines in the Hengchun Peninsula at its southern extremity suggest that the extension is a superficial effect partly caused by blind reverse faulting. The fastest shortening rates indicated by geodesy are recorded on the Longitudinal Valley fault and across the Chukou fault within the fold-and-thrust belt. In the former, the strain is dissipated mainly as aseismic reverse and strike-slip displacement. In contrast, the fold-and-thrust belt has witnessed five earthquakes with magnitudes of 6.5 or above in the 20th century, including the 1999.9.21 Chi-Chi earthquake (magnitude approximately 7.6) on a branch of the Chukou fault. The neotectonic and geodetic data for Taiwan as a whole suggest that the fold-and-thrust belt will continue to host the majority of great earthquakes on the island.

  15. Internal structure of the San Jacinto fault zone in the trifurcation area southeast of Anza, California, from data of dense seismic arrays

    NASA Astrophysics Data System (ADS)

    Qin, L.; Ben-Zion, Y.; Qiu, H.; Share, P.-E.; Ross, Z. E.; Vernon, F. L.

    2018-04-01

    We image the internal structure of the San Jacinto fault zone (SJFZ) in the trifurcation area southeast of Anza, California, with seismic records from dense linear and rectangular arrays. The examined data include recordings from more than 20 000 local earthquakes and nine teleseismic events. Automatic detection algorithms and visual inspection are used to identify P and S body waves, along with P- and S-types fault zone trapped waves (FZTW). The location at depth of the main branch of the SJFZ, the Clark fault, is identified from systematic waveform changes across lines of sensors within the dense rectangular array. Delay times of P arrivals from teleseismic and local events indicate damage asymmetry across the fault, with higher damage to the NE, producing a local reversal of the velocity contrast in the shallow crust with respect to the large-scale structure. A portion of the damage zone between the main fault and a second mapped surface trace to the NE generates P- and S-types FZTW. Inversions of high-quality S-type FZTW indicate that the most likely parameters of the trapping structure are width of ˜70 m, S-wave velocity reduction of 60 per cent, Q value of 60 and depth of ˜2 km. The local reversal of the shallow velocity contrast across the fault with respect to large-scale structure is consistent with preferred propagation of earthquake ruptures in the area to the NW.

  16. Surface faulting along the inland Itozawa normal fault (eastern Japan) and relation to the 2011 Tohoku-oki megathrust earthquake

    NASA Astrophysics Data System (ADS)

    Ferry, Matthieu; Tsutsumi, Hiroyuki; Meghraoui, Mustapha; Toda, Shinji

    2013-04-01

    The 11 March 2011 Mw 9 Tohoku-oki earthquake ruptured ~500 km length of the Japan Trench along the coast of eastern Japan and significantly impacted the stress regime within the crust. The resulting change in seismicity over the Japan mainland was exhibited by the 11 April 2011 Mw 6.6 Iwaki earthquake that ruptured the Itozawa and Yunodake faults. Trending NNW and NW, respectively, these 70-80° W-dipping faults bound the Iwaki basin of Neogene age and have been reactivated simultaneously both along 15-km-long sections. Here, we present initial results from a paleoseismic excavation performed across the Itozawa fault within the Tsunagi Valley at the northern third of the observed surface rupture. At the Tsunagi site, the rupture affects a rice paddy, which provides an ideally horizontal initial state to collect detailed and accurate measurements. The surface break is composed of a continuous 30-to-40-cm-wide purely extensional crack that separates the uplifted block from a gently dipping 1-to-2-m-wide strip affected by right-stepping en-echelon cracks and locally bounded by a ~0.1-m-high reverse scarplet. Total station across-fault topographic profiles indicate the pre-earthquake ground surface was vertically deformed by ~0.6 m while direct field examinations reveal that well-defined rice paddy limits have been left-laterally offset by ~0.1 m. The 12-m-long, 3.5-m-deep trench exposes the 30-to-40-cm-thick cultivated soil overlaying a 1-m-thick red to yellow silt unit, a 2-m-thick alluvial gravel unit and a basal 0.1-1-m-thick organic-rich silt unit. Deformation associated to the 2011 rupture illustrates down-dip movement along a near-vertical fault with a well-expressed bending moment at the surface and generalized warping. On the north wall, the intermediate gravel unit displays a deformation pattern similar to granular flow with only minor discrete faulting and no splay to be continuously followed from the main fault to the surface. On the south wall, warping dominates as well but with some strain localization along two major splays that exhibit 15-20 cm of vertical offset. On both walls, the basal silt unit is vertically deformed by ~0.6 m, similarly to what is observed for the 2011 rupture. Furthermore, the base of said silt unit exhibits indication for secondary faulting prior to the 2011 event and that resemble cracks observed at the present-day surface. This suggests that the Itozawa fault has already ruptured in a similar fashion in the late Pleistocene). Hence, recent activity of the Itozawa fault may be controlled entirely by large to giant earthquakes along the Japan Trench.

  17. Characteristics of newly found Quaternary fault, southern Korea, and its tectonic implication

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Kim, M. C.; Cheon, Y.; Ha, S.; Kang, H. C.; Choi, J. H.; Son, M.

    2017-12-01

    This study introduces the detailed geometry and kinematics of recently found Quaternary fault in southern Korea, named Seooe Fault, and discusses its tectonic implication through a synthetic analysis with previous studies. The N-S striking Seooe Fault shows a top-to-the-east thrust geometry and cuts the Cretaceous Goseong Formation and overlying Quaternary deposits, and its slip senses and associated minor folds in the hanging wall indicate an E-W compressional stress. The age of the lower part of the Quaternary deposits obtained by OSL dating indicates that the last movement of the fault occurred after 61 60 ka. Arcuate geometry of the main fault showing an upward decreasing dip-angle, reverse offset of the fault breccias, and reverse-sense indicators observed on neighboring N-S striking high-angle fractures indicate that this Quaternary fault was produced by the reactivation of pre-existing fault under E-W compressional stress field. Using the apparent vertical displacement of the fault and the attitudes of cutting slope and main fault surface, its minimum net displacement is calculated as 2.17 m. When the value is applied to the empirical equation of maximum displacement - moment earthquake magnitude (Mw), the magnitude is estimated to reach about 6.7, assuming that this displacement was due to one seismic event. Most of the Quaternary faults in southern Korea are observed along major inherited fault zones, and their geometry and kinematics indicate that they were reactivated under ENE-WSW or E-W compressional stress field, which is concordant with the characteristics of the Seooe Fault. In addition, focal mechanism solutions and geotechnical in-situ stress data in and around the Korean peninsula also support the current ENE-WSW or E-W regional compression. On the basis of the regional stress trajectories in and around East Asia, the current stress field in Korean peninsula is interpreted to have resulted from the cooperation of westward shallow subduction of the Pacific Plate and collision of Indian and Eurasian continents, whereas the Philippine Sea plate doesn't contribute to the crustal contraction due to its high-angle subduction that results in the crustal extension of back-arc region.

  18. Structural superposition in fault systems bounding Santa Clara Valley, California

    USGS Publications Warehouse

    Graymer, Russell W.; Stanley, Richard G.; Ponce, David A.; Jachens, Robert C.; Simpson, Robert W.; Wentworth, Carl M.

    2015-01-01

    Santa Clara Valley is bounded on the southwest and northeast by active strike-slip and reverse-oblique faults of the San Andreas fault system. On both sides of the valley, these faults are superposed on older normal and/or right-lateral normal oblique faults. The older faults comprised early components of the San Andreas fault system as it formed in the wake of the northward passage of the Mendocino Triple Junction. On the east side of the valley, the great majority of fault displacement was accommodated by the older faults, which were almost entirely abandoned when the presently active faults became active after ca. 2.5 Ma. On the west side of the valley, the older faults were abandoned earlier, before ca. 8 Ma and probably accumulated only a small amount, if any, of the total right-lateral offset accommodated by the fault zone as a whole. Apparent contradictions in observations of fault offset and the relation of the gravity field to the distribution of dense rocks at the surface are explained by recognition of superposed structures in the Santa Clara Valley region.

  19. Estimation of vertical slip rate in an active fault-propagation fold from the analysis of a progressive unconformity at the NE segment of the Carrascoy Fault (SE Iberia)

    NASA Astrophysics Data System (ADS)

    Martin-Banda, Raquel; Insua-Arevalo, Juan Miguel; Garcia-Mayordomo, Julian

    2017-04-01

    Many studies have dealt with the calculation of fault-propagation fold growth rates considering a variety of kinematics models, from limb rotation to hinge migration models. In most cases, the different geometrical and numeric growth models are based on horizontal pre-growth strata architecture and a constant known slip rate. Here, we present the estimation of the vertical slip rate of the NE Segment of the Carrascoy Fault (SE Iberian Peninsula) from the geometrical modeling of a progressive unconformity developed on alluvial fan sediments with a high depositional slope. The NE Segment of the Carrascoy Fault is a left-lateral strike slip fault with reverse component belonging to the Eastern Betic Shear Zone, a major structure that accommodates most of the convergence between Iberian and Nubian tectonics plates in Southern Spain. The proximity of this major fault to the city of Murcia encourages the importance of carrying out paleosismological studies in order to determinate the Quaternary slip rate of the fault, a key geological parameter for seismic hazard calculations. This segment is formed by a narrow fault zone that articulates abruptly the northern edge of the Carrascoy Range with the Guadalentin Depression through high slope, short alluvial fans Upper-Middle Pleistocene in age. An outcrop in a quarry at the foot of this front reveals a progressive unconformity developed on these alluvial fan deposits, showing the important reverse component of the fault. The architecture of this unconformity is marked by well-developed calcretes on the top some of the alluvial deposits. We have determined the age of several of these calcretes by the Uranium-series disequilibrium dating method. The results obtained are consistent with recent published studies on the SW segment of the Carrascoy Fault that together with offset canals observed at a few locations suggest a net slip rate close to 1 m/ka.

  20. Rupture Propagation of the 2013 Mw7.7 Balochistan, Pakistan, Earthquake Affected by Poroelastic Stress Changes

    NASA Astrophysics Data System (ADS)

    He, J.; Wang, W.; Xiao, J.

    2015-12-01

    The 2013 Mw7.7 Balochistan, Pakistan, earthquake occurred on the curved Hoshab fault. This fault connects with the north-south trending Chaman strike-slip fault to northeast, and with the west-east trending Makran thrust fault system to southwest. Teleseismic waveform inversion, incorporated with coseismic ground surface deformation data, show that the rupture of this earthquake nucleated around northeast segment of the fault, and then propagated southwestward along the northwest dipping Hoshab fault about 200 km, with the maximum coseismic displacement, featured mainly by purely left-lateral strike-slip motion, about 10 meters. In context of the India-Asia collision frame, associating with the fault geometry around this region, the rupture propagation of this earthquake seems to not follow an optimal path along the fault segment, because after nucleation of this event the Hoshab fault on the southwest of hypocenter of this earthquake is clamped by elastic stress change. Here, we build a three-dimensional finite-element model to explore the evolution of both stress and pore-pressure during the rupturing process of this earthquake. In the model, the crustal deformation is treated as undrained poroelastic media as described by Biot's theory, and the instantaneous rupture process is specified with split-node technique. By testing a reasonable range of parameters, including the coefficient of friction, the undrained Poisson's ratio, the permeability of the fault zone and the bulk crust, numerical results have shown that after the nucleation of rupture of this earthquake around the northeast of the Hoshab fault, the positive change of normal stress (clamping the fault) on the fault plane is greatly reduced by the instantaneous increase of pore pressure (unclamping the fault). This process could result in the change of Coulomb failure stress resolved on the Hoshab fault to be hastened, explaining the possible mechanism for southwestward propagation of rupture of the Mw7.7 Balochistan earthquake along the Hoshab fault.

  1. Central Japan's Atera Active Fault's Wide-Fractured Zone: An Examination of the Structure and In-situ Crustal Stress

    NASA Astrophysics Data System (ADS)

    Ikeda, R.; Omura, K.; Matsuda, T.; Mizuochi, Y.; Uehara, D.; Chiba, A.; Kikuchi, A.; Yamamoto, T.

    2001-12-01

    In-situ downhole measurements and coring within and around an active fault zone are needed to better understand the structure and material properties of fault rocks as well as the physical state of active faults and intra-plate crust. Particularly, the relationship between the stress concentration state and the heterogeneous strength of an earthquake fault zone is important to estimate earthquake occurrence mechanisms which correspond to the prediction of an earthquake. It is necessary to compare some active faults in different conditions of the chrysalis stage and their relation to subsequent earthquake occurrence. To better understand such conditions, "Active Fault Zone Drilling Project" has been conducted in the central part of Japan by the National Research Institute for Earth Science and Disaster Prevention. The Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2) and the Neodani fault created by the 1981 Nobi earthquake, the greatest inland earthquake M=8.0 in Japan, have been drilled through the fault fracture zones. During these past four years, a similar experiment and research at the Atera fault, of which some parts seem to have been dislocated by the 1586 Tensyo earthquake, has been undertaken. The features of the Atera fault are as follows: (1) total length is about 70 km, (2) general trend is NW45_Kwith a left-lateral strike slip, (3) slip rate is estimated as 3-5 m/1000 yrs. and the average recurrence time as 1700 yrs., (4) seismicity is very low at present, and (5) lithologies around the fault are basically granitic rocks and rhyolite. We have conducted integrated investigations by surface geophysical survey and drilling around the Atera fault. Six boreholes have been drilled from the depth of 400 m to 630 m. Four of these boreholes are located on a line crossing the fracture zone of the Atera fault. Resistivity and gravity structures inferred from surface geophysical surveys were compared with the physical properties determined from the borehole logging data and core samples. These results were also compared with in situ stress data by the hydraulic fracturing stress measurements in the boreholes. We obtained characteristic states on crustal stress and strength of the fault from these investigations. Our findings are as follows: (1) The fracture zone around the Atera fault shows a very wide and complex fracture structure, from approximately 1 km to 4 km wide. The average slip rate was estimated to be 5.3 m /1000 yrs. by the distribution of basalt in age of 1.5 Ma by radioactive dating. We inferred that the Atera fault has been repeatedly active in recent geologic time; however, it is in a very weak state at present. (2) The stress magnitude decreases in the area closer to the center of the fracture zone. Furthermore the orientation of the maximum horizontal compressive stress was almost in a North-South direction, just reverse of the fault moving direction. These are important results to evaluate fault activity. We argue that the stress state observed in these sites exists only when the faults are quite "weak," and thus does not reach to a critical level of fault activation in the present situation.

  2. Plateau growth around the Changma Basin in NE Tibet

    NASA Astrophysics Data System (ADS)

    Vernon, Rowan; Cunningham, Dickson; Zhang, Jin; England, Richard

    2014-05-01

    The Qilian Mountains form one of the most actively uplifting regions of the northeastern Tibetan Plateau and provide an opportunity to study the ongoing, intermediate stages of plateau growth. The crust of the Qilian Mountains consists of an orogenic collage of mid-Proterozoic to mid-Palaeozoic island arc terranes accreted to the North China Craton during the Palaeozoic. NE-directed compression related to the Indo-Asian collision began in the Early Neogene, uplifting fold-thrust mountain ranges which splay south-eastwards from the sinistral northeast-trending Altyn Tagh Fault (ATF). In this study, we investigate the post-Oligocene tectonic evolution of the northern margin of the Tibetan Plateau around the Changma Basin, at the very northeast corner of the Plateau, where the ATF forms a triple junction with the frontal Qilian Shan thrust. Our research involves synthesis of previous geological and geophysical data, remote sensing analysis and field mapping of structures along key transects. The Changma Basin is a relatively low intra-montane basin in the northeast Tibetan Plateau that is receiving alluvial infill from surrounding ranges, but is also being drained by the Su Le River, one of the largest river systems in the northeast Tibetan Plateau. The basin is also internally deforming and inverting along fault and fold zones, as well as being overthrust along some of its margins. Where older basement trends are parallel to neotectonic faults, some reactivation is inferred and locally documented through field observations. Otherwise, the post-Oligocene thrust and oblique-slip faults which are responsible for uplifting various basement blocks and inverting the Changma Basin appear discordant to nearby basement trends. Range-bounding thrust faults with the greatest along-strike continuity and relief generation are assumed to have the largest displacements, whereas other intra-range thrusts that bound uplifted limestone blocks are assumed to have lower amounts of displacement. Structural transects reveal a lack of intra-range reactivation of inherited structures or fabrics, concentrating uplift on the lithologically-controlled intra-range thrust faults and the major range-bounding thrust and oblique-slip faults. Northeast of the Changma Basin, in the Qilian Shan foreland, an east-trending belt of low folds and faulted ridges along the ATF marks the structural continuation of the Yumen Shan range. We find that uplift and growth of northeastern Tibet is complex with local variations in structural vergence, degree of strain partitioning, fault reactivation and basin inversion. This complexity reflects both the buttressing effect of the rigid Archaean basement directly to the north and the variation in the structural trends and lithologies of the Qilian basement, as well as the competition between uplift and erosion in the region.

  3. Subsurface and petroleum geology of the southwestern Santa Clara Valley ("Silicon Valley"), California

    USGS Publications Warehouse

    Stanley, Richard G.; Jachens, Robert C.; Lillis, Paul G.; McLaughlin, Robert J.; Kvenvolden, Keith A.; Hostettler, Frances D.; McDougall, Kristin A.; Magoon, Leslie B.

    2002-01-01

    Gravity anomalies, historical records of exploratory oil wells and oil seeps, new organic-geochemical results, and new stratigraphic and structural data indicate the presence of a concealed, oil-bearing sedimentary basin beneath a highly urbanized part of the Santa Clara Valley, Calif. A conspicuous isostatic-gravity low that extends about 35 km from Palo Alto southeastward to near Los Gatos reflects an asymmetric, northwest-trending sedimentary basin comprising low-density strata, principally of Miocene age, that rest on higher-density rocks of Mesozoic and Paleogene(?) age. Both gravity and well data show that the low-density rocks thin gradually to the northeast over a distance of about 10 km. The thickest (approx 4 km thick) accumulation of low-density material occurs along the basin's steep southwestern margin, which may be controlled by buried, northeast-dipping normal faults that were active during the Miocene. Movement along these hypothetical normal faults may been contemporaneous (approx 17–14 Ma) with sedimentation and local dacitic and basaltic volcanism, possibly in response to crustal extension related to passage of the northwestward-migrating Mendocino triple junction. During the Pliocene and Quaternary, the normal faults and Miocene strata were overridden by Mesozoic rocks, including the Franciscan Complex, along northeastward-vergent reverse and thrust faults of the Berrocal, Shannon, and Monte Vista Fault zones. Movement along these fault zones was accompanied by folding and tilting of strata as young as Quaternary and by uplift of the modern Santa Cruz Mountains; the fault zones remain seismically active. We attribute the Pliocene and Quaternary reverse and thrust faulting, folding, and uplift to compression caused by local San Andreas Fault tectonics and regional transpression along the Pacific-North American Plate boundary. Near the southwestern margin of the Santa Clara Valley, as many as 20 exploratory oil wells were drilled between 1891 and 1929 to total depths as great as 840 m. At least one pump unit is still standing. Although no lithologic or paleontologic samples are available from the wells, driller's logs indicate the presence of thick intervals of brown shale and sandstone resembling nearby outcrops of the Miocene Monterey Formation. Small amounts of oil and gas were observed in several wells, but commercial production was never established. Oil from the Peck well in Los Gatos is highly biodegraded, contains biomarkers commonly found in oils derived from the Monterey Formation, and has a stable-C-isotopic (d13C) composition of –23.32 permil, indicating derivation from a Miocene Monterey Formation source rock. Preliminary calculations suggest that about 1 billion barrels of oil may have been generated from source rocks within the Monterey Formation in the deepest part of the subsurface sedimentary basin between Los Gatos and Cupertino. Most of this oil was probably lost to biodegradation, oxidation, and leakage to the surface, but some oil may have accumulated in as-yet-undiscovered structural and stratigraphic traps along the complex structural boundary between the Santa Clara Valley and the Santa Cruz Mountains. Although some of these undiscovered accumulations of oil may be of commercial size, future petroleum exploration is unlikely because most of the area is currently devoted to residential, recreational, commercial, and industrial uses.

  4. Back-arc basin opening and closure along the southern margin of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Claringbould, Johan; Ishiyama, Tatsuya; Kato, Naoko; Abe, Susumu; Kawasaki, Shinji

    2016-04-01

    Following the tsunami disaster produced by 2001 Off-Tohoku earthquake (M9) along the Pacific coast of Japan, the Japanese government started an intense evaluation of tsunami hazards. This evaluation spanned along the full Japanese coast, including the Sea of Japan coast on the western side of the Japan arc. In the Sea of Japan, tsunamis are produced by crustal faults. As the longer interval of faulting activity, the historical records of tsunamis in the Sea of Japan are not enough for the evaluation of tsunami height. Thus, the evaluation is carried out based on structural analyses of the margin of the Sea of Japan. To get better understanding of the present-day structural geometry and develop a source-fault model in this region, intense seismic reflection profiling has been carried out since 2013. We introduce the results of the seismic reflection profiles and discuss the structural evolution of the southern margin of the Sea of Japan. 2D seismic reflection profiles were acquired using 1950 cu. in. air-gun and 2100 m streamer cable. The seismic profiles provide the image image up to 3 seconds TWT. The southern margin of the Sea of Japan was produced by back-arc opening and post-rift deformation, and the structural evolution of this area is divided into several stages: rifting (25 - 14 Ma), post-rift compression (14 - 5 Ma), weak thrusting (5 - 1 Ma), and strike-slip deformation (1 Ma to present). During the rifting stage that is associated with the fan-shaped opening of the Sea of Japan, grabens and half-grabens were formed trending parallel to the extension of SW-Japan arc. These grabens were filled by syn-rift sediments, and the maximum thickness of basin fill is observed along the southern margin of the rifted crust. The opening of the Sea of Japan ceased as a result of the collision of Izu-Bonin-Mariana arc system at the Izu collision zone on the central part of Honshu, Japan. Soon after the this event, the young Shikoku basin within the Philippine Sea plate (PHS) moved northward towards the Nankai trough on the southeastern side of the SW-Japan arc. Due to the high thermal regime of the Shikoku basin, the resistance along the Nankai trough was so large that shortening deformation occurred along in the failed marginal rift zone that was developed previously along the southern margin of the Sea of Japan. This resulted in the Shinji fold belt. After the start of the subduction of the Shikoku basin along the Nankai trough, the rate of shortening in the Shinji fold belt was decreased and the folded strata were covered by sub-horizontal Pliocene sediments. Reverse faulting of the arc-parallel faults from Pliocene to early Pleistocene along the small number of faults suggests that the compression from the Nankai trough still has been continued in this stage. A change in the direction of the motion of PHS at 1 Ma produced major change in stress regime from NS compression to EW compression in the back-arc. Following the change of stress regime, the former reverse faults reactivated as strike-slip faults. The structural evolution and inherited structure presented here provide essential information for constructing the tsunami source-fault model along southern margin of the Sea of Japan.

  5. Fault linkage and continental breakup

    NASA Astrophysics Data System (ADS)

    Cresswell, Derren; Lymer, Gaël; Reston, Tim; Stevenson, Carl; Bull, Jonathan; Sawyer, Dale; Morgan, Julia

    2017-04-01

    The magma-poor rifted margin off the west coast of Galicia (NW Spain) has provided some of the key observations in the development of models describing the final stages of rifting and continental breakup. In 2013, we collected a 68 x 20 km 3D seismic survey across the Galicia margin, NE Atlantic. Processing through to 3D Pre-stack Time Migration (12.5 m bin-size) and 3D depth conversion reveals the key structures, including an underlying detachment fault (the S detachment), and the intra-block and inter-block faults. These data reveal multiple phases of faulting, which overlap spatially and temporally, have thinned the crust to between zero and a few km thickness, producing 'basement windows' where crustal basement has been completely pulled apart and sediments lie directly on the mantle. Two approximately N-S trending fault systems are observed: 1) a margin proximal system of two linked faults that are the upward extension (breakaway faults) of the S; in the south they form one surface that splays northward to form two faults with an intervening fault block. These faults were thus demonstrably active at one time rather than sequentially. 2) An oceanward relay structure that shows clear along strike linkage. Faults within the relay trend NE-SW and heavily dissect the basement. The main block bounding faults can be traced from the S detachment through the basement into, and heavily deforming, the syn-rift sediments where they die out, suggesting that the faults propagated up from the S detachment surface. Analysis of the fault heaves and associated maps at different structural levels show complementary fault systems. The pattern of faulting suggests a variation in main tectonic transport direction moving oceanward. This might be interpreted as a temporal change during sequential faulting, however the transfer of extension between faults and the lateral variability of fault blocks suggests that many of the faults across the 3D volume were active at least in part simultaneously. Alternatively, extension may have varied in direction spatially if it were a rotation about a pole located to the north.

  6. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Jacobi; John Fountain

    2002-01-30

    In the structure task, we completed reducing the data we had collected from a N-S transect on the east of Seneca Lake. We have calculated the fracture frequency for all the fracture sets at each site, and constructed modified rose diagrams that summarize the fracture attributes at each site. These data indicate a N-striking fault near the southeastern shore of Seneca Lake, and also indicate NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the ENE-striking FIDs and faults are thought to be guided by faults in the Precambrian basement; these basement faults apparently weremore » sufficiently reactivated to cause faulting in the Paleozoic section. Other faults are thrust ramps above the Silurian salt section that were controlled by a far-field Alleghanian stress field. Structure contour maps and isopach maps have been revised based on additional well log analyses. Except for the Glodes Corners Field, the well spacing generally is insufficient to definitively identify faults. However, relatively sharp elevational changes east of Keuka Lake support the contention that faults occur along the east side of Keuka Lake. Outcrop stratigraphy along the east side of Seneca Lake indicates that faults and gentle folds can be inferred from the some exposures along Seneca Lake, but the lensing nature of the individual sandstones can preclude long-distance definitive correlations and structure identification. Soil gas data collected during the 2000 field season was reduced and displayed in the previous semiannual report. The seismic data that Quest licensed has been reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. In this report we display an interpreted seismic line that crosses the Glodes Corners and Muck Farm fields. The final report from the subcontractor concerning the completed aeromagnetic survey is included. Prominent magnetic anomalies suggest that faults in the Precambrian basement are located beneath regions where grabens in the Trenton are located. The trend and location of these faults based on aeromagnetics agrees with the location based on FIDs. These data indicate that integration of aeromagnetic and topographic lineaments, surface structure, soil gas with seismic and well logs allows us to extrapolate Trenton-Black River trends away from confirmatory seismic lines.« less

  7. Stress state and movement potential of the Kar-e-Bas fault zone, Fars, Iran

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Zafarmand, Bahareh

    2017-08-01

    The Kar-e-Bas or Mengharak basement-inverted fault is comprised of six segments in the Zagros foreland folded belt of Iran. In the Fars region, this fault zone associated with the Kazerun, Sabz-Pushan and Sarvestan faults serves as a lateral transfer zone that accommodates the change in shortening direction from the western central to the eastern Zagros. This study evaluates the recent tectonic stress regime of the Kar-e-Bas fault zone based on inversion of earthquake focal mechanism data, and quantifies the fault movement potential of this zone based on the relationship between fault geometric characteristics and recent tectonic stress regimes. The trend and plunge of σ 1 and σ 3 are S25°W/04°-N31°E/05° and S65°E/04°-N60°W/10°, respectively, with a stress ratio of Φ = 0.83. These results are consistent with the collision direction of the Afro-Arabian continent and the Iranian microcontinent. The near horizontal plunge of maximum and minimum principle stresses and the value of stress ratio Φ indicate that the state of stress is nearly strike-slip dominated with little relative difference between the value of two principal stresses, σ 1 and σ 2. The obliquity of the maximum compressional stress into the fault trend reveals a typical stress partitioning of thrust and strike-slip motion in the Kar-e-Bas fault zone. Analysis of the movement potential of this fault zone shows that its northern segment has a higher potential of fault activity (0.99). The negligible difference between the fault-plane dips of the segments indicates that their strike is a controlling factor in the changes in movement potential.

  8. Fault zone architecture of a major oblique-slip fault in the Rawil depression, Western Helvetic nappes, Switzerland

    NASA Astrophysics Data System (ADS)

    Gasser, D.; Mancktelow, N. S.

    2009-04-01

    The Helvetic nappes in the Swiss Alps form a classic fold-and-thrust belt related to overall NNW-directed transport. In western Switzerland, the plunge of nappe fold axes and the regional distribution of units define a broad depression, the Rawil depression, between the culminations of Aiguilles Rouge massif to the SW and Aar massif to the NE. A compilation of data from the literature establishes that, in addition to thrusts related to nappe stacking, the Rawil depression is cross-cut by four sets of brittle faults: (1) SW-NE striking normal faults that strike parallel to the regional fold axis trend, (2) NW-SE striking normal faults and joints that strike perpendicular to the regional fold axis trend, and (3) WNW-ESE striking normal plus dextral oblique-slip faults as well as (4) WSW-ENE striking normal plus dextral oblique-slip faults that both strike oblique to the regional fold axis trend. We studied in detail a beautifully exposed fault from set 3, the Rezli fault zone (RFZ) in the central Wildhorn nappe. The RFZ is a shallow to moderately-dipping (ca. 30-60˚) fault zone with an oblique-slip displacement vector, combining both dextral and normal components. It must have formed in approximately this orientation, because the local orientation of fold axes corresponds to the regional one, as does the generally vertical orientation of extensional joints and veins associated with the regional fault set 2. The fault zone crosscuts four different lithologies: limestone, intercalated marl and limestone, marl and sandstone, and it has a maximum horizontal dextral offset component of ~300 m and a maximum vertical normal offset component of ~200 m. Its internal architecture strongly depends on the lithology in which it developed. In the limestone, it consists of veins, stylolites, cataclasites and cemented gouge, in the intercalated marls and limestones of anastomosing shear zones, brittle fractures, veins and folds, in the marls of anastomosing shear zones, pressure solution seams and veins and in the sandstones of coarse breccia and veins. Later, straight, sharp fault planes cross-cut all these features. In all lithologies, common veins and calcite-cemented fault rocks indicate the strong involvement of fluids during faulting. Today, the southern Rawil depression and the Rhone Valley belong to one of the seismically most active regions in Switzerland. Seismogenic faults interpreted from earthquake focal mechanisms strike ENE-WSW to WNW-ESE, with dominant dextral strike-slip and minor normal components and epicentres at depths of < 15 km. All three Neogene fault sets (2-4) could have been active under the current stress field inferred from the current seismicity. This implies that the same mechanisms that formed these fault zones in the past may still persist at depth. The Rezli fault zone allows the detailed study of a fossil fault zone that can act as a model for processes still occurring at deeper levels in this seismically active region.

  9. The Dandridge-Vonore Fault Zone in the Eastern Tennessee Seismic Zone (and Rejuvenation of the Smokies?)

    NASA Astrophysics Data System (ADS)

    Cox, R. T.; Hatcher, R. D., Jr.; Forman, S. L.; Gamble, E. D. S.; Warrell, K. F.

    2017-12-01

    The eastern Tennessee seismic zone (ETSZ) trends 045o from NE Alabama and NW Georgia through Tennessee to SE Kentucky, and seismicity is localized 5-26 km deep in the basement. The ETSZ is the second most seismically active region in North America east of the Rocky Mountains, although no historic earthquakes larger than Mw 4.8 have been recorded here. Late Quaternary paleoiseismic evidence suggests that the ETSZ is capable of M7+ earthquakes and that neotectonic faults may have significantly influenced the regional relief. We have identified an 80 km-long, 060o-trending corridor in eastern Tennessee that contains collinear northeast-striking thrust, strike-slip, and normal Quaternary faults with displacements of 1-2 m, herein termed the Dandridge-Vonore fault zone (DVFZ). French Broad River alluvium in the northeast DVFZ near Dandridge, TN, is displaced by a 050o-striking, SE-dipping thrust fault and by a set of related fissures that record at least two significant post 25 ka paleo-earthquakes. Southwest of Dandridge near Alcoa, TN, a 060o-striking, SE-dipping thrust fault cuts Little River alluvium and records two significant post-15 ka paleo-earthquakes. Farther southwest at Vonore, colluvium with alluvial cobbles is thrust >1 m by a 057o-striking, steeply SE-dipping fault that may also have a significant strike-slip component, and Little Tennessee River alluvium is dropped >2 m along a 070o- striking normal fault. The DVFZ partly overlaps and is collinear with a local trend of maximum seismicity that extends 30 km farther SW of the DVFZ (as currently mapped), for a total length of 110 km. The DVFZ is coincident with a steep gradient in S-wave velocities (from high velocity on the SE to low velocity on the NW) at mid-crustal depths of 20 to 24 km, consistent with a fault and source zone at hypocentral depths in the crystalline basement. Moreover, the DVFZ parallels the NW foot of Blue Ridge Mountains, and the sense of thrusting at all sites of Quaternary faulting in the DVFZ is consistent with uplift of the Blue Ridge.

  10. The North Tanganyika hydrothermal fields, East African Rift system: Their tectonic control and relationship to volcanism and rift segmentation

    NASA Astrophysics Data System (ADS)

    Coussement, C.; Gente, P.; Rolet, J.; Tiercelin, J.-J.; Wafula, M.; Buku, S.

