Inclined Bodies of Various Cross Sections at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Jorgensen, Leland H.
1958-01-01
To aid in assessing effects of cross-sectional shape on body aerodynamics, the forces and moments have been measured for bodies with circular, elliptic, square, and triangular cross sections at Mach numbers 1.98 and 3.88. Results for bodies with noncircular cross sections have been compared with results for bodies of revolution having the same axial distribution of cross-sectional area (and, thus, the same equivalent fineness ratio). Comparisons have been made for bodies of fineness ratios 6 and 10 at angles of attack from 0 deg to about 20 deg and for Reynolds numbers, based on body length, of 4.0 x 10(exp 6) and 6.7 x 10(exp 6). The results of this investigation show that distinct aerodynamic advantages can be obtained by using bodies with noncircular cross sections. At certain angles of bank, bodies with elliptic, square, and triangular cross sections develop considerably greater lift and lift-drag ratios than equivalent bodies of revolution. For bodies with elliptic cross sections, lift and pitching-moment coefficients can be correlated with corresponding coefficients for equivalent circular bodies. It has been found that the ratios of lift and pitching-moment coefficients for an elliptic body to those for an equivalent circular body are practically constant with change in both angle of attack and Mach number. These lift and moment ratios are given very accurately by slender-body theory. As a result of this agreement, the method of NACA Rep. 1048 for computing forces and moments for bodies of revolution has been simply extended to bodies with elliptic cross sections. For the cases considered (elliptic bodies of fineness ratios 6 and 10 having cross-sectional axis ratios of 1.5 and 2), agreement of theory with experiment is very good. As a supplement to the force and moment results, visual studies of the flow over bodies have been made by use of the vapor-screen, sublimation, and white-lead techniques. Photographs from these studies are included in the report.
Lipp, G. Daniel
1994-04-26
A method and die apparatus for manufacturing a honeycomb body of rhombic cell cross-section by extrusion through an extrusion die of triangular cell discharge slot configuration, the die incorporating feedholes at selected slot intersections only, such that slot segments communicating directly with the feedholes discharge web material and slot segments not so connected do not discharge web material, whereby a rhombic cell cross-section in the extruded body is provided.
Arrays of flow channels with heat transfer embedded in conducting walls
Bejan, A.; Almerbati, A.; Lorente, S.; ...
2016-04-20
Here we illustrate the free search for the optimal geometry of flow channel cross-sections that meet two objectives simultaneously: reduced resistances to heat transfer and fluid flow. The element cross section and the wall material are fixed, while the shape of the fluid flow opening, or the wetted perimeter is free to vary. Two element cross sections are considered, square and equilateral triangular. We find that the two objectives are best met when the solid wall thickness is uniform, i.e., when the wetted perimeters are square and triangular, respectively. In addition, we consider arrays of square elements and triangular elements,more » on the basis of equal mass flow rate per unit of array cross sectional area. The conclusion is that the array of triangular elements meets the two objectives better than the array of square elements.« less
Lipp, G. Daniel
1994-05-03
A method and die apparatus for manufacturing a honeycomb body of triangular cell cross-section and high cell density, the die having a combination of (i) feedholes feeding slot intersections and (ii) feedholes feeding slot segments not supplied from slot intersections, whereby a reduction in feedhole count is achieved while still retaining good extrusion efficiency and extrudate uniformity.
NASA Technical Reports Server (NTRS)
MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.
2007-01-01
A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.
Collapse of triangular channels in a soft elastomer
NASA Astrophysics Data System (ADS)
Tepáyotl-Ramírez, Daniel; Lu, Tong; Park, Yong-Lae; Majidi, Carmel
2013-01-01
We extend classical solutions in contact mechanics to examine the collapse of channels in a soft elastomer. These channels have triangular cross-section and collapse when pressure is applied to the surrounding elastomer. Treating the walls of the channel as indenters that penetrate the channel base, we derive an algebraic mapping between pressure and cross-sectional area. These theoretical predictions are in strong agreement with results that we obtain through finite element analysis and experimental measurements. This is accomplished without data fitting and suggests that the theoretical approach may be generalized to a broad range of cross-sectional geometries in soft microfluidics.
NASA Astrophysics Data System (ADS)
Liu, Yongxun; Guo, Ruofeng; Kamei, Takahiro; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Ishikawa, Yuki; Hayashida, Tetsuro; Sakamoto, Kunihiro; Ogura, Atsushi; Masahara, Meishoku
2012-06-01
The floating-gate (FG)-type metal-oxide-semiconductor (MOS) capacitors with planar (planar-MOS) and three-dimensional (3D) nanosize triangular cross-sectional tunnel areas (3D-MOS) have successfully been fabricated by introducing rapid thermal oxidation (RTO) and postdeposition annealing (PDA), and their electrical characteristics between the control gate (CG) and FG have been systematically compared. It was experimentally found in both planar- and 3D-MOS capacitors that the uniform and higher breakdown voltages are obtained by introducing RTO owing to the high-quality thermal oxide formation on the surface and etched edge regions of the n+ polycrystalline silicon (poly-Si) FG, and the leakage current is highly suppressed after PDA owing to the improved quality of the tetraethylorthosilicate (TEOS) silicon dioxide (SiO2) between CG and FG. Moreover, a lower breakdown voltage between CG and FG was obtained in the fabricated 3D-MOS capacitors as compared with that of planar-MOS capacitors thanks to the enhanced local electric field at the tips of triangular tunnel areas. The developed nanosize triangular cross-sectional tunnel area is useful for the fabrication of low operating voltage flash memories.
NASA Astrophysics Data System (ADS)
Obeid, S.; Chuluunbaatar, O.; Joulakian, B. B.
2017-07-01
The variation of the multiply differential cross section of the (e, 2e) simple ionization of {{{H}}}3+, with the incident and ejection energy values, as well as the directions of the ejected and scattered electrons, is studied. The calculations have been performed in the frame of the perturbative first Born procedure, which has required the development of equilateral triangular three center bound and continuum state wave functions. The results explore the optimal conditions and the particularities of the triangular targets, such as the appearance of interference patterns in the variation of the four fold differential cross section (FDCS) with the scattering angle for a fixed orientation of the molecule. The comparison between the results obtained by two H3 + ground wave functions, with and without a correlation term r 12, shows that the effect of correlation on the magnitude of the triple differential cross section is not large, but it produces some modification in the structure of the FDCS.
Holden, Daniel; Socha, John J; Cardwell, Nicholas D; Vlachos, Pavlos P
2014-02-01
A prominent feature of gliding flight in snakes of the genus Chrysopelea is the unique cross-sectional shape of the body, which acts as the lifting surface in the absence of wings. When gliding, the flying snake Chrysopelea paradisi morphs its circular cross-section into a triangular shape by splaying its ribs and flattening its body in the dorsoventral axis, forming a geometry with fore-aft symmetry and a thick profile. Here, we aimed to understand the aerodynamic properties of the snake's cross-sectional shape to determine its contribution to gliding at low Reynolds numbers. We used a straight physical model in a water tunnel to isolate the effects of 2D shape, analogously to studying the profile of an airfoil of a more typical flyer. Force measurements and time-resolved (TR) digital particle image velocimetry (DPIV) were used to determine lift and drag coefficients, wake dynamics and vortex-shedding characteristics of the shape across a behaviorally relevant range of Reynolds numbers and angles of attack. The snake's cross-sectional shape produced a maximum lift coefficient of 1.9 and maximum lift-to-drag ratio of 2.7, maintained increases in lift up to 35 deg, and exhibited two distinctly different vortex-shedding modes. Within the measured Reynolds number regime (Re=3000-15,000), this geometry generated significantly larger maximum lift coefficients than many other shapes including bluff bodies, thick airfoils, symmetric airfoils and circular arc airfoils. In addition, the snake's shape exhibited a gentle stall region that maintained relatively high lift production even up to the highest angle of attack tested (60 deg). Overall, the cross-sectional geometry of the flying snake demonstrated robust aerodynamic behavior by maintaining significant lift production and near-maximum lift-to-drag ratios over a wide range of parameters. These aerodynamic characteristics help to explain how the snake can glide at steep angles and over a wide range of angles of attack, but more complex models that account for 3D effects and the dynamic movements of aerial undulation are required to fully understand the gliding performance of flying snakes.
Adsorption on Nanopores of Different Cross Sections Made by Electron Beam Nanolithography.
Bruschi, Lorenzo; Mistura, Giampaolo; Prasetyo, Luisa; Do, Duong D; Dipalo, Michele; De Angelis, Francesco
2018-01-09
Adsorption on nanoporous matrices is characterized by a pronounced hysteresis loop in the adsorption isotherm, when the substrate is loaded and unloaded with adsorbate, the origin of which is a matter of immense debate in the literature. In this work, we report a study of argon adsorption at 85 K on nonconnecting nanopores with one end closed to the surrounding where the effects of different pore cross sections fabricated by electron beam lithography (EBL) are investigated. A polymethylmethacrylate (PMMA) resist is deposited on the electrodes of a sensitive quartz crystal microbalance without degradation of the resonance quality factor or the long-term and short-term stabilities of the device even at cryogenic temperatures. Four different pores' cross sections: circular, square, rectangular, and triangular, are produced from EBL, and the isotherms for these pore shapes exhibit pronounced hysteresis loops whose adsorption and desorption branches are nearly vertical and have almost the same slopes. No difference is observed in the hysteresis loops of the isotherms for the pores with triangular and square cross sections, whereas the hysteresis loop for the pore with circular cross sections is much narrower, suggesting that they are more regular than the other pores. All of these observations suggest that the hysteresis behavior resulted mainly from microscopic geometric irregularities present in these porous matrices.
Radar Cross Section Prediction for Coated Perfect Conductors with Arbitrary Geometries.
1986-01-01
equivalent electric and magnetic surface currents as the desired unknowns. Triangular patch modelling is ap- plied to the boundary surfaces. The method of...matrix inversion for the unknown surface current coefficients. Huygens’ principle is again applied to calculate the scattered electric field produced...differential equations with the equivalent electric and magnetic surface currents as the desired unknowns. Triangular patch modelling is ap- plied to the
Geodesic acoustic modes in noncircular cross section tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokina, E. A., E-mail: sorokina.ekaterina@gmail.com; Lakhin, V. P.; Konovaltseva, L. V.
2017-03-15
The influence of the shape of the plasma cross section on the continuous spectrum of geodesic acoustic modes (GAMs) in a tokamak is analyzed in the framework of the MHD model. An expression for the frequency of a local GAM for a model noncircular cross section plasma equilibrium is derived. Amendments to the oscillation frequency due to the plasma elongation and triangularity and finite tokamak aspect ratio are calculated. It is shown that the main factor affecting the GAM spectrum is the plasma elongation, resulting in a significant decrease in the mode frequency.
A study of thin liquid sheet flows
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.
1993-01-01
This study was a theoretical and experimental investigation of thin liquid sheet flows in vacuum. A sheet flow created by a narrow slit of width, W, coalesces to a point at a distance, L, as a result of surface tension forces acting at the sheet edges. As the flow coalesces, the fluid accumulates in the sheet edges. The observed triangular shape of the sheet agrees with the calculated triangular result. Experimental results for L/W as a function of Weber number, We, agree with the calculated result, L/W = the sq. root of 8We. The edge cross sectional shape is found to oscillate from elliptic to 'cigar' like to 'peanut' like and then back to elliptic in the flow direction. A theoretical one-dimensional model was developed that yielded only elliptic solutions for the edge cross section. At the points where the elliptic shapes occur, there is agreement between theory and experiment.
NASA Astrophysics Data System (ADS)
Park, Yong-Lae; Tepayotl-Ramirez, Daniel; Wood, Robert J.; Majidi, Carmel
2012-11-01
Cross-sectional geometry influences the pressure-controlled conductivity of liquid-phase metal channels embedded in an elastomer film. These soft microfluidic films may function as hyperelastic electric wiring or sensors that register the intensity of surface pressure. As pressure is applied to the elastomer, the cross-section of the embedded channel deforms, and the electrical resistance of the channel increases. In an effort to improve sensitivity and reduce sensor nonlinearity and hysteresis, we compare the electrical response of 0.25 mm2 channels with different cross-sectional geometries. We demonstrate that channels with a triangular or concave cross-section exhibit the least nonlinearity and hysteresis over pressures ranging from 0 to 70 kPa. These experimental results are in reasonable agreement with predictions made by theoretical calculations that we derive from elasticity and Ohm's Law.
SEISMIC RESPONSE OF DAM WITH SOIL-STRUCTURE INTERACTION.
Bycroft, G.N.; Mork, P.N.
1987-01-01
An analytical solution to the response of a long trapezoidal-section dam on a foundation consisting of an elastic half-space and subjected to simulated earthquake motion is developed. An optimum seismic design is achieved when the cross section of the dam is triangular. The effect of soil structure interaction is to lower the strain occurring in the dam.
