Effects of Activation Energy to Transient Response of Semiconductor Gas Sensor
NASA Astrophysics Data System (ADS)
Fujimoto, Akira; Ohtani, Tatsuki
The smell classifiable gas sensor will be desired for many applications such as gas detection alarms, process controls for food production and so on. We have tried to realize the sensor using transient responses of semiconductor gas sensor consisting of tin dioxide and pointed out that the sensor gave us different transient responses for kinds of gas. Results of model calculation showed the activation energy of chemical reaction on the sensor surface strongly depended on the transient response. We tried to estimate the activation energies by molecular orbital calculation with SnO2 Cluster. The results show that there is a liner relationship between the gradient of the transient responses and activation energies for carboxylic and alcoholic gases. Transient response will be predicted from activation energy in the same kind of gas and the smell discrimination by single semiconductor gas sensor will be realized by this relationship.
NASA Astrophysics Data System (ADS)
Pan, Wei
This dissertation is an exploratory study of a new process concept for direct production of synthesis gas (CO + H2) with desired H 2/CO ratios (1.5--2.0) for methanol synthesis and F-T synthesis, using CO2 together with steam and unconverted O2 in flue gas from fossil fuel-fired electric power plants to react with methane or natural gas. This new process is called tri-reforming, referring to simultaneous CO2-steam-O2 reforming of methane or natural gas. This study included (1) The investigation of carbon formation in the tri-reforming process. For comparison, carbon formation in the combined reforming and CO2 reforming reaction was studied as well. (2) The effect of reaction conditions and feed compositions on equilibrium composition (e.g. H2/CO ratio) and equilibrium conversions in the tri-reforming process. (3) The role of catalysts in the tri-reforming process, especially the effect of catalysts on CO2 conversion in the presence of H 2O and O2. It was clearly evidenced from this study that CO in the product stream is probably the major source of carbon over Ni/Al2O3 in the equimolar CO2-CH4 reforming at 650°C and 1 atm. Addition of either O2 or H2O into the CO 2 reforming reaction system can suppress carbon formation. It was demonstrated that carbon-free operation can be achieved in the tri-reforming process. A thermodynamic comparison of tri-reforming with feed compositions of (H2O+CO2+0.5O2)/CH4 (mol ratio) = 1 showed that O2 improves equilibrium CH4 conversion, yet greatly decreases equilibrium CO2 conversion. H2O in tri-reforming has a significant effect on the H2/CO ratio in the products, while O2 has a minor effect. A kinetic study and catalytic performance tests indicated that the support in a supported catalyst has a significant role in enhancing CO2 conversion to CO in the presence of H2O and O2 in tri-reforming. The Ni/MgO catalyst showed superior performance with close to equilibrium CH4 and CO2 conversions at 850°C, 1 atm, and 32,000 ml/(h.gcat.). The apparent Activation energy for CH4 conversion over Ni/MgO was estimated to be 219 kJ/mol, which is higher than over Ni/Al2O 3 (69.1 kJ/mol) and Ni/MgO/CeZrO (67.4 kJ/mol). This may be attributed to less CH4 activation over Ni/MgO or to an experimental artifact caused by catalyst deactivation as reaction temperature decreases from 850°C to 750°C. With the decrease of temperature, Ni may be re-oxidized and form NiO-MgO solid solution in the presence of H2O, CO2, or O2. (Abstract shortened by UMI.)
Geotechnical Properties of Oil Shale Retorted by the PARAHO and TOSCO Processes.
1979-11-01
literature search was restricted to the Green River formation of oil shale in the tri-state area of Colorado (Piceance Basin ), Utah ( Uinta Basin ), and...it is preheated by combustion gases as it travels downward by gravity. Air and recycling gas are injected at midheight and are burned, bringing the oil ...REFERENCES..................................38 TABLES 1-5 APPENDIX A: OIL SHALE RETORTING PROCESSES................Al Tosco Process Gas Combustion
Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors
Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA
2011-03-01
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors
Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.
2013-09-03
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
Methods for making a porous nuclear fuel element
Youchison, Dennis L; Williams, Brian E; Benander, Robert E
2014-12-30
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
1987-10-29
nonferrous ores in quarries and underground; Installations for desulfurization , cleaning, and dry- ing of gas , turbocompressors for methane gas ; Mining...Products Exportation Bucharest Minis- "Indus- try of trial- Foreign Drilling installations and equipment for oil and gas ; export- Trade...equipment; try of Refineries, complex installations, parts, and equip- the ment for the oil- and gas -refining industry; Heavy Factories, complex
78 FR 25481 - Investigations Regarding Eligibility To Apply for Worker Adjustment Assistance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-01
............ 03/25/13 03/12/13 (Company). 82591 CIBA Vision (State/One-Stop) Des Plaines, IL........ 03/25/13 03... Processing (State/One-Stop). 82593 Matheson Tri-Gas (Workers).. Newark, CA 03/26/13 03/14/13 82594 BioTec...
FAQs Related to Response to Petition to Add Oil And Gas Extraction Sector to the TRI Program
Questions and answers related to EPA's response to a petition by the Environmental Integrity Project and 16 other organizations to add the Oil and Gas Extraction sector to the scope of industries subject to TRI reporting requirements.
[Mustard gas bombs found astray in the Faxaflói bay. Mustard gas: usage and poisonings].
Kristinsson, Jakop; Jóhannesson, Thorkell
2009-05-01
The finding in 1972 of two World War II mustard gas artillery shells in crushed shell sediment dredged in the Faxaflói Bay and transported as raw material for cement production at Akranes (Western Iceland) is reported. One of the shells was wedged in a stone crusher in the raw material processing line and was ruptured. As a result dark fluid with a garlic like smell seeped out from the metal canister. The attending employees believed the metal object to be inert and tried to cut it out with a blow torch. This resulted in the explosion of the shell charge and in the exposure of four employees to mustard gas. All suffered burns on their hands and two of them in the eyes also. The second shell was detonated in the open at a distance from the factory. Emphasis is given to the fact that instant, or at least as soon as possible, cleansing and washing is the most efficient measure to be taken against the debilitating effects of mustard gas. It is also pointed out that the active principle in mustard gas (dichlorodiethyl sulphide) can easily be synthesized and none of the precursor substances are subjected to any restrictions of use. The authors conclude that mustard gas bombs may still be found in the arsenals of some military powers in spite of an international convention that prohibits the production, stockpiling and the use of chemical weapons. Terrorist groups have also seemingly tried to aquire mustard gas bombs and other chemical weapons. Therefore cases of mustard gas poisoning might still occur.
NASA Astrophysics Data System (ADS)
Kuganathan, Navaratnarajah; Ghosh, Partha S.; Galvin, Conor O. T.; Arya, Ashok K.; Dutta, Bijon K.; Dey, Gautam K.; Grimes, Robin W.
2017-03-01
The fission gases Xe and Kr, formed during normal reactor operation, are known to degrade fuel performance, particularly at high burn-up. Using first-principles density functional theory together with a dispersion correction (DFT + D), in ThO2 we calculate the energetics of neutral and charged point defects, the di-vacancy (DV), different neutral tri-vacancies (NTV), the charged tetravacancy (CTV) defect cluster geometries and their interaction with Xe and Kr. The most favourable incorporation point defect site for Xe or Kr in defective ThO2 is the fully charged thorium vacancy. The lowest energy NTV in larger supercells of ThO2 is NTV3, however, a single Xe atom is most stable when accommodated within a NTV1. The di-vacancy (DV) is a significantly less favoured incorporation site than the NTV1 but the CTV offers about the same incorporation energy. Incorporation of a second gas atom in a NTV is a high energy process and more unfavourable than accommodation within an existing Th vacancy. The bi-NTV (BNTV) cluster geometry studied will accommodate one or two gas atoms with low incorporation energies but the addition of a third gas atom incurs a high energy penalty. The tri-NTV cluster (TNTV) forms a larger space which accommodates three gas atoms but again there is a penalty to accommodate a fourth gas atom. By considering the energy to form the defect sites, solution energies were generated showing that in ThO2-x the most favourable solution equilibrium site is the NTV1 while in ThO2 it is the DV.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-Cities landfill, Salt River Pima-Maricopa Indian Community. 49.22 Section 49.22 Protection of Environment... Authority § 49.22 Federal implementation plan for Tri-Cities landfill, Salt River Pima-Maricopa Indian... River Project at the Tri-Cities landfill, which are fueled by collected landfill gas. Secondary...
One-step production of multilayered microparticles by tri-axial electro-flow focusing
NASA Astrophysics Data System (ADS)
Si, Ting; Feng, Hanxin; Li, Yang; Luo, Xisheng; Xu, Ronald
2014-03-01
Microencapsulation of drugs and imaging agents in the same carrier is of great significance for simultaneous detection and treatment of diseases. In this work, we have developed a tri-axial electro-flow focusing (TEFF) device using three needles with a novel concentric arrangement to one-step form multilayered microparticles. The TEFF process can be characterized as a multi-fluidic compound cone-jet configuration in the core of a high-speed coflowing gas stream under an axial electric field. The tri-axial liquid jet eventually breaks up into multilayered droplets. To validate the method, the effect of main process parameters on characteristics of the cone and the jet has been studied experimentally. The applied electric field can dramatically promote the stability of the compound cone and enhance the atomization of compound liquid jets. Microparticles with both three-layer, double-layer and single-layer structures have been obtained. The results show that the TEFF technique has great benefits in fabricating multilayered microparticles at smaller scales. This method will be able to one-step encapsulate multiple therapeutic and imaging agents for biomedical applications such as multi-modal imaging, drug delivery and biomedicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiddon, R.; Zhou, B.; Borggren, J.
2015-09-15
Tri-methyl-indium (TMI) is used as an indium transport molecule to introduce indium atoms to reactive hot gas flows/combustion environments for spectroscopic diagnostics. A seeding system was constructed to allow the addition of an inert TMI laden carrier gas into an air/fuel mixture burning consequently on a burner. The amount of the seeded TMI in the carrier gas can be readily varied by controlling the vapor pressure through the temperature of the container. The seeding process was calibrated using the fluorescent emission intensity from the indium 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 1/2} and 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 3/2}more » transitions as a function of the calculated TMI seeding concentration over a range of 2–45 ppm. The response was found to be linear over the range 3–22.5 ppm; at concentrations above 25 ppm there is a loss of linearity attributable to self-absorption or loss of saturation of TMI vapor pressure in the carrier gas flow. When TMI was introduced into a post-combustion environment via an inert carrier gas, molecular transition from InH and InOH radicals were observed in the flame emission spectrum. Combined laser-induced fluorescence and absorption spectroscopy were applied to detect indium atoms in the TMI seeded flame and the measured atomic indium concentration was found to be at the ppm level. This method of seeding organometallic vapor like TMI to a reactive gas flow demonstrates the feasibility for quantitative spectroscopic investigations that may be applicable in various fields, e.g., chemical vapor deposition applications or temperature measurement in flames with two-line atomic fluorescence.« less
Optical gas imaging (OGI) cameras have the unique ability to exploit the electromagnetic properties of fugitive chemical vapors to make invisible gases visible. This ability is extremely useful for industrial facilities trying to mitigate product losses from escaping gas and fac...
Blake, Johanna M.; Miltenberger, Keely; Stewart, Anne M.; Ritchie, Andre; Montoya, Jennifer; Durr, Corey; McHugh, Amy; Charles, Emmanuel
2018-02-07
The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, conducted a study to assess the water resources and potential effects on the water resources from oil and gas development in the Tri-County planning area, Sierra, Doña Ana, and Otero Counties, New Mexico. Publicly available data were used to assess these resources and effects and to identify data gaps in the Tri-County planning area.The Tri-County planning area includes approximately 9.3 million acres and is within the eastern extent of the Basin and Range Province, which consists of mountain ranges and low elevation basins. Three specific areas of interest within the Tri-County planning area are the Jornada del Muerto, Tularosa Basin, and Otero Mesa, which is adjacent to the Salt Basin. Surface-water resources are limited in the Tri-County planning area, with the Rio Grande as the main perennial river flowing from north to south through Sierra and Doña Ana Counties. The Tularosa Creek is an important surface-water resource in the Tularosa Basin. The Sacramento River, which flows southeast out of the Sacramento Mountains, is an important source of recharge to aquifers in the Salt Basin. Groundwater resources vary in aquifer type, depth to water, and water quality. For example, the Jornada del Muerto, Tularosa Basin, and Salt Basin each have shallow and deep aquifer systems, and water can range from freshwater, with less than 1,000 milligrams per liter (mg/L) of total dissolved solids, to brine, with greater than 35,000 mg/L of total dissolved solids. Water quality in the Tri-County planning area is affected by the dissolution of salt deposits and evaporation which are common in arid regions such as southern New Mexico. The potential for oil and gas development exists in several areas within the Tri-County area. As many as 81 new conventional wells and 25 coalbed natural gas wells could be developed by 2035. Conventional oil and gas well construction in the Tri-County planning area is expected to require 1.53 acre-feet (acre-ft) (500,000 gallons) of water per well, similar to requirements in the nearby Permian Basin of New Mexico, while construction of unconventional wells is expected to require 7.3 acre-ft of water per well. Produced waters in the Permian Basin have high total dissolved solids, in the brackish to brine range.Data gaps identified in this study include the limited detailed data on surface-water resources, the lack of groundwater data in areas of interest, and the lack of water chemistry data related to oil and gas development issues. Surface waters in the Tri-County planning area are sparse; some streams are perennial, and most are ephemeral. A more detailed study of the ephemeral channels and their interaction with groundwater could provide a better understanding of the importance of these surface-water resources. Groundwater data used in this study are from the USGS National Water Information System, which does not have continuous water-level depth data at many of the sites in the Tri-County planning area. On Otero Mesa, no recurrent groundwater-level data are available at any one site. The water-quality data compiled in this study provide a good overview of the general chemistry of groundwater in the Tri-County planning area. To fully understand the groundwater resources, it would be helpful to have more wells in specific areas of interest for groundwater-level and water-quality measurements.
Investment in hydrogen tri-generation for wastewater treatment plants under uncertainties
NASA Astrophysics Data System (ADS)
Gharieh, Kaveh; Jafari, Mohsen A.; Guo, Qizhong
2015-11-01
In this article, we present a compound real option model for investment in hydrogen tri-generation and onsite hydrogen dispensing systems for a wastewater treatment plant under price and market uncertainties. The ultimate objective is to determine optimal timing and investment thresholds to exercise initial and subsequent options such that the total savings are maximized. Initial option includes investment in a 1.4 (MW) Molten Carbonate Fuel Cell (MCFC) fed by mixture of waste biogas from anaerobic digestion and natural gas, along with auxiliary equipment. Produced hydrogen in MCFC via internal reforming, is recovered from the exhaust gas stream using Pressure Swing Adsorption (PSA) purification technology. Therefore the expansion option includes investment in hydrogen compression, storage and dispensing (CSD) systems which creates additional revenue by selling hydrogen onsite in retail price. This work extends current state of investment modeling within the context of hydrogen tri-generation by considering: (i) Modular investment plan for hydrogen tri-generation and dispensing systems, (ii) Multiple sources of uncertainties along with more realistic probability distributions, (iii) Optimal operation of hydrogen tri-generation is considered, which results in realistic saving estimation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, I.E.; Pecharsky, V.K.; Ting, J.
1997-12-31
A high pressure gas atomization approach to rapid solidification has been employed to investigate simplified processing of Sn modified LaNi{sub 5} powders that can be used for advanced Ni/metal hydride (Ni/MH) batteries. The current industrial practice involves casting large ingots followed by annealing and grinding and utilizes a complex and costly alloy design. This investigation is an attempt to produce powders for battery cathode fabrication that can be used in an as-atomized condition without annealing or grinding. Both Ar and He atomization gas were tried to investigate rapid solidification effects. Sn alloy additions were tested to promote subambient pressure absorption/desorptionmore » of hydrogen at ambient temperature. The resulting fine, spherical powders were subject to microstructural analysis, hydrogen gas cycling, and annealing experiments to evaluate suitability for Ni/MH battery applications. The results demonstrate that a brief anneal is required to homogenize the as-solidified microstructure of both Ar and He atomized powders and to achieve a suitable hydrogen absorption behavior. The Sn addition also appears to suppress cracking during hydrogen gas phase cycling in particles smaller than about 25 {micro}m. These results suggest that direct powder processing of a LaNi{sub 5{minus}x}Sn{sub x} alloy has potential application in rechargeable Ni/MH batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, I.E.; Pecharsky, V.K.; Ting, J.
1998-07-01
A high pressure gas atomization approach to rapid solidification has been employed to investigate simplified processing of Sn modified LaNi{sub 5} powders that can be used for advanced Ni/metal hydride (Ni/MH) batteries. The current industrial practice involves casting large ingots followed by annealing and grinding and utilizes a complex and costly alloy design. This investigation is an attempt to produce powders for battery cathode fabrication that can be used in an as-atomized condition without annealing or grinding. Both Ar and He atomization gas were tried to investigate rapid solidification effects. Sn alloy additions were tested to promote subambient pressure absorption/desorptionmore » of hydrogen at ambient temperature. The resulting fine, spherical powders were subject to microstructural analysis, hydrogen gas cycling, and annealing experiments to evaluate suitability for Ni/MH battery applications. The results demonstrate that a brief anneal is required to homogenize the as-solidified microstructure of both Ar and He atomized powders and to achieve a suitable hydrogen absorption behavior. The Sn addition also appears to suppress cracking during hydrogen gas phase cycling in particles smaller than about 25{micro}m. These results suggest that direct powder processing of a LaNi{sub 5{minus}x}Sn{sub x} alloy has potential application in rechargeable Ni/MH batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foglietta, J.H.
1999-07-01
A new LNG cycle has been developed for base load liquefaction facilities. This new design offers a different technical and economical solution comparing in efficiency with the classical technologies. The new LNG scheme could offer attractive business opportunities to oil and gas companies that are trying to find paths to monetize gas sources more effectively; particularly for remote or offshore locations where smaller scale LNG facilities might be applicable. This design offers also an alternative route to classic LNG projects, as well as alternative fuel sources. Conceived to offer simplicity and access to industry standard equipment, This design is amore » hybrid result of combining a standard refrigeration system and turboexpander technology.« less
Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pocoima, CA; Benander, Robert E [Pacoima, CA
2010-02-23
Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.
Application of Gas Lasers to Studies of Fundamental Molecular and Atomic Processes.
1980-05-12
agreement with the lower for pulse compression . curves of fig. 2a. Eqs two in-phase 2 nsec input pulses .4 of equal area (not shown), the output pulse is...and He, and an Manuscript received December 13, 1974. This work was supported by the Office of Naval Research and the Air Force Cambridge Research...application. Taylor ct al. Preionization is initiated by uv generated from dis- first tried hopcalite in a cw laser but unsuccessfully, charging -150 mJ
The Persian Gulf Balance of Power and United States Foreign Policy Response.
1988-04-01
is a region which can and has changed rapidly and without notice. This project was sponsored by the Air University National Security Affairs Briefing... growing industry includes trade natural gas, aluminum smelting, plastics, fish processing and oil refining. (8:194) The GDP in 1982 was $4.0 bI Ion, (36...and this figure was growing at an estimated annual rate of US $4 to US $5 billion." (35:248) Recently Saudi Arabia has tried to diversify Its arms
On the mechanism of gas adsorption for pristine, defective and functionalized graphene.
You, Y; Deng, J; Tan, X; Gorjizadeh, N; Yoshimura, M; Smith, S C; Sahajwalla, V; Joshi, R K
2017-02-22
Defects are no longer deemed an adverse aspect of graphene. Contrarily, they can pave ways of extending the applicability of graphene. Herein, we discuss the effects of three types of defects in graphene including carbon deficiency, adatom (single Fe) dopants and the introduction of functional groups (carbonyl, ether group) on the NO 2 gas adsorption via density functional theory methods. We have observed that introducing Fe on graphene can enhance the NO 2 adsorption process. Adsorption energy calculations suggest that the enhancement in NO 2 adsorption is more profound for Fe-doped mono- and tetra-vacant graphene than that for Fe doped bi- and tri-vacant graphene, which is favourable for NO 2 gas capture applications. The unsaturated carbons in defected graphene as well as the oxygenated functional groups are very active to attract NO 2 molecules. However, though the gas binding strength was not as high as the that found in the Fe-doped graphene structure, the relatively low NO 2 gas adsorption energy is suitable for the practical gas sensors both for gas sensitivity and the sensor recovery rate factor. This theoretical study can potentially be useful for developing adsorption-based applications of graphene.
Gas hydrate hunting in China seas
NASA Astrophysics Data System (ADS)
Yang, J.; Zhang, X.; Chen, J.; Xiang, Q.; Ye, Y.; Gong, J.
2003-04-01
Gas hydrate research is a hotspot now in geosciences. Many countries have carried on gas hydrate survey and research for many years. China, as a country with large sea areas unfolded gas hydrate research work in its marine areas in 1999 and tries to keep pace with the advanced countries on gas hydrate study. Substantial funds were launched by various governmental and non-governmental funding agencies to support gas hydrate research. Many institutions on marine geosciences are involved in. China Geological Survey (CGS) has launched several research projects in the sea. So far, some fieldwork such as seismic survey, sampling, profiling, underwater video imaging have been done in South China Sea and East China Sea areas. Some preliminary results have been achieved. BSRs are found in many seismic profiles. Some potential gas hydrate bearing areas are marked and potential amount of gas hydrate resources is calculated. At the same time, gas hydrate laboratory was founded and successful experiments have been carried out to model the gas hydrate synthesis in accordance with the geological condition of the China seas. Now, gas hydrate detecting techniques such as sampling equipment (PCS), seismic data processing, interpretation and the formation mechanism study as well as environmental effect research are undergoing. Though China's gas hydrate research work is still at its initial stage, China is willing to be an active member in the international society of gas hydrate study and hopes to contribute its effort.
PREPARATION OF HALIDES OF PLUTONIUM
Garner, C.S.; Johns, I.B.
1958-09-01
A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.
[Prospects for Application of Gases and Gas Hydrates to Cryopreservation].
Shishova, N V; Fesenko, E E
2015-01-01
In the present review, we tried to evaluate the known properties of gas hydrates and gases participating in the formation of gas hydrates from the point of view of the mechanisms of cryoinjury and cryoprotection, to consider the papers on freezing biological materials in the presence of inert gases, and to analyze the perspectives for the development of this direction. For the purpose, we searched for the information on the physical properties of gases and gas hydrates, compared processes occured during the formation of gas hydrates and water ice, analyzed the influence of the formation and growth of gas hydrates on the structure of biological objects. We prepared a short review on the biological effects of xenon, krypton, argon, carbon dioxide, hydrogen sulfide, and carbon monoxide especially on hypothermal conditions and probable application of these properties in cryopreservation technologies. The description of the existing experiments on cryopreservation of biological objects with the use of gases was analyzed. On the basis of the information we found, the most perspective directions of work in the field of cryopreservation of biological objects with the use of gases were outlined. An attempt was made to forecast the potential problems in this field.
Applications of Computer Simulation Methods in Plastic Forming Technologies for Magnesium Alloys
NASA Astrophysics Data System (ADS)
Zhang, S. H.; Zheng, W. T.; Shang, Y. L.; Wu, X.; Palumbo, G.; Tricarico, L.
2007-05-01
Applications of computer simulation methods in plastic forming of magnesium alloy parts are discussed. As magnesium alloys possess very poor plastic formability at room temperature, various methods have been tried to improve the formability, for example, suitable rolling process and annealing procedures should be found to produce qualified magnesium alloy sheets, which have the reduced anisotropy and improved formability. The blank can be heated to a warm temperature or a hot temperature; a suitable temperature field is designed, tools should be heated or the punch should be cooled; suitable deformation speed should be found to ensure suitable strain rate range. Damage theory considering non-isothermal forming is established. Various modeling methods have been tried to consider above situations. The following situations for modeling the forming process of magnesium alloy sheets and tubes are dealt with: (1) modeling for predicting wrinkling and anisotropy of sheet warm forming; (2) damage theory used for predicting ruptures in sheet warm forming; (3) modeling for optimizing of blank shape and dimensions for sheet warm forming; (4) modeling in non-steady-state creep in hot metal gas forming of AZ31 tubes.
Fundamentals of ISCO Using Ozone
In situ chemical oxidation (ISCO) using ozone involves the introduction of ozone gas (O3) into the subsurface to degrade organic contaminants of concern. Ozone is tri-molecular oxygen (O2) that is a gas under atmospheric conditions and is a strong oxidant. Ozone may react with ...
Fabrication of tri metal oxides gas detector for lung inflammation
NASA Astrophysics Data System (ADS)
Othman, Farhad M.; Abdul-Hamead, Alaa A.; Aljanabi, Zena A.
2018-05-01
This paper describes the use of semiconductor gas sensor for detection of Carbon monoxide levels in exhaled human breath serving as breath marker of lung inflammation. In this research tri metal oxides were fabricated by simple chemical spray pyrolysis technique from mixtures of tow composition (Na2WO4: SnCl2 and Na2WO4, : 3 SnCl2) salts at concentration (0.1M), were fabricated on silicon substrate n-type (100) with thickness was about (625 µm) using water soluble as precursors at a substrate temperature (350 °C ±5), with spray distance (25 cm) and their gas sensing properties toward Carbon monoxide gas at concentration (10) ppm in air were investigated at room temperature, furthermore structural and morphology properties were inspecting. Experimental results show that the WSnO4 and SnO2 thin films were achieved from the used salts with thickness about (0.2 ± 0.05 nm), which make the sensor suitable for the detection of carbon monoxide levels in in exhaled human breath.
NASA Astrophysics Data System (ADS)
Badalyan, A. M.; Bakhturova, L. F.; Kaichev, V. V.; Polyakov, O. V.; Pchelyakov, O. P.; Smirnov, G. I.
2011-09-01
A new technique for depositing thin nanostructured layers on semiconductor and insulating substrates that is based on heterogeneous gas-phase synthesis from low-dimensional volatile metal complexes is suggested and tried out. Thin nanostructured copper layers are deposited on silicon and quartz substrates from low-dimensional formate complexes using a combined synthesis-mass transport process. It is found that copper in layers thus deposited is largely in a metal state (Cu0) and has the form of closely packed nanograins with a characteristic structure.
Hapsite Gas Chromatography - Mass Spectrometry with Solid Phase Microextraction
2005-07-18
Polydimethylsiloxane /Divinylbenzene (PDMS/DVB) 65um/partially crosslinked*** Polar volatiles 60urn/ partially crosslinked General purpose (for HPLC ... Polydimethylsiloxane (PDMS). The HAPSITE with tri-bed concentrator achieved the lowest detection limits. The HAPSITE and the field portable GCUMS... Polydimethylsiloxane (PDMS). The HAPSITE with tri-bed concentrator achieved the lowest detection limits. The HAPSITE and the field portable GC/MS instrument coupled
Johann Wilhelm Hittorf and the material culture of nineteenth-century gas discharge research.
Müller, Falk
2011-06-01
In the second half of the nineteenth century, gas discharge research was transformed from a playful and fragmented field into a new branch of physical science and technology. From the 1850s onwards, several technical innovations-powerful high-voltage supplies, the enhancement of glass-blowing skills, or the introduction of mercury air-pumps- allowed for a major extension of experimental practices and expansion of the phenomenological field. Gas discharge tubes served as containers in which resources from various disciplinary contexts could be brought together; along with the experimental apparatus built around them the tubes developed into increasingly complex interfaces mediating between the human senses and the micro-world. The focus of the following paper will be on the physicist and chemist Johann Wilhelm Hittorf (1824-1914), his educational background and his attempts to understand gaseous conduction as a process of interaction between electrical energy and matter. Hittorf started a long-term project in gas discharge research in the early 1860s. In his research he tried to combine a morphological exploration of gas discharge phenomena-aiming at the experimental production of a coherent phenomenological manifold--with the definition and precise measurements of physical properties.
Self pressuring HTP feed systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehead, J.
1999-10-14
Hydrogen peroxide tanks can be pressurized with decomposed HTP (high test hydrogen peroxide) originating in the tank itself. In rocketry, this offers the advantage of eliminating bulky and heavy inert gas storage. Several prototype self-pressurizing HTP systems have recently been designed and tested. Both a differential piston tank and a small gas-driven pump have been tried to obtain the pressure boost needed for flow through a gas generator and back to the tank. Results include terrestrial maneuvering tests of a prototype microsatellite, including warm gas attitude control jets.
3D Material Response Analysis of PICA Pyrolysis Experiments
NASA Technical Reports Server (NTRS)
Oliver, Brandon A.
2017-01-01
Primarily interested in improving ablation modeling for use in inverse reconstruction of flight environments on ablative heat shields. Ablation model is essentially a component of the heat flux sensor, so model uncertainties lead to measurement uncertainties. Non-equilibrium processes have been known to be significant in low density ablators for a long time, but increased accuracy requirements of the reconstruction process necessitates incorporating this physical effect. Attempting to develop a pyrolysis model for implementation in material response based on the PICA data produced by Bessire and Minton. Pyrolysis gas species molar yields as a function of temperature and heating rate. Several problems encountered while trying to fit Arrhenius models to the data led to further investigation of the experimental setup.
Computation of Neutral Gas Flow from a Hall Thruster into a Vacuum Chamber
2002-10-18
try to quantify these effects, the direct simulation Monte Carlo method is applied to model a cold flow of xenon gas expanding from a Hall thruster into...a vacuum chamber. The simulations are performed for the P5 Hall thruster operating in a large vacuum tank at the University of Michigan. Comparison
2014-11-21
cover in the region where gas expands all the way round the nozzle exit in the vacuum of space. This geome- try is investigated using hybrid NS/DSMC with...Final 3. DATES COVERED (From - To) 19 May 2014 – 18 Oct 2014 4. TITLE AND SUBTITLE Report on Rarefied Gas Dynamics Research Status 5a...Air Force about the current status of research in rarefied gas dynamics and related fields, primarily via the 29th International Symposium on Rarefied
Seismic Evidence And Complex Trace Attributes Of Shallow Gas Structures In The Sea Of Marmara
NASA Astrophysics Data System (ADS)
Aydemir, Seval; Okay, Seda; Cifci, Gunay; Dondurur, Derman; Sorlien, Christopher; Cormier, Marie-Helene
2015-04-01
Analysis of multi-channel seismic reflection, sparker and chirp data from Marmara Sea observed various shallow gas indicators including seismic chimneys, bright spots, mud diapirs, pockmarks, and acoustic blanking related to gas accumulations along North Anatolian Fault (NAF) system which branches out towards the west into the in Marmara Sea. Middle branch of the (NAF) is the place where distinct amount of seismic activity has occurred and gas deposits have been observed. This study is also devoted to evaluate the gas related structures with seismic attributes of multichannel seismic reflection data which have been collected at South Marmara shelf. The dataset was collected in September 2013 and July 2014 including nearly 1000 km high Resolution Multichannel Seismic and Chirp data and 967 km Sparker data in the frame of a bilateral TÜBİTAK Project onboard R/V K. Piri Reis. The streamer has 168 or 144 channel and group interval was 6.25 m. The source was 45+45 inch GI gun fired every 12.5 or 25 m producing high-resolution seismic signal between 10-250 Hz frequency bands. The Chirp data was collected with a transducer, which produced acoustic signal between 2.75-6.75 kHz. The source of sparker system was used to 1000 J. The data have been processed using a conventional data processing flow. In addition attributes were applied to final migration sections and than was tried to find gas accumulations with Reflection strength section, instantaneous frequency section and apparent polarity. Reflection strength section has strong reflections (bright spot). Also instantaneous frequency section has low-frequency zone depending on absorption where gas accumulations are expected. Apparent polarity section has negative polarity anamoly due to low acoustic impedance where gas accumulations are expected in sediments. In addition, attributes were coincided with sparker and chirp data where expected shallow gas accumulations.
Dou, Weixiao; Zhou, Zhen; Ye, Jiongjiong; Huang, Rongwei; Jiang, Lu-Man; Chen, Guofeng; Fei, Xiaoyun
2017-09-01
Flue gas desulfurization (FGD) wastewater treatment by conventional neutralization, chemical precipitation and coagulation process removes most suspended solids and heavy metals, and provides an effluent rich in calcium, alkalinity and chloride, which obstructs its reclamation and reuse but is in favor of phosphorus (P) precipitation. The goals of this study were to investigate feasibility of reusing FGD effluent as a calcium source for P removal from P-rich wastewater. Results revealed that increasing the volumetric ratio between FGD effluent and P-rich wastewater achieved higher pH value and Ca/P ratio, and thus enhanced P removal efficiency to 94.3% at the ratio of 40%. X-ray diffraction and scanning electron microscope analysis of harvested precipitates showed that increasing pH from 8 to 10 induced the conversion of hydroxyapatite to tri-calcium phosphate, and then to whitlockite. This study demonstrated that for reusing FGD effluent for P removal was highly feasible, both technically and economically. This process not only saves the cost of precipitants for P removal, but also provides an economical alternative for current zero liquid discharge technology for FGD wastewater, which requires high energy consumption and capital costs.
2014-09-01
President Obama lamented, “Our infra- structure used to be the best, but our lead has slipped ... Countries in Eu- rope and Russia invest more in...gas generators. Natural gas turbine generators would al- low the Iraqis to make use of large natural gas reserves within their coun- try. However...power authority? How do the operators keep the turbine from silting up? Who provides training for the operators and maintainers? Who trains the
Regional Jurassic geologic framework of Alabama coastal waters area and adjacent Federal waters area
Mink, R.M.; Bearden, B.L.; Mancini, E.A.
1989-01-01
To date, numerous Jurassic hydrocarbon fields and pools have been discovered in the Cotton Valley Group, Haynesville Formation, Smackover Formation and Norphlet Formation in the tri-state area of Mississippi, Alabama and Florida, and in Alabama State coastal waters and adjacent Federal waters area. Petroleum traps are basement highs, salt anticlines, faulted salt anticlines and extensional faults associated with salt movement. Reservoirs include continental and marine sandstones, limestones and dolostones. Hydrocarbon types are oil, condensate and natural gas. The onshore stratigraphic and structural information can be used to establish a regional geologic framework for the Jurassic for the State coastal waters and adjacent Federal waters areas. Evaluation of the geologic information along with the hydrocarbon data from the tri-state area indicates that at least three Jurassic hydrocarbon trends (oil, oil and gas condensate, and deep natural gas) can be identified onshore. These onshore hydrocarbon trends can be projected into the Mobile area in the Central Gulf of Mexico and into the Pensacola, Destin Dome and Apalachicola areas in the Eastern Gulf of Mexico. Substantial reserves of natural gas are expected to be present in Alabama State waters and the northern portion of the Mobile area. Significant accumulations of oil and gas condensate may be encountered in the Pensacola, Destin Dome, and Apalachicola areas. ?? 1989.
... oil is a heavy oil used in diesel engines. Diesel oil poisoning occurs when someone swallows diesel ... people trying to suck (siphon) gas from an automobile tank using their mouth and a garden hose ( ...
Mineralogy and evolution of the surface of Mars: A review
NASA Astrophysics Data System (ADS)
Chevrier, V.; Mathé, P. E.
2007-02-01
We review the mineralogy of the surface of Mars, using data from various sources, including in situ characterisations performed by landers, remote observations from orbit, and studies of the SNC meteorites. We also discuss the possible alteration processes and the factor controlling them, and try to relate the mineralogical observations to the chemical evolution of the surface materials on Mars in order to identify the dominant process(es). Then we try to describe a possible chemical and mineralogical evolution of the surface materials, resulting from weathering driven by the abundance and activity of water. Even if weathering is the dominant process responsible for the surface evolution, all observations suggest that it is strongly affected locally in time and space by various other processes including hydrothermalism, volcanism, evaporites, meteoritic impacts and aeolian erosion. Nevertheless, the observed phases on the surface of Mars globally depend on the evolution of the weathering conditions. This hypothesis, if confirmed, could give a new view of the evolution of the martian surface, roughly in three steps. The first would correspond to clay-type weathering process in the Noachian, under a probable thick H 2O/CO 2-rich atmosphere. Then, during the Hesperian when water became scarcer and its activity sporadic, linked to volcanic activity, sulfate-type acidic weathering process would have been predominant. The third period would be like today, a very slow weathering by strongly oxidising agents (H 2O 2, O 2) in cold and dry conditions, through solid-gas or solid-films of water resulting frost-thaw and/or acid fog. This would favour poorly crystalline phases, mainly iron (oxy) hydroxides. But in this scenario many questions remain about the transition between these processes, and about the factors affecting the evolution of the weathering process.
Metallic conductance at the interface of tri-color titanate superlattices
NASA Astrophysics Data System (ADS)
Kareev, M.; Cao, Yanwei; Liu, Xiaoran; Middey, S.; Meyers, D.; Chakhalian, J.
2013-12-01
Ultra-thin tri-color (tri-layer) titanate superlattices ([3 u.c. LaTiO3/2 u.c. SrTiO3/3 u.c. YTiO3], u.c. = unit cells) were grown in a layer-by-layer way on single crystal TbScO3 (110) substrates by pulsed laser deposition. High sample quality and electronic structure were characterized by the combination of in-situ photoelectron and ex-situ structure and surface morphology probes. Temperature-dependent sheet resistance indicates the presence of metallic interfaces in both [3 u.c. LaTiO3/2 u.c. SrTiO3] bi-layers and all the tri-color structures, whereas a [3 u.c. YTiO3/2 u.c. SrTiO3] bi-layer shows insulating behavior. Considering that in the bulk YTiO3 is ferromagnetic below 30 K, the tri-color titanate superlattices provide an opportunity to induce tunable spin-polarization into the two-dimensional electron gas with Mott carriers.
The Rise of the Pasdaran. Assessing the Domestic Roles of Iran’s Islamic Revolutionary Guards Corps
2009-01-01
Minis- try of Oil News Agency, “Emza-e Gharardad-e Shirinsaziy-e Gas projey-e Iran LNG” (The contract of gas sweetening of Iran’s LNG project was signed...established in 1999 to import sugar , construction materials, and pharmaceuticals. It is also said to maintain an office near a sus- pected nuclear...Gharardad-e Shirinsaziye gase faze 12 parse jonubi emza shod” (The Agreement on the Sweetening of Gas from South Pars Phase 12 Has Been Signed
Opportunities for research in aerothermodynamics
NASA Technical Reports Server (NTRS)
Graham, R. W.
1983-01-01
"Aerothermodynamics' involves the disciplines of chemistry, thermodynamics, fluid mechanics and heat transfer which have collaborative importance in propulsion systems. There are growing opportunities for the further application of these disciplines to improve the methodology for the design of advanced gas turbines; particularly, the combustor and turbine. Design procedures follow empirical or cut and try guidelines. The tremendous advances in computational analysis and in instrumentation techniques hold promise for research answers to complex physical processes that are currently not well understood. The transfer of basic research understanding to engineering design should result in shorter, less expensive development commitments for engines. The status and anticipated opportunities in research topics relevant to combustors and turbines is reviewed.
Percolation Pore Network Study on the Residue Gas Saturation of Dry Reservoir Rocks
NASA Astrophysics Data System (ADS)
Cheng, T.; Tang, Y. B.; Zou, G. Y.; Jiang, K.; Li, M.
2014-12-01
We tried to model the effect of pore size heterogeneity and pore connectivity on the residue gas saturation for dry gas reservoir rocks. If we consider that snap-off does not exist and only piston displacement takes place in all pores with the same size during imbibition process, in the extreme case, the residue gas saturation will be equal to zero. Thus we can suppose that the residue gas saturation of dry rocks is mainly controlled by the pore size distribution. To verify the assumption, percolation pore networks (i.e., three-dimensional simple cubic (SC) and body-center cubic (BCC)) were used in the study. The connectivity and the pore size distribution in percolation pore network could be changed randomly. The concept of water phase connectivity zw(i.e., water coordination number) and gas phase connectivity zg (i.e., gas coordination number) was introduced here. zw and zg will change during simulation and can be estimated numerically from the results of simulations through gradually saturated networks by water. The Simulation results show that when zg less than or equal to 1.5 during water quasi - static imbibition, the gas will be trapped in rock pores. Network simulation results also shows that the residue gas saturation Srg follows a power law relationship (i.e.,Srg∝σrα, where σr is normalized standard deviation of the pore radius distribution, and exponent α is a function of coordination number). This indicates that the residue gas saturation has no explicit relationship with porosity and permeability as it should have in light of previous study, pore radius distribution is the principal factor in determining the residue gas saturation of dry reservoir rocks.
Roadmap for Biomass Technologies in the United States
2002-12-01
landfill gases, anaerobic digestion of animal manure and food/feed/grain products and by-products, use of wastewater treatment digestion gas, sludge...include ethanol, biodiesel, and methanol. Biogas : A methane-bearing gas from the digestion of biomass. Biomass: Any organic matter that is available...Research pathways and milestones to improving the understanding of plant biochemis- try and enzyme production are provided in Exhibit 4. Objective Two
Nagashima, Hisayuki; Kondo, Tomohide; Nagoya, Tomoki; Ikeda, Toru; Kurimata, Naoko; Unoke, Shohei; Seto, Yasuo
2015-08-07
A field-portable gas chromatograph-mass spectrometer (Hapsite ER system) was evaluated for the detection of chemical warfare agents (CWAs) in the vapor phase. The system consisted of Tri-Bed concentrator gas sampler (trapping time: 3s(-1)min), a nonpolar low thermal-mass capillary gas chromatography column capable of raising temperatures up to 200°C, a hydrophobic membrane-interfaced electron ionization quadrupole mass spectrometer evacuated by a non-evaporative getter pump for data acquisition, and a personal computer for data analysis. Sample vapors containing as little as 22μg sarin (GB), 100μg soman (GD), 210μg tabun (GA), 55μg cyclohexylsarin (GF), 4.8μg sulfur mustard, 390μg nitrogen mustard 1, 140μg of nitrogen mustard 2, 130μg nitrogen mustard 3, 120μg of 2-chloroacetophenone and 990μg of chloropicrin per cubic meter could be confirmed after Tri-Bed micro-concentration (for 1min) and automated AMDIS search within 12min. Using manual deconvolution by background subtraction of neighboring regions on the extracted ion chromatograms, the above-mentioned CWAs could be confirmed at lower concentration levels. The memory effects were also examined and we found that blister agents showed significantly more carry-over than nerve agents. Gasoline vapor was found to interfere with the detection of GB and GD, raising the concentration limits for confirmation in the presence of gasoline by both AMDIS search and manual deconvolution; however, GA and GF were not subject to interference by gasoline. Lewisite 1, and o-chlorobenzylidene malononitrile could also be confirmed by gas chromatography, but it was hard to quantify them. Vapors of phosgene, chlorine, and cyanogen chloride could be confirmed by direct mass spectrometric detection at concentration levels higher than 2, 140, and 10mg/m(3) respectively, by bypassing the micro-concentration trap and gas chromatographic separation. Copyright © 2015 Elsevier B.V. All rights reserved.
... signals Identify sources of loud sounds (such as gas-powered lawnmowers, snowmobiles, power tools, gunfire, or music) that can contribute to hearing loss and try to reduce exposure Adopt behaviors to protect their hearing: Avoid or limit exposure ...
2012-06-08
UEconomic Strategy in Support of the Threatening Policy Iran relies on the abundant natural wealth from oil and gas , and has tried to develop its...Iranian government has adopted a strategic program aimed at manufacturing vehicles that use natural gas and less oil so that it can increase its oil ...aims to secure 20 percent of its electricity by nuclear material in order to reduce the consumption of gas and oil . However, the objectives referred
STS-96 M.S. Tokarev tries gas mask as part of a TCDT
NASA Technical Reports Server (NTRS)
1999-01-01
STS-96 Mission Specialist Valery Ivanovich Tokarev, with the Russian Space Agency, tries on an oxygen gas mask during Terminal Countdown Demonstration Test (TCDT) activities at Launch Pad 39B. The TCDT provides the crew with simulated countdown exercises, emergency egress training and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.), Ellen Ochoa (Ph.D.) and Julie Payette, with the Canadian Space Agency. Scheduled for liftoff on May 20 at 9:32 a.m., STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment.
Porous polymers: enabling solutions for energy applications.
Thomas, Arne; Kuhn, Pierre; Weber, Jens; Titirici, Maria-Magdalena; Antonietti, Markus
2009-02-18
A new generation of porous polymers was made for various energy-related applications, e.g., as fuel cell membranes, as electrode materials for batteries, for gas storage, partly from renewable resources. This review intends to catch this emerging field by reporting on a variety of different approaches to make high performing polymers porous. This includes template techniques, polymers with inherent microporosity, polymer frameworks by ionothermal polymerization, and the polymerization of carbon from appropriate precursors and by hydrothermal polymerization. In this process, we try to not only identify the current status of the field, but also point to open question and tasks to identify the potentially relevant progress. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolly, Brian C.; Lindemer, Terrence; Terrani, Kurt A.
In support of fully ceramic matrix (FCM) fuel development, coating development work has begun at the Oak Ridge National Laboratory (ORNL) to produce tri-isotropic (TRISO) coated fuel particles with UN kernels. The nitride kernels are used to increase heavy metal density in these SiC-matrix fuel pellets with details described elsewhere. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO 2 and UC x) kernels. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions were required tomore » maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels.« less
Properties of thick GEM in low-pressure deuterium
NASA Astrophysics Data System (ADS)
Lee, C. S.; Ota, S.; Tokieda, H.; Kojima, R.; Watanabe, Y. N.; Uesaka, T.
2014-05-01
Deuteron inelastic scattering (d, d') provides a promising spectroscopic tool to study nuclear incompressibility. In studies of deuteron inelastic scattering of unstable nuclei, measurements of low-energy recoiled particles is very important. In order to perform these measurements, we are developing a GEM-TPC based gaseous active target, called CAT (Center for nuclear study Active Target), operated with pure deuterium gas. The CAT has been tested with deuterium gas at 1 atm and 100-μm-thick GEMs. The low-pressure operation of CAT is planned in order to improve the detection capability for lower-energy recoil particles. A 400 μm-thick gas electron multiplier (THGEM) was chosen for the low-pressure operation of CAT. However, the properties of THGEM in low-pressure deuterium are currently undocumented. In this work, the performance of THGEM with low-pressure pure deuterium gas has been investigated. The effective gas gain of THGEM has been measured in various conditions using a 5.5-MeV 241Am alpha source. The effective gas gain was measured for 0.2-, 0.3- and 0.4-atm deuterium gas and a gas gain of about 103 was achieved by a double THGEM structure at 0.2 atm. The maximum achieved gain decreased with increasing gas pressure. The dependences of the effective gas gain on the electric field strengths of the drift, transfer and induction regions were investigated. The gain stability as a function of time in hydrogen gas was also tested and a relaxation time of THGEM of about 60 hours was observed with a continuous irradiation of alpha particles, which is significantly longer than previous studies have reported. We have tried to evaluate the gas gain of THGEM in deuterium gas by considering only the Townsend ionization process; however, it turned out that more phenomenological aspects, such as transfer efficiency, should be included in the evaluation. The basic properties of THGEM in low-pressure deuterium have been investigated for the first time.
Mapping Diffuse HI Content in MHONGOOSE Galaxies NGC 1744 and NGC 7424
NASA Astrophysics Data System (ADS)
Sardone, Amy; Pisano, Daniel J.; Pingel, Nickolas
2017-01-01
The universe contains an abundance of neutral atomic hydrogen, or HI. This HI holds the key to knowing how stars are born, how galaxies form and develop, and how dark matter halos accrete gas from the cosmic web. One of the most crucial questions regarding galaxy formation today is how galaxies accrete their gas and how accretion processes affect subsequent star formation. We are trying to answer these questions by mapping the HI content in a four square degree region around galaxies NGC 1744 and NGC 7424, galaxies to be observed as part of the MHONGOOSE survey. NGC 1744 has already been observed extensively with the VLA, so we will be able to quantify the differences in emission. To do this our GBT maps must be sensitive to column densities on the order of ~1018 cm-2. With such low column densities, we will be able to search for features of the cosmic web in the form of tidal interactions and cosmic web filaments with its relation to star-forming galaxies.
Optimum design of space storable gas/liquid coaxial injectors.
NASA Technical Reports Server (NTRS)
Burick, R. J.
1972-01-01
Review of the results of a program of single-element, cold-flow/hot-fire experiments performed for the purpose of establishing design criteria for a high-performance gas/liquid (FLOX/CH4) coaxial injector. The approach and the techniques employed resulted in the direct design of an injector that met or exceeded the performance and chamber compatibility goals of the program without any need for the traditional 'cut-and-try' development methods.
The Study of Factors that Influence the Entrepreneurship in the Growing Energy Market
NASA Astrophysics Data System (ADS)
Kinias, Ioannis G.
2009-08-01
In this paper, we are trying to study the field of private enterprise in the sector of Energy in Greece. The changes in the institutional and financial substructures, in the last decade, have supported the materialization of an important number of investment plans. The investor's interest in the energy sector has been expressed up to now in the utilisation of Renewable Sources of Energy (RSE), the substitution of "traditional" fuels with clean fuels (natural gas, liquid gas), the implementation of electricity's co-production, as well as in the saving of energy. The goal of that study is to answer specific questions concerning the entrepreneurship in the Greek Energy sector. Who the investors are in the Greek energy market and which their traits are? We are trying to analyse the procedures which must be followed for the preparation of an investment plan. Moreover we investigate the financial factors, such as the economic growth and the employment that can affect the entrepreneurship. The sources of finance and the role of Small and Medium Enterpises in the energy sector are also very important elements in our research. Finally we are trying to analyse the international perspective of entrepreneurship and the mechanism of how the global circumstances in the field of energy can affect the inland product of energy.
Naryzhny, Igor; Silas, Dean; Chi, Kenneth
2016-08-01
Carbapenem-resistant Enterobacteriaceae (CRE) outbreaks have been implicated at several medical institutions involving gastroenterology laboratories and, specifically, duodenoscopes. Currently, there are no specific guidelines to eradicate or prevent the outbreak of this bacteria. We describe ethylene oxide (ETO) gas sterilizations of duodenoscopes to address this issue. A complete investigation of the gastroenterology laboratory and an evaluation by the Centers for Disease Control and Prevention concluded that no lapses were found in the reprocessing of the equipment. With no deficiencies to address, we began a novel cleaning process using surgical ETO gas sterilizers in addition to standard endoscope reprocessing recommendations and guidelines, all while trying to eradicate the CRE contamination and prevent future recurrences. We also instituted a surveillance system for recurrence of CRE contamination via monthly cultures of the duodenoscopes. Between October 2013 and April 2014, 589 ERCPs were performed with 645 ETO gas sterilizations of 6 duodenoscopes. Given the extra 16 hours needed to sterilize the duodenoscopes, our institution incurred costs resulting from purchasing additional equipment and surveillance cultures. Four duodenoscopes sustained damage during this period; however, this could not be directly attributed to the sterilization process. Furthermore, after an 18-month success period we encountered a positive CRE culture after sterilization, albeit of a different strain than originally detected during the outbreak. The duodenoscope underwent additional ETO gas sterilization, with a negative repeated culture; all potentially exposed individuals screened negative for CRE. Proper use of high-level disinfection alone may not eliminate multidrug-resistant organisms from duodenoscopes. In this single-center study, the addition of ETO sterilization and frequent monitoring with cultures reduced duodenoscope contamination and eliminated clinical infections. As such, ETO gas sterilization may provide benefit in further decontamination of duodenoscopes, but further investigation is necessary. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Glass Blowing -- Try It, You'll Like It.