    1994-10-01

    The two branches of the East African Rift system include numerous hydrothermal fields, which are closely related to the present fault motion and to volcanic and seismic activity. In this study structural data from Pemba and Cape Banza hydrothermal fields (western branch, North Tanganyika, Zaire) are discussed in terms of neotectonic phenomena. Different types of records, such as fieldwork (onshore and underwater) and LANDSAT and SPOT imagery, are used to explain structural controls on active and fossil hydrothermal systems and their significance. The Pemba site is located at the intersection of 000-020°-trending normal faults belonging to the Uvira Border Fault System and a 120-130°-trending transtensional fault zone and is an area of high seismicity, with events of relatively large magnitude ( Ms < 6.5). The Cape Banza site occurs at the northern end of the Ubawari Peninsula horst. It is bounded by two fault systems trending 015° and is characterized seismically by events of small magnitude ( Ms < 4). The hydrothermal area itself is tectonically controlled by structures striking 170-180° and 080°. The analysis of both hydrothermal areas demonstrates the rejuvenation of older Proterozoic structures during Recent rift faulting and the location of the hydrothermal activity at the junctions of submeridian and transverse faults. The fault motion is compatible with a regional direction of extension of 090-110°. The Cape Banza and Pemba hydrothermal fields may testify to magma chambers existing below the junctions of the faults. They appear to form at structural nodes and may represent a future volcanic province. Together with the four surface volcanic provinces existing along the western branch, they possibly indicate an incipient rift segmentation related to 'valley-valley' or 'transverse fault-valley' junctions, contrasting with the spacing of the volcanoes measured in the eastern branch. These spacings appear to express the different elastic thicknesses between the eastern and western branches of the East African Rift system, perhaps related to a difference in stage of evolution of the two branches.

  11. Long-term deformation in the Mississippi Embayment (Central USA) imaged by high-resolution seismic reflection data

    NASA Astrophysics Data System (ADS)

    Hao, Yanjun

    Large magnitude intraplate earthquakes are a puzzling exception to plate tectonic theory. Unlike earthquakes occurring along plate boundaries, large continental intraplate earthquakes are a rare occurrence and are often distributed over broad regions. Albeit rare, their occurrence can cause widespread damage because of the low attenuation of seismic energy typical of plate interiors [Hanks and Johnston, 1992]. In the Central USA, most of the recent tectonic intraplate seismicity concentrates along the New Madrid seismic zone (NMSZ), where three large (M>7) earthquakes occurred between 1811--1812 [Johnston and Schweig, 1996]. Here the low surface deformation rates [Calais and Stein, 2009] conflict with the elevated instrument-recorded seismicity and the occurrence of historical and prehistorical large magnitude events [Tuttle et al., 2002]. One of the promising hypotheses proposed to reconcile this apparent contradiction is that intraplate earthquakes may be temporally clustered, episodic or cyclic, and may migrate spatially at the regional or continental scale across multiple faults or fault systems. In order to test this hypothesis and to understand how and where the long-term deformation is accommodated in the Mississippi Embayment, Central USA, I utilize high-resolution seismic reflection data acquired by the Mississippi River Project [Magnani and McIntosh, 2009] and by a 2010 survey across the Meeman-Shelby fault [Magnani, 2011; Hao et al., 2013]. To identify the location of Quaternary deformation and characterize deformation history, I acquired, processed, and interpreted the seismic reflection data and integrated them with other available geophysical (e.g. seismicity, crustal and lithospheric models) and geological (e.g. magmatism and borehole) data. For my research, I focus on three regions in the Mississippi Embayment: 1) the Meeman-Shelby fault west of Memphis, Tennessee, 2) the eastern Reelfoot rift margin north of Memphis, Tennessee, and 3) the area in southeastern Arkansas along the Alabama-Oklahoma transform zone. Quaternary deformation and prolonged history of activity of the imaged faults is documented at all sites. The results show that Quaternary seismic activity in the Mississippi Embayment is accommodated by faults additional to the NMSZ fault system, and that fault activity is controlled by certain paleotectonic structures inherited from the Proterozoic and Paleozoic history of the North American continent. The identification of Quaternary seismogenic faults outside the footprint of the NMSZ and of the lower crustal anomaly (i.e. "rift pillow") supports seismotectonic models that predict deformation over a large area (e.g. Forte et al., 2007) and calls into questions in models that predict concentration of strain in the NMSZ region (e.g. Pollitz et al., 2001). A comparison between the newly imaged faults and the NMSZ faults shows that the former are indistinguishable from the latter except for the occurrence of instrumental seismicity. Based on the analysis of the location and sense of displacement of Quaternary deformation in the northern Mississippi Embayment, I propose a new fault network to reconcile the wide distribution of Quaternary faults with concentration of instrumental seismicity along the NMSZ. The fault network consists of three distinct trends of faults: ~N45°E right-lateral strike-slip faults, ~N20°W reverse faults, and ~N25°E right-lateral strike-slip faults. Different faults in the fault network appear to have been active at different times across the northern embayment. The available age data suggest a northward migration of the deformation, with the NMSZ representing the latest and youngest fault system.

  12. Seismic sources in El Salvador. A geological and geodetic contribution

    NASA Astrophysics Data System (ADS)

    Alonso-Henar, J.; Martínez-Díaz, J. J.; Benito, B.; Alvarez-Gomez, J. A.; Canora, C.; Capote, R.; Staller, A.; Tectónica Activa, Paleosismicidad y. Riesgos Asociados UCM-910368

    2013-05-01

    El Salvador Fault Zone is a deformation band of 150 km long and 20 km wide within the Salvadorian volcanic arc. This shear band distributes the deformation between main strike-slip faults trending N90°-100°E and around 30 km long, and secondary normal faults trending between N120°E and N170°E. The ESFZ continues westward and is relieved by the Jalpatagua Fault. Eastward ESFZ becomes less clear disappearing at Golfo de Fonseca. The ESFZ deforms and offsets quaternary deposits with a right lateral movement in its main segments. Five segments have been proposed for the whole fault zone, from the Jalpatagua Fault to the Golfo de Fonseca. Paleoseismic studies in the Berlin and San Vicente Segments reveal an important amount of quaternary deformation. In fact, the San Vicente Segment was the source of the February 13, 2001 destructive earthquake. In this work we propose 18 capable seismic sources within El Salvador. The slip rate of each source has been obtained through out the combination of GPS data and paleoseismic data when it has been possible. We also have calculated maximum theoretical intensities produced by the maximum earthquakes related with each fault. We have taken into account several scenarios considering different possible surface rupture lengths up to 50 km and Mw 7.6 in some of the strike slip faults within ESFZ.

  13. Anatomy of a Plate Boundary at Shallow Crustal Levels: a Composite Section from the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Barth, N. C.; Toy, V. G.; Boulton, C. J.; Carpenter, B. M.

    2010-12-01

    New Zealand's Alpine Fault is mostly a moderately SE-dipping dextral reverse plate boundary structure, but at its southern end, strike-slip-normal motion is indicated by offset of recent surfaces, juxtaposition of sediments, and both brittle and ductile shear sense indicators. At the location of uplift polarity reversal fault rocks exhumed from both the hangingwall Pacific and footwall Australian Plates are juxtaposed, offering a remarkably complete cross section of the plate boundary at shallow crustal levels. We describe Alpine Fault damage zone and fault core structures overprinted on Pacific and Australian plate mylonites of a variety of compositions, in a fault-strike perpendicular composite section spanning the reversal in dip-slip polarity. The damage zone is asymmetric; on the Australian Plate 160m of quartzose paragneiss-derived mylonites are overprinted by brittle faults and fractures that increase in density towards the principal slip surface (PSS). This damage zone fabric consists of 1-10m-spaced, moderately to steeply-dipping, 1-20cm-thick gouge-filled faults, overprinted on and sub-parallel to a mylonitic foliation sub-parallel to the PSS. On the Pacific Plate, only 40m of the 330m section of volcaniclastic-derived mylonites have brittle damage in the form of unhealed fractures and faults, as well as a pervasive greenschist facies hydrothermal alteration absent in the footwall. These damage-related structures comprise a network of small-offset faults and fractures with increasing density and intensity towards the PSS. The active Pacific Plate fault core is composed of ~1m of cataclasite grading into folded protocataclasite that is less folded and fractured with increasing distance from the PSS. The active Australian Plate fault core is <1.5m wide and consists of 3 distinct foliated clay gouges, as well as a 4cm thick brittle ultracataclasite immediately adjacent to the active PSS. The Australian Plate foliated clay gouge contains stringers of quartz that become less continuous and more sigmoidal toward the PSS, indicating a strain gradient across the gouge zone. Gouge textures are consistent with deformation by pressure solution. Intact wafers from one of the gouges, experimentally -sheared in a biaxial configuration under true-triaxial loading at σn’= 31MPa and Pf = 10MPa, yielded a friction coefficient, μss = 0.32 and displayed velocity strengthening behavior. No significant re-strengthening was observed during hold periods of slide-hold tests. Well-cemented glacial till (~8000 years old), which caps many outcrops, is a marker that shows that the damage zone is not active in the near-surface, but most of the fault core is. The active near-surface damage zone here is <40m wide and the active fault core is <2.5m wide. Both overprint a much wider, inactive damage zone. The combination of rheologically-weak Australian Plate fault rocks with surface rupture traces indicates distinctly different coseismic and interseismic behaviors along the southern strike-slip-normal segment of the Alpine Fault.

  14. Investigation of Finite Sources through Time Reversal

    NASA Astrophysics Data System (ADS)

    Kremers, S.; Brietzke, G.; Igel, H.; Larmat, C.; Fichtner, A.; Johnson, P. A.; Huang, L.

    2008-12-01

    Under certain conditions time reversal is a promising method to determine earthquake source characteristics without any a-priori information (except the earth model and the data). It consists of injecting flipped-in-time records from seismic stations within the model to create an approximate reverse movie of wave propagation from which the location of the source point and other information might be inferred. In this study, the backward propagation is performed numerically using a spectral element code. We investigate the potential of time reversal to recover finite source characteristics (e.g., size of ruptured area, location of asperities, rupture velocity etc.). We use synthetic data from the SPICE kinematic source inversion blind test initiated to investigate the performance of current kinematic source inversion approaches (http://www.spice- rtn.org/library/valid). The synthetic data set attempts to reproduce the 2000 Tottori earthquake with 33 records close to the fault. We discuss the influence of relaxing the ignorance to prior source information (e.g., origin time, hypocenter, fault location, etc.) on the results of the time reversal process.

  15. Geodetic measurement of deformation in the central Mojave Desert, California

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne; Solomon, Sean C.; Thatcher, Wayne

    1986-01-01

    Data from triangulation and trilateration surveys made during 1934-1982 are used to calculate shear strain rates in the central Mojave Desert of California. For the region between the Helendale and Camp Rock faults the shear strain rate was determined to be 0.16 + or - 0.03 microstrain/yr, with maximum right-lateral shear strain occurring on a plane oriented N41 deg W + or - 5 deg. If this deformation is due to right-lateral motion across the northwest trending local faults, the average shear straining corresponds to a relative displacement of 6.7 + or - 1.3 mm/yr across this portion of the network, accounting for about 12 percent of the predicted 56 mm/yr of relative motion between the North Atlantic and Pacific plates. From the Camp Rock fault eastward across the network there is a transition from significant to very low strain rates. Examination of nine focal mechanisms and their relation to the local geology and the strain data suggests that most of the long-term displacement occurs on the major northwest trending faults oriented nearly along the direction of relative motion between the North American and Pacific plates. Secondary faulting, controlled by a Coulomb-Anderson failure mechanism or by slip on preexisting faults can account for the occurrence of earthquakes on faults of other orientations.

  16. Crustal deformation associated with east Mediterranean strike-slip earthquakes: The 8 June 2008 Movri (NW Peloponnese), Greece, earthquake (M w6.4)

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Gerassimos A.; Karastathis, Vassilis; Kontoes, Charalambos; Charalampakis, Marinos; Fokaefs, Anna; Papoutsis, Ioannis

    2010-09-01

    The 2008 mainshock ( Mw = 6.4) was the first modern, strong strike-slip earthquake in the Greek mainland. The fault strikes NE-SW, dips ˜ 85°NW while the motion was right-lateral with small reverse component. Historical seismicity showed no evidence that the fault ruptured in the last 300 years. For rectangular planar fault we estimated fault dimensions from aftershock locations. Dimensions are consistent with that a buried fault was activated, lateral expansion occurred only along length and the rupture stopped at depth ˜ 20 km implying that more rupture along length was favoured. We concluded that no major asperities remained unbroken and that the aftershock activity was dominated rather by creeping mechanism than by the presence of locked patches. For Mo = 4.56 × 10 25 dyn cm we calculated average slip of 76 cm and stress drop Δσ ˜ 13 bars. This Δσ is high for Greek strike-slip earthquakes, due rather to increased rigidity because of the relatively long recurrence ( Τ > 300 years) of strong earthquakes in the fault, than to high slip. Values of Δσ and Τ indicated that the fault is neither a typical strong nor a typical weak fault. Dislocation modeling of a buried fault showed uplift of ˜ 8.0 cm in Kato Achaia ( Δ ˜ 20 km) at the hanging wall of the reverse fault component. DInSAR analysis detected co-seismic motion only in Kato Achaia where interferogram fringes pattern showed vertical displacement from 3.0 to 6.0 cm. From field-surveys we estimated maximum intensity of VIII in Kato Achaia. The most important liquefaction spots were also observed there. These observations are attributable neither to surface fault-breaks nor to site effects but possibly to high ground acceleration due to the co-seismic uplift. The causal association between displacement and earthquake damage in the hanging wall described for dip-slip faults in Taiwan, Greece and elsewhere, becomes possible also for strike-slip faults with dip-slip component, as the 2008 earthquake.

  17. Temporal changes in stress preceding the 2004-2008 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Lehto, H.L.; Roman, D.C.; Moran, S.C.

    2010-01-01

    The 2004-2008 eruption of Mount St. Helens (MSH), Washington, was preceded by a swarm of shallow volcano-tectonic earthquakes (VTs) that began on September 23, 2004. We calculated locations and fault-plane solutions (FPS) for shallow VTs recorded during a background period (January 1999 to July 2004) and during the early vent-clearing phase (September 23 to 29, 2004) of the 2004-2008 eruption. FPS show normal and strike-slip faulting during the background period and on September 23; strike-slip and reverse faulting on September 24; and a mixture of strike-slip, reverse, and normal faulting on September 25-29. The orientation of ??1 beneath MSH, as estimated from stress tensor inversions, was found to be sub-horizontal for all periods and oriented NE-SW during the background period, NW-SE on September 24, and NE-SW on September 25-29. We suggest that the ephemeral ~90?? change in ??1 orientation was due to intrusion and inflation of a NE-SW-oriented dike in the shallow crust prior to the eruption onset. ?? 2010 Elsevier B.V.

  18. A novelty detection diagnostic methodology for gearboxes operating under fluctuating operating conditions using probabilistic techniques

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Heyns, P. S.; de Villiers, J. P.

    2018-02-01

    In this paper, a fault diagnostic methodology is developed which is able to detect, locate and trend gear faults under fluctuating operating conditions when only vibration data from a single transducer, measured on a healthy gearbox are available. A two-phase feature extraction and modelling process is proposed to infer the operating condition and based on the operating condition, to detect changes in the machine condition. Information from optimised machine and operating condition hidden Markov models are statistically combined to generate a discrepancy signal which is post-processed to infer the condition of the gearbox. The discrepancy signal is processed and combined with statistical methods for automatic fault detection and localisation and to perform fault trending over time. The proposed methodology is validated on experimental data and a tacholess order tracking methodology is used to enhance the cost-effectiveness of the diagnostic methodology.

  19. The geologic structure of part of the southern Franklin Mountains, El Paso County, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, W.R.; Julian, F.E.

    1993-02-01

    The Franklin Mountains are a west tilted fault block mountain range which extends northwards from the city of El Paso, Texas. Geologic mapping in the southern portion of the Franklin Mountains has revealed many previously unrecognized structural complexities. Three large high-angle faults define the boundaries of map. Twenty lithologic units are present in the field area, including the southernmost Precambrian meta-sedimentary rocks in the Franklin Mountains (Lanoria Quartzite and Thunderbird group conglomerates). The area is dominated by Precambrian igneous rocks and lower Paleozoic carbonates, but Cenozoic ( ) intrusions are also recognized. Thin sections and rock slabs were used tomore » describe and identify many of the lithologic units. The Franklin Mountains are often referred to as a simple fault block mountain range related to the Rio Grande Rift. Three critical regions within the study area show that these mountains contain structural complexities. In critical area one, Precambrian granites and rhyolites are structurally juxtaposed, and several faults bisecting the area affect the Precambrian/Paleozoic fault contact. Critical area two contains multiple NNW-trending faults, three sills and a possible landslide. This area also shows depositional features related to an island of Precambrian rock exposed during deposition of the lower Paleozoic rocks. Critical area three contains numerous small faults which generally trend NNE. They appear to be splays off of one of the major faults bounding the area. Cenozoic kaolinite sills and mafic intrusion have filled many of the fault zones.« less

  20. [Research on monitoring land subsidence in Beijing plain area using PS-InSAR technology].

    PubMed

    Gu, Zhao-Qin; Gong, Hui-Li; Zhang, You-Quan; Lu, Xue-Hui; Wang, Sa; Wang, Rong; Liu, Huan-Huan

    2014-07-01

    In the present paper, the authors use permanent scatterers synthetic aperture radar interferometry (PS-InSAR) technique and 29 acquisitions by Envisat during 2003 to 2009 to monitor and analyze the spatial-temporal distribution and mechanism characterize of land subsidence in Beijing plain area. The results show that subsidence bowls have been bounded together in Beijing plain area, which covers Chaoyang, Changping, Shunyi and Tongzhou area, and the range of subsidence has an eastward trend. The most serious regional subsidence is mainly distributed by the quaternary depression in Beijing plain area. PS-Insar results also show a new subsidence bowl in Pinggu. What's more, the spatial and temporal distribution of deformation is controlled mainly by faults, such as Liangxiang-Shunyi fault, Huangzhuang-Gaoliying fault, and Nankou-Sunhe fault. The subsidence and level of groundwater in study area shows a good correlation, and the subsidence shows seasonal ups trend during November to March and seasonal downs trend during March to June along with changes in groundwater levels. The contribution of land subsidence is also influenced by stress-strain behavior of aquitards. The compaction of aquitards shows an elastic, plastic, viscoelastic pattern.

  1. Clustering of velocities in a GPS network spanning the Sierra Nevada Block, the Northern Walker Lane Belt, and the Central Nevada Seismic Belt, California-Nevada

    NASA Astrophysics Data System (ADS)

    Savage, J. C.; Simpson, R. W.

    2013-09-01

    The deformation across the Sierra Nevada Block, the Walker Lane Belt, and the Central Nevada Seismic Belt (CNSB) between 38.5°N and 40.5°N has been analyzed by clustering GPS velocities to identify coherent blocks. Cluster analysis determines the number of clusters required and assigns the GPS stations to the proper clusters. The clusters are shown on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. Four significant clusters are identified. Those clusters are strips separated by (from west to east) the Mohawk Valley-Genoa fault system, the Pyramid Lake-Wassuk fault system, and the Central Nevada Seismic Belt. The strain rates within the westernmost three clusters approximate simple right-lateral shear (~13 nstrain/a) across vertical planes roughly parallel to the cluster boundaries. Clustering does not recognize the longitudinal segmentation of the Walker Lane Belt into domains dominated by either northwesterly trending, right-lateral faults or northeasterly trending, left-lateral faults.

  2. Clustering of velocities in a GPS network spanning the Sierra Nevada Block, the northern Walker Lane Belt, and the Central Nevada Seismic Belt, California-Nevada

    USGS Publications Warehouse

    Savage, James C.; Simpson, Robert W.

    2013-01-01

    The deformation across the Sierra Nevada Block, the Walker Lane Belt, and the Central Nevada Seismic Belt (CNSB) between 38.5°N and 40.5°N has been analyzed by clustering GPS velocities to identify coherent blocks. Cluster analysis determines the number of clusters required and assigns the GPS stations to the proper clusters. The clusters are shown on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. Four significant clusters are identified. Those clusters are strips separated by (from west to east) the Mohawk Valley-Genoa fault system, the Pyramid Lake-Wassuk fault system, and the Central Nevada Seismic Belt. The strain rates within the westernmost three clusters approximate simple right-lateral shear (~13 nstrain/a) across vertical planes roughly parallel to the cluster boundaries. Clustering does not recognize the longitudinal segmentation of the Walker Lane Belt into domains dominated by either northwesterly trending, right-lateral faults or northeasterly trending, left-lateral faults.

  3. Results of temperature gradient and heat flow in Santiam Pass Area, Oregon, Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, B.L.; Gardner, M.C.; Koenig, J.B.

    The conclusions of this report are: (1) There is a weakly defined thermal anomaly within the area examined by temperature-gradient holes in the Santiam Pass area. This is a relict anomaly showing differences in permeability between the High Cascades and Western Cascades areas, more than a fundamental difference in shallow crustal temperatures. (2) The anomaly as defined by the 60 F isotherms at 400 feet follows a north-south trend immediately westward of the Cascade axis in the boundary region. It is clear that all holes spudded into High Cascades rocks result in isothermal and reversal gradients. Holes spudded in Westernmore » Cascades rocks result in positive gradients. (3) Cold groundwater flow influences and masks temperature gradients in the High Cascades to a depth of at least 700 feet, especially eastward from the major north-south trending faults. Pleistocene and Holocene rocks are very permeable aquifers. (4) Shallow gradient drilling in the lowlands westward of the faults provides more interpretable information than shallow drilling in the cold-water recharge zones. Topographic and climatological effects can be filtered out of the temperature gradient results. (5) The thermal anomaly seems to have 2 centers: one in the Belknap-Foley area, and one northward in the Sand Mountain area. The anomalies may or may not be connected along a north-south trend. (6) A geothermal effect is seen in holes downslope of the Western-High Cascade boundary. Mixing with cold waters is a powerful influence on temperature gradient data. (7) The temperature-gradient program has not yet examined and defined the geothermal resources potential of the area eastward of the Western Cascades-High Cascades boundary. Holes to 1500-2000 feet in depth are required to penetrate the high permeability-cold groundwater regime. (8) Drilling conditions are unfavorable. There are very few accessible level drill sites. Seasonal access problems and environmental restrictions together with frequent lost circulation results in very high costs per foot drilled.« less

  4. Aftershocks of the 2010 Mw 7.2 El Mayor-Cucapah earthquake revealcomplex faulting in the Yuha Desert, California

    USGS Publications Warehouse

    Kroll, K.; Cochran, Elizabeth S.; Richards-Dinger, K.; Sumy, Danielle

    2013-01-01

    We detect and precisely locate over 9500 aftershocks that occurred in the Yuha Desert region during a 2 month period following the 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) earthquake. Events are relocated using a series of absolute and relative relocation procedures that include Hypoinverse, Velest, and hypoDD. Location errors are reduced to ~40 m horizontally and ~120 m vertically.Aftershock locations reveal a complex pattern of faulting with en echelon fault segments trending toward the northwest, approximately parallel to the North American-Pacific plate boundary and en echelon, conjugate features trending to the northeast. The relocated seismicity is highly correlated with published surface mapping of faults that experienced triggered surface slip in response to the EMC main shock. Aftershocks occurred between 2 km and 11 km depths, consistent with previous studies of seismogenic thickness in the region. Three-dimensional analysis reveals individual and intersecting fault planes that are limited in their along-strike length. These fault planes remain distinct structures at depth, indicative of conjugate faulting, and do not appear to coalesce onto a throughgoing fault segment. We observe a complex spatiotemporal migration of aftershocks, with seismicity that jumps between individual fault segments that are active for only a few days to weeks. Aftershock rates are roughly consistent with the expected earthquake production rates of Dieterich (1994). The conjugate pattern of faulting and nonuniform aftershock migration patterns suggest that strain in the Yuha Desert is being accommodated in a complex manner.

  5. Structural and metamorphic evolution of the Orocopia Schist and related rocks, southern California: Evidence for late movement on the Orocopia fault

    NASA Astrophysics Data System (ADS)

    Jacobson, Carl E.; Dawson, M. Robert

    1995-08-01

    The Pelona, Orocopia, and Rand Schists (POR schists) of southern California and southwesternmost Arizona are late Mesozoic or early Tertiary subduction complexes that underlie Precambrian to Mesozoic continental basement along the low-angle Vincent-Chocolate Mountains (VCM) fault system. The VCM faults are often considered to be remnants of the original subduction zone, but recent work indicates that many have undergone substantial postsubduction reactivation. In the Orocopia Mountains, for example, the Orocopia Schist exhibits an exceptionally complex structural and metamorphic history due to multiple periods of movement along the Orocopia fault. Structures in the schist include isoclinal folds with axial-planar schistosity, open-to-tight folds that fold schistosity, penetrative stretching lineations, and crenulation lineations, all of which show a nearly 360° range in trend. Folds and lineations that trend approximately NE-SW occur throughout the schist and are thought to be part of an early phase of deformation related to subduction. Folds of this orientation show no consistent vergence. Folds and lineations that trend approximately NW-SE are concentrated near the Orocopia fault and are interpreted to have formed during exhumation of the schist. The NW-SE trending folds, and shear indicators in late-stage mylonite at the top of the schist, consistently verge NE. The exhumation event culminated in emplacement of the schist against brittlely deformed upper plate. Exhumation of the Orocopia Schist was accompanied by retrograde replacement of garnet, biotite, epidote, and calcic amphibole by chlorite, calcite, and sericite. Matrix amphibole has a lower Na/Al ratio than amphibole inclusions in albite, consistent with a late-stage decrease in pressure. As NE vergence in the Orocopia Mountains is associated with exhumation of the schist, the NE movement along other segments of the VCM fault may also be late and therefore have no bearing on the facing direction of the VCM subduction zone, contrary to past interpretations.

  6. Seismogenic structures of the 2006 ML4.0 Dangan Island earthquake offshore Hong Kong

    NASA Astrophysics Data System (ADS)

    Xia, Shaohong; Cao, Jinghe; Sun, Jinlong; Lv, Jinshui; Xu, Huilong; Zhang, Xiang; Wan, Kuiyuan; Fan, Chaoyan; Zhou, Pengxiang

    2018-02-01

    The northern margin of the South China Sea, as a typical extensional continental margin, has relatively strong intraplate seismicity. Compared with the active zones of Nanao Island, Yangjiang, and Heyuan, seismicity in the Pearl River Estuary is relatively low. However, a ML4.0 earthquake in 2006 occurred near Dangan Island (DI) offshore Hong Kong, and this site was adjacent to the source of the historical M5.8 earthquake in 1874. To reveal the seismogenic mechanism of intraplate earthquakes in DI, we systematically analyzed the structural characteristics in the source area of the 2006 DI earthquake using integrated 24-channel seismic profiles, onshore-offshore wide-angle seismic tomography, and natural earthquake parameters. We ascertained the locations of NW- and NE-trending faults in the DI sea and found that the NE-trending DI fault mainly dipped southeast at a high angle and cut through the crust with an obvious low-velocity anomaly. The NW-trending fault dipped southwest with a similar high angle. The 2006 DI earthquake was adjacent to the intersection of the NE- and NW-trending faults, which suggested that the intersection of the two faults with different strikes could provide a favorable condition for the generation and triggering of intraplate earthquakes. Crustal velocity model showed that the high-velocity anomaly was imaged in the west of DI, but a distinct entity with low-velocity anomaly in the upper crust and high-velocity anomaly in the lower crust was found in the south of DI. Both the 1874 and 2006 DI earthquakes occurred along the edge of the distinct entity. Two vertical cross-sections nearly perpendicular to the strikes of the intersecting faults revealed good spatial correlations between the 2006 DI earthquake and the low to high speed transition in the distinct entity. This result indicated that the transitional zone might be a weakly structural body that can store strain energy and release it as a brittle failure, resulting in an earthquake-prone area.

  7. The Seismic Stratigraphic Record of Quaternary Deformation Across the North Anatolian Fault System in Southern Marmara Sea, Turkey

    NASA Astrophysics Data System (ADS)

    Sorlien, C. C.; Seeber, L.; Diebold, J.; Shillington, D.; Steckler, M. S.; Gurcay, S.; Kucuk, H. M.; Akhun, S. D.; Timur, D.; Dondurur, D.; Kurt, H.; Perincek, E.; Ozer, P.; Imren, C.; Coskun, S.; Buyukasik, E.; Cevatoglu, M.; Cifci, G.; Demirbag, E.

    2008-12-01

    We collected high-resolution multichannel seismic reflection (MCS) and chirp seismic data across the North Anatolian Fault (NAF) system in the Marmara Sea aboard the R/V K. Piri Reis during July 2008. Three 1200+ m-deep bathymetric basins are arrayed along the North strand of the NAF. This strand passes closest to Istanbul and is considered to carry most of the current and late Holocene plate motion, but other strands to the south are active and may have been more important in the past. The transverse Central Marmara Ridge, formed by a contractional anticline, separates two of the basins. Filled sedimentary basins underlie the southern shelf, and, adjacent to that shelf, the partly-filled North Imrali basin underlies a 400 m-deep platform. Our chirp data image several strands of the southern fault system, 50 km south of the northern NAF on the inner (southern) shelf, that offset strata which postdate the ~12 ka marine transgression. Another W-striking fault that deforms post-12 ka strata cuts the mid-southern shelf. A WNW-striking segment of the Imrali fault system is associated with normal-separation, 300 m-high sea floor scarps that separate the shelf from the North Imrali basin. This basin is cut by numerous NW-striking normal-separation faults, some deforming the sea floor. At least 4 complexes of shelf edge deltas, whose tops were formed near sea level or lake level, are stacked between 500 and 900 m depth in this downthrown block of the Imrali fault. The originally sub- horizontal tops of each delta are now locally progressively tilted and folded near an ENE-striking branch of the Imrali fault (known as the Yalova fault). Lacking stratigraphic control, we infer that the deltas represent glacial intervals spaced at 100 ka during the late Pleistocene. Assuming a locally constant subsidence rate, with lowstands near -90 m, and the observed 130 m vertical spacing between the deltas, subsidence rates would be ~1.3 mm/yr, and the youngest well-preserved delta would be ~320 ka (MIS10). Alternatively, it corresponds to the pronounced 420 ka glacial (MIS12). Younger deltas did not form in this area, at least not with prograding geometries, because the water depth became too great. Possibly, outer shelf anticlinal growth may have diverted the river westward, where younger deltas are preserved on the shelf. The slope between the 400 m platform and the lower flank of the NE-trending Central Marmara Ridge is dominated by north-trending and northeast-trending 1 km-wavelength folds. These folds grew through the late Quaternary interval of deposition of the imaged deltas, and they deform the seafloor. They could be secondary shortening structures, forced folds above blind normal faults, or both. Farther east along the same slope, low-angle normal faults also grew through much of late Quaternary time. These faults root above unfaulted strata, and represent a slow collapse of the escarpment into the deep basin. NE-trending thrust- folds, NW-striking normal faults, WNW-striking transtensional faults, and ENE-striking transpressional faults are all consistent with the E-W right-lateral continental transform fault system.

  8. Local response of a glacier to annual filling and drainage of an ice-marginal lake

    USGS Publications Warehouse

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Fountain, A.G.; Anderson, S.P.; Anderson, R. Scott; Malm, A.

    2006-01-01

    Ice-marginal Hidden Creek Lake, Alaska, USA, outbursts annually over the course of 2-3 days. As the lake fills, survey targets on the surface of the 'ice dam' (the glacier adjacent to the lake) move obliquely to the ice margin and rise substantially. As the lake drains, ice motion speeds up, becomes nearly perpendicular to the face of the ice dam, and the ice surface drops. Vertical movement of the ice dam probably reflects growth and decay of a wedge of water beneath the ice dam, in line with established ideas about jo??kulhlaup mechanics. However, the distribution of vertical ice movement, with a narrow (50-100 m wide) zone where the uplift rate decreases by 90%, cannot be explained by invoking flexure of the ice dam in a fashion analogous to tidal flexure of a floating glacier tongue or ice shelf. Rather, the zone of large uplift-rate gradient is a fault zone: ice-dam deformation is dominated by movement along high-angle faults that cut the ice dam through its entire thickness, with the sense of fault slip reversing as the lake drains. Survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. The horizontal strain rate also undergoes a reversal across this zone, being compressional as the lake fills, but extensional as the lake drains. Frictional resistance to fault-block motion probably accounts for the fact that lake level falls measurably before the onset of accelerated horizontal motion and vertical downdrop. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.

  9. Resistivity structures across the Humboldt River basin, north-central Nevada

    USGS Publications Warehouse

    Rodriguez, Brian D.; Williams, Jackie M.