Complete band gaps of phononic crystal plates with square rods.
El-Naggar, Sahar A; Mostafa, Samia I; Rafat, Nadia H
2012-04-01
Much of previous work has been devoted in studying complete band gaps for bulk phononic crystal (PC). In this paper, we theoretically investigate the existence and widths of these gaps for PC plates. We focus our attention on steel rods of square cross sectional area embedded in epoxy matrix. The equations for calculating the dispersion relation for square rods in a square or a triangular lattice have been derived. Our analysis is based on super cell plane wave expansion (SC-PWE) method. The influence of inclusions filling factor and plate thickness on the existence and width of the phononic band gaps has been discussed. Our calculations show that there is a certain filling factor (f=0.55) below which arrangement of square rods in a triangular lattice is superior to the arrangement in a square lattice. A comparison between square and circular cross sectional rods reveals that the former has superior normalized gap width than the latter in case of a square lattice. This situation is switched in case of a triangular lattice. Moreover, a maximum normalized gap width of 0.7 can be achieved for PC plate of square rods embedded in a square lattice and having height 90% of the lattice constant. Copyright © 2011 Elsevier B.V. All rights reserved.
Atomic density functional and diagram of structures in the phase field crystal model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ankudinov, V. E., E-mail: vladimir@ankudinov.org; Galenko, P. K.; Kropotin, N. V.
2016-02-15
The phase field crystal model provides a continual description of the atomic density over the diffusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D structures is constructed from the analytic solutions of the model using atomic density functionals. The diagram predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered cubic crystal, and a longitudinal cross section of cylindricalmore » tubes. The method developed here is employed for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The expression for the free energy is derived analytically from density functional theory. The specific features of approximating the phase field crystal model are compared with the approximations and conclusions of the weak crystallization and 2D melting theories.« less
Optimized up-down asymmetry to drive fast intrinsic rotation in tokamaks
NASA Astrophysics Data System (ADS)
Ball, Justin; Parra, Felix I.; Landreman, Matt; Barnes, Michael
2018-02-01
Breaking the up-down symmetry of the tokamak poloidal cross-section can significantly increase the spontaneous rotation due to turbulent momentum transport. In this work, we optimize the shape of flux surfaces with both tilted elongation and tilted triangularity in order to maximize this drive of intrinsic rotation. Nonlinear gyrokinetic simulations demonstrate that adding optimally-tilted triangularity can double the momentum transport of a tilted elliptical shape. This work indicates that tilting the elongation and triangularity in an ITER-like device can reduce the energy transport and drive intrinsic rotation with an Alfvén Mach number of roughly 1% . This rotation is four times larger than the rotation expected in ITER and is approximately what is needed to stabilize MHD instabilities. It is shown that this optimal shape can be created using the shaping coils of several present-day experiments.
A triangular property of the associated Legendre functions
NASA Technical Reports Server (NTRS)
Fineschi, S.; Landi Degl'innocenti, E.
1990-01-01
A mathematical formula is introduced and proved which relates the associated Legendre functions with given nonnegative integral indices. The application of this formula in simplifying the calculation of collisional electron-atom cross sections higher than the dipole is mentioned. A proof of the stated identity using the Gegenbauer polynomials and their generating function is given.
Permanent magnet design for high-speed superconducting bearings
Hull, John R.; Uherka, Kenneth L.; Abdoud, Robert G.
1996-01-01
A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.
NASA Astrophysics Data System (ADS)
Kumari, Preeti; Tripathi, Pankaj; Sahu, B.; Singh, S. P.; Kumar, Devendra
2018-05-01
A simulation and fabrication study of a coaxial probe-fed four-element composite triangular dielectric resonator antenna (TDRA) using low loss Li2O-1.94MgO-0.02Al2O3-P2O5 (LMAP) ceramic and Teflon. LMAP ceramic was carried out and the ceramic was synthesized using a solid-state sintering route. The phase, microstructure and microwave dielectric properties of LMAP were investigated using x-ray diffraction pattern, scanning electron microscopy and a network analyzer. A coaxial probe-fed four-element composite TDRA was designed and fabricated using LMAP as one section of each composite element of the proposed antenna. Each triangular element of the proposed dielectric resonator antenna (DRA) consists of two sections of different dielectric constant materials. The inner triangular section touching the coaxial probe at one of its corners is made of the LMAP ceramic (ɛ r = 6.2) while othe uter section is made of Teflon (ɛ r = 2.1). Four triangular DRA elements are excited bya centrally located 50-Ω coaxial probe. The parametric study of the proposed antenna was performed through simulation using Ansys High Frequency Structure Simulator software by varying the dimensions and dielectric constants of both sections of each triangular element of the TDRA to optimize the results for obtaining a wideband antenna. The simulated resonant frequency of 9.30 GHz with a percentage bandwidth of 61.65% for the proposed antenna is obtained within its operating frequency range of 7.82-14.8 GHz. Monopole-like radiation patterns with low cross-polarization levels and a peak gain of 5.63 dB are obtained for the proposed antenna through simulation. The antenna prototype having optimized dimensions has also been fabricated. The experimental resonant frequency of 9.10 GHz with a percentage bandwidth of 66.09% is obtained within its operating frequency range of 7.70-15.30 GHz. It is found that the simulation results for the proposed antenna are in close agreement with the measured data. The proposed antenna can potentially be used in broadcast base stations, radar and satellite communications.
Collocation of equilibria in gravitational field of triangular body via mass redistribution
NASA Astrophysics Data System (ADS)
Burov, Alexander A.; Guerman, Anna D.; Nikonov, Vasily I.
2018-05-01
We consider a gravitating system with triangular mass distribution that can be used as approximation of gravitational field for small irregular celestial bodies. In such system, the locations of equilibrium points, that is, the points where the gravitational forces are balanced, are analyzed. The goal is to find the mass distribution which provides equilibrium in a pre-assigned location near the triangular system, and to study the stability of this equilibrium.
NASA Astrophysics Data System (ADS)
Adiga, Shreemathi; Saraswathi, A.; Praveen Prakash, A.
2018-04-01
This paper aims an interlinking approach of new Triangular Fuzzy Cognitive Maps (TrFCM) and Combined Effective Time Dependent (CETD) matrix to find the ranking of the problems of Transgenders. Section one begins with an introduction that briefly describes the scope of Triangular Fuzzy Cognitive Maps (TrFCM) and CETD Matrix. Section two provides the process of causes of problems faced by Transgenders using Fuzzy Triangular Fuzzy Cognitive Maps (TrFCM) method and performs the calculations using the collected data among the Transgender. In Section 3, the reasons for the main causes for the problems of the Transgenders. Section 4 describes the Charles Spearmans coefficients of rank correlation method by interlinking of Triangular Fuzzy Cognitive Maps (TrFCM) Method and CETD Matrix. Section 5 shows the results based on our study.
Fracture Response Enhancement Of Aluminum Using In-Situ Selective Reinforcement
NASA Technical Reports Server (NTRS)
Abada, Christopher H.; Farley, Gary L.; Hyer, Michael W.
2006-01-01
A computer-based parametric study of the effect of reinforcement architectures on fracture response of aluminum compact-tension (CT) specimens is performed. Eleven different reinforcement architectures consisting of rectangular and triangular cross-section reinforcements were evaluated. Reinforced specimens produced between 13 and 28 percent higher fracture load than achieved with the unreinforced case. Reinforcements with blunt leading edges (rectangular reinforcements) exhibited superior performance relative to the triangular reinforcements with sharp leading edges. Relative to the rectangular reinforcements, the most important architectural feature was reinforcement thickness. At failure, the reinforcements carried between 58 and 85 percent of the load applied to the specimen, suggesting that there is considerable load transfer between the base material and the reinforcement.
Sharifi, Zohreh; Atlasbaf, Zahra
2016-10-01
A new design procedure for near perfect triangular carpet cloaks, fabricated based on only isotropic homogeneous materials, is proposed. This procedure enables us to fabricate a cloak with simple metamaterials or even without employing metamaterials. The proposed procedure together with an invasive weed optimization algorithm is used to design carpet cloaks based on quasi-isotropic metamaterial structures, Teflon and AN-73. According to the simulation results, the proposed cloaks have good invisibility properties against radar, especially monostatic radar. The procedure is a new method to derive isotropic and homogeneous parameters from transformation optics formulas so we do not need to use complicated structures to fabricate the carpet cloaks.
Highly Accurate Beam Torsion Solutions Using the p-Version Finite Element Method
NASA Technical Reports Server (NTRS)
Smith, James P.
1996-01-01
A new treatment of the classical beam torsion boundary value problem is applied. Using the p-version finite element method with shape functions based on Legendre polynomials, torsion solutions for generic cross-sections comprised of isotropic materials are developed. Element shape functions for quadrilateral and triangular elements are discussed, and numerical examples are provided.
Non-tracking solar energy collector system
NASA Technical Reports Server (NTRS)
Selcuk, M. K. (Inventor)
1978-01-01
A solar energy collector system is described characterized by an improved concentrator for directing incident rays of solar energy on parallel strip-like segments of a flatplate receiver. Individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration supported for independent orientation are asymmetric included with vee-trough concentrators for deflecting incident solar energy toward the receiver.
Permanent magnet design for high-speed superconducting bearings
Hull, J.R.; Uherka, K.L.; Abdoud, R.G.
1996-09-10
A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure is disclosed. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing. 9 figs.
Calculating Second-Order Effects in MOSFET's
NASA Technical Reports Server (NTRS)
Benumof, Reuben; Zoutendyk, John A.; Coss, James R.
1990-01-01
Collection of mathematical models includes second-order effects in n-channel, enhancement-mode, metal-oxide-semiconductor field-effect transistors (MOSFET's). When dimensions of circuit elements relatively large, effects neglected safely. However, as very-large-scale integration of microelectronic circuits leads to MOSFET's shorter or narrower than 2 micrometer, effects become significant in design and operation. Such computer programs as widely-used "Simulation Program With Integrated Circuit Emphasis, Version 2" (SPICE 2) include many of these effects. In second-order models of n-channel, enhancement-mode MOSFET, first-order gate-depletion region diminished by triangular-cross-section deletions on end and augmented by circular-wedge-cross-section bulges on sides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jean-Marc Laget
Exclusive reactions induced at high momentum transfer in few body systems allow to adjust the formation time of the produced particles to the distance between two nucleons in the target. They are the best windows to study the propagation of exotic configurations of hadrons such as for instance the onset of color transparency. It may appear earlier in meson photo-production reactions, in the strange sector more particularly, than in more classical quasi elastic scattering of electrons. More generally, those reactions provide them with the best tool to determine the cross section of the scattering of various hadrons (strange particles, vectormore » mesons) with nucleon, to better understand the mechanisms of their formation in cold hadronic matter, and to access the production of possible exotic states. At the top of the unitary rescattering peak (triangular logarithmic singularity), the reaction amplitude is on solid ground since it depends only on on-shell elementary amplitudes and on low momentum components of the nuclear wave function.« less
Summary Technical Report of Division 6, NDRC. Volume 20. Fluid Dynamics
1946-01-01
nest of axial channels 10H in. long and of triangular cross section, 1 in. on a side. This design is very easy to build out of light galvanised iron...transmission. To assist in this matter, two corrugated galvanised steel storage tanks were provided for the dean water. Each is 14 ft in diameter by 19 ft
NASA Technical Reports Server (NTRS)
Abada, Christopher H.; Farley, Gary L.; Hyer, Michael W.
2006-01-01
A computer-based parametric study of the effect of reinforcement architectures on fracture response of aluminum compact-tension (CT) specimens is performed. Eleven different reinforcement architectures consisting of rectangular and triangular cross-section reinforcements were evaluated. Reinforced specimens produced between 13 and 28 percent higher fracture load than achieved with the non-reinforced case. Reinforcements with blunt leading edges (rectangular reinforcements) exhibited superior performance relative to the triangular reinforcements with sharp leading edges. Relative to the rectangular reinforcements, the most important architectural feature was reinforcement thickness. At failure, the reinforcements carried between 58 and 85 percent of the load applied to the specimen, suggesting that there is considerable load transfer between the base material and the reinforcement.
New model for burnout prediction in channels of various cross-section
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobkov, V.P.; Kozina, N.V.; Vinogrado, V.N.
1995-09-01
The model developed to predict a critical heat flux (CHF) in various channels is presented together with the results of data analysis. A model is the realization of relative method of CHF describing based on the data for round tube and on the system of correction factors. The results of data description presented here are for rectangular and triangular channels, annuli and rod bundles.