ERIC Educational Resources Information Center
Dilavore, Philip
1982-01-01
Discusses the basics of scientific glassblowing, including equipment needed, lighting a hand torch (which uses a gas and oxygen mixture), and cutting tubing. Also discusses preparation of butt joints, tee joints, and bends. Photographs illustrating various techniques are provided. (JN)
Solbu, K; Thorud, S; Hersson, M; Ovrebø, S; Ellingsen, D G; Lundanes, E; Molander, P
2007-08-17
Methodology for personal occupational exposure assessment of airborne trialkyl and triaryl organophosphates originating from hydraulic fluids by active combined aerosol and vapor sampling at 1.5L/min is presented. Determination of the organophosphates was performed by gas chromatography-mass spectrometry. Combinations of adsorbents (Anasorb 747, Anasorb CSC, Chromosorb 106, XAD-2 and silica gel) with an upstream cassette with glass fiber or PTFE filters and different desorption/extraction solvents (CS(2), CS(2)-dimethylformamide (50:1, v/v), toluene, dichloromethane, methyl-t-butyl ether and methanol) have been evaluated for optimized combined vapor and aerosol air sampling of the organophosphates tri-isobutyl, tri-n-butyl, triphenyl, tri-o-cresyl, tri-m-cresyl and tri-p-cresyl phosphates. The combination of Chromosorb 106 and 37 mm filter cassette with glass fiber filter and dichloromethane as desorption/extraction solvent was the best combination for mixed phase air sampling of the organophosphates originating from hydraulic fluids. The triaryl phosphates were recovered solely from the filter, while the trialkyl phosphates were recovered from both the filter and the adsorbent. The total sampling efficiency on the combined sampler was in the range 92-101% for the studied organophosphates based on spiking experiments followed by pulling air through the sampler. Recoveries after 28 days storage were 98-102% and 99-101% when stored at 5 and -20 degrees C, respectively. The methodology was further evaluated in an exposure chamber with generated oil aerosol atmospheres with both synthetic and mineral base oils with added organophosphates in various concentrations, yielding total sampling efficiencies in close comparison to the spiking experiments. The applicability of the method was demonstrated by exposure measurements in a mechanical workshop where system suitability tests are performed on different aircraft components in a test bench, displaying tricresyl phosphate air concentrations of 0.024 and 0.28 mg/m(3), as well as during aircraft maintenance displaying tri-n-butyl phosphate air concentrations of 0.061 and 0.072 mg/m(3).
Transition from Exponential to Power Law Income Distributions in a Chaotic Market
NASA Astrophysics Data System (ADS)
Pellicer-Lostao, Carmen; Lopez-Ruiz, Ricardo
Economy is demanding new models, able to understand and predict the evolution of markets. To this respect, Econophysics offers models of markets as complex systems, that try to comprehend macro-, system-wide states of the economy from the interaction of many agents at micro-level. One of these models is the gas-like model for trading markets. This tries to predict money distributions in closed economies and quite simply, obtains the ones observed in real economies. However, it reveals technical hitches to explain the power law distribution, observed in individuals with high incomes. In this work, nonlinear dynamics is introduced in the gas-like model in an effort to overcomes these flaws. A particular chaotic dynamics is used to break the pairing symmetry of agents (i, j) ⇔ (j, i). The results demonstrate that a "chaotic gas-like model" can reproduce the Exponential and Power law distributions observed in real economies. Moreover, it controls the transition between them. This may give some insight of the micro-level causes that originate unfair distributions of money in a global society. Ultimately, the chaotic model makes obvious the inherent instability of asymmetric scenarios, where sinks of wealth appear and doom the market to extreme inequality.
Experimental Validation of the Piezoelectric Triple Hybrid Actuation System (TriHYBAS)
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing; Jiang, Xiaoning; Su, Ji
2008-01-01
A piezoelectric triple hybrid actuation system (TriHYBAS) has been developed. In this brief presentation of the validation process the displacement profile of TriHYBAS and findings regarding displacement versus applied voltage are highlighted.
Bahia, Diana; Oliveira, Luciana Márcia; Lima, Fabio Mitsuo; Oliveira, Priscila; Silveira, José Franco da; Mortara, Renato Arruda; Ruiz, Jerônimo Conceição
2009-12-18
Phosphatidylinositol (PI) kinases are at the heart of one of the major pathways of intracellular signal transduction. Herein, we present the first report on a survey made by similarity searches against the five human pathogenic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, Leishmania major, Leishmania braziliensis and Leishmania infantum genomes available to date for phosphatidylinositol- and related-kinases (TryPIKs). In addition to generating a panel called "The TryPIKinome", we propose a model of signaling pathways for these TryPIKs. The involvement of TryPIKs in fundamental pathways, such as intracellular signal transduction and host invasion processes, makes the study of TryPIKs an important area for further inquiry. New subtype-specific inhibitors are expected to work on individual members of the PIK family and, therefore, can presumably neutralize trypanosomatid invasion processes.
Learner Performance Accounting: A Tri-Cycle Process
ERIC Educational Resources Information Center
Brown, Thomas C.; McCleary, Lloyd E.
1973-01-01
The Tri-Cycle Process described in the model permits for the first time an integrated system for designing an individualized instructional system that would permit a rational, diagnosis-prescription-evaluation system keyed to an accounting system. (Author)
Bubble migration inside a liquid drop in a space laboratory
NASA Technical Reports Server (NTRS)
Annamalai, P.; Shankar, N.; Cole, R.; Subramanian, R. S.
1982-01-01
The design of experiments in materials processing for trials on board the Shuttle are described. Thermocapillary flows will be examined as an aid to mixing in the formation of glasses. Acoustically levitated molten glass spheres will be spot heated to induce surface flow away from the hot spot to induce mixing. The surface flows are also expected to cause internal convective motion which will drive entrained gas bubbles toward the hot spot, a process also enhanced by the presence of thermal gradients. The method is called fining, and will be augmented by rotation of the sphere to cause bubble migration toward the axes of rotation to form one large bubble which is more easily removed. Centering techniques to fix the maximum centering accuracy will also be tried. Ground-based studies of bubble migration in a rotating liquid and in a temperature gradient in a liquid drop are reviewed.
Latimer, Joanna; Thomas, Gareth M
2017-07-01
'Controlling life was and is to be achieved in part by rationalizing and industrializing reproductive processes. Multiple heterogeneous and contradictory groups have had an interest in achieving such control - from elites seeking to control others to individuals, especially women, trying to get a grip on their own lives through controlling their reproduction; from eugenicists ultimately trying to control evolution to neo-Malthusians trying to control national and population size; from philanthropists and foundation executives trying to shape the future of science and human life in varied directions to reproductive scientists trying to do their research … The biomedicalization of life itself (human, plant, and animal) is the key overarching and usually taken for granted social process here' (Clarke : 273-5). © 2017 Foundation for the Sociology of Health & Illness.
Inorganic antimicrobial coating for titanium alloy and its effect on bacteria.
Tamai, Katsuya; Kawate, Kenji; Kawahara, Ikuo; Takakura, Yoshinori; Sakaki, Kazuhiko
2009-03-01
For orthopedic implants, infection is a serious problem. Therefore, we considered an implant with antimicrobial ability can prevent infection. We tried to coat a titanium alloy surface with Novaron, a commercially available inorganic antimicrobial. The purpose of this study was to analyze the differences among the surfaces of materials coated using different processing pressures of the working gas and analysis of the antimicrobial activity. One of the inorganic antimicrobials Novaron (grade VZ 600) was applied to titanium alloy (Ti6Al4V) plates. This antimicrobial has limited heat resistance, so we used cold spray technology to coat the titanium alloy with it. The principle of cold spray technology is spraying a powder in a high-velocity gas jet, accelerated by adiabatic expansion, against a substrate. Scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS) were used to analyze the differences among the surfaces of materials coated using different processing pressures of the working gas. The Japanese Industrial Standard (JIS) method (JIS Z2801: 2000) was used to analyze the antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Antimicrobial activity was analyzed only for the sample coated at 3.0 MPa. The SEM and EDS results indicated that when the pressure of the working gas was increased, the antimicrobial coated the titanium adequately. This material showed good effects against S. aureus and P. aeruginosa and some effect for K. pneumoniae. Antimicrobial implants represent a preventive method against infection. There is a possibility of using them not only for clean operations but also for operations with suspected bacterial contamination, such as fixation of slight compound fractures.
RADIATION STABILITY OF ORGANIC LIQUIDS. Semi-Annual Report No. 3 for January 1 to June 30, 1958
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, R.M.; Towle, L.H.
1958-06-30
2 1 9 0 5 - completed on the nature and amount of the radiolysis products of tributyl phosphate containing equilibration quantities of 2M aqueous HNO/sub 3/, a 1: 2 volume ratio two-phase TBP-2M aqueous HNO/sub 3/ system, a 5% TBP-95% Amsco-2M HNO/sub 3/ two-phase system, four different (15-30- 45-60%) TBP-Amsco phases containing equilibration quantities of 2M HNO/sub 3/, didecyl decanephosphonate, diethyl carbonate, diethyl carbonate containing equilibration quantities of 1M HNO/sub 3/, di-(2ethylhexyl) phosphoric acid, tri- n-octyl phosphine oxide, and tri-iso-octyl amine. The effect of nitric acid on tributyl phosphate radiolysis was tested in a variety of situations. G(MBP) valuesmore » obtained from the two TBPHNO/sub 3/ studies indicated that 2M HNO/sub 3/ resent either in an acid-saturated single phase, or as a second phase, increased the G(MBP) value by a factor of four. Amsco solutions of TBP in the presence of HrO/sub 3/ did not differ in G(MBP) yield from pure TBP irradiations. Acidsatarated TBP produced G(gas) values twice that of pure TBP. Amsco solutions of TBP, equilibrated with 2M HNO/sub 3/ prior to irradiation, produced G(gas) values roughly one-half of the value for pure TBP. Studies of new alternate solvents for TBP were extended to include a detailed study of diethyl carbonate for process application. Diethyl carbonate, when saturated by equilibration with 2M HNO/sub 3/, yielded G(gas) values 20% higher than pure diethyl carbonate. G(acid) levels were 1% of those found for irradiated TBP. Irradiations of didecyl decanephosphonate and tri-n-octyl phosphine oxide indicated that the two compounds had comparable G(gas) values, but the phosphine oxide produced G(acid) values three to four factors smaller. Irradiation of a commercial tri-iso-octyl amine to 1795 whr/liter dose level produced a gross target destruction by radiolysis of almost 60%. Irradiation of pure tributyl phosphate to the same dose results in about 35% destruction. Irradiation of di-(2-ethylhexyl) phosphoric acid produced a G(dibasic actd) value roughly one-third of that from DBP. However, the G(phosphoric acid) value for the compound exceeded that of DBP by a factor of six. The G/sub M/ (polymer) value was one-third that of DBP and one-half that of TBP. The G/sub M/(target) value was 50% higher than the value for TBP and 20% lower than that for DBP. Studies of factors causing poor process performance were made by evaluation of U retention and emulsification. Spinner column studies indicated that 65% of the U retention of irradiated TBP was due to DBP and only 20% due to radiation polymer. Irradiation of HNO/sub 3/-saturated TBP-Amsco systems increased the U retention, compared to that of unirradiated systems, by factors of three to four at 400 whr/liter levels. Emulsification studies indicated that radiation polymer is the main contributor to emulsification phenomena with irradiated TBP at dose levels from 25-100 whr/ liter. Degree of emulsification was increased by factors of three to four when HNO/sub 3/-saturated TBP-Amsco systems were irradiated to 400 whr/liter. Several properties of diethyl carbonate of process interest were studied. Separatory funnel studies indicated diethyl carbonate to be 50% as efficient as 25% TBP- Amsco systems for extraction of U from acidic 2M Al(NO/sub 3/)sub 3/ aqueous systems. The U retention of HNO/sub 3/-saturated diethyl carbonate, after irradiation to 380 whr/liter dose, was higher than that observed with pure irradiated diethyl carbonate at 980 whr/liter levels by a factor of two. This higher level of retention, however, is equal to that or unirradiated 25% tributyl phosphate-Amsco systems. Diethyl carbonate was evaluated as an extractant for Th from aqueous 0.2M Th(NO/sub 3/)/sub 4/-2M Al(NO/sub 3/)/sub 3/ solutions of varying HNO/sub 3/ content (0 to 4M). The solubility of diethyl« less
DOT National Transportation Integrated Search
2017-11-01
California's Sustainable Communities and Climate Protection Act (SB 375) and the Oregon Sustainable Transportation Initiative (SB 1059) have made them the first states in the nation to try and reduce greenhouse gas (GHG) emissions using the transport...
Processes and applications of silicon carbide nanocomposite fibers
NASA Astrophysics Data System (ADS)
Shin, D. G.; Cho, K. Y.; Jin, E. J.; Riu, D. H.
2011-10-01
Various types of SiC such as nanowires, thin films, foam, and continuous fibers have been developed since the early 1980s, and their applications have been expanded into several new applications, such as for gas-fueled radiation heater, diesel particulate filter (DPF), ceramic fiber separators and catalyst/catalyst supports include for the military, aerospace, automobile and electronics industries. For these new applications, high specific surface area is demanded and it has been tried by reducing the diameter of SiC fiber. Furthermore, functional nanocomposites show potentials in various harsh environmental applications. In this study, silicon carbide fiber was prepared through electrospinning of the polycarbosilane (PCS) with optimum molecular weight distribution which was synthesized by new method adopting solid acid catalyst such as ZSM-5 and γ-Al2O3. Functional elements such as aluminum, titanium, tungsten and palladium easily doped in the precursor fiber and remained in the SiC fiber after pyrolysis. The uniform SiC fibers were produced at the condition of spinning voltage over 20 kV from the PCS solution as the concentration of 1.3 g/ml in DMF/Toluene (3:7) and pyrolysis at 1200°C. Pyrolyzed products were processed into several interesting applications such as thermal batteries, hydrogen sensors and gas filters.
ERIC Educational Resources Information Center
Moore, Mitzi Ruth
1992-01-01
Proposes having students perform skits in which they play the roles of the science concepts they are trying to understand. Provides the dialog for a skit in which hot and cold gas molecules are interviewed on a talk show to study how these properties affect wind, rain, and other weather phenomena. (MDH)
Novel Inorganic/Polymer Composite Membranes for CO 2 Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, W.S. Winston; Dutta, Prabir K.; Schmit, Steve J.
The objective of this project is to develop a cost-effective design and manufacturing process for new membrane modules that capture CO 2 from flue gas in coal-fired power plants. The membrane consisted of a thin selective layer including inorganic (zeolite) embedded in a polymer structure so that it can be made in a continuous manufacturing process. The membrane was incorporated in spiral-wound modules for the field test with actual flue gas at the National Carbon Capture Center (NCCC) in Wilsonville, AL and bench scale tests with simulated flue gas at the Ohio State University (OSU). Using the modules for post-combustionmore » CO 2 capture is expected to achieve the DOE target of $40/tonne CO 2 captured (in 2007 dollar) for 2025. Membranes with the amine-containing polymer cover layer on zeolite-Y (ZY) nanoparticles deposited on the polyethersulfone (PES) substrate were successfully synthesized. The membranes showed a high CO 2 permeance of about 1100 GPU (gas permeation unit, 1 GPU = 10 -6 cm 3 (STP)/(cm 2 • s • cm Hg), 3000 GPU = 10-6 mol/(m 2 • s • Pa)) with a high CO 2/N 2 selectivity of > 200 at the typical flue gas conditions at 57°C (about 17% water vapor in feed gas) and > 1400 GPU CO 2 permeance with > 500 CO 2/N 2 selectivity at 102°C (~ 80% water vapor). The synthesis of ZY nanoparticles was successfully scaled up, and the pilot-scale membranes were also successfully fabricated using the continuous membrane machine at OSU. The transport performance of the pilot-scale membranes agreed reasonably well with the lab-scale membranes. The results from both the lab-scale and scale-up membranes were used for the techno-economic analysis. The scale-up membranes were fabricated into prototype spiral-wound membrane modules for continuous testing with simulated or real flue gas. For real flue gas testing, we worked with NCCC, in consultation with TriSep Corporation, Gradient Technology and American Electric Power (AEP). The membrane module demonstrated > 800 GPU of CO 2 permeance and > 150 CO 2/N 2 selectivity when tested with real flue gas at NCCC. The results obtained were used to update the techno-economic analysis. In addition, the EH&S assessment of the membranes for post-combustion CO 2 capture was conducted.« less
First results from experiment in South China Sea using marine controlled source electromagnetic
NASA Astrophysics Data System (ADS)
Li, Yuan; Wang, Lipeng; Deng, Ming
2016-04-01
We concentrated on the use of marine controlled-source electromagnetic (CSEM) sounding with a horizontal electric dipole source towed close to the seafloor and receivers anchored on the seafloor. We applied the CSEM method in South China Sea for the first time in 2014, which not only test the application of our instrument, but also test our data processing method. Electromagnetic fields transmitted by a towed electric dipole source in deep sea were measured by a linear array of six seafloor receivers, positioned 600 meter (m) apart. Our results provided two highly resistivity layers beneath the survey line and the gas hydrate saturation profile associated with the anomalous resistivity. In the letter, we discussed some anomalous layers during the interpretation steps. The most plausible explanation of the first resistivity layer anomalies is that large amounts of gas hydrate have accumulated at 200 m depth below the seep sites, and the second layers is considerable volumes of gas hydrate have accumulated the seafloor at survey line according to the conceptual model, during the resistivity compared with other evidence like seismic and well data from the same survey. We should try other observation like heat flow, geochemical or other evidence to test the statement in the future.
Boesgaard, Kristine S; Mikkelsen, Teis N; Ro-Poulsen, Helge; Ibrom, Andreas
2013-07-01
There is an ongoing debate on how to correct leaf gas exchange measurements for the unavoidable diffusion leakage that occurs when measurements are done in non-ambient CO2 concentrations. In this study, we present a theory on how the CO2 diffusion gradient over the gasket is affected by leaf-mediated pores (LMP) and how LMP reduce diffusive exchange across the gaskets. Recent discussions have so far neglected the processes in the quasi-laminar boundary layer around the gasket. Counter intuitively, LMP reduce the leakage through gaskets, which can be explained by assuming that the boundary layer at the exterior of the cuvette is enriched with air from the inside of the cuvette. The effect can thus be reduced by reducing the boundary layer thickness. The theory clarifies conflicting results from earlier studies. We developed leaf adaptor frames that eliminate LMP during measurements on delicate plant material such as grass leaves with circular cross section, and the effectiveness is shown with respiration measurements on a harp of Deschampsia flexuosa leaves. We conclude that the best solution for measurements with portable photosynthesis systems is to avoid LMP rather than trying to correct for the effects. © 2013 John Wiley & Sons Ltd.
An experimental approach of decoupling Seebeck coefficient and electrical resistivity
NASA Astrophysics Data System (ADS)
Muhammed Sabeer N., A.; Paulson, Anju; Pradyumnan, P. P.
2018-04-01
The Thermoelectrics (TE) has drawn increased attention among renewable energy technologies. The performance of a thermoelectric material is quantified by a dimensionless thermoelectric figure of merit, ZT=S2σT/κ, where S and σ vary inversely each other. Thus, improvement in ZT is not an easy task. So, researchers have been trying different parameter variations during thin film processing to improve TE properties. In this work, tin nitride (Sn3N4) thin films were deposited on glass substrates by reactive RF magnetron sputtering and investigated its thermoelectric response. To decouple the covariance nature of Seebeck coefficient and electrical resistivity for the enhancement of power factor (S2σ), the nitrogen gas pressure during sputtering was reduced. Reduction in nitrogen gas pressure reduced both sputtering pressure and amount of nitrogen available for reaction during sputtering. This experimental approach of combined effect introduced preferred orientation and stoichiometric variations simultaneously in the sputtered Sn3N4 thin films. The scattering mechanism associated with these variations enhanced TE properties by independently drive the Seebeck coefficient and electrical resistivity parameters.
NASA Astrophysics Data System (ADS)
Ghaedi, Hosein; Ayoub, Muhammad; Bhat, A. H.; Mahmood, Syed Mohammad; Akbari, Saeed; Murshid, Ghulam
2016-11-01
Hydration is an alternative method for CO2 capture. In doing so, some researchers use porous media on an experimental scale. This paper tries to gather the researches on the formation of CO2 hydrate in different types of porous media such as silica sand, quartz sand, Toyoura, pumice, and fire hardened red clay. This review has attempted to examine the effects of salt and particle sizes as two major factors on the induction time, water to hydrate conversion, gas uptake (or gas consumption), and the rate of CO2 hydrate formation. By performing a critical assessment of previous research works, it was observed that the figure for the gas uptake (or gas consumption) and water to hydrate conversion in porous media was decreased by increasing the particle size provided that the pore size was constant. Although, salt can play a role in hydrate formation as the thermodynamic inhibitor, the results show that salt can be regarded as the kinetic growth inhibitor and kinetic promoter. Because of the fact that the gas uptake in seawater is lower than pure water at the end of experiment, the salt can act as a kinetic growth inhibitor. However, since gas uptake (after the nucleation period and for a short period) and the initial rate of hydrate formation in saline water were more than that of pure water, salt can play a promoter role in the kinetic reaction, too. Besides these, in the case of pure water and within a certain particle size, the amount of the hydrate formation rate has been seen to be greater in smaller particles (provided that the pore size is constant), however this has not been observed for seawater.
NASA Astrophysics Data System (ADS)
Marosvari, Csaba
Azerbaijan, a landlocked post-Soviet country since its independence has been trying to utilize its energy resources in its foreign policy. With production-sharing agreements with Western oil companies beginning with the 1994 signing of the "Contract of the Century" and the construction of the Baku-Tbilisi-Ceyhan oil pipeline Azerbaijan successfully opened up its energy sector for foreign investment and used pipelines to stabilize its economy and underpin its foreign policy. The discovery of the Shah Deniz gas field opened up new opportunities for Baku to buttress its foreign policy goals with the export of natural gas. In this Master's thesis I will evaluate and show the importance and significance of natural gas export in Azerbaijani foreign policy.
Sutton, A.J.; Elias, Tamar; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.
2014-01-01
The first volcanic gas studies in Hawai‘i, beginning in 1912, established that volatile emissions from Kīlauea Volcano contained mostly water vapor, in addition to carbon dioxide and sulfur dioxide. This straightforward discovery overturned a popular volatile theory of the day and, in the same action, helped affirm Thomas A. Jaggar, Jr.’s, vision of the Hawaiian Volcano Observatory (HVO) as a preeminent place to study volcanic processes. Decades later, the environmental movement produced a watershed of quantitative analytical tools that, after being tested at Kīlauea, became part of the regular monitoring effort at HVO. The resulting volatile emission and fumarole chemistry datasets are some of the most extensive on the planet. These data indicate that magma from the mantle enters the shallow magmatic system of Kīlauea sufficiently oversaturated in CO2 to produce turbulent flow. Passive degassing at Kīlauea’s summit that occurred from 1983 through 2007 yielded CO2-depleted, but SO2- and H2O-rich, rift eruptive gases. Beginning with the 2008 summit eruption, magma reaching the East Rift Zone eruption site became depleted of much of its volatile content at the summit eruptive vent before transport to Pu‘u ‘Ō‘ō. The volatile emissions of Hawaiian volcanoes are halogen-poor, relative to those of other basaltic systems. Information gained regarding intrinsic gas solubilities at Kīlauea and Mauna Loa, as well as the pressure-controlled nature of gas release, have provided useful tools for tracking eruptive activity. Regular CO2-emission-rate measurements at Kīlauea’s summit, together with surface-deformation and other data, detected an increase in deep magma supply more than a year before a corresponding surge in effusive activity. Correspondingly, HVO routinely uses SO2 emissions to study shallow eruptive processes and effusion rates. HVO gas studies and Kīlauea’s long-running East Rift Zone eruption also demonstrate that volatile emissions can be a substantial volcanic hazard in Hawai‘i. From its humble beginning, trying to determine the chemical composition of volcanic gases over a century ago, HVO has evolved to routinely use real-time gas chemistry to track eruptive processes, as well as hazards.
Triso coating development progress for uranium nitride kernels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolly, Brian C.; Lindemer, Terrence; Terrani, Kurt A.
2015-08-01
In support of fully ceramic matrix (FCM) fuel development [1-2], coating development work is ongoing at the Oak Ridge National Laboratory (ORNL) to produce tri-structural isotropic (TRISO) coated fuel particles with UN kernels [3]. The nitride kernels are used to increase fissile density in these SiC-matrix fuel pellets with details described elsewhere [4]. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO2 and UCx) kernels [5]. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions weremore » required to maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels (Table 1).« less
1994-11-01
separation of a stable, negatively charged exciplex such as (ClXe2)- and a self- trapped positive hole (STi) localized on a Xe+ (n = 2-3) molecule. The first...solid to form Xe + HO + 2hv -- Xe÷ (HCI)-, which quickly reacts with another Xe atom to form the more stable tri-atomic exciplex X407. This exciplex ...Transfer Reaction Dynamics in Rare Gas Solids. I. Photodynamics of Localized Xenon Chloride Exciplexes ." Journal of Chemical Physics. vol. 85, p. 5660
STS-105 Commander Horowitz tries on gas mask at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001.
NASA Astrophysics Data System (ADS)
Kasten, S.; Schneider, R.; Spiess, V.; Cruise Participants Of M56b
2003-04-01
A recent high-resolution seismic, echosounder and video survey combined with detailed geological and geochemical sampling of pockmark sites on the Northern Congo Fan was carried out with RV Meteor in November/December 2002 in the frame of the project "CONGO" (BMBF/BEO "Geotechnologien"). These investigations revealed the extensive occurrence of surface and sub-surface gas hydrates as well as characteristic features of fluid venting such as clams (Calyptogena), tube worms (Pogonophera) and huge amounts of authigenic carbonates. In a first approach the patchyness in the occurrence of these features was mapped in relation to pockmark structure and seismic reflectors. Detailed sampling of three pockmarks by gravity corer showed that gas hydrates are present at and close to the sediment surface and often occur as several distinct layers and/or veins intercalated with hemipelagic muds. The depth of the upper boundary of these hydrate-bearing sediments increases from the center towards the edge of the pockmark structures. Pore water concentration profiles of sulfate and methane document the process of anaerobic methane oxidation above the hydrate-bearing layers. For those cores which contained several gas hydrate layers preliminary pore water profiles suggest the occurrence of more than one zone of anaerobic methane oxidation. Authigenic carbonates are found in high abundance, irregularly distributed within the pockmarks close to the sediment surface. These carbonates occur in a wide variety with respect to size, shape, structure and mineralogy. Their formation is associated with high amounts of bicarbonate released by the process of anaerobic methane oxidation. In the gravity cores authigenic carbonates are always present above hydrate-bearing sections. However, the quantities and characteristics of these authigenic minerals in relation to venting and microbial activity as well as to gas hydrate dissociation are not clear yet. Unraveling this relationship will be a major target of further investigation. By means of detailed studies of the sedimentary solid-phase, authigenic carbonates, clam layers and molecular biomarkers we will also try to reconstruct the history of venting and the dynamics of gas hydrate formation and decomposition in the Northern Congo fan area.
Lundh, Lena; Hylander, Ingrid; Törnkvist, Lena
2012-09-01
To investigate why some patients with chronic obstructive pulmonary disease (COPD) have difficulty quitting smoking and to develop a theoretical model that describes their perspectives on these difficulties. Grounded theory method was used from the selection of participants to the analyses of semi-structured interviews with 14 patients with COPD. Four additional interviews were conducted to ensure relevance. The analysis resulted in a theoretical model that illustrates the process of 'Patients with COPD trying to quit smoking'. The model illuminates factors related to the decision to try to quit smoking, including pressure-filled mental states and constructive or destructive pressure-relief strategies. The constructive strategies lead either to success in quitting or to continuing to try to quit. The destructive strategies can lead to losing hope and becoming resigned to continuing to smoke. The theoretical model 'Patients trying to quit smoking' contributes to a better understanding of the pressure-filled mental states and destructive strategies experienced by some patients with COPD in the process of trying to quit. This better understanding can help nurses individualise counselling. Moreover, patients' own awareness of these states and strategies may facilitate their efforts to quit. The information in the model can also be used as a supplement to methods such as motivational interviewing (MI). © 2011 The Authors. Scandinavian Journal of Caring Sciences © 2011 Nordic College of Caring Science.
NASA Technical Reports Server (NTRS)
Nuth, J. A.; Rietmeijer, F. J. M.; Hallenbeck, S. L.; Withey, P. A.
1999-01-01
Starting with cooling, refractory vapors diluted in significant quantities of H and He there are four processes that most natural systems will undergo: nucleation, growth, annealing, and coagulation. Nucleation is the processes by which the first stable refractory nuclei form in the vapor. These are the seeds onto which the remaining vapors will condense during the growth stage. Solids of any composition will try to arrange themselves into the least energetic configuration, provided that there is sufficient energy available to support such processes as diffusion and the breaking of chemical bonds. There is a significant activation energy associated with the annealing process in refractory solids due to the relatively high energy of the chemical bonds in solids. The grains formed in most cosmochemical systems are extremely small and often tightly coupled to the gas. Because of their small physical cross sections coagulation may be a very slow process unless there is another driving force involved in addition to normal Brownian motion. In what follows we will briefly cover each of these four stages for refractory oxide and metal grains, although in inverse order.
Can Congress Get 'Right to Try' Right?
Kirkner, Richard Mark
2018-05-01
A federal bill would expand access to experimental treatments to seriously ill patients, but critics say the right to try would take away FDA oversight and create a "Wild West." Proponents counter that the FDA's current process can be onerous for people with just a few months to live. Meanwhile, most states' right-to-try laws have gone unused.
Fertilizer and tillage management impacts on non-carbon-dioxide greenhouse gas emissions
USDA-ARS?s Scientific Manuscript database
Recent efforts have been placed on trying to establish emission estimates for greenhouse gases (GHG) from agricultural soils in the United States. This research was conducted to assess the influence of cropping systems management on nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) emissio...
40 CFR 370.42 - What is Tier II inventory information?
Code of Federal Regulations, 2013 CFR
2013-07-01
... common name of the chemical as provided on the Material Safety Data Sheet and its Chemical Abstract....64(a). (2) Indicate whether the chemical is: pure or mixture; solid, liquid, or gas; and whether the... Inventory (TRI) and Risk Management Program. If your facility has not been assigned an identification number...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liese, Eric; Zitney, Stephen E.
A generic training simulator of a natural gas combined cycle was modified to match operations at a real plant. The objective was to use the simulator to analyze cycling operations of the plant. Initial operation of the simulator revealed the potential for saturation conditions in the final high pressure superheater as the attemperator tried to control temperature at the superheater outlet during gas turbine loading and unloading. Subsequent plant operational data confirmed simulation results. Multiple simulations were performed during loading and unloading of the gas turbine to determine operational strategies that prevented saturation and increased the approach to saturation temperature.more » The solutions included changes to the attemperator temperature control setpoints and strategic control of the steam turbine inlet pressure control valve.« less
NASA Astrophysics Data System (ADS)
Abel, Tom
2013-01-01
Gravitational instability of small density fluctuations, possibly created during an early inflationary period, is the key process leading to the formation of all structure in the Universe. New numerical algorithms have recently enabled much progress in understanding the relevant physical processes dominating the first billion years of structure formation. Computational cosmologists are attempting to simulate on their supercomputers how galaxies come about. In recent years first attempts trying to follow the formation and eventual death of every single star in these model galaxies has become to be within reach. The models now include gravity for both dark matter and baryonic matter, hydrodynamics, follow the radiation from massive stars and its impact in shaping the surrounding material, gas chemistry and all the key radiative atomic and molecular physics determining the thermal state of the model gas. In a small number of cases even the rold of magnetic fields on galactic scales is being studied. At the same time we are learning more about the limitations of certain numerical techniques and developing new schemes to more accurately follow the interplay of these many different physical processes. This talk is in two parts. First we consider a birds eye view of the relevant physical processes relevant for structure formation and potential approaches in solving the relevant equations efficiently and accurately on modern supercomputers. Secondly, we focus in on one of those processes. Namely the intricate and fascinating dynamics of the likely collsionless fluid dynamics of dark matter. A novel way of following the intricate evolution of such collisionless fluids in phase space is allowing us to construct new numerical methods to help understand the nature of dark matter halos as well as problems in astrophysical and terrestial plasmas.
Deep Subaru Hyper Suprime-Cam Observations of Milky Way Satellites Columba I and Triangulum II
NASA Astrophysics Data System (ADS)
Carlin, Jeffrey L.; Sand, David J.; Muñoz, Ricardo R.; Spekkens, Kristine; Willman, Beth; Crnojević, Denija; Forbes, Duncan A.; Hargis, Jonathan; Kirby, Evan; Peter, Annika H. G.; Romanowsky, Aaron J.; Strader, Jay
2017-12-01
We present deep, wide-field Subaru Hyper Suprime-Cam photometry of two recently discovered satellites of the Milky Way (MW): Columba I (Col I) and Triangulum II (Tri II). The color-magnitude diagrams of both objects point to exclusively old and metal-poor stellar populations. We re-derive structural parameters and luminosities of these satellites, and find {M}{{V},{Col}{{I}}}=-4.2+/- 0.2 for Col I and {M}{{V},{Tri}{II}}=-1.2+/- 0.4 for Tri II, with corresponding half-light radii of {r}{{h},{Col}{{I}}}=117+/- 17 pc and {r}{{h},{Tri}{II}}=21+/- 4 pc. The properties of both systems are consistent with observed scaling relations for MW dwarf galaxies. Based on archival data, we derive upper limits on the neutral gas content of these dwarfs, and find that they lack H I, as do the majority of observed satellites within the MW virial radius. Neither satellite shows evidence of tidal stripping in the form of extensions or distortions in matched-filter stellar density maps or surface-density profiles. However, the smaller Tri II system is relatively metal-rich for its luminosity (compared to other MW satellites), possibly because it has been tidally stripped. Through a suite of orbit simulations, we show that Tri II is approaching pericenter of its eccentric orbit, a stage at which tidal debris is unlikely to be seen. In addition, we find that Tri II may be on its first infall into the MW, which helps explain its unique properties among MW dwarfs. Further evidence that Tri II is likely an ultra-faint dwarf comes from its stellar mass function, which is similar to those of other MW dwarfs. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
[PBDEs pollution in the atmosphere of a typical E-waste dismantling region].
Chen, Duo-hong; Li, Li-ping; Bi, Xin-hui; Zhao, Jin-ping; Sheng, Guo-ying; Fu, Jia-mo
2008-08-01
The vapor-phase and particulate-phase samples were collected from the E-waste dismantling region (E) and a reference region (S), which is located in the upwind direction of the E and where the costume industry is developed. The aim was to acquire information about the concentrations, gas/particle partitioning and distribution of polybrominated diphenyt ethers (PBDEs). 11 congeners PBDEs were detected with GC-NCI-MS. The results showed that E-waste dismantling has resulted in serious pollution and the PBDE concentrations (from tri-to deca-BDE) ranged from 51.1 pg x m(-3) to 2685 pg x m(-3) (mean:830 pg x m(-3)), while the PBDE concentrations (from tri-to deca-BDE) in S were in the range of 1.00 pg x m(-3) to 98.9 pg x m(-3) (mean: 28.7 pg x m(-3)). The gas/particle partitioning of PBDEs exhibited a strong dependence on bromine number. Low-brominated PBDEs tend to have a higher concentration in the gas-phase while highly brominated PBDEs are mostly associated with the particulate. The mass distribution of PBDEs in E (including vapor-phase and particulate-phase) was dominated by penta-BDE, accounting for 54.3% of the total PBDEs, followed by deca-BDE, accounting for 23.8%. This pollution characters validated that the E-waste did not only come from Asia, but also from North America and Europe.
NASA Astrophysics Data System (ADS)
Zhao, X. Y.; Haworth, D. C.; Ren, T.; Modest, M. F.
2013-04-01
A computational fluid dynamics model for high-temperature oxy-natural gas combustion is developed and exercised. The model features detailed gas-phase chemistry and radiation treatments (a photon Monte Carlo method with line-by-line spectral resolution for gas and wall radiation - PMC/LBL) and a transported probability density function (PDF) method to account for turbulent fluctuations in composition and temperature. The model is first validated for a 0.8 MW oxy-natural gas furnace, and the level of agreement between model and experiment is found to be at least as good as any that has been published earlier. Next, simulations are performed with systematic model variations to provide insight into the roles of individual physical processes and their interplay in high-temperature oxy-fuel combustion. This includes variations in the chemical mechanism and the radiation model, and comparisons of results obtained with versus without the PDF method to isolate and quantify the effects of turbulence-chemistry interactions and turbulence-radiation interactions. In this combustion environment, it is found to be important to account for the interconversion of CO and CO2, and radiation plays a dominant role. The PMC/LBL model allows the effects of molecular gas radiation and wall radiation to be clearly separated and quantified. Radiation and chemistry are tightly coupled through the temperature, and correct temperature prediction is required for correct prediction of the CO/CO2 ratio. Turbulence-chemistry interactions influence the computed flame structure and mean CO levels. Strong local effects of turbulence-radiation interactions are found in the flame, but the net influence of TRI on computed mean temperature and species profiles is small. The ultimate goal of this research is to simulate high-temperature oxy-coal combustion, where accurate treatments of chemistry, radiation and turbulence-chemistry-particle-radiation interactions will be even more important.
NASA Astrophysics Data System (ADS)
Benmansour, Abdelkrim; Liazid, Abdelkrim; Logerais, Pierre-Olivier; Durastanti, Jean-Félix
2016-02-01
Cryogenic propellants LOx/H2 are used at very high pressure in rocket engine combustion. The description of the combustion process in such application is very complex due essentially to the supercritical regime. Ideal gas law becomes invalid. In order to try to capture the average characteristics of this combustion process, numerical computations are performed using a model based on a one-phase multi-component approach. Such work requires fluid properties and a correct definition of the mixture behavior generally described by cubic equations of state with appropriated thermodynamic relations validated against the NIST data. In this study we consider an alternative way to get the effect of real gas by testing the volume-weighted-mixing-law with association of the component transport properties using directly the NIST library data fitting including the supercritical regime range. The numerical simulations are carried out using 3D RANS approach associated with two tested turbulence models, the standard k-Epsilon model and the realizable k-Epsilon one. The combustion model is also associated with two chemical reaction mechanisms. The first one is a one-step generic chemical reaction and the second one is a two-step chemical reaction. The obtained results like temperature profiles, recirculation zones, visible flame lengths and distributions of OH species are discussed.
Explosive volcanism lessons learned from Mentos and soda eruptions
NASA Astrophysics Data System (ADS)
Wright, H. M.; Rust, A. C.; Cashman, K. V.
2006-12-01
When hard Mentos candies are dropped into a bottle of carbonated beverage, the resultant rapid CO2 exsolution and gas expansion causes an impressive soda `eruption'. We explore the ways in which this simple example can be used to demonstrate explosive volcanic processes. Through hands-on experiments, students can vary the type of candy, the type of beverage, and the shape of the vent (by making a hole in the cap of the soda bottle) to understand the processes that are influencing the height and duration of the eruption column. The activity can be tailored to demonstrate basic principles of gas exsolution and expansion for young students, but can also be extended to more complex principles of heterogeneous bubble nucleation and decreasing surface tension for college students. We present results from Mentos and soda experiments by a group of college freshman in the elementary education program (with no real science background). We compare students' resultant understanding of the similarities and differences between volcanic eruptions and the experiments with the results from a similar activity performed by a group of graduate geology students. The Mentos and soda reaction is dramatic. Video clips of people, young and old, trying this experiment across the world can be found on the world wide web. We suggest that the popularity of this demonstration be used to help teach fundamental concepts in both volcanology and scientific experimentation.
A workflow for reproducing mean benthic gas fluxes
NASA Astrophysics Data System (ADS)
Fulweiler, Robinson W.; Emery, Hollie E.; Maguire, Timothy J.
2016-08-01
Long-term data sets provide unique opportunities to examine temporal variability of key ecosystem processes. The need for such data sets is becoming increasingly important as we try to quantify the impact of human activities across various scales and in some cases, as we try to determine the success of management interventions. Unfortunately, long-term benthic flux data sets for coastal ecosystems are rare and curating them is a challenge. If we wish to make our data available to others now and into the future, however, then we need to provide mechanisms that allow others to understand our methods, access the data, reproduce the results, and see updates as they become available. Here we use techniques, learned through the EarthCube Ontosoft Geoscience Paper of the Future project, to develop best practices to allow us to share a long-term data set of directly measured net sediment N2 fluxes and sediment oxygen demand at two sites in Narragansett Bay, Rhode Island (USA). This technical report describes the process we used, the challenges we faced, and the steps we will take in the future to ensure transparency and reproducibility. By developing these data and software sharing tools we hope to help disseminate well-curated data with provenance as well as products from these data, so that the community can better assess how this temperate estuary has changed over time. We also hope to provide a data sharing model for others to follow so that long-term estuarine data are more easily shared and not lost over time.
In Vivo Function of the Chaperonin TRiC in α-Actin Folding during Sarcomere Assembly.
Berger, Joachim; Berger, Silke; Li, Mei; Jacoby, Arie S; Arner, Anders; Bavi, Navid; Stewart, Alastair G; Currie, Peter D
2018-01-09
The TCP-1 ring complex (TRiC) is a multi-subunit group II chaperonin that assists nascent or misfolded proteins to attain their native conformation in an ATP-dependent manner. Functional studies in yeast have suggested that TRiC is an essential and generalized component of the protein-folding machinery of eukaryotic cells. However, TRiC's involvement in specific cellular processes within multicellular organisms is largely unknown because little validation of TRiC function exists in animals. Our in vivo analysis reveals a surprisingly specific role of TRiC in the biogenesis of skeletal muscle α-actin during sarcomere assembly in myofibers. TRiC acts at the sarcomere's Z-disk, where it is required for efficient assembly of actin thin filaments. Binding of ATP specifically by the TRiC subunit Cct5 is required for efficient actin folding in vivo. Furthermore, mutant α-actin isoforms that result in nemaline myopathy in patients obtain their pathogenic conformation via this function of TRiC. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Zhang, Xin; Luo, Xiao; Hu, Haixiang; Zhang, Xuejun
2015-09-01
In order to process large-aperture aspherical mirrors, we designed and constructed a tri-station machine processing center with a three station device, which bears vectored feed motion of up to 10 axes. Based on this processing center, an aspherical mirror-processing model is proposed, in which each station implements traversal processing of large-aperture aspherical mirrors using only two axes, while the stations are switchable, thus lowering cost and enhancing processing efficiency. The applicability of the tri-station machine is also analyzed. At the same time, a simple and efficient zero-calibration method for processing is proposed. To validate the processing model, using our processing center, we processed an off-axis parabolic SiC mirror with an aperture diameter of 1450 mm. The experimental results indicate that, with a one-step iterative process, the peak to valley (PV) and root mean square (RMS) of the mirror converged from 3.441 and 0.5203 μm to 2.637 and 0.2962 μm, respectively, where the RMS reduced by 43%. The validity and high accuracy of the model are thereby demonstrated.
USDA-ARS?s Scientific Manuscript database
Livestock producers are acutely aware for the need to reduce gaseous emissions from stored livestock waste and have been trying to identify new technologies to address the chronic problem. Besides the malodor issue, toxic gases emitted from stored livestock manure, especially hydrogen sulfide (H2S)...
USDA-ARS?s Scientific Manuscript database
Cellular lipid droplets are the least studied and least understood cellular organelles in eukaryotic and prokaryotic cells. Despite a broad research trying to understand lipid droplets it has not been possible to determine the composition of individual cellular lipid droplets. In this paper we prese...
Theory of Gamma-Ray Burst Sources
NASA Astrophysics Data System (ADS)
Ramirez-Ruiz, Enrico
In the sections which follow, we shall be concerned predominantly with the theory of γ-ray burst sources. If the concepts there proposed are indeed relevant to an understanding of the nature of these sources, then their existence becomes inextricably linked to the metabolic pathways through which gravity, spin, and energy can combine to form collimated, ultrarelativistic outflows. These threads are few and fragile, as we are still wrestling with trying to understand non-relativistic processes, most notably those associated with the electromagnetic field and gas dynamics. If we are to improve our picture-making we must make more and stronger ties of physical theory. But in reconstructing the creature, we must be guided by our eyes and their extensions. In this introductory section we have therefore attempted to summarise the observed properties of these ultra-energetic phenomena.
NASA Astrophysics Data System (ADS)
Wasilewski, Stanisław
2012-12-01
A stoppage of the main ventilation fan constitutes a disturbance of ventilation conditions of a deepmine and its effects can cause serious hazards by generating transient states of air and gas flow. Main ventilation fans are the basic deep-mine facilities; therefore, under mining regulations it is only allowed to stop them with the consent and under the conditions specified by the mine maintenance manager. The stoppage of the main ventilation fan may be accompanied by transient air parameters, including the air pressure and flow patterns. There is even the likelihood of reversing the direction of air flow, which, in case of methane mines, can pose a major hazard, particularly in sections of the mine with fire fields or large goaf areas. At the same time, stoppages of deep-mine main ventilation fans create interesting research conditions, which if conducted under the supervision of the monitoring systems, can provide much information about the transient processes of pressure, air and gas flow in underground workings. This article is a discussion of air parameter observations in mine workings made as part of such experiments. It also presents the procedure of the experiments, conducted in three mines. They involved the observation of transient processes of mine air parameters, and most interestingly, the recording of pressure and air and gas flow in the workings of the mine ventilation networks by mine monitoring systems and using specialist recording instruments. In mining practice, both in Poland and elsewhere, software tools and computer modelling methods are used to try and reproduce the conditions prior to and during disasters based on the existing network model and monitoring system data. The use of these tools to simulate the alternatives of combating and liquidation of the gas-fire hazard after its occurrence is an important issue. Measurement data collected during the experiments provides interesting research material for the verification and validation of the software tools used for the simulation of processes occurring in deep-mine ventilation systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ijam, M.J.; Qatami, S.Y.A.; Arif, S.F.
For several decades removal of aromatics from crude oil fractions (e.g. kerosene and lubricating oils) has been practiced in oil refining to produce fuels and lubricants of lower aromatic content and hence of improved quality. These aromatics are suitable raw materials for the manufacture of aromatic solvents, aromatic process oils, high octane gasoline, and as basic materials for making detergents, perfumes and dyes. Detailed study of molecular structure and substituent effects on the retention characteristics of aromatic hydrocarbons have been reported on alumina, silica and various chemically bonded silicas containing -C/sub 18/, -NH/sub 2/, -R(NH)/sub 2//sub 2/, -CN, RCN, RONmore » and phenyl-mercuric acetate for the compound class (ring-numbered) high performance liquid chromatography (2, 3, 8, 12, 24, 28). Previous work in this laboratory has demonstrated that individual normal and branched aliphatic hydrocarbons from kerosene and light gas oil were isolated and identified. This paper describes the extension of this work to cover the separation and identification of aromatic ring classes (mono-, di-, and tri-aromatics) in the gas oil fraction of Kuwait petroleum. Characterization and identification of the major components in the dinuclear aromatics is our primary objective in this study.« less
A gas trapping method for high-throughput metabolic experiments.
Krycer, James R; Diskin, Ciana; Nelson, Marin E; Zeng, Xiao-Yi; Fazakerley, Daniel J; James, David E
2018-01-01
Research into cellular metabolism has become more high-throughput, with typical cell-culture experiments being performed in multiwell plates (microplates). This format presents a challenge when trying to collect gaseous products, such as carbon dioxide (CO2), which requires a sealed environment and a vessel separate from the biological sample. To address this limitation, we developed a gas trapping protocol using perforated plastic lids in sealed cell-culture multiwell plates. We used this trap design to measure CO2 production from glucose and fatty acid metabolism, as well as hydrogen sulfide production from cysteine-treated cells. Our data clearly show that this gas trap can be applied to liquid and solid gas-collection media and can be used to study gaseous product generation by both adherent cells and cells in suspension. Since our gas traps can be adapted to multiwell plates of various sizes, they present a convenient, cost-effective solution that can accommodate the trend toward high-throughput measurements in metabolic research.
Jones, Norman; Burdett, Howard; Green, Kevin; Greenberg, Neil
2017-01-01
Trauma Risk Management (TRiM) is a peer-led, occupational mental health support process that aims to identify and assist U.K. military personnel with persistent mental ill health related to potentially traumatic events (PTEs). This study compared help seeking, mental disorder symptoms, and alcohol use between TRiM recipients and personnel experiencing similar combat events who did not receive TRiM; an unexposed group provided context. Records of TRiM activity during a U.K. military deployment in Afghanistan were linked to contemporaneous survey data assessing mental health and combat experiences. The resulting deployment data set was amalgamated with mental health, alcohol use, and help-seeking data collected within 12 weeks of homecoming and again one to two years later. Mental health and help-seeking outcomes were compared between a nonexposed, non-TRiM sample (n = 161), an exposed, non-TRiM sample (n = 149), and an exposed, TRiM-recipient sample (n = 328) using logistic regression analyses. At follow-up, TRiM recipients were significantly more likely to seek help from mental health services than exposed, non-TRiM personnel. At baseline, TRiM recipients had significantly greater adjusted odds of reporting possible posttraumatic stress disorder (PTSD) symptoms than exposed non-TRiM personnel; the difference was not significant at follow-up. TRiM recipients were significantly more likely to report persistent mental disorder and alcohol misuse caseness over the follow-up period. TRiM recipients were significantly more likely to seek help from mental health services than a similar PTE-exposed group that did not receive TRiM; however, TRiM recipients experienced more persistent mental ill-health symptoms and hazardous alcohol use over the period of follow-up despite seeking help.
RADIATION STABILITY OF ORGANIC LIQUIDS. Semi-Annual Report No. 4 for July 1 to December 31, 1958
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, R.M.; Towle, L.H.