    2002-01-01

    Magnetotelluric data collected along five profiles show deep resistivity structures beneath the Battle Mountain-Eureka and Carlin gold trends in north-central Nevada, which appear consistent with tectonic breaks in the crust that possibly served as channels for hydrothermal fluids. It seems likely that gold deposits along these linear trends were, therefore, controlled by deep regional crustal fault systems. Two-dimensional resistivity modeling of the magnetotelluric data generally show resistive (30 to 1,000 ohm-m) crustal blocks broken by sub-vertical, two-dimensional, conductive (1 to 10 ohmm) zones that are indicative of large-scale crustal fault zones. These inferred fault zones are regional in scale, trend northeast-southwest, north-south, and northwest-southeast, and extend to mid-crustal (20 km) depths. The conductors are about 2- to 15-km wide, extend from about 1 to 4 km below the surface to about 20 km depth, and show two-dimensional electrical structure. By connecting the locations of similar trending conductors together, individual regional crustal fault zones within the upper crust can be inferred that range from about 4- to 10-km wide and about 30- to 150-km long. One of these crustal fault zones coincides with the Battle Mountain-Eureka mineral trend. The interpreted electrical property sections also show regional changes in the resistive crust from south to north. Most of the subsurface in the upper 20 km beneath Reese River Valley and southern Boulder Valley are underlain by rock that is generally more conductive than the subsurface beneath Kelly Creek Basin and northern Boulder Valley. This suggests that either elevated-temperature or high-salinity fluids, alteration, or carbonaceous rocks are more pervasive in the more conductive area (Battle Mountain Heat-Flow High), which implies that the crust beneath these valleys is either more fractured or has more carbonaceous rocks than in the area surveyed along the 41st parallel.

  10. Geology of the Ishmas gold district, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Doebrich, Jeff L.; White, Willis M.

    1991-01-01

    The Ishmas gold district was mapped at 1:25,000 scale to place auriferous mineralization into geologic perspective, to assist in creating an ore-deposit model, and to aid in devising a strategy for subsequent exploration elsewhere in the Jabal Ishmas-Wadi Tathlith gold belt. The precratonic evolution of the district began with the deposition of a tholeiitic mafic volcanic and volcaniclastic sequence that was intruded by diabase and gabbro. Basaltic to rhyodacitic volcanism following a calc-alkaline evolutionary trend ensued. Subsequent deposition of a thick wacke and sandstone unit represented the final phase in the volcano sedimentary accumulation. The emplacement of a large lopolithic layered-gabbro complex marked the end of the precratonic evolutionary cycle. The district coincides with the boundary of two allochthonous terranes. The collisional Nabitah orogeny represents the suturing of the two terranes. The effects of this event are manifested by numerous north-trending, steeply dipping faults, shear zones, and mylonite belts, as well as diapiric serpentinite. During the waning stages of the orogeny, auriferous quartz pods were precipitated in dilatant structures within the north-trending shear zones by deep-seated circulating fluids. The emplacement of a tonalite stock was closely followed by the formation of N. 20°-35° W. -trending faults. These faults influenced the emplacement of dacite porphyry stocks and associated auriferous quartz veins. The auriferous veins are massive, tabular open-fracture fillings that are spatially, temporally, and genetically related to the dacite porphyry. The emplacement of a quartz monzodiorite stock was responsible for additional auriferous quartz vein mineralization that is almost exclusively hosted by the intrusion. A nearly random orientation of the veins indicates that no regional structure influenced their formation. The formation of a series of N. 60°-80° W -trending faults represents the final episode in the district's geologic history and corresponds to the cratonic reactivation that affected a large part of the Arabian Shield (that is, the Najd faulting event). 

  11. A Statistical Study on VLF Subionospheric Perturbations Associated with Major Earthquakes: A View from Focal Mechanism

    NASA Astrophysics Data System (ADS)

    Kawano, T.; Tatsuta, K.; Hobara, Y.

    2015-12-01

    Continuous monitoring of signal amplitudes of worldwide VLF transmitters is a powerful tool to study the lower ionospheric condition. Although, lower ionospheric perturbations prior to some of the major earthquakes have been reported for years, their occurrence and coupling mechanism between the ground and overlaying ionosphere prior to the earthquakes are not clear yet. In this paper, we carried out a statistical analysis based on the nighttime averaged signal amplitude data from the UEC's VLF/LF transmitter observation network. Two hundred forty three earthquakes were occurred within the 5th Fresnel zone of transmitter-receiver paths around Japan during the time period of 2007 to 2012. These earthquakes were characterized into three different groups based on the Centroid-Moment-Tensor (CMT) solution such as reverse fault type, normal fault type and stress slip type. The ionospheric anomaly was identified by a large change in the VLF/LF amplitude during nighttime. As a result, we found the ionospheric perturbations associated with both ground and sea earthquakes. Remarkably, the reverse fault type earthquakes have the highest occurrence rate of ionospheric perturbation among the three types both for sea (41%) and ground events (61%). The occurrence rates for normal type fault are 35% and 56% for sea and ground earthquakes respectively and the same for stress slip type are 39% and 20% for sea and ground earthquakes respectively. In both cases the occurrence rates are smaller than the reverse fault type. The clear difference of occurrence rate of the ionospheric perturbations may indicate that the coupling efficiency of seismic activity into the overlaying ionosphere is controlled by the pressure in the earth's crust. This gives us further physical insight of Lithosphere-Atmosphere-Ionosphere (LAI) coupling processes.

  12. Surface Break-through by Repeated Seismic Slip During Compressional Inversion of an Inherited Fault. The Ostler Fault, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Ghisetti, F. C.; Gorman, A. R.

    2006-12-01

    Shortening across the plate boundary in the South Island of New Zealand is accommodated not just along the right-lateral transpressive Alpine Fault, but also on an array of N-S reverse faults in both the Australian and Pacific crust. The Ostler Fault is such a structure, developed in the piedmont of the Southern Alps, east of the Alpine Fault. The question addressed here is whether the fault is an entirely new structure formed in the current stress regime, or a reactivated fault inherited from earlier episodes of deformation. New data on the geometry and deformation history of the Ostler Fault have been acquired by integrating surface geological mapping (scale 1:25,000), structural and morphotectonic investigations, and two seismic reflection profiles across the most active segments of the fault. The geological and morphotectonic data constrain the long-term evolution of the fault system coeval with deposition of a late Pliocene-Pleistocene lacustrine-fluvial terrestrial sequence, and the overlying glacial and peri-glacial deposits 128-186 to 16-18 ka old. Sets of fault scarps define a segmented zone (50 km long and 2-3 km wide) of N-S reverse faults dipping 50° W, with a strongly deformed hanging wall panel, where the uplifted terrestrial units are uplifted, back-tilted up to 60° W, and folded. Gradients in elevation and thickness of the hanging wall sequence, shifting of crosscutting paleodrainages, and younging age of displaced markers, all consistently indicate the progressive propagation of the surface trace of the fault from south to north over many seismic cycles. The interpretation of the new seismic reflection profiles, consistent with existing gravity data and surface geology, suggests that the Ostler Fault belongs to a set of sub-parallel splays joining, at depths of > 1.5-2 km, a buried high-angle normal fault that underwent compressional reactivation during sedimentation of the Plio-Pleistocene and Holocene cover sequence. Repeated reactivation of the inherited fault system through cycles of seismic deformation eventually culminated in the surface break-through of the buried fault, resulting in its strong control on sediment deposition, intra-basinal morphology and drainage. This evolution discloses the history of progressive reactivation and propagation of seismogenic basement faults that may remain undetected in absence of clear surface exposure, especially in countries like New Zealand where the historical seismic catalogue is very short.

  13. Palaeostress perturbations near the El Castillo de las Guardas fault (SW Iberian Massif)

    NASA Astrophysics Data System (ADS)

    García-Navarro, Encarnación; Fernández, Carlos

    2010-05-01

    Use of stress inversion methods on faults measured at 33 sites located at the northwestern part of the South Portuguese Zone (Variscan Iberian Massif), and analysis of the basic dyke attitude at this same region, has revealed a prominent perturbation of the stress trajectories around some large, crustal-scale faults, like the El Castillo de las Guardas fault. The results are compared with the predictions of theoretical models of palaeostress deviations near master faults. According to this comparison, the El Castillo de las Guardas fault, an old structure that probably reversed several times its slip sense, can be considered as a sinistral strike-slip fault during the Moscovian. These results also point out the main shortcomings that still hinder a rigorous quantitative use of the theoretical models of stress perturbations around major faults: the spatial variation in the parameters governing the brittle behaviour of the continental crust, and the possibility of oblique slip along outcrop-scale faults in regions subjected to general, non-plane strain.

  14. Directly imaging steeply-dipping fault zones in geothermal fields with multicomponent seismic data

    DOE PAGES

    Chen, Ting; Huang, Lianjie

    2015-07-30

    For characterizing geothermal systems, it is important to have clear images of steeply-dipping fault zones because they may confine the boundaries of geothermal reservoirs and influence hydrothermal flow. Elastic reverse-time migration (ERTM) is the most promising tool for subsurface imaging with multicomponent seismic data. However, conventional ERTM usually generates significant artifacts caused by the cross correlation of undesired wavefields and the polarity reversal of shear waves. In addition, it is difficult for conventional ERTM to directly image steeply-dipping fault zones. We develop a new ERTM imaging method in this paper to reduce these artifacts and directly image steeply-dipping fault zones.more » In our new ERTM method, forward-propagated source wavefields and backward-propagated receiver wavefields are decomposed into compressional (P) and shear (S) components. Furthermore, each component of these wavefields is separated into left- and right-going, or downgoing and upgoing waves. The cross correlation imaging condition is applied to the separated wavefields along opposite propagation directions. For converted waves (P-to-S or S-to-P), the polarity correction is applied to the separated wavefields based on the analysis of Poynting vectors. Numerical imaging examples of synthetic seismic data demonstrate that our new ERTM method produces high-resolution images of steeply-dipping fault zones.« less

  15. Paleoseismology of Sinistral-Slip Fault System, Focusing on the Mae Chan Fault, on the Shan Plateau, SE Asia.

    NASA Astrophysics Data System (ADS)

    Curtiss, E. R.; Weldon, R. J.; Wiwegwin, W.; Weldon, E. M.

    2017-12-01

    The Shan Plateau, which includes portions of Myanmar, China, Thailand, Laos, and Vietnam lies between the dextral NS-trending Sagaing and SE-trending Red River faults and contains 14 active E-W sinistral-slip faults, including the Mae Chan Fault (MCF) in northern Thailand. The last ground-rupturing earthquake to occur on the broader sinistral fault system was the M6.8 Tarlay earthquake in Myanmar in March 2011 on the Nam Ma fault immediately north of the MCF the last earthquake to occur on the MCF was a M4.0 in the 5th century that destroyed the entire city of Wiang Yonok (Morley et al., 2011). We report on a trenching study of the MCF, which is part of a broader study to create a regional seismic hazard map of the entire Shan Plateau. By studying the MCF, which appears to be representative of the sinistral faults, and easy to work on, we hope to characterize both it and the other unstudied faults in the system. As part of a paleoseismology training course we dug two trenches at the Pa Tueng site on the MCF, within an offset river channel and the trenches exposed young sediment with abundant charcoal (in process of dating), cultural artifacts, and evidence for the last two (or three) ground-rupturing earthquakes on the fault. We hope to use the data from this site to narrow the recurrence interval, which is currently to be 2,000-4,000 years and the slip rate of 1-2 mm/year, being developed at other sites on the fault. By extrapolating the data of the MCF to the other faults we will have a better understanding of the whole fault system. Once we have characterized the MCF, we plan to use geomorphic offsets and strain rates from regional GPS to relatively estimate the activity of the other faults in this sinistral system.

  16. Implications of river morphology response to Dien Bien Phu fault in NW Vietnam

    NASA Astrophysics Data System (ADS)

    Lai, K.; Chen, Y.; Lam, D.

    2007-12-01

    In northern Vietnam, most rivers are flowing southeastward sub- or parallel to the valley of Red River and characterized by long but narrow catchments. The Dien Bien Phu fault is associated with the most seismically active zone in Vietnam and situated in the potential eastern boundary of the rotating southeastern Tibetan block. It cuts the Da River, the largest tributary of Red River in northwest Vietnam and has distorted the drainage basin resulting in complex river patterns. To assess the river morphology response to active Dien Bien Phu fault, we use 1/50,000 topographic data and ASTER images to map the precise river courses and digital elevation model data of SRTM to retrieve and analyze the river profiles. From the mapping results, the N-S striking fault results in three conspicuous north-trending river valleys coincided with the different fault segments to facilitate the measurement and reconstruction of the offsets along the fault. Further combining the longitudinal profile analysis we obtain ca. 10 km offsets by deflected river as the largest left-lateral displacement recorded along the active fault. The restored results show the downstream paleochannel of the Da River had been abandoned and becomes two small tributaries in opposite flow directions at present due to differential crustal uplift. Also the present crisscross valley at the junction of the Da River and the fault is resulted from the capture by another river which has been also deflected by the neotectonics. Based on our observations on river response, the Dien Bien Phu fault is a sinistral dominant fault with an uplift occurring in its eastern block. Furthermore the active Dien Bien Phu fault does not cut through the Red River northward indicating the western block of the fault can not be regarded as a single rigid block. There should be possible to find NW-SE trending faults paralleling to Red River to accommodate the deformation of the western block of the fault.

  17. Implications of river morphology response to Dien Bien Phu fault in NW Vietnam

    NASA Astrophysics Data System (ADS)

    Lai, K.; Chen, Y.; Lam, D.

    2004-12-01

    In northern Vietnam, most rivers are flowing southeastward sub- or parallel to the valley of Red River and characterized by long but narrow catchments. The Dien Bien Phu fault is associated with the most seismically active zone in Vietnam and situated in the potential eastern boundary of the rotating southeastern Tibetan block. It cuts the Da River, the largest tributary of Red River in northwest Vietnam and has distorted the drainage basin resulting in complex river patterns. To assess the river morphology response to active Dien Bien Phu fault, we use 1/50,000 topographic data and ASTER images to map the precise river courses and digital elevation model data of SRTM to retrieve and analyze the river profiles. From the mapping results, the N-S striking fault results in three conspicuous north-trending river valleys coincided with the different fault segments to facilitate the measurement and reconstruction of the offsets along the fault. Further combining the longitudinal profile analysis we obtain ca. 10 km offsets by deflected river as the largest left-lateral displacement recorded along the active fault. The restored results show the downstream paleochannel of the Da River had been abandoned and becomes two small tributaries in opposite flow directions at present due to differential crustal uplift. Also the present crisscross valley at the junction of the Da River and the fault is resulted from the capture by another river which has been also deflected by the neotectonics. Based on our observations on river response, the Dien Bien Phu fault is a sinistral dominant fault with an uplift occurring in its eastern block. Furthermore the active Dien Bien Phu fault does not cut through the Red River northward indicating the western block of the fault can not be regarded as a single rigid block. There should be possible to find NW-SE trending faults paralleling to Red River to accommodate the deformation of the western block of the fault.

  18. Fault and fracture patterns around a strike-slip influenced salt wall

    NASA Astrophysics Data System (ADS)

    Alsop, G. I.; Weinberger, R.; Marco, S.; Levi, T.

    2018-01-01

    The trends of faults and fractures in overburden next to a salt diapir are generally considered to be either parallel to the salt margin to form concentric patterns, or at right angles to the salt contact to create an overall radial distribution around the diapir. However, these simple diapir-related patterns may become more complex if regional tectonics influences the siting and growth of a diapir. Using the Sedom salt wall in the Dead Sea Fault system as our case study, we examine the influence of regional strike-slip faulting on fracture patterns around a salt diapir. This type of influence is important in general as the distribution and orientation of fractures on all scales may influence permeability and hence control fluid and hydrocarbon flow. Fractures adjacent to the N-S trending salt wall contain fibrous gypsum veins and injected clastic dykes, attesting to high fluid pressures adjacent to the diapir. Next to the western flank of the salt wall, broad (∼1000 m) zones of upturn or 'drape folds' are associated with NW-SE striking conjugate extensional fractures within the overburden. Within 300 m of the salt contact, fracture patterns in map view display a progressive ∼30°-35° clockwise rotation with more NNW-SSE strikes immediately adjacent to the salt wall. While some extensional faults display growth geometries, indicating that they were syn-depositional and initiated prior to tilting of beds associated with drape folding, other fractures display increasing dips towards the salt, suggesting that they have formed during upturn of bedding near the diapir. These observations collectively suggest that many fractures developed to accommodate rotation of beds during drape folding. Extensional fractures in the overburden define a mean strike that is ∼45° anticlockwise (counter-clockwise) of the N-S trending salt wall, and are therefore consistent with sinistral transtension along the N-S trending Sedom Fault that underlies the salt wall. Our outcrop analysis reveals fracture geometries that are related to both tilting of beds during drape folding, and regional strike-slip tectonics. The presence of faults and fractures that interact with drape folds suggests that deformation in overburden next to salt cannot be simply pigeon-holed into 'end-member' scenarios of purely brittle faulting or viscous flow.

  19. Structure of a seismogenic fault zone in dolostones: the Foiana Line (Italian Southern Alps)

    NASA Astrophysics Data System (ADS)

    Di Toro, G.; Fondriest, M.; Smith, S. A.; Aretusini, S.

    2012-12-01

    Fault zones in carbonate rocks (limestones and dolostones) represent significant upper crustal seismogenic sources in several areas worldwide (e.g. L'Aquila 2009 Mw = 6.3 in central Italy). Here we describe an exhumed example of a regionally-significant fault zone cutting dolostones. The Foiana Line (FL) is a major NNE-SSW-trending sinistral transpressive fault cutting sedimentary Triassic dolostones in the Italian Southern Alps. The FL has a cumulative vertical throw of 1.5-2 km that reduces toward its southern termination. The fault zone is 50-300 m wide and is exposed for ~ 10 km along strike within several outcrops exhumed from increasing depths from the south (1 km) to the north (2.5 km). The southern portion of the FL consists of heavily fractured (shattered) dolostones, with particles of a few millimeters in size (exposed in badlands topography over an area of 6 km2), cut by a dense network of 1-20 m long mirror-like fault surfaces with dispersed attitudes. The mirror-like faults have mainly dip-slip reverse kinematics and displacements ranging between 0.04 m and 0.5 m. The northern portion of the FL consists of sub-parallel fault strands spaced 2-5 m apart, surrounded by 2-3 m thick bands of shattered dolostones. The fault strands are characterized by smooth to mirror-like sub-vertical slip surfaces with dominant strike-slip kinematics. Overall, deformation is more localized moving from South to North along the FL. Mirror-like fault surfaces similar to those found in the FL were produced in friction experiments at the deformation conditions expected during seismic slip along the FL (Fondriest et al., this meeting). Scanning Electron Microscope investigations of the natural shattered dolostones beneath the mirror-like fault surfaces show: 1) lack of significant shear strain (even at a few micrometers from the slip surface), 2) pervasive extensional fracturing down to the micrometer scale, 3) exploded clasts with radial fractures, and 4) chains of split clasts (resulting from force chains) oriented at 60-80 degrees to the slip surfaces. Similar features have been reported in natural and experimental pulverized rocks, the latter produced under dynamic stress wave loading conditions. 3-Dimensional rupture simulations along strike-slip faults predict (1) off-fault damage distributions with "flower-like" shapes (broad damage zone near the surface that rapidly narrows with increasing confining pressure, e.g., Ma and Andrews, 2010) and (2) formation of secondary faults/fractures with disperse attitudes and kinematics near the surface, with horizontal slip at depth. Qualitatively, these theoretical results compare favorably with increasing strain localization and a switch in fault kinematics recognized along the FL moving from the southern, shallower portion of the fault zone to the northern, deeper portion. Observations along the FL suggest that the association of shattered dolostones and mirror-like slip surfaces might be a potential indicator of seismic rupture propagation. Further detailed structural mapping along the FL coupled with experimental work on rock pulverization will be necessary to understand rupture dynamics in dolostones.

  20. Structural features of northern Tarim basin: Implications for regional tectonics and petroleum traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Jia; Juafu Lu; Dongsheng Cai

    1998-01-01

    The rhombus-shaped Tarim basin in northwestern China is controlled mainly by two left-lateral strike-slip systems: the northeast-trending Altun fault zone along its southeastern side and the northeast-trending Aheqi fault zone along its northwestern side. In this paper, we discuss the northern Tarim basin`s structural features, which include three main tectonic units: the Kalpin uplift, the Kuqa depression, and the North Tarim uplift along the northern margin of the Tarim basin. Structural mapping in the Kalpin uplift shows that a series of imbricated thrust sheets have been overprinted by strike-slip faulting. The amount of strike-slip displacement is estimated to be 148more » km by restoration of strike-slip structures in the uplift. The Kuqa depression is a Mesozoic-Cenozoic foredeep depression with well-developed flat-ramp structures and fault-related folds. The Baicheng basin, a Quaternary pull-apart basin, developed at the center of the Kuqa depression. Subsurface structures in the North Tarim uplift can be divided into the Mesozoic-Cenozoic and the Paleozoic lithotectonic sequences in seismic profiles. The Paleozoic litho-tectonic sequence exhibits the interference of earlier left-lateral and later right-lateral strike-slip structures. Many normal faults in the Mesozoic-Cenozoic litho-tectonic sequence form the negative flower structures in the North Tarim uplift; these structures commonly directly overlie the positive flower structures in the Paleozoic litho-tectonic sequence. The interference regions of the northwest-trending and northeast-trending folds in the Paleozoic tectonic sequence have been identified to have the best trap structures. Our structural analysis indicates that the Tarim basin is a transpressional foreland basin rejuvenated during the Cenozoic.« less

  1. Characterizing the recent behavior and earthquake potential of the blind western San Cayetano and Ventura fault systems

    NASA Astrophysics Data System (ADS)

    McAuliffe, L. J.; Dolan, J. F.; Hubbard, J.; Shaw, J. H.

    2011-12-01

    The recent occurrence of several destructive thrust fault earthquakes highlights the risks posed by such events to major urban centers around the world. In order to determine the earthquake potential of such faults in the western Transverse Ranges of southern California, we are studying the activity and paleoearthquake history of the blind Ventura and western San Cayetano faults through a multidisciplinary analysis of strata that have been folded above the fault tiplines. These two thrust faults form the middle section of a >200-km-long, east-west belt of large, interconnected reverse faults that extends across southern California. Although each of these faults represents a major seismic source in its own right, we are exploring the possibility of even larger-magnitude, multi-segment ruptures that may link these faults to other major faults to the east and west in the Transverse Ranges system. The proximity of this large reverse-fault system to several major population centers, including the metropolitan Los Angeles region, and the potential for tsunami generation during offshore ruptures of the western parts of the system, emphasizes the importance of understanding the behavior of these faults for seismic hazard assessment. During the summer of 2010 we used a mini-vibrator source to acquire four, one- to three-km-long, high-resolution seismic reflection profiles. The profiles were collected along the locus of active folding above the blind, western San Cayetano and Ventura faults - specifically, across prominent fold scarps that have developed in response to recent slip on the underlying thrust ramps. These high-resolution data overlap with the uppermost parts of petroleum-industry seismic reflection data, and provide a near-continuous image of recent folding from several km depth to within 50-100 m of the surface. Our initial efforts to document the earthquake history and slip-rate of this large, multi-fault reverse fault system focus on a site above the blind, western San Cayetano thrust ramp. At Briggs Road ~14 km east of Ventura, a high-resolution profile across the locus of recent folding reveals a well-defined north-dipping active synclinal axial surface in growth strata that extends to the surface at a prominent south-facing fold scarp lying at the topographic range front. During August 2011, we drilled 11 hollow-stem boreholes and cone-penetrometer tests along the same alignment as the reflection profile, providing overlap between the data sets. Preliminary analysis of the borehole data reveals a fine-grained section dominated by thinly bedded silts and sands. The absence of any well-developed soils within the upper 20 m, coupled with at least 15 m of structural growth within this section, suggests a rapid slip rate that we will quantify with radiocarbon dating of detrital charcoal and several buried organic-rich A horizons. Collectively, we anticipate that these borehole and high-resolution seismic reflection data will yield a detailed record of the fold growth during recent large earthquakes at this site, which will in turn allow us to reconstruct the paleoseismic history of the underlying blind thrust ramp.

  2. Analysis of Seismotektonic Patterns in Sumatra Region Based on the Focal Mechanism of Earthquake Period 1976-2016

    NASA Astrophysics Data System (ADS)

    Indah, F. P.; Syafriani, S.; Andiyansyah, Z. S.

    2018-04-01

    Sumatra is in an active subduction zone between the indo-australian plate and the eurasian plate and is located at a fault along the sumatra fault so that sumatra is vulnerable to earthquakes. One of the ways to find out the cause of earthquake can be done by identifying the type of earthquake-causing faults based on earthquake of focal mechanism. The data used to identify the type of fault cause of earthquake is the earth tensor moment data which is sourced from global cmt period 1976-2016. The data used in this research using magnitude m ≥ 6 sr. This research uses gmt software (generic mapping tolls) to describe the form of fault. From the research result, it is found that the characteristics of fault field that formed in every region in sumatera island based on data processing and data of earthquake history of 1976-2016 period that the type of fault in sumatera fault is strike slip, fault type in mentawai fault is reverse fault (rising faults) and dip-slip, while the fault type in the subduction zone is dip-slip.

  3. Evidence for a Battle Mountain-Eureka crustal fault zone, north-central Nevada, and its relation to Neoproterozoic-Early Paleozoic continental breakup

    USGS Publications Warehouse

    Grauch, V.J.S.; Rodriguez, B.D.; Bankey, V.; Wooden, J.L.

    2003-01-01

    Combined evidence from gravity, radiogenic isotope, and magnetotelluric (MT) data indicates a crustal fault zone that coincides with the northwest-trending Battle Mountain-Eureka (BME) mineral trend in north-central Nevada, USA. The BME crustal fault zone likely originated during Neoproterozoic-Early Paleozoic rifting of the continent and had a large influence on subsequent tectonic events, such as emplacement of allochthons and episodic deformation, magmatism, and mineralization throughout the Phanerozoic. MT models show the fault zone is about 10 km wide, 130-km long, and extends from 1 to 5 km below the surface to deep crustal levels. Isotope data and gravity models imply the fault zone separates crust of fundamentally different character. Geophysical evidence for such a long-lived structure, likely inherited from continental breakup, defies conventional wisdom that structures this old have been destroyed by Cenozoic extensional processes. Moreover, the coincidence with the alignment of mineral deposits supports the assertion by many economic geologists that these alignments are indicators of buried regional structures.

  4. Observations of fault zone heterogeneity effects on stress alteration and slip nucleation during a fault reactivation experiment in the Mont Terri rock laboratory, Switzerland

    NASA Astrophysics Data System (ADS)

    Nussbaum, C.; Guglielmi, Y.

    2016-12-01

    The FS experiment at the Mont Terri underground research laboratory consists of a series of controlled field stimulation tests conducted in a fault zone intersecting a shale formation. The Main Fault is a secondary order reverse fault that formed during the creation of the Jura fold-and-thrust belt, associated to a large décollement. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite veins, scaly clay and clay gouge. We conducted fluid injection tests in 4 packed-off borehole intervals across the Main Fault using mHPP probes that allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. While pressurizing the intervals above injection pressures of 3.9 to 5.3 MPa, there is an irreversible change in the displacements magnitude and orientation associated to the hydraulic opening of natural shear planes oriented N59 to N69 and dipping 39 to 58°. Displacements of 0.01 mm to larger than 0.1 mm were captured, the highest value being observed at the interface between the low permeable fault core and the damage zone. Contrasted fault movements were observed, mainly dilatant in the fault core, highly dilatant-normal slip at the fault core-damage zone interface and low dilatant-strike-slip-reverse in the damage-to-intact zones. First using a slip-tendency approach based on Coulomb reactivation potential of fault planes, we computed a stress tensor orientation for each test. The input parameters are the measured displacement vectors above the hydraulic opening pressure and the detailed fault geometry of each intervals. All measurements from the damage zone can be explained by a stress tensor in strike-slip regime. Fault movements measured at the core-damage zone interface and within the fault core are in agreement with the same stress orientations but changed as normal faulting, explaining the significant dilatant movements. We then conducted dynamic hydromechanical simulations of the Coulomb stress variations on discrete fault planes, considering the injection pressure variations with time in the packed-off sections as the source parameters. Results suggest that the fault architecture and heterogeneity play an important role on the local stress variation at the core-damage zone interface, favouring slip activation below sigma 3.

  5. Analytic Study of Three-Dimensional Rupture Propagation in Strike-Slip Faulting with Analogue Models

    NASA Astrophysics Data System (ADS)

    Chan, Pei-Chen; Chu, Sheng-Shin; Lin, Ming-Lang

    2014-05-01

    Strike-slip faults are high angle (or nearly vertical) fractures where the blocks have moved along strike way (nearly horizontal). Overburden soil profiles across main faults of Strike-slip faults have revealed the palm and tulip structure characteristics. McCalpin (2005) has trace rupture propagation on overburden soil surface. In this study, we used different offset of slip sandbox model profiles to study the evolution of three-dimensional rupture propagation by strike -slip faulting. In strike-slip faults model, type of rupture propagation and width of shear zone (W) are primary affecting by depth of overburden layer (H), distances of fault slip (Sy). There are few research to trace of three-dimensional rupture behavior and propagation. Therefore, in this simplified sandbox model, investigate rupture propagation and shear zone with profiles across main faults when formation are affecting by depth of overburden layer and distances of fault slip. The investigators at the model included width of shear zone, length of rupture (L), angle of rupture (θ) and space of rupture. The surface results was follow the literature that the evolution sequence of failure envelope was R-faults, P-faults and Y-faults which are parallel to the basement fault. Comparison surface and profiles structure which were curved faces and cross each other to define 3-D rupture and width of shear zone. We found that an increase in fault slip could result in a greater width of shear zone, and proposed a W/H versus Sy/H relationship. Deformation of shear zone showed a similar trend as in the literature that the increase of fault slip resulted in the increase of W, however, the increasing trend became opposite after a peak (when Sy/H was 1) value of W was reached (small than 1.5). The results showed that the W width is limited at a constant value in 3-D models by strike-slip faulting. In conclusion, this study helps evaluate the extensions of the shear zone influenced regions for strike-slip faults.

  6. NO-FAULT COMPENSATION FOR MEDICAL INJURIES: TRENDS AND CHALLENGES.

    PubMed

    Kassim, Puteri Nemie

    2014-12-01

    As an alternative to the tort or fault-based system, a no-fault compensation system has been viewed as having the potential to overcome problems inherent in the tort system by providing fair, speedy and adequate compensation for medically injured victims. Proponents of the suggested no-fault compensation system have argued that this system is more efficient in terms of time and money, as well as in making the circumstances in which compensation is paid, much clearer. However, the arguments against no-fault compensation systems are mainly on issues of funding difficulties, accountability and deterrence, particularly, once fault is taken out of the equation. Nonetheless, the no-fault compensation system has been successfully implemented in various countries but, at the same time, rejected in some others, as not being implementable. In the present trend, the no-fault system seems to fit the needs of society by offering greater access to justice for medically injured victims and providing a clearer "road map" towards obtaining suitable redress. This paper aims at providing the readers with an overview of the characteristics of the no fault compensation system and some examples of countries that have implemented it. Qualitative Research-Content Analysis. Given the many problems and hurdles posed by the tort or fault-based system, it is questionable that it can efficiently play its role as a mechanism that affords fair and adequate compensation for victims of medical injuries. However, while a comprehensive no-fault compensation system offers a tempting alternative to the tort or fault-based system, to import such a change into our local scenario requires a great deal of consideration. There are major differences, mainly in terms of social standing, size of population, political ideology and financial commitment, between Malaysia and countries that have successfully implemented no-fault systems. Nevertheless, implementing a no-fault compensation system in Malaysia is not entirely impossible. A custom-made no-fault model tailored to suit our local scenario can be promising, provided that a thorough research is made, assessing the viability of a no-fault system in Malaysia, addressing the inherent problems and, consequently, designing a workable no-fault system in Malaysia.

  7. Soil radon profile of the Alhama de Murcia Fault: implications in tectonic segmentation

    NASA Astrophysics Data System (ADS)

    Bejar-Pizarro, M.; Perez Lopez, R.; Fernández Cortés, A.; Martínez-Díaz, J. J.; Staller, A.; Sánchez-Malo, A.; Sanz, E.; Cuezva, S.; Sánchez-Moral, S.

    2017-12-01

    Soil radon exhalation in active faults has been reported in several cases. Mobilization of radon gas in tectonic areas is related to CO2emission, acting as gas carrier from deeper fractured zones. Fluctuation of radon values can be correlated with earthquake occurrence. We have used the soil radon emission for characterizing different tectonic segment of the Alhama de Murcia Fault (FAM), one of the most active on-shore tectonic faults in Spain. The FAM is a NE-SW trending strike-slip fault with reverse component, 90 km long and it is capable to trigger M7 earthquakes, as far as several paleoseismic studies shown. The last destructive earthquake took place in 2011 and killed 9 people. Tectonic segmentation of this fault has been proposed, with a tectonic slip-rate close to 0.1 mm/yr from geomorphic evidence, whereas 0.5 mm/yr has been suggested from GPS geodetic measurements. We have developed a perpendicular profile for measuring the soil radon exhalation, in relationship with three principal segments of FAM from west to east: (1) Goñar-Lorca segment, (2) Lorca Totana segment and (3) Alhama segment. We have introduced radon passive detectors equipped with LR115 films in colluvium detritic deposits and at 0.8 m depth. Using detritic deposits affected by Quaternary fault movement we assure equal permeability conditions for radon transport. We used passive closed housings type DRF, with a filter that avoid thoron disturbance. Results show the largest values of radon emission close to the Quaternary surface ruptures (ca 3-5.5 kBq/m3). Furthermore, the Goñar segment exhibits the highest value (6 kBq/m3) although the Lorca segment shows an isotopic signal of 13dCO2 (-7.24‰) which indicates this is a mantle-rootled CO2, i.e. non-soil derived CO2 flux, likely related to CO2 produced by thermal decarbonation of underlying sedimentary rocks containing more marine carbonate minerals. These results are part of the combined Spanish projects GEIs-SUB (CGL2016- 78318-C2-1-R and CGL2016-78318-C2-2-R) and INTERGEO and SISMOSIMA (CGL2013-47412-C2-1-P, CGL2013-47412-C2-2-P).