Noncircular Cross Sections Could Enhance Mixing in Sprays
NASA Technical Reports Server (NTRS)
Bellan, Josette; Abdel-Hameed, Hesham
2003-01-01
A computational study has shown that by injecting drops in jets of gas having square, elliptical, triangular, or other noncircular injection cross sections, it should be possible to increase (relative to comparable situations having circular cross section) the entrainment and dispersion of liquid drops. This finding has practical significance for a variety of applications in which it is desirable to increase dispersion of drops. For example, in chemical-process sprays, increased dispersion leads to increases in chemical- reaction rates; in diesel engines, increasing the dispersion of drops of sprayed fuel reduces the production of soot; and in household and paint sprays, increasing the dispersion of drops makes it possible to cover larger surfaces. It has been known for some years that single-phase fluid jets that enter flow fields through noncircular inlets entrain more fluid than do comparable jets entering through circular inlets. The computational study reported here was directed in part toward determining whether and how this superior mixing characteristic of noncircular single phase jets translates to a similar benefit in cases of two-phase jets (that is, sprays). The study involved direct numerical simulations of single- and two-phase free jets with circular, elliptical, rectangular, square, and triangular inlet cross sections. The two-phase jets consisted of gas laden with liquid drops randomly injected at the inlets. To address the more interesting case of evaporating drops, the carrier gas in the jets was specified to be initially unvitiated by the vapor of the liquid chemical species and the initial temperature of the drops was chosen to be smaller than that of the gas. The mathematical model used in the study was constructed from the conservation equations for the two-phase flow and included complete couplings of mass, momentum, and energy based on thermodynamically self-consistent specification of the enthalpy, internal energy, and latent heat of vaporization of the vapor.
Automated Cross-Sectional Measurement Method of Intracranial Dural Venous Sinuses.
Lublinsky, S; Friedman, A; Kesler, A; Zur, D; Anconina, R; Shelef, I
2016-03-01
MRV is an important blood vessel imaging and diagnostic tool for the evaluation of stenosis, occlusions, or aneurysms. However, an accurate image-processing tool for vessel comparison is unavailable. The purpose of this study was to develop and test an automated technique for vessel cross-sectional analysis. An algorithm for vessel cross-sectional analysis was developed that included 7 main steps: 1) image registration, 2) masking, 3) segmentation, 4) skeletonization, 5) cross-sectional planes, 6) clustering, and 7) cross-sectional analysis. Phantom models were used to validate the technique. The method was also tested on a control subject and a patient with idiopathic intracranial hypertension (4 large sinuses tested: right and left transverse sinuses, superior sagittal sinus, and straight sinus). The cross-sectional area and shape measurements were evaluated before and after lumbar puncture in patients with idiopathic intracranial hypertension. The vessel-analysis algorithm had a high degree of stability with <3% of cross-sections manually corrected. All investigated principal cranial blood sinuses had a significant cross-sectional area increase after lumbar puncture (P ≤ .05). The average triangularity of the transverse sinuses was increased, and the mean circularity of the sinuses was decreased by 6% ± 12% after lumbar puncture. Comparison of phantom and real data showed that all computed errors were <1 voxel unit, which confirmed that the method provided a very accurate solution. In this article, we present a novel automated imaging method for cross-sectional vessels analysis. The method can provide an efficient quantitative detection of abnormalities in the dural sinuses. © 2016 by American Journal of Neuroradiology.
Lungu, Cristina; Stănescu, Irina; Cojocaru, Sabina Ioana; Ciobanu, C; Ivănescu, Bianca; Miron, Anca
2015-01-01
This study aimed to investigate the histo-anatomical features of the long shoots and leaves (young and mature) of Pinus cembra L.. The activity of antioxidant enzymatic systems and the content of heavy metals were also evaluated. For the histo-anatomical study, the cross-sections were performed by usual techniques. The activity of antioxidant enzymatic systems (superoxide dismutase, catalase and peroxidase) was evaluated by spectrophotometric methods. The content of heavy metals was determined by atomic absorption spectroscopy. The cross-section through the long shoots shows many resiniferous canals and a periderm of variable thickness. The leaf has a triangular shape and only two vascular bundles in the inferior and upper levels. The highest level of superoxide dismutase activity (344.90 U/mg protein) was determined in the long shoots collected from a cembran pine in Vatra Dornei, while the highest level of peroxidase activity (7611.11 U/mg protein) was found in the leaves collected in Calimani Mountains. Cd level in all samples was under the quantification limit. Higher levels of Pb were determined in the long shoots (3 μg/g dry weight for the vegetal material collected in Vatra Dornei and 2.86 μg/g dry weight for the vegetal material collected in Calimani Mountains). Pinus cembra L. leaves show specific elements of subgenus Strobus (a triangular shape of the cross section, one single vascular bundle and two resiniferous canals). The results obtained for the superoxide dismutase and peroxidase activities corroborated with those obtained for the heavy metal contents indicate that antioxidant enzymes play an important role in the protection of Pinus cembra L. against exogenous stress factors.
GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy
Lin, Yong; Leung, Benjamin; Li, Qiming; ...
2015-07-14
In this study, ammonia-based molecular beam epitaxy (NH 3-MBE) was used to grow catalyst-assisted GaN nanowires on (11¯02) r-plane sapphire substrates. Dislocation free [112¯0] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar {101¯0} side facets, which appear due to a decrease in relative growth rate of the {101¯0} facets to the {101¯1} and {101¯1} facets under the growth regime in NH 3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal–organic chemical vapor deposition, the NH 3-MBE grown GaN nanowires show moremore » than an order of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.« less
Bodies with noncircular cross sections and bank-to-turn missiles
NASA Technical Reports Server (NTRS)
Jackson, C. M., Jr.; Sawyer, W. C.
1986-01-01
An evaluation is made of prospective missile applications for noncircular cross section bodies, and of recent developments in bank-to-turn missile configuration aerodynamics. The discussion encompasses cross-flow analysis techniques, as well as study results obtained for bodies with elliptical and square cross sections and with variable cross sections. Attention is given to both the performance advantages and the stability and control problems of bank-to-turn missile configurations; the aerodynamic data presented for monoplanar configurations extend to those incorporating airbreathing propulsion systems.
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2008-11-01
By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2008-11-19
By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.
Calculation method for laser radar cross sections of rotationally symmetric targets.
Cao, Yunhua; Du, Yongzhi; Bai, Lu; Wu, Zhensen; Li, Haiying; Li, Yanhui
2017-07-01
The laser radar cross section (LRCS) is a key parameter in the study of target scattering characteristics. In this paper, a practical method for calculating LRCSs of rotationally symmetric targets is presented. Monostatic LRCSs for four kinds of rotationally symmetric targets (cone, rotating ellipsoid, super ellipsoid, and blunt cone) are calculated, and the results verify the feasibility of the method. Compared with the results for the triangular patch method, the correctness of the method is verified, and several advantages of the method are highlighted. For instance, the method does not require geometric modeling and patch discretization. The method uses a generatrix model and double integral, and its calculation is concise and accurate. This work provides a theory analysis for the rapid calculation of LRCS for common basic targets.
Majorana states in prismatic core-shell nanowires
NASA Astrophysics Data System (ADS)
Manolescu, Andrei; Sitek, Anna; Osca, Javier; Serra, Llorenç; Gudmundsson, Vidar; Stanescu, Tudor Dan
2017-09-01
We consider core-shell nanowires with conductive shell and insulating core and with polygonal cross section. We investigate the implications of this geometry on Majorana states expected in the presence of proximity-induced superconductivity and an external magnetic field. A typical prismatic nanowire has a hexagonal profile, but square and triangular shapes can also be obtained. The low-energy states are localized at the corners of the cross section, i.e., along the prism edges, and are separated by a gap from higher energy states localized on the sides. The corner localization depends on the details of the shell geometry, i.e., thickness, diameter, and sharpness of the corners. We study systematically the low-energy spectrum of prismatic shells using numerical methods and derive the topological phase diagram as a function of magnetic field and chemical potential for triangular, square, and hexagonal geometries. A strong corner localization enhances the stability of Majorana modes to various perturbations, including the orbital effect of the magnetic field, whereas a weaker localization favorizes orbital effects and reduces the critical magnetic field. The prismatic geometry allows the Majorana zero-energy modes to be accompanied by low-energy states, which we call pseudo Majorana, and which converge to real Majoranas in the limit of small shell thickness. We include the Rashba spin-orbit coupling in a phenomenological manner, assuming a radial electric field across the shell.
A physical optics/equivalent currents model for the RCS of trihedral corner reflectors
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polycarpou, Anastasis C.
1993-01-01
The scattering in the interior regions of both square and triangular trihedral corner reflectors is examined. The theoretical model presented combines geometrical and physical optics (GO and PO), used to account for reflection terms, with equivalent edge currents (EEC), used to account for first-order diffractions from the edges. First-order, second-order, and third-order reflection terms are included. Calculating the first-order reflection terms involves integrating over the entire surface of the illuminated plate. Calculating the second- and third-order reflection terms, however, is much more difficult because the illuminated area is an arbitrary polygon whose shape is dependent upon the incident angles. The method for determining the area of integration is detailed. Extensive comparisons between the high-frequency model, Finite-Difference Time-Domain (FDTD) and experimental data are used for validation of the radar cross section (RCS) of both square and triangular trihedral reflectors.
NASA Astrophysics Data System (ADS)
Ohira, Katsuhide; Kurose, Kizuku; Okuyama, Jun; Saito, Yutaro; Takahashi, Koichi
2017-01-01
Slush fluids such as slush hydrogen and slush nitrogen are characterized by superior properties as functional thermal fluids due to their density and heat of fusion. In addition to allowing efficient hydrogen transport and storage, slush hydrogen can serve as a refrigerant for high-temperature superconducting (HTS) equipment using MgB2, with the potential for synergistic effects. In this study, pressure drop reduction and heat transfer deterioration experiments were performed on slush nitrogen flowing in a horizontal triangular pipe with sides of 20 mm under the conditions of three different cross-sectional orientations. Experimental conditions consisted of flow velocity (0.3-4.2 m/s), solid fraction (0-25 wt.%), and heat flux (0, 10, and 20 kW/m2). Pressure drop reduction became apparent at flow velocities exceeding about 1.3-1.8 m/s, representing a maximum amount of reduction of 16-19% in comparison with liquid nitrogen, regardless of heating. Heat transfer deterioration was seen at flow velocities of over 1.2-1.8 m/s, for a maximum amount of deterioration of 13-16%. The authors of the current study compared the results for pressure drop reduction and heat transfer deterioration in triangular pipe with those obtained previously for circular and square pipes, clarifying differences in flow and heat transfer properties. Also, a correlation equation was obtained between the slush Reynolds number and the pipe friction factor, which is important in the estimation of pressure drop in unheated triangular pipe. Furthermore, a second correlation equation was derived between the modified slush Reynolds number and the pipe friction factor, enabling the integrated prediction of pressure drop in both unheated triangular and circular pipes.
NASA Astrophysics Data System (ADS)
Ferrari, Fabio; Lavagna, Michèle
2018-06-01
The design of formations of spacecraft in a three-body environment represents one of the most promising challenges for future space missions. Two or more cooperating spacecraft can greatly answer some very complex mission goals, not achievable by a single spacecraft. The dynamical properties of a low acceleration environment such as the vicinity of libration points associated to a three-body system, can be effectively exploited to design spacecraft configurations able of satisfying tight relative position and velocity requirements. This work studies the evolution of an uncontrolled formation orbiting in the proximity of periodic orbits about collinear libration points under the Circular and Elliptic Restricted Three-Body Problems. A three spacecraft triangularly-shaped formation is assumed as a representative geometry to be investigated. The study identifies initial configurations that provide good performance in terms of formation keeping, and investigates key parameters that control the relative dynamics between the spacecraft within the three-body system. Formation keeping performance is quantified by monitoring shape and size changes of the triangular formation. The analysis has been performed under five degrees of freedom to define the geometry, the orientation and the location of the triangle in the synodic rotating frame.
NASA Astrophysics Data System (ADS)
Singh, Jagadish; Tyokyaa, Richard K.
2016-10-01
In this paper, we study the locations and stability of triangular points in the elliptic restricted three-body problem when both primaries are taken as oblate spheroids with oblateness up to J4. The positions of the triangular points are seen to be affected by oblateness of the primaries and the eccentricity of their orbits. The triangular points are conditionally stable for 0<μ<μc0<μ<μc and unstable for μc≤μ≤12μc≤μ≤12, where μcμc is the critical mass parameter depending on the oblateness coefficients J2iJ2i (i =1,2) and the eccentricity of the orbits. We further observe that both coefficients J2 and J4, semi-major axis and the eccentricity have destabilizing tendencies resulting in a decrease in the size of the region of stability with an increase in the parameters involved. Knowing that, in general, the triangular equilibrium points are stable for 0<μ<μc0<μ<μc, in particular systems (Alpha Centauri, X1X1 Bootis, Sirius and Kruger 60) this does not hold and such points are unstable.
NASA Technical Reports Server (NTRS)
Chen, C. H. S.