1959-01-01
0 @ 4 2 7 1 8 3 7 1 7 6 TBP from 0 to 100 were irradiated with electrons to 300 to 400 whr/liter. The G(total acid) values obtained indicated that, from 0 to 60 wt, % TBP, the acid produc tion rate is proportional to wt, % TBP; above 60 wt, % TBP the acid production rate is lower. Normalized total acid G values, obtained by partition of the dose on a basis of wt, % TBP, ranged from 2.31 to 3.52. Seven TBP-Amsco solutions, ranging from 5 to 60 wt. % TBP, and samples of puremore » TBP and pure dibutyl phenylphosphorate (DBPP) were irradiated to 400 whr/liter, Five compositions of TBP, DBPP, Amsco, and tetralin were irradiated to 200 whr/liter. The amount of radiationinduced unsataration was measured for each of the above samples. The data indicated that unsaturation varied inversely with wt. % TBP. The DBPP exerted a small protective effect, as did tetralin, in reducing radiation damage to the Amsco. Diethyl carbonate, irradiated to 392 whr/liter, had a G(gas) value of 4.86, a--G (target destruction) value of 5.50, and a --G /sub M/(polymer) value of 2.80. Diethyl carbonate, after irradiation, extracts U better than virgin material and strips equally as well. The irradiated diethyl carbonate exhibited no difference from virgin material in emulsification tendency. Dibutyl phenylphosphorate-Amsco systems, at dose levels of either 200 or 400 whr/liter, showed that acid production is about proportioral to wt. % DBPP. Studies of DBPP-Amsco-tetralin systems at 200 whr/ liter indicated that tetralin is more acceptable than decalin for enhancing the solubility of the DBPP-uranium complex in Amsco, thus suppressing third-phase phenomena. Tetralin also reduced acid production from DBPP under irradiation. Tributyl phosphate, dibutyl phosphoric acid, and di-(2- ethylhexyl) phosphoric acid were irradiated in the pure state to 300 whr/liter. The G(gas) values were 1.9, 3.3, and 3.1, respectively, and the G(total acid) values were 2.3, 2.1, and 1.2. The--G values for target converted to polymer were 0.22 for the DBP, and 0.32 for the D2EHP. Tri-n-octyl phosphine oxide was irradiated in the pure state to 400 whr/liter. The G(gas) value of 1.82 was comparable to a value of 1.45 found previously at 2040 whr/1iter. Values of --G/ sub M/ for target and polymer were approximately double the values previously found at 2040 whr/ liter. Amines, including tri-lauryl amine, n-benzyl heptadecyl amine, tri-iso-octyl amine, Primene JM-T, and tri-oetyl-decyl-t-amine (Alamine) were irradiated to either 200- or 400-whr/liter doses. The Primene produced the lowest --G (polymer) value, (1.50) and the Alamine produced the highest -- G/sub M/(total target destroyed) value (3.49). An Alamine-tridecanol- Amsconitric acid system yielded the lowest G(gas) value (1.89) while the corresponding tri-lauryl amine system produced the highest (3.12). The most extensive emulsification occurred with the 0.5M tri-lauryl amtne-Amscotridecanol system while the n-benzyl heptadecyl amine system exhtbited the lowest emulsification tendency, The most efficient U extractant system observed was the Alamine-Amsco-tridecanol-nitric acid composition, at the 0.5M-Alamine level. A comparison was made of the quantity and composition of material removed from irradiated TBP-Amsco by various scrubbing media. A single scrub with 2M NaOH appears four times more efftcient than does a single scrub with satarated CaOH in removing acidic radiolysis products. The emulsification tendency of the scrubbed organic appears to increase with the quantity of acidic radiolysis products removed. Radiolysis products other than those of acidic natare (polymer) are apparently not removed by the scrubbing media investigated in this study. An ir« less
Cross-border gas-line projects face daunting challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khene, D.E.
1997-12-15
Pricing, costs, financing, and politics are chief among the issues that can impede construction of major, cross-border gas-pipeline projects trying to connect plentiful reserves with unsatisfied market demand. Additionally, strained relationships among parties involved in both supply and delivery can further slow or even halt progress on a project. In the cases of the Transmed (Algeria across Tunisia to Italy) and the Maghreb-Europe (Algeria across Morocco to Spain), the close working relationships of all parties involved helped resolve many issues and were key in the projects` eventual completion. Here is an update on these two important pipelines in addition tomore » a synthesis of Sonatrach`s views on some of the major issues raised by the development of cross-border gas-transmission projects.« less
What is being done about the natural gas shortage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampson, H.M.
1970-01-01
A natural gas shortage has definitely been established. Experts agree that demand has, and will continue to out-strip supply. The Federal Power Commission has overcompensated in trying to protect the ultimate consumer from the standpoint of price--with the result that they have failed to protect him on supply. This myopia must now give way to some reasonable basis of reflecting fair market value, which will not be subject to future change. Industry must be encouraged to solve its own problem. Gas from Canada, Alaska, synthetic fuels, and liquid from foreign sources and nuclear stimulation offer a possible supplemental source ofmore » supply. Fortunately, the Federal Power Commission and its staff now fully recognize this serious problem that confronts the industry and are now planning some possible solutions.« less
De Nola, G; Kibby, J; Mazurek, W
2008-07-25
Tricresyl phosphate (TCP) is used as an anti-wear additive in aircraft turbine engine oil. Concerns about its toxicity are largely based on the tri-o-cresyl phosphate isomer content. However, the presence of other and more toxic isomers has been previously suggested. In this work, the structural isomers of TCP have been determined by two methods (experimental and semi-theoretical). First, the TCP isomers were separated by gas chromatography (GC) and identified by mass spectrometry (MS). Second, after base cleavage of TCP, GC was used to quantify the cresol precursors. These results were used to calculate the TCP isomer distribution based on the assumption of a statistical distribution of the TCP isomers. The results from the two determinations showed reasonable agreement for three of the four oils studied. The o-cresyl isomers were found to be present almost exclusively as the more toxic mono-o-cresyl isomers in the concentration range 13-150 mg/L. The ability to analyse for the mono-o-cresyl isomers allows the toxicity of TCP to be based on the latter isomers rather than on the less toxic tri-o-cresyl phosphate isomer.
Tri-s-triazine-Based Crystalline Carbon Nitride Nanosheets for an Improved Hydrogen Evolution.
Ou, Honghui; Lin, Lihua; Zheng, Yun; Yang, Pengju; Fang, Yuanxing; Wang, Xinchen
2017-06-01
Tri-s-triazine-based crystalline carbon nitride nanosheets (CCNNSs) have been successfully extracted via a conventional and cost-effective sonication-centrifugation process. These CCNNSs possess a highly defined and unambiguous structure with minimal thickness, large aspect ratios, homogeneous tri-s-triazine-based units, and high crystallinity. These tri-s-triazine-based CCNNSs show significantly enhanced photocatalytic hydrogen generation activity under visible light than g-C 3 N 4 , poly (triazine imide)/Li + Cl - , and bulk tri-s-triazine-based crystalline carbon nitrides. A highly apparent quantum efficiency of 8.57% at 420 nm for hydrogen production from aqueous methanol feedstock can be achieved from tri-s-triazine-based CCNNSs, exceeding most of the reported carbon nitride nanosheets. Benefiting from the inherent structure of 2D crystals, the ultrathin tri-s-triazine-based CCNNSs provide a broad range of application prospects in the fields of bioimaging, and energy storage and conversion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
More Time Management Tips for Busy People
2014-10-01
finally get you through some of your most important reading, and make you smarter in the process. Stop Trying to Multitask More and more evidence...is emerging from neuroscience that the brain simply doesn’t multitask well. In fact, trying to mul- titask introduces massive inefficiencies and...actually wastes time. So, how do busy executive types like you avoid multitask - ing as part of the job description? First, recognize when you are trying
De Poorter, Gerald L.; Rofer-De Poorter, Cheryl K.
1978-01-01
Uranyl ion in solution in tri-n-butyl phosphate is readily photochemically reduced to U(IV). The product U(IV) may effectively be used in the Purex process for treating spent nuclear fuels to reduce Pu(IV) to Pu(III). The Pu(III) is readily separated from uranium in solution in the tri-n-butyl phosphate by an aqueous strip.
Rapid-cycle testing cuts bed turnaround by 85%.
2004-11-01
You can use rapid-cycle testing to try out new approaches to overcrowding much more frequently than with more traditional process improvement strategies. Improving bed turnaround notification can yield dramatic improvements. Telling staff they have to try a new process only for three days makes it easier to gain buy-in. Look for old policies that are no longer needed, yet continue to keep your staff bogged down.
Andre, M; Loidl, J; Laus, G; Schottenberger, H; Bentivoglio, G; Wurst, K; Ongania, K-H
2005-01-15
The potential of ionic liquids as solvents for headspace gas chromatography was investigated. Three compounds with boiling points above 200 degrees C were selected to demonstrate the feasibility of the concept described. 2-Ethylhexanoic acid, formamide, and tri-n-butylamine as examples of acidic, neutral, and basic analytes were dissolved in acidic 1-n-butyl-3-methylimidazolium hydrogen sulfate (1), neutral 1-n-butyl-2,3-dimethylimidazolium dicyanamide (2), and 2 containing 1,8-diazabicyclo[5.4.0]undec-7-ene to adjust basic conditions. All analytes could be determined with limits of detection and limits of quantification in the low-ppm concentration range.
Role of heat equation in lap joint for welding process
NASA Astrophysics Data System (ADS)
Kumar, P.; Rohit, Sooraj
2017-07-01
Welding is predominantly used in industrial purposes and growth in their industry, which gives exact welding and more efficient. The major advantage of using this welding technique at initial stage it takes very low heat to weld the portion and gives a good result of low distortion in modules. In this context, two dissimilar metals copper and nickel are chosen for analysis in tungsten inert gas welding (TIG) in which length is 300 mm and breadth is 100 mm thickness 15 mm welded at room temperature a welded portion zone is formed simulation analysis has done on CATIA® and ANSYS®and MATLAB® code is generated for calculating temperatures at each node to calculate temperature at each node a new technique is used tri-diagonal matrix algorithm is used (TDMA) Steady state one dimension heat is calculated results compared between simulation analysis and analytical analysis temperature at each node is calculated both the temperatures are equal with error.
State of the art of produced water treatment.
Jiménez, S; Micó, M M; Arnaldos, M; Medina, F; Contreras, S
2018-02-01
Produced water (PW) is the wastewater generated when water from underground reservoirs is brought to the surface during oil or gas extraction. PW is generated in large amounts and has a complex composition, containing various toxic organic and inorganic compounds. PW is currently treated in conventional trains that include phase separators, decanters, cyclones and coarse filters in order to comply with existing regulation for discharge. These treatment trains do not achieve more restrictive limitations related to the reuse of the effluent (reinjection into extraction wells) or other beneficial uses (e.g., irrigation). Therefore, and to prevent environmental pollution, further polishing processes need to be carried out. Characterization of the PW to determine major constituents is the first step to select the optimum treatment for PW, coupled with environmental factors, economic considerations, and local regulatory framework. This review tries to provide an overview of different treatments that are being applied to polish this type of effluents. These technologies include membranes, physical, biological, thermal or chemical treatments, where special emphasis has been made on advanced oxidation processes due to the advantages offered by these processes. Commercial treatments, based on the combination, modification and improvement of simpler treatments, were also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zacharia, Thomas
Energy needs are rising on an exponential basis. The mammoth energy sources like coal, natural gas and petroleum are the cause of pollution. The large outcry for an alternate energy source which is environmentally friendly and energy efficient is heard during the past few years. This is where “Clean-Fuel” like hydrogen gained its ground. Hydrogen is mainly produced by steam methane reforming (SMR). An alternate sustainable process which can reduce the cost as well as eliminate the waste products is Tri-reforming. In both these reforming processes nickel is used as catalyst. However as the process goes on the catalyst gets deactivated due to coking on the catalytic surface. This goal of this thesis work was to develop a bi-metallic catalyst which has better anti-coking properties compared to the conventional nickel catalyst. Tin was used to dope nickel. It was found that Ni3Sn complex around a core of Ni is coking resistant compared to pure nickel catalyst. Reverse micelle synthesis of catalyst preparation was used to control the size and shape of catalytic particles. These studies will benefit researches on hydrogen production and catalyst manufactures who work on different bi-metallic combinations.
ERIC Educational Resources Information Center
Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín
2016-01-01
Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…
Defense Against Threat. Threat Recognition and Analysis Project
1975-09-01
but clustering around it ( land affecting it) are other action structures of different character, now entering strongly on the world scene...seeks .o cap ur ^^’^^try to gestalts of cognition and affect , ^[Jj^ f c!anrPr or country, that put the signature of...TRAMSPORT 8, PETROL PRODUCTS 7.*, USR 27, JAP 18, IND Ik, - FRUITS +NUTS Ik, NATURAL GAS 17, LAMBSKINS 12, USR 30, PAK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, A.; Merci, B.; Roekaerts, D.
2007-10-15
Numerical simulation results are presented for two axisymmetric, nonluminous turbulent piloted jet diffusion flames: Sandia Flame D (SFD) and Delft Flame III (DFIII). Turbulence is represented by a Reynolds stress transport model, while chemistry is modeled by means of steady laminar flamelets. We use the preassumed PDF approach for turbulence-chemistry interaction. A weighted sum of gray gases model is used for the gas radiative properties. The radiative transfer equation is solved using the discrete ordinates method in the conservative finite-volume formulation. The radiative loss leads to a decrease in mean temperature, but does not significantly influence the flow and mixingmore » fields, in terms either of mean values or of rms values of fluctuations. A systematic analysis of turbulence-radiation interaction (TRI) is carried out. By considering five different TRI formulations, and comparing also with a simple optically thin model, individual TRI contributions are isolated and quantified. For both flames, effects are demonstrated of (1) influence of temperature fluctuations on the mean Planck function, (2) temperature and composition fluctuations on the mean absorption coefficient, and (3) correlation between absorption coefficient and Planck function. The strength of the last effect is stronger in DFIII than in SFD, because of stronger turbulence-chemistry interaction and lower mean temperature in DFIII. The impact of the choice of TRI model on the prediction of the temperature-sensitive minor species NO is determined in a postprocessing step with fixed flow and mixing fields. Best agreement for NO is obtained using the most complete representation of TRI. (author)« less
Facing Fibromyalgia | NIH MedlinePlus the Magazine
... these kinds of symptoms? Try to find the right doctor who is willing to work with you and listen to you. Keep trying ... process. Medications are scary, and they don't work for everyone, but for me the right one made me feel like myself again. What ...
The radiation gas detectors with novel nanoporous converter for medical imaging applications
NASA Astrophysics Data System (ADS)
Zarei, H.; Saramad, S.
2018-02-01
For many reason it is tried to improve the quantum efficiency (QE) of position sensitive gas detectors. For energetic X-rays, the imaging systems usually consist of a bulk converter and gas amplification region. But the bulk converters have their own limitation. For X-rays, the converter thickness should be increased to achieve a greater detection efficiency, however in this case, the chance of escaping the photoelectrons is reduced. To overcome this limitation, a new type of converter, called a nanoporous converter such as Anodizing Aluminum Oxide (AAO) membrane with higher surface to volume ratio is proposed. According to simulation results with GATE code, for this nanoporous converter with the 1 mm thickness and inter pore distance of 627 nm, for 20-100 keV X-ray energies with a reasonable gas pressure and different pore diameters, the QE can be one order of magnitude greater than the bulk ones, which is a new approach for proposing high QE position sensitive gas detectors for medical imaging application and also high energy physics.
NASA Astrophysics Data System (ADS)
Chen, Jikun; Stender, Dieter; Bator, Matthias; Schneider, Christof W.; Lippert, Thomas; Wokaun, Alexander
2013-08-01
Oxygen is one of the most commonly used background gases for pulsed laser deposition of oxide thin films. In this work the properties of a 308 nm laser-induced La0.4Ca0.6MnO3 plasma were analyzed using a quadrupole mass spectrometer combined with an energy analyzer, to investigate the interaction between the various plasma species and the background gas. The composition and kinetic energies of the plasma species were compared in vacuum and an O2 background gas at different pressures. It has been observed that the O2 background gas decreases the kinetic energy of the positively charged atomic plasma species. In addition, the interaction with the O2 background gas causes the generation of positive diatomic oxide species of LaO+, CaO+ and MnO+. The amount of negatively charged diatomic or tri-atomic oxide species decreases in the O2 background compared to vacuum, while the amount of O2- increases strongly.
Technology transfer and commercialization initiatives at TRI/Austin: Resources and examples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzkanin, G.A.; Dingus, M.L.
1995-12-31
Located at TRI/Austin, and operated under a Department of Defense contract, is the Nondestructive Testing Information Analysis Center (NTIAC). This is a full service Information Analysis Center sponsored by the Defense Technical Information Center (DTIC), although services of NTIAC are available to other government agencies, government contractors, industry and academia. The principal objective of NTIAC is to help increase the productivity of the nation`s scientists, engineers, and technical managers involved in, or requiring, nondestructive testing by providing broad information analysis services of technical excellence. TRI/Austin is actively pursuing commercialization of several products based on results from outside funded R andmore » D programs. As a small business, TRI/Austin has limited capabilities for large scale fabrication, production, marketing or distribution. Thus, part of a successful commercialization process involves making appropriate collaboration arrangements with other organizations to augment TRI/Austin`s capabilities. Brief descriptions are given here of two recent commercialization efforts at TRI/Austin.« less
Educational Publishing: Experiences from Asia and the Pacific.
ERIC Educational Resources Information Center
United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Asian Centre for Educational Innovation for Development.
This resource book on educational publishing presents examples of evaluation and planning; try-out procedures; the production process; and warehousing and distribution, all reinforced by examples of systems and structures and case studies which were presented at the 1985 Manila and Tonga Seminars. Part one, Planning, Try-out and Evaluation of…
21 CFR 178.3505 - Glyceryl tri-(12-acetoxy-stearate).
Code of Federal Regulations, 2011 CFR
2011-04-01
... for use in producing, manufacturing, packing, processing, preparing, treating, packaging, transporting... calcium carbonate/glyceryl tri-(12-acetoxystearate) mixture is used as an adjuvant in polymers in contact with nonfatty foods at a level not to exceed 20 weight-percent of the polymer. [50 FR 1503, Jan. 11...
Matoušek, Tomáš; Hernández-Zavala, Araceli; Svoboda, Milan; Langrová, Lenka; Adair, Blakely M.; Drobná, Zuzana; Thomas, David J.; Stýblo, Miroslav; Dědina, Jiří
2008-01-01
An automated system for hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer is described. Arsines are preconcentrated and separated in a Chromosorb filled U-tube. An automated cryotrapping unit, employing nitrogen gas formed upon heating in the detection phase for the displacement of the cooling liquid nitrogen, has been developed. The conditions for separation of arsines in a Chromosorb filled U-tube have been optimized. A complete separation of signals from arsine, methylarsine, dimethylarsine, and trimethylarsine has been achieved within a 60 s reading window. The limits of detection for methylated arsenicals tested were 4 ng l−1. Selective hydride generation is applied for the oxidation state specific speciation analysis of inorganic and methylated arsenicals. The arsines are generated either exclusively from trivalent or from both tri- and pentavalent inorganic and methylated arsenicals depending on the presence of L-cysteine as a prereductant and/or reaction modifier. A TRIS buffer reaction medium is proposed to overcome narrow optimum concentration range observed for the L-cysteine modified reaction in HCl medium. The system provides uniform peak area sensitivity for all As species. Consequently, the calibration with a single form of As is possible. This method permits a high-throughput speciation analysis of metabolites of inorganic arsenic in relatively complex biological matrices such as cell culture systems without sample pretreatment, thus preserving the distribution of tri- and pentavalent species. PMID:18521190
Scargiali, F; Grisafi, F; Busciglio, A; Brucato, A
2011-12-15
The formation of toxic heavy clouds as a result of sudden accidental releases from mobile containers, such as road tankers or railway tank cars, may occur inside urban areas so the problem arises of their consequences evaluation. Due to the semi-confined nature of the dispersion site simplified models may often be inappropriate. As an alternative, computational fluid dynamics (CFD) has the potential to provide realistic simulations even for geometrically complex scenarios since the heavy gas dispersion process is described by basic conservation equations with a reduced number of approximations. In the present work a commercial general purpose CFD code (CFX 4.4 by Ansys(®)) is employed for the simulation of dense cloud dispersion in urban areas. The simulation strategy proposed involves a stationary pre-release flow field simulation followed by a dynamic after-release flow and concentration field simulations. In order to try a generalization of results, the computational domain is modeled as a simple network of straight roads with regularly distributed blocks mimicking the buildings. Results show that the presence of buildings lower concentration maxima and enlarge the side spread of the cloud. Dispersion dynamics is also found to be strongly affected by the quantity of heavy-gas released. Copyright © 2011 Elsevier B.V. All rights reserved.
Modeling of information flows in natural gas storage facility
NASA Astrophysics Data System (ADS)
Ranjbari, Leyla; Bahar, Arifah; Aziz, Zainal Abdul
2013-09-01
The paper considers the natural-gas storage valuation based on the information-based pricing framework of Brody-Hughston-Macrina (BHM). As opposed to many studies which the associated filtration is considered pre-specified, this work tries to construct the filtration in terms of the information provided to the market. The value of the storage is given by the sum of the discounted expectations of the cash flows under risk-neutral measure, conditional to the constructed filtration with the Brownian bridge noise term. In order to model the flow of information about the cash flows, we assume the existence of a fixed pricing kernel with liquid, homogenous and incomplete market without arbitrage.
NASA Astrophysics Data System (ADS)
Meyer, Michael R.
2009-11-01
Anyone who has ever used baking soda instead of baking powder when trying to make a cake knows a simple truth: ingredients matter. The same is true for planet formation. Planets are made from the materials that coalesce in a rotating disk around young stars - essentially the "leftovers" from when the stars themselves formed through the gravitational collapse of rotating clouds of gas and dust. The planet-making disk should therefore initially have the same gas-to-dust ratio as the interstellar medium: about 100 to 1, by mass. Similarly, it seems logical that the elemental composition of the disk should match that of the star, reflecting the initial conditions at that particular spot in the galaxy.
Uptake and Fate of Tri-N-Butyltin Cation in Estuarine Bacteria,
1982-04-02
as well as Yamada and co-workers [31] found trialkyltins, especially tripropyl- tin (TPT) and tributyltin ( TBT ), had the highest antiw-,’.?ial...tin-resistant estuarine bacteria was studied. The bacterial isolates accumulated tributyltin to 3.7 to 7.7 mg tin per g dry weight of cells by a non...chromatography-atomic absorption spectrophotometry and tin-selective purge and trap flame photometric gas chromatography for possible tributyltin
Influence of Puncture Site on Radial Artery Occlusion After Transradial Coronary Intervention.
Bi, Xi-Le; Fu, Xiang-Hua; Gu, Xin-Shun; Wang, Yan-Bo; Li, Wei; Wei, Li-Ye; Fan, Yan-Ming; Bai, Shi-Ru
2016-04-20
The risk of radial artery occlusion (RAO) needs particular attention in transradial intervention (TRI). Therefore, reducing vascular occlusion has an important clinical significance. The aim of this study was to determine the appropriate puncture site during TRI through comparing the occurrence of RAO between the different puncture sites to reduce the occurrence of RAO after TRI. We prospectively assessed the occurrence of RAO in 606 consecutive patients undergoing TRI. Artery occlusion was evaluated with Doppler ultrasound in 2 days and 1 year after the intervention. Risk factors for RAO were evaluated using a multivariate model analysis. Of the 606 patients, the RAO occurred in 56 patients. Compared with TRI at 2-5 cm away from the radius styloid process, the odds ratio (OR) for occlusion risk at 0 cm and 1 cm were 9.65 (P = 0.033) and 8.90 (P = 0.040), respectively. The RAO occurred in the ratio of the arterial diameter to the sheath diameter ≤1 (OR = 2.45, P = 0.004). Distal puncture sites (0-1 cm away from the radius styloid process) can lead to a higher rate of RAO. ClinicalTrials.gov, NCT01979627; https://clinicaltrials.gov/ct2/show/NCT01979627?term = NCT01979627 and rank = 1.
NASA Astrophysics Data System (ADS)
Lee, N. J.; Kang, T. S.; Hu, Q.; Lee, T. S.; Yoon, T.-S.; Lee, H. H.; Yoo, E. J.; Choi, Y. J.; Kang, C. J.
2018-06-01
Tri-state resistive switching characteristics of bilayer resistive random access memory devices based on manganese oxide (MnO)/tantalum oxide (Ta2O5) have been studied. The current–voltage (I–V) characteristics of the Ag/MnO/Ta2O5/Pt device show tri-state resistive switching (RS) behavior with a high resistance state (HRS), intermediate resistance state (IRS), and low resistance state (LRS), which are controlled by the reset process. The MnO/Ta2O5 film shows bipolar RS behavior through the formation and rupture of conducting filaments without the forming process. The device shows reproducible and stable RS both from the HRS to the LRS and from the IRS to the LRS. In order to elucidate the tri-state RS mechanism in the Ag/MnO/Ta2O5/Pt device, transmission electron microscope (TEM) images are measured in the LRS, IRS and HRS. White lines like dendrites are observed in the Ta2O5 film in both the LRS and the IRS. Poole–Frenkel conduction, space charge limited conduction, and Ohmic conduction are proposed as the dominant conduction mechanisms for the Ag/MnO/Ta2O5/Pt device based on the obtained I–V characteristics and TEM images.
On the optimisation of the use of 3He in radiation portal monitors
NASA Astrophysics Data System (ADS)
Tomanin, Alice; Peerani, Paolo; Janssens-Maenhout, Greet
2013-02-01
Radiation Portal Monitors (RPMs) are used to detect illicit trafficking of nuclear or other radioactive material concealed in vehicles, cargo containers or people at strategic check points, such as borders, seaports and airports. Most of them include neutron detectors for the interception of potential plutonium smuggling. The most common technology used for neutron detection in RPMs is based on 3He proportional counters. The recent severe shortage of this rare and expensive gas has created a problem of capacity for manufacturers to provide enough detectors to satisfy the market demand. In this paper we analyse the design of typical commercial RPMs and try to optimise the detector parameters in order either to maximise the efficiency using the same amount of 3He or minimise the amount of gas needed to reach the same detection performance: by reducing the volume or gas pressure in an optimised design.
Clinical and histopathological results following TriPollar radiofrequency skin treatments.
Kaplan, Haim; Gat, Andrea
2009-06-01
Skin laxity, wrinkles and cellulite are common aesthetic problems associated with the aging process. These symptoms are due to the weakening and thinning of dermal connective tissue and the enlargement of hypodermal fat cells. The aim of this study was to evaluate the safety and efficacy of the TriPollar RF technology in reducing fat and collagen regeneration. Twelve healthy patients underwent weekly treatments on different body sites using the TriPollar technology. Treatment areas were photographed and measured and patient satisfaction was monitored. One abdominal patient consented to a series of TriPollar treatments prior to her scheduled abdominoplasty. A controlled histopathology analysis was performed on skin samples taken during the abdominoplasty procedure. Histopathological examination revealed marked differences between treated and non-treated abdominal skin areas. An increase of 49% in dermal thickness, focal thickening of collagen fibers and focal shrinkage of fat cells was shown following TriPollar treatments. Average patient satisfaction indicated clear satisfaction with the clinical results achieved. The TriPollar is a safe and effective non-invasive technology leading to skin tightening and body shaping. Histology results indicate changes at the dermal and fat layers following TriPollar treatments resulting in increased collagen regeneration and stimulated fat metabolism.
Santella, Nicholas; Steinberg, Laura J; Sengul, Hatice
2010-04-01
Hurricane Katrina struck an area dense with industry, causing numerous releases of petroleum and hazardous materials. This study integrates information from a number of sources to describe the frequency, causes, and effects of these releases in order to inform analysis of risk from future hurricanes. Over 200 onshore releases of hazardous chemicals, petroleum, or natural gas were reported. Storm surge was responsible for the majority of petroleum releases and failure of storage tanks was the most common mechanism of release. Of the smaller number of hazardous chemical releases reported, many were associated with flaring from plant startup, shutdown, or process upset. In areas impacted by storm surge, 10% of the facilities within the Risk Management Plan (RMP) and Toxic Release Inventory (TRI) databases and 28% of SIC 1311 facilities experienced accidental releases. In areas subject only to hurricane strength winds, a lower fraction (1% of RMP and TRI and 10% of SIC 1311 facilities) experienced a release while 1% of all facility types reported a release in areas that experienced tropical storm strength winds. Of industrial facilities surveyed, more experienced indirect disruptions such as displacement of workers, loss of electricity and communication systems, and difficulty acquiring supplies and contractors for operations or reconstruction (55%), than experienced releases. To reduce the risk of hazardous material releases and speed the return to normal operations under these difficult conditions, greater attention should be devoted to risk-based facility design and improved prevention and response planning.
A Tri-network Model of Human Semantic Processing
Xu, Yangwen; He, Yong; Bi, Yanchao
2017-01-01
Humans process the meaning of the world via both verbal and nonverbal modalities. It has been established that widely distributed cortical regions are involved in semantic processing, yet the global wiring pattern of this brain system has not been considered in the current neurocognitive semantic models. We review evidence from the brain-network perspective, which shows that the semantic system is topologically segregated into three brain modules. Revisiting previous region-based evidence in light of these new network findings, we postulate that these three modules support multimodal experiential representation, language-supported representation, and semantic control. A tri-network neurocognitive model of semantic processing is proposed, which generates new hypotheses regarding the network basis of different types of semantic processes. PMID:28955266
22 CFR 713.7 - What will OPIC do with my request?
Code of Federal Regulations, 2012 CFR
2012-04-01
... disclosure would interfere with law enforcement proceedings, compromise constitutional rights, or hamper OPIC...) Review of your request. OPIC will process your request in the order it is received. OPIC will try to... request or subpoena be modified or withdrawn, or may try to resolve the request or subpoena informally...
22 CFR 713.7 - What will OPIC do with my request?
Code of Federal Regulations, 2010 CFR
2010-04-01
... disclosure would interfere with law enforcement proceedings, compromise constitutional rights, or hamper OPIC...) Review of your request. OPIC will process your request in the order it is received. OPIC will try to... request or subpoena be modified or withdrawn, or may try to resolve the request or subpoena informally...
22 CFR 713.7 - What will OPIC do with my request?
Code of Federal Regulations, 2011 CFR
2011-04-01
... disclosure would interfere with law enforcement proceedings, compromise constitutional rights, or hamper OPIC...) Review of your request. OPIC will process your request in the order it is received. OPIC will try to... request or subpoena be modified or withdrawn, or may try to resolve the request or subpoena informally...
22 CFR 713.7 - What will OPIC do with my request?
Code of Federal Regulations, 2013 CFR
2013-04-01
... disclosure would interfere with law enforcement proceedings, compromise constitutional rights, or hamper OPIC...) Review of your request. OPIC will process your request in the order it is received. OPIC will try to... request or subpoena be modified or withdrawn, or may try to resolve the request or subpoena informally...
22 CFR 713.7 - What will OPIC do with my request?
Code of Federal Regulations, 2014 CFR
2014-04-01
... disclosure would interfere with law enforcement proceedings, compromise constitutional rights, or hamper OPIC...) Review of your request. OPIC will process your request in the order it is received. OPIC will try to... request or subpoena be modified or withdrawn, or may try to resolve the request or subpoena informally...
TRI contains data on annual estimated releases of over 300 toxic chemicals to air, water, and land by the manufacturing industry. Industrial facilities provide the information, which includes: the location of the facility where chemicals are manufactured, processed, or otherwise...
Water-saving liquid-gas conditioning system
Martin, Christopher; Zhuang, Ye
2014-01-14
A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.
Gas-Phase Synthesis of Gold- and Silica-Coated Nanoparticles
NASA Astrophysics Data System (ADS)
Boies, Adam Meyer
2011-12-01
Composite nanoparticles consisting of separate core-shell materials are of interest for a variety of biomedical and industrial applications. By combining different materials at the nanoscale, particles can exhibit enhanced or multi-functional behavior such as plasmon resonance combined with superparamagnetism. Gas-phase nanoparticle synthesis processes are promising because they can continuously produce particles with high mass-yield rates. In this dissertation, new methods are investigated for producing gas-phase coatings of nanoparticles in an "assembly-line" fashion. Separate processes are developed to create coatings from silica and gold that can be used with a variety of core-particle chemistries. A photoinduced chemical vapor deposition (photo-CVD) method is used to produce silica coatings from tetraethyl orthosilicate (TEOS) on the surface of nanoparticles (diameter ˜5--70 nm). Tandem differential mobility analysis (TDMA) of the process demonstrates that particle coatings can be produced with controllable thicknesses (˜1--10 nm) by varying system parameters such as precursor flow rate. Electron microscopy and infrared spectroscopy confirm that the photo-CVD films uniformly coat the particles and that the coatings are silica. In order to describe the coating process a chemical mechanism is proposed that includes gas-phase, surface and photochemical reactions. A chemical kinetics model of the mechanism indicates that photo-CVD coating proceeds primarily through the photodecomposition of TEOS which removes ethyl groups, thus creating activated TEOS species. The activated TEOS then adsorbs onto the surface of the particle where a series of subsequent reactions remove the remaining ethyl groups to produce a silica film with an open site for further attachment. The model results show good agreement with the experimentally measured coating trends, where increased TEOS flow increases coating thickness and increased nitrogen flow decreases coating thickness. Gold decoration of nanoparticles is accomplished by evaporation of solid gold in the presence of an aerosol flow. A hot-wire generation method is developed where gold particles are produced from a composite gold-platinum wire. Investigations of the hot-wire generator show that it can produce particles with a range of sizes and that more uniform, non-agglomerated particles are produced when using smaller diameter tubes where gas velocities across the wire are higher and recirculation zones are diminished. When gold is evaporated in the presence of silica nanoparticles, the silica aerosol is decorated by gold through either homogeneous gold nucleation and subsequent scavenging by the silica nanoparticles, or by heterogeneous nucleation on the silica surface in which the gold "balls up" due to the high surface tension of gold on silica. In both cases the resulting particles exhibit a plasmon absorbance resonance typical of gold nanoparticles (lambda˜550 nm). Finally, the silica coating and gold decoration processes are combined with a thermal plasma technique for synthesizing iron-oxide to produce tri-layer nanoparticles.
Dolinoy, Dana C.; Miranda, Marie Lynn
2004-01-01
The Toxics Release Inventory (TRI) requires facilities with 10 or more full-time employees that process > 25,000 pounds in aggregate or use > 10,000 pounds of any one TRI chemical to report releases annually. However, little is known about releases from non-TRI-reporting facilities, nor has attention been given to the very localized equity impacts associated with air toxics releases. Using geographic information systems and industrial source complex dispersion modeling, we developed methods for characterizing air releases from TRI-reporting as well as non-TRI-reporting facilities at four levels of geographic resolution. We characterized the spatial distribution and concentration of air releases from one representative industry in Durham County, North Carolina (USA). Inclusive modeling of all facilities rather than modeling of TRI sites alone significantly alters the magnitude and spatial distribution of modeled air concentrations. Modeling exposure receptors at more refined levels of geographic resolution reveals localized, neighborhood-level exposure hot spots that are not apparent at coarser geographic scales. Multivariate analysis indicates that inclusive facility modeling at fine levels of geographic resolution reveals exposure disparities by income and race. These new methods significantly enhance the ability to model air toxics, perform equity analysis, and clarify conflicts in the literature regarding environmental justice findings. This work has substantial implications for how to structure TRI reporting requirements, as well as methods and types of analysis that will successfully elucidate the spatial distribution of exposure potentials across geographic, income, and racial lines. PMID:15579419
Toxics Release Inventory Expansion Rule Phase 3 (TRI-P3)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, R.A.; Saunders, A.D.; Worley, G.G.
1998-09-01
The ORR [East Tennessee Technology Park (ETTP), Y-12 Plant, and Oak Ridge National Laboratory (ORNL)] is considered a single facility for reporting by the DOE prime contractors. The processing, manufacturing, or "otherwise use" Section313 chemicals are combined to determine TRI reportability. Such is the case with lead metal, which is one of two chemicals for which reportin~ forms were prepared in this pilot study (Task 2;1. The lead shop at ORNL exceeded the reporting threshold, causing a lead activity at a Y-1 2 machine shop and lead in waste at ETTP to be reportable. TRI-P3 report preparation time for leadmore » totaled 36.5 hours. The second chemical investigated and reported (chromium) also required nearly a man-week for report preparation and documentation by experienced TRI personnel. The ORR TRI report typically includes about six chemicals, so an estimate of the TRI-P3 incremental reporting burden for ORR would be six weeks for experienced personnel axI d two/three man-months for first-time ORR preparers.« less
Modelling thermal radiation in buoyant turbulent diffusion flames
NASA Astrophysics Data System (ADS)
Consalvi, J. L.; Demarco, R.; Fuentes, A.
2012-10-01
This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.
Divband, Kolsum; Shokri, Hojjatollah; Khosravi, Ali Reza
2017-03-01
The aims of this study were to evaluate the efficacy of Thymus vulgaris (T. vulgaris) essential oil on the fungal growth and Tri4 gene expression in Fusarium oxysporum (F. oxysporum) strains. The oil was obtained by water-distillation using a Clevenger-type system. The chemical composition of the essential oil was obtained by gas chromatography- mass spectroscopy (GC-MS) and by retention indices. The antifungal activity was evaluated by broth microdilution assay. A quantitative real time RT-PCR (qRT-PCR) assay was also developed specific for F. oxysporum on the basis of trichothecene biosynthetic gene, Tri4, which allowed discrimination from F. oxysporum. Results showed thymol (32.67%) and p-cymene (16.68%) as the main components of T. vulgaris. Minimum inhibitory concentration (MIC) values varied from 5 to 20 μg/ml with T. vulgaris (mean: 10.50 μg/ml), while minimum fungicidal concentration (MFC) values ranged from 8 to 30 μg/ml with mean value of 16.20 μg/ml qRT-PCR results revealed a downregulation from 4.04 to 6.27 fold of Tri4 gene expression of the fungi exposed to T. vulgaris essential oil. The results suggest that T. vulgaris oil can be considered potential alternative natural fungicide to the synthetic chemicals that are currently used to prevent and control seed-borne diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Kitae; Yabushita, Akihiro; Okumura, Masanori; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Blaszczak-Boxe, Christopher S; Min, Dae Wi; Yoon, Ho-Il; Choi, Wonyong
2016-02-02
The chemistry of reactive halogens in the polar atmosphere plays important roles in ozone and mercury depletion events, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei. Among halogen species, the sources and emission mechanisms of inorganic iodine compounds in the polar boundary layer remain unknown. Here, we demonstrate that the production of tri-iodide (I3(-)) via iodide oxidation, which is negligible in aqueous solution, is significantly accelerated in frozen solution, both in the presence and the absence of solar irradiation. Field experiments carried out in the Antarctic region (King George Island, 62°13'S, 58°47'W) also showed that the generation of tri-iodide via solar photo-oxidation was enhanced when iodide was added to various ice media. The emission of gaseous I2 from the irradiated frozen solution of iodide to the gas phase was detected by using cavity ring-down spectroscopy, which was observed both in the frozen state at 253 K and after thawing the ice at 298 K. The accelerated (photo-)oxidation of iodide and the subsequent formation of tri-iodide and I2 in ice appear to be related with the freeze concentration of iodide and dissolved O2 trapped in the ice crystal grain boundaries. We propose that an accelerated abiotic transformation of iodide to gaseous I2 in ice media provides a previously unrecognized formation pathway of active iodine species in the polar atmosphere.
Selcho, Mareike; Mühlbauer, Barbara; Hensgen, Ronja; Shiga, Sakiko; Wegener, Christian; Yasuyama, Kouji
2018-06-01
The peptidergic Pigment-dispersing factor (PDF)-Tri neurons are a group of non-clock neurons that appear transiently around the time of adult ecdysis (=eclosion) in the fruit fly Drosophila melanogaster. This specific developmental pattern points to a function of these neurons in eclosion or other processes that are active around pupal-adult transition. As a first step to understand the role of these neurons, we here characterize the anatomy of the PDF-Tri neurons. In addition, we describe a further set of peptidergic neurons that have been associated with eclosion behavior, eclosion hormone (EH), and crustacean cardioactive peptide (CCAP) neurons, to single cell level in the pharate adult brain. PDF-Tri neurons as well as CCAP neurons co-express a classical transmitter indicated by the occurrence of small clear vesicles in addition to dense-core vesicles containing the peptides. In the tritocerebrum, gnathal ganglion and the superior protocerebrum PDF-Tri neurites contain peptidergic varicosities and both pre- and postsynaptic sites, suggesting that the PDF-Tri neurons represent modulatory rather than pure interneurons that connect the subesophageal zone with the superior protocerebrum. The extensive overlap of PDF-Tri arborizations with neurites of CCAP- and EH-expressing neurons in distinct brain regions provides anatomical evidence for a possible function of the PDF-Tri neurons in eclosion behavior. © 2018 Wiley Periodicals, Inc.
Tatineni, Satyanarayana; McMechan, Anthony J; Bartels, Melissa; Hein, Gary L; Graybosch, Robert A
2015-11-01
Triticum mosaic virus (TriMV) (genus Poacevirus, family Potyviridae) is a recently described eriophyid mite-transmitted wheat virus. In vitro RNA transcripts generated from full-length cDNA clones of TriMV proved infectious on wheat. Wheat seedlings inoculated with in vitro transcripts elicited mosaic and mottling symptoms similar to the wild-type virus, and the progeny virus was efficiently transmitted by wheat curl mites, indicating that the cloned virus retained pathogenicity, movement, and wheat curl mite transmission characteristics. A series of TriMV-based expression vectors was constructed by engineering a green fluorescent protein (GFP) or red fluorescent protein (RFP) open reading frame with homologous NIa-Pro cleavage peptides between the P1 and HC-Pro cistrons. We found that GFP-tagged TriMV with seven or nine amino acid cleavage peptides efficiently processed GFP from HC-Pro. TriMV-GFP vectors were stable in wheat for more than 120 days and for six serial passages at 14-day intervals by mechanical inoculation and were transmitted by wheat curl mites similarly to the wild-type virus. Fluorescent protein-tagged TriMV was observed in wheat leaves, stems, and crowns. The availability of fluorescent protein-tagged TriMV will facilitate the examination of virus movement and distribution in cereal hosts and the mechanisms of cross protection and synergistic interactions between TriMV and Wheat streak mosaic virus.
ERIC Educational Resources Information Center
Osler, James Edward
2013-01-01
This paper discusses the implementation of the Tri-Squared Test as an advanced statistical measure used to verify and validate the research outcomes of Educational Technology software. A mathematical and epistemological rational is provided for the transformative process of qualitative data into quantitative outcomes through the Tri-Squared Test…
78 FR 52860 - Electronic Reporting of Toxics Release Inventory Data
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
..., decreasing the cost to EPA of processing forms, and providing TRI information more quickly to the public. The... reporting of TRI forms provides numerous benefits, including making it easier for facilities to report... Constitution Ave. NW., Washington, DC. The Public Reading Room is open from 8:30 a.m. to 4:30 p.m., Monday...
Governing in Whose Interests? Enacting School Leadership for Whom?
ERIC Educational Resources Information Center
Busher, Hugh; McKeown, Penny
2005-01-01
Leaders at all levels in schools try to implement particular policies and practices. These arise in response to pressures in the policy, social and economic contexts in which they work and from their own social and educational values. As part of the process of implementation, leaders try to modify existing organisational cultures to bind their…
Understanding Nitrifier Denitrification: How far are we?
NASA Astrophysics Data System (ADS)
Wrage-Mönnig, N.
2014-12-01
Nitrifier denitrification is the oxidation of ammonia (NH3) via hydroxylamine (NH2OH) to nitrite (NO2-) and subsequent reduction of NO2- via nitric oxide (NO) to the greenhouse gas nitrous oxide (N2O) and possibly to dinitrogen (N2) by autotrophic nitrifiers. Especially in recent years, a lot of research has been conducted on this pathway. Under some conditions, it might dominate the N2O production from soils. Methods for studying nitrifier denitrification include selective inhibition, stable isotope and isotopomer methods, molecular and modelling approaches. They are applied from pure culture and pot studies to the field scale, trying to improve our knowledge of the conditions and factors controlling nitrifier denitrification. But how far are we? What have we learned so far and what remains to be discovered? With this contribution, I am trying to give an update of our understanding of this less well-known but important pathway.
Energy usage while maintaining thermal comfort: A case study of a UNT dormitory
NASA Astrophysics Data System (ADS)
Gambrell, Dusten
Campus dormitories for the University of North Texas house over 5500 students per year; each one of them requires certain comfortable living conditions while they live there. There is an inherit amount of money required in order to achieve minimal comfort levels; the cost is mostly natural gas for water and room heating and electricity for cooling, lighting and peripherals. The US Department of Energy has developed several programs to aid in performing energy simulations to help those interested design more cost effective building designs. Energy-10 is such a program that allows users to conduct whole house evaluations by reviewing and altering a few parameters such as building materials, solar heating, energy efficient windows etc. The idea of this project was to recreate a campus dormitory and try to emulate existent energy consumption then try to find ways of lowering that usage while maintaining a high level of personal comfort.
Short-pulse excitation of microwave plasma for efficient diamond growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Hideaki, E-mail: yamada-diamond@aist.go.jp; Chayahara, Akiyoshi; Mokuno, Yoshiaki
To realize a variety of potential applications of diamonds, particularly in the area of power electronics, it is indispensable to improve their growth efficiency. Most conventional approaches have tried to achieve this simply by increasing the gas temperature; however, this makes it difficult to grow large diamond crystals. To improve the growth efficiency while lowering the gas temperature, we propose that using a pulse-modulated microwave plasma with a sub-millisecond pulse width can enhance the power efficiency of the growth rate of single-crystal diamonds. We found that using a sub-millisecond pulse-mode discharge could almost double the growth rate obtained using continuousmore » mode discharge for a fixed average microwave power and gas pressure. A comparison between experimental observations of the optical emission spectra of the discharge and a numerical simulation of the gas temperature suggests that a decrease in the gas temperature was achieved, and highlights the importance of electron-dominated reactions for obtaining the enhancement of the growth rate. This result will have a large impact in the area of diamond growth because it enables diamond growth to be more power efficient at reduced temperatures.« less
Mass transfer in thin films under counter-current gas: experiments and numerical study
NASA Astrophysics Data System (ADS)
Lucquiaud, Mathieu; Lavalle, Gianluca; Schmidt, Patrick; Ausner, Ilja; Wehrli, Marc; O Naraigh, Lennon; Valluri, Prashant
2016-11-01
Mass transfer in liquid-gas stratified flows is strongly affected by the waviness of the interface. For reactive flows, the chemical reactions occurring at the liquid-gas interface also influence the mass transfer rate. This is encountered in several technological applications, such as absorption units for carbon capture. We investigate the absorption rate of carbon dioxide in a liquid solution. The experimental set-up consists of a vertical channel where a falling film is sheared by a counter-current gas flow. We measure the absorption occurring at different flow conditions, by changing the liquid solution, the liquid flow rate and the gas composition. With the aim to support the experimental results with numerical simulations, we implement in our level-set flow solver a novel module for mass transfer taking into account a variant of the ghost-fluid formalism. We firstly validate the pure mass transfer case with and without hydrodynamics by comparing the species concentration in the bulk flow to the analytical solution. In a final stage, we analyse the absorption rate in reactive flows, and try to reproduce the experimental results by means of numerical simulations to explore the active role of the waves at the interface.
Fracturing Behavior of Methane-Hydrate-Bearing Sediment
NASA Astrophysics Data System (ADS)
Konno, Y.; Jin, Y.; Yoneda, J.; Uchiumi, T.; Shinjou, K.; Nagao, J.
2016-12-01
As a part of a Japanese national hydrate research program (MH21, funded by the Ministry of Economy, Trade, and Industry), we performed laboratory experiments of hydraulic fracturing in methane-hydrate-bearing sediment. Distilled water was injected into methane-hydrate-bearing sand which was artificially made in a tri-axial pressure cell. X-ray computed tomography revealed that tensile failure was occurred after a rapid drop in the injection pressure. It was found that generated fractures cause a significant increase in the effective water permeability of hydrate-bearing sand. The result contributes fundamental understanding of the accumulation mechanism of gas hydrates in sediments and shows that hydraulic fracturing is one of promising enhanced recovery methods for low-permeable gas hydrate reservoirs.
Clark, Victoria R; Herzog, Howard J
2014-07-15
On September 20, 2013, the US Environmental and Protection Agency (EPA) proposed a revised rule for "Standards of Performance for Greenhouse Gas Emissions from New Stationary Sources: Electric Utility Generating Units". These performance standards set limits on the amount of carbon dioxide (CO2) that can be emitted per megawatt-hour (MWh) of electricity generation from new coal-fired and natural gas-fired power plants built in the US. These limits were based on determinations of "best system of emission reduction (BSER) adequately demonstrated". Central in this determination was evaluating whether Carbon Dioxide Capture and Storage (CCS) qualified as BSER. The proposed rule states that CCS qualifies as BSER for coal-fired generation but not for natural gas-fired generation. In this paper, we assess the EPA's analysis that resulted in this determination. We are not trying to judge what the absolute criteria are for CCS as the BSER but only the relative differences as related to coal- vs natural gas-fired technologies. We conclude that there are not enough differences between "base load" coal-fired and natural gas-fired power plants to justify the EPA's determination that CCS is the BSER for coal-fired power plants but not for natural gas-fired power plants.
Gas Accretion onto a Supermassive Black Hole: A Step to Model AGN Feedback
NASA Astrophysics Data System (ADS)
Nagamine, K.; Barai, P.; Proga, D.
2012-08-01
We study gas accretion onto a supermassive black hole (SMBH) using the 3D SPH code GADGET-3 on scales of 0.1-200 pc. First we test our code with the spherically symmetric, adiabatic Bondi accretion problem. We find that our simulation can reproduce the expected Bondi accretion flow very well for a limited amount of time until the effect of the outer boundary starts to be visible. We also find artificial heating of gas near the inner accretion boundary due to the artificial viscosity of SPH. Second, we implement radiative cooling and heating due to X-rays, and examine the impact of thermal feedback by the central X-ray source. The accretion flow roughly follows the Bondi solution for low central X-ray luminosities; however, the flow starts to exhibit non-spherical fragmentation due to the thermal instability for a certain range of central LX, and a strong overall outflow develops for greater LX. The cold gas develops filamentary structures that fall into the central SMBH, whereas the hot gas tries to escape through the channels in between the cold filaments. Such fragmentation of accreting gas can assist in the formation of clouds around AGN, induce star-formation, and contribute to the observed variability of narrow-line regions.
Lokhandwala, Kaaeid A.