  8. Preliminary Geologic Map of the White Sulphur Springs 30' x 60' Quadrangle, Montana

    USGS Publications Warehouse

    Reynolds, Mitchell W.; Brandt, Theodore R.

    2006-01-01

    The geologic map of the White Sulphur Springs quadrangle, scale 1:100,000, was made as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of the geologically complex area in west-central Montana. The quadrangle encompasses about 4,235 km2 (1,635 mi2), across part of the Smith River basin, the west end of the Little Belt Mountains, the Castle Mountains, and the upper parts of the basins of the North Forks of the Smith and Musselshell Rivers and the Judith River. Geologically the quadrangle extends across the eastern part of the Helena structural salient in the Rocky Mountain thrust belt, a segment of the Lewis and Clark tectonic zone, west end of the ancestral central Montana uplift, and the southwest edge of the Judith basin. Rocks and sediments in the White Sulphur Springs quadrangle are assigned to 88 map units on the basis of rock or sediment type and age. The oldest rock exposed is Neoarchean diorite that is infolded with Paleoproterozoic metamorphic rocks including gneiss, diorite, granite, amphibolite, schist, and mixed metamorphic rock types. A thick succession of the Mesoproterozoic Belt Supergroup unconformably overlies the metamorphic rocks and, in turn, is overlain unconformably by Phanerozoic sedimentary and volcanic rocks. Across most of the quadrangle, the pre-Tertiary stratigraphic succession is intruded by Eocene dikes, sills, and plutons. The central part of the Little Belt Mountains is generally underlain by laccoliths and sheet-like bodies of quartz monzonite or dacite. Oligocene andesitic basalt flows in the western and southern part of the quadrangle document both the configuration of the late Eocene erosional surfaces and the extent of extensional faulting younger than early Oligocene in the area. Pliocene, Miocene, and Oligocene strata, mapped as 11 units, consist generally of interbedded sand, gravel, and tuffaceous sedimentary rock. Quaternary and Quaternary-Tertiary sediments rest across the older Cenozoic deposits and across all older rocks. The Quaternary and Quaternary-Tertiary deposits generally are gravels that mantle broad erosional surfaces on the flanks of the mountains, gravels in stream channels, and colluvium and landslide deposits on hill sides. Glacial deposits, representing at least two stages of glaciation, are present in the northern part of the Little Belt Mountains. The geologic structure of much of the northwest part of the quadrangle is a broad uplift, in the core of which the Paleoproterozoic and Neoarchean metamorphic rocks are exposed. Down plunge to the east, the succession of Phanerozoic sedimentary rocks define an east-trending arch, cored locally by Mesoproterozoic strata of the Belt Supergroup. The north flank of the arch dips steeply north as a monocline. Stratigraphic relations among Mississippian, Pennsylvanian, and Jurassic strata document the recurrent uplift and erosion on that north flank. The broader arch of the Little Belt Mountains reflects the west plunge of the ancestral Central Montana uplift. The eastern extension of the Lewis and Clark tectonic zone is exposed in the southern half of the quadrangle where the Volcano Valley fault zone curves from west to southeast as a reverse fault along which the latest movement is up on the south side. The fault zone ends in an anticline in the south-central margin of the quadrangle. Stratigraphic overlap of Phanerozoic strata over the truncated edges of Mesoproterozoic units documents that the area of the eastern terminus of the fault zone was tectonically recurrently active. Northeast trending strike-slip faults displace Mesoproterozoic rocks in the northwest and south-central parts of the quadrangle. Several of those faults are overlain unconformably by the Middle Cambrian Flathead Sandstone. Other north-east and west-trending faults across the central part of the quadrangle are intruded by middle Eocene plutons. You

  9. Structure and Tectonics of the Saint Elias Orogen

    NASA Astrophysics Data System (ADS)

    Bruhn, R. L.; Pavlis, T. L.; Plafker, G.; Serpa, L.; Picornell, C.

    2001-12-01

    The Saint Elias orogen of western Canada and southern Alaska is a complex mountain belt formed by transform faulting and subduction between the Pacific and North American plates, and collision of the Yakutat terrane. The orogen is segmented into three regions of different structural style caused by lateral variations in transpression and processes of terrane accretion. Deformation is strain and displacement partitioned throughout the orogen; transcurrent motion is focused along discrete strike-slip faults, and shortening is distributed among reverse faults and folds with sub-horizontal axes. Plunging folds accommodate horizontal shortening and extension in the western part of the orogen. Segment boundaries extend across the Yakutat terrane where they coincide with the courses of huge piedmont glaciers that flow from the topographic backbone of the range onto the coastal plain. The eastern segment is marked by strike-slip faulting along the Fairweather transform fault and by a narrow belt of reverse faulting where the transpression ratio is 0.4:1 shortening to dextral shear. The transpression ratio is 1.7:1 in the central part of the orogen where a broad thin-skinned fold and thrust belt deforms the Yakutat terrane south of the Chugach-Saint Elias (CSE) suture. Dextral shearing is accommodated by strike-slip faulting beneath the Seward and Bagley glaciers in the hanging wall of the CSE suture, and partly by reverse faulting along a structural belt that cuts across the Yakutat terrane along the western edge of the Malaspina Glacier and links to the Pamplona fold and thrust belt offshore. Deformation along this segment boundary is probably also driven by vertical axis bending of the Yakutat microplate during collision. Subduction & accretion in the western segment of the orogen causes re-folding of previously formed structures when they are emplaced into the upper plate of the Alaska-Aleutian mega-thrust. Second phase folds plunge at moderate to steep angles and accretion is marked by only modest amounts of uplift. The structural boundary between the central and western segments of the orogen localizes the course of the Bering piedmont glacier. The structural segments coincide with subdivisions in historical seismicity, particularly ruptures of great to large magnitude earthquakes. The results of this structural study provide the requisite geological framework to design new-generation geophysical monitoring systems to study active deformation within the orogen.

  10. Salt flow direction and velocity during subsalt normal faulting and syn-kinematic sedimentation—implications from analytical calculations

    NASA Astrophysics Data System (ADS)

    Warsitzka, M.; Kukowski, N.; Kley, J.

    2018-04-01

    Salt flow induced by subsalt normal faulting is mainly controlled by tilting of the salt layer, the amount of differential loading due to syn-kinematic deposition, and tectonic shearing at the top or the base of the salt layer. Our study addresses the first two mechanisms and aims to examine salt flow patterns above a continuously moving subsalt normal fault and beneath a syn-kinematic minibasin. In such a setting, salt either tends to flow down towards the basin centre driven by its own weight or is squeezed up towards the footwall side owing to loading differences between the minibasin and the region above the footwall block. Applying isostatic balancing in analytical models, we calculated the steady-state flow velocity in a salt layer. This procedure gives insights into (1) the minimum vertical offset required for upward flow to occur, (2) the magnitude of the flow velocity, and (3) the average density of the supra-salt cover layer at the point at which upward flow starts. In a sensitivity study, we examined how the point of flow reversal and the velocity patterns are influenced by changes of the salt and cover layer thickness, the geometry of the cover flexure, the dip of the subsalt fault, compaction parameters of the supra-salt cover, the salt viscosity and the salt density. Our model results reveal that in most geological scenarios, salt flow above a continuously displacing subsalt normal fault goes through an early phase of downward flow. At sufficiently high fault offset in the range of 700-2600 m, salt is later squeezed upward towards the footwall side. This flow reversal occurs at smaller vertical fault displacement, if the thickness of the pre-kinematic layer is larger, the sedimentation rate of the syn-kinematic cover is higher, the compaction coefficient of cover sediments (i.e. the density increase with depth) is larger or the average density of the salt is lower. Other geometrical parameters such as the width of the cover monocline, the dip of the basement fault or the thickness of the salt layer have no significant influence on the point of reversal, but modify the velocity of the salt flow.

  11. Variation of the fractal dimension anisotropy of two major Cenozoic normal fault systems over space and time around the Snake River Plain, Idaho and SW Montana

    NASA Astrophysics Data System (ADS)

    Davarpanah, A.; Babaie, H. A.

    2012-12-01

    The interaction of the thermally induced stress field of the Yellowstone hotspot (YHS) with existing Basin and Range (BR) fault blocks, over the past 17 m.y., has produced a new, spatially and temporally variable system of normal faults around the Snake River Plain (SRP) in Idaho and Wyoming-Montana area. Data about the trace of these new cross faults (CF) and older BR normal faults were acquired from a combination of satellite imageries, DEM, and USGS geological maps and databases at scales of 1:24,000, 1:100,000, 1:250,000, 1:1000, 000, and 1:2,500, 000, and classified based on their azimuth in ArcGIS 10. The box-counting fractal dimension (Db) of the BR fault traces, determined applying the Benoit software, and the anisotropy intensity (ellipticity) of the fractal dimensions, measured with the modified Cantor dust method applying the AMOCADO software, were measured in two large spatial domains (I and II). The Db and anisotropy of the cross faults were studied in five temporal domains (T1-T5) classified based on the geologic age of successive eruptive centers (12 Ma to recent) of the YHS along the eastern SRP. The fractal anisotropy of the CF system in each temporal domain was also spatially determined in the southern part (domain S1), central part (domain S2), and northern part (domain S3) of the SRP. Line (fault trace) density maps for the BR and CF polylines reveal a higher linear density (trace length per unit area) for the BR traces in the spatial domain I, and a higher linear density of the CF traces around the present Yellowstone National Park (S1T5) where most of the seismically active faults are located. Our spatio-temporal analysis reveals that the fractal dimension of the BR system in domain I (Db=1.423) is greater than that in domain II (Db=1.307). It also shows that the anisotropy of the fractal dimension in domain I is less eccentric (axial ratio: 1.242) than that in domain II (1.355), probably reflecting the greater variation in the trend of the BR system in domain I. The CF system in the S1T5 domain has the highest fractal dimension (Db=1.37) and the lowest anisotropy eccentricity (1.23) among the five temporal domains. These values positively correlate with the observed maxima on the fault trace density maps. The major axis of the anisotropy ellipses is consistently perpendicular to the average trend of the normal fault system in each domain, and therefore approximates the orientation of extension for normal faulting in each domain. This fact gives a NE-SW and NW-SE extension direction for the BR system in domains I and II, respectively. The observed NE-SW orientation of the major axes of the anisotropy ellipses in the youngest T4 and T5 temporal domains, oriented perpendicular to the mean trend of the normal faults in the these domains, suggests extension along the NE-SW direction for cross faulting in these areas. The spatial trajectories (form lines) of the minor axes of the anisotropy ellipses, and the mean trend of fault traces in the T4 and T5 temporal domains, define a large parabolic pattern about the axis of the eastern SRP, with its apex at the Yellowstone plateau.

  12. Structure and geomorphology of the "big bend" in the Hosgri-San Gregorio fault system, offshore of Big Sur, central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.; Kluesner, J. W.; Dartnell, P.

    2015-12-01

    The right-lateral Hosgri-San Gregorio fault system extends mainly offshore for about 400 km along the central California coast and is a major structure in the distributed transform margin of western North America. We recently mapped a poorly known 64-km-long section of the Hosgri fault offshore Big Sur between Ragged Point and Pfieffer Point using high-resolution bathymetry, tightly spaced single-channel seismic-reflection and coincident marine magnetic profiles, and reprocessed industry multichannel seismic-reflection data. Regionally, this part of the Hosgri-San Gregorio fault system has a markedly more westerly trend (by 10° to 15°) than parts farther north and south, and thus represents a transpressional "big bend." Through this "big bend," the fault zone is never more than 6 km from the shoreline and is a primary control on the dramatic coastal geomorphology that includes high coastal cliffs, a narrow (2- to 8-km-wide) continental shelf, a sharp shelfbreak, and a steep (as much as 17°) continental slope incised by submarine canyons and gullies. Depth-converted industry seismic data suggest that the Hosgri fault dips steeply to the northeast and forms the eastern boundary of the asymmetric (deeper to the east) Sur Basin. Structural relief on Franciscan basement across the Hosgri fault is about 2.8 km. Locally, we recognize five discrete "sections" of the Hosgri fault based on fault trend, shallow structure (e.g., disruption of young sediments), seafloor geomorphology, and coincidence with high-amplitude magnetic anomalies sourced by ultramafic rocks in the Franciscan Complex. From south to north, section lengths and trends are as follows: (1) 17 km, 312°; (2) 10 km, 322°; (3)13 km, 317°; (4) 3 km, 329°; (5) 21 km, 318°. Through these sections, the Hosgri surface trace includes several right steps that vary from a few hundred meters to about 1 km wide, none wide enough to provide a barrier to continuous earthquake rupture.

  13. Gravity evidence for shaping of the crustal structure of the Ameca graben (Jalisco block northern limit). Western Mexico

    NASA Astrophysics Data System (ADS)

    Alatorre-Zamora, Miguel Angel; Campos-Enríquez, José Oscar; Fregoso-Becerra, Emilia; Quintanar-Robles, Luis; Toscano-Fletes, Roberto; Rosas-Elguera, José

    2018-03-01

    The Ameca tectonic depression (ATD) is located at the NE of the Jalisco Block along the southwestern fringe of the NW-SE trending Tepic-Zacoalco Rift, in the west-central part of the Trans-Mexican Volcanic Belt, western Mexico. To characterize its shallow crustal structure, we conducted a gravity survey based on nine N-S gravity profiles across the western half of the Ameca Valley. The Bouguer residual anomalies are featured by a central low between two zones of positive gravity values with marked gravity gradients. These anomalies have a general NW-SE trend similar to the Tepic-Zacoalco Rift general trend. Basement topography along these profiles was obtained by means of: 1) a Tsuboi's type inverse modeling, and 2) forward modeling. Approximately northward dipping 10° slopes are modeled in the southern half, with south tilted down faulted blocks of the Cretaceous granitic basement and its volcano-sedimentary cover along sub-vertical and intermediate normal faults, whereas southward dipping slopes of almost 15° are observed at the northern half. According to features of the obtained models, this depression corresponds to a slight asymmetric graben. The Ameca Fault is part of the master fault system along its northern limit. The quantitative interpretation shows an approximately 500 to 1100 m thick volcano-sedimentary infill capped by alluvial products. This study has several implications concerning the limit between the Jalisco Block and the Tepic-Zacoalco Rift. The established shallow crustal structure points to the existence of a major listric fault with its detachment surface beneath the Tepic-Zacoalco Rift. The Ameca Fault is interpreted as a secondary listric fault. The models indicate the presence of granitic bodies of the Jalisco Block beneath the TMVB volcanic products of the Tepic-Zacoalco rift. This implies that the limit between these two regional structures is not simple but involves a complex transition zone. A generic model suggests that the extension related normal faulting has been operating as a mechanism in the evolution of this rift. Analysis of seismicity affecting the study area and neighborhood indicates the inferred faults are active.

  14. Modeling the marine magnetic field of Bahía de Banderas, Mexico, confirms the half-graben structure of the bay

    NASA Astrophysics Data System (ADS)

    Alvarez, Román; López-Loera, Héctor; Arzate, Jorge

    2010-06-01

    An existing aeromagnetic survey flown on the central, western portion of Mexico did not include an important tectonic structure: Bahía de Banderas. The bay has an extension of approximately 1400 km 2 and is located within the Puerto Vallarta batholith, a granitic structure of Cretaceous origin. We report here the additional gathering of 5523 magnetic values on the bay, in order to complement the existing land aeromagnetic information; this allowed modeling the structure of the bay from the magnetic viewpoint. A late Miocene age has been proposed for the bay making it roughly contemporaneous with the first stages of separation of Baja California from mainland Mexico. Initially proposed as a graben, it was subsequently shown that its structure actually corresponds to a half-graben of the fault growth type, with reverse drag geometry; it appears to have been developed in response to an extensional process in the ˜ N-S direction. Valle de Banderas neighbors the bay constituting its eastern land continuation; it has also been proposed as a graben and it is also likely the result of an extensional process. However, it seems to be a structure more recently formed, probably around 5 Ma. The different time origin of the bay and of the valley is strengthened by the different alignment of the valley axis, where Ameca River flows and discharges into the bay, of around 30° from the trace of Banderas fault. The magnetic responses of the valley, aeromagnetic and terrestrial, support the existence of an extensional process. Upward and downward continuations of the magnetic fields show that Sierra de Vallejo and Sierra de Zapotán, to the NW of the valley, are deeply rooted structures and their magnetic responses are similar to those obtained in the Puerto Vallarta batholith; these characteristics support a common origin for them. Three magnetic profiles trending NNW are modeled across Bahía de Banderas. The models identify the structure as a half-graben with a listric main fault and reverse drag geometry, just as it was previously obtained elsewhere by an independent modeling process.

  15. Evaluating earthquake hazards in the Los Angeles region; an earth-science perspective

    USGS Publications Warehouse

    Ziony, Joseph I.

    1985-01-01

    Potentially destructive earthquakes are inevitable in the Los Angeles region of California, but hazards prediction can provide a basis for reducing damage and loss. This volume identifies the principal geologically controlled earthquake hazards of the region (surface faulting, strong shaking, ground failure, and tsunamis), summarizes methods for characterizing their extent and severity, and suggests opportunities for their reduction. Two systems of active faults generate earthquakes in the Los Angeles region: northwest-trending, chiefly horizontal-slip faults, such as the San Andreas, and west-trending, chiefly vertical-slip faults, such as those of the Transverse Ranges. Faults in these two systems have produced more than 40 damaging earthquakes since 1800. Ninety-five faults have slipped in late Quaternary time (approximately the past 750,000 yr) and are judged capable of generating future moderate to large earthquakes and displacing the ground surface. Average rates of late Quaternary slip or separation along these faults provide an index of their relative activity. The San Andreas and San Jacinto faults have slip rates measured in tens of millimeters per year, but most other faults have rates of about 1 mm/yr or less. Intermediate rates of as much as 6 mm/yr characterize a belt of Transverse Ranges faults that extends from near Santa Barbara to near San Bernardino. The dimensions of late Quaternary faults provide a basis for estimating the maximum sizes of likely future earthquakes in the Los Angeles region: moment magnitude .(M) 8 for the San Andreas, M 7 for the other northwest-trending elements of that fault system, and M 7.5 for the Transverse Ranges faults. Geologic and seismologic evidence along these faults, however, suggests that, for planning and designing noncritical facilities, appropriate sizes would be M 8 for the San Andreas, M 7 for the San Jacinto, M 6.5 for other northwest-trending faults, and M 6.5 to 7 for the Transverse Ranges faults. The geologic and seismologic record indicates that parts of the San Andreas and San Jacinto faults have generated major earthquakes having recurrence intervals of several tens to a few hundred years. In contrast, the geologic evidence at points along other active faults suggests recurrence intervals measured in many hundreds to several thousands of years. The distribution and character of late Quaternary surface faulting permit estimation of the likely location, style, and amount of future surface displacements. An extensive body of geologic and geotechnical information is used to evaluate areal differences in future levels of shaking. Bedrock and alluvial deposits are differentiated according to the physical properties that control shaking response; maps of these properties are prepared by analyzing existing geologic and soils maps, the geomorphology of surficial units, and. geotechnical data obtained from boreholes. The shear-wave velocities of near-surface geologic units must be estimated for some methods of evaluating shaking potential. Regional-scale maps of highly generalized shearwave velocity groups, based on the age and texture of exposed geologic units and on a simple two-dimensional model of Quaternary sediment distribution, provide a first approximation of the areal variability in shaking response. More accurate depictions of near-surface shear-wave velocity useful for predicting ground-motion parameters take into account the thickness of the Quaternary deposits, vertical variations in sediment .type, and the correlation of shear-wave velocity with standard penetration resistance of different sediments. A map of the upper Santa Ana River basin showing shear-wave velocities to depths equal to one-quarter wavelength of a 1-s shear wave demonstrates the three-dimensional mapping procedure. Four methods for predicting the distribution and strength of shaking from future earthquakes are presented. These techniques use different measures of strong-motion

  16. Post-Panafrican late Proterozoic basins in the Central Anti-Atlas (Morocco): their influence on the Variscan contractional structures.

    NASA Astrophysics Data System (ADS)

    Guimerà, Joan; Arboleya, María. Luisa

    2010-05-01

    Located South of the High Atlas, in Morocco, The Anti-Atlas is a 700 km-long chain trending NE-SW. In the Central Anti-Atlas region, between Warzazat and Taznakht, the Proterozoic Pan-African basement (X1 to X2-3) crops out in isolated areas (boutonnières), where it is overlaid by late to post Pan-African Upper Proterozoic and Palaeozoic rocks. Late to post Pan-African Upper Proterozoic rocks (X3) have been classically divided into three units (X3i, X3m and X3s) which include volcanic rocks — mainly rhyolites— and continental siliciclastic rocks, the older units intruded by late granites (Choubert, 1952 and Choubert et al., 1970). Rocks belonging to the upper unit of post Pan-African Upper Proterozoic rocks (X3s) were deposited in basins bounded by faults with a dominant dip-slip normal motion; as a result, this unit have a variable thickness, being locally absent in the uplifted blocks. Uppermost Proterozoic (Adoudounian) and Palaeozoic rocks deposited unconformable on the older rocks in the Anti-Atlas. The Central Anti-Atlas was slightly deformed during the Variscan orogeny by folds and high-angle thrusts. Two areas are selected to study the post Pan-African to Variscan evolution of the area: the Tiwiyyine basin and the Anti-Atlas Major Fault. Tiwiyyine basin This basin is delimited by kilometric-scale normal faults. Three of them can be observed in the field: two striking NE-SW (NW and SE boundaries) and one striking NW-SE (SW boundary), while the NE boundary is covered by Cenozoic rocks. The basin fill reaches 725 m and has been divided into three units: 1. X3s1: Coarse conglomerates with basal breccias. 2. X3s2: Laminated dolomites at the base, red pelites and conglomerates. 3. X3s3: Conglomerates with interbedded andesites. Unit X3s2 passes laterally to the SW to unit X3s1. The thickness of the basin fill diminishes to the SE. This is specially visible at the basal X3s1 unit. At both sides of the two NE-SW-striking faults, only the upper X3s3 unit is found, while none of the three units is observed SW of the NW-SE- striking fault. The substratum of the X3s unit inside and outside the Tiwiyyine basin is the X3m unit. Extension along two NW-SE cross-sections is 7.2 % and 8.3 %. Along a section oriented NE-SW the calculated extension is 5.1 %, although only one boundary fault has been taken into account. During the Variscan orogeny the Tiwiyyine basin underwent a contractional deformation that caused the inversion of the normal faults bounding the basin, and the formation of folds parallel to them. The inversion of the two NE-SW-striking faults caused the substratum of the basin to crop out in their hanging wall. In the SW segment of the basin, the NW-SE fault was not inverted and the base of the Adoudounian still covers the fault. In the hanging wall of this fault a NW striking fold appeared, that beyond the basin becomes a SW-vergent reverse fault. A NW-SE syncline, visible in the Adoudounian rocks, formed to the SW, in the footwall of the fault. The horizontal shortening along the two NW-SE cross-sections is 14.8 % and 12.7 %. The shortening along the section oriented NE-SW is 2.8 %, although, as stated previously, only one boundary fault has been taken into account. From these data, horizontal shortening in all directions can be deduced, evidenced by the map recognition of sinusoidal fold traces and three-limb synclines. These patterns are typically the result of synchronous cross-folding with different amounts of shortening in different directions (Gosh and Ramberg, 1968). We interpret these structures to be originated by an unique episode of horizontal constriction. Anti-Atlas Major Fault The Anti-Atlas Major Fault (AMF) is a structure inherited from the Panafrican orogeny. It has been proposed even as the Panafrican continental suture (Leblanc, 1976). North of Taznakht the AMF appears as a North-dipping fault that experienced a normal slip during the sedimentation of the X3s unit, as can be deduced from the presence of this unit in its hanging-wall while it is absent in its footwall. Adoudounian and Palaeozoic rocks lie unconformable on both blocks of the fault, but they were affected by part of the normal slip of the AMF, which can be observed along several kilometres, putting in contact Adoudounian rocks in the hanging wall to X2 and X3i in the foot-wall. To the east, the AMF shows a reverse slip at surface, and the Adoudounian rocks of the hanging wall are thrust onto those of the footwall. The minimum Variscan shortening is estimated to be about 9% in a NNE-SSW direction. Summarizing, the AMF had two episodes of normal slip (one during the sedimentation of X3s and another involving the Palaeozoic rocks), and a late episode of reverse inversion during the Variscan orogeny. The Variscan reverse slip was less than the previous normal one, with only the Adoudounian level, in the eastern part of the sector studied, recuperating the previous downthrowing. REFERENCES Choubert, G. (1952): Histoire Géologique du domaine de l'Anti-Atlas. Géologie du Maroc, fasc. I. Service géologique, Notes et Mémoires, no 100, pp. 75-195. Casablanca. Choubert, G. et al. (1970): Carte Géologique de l'Anti-Atlas central et de la zone synclinale de Ouarzazate. Feuilles de Ouarzazate, Alougoum et Telouet Sud, ech. 1:200 000. Notes et Mémoires du Service Géologique du Maroc, 138. Gosh, S.K. and Ramberg, H. (1968): Buckling experiments of intersecting fold patterns. Tectonophysics, 5(2): 89-105. Le Blanc, M. (1976): Proterozoic oceanic crust at Bou Azzer. Nature, 261: 34-35.

  17. Structural characteristics and implication on tectonic evolution of the Daerbute strike-slip fault in West Junggar area, NW China

    NASA Astrophysics Data System (ADS)

    Wu, Kongyou; Pei, Yangwen; Li, Tianran; Wang, Xulong; Liu, Yin; Liu, Bo; Ma, Chao; Hong, Mei

    2018-03-01

    The Daerbute fault zone, located in the northwestern margin of the Junggar basin, in the Central Asian Orogenic Belt, is a regional strike-slip fault with a length of 400 km. The NE-SW trending Daerbute fault zone presents a distinct linear trend in plain view, cutting through both the Zair Mountain and the Hala'alate Mountain. Because of the intense contraction and shearing, the rocks within the fault zone experienced high degree of cataclasis, schistosity, and mylonization, resulting in rocks that are easily eroded to form a valley with a width of 300-500 m and a depth of 50-100 m after weathering and erosion. The well-exposed outcrops along the Daerbute fault zone present sub-horizontal striations and sub-vertical fault steps, indicating sub-horizontal shearing along the observed fault planes. Flower structures and horizontal drag folds are also observed in both the well-exposed outcrops and high-resolution satellite images. The distribution of accommodating strike-slip splay faults, e.g., the 973-pluton fault and the Great Jurassic Trough fault, are in accordance with the Riedel model of simple shear. The seismic and time-frequency electromagnetic (TFEM) sections also demonstrate the typical strike-slip characteristics of the Daerbute fault zone. Based on detailed field observations of well-exposed outcrops and seismic sections, the Daerbute fault can be subdivided into two segments: the western segment presents multiple fault cores and damage zones, whereas the eastern segment only presents a single fault core, in which the rocks experienced a higher degree of rock cataclasis, schistosity, and mylonization. In the central overlapping portion between the two segments, the sediments within the fault zone are primarily reddish sandstones, conglomerates, and some mudstones, of which the palynological tests suggest middle Permian as the timing of deposition. The deformation timing of the Daerbute fault was estimated by integrating the depocenters' basinward migration and initiation of the splay faults (e.g., the Great Jurassic Trough fault and the 973-pluton fault). These results indicate that there were probably two periods of faulting deformation for the Daerbute fault. By integrating our study with previous studies, we speculate that the Daerbute fault experienced a two-phase strike-slip faulting deformation, commencing with the initial dextral strike-slip faulting in mid-late Permian, and then being inversed to sinistral strike-slip faulting since the Triassic. The results of this study can provide useful insights for the regional tectonics and local hydrocarbon exploration.

  18. Surface faulting near Livermore, California, associated with the January 1980 earthquakes

    USGS Publications Warehouse

    Bonilla, Manuel G.; Lienkaemper, James J.; Tinsley, John C.

    1980-01-01

    The earthquakes of 24 January (Ms 5.8) 1980 north of Livermore, California, and 26 January (Ms 5.2), were accompanied by surface faulting in the Greenville fault zone and apparently in the Las Positas fault zone also. The surface faulting was discontinuous and of small displacement. The main rupture within the Greenville fault zone trended about N.38°W. It was at least 4.2 km long and may have extended southward to Interstate Highway 580, giving a possible length of 6.2 km; both of these lengths included more gaps than observed surface rupture. Maximum displacements measured by us were about 25 mm of right slip (including afterslip through 28 January); vertical components of as much as 50 mm were seen locally, but these included gravity effects of unknown amount. The main break within the Greenville fault zones is very close to a fault strand mapped by Herd (1977, and unpublished data). A subsidiary break within the Greenville fault zone was about 0.5 km. long, had a general trend of N.46°W., and lay 0.12 to 0.25 km east of the main break. It was characterized by extension of as much as 40 mm and right slip of as much as 20 mm. This break was no more than 25 m from a fault mapped by Herd (unpublished data). Another break within the Greenville fault zone lay about 0.3 km southwest of the projection of the main break and trended about N33°W. It was at least 0.3 km long and showed mostly extension, but at several places a right-lateral component (up to 5 mm) was seen. This break was 80 to 100 m from a strand of the Greenville fault mapped by Herd (1977). Extensional fractures within the Greenville fault zone on the frontage roads north and south of Interstate Highway 580 may be related to regional extension or other processes, but do not seem to have resulted from faulting of the usual kind. One exception in this group is a fracture at the east side of Livermore valley which showed progressive increase in right-lateral displacement in February and March, 1980, and is directly on the projection of a fault in the Greenville fault zone mapped by Herd (1977). A group of more than 20 extensional fractures in Laughlin Road 1 km north of Interstate 580 probably are related to small tectonic displacements on faults in the Greenville fault zone. They are adjacent and parallel to two faults mapped by Herd (1977), are diagonal to the road, and most of them developed between 25 and 29 January, a period that included the Ms 5.2 shock of 26 January. Observations at two locations indicate tectonic displacement on the Las Positas fault zone as mapped by Herd (1977). At Vasco Road a prominent break on a strand of the fault showed about 0.5 mm of left-lateral strike slip on 7 February. An alinement array across this and other fractures at the locality indicates about 6 mm of left-lateral displacement occurred between 21 February and 26 March. On Tesla Road several right-stepping fractures, one of which showed 1.5 mm of left-lateral strike slip, lie on or close tp previously mapped strands of the Las Positas fault zone. The evidence at these two localities indicates that tectonic surface displacement occurred along at least 1.1 km of the Las Positas fault zone.

  19. Quantifying Anderson's fault types

    USGS Publications Warehouse

    Simpson, R.W.

    1997-01-01

    Anderson [1905] explained three basic types of faulting (normal, strike-slip, and reverse) in terms of the shape of the causative stress tensor and its orientation relative to the Earth's surface. Quantitative parameters can be defined which contain information about both shape and orientation [Ce??le??rier, 1995], thereby offering a way to distinguish fault-type domains on plots of regional stress fields and to quantify, for example, the degree of normal-faulting tendencies within strike-slip domains. This paper offers a geometrically motivated generalization of Angelier's [1979, 1984, 1990] shape parameters ?? and ?? to new quantities named A?? and A??. In their simple forms, A?? varies from 0 to 1 for normal, 1 to 2 for strike-slip, and 2 to 3 for reverse faulting, and A?? ranges from 0?? to 60??, 60?? to 120??, and 120?? to 180??, respectively. After scaling, A?? and A?? agree to within 2% (or 1??), a difference of little practical significance, although A?? has smoother analytical properties. A formulation distinguishing horizontal axes as well as the vertical axis is also possible, yielding an A?? ranging from -3 to +3 and A?? from -180?? to +180??. The geometrically motivated derivation in three-dimensional stress space presented here may aid intuition and offers a natural link with traditional ways of plotting yield and failure criteria. Examples are given, based on models of Bird [1996] and Bird and Kong [1994], of the use of Anderson fault parameters A?? and A?? for visualizing tectonic regimes defined by regional stress fields. Copyright 1997 by the American Geophysical Union.

  20. Reply to comments by Ahmad et al. on: Shah, A. A., 2013. Earthquake geology of Kashmir Basin and its implications for future large earthquakes International Journal of Earth Sciences DOI:10.1007/s00531-013-0874-8 and on Shah, A. A., 2015. Kashmir Basin Fault and its tectonic significance in NW Himalaya, Jammu and Kashmir, India, International Journal of Earth Sciences DOI:10.1007/s00531-015-1183-1

    NASA Astrophysics Data System (ADS)

    Shah, A. A.

    2016-03-01

    Shah (Int J Earth Sci 102:1957-1966, 2013) mapped major unknown faults and fault segments in Kashmir basin using geomorphological techniques. The major trace of out-of-sequence thrust fault was named as Kashmir basin fault (KBF) because it runs through the middle of Kashmir basin, and the active movement on it has backtilted and uplifted most of the basin. Ahmad et al. (Int J Earth Sci, 2015) have disputed the existence of KBF and maintained that faults identified by Shah (Int J Earth Sci 102:1957-1966, 2013) were already mapped as inferred faults by earlier workers. The early works, however, show a major normal fault, or a minor out-of-sequence reverse fault, and none have shown a major thrust fault.