1975-01-01
The derivation is presented of the differential stiffness for triangular solid of revolution elements. The derivation takes into account the element rigid body rotation only, the rotation being about the circumferential axis. Internal pressurization of a pneumatic tire is used to illustrate the application of this feature.
Scattering Cross Section of Sound Waves by the Modal Element Method
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1994-01-01
#he modal element method has been employed to determine the scattered field from a plane acoustic wave impinging on a two dimensional body. In the modal element method, the scattering body is represented by finite elements, which are coupled to an eigenfunction expansion representing the acoustic pressure in the infinite computational domain surrounding the body. The present paper extends the previous work by developing the algorithm necessary to calculate the acoustics scattering cross section by the modal element method. The scattering cross section is the acoustical equivalent to the Radar Cross Section (RCS) in electromagnetic theory. Since the scattering cross section is evaluated at infinite distance from the body, an asymptotic approximation is used in conjunction with the standard modal element method. For validation, the scattering cross section of the rigid circular cylinder is computed for the frequency range 0.1 is less than or equal to ka is less than or equal to 100. Results show excellent agreement with the analytic solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zizin, M. N.; Zimin, V. G.; Zizina, S. N., E-mail: zizin@adis.vver.kiae.ru
2010-12-15
The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit ofmore » the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.« less
NASA Astrophysics Data System (ADS)
Zizin, M. N.; Zimin, V. G.; Zizina, S. N.; Kryakvin, L. V.; Pitilimov, V. A.; Tereshonok, V. A.
2010-12-01
The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit of the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.
A scaling law for accretion zone sizes
NASA Technical Reports Server (NTRS)
Greenzweig, Yuval; Lissauer, Jack J.
1987-01-01
Current theories of runaway planetary accretion require small random velocities of the accreted particles. Two body gravitational accretion cross sections which ignore tidal perturbations of the Sun are not valid for the slow encounters which occur at low relative velocities. Wetherill and Cox have studied accretion cross sections for rocky protoplanets orbiting at 1 AU. Using analytic methods based on Hill's lunar theory, one can scale these results for protoplanets that occupy the same fraction of their Hill sphere as does a rocky body at 1 AU. Generalization to bodies of different sizes is achieved here by numerical integrations of the three-body problem. Starting at initial positions far from the accreting body, test particles are allowed to encounter the body once, and the cross section is computed. A power law is found relating the cross section to the radius of the accreting body (of fixed mass).
NASA Astrophysics Data System (ADS)
Narayan, A.; Singh, Nutan
2014-10-01
This paper studies the stability of Triangular Lagrangian points in the model of elliptical restricted three body problem, under the assumption that both the primaries are radiating. The model proposed is applicable to the well known binary systems Achird, Luyten, αCen AB, Kruger-60, Xi-Bootis. Conditional stability of the motion around the triangular points exists for 0≤ μ≤ μ ∗, where μ is the mass ratio. The method of averaging due to Grebenikov has been exploited throughout the analysis of stability of the system. The critical mass ratio depends on the combined effects of radiation of both the primaries and eccentricity of this orbit. It is found by adopting the simulation technique that the range of stability decreases as the radiation pressure parameter increases.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Acquisition of parent stock for property in triangular reorganizations (temporary). 1.367(b)-14T Section 1.367(b)-14T Internal Revenue INTERNAL REVENUE... § 1.367(b)-14T Acquisition of parent stock for property in triangular reorganizations (temporary). (a...
Quantitative imaging biomarkers for dural sinus patterns in idiopathic intracranial hypertension.
Zur, Dinah; Anconina, Reut; Kesler, Anat; Lublinsky, Svetlana; Toledano, Ronen; Shelef, Ilan
2017-02-01
To quantitatively characterize transverse dural sinuses (TS) on magnetic resonance venography (MRV) in patients with idiopathic intracranial hypertension (IIH), compared to healthy controls, using a computer assisted detection (CAD) method. We retrospectively analyzed MRV studies of 38 IIH patients and 30 controls, matched by age and gender. Data analysis was performed using a specially developed Matlab algorithm for vessel cross-sectional analysis. The cross-sectional area and shape measurements were evaluated in patients and controls. Mean, minimal, and maximal cross-sectional areas as well as volumetric parameters of the right and left transverse sinuses were significantly smaller in IIH patients than in controls ( p < .005 for all). Idiopathic intracranial hypertension patients showed a narrowed segment in both TS, clustering near the junction with the sigmoid sinus. In 36% (right TS) and 43% (left TS), the stenosis extended to >50% of the entire length of the TS, i.e. the TS was hypoplastic. Narrower vessels tended to have a more triangular shape than did wider vessels. Using CAD we precisely quantified TS stenosis and its severity in IIH patients by cross-sectional and volumetric analysis. This method can be used as an exact tool for investigating mechanisms of IIH development and response to treatment.
Relation between the chord length distribution of an infinitely long cylinder and that of its base
NASA Astrophysics Data System (ADS)
Sukiasian, H. S.; Gille, Wilfried
2007-05-01
Chord length distributions are defined for planar and spatial geometric figures. There exist connections between the planar and the spatial cases: The chord length distribution densities (CLDs) of a cylinder B and its base S (the cylinder's orthogonal cross section) are interrelated by a simple, surveyable integral transformation. From this transformation, it was concluded that the odd moments of the CLD f(x ) of S define the leading asymptotic terms of the CLD Aμ(r) of B. The power series of Aμ(r) at r =0 can be traced back to the derivatives of f(x ) in the origin. As a general conclusion, there exist different geometric bodies B in R3 with the same CLD Aμ(r). An exact recognition of B via its CLD is not possible. CLDs do not characterize spatial sets. This result is of importance in materials science in order to avoid wrong interpretations in structure research. The new CLD integral transformation has been illustrated in connection with the transitions triangle→triangular rod and rectangle→rectangular rod.
Proton-Nucleus Elastic Cross Sections Using Two-Body In-Medium Scattering Amplitudes
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.
2001-01-01
Recently, a method was developed of extracting nucleon-nucleon (NN) cross sections in the medium directly from experiment. The in-medium NN cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. The ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium NN cross sections to calculate elastic proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.
1978-02-28
of type I). 2.6 (1,5) Interference factor 2.7 (1,6) Number of bodies of type I 2.8 (1,7)* Maximum cross -sectional area 2.9 (1,8...height, cross -sectional area, etc. listed for each body type describes a single body. The total number of bodies of each type must also be specified even...71+1) (1,6) Number of bodies of Type I (78+1) (1,7)** Maximum cross -sectional area (85+1) (1,8) Base atreamtube area (92+1) (119) Nose length
Bodies with noncircular cross sections and bank-to-turn missiles
NASA Technical Reports Server (NTRS)
Jackson, C. M., Jr.; Sawyer, W. C.
1992-01-01
A development status evaluation is presented for the aerodynamics of missile configurations with noncircular cross-sections and bank-to-turn maneuvering systems, giving attention to cases with elliptical and square cross-sections, as well as bodies with variable cross-sections. The assessment of bank-to-turn missile performance notes inherent stability/control problems. A summary and index are provided for aerodynamic data on monoplanar configurations, including those which incorporate airbreathing propulsion systems.
Linking laser scanning to snowpack modeling: Data processing and visualization
NASA Astrophysics Data System (ADS)
Teufelsbauer, H.
2009-07-01
SnowSim is a newly developed physical snowpack model that can use three-dimensional terrestrial laser scanning data to generate model domains. This greatly simplifies the input and numerical simulation of snow covers in complex terrains. The program can model two-dimensional cross sections of general slopes, with complicated snow distributions. The model predicts temperature distributions and snow settlements in this cross section. Thus, the model can be used for a wide range of problems in snow science and engineering, including numerical investigations of avalanche formation. The governing partial differential equations are solved by means of the finite element method, using triangular elements. All essential data for defining the boundary conditions and evaluating the simulation results are gathered by automatic weather and snow measurement sites. This work focuses on the treatment of these measurements and the simulation results, and presents a pre- and post-processing graphical user interface (GUI) programmed in Matlab.
Calculation of turbulence-driven secondary motion in ducts with arbitrary cross section
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1989-01-01
Calculation methods for turbulent duct flows are generalized for ducts with arbitrary cross-sections. The irregular physical geometry is transformed into a regular one in computational space, and the flow equations are solved with a finite-volume numerical procedure. The turbulent stresses are calculated with an algebraic stress model derived by simplifying model transport equations for the individual Reynolds stresses. Two variants of such a model are considered. These procedures enable the prediction of both the turbulence-driven secondary flow and the anisotropy of the Reynolds stresses, in contrast to some of the earlier calculation methods. Model predictions are compared to experimental data for developed flow in triangular duct, trapezoidal duct and a rod-bundle geometry. The correct trends are predicted, and the quantitative agreement is mostly fair. The simpler variant of the algebraic stress model procured better agreement with the measured data.
Low-frequency scattering from cylindrical structures at oblique incidence
NASA Technical Reports Server (NTRS)
Sarabandi, Kamal; Senior, Thomas B. A.
1990-01-01
Classical Rayleigh scattering theory is extended to the case of a homogeneous dielectric cylinder of arbitrary cross section whose transverse dimensions are much smaller than the wavelength. By assuming that the surface fields can be approximated by those of the infinite cylinder, the far zone scattered field is expressed in terms of polarizability tensors, whose properties are discussed. Numerical results are presented for circular, semicircular, triangular, and square cylinders. The results are applicable to the remote sensing of twigs, stalks, and vegetation needles at centimeter and millimeter wavelengths.
Space fabrication: Graphite composite truss welding and cap forming subsystems
NASA Technical Reports Server (NTRS)
Jenkins, L. M.; Browning, D. L.
1980-01-01
An automated beam builder for the fabrication of space structures is described. The beam builder forms a triangular truss 1.3 meters on a side. Flat strips of preconsolidated graphite fiber fabric in a polysulfone matrix are coiled in a storage canister. Heaters raise the material to forming temperature then the structural cap section is formed by a series of rollers. After cooling, cross members and diagonal tension cords are ultrasonically welded in place to complete the truss. The stability of fabricated structures and composite materials is also examined.
Triangular Resection of the Upper Lateral Cartilage for Middle Vault Deviation.
Ryu, Gwanghui; Seo, Min Young; Lee, Kyung Eun; Hong, Sang Duk; Chung, Seung-Kyu; Dhong, Hun-Jong; Kim, Hyo Yeol
2018-06-02
Middle vault deviation has a significant effect on the aesthetic and functional aspects of the nose, and its management continues to be a challenge. Spreader graft and its modification techniques have been focused, but there has been scarce consideration for removing surplus portion and balancing the upper lateral cartilage (ULC). This study aimed to report the newly invented triangular-shaped resection technique ("triangular resection") of the ULC and to evaluate its efficacy for correcting middle vault deviation. A retrospective study included 17 consecutive patients who presented with middle vault deviation and underwent septorhinoplasty by using triangular resection at a tertiary academic hospital from February 2014 and March 2016. Their outcomes were evaluated pre- and postoperatively including medical photographs, acoustic rhinometry and subjective nasal obstruction using a 7-point Likert scale. The immediate outcomes were evaluated around 1 month after surgery, and long-term outcomes were available in 12 patients; the mean follow-up period was 9.1 months. Nasal tip deviation angle was reduced from 5.66º to 2.37º immediately (P<0.001). Middle vault deviation also improved from 169.50º to 177.24º (P<0.001). Long-term results were 2.49º (P=0.015) for nasal tip deviation and 178.68º (P=0.002) for middle vault deviation. The aesthetic outcome involved a complete correction in eight patients (47.1%), a minimally visible deviation in seven patients (41.2%) and a remaining residual deviation in two patients (11.8%). Pre- and postoperative minimal cross-sectional areas (summation of the right and left sides) were 0.86 and 1.07, respectively (P=0.021). Fifteen patients answered about their nasal obstruction symptoms and the median symptom score had alleviated from 6.0 to 3.0 (P=0.004). Triangular resection of the ULC is a simple and effective method for correcting middle vault deviation and balancing the ULCs without complications as internal nasal valve narrowing.
Dynamic axial crushing of bitubular tubes with curvy polygonal inner-tube sections
NASA Astrophysics Data System (ADS)
Ahmed, Naveed; Xue, Pu; Zafar, Naeem
Bitubular structural configurations, where the outer tube is circular, square and curvy square in shape while the inner-tube section is curvy triangular, square and hexagonal in different proposed configurations, are numerically crushed under dynamic axial loading. The crashworthiness effectiveness for changing inner-tube polygonal cross-section for each of the outer tube sections is studied and compared with changing outer tube shape. The deformation plots and energy absorption (EA) parameters such as peak crushing force (PCF) mean crushing force (MCF), energy absorption and crush force efficiency for each case are evaluated. Most of the configurations showed ovalization with low PCF and MCF and moderate crush force efficiency. Afterwards, effects of L/D and t/R on deformation modes and EA are demonstrated by selecting one of the configurations from each group using published experimental results.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Nelson, E. R.