2000-01-01
A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartlett, Roscoe A; Heroux, Dr. Michael A; Willenbring, James
2012-01-01
Software lifecycles are becoming an increasingly important issue for computational science & engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process--respecting the competing needs of research vs. production--cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for many CSE software projects thatmore » are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.« less
Solid State Gas Sensor Research in Germany – a Status Report
Moos, Ralf; Sahner, Kathy; Fleischer, Maximilian; Guth, Ulrich; Barsan, Nicolae; Weimar, Udo
2009-01-01
This status report overviews activities of the German gas sensor research community. It highlights recent progress in the field of potentiometric, amperometric, conductometric, impedimetric, and field effect-based gas sensors. It is shown that besides step-by-step improvements of conventional principles, e.g. by the application of novel materials, novel principles turned out to enable new markets. In the field of mixed potential gas sensors, novel materials allow for selective detection of combustion exhaust components. The same goal can be reached by using zeolites for impedimetric gas sensors. Operando spectroscopy is a powerful tool to learn about the mechanisms in n-type and in p-type conductometric sensors and to design knowledge-based improved sensor devices. Novel deposition methods are applied to gain direct access to the material morphology as well as to obtain dense thick metal oxide films without high temperature steps. Since conductometric and impedimetric sensors have the disadvantage that a current has to pass the gas sensitive film, film morphology, electrode materials, and geometrical issues affect the sensor signal. Therefore, one tries to measure directly the Fermi level position either by measuring the gas-dependent Seebeck coefficient at high temperatures or at room temperature by applying a modified miniaturized Kelvin probe method, where surface adsorption-based work function changes drive the drain-source current of a field effect transistor. PMID:22408529
Long-Term Fate of Organic Micropollutants in Sewage-Contaminated Groundwater
Barber, L.B.; Schroeder, M.P.; LeBlanc, D.R.
1988-01-01
Disposal of secondary sewage effluent by rapid infiltration has produced a plume of contaminated groundwater over 3500 m long near Falmouth, MA. Approximately 50 volatile organic compounds were detected and identified in the plume, at concentrations ranging from 10 ng/L to 500 ??g/L, by closed-loop stripping and purge- and-trap in conjuction with gas chromatography-mass spectrometry. The dominant contaminants were di-, tri- and tetrachloroethene, o- and p-dichlorobenzene, C1 to C6 alkylbenzenes, 2,6-di-tert-butylbenzoquinone, and several isomers of p-nonylphenol. The chloroethenes and chlorobenzenes had the same general distribution as chloride and boron and appear to be transported with little retardation. Less soluble compounds, such as nonylphenol and di-tert-butylbenzoquinone, appear to be retarded during subsurface transport by sorption processes. Although biodegradation of labile organic compounds occurs near the infiltration beds, many trace compounds, including chlorinated benzenes, alkylbenzenes, and aliphatic hydrocarbons, have persisted for more than 30 years in the aquifer.
Nanotube Production and Applications at Johnson Space Center
NASA Technical Reports Server (NTRS)
Nikolaev, Pavel; Files, Bradley; Arepalli, Sivaram; Scott, Carl; Holmes, William; Nicholson, Leonard S. (Technical Monitor)
2000-01-01
Promise of applications of carbon nanotubes has led to an intense effort at NASA/JSC, especially in the area of nanotube composites. Using the extraordinary mechanical strength of nanotubes, NASA hopes to design this revolutionary lightweight material for use in aerospace applications. Current research focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical applications. In pursuit of these goals, we have set up both laser and arc production processes for nanotubes. An in-depth diagnostic study of the plasma plume in front of the laser target has been studied to try to determine nanotube growth mechanisms. Complementary studies of characterization of nanotube product have added to knowledge of growth conditions. Results of our preliminary experiments in incorporating nanotubes into composites will be presented. Morphology and mechanical properties of the nanotubes composites will be discussed.
Notes on Barkas-Andersen effect
NASA Astrophysics Data System (ADS)
Sigmund, Peter; Schinner, Andreas
2014-10-01
Stimulated by recent statements in the literature on electronic stopping of heavy ions in matter, we try to clarify some central theoretical aspects of the Barkas-Andersen effect, about which there does not seem to be unanimous agreement in the community. We address the role of inner versus outer target shells, of projectile screening by bound electrons, the interference between Lindhard's description and perturbation theory, as well as the equivalence between a single-electron versus Fermi-gas description of the effect.
1985-12-24
gas’ ,;frorn bio- digestion and use of. digested i sludge as manure . The consensus was that the available technologies In India in the’ .held of...nine months of 1985 TUrkey bought 4.6 million tonnes of oil ■ from Iran and 4.3 million from Iraq, its two biggest suppliers. Mr Taqi had returned...try cooperation and exchange of oil expertise between the two countries. During his week-long visit, Mr Taqi also had talks with officials of the
Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with Tri-pass Diffuser
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Shouse, D. T.; Roquemore, W. M.; Burrus, D. L.; Duncan, B. S.; Ryder, R. C.; Brankovic, A.; Liu, N.-S.; Gallagher, J. R.; Hendricks, J. A.
2001-01-01
The Trapped Vortex Combustor (TVC) potentially offers numerous operational advantages over current production gas turbine engine combustors. These include lower weight, lower pollutant emissions, effective flame stabilization, high combustion efficiency, excellent high altitude relight capability, and operation in the lean burn or RQL (Rich burn/Quick mix/Lean burn) modes of combustion. The present work describes the operational principles of the TVC, and provides detailed performance data on a configuration featuring a tri-pass diffusion system. Performance data include EINOx (NO(sub x) emission index) results for various fuel-air ratios and combustor residence times, combustion efficiency as a function of combustor residence time, and combustor lean blow-out (LBO) performance. Computational fluid dynamics (CFD) simulations using liquid spray droplet evaporation and combustion modeling are performed and related to flow structures observed in photographs of the combustor. The CFD results are used to understand the aerodynamics and combustion features under different fueling conditions. Performance data acquired to date are favorable in comparison to conventional gas turbine combustors. Further testing over a wider range of fuel-air ratios, fuel flow splits, and pressure ratios is in progress to explore the TVC performance. In addition, alternate configurations for the upstream pressure feed, including bi-pass diffusion schemes, as well as variations on the fuel injection patterns, are currently in test and evaluation phases.
Liu, Guorui; Yang, Lili; Zhan, Jiayu; Zheng, Minghui; Li, Li; Jin, Rong; Zhao, Yuyang; Wang, Mei
2016-12-01
Cement kilns can be used to co-process fly ash from municipal solid waste incinerators. However, this might increase emission of organic pollutants like polychlorinated biphenyls (PCBs). Knowledge of PCB concentrations and homolog and congener patterns at different stages in this process could be used to assess the possibility of simultaneously controlling emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and "dioxin-like" compounds. To date, emissions from cement kilns co-processing fly ash from municipal solid waste incinerators have not been analyzed for PCBs. In this study, stack gas and particulate samples from two cement kilns co-processing waste incinerator fly ash were analyzed for PCBs. The average total tri- to deca-chlorinated biphenyl (∑ 3-10 PCB) concentration in the stack gas samples was 10.15ngm -3 . The ∑ 3-10 PCB concentration ranges in particulate samples from different stages were 0.83-41.79ngg -1 for cement kiln 1and0.13-1.69ngg -1 for cement kiln 2. The ∑ 3-10 PCB concentrations were much higher in particulate samples from the suspension pre-heater boiler, humidifier tower, and kiln back-end bag filters than in particulate samples from other stages. For these three stages, PCBs contributed to 15-18% of the total PCB, PCDD/F, and polychlorinated naphthalene toxic equivalents in stack gases and particulate matter. The PCB distributions were similar to those found in other studies for PCDD/Fs and polychlorinated naphthalenes, which suggest that it may be possible to simultaneously control emissions of multiple organic pollutants from cement kilns. Homolog patterns in the particulate samples were dominated by the pentachlorobiphenyls. CB-105, CB-118, and CB-123 were the dominant dioxin-like PCB congeners that formed at the back-end of the cement kiln. A mass balance of PCBs in the cement kilns indicated that the total mass of PCBs in the stack gases and clinker was about half the mass of PCBs in the raw materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Curiao, Tânia; Marchi, Emmanuela; Viti, Carlo; Oggioni, Marco R; Baquero, Fernando; Martinez, José Luis; Coque, Teresa M
2015-01-01
Exposure to biocides may result in cross-resistance to other antimicrobials. Changes in biocide and antibiotic susceptibilities, metabolism, and fitness costs were studied here in biocide-selected Escherichia coli and Klebsiella pneumoniae mutants. E. coli and K. pneumoniae mutants with various degrees of triclosan susceptibility were obtained after exposure to triclosan (TRI), benzalkonium chloride (BKC), chlorhexidine (CHX) or sodium hypochlorite (SHC), and ampicillin or ciprofloxacin. Alterations in antimicrobial susceptibility and metabolism in mutants were tested using Phenotype MicroArrays. The expression of AcrAB pump and global regulators (SoxR, MarA, and RamA) was measured by quantitative reverse transcription-PCR (qRT-PCR), and the central part of the fabI gene was sequenced. The fitness costs of resistance were assessed by a comparison of relative growth rates. Triclosan-resistant (TRI(r)) and triclosan-hypersusceptible (TRI(hs)) mutants of E. coli and K. pneumoniae were obtained after selection with biocides and/or antibiotics. E. coli TRI(r) mutants, including those with mutations in the fabI gene or in the expression of acrB, acrF, and marA, exhibited changes in susceptibility to TRI, CHX, and antibiotics. TRI(r) mutants for which the TRI MIC was high presented improved metabolism of carboxylic acids, amino acids, and carbohydrates. In TRI(r) mutants, resistance to one antimicrobial provoked hypersusceptibility to another one(s). TRI(r) mutants had fitness costs, particularly marA-overexpressing (E. coli) or ramA-overexpressing (K. pneumoniae) mutants. TRI, BKC, and CIP exposure frequently yielded TRI(r) mutants exhibiting alterations in AraC-like global regulators (MarA, SoxR, and RamA), AcrAB-TolC, and/or FabI, and influencing antimicrobial susceptibility, fitness, and metabolism. These various phenotypes suggest a trade-off of different selective processes shaping the evolution toward antibiotic/biocide resistance and influencing other adaptive traits. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
A Review of the Water and Energy Sectors and the Use of a Nexus Approach in Abu Dhabi.
Paul, Parneet; Al Tenaiji, Ameena Kulaib; Braimah, Nuhu
2016-03-25
Rapid population increase coupled with urbanization and industrialization has resulted in shortages of water in the Middle East. This situation is further exacerbated by global climate change due to greenhouse gas emissions. Recent research advocates that solutions to the global water security and scarcity crisis must involve water-energy nexus approaches. This means adopting policies and strategies that harmonize these inter-related sectors to minimize environmental impact while maximizing human benefit. In the case of Abu Dhabi, when designing and locating oil/gas refineries and associated power generation facilities, previous relevant decisions were based on simple economic and geographical grounds, such as nearness to oil rigs, pipelines, existing industries and port facilities, etc. The subsequent design and location of water abstraction and treatment works operated by the waste heat from these refining and/or power generation processes was catered for as an afterthought, meaning that there is now a mismatch between the water and energy supplies and demands. This review study was carried out to show how Abu Dhabi is trying now to integrate its water-energy sectors using a nexus approach so that future water/power infrastructure is designed optimally and operated in harmony, especially in regard to future demand. Based upon this review work, some recommendations are made for designers and policy makers alike to bolster the nexus approach that Abu Dhabi is pursuing.
EFFECTS OF NON-CIRCULAR MOTIONS ON AZIMUTHAL COLOR GRADIENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Garcia, Eric E.; Gonzalez-Lopezlira, Rosa A.; Gomez, Gilberto C., E-mail: emartinez@cida.v, E-mail: r.gonzalez@crya.unam.m, E-mail: g.gomez@crya.unam.m
2009-12-20
Assuming that density waves trigger star formation, and that young stars preserve the velocity components of the molecular gas where they are born, we analyze the effects that non-circular gas orbits have on color gradients across spiral arms. We try two approaches, one involving semianalytical solutions for spiral shocks, and another with magnetohydrodynamic (MHD) numerical simulation data. We find that, if non-circular motions are ignored, the comparison between observed color gradients and stellar population synthesis models would in principle yield pattern speed values that are systematically too high for regions inside corotation, with the difference between the real and themore » measured pattern speeds increasing with decreasing radius. On the other hand, image processing and pixel averaging result in systematically lower measured spiral pattern speed values, regardless of the kinematics of stellar orbits. The net effect is that roughly the correct pattern speeds are recovered, although the trend of higher measured OMEGA{sub p} at lower radii (as expected when non-circular motions exist but are neglected) should still be observed. We examine the MartInez-GarcIa et al. photometric data and confirm that this is indeed the case. The comparison of the size of the systematic pattern speed offset in the data with the predictions of the semianalytical and MHD models corroborates that spirals are more likely to end at outer Lindblad resonance, as these authors had already found.« less
Polo, Maria; Garcia-Jares, Carmen; Llompart, Maria; Cela, Rafael
2007-08-01
A solid-phase microextraction method (SPME) followed by gas chromatography with micro electron capture detection for determining trace levels of nitro musk fragrances in residual waters was optimized. Four nitro musks, musk xylene, musk moskene, musk tibetene and musk ketone, were selected for the optimization of the method. Factors affecting the extraction process were studied using a multivariate approach. Two extraction modes (direct SPME and headspace SPME) were tried at different extraction temperatures using two fiber coatings [Carboxen-polydimethylsiloxane (CAR/PDMS) and polydimethylsiloxane-divinylbenzene (PDMS/DVB)] selected among five commercial tested fibers. Sample agitation and the salting-out effect were also factors studied. The main effects and interactions between the factors were studied for all the target compounds. An extraction temperature of 100 degrees C and sampling the headspace over the sample, using either CAR/PDMS or PDMS/DVB as fiber coatings, were found to be the experimental conditions that led to a more effective extraction. High sensitivity, with detection limits in the low nanogram per liter range, and good linearity and repeatability were achieved for all nitro musks. Since the method proposed performed well for real samples, it was applied to different water samples, including wastewater and sewage, in which some of the target compounds (musk xylene and musk ketone) were detected and quantified.
A Review of the Water and Energy Sectors and the Use of a Nexus Approach in Abu Dhabi
Paul, Parneet; Al Tenaiji, Ameena Kulaib; Braimah, Nuhu
2016-01-01
Rapid population increase coupled with urbanization and industrialization has resulted in shortages of water in the Middle East. This situation is further exacerbated by global climate change due to greenhouse gas emissions. Recent research advocates that solutions to the global water security and scarcity crisis must involve water–energy nexus approaches. This means adopting policies and strategies that harmonize these inter-related sectors to minimize environmental impact while maximizing human benefit. In the case of Abu Dhabi, when designing and locating oil/gas refineries and associated power generation facilities, previous relevant decisions were based on simple economic and geographical grounds, such as nearness to oil rigs, pipelines, existing industries and port facilities, etc. The subsequent design and location of water abstraction and treatment works operated by the waste heat from these refining and/or power generation processes was catered for as an afterthought, meaning that there is now a mismatch between the water and energy supplies and demands. This review study was carried out to show how Abu Dhabi is trying now to integrate its water–energy sectors using a nexus approach so that future water/power infrastructure is designed optimally and operated in harmony, especially in regard to future demand. Based upon this review work, some recommendations are made for designers and policy makers alike to bolster the nexus approach that Abu Dhabi is pursuing. PMID:27023583
Hussein, Husnah; Williams, David J; Liu, Yang
2015-07-01
A systematic design of experiments (DOE) approach was used to optimize the perfusion process of a tri-axial bioreactor designed for translational tissue engineering exploiting mechanical stimuli and mechanotransduction. Four controllable design parameters affecting the perfusion process were identified in a cause-effect diagram as potential improvement opportunities. A screening process was used to separate out the factors that have the largest impact from the insignificant ones. DOE was employed to find the settings of the platen design, return tubing configuration and the elevation difference that minimise the load on the pump and variation in the perfusion process and improve the controllability of the perfusion pressures within the prescribed limits. DOE was very effective for gaining increased knowledge of the perfusion process and optimizing the process for improved functionality. It is hypothesized that the optimized perfusion system will result in improved biological performance and consistency.
A Framework for Considering Comprehensibility in Modeling
Gleicher, Michael
2016-01-01
Abstract Comprehensibility in modeling is the ability of stakeholders to understand relevant aspects of the modeling process. In this article, we provide a framework to help guide exploration of the space of comprehensibility challenges. We consider facets organized around key questions: Who is comprehending? Why are they trying to comprehend? Where in the process are they trying to comprehend? How can we help them comprehend? How do we measure their comprehension? With each facet we consider the broad range of options. We discuss why taking a broad view of comprehensibility in modeling is useful in identifying challenges and opportunities for solutions. PMID:27441712
Code of Federal Regulations, 2014 CFR
2014-07-01
... this subpart. Field gas means feedstock gas entering the natural gas processing plant. In light liquid... field gas before the extraction step in the process. Natural gas liquids means the hydrocarbons, such as... (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas...
Code of Federal Regulations, 2013 CFR
2013-07-01
... this subpart. Field gas means feedstock gas entering the natural gas processing plant. In light liquid... field gas before the extraction step in the process. Natural gas liquids means the hydrocarbons, such as... (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas...
Level-2 Milestone 5213. CTS-1 Contract Award Completed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leininger, Matt
2015-09-24
This report documents the fact that the first commodity technology (CT) system contract award, CTS-1, has been completed. The description of the milestone is: Based on Tri-Lab CTS-1 process and review, LLNL successfully awards the procurement for the next-generation Tri-Lab Linux CTS-1. The milestone completion criterion is: Signed contract. The milestone was completed on September 24th. 2015.
A cost effective method of meeting emission requirements from a 50 MMscfd glycol dehydrator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gearhart, L.E.
1998-12-31
The removal of volatile organic compounds (VOC) and benzene, toluene, ethylbenzene, xylene (BTEX) from glycol dehydration systems does not require costly equipment or elaborate controls. This paper will describe the design and installation of a 10 equivalent try glycol dehydration unit for field gas dehydration. The absorber design minimizes the absorption of VOC and BTEX by requiring 1.0 to 1.5 gallons of glycol per pound of water removed. Glycol unit VOC emissions are effectively controlled without installing vent gas condensers which require disposal of the waste condensate. The emission control system on this unit is simple to operate, meets emissionmore » standards and the dehydrator design achieves pipeline sales gas specifications at a reasonable cost. The system reduces the VOC and BTEX by adding a stripper on the glycol going to the reboiler. A 50 MMscfd dehydrator was installed in December 1995 and the results of an emission test done in April 1997 are presented in this paper.« less
Two-dimensional electron gas in tricolor oxide interfaces
NASA Astrophysics Data System (ADS)
Cao, Yanwei; Kareev, Michael; Liu, Xiaoran; Middey, Srimanta; Meyers, Derek; Tchakhalian, Jak
2014-03-01
Understanding and manipulating spin of electrons in nanometer scale is the main challenge of current spintronics, recent emergent two-dimensional electron gas in oxide interface provides a good platform to investigate the spin behavior by covering an insulating magnetic oxide layer. In this work, take titanates as an example, ultra-thin tricolor (tri-compound) titanate superlattices ([LaTiO3/SrTiO3/YTiO3]) were grown in a layer-by-layer way by pulsed laser deposition. High sample quality and their electronic structures were characterized by the combination of in-situ photoelectron and ex-situ structure and surface morphology probes. Temperature-dependent sheet resistance indicates the presence of metallic interfaces in both [LaTiO3 /SrTiO3 ] and all the tricolor structures, whereas a [YTiO3 /SrTiO3] bi-layer shows insulating behavior. The tricolor titanate superlattices provide an opportunity to induce tunable spin-polarization into the two-dimensional electron gas (2DEG) with Mott carriers.
Closed-cage tungsten oxide clusters in the gas phase.
Singh, D M David Jeba; Pradeep, T; Thirumoorthy, Krishnan; Balasubramanian, Krishnan
2010-05-06
During the course of a study on the clustering of W-Se and W-S mixtures in the gas phase using laser desorption ionization (LDI) mass spectrometry, we observed several anionic W-O clusters. Three distinct species, W(6)O(19)(-), W(13)O(29)(-), and W(14)O(32)(-), stand out as intense peaks in the regular mass spectral pattern of tungsten oxide clusters suggesting unusual stabilities for them. Moreover, these clusters do not fragment in the postsource decay analysis. While trying to understand the precursor material, which produced these clusters, we found the presence of nanoscale forms of tungsten oxide. The structure and thermodynamic parameters of tungsten clusters have been explored using relativistic quantum chemical methods. Our computed results of atomization energy are consistent with the observed LDI mass spectra. The computational results suggest that the clusters observed have closed-cage structure. These distinct W(13) and W(14) clusters were observed for the first time in the gas phase.
Reza Khoshravan Azar, Mohammad; Emami Satellou, Ali Akbar; Shishesaz, Mohammad; Salavati, Bahram
2013-04-01
Given the increasing use of composite materials in various industries, oil and gas industry also requires that more attention should be paid to these materials. Furthermore, due to variation in choice of materials, the materials needed for the mechanical strength, resistance in critical situations such as fire, costs and other priorities of the analysis carried out on them and the most optimal for achieving certain goals, are introduced. In this study, we will try to introduce appropriate choice for use in the natural gas transmission composite pipelines. Following a 4-layered filament-wound (FW) composite pipe will consider an offer our analyses under internal pressure. The analyses' results will be calculated for different combinations of angles 15 deg, 30 deg, 45 deg, 55 deg, 60 deg, 75 deg, and 80 deg. Finally, we will compare the calculated values and the optimal angle will be gained by using the Approximation methods. It is explained that this layering is as the symmetrical.
Development of an Integrated Biofuel and Chemical Refinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trawick, John; Burk, Mark; Barton, Nelson
2017-02-06
This project has demonstrated the level of commercial readiness for production of the industrial chemical, 1,4-butanediol (BDO), from lignocellulosic biomass by engineered E. coli. Targets were BDO titer, rate, and yield (TRY) and growth in lignocellulosic hydrolysates (Hz). A range of Hzs were used to assess limitations for biomass-to-BDO. Via adaptive evolution methods, whole-genome sequencing, and introduction of identified target genes, strains co-utilizing C5/ C6 sugars were made. The composition of Hz versus TRY led to a modified Hz composition. This was used in partnership with the DOE to redirect the project to focus on 1) several biomass Hz frommore » new suppliers, 2) Hz specification due to the characteristics of the Genomatica BDO process, 3) a gene cassette to engineer any BDO producing strain for biomass, and 4) modified BDO recovery to more economically recover BDO at industry specifications. BDO TRY and growth of the E. coli strains were predictable based on Hz composition from several suppliers. This defined metrics for biomass Hz composition to achieve BDO TRY along with internal TEA to evaluate the economic potential of each modification to strain, Hz feed, and process. An improved biomass-to-BDO production strain reached BDO T-R in a 30 L fermentation above original objectives. Yield approached the proposed Y and modifications to BDO recovery were demonstrated. Genomatica is now in the position of being able to incorporate biomass feedstocks into the commercial GENO BDO process.« less
Tri- and tetraterpenoid hydrocarbons in the Messel oil shale
NASA Technical Reports Server (NTRS)
Kimble, B. J.; Maxwell, J. R.; Philp, R. P.; Eglinton, G.; Albrecht, P.; Ensminger, A.; Arpino, P.; Ourisson, G.
1974-01-01
The high-molecular-weight constituents of the branched and cyclic hydrocarbon fraction of the Messel oil shale (Eocene) have been examined by high-resolution gas chromatography and combined gas chromatography/mass spectrometry. The following compounds are present: perhydrolycopene, together with one or more unsaturated analogs with the same skeleton; a series of 4-methylsteranes in higher abundance than their 4-desmethyl analogs; two series of pentacyclic triterpanes, one series based on the hopane structure, and the other based on the 17 alpha-H hopane structure; and an intact triterpene hop-17(21)-ene. Only two additional triterpanes were detected in minor concentrations - namely, 30-normoretane and a C31 triterpane based on the hopane/lupane-type skeleton. The presence of these compounds suggests a significant microbial contribution to the forming sediment.
The advantage and disadvantage of peripheral ignorance: the gas adsorption controversy.
Palló, Gábor
2010-07-01
In the early history of surface chemistry, in the 1920s, the nature of gas adsorption was a pivotal subject. A theory created by Michael Polanyi in the peripheral Hungary contradicted the received view originating from the American Irving Langmuir. When working out his theory, Polanyi had not even heard of Langmuir's rival description. However, Polanyi emigrated from Hungary to Germany, the centre of his field, and tried to defend his adsorption theory in the circle of the leading experts, including Einstein and Fritz Haber. This controversy seemed vital to his survival as a scientist and as an immigrant. The aim of this article is to recapitulate this controversy, with its sad undercurrents, the role of local science, methods of argumentation, and the work of a central scientific community.
Nonthermal plasma processor utilizing additive-gas injection and/or gas extraction
Rosocha, Louis A.
2006-06-20
A device for processing gases includes a cylindrical housing in which an electrically grounded, metal injection/extraction gas supply tube is disposed. A dielectric tube surrounds the injection/extraction gas supply tube to establish a gas modification passage therearound. Additionally, a metal high voltage electrode circumscribes the dielectric tube. The high voltage electrode is energizable to create nonthermal electrical microdischarges between the high voltage electrode and the injection/extraction gas supply tube across the dielectric tube within the gas modification passage. An injection/extraction gas and a process gas flow through the nonthermal electrical microdischarges within the gas modification passage and a modified process gas results. Using the device contaminants that are entrained in the process gas can be destroyed to yield a cleaner, modified process gas.
Analysis of the transient behavior of rubbing components
NASA Technical Reports Server (NTRS)
Quezdou, M. B.; Mullen, R. L.
1986-01-01
Finite element equations are developed for studying deformations and temperatures resulting from frictional heating in sliding system. The formulation is done for linear steady state motion in two dimensions. The equations include the effect of the velocity on the moving components. This gives spurious oscillations in their solutions by Galerkin finite element methods. A method called streamline upwind scheme is used to try to deal with this deficiency. The finite element program is then used to investigate the friction of heating in gas path seal.
Cryogenic flow rate measurement with a laser Doppler velocimetry standard
NASA Astrophysics Data System (ADS)
Maury, R.; Strzelecki, A.; Auclercq, C.; Lehot, Y.; Loubat, S.; Chevalier, J.; Ben Rayana, F.
2018-03-01
A very promising alternative to the state-of-the-art static volume measurements for liquefied natural gas (LNG) custody transfer processes is the dynamic principle of flow metering. As the Designated Institute (DI) of the LNE (‘Laboratoire National de métrologie et d’Essais’, being the French National Metrology Institute) for high-pressure gas flow metering, Cesame-Exadebit is involved in various research and development programs. Within the framework of the first (2010-2013) and second (2014-2017) EURAMET Joint Research Project (JRP), named ‘Metrological support for LNG custody transfer and transport fuel applications’, Cesame-Exadebit explored a novel cryogenic flow metering technology using laser Doppler velocimetry (LDV) as an alternative to ultrasonic and Coriolis flow metering. Cesame-Exadebit is trying to develop this technique as a primary standard for cryogenic flow meters. Currently, cryogenic flow meters are calibrated at ambient temperatures with water. Results are then extrapolated to be in the Reynolds number range of real applications. The LDV standard offers a unique capability to perform online calibration of cryogenic flow meters in real conditions (temperature, pressure, piping and real flow disturbances). The primary reference has been tested on an industrial process in a LNG terminal during truck refuelling. The reference can calibrate Coriolis flow meters being used daily with all the real environmental constraints, and its utilisation is transparent for LNG terminal operators. The standard is traceable to Standard International units and the combined extended uncertainties have been determined and estimated to be lower than 0.6% (an ongoing improvement to reducing the correlation function uncertainty, which has a major impact in the uncertainty estimation).
NASA Astrophysics Data System (ADS)
Zhao, D.
2012-12-01
The exchange of carbon dioxide across the air-sea interface is an important component of the atmospheric CO2 budget. Understanding how future changes in climate will affect oceanic uptake and releaser CO2 requires accurate estimation of air-sea CO2 flux. This flux is typically expressed as the product of gas transfer velocity, CO2 partial pressure difference in seawater and air, and the CO2 solubility. As the key parameter, gas transfer velocity has long been known to be controlled by the near-surface turbulence in water, which is affected by many factors, such as wind forcing, ocean waves, water-side convection and rainfall. Although the wind forcing is believed as the major factor dominating the near-surface turbulence, many studies have shown that the wind waves and their breaking would greatly enhance turbulence compared with the classical solid wall theory. Gas transfer velocity has been parameterized in terms of wind speed, turbulent kinetic energy dissipation rate, and wave parameters on the basis of observational data or theoretical analysis. However, great discrepancies, as large as one order, exist among these formulas. In this study, we will systematically analyze the differences of gas transfer velocity proposed so far, and try to find the reason that leads to their uncertainties. Finally, a new formula for gas transfer velocity will be given in terms of wind speed and wind wave parameter.
Conscious Action/Zombie Action
Shepherd, Joshua
2015-01-01
Abstract I argue that the neural realizers of experiences of trying (that is, experiences of directing effort towards the satisfaction of an intention) are not distinct from the neural realizers of actual trying (that is, actual effort directed towards the satisfaction of an intention). I then ask how experiences of trying might relate to the perceptual experiences one has while acting. First, I assess recent zombie action arguments regarding conscious visual experience, and I argue that contrary to what some have claimed, conscious visual experience plays a causal role for action control in some circumstances. Second, I propose a multimodal account of the experience of acting. According to this account, the experience of acting is (at the very least) a temporally extended, co‐conscious collection of agentive and perceptual experiences, functionally integrated and structured both by multimodal perceptual processing as well as by what an agent is, at the time, trying to do. PMID:27667859
Tri-Cities research may help biofuels take flight
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madison, Alison L.
Monthly economic diversity column for the Tri-City Herald. Excerpt: If you stop and think about it, some pretty interesting stuff has roots in the Tri-Cities, but reaches far beyond. Many Tri-Citians have gone on to be professional athletes, entertainers, scientists and engineers, doctors, lawyers, and humanitarians to name just a few. And a lot of groundbreaking discoveries - many born of strategic collaborations resulting from purposeful economic development efforts - have emerged from work at our local national laboratory. Just recently, Pacific Northwest National Laboratory entered into a $2M collaboration with Seattle biofuel producer Imperium Renewables and other partners tomore » develop a new method to make renewable jet fuels. Successful development of the catalytic process, which converts biomass-based alcohols into renewable drop-in jet fuels, could lead to additional renewable jet fuel production facilities being built and operated in the Pacific Northwest.« less
Environmental democracy in action: The Toxics Release Inventory
NASA Astrophysics Data System (ADS)
Lynn, Frances M.; Kartez, Jack D.
1994-07-01
The Toxics Release Inventory (TRI) created by the 1986 Emergency Planning and Community Right-to-Know Act initially received limited attention. During the early years of its implementation, the TRI has become the basis for a national experiment in voluntaristic problem solving among citizens and industry, but that process of environmental democracy hinges on citizens' ability to actually acquire, understand, and apply the new data on industrial toxic emissions. A national study of TRI-using organizations in the public and private sectors reveals that effective citizen access depends in part on the efforts of intermediary public interest groups to bridge individual needs and right-to-know data. Although the TRI has had early success as a supplement to conventional command and control regulation, questions exist about the extent to which state and federal government should or must provide special efforts to make environmental information access work for citizens.
Effect of sheath gas in atmospheric-pressure plasma jet for potato sprouting suppression
NASA Astrophysics Data System (ADS)
Nishiyama, S.; Monma, M.; Sasaki, K.
2016-09-01
Recently, low-temperature atmospheric-pressure plasma jets (APPJs) attract much interest for medical and agricultural applications. We try to apply APPJs for the suppression of potato sprouting in the long-term storage. In this study, we investigated the effect of sheath gas in APPJ on the suppression efficiency of the potato sprouting. Our APPJ was composed of an insulated thin wire electrode, a glass tube, a grounded electrode which was wound on the glass tube, and a sheath gas nozzle which was attached at the end of the glass tube. The wire electrode was connected to a rectangular-waveform power supply at a frequency of 3 kHz and a voltage of +/- 7 kV. Helium was fed through the glass tube, while we tested dry nitrogen, humid nitrogen, and oxygen as the sheath gas. Eyes of potatoes were irradiated by APPJ for 60 seconds. The sprouting probability was evaluated at two weeks after the plasma irradiation. The sprouting probability was 28% when we employed no sheath gases, whereas an improved probability of 10% was obtained when we applied dry nitrogen as the sheath gas. Optical emission spectroscopy was carried out to diagnose the plasma jet. It was suggested that reactive species originated from nitrogen worked for the efficient suppression of the potato sprouting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davenport, Michael; Petti, D. A.; Palmer, Joe
2016-11-01
The United States Department of Energy’s Advanced Reactor Technologies (ART) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experimentsmore » are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and completed in October 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and completed in April 2014. Since the purpose of this experiment was to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment was significantly different from the first two experiments, though the control and monitoring systems are very similar. The final experiment, AGR-5/6/7, is scheduled to begin irradiation in early summer 2017.« less
NASA Astrophysics Data System (ADS)
Brüggemann, Nicolas; Heil, Jannis; Liu, Shurong; Wei, Jing; Vereecken, Harry
2017-04-01
This contribution tries to open up a new perspective on biogeochemical N2O production processes, taking the term bio-geo-chemistry literally. What if a major part of N2O is produced from reactive intermediates of microbiological N turnover processes ("bio…") leaking out of the involved microorganisms into the soil ("…geo…") and then reacting chemically ("…chemistry") with the surrounding matrix? There are at least two major reactive N intermediates that might play a significant role in these coupled biological-chemical reactions, i.e. hydroxylamine (NH2OH) and nitrite (NO2-), both of which are produced during nitrification under oxic conditions, while NO2- is also produced during denitrification under anoxic conditions. Furthermore, NH2OH is assumed to be also a potential intermediate of DNRA and/or anammox. First, this contribution will summarize information about several chemical reactions involving NH2OH and NO2- leading to the formation of N2O. These abiotic reactions are: reactions of NO2- with reduced metal cations, nitrosation reactions of NO2- and soil organic matter (SOM), the reaction between NO2- and NH2OH, and the oxidation of NH2OH by oxidized metal ions. While these reactions can occur over a broad range of soil characteristics, they are ignored in most current N trace gas studies in favor of biological processes only. Disentangling microbiological from purely chemical N2O production is further complicated by the fact that the chemically formed N2O is either undiscernible from N2O produced during nitrification, or shows an intermediate 15N site preference between that of N2O from nitrification and denitrification, respectively. Results from experiments with live and sterilized soil samples, with artificial soil mixtures and with phenolic lignin decomposition model compounds will be presented that demonstrate the potential contribution of these abiotic processes to soil N trace gas emissions, given a substantial leakage rate of these reactive intermediates into the soil matrix. It will be shown that the magnitude of these chemically produced N2O fluxes is not only governed by soil nitrogen availability and soil water content, but also by organic matter content and composition, pH, redox conditions and redox-active metal ion content. The presented data reveal that the interplay between biological and chemical processes is relevant for soil N2O emissions. The integration of these processes and their additional controlling variables in soil N trace gas emission models would very likely have a great potential for reducing the uncertainty in emission model results and for facilitating the design of appropriate, site-specific N2O mitigation strategies.
NASA Astrophysics Data System (ADS)
Englund, C. E.; Reeves, D. L.; Shingledecker, C. A.; Thorne, D. R.; Wilson, K. P.
1987-02-01
The Unified Tri-Service Cognitive Performance Assessment Battery (UTC-PAB) represents the primary metric for a Level 2 evaluation of cognitive performance in the JWGD3 MILPERF chemical defense biomedical drug screening program. Emphasis for UTC-PAB development has been on the standardization of test batteries across participating laboratories with respect to content, computer-based administration, test scoring, and data formatting. This effort has produced a 25-test UTC-PAB that represents the consolidation and unification of independent developments by the Tri-service membership. Test selection was based on established test validity and relevance of military performance. Sensitivity to effects of hostile environments and sustained operations were also considerations involved in test selection. Information processing, decision making, perception, and mental workload capacity are among the processes and abilities addressed in the battery. The UTC-PAB represents a dynamic approach to battery development. The nature of the biomedical drugs screened and information from performance centered task analyses will direct the form of future versions of the battery.
McCormick, Susan P.; Lee, Theresa; Vaughan, Martha M.; Alexander, Nancy J.; Busman, Mark
2018-01-01
Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi. PMID:29649280
Proctor, Robert H; McCormick, Susan P; Kim, Hye-Seon; Cardoza, Rosa E; Stanley, April M; Lindo, Laura; Kelly, Amy; Brown, Daren W; Lee, Theresa; Vaughan, Martha M; Alexander, Nancy J; Busman, Mark; Gutiérrez, Santiago
2018-04-01
Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi.
Wilding, Bruce M; Turner, Terry D
2014-12-02
A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.
Mixing induced by a propagating normal mode in long term experiments
NASA Astrophysics Data System (ADS)
Dossmann, Yvan; Pollet, Florence; Odier, Philippe; Dauxois, Thierry
2017-04-01
The energy pathways from propagating internal waves to the scales of irreversible mixing in the ocean are numerous. The triadic resonant instability (TRI) is an intrinsic destabilization process that can lead to mixing away from topographies. It consists in the destabilization of a primary internal wave generation leading to the radiation of two secondary waves of lower frequencies and different wave vectors. In the process, internal wave energy is carried down to smaller scales. A previous study focused on the assessment of instantaneous turbulent fluxes fields associated with the TRI process in laboratory experiments [1]. The present study investigates the integrated impact of mixing processes induced by a propagative normal mode over long term experiments using a similar setup. Configurations for which the TRI process is either favored or inhibited are tackled. Optical measurements using the light attenuation technique allow to follow the internal waves dynamics and the evolution of the density profile between two runs of one hour typical duration. The horizontally averaged turbulent diffusivity Kt(z) and the mixing efficiency Γ are assessed. One finds values up to Kt = 10-6 m2/s and Γ = 11 %, with slightly larger values in the presence of TRI. The maximum value for Kt is measured at the position(s) of the maximum shear normal mode shear for both normal modes 1 and 2. The development of staircases in the density profile is observed after several hours of forcing. This mechanism can be explained by Phillips' argument by which sharp interfaces can form due to vertical variations of the buoyancy flux. The staircases are responsible for large variations in the vertical distribution of turbulent diffusivity. These results could help to refine parameterizations of the impact of low order normal modes in ocean mixing. Reference : [1] Dossmann et al. 2016, Mixing by internal waves quantified using combined PIV/PLIF technique, Experiments in Fluids, 57, 132.
Gas seepage in the Northern Adriatic Sea
NASA Astrophysics Data System (ADS)
Matilde Ferrante, Giulia; Donda, Federica; Volpi, Valentina; Tinivella, Umberta
2017-04-01
In the Northern Adriatic Sea, the occurrence of gas seepage has been widely documented. However, the origin of seeping gas was not clearly constrained. Geophysical data with different scale of resolution, i.e. multichannel seismic profiles, CHIRP and morpho-bathymetry data collected in 2009 and 2014 by OGS reveal that several the gas-enriched fluid vents are deeply rooted. In fact, the entire Plio-Quaternary succession is characterized by widespread seismic anomalies represented by wipe-out zones and interpreted as gas chimneys. They commonly root at the base of the Pliocene sequence but also within the Paleogene succession, where they appear to be associated to deep-seated, Mesozoic-to-Paleogene faults. These chimneys originate and terminate at different stratigraphic levels; they also commonly reach the seafloor, where rock outcrops interpreted as authigenic carbonate deposits have been recognized. In places, gas is then capable to escape in the water column as shown by numerous gas flares. On going studies are addressed to: 1. re-examining the structural setting of the study area, in order to verify a possible structural control on chimney distribution and gas migration; 2. performing geochemical analysis on gas which have been sampled in some key emission points; 3. a quantitative analysis of some selected boreholes well logs (made available through the public VidePi database (www.videpi.com)) aimed to estimate the amount of gas present in sediments. This work presents the preliminary results regarding the latter aspect of our research. In a first instance, for each selected borehole the geophysical logs have been digitized. This procedure consists in a manual picking of curves, in a set system of reference. Static corrections for vertical offset are made at this stage. Logs are then divided by type and converted in common scales, amplifications and units. Every log is resampled in order to cut high frequencies not useful in the comparison with seismic data. Estimation of gas requires a petrophysical characterization of sediments, but unfortunately the available wells are not sufficient for our investigations. For this reason, we are presently trying to establish empirical relationships between the available logs. All information available from wells and results from literature are used to fit cross-plots, and related chi-square tests are performed. Some correlations among our petrophysical logs and common trends in the investigated area have been already found, but our work is still in progress. This analysis will hopefully provide a petrophysical characterization of the study area and will be used to estimate density, velocity and porosity profiles. Next step will consist in an ad hoc processing of seismic data, applying a True Amplitude Recovery and keeping the amplitude information unaffected, which is the first request in our analysis. References: Deep-sourced gas seepage and methane-derived carbonates in the Northern Adriatic Sea, Donda et al., 2015; Sound velocity and related properties of marine sediments, Hamilton et al., 1982; Archie's law - a reappraisal, Glover, 2016.
Ramandi, Sara; Entezari, Mohammad H; Ghows, Narjes
2017-09-01
C-N-S-tri doped TiO 2 anatase phase was synthesized using a facile, effective and novel sonochemical method at low frequency (20kHz) and at room temperature. Titanium butoxide as the titanium precursor and thiourea as the dopant source were used in the synthesis of the photo-catalyst. The effects of important parameters such as thiourea/Ti molar ratio, ultrasound intensity, sonication time and temperature were studied on the synthesis of tri-doped TiO 2 . The XPS results confirmed the presence of N, S, and C in the photo-catalyst. The photo-catalytic efficiency of the synthesized catalyst was studied toward the removal of Diclofenac as a model pharmaceutical organic pollutant. The results confirmed that the photo-catalyst synthesized with narrower band gap energy, shorter sonication time and higher ultrasound intensity leads to a rapid removal of Diclofenac. The effect of operational variables on the photo-catalytic activity of C-N-S tri doped TiO 2 nanoparticles was studied and optimized using the Taguchi method as a statistical technique. Additionally, the degradation process followed the pseudo-first-order kinetics model and the highest apparent rate constant of 0.0632min -1 achieved in 90min. Chemical oxygen demand (COD) analysis confirmed that the mineralization took place completely (100%) under the optimized conditions in 180min. Different scavengers were applied during the degradation process and active species such as OH and O 2 - had key roles in the photo-catalytic process. Copyright © 2017 Elsevier B.V. All rights reserved.
Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.
2012-08-21
A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.
Enantioselective comprehensive two-dimensional gas chromatography of lavender essential oil.
Krupčík, Ján; Gorovenko, Roman; Špánik, Ivan; Armstrong, Daniel W; Sandra, Pat
2016-12-01
The enantiomeric composition of several chiral markers in lavender essential oil was studied by flow modulated comprehensive two-dimensional gas chromatography operated in the reverse flow mode and hyphenated to flame ionization and quadrupole mass spectrometric detection. Two capillary column series were used in this study, 2,3-di-O-ethyl-6-O-tert-butyldimethylsilyl-β-cyclodextrin or 2,3,6-tri-O-methyl-β-cyclodextrin, as the chiral column in the first dimension and α polyethylene glycol column in the second dimension. Combining the chromatographic data obtained on these column series, the enantiomeric and excess ratios for α-pinene, β-pinene, camphor, lavandulol, borneol, and terpinen-4-ol were determined. This maybe a possible route to assess the authenticity of lavender essential oil. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2011 CFR
2011-07-01
... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...
Code of Federal Regulations, 2013 CFR
2013-07-01
... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...
Code of Federal Regulations, 2012 CFR
2012-07-01
... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...
Code of Federal Regulations, 2014 CFR
2014-07-01
... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...
Diffraction Seismic Imaging of the Chalk Group Reservoir Rocks
NASA Astrophysics Data System (ADS)
Montazeri, M.; Fomel, S.; Nielsen, L.
2016-12-01
In this study we investigate seismic diffracted waves instead of seismic reflected waves, which are usually much stronger and carry most of the information regarding subsurface structures. The goal of this study is to improve imaging of small subsurface features such as faults and fractures. Moreover, we focus on the Chalk Group, which contains important groundwater resources onshore and oil and gas reservoirs in the Danish sector of the North Sea. Finding optimum seismic velocity models for the Chalk Group and estimating high-quality stacked sections with conventional processing methods are challenging tasks. Here, we try to filter out as much as possible of undesired arrivals before stacking the seismic data. Further, a plane-wave destruction method is applied on the seismic stack in order to dampen the reflection events and thereby enhance the visibility of the diffraction events. After this initial processing, we estimate the optimum migration velocity using diffraction events in order to obtain a better resolution stack. The results from this study demonstrate how diffraction imaging can be used as an additional tool for improving the images of small-scale features in the Chalk Group reservoir, in particular faults and fractures. Moreover, we discuss the potential of applying this approach in future studies focused on such reservoirs.
Conceptual studies for a mercury target circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigg, B.
1996-06-01
For the now favored target design of the European Spallation Source project, i.e. the version using mercury as target material, a basic concept of the primary system has been worked out. It does not include a detailed design of the various components of the target circuit, but tries to outline a feasible solution for the system. Besides the removal of the thermal power of about 3MW produced in the target by the proton beam, the primary system has to satisfy a number of other requirements related to processing, safety, and operation. The basic proposal uses an electromagnetic pump and amore » mercury-water intermediate heat excanger, but other alternatives are also being discussed. Basic safety requirements, i.e. protection against radiation and toxic mercury vapours, are satisfied by a design using an air-tight primary system containment, double-walled tubes in the intermediate heat exchanger, a fail-safe system for decay heat removal, and a remote handling facility for the active part of the system. Much engineering work has still to be done, because many details of the design of the mercury and gas processing systems remain to be clarified, the thermal-hydraulic components need further optimisation, the system for control and instrumentation is only known in outline and a through safety analysis will be required.« less
Ohrui, Y; Nagoya, T; Kurimata, N; Sodeyama, M; Seto, Y
2017-07-01
A field-portable gas chromatography-mass spectrometry (GC-MS) system (Hapsite ER) was evaluated for the detection of nonvolatile V-type nerve agents (VX and Russian VX (RVX)) in the vapor phase. The Hapsite ER system consists of a Tri-Bed concentrator gas sampler, a nonpolar low thermal-mass capillary GC column and a hydrophobic membrane-interfaced electron ionization quadrupole mass spectrometer evacuated by a non-evaporative getter pump. The GC-MS system was attached to a VX-G fluoridating conversion tube containing silver nitrate and potassium fluoride. Sample vapors of VX and RVX were converted into O-ethyl methylphosphonofluoridate (EtGB) and O-isobutyl methylphosphonofluoridate (iBuGB), respectively. These fluoridated derivatives were detected within 10 min. No compounds were detected when the VX and RVX samples were analyzed without the conversion tube. A vapor sample of tabun (GA) was analyzed, in which GA and O-ethyl N,N-dimethylphosphoramidofluoridate were detected. The molar recovery percentages of EtGB and iBuGB from VX and RVX vapors varied from 0.3 to 17%, which was attributed to variations in the vaporization efficiency of the glass vapor container. The conversion efficiencies of the VX-G conversion tube for VX and RVX to their phosphonate derivatives were estimated to be 40%. VX and RVX vapors were detected at concentrations as low as 0.3 mg m -3 . Gasoline vapor was found to interfere with the analyses of VX and RVX. In the presence of 160 mg m -3 gasoline, the detection limits of VX and RVX vapor were increased to 20 mg m -3 . Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Ghasemi, Ensieh; Sillanpää, Mika
2014-12-01
In this study, a simple, novel and efficient preconcentration method for the determination of some chlorobenzenes (monochlorobenzene (MCB), three isomeric forms of dichlorobenzene (diCB), 1,3,5-trichlorobenzene (triCB) and hexachlorobenze (hexaCB)) has been developed using a headspace solid phase microextraction (HS-SPME) based on nano-structured ZnO combined with capillary gas chromatography-mass spectrometry (GC-MS). ZnO nanorods have been grown on fused silica fibers using a hydrothermal process. The diameter of ZnO nanorods was in the range of 50-80 nm. The effect of different variables on the extraction efficiency was studied simultaneously using an experimental design. The variables of interest in the HS-SPME were stirring rate, desorption time and temperature, ionic strength, extraction time and temperature. For this purpose, a multivariate strategy was applied based on an experimental design using a Plackett-Burman design for screening and a Box-Behnken design for optimizing of the significant factors. The detection limit and relative standard deviation (RSD) (n=5) for the target analytes were in the range of 0.01-0.1 ng L(-1) and 4.3-7.6%, respectively. The developed technique was found to be successfully applicable to preconcentration and determination of the target analytes in environmental water and soil samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Geophysical Properties of Hard Rock for Investigation of Stress Fields in Deep Mines
NASA Astrophysics Data System (ADS)
Tibbo, M.; Young, R. P.; Schmitt, D. R.; Milkereit, B.
2014-12-01
A complication in geophysical monitoring of deep mines is the high-stress dependency of the physical properties of hard rocks. In-mine observations show anisotropic variability of the in situ P- and S-wave velocities and resistivity of the hard rocks that are likely related to stress field changes. As part of a comprehensive study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, data from in situ monitoring of the seismicity, conductivity, stress, and stress dependent physical properties has been obtain. In-laboratory experiments are also being performed on borehole cores from the Sudbury mines. These experiments will measure the Norite borehole core's properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. Hydraulic fracturing has been successfully implemented in industries such as oil and gas and enhanced geothermal systems, and is currently being investigated as a potential method for preconditioning in mining. However, further research is required to quantify how hydraulic fractures propagate through hard, unfractured rock as well as naturally fractured rock typically found in mines. These in laboratory experiments will contribute to a hydraulic fracturing project evaluating the feasibility and effectiveness of hydraulic fracturing as a method of de-stressing hard rock mines. A tri-axial deformation cell equipped with 18 Acoustic Emission (AE) sensors will be used to bring the borehole cores to a tri-axial state of stress. The cores will then be injected with fluid until the the hydraulic fracture has propagated to the edge of the core, while AE waveforms will be digitized continuously at 10 MHz and 12-bit resolution for the duration of each experiment. These laboratory hydraulic fracture experiments will contribute to understanding how parameters including stress ratio, fluid injection rate, and viscosity, affect the fracturing process.