  1. Coeval gravity-driven and thick-skinned extensional tectonics in the mid-Cretaceous of the western Pyrenees

    NASA Astrophysics Data System (ADS)

    Bodego, Arantxa; Agirrezabala, Luis M.

    2010-05-01

    The Mesozoic Basque-Cantabrian Basin in the western Pyrenees constitutes a peri-cratonic basin originated by rifting related to the Cretaceous opening of the Bay of Biscay. During the mid-Cretaceous the basin experienced important extensional/transtensional tectonics, which controlled the deposition of thick sedimentary successions. Many extensional structures have been documented in the basin but their thin-skinned/thick-skinned character is an unresolved question. In this field-based study, we characterize contemporaneous thin-skinned and thick-skinned deformations that took place during the filling of the mid-Cretaceous Lasarte sub-basin, located in the northeastern margin of the Basque-Cantabrian Basin (western Pyrenees). Most of these extensional structures and associated growth strata are preserved and allow us to characterize and date different deformation phases. Moreover, verticalization and overturning of the successions during Tertiary compression allow mapping the geometry of the extensional structures at depth. The Lasarte sub-basin constitutes a triangular sag bordered by three major basement-involved faults, which trend N, E and NE, respectively. These trends, common in the Variscan fault pattern of Pyrenees, suggest that they are old faults reactivated during the mid-Cretaceous extension. Stratigraphy of the area shows very thin to absent Aptian-Albian (and older) deposits above the upward border blocks, whereas on the downward blocks (sub-basin interior) contemporaneous thick successions were deposited (up to 1500 m). The sub-basin fill is composed of different sedimentary systems (from alluvial to siliciclastic and carbonate platforms) affected by syndepositional extensional faults (and related folds). These faults die out in a southwestward dipping (~4°) detachment layer composed of Triassic evaporites and clays. A NE-SW cross-section of the sub-basin shows NW- to N-trending six planar and two listric extensional faults and associated folds, which define a horst and graben system. Rollovers (unfaulted and faulted), hangingwall synclines and central domes are present in the hangingwalls of both listric and planar faults. Also, a fault-propagation fold, a forced fold and a roller have been interpreted. Synkinematic depositional systems and sediment-filled fissures are parallel to the NW- to N-trending tectonic structures. Based on the trend of tectonic structures, the orientation of sediment-filled fissures and the paleocurrent pattern of growth strata, a thin-skinned NE-SW to E-W extension has been deduced for the interior of the Lasarte sub-basin. Both the coincidence between the directions of extension and dip of the detachment layer and the characteristics of the deformation suggest a thin-skinned gravity-driven extensional tectonics caused by the dip of the detachment layer. Recorded extensional deformation event in the Lasarte sub-basin is contemporaneous with and would have been triggered by the extreme crustal thinning and mantle exhumation processes documented recently in both the Basque-Cantabrian Basin and the Pyrenees.

  2. The use of Stress Tensor Discriminator Faults in separating heterogeneous fault-slip data with best-fit stress inversion methods. II. Compressional stress regimes

    NASA Astrophysics Data System (ADS)

    Tranos, Markos D.

    2018-02-01

    Synthetic heterogeneous fault-slip data as driven by Andersonian compressional stress tensors were used to examine the efficiency of best-fit stress inversion methods in separating them. Heterogeneous fault-slip data are separated only if (a) they have been driven by stress tensors defining 'hybrid' compression (R < 0.375), and their σ1 axes differ in trend more than 30° (R = 0) or 50° (R = 0.25). Separation is not feasible if they have been driven by (b) 'real' (R ≥ 0.375) and 'hybrid' compressional tensors having their σ1 axes in similar trend, or (c) 'real' compressional tensors. In case (a), the Stress Tensor Discriminator Faults (STDF) exist in more than 50% of the activated fault slip data while in cases (b) and (c), they exist in percentages of much less than 50% or not at all. They constitute a necessary discriminatory tool for the establishment and comparison of two compressional stress tensors determined by a best-fit stress inversion method. The best-fit stress inversion methods are not able to determine more than one 'real' compressional stress tensor, as far as the thrust stacking in an orogeny is concerned. They can only possibly discern stress differences in the late-orogenic faulting processes, but not between the main- and late-orogenic stages.

  3. Spatial Distribution of the Coefficient of Variation and Bayesian Forecast for the Paleo-Earthquakes in Japan

    NASA Astrophysics Data System (ADS)

    Nomura, Shunichi; Ogata, Yosihiko

    2016-04-01

    We propose a Bayesian method of probability forecasting for recurrent earthquakes of inland active faults in Japan. Renewal processes with the Brownian Passage Time (BPT) distribution are applied for over a half of active faults in Japan by the Headquarters for Earthquake Research Promotion (HERP) of Japan. Long-term forecast with the BPT distribution needs two parameters; the mean and coefficient of variation (COV) for recurrence intervals. The HERP applies a common COV parameter for all of these faults because most of them have very few specified paleoseismic events, which is not enough to estimate reliable COV values for respective faults. However, different COV estimates are proposed for the same paleoseismic catalog by some related works. It can make critical difference in forecast to apply different COV estimates and so COV should be carefully selected for individual faults. Recurrence intervals on a fault are, on the average, determined by the long-term slip rate caused by the tectonic motion but fluctuated by nearby seismicities which influence surrounding stress field. The COVs of recurrence intervals depend on such stress perturbation and so have spatial trends due to the heterogeneity of tectonic motion and seismicity. Thus we introduce a spatial structure on its COV parameter by Bayesian modeling with a Gaussian process prior. The COVs on active faults are correlated and take similar values for closely located faults. It is found that the spatial trends in the estimated COV values coincide with the density of active faults in Japan. We also show Bayesian forecasts by the proposed model using Markov chain Monte Carlo method. Our forecasts are different from HERP's forecast especially on the active faults where HERP's forecasts are very high or low.

  4. Surface Creep along the Chaman Fault on the Pakistan-Afghanistan Border imaged by SAR interferometry

    NASA Astrophysics Data System (ADS)

    Szeliga, W. M.; Furuya, M.; Satyabala, S.; Bilham, R.

    2006-12-01

    The Chaman fault system is an on-land transform separating the Indian and Asian plates. From the Arabia/Asia/India triple junction on the Makran coast it passes north through Baluchistan, trending NNE into Afghanistan before merging with the Himalayan arc in the North West Frontier province of Pakistan. Geological and plate closure estimates of slip on the system suggest sinistral slip of between 1.9 and 3.5 cm/yr over the last 25 Ma. Oblique convergence occurs near and north of Quetta, Pakistan where it is accommodated by thrust faulting in ranges to the east of the apparently pure strike-slip Chaman fault. We present InSAR analyses that suggest that a 110 km segment of the Chaman fault system north of Quetta may be experiencing shallow aseismic slip (creep). ERS-1/-2 data indicate a change in range along a 110 km segment of the Chaman fault by as much as 7.8 mm/yr. The absence of ascending pass scenes means that we cannot exclude the possibility that some or all of this sinistral slip occurs as vertical displacement, although we suspect that slip partitioning may rule out a substantial vertical component to the observed slip. The trend of the Chaman fault lies nearly perpendicular to the satellite range direction reducing the signal to noise ratio and rendering the data too noisy to assess the locking depth of creep on the fault, although it would appear to be locked at least 5 km beneath the surface. We note the length and rate of slip of the creeping segment of the Chaman fault is similar to that of the Hayward fault in California.

  5. [Improved euler algorithm for trend forecast model and its application to oil spectrum analysis].

    PubMed

    Zheng, Chang-song; Ma, Biao

    2009-04-01

    The oil atomic spectrometric analysis technology is one of the most important methods for fault diagnosis and state monitoring of large machine equipment. The gray method is preponderant in the trend forecast at the same time. With the use of oil atomic spectrometric analysis result and combining the gray forecast theory, the present paper established a gray forecast model of the Fe/Cu concentration trend in the power-shift steering transmission. Aiming at the shortage of the gray method used in the trend forecast, the improved Euler algorithm was put forward for the first time to resolve the problem of the gray model and avoid the non-precision that the old gray model's forecast value depends on the first test value. This new method can make the forecast value more precision as shown in the example. Combined with the threshold value of the oil atomic spectrometric analysis, the new method was applied on the Fe/Cu concentration forecast and the premonition of fault information was obtained. So we can take steps to prevent the fault and this algorithm can be popularized to the state monitoring in the industry.

  6. Investigating the ancient landscape and Cenozoic drainage development of southern Yukon (Canada), through restoration modeling of the Cordilleran-scale Tintina Fault.

    NASA Astrophysics Data System (ADS)

    Hayward, N.; Jackson, L. E.; Ryan, J. J.

    2017-12-01

    This study of southern Yukon (Canada) challenges the notion that the landscape in the long-lived, tectonically active, northern Canadian Cordillera is implicitly young. The impact of Cenozoic displacement along the continental- scale Tintina Fault on the development of the Yukon River and drainage basins of central Yukon is investigated through geophysical and hydrological modeling of digital terrain model data. Regional geological evidence suggests that the age of the planation of the Yukon plateaus is at least Late Cretaceous, rather than Neogene as previously concluded, and that there has been little penetrative deformation or net incision in the region since the late Mesozoic. The Tintina Fault has been interpreted as having experienced 430 km of dextral displacement, primarily during the Eocene. However, the alignment of river channels across the fault at specific displacements, coupled with recent seismic events and related fault activity, indicate that the fault may have moved in stages over a longer time span. Topographic restoration and hydrological models show that the drainage of the Yukon River northwestward into Alaska via the ancestral Kwikhpak River was only possible at restored displacements of up to 50-55 km on the Tintina Fault. We interpret the published drainage reversals convincingly attributed to the effects of Pliocene glaciation as an overprint on earlier Yukon River reversals or diversions attributed to tectonic displacements along the Tintina Fault. At restored fault displacements of between 230 and 430 km, our models illustrate that paleo Yukon River drainage conceivably may have flowed eastward into the Atlantic Ocean via an ancestral Liard River, which was a tributary of the paleo Bell River system. The revised drainage evolution if correct requires wide-reaching reconsideration of surficial geology deposits, the flow direction and channel geometries of the region's ancient rivers, and importantly, exploration strategies of placer gold deposits.

  7. Historic Surface Rupture Informing Probabilistic Fault Displacement Analysis: New Zealand Case Studies

    NASA Astrophysics Data System (ADS)

    Villamor, P.; Litchfield, N. J.; Van Dissen, R. J.; Langridge, R.; Berryman, K. R.; Baize, S.

    2016-12-01

    Surface rupture associated with the 2010 Mw7.1 Darfield Earthquake (South Island, New Zealand) was extremely well documented, thanks to an immediate field mapping response and the acquisition of LiDAR data within days of the event. With respect to informing Probabilistic Fault Displacement Analysis (PFDHA) the main insights and outcomes from this rupture through Quaternary gravel are: 1) significant distributed deformation either side of the main trace (30 to 300 m wide deformation zone) and how the deformation is distributed away from the main trace; 2) a thorough analysis of uncertainty of the displacement measures obtained using the LIDAR data and repeated measurements from several scientists; and 3) the short surface rupture length for the reported magnitude, resulting from complex fault rupture with 5-6 reverse and strike-slip strands, most of which had no surface rupture. While the 2010 event is extremely well documented and will be an excellent case to add to the Surface Rupture during Earthquakes database (SURE), other NZ historical earthquakes that are not so well documented, but can provide important information for PFDHA. New Zealand has experienced about 10 historical surface fault ruptures since 1848, comprising ruptures on strike-slip, reverse and normal faults. Mw associated with these ruptures ranges between 6.3 and 8.1. From these ruptures we observed that the surface expression of deformation can be influenced by: fault maturity; the type of Quaternary sedimentary cover; fault history (e.g., influence of inversion tectonics, flexural slip); fault complexity; and primary versus secondary rupture. Other recent >Mw 6.6 earthquakes post-2010 that did not rupture the ground surface have been documented with InSAR and can inform Mw thresholds for surface fault rupture. It will be important to capture all this information and that of similar events worldwide to inform the SURE database and ultimately PFDHA.

  8. Estimation of fault geometry of a slow slip event off the Kii Peninsula, southwest of Japan, detected by DONET

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Nakano, M.; Hori, T.; Takahashi, N.

    2015-12-01

    The Japan Agency for Marine-Earth Science and Technology installed permanent ocean bottom observation network called Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) off the Kii Peninsula, southwest of Japan, to monitor earthquakes and tsunamis. We detected the long-term vertical displacements of sea floor from the ocean-bottom pressure records, starting from March 2013, at several DONET stations (Suzuki et al., 2014). We consider that these displacements were caused by the crustal deformation due to a slow slip event (SSE).  We estimated the fault geometry of the SSE by using the observed ocean-bottom displacements. The ocean-bottom displacements were obtained by removing the tidal components from the pressure records. We also subtracted the average of pressure changes taken over the records at stations connected to each science node from each record in order to remove the contributions due to atmospheric pressure changes and non-tidal ocean dynamic mass variations. Therefore we compared observed displacements with the theoretical ones that was subtracted the average displacement in the fault geometry estimation. We also compared observed and theoretical average displacements for the model evaluation. In this study, the observed average displacements were assumed to be zero. Although there are nine parameters in the fault model, we observed vertical displacements at only four stations. Therefore we assumed three fault geometries; (1) a reverse fault slip along the plate boundary, (2) a strike slip along a splay fault, and (3) a reverse fault slip along the splay fault. We obtained that the model (3) gives the smallest residual between observed and calculated displacements. We also observed that this SSE was synchronized with a decrease in the background seismicity within the area of a nearby earthquake cluster. In the future, we will investigate the relationship between the SSE and the seismicity change.

  9. Surface faulting along the inland Itozawa normal fault (eastern Japan) and relation to the 2011 Tohoku-oki megathrust earthquake

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Tsutsumi, H.; Meghraoui, M.; Toda, S.

    2012-12-01

    The 11 March 2011 Mw 9 Tohoku-oki earthquake ruptured ~500 km length of the Japan Trench along the coast of eastern Japan and significantly impacted the stress regime within the crust. The resulting change in seismicity over the Japan mainland was exhibited by the 11 April 2011 Mw 6.6 Iwaki earthquake that ruptured the Itozawa and Yunodake faults. Trending NNW and NW, respectively, these 70-80° W-dipping faults bound the Iwaki basin of Neogene age and have been reactivated simultaneously both along 15-km-long sections. Here, we present initial results from a paleoseismic excavation performed across the Itozawa fault within the Tsunagi Valley at the northern third of the observed surface rupture. At the Tsunagi site, the rupture affects a rice paddy, which provides an ideally horizontal initial state to collect detailed and accurate measurements. The surface break is composed of a continuous 30-to-40-cm-wide purely extensional crack that separates the uplifted block from a gently dipping 1-to-2-m-wide strip affected by right-stepping en-echelon cracks and locally bounded by a ~0.1-m-high reverse scarplet. Total station across-fault topographic profiles indicate the pre-earthquake ground surface was vertically deformed by ~0.6 m while direct field examinations reveal that well-defined rice paddy limits have been left-laterally offset by ~0.1 m. The 12-m-long, 3.5-m-deep trench exposes the 30-to-40-cm-thick cultivated soil overlaying a 1-m-thick red to yellow silt unit, a 2-m-thick alluvial gravel unit and a basal 0.1-1-m-thick organic-rich silt unit. Deformation associated to the 2011 rupture illustrates down-dip movement along a near-vertical fault with a well-expressed bending moment at the surface and generalized warping. On the north wall, the intermediate gravel unit displays a deformation pattern similar to granular flow with only minor discrete faulting and no splay to be continuously followed from the main fault to the surface. On the south wall, warping dominates as well but with some strain localization along two major splays that exhibit 15-20 cm of vertical offset. On both walls, the basal silt unit is vertically deformed by ~0.6 m, similarly to what is observed for the 2011 rupture. Furthermore, the base of said silt unit exhibits indication for secondary faulting prior to the 2011 event and that resemble cracks observed at the present-day surface. This suggests that the Itozawa fault has already ruptured in a similar fashion; probably in the late Pleistocene-early Holocene (radiocarbon samples are being processed). Hence, recent activity of the Itozawa fault may be controlled entirely by large to giant earthquakes along the Japan Trench.

  10. Geologic evolution of the Kastel trough and its implications on the Adiyaman oil fields, SE Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coskun, Bu.

    1990-05-01

    Oil field developments of the Adiyaman area one of the main oil producing zones in southeast Turkey, have been highly influenced by geologic evolution of the Kastel trough which is situated in front of the suture zone between the Arabian and Anatolian plates. The Upper Cretaceous movements created many paleostructural trends in the Kastel trough where important dolomitic and porous reservoirs exist. The most important tectonic event, which appeared during the Upper Cretaceous movements, is the accumulation of the Kocali-Karadut ophiolitic complex, advancing from the north to the south in the Kastel trough, where heavy materials caused formation of amore » structural model favoring generation and migration and entrapment of oil in the reservoir rocks. Due to the presence of the Kocali-Karadut complex in the Kastel trough the following zones have been distinguished. (1) North Uplift Area. Situated under the allochthonous units, many thrust and reverse faults characterize this zone. The presence of paleohighs, where primary dolomites develop, allows the appearance of some oil fields in the region. This is the main future exploration zone in southeast Turkey. (2) Accumulation Area. Advancing from the north to the south, the allochthonous Kocali-Karadut complex filled the Kastel trough creating a deep graben whose flanks present generally normal faults. (3) Structural Belt. Important paleohighs constitute an exploration trend in this zone where dolomitic and porous carbonates contain actual oil fields. (4) South Accumulation Area. Distant from the Arabian-Anatolian suture zone, regional tectonics and sedimentology show this zone remained deeply buried during geologic time; good source rocks were deposited during the Cretaceous. (5) South Uplift Area. This area corresponds to the northern flank of the huge regional Mardin high in southeast Turkey where new oil fields have been discovered.« less

  11. Preliminary geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California

    USGS Publications Warehouse

    Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Stone, Paul; Powell, Charles L.; Gurrola, Larry D.; Selting, Amy J.; Brandt, Theodore R.

    2002-01-01

    This report presents a new geologic digital map of the Santa Barbara coastal plain area at a compilation scale of 1:24,000 (one inch on the map = 2,000 feet on the ground) and with a horizontal positional accuracy of at least 20 m. This preliminary map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying and adjacent to the coastal plain within the contiguous Santa Barbara and Goleta 7.5' quadrangles. A planned second version will extend the mapping westward into the adjoining Dos Pueblos Canyon quadrangle and eastward into the Carpinteria quadrangle. The mapping presented here results from the collaborative efforts of geologists with the U.S. Geological Survey Southern California Areal Mapping Project (SCAMP) (Minor, Kellogg, Stanley, Stone, and Powell) and the tectonic geomorphology research group at the University of California at Santa Barbara (Gurrola and Selting). C.L. Powell, II, performed all new fossil identifications and interpretations reported herein. T.R. Brandt designed and edited the GIS database,performed GIS database integration and created the digital cartography for the map layout. The Santa Barbara coastal plain is located in the western Transverse Ranges physiographic province along a west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The coastal plain region, which extends from the Santa Ynez Mountains on the north to the Santa Barbara Channel on the south, is underlain by numerous active and potentially active folds and partly buried thrust faults of the Santa Barbara fold and fault belt. Strong earthquakes that occurred in the region in 1925 (6.8 magnitude) and 1978 (5.1 magnitude) are evidence that such structures pose a significant earthquake hazard to the approximately 200,000 people living within the major coastal population centers of Santa Barbara and Goleta. Also, young landslide deposits along the steep lower flank of the Santa Ynez Mountains indicate the potential for continued slope failures and mass movements that may threaten urbanized parts of the coastal plain. Deformed sedimentary rocks in the subsurface of the coastal plain and the adjacent Santa Barbara Channel contain deposits of oil and gas, some of which are currently being extracted. Shallow, localized sedimentary aquifers underlying the coastal plain provide limited amounts of water for the urban areas, but the quality of some of this groundwater is compromised by coastal salt-water contamination. The present map compilation provides a set of uniform geologic digital coverages that can be used for analysis and prediction of these and other geologic hazards and resources in the coastal plain region. In the map area the oldest stratigraphic units consist of resistant Eocene to Oligocene marine and terrestrial sedimentary rocks that form a mostly southward-dipping and laterally continuous sequence along the south flank of the Santa Ynez Mountains. Less resistant, but more variably deformed, Miocene, Pliocene, and Pleistocene marine sedimentary rocks and deposits are exposed in the lower Santa Ynez foothills and in the coastal hills and sea cliffs farther south. Pleistocene and Holocene surficial alluvial, colluvial, estuarine, and marine-terrace deposits directly underlie much of the low-lying coastal plain area, and similar-aged alluvial and landslide deposits locally mantle the lower flanks of the Santa Ynez Mountains. Structurally, the Santa Barbara coastal plain area is dominated by the Santa Barbara fold and fault belt, an east-west-trending zone of Quaternary, partly active folds and blind and exposed reverse and thrust faults. The dominant trend of individual structures within the belt is west-northwest -- slightly oblique to the overall trend of the fold and fault belt. A conspicuous exception, however, is the More Ranch fault system, which strikes east-northeast across the fold and f

  12. Structure of the Wagner Basin in the Northern Gulf of California From Interpretation of Seismic Reflexion Data

    NASA Astrophysics Data System (ADS)

    Gonzalez, M.; Aguilar, C.; Martin, A.

    2007-05-01

    The northern Gulf of California straddles the transition in the style of deformation along the Pacific-North America plate boundary, from distributed deformation in the Upper Delfin and Wagner basins to localized dextral shear along the Cerro Prieto transform fault. Processing and interpretation of industry seismic data adquired by Petroleos Mexicanos (PEMEX) allow us to map the main fault structures and depocenters in the Wagner basin and to unravel the way strain is transferred northward into the Cerro Prieto fault system. Seismic data records from 0.5 to 5 TWTT. Data stacking and time-migration were performed using semblance coefficient method. Subsidence in the Wagner basin is controlled by two large N-S trending sub-parallel faults that intersect the NNW-trending Cerro Prieto transform fault. The Wagner fault bounds the eastern margin of the basin for more than 75 km. This fault dips ~50° to the west (up to 2 seconds) with distinctive reflectors displaced more than 1 km across the fault zone. The strata define a fanning pattern towards the Wagner fault. Northward the Wagner fault intersects the Cerro Prieto fault at 130° on map view and one depocenter of the Wagner basin bends to the NW adjacent to the Cerro Prieto fault zone. The eastern boundary of the modern depocenter is the Consag fault, which extends over 100 km in a N-S direction with an average dip of ~50° (up to 2s) to the east. The northern segment of the Consag fault bends 25° and intersects the Cerro Prieto fault zone at an angle of 110° on map view. The acoustic basement was not imaged in the northwest, but the stratigraphic succession increases its thickness towards the depocenter of the Wagner basin. Another important structure is El Chinero fault, which runs parallel to the Consag fault along 60 km and possibly intersects the Cerro Prieto fault to the north beneath the delta of the Colorado River. El Chinero fault dips at low-angle (~30°) to the east and has a vertical offset of about 0.5 seconds (TWTT). Seismic imaging indicates that the Wagner and Consag faults transfer most of their slip to the Cerro Prieto fault. Moreover, the 130° intersection between the Wagner and Cerro Prieto faults suggests that the Wagner fault has a significant strike-slip component. Our results indicate that most of the strain in this plate boundary is transferred along two main sub-parallel oblique faults in a narrow zone 35 km-wide.

  13. Fault evolution in the Potiguar rift termination, equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2015-02-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify architecture of fault systems and to analyze the evolution of the eastern equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The basin is located along the NNE margin of South America that faces the main transform zone that separates the North and the South Atlantic. The Potiguar rift is a Neocomian structure located at the intersection of the equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide, and ~ 40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en echelon system of NW-SE- to NS-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by postrift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the equatorial margin in the Cretaceous and occurs not only at the rift termination but also as isolated structures away from the main rift. This study indicates that the strike-slip shearing between two plates propagated to the interior of one of these plates, where faults with similar orientation, kinematics, geometry, and timing of the major transform are observed. These faults also influence rift geometry.

  14. Escape tectonism in the Gulf of Thailand: Paleogene left-lateral pull-apart rifting in the Vietnamese part of the Malay Basin

    NASA Astrophysics Data System (ADS)

    Fyhn, Michael B. W.; Boldreel, Lars O.; Nielsen, Lars H.

    2010-03-01

    The Malay Basin represents one of the largest rift basins of SE Asia. Based on a comprehensive 2-D seismic database tied to wells covering mainly Vietnamese acreage, the evolution of the Vietnamese part of the basin is outlined and a new tectonic model is proposed for the development of the basin. The Vietnamese part of the Malay Basin comprises a large and deep Paleogene pull-apart basin formed through Middle or Late Eocene to Oligocene left-lateral strike-slip along NNW-trending fault zones. The Tho Chu Fault Zone constitutes a significant Paleogene left-lateral strike-slip zone most likely associated with SE Asian extrusion tectonism. The fault zone outlines a deep rift that widens to the south and connects with the main Malay Basin. In the central northern part of the basin, a series of intra-basinal left-lateral fracture zones are interconnected by NW to WNW-trending extensional faults and worked to distribute sinistral shearing across the width of the basin. Extensive thermal sagging throughout the Neogene has led to the accommodation of a very thick sedimentary succession. Moderate rifting resumed during the Early Miocene following older structural fabric. The intensity of rifting increases towards the west and was probably related to coeval extension in the western part of the Gulf of Thailand. Neogene extension culminated before the Pliocene, although faults in places remains active. Late Neogene basin inversion has been attributed to c. 70 km of right-lateral movement across major c. N-S-trending faults in the central part of the basin. However, the lack of inversion in Vietnamese territory only seems to merit a few kilometers of dextral inversion.

  15. Transpressional Rupture Cascade of the 2016 Mw 7.8 Kaikoura Earthquake, New Zealand

    NASA Astrophysics Data System (ADS)

    Xu, Wenbin; Feng, Guangcai; Meng, Lingsen; Zhang, Ailin; Ampuero, Jean Paul; Bürgmann, Roland; Fang, Lihua

    2018-03-01

    Large earthquakes often do not occur on a simple planar fault but involve rupture of multiple geometrically complex faults. The 2016 Mw 7.8 Kaikoura earthquake, New Zealand, involved the rupture of at least 21 faults, propagating from southwest to northeast for about 180 km. Here we combine space geodesy and seismology techniques to study subsurface fault geometry, slip distribution, and the kinematics of the rupture. Our finite-fault slip model indicates that the fault motion changes from predominantly right-lateral slip near the epicenter to transpressional slip in the northeast with a maximum coseismic surface displacement of about 10 m near the intersection between the Kekerengu and Papatea faults. Teleseismic back projection imaging shows that rupture speed was overall slow (1.4 km/s) but faster on individual fault segments (approximately 2 km/s) and that the conjugate, oblique-reverse, north striking faults released the largest high-frequency energy. We show that the linking Conway-Charwell faults aided in propagation of rupture across the step over from the Humps fault zone to the Hope fault. Fault slip cascaded along the Jordan Thrust, Kekerengu, and Needles faults, causing stress perturbations that activated two major conjugate faults, the Hundalee and Papatea faults. Our results shed important light on the study of earthquakes and seismic hazard evaluation in geometrically complex fault systems.

  16. Evolution of the stress fields in the Zagros Foreland Folded Belt using focal mechanisms and kinematic analyses: the case of the Fars salient, Iran

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Zafarmand, Bahareh; Oveisi, Behnam

    2018-03-01

    The NW-SE trending Zagros orogenic belt was initiated during the convergence of the Afro-Arabian continent and the Iranian microcontinent in the Late Cretaceous. Ongoing convergence is confirmed by intense seismicity related to compressional stresses collision-related in the Zagros orogenic belt by reactivation of an early extensional faulting to latter compressional segmented strike-slip and dip-slip faulting. These activities are strongly related either to the deep-seated basement fault activities (deep-seated earthquakes) underlies the sedimentary cover or gently dipping shallow-seated décollement horizon of the rheological weak rocks of the infra-Cambrian Hormuz salt. The compressional stress regimes in the different units play an important role in controlling the stress conditions between the different units within the sedimentary cover and basement. A significant set of nearly N-S trending right-lateral strike-slip faults exists throughout the study area in the Fars area in the Zagros Foreland Folded Belt. Fault-slip and focal mechanism data were analyzed using the stress inversion method to reconstruct the paleo and recent stress conditions. The results suggest that the current direction of maximum principal stress averages N19°E, with N38°E that for the past from Cretaceous to Tertiary (although a few sites on the Kar-e-Bass fault yield a different direction). The results are consistent with the collision of the Afro-Arabian continent and the Iranian microcontinent. The difference between the current and paleo-stress directions indicates an anticlockwise rotation in the maximum principle stress direction over time. This difference resulted from changes in the continental convergence path, but was also influenced by the local structural evolution, including the lateral propagation of folds and the presence of several local décollement horizons that facilitated decoupling of the deformation between the basement and the sedimentary cover. The obliquity of the maximum compressional stress into the fault trends reveals a typical stress partitioning of thrust and strike-slip motion in the Kazerun, Kar-e-Bass, Sabz-Pushan, and Sarvestan fault zones that caused these fault zones behave as segmented strike-slip and dip-slip faults.

  17. Local versus regional active stress field in 5900m San Gregorio Magno 1 well (southern Apennines, Italy).

    NASA Astrophysics Data System (ADS)

    Pierdominici, S.; Montone, P.; Mariucci, M. T.

    2009-04-01

    The aim of this work is to characterize the local stress field in a peculiar sector of the southern Apennines by analyzing borehole breakouts, fractures and logging data along the San Gregorio Magno 1 deep well, and to compare the achieved stress field with the regional one. The study area is characterized by diffuse low-Magnitude seismicity, although in historical times it has been repeatedly struck by moderate to large earthquakes. We have analyzed in detail the 5900m San Gregorio Magno 1 well drilled in 1996-97 by ENI S.p.A. and located very close (1.3 km away) to the Irpinia Fault. This fault was responsible of the strongest earthquake happened in this area, the 23rd November 1980 M6.9 earthquake that produced the first unequivocal historical surface faulting ever documented in Italy. The mainshock enucleated on a fault 38 km-long with a strike of 308° and 60-70° northeast-dipping, consistent with a NE-SW T-axis and a normal faulting tectonic regime. Borehole breakouts, active faults and focal mechanism solutions have allowed to define the present-day stress along and around the San Gregorio Magno 1 well and other analysis (logging data) to discriminate the presence of fracture zones and/or faults at depth. We have considered data from 1200m to the bottom of San Gregorio Magno 1 well. Our analysis of stress-induced wellbore breakouts shows an inhomogeneous direction of minimum horizontal stress (N359+-31°) orientation along the well. This direction is moderately consistent with the Shmin-trend determined from breakouts in other wells in this region and also with the regional active stress field inferred from active faults and earthquake focal plane solutions (N44 Shmin oriented). For this reason we have computed for each breakout zone the difference between the local trend and the regional one; comparing these breakout rotations with the spikes or changing trend of logs we have identified possible fractures or faults at different depths. We have correlated the scattering intervals of breakout orientations to fracture and/or active fault zones, to the presence of fluids and to the lithology to identify possible local source of stress.

  18. Subsurface Tectonics and Pingos of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Skirvin, S.; Casavant, R.; Burr, D.

    2008-12-01

    We describe preliminary results of a two-phase study that investigated links between subsurface structural and stratigraphic controls, and distribution of hydrostatic pingos on the central coastal plain of Arctic Alaska. Our 2300 km2 study area is underlain by a complete petroleum system that supports gas, oil and water production from 3 of the largest oil fields in North America. In addition, gas hydrate deposits exist in this area within and just below the permafrost interval at depths of 600 to 1800 feet below sea level. Phase 1 of the study compared locations of subsurface faults and pingos for evidence of linkages between faulting and pingo genesis and distribution. Several hundred discrete fault features were digitized from published data and georeferenced in a GIS database. Fault types were determined by geometry and sense of slip derived from well log and seismic maps. More than 200 pingos and surface sediment type associated with their locations were digitized from regional surficial geology maps within an area that included wire line and seismic data coverage. Beneath the pingos lies an assemblage of high-angle normal and transtensional faults that trend NNE and NW; subsidiary trends are EW and NNW. Quaternary fault reactivation is evidenced by faults that displaced strata at depths exceeding 3000 meters below sea level and intersect near-surface units. Unpublished seismic images and cross-section analysis support this interpretation. Kinematics and distribution of reactivated faults are linked to polyphase deformational history of the region that includes Mesozoic rift events, succeeded by crustal shortening and uplift of the Brooks Range to the south, and differential subsidence and segmentation of a related foreland basin margin beneath the study area. Upward fluid migration, a normal process in basin formation and fault reactivation, may play yet unrecognized roles in the genesis (e.g. fluid charging) of pingos and groundwater hydrology. Preliminary analysis shows that more than half the pingos occur within 150 m of the vertical projections of subsurface fault plane traces. In a previous, unpublished geostatistical study, comparison of pingo and random locations indicated a non-random NE-trending alignment of pingos. This trend in particular matches the dominant orientation of fault sets that are linked to the most recent tectonic deformation of the region. A concurrent Phase 2 of the study examines the potential role of near-surface stratigraphic units in regard to both pingos and faults. Both surface and subsurface coarse-grained deposits across the region are often controlled by fault structures; this study is the first to assess any relationship between reservoir rocks and pingo locations. Cross-sections were constructed from well log data to depths of 100 meters. Subsurface elements were compared with surface features. Although some studies have linked fine-grained surface sediments with pingo occurrence, our analysis hints that coarse-grained sediments underlie pingos and may be related to near-surface fluid transmissivity, as suggested by other researchers. We also investigated pingo occurrence in relationship to upthrown or downthrown fault blocks that vary in the degree of deformation and fluid transmission. Results will guide a proposed pingo drilling project to test linkages between pingos, subsurface geology, hydrology, and petroleum systems. Findings from this study could aid research and planning for field exploration of similar settings on Earth and Mars.