1975-01-01
An experimental investigation was conducted to measure the static aerodynamic characteristics for two bodies of elliptic cross section and for their equivalent body of revolution. The equivalent body of revolution had the same length and axial distribution of cross-sectional area as the elliptic bodies. It consisted of a tangent ogive nose of fineness ratio 3 followed by a cylinder with a fineness ratio of 7. All bodies were tested at Mach numbers of 0.6, 0.9, 1.2, 1.5, and 2.0 at angles of attack from 0 deg to 58 deg. The data demonstrate that the aerodynamic characteristics can be significantly altered by changing the body cross section from circular to elliptic and by rolling the body from 0 deg to 90 deg. For example, the first elliptic body (with a constant cross-sectional axis ratio of 2) developed at zero roll about twice the normal force developed by the equivalent body of revolution. At some angles of attack greater than about 25 deg, side forces and yawing moments were measured in spite of the fact that the bodies were tested at zero angle of sideslip. The side-force and yawing-moment coefficients decreased with an increase in Mach number and essentially disappeared for all the bodies at Mach numbers greater than 1.2. From the standpoint of reducing undesirable side forces at high angles of attack, it is best to have the flattest side of the nose of the elliptic bodies pitching against the stream crossflow. The effect of Reynolds number was also the least significant for both elliptic bodies when the flattest side of the nose was pitched against the stream crossflow.
Improved Neutronics Treatment of Burnable Poisons for the Prismatic HTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. Wang; A. A. Bingham; J. Ortensi
2012-10-01
In prismatic block High Temperature Reactors (HTR), highly absorbing material such a burnable poison (BP) cause local flux depressions and large gradients in the flux across the blocks which can be a challenge to capture accurately with traditional homogenization methods. The purpose of this paper is to quantify the error associated with spatial homogenization, spectral condensation and discretization and to highlight what is needed for improved neutronics treatments of burnable poisons for the prismatic HTR. A new triangular based mesh is designed to separate the BP regions from the fuel assembly. A set of packages including Serpent (Monte Carlo), Xuthosmore » (1storder Sn), Pronghorn (diffusion), INSTANT (Pn) and RattleSnake (2ndorder Sn) is used for this study. The results from the deterministic calculations show that the cross sections generated directly in Serpent are not sufficient to accurately reproduce the reference Monte Carlo solution in all cases. The BP treatment produces good results, but this is mainly due to error cancellation. However, the Super Cell (SC) approach yields cross sections that are consistent with cross sections prepared on an “exact” full core calculation. In addition, very good agreement exists between the various deterministic transport and diffusion codes in both eigenvalue and power distributions. Future research will focus on improving the cross sections and quantifying the error cancellation.« less
A Study of the Zero-Lift Drag-Rise Characteristics of Wing-Body Combinations Near the Speed of Sound
NASA Technical Reports Server (NTRS)
Whitcomb, Richard T
1956-01-01
Comparisons have been made of the shock phenomena and drag-rise increments for representative wing and central-body combinations with those for bodies of revolution having the same axial developments of cross-sectional areas normal to the airstream. On the basis of these comparisons, it is concluded that near the speed of sound the zero-lift drag rise of a low-aspect-ratio thin-wing and body combination is primarily dependent on the axial development of the cross-sectional areas normal to the airstream. It follows that the drag rise for any such configuration is approximately the same as that for any other with the same development of cross-sectional areas. Investigations have also been made of representative wing-body combinations with the body so indented that the axial developments of cross-sectional areas for the combinations were the same as that for the original body alone. Such indentations greatly reduced or eliminated the zero-lift drag-rise increments associated with the wings near the speed of sound.
Influence of two different flap designs on the sequelae of mandibular third molar surgery.
Erdogan, Ozgür; Tatlı, Ufuk; Ustün, Yakup; Damlar, Ibrahim
2011-09-01
The aim of this study was to compare the influence of triangular and envelope flaps on trismus, pain, and facial swelling after mandibular third molar surgery. Twenty healthy patients with bilateral, symmetrically impacted mandibular third molars were included in this double-blinded, prospective, cross-over, randomized study. The patients were operated with envelope flap on one side and triangular flap on the other side. Trismus was determined by measuring maximum interincisal opening, and facial swelling was evaluated using a tape measuring method. Pain was determined using visual analog scale (VAS) and recording the number of pain pills taken. The facial swelling measurements and VAS scores were lower in the envelope flap group compared to the triangular flap group. There was no significant difference between the two flap designs in operation time, maximum interincisal opening, and the number of analgesics taken. Envelope flap yields to less facial swelling and reduced VAS scores in comparison to triangular flap. There is no clinical difference in trismus between the two flap designs. Despite the higher VAS scores with triangular flap, no additional doses of analgesics were required in triangular flap.
At grade optical crossover for monolithic optial circuits
NASA Technical Reports Server (NTRS)
Jamieson, Robert S. (Inventor)
1983-01-01
Planar optical circuits may be made to cross through each other, (thus eliminating extra steps required to fabricate elevated, nonintersecting crossovers) by control of the dimensions of the crossing light conductors (10, 12) to be significantly greater than d=0.89.lambda. and the angle of crossing as nearly 90.degree. as conveniently possible. A light trap may be provided just ahead of the intersection to trap any light being reflected in the source conductor at angles greater than about 45.degree.. The light trap may take the form of triangular shaped portions (16a, 16b) on each side of the source conductor with the far side of the triangular portion receiving incident light at an angle so that incident light will be reflected to the other side, or it may take the form of windows (18a, 18b) in place of the triangular portions. Planar optical circuit boards (21-23) may be fabricated and stacked to form a keyboard (20) with intersecting conductors (26-29) and keyholes (0-9) where conductors merge at the broad side of the circuit boards. These keyholes may be prearranged to form an array or matrix of keyholes.
Osawa, Atsushi; Miwa, Kenta; Wagatsuma, Kei; Takiguchi, Tomohiro; Tamura, Shintaro; Akimoto, Kenta
2012-01-01
The image quality in (18)FDG PET/CT often degrades as the body size increases. The purpose of this study was to evaluate the relationship between image quality and the body size using original phantoms of variable cross-sectional areas in PET/CT. We produced five water phantoms with different cross-sectional areas. The long axis of phantom was 925 mm, and the cross-sectional area was from 324 to 1189 cm(2). These phantoms with the sphere (diameter 10 mm) were filled with (18)F-FDG solution. The radioactivity concentration of background in the phantom was 1.37, 2.73, 4.09 and 5.46 kBq/mL. The scanning duration was 30 min in list mode acquisition for each measurement. Background variability (N(10 mm)), noise equivalent count rates (NECR(phantom)), hot sphere contrast (Q(H,10 mm)) as physical evaluation and visual score of sphere detection were measured, respectively. The relationship between image quality and the various cross-sectional areas was also analyzed under the above-mentioned conditions. As cross-sectional area increased, NECR(phantom) progressively decreased. Furthermore, as cross-sectional area increased, N(10 mm) increased and Q(H,10 mm) decreased. Image quality became degraded as body weight increased because noise and contrast contributed to image quality. The visual score of sphere detection deteriorated in high background radioactivity concentration because a false positive detection in cross-sectional area of the phantom increased. However, additional increases in scanning periods could improve the visual score. We assessed tendencies in the relationship between image quality and body size in PET/CT. Our results showed that time adjustment was more effective than dose adjustment for stable image quality of heavier patients in terms of the large cross-sectional area.
Inclusive neutrino scattering off the deuteron from threshold to GeV energies
NASA Astrophysics Data System (ADS)
Shen, G.; Marcucci, L. E.; Carlson, J.; Gandolfi, S.; Schiavilla, R.
2012-09-01
Background: Neutrino-nucleus quasi-elastic scattering is crucial to interpret the neutrino oscillation results in long baseline neutrino experiments. There are rather large uncertainties in the cross section, due to insufficient knowledge on the role of two-body weak currents.Purpose: Determine the role of two-body weak currents in neutrino-deuteron quasi-elastic scattering up to GeV energies.Methods: Calculate cross sections for inclusive neutrino scattering off deuteron induced by neutral and charge-changing weak currents, from threshold up to GeV energies, using the Argonne v18 potential and consistent nuclear electroweak currents with one- and two-body terms.Results: Two-body contributions are found to be small, and increase the cross sections obtained with one-body currents by less than 10% over the whole range of energies. Total cross sections obtained by describing the final two-nucleon states with plane waves differ negligibly, for neutrino energies ≳ MeV, from those in which interaction effects in these states are fully accounted for. The sensitivity of the calculated cross sections to different models for the two-nucleon potential and/or two-body terms in the weak current is found to be weak. Comparing cross sections to those obtained in a naive model in which the deuteron is taken to consist of a free proton and neutron at rest, nuclear structure effects are illustrated to be non-negligible.Conclusion: Contributions of two-body currents in neutrino-deuteron quasi-elastic scattering up to GeV are found to be smaller than 10%. Finally, it should be stressed that the results reported in this work do not include pion production channels.
Miniature electrical connector
Casper, Robert F.
1976-01-01
A miniature coaxial cable electrical connector includes an annular compressible gasket in a receptacle member, the gasket having a generally triangular cross section resiliently engaging and encircling a conically tapered outer surface of a plug member to create an elongated current leakage path at their interface; means for preventing rotation of the plug relative to the receptacle; a metal sleeve forming a portion of the receptacle and encircling the plug member when interconnected; and a split ring in the plug having outwardly and rearwardly projecting fingers spaced from and encircling a portion of a coaxial cable and engageable with the metal sleeve to interlock the receptacle and plug.
Wide band cryogenic ultra-high vacuum microwave absorber
Campisi, I.E.
1992-05-12
An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.
Wide band cryogenic ultra-high vacuum microwave absorber
Campisi, Isidoro E.
1992-01-01
An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.
Slender body theory programmed for bodies with arbitrary cross section. [including fuselages
NASA Technical Reports Server (NTRS)
Werner, J.; Krenkel, A. R.
1978-01-01
A computer program developed for determining the subsonic pressure, force, and moment coefficients for a fuselage-type body using slender body theory is described. The program is suitable for determining the angle of attack and sideslipping characteristics of such bodies in the linear range where viscous effects are not predominant. Procedures developed which are capable of treating cross sections with corners or regions of large curvature are outlined.
Total Internal Reflection Accounts for the Bright Color of the Saharan Silver Ant
Aron, Serge
2016-01-01
The Saharan silver ant Cataglyphis bombycina is one of the terrestrial living organisms best adapted to tolerate high temperatures. It has recently been shown that the hairs covering the ant’s dorsal body part are responsible for its silvery appearance. The hairs have a triangular cross-section with two corrugated surfaces allowing a high optical reflection in the visible and near-infrared (NIR) range of the spectrum while maximizing heat emissivity in the mid-infrared (MIR). Those two effects account for remarkable thermoregulatory properties, enabling the ant to maintain a lower thermal steady state and to cope with the high temperature of its natural habitat. In this paper, we further investigate how geometrical optical and high reflection properties account for the bright silver color of C. bombycina. Using optical ray-tracing models and attenuated total reflection (ATR) experiments, we show that, for a large range of incidence angles, total internal reflection (TIR) conditions are satisfied on the basal face of each hair for light entering and exiting through its upper faces. The reflection properties of the hairs are further enhanced by the presence of the corrugated surface, giving them an almost total specular reflectance for most incidence angles. We also show that hairs provide an almost 10-fold increase in light reflection, and we confirm experimentally that they are responsible for a lower internal body temperature under incident sunlight. Overall, this study improves our understanding of the optical mechanisms responsible for the silver color of C. bombycina and the remarkable thermoregulatory properties of the hair coat covering the ant’s body. PMID:27073923
Prediction of vortex shedding from circular and noncircular bodies in supersonic flow
NASA Technical Reports Server (NTRS)
Mendenhall, M. R.; Perkins, S. C., Jr.
1984-01-01
An engineering prediction method and associated computer code NOZVTX to predict nose vortex shedding from circular and noncircular bodies in supersonic flow at angles of attack and roll are presented. The body is represented by either a supersonic panel method for noncircular cross sections or line sources and doublets for circular cross sections, and the lee side vortex wake is modeled by discrete vortices in crossflow planes. The three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics is presented for bodies with circular and noncircular cross-sectional shapes.
NASA Astrophysics Data System (ADS)
Breden, Maxime; Castelli, Roberto
2018-05-01
In this paper, we present and apply a computer-assisted method to study steady states of a triangular cross-diffusion system. Our approach consist in an a posteriori validation procedure, that is based on using a fixed point argument around a numerically computed solution, in the spirit of the Newton-Kantorovich theorem. It allows to prove the existence of various non homogeneous steady states for different parameter values. In some situations, we obtain as many as 13 coexisting steady states. We also apply the a posteriori validation procedure to study the linear stability of the obtained steady states, proving that many of them are in fact unstable.