Sakai, Nobumitsu; Dayana, Emmy; Abu Bakar, Azizi; Yoneda, Minoru; Nik Sulaiman, Nik Meriam; Ali Mohd, Mustafa
2016-10-01
Polychlorinated biphenyls (PCBs) were monitored in surface water collected in the Selangor River basin, Malaysia, to identify the occurrence, distribution, and dechlorination process as well as to assess the potential adverse effects to the Malaysian population. Ten PCB homologs (i.e., mono-CBs to deca-CBs) were quantitated by using gas chromatography-mass spectrometry (GC/MS). The total concentration of PCBs in the 10 sampling sites ranged from limit of detection to 7.67 ng L -1 . The higher chlorinated biphenyls (tetra-CBs to deca-CBs) were almost not detected in most of the sampling sites, whereas lower chlorinated biphenyls (mono-CBs, di-CBs, and tri-CBs) dominated more than 90 % of the 10 homologs in all the sampling sites. Therefore, the PCB load was estimated to be negligible during the sampling period because PCBs have an extremely long half-life. The PCBs, particularly higher chlorinated biphenyls, could be thoroughly dechlorinated to mono-CBs to tri-CBs by microbial decomposition in sediment or could still be accumulated in the sediment. The lower chlorinated biphenyls, however, could be resuspended or desorbed from the sediment because they have faster desorption rates and higher solubility, compared to the higher chlorinated biphenyls. The health risk for the Malaysia population by PCB intake that was estimated from the local fish consumption (7.2 ng kg -1 bw day -1 ) and tap water consumption (1.5 × 10 -3 -3.1 × 10 -3 ng kg -1 bw day -1 ) based on the detected PCB levels in the surface water was considered to be minimal. The hazard quotient based on the tolerable daily intake (20 ng kg -1 bw day -1 ) was estimated at 0.36.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-04-01
Brief details are given of processes including: BGC-Lurgi slagging gasification, COGAS, Exxon catalytic coal gasification, FW-Stoic 2-stage, GI two stage, HYGAS, Koppers-Totzek, Lurgi pressure gasification, Saarberg-Otto, Shell, Texaco, U-Gas, W-D.IGI, Wellman-Galusha, Westinghouse, and Winkler coal gasification processes; the Rectisol process; the Catacarb and the Benfield processes for removing CO/SUB/2, H/SUB/2s and COS from gases produced by the partial oxidation of coal; the selectamine DD, Selexol solvent, and Sulfinol gas cleaning processes; the sulphur-tolerant shift (SSK) process; and the Super-meth process for the production of high-Btu gas from synthesis gas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... accounting purposes when I do not process the gas? 206.181 Section 206.181 Mineral Resources MINERALS... Processing Allowances § 206.181 How do I establish processing costs for dual accounting purposes when I do not process the gas? Where accounting for comparison (dual accounting) is required for gas production...
Apparatus for the liquefaction of natural gas and methods relating to same
Turner, Terry D [Ammon, ID; Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID
2009-09-22
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates a vapor from the liquid natural gas. A portion of the liquid gas is used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line or recirculation within the system for further processing.
40 CFR 98.230 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... processing means the separation of natural gas liquids (NGLs) or non-methane gases from produced natural gas... following: forced extraction of natural gas liquids, sulfur and carbon dioxide removal, fractionation of... includes processing plants that fractionate gas liquids, and processing plants that do not fractionate gas...
40 CFR 98.230 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... processing means the separation of natural gas liquids (NGLs) or non-methane gases from produced natural gas... following: forced extraction of natural gas liquids, sulfur and carbon dioxide removal, fractionation of... includes processing plants that fractionate gas liquids, and processing plants that do not fractionate gas...
40 CFR 98.230 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... processing means the separation of natural gas liquids (NGLs) or non-methane gases from produced natural gas... following: forced extraction of natural gas liquids, sulfur and carbon dioxide removal, fractionation of... includes processing plants that fractionate gas liquids, and processing plants that do not fractionate gas...
Writing and Publishing a Research Paper in a Peer-Reviewed Journal
ERIC Educational Resources Information Center
Porter, Stephen R.
2007-01-01
Writing and publishing a research paper in a peer-reviewed journal is a complicated process. This paper tries to take some of the mystery out of that process by describing how a good research paper should be structured, and how the journal submission process works.
Gas sampling system for a mass spectrometer
Taylor, Charles E; Ladner, Edward P
2003-12-30
The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.
30 CFR 1202.151 - Royalty on processed gas.
Code of Federal Regulations, 2011 CFR
2011-07-01
... leases. (b) A reasonable amount of residue gas shall be allowed royalty free for operation of the... the operation of the processing plant shall be allowed royalty free. (c) No royalty is due on residue gas, or any gas plant product resulting from processing gas, which is reinjected into a reservoir...
Alteration of metabolite profiling by cold atmospheric plasma treatment in human myeloma cells.
Xu, Dehui; Xu, Yujing; Ning, Ning; Cui, Qingjie; Liu, Zhijie; Wang, Xiaohua; Liu, Dingxin; Chen, Hailan; Kong, Michael G
2018-01-01
Despite new progress of chemotherapy in multiple myeloma (MM) clinical treatment, MM is still a refractory disease and new technology is needed to improve the outcomes and prolong the survival. Cold atmospheric plasma is a rapidly developed technology in recent years, which has been widely applied in biomedicine. Although plasma could efficiently inactivate various tumor cells, the effects of plasma on tumor cell metabolism have not been studied yet. In this study, we investigated the metabolite profiling of He plasma treatment on myeloma tumor cells by gas-chromatography time-of-flight (GC-TOF) mass-spectrometry. Meanwhile, by bioinformatic analysis such as GO and KEGG analysis we try to figure out the metabolism pathway that was significantly affected by gas plasma treatment. By GC-TOF mass-spectrometry, 573 signals were detected and evaluated using PCA and OPLS-DA. By KEGG analysis we listed all the differential metabolites and further classified into different metabolic pathways. The results showed that beta-alanine metabolism pathway was the most significant change after He gas plasma treatment in myeloma cells. Besides, propanoate metabolism and linoleic acid metabolism should also be concerned during gas plasma treatment of cancer cells. Cold atmospheric plasma treatment could significantly alter the metabolite profiling of myeloma tumor cells, among which, the beta-alanine metabolism pathway is the most susceptible to He gas plasma treatment.
Control of plasma-liquid interaction of atmospheric DC glow discharge using liquid electrode
NASA Astrophysics Data System (ADS)
Shirai, Naoki; Aoki, Ryuta; Nito, Aihito; Aoki, Takuya; Uchida, Satoshi; Tochikubo, Fumiyoshi
2014-10-01
Atmospheric plasma in contact with liquid have a variety of interesting phenomena and applications. Previously, we investigated the fundamental characteristics of an atmospheric dc glow discharge using a liquid electrode with a miniature helium flow. We tried to control the plasma-liquid interaction by changing the plasma parameter such as gas species, liquid, and applied voltage. Sheath flow system enables another gas (N2, O2, Ar) flow to around the helium core flow. It can control the gas species around the discharge. When liquid (NaCl aq.) cathode DC discharge is generated, Na emission (588 nm) can be observed from liquid surface with increasing discharge current. Na emission strongly depends on the discharge current and liquid temperature. However, when Ar sheath flow is used, the intensity of Na becomes weak. When liquid anode DC discharge is generated, self-organized luminous pattern formation can be observed at the liquid surface. The pattern depends on existence of oxygen gas in gap. By changing the oxygen gas ratio in the gap, variety of pattern formation can be observed. The discharge in contact with liquid also can be used for synthesis of metal nanoparticles at plasma-liquid interface. Size and shape of nanoparticles depend on discharge gases. This work was supported financially in part by a Grant-in-Aid for Scientific Research on Innovative Areas (No 21110007) from MEXT, Japan.
Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks.
Abraham, Anna
2014-01-01
Creativity is primarily investigated within the neuroscientific perspective as a unitary construct. While such an approach is beneficial when trying to infer the general picture regarding creativity and brain function, it is insufficient if the objective is to uncover the information processing brain mechanisms by which creativity occurs. As creative thinking emerges through the dynamic interplay between several cognitive processes, assessing the neural correlates of these operations would enable the development and characterization of an information processing framework from which to better understand this complex ability. This article focuses on two aspects of creative cognition that are central to generating original ideas. "Conceptual expansion" refers to the ability to widen one's conceptual structures to include unusual or novel associations, while "overcoming knowledge constraints" refers to our ability to override the constraining influence imposed by salient or pertinent knowledge when trying to be creative. Neuroimaging and neuropsychological evidence is presented to illustrate how semantic processing and cognitive control networks in the brain differentially modulate these critical facets of creative cognition.
Arantes, Guilherme Menegon; Chaimovich, Hernan
2005-06-30
Phosphate esters are important compounds in living systems. Their biological reactions with alcohol and thiol nucleophiles are catalyzed by a large superfamily of phosphatase enzymes. However, very little is known about the intrinsic reactivity of these nucleophiles with phosphorus centers. We have performed ab initio calculations on the thiolysis and alcoholysis at phosphorus of trimethyl phosphate, dimethyl phenyl phosphate, methyl phosphate, and phenyl phosphate. Results in the gas phase are a reference for the study of the intrinsic reactivity of these compounds. Thiolysis of triesters was much slower and less favorable than the corresponding alcoholysis. Triesters reacted through an associative mechanism. Monoesters can react by both associative and dissociative mechanisms. The basicity of the attacking and leaving groups and the possibility of proton transfers can modulate the reaction mechanisms. Intermediates formed along associative reactions did not follow empirically proposed rules for ligand positioning. Our calculations also allow re-interpretation of some experimental results, and new experiments are proposed to trace reactions that are normally not observed, both in the gas phase and in solution.
Polychlorinated biphenyls in the atmosphere of Taizhou, a major e-waste dismantling area in China.
Han, Wenliang; Feng, Jialiang; Gu, Zeping; Wu, Minghong; Sheng, Guoying; Fu, Jiamo
2010-01-01
PM2.5, total suspended particles (TSP) and gas phase samples were collected at two sites of Taizhou, a major e-waste dismantling area in China. Concentrations, seasonal variations, congener profiles, gas-particle partitioning and size distribution of the atmospheric polychlorinated biphenyls (PCBs) were studied to assess the current state of atmospheric PCBs after the phase out of massive historical dismantling of PCBs containing e-wastes. The average sigma38PCBs concentration in the ambient air (TSP plus gas phase) near the e-waste dismantling area was (12,407 +/- 9592) pg/m3 in winter, which was substantially lower than that found one decade ago. However, the atmospheric PCBs level near the e-waste dismantling area was 54 times of the reference urban site, indicating that the impact of the historical dismantling of PCBs containing e-wastes was still significant. Tri-Penta-CBs were dominant homologues, consisting with their dominant global production. Size distribution of particle-bound PCBs showed that higher chlorinated CBs tended to partition more to the fine particles, facilitating its long range air transportation.
Experimental Study of Sand Production and Mud Erosion Phenomena for Sand Mud Alternate Layer
NASA Astrophysics Data System (ADS)
Oyama, H.; Sato, T.
2014-12-01
Methane hydrates are crystalline, ice-like compounds under specific thermodynamic conditions. The existence of methane hydrates is confirmed in the Nankai Trough, an offshore area of Japan. Japan's Methane Hydrate Research and Development Program (MH21) has been under way at this area. In the early 2013, the world's first intentional gas production attempt from marine gas hydrate deposits was tried and accomplished in the Daini Atumi Knoll area of the Eastern Nankai Trough. For gas production, depressurization method has been considered as a promising gas production technique from methane hydrate reservoirs. However, considering of continuous gas production over a long period, there is still something to clarify. The methane hydrate crystals are very small and existed in the intergranular pores of sandy layer of turbidite sediments. When the intergranular methane hydrates will be dissociated, it is considered that dissociated gas and water flow will cause sand production and mud erosion phenomena of turbidite sediments. The production of framework sands into a well is one of the problems plaguing the gas because of its adverse effects on well productivity and equipment. If the eroded mud is accumulated in the pore space of sand, skin is generated and permeability becomes lower. In addition, mud erosion has a negative effect for the well stability. This research presents an experimental study to understand sand production and mud erosion phenomena for sand mud alternate layer. The aims of this study are to understand these phenomena and clarify driving forces. In our experiments, we used an artificial sedimentary core and performed experiments under various conditions. As the results, the driving forces of these phenomena are not dissociation gas flow but water flow through pore.
NASA Astrophysics Data System (ADS)
Hurtt, G. C.; Birdsey, R.; Campbell, E.; Dolan, K. A.; Dubayah, R.; Escobar, V. M.; Finley, A. O.; Flanagan, S.; Huang, W.; Johnson, K.; Lister, A.; ONeil-Dunne, J.; Sepulveda Carlo, E.; Zhao, M.
2017-12-01
Local, national and international programs have increasing need for precise and accurate estimates of forest carbon and structure to support greenhouse gas reduction plans, climate initiatives, and other international climate treaty frameworks. In 2010 Congress directed NASA to initiate research towards the development of Carbon Monitoring Systems (CMS). In response, our team has worked to develop a robust, replicable framework to produce maps of high-resolution carbon stocks and future carbon sequestration potential. High-resolution (30m) maps of carbon stocks and uncertainty were produced by linking national 1m-resolution imagery and existing wall-to-wall airborne lidar to spatially explicit in-situ field observations such as the USFS Forest Inventory and Analysis (FIA) network. These same data, characterizing forest extent and vertical structure, were used to drive a prognostic ecosystem model to predict carbon fluxes and carbon sequestration potential at unprecedented spatial resolution and scale (90m), more than 100,000 times the spatial resolution of standard global models. Through project development, the domain of this research has expanded from two counties in MD (2,181 km2), to the entire state (32,133 km2), to the tri-state region of MD, PA, and DE (157,868 km2), covering forests in four major USDA ecological providences (Eastern Broadleaf, Northeastern Mixed, Outer Coastal Plain, and Central Appalachian). Across the region, we estimate 694 Tg C (14 DE, 113 MD, 567 PA) in above ground biomass, and estimate a carbon sequestration potential more than twice that amount. Empirical biomass products enhance existing approaches though high resolution accounting for trees outside traditional forest maps. Modeling products move beyond traditional MRV, and map future afforestation and reforestation potential for carbon at local actionable spatial scales. These products are relevant to multiple stakeholder needs in the region as discussed through the Tri-sate Working Group, and are actively being used to inform the state of MD's Greenhouse Gas Reduction Act. The approach is scalable, and provides a protoype framework for application in other domains and for future spaceborne lidar missions.
30 CFR 202.151 - Royalty on processed gas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... residue gas shall be allowed royalty free for operation of the processing plant, but no allowance shall be... that proportionate share of each lease's residue gas necessary for the operation of the processing... resulting from processing gas, which is reinjected into a reservoir within the same lease, unit area, or...
30 CFR 206.158 - Processing allowances-general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... relationship. Natural gas liquids (NGL's) shall be considered as one product. (c)(1) Except as provided in... MANAGEMENT PRODUCT VALUATION Federal Gas § 206.158 Processing allowances—general. (a) Where the value of gas... actual costs of processing. (b) Processing costs must be allocated among the gas plant products. A...
30 CFR 206.179 - What general requirements regarding processing allowances apply to me?
Code of Federal Regulations, 2010 CFR
2010-07-01
... for each gas plant product and processing plant relationship. Natural gas liquids are considered as... THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Indian Gas Processing Allowances § 206.179 What general requirements regarding processing allowances apply to me? (a) When you value any gas plant...
Apparatus for the liquefaction of natural gas and methods relating to same
Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Carney, Francis H [Idaho Falls, ID
2009-09-29
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream.
Process for removing an organic compound from water
Baker, Richard W.; Kaschemekat, Jurgen; Wijmans, Johannes G.; Kamaruddin, Henky D.
1993-12-28
A process for removing organic compounds from water is disclosed. The process involves gas stripping followed by membrane separation treatment of the stripping gas. The stripping step can be carried out using one or multiple gas strippers and using air or any other gas as stripping gas. The membrane separation step can be carried out using a single-stage membrane unit or a multistage unit. Apparatus for carrying out the process is also disclosed. The process is particularly suited for treatment of contaminated groundwater or industrial wastewater.
Apparatus for the liquefaction of natural gas and methods relating to same
Wilding, Bruce M [Idaho Falls, ID; Bingham, Dennis N [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Raterman, Kevin T [Idaho Falls, ID; Palmer, Gary L [Shelley, ID; Klingler, Kerry M [Idaho Falls, ID; Vranicar, John J [Concord, CA
2007-05-22
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Rateman, Kevin T.; Palmer, Gary L.; Klinger, Kerry M.; Vranicar, John J.
2005-11-08
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.
2005-05-03
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.
2003-06-24
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willenbring, James M.; Bartlett, Roscoe Ainsworth; Heroux, Michael Allen
2012-01-01
Software lifecycles are becoming an increasingly important issue for computational science and engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process - respecting the competing needs of research vs. production - cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for manymore » CSE software projects that are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Here, we advocate three to four phases or maturity levels that address the appropriate handling of many issues associated with the transition from research to production software. The goals of this lifecycle model are to better communicate maturity levels with customers and to help to identify and promote Software Engineering (SE) practices that will help to improve productivity and produce better software. An important collection of software in this domain is Trilinos, which is used as the motivation and the initial target for this lifecycle model. However, many other related and similar CSE (and non-CSE) software projects can also make good use of this lifecycle model, especially those that use the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.« less
30 CFR 206.153 - Valuation standards-processed gas.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., prices received in spot sales of residue gas or gas plant products, other reliable public sources of... MANAGEMENT PRODUCT VALUATION Federal Gas § 206.153 Valuation standards—processed gas. (a)(1) This section... to this section shall be the combined value of the residue gas and all gas plant products determined...
Apparatus for the liquefaction of a gas and methods relating to same
Turner, Terry D [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID
2009-12-29
Apparatuses and methods are provided for producing liquefied gas, such as liquefied natural gas. In one embodiment, a liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream may be sequentially pass through a compressor and an expander. The process stream may also pass through a compressor. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. A portion of the liquid gas may be used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line.
Ma, Guicen; Zhang, Minglu; Zhu, Li; Chen, Hongping; Liu, Xin; Lu, Chengyin
2018-01-05
Amine-functional reduced graphene oxide (amine-rGO) with different carbon chain length amino groups were successfully synthesized. The graphene oxides (GO) reduction as well as amino grafting were achieved simultaneously in one step via a facile solvothermal synthetic strategy. The obtained materials were characterized by X-ray diffraction, Raman spectroscopy, Fourier-transform infrared spectrometry and X-ray photoelectron spectroscopy to confirm the modification of GO with different amino groups. The adsorption performance of catechins and caffeine from tea acetonitrile extracts on different amine functional rGO samples were evaluated. It was found that tributylamine-functional rGO (tri-BuA-rGO) exhibited the highest adsorption ability for catechins and caffeine compared to GO and other amino group functional rGO samples. It was worth to note that the adsorption capacity of catechins on tri-BuA-rGO was 11 times higher than that of GO (203.7mgg -1 vs 18.7mgg -1 ). Electrostatic interaction, π-π interaction and surface hydrophilic-hydrophobic properties of tri-BuA-rGO played important roles in the adsorption of catechins as well as caffeine. The gravimetric analysis confirmed that the tri-BuA-rGO achieved the highest efficient cleanup preformance compared with traditional dispersive solid phase extraction (dSPE) adsorbents like primary-secondary amine (PSA), graphitized carbon black (GCB) or C18. A multi-pesticides analysis method based on tri-BuA-rGO is validated on 33 representative pesticides in tea using gas chromatography coupled to tandem mass spectrometry or high-performance liquid chromatography coupled with tandem mass spectrometry. The analysis method gave a high coefficient of determination (r 2 >0.99) for each pesticide and satisfactory recoveries in a range of 72.1-120.5%. Our study demonstrated that amine functional rGO as a new type of QuEChERS adsorbent is expected to be widely applied for analysis of pesticides at trace levels. Copyright © 2017 Elsevier B.V. All rights reserved.
The TRIPSE: A Process-Oriented Exam for Large Undergraduate Classes
ERIC Educational Resources Information Center
Nastos, Stash; Rangachari, P. K.
2013-01-01
The TRIPSE (tri-partite problem solving exercise), a process-oriented exam that mimics the scientific process, was used previously in small classes (15-25). Provided limited data, students frame explanations and design experimental tests that they later revise with additional information. Our 6-year experience using it with larger numbers…
The Why of Cognition; Emotion and the Writing Process.
ERIC Educational Resources Information Center
Brand, Alice G.
1987-01-01
Notes weaknesses in current writing theory as it fails to deal with the affective domains--emotion, memory, motivation, and value. Recommends that future studies should try to make knowledge of the affective processes clear and useful to teachers and students. (NH)
Analysis of Railroad Track Maintenance Expenditures for Class I Railroads 1962-1977
DOT National Transportation Integrated Search
1982-02-01
This study investigates the decision-making process for railroad track maintenance (T/M) expenditures. The objectives are to (1) describe how Federal track safety standards have influenced this process and (2) try to predict the impact of changes in ...
Gas plant converts amine unit to MDEA-based solvent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mak, H.Y.
1992-10-01
This paper reports that methyldiethanolamine (MDEA) has successfully replaced monoethanolamine (MEA) solvent at one of Canada's largest gas processing plants. This acid gas treating solvent lowered costs associated with pumping horsepower, reboiler duty, solvent losses, corrosion and other gas processing problems. Not all operating conditions at a gas processing plant favor MDEA or MEA. In the Rimbey plant, originally designed to process sour gas, more sweet gas feed (per volume) called for considering advantages of the lesser-used MDEA. Gulf Canada Resources operates several major sour gas plants in Alberta. The Rimbey Plant was designed in 1960 to process 400 MMscfdmore » of sour gas with 2% H[sub 2]S and 1.32% CO[sub 2]. The amine unit was designed to circulate 2,400 gpm of 20 wt% MEA solution. The single train amine plant has four gas conductors and two amine regenerators. The present raw inlet gas flowrate to the Rimbey Plant is about 312 MMscfd which is made up of three sources: 66 MMscfd of sour gas with 1.5% H[sub 2]S and 1.8% CO[sub 2]; 65 MMscfd of high CO[sub 2] gas with 400 ppmv H[sub 2]S and 3.9% CO[sub 2]; and 181 MMscfd of sweet gas with 2.2% CO[sub 2].« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
... measurement of inlet production, residue gas, fuel gas, flare gas, condensate, natural gas liquids, or any... governing gas and liquid hydrocarbon production measurement. We have recently completed the first phase of... Requirements for Measurement Facilities Used for the Royalty Valuation of Processed Natural Gas AGENCY: Bureau...
Code of Federal Regulations, 2010 CFR
2010-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Code of Federal Regulations, 2011 CFR
2011-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Code of Federal Regulations, 2012 CFR
2012-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Code of Federal Regulations, 2013 CFR
2013-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Code of Federal Regulations, 2014 CFR
2014-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Square lattice honeycomb tri-carbide fuels for 50 to 250 KN variable thrust NTP design
NASA Astrophysics Data System (ADS)
Anghaie, Samim; Knight, Travis; Gouw, Reza; Furman, Eric
2001-02-01
Ultrahigh temperature solid solution of tri-carbide fuels are used to design an ultracompact nuclear thermal rocket generating 950 seconds of specific impulse with scalable thrust level in range of 50 to 250 kilo Newtons. Solid solutions of tri-carbide nuclear fuels such as uranium-zirconium-niobium carbide. UZrNbC, are processed to contain certain mixing ratio between uranium carbide and two stabilizing carbides. Zirconium or niobium in the tri-carbide could be replaced by tantalum or hafnium to provide higher chemical stability in hot hydrogen environment or to provide different nuclear design characteristics. Recent studies have demonstrated the chemical compatibility of tri-carbide fuels with hydrogen propellant for a few to tens of hours of operation at temperatures ranging from 2800 K to 3300 K, respectively. Fuel elements are fabricated from thin tri-carbide wafers that are grooved and locked into a square-lattice honeycomb (SLHC) shape. The hockey puck shaped SLHC fuel elements are stacked up in a grooved graphite tube to form a SLHC fuel assembly. A total of 18 fuel assemblies are arranged circumferentially to form two concentric rings of fuel assemblies with zirconium hydride filling the space between assemblies. For 50 to 250 kilo Newtons thrust operations, the reactor diameter and length including reflectors are 57 cm and 60 cm, respectively. Results of the nuclear design and thermal fluid analyses of the SLHC nuclear thermal propulsion system are presented. .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lash, Lawrence H.; Putt, David A.; Hueni, Sarah E.
Simultaneous or prior exposure to one chemical may alter the concurrent or subsequent response to another chemical, often in unexpected ways. This is particularly true when the two chemicals share common mechanisms of action. The present study uses the paradigm of prior exposure to study the interactive toxicity between inorganic mercury (Hg{sup 2+}) and trichloroethylene (TRI) or its metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) in rat and human proximal tubule. Pretreatment of rats with a subtoxic dose of Hg{sup 2+} increased expression of glutathione S-transferase-{alpha}1 (GST{alpha}1) but decreased expression of GST{alpha}2, increased activities of several GSH-dependent enzymes, and increased GSH conjugation of TRI.more » Primary cultures of rat proximal tubular (rPT) cells exhibited both necrosis and apoptosis after incubation with Hg{sup 2+}. Pretreatment of human proximal tubular (hPT) cells with Hg{sup 2+} caused little or no changes in GST expression or activities of GSH-dependent enzymes, decreased apoptosis induced by TRI or DCVC, but increased necrosis induced by DCVC. In contrast, pretreatment of hPT cells with TRI or DCVC protected from Hg{sup 2+} by decreasing necrosis and increasing apoptosis. Thus, whereas pretreatment of hPT cells with Hg{sup 2+} exacerbated cellular injury due to TRI or DCVC by shifting the response from apoptosis to necrosis, pretreatment of hPT cells with either TRI or DCVC protected from Hg{sup 2+}-induced cytotoxicity by shifting the response from necrosis to apoptosis. These results demonstrate that by altering processes related to GSH status, susceptibilities of rPT and hPT cells to acute injury from Hg{sup 2+}, TRI, or DCVC are markedly altered by prior exposures.« less
Low Quality Natural Gas Sulfur Removal and Recovery CNG Claus Sulfur Recovery Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klint, V.W.; Dale, P.R.; Stephenson, C.
1997-10-01
Increased use of natural gas (methane) in the domestic energy market will force the development of large non-producing gas reserves now considered to be low quality. Large reserves of low quality natural gas (LQNG) contaminated with hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and nitrogen (N) are available but not suitable for treatment using current conventional gas treating methods due to economic and environmental constraints. A group of three technologies have been integrated to allow for processing of these LQNG reserves; the Controlled Freeze Zone (CFZ) process for hydrocarbon / acid gas separation; the Triple Point Crystallizer (TPC) processmore » for H{sub 2}S / C0{sub 2} separation and the CNG Claus process for recovery of elemental sulfur from H{sub 2}S. The combined CFZ/TPC/CNG Claus group of processes is one program aimed at developing an alternative gas treating technology which is both economically and environmentally suitable for developing these low quality natural gas reserves. The CFZ/TPC/CNG Claus process is capable of treating low quality natural gas containing >10% C0{sub 2} and measurable levels of H{sub 2}S and N{sub 2} to pipeline specifications. The integrated CFZ / CNG Claus Process or the stand-alone CNG Claus Process has a number of attractive features for treating LQNG. The processes are capable of treating raw gas with a variety of trace contaminant components. The processes can also accommodate large changes in raw gas composition and flow rates. The combined processes are capable of achieving virtually undetectable levels of H{sub 2}S and significantly less than 2% CO in the product methane. The separation processes operate at pressure and deliver a high pressure (ca. 100 psia) acid gas (H{sub 2}S) stream for processing in the CNG Claus unit. This allows for substantial reductions in plant vessel size as compared to conventional Claus / Tail gas treating technologies. A close integration of the components of the CNG Claus process also allow for use of the methane/H{sub 2}S separation unit as a Claus tail gas treating unit by recycling the CNG Claus tail gas stream. This allows for virtually 100 percent sulfur recovery efficiency (virtually zero SO{sub 2} emissions) by recycling the sulfur laden tail gas to extinction. The use of the tail gas recycle scheme also deemphasizes the conventional requirement in Claus units to have high unit conversion efficiency and thereby make the operation much less affected by process upsets and feed gas composition changes. The development of these technologies has been ongoing for many years and both the CFZ and the TPC processes have been demonstrated at large pilot plant scales. On the other hand, prior to this project, the CNG Claus process had not been proven at any scale. Therefore, the primary objective of this portion of the program was to design, build and operate a pilot scale CNG Claus unit and demonstrate the required fundamental reaction chemistry and also demonstrate the viability of a reasonably sized working unit.« less
A Measurable Model of the Creative Process in the Context of a Learning Process
ERIC Educational Resources Information Center
Ma, Min; Van Oystaeyen, Fred
2016-01-01
The authors' aim was to arrive at a measurable model of the creative process by putting creativity in the context of a learning process. The authors aimed to provide a rather detailed description of how creative thinking fits in a general description of the learning process without trying to go into an analysis of a biological description of the…
Turboexpanders with dry gas seals and active magnetic bearings in hydrocarbon processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agahi, R.R.
1999-07-01
Since its first application in hydrocarbon processing in the early 1960s, turboexpander design has changed, evolved and improved tremendously. Today, hydrocarbon process designers use turboexpanders for almost all hydrocarbon liquid rejection and hydrocarbon dew point control for onshore and offshore installations. There are presently more than 3,000 turboexpanders operating in hydrocarbon gas processing plants worldwide. Due to the wide application of turboexpanders in hydrocarbon processing, the API-617 committee has assigned a task force to prepare an appendix to API-617 to cover design and manufacturing standards for turboexpanders. Dry gas seals (DGS) were cautiously introduced in the early 1980s for compressorsmore » used in hydrocarbon processing. It took almost a decade before dry gas seals found their application in turboexpanders. Dry gas seals were originally utilized to protect cryogenic hydrocarbon process gas from contamination by lubricating oil. Later on, dry gas seals were used to minimized hydrocarbon process gas leakage and also to provide an inert-gas-purged environment for both oil bearings and active magnetic bearings. The former eliminates the lubricating oil dilution problem and the latter made certification of active magnetic bearings by international certifying agencies possible. Active magnetic bearings (AMB), similar to dry gas seals, were originally introduced into hydrocarbon process gas compressors in the mid 1980s. The hydrocarbon processing industry waited half a decade to adopt this innovative technology for turboexpanders in the hydrocarbon process. The first turboexpander with active magnetic bearings was installed on an offshore platform in 1991. High reliability, low capital investment, low capital investment, low operating costs and more compact design have accelerated demand in recent years for turboexpanders with active magnetic bearings. In this paper, the author describes the technology of turboexpanders with dry gas seals and active magnetic bearings. Several applications are presented and performance, reliability and availability data will be presented.« less
Clissett, Philip; Porock, Davina; Harwood, Rowan H; Gladman, John R F
2013-12-01
To explore the experiences of family carers of people with cognitive impairment during admission to hospital. Providing appropriate care in acute hospitals for people with co-morbid cognitive impairment, especially dementia or delirium or both, is challenging to healthcare professionals. One key element is close working with family members. Qualitative interview study. Semi-structured interviews with family carers of 34 older people who had been admitted to a UK general hospital and had co-morbid cognitive impairment. Interviews conducted in 2009 and 2010. Analysis was undertaken using Strauss and Corbin's framework. The findings elaborate a core problem, 'disruption from normal routine' and a core process, 'gaining or giving a sense of control to cope with disruption'. Family carers responded to disruption proactively by trying to make sense of the situation and attempting to gain control for themselves or the patient. They tried to stay informed, communicate with staff about the patient and plan for the future. The interaction of the core problem and the core process resulted in outcomes where family members either valued the support of hospital staff and services or were highly critical of the care provided. Family carers are not passive in the face of the disruption of hospitalization and respond both by trying to involve themselves in the care and support of their relative and by trying to work in partnership with members of staff. Nurses need to foster this relationship conscientiously. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ranjan, Sushil Kumar; Soni, Abhishek Kumar; Rai, Vineet Kumar
2017-09-01
Near infrared (NIR) to visible frequency upconversion emission studies in Er3+-Eu3+/Er3+-Eu3+-Yb3+ co-doped/tri-doped Gd2O3 phosphors prepared by the co-precipitation technique have been explored under 980 nm laser diode radiation. The developed phosphors were characterized with the help of XRD, FE-SEM and FTIR analysis. No upconversion (UC) emission was found in the Eu3+-doped Gd2O3 phosphor. UC emission from Eu3+ ions along with Er3+ ions was observed in Er3+-Eu3+ and Er3+-Eu3+-Yb3+ co-doped/tri-doped phosphors. The UC emission arising from the Er3+ and Eu3+ ions was enhanced several times due to the incorporation of Yb3+ ions. The processes involved in the UC emission were obtained on the basis of the effect of energy transfer/sensitization through the Yb3+ → Er3+ → Eu3+ process. The red/green intensity ratio was improved from 0.16 to 1.50 and 1.01 to 1.50 for Er3+-Eu3+-Yb3+ tri-doped phosphors as compared to the Er3+-doped and Er3+-Yb3+ co-doped phosphors, respectively, at a fixed pump power density. A UC fluorescence intensity ratio (FIR)-based temperature sensing study was performed in the prepared Er3+-Eu3+-Yb3+ tri-doped Gd2O3 phosphors for green upconversion emission bands in the 300 K-443 K temperature range. A maximum sensor sensitivity of about ˜0.0043 K-1 at 300 K was achieved for the synthesized tri-doped phosphors upon excitation with a 980 nm laser diode. The colour coordinates lying in the green-yellow region are invariant, with variation in pump power density and temperature. The observed results support the utility of the prepared tri-doped phosphors in optical temperature sensing, display devices and NIR to visible upconverters.
ITS Early Deployment Study, Richmond/ Tri-Cities Area, User Service Plan
DOT National Transportation Integrated Search
1996-05-01
">THE ESSENCE OF THE ITS PLANNING PROCESS IS TO DEVELOP EACH ITS PROGRAM ON THE BASIS OF THE NEEDS OF THE USERS AND OPERATORS OF THE TRANSPORTATION FACILITIES. ALTHOUGH THE PROCESS IS THE SAME NATIONWIDE, THE RESULTS ARE CUSTOMIZED IN EACH COMMUNITY ...
Secondary Aluminum Processing Waste: Baghouse Dust Characterization and Reactivity
Results presented in this document are of particular importance when trying to understand concerns associated with the disposal of BHD in MSW landfills. The MSW decomposition process is exothermic, creating landfill temperatures that are typically greater than 37° C with the pos...
Shock, release and reshock of PBX 9502: experiments and modeling
NASA Astrophysics Data System (ADS)
Aslam, Tariq; Gustavsen, Richard; Whitworh, Nicholas; Menikoff, Ralph; Tarver, Craig; Handley, Caroline; Bartram, Brian
2017-06-01
We examine shock, release and reshock into the tri-amino-tri-nitro-benzene (TATB) based explosive PBX 9502 (95% TATB, 5% Kel-F 800) from both an experimental and modeling point of view. The experiments are performed on the 2-stage light gas gun at Los Alamos National Laboratory and are composed of a multi-layered impactor impinging on PBX 9502 backed by a polymethylmethacrylate window. The objective is to initially shock the PBX 9502 in the 7 GPa range (too weak to start significant reaction), then allow a rarefaction fan to release the material to a lower pressure/temperature state. Following this release, a strong second shock will recompress the PBX. If the rarefaction fan releases the PBX to a very low pressure, the ensuing second shock can increase the entropy and temperature substantially more than in previous double-shock experiments without an intermediate release. Predictions from a variety of reactive burn models (AWSD, CREST, Ignition and Growth, SURF) demonstrate significantly different behaviors and thus the experiments are an excellent validation test of the models, and may suggest improvements for subsequent modeling efforts.
Algeria`s gas resources: A global evaluation and perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takherist, D.; Attar, A.; Drid, M.
1995-08-01
With more than 3 Tcm of proven recoverable reserves, Algeria is considered to play a major role in the gas market. If the export capacity is now about 20 Bcm , Sonatrach expects to reach, after the renovation of some industrial units, a level of nearly 27 Bcm, starting in 1996. Here we discuss the geological and geographical distribution of the proven gas reserves. Many consistent fields, except the Hassi R`Mel giant field, are not yet been developed the existing infrastructure network and near-futur projects will allow Sonatrach to produce more than 60 Bcm per year, from now until themore » year 2000. This objective entails a serious effort in exploration and development activities. If we try to estimate ultimate resources by geochemical modeling, considering only the two min source rocks and the volumes of gas generated-expelled after the min period of trap formation, we find about 160 Tcf of dry gas and 16 Tcf of condensate that can be explored. Our experience with the existing discovered fields, our knowledge of well-defined traps, reservoirs and seals, and the success ratio in the 30 past years, basin by basin, shows that about 36 Tcf can be considered as yet to be discovered. These two numbers indicate that Algeria`s gas potential is underexplored at present. The use of new technologies such as high-resolution and 3D seismic in exploration, and stimulation operations and horizontal well drilling in development-production, is an urgent need. Updating the legislative framework, which will extend laws applicable to liquid hydrocarbon to include gas, will constitute an attractive opportunity for more partnership, permitting the introduction of new ideas and technologies.« less
Zhu, Qingqing; Zheng, Minghui; Liu, Guorui; Zhang, Xian; Dong, Shujun; Gao, Lirong; Liang, Yong
2017-01-01
Size-fractionated samples of urban particulate matter (PM; ≤1.0, 1.0-2.5, 2.5-10, and >10 μm) and gaseous samples were simultaneously obtained to study the distribution of polychlorinated biphenyls (PCBs) in the atmosphere in Beijing, China. Most recent investigations focused on the analysis of gaseous PCBs, and much less attention has been paid to the occurrence of PCBs among different PM fractions. In the present study, the gas-particle partitioning and size-specific distribution of PCBs in atmosphere were investigated. The total concentrations (gas + particle phase fractions) of Σ 12 dioxin-like PCBs, Σ 7 indicator PCBs, and ΣPCBs were 1.68, 42.1, and 345 pg/m 3 , respectively. PCBs were predominantly in the gas phase (86.8-99.0 % of the total concentrations). The gas-particle partition coefficients (K p ) of PCBs were found to be a significant linear correlated with the subcooled liquid vapor pressures (P L 0 ) (R 2 = 0.83, P < 0.01). The slope (m r ) implied that the gas-particle partitioning of PCBs was affected both by the mechanisms of adsorption and absorption. In addition, the concentrations of PCBs increased as the particle size decreased (>10, 2.5-10, 1.0-2.5, and ≤1.0 μm), with most of the PCBs contained in the fraction of ≤1.0 μm (53.4 % of the total particulate concentrations). Tetra-CBs were the main homolog in the air samples in the gas phase and PM fractions, followed by tri-CBs. This work will contribute to the knowledge of PCBs among different PM fractions and fill the gap of the size distribution of particle-bound dioxin-like PCBs in the air.
30 CFR 1202.151 - Royalty on processed gas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Royalty on processed gas. 1202.151 Section 1202.151 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Federal Gas § 1202.151 Royalty on processed gas. (a)(1) A royalty, as provided...
30 CFR 1202.151 - Royalty on processed gas.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Royalty on processed gas. 1202.151 Section 1202.151 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Federal Gas § 1202.151 Royalty on processed gas. (a)(1) A royalty, as provided...
30 CFR 1202.151 - Royalty on processed gas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Royalty on processed gas. 1202.151 Section 1202.151 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Federal Gas § 1202.151 Royalty on processed gas. (a)(1) A royalty, as provided...
Nataraj, Shankar; Russek, Steven Lee; Dyer, Paul Nigel
2000-01-01
Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.
The Bologna Process and Its Impact on University-Level Chemical Education in Europe
ERIC Educational Resources Information Center
Pinto, Gabriel
2010-01-01
This article describes the Bologna Process, an effort by a consortium of nearly 50 European countries trying to standardize the higher education system in Europe. Starting from a nonbinding agreement (the 1999 Bologna Declaration), the Bologna Process involves a voluntary joint venture for the construction of a European higher education area…
ERIC Educational Resources Information Center
Aydogdu, Bülent; Erkol, Mehmet; Erten, Nuran
2014-01-01
Individuals benefit from science process skills while trying to solve problems through research (Bagci-Kiliç, 2003). To solve these problems individuals must acquire sufficient science process skills. Teachers must be able to understand these skills so that students can obtain the required proficiency (Mutisya, Rotich & Rotich, 2013). This…
Process for the production of 18F-2-deoxy-2-fluoro-D-glucose
Shiue, Chyng-Yann; Salvadori, Piero A.; Wolf, Alfred P.; Fowler, Joanna S.; MacGregor, Robert R.
1986-05-06
Process for the production of 2-deoxy-2-fluoro-D-glucose and the corresponding .sup.18 F-compound by the reaction of acetyl hypofluorite or the corresponding .sup.18 F-compound with 3,4,6-tri-O-acetyl-D-glucal followed by hydrolysis. Process includes the production of the hypofluorite compound at ambient temperature.
Process for the production of 18F-2-deoxy-2-fluoro-D-glucose
Shiue, Chyng-Yann; Salvadori, Piero A.; Wolf, Alfred P.; Fowler, Joanna S.; MacGregor, Robert R.
1986-01-01
Process for the production of 2-deoxy-2-fluoro-D-glucose and the corresponding .sup.18 F-compound by the reaction of acetyl hypofluorite or the corresponding .sup.18 F-compound with 3,4,6-tri-O-acetyl-D-glucal followed by hydrolysis. Process includes the production of the hypofluorite compound at ambient temperature.
The Practice of Information Processing Model in the Teaching of Cognitive Strategies
ERIC Educational Resources Information Center
Ozel, Ali
2009-01-01
In this research, the differentiation condition of teaching the learning strategies depending on the time which the first grade of primary school teachers carried out to form an information-process skeleton on student is tried to be found out. This process including the efforts of 260 teachers in this direction consists of whether the adequate…
Philosophically Informed: Exploring the Ethic of Help
ERIC Educational Resources Information Center
Patterson, Sam
2007-01-01
While students are the center of the college admission process, the individual student is transient within the process, involved for a short amount of time, trying to get a spot in the freshman class of a university. Counselors and admission officers are the stewards of the process, the keepers of the code and the architects of the maze. In this…
Observations of Macroscopic Shocks in the Laboratory
NASA Astrophysics Data System (ADS)
Endrizzi, Douglass; Laufman-Wollitzer, Lauren; Clark, Mike; Olson, Joseph; Myers, Rachel; Forest, Cary; Gota, Hiroshi; WiPAL Team; Tri Alpha Energy Team
2016-10-01
A magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy has been installed on the Wisconsin Plasma Astrophysics Lab (WiPAL) vacuum vessel. The MCPG fires a dense (1018m-3) and warm (10-30 eV) compact toroid (CT) at speeds of order 100 km/s. The CT is characterized using B magnetic diagnostics, multi-tip temperature probes, Ion saturation density probes, and a fast Phantom camera. The CT is injected into vacuum field, neutral gas, and plasmas of various beta. Results and evidence for propagating shocks will be presented. This work supported the NSF GRFP under Grant No. DGE-1256259.
The Coast Artillery Journal. Volume 63, Number 6, December 1925
1925-12-01
know many of its limitations. ’Vc know that it takcs many rounds from any gun to score a hit upon an airplanc . ’Ye know also that tons and tons of...suspicions, and to try to create an attitude of toleration in the public mind of the peoples of the earth, that is, we submit, a long job, and in the...feared that the partial vacuum thus created wou1d tend to suck in enough gas to be harmfu1 to the observer. Actual trial does not show this to be the case
Beyond Strategic Planning: Tailoring District Resources to Needs.
ERIC Educational Resources Information Center
Bollin, Thomas D.; Eadie, Douglas C.
1991-01-01
The strategic management process tries to create and maintain a dynamic balance between an organization's vision, mission, goals, strategies, and resources and its external environment. One Ohio school district's strategic management process succeeded resulting from a highly committed school board, a strong board-superintendent partnership, active…
A process of rumour scotching on finite populations.
de Arruda, Guilherme Ferraz; Lebensztayn, Elcio; Rodrigues, Francisco A; Rodríguez, Pablo Martín
2015-09-01
Rumour spreading is a ubiquitous phenomenon in social and technological networks. Traditional models consider that the rumour is propagated by pairwise interactions between spreaders and ignorants. Only spreaders are active and may become stiflers after contacting spreaders or stiflers. Here we propose a competition-like model in which spreaders try to transmit an information, while stiflers are also active and try to scotch it. We study the influence of transmission/scotching rates and initial conditions on the qualitative behaviour of the process. An analytical treatment based on the theory of convergence of density-dependent Markov chains is developed to analyse how the final proportion of ignorants behaves asymptotically in a finite homogeneously mixing population. We perform Monte Carlo simulations in random graphs and scale-free networks and verify that the results obtained for homogeneously mixing populations can be approximated for random graphs, but are not suitable for scale-free networks. Furthermore, regarding the process on a heterogeneous mixing population, we obtain a set of differential equations that describes the time evolution of the probability that an individual is in each state. Our model can also be applied for studying systems in which informed agents try to stop the rumour propagation, or for describing related susceptible-infected-recovered systems. In addition, our results can be considered to develop optimal information dissemination strategies and approaches to control rumour propagation.
A process of rumour scotching on finite populations
de Arruda, Guilherme Ferraz; Lebensztayn, Elcio; Rodrigues, Francisco A.; Rodríguez, Pablo Martín
2015-01-01
Rumour spreading is a ubiquitous phenomenon in social and technological networks. Traditional models consider that the rumour is propagated by pairwise interactions between spreaders and ignorants. Only spreaders are active and may become stiflers after contacting spreaders or stiflers. Here we propose a competition-like model in which spreaders try to transmit an information, while stiflers are also active and try to scotch it. We study the influence of transmission/scotching rates and initial conditions on the qualitative behaviour of the process. An analytical treatment based on the theory of convergence of density-dependent Markov chains is developed to analyse how the final proportion of ignorants behaves asymptotically in a finite homogeneously mixing population. We perform Monte Carlo simulations in random graphs and scale-free networks and verify that the results obtained for homogeneously mixing populations can be approximated for random graphs, but are not suitable for scale-free networks. Furthermore, regarding the process on a heterogeneous mixing population, we obtain a set of differential equations that describes the time evolution of the probability that an individual is in each state. Our model can also be applied for studying systems in which informed agents try to stop the rumour propagation, or for describing related susceptible–infected–recovered systems. In addition, our results can be considered to develop optimal information dissemination strategies and approaches to control rumour propagation. PMID:26473048
Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks
Abraham, Anna
2014-01-01
Creativity is primarily investigated within the neuroscientific perspective as a unitary construct. While such an approach is beneficial when trying to infer the general picture regarding creativity and brain function, it is insufficient if the objective is to uncover the information processing brain mechanisms by which creativity occurs. As creative thinking emerges through the dynamic interplay between several cognitive processes, assessing the neural correlates of these operations would enable the development and characterization of an information processing framework from which to better understand this complex ability. This article focuses on two aspects of creative cognition that are central to generating original ideas. “Conceptual expansion” refers to the ability to widen one’s conceptual structures to include unusual or novel associations, while “overcoming knowledge constraints” refers to our ability to override the constraining influence imposed by salient or pertinent knowledge when trying to be creative. Neuroimaging and neuropsychological evidence is presented to illustrate how semantic processing and cognitive control networks in the brain differentially modulate these critical facets of creative cognition. PMID:24605098
Natural Gas Processing: The Crucial Link Between NG Production & Its Transportation to Market
2006-01-01
This special report examines the processing plant segment of the natural gas industry, providing a discussion and an analysis of how the gas processing segment has changed following the restructuring of the natural gas industry in the 1990s and the trends that have developed during that time.
A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process
NASA Astrophysics Data System (ADS)
Jia, B.; Tsau, J. S.; Barati, R.
2017-12-01
Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might keep increasing during the gas production process when the surface diffusivity is larger than a critical value. We believe that our workflow proposed in this study will help describe shale gas permeability evolution considering all the underlying physics altogether.
Ullman, Alan Z.; Silverman, Jacob; Friedman, Joseph
1986-01-01
An improved process for producing a methane-enriched gas wherein a hydrogen-deficient carbonaceous material is treated with a hydrogen-containing pyrolysis gas at an elevated temperature and pressure to produce a product gas mixture including methane, carbon monoxide and hydrogen. The improvement comprises passing the product gas mixture sequentially through a water-gas shift reaction zone and a gas separation zone to provide separate gas streams of methane and of a recycle gas comprising hydrogen, carbon monoxide and methane for recycle to the process. A controlled amount of steam also is provided which when combined with the recycle gas provides a pyrolysis gas for treatment of additional hydrogen-deficient carbonaceous material. The amount of steam used and the conditions within the water-gas shift reaction zone and gas separation zone are controlled to obtain a steady-state composition of pyrolysis gas which will comprise hydrogen as the principal constituent and a minor amount of carbon monoxide, steam and methane so that no external source of hydrogen is needed to supply the hydrogen requirements of the process. In accordance with a particularly preferred embodiment, conditions are controlled such that there also is produced a significant quantity of benzene as a valuable coproduct.
NASA Astrophysics Data System (ADS)
Ansari, Ghizal F.; Mahajan, S. K.
2012-02-01
The bright white upconversion emission ( tri-colour UC) is generated in Er/Tm/Yb tri -doped oxy-fluoride lithium tungsten tellurite (TWLOF)glass ceramics containing crystalline phase LiYbF4 under the excitation of 980nm laser diode. The most appropriate combination of rare-earth ions (2mol% YbF3 1mol% ErF3 and 1mol%TmF3 )of glass ceramic sample has been determined to tune the primary colour (RGB and generate white light emission. By varying the pump power, intense and weak blue (487nm, 437nm), green (525nm and 545nm) and red (662nm) emission are simultaneously observed at room temperature. The dependence of upconversion emission intensity suggest that a theephoton process is responsible for the blue emission of Tm3+ ions and red emission due to both Tm3+ and Er3+ ions , while green emission originated from two photon processes in Er3+ ions. Also tri colour upconvesion and energy transfer in this glass ceramics sample were studied under 808nm laser diode excitation. The Upconversion mechanisms and Tm3+ ions plays role of both emitter and activator (transfer energy to Er) were discussed.