  19. Ice Surface Morphology and Flow on Malaspina Glacier, Alaska: Implications for Regional Tectonics in the Saint Elias Orogen

    NASA Technical Reports Server (NTRS)

    Cotton, Michelle M.; Bruhn, Ronald L.; Sauber, Jeanne; Burgess, Evan; Forster, Richard R.

    2014-01-01

    The Saint Elias Mountains in southern Alaska are located at a structural syntaxis where the coastal thrust and fold belt of the Fairweather plate boundary intersects thrust faults and folds generated by collision of the Yakutat Terrane. The axial trace of this syntaxis extends southeastward out of the Saint Elias Mountains and beneath Malaspina Glacier where it is hidden from view and cannot be mapped using conventional methods. Here we examine the surface morphology and flow patterns of Malaspina Glacier to infer characteristics of the bedrock topography and organization of the syntaxis. Faults and folds beneath the eastern part of the glacier trend northwest and reflect dextral transpression near the terminus of the Fairweather fault system. Those beneath the western part of the glacier trend northeast and accommodate folding and thrust faulting during collision and accretion of the Yakutat Terrane. Mapping the location and geometry of the structural syntaxis provides important constraints on spatial variations in seismicity, fault kinematics, and crustal shortening beneath Malaspina Glacier, as well as the position of the collisional deformation front within the Yakutat Terrane. We also speculate that the geometrical complexity of intersecting faults within the syntaxis formed a barrier to rupture propagation during two regional Mw 8.1earthquakes in September 1899.

  20. Stress transfer to the Denali and other regional faults from the M 9.2 Alaska earthquake of 1964

    USGS Publications Warehouse

    Bufe, C.G.

    2004-01-01

    Stress transfer from the great 1964 Prince William Sound earthquake is modeled on the Denali fault, including the Denali-Totschunda fault segments that ruptured in 2002, and on other regional fault systems where M 7.5 and larger earthquakes have occurred since 1900. The results indicate that analysis of Coulomb stress transfer from the dominant earthquake in a region is a potentially powerful tool in assessing time-varying earthquake hazard. Modeled Coulomb stress increases on the northern Denali and Totschunda faults from the great 1964 earthquake coincide with zones that ruptured in the 2002 Denali fault earthquake, although stress on the Susitna Glacier thrust plane, where the 2002 event initiated, was decreased. A southeasterlytrending Coulomb stress transect along the right-lateral Totschunda-Fairweather-Queen Charlotte trend shows stress transfer from the 1964 event advancing slip on the Totschunda, Fairweather, and Queen Charlotte segments, including the southern Fairweather segment that ruptured in 1972. Stress transfer retarding right-lateral strike slip was observed from the southern part of the Totschunda fault to the northern end of the Fairweather fault (1958 rupture). This region encompasses a gap with shallow thrust faulting but with little evidence of strike-slip faulting connecting the segments to the northwest and southeast. Stress transfer toward failure was computed on the north-south trending right-lateral strike-slip faults in the Gulf of Alaska that ruptured in 1987 and 1988, with inhibitory stress changes at the northern end of the northernmost (1987) rupture. The northern Denali and Totschunda faults, including the zones that ruptured in the 2002 earthquakes, follow very closely (within 3%), for about 90??, an arc of a circle of radius 375 km. The center of this circle is within a few kilometers of the intersection at depth of the Patton Bay fault with the Alaskan megathrust. This inferred asperity edge may be the pole of counterclockwise rotation of the block south of the Denali fault. These observations suggest that the asperity and its recurrent rupture in great earthquakes as in 1964 may have influenced the tectonics of the region during the later stages of evolution of the Denali strike-slip fault system.

  1. Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China; comparisons with those of sedimentary and metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Kouketsu, Yui; Shimizu, Ichiko; Wang, Yu; Yao, Lu; Ma, Shengli; Shimamoto, Toshihiko

    2017-03-01

    We analyzed micro-Raman spectra of carbonaceous materials (CM) in natural and experimentally deformed fault rocks from Longmenshan fault zone that caused the 2008 Wenchuan earthquake, to characterize degree of disordering of CM in a fault zone. Raman spectral parameters for 12 samples from a fault zone in Shenxigou, Sichuan, China, all show low-grade structures with no graphite. Low crystallinity and δ13C values (-24‰ to -25‰) suggest that CM in fault zone originated from host rocks (Late Triassic Xujiahe Formation). Full width at half maximum values of main spectral bands (D1 and D2), and relative intensities of two subbands (D3 and D4) of CM were variable with sample locations. However, Raman parameters of measured fault rocks fall on established trends of graphitization in sedimentary and metamorphic rocks. An empirical geothermometer gives temperatures of 160-230 °C for fault rocks in Shenxigou, and these temperatures were lower for highly sheared gouge than those for less deformed fault breccia at inner parts of the fault zone. The lower temperature and less crystallinity of CM in gouge might have been caused by the mechanical destruction of CM by severe shearing deformation, or may be due to mixing of host rocks on the footwall. CM in gouge deformed in high-velocity experiments exhibits slight changes towards graphitization characterized by reduction of D3 and D4 intensities. Thus low crystallinity of CM in natural gouge cannot be explained by our experimental results. Graphite formation during seismic fault motion is extremely local or did not occur in the study area, and the CM crystallinity from shallow to deep fault zones may be predicted as a first approximation from the graphitization trend in sedimentary and metamorphic rocks. If that case, graphite may lower the friction of shear zones at temperatures above 300 °C, deeper than the lower part of seismogenic zone.

  2. Integration of high-resolution seismic and aeromagnetic data for earthquake hazards evaluations: An example from the Willamette Valley, Oregon

    USGS Publications Warehouse

    Liberty, L.M.; Trehu, A.M.; Blakely, R.J.; Dougherty, M.E.

    1999-01-01

    Aeromagnetic and high-resolution seismic reflection data were integrated to place constraints on the history of seismic activity and to determine the continuity of the possibly active, yet largely concealed Mount Angel fault in the Willamette Valley, Oregon. Recent seismic activity possibly related to the 20-km-long fault includes a swarm of small earthquakes near Woodburn in 1990 and the magnitude 5.6 Scotts Mills earthquake in 1993. Newly acquired aeromagnetic data show several large northwest-trending anomalies, including one associated with the Mount Angel fault. The magnetic signature indicates that the fault may actually extend 70 km across the Willamette Valley to join the Newberg and Gales Creek faults in the Oregon Coast Range. We collected 24-fold high-resolution seismic reflection data along two transects near Woodburn, Oregon, to image the offset of the Miocene-age Columbia River Basalts (CRB) and overlying sediments at and northwest of the known mapped extent of the Mount Angel fault. The seismic data show a 100-200-m offset in the CRB reflector at depths from 300 to 700 m. Folded or offset sediments appear above the CRB with decreasing amplitude to depths as shallow as were imaged (approximately 40 m). Modeling experiments based on the magnetic data indicate, however, that the anomaly associated with the Mount Angel fault is not caused solely by an offset of the CRB and overlying sediments. Underlying magnetic sources, which we presume to be volcanic rocks of the Siletz terrane, must have vertical offsets of at least 500 m to fit the observed data. We conclude that the Mount Angel fault appears to have been active since Eocene age and that the Gales Creek, Newberg, and Mount Angel faults should be considered a single potentially active fault system. This fault, as well as other parallel northwest-trending faults in the Willamette Valley, should be considered as risks for future potentially damaging earthquakes.

  3. Interpretation of fault-controlled ramp structures in sedimentary basins - example from Caspian Sea using Landsat TM data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iranpanah, A.

    1989-03-01

    Lineaments on a series of edge-enhanced images (TM data) from a region around the Caspian Sea form a geomorphically significant linear trend along the major Caucasus-Kopeh Dagh fault line. This fault represents the line of collision between the Cimmerian continents and the Turan plate on the south and north, respectively. The lineament zone manifests a ramp structure that forms a relatively narrow topographic high in the Caspian Sea. Paleogeographic studies of the Caspian Sea suggest that the basin is part of the eastern Paratethys, which began to develop in the early Paleogene during the Alpine-Himalayan uplift. On the basis ofmore » the lineaments and associated geomorphic features, the Caspian Sea can be divided into southern, central, and the northern Caspian subbasins. The Caucasus-Kopeh Dagh fault line trends N80/degrees/W and separates the southern Caspian from the central subbasin, approximately along 40/degrees/N latitude. The boundary between the central and the northern subbasins is also a linear topographic high which trends N70/degrees/E and lies approximately at 44/degrees/N latitude. The southern and central subbasins have subequal areal extension covering 35.64% and the 36.63% of the whole sea, whereas the northern subbasin occupies only 27.73% of the basin.« less

  4. Determination Hypocentre and Focal Mechanism Earthquake of Oct 31, 2016 in Bone, South Sulawesi

    NASA Astrophysics Data System (ADS)

    Altin Massinai, Muhammad; Fawzy Ismullah M, Muhammad

    2018-03-01

    Indonesian Meteorology, Climatology and Geophysics Agency (BMKG) recorded an earthquake with M4.6 on at October 31, 2016 at Bone District, around 80 Km northeast form Makassar, South Sulawesi. The earthquake occurred 18:18:14 local time in 4.7°S, 120°E with depth 10 Km. Seismicity around location predicted caused by activity Walennae fault. We reprocessed earthquake data to determine precise hypocentre location and focal mechanism. The P- and S-wave arrival time got from BMKG used as input HYPOELLIPSE code to determine hypocentre. The results showed that the earthquake occurred 10:18:14.46 UTC in 4.638°S, 119.966°E with depth 24.76 Km. The hypocentre resolved 10 Km fix depth and had lower travel time residual than BMKG result. Focal mechanism determination used Azmtak code based on the first arrival polarity at earthquake waveform manually picked. The result showed a reverse mechanism with strike direction 38°, dip 44°, rake angle 134° on fault plane I and strike direction 164°, dip 60°, rake angle 56° on fault plane II. So, the earthquake which may be related to a reverse East Walennae Fault.

  5. Structural controls on ground-water conditions and estimated aquifer properties near Bill Williams Mountain, Williams, Arizona

    USGS Publications Warehouse

    Pierce, Herbert A.

    2001-01-01

    As of 1999, surface water collected and stored in reservoirs is the sole source of municipal water for the city of Williams. During 1996 and 1999, reservoirs reached historically low levels. Understanding the ground-water flow system is critical to managing the ground-water resources in this part of the Coconino Plateau. The nearly 1,000-meter-deep regional aquifer in the Redwall and Muav Limestones, however, makes studying or utilizing the resource difficult. Near-vertical faults and complex geologic structures control the ground-water flow system on the southwest side of the Kaibab Uplift near Williams, Arizona. To address the hydrogeologic complexities in the study area, a suite of techniques, which included aeromagnetic, gravity, square-array resistivity, and audiomagnetotelluric surveys, were applied as part of a regional study near Bill Williams Mountain. Existing well data and interpreted geophysical data were compiled and used to estimate depths to the water table and to prepare a potentiometric map. Geologic characteristics, such as secondary porosity, coefficient of anisotropy, and fracture-strike direction, were calculated at several sites to examine how these characteristics change with depth. The 14-kilometer-wide, seismically active northwestward-trending Cataract Creek and the northeastward-trending Mesa Butte Fault systems intersect near Bill Williams Mountain. Several north-south-trending faults may provide additional block faulting north and west of Bill Williams Mountain. Because of the extensive block faulting and regional folding, the volcanic and sedimentary rocks are tilted toward one or more of these faults. These faults provide near-vertical flow paths to the regional water table. The nearly radial fractures allow water that reaches the regional aquifer to move away from the Bill Williams Mountain area. Depth to the regional aquifer is highly variable and depends on location and local structures. On the basis of interpreted audiomagnetotelluric and square-array resistivity sounding curves and limited well data, depths to water may range from 450 to 1,300 meters.

  6. Core evidence of paleoseismic events in Paleogene deposits of the Shulu Sag in the Bohai Bay Basin, east China, and their petroleum geologic significance

    NASA Astrophysics Data System (ADS)

    Zheng, Lijing; Jiang, Zaixing; Liu, Hui; Kong, Xiangxin; Li, Haipeng; Jiang, Xiaolong

    2015-10-01

    The Shulu Sag, located in the southwestern corner of the Jizhong Depression, Bohai Bay Basin of east China, is a NE-SW trending, elongate Cenozoic half-graben basin. The lowermost part of the third member of the Shahejie Formation in this basin is characterized by continental rudstone and calcilutite to calcisiltite facies. Based on core observation and regional geologic analysis, seismites are recognized in these lacustrine deposits, which include soft-sediment deformation structures (sedimentary dikes, hydraulic shattering, diapir structures, convolute lamination, load-flame structures, ball-and-pillow structures, loop bedding, and subsidence structures), synsedimentary faults, and seismoturbidites. In addition, mixed-source rudstones, consisting of the Paleozoic carbonate clasts and in situ calcilutite clasts in the lowermost submember of Shahejie 3, appear in the seismites, suggesting an earthquake origin. A complete representative vertical sequence in the lowermost part of the third member found in well ST1H located in the central part of the Shulu Sag shows, from the base to the top: underlying undeformed layers, synsedimentary faults, liquefied carbonate rocks, allogenetic seismoturbidites, and overlying undeformed layers. Seismites are widely distributed around this well and there are multiple sets of stacked seismites separated by undeformed sediment. The nearby NW-trending Taijiazhuang fault whose fault growth index is from 1.1 to 1.8 and the NNE-trending Xinhe fault with a fault growth index of 1.3-1.9 may be the source of the instability to create the seismites. These deformed sedimentary layers are favorable for the accumulation of oil and gas; for example, sedimentary dikes can cut through many layers and serve as conduits for fluid migration. Sedimentary faults and fractures induced by earthquakes can act as oil and gas migration channels or store petroleum products as well. Seismoturbidites and mixed-source rudstones are excellent reservoirs due to their abundant primary or dissolved pores.

  7. Subsurface fault geometries in Southern California illuminated through Full-3D Seismic Waveform Tomography (F3DT)

    NASA Astrophysics Data System (ADS)

    Lee, En-Jui; Chen, Po

    2017-04-01

    More precise spatial descriptions of fault systems play an essential role in tectonic interpretations, deformation modeling, and seismic hazard assessments. The recent developed full-3D waveform tomography techniques provide high-resolution images and are able to image the material property differences across faults to assist the understanding of fault systems. In the updated seismic velocity model for Southern California, CVM-S4.26, many velocity gradients show consistency with surface geology and major faults defined in the Community Fault Model (CFM) (Plesch et al. 2007), which was constructed by using various geological and geophysical observations. In addition to faults in CFM, CVM-S4.26 reveals a velocity reversal mainly beneath the San Gabriel Mountain and Western Mojave Desert regions, which is correlated with the detachment structure that has also been found in other independent studies. The high-resolution tomographic images of CVM-S4.26 could assist the understanding of fault systems in Southern California and therefore benefit the development of fault models as well as other applications, such as seismic hazard analysis, tectonic reconstructions, and crustal deformation modeling.

  8. Actively dewatering fluid-rich zones along the Costa Rica plate boundary fault

    NASA Astrophysics Data System (ADS)

    Bangs, N. L.; McIntosh, K. D.; Silver, E. A.; Kluesner, J. W.; Ranero, C. R.; von Huene, R.

    2012-12-01

    New 3D seismic reflection data reveal distinct evidence for active dewatering above a 12 km wide segment of the plate boundary fault within the Costa Rica subduction zone NW of the Osa Peninsula. In the spring of 2011 we acquired a 11 x 55 km 3D seismic reflection data set on the R/V Langseth using four 6,000 m streamers and two 3,300 in3 airgun arrays to examine the structure of the Costa Rica margin from the trench into the seismogenic zone. We can trace the plate-boundary interface from the trench across our entire survey to where the plate-boundary thrust lies > 10 km beneath the margin shelf. Approximately 20 km landward of the trench beneath the mid slope and at the updip edge of the seismogenic zone, a 12 km wide zone of the plate-boundary interface has a distinctly higher-amplitude seismic reflection than deeper or shallower segments of the fault. Directly above and potentially directly connected with this zone are high-amplitude, reversed-polarity fault-plane reflections that extend through the margin wedge and into overlying slope sediment cover. Within the slope cover, high-amplitude reversed-polarity reflections are common within the network of closely-spaced nearly vertical normal faults and several broadly spaced, more gently dipping thrust faults. These faults appear to be directing fluids vertically toward the seafloor, where numerous seafloor fluid flow indicators, such as pockmarks, mounds and ridges, and slope failure features, are distinct in multibeam and backscatter images. There are distinctly fewer seafloor and subsurface fluid flow indicators both updip and downdip of this zone. We believe these fluids come from a 12 km wide fluid-rich segment of the plate-boundary interface that is likely overpressured and has relatively low shear stress.

  9. Tectonic evolution of the northeastern part of the African continental margin, Egypt

    NASA Astrophysics Data System (ADS)

    Hussein, I. M.; Abd-Allah, A. M. A.

    2001-07-01

    The area between Manzalah Lake and the southern Galala Plateau in northeast Egypt constitutes the Galalas, Cairo-Suez, southern Nile Delta and northern Nile Delta structural provinces. The northern Galala Fault separates the Galalas Province from the Cairo-Suez Province and is considered to be the westward extension of the Themed Fault in central Sinai. The pre-Eocene rocks are affected by northeast to east-northeast-orientated folds and reverse faults, as well as east-west-orientated oblique-slip faults with dextral and normal components. Some folds and reverse faults are interpreted to have been formed by northwest to north-northwest-orientated compression related to the Syrian Arc movement, whereas the others by the secondary northwest orientated shortening, which accompanied dextral strike-slip component along the planes of the east-west-orientated faults. The east-west-orientated faults were initially formed during the Late Triassic/Early Jurassic extension related to the drifting of the African/Arabian Plate away from the Eurasian Plate as a result of opening of the Neotethyan Sea. The Neotethyan began to close due to convergence between the two plates, leading to the Syrian Arc deformation. This deformation mildly started in Late Cenomanian and followed by a more intensive phase in Conacian/Santonian. It mildly continued in the Maastrichtian, Early Palæocene and Late Palæocene/Early Eocene. The southward thinning of the pre-Eocene rocks controlled the intensity and style of deformation. Two deformational mechanisms are proposed for the Nile Delta hinge zone. The first is related to Late Oligocene—Early Miocene north-northwest-orientated Alpine compression. The second is related to northward gravitational sliding of the post-Oligocene shale and sandstone over Cretaceous-Eocene carbonates.

  10. Final Project Report: Imaging Fault Zones Using a Novel Elastic Reverse-Time Migration Imaging Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Chen, Ting; Tan, Sirui

    Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismicmore » data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.« less

  11. Heterogeneity in the Fault Damage Zone: a Field Study on the Borrego Fault, B.C., Mexico

    NASA Astrophysics Data System (ADS)

    Ostermeijer, G.; Mitchell, T. M.; Dorsey, M. T.; Browning, J.; Rockwell, T. K.; Aben, F. M.; Fletcher, J. M.; Brantut, N.

    2017-12-01

    The nature and distribution of damage around faults, and its impacts on fault zone properties has been a hot topic of research over the past decade. Understanding the mechanisms that control the formation of off fault damage can shed light on the processes during the seismic cycle, and the nature of fault zone development. Recent published work has identified three broad zones of damage around most faults based on the type, intensity, and extent of fracturing; Tip, Wall, and Linking damage. Although these zones are able to adequately characterise the general distribution of damage, little has been done to identify the nature of damage heterogeneity within those zones, often simplifying the distribution to fit log-normal linear decay trends. Here, we attempt to characterise the distribution of fractures that make up the wall damage around seismogenic faults. To do so, we investigate an extensive two dimensional fracture network exposed on a river cut platform along the Borrego Fault, BC, Mexico, 5m wide, and extending 20m from the fault core into the damage zone. High resolution fracture mapping of the outcrop, covering scales ranging three orders of magnitude (cm to m), has allowed for detailed observations of the 2D damage distribution within the fault damage zone. Damage profiles were obtained along several 1D transects perpendicular to the fault and micro-damage was examined from thin-sections at various locations around the outcrop for comparison. Analysis of the resulting fracture network indicates heterogeneities in damage intensity at decimetre scales resulting from a patchy distribution of high and low intensity corridors and clusters. Such patchiness may contribute to inconsistencies in damage zone widths defined along 1D transects and the observed variability of fracture densities around decay trends. How this distribution develops with fault maturity and the scaling of heterogeneities above and below the observed range will likely play a key role in understanding the evolution of fault damage, it's feedback into the seismic cycle, and impact on fluid migration in fault zones. The dataset from the Borrego Fault offers a unique opportunity to study the distribution of fault damage in-situ, and provide field observations towards improving fault zone models.

  12. Source parameters for the 1952 Kern County earthquake, California: A joint inversion of leveling and triangulation observations

    USGS Publications Warehouse

    Bawden, G.W.

    2001-01-01

    Coseismic leveling and triangulation observations are used to determine the faulting geometry and slip distribution of the July 21, 1952, Mw 7.3 Kem County earthquake on the White Wolf fault. A singular value decomposition inversion is used to assess the ability of the geodetic network to resolve slip along a multisegment fault and shows that the network is sufficient to resolve slip along the surface rupture to a depth of 10 km. Below 10 km, the network can only resolve dip slip near the fault ends. The preferred source model is a two-segment right-stepping fault with a strike of 51?? and a dip of 75?? SW. The epicentral patch has deep (6-27 km) leftlateral oblique slip, while the northeastern patch has shallow (1-12.5 km) reverse slip. There is nearly uniform reverse slip (epicentral, 1.6 m; northeast, 1.9 m), with 3.6 m of left-lateral strike slip limited to the epicentral patch. The seismic moment is M0= 9.2 ?? 0.5 ?? 1019 N m (Mw= 7.2). The signal-to-noise ratio of the leveling and triangulation data is reduced by 96% and 49%, respectively. The slip distribution from the preferred model matches regional geomorphic features and may provide a driving mechanism for regional shortening across the Comanche thrust and structural continuity with the Scodie seismic lineament to the northeast.

  13. Evolution of regional stress state based on faulting and folding near the pit river, Shasta county, California

    NASA Astrophysics Data System (ADS)

    Austin, Lauren Jean

    We investigate the evolution of the regional stress state near the Pit River, northern California, in order to understand the faulting style in a tectonic transition zone and to inform the hazard analysis of Fault 3432 near the Pit 3 Dam. By analyzing faults and folds preserved in and adjacent to a diatomite mine north of the Pit River, we have determined principal stress directions preserved during the past million years. We find that the stress state has evolved from predominantly normal to strike slip and most recently to reverse, which is consistent with regional structures such as the extensional Hat Creek Fault to the south and the compressional folding of Mushroom Rock to the north. South of the Pit River, we still observe normal and strike slip faults, suggesting that changes in stress state are moving from north to south through time.

  14. Regulatory focus affects predictions of the future.

    PubMed

    Guo, Tieyuan; Spina, Roy

    2015-02-01

    This research investigated how regulatory focus might influence trend-reversal predictions. We hypothesized that compared with promotion focus, prevention focus hinders sense of control, which in turn predicts more trend-reversal developments. Studies 1 and 3 revealed that participants expected trend-reversal developments to be more likely to occur when they focused on prevention than when they focused on promotion. Study 2 extended the findings by including a control condition, and revealed that participants expected trend-reversal developments to be more likely to occur in the prevention condition than in the promotion and control conditions. Studies 4 and 5 revealed that participants' chronic prevention focus predicted a low sense of control (Study 4), and that promotion focus predicted a high sense of control (Studies 4 and 5). Furthermore, participants with a high sense of control expected trend-reversal developments to be less likely to occur. Thus, the results provided converging evidence for the hypothesis. © 2014 by the Society for Personality and Social Psychology, Inc.

  15. Utilizing potential field data to support delineation of groundwater aquifers in the southern Red Sea coast, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Elawadi, Eslam; Mogren, Saad; Ibrahim, Elkhedr; Batayneh, Awni; Al-Bassam, Abdulaziz

    2012-06-01

    In this paper potential field data are interpreted to map the undulation of the basement surface, which represents the bottom of the water bearing zones, and to delineate the tectonic framework that controls the groundwater flow and accumulation in the southern Red Sea coastal area of Saudi Arabia. The interpretation reveals that the dominant structural trend is a NW (Red Sea) trend that resulted in a series of faulted tilted blocks. These tilted blocks are dissected by another cross-cut NE trend which shapes and forms a series of fault-bounded small basins. These basins and the bounded structural trends control and shape the flow direction of the groundwater in the study area, i.e. they act as groundwater conduits. Furthermore, the present results indicate that volcanic intrusions are present as subsurface flows, which hinder the groundwater exploration and drilling activities in most of the area; in some localities these volcanic flows crop out at the surface and cover the groundwater bearing formations. Furthermore, the gravity and magnetic data interpretation indicates the possible existence of a large structural basin occupying the southeastern side of the study area. This basin is bounded with NW and NE trending faults and is expected to be a good host for groundwater aquifers; thus it is a promising site for hydrogeological investigation.

  16. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2015-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  17. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.

    2014-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  18. Ground Surface Deformation in Unconsolidated Sediments Caused by Bedrock Fault Movements: Dip-Slip and Strike-Slip Fault Model Test and Field Survey

    NASA Astrophysics Data System (ADS)

    Ueta, K.; Tani, K.

    2001-12-01

    Sandbox experiments were performed to investigate ground surface deformation in unconsolidated sediments caused by dip-slip and strike-slip motion on bedrock faults. A 332.5 cm long, 200 cm high, and 40 cm wide sandbox was used in a dip-slip fault model test. In the strike-slip fault test, a 600 cm long, 250 cm wide, and 60 cm high sandbox and a 170 cm long, 25 cm wide, 15 cm high sandbox were used. Computerized X-ray tomography applied to the sandbox experiments made it possible to analyze the kinematic evolution, as well as the three-dimensional geometry, of the faults. The fault type, fault dip, fault displacement, thickness and density of sandpack and grain size of the sand were varied for different experiments. Field survey of active faults in Japan and California were also made to investigate the deformation of unconsolidated sediments overlying bedrock faults. A comparison of the experimental results with natural cases of active faults reveals the following: (1) In the case of dip-slip faulting, the shear bands are not shown as one linear plane but as en echelon pattern. Thicker and finer unconsolidated sediments produce more shear bands and clearer en echelon shear band patterns. (2) In the case of left-lateral strike-slip faulting, the deformation of the sand pack with increasing basement displacement is observed as follows. a) In three dimensions, the right-stepping shears that have a "cirque" / "shell" / "ship body" shape develop on both sides of the basement fault. The shears on one side of the basement fault join those on the other side, resulting in helicoidal shaped shear surfaces. Shears reach the surface of the sand near or above the basement fault and en echelon Riedel shears are observed at the surface of the sand. b) Right-stepping pressure ridges develop within the zone defined by the Riedel shears. c) Lower-angle shears generally branch off from the first Riedel shears. d) Right-stepping helicoidal shaped lower-angle shears offset Riedel shears and pressure ridges, and left-stepping and right-stepping pressure ridges are observed. d) With displacement concentrated on the central throughgoing fault zone, a "Zone of shear band" (ZSB) developed directly above the basement fault. The geometry of the ZSB shows a strong resemblance to linear ridge and trough geomorphology associated with active strike-slip faulting. (3) In the case of normal faulting, the location of the surface fault rupture is just above the bedrock faults, which have no relationship with the fault dip. On the other hand, the location of the surface rupture of the reverse fault has closely relationship with the fault dip. In the case of strike-slip faulting, the width of the deformation zone in dense sand is wider than that in loose sand. (4) The horizontal distance of surface rupture from the bedrock fault normalized by the height of sand mass (W/H) does not depend on the height of sand mass and grain size of sand. The values of W/H from the test agree well with those of earthquake faults. (5) The normalized base displacement required to propagate the shear rupture zone to the ground surface (D/H), in the case of normal faulting, is lower than those for reverse faulting and strike-slip faulting.

  19. 3D Constraints On Fault Architecture and Strain Distribution of the Newport-Inglewood Rose Canyon and San Onofre Trend Fault Systems

    NASA Astrophysics Data System (ADS)

    Holmes, J. J.; Driscoll, N. W.; Kent, G. M.

    2017-12-01

    The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) Fault is a dextral strike-slip system that is primarily offshore for approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC Fault Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC Fault is the San Onofre Trend (SOT) along the continental slope. Previous work concluded that this is part of a strike-slip system that eventually merges with the NIRC Fault. Others have interpreted this system as deformation associated with the Oceanside Blind Thrust Fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D Parallel Cable (P-Cable) seismic surveys of the NIRC and SOT faults as part of the Southern California Regional Fault Mapping project. Analysis of stratigraphy and 3D mapping of this new data has yielded a new kinematic fault model of the area that provides new insight on deformation caused by interactions in both compressional and extensional regimes. For the first time, we can reconstruct fault interaction and investigate how strain is distributed through time along a typical strike-slip margin using 3D constraints on fault architecture.

  20. Current Fault Management Trends in NASA's Planetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Fesq, Lorraine M.

    2009-01-01

    The key product of this three-day workshop is a NASA White Paper that documents lessons learned from previous missions, recommended best practices, and future opportunities for investments in the fault management domain. This paper summarizes the findings and recommendations that are captured in the White Paper.

  1. New insights into Kilauea's volcano dynamics brought by large-scale relative relocation of microearthquakes

    USGS Publications Warehouse

    Got, J.-L.; Okubo, P.

    2003-01-01

    We investigated the microseismicity recorded in an active volcano to infer information concerning the volcano structure and long-term dynamics, by using relative relocations and focal mechanisms of microearthquakes. There were 32,000 earthquakes of the Mauna Loa and Kilauea volcanoes recorded by more than eight stations of the Hawaiian Volcano Observatory seismic network between 1988 and 1999. We studied 17,000 of these events and relocated more than 70%, with an accuracy ranging from 10 to 500 m. About 75% of these relocated events are located in the vicinity of subhorizontal decollement planes, at a depth of 8-11 km. However, the striking features revealed by these relocation results are steep southeast dipping fault planes working as reverse faults, clearly located below the decollement plane and which intersect it. If this decollement plane coincides with the pre-Mauna Loa seafloor, as hypothesized by numerous authors, such reverse faults rupture the pre-Mauna Loa oceanic crust. The weight of the volcano and pressure in the magma storage system are possible causes of these ruptures, fully compatible with the local stress tensor computed by Gillard et al. [1996]. Reverse faults are suspected of producing scarps revealed by kilometer-long horizontal slip-perpendicular lineations along the decollement surface and therefore large-scale roughness, asperities, and normal stress variations. These are capable of generating stick-slip, large-magnitude earthquakes, the spatial microseismic pattern observed in the south flank of Kilauea volcano, and Hilina-type instabilities. Rupture intersecting the decollement surface, causing its large-scale roughness, may be an important parameter controlling the growth of Hawaiian volcanoes.

  2. Geologic setting, sedimentary architecture, and paragenesis of the Mesoproterozoic sediment-hosted Sheep Creek Cu-Co-Ag deposit, Helena embayment, Montana

    USGS Publications Warehouse

    Graham, Garth; Hitzman, Murray W.; Zieg, Jerry

    2012-01-01

    The northern margin of the Helena Embayment contains extensive syngenetic to diagenetic massive pyrite horizons that extend over 25 km along the Volcano Valley-Buttress fault zone and extend up to 8 km basinward (south) within the Mesoproterozoic Newland Formation. The Sheep Creek Cu-Co deposit occurs within a structural block along a bend in the fault system, where replacement-style chalcopyrite mineralization is spatially associated mostly with the two stratigraphically lowest massive pyrite zones. These mineralized pyritic horizons are intercalated with debris flows derived from synsedimentary movement along the Volcano Valley-Buttress fault zone. Cominco American Inc. delineated a geologic resource of 4.5 Mt at 2.5% Cu and 0.1% Co in the upper sulfide zone and 4 Mt at 4% Cu within the lower sulfide zone. More recently, Tintina Resources Inc. has delineated an inferred resource of 8.48 Mt at 2.96% Cu, 0.12% Co, and 16.4 g/t Ag in the upper sulfide zone. The more intact upper sulfide zone displays significant thickness variations along strike thought to represent formation in at least three separate subbasins. The largest accumulation of mineralized sulfide in the upper zone occurs as an N-S–trending body that thickens southward from the generally E trending Volcano Valley Fault and probably occupies a paleograben controlled by normal faults in the hanging wall of the Volcano Valley Fault. Early microcrystalline to framboidal pyrite was accompanied by abundant and local barite deposition in the upper and lower sulfide zones, respectively. The sulfide bodies underwent intense (lower sulfide zone) to localized (upper sulfide zone) recrystallization and overprinting by coarser-grained pyrite and minor marcasite that is intergrown with and replaces dolomite. Silicification and paragenetically late chalcopyrite, along with minor tennantite in the upper sulfide zone, replaces fine-grained pyrite, barite, and carbonate. The restriction of chalcopyrite to inferred synsedimentary E- and northerly trending faults and absence of definitive zonation with respect to the Laramide Volcano Valley Fault in the lower sulfide zone suggest a diagenetic age related to basin development for the Sheep Creek Cu-Co-Ag deposit.