Changes in functional construction of bone in rats under conditions of simulated increased gravity.
NASA Technical Reports Server (NTRS)
Amtmann, E.; Oyama, J.
1973-01-01
An investigation was conducted to determine experimentally whether femur bones are altered in cross-sectional area or cross-sectional shape by chronic centrifugation at different G-levels in conformance to Wolff's law. It was found that the centrifuged animals exhibit on the average smaller body masses, femur lengths and femur cross sections, as compared to their corresponding age controls. The mean inhibitory effect of chronic centrifugation upon body and femur growth can be measured in a shortcut approximation by calculating the decrease of body masses and femoral dimensions on a percentage basis.
Surface fitting three-dimensional bodies
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1974-01-01
The geometry of general three-dimensional bodies is generated from coordinates of points in several cross sections. Since these points may not be smooth, they are divided into segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction by fitting parametric cubic-spline curves through coordinate points which define the conic sections in the cross-sectional planes. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines and slopes at selected points. Slopes may be continuous or discontinuous and finite or infinite. After a satisfactory surface fit has been obtained, cards may be punched with the data necessary to form a geometry subroutine package for use in other computer programs. At any position on the body, coordinates, slopes and second partial derivatives are calculated. The method is applied to a blunted 70 deg delta wing, and it was found to generate the geometry very well.
The application of some lifting-body reentry concepts to missile design
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1985-01-01
The aerodynamic characteristics of some lifting-body concepts are examined with a view to the applicability of such concepts to the design of missiles. A considerable amount of research has been done in past years with vehicle concepts suitable for manned atmospheric-entry and atmospheric flight. Some of the concepts appear to offer some novel design approaches for missiles for a variety of missions and flight profiles, including long-range orbital/reentry with transatmospheric operation for strategic penetration, low altitude penetration, and battlefield tactical. The concepts considered include right triangular pyramidal configurations, a lenticular configuration, and various 75-degree triangular planform configurations with variations in body camber and control systems. The aerodynamic features are emphasized but some observations are also made relative to other factors such as heat transfer, structures, carriage, observability, propulsion, and volumetric efficiency.
Enhanced performance of microfluidic soft pressure sensors with embedded solid microspheres
NASA Astrophysics Data System (ADS)
Shin, Hee-Sup; Ryu, Jaiyoung; Majidi, Carmel; Park, Yong-Lae
2016-02-01
The cross-sectional geometry of an embedded microchannel influences the electromechanical response of a soft microfluidic sensor to applied surface pressure. When a pressure is exerted on the surface of the sensor deforming the soft structure, the cross-sectional area of the embedded channel filled with a conductive fluid decreases, increasing the channel’s electrical resistance. This electromechanical coupling can be tuned by adding solid microspheres into the channel. In order to determine the influence of microspheres, we use both analytic and computational methods to predict the pressure responses of soft microfluidic sensors with two different channel cross-sections: a square and an equilateral triangular. The analytical models were derived from contact mechanics in which microspheres were regarded as spherical indenters, and finite element analysis (FEA) was used for simulation. For experimental validation, sensor samples with the two different channel cross-sections were prepared and tested. For comparison, the sensor samples were tested both with and without microspheres. All three results from the analytical models, the FEA simulations, and the experiments showed reasonable agreement confirming that the multi-material soft structure significantly improved its pressure response in terms of both linearity and sensitivity. The embedded solid particles enhanced the performance of soft sensors while maintaining their flexible and stretchable mechanical characteristic. We also provide analytical and experimental analyses of hysteresis of microfluidic soft sensors considering a resistive force to the shape recovery of the polymer structure by the embedded viscous fluid.
NASA Astrophysics Data System (ADS)
Starnoni, Michele; Pokrajac, Dubravka
2018-01-01
Snap-off is a pore-scale mechanism occurring in porous media in which a bubble of non-wetting phase displacing a wetting phase, and vice-versa, can break-up into ganglia when passing through a constriction. This mechanism is very important in foam generation processes, enhanced oil recovery techniques and capillary trapping of CO2 during its geological storage. In the present study, the effects of contact angle and viscosity ratio on the dynamics of snap-off are examined by simulating drainage in a single pore-throat constriction of variable cross-section, and for different pore-throat geometries. To model the flow, we developed a CFD code based on the Finite Volume method. The Volume-of-fluid method is used to track the interfaces. Results show that the threshold contact angle for snap-off, i.e. snap-off occurs only for contact angles smaller than the threshold, increases from a value of 28° for a circular cross-section to 30-34° for a square cross-section and up to 40° for a triangular one. For a throat of square cross-section, increasing the viscosity of the injected phase results in a drop in the threshold contact angle from a value of 30° when the viscosity ratio μ bar is equal to 1 to 26° when μ bar = 20 and down to 24° when μ bar = 20 .
Medium modified two-body scattering amplitude from proton-nucleus total cross-sections
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.
2001-01-01
Recently (R.K. Tripathi, J.W. Wilson, F.A. Cucinotta, Nucl. Instr. and Meth. B 145 (1998) 277; R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, NASA-TP-1998-208438), we have extracted nucleon-nucleon (N-N) cross-sections in the medium directly from experiment. The in-medium N-N cross-sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the NASA Langley Research Center. Here, we investigate the ratio of real to imaginary part of the two-body scattering amplitude in the medium. These ratios are used in combination with the in-medium N-N cross-sections to calculate total proton-nucleus cross-sections. The agreement is excellent with the available experimental data. These cross-sections are needed for the radiation risk assessment of space missions. c2001 Elsevier Science B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Boyd, John W
1951-01-01
The results of an experimental investigation of the load distribution over two triangular wings in sideslip at Mach numbers from 1.20 to 1.79 are presented and compared with theory. The two wings tested have identical plan form, 45 degrees sweepback of the leading edge, and an aspect ratio of 4.0. One model was composed of round-nose airfoil sections and the other of sharp-nose, biconvex sections. For both wings the maximum thickness of streamwise sections was 6 percent and was located at the 30-percent chord.
Zhang, En-Wei; Cheung, Gary S P; Zheng, Yu-Feng
2010-08-01
The aim of this study was to examine the influence of the cross-sectional configuration and dimensions (size and taper) on the torsional and bending behavior of nickel-titanium rotary instruments, taking into account the nonlinear mechanical properties of material. Ten cross-sectional configurations, square, triangular, U-type, S-type (large and small), convex-triangle, and 4 proprietary ones (Mani NRT and RT2, Quantec, and Mtwo), were analyzed under torsion or bending by using a 3-dimensional finite element method. The von Mises stresses were correlated with the critical values for various phases of the nickel-titanium material. Different loading conditions led to unequal patterns of stress distribution. Increasing the applied torque or bending angle resulted in a rise in the corresponding stresses in the instrument. Favorable stress distribution without dangerous stress concentration was observed if the material was undergoing superelastic transformation at that applied load. The ultimate strength of the material was not exceeded when the instrument was bent up to a 50-degree curvature. On the other hand, when a torsional moment of greater than 1.0 N*mm was applied, the maximum stresses developed in some designs would exceed the ultimate strength of the material. Little variation in the von Mises stresses was observed for instruments of different nominal sizes and tapers on bending to similar extent. The cross-sectional design has a greater impact than taper or size of the instrument on the stresses developed in the instrument under either torsion or bending. Certain cross-sectional configurations are prone to fracture by excess torsional stresses. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Development of a general method for obtaining the geometry of microfluidic networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razavi, Mohammad Sayed, E-mail: m.sayedrazavi@gmail.com; Salimpour, M. R.; Shirani, Ebrahim
2014-01-15
In the present study, a general method for geometry of fluidic networks is developed with emphasis on pressure-driven flows in the microfluidic applications. The design method is based on general features of network's geometry such as cross-sectional area and length of channels. Also, the method is applicable to various cross-sectional shapes such as circular, rectangular, triangular, and trapezoidal cross sections. Using constructal theory, the flow resistance, energy loss and performance of the network are optimized. Also, by this method, practical design strategies for the fabrication of microfluidic networks can be improved. The design method enables rapid prediction of fluid flowmore » in the complex network of channels and is very useful for improving proper miniaturization and integration of microfluidic networks. Minimization of flow resistance of the network of channels leads to universal constants for consecutive cross-sectional areas and lengths. For a Y-shaped network, the optimal ratios of consecutive cross-section areas (A{sub i+1}/A{sub i}) and lengths (L{sub i+1}/L{sub i}) are obtained as A{sub i+1}/A{sub i} = 2{sup −2/3} and L{sub i+1}/L{sub i} = 2{sup −1/3}, respectively. It is shown that energy loss in the network is proportional to the volume of network. It is also seen when the number of channels is increased both the hydraulic resistance and the volume occupied by the network are increased in a similar manner. Furthermore, the method offers that fabrication of multi-depth and multi-width microchannels should be considered as an integral part of designing procedures. Finally, numerical simulations for the fluid flow in the network have been performed and results show very good agreement with analytic results.« less
Bottom-up approach for microstructure optimization of sound absorbing materials.
Perrot, Camille; Chevillotte, Fabien; Panneton, Raymond
2008-08-01
Results from a numerical study examining micro-/macrorelations linking local geometry parameters to sound absorption properties are presented. For a hexagonal structure of solid fibers, the porosity phi, the thermal characteristic length Lambda('), the static viscous permeability k(0), the tortuosity alpha(infinity), the viscous characteristic length Lambda, and the sound absorption coefficient are computed. Numerical solutions of the steady Stokes and electrical equations are employed to provide k(0), alpha(infinity), and Lambda. Hybrid estimates based on direct numerical evaluation of phi, Lambda('), k(0), alpha(infinity), Lambda, and the analytical model derived by Johnson, Allard, and Champoux are used to relate varying (i) throat size, (ii) pore size, and (iii) fibers' cross-section shapes to the sound absorption spectrum. The result of this paper tends to demonstrate the important effect of throat size in the sound absorption level, cell size in the sound absorption frequency selectivity, and fibers' cross-section shape in the porous material weight reduction. In a hexagonal porous structure with solid fibers, the sound absorption level will tend to be maximized with a 48+/-10 microm throat size corresponding to an intermediate resistivity, a 13+/-8 microm fiber radius associated with relatively small interfiber distances, and convex triangular cross-section shape fibers allowing weight reduction.
Material mechanical characterization method for multiple strains and strain rates
Erdmand, III, Donald L.; Kunc, Vlastimil; Simunovic, Srdjan; Wang, Yanli
2016-01-19
A specimen for measuring a material under multiple strains and strain rates. The specimen including a body having first and second ends and a gage region disposed between the first and second ends, wherein the body has a central, longitudinal axis passing through the first and second ends. The gage region includes a first gage section and a second gage section, wherein the first gage section defines a first cross-sectional area that is defined by a first plane that extends through the first gage section and is perpendicular to the central, longitudinal axis. The second gage section defines a second cross-sectional area that is defined by a second plane that extends through the second gage section and is perpendicular to the central, longitudinal axis and wherein the first cross-sectional area is different in size than the second cross-sectional area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, A. P.
2009-06-15
In the referenced paper an analytical approach was introduced, which allows one to demonstrate the instability in linearly stable systems, specifically, in a classical three-body problem. These considerations are disproved here.
Method for changing the cross section of a laser beam
Sweatt, W.C.; Seppala, L.
1995-12-05
A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser. 4 figs.
Method for changing the cross section of a laser beam
Sweatt, William C.; Seppala, Lynn
1995-01-01
A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser.
Effectiveness of spoilers on the GA(W)-1 airfoil with a high performance Fowler flap
NASA Technical Reports Server (NTRS)
Wentz, W. H., Jr.
1975-01-01
Two-dimensional wind-tunnel tests were conducted to determine effectiveness of spoilers applied to the GA(W)-1 airfoil. Tests of several spoiler configurations show adequate control effectiveness with flap nested. It is found that providing a vent path allowing lower surface air to escape to the upper surface as the spoiler opens alleviates control reversal and hysteresis tendencies. Spoiler cross-sectional shape variations generally have a modest influence on control characteristics. A series of comparative tests of vortex generators applied to the (GA-W)-1 airfoil show that triangular planform vortex generators are superior to square planform vortex generators of the same span.
Gellis, A.C.