Blanco, Sonia Lucía; Vieites, Juan M
2010-07-05
The present paper describes the application of automated cleanup and fractionation procedures of the Power Prep system (Fluid Management Systems) for the determination of polybrominated diphenyl ethers (PBDEs) in feeding stuffs and fish meal and oil. Gas chromatography (GC) separation followed by ion trap tandem mass spectrometry detection in EI mode (ITMS) allowed the analysis of di- to deca-BDEs in the samples matrices used in fish aquaculture. The method developed enabled the determination of 26 native PBDE congeners and 11 (13)C(12)-labelled congeners, including deca-BDE 209, in a single-run analysis, using isotope dilution. The automated cleanup, consisting of a succession of multilayer silica and basic alumina columns previously applied by Wyrzykowska et al. (2009) [28] in combustion flue gas, was successfully applied in our complex matrices. The method allowed an increase in productivity, i.e. lower time was required to process samples, and simultaneous purification of several samples was achieved at a time, reducing analyst dedication and human error input. Average recoveries of 43-96% were obtained. GC/ITMS can overcome the complexity originating from the sample matrix, eliminating matrix effects by tandem MS, to enable the detection of congeners penta- to nona-BDEs where interferent masses were present. The provisional detection limits, estimated in the samples, were 5-30 pg for di-, tri-, tetra-, and penta-BDEs, 20-65 pg for hexa-, hepta-, octa- and nona-BDEs, and 105 pg for deca-BDE. Reduction of deca-BDE 209 blank values is of concern to ongoing research. Good accuracy was obtained by application of the whole procedure, representing an efficient, low-cost and fast alternative for routine analyses. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Barrowman, James
2003-01-01
The spacecraft was nearly integrated and had passed some of its early mechanical and electrical testing. One of its instruments, the Proportional Counter Array (PCA), had a gas leak in one of the five proportional counter modules that made up the array. The science division where the instrument was being developed wanted a gas replenishment system added to assure the PCA would last for the entire mission. Adding a gas replenishment system would mean interrupting spacecraft integration and testing; developing a new subsystem and integrating it onto the spacecraft; modifying all the PCA modules; including a complex integration of the instrument onto the spacecraft; and implementing a more complex performance and environmental test process. It was the wrong answer because it made a simple design more complex and added little value to the mission at a major cost in time and dollars. Our mission couldn't afford the additional budget and schedule risks. XTE was the latest of a long line of projects being managed by my Explorer Program Office, but it was unique in being the first project we had agreed to do for a fixed price. NASA HQ agreed, in return, to provide us with the funding profile we needed to make it happen. We were both trying to break the unhealthy spiral in the Explorer program that saw current missions overrunning and pushing subsequent missions downstream to the point where their science was becoming marginal. The science community was upset and wanted better performance from NASA. I summarized my arguments to the director. The Engineering Directorate had taken responsibility for the spacecraft development when we established XTE as an in-house project at Goddard Space Flight Center, and also was supporting the PCA development. "It adds complexity," I reiterated. "It's a significant cost impact for only a marginal reliability increase". His response was music to my ears, "Jim, I won't stand in your way, but you'll have to convince the scientists and engineers."
Natural Gas Processing Plants in the United States: 2010 Update
2011-01-01
This special report presents an analysis of natural gas processing plants in the United States as of 2009 and highlights characteristics of this segment of the industry. The purpose of the paper is to examine the role of natural gas processing plants in the natural gas supply chain and to provide an overview and summary of processing plant characteristics in the United States, such as locations, capacities, and operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pochan, M.J.; Massey, M.J.
1979-02-01
This report discusses the results of actual raw product gas sampling efforts and includes: Rationale for raw product gas sampling efforts; design and operation of the CMU gas sampling train; development and analysis of a sampling train data base; and conclusions and future application of results. The results of sampling activities at the CO/sub 2/-Acceptor and Hygas pilot plants proved that: The CMU gas sampling train is a valid instrument for characterization of environmental parameters in coal gasification gas-phase process streams; depending on the particular process configuration, the CMU gas sampling train can reduce gasifier effluent characterization activity to amore » single location in the raw product gas line; and in contrast to the slower operation of the EPA SASS Train, CMU's gas sampling train can collect representative effluent data at a rapid rate (approx. 2 points per hour) consistent with the rate of change of process variables, and thus function as a tool for process engineering-oriented analysis of environmental characteristics.« less
Method and apparatus for manufacturing gas tags
Gross, K.C.; Laug, M.T.
1996-12-17
For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.
Method and apparatus for manufacturing gas tags
Gross, Kenny C.; Laug, Matthew T.
1996-01-01
For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.
Physical simulation study on the hydraulic fracture propagation of coalbed methane well
NASA Astrophysics Data System (ADS)
Wu, Caifang; Zhang, Xiaoyang; Wang, Meng; Zhou, Longgang; Jiang, Wei
2018-03-01
As the most widely used technique to modify reservoirs in the exploitation of unconventional natural gas, hydraulic fracturing could effectively raise the production of CBM wells. To study the propagation rules of hydraulic fractures, analyze the fracture morphology, and obtain the controlling factors, a physical simulation experiment was conducted with a tri-axial hydraulic fracturing test system. In this experiment, the fracturing sample - including the roof, the floor, and the surrounding rock - was prepared from coal and similar materials, and the whole fracturing process was monitored by an acoustic emission instrument. The results demonstrated that the number of hydraulic fractures in coal is considerably higher than that observed in other parts, and the fracture morphology was complex. Vertical fractures were interwoven with horizontal fractures, forming a connected network. With the injection of fracturing fluid, a new hydraulic fracture was produced and it extended along the preexisting fractures. The fracture propagation was a discontinuous, dynamic process. Furthermore, in-situ stress plays a key role in fracture propagation, causing the fractures to extend in a direction perpendicular to the minimum principal stress. To a certain extent, the different mechanical properties of the coal and the other components inhibited the vertical propagation of hydraulic fractures. Nonetheless, the vertical stress and the interfacial property are the major factors to influence the formation of the "T" shaped and "工" shaped fractures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeckel, D.R.
A practical, objective guide for ranking projects based on risk-based priorities has been developed by Sun Pipe Line Co. The deliberately simple system guides decisions on how to allocate scarce company resources because all managers employ the same criteria in weighing potential risks to the company versus benefits. Managers at all levels are continuously having to comply with an ever growing amount of legislative and regulatory requirements while at the same time trying to run their businesses effectively. The system primarily is designed for use as a compliance oversight and tracking process to document, categorize, and follow-up on work concerningmore » various issues or projects. That is, the system consists of an electronic database which is updated periodically, and is used by various levels of management to monitor progress of health, safety, environmental and compliance-related projects. Criteria used in determining a risk factor and assigning a priority also have been adapted and found useful for evaluating other types of projects. The process enables management to better define potential risks and/or loss of benefits that are being accepted when a project is rejected from an immediate work plan or budget. In times of financial austerity, it is extremely important that the right decisions are made at the right time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flanigan, Tom; Pybus, Craig; Roy, Sonya
This report summarizes the results of the Pre-Front End Engineering Design (pre-FEED) phase of a proposed advanced oxy-combustion power generation plant to repower the existing 200 MWe Unit 4 at Ameren Energy Resources’ (AER) Meredosia Power Plant. AER has formed an alliance with Air Liquide Process and Construction, Inc. (ALPC) and Babcock & Wilcox Power Generation Group (B&W PGG) for the design, construction, and testing of the facility, and has contracted with URS Corporation (URS) for preliminary design and Owner’s engineering services. The Project employs oxy-combustion technology – combustion of coal with nearly pure oxygen and recycled flue gas (insteadmore » of air) – to capture approximately 90% of the flue gas CO2 for transport and sequestration by another Project. Plant capacity and configuration has been developed based on the B&W PGG-ALPC cool recycle process firing high-sulfur bituminous coal fuel, assuming baseload plant operation to maximize existing steam turbine capability, with limited consideration for plant redundancy and performance optimization in order to keep plant costs as low as practical. Activities and preliminary results from the pre-FEED phase addressed in this report include the following: Overall plant thermal performance; Equipment sizing and system configuration; Plant operation and control philosophy; Plant emissions and effluents; CO 2 production and recovery characteristics; Project cost estimate and economic evaluation; Integrated project engineering and construction schedule; Project risk and opportunity assessment; Development of Project permitting strategy and requirements During the Phase 2 of the Project, additional design details will be developed and the Phase 1 work products updated to support actual construction and operation of the facility in Phase 3. Additional information will be provided early in Phase 2 to support Ameren-Environmental in finalizing the appropriate permitting strategies and permit applications. Additional performance and reliability enhancements will also be evaluated in Phase 2 to try to improve overall project economics.« less
Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA
2012-05-15
A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.
Fuels Containing Methane of Natural Gas in Solution
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A.
2004-01-01
While exploring ways of producing better fuels for propulsion of a spacecraft on the Mars sample return mission, a researcher at Johnson Space Center (JSC) devised a way of blending fuel by combining methane or natural gas with a second fuel to produce a fuel that can be maintained in liquid form at ambient temperature and under moderate pressure. The use of such a blended fuel would be a departure for both spacecraft engines and terrestrial internal combustion engines. For spacecraft, it would enable reduction of weights on long flights. For the automotive industry on Earth, such a fuel could be easily distributed and could be a less expensive, more efficient, and cleaner-burning alternative to conventional fossil fuels. The concept of blending fuels is not new: for example, the production of gasoline includes the addition of liquid octane enhancers. For the future, it has been commonly suggested to substitute methane or compressed natural gas for octane-enhanced gasoline as a fuel for internal-combustion engines. Unfortunately, methane or natural gas must be stored either as a compressed gas (if kept at ambient temperature) or as a cryogenic liquid. The ranges of automobiles would be reduced from their present values because of limitations on the capacities for storage of these fuels. Moreover, technical challenges are posed by the need to develop equipment to handle these fuels and, especially, to fill tanks acceptably rapidly. The JSC alternative to provide a blended fuel that can be maintained in liquid form at moderate pressure at ambient temperature has not been previously tried. A blended automotive fuel according to this approach would be made by dissolving natural gas in gasoline. The autogenous pressure of this fuel would eliminate the need for a vehicle fuel pump, but a pressure and/or flow regulator would be needed to moderate the effects of temperature and to respond to changing engine power demands. Because the fuel would flash as it entered engine cylinders, relative to gasoline, it would disperse more readily and therefore would mix with air more nearly completely. As a consequence, this fuel would burn more nearly completely (and, hence, more cleanly) than gasoline does. The storage density of this fuel would be similar to that of gasoline, but its energy density would be such that the mileage (more precisely, the distance traveled per unit volume of fuel) would be greater than that of either gasoline or compressed natural gas. Because the pressure needed to maintain the fuel in liquid form would be more nearly constant and generally lower than that needed to maintain compressed natural gas in liquid form, the pressure rating of a tank used to hold this fuel could be lower than that of a tank used to hold compressed natural gas. A mixture of natural gas and gasoline could be distributed more easily than could some alternative fuels. A massive investment in new equipment would not be necessary: One could utilize the present fuel-distribution infrastructure and could blend the gasoline and natural gas at almost any place in the production or distribution process - perhaps even at the retail fuel pump. Yet another advantage afforded by use of a blend of gasoline and natural gas would be a reduction in the amount of gasoline consumed. Because natural gas costs less than gasoline does and is in abundant supply in the United States, the cost of automotive fuel and the demand for imported oil could be reduced.
The Basic Extractive Sludge Treatment (B.E.S.T.®) process is a solvent extraction system that separates organic contaminants from sludges, soils, and sediments. The primary distinguishing feature of the process is the extraction agent, triethylamine. The key to the success of tri...
Reference Service and Bounded Rationality: Helping Students with Research.
ERIC Educational Resources Information Center
Chu, Felix T.
1994-01-01
In university libraries, reference librarians often get ambiguous questions to which they try to give appropriate answers. Because of limitations on resources, time, and mental capability for information processing, the decision-making process involved in answering reference questions becomes bounded by the rationality of these constraints.…
Teaching Young Children Effectively
ERIC Educational Resources Information Center
Brophy, Jere E.; Evertson, Carolyn M.
2010-01-01
Process-product research in which the investigator observes in teachers' classrooms and tries to relate process measures of teaching behavior to product measures of student outcome has face validity appeal and common sense logic. This research approach appears to be the simplest and most direct way to identify teaching behaviors which discriminate…
76 FR 30878 - Federal Oil and Gas Valuation
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-27
... when gas is processed, in lieu of valuing residue gas and extracted liquid products separately... natural gas liquids (NGL) price similar to a ``frac spread'' or a ``processing margin.'' Certain plant... No. ONRR-2011-0005] RIN 1012-AA01 Federal Oil and Gas Valuation AGENCY: Office of Natural Resources...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koen, A.D.
This paper reports that oil and gas companies in the US are curbing costs and redirecting spending to survive the worst decline of petroleum industry activity on record. Persistently weak US natural gas prices and shaky oil prices worldwide have put pressure on domestic companies to become low cost producers. Efforts to cut exploration and development costs have depressed activity in the US, one of the world's most mature oil and gas provinces. International E and D hot spots include the UK North Sea, Yemen, Thailand, Myanmar, Pakistan, and Latin America. Prospects in the Commonwealth of Independent States also continuemore » to generate considerable enthusiasm. Operators struggling to survive or searching for funds to spend on non-US prospects are trying to shuck noncore US assets. Other favored cost cutting strategies include reducing and restructuring debt, operating and administrative staffs, and internal organizations. Major integrated companies are able to add value by refocusing refining, petrochemical, or marketing operations. But independents must adapt operations close to the wellhead to become low cost producers. Whatever tactics are used to mitigate effects of low US activity, no domestic company --- from the largest integrated major to the smallest independent producer --- has proven to be immune from the downturn.« less
NASA Technical Reports Server (NTRS)
Cassanto, John M.; Cassanto, Valerie A.
1988-01-01
Acceleration ground tests were conducted on the Get Away Special (GAS) payload 559 to verify the structural integrity of the structure/support avionics and two of the planned three flight experiments. The ITA (Integrated Test Area) Standardized Experiment Module (ISEM) structure was modified to accommodate the experiments for payload 559. The ISEM avionics consisted of a heavy duty sliver zinc power supply, three orthogonal-mounted low range microgravity accelerometers, a tri-axis high range accelerometer, a solid state recorder/programmer sequencer, and pressure and temperature sensors. The tests were conducted using the Gravitational Plant Physiology Laboratory Centrifuge of the University City Science Center in Philadelphia, PA. The launch-powered flight steady state acceleration profile of the shuttle was simulated from lift-off through jettison of the External Tank (3.0 g's). Additional tests were conducted at twice the nominal powered flight acceleration levels (6 g's) and an over-test condition of four times the powered flight loads to 12.6 g's. The present test program has demonstrated the value of conducting ground tests to verify GAS payload experiment integrity and operation before flying on the shuttle.
2016-06-01
Novosibirsk during the 1980s [14]. In this process, particles of the coating material are accelerated by entrainment in a supersonic jet of gas ...THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC STAINLESS STEEL COATINGS by John A Luhn June 2016 Thesis Advisor: Sarath...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE CORROSION AND THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC
NASA Astrophysics Data System (ADS)
Andini, S.; Fitriana, L.; Budiyono
2018-04-01
This research is aimed to describe the process and to get product development of learning material using flipbook. The learning material is developed in geometry, especially quadrilateral. This research belongs to Research and Development (R&D). The procedure includes the steps of Budiyono Model such as conducting preliminary research, planning and developing a theoretical and prototype product, and determining product quality (validity, practicality, and effectiveness). The average assessment result of the theoretical product by the experts gets 4,54, while validity result of prototype product by the experts is 4,62. Practicability is obtained by the implementation of flipbook prototype in each meeting of limited-scale try out based on learning observation, with the average score of 4,10 and increasing of 4,50 in wide-scale try out. The effectiveness of the prototype product is obtained by the result from pretest and posttest on a limited-scale and a wide-scale try out. The limited-scale pre-test result showed a significant increase in average score of wide-scale pre-test of 25,2, and there is an increase in the average score of posttest on limited-scale try out and wide-scale try out is 8,16. The result of product quality can be concluded that flipbook media can be used in the geometry learning in elementary school which implemented curriculum 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couto, J.A.
1975-06-01
Liquid hydrocarbons contained in Argentina's Pico Truncade natural gas caused a number of serious pipeline transmission and gas processing problems. Gas del Estado has installed a series of efficient liquid removal devices at the producing fields. A flow chart of the gasoline stripping process is illustrated, as are 2 types of heat exchangers. This process of gasoline stripping (gas condensate recovery) integrates various operations which normally are performed independently: separation of the poor condensate in the gas, stabilization of the same, and incorporation of the light components (products of the stabilization) in the main gas flow.
30 CFR 1206.179 - What general requirements regarding processing allowances apply to me?
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Gas Processing Allowances... gas plant product under § 1206.174, you may deduct from value the reasonable actual costs of processing. (b) You must allocate processing costs among the gas plant products. You must determine a...
30 CFR 1206.179 - What general requirements regarding processing allowances apply to me?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Gas Processing Allowances... gas plant product under § 1206.174, you may deduct from value the reasonable actual costs of processing. (b) You must allocate processing costs among the gas plant products. You must determine a...
30 CFR 1206.179 - What general requirements regarding processing allowances apply to me?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Gas Processing Allowances... gas plant product under § 1206.174, you may deduct from value the reasonable actual costs of processing. (b) You must allocate processing costs among the gas plant products. You must determine a...
Process for the production of /sup 18/F-2-deoxy-2-fluoro-d-glucose
Shiue, C.Y.; Salvadori, P.A.; Wolf, A.P.; Fowler, J.S.; MacGregor, R.R.
Process is given for the production of 2-deoxy-2-fluoro-D-glucose and the corresponding /sup 18/F-compound by the reaction of acetyl hypofluorite or the corresponding /sup 18/F-compound with 3,4,6-tri-0-acetyl-D-glucal followed by hydrolysis. Process includes the production of the hypofluorite compound at ambient temperature.
ERIC Educational Resources Information Center
Simon, Cecilia; Echeita, Gerardo; Sandoval, Marta; Lopez, Mauricio
2010-01-01
Inclusive education is a complex and multidimensional process that, among other aspirations, tries to foster the rights of every student to obtain a high-quality education. This process focuses on the diversity of needs of all students by increasing participation in learning, cultures, and communities and reducing exclusion within and from…
Reliability and validity of gait analysis by android-based smartphone.
Nishiguchi, Shu; Yamada, Minoru; Nagai, Koutatsu; Mori, Shuhei; Kajiwara, Yuu; Sonoda, Takuya; Yoshimura, Kazuya; Yoshitomi, Hiroyuki; Ito, Hiromu; Okamoto, Kazuya; Ito, Tatsuaki; Muto, Shinyo; Ishihara, Tatsuya; Aoyama, Tomoki
2012-05-01
Smartphones are very common devices in daily life that have a built-in tri-axial accelerometer. Similar to previously developed accelerometers, smartphones can be used to assess gait patterns. However, few gait analyses have been performed using smartphones, and their reliability and validity have not been evaluated yet. The purpose of this study was to evaluate the reliability and validity of a smartphone accelerometer. Thirty healthy young adults participated in this study. They walked 20 m at their preferred speeds, and their trunk accelerations were measured using a smartphone and a tri-axial accelerometer that was secured over the L3 spinous process. We developed a gait analysis application and installed it in the smartphone to measure the acceleration. After signal processing, we calculated the gait parameters of each measurement terminal: peak frequency (PF), root mean square (RMS), autocorrelation peak (AC), and coefficient of variance (CV) of the acceleration peak intervals. Remarkable consistency was observed in the test-retest reliability of all the gait parameter results obtained by the smartphone (p<0.001). All the gait parameter results obtained by the smartphone showed statistically significant and considerable correlations with the same parameter results obtained by the tri-axial accelerometer (PF r=0.99, RMS r=0.89, AC r=0.85, CV r=0.82; p<0.01). Our study indicates that the smartphone with gait analysis application used in this study has the capacity to quantify gait parameters with a degree of accuracy that is comparable to that of the tri-axial accelerometer.
Process for selected gas oxide removal by radiofrequency catalysts
Cha, Chang Y.
1993-01-01
This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.
NASA Astrophysics Data System (ADS)
Setyopratomo, P.; Wulan, Praswasti P. D. K.; Sudibandriyo, M.
2016-06-01
Carbon nanotubes were produced by chemical vapor deposition method to meet the specifications for hydrogen storage. So far, the various catalyst had been studied outlining their activities, performances, and efficiencies. In this work, tri-metallic catalyst consist of Fe-Co-Mo supported on MgO was used. The catalyst was prepared by wet-impregnation method. Liquefied Petroleum Gas (LPG) was used as carbon source. The synthesis was conducted in atmospheric fixed bed reactor at reaction temperature range 750 - 850 °C for 30 minutes. The impregnation method applied in this study successfully deposed metal component on the MgO support surface. It found that the deposited metal components might partially replace Mg(OH)2 or MgO molecules in their crystal lattice. Compare to the original MgO powder; it was significant increases in pore volume and surface area has occurred during catalyst preparation stages. The size of obtained carbon nanotubes is ranging from about 10.83 nm OD/4.09 nm ID up to 21.84 nm OD/6.51 nm ID, which means that multiwall carbon nanotubes were formed during the synthesis. Yield as much as 2.35 g.CNT/g.catalyst was obtained during 30 minutes synthesis and correspond to carbon nanotubes growth rate of 0.2 μm/min. The BET surface area of the obtained carbon nanotubes is 181.13 m2/g and around 50 % of which is contributed by mesopores. Micropore with half pore width less than 1 nm contribute about 10% volume of total micro and mesopores volume of the carbon nanotubes. The existence of these micropores is very important to increase the hydrogen storage capacity of the carbon nanotubes.
Lin, Hai-tao; Li, Qi-lu; Zhang, Gan; Li, Jun
2016-01-15
The gas and particle samples of eight cities were collected by high flow active air sampler in the Eastern and Western China and eight congeners of polybrominated diphenyl ethers were analyzed. The results showed that the concentration of BDE-28 (tri-BDE) in the gas-phase (three bromide components) was the highest, which was different from previous studies where BDE-99 and-47 were the predominant homologues in the gas-phase while the concentration of BDE-209 [(25.4 ± 124) pg · m⁻³] in particle-phase was the highest. The atmospheric concentrations of PBDEs in Beijing and Guangzhou were relatively higher, especially the BDE-209 concentration in particle phases of Guangzhou was two orders higher than those of other cities. However, the atmospheric concentrations of PBDEs declined significantly when compared with the data from previous studies. Meanwhile, the results indicated that the gas-phase concentrations decreased slowly and the particle-phase concentrations decreased rapidly. Combined with the results of correlation analysis, this phenomenon might be ascribed to the ceased commercial production of penta- and octa-BDE, the light degradation of high bromide components and reduced concentrations of atmospheric particles in urban area. Inhalation exposure for infants was about 2-3 times higher than that of adults. This reflected that the potential health risk of atmospheric PBDEs in city for residents, especially infants and young children, should not be ignored.
Bingham, Dennis N.; Wilding, Bruce M.; McKellar, Michael G.
2002-01-01
A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condensing one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander. The expander decreases the pressure on the gas stream, thereby cooling the stream and causing a portion of the gas stream to liquify within a tank. The portion of the gas which is hot liquefied is passed back through each of the heat exchanges where it functions as a refrigerant.
Bingham, Dennis N.; Wilding, Bruce M.; McKellar, Michael G.
2000-01-01
A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condense one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander. The expander decreases the pressure on the gas stream, thereby cooling the stream and causing a portion of the gas stream to liquify within a tank. The portion of the gas which is not liquefied is passed back through each of the heat exchanges where it functions as a refrigerant.
Groll, Helga
2017-09-28
The views of peers are important when applying for a faculty position, but so are research plans and being a good 'fit'. Many universities are also trying to reduce bias in their recruitment processes.
7 CFR 1942.104 - Application processing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... needed and generally try to develop and maintain a cooperative working relationship with the applicant... applicant has in good faith exercised any right under the Consumer Credit Protection Act. The Federal agency...
7 CFR 1942.104 - Application processing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... needed and generally try to develop and maintain a cooperative working relationship with the applicant... applicant has in good faith exercised any right under the Consumer Credit Protection Act. The Federal agency...
7 CFR 1942.104 - Application processing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... needed and generally try to develop and maintain a cooperative working relationship with the applicant... applicant has in good faith exercised any right under the Consumer Credit Protection Act. The Federal agency...
7 CFR 1942.104 - Application processing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... needed and generally try to develop and maintain a cooperative working relationship with the applicant... applicant has in good faith exercised any right under the Consumer Credit Protection Act. The Federal agency...
Code of Federal Regulations, 2011 CFR
2011-04-01
... search for crude oil, including condensate and natural gas liquids, or natural gas (“oil and gas”) in...) Gathering, treating, and field processing (as in the case of processing gas to extract liquid hydrocarbons... first point at which oil, gas, or gas liquids, natural or synthetic, are delivered to a main pipeline, a...
Integrated piezoelectric actuators in deep drawing tools to reduce the try-out
NASA Astrophysics Data System (ADS)
Neugebauer, Reimund; Mainda, Patrick; Kerschner, Matthias; Drossel, Welf-Guntram; Roscher, Hans-Jürgen
2011-05-01
Tool making is a very time consuming and expensive operation because many iteration loops are used to manually adjust tool components during the try-out process. That means that trying out deep drawing tools is 30% of the total costs. This is the reason why an active deep drawing tool was developed at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in cooperation with Audi and Volkswagen to reduce the costs and production rates. The main difference between the active and conventional deep drawing tools is using piezoelectric actuators to control the forming process. The active tool idea, which is the main subject of this research, will be presented as well as the findings of experiments with the custom-built deep drawing tool. This experimental tool was designed according to production requirements and has been equipped with piezoelectric actuators that allow active pressure distribution on the sheet metal flange. The disposed piezoelectric elements are similar to those being used in piezo injector systems for modern diesel engines. In order to achieve the required force, the actuators are combined in a cluster that is embedded in the die of the deep drawing tool. One main objective of this work, i.e. reducing the time-consuming try-out-period, has been achieved with the experimental tool which means that the actuators were used to set static pressure distribution between the blankholder and die. We will present the findings of our analysis and the advantages of the active system over a conventional deep drawing tool. In addition to the ability of changing the static pressure distribution, the piezoelectric actuator can also be used to generate a dynamic pressure distribution during the forming process. As a result the active tool has the potential to expand the forming constraints to make it possible to manage forming restrictions caused by light weight materials in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, G.C.
The Environmental Restoration Disposal Facility (ERDF) is to accept both CERCLA (EPA-regulated) and RCRA (Ecology-regulated) remediation waste. The ERDF is considered part of the overall remediation strategy on the Hanford Site, and as such, determination of ERDF viability has followed both RCRA and CERCLA decision making processes. Typically, determination of the viability of a unit, such as the ERDF, would occur as part of record of decision (ROD) or permit modification for each remediation site before construction of the ERDF. However, because construction of the ERDF may take a significant amount of time, it is necessary to begin design andmore » construction of the ERDF before final RODs/permit modifications for the remediation sites. This will allow movement of waste to occur quickly once the final remediation strategy for the RCRA and CERCLA past-practice units is determined. Construction of the ERDF is a unique situation relative to Hanford Facility cleanup, requiring a Hanford Facility specific process be developed for implementing the ERDF that would satisfy both RCRA and CERCLA requirements. While the ERDF will play a significant role in the remediation process, initiation of the ERDF does not preclude the evaluation of remedial alternatives at each remediation site. To facilitate this, the January 1994 amendment to the Tri-Party Agreement recognizes the necessity for the ERDF, and the Tri-Party Agreement states: ``Ecology, EPA, and DOE agree to proceed with the steps necessary to design, approve, construct, and operate such a ... facility.`` The Tri-Party Agreement requires the DOE-RL to prepare a comprehensive ``package`` for the EPA and Ecology to consider in evaluating the ERDF. The package is to address the criteria listed in 40 CFR 264.552(c) for corrective action management unit (CAMU) designation and a CERCLA ROD. This CAMU application is submitted as part of the Tri-Party Agreement-required information package.« less
Cosmology and change in Rwanda.
Taylor, C
1994-01-01
Quantitative research methods and epidemiological models dominate research into the understanding of risk behaviors related to HIV/AIDS. While clearly important to understanding AIDS and finding some answers for its prevention and control, quantitative and epidemiologic approaches do not shed much light on how people think. One must also try to understand the thought patterns behind behaviors which we are trying to influence. The author became aware of a mode of thought after 18 months of anthropological fieldwork with traditional healers in Rwanda which has implications for the prevention and control of HIV/AIDS. He described in a previous article a cosmological system based upon the flows and/or interruptions in the movement of liquid substances. Pathological states are provoked or characterized by perceived abnormalities in fluid movement, either excessive flows or blockages. Hypotheses concerning this system were later reinforced when he returned to the culturo-historical literature on Rwanda and discovered that the rituals of kingship were also a rich example of flow/blockage imagery. Tens years after his first fieldwork in Rwanda, the author reports finding ongoing evidence of that cosmological system. While some people in Rwanda who ascribe to the fluid flow/blockage ideology may understand condom use to be a necessary preventive measure against AIDS, they are concerned about the overall effect of condoms upon individual health. Mechanically, concern is expressed that the condom may remain lodged in the vagina and harm the woman or that it will interfere with a Rwandan form of lovemaking called kunyaza. With regard to the prevailing ideology, however, condoms block the flow of fluid. As such, concern also exists that blocking the release of semen from the penis will negatively affect male health. A notion also exists that a gas exits the penis at the moment of ejaculation. Interfering with the escape of such gas, condom use may cause the gas to re-enter the man's body and harm his kidneys. Rwanda is not the only place in sub-Saharan Africa where these beliefs are held. It is important that program planners and implementers understand how Rwandans think about the body and sickness, and tailor communication messages and interventions accordingly.
Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process
DeGeorge, Charles W.
1981-01-01
In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.
Process for selected gas oxide removal by radiofrequency catalysts
Cha, C.Y.
1993-09-21
This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.
Mathematical simulation of the process of condensing natural gas
NASA Astrophysics Data System (ADS)
Tastandieva, G. M.
2015-01-01
Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of "cooling down" liquefied natural gas in terms of its partial evaporation with low cost energy.
Gravitational Capture of Small Bodies by Gas Drag Developed Using Hydrodynamic Equations
NASA Astrophysics Data System (ADS)
Pereira de Lima, Nicole; Neto, E. V.
2013-05-01
Abstract (2,250 Maximum Characters): The giant planets of the Solar System have two kinds of satellites, the regular and the irregular ones. The irregular ones are supposed to come from other regions were captured by the planet. Using the dynamics of the three-body problem it is possible to explain the gravitational capture of these satellites except for the fact that these captures are only temporary. For this reason it is necessary an additional effect to turn these temporary captures into a permanent ones. In this work we will explore the gas drag mechanism. In the last stage of the giant planets formation a gas envelope formed around each one of them. During the flyby of the satellite this envelope can dissipate energy enough to make it a “prisoner” of the planet. We have made some simulations considering the classical case. In these simulations the classical gas was characterized by ordinary differential equations that describe the velocity and density of it. However this model is a simplified case. To make our model more realistic we use the hydrodynamic model. Thus some modification in the early code were required. One important code changes was the way used to describe the gas. In this new model a region (called cell) and not a point is used to characterize the gas. After making some adjusts we have checked the precision of cells and verified its correlation with other parameters. At this step we have to test the new code trying to reproduce and improve all results obtained before. Meanwhile we are using the software Fargo that creates the hydrodynamic gas to be used as input in the code. After this analysis we will let the gas evolve in time in order to acquire a higher level of realism in this study.
30 CFR 1206.179 - What general requirements regarding processing allowances apply to me?
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENFORCEMENT, DEPARTMENT OF THE INTERIOR Natural Resources Revenue PRODUCT VALUATION Indian Gas Processing... value any gas plant product under § 1206.174, you may deduct from value the reasonable actual costs of processing. (b) You must allocate processing costs among the gas plant products. You must determine a...
NASA Astrophysics Data System (ADS)
Zahnle, K. J.
2013-12-01
Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with the chondrites, with Earth, or with none of the above. Modern spacecraft mass spectrometers are at least 100-fold more sensitive to noble gases. Sending such an instrument to Venus may be the last best hope for decrypting what Earth's noble gases have been trying to tell us.
Cho, John E.; Fournier, Mario; Da, Xiaoyu
2010-01-01
Increased expression of forkhead box O (Foxo) transcription factors were reported in cultured myotubes and mouse limb muscle with corticosteroid (CS) treatment. We previously reported that administration of CS to rats resulted in muscle fiber atrophy only by day 7. The aim of this study, therefore, was to evaluate the time-course changes in the expression of Foxo transcription factors and muscle-specific ubiquitin E3 ligases in rat limb muscle following CS administration. Triamcinolone (TRI; 1 mg · kg−1 · day−1 im) was administered for 1, 3, or 7 days. Control (CTL) rats were given saline. Muscle mRNA was analyzed by real-time RT-PCR. Compared with CTL, body weights of TRI-treated animals decreased by 3, 12, and 21% at days 1, 3, and 7, respectively. Muscle IGF-1 mRNA levels decreased by 33, 65, and 58% at days 1, 3, and 7 in TRI-treated rats compared with CTL. Levels of phosphorylated Akt were 28, 50, and 36% lower in TRI animals at these time points. Foxo1 mRNA increased progressively by 1.2-, 1.4-, and 2.5-fold at days 1, 3, and 7 in TRI animals. Similar changes were noted in the expression of Foxo3a mRNA (1.3-, 1.4-, and 2.6-fold increments). By contrast, Foxo4 mRNA was not significantly changed in TRI animals. With TRI, muscle atrophy F box/Atrogin-1 increased by 1.8-, 4.1-, and 7.5-fold at days 1, 3, and 7 compared with CTL rats. By contrast, muscle RING finger 1 increased only from day 7 (2.7-fold). Gradual reduction in IGF-I expression with TRI over the time series paralleled that of Akt. These findings are consistent with a progressive stimulus to muscle protein degradation and the need to process/remove disassembled muscle proteins via the ubiquitin-proteasome system. Elucidating the dynamic catabolic responses to CS challenge is important in understanding the mechanisms underlying muscle atrophy and therapeutic measures to offset this. PMID:19850732
Mars Atmospheric Capture and Gas Separation
NASA Technical Reports Server (NTRS)
Muscatello, Anthony; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James
2011-01-01
The Mars atmospheric capture and gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure C02 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as welL To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from un-reacted carbon oxides (C02- CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3) carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include freezers, selective membranes, selective solvents, polymeric sorbents, zeolites, and new technologies. This paper and presentation will summarize the results of an extensive literature review and laboratory evaluations of candidate technologies for the capture and separation of C02 and other relevant gases.
Essays on the Economics of Climate Change, Biofuel and Food Prices
NASA Astrophysics Data System (ADS)
Seguin, Charles
Climate change is likely to be the most important global pollution problem that humanity has had to face so far. In this dissertation, I tackle issues directly and indirectly related to climate change, bringing my modest contribution to the body of human creativity trying to deal with climate change. First, I look at the impact of non-convex feedbacks on the optimal climate policy. Second, I try to derive the optimal biofuel policy acknowledging the potential negative impacts that biofuel production might have on food supply. Finally, I test empirically for the presence of loss aversion in food purchases, which might play a role in the consumer response to food price changes brought about by biofuel production. Non-convexities in feedback processes are increasingly found to be important in the climate system. To evaluate their impact on the optimal greenhouse gas (GHG) abate- ment policy, I introduce non-convex feedbacks in a stochastic pollution control model. I numerically calibrate the model to represent the mitigation of greenhouse gas (GHG) emissions contributing to global climate change. This approach makes two contributions to the literature. First, it develops a framework to tackle stochastic non-convex pollu- tion management problems. Second, it applies this framework to the problem of climate change. This approach is in contrast to most of the economic literature on climate change that focuses either on linear feedbacks or environmental thresholds. I find that non-convex feedbacks lead to a decision threshold in the optimal mitigation policy, and I characterize how this threshold depends on feedback parameters and stochasticity. There is great hope that biofuel can help reduce greenhouse gas emissions from fossil fuel. However, there are some concerns that biofuel would increase food prices. In an optimal control model, a co-author and I look at the optimal biofuel production when it competes for land with food production. In addition oil is not exhaustible and output is subject to climate change induced damages. We find that the competitive outcome does not necessarily yield an underproduction of biofuels, but when it does, second best policies like subsidies and mandates can improve welfare. In marketing, there has been extensive empirical research to ascertain whether there is evidence of loss aversion as predicted by several reference price preference theories. Most of that literature finds that there is indeed evidence of loss aversion for many different goods. I argue that it is possible that some of that evidence seemingly supporting loss aversion arises because price endogeneity is not properly taken into account. Using scanner data I study four product categories: bread, chicken, corn and tortilla chips, and pasta. Taking prices as exogenous, I find evidence of loss aversion for bread and corn and tortilla chips. However, when instrumenting prices, the "loss aversion evidence" disappears.
2011-01-01
Background The trichothecene mycotoxin deoxynivalenol (DON) may be concentrated in distillers dried grains with solubles (DDGS; a co-product of fuel ethanol fermentation) when grain containing DON is used to produce fuel ethanol. Even low levels of DON (≤ 5 ppm) in DDGS sold as feed pose a significant threat to the health of monogastric animals. New and improved strategies to reduce DON in DDGS need to be developed and implemented to address this problem. Enzymes known as trichothecene 3-O-acetyltransferases convert DON to 3-acetyldeoxynivalenol (3ADON), and may reduce its toxicity in plants and animals. Results Two Fusarium trichothecene 3-O-acetyltransferases (FgTRI101 and FfTRI201) were cloned and expressed in yeast (Saccharomyces cerevisiae) during a series of small-scale ethanol fermentations using barley (Hordeum vulgare). DON was concentrated 1.6 to 8.2 times in DDGS compared with the starting ground grain. During the fermentation process, FgTRI101 converted 9.2% to 55.3% of the DON to 3ADON, resulting in DDGS with reductions in DON and increases in 3ADON in the Virginia winter barley cultivars Eve, Thoroughbred and Price, and the experimental line VA06H-25. Analysis of barley mashes prepared from the barley line VA04B-125 showed that yeast expressing FfTRI201 were more effective at acetylating DON than those expressing FgTRI101; DON conversion for FfTRI201 ranged from 26.1% to 28.3%, whereas DON conversion for FgTRI101 ranged from 18.3% to 21.8% in VA04B-125 mashes. Ethanol yields were highest with the industrial yeast strain Ethanol Red®, which also consumed galactose when present in the mash. Conclusions This study demonstrates the potential of using yeast expressing a trichothecene 3-O-acetyltransferase to modify DON during commercial fuel ethanol fermentation. PMID:21888629
Rowling, Brett; Kinsela, Andrew S; Comarmond, M Josick; Hughes, Catherine E; Harrison, Jennifer J; Johansen, Mathew P; Payne, Timothy E
2017-11-01
At many legacy radioactive waste sites, organic compounds have been co-disposed, which may be a factor in mobilisation of radionuclides at these sites. Tri-butyl phosphate (TBP) is a component of waste streams from the nuclear fuel cycle, where it has been used in separating actinides during processing of nuclear fuels. Analyses of ground waters from the Little Forest Legacy Site (LFLS) in eastern Australia were undertaken using solid-phase extraction (SPE) followed by gas chromatographic mass spectrometry (GCMS). The results indicate the presence of TBP several decades after waste disposal, with TBP only being detected in the immediate vicinity of the main disposal area. TBP is generally considered to degrade in the environment relatively rapidly. Therefore, it is likely that its presence is due to relatively recent releases of TBP, possibly stemming from leakage due to container degradation. The ongoing presence and solubility of TBP has the potential to provide a mechanism for nuclide mobilisation, with implications for long term management of LFLS and similar legacy waste sites. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Understanding socio-economic impacts of geohazards aided by cyber-enabled systems
NASA Astrophysics Data System (ADS)
Klose, C. D.; Webersik, C.
2008-12-01
Due to an increase in the volume of geohazards worldwide, not only are impoverished regions in less developed countries such as Haiti, vulnerable to risk but also low income regions in industrialized countries, e.g. USA, as well. This has been exemplified once again by Hurricanes Gustav, Hanna and Ike and the impact on the Caribbean countries during the summer of 2008. To date, extensive research has been conducted to improve the monitoring of human-nature coupled systems. However, there is little emphasis on improving and developing methodologies to a) interpret multi-dimensional and complex data and b) validate prediction and modeling results. This presentation tries to motivate more research initiatives to address the aforementioned issues, bringing together two academic disciplines, earth and social sciences, to research the relationship between natural and socio-economic processes. Results are presented where cyber-enabled methods based on artificial intelligence are applied to different geohazards and regions in the world. They include 1) modeling of public health risks associated with volcanic gas hazards, 2) prediction and validation of potential areas of mining-triggered earthquakes, and 3) modeling of socio-economic risks associated with tropical storms in Haiti and the Dominican Republic.
Air toxics provisions of the Clean Air Act: Potential impacts on energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hootman, H.A.; Vernet, J.E.
1991-11-01
This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implicationsmore » of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA's Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.« less
Air toxics provisions of the Clean Air Act: Potential impacts on energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hootman, H.A.; Vernet, J.E.
1991-11-01
This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implicationsmore » of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA`s Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.« less
Catalytic conversion of light alkanes: Quarterly report, January 1-March 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biscardi, J.; Bowden, P.T.; Durante, V.A.
The first Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between January 1. 1992 and March 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products which can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon transportation fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mildmore » selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient porphryinic macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE III).« less
NASA Technical Reports Server (NTRS)
Moisan, John R.
2009-01-01
Ocean phytoplankton supply about half of the oxygen that humans utilize to sustain life. In this lecture, we will explore how phytoplankton plays a critical role in modulating the Earth's climate. These tiny organisms are the base of the Ocean's food web. They can modulate the rate at which solar heat is absorbed by the ocean, either through direct absorption or through production of highly scattering cellular coverings. They take up and help sequester carbon dioxide, a key greenhouse gas that modulated the Earth's climate. They are the source of cloud nucleation gases that are key to cloud formation/processes. They are also able to modify the nutrient budgets of the ocean through active uptake of inert atmospheric nitrogen. Climate variations have a pronounced impact on phytoplankton dynamics. Long term variations in the climate have been studied through geological interpretations on its influence on phytoplankton populations. The presentation will focus on presenting the numerous linkages that have been observed between climate and phytoplankton and further discuss how present climate change scenarios are likely to impact phytoplankton populations as well as present findings from several studies that have tried to understand how the climate might react to the feedbacks from these numerous climate-phytop|ankton linkages.
In-Situ Molecular Vapor Composition Measurements During Lyophilization.
Liechty, Evan T; Strongrich, Andrew D; Moussa, Ehab M; Topp, Elizabeth; Alexeenko, Alina A
2018-04-11
Monitoring process conditions during lyophilization is essential to ensuring product quality for lyophilized pharmaceutical products. Residual gas analysis has been applied previously in lyophilization applications for leak detection, determination of endpoint in primary and secondary drying, monitoring sterilization processes, and measuring complex solvents. The purpose of this study is to investigate the temporal evolution of the process gas for various formulations during lyophilization to better understand the relative extraction rates of various molecular compounds over the course of primary drying. In this study, residual gas analysis is used to monitor molecular composition of gases in the product chamber during lyophilization of aqueous formulations typical for pharmaceuticals. Residual gas analysis is also used in the determination of the primary drying endpoint and compared to the results obtained using the comparative pressure measurement technique. The dynamics of solvent vapors, those species dissolved therein, and the ballast gas (the gas supplied to maintain a set-point pressure in the product chamber) are observed throughout the course of lyophilization. In addition to water vapor and nitrogen, the two most abundant gases for all considered aqueous formulations are oxygen and carbon dioxide. In particular, it is observed that the relative concentrations of carbon dioxide and oxygen vary depending on the formulation, an observation which stems from the varying solubility of these species. This result has implications on product shelf life and stability during the lyophilization process. Chamber process gas composition during lyophilization is quantified for several representative formulations using residual gas analysis. The advantages of the technique lie in its ability to measure the relative concentration of various species during the lyophilization process. This feature gives residual gas analysis utility in a host of applications from endpoint determination to quality assurance. In contrast to other methods, residual gas analysis is able to determine oxygen and water vapor content in the process gas. These compounds have been shown to directly influence product shelf life. With these results, residual gas analysis technique presents a potential new method for real-time lyophilization process control and improved understanding of formulation and processing effects for lyophilized pharmaceutical products.
16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.
Code of Federal Regulations, 2014 CFR
2014-01-01
... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...
16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.
Code of Federal Regulations, 2010 CFR
2010-01-01
... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...
16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.
Code of Federal Regulations, 2013 CFR
2013-01-01
... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...
16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.
Code of Federal Regulations, 2012 CFR
2012-01-01
... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...
16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.
Code of Federal Regulations, 2011 CFR
2011-01-01
... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...
Rao, Govind S.; Rao, Marie Luise; Thilmann, Astrid; Quednau, Hans D.
1981-01-01
1. Influx and efflux of l-tri-[125I]iodothyronine with isolated rat liver parenchymal cells and their plasma-membrane vesicles were studied by a rapid centrifugation technique. 2. At 23°C and in the concentration range that included the concentration of free l-tri-iodothyronine in rat plasma (3–5pm) influx into cells was saturable; an apparent Kt value of 8.6±1.6pm was obtained. 3. At 5pm-l-tri-[125I]iodothyronine in the external medium the ratios of the concentrations inside to outside in cells and plasma-membrane vesicles were 38:1 and 366:1 respectively after 7s of incubation. At equilibrium (60s at 23°C) uptake of l-tri-[125I]iodothyronine by cells was linear with the hormone concentration, whereas that by plasma-membrane vesicles exhibited an apparent saturation with a Kd value of 6.1±1.3pm. 4. Efflux of l-tri-[125I]iodothyronine from cells equilibrated with the hormone (5–123pm) was constant up to 21 s; the amount that flowed out was 17.7±3.8% when cells were equilibrated with 5pm-hormone. When plasma-membrane vesicles were equilibrated with l-tri-[125I]iodothyronine (556–1226pm) 66.8±5.8% flowed out after 21 s. 5. From a consideration of the data on efflux from cells and binding of l-tri-[125I]iodothyronine to the liver homogenate, as studied by the charcoal-adsorption and equilibrium-dialysis methods, it appears that 18–22% of the hormone exists in the free form in the cell. 6. Vinblastine and colchicine diminished the uptake of l-tri-[125I]iodothyronine by cells but not by plasma-membrane vesicles; binding to the cytosol fraction was not affected. Phenylbutazone, 6-n-propyl-2-thiouracil, methimazole and corticosterone diminished the uptake by cells, plasma-membrane vesicles and binding to the cytosol fraction to different extents. 7. These results suggest that at low concentrations of l-tri-[125I]iodothyronine rat liver cells and their plasma-membrane vesicles accumulated the hormone against an apparent gradient by a membrane-mediated process. Contribution of cytoplasmic proteins to uptake by plasma-membrane vesicles was negligible. The amount of l-tri-[125I]iodothyronine required to achieve half-maximal uptake agrees with that occurring in the free form in the blood, conferring physiological importance to the transporting system in the plasma membrane of the liver cell. PMID:6275848
Rehearsal Processes in Children's Memory.
ERIC Educational Resources Information Center
Ornstein, Peter A.; Liberty, Charles
This study investigates developmental trends in free recall, with emphasis on rehearsal processes. An overt rehearsal technique was used in which 28 children in grades 3, 6, and 8 were instructed to rehearse out loud while trying to memorize a list of unrelated nouns. Control groups at each age level received standard free recall instructions,…
ERIC Educational Resources Information Center
Crawford, April; Zucker, Tricia; Van Horne, Bethanie; Landry, Susan
2017-01-01
Instructional coaching is becoming common in early childhood programs to provide individualized, job-embedded professional development. Yet relatively few studies have tried to "unpack" the coaching process and delineate the specific features of coaching that contribute to teacher change. In this article, we describe an evidence-based…
Towards a Novel Conceptual Framework for Understanding Mergers in Higher Education
ERIC Educational Resources Information Center
Cai, Yuzhuo; Pinheiro, Rómulo; Geschwind, Lars; Aarrevaara, Timo
2016-01-01
This paper tries to develop a conceptual framework for a comprehensive understanding of the merger process, which is regarded as a matter of institutionalization of organizational innovation. In the framework, a number of factors affecting merger process or institutionalization of merger are identified, such as those related to environmental…
Raut Desai, Shilpa; Rohera, Bhagwan D
2014-03-01
Tri-layered floating tablets using only one grade of polyethylene oxide (PEO) would enable easy manufacturing, reproducibility and controlled release for highly soluble drugs. To evaluate the potential of PEO as a sole polymer for the controlled release and to study the effect of formulation variables on release and gastric retention of highly soluble Diltiazem hydrochloride (DTZ). Tablets were compressed with middle layer consisting of drug and polymer while outer layers consisted of polymer with sodium bicarbonate. Design of formulation to obtain 12 h, zero-order release and rapid floatation was done by varying the grades, quantity of PEO and sodium bicarbonate. Dissolution data were fitted in drug release models and swelling/erosion studies were undertaken to verify the drug release mechanism. Effect of formulation variables and tablet surface morphology using scanning electron microscopy were studied. The optimized formula passed the criteria of USP dissolution test I and exhibited floating lag-time of 3-4 min. Drug release was faster from low molecular weight (MW) PEO as compared to high MW. With an increase in the amount of sodium bicarbonate, faster buoyancy was achieved due to the increased CO2 gas formation. Drug release followed zero-order and gave a good fit to the Korsmeyer-Peppas model, which suggested that drug release was due to diffusion through polymer swelling. Zero-order, controlled release profile with the desired buoyancy can be achieved by using optimum formula quantities of sodium bicarbonate and polymer. The tri-layered system shows promising delivery of DTZ, and possibly other water-soluble drugs.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
...In this notice, EPA is notifying the public that EPA has made an insignificance finding through the transportation conformity adequacy process for directly emitted fine particulate matter (PM2.5) and nitrogen oxides (NOX) emissions as contained in the 1997 PM2.5 attainment demonstration for the Alabama portion of the tri-state Chattanooga, Tennessee nonattainment area (hereafter referred to as the ``Jackson County Area''). On October 14, 2009, the State of Alabama, through the Alabama Department of Environmental Management (ADEM), submitted an attainment demonstration plan for the 1997 annual PM2.5 standard for Jackson County, Alabama as part of the tri-state Chattanooga 1997 PM2.5 nonattainment area. The tri-state Chattanooga 1997 annual PM2.5 nonattainment area is comprised of a portion of Jackson County, Alabama; Catoosa and Walker Counties, Georgia; and Hamilton County, Tennessee. As a result of EPA's finding, the portion of Jackson County within the tri-state Chattanooga 1997 PM2.5 nonattainment area is no longer required to perform a regional emissions analysis for either directly emitted PM2.5 or NOX as part of future PM2.5 conformity determinations for the 1997 annual PM2.5 standard. This finding only relates to the Alabama portion of this Area, and does not relieve the Georgia or Tennessee portions of the tri-state 1997 PM2.5 nonattainment area from the requirement of performing the regional emissions analyses for direct PM2.5 and NOX. EPA will review the adequacy of the Georgia and Tennessee submittals with regard to the motor vehicle emission budgets or insignificance findings (if any and if appropriate) in separate actions.