  3. Pre-existing normal faults have limited control on the rift geometry of the northern North Sea

    NASA Astrophysics Data System (ADS)

    Claringbould, Johan S.; Bell, Rebecca E.; Jackson, Christopher A.-L.; Gawthorpe, Robert L.; Odinsen, Tore

    2017-10-01

    Many rifts develop in response to multiphase extension with numerical and physical models suggesting that reactivation of first-phase normal faults and rift-related variations in bulk crustal rheology control the evolution and final geometry of subsequent rifts. However, many natural multiphase rifts are deeply buried and thus poorly exposed in the field and poorly imaged in seismic reflection data, making it difficult to test these models. Here we integrate recent 3D seismic reflection and borehole data across the entire East Shetland Basin, northern North Sea, to constrain the long-term, regional development of this multiphase rift. We document the following key stages of basin development: (i) pre-Triassic to earliest Triassic development of multiple sub-basins controlled by widely distributed, NNW- to NE-trending, east- and west-dipping faults; (ii) Triassic activity on a single major, NE-trending, west-dipping fault located near the basins western margin, and formation of a large half-graben; and (iii) Jurassic development of a large, E-dipping, N- to NE-trending half-graben near the eastern margin of the basin, which was associated with rift narrowing and strain focusing in the Viking Graben. In contrast to previous studies, which argue for two discrete periods of rifting during the Permian-Triassic and Late Jurassic-Early Cretaceous, we find that rifting in the East Shetland Basin was protracted from pre-Triassic to Cretaceous. We find that, during the Jurassic, most pre-Jurassic normal faults were buried and in some cases cross-cut by newly formed faults, with only a few being reactivated. Previously developed faults thus had only a limited control on the evolution and geometry of the later rift. We instead argue that strain migration and rift narrowing was linked to the evolving thermal state of the lithosphere, an interpretation supporting the predictions of lithosphere-scale numerical models. Our study indicates that additional regional studies of natural rifts are required to test and refine the predictions of physical and numerical models, more specifically, our study suggests models not explicitly recognising or including thermal or rheological effects might over emphasise the role of discrete pre-existing rift structures such as normal faults.

  4. Geophysical Characterization of Groundwater-Fault Dynamics at San Andreas Oasis

    NASA Astrophysics Data System (ADS)

    Faherty, D.; Polet, J.; Osborn, S. G.

    2017-12-01

    The San Andreas Oasis has historically provided a reliable source of fresh water near the northeast margin of the Salton Sea, although since the recent completion of the Coachella Canal Lining Project and persistent drought in California, surface water at the site has begun to disappear. This may be an effect of the canal lining, however, the controls on groundwater are complicated by the presence of the Hidden Springs Fault (HSF), a northeast dipping normal fault that trends near the San Andreas Oasis. Its surface expression is apparent as a lineation against which all plant growth terminates, suggesting that it may form a partial barrier to subsurface groundwater flow. Numerous environmental studies have detailed the chemical evolution of waters resources at San Andreas Spring, although there remains a knowledge gap on the HSF and its relation to groundwater at the site. To better constrain flow paths and characterize groundwater-fault interactions, we have employed resistivity surveys near the surface trace of the HSF to generate profiles of lateral and depth-dependent variations in resistivity. The survey design is comprised of lines installed in Wenner Arrays, using an IRIS Syscal Kid, with 24 electrodes, at a maximum electrode spacing of 5 meters. In addition, we have gathered constraints on the geometry of the HSF using a combination of ground-based magnetic and gravity profiles, conducted with a GEM walking Proton Precession magnetometer and a Lacoste & Romberg gravimeter. Seventeen gravity measurements were acquired across the surface trace of the fault. Preliminary resistivity results depict a shallow conductor localized at the oasis and discontinuous across the HSF. Magnetic data reveal a large contrast in subsurface magnetic susceptibility that appears coincident with the surface trace and trend of the HSF, while gravity data suggests a shallow, relatively high density anomaly centered near the oasis. These data also hint at a second, previously undocumented fault bounding the opposite margin of the oasis and trending subparallel to the HSF. We thus speculate that the Hidden Springs Fault and this possible secondary fault act as partial barriers to lateral subsurface flow and form a structural wedge, localizing groundwater beneath the oasis.

  5. ERTS-1 imagery of eastern Africa: A first look at the geological structure of selected areas

    NASA Technical Reports Server (NTRS)

    Mohr, P. A. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Imagery of the African rift system resolves the major Cainozoic faults, zones of warping, and associated volcanism. It also clearly depicts the crystal grain of the Precambrian rocks where these are exposed. New structural features, or new properties of known features such as greater extent, continuity, and linearity are revealed by ERTS-1 imagery. This applies, for example, to the NE-SW fracture zones in Yemen, the Aswa mylonite zone at the northern end of the Western Rift, the Nandi fault of western Kenya, the linear faults of the Elgeyo escarpment in the Gregory Rift, and the hemibasins of warped Tertiary lavas on the Red Sea margin of Yemen, matching those of Ethiopian plateau-Afar margin. A tentative scheme is proposed, relating the effect on the pattern of Cainozoic faulting of the degree of obliquity to Precambrian structural trend. It is particularly noteworthy that, even where the Precambrian grain determines the rift faulting to be markedly oblique to the overall trend of the rift trough, for example, in central Lake Tanganyika, the width of the trough is not significantly increased. Some ground mapped lithological boundaries are obscure on ERTS-1 imagery.

  6. A 13 km Long Paleoseismological Trench in Western Germany

    NASA Astrophysics Data System (ADS)

    Grützner, C. H.; Reicherter, K.; Winandy, J.

    2012-04-01

    The expansion of an open pit lignite mine in this area makes it necessary to translocate one of Germany's most frequented, E-W trending highways for a length of 13 km during the next months and years. By this occasion, one of the largest faults of the Lower Rhine Embayment (LRE), the Rurrand Fault, was already cut in 2010. We applied geological mapping and surface-near geophysical techniques for investigating this possible candidate for the 1756 Düren earthquake (M>6; and considered as the strongest historical earthquake in Germany), and found clear hints for recent active faulting. The LRE in western Germany is one of the seismically most active areas in Central Europe. Earthquakes stronger than M6 have been documented by paleoseismological and archeoseismological investigations and written sources. Instrumental seismicity reached ML5.9 (Mw5.4; April 13th, 1992) in this densely populated area with alone nearby Cologne having more than one million inhabitants. Active faults trend NW-SE in a horst-graben system, parallel to the rivers Rhine and Rur. Recent studies reported that active faults in the study area are characterized by recurrence periods in the order of tens of ka. Those faults in western Germany are often not visible in the field due to relatively high erosion rates and therefore, the seismic hazard might be underestimated. The ongoing highway construction works will cut more (active) faults. We expect at least eight already mapped faults to be cut by the earth works, some of which capable of causing damaging earthquakes judging from their mere length. The construction work is a unique opportunity for paleoseismological investigations at already known, but yet unstudied faults. We hope to gather additional data for an improvement of seismic hazard estimations in Western Germany.

  7. Late Quaternary faulting in the Vallo di Diano basin (southern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Villani, F.; Pierdominici, S.; Cinti, F. R.

    2009-12-01

    The Vallo di Diano is the largest Quaternary extensional basin in the southern Apennines thrust-belt axis (Italy). This portion of the chain is highly seismic and is currently subject to NE-extension, which triggers large (M> 6) normal-faulting earthquakes along NW-trending faults. The eastern edge of the Vallo di Diano basin is bounded by an extensional fault system featuring three main NW-trending, SW-dipping, right-stepping, ~15-17 km long segments (from north to south: Polla, Atena Lucana-Sala Consilina and Padula faults). Holocene activity has been documented so far only for the Polla segment. We have therefore focused our geomorphological and paleoseismological study on the southern portion of the system, particularly along the ~ 4 km long Atena Lucana-Sala Consilina and Padula faults overlap zone. The latter is characterized by a complex system of coalescent alluvial fans, Middle Pleistocene to Holocene in age. Here we recognized a > 4 km long and 0.5-1.4 km wide set of scarps (ranging in height between 1 m and 2.5 m) affecting Late Pleistocene - Holocene alluvial fans. In the same area, two Late Pleistocene volcanoclastic layers at the top of an alluvial fan exposed in a quarry are affected by ~ 1 m normal displacements. Moreover, a trench excavated across a 2 m high scarp affecting a Holocene fan revealed warping of Late Holocene debris flow deposits, with a total vertical throw of about 0.3 m. We therefore infer the overlap zone of the Atena Lucana-Sala Consilina and Padula faults is a breached relay ramp, generated by hard-linkage of the two fault segments since Late Pleistocene. This ~ 32 km long fault system is active and is capable of generating Mw ≥6.5 earthquakes.

  8. Reconnaissance geology of the Jibal Matalli Quadrangle, sheet 27/40 D, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Ekren, E.B.

    1984-01-01

    Two northeast-trending buried right-lateral faults are inferred in the quadrangle; one in the southeast and one in the northwest. The one in the northwest probably offsets the comendite dike swarm about 3 km. This fault appears to be part of a broad right-lateral fault and flexure zone that juxtaposes the Hadn formation on the west against the Hulayfah group on the east.

  9. Seismic reflection evidence for a northeast-dipping Hayward fault near Fremont, California: Implications for seismic hazard

    USGS Publications Warehouse

    Williams, R.A.; Simpson, R.W.; Jachens, R.C.; Stephenson, W.J.; Odum, J.K.; Ponce, D.A.

    2005-01-01

    A 1.6-km-long seismic reflection profile across the creeping trace of the southern Hayward fault near Fremont, California, images the fault to a depth of 650 m. Reflector truncations define a fault dip of about 70 degrees east in the 100 to 650 m depth range that projects upward to the creeping surface trace, and is inconsistent with a nearly vertical fault in this vicinity as previously believed. This fault projects to the Mission seismicity trend located at 4-10 km depth about 2 km east of the surface trace and suggests that the southern end of the fault is as seismically active as the part north of San Leandro. The seismic hazard implication is that the Hayward fault may have a more direct connection at depth with the Calaveras fault, affecting estimates of potential event magnitudes that could occur on the combined fault surfaces, thus affecting hazard assessments for the south San Francisco Bay region.

  10. Inherited crustal features and tectonic blocks of the Transantarctic Mountains: An aeromagnetic perspective (Victoria Land, Antarctica)

    NASA Astrophysics Data System (ADS)

    Ferraccioli, F.; Bozzo, E.

    1999-11-01

    Aeromagnetic images covering a sector of the Transantarctic Mountains in Victoria Land as well as the adjacent Ross Sea are used to study possible relationships between tectonic blocks along the Cenozoic and Mesozoic West Antarctic rift shoulder and prerift features inherited mainly from the Paleozoic terranes involved in the Ross Orogen. The segmentation between the Prince Albert Mountains block and the Deep Freeze Range-Terra Nova Bay region is related to an inherited NW to NNW ice-covered boundary, which we name the "central Victoria Land boundary." It is interpreted to be the unexposed, southern continuation of the Ross age back arc Exiles thrust system recognized at the Pacific coast. The regional magnetic high to the west of the central Victoria Land boundary is attributed to Ross age calc-alkaline back arc intrusives forming the in-board Wilson "Terrane," thus shifting the previously interpreted Precambrian "shield" at least 100 km farther to the west. The high-frequency anomalies of the Prince Albert Mountains and beneath the Polar Plateau show that this region was extensively effected by Jurassic tholeiitic magmatism; NE to NNE trending magnetic lineations within this pattern could reflect Cretaceous and/or Cenozoic faulting. The western and eastern edges of the Deep Freeze Range block, which flanks the Mesozoic Rennick Graben, are marked by two NW magnetic lineaments following the Priestley and Campbell Faults. The Campbell Fault is interpreted to be the reactivated Wilson thrust fault zone and is the site of a major isotopic discontinuity in the basement. To the east of the Campbell Fault, much higher amplitude magnetic anomalies reveal mafic-ultramafic intrusives associated with the alkaline Meander Intrusive Group (Eocene-Miocene). These intrusives are likely genetically linked to the highly uplifted Southern Cross Mountains block. The NW-SE trends crossing the previously recognized ENE trending Polar 3 Anomaly offshore of the Southern Cross Mountains are probably linked to Cenozoic reactivation of the Paleozoic Wilson-Bowers suture zone as proposed from recent seismic interpretations. The ENE trend of the anomaly may also be structural, and if so, it could reflect an inherited fault zone of the cratonal margin.

  11. Kinematics of wrench and divergent-wrench deformation along a central part of the Border Ranges Fault System, Northern Chugach Mountains, Alaska

    NASA Astrophysics Data System (ADS)

    Little, Timothy A.

    1990-08-01

    The Border Ranges fault system (BRFS) bounds the inboard edge of the subduction-accretion complex of southern Alaska. In Eocene time a central segment of this fault system was reactivated as a zone of dextral wrench- and oblique-slip faulting having a cumulative strike-slip offset of at least several tens of kilometers, but probably less than 100 km. Early wrench folds are upright, trend at less than 45° to the strike of adjacent faults and developed with fold axes oriented subparallel to the axis of maximum incremental stretch λ1. These en echelon folds rotated and tightened with progressive deformation and then were overprinted by younger wrench folds that trend at about 60° to adjacent throughgoing faults. The latter folds are interpreted as forming during a late increment of distributed wrench deformation within the BRFS that included a component of extension (divergence) orthogonal to the mean strike of the fault system. A sharp releasing bend in exposures of a strike-slip fault originally at >4 km depth today coincides with a narrow pull-apart graben bounded by oblique-normal faults that dip toward the basin. Widening of this pull-apart graben by brittle faulting and dike intrusion accommodated less than 2 km of strike-slip and was a late-stage phenomenon, possibly occurring at supracrustal levels. Prior to formation of this graben during a period of predominantly ductile deformation at deeper structural levels, wrench-folded rocks on one side of the nonplanar fault were translated around the releasing bend without significant faulting or loss of coherence. Kinematically, the earlier deformation was accomplished by fault-bend folding and rotation of a relatively deformable block as it passed through a system of upright megakinks. Such a ductile mechanism of fault block translation around a strike-slip bend may be typical of intermediate levels of the crust beneath pull-apart grabens and may be transitional downward into heterogeneous laminar flow occuring along curved segments of ductile shear zones. Some degree of fault-bend folding of strike-slip fault blocks around releasing bends may be one reason why the amount of extension measured across natural pull-apart basins is commonly observed to be less than the amount of strike-slip along their master faults.

  12. Active Transtensional Tectonics Due to Differentially Rotating Upper Crustal Blocks East of the Eastern Himalayan syntaxis, Yunnan Province, China.

    NASA Astrophysics Data System (ADS)

    Studnikigizbert, C.; Eich, L.; King, R.; Burchfiel, B. C.; Chen, Z.; Chen, L.

    2004-12-01

    Seismological (Holt et. al. 1996), geodetic (King et. al. 1996, Chen et. al. 2000) and geological (Wang et. al. 1995, Wang and Burchfiel 2002) studies have shown that upper crustal material north and east of the eastern Himalayan syntaxis rotates clockwise about the syntaxis, with the Xianshuihe fault accommodating most of this motion. Within the zone of rotating material, however, deformation is not completely homogenous, and numerous differentially rotating small crustal fragments are recognised. We combine seismic (CSB and Harvard CMT catalogues), geodetic (CSB and MIT-Chengdu networks), remote sensing, compilation of existing regional maps and our own detailed field mapping to characterise the active tectonics of a clockwise rotating crustal block between Zhongdian and Dali. The northeastern boundary is well-defined by the northwest striking left-lateral Zhongdian and Daju faults. The eastern boundary, on the other hand, is made up of a 80 km wide zone characterised by north-south trending extensional basins linked by NNE trending left-lateral faults. Geological mapping suggests that strain is accommodated by three major transtensional fault systems: the Jianchuan-Lijiang, Heqing and Chenghai fault systems. Geodetic data indicates that this zone accommodates 10 +/- 1.4 mm/year of E-W extension, but strain may be (presently) preferentially partitioned along the easternmost (Chenghai) fault. Not all geodetic velocities are consistent with geological observations. In particular, rotation and concomitant transtension are somehow transferred across the Red River-Tongdian faults to Nan Tinghe fault with no apparent accommodating structures. Rotation and extension is surmised to be related to the northward propagation of the syntaxis.

  13. Proterozoic structure, cambrian rifting, and younger faulting as revealed by a regional seismic reflection network in the Southern Illinois Basin

    USGS Publications Warehouse

    Potter, C.J.; Drahovzal, James A.; Sargent, M.L.; McBride, J.H.

    1997-01-01

    Four high-quality seismic reflection profiles through the southern Illinois Basin, totaling 245 km in length, provide an excellent regional subsurface stratigraphic and structural framework for evaluation of seismic risk, hydrocarbon occurrence, and other regional geologic studies. These data provide extensive subsurface information on the geometry of the intersection of the Cambrian Reelfoot and Rough Creek rifts, on extensive Proterozoic reflection sequences, and on structures (including the Fluorspar Area Fault Complex and Hicks Dome) that underlie a transitional area between the well-defined New Madrid seismic zone (to the southwest) and a more diffuse area of seismicity in the southern Illinois Basin. Our principal interpretations from these data are listed here in order of geologic age, from oldest to youngest: 1. Prominent Proterozoic layering, possibly equivalent to Proterozoic (???1 Ga) Middle Run Formation clastic strata and underlying (1.3-1.5 Ga) volcanic rocks of the East Continent rift basin, has been strongly deformed, probably as part of the Grenville foreland fold and thrust belt. 2. A well-defined angular unconformity is seen in many places between Proterozoic and Cambrian strata; a post-Grenville Proterozoic sequence is also apparent locally, directly beneath the base of the Cambrian. 3. We infer a major reversal in Cambrian rift polarity (accommodation zone) in the Rough Creek Graben in western Kentucky. 4. Seismic facies analysis suggests the presence of basin-floor fan complexes at and near the base of the Cambrian interval and within parts of a Proterozoic post-Grenville sequence in several parts of the Rough Creek Graben. 5. There is an abrupt pinchout of the Mount Simon Sandstone against crystalline basement beneath the Dale Dome (near the Texaco no. 1 Cuppy well, Hamilton County) in southeastern Illinois, and a more gradual Mount Simon pinchout to the southeast. 6. Where crossed by the seismic reflection line in southeast Illinois, some faults in the Wabash Valley Fault System produce discrete offset in Ordovician and younger strata only; one of the Wabash Valley faults cuts the top of the Precambrian on this seismic profile. 7. The data show clear evidence of late Paleozoic reverse faulting along both boundaries of the Rough Creek Graben in western Kentucky, although significant unreactivated Cambrian rift-bounding faults are also preserved. 8. Chaotic reflection patterns in the lower and middle Paleozoic strata near Hicks Dome, southern Illinois, are related to a combination of intrusive brecciation, intense faulting, and alteration of carbonate strata by acidic mineralizing fluids, all of which occurred in the Permian. 9. Late Paleozoic(?) reverse faulting is interpreted on one flank of the Rock Creek Graben, southern Illinois. 10. Permian and Mesozoic(?) extensional faulting is clearly imaged in the Fluorspar Area Fault Complex; neotectonic studies suggest that these structures were reactivated in the Quaternary.

  14. Study geomorphology, past and present, linear trench, tectonics relationship between Pyrenees and Alps

    NASA Technical Reports Server (NTRS)

    Guillemot, J. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. ERTS-1 images obviously show up some large linear features trending N 80 E or N 30 E common to both Alps and Pyrenees. One of them, the Ligurian Fault, had been previously forecast by Laubscher in an interpretation of the Alps by the plate tectonic theory, but it extends westward farthest from the Alps, cutting the Pyrenees axis. These lineaments have been interpreted as reflections of deep seated wrench faults in the surficial part of the sedimentary series. A large set of such lineaments is perceptible in western Europe, such as the Guadalquivir Fault in southern Spain, Ligurian Fault, Insubrian Fault, Northern-Jura Fault, Metz Fault. Perhaps these may be interpreted as transform faults of the mid-Atlantic ridge or of a paleo-rift seated in the Rhine-Rhone graben.

  15. Geophysical reassessment of the role of ancient crustal structures on the development of western Laurentia and Selwyn Basin, Yukon and Northwest Territories, Canada.

    NASA Astrophysics Data System (ADS)

    Hayward, N.

    2017-12-01

    The structure of the western margin of the North American craton (Laurentia) in the northern Canadian Cordillera and its role in the development of the Neoproterozoic-Early Paleozoic Selwyn Basin are reassessed through 3D inversion of a new compilation of aeromagnetic data and archival Bouguer gravity data. The region's tectonic history is obscured by partial burial beneath Selwyn Basin, and a tectonic overprint that includes terrane accretion, regional plutonism, and strike-slip faults with displacements of 100s and perhaps 1000s of kilometers. Despite the implied complexity, preliminary geological and geophysical based interpretations of the structure of the western margin of Laurentia, have been adopted with few refinements in over two decades. Regionally continuous, NE-trending, crustal lineaments, including the Fort Norman line and Leith Ridge fault, were interpreted as having had long-standing influence on the craton development, its western margin, and overlapping sedimentary basin. New results reveal limited evidence for the regional continuity of the NE-trending lineaments. Instead, models suggest that the structure of the Laurentian margin is characterised by segmentation on numerous shorter structures of varied strike. The western margin of the craton and its structures are bound by a NW-trending structure that connects with the Richardson Trough to the north and may have been active during rifting of the Misty Creek embayment. This boundary also marks the easternmost limit of both granitic intrusions in Selwyn Basin, which gravity models suggest are of greater extent than reflected on geological maps, and SEDEX occurrences. An ENE-trending structure beneath northern Selwyn Basin is interpreted as marking the southern edge of a previously unidentified cratonic promontory, akin to the Liard line that marks a transfer fault that bounds the promontory of the Macdonald Platform, south of Selwyn Basin. The ENE-trending structure is traced from the Tintina fault in the west to near to the Great Bear magmatic zone. The structure's regional continuity also limits the interpretation of a post-Cretaceous structure, inboard of the Tintina fault that could be responsible for 1000's km of dextral strike-slip ascribed to the Baja-BC terrane translation model.

  16. Complex faulting associated with the 22 December 2003 Mw 6.5 San Simeon California, earthquake, aftershocks and postseismic surface deformation

    USGS Publications Warehouse

    McLaren, Marcia K.; Hardebeck, Jeanne L.; Van Der Elst, Nicholas; Unruh, Jeffrey R.; Bawden, Gerald W.; Blair, James Luke

    2008-01-01

    We use data from two seismic networks and satellite interferometric synthetic aperture radar (InSAR) imagery to characterize the 22 December 2003 Mw 6.5 San Simeon earthquake sequence. Absolute locations for the mainshock and nearly 10,000 aftershocks were determined using a new three-dimensional (3D) seismic velocity model; relative locations were obtained using double difference. The mainshock location found using the 3D velocity model is 35.704° N, 121.096° W at a depth of 9.7±0.7 km. The aftershocks concentrate at the northwest and southeast parts of the aftershock zone, between the mapped traces of the Oceanic and Nacimiento fault zones. The northwest end of the mainshock rupture, as defined by the aftershocks, projects from the mainshock hypocenter to the surface a few kilometers west of the mapped trace of the Oceanic fault, near the Santa Lucia Range front and the >5 mm postseismic InSAR imagery contour. The Oceanic fault in this area, as mapped by Hall (1991), is therefore probably a second-order synthetic thrust or reverse fault that splays upward from the main seismogenic fault at depth. The southeast end of the rupture projects closer to the mapped Oceanic fault trace, suggesting much of the slip was along this fault, or at a minimum is accommodating much of the postseismic deformation. InSAR imagery shows ∼72 mm of postseismic uplift in the vicinity of maximum coseismic slip in the central section of the rupture, and ∼48 and ∼45 mm at the northwest and southeast end of the aftershock zone, respectively. From these observations, we model a ∼30-km-long northwest-trending northeast-dipping mainshock rupture surface—called the mainthrust—which is likely the Oceanic fault at depth, a ∼10-km-long southwest-dipping backthrust parallel to the mainthrust near the hypocenter, several smaller southwest-dipping structures in the southeast, and perhaps additional northeast-dipping or subvertical structures southeast of the mainshock plane. Discontinuous backthrust features opposite the mainthrust in the southeast part of the aftershock zone may offset the relic Nacimiento fault zone at depth. The InSAR data image surface deformation associated with both aseismic slip and aftershock production on the mainthrust and the backthrusts at the northwest and southeast ends of the aftershock zone. The well-defined mainthrust at the latitude of the epicenter and antithetic backthrust illuminated by the aftershock zone indicate uplift of the Santa Lucia Range as a popup block; aftershocks in the southeast part of the zone also indicate a popup block, but it is less well defined. The absence of backthrust features in the central part of the zone suggests range-front uplift by fault-propagation folding, or backthrusts in the central part were not activated during the mainshock.

  17. Seismicity rate changes along the central California coast due to stress changes from the 2003 M 6.5 San Simeon and 2004 M 6.0 Parkfield earthquakes

    USGS Publications Warehouse

    Aron, A.; Hardebeck, J.L.

    2009-01-01

    We investigated the relationship between seismicity rate changes and modeled Coulomb static stress changes from the 2003 M 6.5 San Simeon and the 2004 M 6.0 Parkfield earthquakes in central California. Coulomb stress modeling indicates that the San Simeon mainshock loaded parts of the Rinconada, Hosgri, and San Andreas strike-slip faults, along with the reverse faults of the southern Los Osos domain. All of these loaded faults, except for the San Andreas, experienced a seismicity rate increase at the time of the San Simeon mainshock. The Parkfield earthquake occurred 9 months later on the loaded portion of the San Andreas fault. The Parkfield earthquake unloaded the Hosgri fault and the reverse faults of the southern Los Osos domain, which both experienced seismicity rate decreases at the time of the Parkfield event, although the decreases may be related to the decay of San Simeon-triggered seismicity. Coulomb stress unloading from the Parkfield earthquake appears to have altered the aftershock decay rate of the southern cluster of San Simeon after-shocks, which is deficient compared to the expected number of aftershocks from the Omori decay parameters based on the pre-Parkfield aftershocks. Dynamic stress changes cannot explain the deficiency of aftershocks, providing evidence that static stress changes affect earthquake occurrence. However, a burst of seismicity following the Parkfield earthquake at Ragged Point, where the static stress was decreased, provides evidence for dynamic stress triggering. It therefore appears that both Coulomb static stress changes and dynamic stress changes affect the seismicity rate.

  18. Episodic Rifting Events Within the Tjörnes Fracture Zone, an Onshore-Offshore Ridge-Transform in N-Iceland

    NASA Astrophysics Data System (ADS)

    Brandsdottir, B.; Magnusdottir, S.; Karson, J. A.; Detrick, R. S.; Driscoll, N. W.

    2015-12-01

    The multi-branched plate boundary across Iceland is made up of divergent and oblique rifts, and transform zones, characterized by entwined extensional and transform tectonics. The Tjörnes Fracture Zone (TFZ), located on the coast and offshore Northern Iceland, is a complex transform linking the northern rift zone (NVZ) on land with the Kolbeinsey Ridge offshore. Extension across TFZ is partitioned across three N-S trending rift basins; Eyjafjarðaráll, Skjálfandadjúp (SB) and Öxarfjörður and three WNW-NW oriented seismic lineaments; the Grímsey Oblique Rift, Húsavík-Flatey Faults (HFFs) and Dalvík Lineament. We compile the tectonic framework of the TFZ ridge-transform from aerial photos, satellite images, multibeam bathymetry and high-resolution seismic reflection data (Chirp). The rift basins are made up of normal faults with vertical displacements of up to 50-60 m, and post-glacial sediments of variable thickness. The SB comprises N5°W obliquely trending, eastward dipping normal faults as well as N10°E striking, westward dipping faults oriented roughly perpendicular to the N104°E spreading direction, indicative of early stages of rifting. Correlation of Chirp reflection data and tephrachronology from a sediment core within SB reveal major rifting episodes between 10-12.1 kyrs BP activating the whole basin, followed by smaller-scale fault movements throughout Holocene. Onshore faults have the same orientations as those mapped offshore and provide a basis for the interpretation of the kinematics of the faults throughout the region. These include transform parallel right-lateral, strike-slip faults separating domains dominated by spreading parallel left-lateral bookshelf faults. Shearing is most prominent along the HFFs, a system of right-lateral strike-slip faults with vertical displacement up to 15 m. Vertical fault movements reflect increased tectonic activity during early postglacial time coinciding with isostatic rebound enhancing volcanism within Iceland.

  19. A seismic refraction and reflection study across the central San Jacinto Basin, Southern California

    USGS Publications Warehouse

    Lee, T.-C.; Biehler, S.; Park, S.K.; Stephenson, W.J.

    1996-01-01

    The San Jacinto Basin is a northwest-trending, pullapart basin in the San Jacinto fault zone of the San Andreas fault system in southern California. About 24 km long and 2 to 4 km wide, the basin sits on a graben bounded by two strands of the San Jacinto fault zone: the Claremont Fault on the northeast and the Casa Loma Fault on the southwest. We present a case study of shallow structure (less than 1 km) in the central basin. A 2.75-km refraction line running from the northeast to southwest across the regional structural trend reveals a groundwater barrier (Offset I). Another line, bent southward and continued for 1.65-km, shows a crystalline basement offset (Offset III) near an inferred trace of the Casa Loma Fault. Although a basement refractor was not observed along the 2.75-km line, a mismatch between the estimate of its minimum depth and the basement depth determined for the 1.65-km line suggests that an offset in the basement (greater than 260 m) exists around the junction of the two refraction lines (Offset II). By revealing more faults and subtle sedimentary structures, the reflection stack sections confirm the two refraction offsets as faults. Offsets I and III each separate sediments of contrasting structures and, in addition. Offset III disrupts an unconformity. However, the sense and amount of the offset across Offset III contradict what may be expected across the Casa Loma Fault, which has its basinward basement down-thrown to about 2.5 km in the better defined southeastern part of the graben. The Casa Loma Fault trace has been mislinked in the existing geological maps and the trace should be remapped to Offset II where the reflector disruptions spread over a 400-m wide zone. Our Offset III is an unnamed, concealed fault.

  20. Source Rupture Models and Tsunami Simulations of Destructive October 28, 2012 Queen Charlotte Islands, British Columbia (Mw: 7.8) and September 16, 2015 Illapel, Chile (Mw: 8.3) Earthquakes

    NASA Astrophysics Data System (ADS)

    Taymaz, Tuncay; Yolsal-Çevikbilen, Seda; Ulutaş, Ergin

    2016-04-01

    The finite-fault source rupture models and numerical simulations of tsunami waves generated by 28 October 2012 Queen Charlotte Islands (Mw: 7.8), and 16 September 2015 Illapel-Chile (Mw: 8.3) earthquakes are presented. These subduction zone earthquakes have reverse faulting mechanisms with small amount of strike-slip components which clearly reflect the characteristics of convergence zones. The finite-fault slip models of the 2012 Queen Charlotte and 2015 Chile earthquakes are estimated from a back-projection method that uses teleseismic P- waveforms to integrate the direct P-phase with reflected phases from structural discontinuities near the source. Non-uniform rupture models of the fault plane, which are obtained from the finite fault modeling, are used in order to describe the vertical displacement on seabed. In general, the vertical displacement of water surface was considered to be the same as ocean bottom displacement, and it is assumed to be responsible for the initial water surface deformation gives rise to occurrence of tsunami waves. In this study, it was calculated by using the elastic dislocation algorithm. The results of numerical tsunami simulations are compared with tide gauges and Deep-ocean Assessment and Reporting of Tsunami (DART) buoy records. De-tiding, de-trending, low-pass and high-pass filters were applied to detect tsunami waves in deep ocean sensors and tide gauge records. As an example, the observed records and results of simulations showed that the 2012 Queen Charlotte Islands earthquake generated about 1 meter tsunami-waves in Maui and Hilo (Hawaii), 5 hours and 30 minutes after the earthquake. Furthermore, the calculated amplitudes and time series of the tsunami waves of the recent 2015 Illapel (Chile) earthquake are exhibiting good agreement with the records of tide and DART gauges except at stations Valparaiso and Pichidangui (Chile). This project is supported by The Scientific and Technological Research Council of Turkey (TUBITAK Project No: CAYDAG-114Y066).