1998-01-01
Like many areas of the southwestern United States, the Zuni Indian Reservation, New Mexico, has high rates of erosion, ranging from 95 to greater than 1,430 cubic meters per square kilometer per year. Erosion on the Zuni Indian Reservation includes channel erosion (arroyo incision and channel widening) and hillslope (sheetwash) erosion. The U.S. Geological Survey conducted a 3-year (1992-95) study on channel erosion and hillslope erosion in the portion of the Rio Nutria watershed that drains entirely within the Zuni Indian Reservation. Results of the study can be used by the Zuni Tribe to develop a plan for watershed rehabilitation. Channel changes, gully growth, headcuts, and changes in dirt roads over time were examined to characterize and evaluate channel erosion in the Rio Nutria watershed. Channel cross-sectional changes included width, depth, width-to-depth ratio, area, and geometry. Relative rates of gully growth, headcuts, and changes in dirt roads over time were examined using aerial photographs. Results of resurveys conducted between 1992 and 1994 of 85 channel cross sections indicated aggradation of 72 percent of cross sections in three subbasins of the Rio Nutria watershed. Forty-eight percent of resurveyed cross sections showed an increase in cross-sectional area and erosion; nine of these are in tributaries. Some channels (43 percent) aggraded and increased in cross-sectional area. This increase in cross- sectional area is due mostly to widening. Channel widening is a more pervasive form of erosion than channel scour on the Zuni Indian Reservation. The tops of channels widened in 67 percent and the bottoms of channels widened in 44 percent of resurveyed cross sections. Narrow, deep triangular channels are more erosive than rectangular cross sections. Five land-cover types--three sites on mixed-grass pasture, two sites on sites on unchained pi?on and juniper, one site on sagebrush, one site on ponderosa pine, and two sites on chained pi?on and juniper--were each instrumented with sediment traps between 1992 and 1994 to measure hillslope erosion. Highest sediment yields were measured at chained areas and mixed- grass pasture. Annual yields from sites that were operated for more than a year were 11.7, 6.0, and 6.5 metric tons per square kilometer per year at a pi?on and juniper site, mixed-grass pasture site, and sagebrush site, respectively.
Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images.
Liu, Shuang; Xie, Yiting; Reeves, Anthony P
2016-05-01
A fully automated segmentation algorithm, progressive surface resolution (PSR), is presented in this paper to determine the closed surface of approximately convex blob-like structures that are common in biomedical imaging. The PSR algorithm was applied to the cortical surface segmentation of 460 vertebral bodies on 46 low-dose chest CT images, which can be potentially used for automated bone mineral density measurement and compression fracture detection. The target surface is realized by a closed triangular mesh, which thereby guarantees the enclosure. The surface vertices of the triangular mesh representation are constrained along radial trajectories that are uniformly distributed in 3D angle space. The segmentation is accomplished by determining for each radial trajectory the location of its intersection with the target surface. The surface is first initialized based on an input high confidence boundary image and then resolved progressively based on a dynamic attraction map in an order of decreasing degree of evidence regarding the target surface location. For the visual evaluation, the algorithm achieved acceptable segmentation for 99.35 % vertebral bodies. Quantitative evaluation was performed on 46 vertebral bodies and achieved overall mean Dice coefficient of 0.939 (with max [Formula: see text] 0.957, min [Formula: see text] 0.906 and standard deviation [Formula: see text] 0.011) using manual annotations as the ground truth. Both visual and quantitative evaluations demonstrate encouraging performance of the PSR algorithm. This novel surface resolution strategy provides uniform angular resolution for the segmented surface with computation complexity and runtime that are linearly constrained by the total number of vertices of the triangular mesh representation.
Pomeroy, Emma; Macintosh, Alison; Wells, Jonathan C K; Cole, Tim J; Stock, Jay T
2018-05-01
Estimating body mass from skeletal dimensions is widely practiced, but methods for estimating its components (lean and fat mass) are poorly developed. The ability to estimate these characteristics would offer new insights into the evolution of body composition and its variation relative to past and present health. This study investigates the potential of long bone cross-sectional properties as predictors of body, lean, and fat mass. Humerus, femur and tibia midshaft cross-sectional properties were measured by peripheral quantitative computed tomography in sample of young adult women (n = 105) characterized by a range of activity levels. Body composition was estimated from bioimpedance analysis. Lean mass correlated most strongly with both upper and lower limb bone properties (r values up to 0.74), while fat mass showed weak correlations (r ≤ 0.29). Estimation equations generated from tibial midshaft properties indicated that lean mass could be estimated relatively reliably, with some improvement using logged data and including bone length in the models (minimum standard error of estimate = 8.9%). Body mass prediction was less reliable and fat mass only poorly predicted (standard errors of estimate ≥11.9% and >33%, respectively). Lean mass can be predicted more reliably than body mass from limb bone cross-sectional properties. The results highlight the potential for studying evolutionary trends in lean mass from skeletal remains, and have implications for understanding the relationship between bone morphology and body mass or composition. © 2018 The Authors. American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.
Valente, Denis Souto; Padoin, Alexandre Vontobel; Carvalho, Lauro Aita; Pereira Filho, Gustavo de Azambuja; Ribeiro, Vinicius Weissheimer; Zanella, Rafaela Koehler
2016-07-01
It has been speculated that the immediate decrease in body fat following liposuction may affect body composition by feedback mechanisms of body fat regain. Physical activity has both short- and long-term impacts on health. Although the lay public often associates higher levels of physical activity with body fat distribution changes, studies on the association between physical activity and body fat distribution present inconsistent results. The aim of this study was to investigate the cross-sectional and prospective associations between physical activity and body mass index following liposuction. This is a prospective, bidirectional, cross-sectional study, including 526 liposuction patients, who were followed up at a mean of 11.7 and 24.3 months after surgery. The sum of skinfolds at 11.7 months was highly correlated with skinfolds at 24.3 months (rho = 0.74, p < 0.001). More than 85 percent of participants remained in the same quintile or changed by not more than one quintile during the 13.6-month period. Tracking of physical activity was considerably lower but still significant; the correlation was 0.24 (p < 0.001), and 61.4 percent of the patients moved one or less quintiles. In fully adjusted models, no significant cross-sectional or longitudinal associations were found between physical activity and body mass index. The authors provide evidence of tracking of physical activity and particularly body mass index following liposuction. The authors' results do not support the hypothesis that physical activity and fatness are strongly related following liposuction.
Ting, Hsien-Hung; Hou, Shuhn-Shyurng
2016-01-01
This study numerically investigates heat transfer augmentation using water-based Al2O3 and CuO nanofluids flowing in a triangular cross-sectional duct under constant heat flux in laminar flow conditions. The Al2O3/water nanofluids with different volume fractions (0.1%, 0.5%, 1%, 1.5%, and 2%) and CuO/water nanofluids with various volume fractions (0.05%, 0.16%, 0.36%, 0.5%, and 0.8%) are employed, and Reynolds numbers in the range of 700 to 1900 in a laminar flow are considered. The heat transfer rate becomes more remarkable when employing nanofluids. As compared with pure water, at a Peclet number of 7000, a 35% enhancement in the convective heat transfer coefficient, is obtained for an Al2O3/water nanofluid with 2% particle volume fraction; at the same Peclet number, a 41% enhancement in the convective heat transfer coefficient is achieved for a CuO/water nanofluid with 0.8% particle volume concentration. Heat transfer enhancement increases with increases in particle volume concentration and Peclet number. Moreover, the numerical results are found to be in good agreement with published experimental data. PMID:28773698
Sonographic evaluation of the greater occipital nerve in unilateral occipital neuralgia.
Cho, John Chin-Suk; Haun, Daniel W; Kettner, Norman W
2012-01-01
Occipital neuralgia is a headache that may result from greater occipital nerve entrapment. Entrapped peripheral nerves typically have an increase in cross-sectional area. The purpose of this study was to measure the cross-sectional area and circumference of symptomatic and asymptomatic greater occipital nerves in patients with unilateral occipital neuralgia and to correlate the greater occipital nerve cross-sectional area with headache severity, sex, and body mass index. Both symptomatic and contralateral asymptomatic greater occipital nerve cross-sectional areas and circumferences were measured by a single examiner using sonography in 17 patients. The Wilcoxon signed rank test and Spearman rank order correlation coefficient were used to analyze the data. Significant differences between the cross-sectional areas and circumferences of the symptomatic and asymptomatic greater occipital nerves were noted (P < .001). No difference existed in cross-sectional area (P = .40) or circumference (P = .10) measurements of the nerves between male and female patients. A significant correlation existed between the body mass index and symptomatic (r = 0.424; P = .045) and asymptomatic (r = 0.443; P = .037) cross-sectional areas. There was no correlation shown between the cross-sectional area of the symptomatic nerve and the severity of Headache Impact Test 6 scores (r = -0.342; P = .179). We report sonographic evidence showing an increased cross-sectional area and circumference of the symptomatic greater occipital nerve in patients with unilateral occipital neuralgia.
Protective sheath for a continuous measurement thermocouple
Phillippi, R.M.
1991-12-03
Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device. 4 figures.
Protective sheath for a continuous measurement thermocouple
Phillippi, R. Michael
1991-01-01
Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device.
Design Guideline for New Generation of High-Temperature Guarded Hot Plate
NASA Astrophysics Data System (ADS)
Wu, J.; Hameury, J.; Failleau, G.; Blahut, A.; Vachova, T.; Strnad, R.; Krause, M.; Rafeld, E.; Hammerschmidt, U.
2018-02-01
This paper complements the existing measurement standards and literature for high-temperature guarded hot plates (HTGHPs) by addressing specific issues relating to thermal conductivity measurement of technical insulation at high temperatures. The examples given are focused on the designs of HTGHPs for measuring thin thermal insulation. The sensitivity studies have been carried out on major influencing factors that affect the thermal conductivity measurements using HTGHPs, e.g., the uncertainty of temperature measurements, plate flatness and center-guard gap design and imbalance. A new configuration of center-guard gap with triangular shape cross section has been optimized to obtain the same thermal resistance as a 2 mm wide gap with rectangular shape cross section that has been used in the HTGHPs at NPL and LNE. Recommendations have been made on the selections of heater plate materials, high-temperature high-emissivity coatings and miniature temperature sensors. For the first time, thermal stress analysis method has been applied to the field of HTGHPs, in order to estimate the effect of differential thermal expansion on the flatness of thin rigid specimens during thermal conductivity tests in a GHP.
Large space structures fabrication experiment. [on-orbit fabrication of graphite/thermoplastic beams
NASA Technical Reports Server (NTRS)
1978-01-01
The fabrication machine used for the rolltrusion and on-orbit forming of graphite thermoplastic (CTP) strip material into structural sections is described. The basic process was analytically developed parallel with, and integrated into the conceptual design of, a flight experiment machine for producing a continuous triangular cross section truss. The machine and its associated ancillary equipment are mounted on a Space Lab pallet. Power, thermal control, and instrumentation connections are made during ground installation. Observation, monitoring, caution and warning, and control panels and displays are installed at the payload specialist station in the orbiter. The machine is primed before flight by initiation of beam forming, to include attachment of the first set of cross members and anchoring of the diagonal cords. Control of the experiment will be from the orbiter mission specialist station. Normal operation is by automatic processing control software. Machine operating data are displayed and recorded on the ground. Data is processed and formatted to show progress of the major experiment parameters including stable operation, physical symmetry, joint integrity, and structural properties.
NASA Technical Reports Server (NTRS)
Kelley, Henry L.; Crowell, Cynthia A.; Wilson, John C.
1992-01-01
A wind-tunnel investigation was conducted to determine 2-D aerodynamic characteristics of nine polygon-shaped models applicable to helicopter fuselages. The models varied from 1/2 to 1/5 scale and were nominally triangular, diamond, and rectangular in shape. Side force and normal force were obtained at increments of angle of flow incidence from -45 to 90 degrees. The data were compared with results from a baseline UH-60 tail-boom cross-section model. The results indicate that the overall shapes of the plots of normal force and side force were similar to the characteristic shape of the baseline data; however, there were important differences in magnitude. At a flow incidence of 0 degrees, larger values of normal force for the polygon models indicate an increase in fuselage down load of 1 to 2.5 percent of main-rotor thrust compared with the baseline value. Also, potential was indicated among some of the configurations to produce high fuselage side forces and yawing moments compared with the baseline model.
NASA Technical Reports Server (NTRS)
Llanos, Pedro J.; Hintz, Gerald R.; Lo, Martin W.; Miller, James K.
2013-01-01
Investigation of new orbit geometries exhibits a very attractive behavior for a spacecraft to monitor space weather coming from the Sun. Several orbit transfer mechanisms are analyzed as potential alternatives to monitor solar activity such as a sub-solar orbit or quasi-satellite orbit and short and long heteroclinic and homoclinic connections between the triangular points L(sub 4) and L(sub 5) and the collinear point L(sub 3) of the Circular Restricted Three-Body Problem (CRTBP) in the Sun-Earth system.