Maeda, Kazuyuki; Nakajima, Yuichi; Tanahashi, Yoshikazu; Kitou, Yoshiyuki; Miwa, Akihiro; Kanamaru, Kyoko; Kobayashi, Tetsuo; Nishiuchi, Takumi; Kimura, Makoto
2017-08-01
Fusarium graminearum produces trichothecene mycotoxins under certain nutritional conditions. When L-Thr and its analogue L-allo-threonine were added to brown rice flour solid medium before inoculation, trichothecene production after 4 days of incubation was suppressed. A time-course analysis of gene expression demonstrated that L-Thr suppressed transcription of Tri6, a trichothecene master regulator gene, and a terpene cyclase Tri5 gene. Regulation of trichothecene biosynthesis by altering major primary metabolic processes may open up the possibility to develop safe chemicals for the reduction of mycotoxin contamination might be developed.
Dying Process--A Guide for Family Caregivers
... people often have episodes of confusion, or waking dreams. Sometimes they may report seeing or speaking with ... you more. Let them share these visions and dreams with you and try not to talk them ...
... Safe Videos for Educators Search English Español Toilet Teaching Your Child KidsHealth / For Parents / Toilet Teaching Your ... to make the process easier. Tips for Toilet Teaching Even before your child is ready to try ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Thunder Energy Inc. received approval from the Alberta Energy and Utilities Board for modification of an existing gas plant to process sour gas, and also applied for permission to increase the hydrogen sulfide content of its existing pipelines in the Kelsey area. This report presents the views of Thunder Energy, the Board, and various intervenors at a hearing held to consider objections to the plant approval and matters related to the application. Issues considered include the need for sour gas processing, the need for the plant modification as opposed to the feasibility of using existing sour gas processing facilities, environmentalmore » impacts, and the requirements for notification of industry in the area. The report concludes with the Board`s decision.« less
10. Photograph of a line drawing. 'PROCESS FLOW SCHEMATIC, GAS ...
10. Photograph of a line drawing. 'PROCESS FLOW SCHEMATIC, GAS PRODUCER PROCESS, BUILDING 10A.' Holston Army Ammunition Plant, Holston Defense Corporation. August 29, 1974. Delineator: G. A. Horne. Drawing # SK-1942. - Holston Army Ammunition Plant, Producer Gas Plant, Kingsport, Sullivan County, TN
Surfactant process for promoting gas hydrate formation and application of the same
Rogers, Rudy E.; Zhong, Yu
2002-01-01
This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.
The Development of a Tri-Service Notification System for Type 1 Medical Materiel Complaints.
1992-09-01
Hazardous Food and Nonprescription Drug Recall System ...... ............... .... 24 Chapter Summary ..... ............... .... 27 III. Methodology...examination of an existing DOD notification process for hazardous food and nonprescription drugs. It must be emphasized that the process being investigated in...notification process for defective medical materiel has not been accomplished. Hazardous Food and Nonprescription Drug Recall System In examining the DoD
Reduction of fuel consumption and exhaust pollutant using intelligent transport systems.
Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M A; Masum, B M
2014-01-01
Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NO x ). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnedermann, E.; Heinz, U.
We are analyzing the hydrodynamics of 200[ital A] GeV S+S collisions using a new approach which tries to quantify the uncertainties arising from the specific implementation of the hydrodynamical model. Based on a previous phenomenological analysis we use the global hydrodynamics model to show that the amount of initial flow, or initial energy density, cannot be determined from the hadronic momentum spectra. We additionally find that almost always a sizable transverse flow develops, which causes the system to freeze out, thereby limiting the flow velocity in itself. This freeze-out dominance in turn makes a distinction between a plasma and amore » hadron resonance gas equation of state very difficult, whereas a pure pion gas can easily be ruled out from present data. To complete the picture we also analyze particle multiplicity data, which suggest that chemical equilibrium is not reached with respect to the strange particles. However, the overpopulation of pions seems to be at most moderate, with a pion chemical potential far away from the Bose divergence.« less
STS-96 M.S. Payette and Pilot Husband try on gas masks as part of a TCDT
NASA Technical Reports Server (NTRS)
1999-01-01
At Launch Pad 39B, STS-96 Mission Specialist Julie Payette, with the Canadian Space Agency, and Pilot Rick Douglas Husband practice putting on oxygen gas masks as part of Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress traiing, simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Kent V. Rominger and Mission Specialists Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.), Ellen Ochoa (Ph.D.) and Valery Ivanovich Tokarev, with the Russian Space Agency. Scheduled for liftoff on May 20 at 9:32 a.m., STS- 96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- led experiment.
Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems
Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M. A.; Masum, B. M.
2014-01-01
Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NOx). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment. PMID:25032239
Conversion of Coal Mine Gas to LNG
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This project evolved from a 1995, DOE-NETL competitive solicitation for practical CMM capture and utilization concepts. Appalachian Pacific was one of three companies selected to proceed with the construction and operation of a cost-shared demonstration plant. In the course of trying to proceed with this demonstration plant, AP examined several liquefaction technologies, discussed obtaining rights to coal mine methane with a number of coal companies, explored marketing potential with a wide variety of customers in many sections of the United States, studied in great detail the impact of a carbon credit exchange, and developed a suite of analytical tools withmore » which to evaluate possible project options. In the end, the newness of the product, reluctance on the part of the coal companies to venture away from time tested practices, difficulty with obtaining financing, the failure of a carbon credit market to develop and the emergence of shale derived gas production prevented a demonstration plant from being built.« less
Gas impermeable glaze for sealing a porous ceramic surface
Reed, Scott T.; Stone, Ronald G.; Nenoff, Tina M.; Trudell, Daniel E.; Thoma, Steven G.
2004-04-06
A process for fabricating a gas impermeable seal on a porous ceramic surface using a thin, glass-based, pinhole free glaze. The process can be used to fabricate gas impermeable end seals on porous alumina tubes used as filter media. The porous alumina tubes can have an inorganic microporous thin film separation membrane on the inner surface, which can be used for high temperature gas separation processes.
The effect of process parameters on Twin Wire Arc spray pattern shape
Hall, Aaron Christopher; McCloskey, James Francis; Horner, Allison Lynne
2015-04-20
A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA) spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was mostmore » affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Lastly, coating deposition rate was most affected by arc current.« less
The effect of process parameters on Twin Wire Arc spray pattern shape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Aaron Christopher; McCloskey, James Francis; Horner, Allison Lynne
A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA) spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was mostmore » affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Lastly, coating deposition rate was most affected by arc current.« less
Direct monitoring of wind-induced pressure-pumping on gas transport in soil
NASA Astrophysics Data System (ADS)
Laemmel, Thomas; Mohr, Manuel; Schindler, Dirk; Schack-Kirchner, Helmer; Maier, Martin
2017-04-01
Gas exchange between soil and atmosphere is important for the biogeochemistry of soils and is commonly assumed to be governed by molecular diffusion. Yet a few previous field studies identified other gas transport processes such as wind-induced pressure-pumping to enhance soil-atmosphere fluxes significantly. However, since these wind-induced non-diffusive gas transport processes in soil often occur intermittently, the quantification of their contribution to soil gas emissions is challenging. To quantify the effects of wind-induced pressure-pumping on soil gas transport, we developed a method for in situ monitoring of soil gas transport. The method includes the use of Helium (He) as a tracer gas which was continuously injected into the soil. The resulting He steady-state concentration profile was monitored. Gas transport parameters of the soil were inversely modelled. We used our method during a field campaign in a well-aerated forest soil over three months. During periods of low wind speed, soil gas transport was modelled assuming diffusion as transport process. During periods of high wind speed, the previously steady diffusive He concentration profile showed temporary concentration decreases in the topsoil, indicating an increase of the effective gas transport rate in the topsoil up to 30%. The enhancement of effective topsoil soil gas diffusivity resulted from wind-induced air pressure fluctuations which are referred to as pressure-pumping. These air pressure fluctuations had frequencies between 0.1 and 0.01 Hz and amplitudes up to 10 Pa and occurred at above-canopy wind speeds greater than 5 m s-1. We could show the importance of the enhancement of the gas transport rate in relation with the wind intensity and corresponding air pressure fluctuations characteristics. We directly detected and quantified the pressure-pumping effect on gas transport in soil in a field study for the first time, and could thus validate and underpin the importance of this non-diffusive gas transport process. Our method can also be used to study other non-diffusive gas transport processes occurring in soil and snow, and their possible feedbacks or interactions with biogeochemical processes.
Liu, Guorui; Cai, Zongwei; Zheng, Minghui; Jiang, Xiaoxu; Nie, Zhiqiang; Wang, Mei
2015-01-01
Identifying marker congeners of unintentionally produced polychlorinated naphthalenes (PCNs) from industrial thermal sources might be useful for predicting total PCN (∑2-8PCN) emissions by the determination of only indicator congeners. In this study, potential indicator congeners were identified based on the PCN data in 122 stack gas samples from over 60 plants involved in more than ten industrial thermal sources reported in our previous case studies. Linear regression analyses identified that the concentrations of CN27/30, CN52/60, and CN66/67 correlated significantly with ∑2-8PCN (R(2)=0.77, 0.80, and 0.58, respectively; n=122, p<0.05), which might be good candidates for indicator congeners. Equations describing relationships between indicators and ∑2-8PCN were established. The linear regression analyses involving 122 samples showed that the relationships between the indicator congeners and ∑2-8PCN were not significantly affected by factors such as industry types, raw materials used, or operating conditions. Hierarchical cluster analysis and similarity calculations for the 122 stack gas samples were adopted to group those samples and evaluating their similarity and difference based on the PCN homolog distributions from different industrial thermal sources. Generally, the fractions of less chlorinated homologs comprised of di-, tri-, and tetra-homologs were much higher than that of more chlorinated homologs for up to 111 stack gas samples contained in group 1 and 2, which indicating the dominance of lower chlorinated homologs in stack gas from industrial thermal sources. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multi-fluid CFD analysis in Process Engineering
NASA Astrophysics Data System (ADS)
Hjertager, B. H.
2017-12-01
An overview of modelling and simulation of flow processes in gas/particle and gas/liquid systems are presented. Particular emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modelling strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for some gas/particle systems including flow and chemical reaction in risers as well as gas/liquid systems including bubble columns and stirred tanks.
Padovan, Daniele; Tarantino, Giulia
2018-01-01
Porous silicates containing dilute amounts of tri-, tetra- and penta-valent metal sites, such as TS-1, Sn-β and Fe-ZSM-5, have recently emerged as state of the art catalysts for a variety of sustainable chemical transformations. In contrast with their aluminosilicate cousins, which are widely employed throughout the refinery industry for gas-phase catalytic transformations, such metallosilicates have exhibited unprecedented levels of performance for a variety of liquid-phase catalytic processes, including the conversion of biomass to chemicals, and sustainable oxidation technologies with H2O2. However, despite their unique levels of performance for these new types of chemical transformations, increased utilization of these promising materials is complicated by several factors. For example, their utilization in a liquid, and often polar, medium hinders process intensification (scale-up, catalyst deactivation). Moreover, such materials do not generally exhibit the active-site homogeneity of conventional aluminosilicates, and they typically possess a wide variety of active-site ensembles, only some of which may be directly involved in the catalytic chemistry of interest. Consequently, mechanistic understanding of these catalysts remains relatively low, and competitive reactions are commonly observed. Accordingly, unified approaches towards developing more active, selective and stable porous metallosilicates have not yet been achieved. Drawing on some of the most recent literature in the field, the purpose of this mini review is both to highlight the breakthroughs made with regard to the use of porous metallosilicates as heterogeneous catalysts for liquid-phase processing, and to highlight the pertaining challenges that we, and others, aim to overcome during the forthcoming years. PMID:29515849
NASA Astrophysics Data System (ADS)
Hammond, Ceri; Padovan, Daniele; Tarantino, Giulia
2018-02-01
Porous silicates containing dilute amounts of tri-, tetra- and penta-valent metal sites, such as TS-1, Sn-β and Fe-ZSM-5, have recently emerged as state of the art catalysts for a variety of sustainable chemical transformations. In contrast with their aluminosilicate cousins, which are widely employed throughout the refinery industry for gas-phase catalytic transformations, such metallosilicates have exhibited unprecedented levels of performance for a variety of liquid-phase catalytic processes, including the conversion of biomass to chemicals, and sustainable oxidation technologies with H2O2. However, despite their unique levels of performance for these new types of chemical transformations, increased utilization of these promising materials is complicated by several factors. For example, their utilization in a liquid, and often polar, medium hinders process intensification (scale-up, catalyst deactivation). Moreover, such materials do not generally exhibit the active-site homogeneity of conventional aluminosilicates, and they typically possess a wide variety of active-site ensembles, only some of which may be directly involved in the catalytic chemistry of interest. Consequently, mechanistic understanding of these catalysts remains relatively low, and competitive reactions are commonly observed. Accordingly, unified approaches towards developing more active, selective and stable porous metallosilicates have not yet been achieved. Drawing on some of the most recent literature in the field, the purpose of this mini review is both to highlight the breakthroughs made with regard to the use of porous metallosilicates as heterogeneous catalysts for liquid-phase processing, and to highlight the pertaining challenges that we, and others, aim to overcome during the forthcoming years.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody... dehydration unit is passed to remove entrained gas and hydrocarbon liquid. The GCG separator is commonly...
Code of Federal Regulations, 2011 CFR
2011-07-01
... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody... dehydration unit is passed to remove entrained gas and hydrocarbon liquid. The GCG separator is commonly...
Code of Federal Regulations, 2012 CFR
2012-07-01
... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody... dehydration unit is passed to remove entrained gas and hydrocarbon liquid. The GCG separator is commonly...
Population Switching and Charge Sensing in Quantum Dots: A Case for a Quantum Phase Transition
NASA Astrophysics Data System (ADS)
Goldstein, Moshe; Berkovits, Richard; Gefen, Yuval
2010-06-01
A broad and a narrow level of a quantum dot connected to two external leads may swap their respective occupancies as a function of an external gate voltage. By mapping this problem onto a multiflavored Coulomb gas we show that such population switching is not abrupt. However, trying to measure it by adding a third electrostatically coupled lead may render this switching an abrupt first order quantum phase transition. This is related to the interplay of the Mahan mechanism versus the Anderson orthogonality catastrophe, in similitude to the Fermi edge singularity. A concrete setup for experimental observation of this effect is also suggested.
NASA Technical Reports Server (NTRS)
Jefferies, K. S.; Tew, R. C.
1974-01-01
A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.
Influence of north climatic conditions on the peat lipids composition
NASA Astrophysics Data System (ADS)
Serebrennikova, O. V.; Strelnikova, E. B.; Duchko, M. A.; Preis, Yu I.
2018-03-01
The paper studies the composition of lipid organic compounds of peat from the northern regions of the Russian Federation. Peat was sampled in the northern taiga, forest-tundra and tundra zones, characterized by various hydrothermal conditions and vegetation cover. n-Alkanes, fatty acids and their ethers, aldehydes, ketones, alcohols, tocopherols, squalene, bi-, tri- and pentacyclic terpenoids, as well as steroids were identified in peat lipids by gas chromatography-mass spectrometry. The dependences of the total content of lipids and the majority of the investigated compounds classes on the ambient temperature and vegetation, as well as the correlation between the composition of n-alkanes and humidity were revealed.
Application of Notched Long-Period Fiber Grating Based Sensor for CO2 Gas Sensing
NASA Astrophysics Data System (ADS)
Wu, Chao-Wei; Chiang, Chia-Chin
2016-01-01
An inductively coupled plasma etching process to fabricate notched long-period fiber gratings for CO2 gas sensing is proposed in this article. In the gas sensing test, the 15% mixed CO2 gas was used for characterization of CO2 adsorption by the amine-modified nanoporous silica foams of the notched long-period fiber grating sensor. The results shows the spectra were changed with the CO2 gas flow within 13 min. During the absorption process, the transmission of the resonant dip was decreased by 2.884 dB. Therefore, the proposed notched long-period fiber grating gas sensor shows good performance and is suitable as a gas sensor for monitoring the CO2 adsorption process.
NASA Astrophysics Data System (ADS)
Rouwet, Dmitri
2016-04-01
Tracking variations in the chemical composition, water temperature and pH of brines from peak-activity crater lakes is the most obvious way to forecast phreatic activity. Volcano monitoring intrinsically implies a time window of observation that should be synchronised with the kinetics of magmatic processes, such as degassing and magma intrusion. To decipher "how much time ago" a variation in degassing regime actually occurred before eventually being detected in a crater lake is key, and depends on the lake water residence time. The above reasoning assumes that gas is preserved as anions in the lake water (SO4, Cl, F anions), in other words, that scrubbing of acid gases is complete and irreversible. Less is true. Recent work has confirmed, by direct MultiGas measurement from evaporative plumes, that even the strongest acid in liquid medium (i.e. SO2) degasses from hyper-acidic crater lakes. The less strong acid HCl has long been recognised as being more volatile than hydrophyle in extremely acidic solutions (pH near 0), through a long-term steady increase in SO4/Cl ratios in the vigorously evaporating crater lake of Poás volcano. We now know that acidic gases flush through hyper-acidic crater lake brines, but we don't know to which extend (completely or partially?), and with which speed. The chemical composition hence only reflects a transient phase of the gas flushing through the lake. In terms of volcanic surveillance this brings the advantage that the monitoring time window is definitely shorter than defined by the water chemistry, but yet, we do not know how much shorter. Empirical experiments by Capaccioni et al. (in press) have tried to tackle this kinetic problem for HCl degassing from a "lab-lake" on the short-term (2 days). With this state of the art in mind, two new monitoring strategies can be proposed to seek for precursory signals of phreatic eruptions from crater lakes: (1) Tracking variations in gas compositions, fluxes and ratios between species in evaporative degassing plumes can be useful as monitoring tool on the short-term, but only if the underlying process of gas flushing through acidic lakes is better understood, and linked with the lake water chemistry; (2) The second method forgets about chemical kinetics, degassing models and dynamics of phreatic eruptions, and sticks to the classical principle in geology of "the past is the key for the future". How did lake chemistry parameters vary during the various stages of unrest and eruption, on a purely mathematical basis? Can we recognise patterns in the numerical values related to the changes in volcanic activity? Water chemistry only as a monitoring tool for extremely dynamic and erupting crater lake systems, is inefficient in revealing short-term precursors for single phreatic eruptions, within the current perspective of the residence time dependent monitoring time window. The monitoring rules established since decades based only on water chemistry have thus somehow become obsolete and need revision.
Health-care process improvement decisions: a systems perspective.
Walley, Paul; Silvester, Kate; Mountford, Shaun
2006-01-01
The paper seeks to investigate decision-making processes within hospital improvement activity, to understand how performance measurement systems influence decisions and potentially lead to unsuccessful or unsustainable process changes. A longitudinal study over a 33-month period investigates key events, decisions and outcomes at one medium-sized hospital in the UK. Process improvement events are monitored using process control methods and by direct observation. The authors took a systems perspective of the health-care processes, ensuring that the impacts of decisions across the health-care supply chain were appropriately interpreted. The research uncovers the ways in which measurement systems disguise failed decisions and encourage managers to take a low-risk approach of "symptomatic relief" when trying to improve performance metrics. This prevents many managers from trying higher risk, sustainable process improvement changes. The behaviour of the health-care system is not understood by many managers and this leads to poor analysis of problem situations. Measurement using time-series methodologies, such as statistical process control are vital for a better understanding of the systems impact of changes. Senior managers must also be aware of the behavioural influence of similar performance measurement systems that discourage sustainable improvement. There is a risk that such experiences will tarnish the reputation of performance management as a discipline. Recommends process control measures as a way of creating an organization memory of how decisions affect performance--something that is currently lacking.
Substructures in Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Lehodey, Brigitte Tome
2000-01-01
This dissertation presents two methods for the detection of substructures in clusters of galaxies and the results of their application to a group of four clusters. In chapters 2 and 3, we remember the main properties of clusters of galaxies and give the definition of substructures. We also try to show why the study of substructures in clusters of galaxies is so important for Cosmology. Chapters 4 and 5 describe these two methods, the first one, the adaptive Kernel, is applied to the study of the spatial and kinematical distribution of the cluster galaxies. The second one, the MVM (Multiscale Vision Model), is applied to analyse the cluster diffuse X-ray emission, i.e., the intracluster gas distribution. At the end of these two chapters, we also present the results of the application of these methods to our sample of clusters. In chapter 6, we draw the conclusions from the comparison of the results we obtain with each method. In the last chapter, we present the main conclusions of this work trying to point out possible developments. We close with two appendices in which we detail some questions raised in this work not directly linked to the problem of substructures detection.
Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu
2018-02-01
Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liquid oil production from shale gas condensate reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, James J.
A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... means hydrocarbon (petroleum) liquid with an initial producing gas-to-oil ratio (GOR) less than 0.31... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody...
Code of Federal Regulations, 2013 CFR
2013-07-01
... means hydrocarbon (petroleum) liquid with an initial producing gas-to-oil ratio (GOR) less than 0.31... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody...
30 CFR 1206.158 - Processing allowances-general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... processing plant relationship. Natural gas liquids (NGL's) shall be considered as one product. (c)(1) Except... INTERIOR Natural Resources Revenue PRODUCT VALUATION Federal Gas § 1206.158 Processing allowances—general. (a) Where the value of gas is determined pursuant to § 1206.153 of this subpart, a deduction shall be...
NASA Astrophysics Data System (ADS)
Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Ramadhan, I. T.
2017-02-01
The main problem is the process of natural gas storage and distribution, because in normal conditions of natural gas in the gas phase causes the storage capacity be small and efficient to use. The technology is commonly used Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG). The weakness of this technology safety level is low because the requirement for high-pressure CNG (250 bar) and LNG requires a low temperature (-161°C). It takes innovation in the storage of natural gas using the technology ANG (Adsorbed Natural Gas) with activated carbon as an adsorbent, causing natural gas can be stored in a low pressure of about 34.5. In this research, preparation of activated carbon using waste plastic polyethylene terephthalate (PET). PET plastic waste is a good raw material for making activated carbon because of its availability and the price is a lot cheaper. Besides plastic PET has the appropriate characteristics as activated carbon raw material required for the storage of natural gas because the material is hard and has a high carbon content of about 62.5% wt. The process of making activated carbon done is carbonized at a temperature of 400 ° C and physical activation using CO2 gas at a temperature of 975 ° C. The parameters varied in the activation process is the flow rate of carbon dioxide and activation time. The results obtained in the carbonization process yield of 21.47%, while the yield on the activation process by 62%. At the optimum process conditions, the CO2 flow rate of 200 ml/min and the activation time of 240 minutes, the value % burn off amounted to 86.69% and a surface area of 1591.72 m2/g.
Springback Compensation Process for High Strength Steel Automotive Parts
NASA Astrophysics Data System (ADS)
Onhon, M. Fatih
2016-08-01
This paper is about an advanced stamping simulation methodology used in automotive industry to shorten total die manufacturing times in a new vehicle project by means of benefiting leading edge virtual try-out technology.
FTA multi-year research program plan (FY 2009 - FY 2013).
DOT National Transportation Integrated Search
2008-09-01
The Multi-Year Research Program Plan (Program Plan), prepared by the Federal Transit Administrations (FTA) Office of : Research, Demonstration, and Innovation (TRI), is part of FTAs strategic planning process. It provides descriptive : summarie...
77 FR 27798 - Request for Certification of Compliance-Rural Industrialization Loan and Grant Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
... 4279-2) for the following: Applicant/Location: Tri Marine Samoa, Inc. Principal Product/Purpose: The..., which includes building renovations and improvements, repairs and upgrades, construction of a processing...
Benson, J M; Hanson, R L; Royer, R E; Clark, C R; Henderson, R F
1984-04-01
The process gas stream of an experimental pressurized McDowell-Wellman stirred-bed low-Btu coal gasifier, and combustion products of the clean gas were characterized as to their mutagenic properties and chemical composition. Samples of aerosol droplets condensed from the gas were obtained at selected positions along the process stream using a condenser train. Mutagenicity was assessed using the Ames Salmonella mammalian microsome mutagenicity assay (TA98, with and without rat liver S9). All materials required metabolic activation to be mutagenic. Droplets condensed from gas had a specific mutagenicity of 6.7 revertants/microgram (50,000 revertants/liter of raw gas). Methylnaphthalene, phenanthrene, chrysene, and nitrogen-containing compounds were positively identified in a highly mutagenic fraction of raw gas condensate. While gas cleanup by the humidifier-tar trap system and Venturi scrubber led to only a small reduction in specific mutagenicity of the cooled process stream material (4.1 revertants/microgram), a significant overall reduction in mutagenicity was achieved (to 2200 revertants/liter) due to a substantial reduction in the concentration of material in the gas. By the end of gas cleanup, gas condensates had no detectable mutagenic activity. Condensates of combustion product gas, which contained several polycyclic aromatic compounds, had a specific mutagenicity of 1.1 revertants/microgram (4.0 revertants/liter). Results indicate that the process stream material is potentially toxic and that care should be taken to limit exposure of workers to the condensed tars during gasifier maintenance and repair and to the aerosolized tars emitted in fugitive emissions. Health risks to the general population resulting from exposure to gas combustion products are expected to be minimal.
Supercritical crystallization: The RESs-process and the GAS-process
NASA Astrophysics Data System (ADS)
Berends, Edwin M.
1994-09-01
This Doctoral Ph.D. thesis describes the development of two novel crystallization processes utilizing supercritical fluids either as a solvent, the RESS-process, or as an anti-solvent, the GAS-process. In th RESS-process precipitation of the solute is performed by expansion of the solution over a nozzle to produce ultra-fine, monodisperse particles without any solvent inclusions. In the GAS-process a high pressure gas is dissolved into the liquid phase solvent, where it causes a volumetric expansion of this liquid solvent and lowers the equilibrium solubility. Particle size, particle size distribution and other particle characteristics such as their shape, internal structure and the residual amount of solvent in the particles are expected to be influenced by the liquid phase expansion profile.
Elemental sulfur recovery process
Flytzani-Stephanopoulos, M.; Zhicheng Hu.
1993-09-07
An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.
Elemental sulfur recovery process
Flytzani-Stephanopoulos, Maria; Hu, Zhicheng
1993-01-01
An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.
Gas hydrate suspensions formation and transportation research
NASA Astrophysics Data System (ADS)
Gulkov, A. N.; Gulkova, S.; Zemenkov, Yu D.; Lapshin, V. D.
2018-05-01
An experimental unit for studying the formation of gas hydrate suspensions and their transport properties is considered. The scheme of installation and the basic processes, which can be studied, are described. The results of studies of gas hydrates and a gas hydrate suspension’ formation in an adiabatic process in a stream of seawater are given. The adiabatic method of obtaining gas hydrates and forming gas hydrate suspensions is offered to use. Directions for further research are outlined.
NASA Astrophysics Data System (ADS)
Pu, Wanli
The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir simulations also indicate that original rock properties are the dominant factor for the ultimate oil recovery for both primary recovery and gas injection EOR. Because reservoir simulations provide critical inputs for project planning and management, more effort needs to be invested into reservoir modeling and simulation, including building enhanced geologic models, fracture characterization and modeling, and history matching with field data. Gas injection EOR projects are integrated projects, and the viability of a project also depends on different economic conditions.
Kusuma, Victor A.; Li, Zhiwei; Hopkinson, David; ...
2016-10-13
In this study, a particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure noncondensable gas is used to strip CO 2 off the rich solvent stream. The gas pressurized stripping column product, having CO 2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturingmore » CO 2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam stripping process. We also found the amount of membrane required in this process is much less than required for direct CO 2 capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO 2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusuma, Victor A.; Li, Zhiwei; Hopkinson, David
In this study, a particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure noncondensable gas is used to strip CO 2 off the rich solvent stream. The gas pressurized stripping column product, having CO 2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturingmore » CO 2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam stripping process. We also found the amount of membrane required in this process is much less than required for direct CO 2 capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO 2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration.« less
NASA Astrophysics Data System (ADS)
Deviren, Bayram; Kocakaplan, Yusuf; Keskin, Mustafa; Balcılar, Mehmet; Özdemir, Zeynel Abidin; Ersoy, Ersan
2014-09-01
In this study, we analyze the Turkish Lira/US Dollar (TRY/USD), Turkish Lira/Euro (TRY/EUR), Turkish Lira/Japanese Yen (TRY/JPY) and Turkish Lira/Swiss Franc (TRY/CHF) exchange rates in the global financial crisis period to detect the bubbles and crashes in the TRY by using a mathematical methodology developed by Watanabe et al. (2007). The methodology defines the bubbles and crashes in financial market price fluctuations by considering an exponential fitting of the associated data. This methodology is applied to detect the bubbles and crashes in the TRY/USD, TRY/EUR, TRY/JPY and TRY/CHF exchange rates from January, 1, 2005 to December, 20, 2013. In this mathematical methodology, the whole period of bubbles and crashes can be determined purely from past data, and the start of bubbles and crashes can be identified even before its bursts. In this way, the periods of bubbles and crashes in the TRY/USD, TRY/EUR, TRY/JPY and TRY/CHF are determined, and the beginning and end points of these periods are detected. The results show that the crashes in the TRY/CHF exchange rate are commonly finished earlier than in the other exchange rates; hence it is probable that the crashes in the other exchange rates would be finished soon when the crashes in the TRY/CHF exchange rate ended. We also find that the periods of crashes in the TRY/EUR exchange rate take longer time than in the other exchange rates. This information can be used in risk management and/or speculative gain. The crashes' periods in the TRY/EUR and TRY/USD exchange rates are observed to be relatively longer than in the other exchange rates.
Processing Reflexives in a Second Language: The Timing of Structural and Discourse-Level Constraints
ERIC Educational Resources Information Center
Felser, Claudia; Cunnings, Ian
2012-01-01
We report the results from two eye-movement monitoring experiments examining the processing of reflexive pronouns by proficient German-speaking learners of second language (L2) English. Our results show that the nonnative speakers initially tried to link English argument reflexives to a discourse-prominent but structurally inaccessible antecedent,…
Learning Styles in Technical Drawing Courses as Perceived by Students in Egypt and Nigeria
ERIC Educational Resources Information Center
Elbitar, Hamdy M.; Umunadi, Kennedy E.
2011-01-01
Students have unique ways of learning, which may greatly affect the learning process and its outcome. In the process of education, instead of classifying students according to their insufficiency, teachers should try to get to know them and determine their cognitive, sensorial and kinetic characteristics. This study on improving learning style…
A Case of Mimetic Isomorphism: A Short-Cut to Increasing Loyalty to Academia
ERIC Educational Resources Information Center
Orkodashvili, Mariam
2008-01-01
The paper discusses the process of shortening career path to leadership positions in academia that could serve as an example of mimetic isomorphism, where university tries to apply business-like quick result-oriented strategies. This strategy incentivizes young faculty to stay in universities and keep loyalty to academia. This process could also…
ERIC Educational Resources Information Center
Zamboanga, Byron L.; Ham, Lindsay S.; Tomaso, Cara C.; Audley, Shannon; Pole, Nnamdi
2016-01-01
In this article, we describe several role-playing exercises on acculturation and relevant cultural adjustment processes that we incorporated into Tomcho and Foel's classroom activity on acculturation, and we report data that examine subsequent changes in students' responses on pretest and posttest measures shortly after the activity and present…
ERIC Educational Resources Information Center
Helskog, Guro Hansen
2014-01-01
The empirical basis of this article is the reconciliation process in a destructive conflict between students of different cultural and religious backgrounds in upper secondary education in Norway. The Dialogos approach to dialogical philosophizing was tried out through an action research process in order to bring about reconciliation, letting the…
ERIC Educational Resources Information Center
Ikiz, Fatma Ebru; Asici, Esra
2017-01-01
In this study, we handled psychological well-being (PWB) and individual innovativeness (IND-INO) as personality qualities which an effective counselor needs to possess to meet the expectancies of clients in new era. Moreover, we tried to figure out (1) the similarities between counseling process and innovativeness process and (2) the congruency…
Examining the Validity of Self-Reports on Scales Measuring Students' Strategic Processing
ERIC Educational Resources Information Center
Samuelstuen, Marit S.; Braten, Ivar
2007-01-01
Background: Self-report inventories trying to measure strategic processing at a global level have been much used in both basic and applied research. However, the validity of global strategy scores is open to question because such inventories assess strategy perceptions outside the context of specific task performance. Aims: The primary aim was to…
Art Education as Folding and Unfolding of Things
ERIC Educational Resources Information Center
Komatsu, Kayoko
2017-01-01
This paper pays attention to the meaning of things in educational space. Students learn not only from words but also things with which they interact in the learning process. Especially in art education various things such as materials, tools, art works are indispensable. This paper tries to analyze the process of both creation and appreciation of…
Could Students' Evaluation Be a Pleasant and Effective Process?
ERIC Educational Resources Information Center
Kapachtsi, Venetia; Pantelidi, Ioanna; Stamidou, Markia
2016-01-01
The evaluation of students' performance is one of the most important issues of educational reality. ?t strongly attracts the interest of all involved in the process of education: teachers, students, parents and the state as well. This study, is trying to find out, if using the project method, the teacher can assess effectively students, in a…
Awakening: The Lived Experience of Creativity as Told by Eight Young Creators
ERIC Educational Resources Information Center
Champa, Martha Marie
2016-01-01
Creativity is an aspect of the human condition that eludes a common definition, description, and experience. When trying to make sense of creativity, some describe creative behavior while others describe creative products. There are those who are curious about the process of creativity and others who want to understand what inspires that process.…
Heat and Mass Transfer Processes in Scrubber of Flue Gas Heat Recovery Device
NASA Astrophysics Data System (ADS)
Veidenbergs, Ivars; Blumberga, Dagnija; Vigants, Edgars; Kozuhars, Grigorijs
2010-01-01
The paper deals with the heat and mass transfer process research in a flue gas heat recovery device, where complicated cooling, evaporation and condensation processes are taking place simultaneously. The analogy between heat and mass transfer is used during the process of analysis. In order to prepare a detailed process analysis based on heat and mass process descriptive equations, as well as the correlation for wet gas parameter calculation, software in the
Using "Blueprint Photography by the Cyanotype Process"
NASA Astrophysics Data System (ADS)
Editorial Staff, Jce
2008-05-01
Do you want to try the cyanotype process with your students? That's easy to do! Start with JCE Classroom Activity #19, "Blueprint Photography by the Cyanotype Process", by Glen D. Lawrence and Stuart Fishelson ( JCE , 1999 , 76 , 1216A-1216B ). In this ready-to-use activity, students create their own cyanotype paper and use it to make blueprint photographs in the sunlight. It's a great way to connect chemistry with art.
40 CFR 63.640 - Applicability and designation of affected source.
Code of Federal Regulations, 2014 CFR
2014-07-01
... reformer catalyst regeneration vents, and sulfur plant vents; and (5) Emission points routed to a fuel gas... required for refinery fuel gas systems or emission points routed to refinery fuel gas systems. (e) The... petroleum refining process unit that is subject to this subpart; (3) Units processing natural gas liquids...
40 CFR 63.640 - Applicability and designation of affected source.
Code of Federal Regulations, 2013 CFR
2013-07-01
... reformer catalyst regeneration vents, and sulfur plant vents; and (5) Emission points routed to a fuel gas... required for refinery fuel gas systems or emission points routed to refinery fuel gas systems. (e) The... petroleum refining process unit that is subject to this subpart; (3) Units processing natural gas liquids...
Alternative Fuels Data Center: Propane Production and Distribution
produced from liquid components recovered during natural gas processing. These components include ethane & Incentives Propane Production and Distribution Propane is a by-product of natural gas processing distribution showing propane originating from three sources: 1) gas well and gas plant, 2) oil well and
Code of Federal Regulations, 2011 CFR
2011-07-01
... feedstock gas entering the natural gas processing plant. In light liquid service means that the piece of equipment contains a liquid that meets the conditions specified in § 60.485(e) or § 60.633(h)(2). In wet gas... the process. Natural gas liquids means the hydrocarbons, such as ethane, propane, butane, and pentane...
Code of Federal Regulations, 2010 CFR
2010-07-01
... feedstock gas entering the natural gas processing plant. In light liquid service means that the piece of equipment contains a liquid that meets the conditions specified in § 60.485(e) or § 60.633(h)(2). In wet gas... the process. Natural gas liquids means the hydrocarbons, such as ethane, propane, butane, and pentane...
Code of Federal Regulations, 2012 CFR
2012-07-01
... feedstock gas entering the natural gas processing plant. In light liquid service means that the piece of equipment contains a liquid that meets the conditions specified in § 60.485(e) or § 60.633(h)(2). In wet gas... the process. Natural gas liquids means the hydrocarbons, such as ethane, propane, butane, and pentane...
Turboexpander plant designs can provide high ethane recovery without inlet CO/sub 2/ removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkinson, J.D.; Hudson, H.M.
1982-05-03
New turboexpander plant designs can process natural gas streams containing moderate amounts of carbon dioxide (CO/sub 2/) for high ethane recovery without inlet gas treating. The designs will handle a wide range of inlet ethane-plus fractions. They also offer reduced horsepower requirements compared to other processes. CO/sub 2/ is a typical component of most natural gas streams. In many cases, processing of these gas streams in a turboexpander plant for high ethane recovery requires pre-treatment of the gas for CO/sub 2/ removal. This is required to avoid the formation of solid CO/sub 2/ (freezing) in the cold sections of themore » process and/or to meet necessary residue gas and liquid product CO/sub 2/ specifications. Depending on the quantities involved, the CO/sub 2/ removal systems is generally a significant portion of both the installed cost and operating cost for the ethane recovery facility. Therefore, turboexpander plant designs that are capable of handling increased quantities of CO/sub 2/ in the feed gas without freezing can offer the gas processor substantial economic benefits.« less
Optimization of Biomass Gasification Process for F-T Bio-Diesel Synthesys
NASA Astrophysics Data System (ADS)
Song, Jae Hun; Sung, Yeon Kyung; Yu, Tae U.; Choi, Young Tae; Lee, Uen Do
The characteristics of biomass steam gasification were investigated to make an optimum syngas for Fischer Tropsch (F-T) synthesis of bio-diesel. Korean pine wood chip was used as a fuel and the experiment was conducted in a lab scale bubbling fluidized bed (0.1m LD. x 3.Omheight). Gas composition was evaluated by changing operating parameters such as gasifier temperature, and steam to fuel ratio. Major syngas was monitored by on-line gas analyzer (ND-IR spectroscopy) and gas chromatography (GC). As the temperature of gasifier increases hydrogen in the syngas increases while CO in the product gas decreases. The low concentration of sulfur compound and nitrogen in the product gas shows the potential advantages in the purification process of the syngas for F-T process. Optimum operating condition of the gasifier was found concerning the following gas cleaning and F-T process; H2-CO ratio and total gas yield increase while decreasing methane and CO2 concentrations in the syngas.
Microporous polymer films and methods of their production
Aubert, James H.
1995-01-01
A process for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquified gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-01
The objective of this proposed program is to evaluate the potential of rotating gas-liquid contactors for natural gas processing by expanding the currently available database. This expansion will focus on application of this technology to environments representative of those typically encountered in natural gas processing plants. Operational and reliability concerns will be addressed while generating pertinent engineering data relating to the mass-transfer process. Work to be performed this reporting period are: complete all negotiations and processing of agreements; complete assembly, modifications, shakedown, and conduct fluid dynamic studies using the plastic rotary contactor unit; confirmation of project test matrix; and locate,more » and transport an amine plant and dehydration plant. Accomplishment for this period are presented.« less
How well does CO emission measure the H2 mass of MCs?
NASA Astrophysics Data System (ADS)
Szűcs, László; Glover, Simon C. O.; Klessen, Ralf S.
2016-07-01
We present numerical simulations of molecular clouds (MCs) with self-consistent CO gas-phase and isotope chemistry in various environments. The simulations are post-processed with a line radiative transfer code to obtain 12CO and 13CO emission maps for the J = 1 → 0 rotational transition. The emission maps are analysed with commonly used observational methods, I.e. the 13CO column density measurement, the virial mass estimate and the so-called XCO (also CO-to-H2) conversion factor, and then the inferred quantities (I.e. mass and column density) are compared to the physical values. We generally find that most methods examined here recover the CO-emitting H2 gas mass of MCs within a factor of 2 uncertainty if the metallicity is not too low. The exception is the 13CO column density method. It is affected by chemical and optical depth issues, and it measures both the true H2 column density distribution and the molecular mass poorly. The virial mass estimate seems to work the best in the considered metallicity and radiation field strength range, even when the overall virial parameter of the cloud is above the equilibrium value. This is explained by a systematically lower virial parameter (I.e. closer to equilibrium) in the CO-emitting regions; in CO emission, clouds might seem (sub-)virial, even when, in fact, they are expanding or being dispersed. A single CO-to-H2 conversion factor appears to be a robust choice over relatively wide ranges of cloud conditions, unless the metallicity is low. The methods which try to take the metallicity dependence of the conversion factor into account tend to systematically overestimate the true cloud masses.
Chromite Ore from the Transvaal Region of South Africa
In 2001, EPA finalized a rule to to delete both chromite ore mined in the Transvaal Region of South Africa and the unreacted ore component of the chromite ore processing residue (COPR) from TRI reporting requirements.
Research on Splicing Method of Digital Relic Fragment Model
NASA Astrophysics Data System (ADS)
Yan, X.; Hu, Y.; Hou, M.
2018-04-01
In the course of archaeological excavation, a large number of pieces of cultural relics were unearthed, and the restoration of these fragments was done manually by traditional arts and crafts experts. In this process, cultural relics experts often try to splice the existing cultural relics, and then use adhesive to stick together the fragments of correct location, which will cause irreversible secondary damage to cultural relics. In order to minimize such damage, the surveyors combine 3D laser scanning with computer technology, and use the method of establishing digital cultural relics fragments model to make virtual splicing of cultural relics. The 3D software on the common market can basically achieve the model translation and rotation, using this two functions can be achieved manually splicing between models, mosaic records after the completion of the specific location of each piece of fragments, so as to effectively reduce the damage to the relics had tried splicing process.
[New perspectives of mourning].
Csikós, Ágnes; Menyhért, Mónika; Radványi, Ildikó; Busa, Csilla
2015-09-27
Grief is a natural part of life and it is always individual. Researchers have tried and still try to develop different theories to interpret, explain, and approach this particular phenomenon. The aim of the authors was to review the theoretical literature of mourning and to present new bereavement theories for domestic professionals. From the first half of the 20th century until presently mourning theories have undergone significant changes. Today the determinant models includes the flexible, coping-oriented dual process model, meaning reconstruction model which focuses on the meaning making, and the model which focuses on the development after the loss. The authors conclude that experts, who work in the clinical area should know the prevailing theories of grief, because they encounter often with loss at work. The presented models may contribute to more efficient work, to better understanding of the mourning process and to a better support of families.
Li, Dongchan; Guo, Yafei; Deng, Tianlong; Chen, Yu-Wei; Belzile, Nelson
2014-01-01
The extractive separation of tellurium (IV) from hydrochloric acid media with tri-n-butyl phosphate (TBP) in kerosene was investigated. The dependence on the extraction of tellurium species, concentrations of tellurium and TBP, extraction time and stage, organic/aqueous ratio, and interferences from coexist metallic ions were examined and are discussed. Besides, the stripping agent and stripping time were also studied. It was found that the extraction reaction corresponds to the neutral complex formation mechanism and the extracted species is TeCl4 · 3TBP and that the extraction process is exothermic. The thermodynamic parameters of enthalpy (ΔH), entropy (ΔS), and free energy (ΔG) of the extraction process were evaluated at -26.2 kJ · mol(-1), -65.6 J · mol(-1) · K(-1), and -7.0 kJ · mol(-1), respectively at 293 K.
Li, Dongchan; Guo, Yafei; Deng, Tianlong; Chen, Yu-Wei
2014-01-01
The extractive separation of tellurium (IV) from hydrochloric acid media with tri-n-butyl phosphate (TBP) in kerosene was investigated. The dependence on the extraction of tellurium species, concentrations of tellurium and TBP, extraction time and stage, organic/aqueous ratio, and interferences from coexist metallic ions were examined and are discussed. Besides, the stripping agent and stripping time were also studied. It was found that the extraction reaction corresponds to the neutral complex formation mechanism and the extracted species is TeCl4 ·3TBP and that the extraction process is exothermic. The thermodynamic parameters of enthalpy (ΔH), entropy (ΔS), and free energy (ΔG) of the extraction process were evaluated at −26.2 kJ·mol−1, −65.6 J·mol−1 ·K−1, and −7.0 kJ·mol−1, respectively at 293 K. PMID:24757422
Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas
Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C
2014-10-07
The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.
Turbine Fuels from Tar Sands Bitumen and Heavy Oil. Phase I. Preliminary Process Analysis.
1985-04-09
OIL RESERVOIRS OF THE UNITED STATES Resource: Oil -in-Place State Field Name (County) (Million Bbls.) Arkansas Smackover Old (Union) 1,6U0 California...Flow Schematic for Gas Oil Feed Hydrotreater 94 14 Summary of Case Studies for Processing Bitumen from New Mexico 95 15 Summary of Case Studies for...Naphtha Hydrotreating Process Estimates 112 14 Gas Oil Hydrocracking Process Estimates 113 l! Gas Oil Hydrotreating Process Estimate 114 16 Fluid
Status and perspectives for the electron beam technology for flue gases treatment
NASA Astrophysics Data System (ADS)
Frank, Norman W.
The electron-beam process is one of the most effective methods of removing SO 2 and NO x from industrial flue gases. This flue gas treatment consists of adding a small amount of ammonia to the flue gas and irradiating the gas by means of an electron beam, thereby causing reactions which convert the SO 2 and NO x to ammonium sulfate and ammonium sulfate-nitrate. These salts may the be collected from the flue gas by means of such conventional collectors as an electrostatic precipitator or baghouse. This process has numerous advantages over currently-used conventional processes as follows: (1) the process simultaneously removes SO 2 and NO x from flue gas at high efficiency levels; (2) it is a dry process which is easily controlled and has excellent load-following capability; (3) stack-gas reheat is not required; (4) the pollutants are converted into a saleable agricultural fertilizer; (5) the process has low capital and operating cost requirements. The history of the process is shown with a summary of the work that is presently underway. All of the current work is for the purpose of fine tuning the process for commercial usage. It is believed that with current testing and improvements, the process will be very competitive with existing processes and it will find its place in an environmental conscious world.
New radiocarbon measurement methods in the Hertelendi Laboratory, Hungary
NASA Astrophysics Data System (ADS)
Janovics, Róbert; Major, István; Rinyu, László; Veres, Mihály; Molnár, Mihály
2013-04-01
In this paper we present two very different and novel methods for C-14 measurement from dissolved inorganic carbonate (DIC) of water samples. A new LSC sample preparation method for liquid scintillation C-14 measurements was implemented in the ATOMKI. The first method uses direct absorption into a special absorbent (Carbosorb E®) and a following liquid scintillation measurement. Typical sample size is 20-40 litre of water. The developed CO2 absorption method is fast, and simple. The C-14 activities is measured by an ultra low background LSC (TRI-CARB 3170 TR/SL, Perkin Elmer) including quenching parameter (tSIE).The corresponding limit of C-14 dating is 31200 year. Several tests were executed with old borehole CO2 gas without significant content of C-14 and also performed on samples of known C-14 activities between 29 and 7000 pMC, previously measured by GPC. The combined uncertainty of the described determination is about 2 % in the case of recent carbon. It is a very cost-effective and easy to use method based on a novel and simple static absorption process for the CO2 extracted from groundwater. The other very sensitive method is based on accelerator mass spectrometry (AMS) using gas ion source. This method does not require graphite generation and a small volume of water sample (1-20mL) is enough for the radiocarbon measurement. The procedure is very similar to pre-treatment of carbonate contained sample preparation for stable isotope measurement with gasbench technique. We applied a MICADAS type accelerator mass spectrometry (AMS) with gas ion source for C-14 analysis. The radiocarbon content of water was sat free with phosphoric acid and then the headspace gas was rinsed vials. The whole measurement needs only 20 min of each sample. The precision of measurement is better than 1% for modern samples. The preparation is vastly reduced compared to the other AMS methods and principally allows fully automated measurements of groundwater samples with an auto-sampler. The presented two new methods can be suitable for C-14 measurements and dating of hydrological, and environmental samples as well. The new AMS facility in ATOMKI (Debrecen, Hungary) using an EnvironMICADAS AMS system with gas ion source has a great potential in groundwater C-14 analyses. The research was supported by the by TÁMOP-4.2.2.A-11/1/KONV and the Hungarian NSF (OTKA MB08-A 81515)
Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.
2003-06-03
A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R.; Torczynski, John R.; Brady, Patrick V.; Gallis, Michail; Brooks, Carlton F.
2014-06-17
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F
2013-09-17
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F
2013-11-19
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Study of the coupling between real gas effects and rarefied effects on hypersonic aerodynamics
NASA Astrophysics Data System (ADS)
Chen, Song; Hu, Yuan; Sun, Quanhua
2012-11-01
Hypersonic vehicles travel across the atmosphere at very high speed, and the surrounding gas experiences complicated physical and chemical processes. These processes produce real gas effects at high temperature and rarefied gas effects at high altitude where the two effects are coupled through molecular collisions. In this study, we aim to identify the individual real gas and rarefied gas effects by simulating hypersonic flow over a 2D cylinder, a sphere and a blunted cone using a continuum-based CFD approach and the direct simulation Monte Carlo method. It is found that physical processes such as vibrational excitation and chemical reaction will reduce significantly the shock stand-off distance and flow temperature for flows having small Knudsen number. The calculated skin friction and surface heat flux will decrease when the real gas effects are considered in simulations. The trend, however, gets weakened as the Knudsen number increases. It is concluded that the rarefied gas effects weaken the real gas effects on hypersonic flows.
Treatment of gas from an in situ conversion process
Diaz, Zaida [Katy, TX; Del Paggio, Alan Anthony [Spring, TX; Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX
2011-12-06
A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.