  1. Detection and analysis of morphotectonic features utilizing satellite remote sensing and GIS: An example in SW Jordan

    NASA Astrophysics Data System (ADS)

    Radaideh, Omar M. A.; Grasemann, Bernhard; Melichar, Rostislav; Mosar, Jon

    2016-12-01

    This study investigates the dominant orientations of morphological features and the relationship between these trends and the spatial orientation of tectonic structures in SW Jordan. Landsat 8 and hill-shaded images, constructed from 30 m-resolution ASTER-GDEM data, were used for automatically extracting and mapping geological lineaments. The ASTER-GDEM was further utilized to automatically identify and extract drainage network. Morphological features were analyzed by means of azimuth frequency and length density distributions. Tectonic controls on the land surface were evaluated using longitudinal profiles of many westerly flowing streams. The profiles were taken directly across the northerly trending faults within a strong topographic transition between the low-gradient uplands and the deeply incised mountain front on the east side of the Dead Sea Fault Zone. Streams of the area are widely divergent, and show numerous anomalies along their profiles when they transect faults and lineaments. Five types of drainage patterns were identified: dendritic, parallel, rectangular, trellis, and modified dendritic/trellis. Interpretation and analysis of the lineaments indicate the presence of four main lineament populations that trend E-W, N-S, NE-SW, and NW-SE. Azimuthal distribution analysis of both the measured structures and drainage channels shows similar trends, except for very few differences in the prevailing directions. The similarity in orientation of lineaments, drainage system, and subsurface structural trends highlights the degree of control exerted by underlying structure on the surface geomorphological features. Faults and lineaments serve as a preferential conduit for surface running waters. The extracted lineaments were divided into five populations based on the main age of host rocks outcropping in the study area to obtain information about the temporal evolution of the lineament trends through geologic time. A general consistency in lineament trends over the different lithological units was observed, most probably because repeated reactivation of tectonism along preexisting deep structural discontinuities which are apparently crustal weakness zones. The reactivation along such inherited discontinuities under the present-day stress field is the most probable explanation of the complicated pattern and style of present-day landscape features in SW Jordan.

  2. Small-scale structural heterogeneity and well-communication problems in the Granny Creek oil field of West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, L.; Wilson, T.H.; Shumaker, R.C.

    1993-08-01

    Seismic interpretations of the Granny Creek oil field in West Virginia suggest the presence of numerous small-scale fracture zones and faults. Seismic disruptions interpreted as faults and/or fracture zones are represented by abrupt reflection offsets, local amplitude reductions, and waveform changes. These features are enhanced through reprocessing, and the majority of the improvements to the data result from the surface consistent application of zero-phase deconvolution. Reprocessing yields a 20% improvement of resolution. Seismic interpretations of these features as small faults and fracture zones are supported by nearby offset vertical seismic profiles and by their proximity to wells between which directmore » communication occurs during waterflooding. Four sets of faults are interpreted based on subsurface and seismic data. Direct interwell communication is interpreted to be associated only with a northeast-trending set of faults, which are believed to have detached structural origins. Subsequent reactivation of deeper basement faults may have opened fractures along this trend. These faults have a limited effect on primary production, but cause many well-communication problems and reduce secondary production. Seismic detection of these zones is important to the economic and effective design of secondary recovery operations, because direct well communication often results in significant reduction of sweep efficiency during waterflooding. Prior information about the location of these zones would allow secondary recovery operations to avoid potential problem areas and increase oil recovery.« less

  3. GPS measurements of deformation associated with the 1987 Superstition Hills earthquake: Evidence for conjugate faulting

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert; Neugebauer, Helen; Strange, William

    1991-01-01

    Large station displacements observed from Imperial Valley Global Positioning System (GPS) campaigns are attributed to the November 24, 1987 Superstition Hills earthquake sequence. Thirty sites from a 42 station GPS network established in 1986 were reoccupied during 1988 and/or 1990. Displacements at three sites within 3 kilometers of the surface rupture approach 0.5 m. Eight additional stations within 20 km of the seismic zone are displaced at least 10 cm. This is the first occurrence of a large earthquake (M(sub S) 6.6) within a preexisting GPS network. Best-fitting uniform slip models of rectangular dislocations in an elastic half-space indicate 130 + or - 8 cm right-lateral displacement along the northwest-trending Superstition Hills fault and 30 + or - 10 cm left-lateral displacement along the conjugate northeast-trending Elmore Ranch fault. The geodetic moments are 9.4 x 10(exp 25) dyne-cm and 2.3 x 10(exp 25) dyne-cm for the Superstition Hills and Elmore Ranch faults, respectively, consistent with teleseismic source parameters. The data also suggest the post seismic slip along the Superstition Hills fault is concentrated at shallow depths. Distributed slip solutions using Singular Value Decomposition indicate near uniform displacement along the Elmore Ranch fault and concentrated slip to the northwest and southeast along the Superstition Hills fault. A significant component of non-seismic displacement is observed across the Imperial Valley, which is attributed in part to interseismic plate-boundary deformation.

  4. Three-Dimensional Analysis of dike/fault interaction at Mono Basin (California) using the Finite Element Method

    NASA Astrophysics Data System (ADS)

    La Marra, D.; Battaglia, M.

    2013-12-01

    Mono Basin is a north-trending graben that extends from the northern edge of Long Valley caldera towards the Bodie Hills and is bounded by the Cowtrack Mountains on the east and the Sierra Nevada on the west. The Mono-Inyo Craters volcanic chain forms a north-trending zone of volcanic vents extending from the west moat of the Long Valley caldera to Mono Lake. The Hartley Springs fault transects the southern Mono Craters-Inyo Domes area between the western part of the Long Valley caldera and June Lake. Stratigraphic data suggest that a series of strong earthquakes occurred during the North Mono-Inyo eruption sequence of ~1350 A.D. The spatial and temporal proximity between Hartley Springs Fault motion and the North Mono-Inyo eruption sequence suggests a possible relation between seismic events and eruptions. We investigate the interactions between slip along the Hartley Springs fault and dike intrusion beneath the Mono-Inyo craters using a three-dimensional finite element model of the Mono Basin. We employ a realistic representation of the Basin that includes topography, vertical and lateral heterogeneities of the crust, contact relations between fault planes, and a physical model of the pressure required to propagate the dike. We estimate (a) the distribution of Coulomb stress changes to study the influence of dike intrusion on Hartley Springs fault, and (b) the local stress and volumetric dilatation changes to understand how fault slip may influence the propagation of a dike towards the surface.

  5. Wrinkle ridges, reverse faulting, and the depth penetration of lithospheric stress in lunae planum, Mars

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.

    1993-01-01

    Tectonic features on a planetary surface are commonly used as constraints on models to determine the state of stress at the time the features formed. Quantitative global stress models applied to understand the formation of the Tharsis province on Mars constrained by observed tectonics have calculated stresses at the surface of a thin elastic shell and have neglected the role of vertical structure in influencing the predicted pattern of surface deformation. Wrinkle ridges in the Lunae Planum region of Mars form a conentric pattern of regularly spaced features in the eastern and southeastern part of Tharsis; they are formed due to compressional stresses related to the response of the Martian lithosphere to the Tharsis bulge. As observed in the exposures of valley walls in areas such as the Kasei Valles, the surface plains unit is underlain by an unconsolidated impact-generated megaregolith that grades with depth into structurally competent lithospheric basement. The ridges have alternatively been hypothesized to reflect deformation restricted to the surface plains unit ('thin skinned deformation') and deformation that includes the surface unit, megaregolith and basement lithosphere ('thick skinned deformation'). We have adopted a finite element approach to quantify the nature of deformation associated with the development of wrinkle ridges in a vertically stratified elastic lithosphere. We used the program TECTON, which contains a slippery node capability that allowed us to explicitly take into account the presence of reverse faults believed to be associated with the ridges. In this study we focused on the strain field in the vicinity of a single ridge when slip occurs along the fault. We considered two initial model geometries. In the first, the reverse fault was assumed to be in the surface plains unit, and in the second the initial fault was located in lithospheric basement, immediately beneath the weak megaregolith. We are interested in the conditions underwhich strain in the surface layer and basement either penetrates or fails to penetrate through the megaregolith. We thus address the conditions required for an initial basement fault to propagate through the megaregolith to the surface, as well as the effect of the megareolith on the strain tensor in the vicinity of a fault that nucleates in the surface plains unit.

  6. Wrinkle ridges, reverse faulting, and the depth penetration of lithospheric stress in lunae planum, Mars

    NASA Astrophysics Data System (ADS)

    Zuber, M. T.

    1993-03-01

    Tectonic features on a planetary surface are commonly used as constraints on models to determine the state of stress at the time the features formed. Quantitative global stress models applied to understand the formation of the Tharsis province on Mars constrained by observed tectonics have calculated stresses at the surface of a thin elastic shell and have neglected the role of vertical structure in influencing the predicted pattern of surface deformation. Wrinkle ridges in the Lunae Planum region of Mars form a conentric pattern of regularly spaced features in the eastern and southeastern part of Tharsis; they are formed due to compressional stresses related to the response of the Martian lithosphere to the Tharsis bulge. As observed in the exposures of valley walls in areas such as the Kasei Valles, the surface plains unit is underlain by an unconsolidated impact-generated megaregolith that grades with depth into structurally competent lithospheric basement. The ridges have alternatively been hypothesized to reflect deformation restricted to the surface plains unit ('thin skinned deformation') and deformation that includes the surface unit, megaregolith and basement lithosphere ('thick skinned deformation'). We have adopted a finite element approach to quantify the nature of deformation associated with the development of wrinkle ridges in a vertically stratified elastic lithosphere. We used the program TECTON, which contains a slippery node capability that allowed us to explicitly take into account the presence of reverse faults believed to be associated with the ridges. In this study we focused on the strain field in the vicinity of a single ridge when slip occurs along the fault. We considered two initial model geometries. In the first, the reverse fault was assumed to be in the surface plains unit, and in the second the initial fault was located in lithospheric basement, immediately beneath the weak megaregolith. We are interested in the conditions under which strain in the surface layer and basement either penetrates or fails to penetrate through the megaregolith. We thus address the conditions required for an initial basement fault to propagate through the megaregolith to the surface, as well as the effect of the megareolith on the strain tensor in the vicinity of a fault that nucleates in the surface plains unit.

  7. Links Between Earthquake Characteristics and Subducting Plate Heterogeneity in the 2016 Pedernales Ecuador Earthquake Rupture Zone

    NASA Astrophysics Data System (ADS)

    Bai, L.; Mori, J. J.

    2016-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  8. Structure contour map of the greater Green River basin, Wyoming, Colorado, and Utah

    USGS Publications Warehouse

    Lickus, M.R.; Law, B.E.

    1988-01-01

    The Greater Green River basin of Wyoming, Colorado, and Utah contains five basins and associated major uplifts (fig. 1). Published structure maps of the region have commonly used the top of the Lower Cretaceous Dakota Sandstone as a structural datum (Petroleum Ownership Map Company (POMCO), 1984; Rocky Mountain Association of Geologists, 1972). However, because relatively few wells in this area penetrate the Dakota, the Dakota structural datum has to be constructed by projecting down from shallower wells. Extrapolating in this manner may produce errors in the map. The primary purpose of this report is to present a more reliable structure contour map of the Greater Green River basin based on datums that are penetrated by many wells. The final map shows the large- to small-scale structures present in the Greater Green River basin. The availability of subsurface control and the map scale determined whether or not a structural feature was included on the map. In general, large structures such as the Moxa arch, Pinedale anticline, and other large folds were placed on the map based solely on the structure contours. In comparison, smaller folds and some faults were placed on the map based on structure contours and other reports (Bader 1987; Bradley 1961; Love and Christiansen, 1985; McDonald, 1975; Roehler, 1979; Wyoming Geological Association Oil and Gas Symposium Committee, 1979). State geologic maps and other reports were used to position basin margin faults (Bryant, 1985; Gries, 1983a, b; Hansen 1986; Hintze, 1980; Love and Christiansen, 1985; Tweto, 1979, 1983). In addition, an interpreted east-west-trending regional seismic line by Garing and Tainter (1985), which shows the basin configuration in cross-section, was helpful in locating buried faults, such as the high-angle reverse or thrust fault along the west flank of the Rock Springs uplift.

  9. The Study of Fault Lineament Pattern of the Lamongan Volcanic Field Using Gravity Data

    NASA Astrophysics Data System (ADS)

    Aziz, K. N.; Hartantyo, E.; Niasari, S. W.

    2018-04-01

    Lamongan Volcano located in Tiris, East Java, possesses geothermal potential energy. The geothermal potential was indicated by the presence of geothermal manifestations such as hot springs. We usedsecondary gravity data from GGMplus. The result of gravity anomaly map shows that there is the lowest gravity anomaly in the center of the study area coinciding with the hot spring location. Gravity data were analyzed using SVD method to identify fault structures. It controls the geothermal fluid pathways. The result of this research shows thatthe type of fault in hot springsisanormal fault with direction NW-SE. The fault lineament pattern along maaris NW-SE.Maar indicates anormal fault. As the result we know that gravity data from GGMplus which analyzed with SVD can be used to determine the type and trend of fault.

  10. Spatio-temporal autocorrelation of Neogene-Quaternary volcanic and clastic sedimentary rocks in SW Montana and SE Idaho: Relationship to Cenozoic tectonic and thermally induced extensional events

    NASA Astrophysics Data System (ADS)

    Davarpanah, A.; Babaie, H. A.; Dai, D.

    2013-12-01

    Two systems of full and half grabens have been forming since the mid-Tertiary through tectonic and thermally induced extensional events in SW Montana and neighboring SE Idaho. The earlier mid-Tertiary Basin and Range (BR) tectonic event formed the NW- and NE-striking mountains around the Snake River Plain (SRP) in Idaho and SW Montana, respectively. Since the mid-Tertiary, partially synchronous with the BR event, diachronous bulging and subsidence due to the thermally induced stress field of the Yellowstone hotspot (YHS) has produced the second system of variably-oriented grabens through faulting across the older BR fault blocks. The track of the migration of the YHS is defined by the presence of six prominent volcanic calderas along the SRP which become younger toward the present location of the YHS. Graben basins bounded by both the BR faults and thermally induced cross-faults (CF) systems are now filled with Tertiary-Quaternary clastic sedimentary and volcanic-volcaniclastic rocks. Neogene mafic and felsic lava which erupted along the SRP and clastic sedimentary units (Sixmile Creek Fm., Ts) deposited in both types of graben basins were classified based on their lithology and age, and mapped in ArcGIS 10 as polygon using a combination of MBMG and USGS databases and geological maps at scales of 1:250.000, 1:100,000, and 1:48,000. The spatio-temporal distributions of the lava polygons were then analyzed applying the Global and Local Moran`s I methods to detect any possible spatial or temporal autocorrelation relative to the track of the YHS. The results reveal the spatial autocorrelation of the lithology and age of the Neogene lavas, and suggest a spatio-temporal sequence of eruption of extrusive rocks between Miocene and late Pleistocene along the SRP. The sequence of eruptions, which progressively becomes younger toward the Yellowstone National Park, may track the migration of the YSH. The sub-parallelism of the trend of the SRP with the long axis of the standard deviation ellipses (SDEs), that give the trend of the dispersion of the centroids of lavas erupted at different times, and the spatio-temporally ordered overlap of older lavas by younger ones which were progressively erupted to the northeast of the older lavas, indicate the spatio-temporal migration of the centers of eruption along the SRP. Prominent graben basins which formed and filled during and after the BR normal faulting event were identified from those that formed during and after the cross faulting event based on cross cutting relationships and the trend of their long dimension (determined by applying the Dissolve and Minimum Bounding Geometry tools in ArcGIS 10) relative to the linear directional mean (LDM) of the BR and CF sets. The parallelism of the mean trend of the Ts graben fill polygons with the linear directional mean (LDM) of each of the two BR fault trace sets in the eastern SRP indicates that the Neogene deposition of the Ts is post-BR and pre-to syn-cross faulting. Cross-fault-bounded graben valleys filled with Ts roughly sub-parallel the mean trend of the CF sets, indicating that they formed after the BR faulting event.

  11. Tectonic evolution of the outer Izu-Bonin-Mariana fore arc system: initial results from IODP Expedition 352

    NASA Astrophysics Data System (ADS)

    Kurz, W.; Ferre, E. C.; Robertson, A. H. F.; Avery, A. J.; Kutterolf, S.

    2015-12-01

    During International Ocean Discovery Program (IODP) Expedition 352, a section through the volcanic stratigraphy of the outer fore arc of the Izu-Bonin-Mariana (IBM) system was drilled to trace magmatism, tectonics, and crustal accretion associated with subduction initiation. Structures within drill cores, borehole and site survey seismic data indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Extension generated asymmetric sediment basins such as half-grabens at sites 352-U1439 and 352-U1442 on the upper trench slope. Along their eastern margins the basins are bounded by west-dipping normal faults. Deformation was localized along multiple sets of faults, accompanied by syn-tectonic pelagic and volcaniclastic sedimentation. The lowermost sedimentary units were tilted eastward by ~20°. Tilted beds were covered by sub-horizontal beds. Biostratigraphic constraints reveal a minimum age of the oldest sediments at ~ 35 Ma; timing of the sedimentary unconformities is between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441 on the outer fore arc strike-slip faults are bounding sediment basins. Sediments were not significantly affected by tectonic tilting. Biostratigraphy gives a minimum age of the basement-cover contact between ~29.5 and 32 Ma. The post-magmatic structures reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along subhorizontal fault zones, steep slickensides and shear fractures. These were either re-activated as or cut by normal-faults and strike-slip faults. Extension was also accommodated by steep to subvertical mineralized veins and extensional fractures. Faults at sites 352-U1440 and 352-U1441 show mainly strike-slip kinematics. Sediments overlying the igneous basement(maximum Late Eocene to Recent age), document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds.

  12. Spatial Analysis of Gravity Data in the California, Nevada, and Utah (US)

    NASA Astrophysics Data System (ADS)

    Ferani, NA; Hartantyo, E.; Niasari, SW

    2018-04-01

    The geological condition of western North America is very complex because of the encounter of three major plates namely North America, Juan de Fuca, and Pacific Plate. The process of Juan de Fuca subduction and Pacific transform against North America plate created many mountains and produced Great Basin that we can see extending across California, Nevada, and Utah. The varied natural condition causes the varied value of gravity anomaly distribution. Using Topex free-air anomaly analyzed with second vertical derivative (SVD), we can analyze the fracture structures that occur in the Great Basin. The results show that the maximal SVD anomaly value is higher than the minimal SVD anomaly value at the western and eastern border of Great Basin. This explains that the two of Great Basin border are normal faults with trend direction NW-SE in the western boundary and NE-SW trending in the eastern boundary. This research result corresponds with the high seismicity data along the fault. Through this research, we can know that topex free-air anomaly data can be used to determine the type and trend of fault on a regional scale.

  13. Skylab photography applied to geologic mapping in northwestern Central America

    NASA Technical Reports Server (NTRS)

    Rose, W. I., Jr.; Johnson, D. J.; Hahn, G. A.; Johns, G. W.

    1975-01-01

    Two photolineation maps of southwestern Guatemala and Chiapas were made from S190 photographs along a ground track from Acajutla, El Salvador to San Cristobal de las Casas, Mexico. The maps document a structural complexity spanning the presumed triple junction of the Cocos, Americas, and Caribbean plates. The Polochic fault zone, supposedly the Americas-Caribbean plate boundary, is a sharply delineated feature across western Guatemala. Westward of the Mexican border it splays into a large number of faults with NW to SW trends. The structural pattern is quite different to the north (Americas plate) and to the south (Caribbean plate) of the Polochic fault, though both areas are dominated by NW-trending lineations. Within the Central American volcanic chain, the lineation patterns support the segmented model of the Benioff Zone, by showing a concentration of transverse lineations in the predicted locations, most notably NE-trending elements near Quezaltenango, Guatemala. The structural pattern obtained from the maps are compared to patterns described on recently published maps of more southerly parts of Central America, to begin a synthesis of the structure of the convergent plate boundary.

  14. Proximity of the Seismogenic Dog Valley Fault to Stampede and Prosser Creek Dams Near Truckee, California

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.; Strasser, M. P.

    2017-12-01

    The M 6.0 Truckee earthquake of 12 September 1966 caused a variety of surface effects observed over a large area, but the rupture plane of the causative fault did not displace the ground surface. The fault that generated the earthquake was named the Dog Valley fault [DVF], and its ground trace was assumed to be within a zone of subparallel drainage lineaments. The plunge and trend of the dip vector for the best fault-plane solution is 80° 134° with 0° rake, corresponding to a steep NE striking left-lateral strike-slip fault (Tsai and Aki, 1970). The Stampede Dam was completed along the trend of the Dog Valley fault in 1970, just four years after the Truckee earthquake, and impounds almost a quarter-million acre-feet of water. Failure of Stampede Dam would compromise Boca Dam downstream and pose a catastrophic threat to people along the Truckee River floodplain to Reno and beyond. Two 30 m long trenches excavated across a suspected DVF trend by the US Bureau of Reclamation in the 1980s did not find evidence of faulting (Hawkins et al., 1986). The surface trace of the DVF has remained unknown. We used the Seismo-Lineament Analysis Method [SLAM] augmented with a total least squares analysis of the focal locations of known or suspected aftershocks, along with focal mechanism data from well located events since 1966, to constrain the search for the DVF ground trace. Geomorphic analysis of recently collected aerial lidar data along this composite seismo-lineament has lead to a preliminary interpretation that the DVF might extend from the Prosser Creek Reservoir near 39.396°N 120.168°W through or immediately adjacent to the Stampede Dam structure. A second compound geomorphic lineament is sub-parallel to this line 1.6 km to the northwest, and might represent another strand of the DVF. As noted by Hawkins et al. (1986), human modification of the land surface complicates structural-geomorphic analysis. Fieldwork in 2016 took advantage of drought conditions to examine the exposed shoreface of Stampede Reservoir near the dam, and exposures of steeply dipping strike-slip faults were found.

  15. Coseismic stresses indicated by pseudotachylytes in the Outer Hebrides Fault Zone, UK.

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy; Lloyd, Geoffrey; Phillips, Richard; Holdsworth, Robert; Walcott, Rachel

    2015-04-01

    During the few seconds of earthquake slip, dynamic behaviour is predicted for stress, slip velocity, friction and temperature, amongst other properties. Fault-derived pseudotachylyte is a coseismic frictional melt and provides a unique snapshot of the rupture environment. Exhumation of ancient fault zones to seismogenic depths can reveal the structure and distribution of seismic slip as pseudotachylyte bearing fault planes. An example lies in NW Scotland along the Outer Hebrides Fault Zone (OHFZ) - this long-lived fault zone displays a suite of fault rocks developed under evolving kinematic regimes, including widespread pseudotachylyte veining which is distributed both on and away from the major faults. This study adds data derived from the OHFZ pseudotachylytes to published datasets from well-constrained fault zones, in order to explore the use of existing methodologies on more complex faults and to compare the calculated results. Temperature, stress and pressure are calculated from individual fault veins and added to existing datasets. The results pose questions on the physical meaning of the derived trends, the distribution of seismic energy release across scattered cm-scale faults and the range of earthquake magnitudes calculated from faults across any given fault zone.

  16. Reevaluation of 1935 M 7.0 earthquake fault, Miaoli-Taichung Area, western Taiwan: a DEM and field study

    NASA Astrophysics Data System (ADS)

    Lin, Y. N.; Chen, Y.; Ota, Y.

    2003-12-01

    A large earthquake (M 7.0) took place in Miaoli area, western Taiwan on April 21st, 1935. Right to its south is the 1999 Chi-Chi earthquake fault, indicating it is not only tectonically but seismically active. As the previous study, the study area is located in the mature zone of a tectonic collision that occurred between Philippine sea Plate and Eurasia continental Plate. The associated surface ruptures of 1935 earthquake daylighted Tungtsichiao Fault, a tear fault trending NE in the south and Chihhu Fault, a back thrust trending N-S in the north, but no ruptures occurred in between. Strike-slip component was identified by the horizontal offset observed along Tungtsichiao Fault; however, there are still disputes on the reported field evidence. Our purposes are (1) to identify the structural behaviors of these two faults, (2) to find out what the seismogenic structure is, and (3) to reconstruct the regional geology by information given by this earthquake. By DEM interpretation and field survey, we can clearly recognize a lot of the 1935 associated features. In the west of Chihhu Fault, a series of N-S higher terraces can be identified with eastward tilted surfaces and nearly 200 m relative height. Another lower terrace is also believed being created during the 1935 earthquake, showing an east-facing scarp with a height of ca. 1.5~2 m. Outcrop investigation reveals that the late-Miocene bedrock has been easterly thrusted over the Holocene conglomerates, indicating a west-dipping fault plane. The Tungtsichiao Fault cuts through a lateritic terrace at Holi, which is supposed developed in Pleistocene. The fault scarp is only discernible in the northeastern ending. Other noticeable features are the fault related antiforms that line up along the surface rupture. There is no outcrop to show the fault geometry among bedrocks. We re-interpret the northern Chihhu Fault as the back thrust generated from a main subsurface detachment, which may be the actual seismogenic fault. Due to the bend geometry normally existing between ramp and detachment, stress accumulated and earthquake happened right on it. The fault tip of this main thrust may be blind on land or break out offshore, which explains why no surface ruptures related to the main thrust were found.

  17. Integration of remote sensing, geochemical and field data in the Qena-Safaga shear zone: Implications for structural evolution of the Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    El-Din, Gamal Kamal; Abdelkareem, Mohamed

    2018-05-01

    The Qena-Safaga shear zone (QSSZ) represents a significant structural characteristic in the Eastern Desert of Egypt. Remote Sensing, field and geochemical data were utilized in the present study. The results revealed that the QSSZ dominated by metamorphic complex (MC) that intruded by syn-tectonic granitoids. The low angle thrust fault brings calc-alkaline metavolcanics to overlie MC and its association. Subsequently, the area is dissected by strike-slip faults and the small elongated basins of Hammamat sediments of Precambrian were accumulated. The MC intruded by late-to post-tectonic granites (LPG) and Dokhan Volcanics which comprise felsic varieties forming distinctive columnar joints. Remote sensing analysis and field data revealed that major sub-vertical conspicuous strike-slip faults (SSF) including sinistral NW-SE and dextral ca. E-W shaped the study area. Various shear zones that accompanying the SSF are running NW-SE, NE-SW, E-W, N-S and ENE-WSW. The obtained shear sense presented a multiphase of deformation on each trend. i.e., the predominant NW-SE strike-slip fault trend started with sinistral displacement and is reactivated during later events to be right (dextral) strike slip cutting with dextral displacement the E-W trending faults; while NE-SW movements are cut by both the N-S and NNW - SSE trends. Remote sensing data revealed that the NW-SE direction that dominated the area is associated with hydrothermal alteration processes. This allowed modifying the major and trace elements of the highly deformed rocks that showed depletion in SiO2 and enrichments in Fe2O3, MnO, Al2O3, TiO2, Na2O, K2O, Cu, Zn and Pb contents. The geochemical signatures of major and trace elements revealed two types of granites including I-type calc-alkaline granites (late-to post-tectonic) that formed during an extensional regime. However, syn-tectonic granitoids are related to subduction-related environment.

  18. Style and Rate of Late Pleistocene - Holocene Deformation of the Poukawa Fault Zone, Central Hawke's Bay, New Zealand

    NASA Astrophysics Data System (ADS)

    Basili, R.; Langridge, R. M.; Villamor, P.; Rieser, U.

    2008-12-01

    The Poukawa Fault Zone is one component of a complex system of contractional faulting in eastern North Island, New Zealand. It is located within the actively uplifting Hikurangi Margin where the Australian plate meets the Pacific plate at a convergence rate of over 40 mm/yr. The most destructive earthquake in New Zealand history, the 1931 Hawke's Bay earthquake of M 7.8, occurred just off the northern termination of the Poukawa Fault Zone. To the south and probably within the Poukawa Fault Zone, another strong earthquake struck near Waipukurau in 1863. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including exploratory trenching; geomorphic data aided by 1m resolution digital orthophotos, a LIDAR-derived Terrain Model, and GPS-RTK surveys; stratigraphic and paleoseismic analysis; radiocarbon and OSL dating and tephra correlation. We have also made a detailed reconstruction of the terrace sequences formed where the Kaikora Stream crosses at a high angle to the Poukawa Fault Zone. These data show that the Poukawa Fault Zone is a contractional fault system formed by a series of NE-SW strands with style varying, from west to east, from high-angle east-dipping reverse to low-angle west-dipping thrusting. The geometry of the system suggests that these faults may merge at shallow depth into a single large structure capable of generating strong earthquakes similar to those that occurred in the past on nearby sections. All these faults variously displace the top of the Ohakean aggradation surface (12-15 ka) thereby generating scarps of several meters. The Kaikora Stream terrace sequences also testify to a series of uplift events associated with the late-Holocene growth of two of the eastern thrust faults. Two reaches of Kaikora Stream show evidence of uplifted and abandoned inset Holocene stream terraces found in association with a surface-rupture trace and an active fold. The four terraces in each case correspond in number with paeloearthquake events recognized in trenches nearby (Kelsey et al. 1998). Based on these relations the recurrence interval of surface faulting and folding is c. 3000-3700 yr. The abandonment of a low inset terrace capped by peat and Waimihia Tephra (c. 3400 yr BP) is consistent with this average recurrence. Based on the deformation of the dated Ohakean surface across the entire Poukawa Fault Zone, its reverse slip rate is c. 1-2 mm/yr.

  19. Coastal Marine Terraces Define Late Quaternary Fault Activity and Deformation Within Northern East Bay Hills, San Francisco Bay Region

    NASA Astrophysics Data System (ADS)

    Kelson, K. I.

    2004-12-01

    Detailed mapping of uplifted marine platforms bordering the Carquinez Strait between Benicia and Pinole, California, provides data on the pattern and rate of late Quaternary deformation across the northern East Bay Hills. Field mapping, interpretation of early 20th-century topographic data, analysis of aerial photography, and compilation of onshore borehole data show the presence of remnants of three platforms, with back-edge elevations of about 4 m, 12 m, and 18 m. Based on U-series dates (Helley et al., 1993) and comparison of platform elevations to published sea-level curves, the 12-m-high and 18-m-high platforms correlate with substage 5e (ca. 120 ka) and stage 9 (ca. 330 ka) sea-level high stands, respectively. West of the Southhampton fault, longitudinal profiles of platform back-edges suggest that the East Bay Hills between Pinole and Vallejo have undergone block uplift at a rate of 0.05 +/- 0.01 m/ka without substantial tilting or warping. With uncertainty of <3 m, the 120 ka and 330 ka platforms are at the same elevations across the NW-striking Franklin fault. This west-vergent reverse fault previously was interpreted to have had late Pleistocene activity and to accommodate crustal shortening in the East Bay Hills. Our data indicate an absence of vertical displacement across the Franklin fault within at least the past 120ka and perhaps 330ka. In contrast, the stage 5e and 9 have up-on-the-east vertical displacement and gentle westward tilting across the N-striking Southhampton fault, with a late Pleistocene vertical slip rate of >0.02 m/ka. The northerly strike and prominent geomorphic expression of this potentially active fault differs from the Franklin fault. Our mapping of the Southhampton fault suggests that it accommodates dextral shear in the East Bay Hills, and is one of several left-stepping, en echelon N-striking faults (collectively, the "Contra Costa shear zone", CCSZ) in the East Bay Hills. Faults within this zone coincide with geomorphic features suggestive of late Quaternary dextral strike slip and appear to truncate or displace NW-striking reverse faults (e.g., Franklin fault) that do not displace the late Quaternary marine platform sequence. These data support an interpretation that the CCSZ accommodates regional dextral shear, and possibly represents the northern extension of the Calaveras fault. Overall, the marine terraces provide excellent strain gauges from which to evaluate the pattern and rate of late Quaternary deformation throughout the northern East Bay Hills.

  20. Recent crustal movements in the Sierra Nevada-Walker lane region of California-Nevada: Part i, rate and style of deformation

    USGS Publications Warehouse

    Slemmons, D.B.; Wormer, D.V.; Bell, E.J.; Silberman, M.L.

    1979-01-01

    This review of geological, seismological, geochronological and paleobotanical data is made to compare historic and geologic rates and styles of deformation of the Sierra Nevada and western Basin and Range Provinces. The main uplift of this region began about 17 m.y. ago, with slow uplift of the central Sierra Nevada summit region at rates estimated at about 0.012 mm/yr and of western Basin and Range Province at about 0.01 mm/yr. Many Mesozoic faults of the Foothills fault system were reactivated with normal slip in mid-Tertiary time and have continued to be active with slow slip rates. Sparse data indicate acceleration of rates of uplift and faulting during the Late Cenozoic. The Basin and Range faulting appears to have extended westward during this period with a reduction in width of the Sierra Nevada. The eastern boundary zone of the Sierra Nevada has an irregular en-echelon pattern of normal and right-oblique faults. The area between the Sierra Nevada and the Walker Lane is a complex zone of irregular patterns of ho??rst and graben blocks and conjugate normal-to right- and left-slip faults of NW and NE trend, respectively. The Walker Lane has at least five main strands near Walker Lake, with total right-slip separation estimated at 48 km. The NE-trending left-slip faults are much shorter than the Walker Lane fault zone and have maximum separations of no more than a few kilometers. Examples include the 1948 and 1966 fault zone northeast of Truckee, California, the Olinghouse fault (Part III) and possibly the almost 200-km-long Carson Lineament. Historic geologic evidence of faulting, seismologic evidence for focal mechanisms, geodetic measurements and strain measurements confirm continued regional uplift and tilting of the Sierra Nevada, with minor internal local faulting and deformation, smaller uplift of the western Basin and Range Province, conjugate focal mechanisms for faults of diverse orientations and types, and a NS to NE-SW compression axis (??1) and an EW to NW-SE extension axis (??3). ?? 1979.

Top