Finite Element Modeling and Analysis of Powder Stream in Low Pressure Cold Spray Process
NASA Astrophysics Data System (ADS)
Goyal, Tarun; Walia, Ravinderjit Singh; Sharma, Prince; Sidhu, Tejinder Singh
2016-07-01
Low pressure cold gas dynamic spray (LPCGDS) is a coating process that utilize low pressure gas (5-10 bars instead of 25-30 bars) and the radial injection of powder instead of axial injection with the particle range (1-50 μm). In the LPCGDS process, pressurized compressed gas is accelerated to the critical velocity, which depends on length of the divergent section of nozzle, the propellant gas and particle characteristics, and the diameters ratio of the inlet and outer diameters. This paper presents finite element modeling (FEM) of powder stream in supersonic nozzle wherein adiabatic gas flow and expansion of gas occurs in uniform manner and the same is used to evaluate the resultant temperature and velocity contours during coating process. FEM analyses were performed using commercial finite volume package, ANSYS CFD FLUENT. The results are helpful to predict the characteristics of powder stream at the exit of the supersonic nozzle.
Spurrier, Francis R.; Pierce, Bill L.; Wright, Maynard K.
1986-01-01
A plate for a fuel cell has an arrangement of ribs defining an improved configuration of process gas channels and slots on a surface of the plate which provide a modified serpentine gas flow pattern across the plate surface. The channels are generally linear and arranged parallel to one another while the spaced slots allow cross channel flow of process gas in a staggered fashion which creates a plurality of generally mini-serpentine flow paths extending transverse to the longitudinal gas flow along the channels. Adjacent pairs of the channels are interconnected to one another in flow communication. Also, a bipolar plate has the aforementioned process gas channel configuration on one surface and another configuration on the opposite surface. In the other configuration, there are not slots and the gas flow channels have a generally serpentine configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruffey, S. H.; Spencer, B. B.; Strachan, D. M.
Four radionuclides have been identified as being sufficiently volatile in the reprocessing of nuclear fuel that their gaseous release needs to be controlled to meet regulatory requirements (Jubin et al. 2011, 2012). These radionuclides are 3H, 14C, 85Kr, and 129I. Of these, 129I has the longest half-life and potentially high biological impact. Accordingly, control of the release of 129I is most critical with respect to the regulations for the release of radioactive material in stack emissions. It is estimated that current EPA regulations (EPA 2010) would require any reprocessing plant in the United States to limit 129I release to lessmore » than 0.05 Ci/MTIHM for a typical fuel burnup of 55 gigawatt days per metric tonne (GWd/t) (Jubin 2011). The study of inorganic iodide in off-gas systems has been almost exclusively limited to I2 and the focus of organic iodide studies has been CH3I. In this document, we provide the results of an examination of publically available literature that is relevant to the presence and sources of both inorganic and organic iodine-bearing species in reprocessing plants. We especially focus on those that have the potential to be poorly sequestered with traditional capture methodologies. Based on the results of the literature survey and some limited thermodynamic modeling, the inorganic iodine species hypoiodous acid (HOI) and iodine monochloride (ICl) were identified as potentially low-sorbing iodine species that could present in off-gas systems. Organic species of interest included both short chain alkyl iodides such as methyl iodide (CH3I) and longer alkyl iodides up to iodododecane (C10H21I). It was found that fuel dissolution may provide conditions conducive to HOI formation and has been shown to result in volatile long-chain alkyl iodides, though these may not volatilize until later in the reprocessing sequence. Solvent extraction processes were found to be significant sources of various organic iodine-bearing species; formation of these was facilitated by the presence of radiolytic decomposition products resulting from radiolysis of tri-n-butyl phosphate and dodecane. Primarily inorganic iodine compounds were expected from waste management processes, including chlorinated species such as ICl. Critical knowledge gaps that must still be addressed include confirmation of the existence and quantification of low-sorbing species in the off-gas of reprocessing facilities. The contributions from penetrating forms of iodine to the plant DF are largely unknown and highly dependent on the magnitude of their presence. These species are likely to be more difficult to remove and it is likely that their sequestration could be improved through the use of different sorbents, through design modifications of the off-gas capture system, or through chemical conversion prior to iodine abatement that would produce more easily captured forms.« less
2013-01-01
The coal permeability is an important parameter in mine methane control and coal bed methane (CBM) exploitation, which determines the practicability of methane extraction. Permeability prediction in deep coal seam plays a significant role in evaluating the practicability of CBM exploitation. The coal permeability depends on the coal fractures controlled by strata stress, gas pressure, and strata temperature which change with depth. The effect of the strata stress, gas pressure, and strata temperature on the coal (the coal matrix and fracture) under triaxial stress and strain conditions was studied. Then we got the change of coal porosity with strata stress, gas pressure, and strata temperature and established a coal permeability model under tri-axial stress and strain conditions. The permeability of the No. 3 coal seam of the Southern Qinshui Basin in China was predicted, which is consistent with that tested in the field. The effect of the sorption swelling on porosity (permeability) firstly increases rapidly and then slowly with the increase of depth. However, the effect of thermal expansion and effective stress compression on porosity (permeability) increases linearly with the increase of depth. The most effective way to improve the permeability in exploiting CBM or extracting methane is to reduce the effective stress. PMID:24396293
Coal Liquids: Manufacture and Properties. A Review.
1982-09-01
a conventional furnace with flue gas desulfurization ; however, its use as a boiler fuel is not economical at present. Research continues on...J.B., "The Shell Flue Gas Desulfurization Process," Universal Oil Products Process Division, Universal Oil Products, Inc., Des Plaines, IL, presented...in 1980, H-Coal and EDS process, gasification obstacles. 187. Salmeczi, J.G., " Flue Gas Desulfurization by the ThiosorbicC Process," Dravo Time Company
Sung, Jaeyoung
2007-07-01
We present an exact theoretical test of Jarzynski's equality (JE) for reversible volume-switching processes of an ideal gas system. The exact analysis shows that the prediction of JE for the free energy difference is the same as the work done on the gas system during the reversible process that is dependent on the shape of path of the reversible volume-switching process.
Study of Hydrogen Production Method using Latent Heat of Liquefied Natural Gas
NASA Astrophysics Data System (ADS)
Ogawa, Masaru; Seki, Tatsuyoshi; Honda, Hiroshi; Nakamura, Motomu; Takatani, Yoshiaki
In recent years, Fuel Cell Electrical Vehicle is expected to improve urban environment. Particularly a hydrogen fuel type FCEV expected for urban use, because its excellent characters such as short startup time, high responsibility and zero emission. On the other hand, as far as hydrogen production is concerned, large amount of CO2 is exhausted into the atmosphere by the process of LNG reforming. In our research, we studied the utilization of LNG latent heat for hydrogen gas production process as well as liquefied hydrogen process. Furthermore, CO2---Capturing as liquid state or solid state from hydrogen gas production process by LNG is also studied. Results of research shows that LNG latent heat is very effect to cool hydrogen gas for conventional hydrogen liquefied process. However, the LNG latent heat is not available for LNG reforming process. If we want to use LNG latent heat for this process, we have to develop new hydrogen gas produce process. In this new method, both hydrogen and CO2 is cooled by LNG directly, and CO2 is removed from the reforming gas. In order to make this method practical, we should develop a new type heat-exchanger to prevent solid CO2 from interfering the performance of it.
NASA Technical Reports Server (NTRS)
Margolis, Stephen B.
1997-01-01
The burning of liquid propellants is a fundamental combustion problem that is applicable to various types of propulsion and energetic systems. The deflagration process is often rather complex, with vaporization and pyrolysis occurring at the liquid/gas interface and distributed combustion occurring either in the gas phase or in a spray. Nonetheless, there are realistic limiting cases in which combustion may be approximated by an overall reaction at the liquid/gas interface. In one such limit, the gas flame occurs under near-breakaway conditions, exerting little thermal or hydrodynamic influence on the burning propellant. In another such limit, distributed combustion occurs in an intrusive regime, the reaction zone lying closer to the liquid/gas interface than the length scale of any disturbance of interest. Finally, the liquid propellant may simply undergo exothermic decomposition at the surface without any significant distributed combustion, such as appears to occur in some types of HydroxylAmmonium Nitrate (HAN)-based liquid propellants at low pressures. Such limiting models have recently been formulated,thereby significantly generalizing earlier classical models that were originally introduced to study the hydrodynamic stability of a reactive liquid/gas interface. In all of these investigations, gravity appears explicitly and plays a significant role, along with surface tension, viscosity, and, in the more recent models, certain reaction-rate parameters associated with the pressure and temperature sensitivities of the reaction itself. In particular, these parameters determine the stability of the deflagration with respect to not only classical hydrodynamic disturbances, but also with respect to reactive/diffusive influences as well. Indeed, the inverse Froude number, representing the ratio of buoyant to inertial forces, appears explicitly in all of these models, and consequently, in the dispersion relation that determines the neutral stability boundaries beyond which steady, planar burning is unstable to nonsteady, and/or nonplanar (cellular) modes of burning. These instabilities thus lead to a number of interesting phenomena, such as the sloshing type of waves that have been observed in mixtures of HAN and TriEthanolAmmonium Nitrate (TEAN) with water. Although the Froude number was treated as an O(1) quantity in these studies, the limit of small inverse Froude number corresponding to the microgravity regime is increasingly of interest and can be treated explicitly, leading to various limiting forms of the models, the neutral stability boundaries, and, ultimately, the evolution equations that govern the nonlinear dynamics of the propagating reaction front. In the present work, we formally exploit this limiting parameter regime to compare some of the features of hydrodynamic instability of liquid-propellant combustion at reduced gravity with the same phenomenon at normal gravity.
Morrow, Thomas B [San Antonio, TX; Kelner, Eric [San Antonio, TX; Owen, Thomas E [Helotes, TX
2008-07-08
A gas energy meter that acquires the data and performs the processing for an inferential determination of one or more gas properties, such as heating value, molecular weight, or density. The meter has a sensor module that acquires temperature, pressure, CO2, and speed of sound data. Data is acquired at two different states of the gas, which eliminates the need to determine the concentration of nitrogen in the gas. A processing module receives this data and uses it to perform a "two-state" inferential algorithm.
Carbon dioxide removal process
Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.
2003-11-18
A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the pre-filing review of any pipeline or other natural gas facilities, including facilities not... from the subject LNG terminal facilities to the existing natural gas pipeline infrastructure. (b) Other... and review process for LNG terminal facilities and other natural gas facilities prior to filing of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-07
... to as natural gas liquids or NGLs. Interstate pipelines have a limit on how much NGLs natural gas can... gas processing plant to remove those liquids before it can be transported on interstate pipelines... Gas Transmission, and Trailblazer pipelines, as well as associated processing and storage capacity. On...
Turboexpanders with pressurized magnetic bearings for off-shore applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agahi, R.R.; Ershaghi, B.; Baudelocque, L.
1995-12-31
There are two primary parameters that encourage the use of magnetic bearings in turbomachinery: oil-free process and space requirements. For cryogenic processes such as hydrogen purification and ethylene plants, oil free process is the primary objective. In the case of off-shore platforms for oil and gas production, the occupied space and weight are of prime concern. In off-shore operations, the process gas density is usually higher than in normal process plants because the gas is untreated and at high pressure. High density process gas generates more windage loss and may also cause excessive radial load to journal bearings. The bearingmore » assembly design should be suitable for sour gas environments as well. Furthermore, the thrust bearing system should withstand process fluctuations which are more severe due to high pressure. In this paper, the authors explain their experience of designing a turboexpander-compressor with magnetic bearings for an off-shore oil production platform. They will present side load analysis and their solutions for heat dissipation and coping with process fluctuations.« less
Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process.
Esfandiari, Nadia; Ghoreishi, Seyyed M
2015-12-01
The micronization of ampicillin via supercritical gas antisolvent (GAS) process was studied. The particle size distribution was significantly controlled with effective GAS variables such as initial solute concentration, temperature, pressure, and antisolvent addition rate. The effect of each variable in three levels was investigated. The precipitated particles were analyzed with scanning electron microscopy (SEM) and Zetasizer Nano ZS. The results indicated that decreasing the temperature and initial solute concentration while increasing the antisolvent rate and pressure led to a decrease in ampicillin particle size. The mean particle size of ampicillin was obtained in the range of 220-430 nm by varying the GAS effective variables. The purity of GAS-synthesized ampicillin nanoparticles was analyzed in contrast to unprocessed ampicillin by FTIR and HPLC. The results indicated that the structure of the ampicillin nanoparticles remained unchanged during the GAS process.
Application of Risk-Based Inspection method for gas compressor station
NASA Astrophysics Data System (ADS)
Zhang, Meng; Liang, Wei; Qiu, Zeyang; Lin, Yang
2017-05-01
According to the complex process and lots of equipment, there are risks in gas compressor station. At present, research on integrity management of gas compressor station is insufficient. In this paper, the basic principle of Risk Based Inspection (RBI) and the RBI methodology are studied; the process of RBI in the gas compressor station is developed. The corrosion loop and logistics loop of the gas compressor station are determined through the study of corrosion mechanism and process of the gas compressor station. The probability of failure is calculated by using the modified coefficient, and the consequence of failure is calculated by the quantitative method. In particular, we addressed the application of a RBI methodology in a gas compressor station. The risk ranking is helpful to find the best preventive plan for inspection in the case study.
Closed-loop system for growth of aquatic biomass and gasification thereof
Oyler, James R.
2017-09-19
Processes, systems, and methods for producing combustible gas from wet biomass are provided. In one aspect, for example, a process for generating a combustible gas from a wet biomass in a closed system is provided. Such a process may include growing a wet biomass in a growth chamber, moving at least a portion of the wet biomass to a reactor, heating the portion of the wet biomass under high pressure in the reactor to gasify the wet biomass into a total gas component, separating the gasified component into a liquid component, a non-combustible gas component, and a combustible gas component, and introducing the liquid component and non-combustible gas component containing carbon dioxide into the growth chamber to stimulate new wet biomass growth.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-17
... natural gas 7/22/1998 6/17/1998 Repeal and readoption disapproval. processing, as Section treating, or 116... for Changes at Certain Natural Gas Processing, Treating, or Compression Facilities 1. What is the... the following grounds: This definition exempts changes at certain natural gas processing, treating, or...
The architecture of the spliceosomal U4/U6.U5 tri-snRNP
Nguyen, Thi Hoang Duong; Galej, Wojciech P.; Bai, Xiao-chen; Savva, Christos G.; Newman, Andrew J.; Scheres, Sjors H. W.; Nagai, Kiyoshi
2015-01-01
U4/U6.U5 tri-snRNP is a 1.5 MDa pre-assembled spliceosomal complex comprising U5 snRNA, extensively base-paired U4/U6 snRNAs and >30 proteins, including the key components Prp8, Brr2 and Snu114. The tri-snRNP combines with a pre-mRNA substrate bound to U1 and U2 snRNPs and transforms into a catalytically active spliceosome following extensive compositional and conformational changes triggered by unwinding of the U4/U6 snRNAs. CryoEM single-particle reconstruction of yeast tri-snRNP at 5.9Å resolution reveals the essentially complete organization of its RNA and protein components. The single-stranded region of U4 snRNA between its 3′-stem-loop and the U4/U6 snRNA stem I is loaded into the Brr2 helicase active site ready for unwinding. Snu114 and the N-terminal domain of Prp8 position U5 snRNA to insert its Loop I, which aligns the exons for splicing, into the Prp8 active site cavity. The structure provides crucial insights into the activation process and the active site of the spliceosome. PMID:26106855
Chaperonin TRiC/CCT Modulates the Folding and Activity of Leukemogenic Fusion Oncoprotein AML1-ETO.
Roh, Soung-Hun; Kasembeli, Moses; Galaz-Montoya, Jesús G; Trnka, Mike; Lau, Wilson Chun-Yu; Burlingame, Alma; Chiu, Wah; Tweardy, David J
2016-02-26
AML1-ETO is the most common fusion oncoprotein causing acute myeloid leukemia (AML), a disease with a 5-year survival rate of only 24%. AML1-ETO functions as a rogue transcription factor, altering the expression of genes critical for myeloid cell development and differentiation. Currently, there are no specific therapies for AML1-ETO-positive AML. While known for decades to be the translational product of a chimeric gene created by the stable chromosome translocation t(8;21)(q22;q22), it is not known how AML1-ETO achieves its native and functional conformation or whether this process can be targeted for therapeutic benefit. Here, we show that the biosynthesis and folding of the AML1-ETO protein is facilitated by interaction with the essential eukaryotic chaperonin TRiC (or CCT). We demonstrate that a folding intermediate of AML1-ETO binds to TRiC directly, mainly through its β-strand rich, DNA-binding domain (AML-(1-175)), with the assistance of HSP70. Our results suggest that TRiC contributes to AML1-ETO proteostasis through specific interactions between the oncoprotein's DNA-binding domain, which may be targeted for therapeutic benefit. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Microporous polymer films and methods of their production
Aubert, J.H.
1995-06-06
A process is described for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquefied gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase. 9 figs.
Andreassen, Pernille; Grøn, Lone; Roessler, Kirsten Kaya
2013-10-01
In this study we investigated the moral dilemmas and strategies of a group of Danish parents who were trying to help their overweight children lose weight. Data were drawn from repeated semistructured interviews carried out over a period of 2 years with 12 families with overweight children. Using a narrative approach, we show the moral dilemmas parents found themselves in when trying to further the two seemingly incompatible goals of helping their children lose weight and simultaneously strengthening their self-worth. When the children were young, the parents tried to hide the fact that they needed to lose weight to protect them from feeling stigmatized. As the children grew older, the parents became more forthright about weight loss so the children would take on more responsibility. We suggest that for parents, weight loss is experienced as a risky undertaking because they perceive their children's self-worth as being in jeopardy during the process.
A magnetic tri-enzyme nanobiocatalyst for fruit juice clarification.
Sojitra, Uttam V; Nadar, Shamraja S; Rathod, Virendra K
2016-12-15
The major complications in fruit juice quality improvement are the presence of polysaccharides components in the form of disrupted fruit cell wall and cell materials. Hence, breakdown of cellulose along with pectin and starch is important for the juice processing. In this context, magnetic tri-enzyme nanobiocatalyst was prepared by simultaneously co-immobilizing three enzymes; α-amylase, pectinase and cellulase onto amino-functionalized magnetic nanoparticle by 60mM glutaraldehyde concentration with 10h cross-linking time for one pot juice clarification. The prepared nanobiocatalyst was characterized by FT-IR, SEM and XRD. The thermal (50-70°C) and pH (3-6) stability studies indicated more than two folds increment in half-life and enhanced tolerance to lower pH. The immobilized enzymes retained up to 75% of residual activity even after eight consecutive cycles of reuse. Finally, the clarification of apple, grapes and pineapple juices using magnetic tri-enzyme showed 41%, 46% and 53% respective reduction in turbidity till 150min treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Portable spectrometer monitors inert gas shield in welding process
NASA Technical Reports Server (NTRS)
Grove, E. L.
1967-01-01
Portable spectrometer using photosensitive readouts, monitors the amount of oxygen and hydrogen in the inert gas shield of a tungsten-inert gas welding process. A fiber optic bundle transmits the light from the welding arc to the spectrometer.
Hu, Xuan; Li, Wei-dong; Li, Ou; Hao, Jiang-bo; Liu, Jia-kun
2012-09-01
To study the effect of gas-turbine green discoloring and drying processing method on the quality of various Lonicerae Japonicae Flos herbs. DIKMA DiamonsilTM-C18 column (4.6 mm x 250 mm, 5 microm) was adopted using HPLC Waters 1525 and eluted with acetonitrile and 0.1% phosphate acid as the mobile phase. The flow rate was 1.0 mL x min(-1) , the column temperature was 25 degrees C the detection wavelength was 355 nm. After being processed by the gas-turbine green discoloring and drying method, tetraploid Lonicerae Japonicae Flos showed a green color. The contents of chlorogenic acid and galuteolin were 5.31% and 0.105% , both significantly higher by 18.0% and 32.1% than those of diploid Lonicerae Japonicae Flos processed by the same method. The content of chlorogenic acid in tetraploid Lonicerae Japonicae Flos processed the gas-turbine green discoloring and drying method were also remarkably higher than that of tetraploid and diploid Lonicerae Japonicae Flos processed by traditional processing method of natural drying. The gas-turbine green discoloring and drying processing method is a new-type drying method suitable for tetraploid Lonicerae Japonicae Flos. Under the condition of gas-turbine green discoloring and drying processing, tetraploid Lonicerae Japonicae Flos shows much higher quality than Lonicerae Japonicae Flos, suggesting that it is a good variety worth popularizing and applying.
Laser beam heat method reported
NASA Astrophysics Data System (ADS)
Tsuchiya, Hachiro; Goto, Hidekazu
1988-07-01
An outline of research involving the processing method utilizing laser-induced thermochemistry was presented, with the CO2 laser processing of ceramics in CF4 gas used as a practical processing example. It has become clear that it will be possible to conduct laser proccessing of ceramics with high efficiency and high precision by utilizing the thermochemical processes, but it is not believed that the present method is the best one and it is not clear that it can be applied to commercial processing. It is thought that the processing characteristics of this method will be greatly changed by the combination of the atmospheric gas and the material, and it is important to conduct tests on various combinations. However, it is believed that the improvement and development will become possible by theoretically confirming the basic process of the processing, especially of the the thermochemical process between the solid surface and the atmospheric gas molecule. Actually, it is believed that the thermochemical process on the solid surface is quite complicated. For example, it was confirmed that when thermochemical processing the Si monocrystal in the CF4 gas, the processing speed would change by at least 10 times through changing the gas pressure and the mixing O2 gas density. However, conversely speaking, it is believed that the fact that this method is complicated, with many unexplained points and room for research, conceals the possibility of its being applied to various fields, and also, in this sense, the quantitative confirmation of its basic process in an important problem to be solved in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, Douglas
2012-06-01
Project Independence proposed to construct a demonstration biomass-to-liquids (BTL) biorefinery in Wisconsin Rapids, isconsin. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage Wisconsin System Incorporated’s Wisconsin Rapids Mill, and when in full operation would both generate renewable energy for Wisconsin Rapids Mill and produce liquid fuels from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for BTL production using forest residuals and wood waste, providing a basis for proliferating BTL conversion technologies throughout the United States. It was a project goal to create a compellingmore » new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with biomass being harvested, sized, conditioned and fed into a ThermoChem Recovery International (TRI) steam reformer where it is converted to high quality synthetic gas (syngas). The syngas is then cleaned, compressed, scrubbed, polished and fed into the Fischer-Tropsch (F-T) catalytic reactors where the gas is converted into two, sulfur-free, clean crude products which will be marketed as revenue generating streams. Additionally, the Fischer-Tropsch products could be upgraded for use in automotive, aviation and chemical industries as valuable products, if desired. As the Project Independence project set out to prove forest products could be used to commercially produce biofuels, they planned to address and mitigate issues as they arose. In the early days of the Project Independence project, the plant was sized to process 500 dry tons of biomass per day but would generate a blend of synthesis gas for the lime kiln and a minimum of Fischer-Tropsch liquids for sale. This was to be done using a single stage of Fischer-Tropsch reaction at roughly a 70% yield. The capability of the Wisconsin Rapids Mill lime kiln to run on the relatively low heating value of the product synthesis gas was problematic. The design was then changed to maximize Fischer-Tropsch liquids production using a two stage Fischer-Tropsch process. Project Independence progressed with the design of the mill as ThermoChem Recovery International worked on the technical details of the project as well as develop information from their pilot plant. The pilot plant work uncovered several problems with the synthesis gas clean-up that solutions. ThermoChem Recovery International found these solutions and developed a very good path forward on the technical side. The technical solutions were demonstrated in the pilot plant to everyone’s satisfaction. In July 2010, NewPage Corporation had been severely affected by the downturn in the economy and actively went to find a strategic partner. By April 2011 the Abell Foundation entered the picture as this strategic partner. The Abell Foundation would join forces as Project Independence Inc. to build the 500 dry ton per day Project Independence plant. The design of this facility progress even after NewPage Corporation declared Chapter 11 Bankruptcy protection in September, 2011. This continued until April 2012 when NewPage Corporation determined that continued work on Project Independence Inc. presented too much risk with little reward for NewPage Corporation. The project was terminated at this point.« less
The Role of the Military in Building Political Community: The Case of the Two German States.
1995-01-01
community is represented primarily by three vital intervening outcomes of the political socialization process: a distinct political culture, a separate...case-study attempts to first identify any conscious political socialization processes implemented by the two militaries, and then tries to link these processes to the two distinct German political communities....rapidly engineer political change in these cases, the resurrection and maintenance of a military may especially contribute to the process of political
Ace Your Accounting Classes: 12 Hints to Maximize Your Potential
ERIC Educational Resources Information Center
Albrecht, W. David
2008-01-01
Many students experience difficulties when they try to get good grades in their accounting classes, and they are searching for answers. There is no single answer. Getting a good grade in an accounting class results from a process. If you know and understand the process--and can apply it--then your chances are much improved for getting a good…
ERIC Educational Resources Information Center
Subero, David; Llopart, Mariona; Siqués, Carina; Esteban-Guitart, Moises
2018-01-01
The aim of this paper is to address the teaching and learning processes in schools from a Vygotskian perspective based on the notion of "identity artefacts" (IAs) which, for our purposes, consist of documents created by the learners about themselves, in which they try to capture all the things that make sense and are meaningful to them…
Perceptions Concerning Visual Culture Dialogues of Visual Art Pre-Service Teachers
ERIC Educational Resources Information Center
Mamur, Nuray
2012-01-01
The visual art which is commented by the visual art teachers to help processing of the visual culture is important. In this study it is tried to describe the effect of visual culture based on the usual aesthetic experiences to be included in the learning process art education. The action research design, which is a qualitative study, is conducted…
The P.O.E.Ms of Educational Research: A Beginners' Concise Guide
ERIC Educational Resources Information Center
Mustafa, Rami F.
2011-01-01
Embarking in an educational research paper is one of the daunting processes any scholar can go through. And the process is even harder for novice education students who wander through the plethora of terminology, styles and paradigms trying to figure out their way in that jungle called educational research. The following of the review presents the…
Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C
The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream,more » to a destination where it is used or confined, preferably in an environmentally benign manner.« less
Research on land registration procedure ontology of China
NASA Astrophysics Data System (ADS)
Zhao, Zhongjun; Du, Qingyun; Zhang, Weiwei; Liu, Tao
2009-10-01
Land registration is public act which is to record the state-owned land use right, collective land ownership, collective land use right and land mortgage, servitude, as well as other land rights required the registration according to laws and regulations onto land registering books. Land registration is one of the important government affairs , so it is very important to standardize, optimize and humanize the process of land registration. The management works of organization are realized through a variety of workflows. Process knowledge is in essence a kind of methodology knowledge and a system which including the core and the relational knowledge. In this paper, the ontology is introduced into the field of land registration and management, trying to optimize the flow of land registration, to promote the automation-building and intelligent Service of land registration affairs, to provide humanized and intelligent service for multi-types of users . This paper tries to build land registration procedure ontology by defining the land registration procedure ontology's key concepts which represent the kinds of processes of land registration and mapping the kinds of processes to OWL-S. The land registration procedure ontology shall be the start and the basis of the Web service.
WPS mediation: An approach to process geospatial data on different computing backends
NASA Astrophysics Data System (ADS)
Giuliani, Gregory; Nativi, Stefano; Lehmann, Anthony; Ray, Nicolas
2012-10-01
The OGC Web Processing Service (WPS) specification allows generating information by processing distributed geospatial data made available through Spatial Data Infrastructures (SDIs). However, current SDIs have limited analytical capacities and various problems emerge when trying to use them in data and computing-intensive domains such as environmental sciences. These problems are usually not or only partially solvable using single computing resources. Therefore, the Geographic Information (GI) community is trying to benefit from the superior storage and computing capabilities offered by distributed computing (e.g., Grids, Clouds) related methods and technologies. Currently, there is no commonly agreed approach to grid-enable WPS. No implementation allows one to seamlessly execute a geoprocessing calculation following user requirements on different computing backends, ranging from a stand-alone GIS server up to computer clusters and large Grid infrastructures. Considering this issue, this paper presents a proof of concept by mediating different geospatial and Grid software packages, and by proposing an extension of WPS specification through two optional parameters. The applicability of this approach will be demonstrated using a Normalized Difference Vegetation Index (NDVI) mediated WPS process, highlighting benefits, and issues that need to be further investigated to improve performances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-01
This Supplement to AP-42 addresses pollutant-generating activity from Bituminous and Subbituminous Coal Combustion; Anthracite Coal Combustion; Fuel Oil Combustion; Natural Gas Combustion; Wood Waste Combustion in Boilers; Lignite Combustion; Waste Oil Combustion: Stationary Gas Turbines for Electricity Generation; Heavy-duty Natural Gas-fired Pipeline Compressor Engines; Large Stationary Diesel and all Stationary Dual-fuel engines; Natural Gas Processing; Organic Liquid Storage Tanks; Meat Smokehouses; Meat Rendering Plants; Canned Fruits and Vegetables; Dehydrated Fruits and Vegetables; Pickles, Sauces and Salad Dressing; Grain Elevators and Processes; Cereal Breakfast Foods; Pasta Manufacturing; Vegetable Oil Processing; Wines and Brandy; Coffee Roasting; Charcoal; Coal Cleaning; Frit Manufacturing; Sandmore » and Gravel Processing; Diatomite Processing; Talc Processing; Vermiculite Processing; paved Roads; and Unpaved Roads. Also included is information on Generalized Particle Size Distributions.« less
The experiment of the elemental mercury was removed from natural gas by 4A molecular sieve
NASA Astrophysics Data System (ADS)
Jiang, Cong; Chen, Yanhao
2018-04-01
Most of the world's natural gas fields contain elemental mercury and mercury compounds, and the amount of mercury in natural gas is generally 1μg/m3 200μg/m3. This paper analyzes the mercury removal principle of chemical adsorption process, the characteristics and application of mercury removal gent and the factors that affect the efficiency of mercury removal. The mercury in the natural gas is adsorbed by the mercury-silver reaction of the 4 molecular sieve after the manned treatment. The limits for mercury content for natural gas for different uses and different treatment processes are also different. From the environmental protection, safety and other factors, it is recommended that the mercury content of natural gas in the pipeline is less than 28μg / m3, and the mercury content of the raw material gas in the equipment such as natural gas liquefaction and natural gas condensate recovery is less than 0.01μg/m3. This paper mainly analyzes the existence of mercury in natural gas, and the experimental research process of using 4A molecular sieve to absorb mercury in natural gas.
Examination of Hydrate Formation Methods: Trying to Create Representative Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kneafsey, T.J.; Rees, E.V.L.; Nakagawa, S.
2011-04-01
Forming representative gas hydrate-bearing laboratory samples is important so that the properties of these materials may be measured, while controlling the composition and other variables. Natural samples are rare, and have often experienced pressure and temperature changes that may affect the property to be measured [Waite et al., 2008]. Forming methane hydrate samples in the laboratory has been done a number of ways, each having advantages and disadvantages. The ice-to-hydrate method [Stern et al., 1996], contacts melting ice with methane at the appropriate pressure to form hydrate. The hydrate can then be crushed and mixed with mineral grains under controlledmore » conditions, and then compacted to create laboratory samples of methane hydrate in a mineral medium. The hydrate in these samples will be part of the load-bearing frame of the medium. In the excess gas method [Handa and Stupin, 1992], water is distributed throughout a mineral medium (e.g. packed moist sand, drained sand, moistened silica gel, other porous media) and the mixture is brought to hydrate-stable conditions (chilled and pressurized with gas), allowing hydrate to form. This method typically produces grain-cementing hydrate from pendular water in sand [Waite et al., 2004]. In the dissolved gas method [Tohidi et al., 2002], water with sufficient dissolved guest molecules is brought to hydrate-stable conditions where hydrate forms. In the laboratory, this is can be done by pre-dissolving the gas of interest in water and then introducing it to the sample under the appropriate conditions. With this method, it is easier to form hydrate from more soluble gases such as carbon dioxide. It is thought that this method more closely simulates the way most natural gas hydrate has formed. Laboratory implementation, however, is difficult, and sample formation is prohibitively time consuming [Minagawa et al., 2005; Spangenberg and Kulenkampff, 2005]. In another version of this technique, a specified quantity of gas is placed in a sample, then the sample is flooded with water and cooled [Priest et al., 2009]. We have performed a number of tests in which hydrate was formed and the uniformity of the hydrate formation was examined. These tests have primarily used a variety of modifications of the excess gas method to make the hydrate, although we have also used a version of the excess water technique. Early on, we found difficulties in creating uniform samples with a particular sand/ initial water saturation combination (F-110 Sand, {approx} 35% initial water saturation). In many of our tests we selected this combination intentionally to determine whether we could use a method to make the samples uniform. The following methods were examined: Excess gas, Freeze/thaw/form, Freeze/pressurize/thaw, Excess gas followed by water saturation, Excess water, Sand and kaolinite, Use of a nucleation enhancer (SnoMax), and Use of salt in the water. Below, each method, the underlying hypothesis, and our results are briefly presented, followed by a brief conclusion. Many of the hypotheses investigated are not our own, but were presented to us. Much of the data presented is from x-ray CT scanning our samples. The x-ray CT scanner provides a three-dimensional density map of our samples. From this map and the physics that is occurring in our samples, we are able to gain an understanding of the spatial nature of the processes that occur, and attribute them to the locations where they occur.« less
NASA Astrophysics Data System (ADS)
Wang, B.
2013-12-01
Shale gas is natural gas that is found trapped within shale formations. And it has become an increasingly important source of natural gas in the United States since start of this century. Because shales ordinarily have insufficient permeability to allow significant fluid flow to a well bore, so gas production in commercial quantities requires fractures to provide permeability. Usually, the shale gas boom is due to modern technology in hydraulic fracturing to create extensive artificial fractures around well bores. In the same time, horizontal drilling is often used with shale gas wells, to create maximum borehole surface area in contact with shale. However, the extraction and use of shale gas can affect the environment through the leaking of extraction into water supplies, and the pollution caused by improper processing of natural gas. The challenge to prevent pollution is that shale gas extractions varies widely even in the two wells that in the same project. What's more, the enormous amounts of water will be needed for drilling, while some of the largest sources of shale gas are found in deserts. So if we can find some technologies to substitute the water in the fracking process, we will not only solve the environmental problems, but also the water supply issues. There are already some methods that have been studied for this purpose, like the CO2 fracking process by Tsuyoshi Ishida et al. I will also propose our new method called air-pressure system for fracking the shales without using water in the fracking process at last.
Methane’s Role in Promoting Sustainable Development in the Oil and Natural Gas Industry
The document summarizes a number of established methods to identify, measure and reduce methane emissions from a variety of equipment and processes in oil and gas production and natural gas processing and transmission facilities.
The violent interstellar medium
NASA Technical Reports Server (NTRS)
Mccray, R.; Snow, T. P., Jr.
1979-01-01
Observational evidence for high-velocity and high-temperature interstellar gas is reviewed. The physical processes that characterize this gas are described, including the ionization and emissivity of coronal gas, the behavior and appearance of high-velocity shocks, and interfaces between coronal gas and cooler interstellar gas. Hydrodynamical models for the action of supernova explosions and stellar winds on the interstellar medium are examined, and recent attempts to synthesize all the processes considered into a global model for the interstellar medium are discussed.
CO2 , NOx and SOx removal from flue gas via microalgae cultivation: a critical review.
Yen, Hong-Wei; Ho, Shih-Hsin; Chen, Chun-Yen; Chang, Jo-Shu
2015-06-01
Flue gas refers to the gas emitting from the combustion processes, and it contains CO2 , NOx , SOx and other potentially hazardous compounds. Due to the increasing concerns of CO2 emissions and environmental pollution, the cleaning process of flue gas has attracted much attention. Using microalgae to clean up flue gas via photosynthesis is considered a promising CO2 mitigation process for flue gas. However, the impurities in the flue gas may inhibit microalgal growth, leading to a lower microalgae-based CO2 fixation rate. The inhibition effects of SOx that contribute to the low pH could be alleviated by maintaining a stable pH level, while NOx can be utilized as a nitrogen source to promote microalgae growth when it dissolves and is oxidized in the culture medium. The yielded microalgal biomass from fixing flue gas CO2 and utilizing NOx and SOx as nutrients would become suitable feedstock to produce biofuels and bio-based chemicals. In addition to the removal of SOx , NOx and CO2 , using microalgae to remove heavy metals from flue gas is also quite attractive. In conclusion, the use of microalgae for simultaneous removal of CO2 , SOx and NOx from flue gas is an environmentally benign process and represents an ideal platform for CO2 reutilization. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrogasification reactor and method of operating same
Hobbs, Raymond; Karner, Donald; Sun, Xiaolei; Boyle, John; Noguchi, Fuyuki
2013-09-10
The present invention provides a system and method for evaluating effects of process parameters on hydrogasification processes. The system includes a hydrogasification reactor, a pressurized feed system, a hopper system, a hydrogen gas source, and a carrier gas source. Pressurized carbonaceous material, such as coal, is fed to the reactor using the carrier gas and reacted with hydrogen to produce natural gas.
Particle dispersing system and method for testing semiconductor manufacturing equipment
Chandrachood, Madhavi; Ghanayem, Steve G.; Cantwell, Nancy; Rader, Daniel J.; Geller, Anthony S.
1998-01-01
The system and method prepare a gas stream comprising particles at a known concentration using a particle disperser for moving particles from a reservoir of particles into a stream of flowing carrier gas. The electrostatic charges on the particles entrained in the carrier gas are then neutralized or otherwise altered, and the resulting particle-laden gas stream is then diluted to provide an acceptable particle concentration. The diluted gas stream is then split into a calibration stream and the desired output stream. The particles in the calibration stream are detected to provide an indication of the actual size distribution and concentration of particles in the output stream that is supplied to a process chamber being analyzed. Particles flowing out of the process chamber within a vacuum pumping system are detected, and the output particle size distribution and concentration are compared with the particle size distribution and concentration of the calibration stream in order to determine the particle transport characteristics of a process chamber, or to determine the number of particles lodged in the process chamber as a function of manufacturing process parameters such as pressure, flowrate, temperature, process chamber geometry, particle size, particle charge, and gas composition.
Investigation of sewage sludge treatment using air plasma assisted gasification.
Striūgas, Nerijus; Valinčius, Vitas; Pedišius, Nerijus; Poškas, Robertas; Zakarauskas, Kęstutis
2017-06-01
This study presents an experimental investigation of downdraft gasification process coupled with a secondary thermal plasma reactor in order to perform experimental investigations of sewage sludge gasification, and compare process parameters running the system with and without the secondary thermal plasma reactor. The experimental investigation were performed with non-pelletized mixture of dried sewage sludge and wood pellets. To estimate the process performance, the composition of the producer gas, tars, particle matter, producer gas and char yield were measured at the exit of the gasification and plasma reactor. The research revealed the distribution of selected metals and chlorine in the process products and examined a possible formation of hexachlorobenzene. It determined that the plasma assisted processing of gaseous products changes the composition of the tars and the producer gas, mostly by destruction of hydrocarbon species, such as methane, acetylene, ethane or propane. Plasma processing of the producer gas reduces their calorific value but increases the gas yield and the total produced energy amount. The presented technology demonstrated capability both for applying to reduce the accumulation of the sewage sludge and production of substitute gas for drying of sewage sludge and electrical power. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gas Hydrate Storage of Natural Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudy Rogers; John Etheridge
2006-03-31
Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5)more » rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.« less
NASA Astrophysics Data System (ADS)
Kurniawan, Budi Agung; Pratiwi, Vania Mitha; Ahmadi, Nafi'ul Fikri
2018-04-01
Corrosion become major problem in most industries. In the oil and gas company, corrosion occurs because of reaction between steel and chemical species inside crude oil. Crude oil or nature gas provide corrosive species, such as CO2, O2, H2S and so on. Fluid containing CO2 gas causes CO2 corrosion which attack steel as well as other corrosion phenomena. This CO2 corrosion commonly called as sweet environment and produce FeCO3 as corrosion products. Fluid flow factor in pipelines during the oil and gas transportation might increase the rate of corrosion itself. Inhibitor commonly use used as corrosion protection because its simplicity in usage. Nowadays, organic inhibitor become main issue in corrosion protection because of biodegradable, low cost, and environmental friendly. This research tried to use tobacco leaf extract as organic inhibitor to control corrosion in CO2 environment. The electrolyte solution used was 3.5% NaCl at pH 4 and pH 7. Weight loss test results showed that the lowest corrosion rate was reach at 132.5 ppm inhibitor, pH 7 and rotational speed of 150 rpm with corrosion rate of 0.091 mm/y. While at pH 4, the lowest corrosion rate was found at rotational speed of 150 rpm with inhibitor concentration of 265 ppm and corrosion rate of 0.327 mm/y. FTIR results indicate the presence of nicotine functional groups on the steel surface. However, based on corrosion rate, it is believed that corrosion occurs, and FeCO3 was soluble in electrolyte. Tobacco leaf extract inhibitors worked by a physisorption mechanism, where tobacco inhibitors formed thin layer on the steel surface.
McKay, Sandra M; Maki, Brian E
2010-01-01
A computer-based 'Useful Field of View' (UFOV) training program has been shown to be effective in improving visual processing in older adults. Studies of young adults have shown that playing video games can have similar benefits; however, these studies involved realistic and violent 'first-person shooter' (FPS) games. The willingness of older adults to play such games has not been established. OBJECTIVES: To determine the degree to which older adults would accept playing a realistic, violent FPS-game, compared to video games not involving realistic depiction of violence. METHODS: Sixteen older adults (ages 64-77) viewed and rated video-clip demonstrations of the UFOV program and three video-game genres (realistic-FPS, cartoon-FPS, fixed-shooter), and were then given an opportunity to try them out (30 minutes per game) and rate various features. RESULTS: The results supported a hypothesis that the participants would be less willing to play the realistic-FPS game in comparison to the less violent alternatives (p's<0.02). After viewing the video-clip demonstrations, 10 of 16 participants indicated they would be unwilling to try out the realistic-FPS game. Of the six who were willing, three did not enjoy the experience and were not interested in playing again. In contrast, all 12 subjects who were willing to try the cartoon-FPS game reported that they enjoyed it and would be willing to play again. A high proportion also tried and enjoyed the UFOV training (15/16) and the fixed-shooter game (12/15). DISCUSSION: A realistic, violent FPS video game is unlikely to be an appropriate choice for older adults. Cartoon-FPS and fixed-shooter games are more viable options. Although most subjects also enjoyed UFOV training, a video-game approach has a number of potential advantages (for instance, 'addictive' properties, low cost, self-administration at home). We therefore conclude that non-violent cartoon-FPS and fixed-shooter video games warrant further investigation as an alternative to the UFOV program for training improved visual processing in seniors.
Instability of the cored barotropic disc: the linear eigenvalue formulation
NASA Astrophysics Data System (ADS)
Polyachenko, E. V.
2018-05-01
Gaseous rotating razor-thin discs are a testing ground for theories of spiral structure that try to explain appearance and diversity of disc galaxy patterns. These patterns are believed to arise spontaneously under the action of gravitational instability, but calculations of its characteristics in the gas are mostly obscured. The paper suggests a new method for finding the spiral patterns based on an expansion of small amplitude perturbations over Lagrange polynomials in small radial elements. The final matrix equation is extracted from the original hydrodynamical equations without the use of an approximate theory and has a form of the linear algebraic eigenvalue problem. The method is applied to a galactic model with the cored exponential density profile.
Driver behavior profiling: An investigation with different smartphone sensors and machine learning
Ferreira, Jair; Carvalho, Eduardo; Ferreira, Bruno V.; de Souza, Cleidson; Suhara, Yoshihiko; Pentland, Alex
2017-01-01
Driver behavior impacts traffic safety, fuel/energy consumption and gas emissions. Driver behavior profiling tries to understand and positively impact driver behavior. Usually driver behavior profiling tasks involve automated collection of driving data and application of computer models to generate a classification that characterizes the driver aggressiveness profile. Different sensors and classification methods have been employed in this task, however, low-cost solutions and high performance are still research targets. This paper presents an investigation with different Android smartphone sensors, and classification algorithms in order to assess which sensor/method assembly enables classification with higher performance. The results show that specific combinations of sensors and intelligent methods allow classification performance improvement. PMID:28394925
1980-03-01
6.1 Excimers and Exciplexes : Background 55 6.2 Rare Gas-Halide Lasers 58 6.3 Formation, Quenching and Absorption Processes for Rare Gas-Halides 60... exciplex such as KrF* and XeF* laser systems as well as in various types of gas discharges. They are also of fundamental significance in their own...collision processes contributing to the formation and quenching of the excited molecular states in exciplex (such as KrF ) and excimer (such as Xe2
An empirical study of the effect of granting multiple tries for online homework
NASA Astrophysics Data System (ADS)
Kortemeyer, Gerd
2015-07-01
When deploying online homework in physics courses, an important consideration is how many tries learners should be allowed to solve numerical free-response problems. While on the one hand, this number should be large enough to allow learners mastery of concepts and avoid copying, on the other hand, granting too many allowed tries encourages counter-productive behavior. We investigate data from an introductory calculus-based physics course that allowed different numbers of tries in different semesters. It turns out that the probabilities for successfully completing or abandoning problems during a particular try are independent of the number of tries already made, which indicates that students do not learn from their earlier tries. We also find that the probability for successfully completing a problem during a particular try decreases with the number of allowed tries, likely due to increased carelessness or guessing, while the probability to give up on a problem after a particular try is largely independent of the number of allowed tries. These findings lead to a mathematical model for learner usage of multiple tries, which predicts an optimum number of five allowed tries.
Fuel cell plates with skewed process channels for uniform distribution of stack compression load
Granata, Jr., Samuel J.; Woodle, Boyd M.
1989-01-01
An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.
Negotiations: Try a Pragmatic Approach.
ERIC Educational Resources Information Center
Prenn, Kathryn J.; Coughlin, John T.
1986-01-01
With adequate preparation, effort, and commitment, the school system's collective bargaining process can become an opportunity for management and employee organizations to resolve significant concerns. This paper recommends nine steps for a pragmatic approach to negotiations. (1) Prepare: Preparation includes reviewing the current collective…
ERIC Educational Resources Information Center
Lazorishak, Ted
1976-01-01
What can social studies teachers do to try to put some of their teaching into more realistic avenues? A high school teacher undertook a project at the primary and general elections in order to create some student interest in the electoral process. (Author/RK)
Groen-van de Ven, Leontine; Smits, Carolien; de Graaff, Fuusje; Span, Marijke; Eefsting, Jan; Jukema, Jan; Vernooij-Dassen, Myrra
2017-01-01
Objective To explore how people with dementia, their informal caregivers and their professionals participate in decision making about daycare and to develop a typology of participation trajectories. Design A qualitative study with a prospective, multiperspective design, based on 244 semistructured interviews, conducted during three interview rounds over the course of a year. Analysis was by means of content analysis and typology construction. Setting Community settings and nursing homes in the Netherlands. Participants 19 people with dementia, 36 of their informal caregivers and 38 of their professionals (including nurses, daycare employees and case managers). Results The participants’ responses related to three critical points in the decision-making trajectory about daycare: (1) the initial positive or negative expectations of daycare; (2) negotiation about trying out daycare by promoting, resisting or attuning to others; and (3) trying daycare, which resulted in positive or negative reactions from people with dementia and led to a decision. The ways in which care networks proceeded through these three critical points resulted in a typology of participation trajectories, including (1) working together positively toward daycare, (2) bringing conflicting perspectives together toward trying daycare and (3) not reaching commitment to try daycare. Conclusion Shared decision making with people with dementia is possible and requires and adapted process of decision making. Our results show that initial preferences based on information alone may change when people with dementia experience daycare. It is important to have a try-out period so that people with dementia can experience daycare without having to decide whether to continue it. Whereas shared decision making in general aims at moving from initial preferences to informed preferences, professionals should focus more on moving from initial preferences to experienced preferences for people with dementia. Professionals can play a crucial role in facilitating the possibilities for a try-out period. PMID:29133329
Farrell, Penny C; Hunter, Cynthia; Truong, Bui; Bunning, Michel
2015-01-01
Highly pathogenic avian influenza (HPAI) is caused by the haemagglutinin 5, neuraminidase 1 (H5N1) influenza A virus. Around 80% of households in rural Vietnam raise poultry, which provides food security and nutrition to their households and beyond. Of these, around 15-20% are semi-commercial producers, producing at least 28% of the country's chicken. Through learning the experiences of these semi-commercial farmers, this study aimed to explore the local understandings and sociocultural aspects of HPAI's impact, particularly the aetiology, diagnosis, and the prevention and control methods in one Vietnamese rural province. This study was conducted in Quang Tri province, Vietnam. Quang Tri province has eight districts. Five of these districts were at high risk of HPAI during the study period, of which three were selected for the present study. Within these three districts, six communes were randomly selected for the study from the list of intervention communes in Quang Tri province. Six out of the 26 intervention communes in Quang Tri were therefore selected. Participants were randomly selected and recruited from lists of semi-commercial farmers, village animal health workers, village human health workers and local authorities so that the study population (representative population) included an amount of variability similar to that of the wider population. A key benefit of this village-level control program was the residential proximity of animal and human health professionals. Participants were well aware of the typical clinical signs for avian influenza and of the reporting process for suspect cases. However there was extensive room for improvement in Quang Tri province regarding access to the HPAI vaccine, essential medical equipment for animal use, and available financial support. This qualitative research study provided an important insight for in-country policy makers and international stakeholders. It is vital that there are continued efforts to prevent and control highly pathogenic avian influenza through support programs that provide locally appropriate information and resources to those at the human-animal interface.
Hydrocarbon gas liquids production and related industrial development
2016-01-01
Hydrocarbon gas liquids (HGL) are produced at refineries from crude oil and at natural gas processing plants from unprocessed natural gas. From 2010 to 2015, total HGL production increased by 42%. Natural gas processing plants accounted for all the increase, with recovered natural gas plant liquids (NGPL)—light hydrocarbon gases such as propane—rising by 58%, from 2.07 million barrels per day (b/d) in 2010 to 3.27 million b/d in 2015, while refinery output of HGL declined by 7%. The rapid increase in NGPL output was the result of rapid growth in natural gas production, as production shifted to tight gas and shale gas resources, and as producers targeted formations likely to yield natural gas with high liquids content. Annual Energy Outlook 2016 results suggest varying rates of future NGPL production growth, depending on relative crude oil and natural gas prices.
Natural gas operations: considerations on process transients, design, and control.
Manenti, Flavio
2012-03-01
This manuscript highlights tangible benefits deriving from the dynamic simulation and control of operational transients of natural gas processing plants. Relevant improvements in safety, controllability, operability, and flexibility are obtained not only within the traditional applications, i.e. plant start-up and shutdown, but also in certain fields apparently time-independent such as the feasibility studies of gas processing plant layout and the process design of processes. Specifically, this paper enhances the myopic steady-state approach and its main shortcomings with respect to the more detailed studies that take into consideration the non-steady state behaviors. A portion of a gas processing facility is considered as case study. Process transients, design, and control solutions apparently more appealing from a steady-state approach are compared to the corresponding dynamic simulation solutions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.