Magnaudeix, Amandine; Usseglio, Julie; Lasgorceix, Marie; Lalloue, Fabrice; Damia, Chantal; Brie, Joël; Pascaud-Mathieu, Patricia; Champion, Eric
2016-07-01
The development of scaffolds for bone filling of large defects requires an understanding of angiogenesis and vascular guidance, which are crucial processes for bone formation and healing. There are few investigations on the ability of a scaffold to support blood vessel guidance and it this is of great importance because it relates to the quality and dispersion of the blood vessel network. This work reports an analysis of vascularisation of porous silicon-substituted hydroxyapatite (SiHA) bioceramics and the effects of pore shape on vascular guidance using an expedient ex ovo model, the chick embryo chorioallantoic membrane (CAM) assay. Image analysis of vascularised implants assessed the vascular density, fractal dimension and diameter of blood vessels at two different scales (the whole ceramic and pores alone) and was performed on model SiHA ceramics harbouring pores of various cross-sectional geometries (circles, square, rhombus, triangles and stars). SiHA is a biocompatible material which allows the conduction of blood vessels on its surface. The presence of pores did not influence angiogenesis related-parameters (arborisation, fractal dimension) but pore geometry affected the blood vessel guidance and angio-conductive potential (diameter and number of the blood vessels converging toward the pores). The measured angles of pore cross-section modulated the number and diameter of blood vessels converging to pores, with triangular pores appearing of particular interest. This result will be used for shaping ceramic scaffolds with specific porous architecture to promote vascular colonisation and osteointegration. An expedient and efficient method, using chick embryo chorioallantoic membrane (CAM) assays, has been set up to characterise quantitatively the angiogenesis and the vascular conduction in scaffolds. This approach complements the usual cell culture assays and could replace to a certain extent in vivo experiments. It was applied to silicon-substituted hydroxyapatite porous bioceramics with various pore shapes. The material was found to be biocompatible, allowing the conduction of blood vessels on its surface. The presence of pores does not influence the angiogenesis but the pore shape affects the blood vessel guidance and angio-conductive potential. Pores with triangular cross-section appear particularly attractive for the further design of scaffolds in order to promote their vascular colonisation and osteointegration and improve their performances. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Tension Amplification in Molecular Brushes in Solutions and on Substrates
Panyukov, Sergey; Zhulina, Ekaterina B.; Sheiko, Sergei S.; Randall, Greg C.; Brock, James; Rubinstein, Michael
2009-01-01
Molecular bottle-brushes are highly branched macromolecules with side chains densely grafted to a long polymer backbone. The brush-like architecture allows focusing of the side-chain tension to the backbone and its amplification from the picoNewton to nanoNewton range. The backbone tension depends on the overall molecular conformation and the surrounding environment. Here we study the relation between the tension and conformation of the molecular brushes in solutions, melts, and on substrates. In solutions, we find that the backbone tension in dense brushes with side chains attached to every backbone monomer is on the order of f0N3/8 in athermal solvents, f0N1/3 in θ-solvents, and f0 in poor solvents and melts, where N is the degree of polymerization of side chains, f0≃ kBT/b is the maximum tension in side chains, b is the Kuhn length, kB is Boltzmann constant, and T is absolute temperature. Depending on the side chain length and solvent quality, molecular brushes in solutions develop tension on the order of 10–100 picoNewtons, which is sufficient to break hydrogen bonds. Significant amplification of tension occurs upon adsorption of brushes onto a substrate. On a strongly attractive substrate, maximum tension in the brush backbone is ~ f0N, reaching values on the order of several nanoNewtons which exceed the strength of a typical covalent bond. At low grafting density and high spreading parameter the cross-sectional profile of adsorbed molecular brush is approximately rectangular with thicknes ~bA/S, where A is the Hamaker constant and S is the spreading parameter. At a very high spreading parameter (S > A), the brush thickness saturates at monolayer ~ b. At a low spreading parameter, the cross-sectional profile of adsorbed molecular brush has triangular tent-like shape. In the cross-over between these two opposite cases, covering a wide range of parameter space, the adsorbed molecular brush consists of two layers. Side chains in the lower layer gain surface energy due to the direct interaction with the substrate, while the second layer spreads on the top of the first layer. Scaling theory predicts that this second layer has a triangular cross-section with width R ~ N3/5 and height h ~ N2/5. Using self-consistent field theory we calculate the cap profile y (x) = h (1 − x2/R2)2, where x is the transverse distance from the backbone. The predicted cap shape is in excellent agreement with both computer simulation and experiment. PMID:19673133
ERIC Educational Resources Information Center
Benton, Pree; Skouteris, Helen; Hayden, Melissa
2016-01-01
The primary aim of the present study was to cross-sectionally examine the associations between maternal psychosocial variables, child feeding practices, and preschooler body mass index z-score (BMI-z) in children (aged 2-4 years). A secondary aim was to examine differences in child weight outcomes between mothers scoring above and below specified…
ERIC Educational Resources Information Center
McPhie, Skye; Skouteris, Helen; Fuller-Tyszkiewicz, Matthew; McCabe, Marita; Ricciardelli, Lina A.; Milgrom, Jeannette; Baur, Louise A.; Dell'Aquila, Daniela
2012-01-01
This study extends McPhie et al. (2011)'s [Maternal correlates of preschool child eating behaviours and body mass index: A cross-sectional study. "International Journal of Pediatric Obesity", Early Online, 1-5.] McPhie et al. (2011)'s cross-sectional research, by prospectively evaluating maternal child-feeding practices, parenting style and…
NASA Astrophysics Data System (ADS)
De'nan, Fatimah; Keong, Choong Kok; Hashim, Nor Salwani
2017-10-01
Due to extensive usage of corrugated web in construction, this paper performs finite element analysis to investigate the web thickness effects on the bending behaviour of Triangular Web Profile (TRIWP) steel section. A TRIWP steel section which are consists two flanges attached to a triangular profile web plate. This paper analyzes two categories of TRIWP steel sections which are D×100×6×3 mm and D×75×5×2 mm. It was observed that for steel section D×100×6×3 mm (TRIWP1), the deflection about minor and major axis increased as the span length increased. Meanwhile, the deflection about major axis decreased when depth of the web increased. About minor axis, the deflection increased for 3m and 4m span, while the deflection at 4.8m decreased with increment the depth of web. However, when the depth of the web exceeds 250mm, deflection at 3m and 4m were increased. For steel section D×75×5×2 mm (TRIWP2), the result was different with TRIWP1 steel section, where the deflection in both major and minor directions increased with the increment of span length and decreased with increment the depth of web. It shows that the deflection increased proportionally with the depth of web. Therefore, deeper web should be more considered because it resulted in smaller deflection.
NASA Astrophysics Data System (ADS)
Gruy, Frédéric
2014-02-01
Depending on the range of size and the refractive index value, an optically soft particle follows Rayleigh-Debye-Gans or RDG approximation or Van de Hulst approximation. Practically the first one is valid for small particles whereas the second one works for large particles. Klett and Sutherland (Klett JD, Sutherland RA. App. Opt. 1992;31:373) proved that the Wentzel-Kramers-Brillouin or WKB approximation leads to accurate values of the differential scattering cross section of sphere and cylinder over a wide range of size. In this paper we extend the work of Klett and Sutherland by proposing a method allowing a fast calculation of the differential scattering cross section for any shape of particle with a given orientation and illuminated by unpolarized light. Our method is based on a geometrical approximation of the particle by replacing each geometrical cross section by an ellipse and then by exactly evaluating the differential scattering cross section of the newly generated body. The latter one contains only two single integrals.
Missile Aerodynamics (Aerodynamique des Missiles)
1998-11-01
Magnus effect. effects on a spinning finned cylindrical body. Despite the large As noted above, the source, magnitude and even the direction amount of...axis, and to circular- cylindrical bodies in combination with determine directly the pressures acting on the body. triangular, rectangular, or...pressure drop in smooth cylindrical codes, as well as for testing and checking CFD-based tubes", NACA ARR L4C16, 1944. results. 6. Nielsen, J. N. and
NASA Technical Reports Server (NTRS)
van der Meulen, M. C.; Marcus, R.; Bachrach, L. K.; Carter, D. R.
1997-01-01
We have developed an analytical model of long bone cross-sectional ontogeny in which appositional growth of the diaphysis is primarily driven by mechanical stimuli associated with increasing body mass during growth and development. In this study, our goal was to compare theoretical predictions of femoral diaphyseal structure from this model with measurements of femoral bone mineral and geometry by dual energy x-ray absorptiometry. Measurements of mid-diaphyseal femoral geometry and structure were made previously in 101 Caucasian adolescents and young adults 9-26 years of age. The data on measured bone mineral content and calculated section modulus were compared with the results of our analytical model of cross-sectional development of the human femur over the same age range. Both bone mineral content and section modulus showed good correspondence with experimental measurements when the relationships with age and body mass were examined. Strong linear relationships were evident for both parameters when examined as a function of body mass.
Kataoka, T; Moritomo, H; Omokawa, S; Iida, A; Wada, T; Aoki, M
2013-06-01
We developed a new triangular fibrocartilage complex reconstruction technique for distal radioulnar joint instability in which the palmar portion of the triangular fibrocartilage complex was predominantly reconstructed, and evaluated whether such reconstruction can restore stability of the distal radioulnar joint in seven fresh cadaver upper extremities. Distal radioulnar joint instability was induced by cutting all soft-tissue stabilizers around the distal ulna. Using a palmar approach, a palmaris longus tendon graft was sutured to the remnant of the palmar radioulnar and ulnocarpal ligaments. The graft was then passed through a bone tunnel created at the fovea and was sutured. Loads were applied to the radius, and dorsopalmar displacements of the radius relative to the ulna were measured using an electromagnetic tracking device in neutral rotation, 60° supination and 60° pronation. We compared the dorsopalmar displacements before sectioning, before reconstruction and after reconstruction. Dorsopalmar instability produced by sectioning significantly improved in all forearm positions after reconstruction.
A non-axisymmetric linearized supersonic wave drag analysis: Mathematical theory
NASA Technical Reports Server (NTRS)
Barnhart, Paul J.
1996-01-01
A Mathematical theory is developed to perform the calculations necessary to determine the wave drag for slender bodies of non-circular cross section. The derivations presented in this report are based on extensions to supersonic linearized small perturbation theory. A numerical scheme is presented utilizing Fourier decomposition to compute the pressure coefficient on and about a slender body of arbitrary cross section.
NASA Technical Reports Server (NTRS)
Dominek, Allen; Wood, Richard; Gilreath, Mel
1992-01-01
Almond shaped test body developed for use in electromagnetic anechoic chamber for evaluation of range and measurement of components has low radar cross section that varies with angle over large dynamic range. Surface is composite formed by joining properly scaled ellipsoidal surfaces. Used to mount components whose radar cross sections are to be measured, and simulate backscatter characteristics of component as though it were over infinite ground plane.
Design of the Cross Section Shape of AN Aluminum Crash Box for Crashworthiness Enhancement of a CAR
NASA Astrophysics Data System (ADS)
Kim, S. B.; Huh, H.; Lee, G. H.; Yoo, J. S.; Lee, M. Y.
This paper deals with the crashworthiness of an aluminum crash box for an auto-body with the various shapes of cross section such as a rectangle, a hexagon and an octagon. First, crash boxes with various cross sections were tested with numerical simulation to obtain the energy absorption capacity and the mean load. In case of the simple axial crush, the octagon shape shows higher mean load and energy absorption than the other two shapes. Secondly, the crash boxes were assembled to a simplified auto-body model for the overall crashworthiness. The model consists of a bumper, crash boxes, front side members and a sub-frame representing the behavior of a full car at the low speed impact. The analysis result shows that the rectangular cross section shows the best performance as a crash box which deforms prior to the front side member. The hexagonal and octagonal cross sections undergo torsion and local buckling as the width of cross section decreases while the rectangular cross section does not. The simulation result of the rectangular crash box was verified with the experimental result. The simulation result shows close tendency in the deformed shape and the load-displacement curve to the experimental result.
Damiri, Hazem Salim; Bardaweel, Hamzeh Khalid
2015-11-07
Microfluidic networks represent the milestone of microfluidic devices. Recent advancements in microfluidic technologies mandate complex designs where both hydraulic resistance and pressure drop across the microfluidic network are minimized, while wall shear stress is precisely mapped throughout the network. In this work, a combination of theoretical and modeling techniques is used to construct a microfluidic network that operates under minimum hydraulic resistance and minimum pressure drop while constraining wall shear stress throughout the network. The results show that in order to minimize the hydraulic resistance and pressure drop throughout the network while maintaining constant wall shear stress throughout the network, geometric and shape conditions related to the compactness and aspect ratio of the parent and daughter branches must be followed. Also, results suggest that while a "local" minimum hydraulic resistance can be achieved for a geometry with an arbitrary aspect ratio, a "global" minimum hydraulic resistance occurs only when the aspect ratio of that geometry is set to unity. Thus, it is concluded that square and equilateral triangular cross-sectional area microfluidic networks have the least resistance compared to all rectangular and isosceles triangular cross-sectional microfluidic networks, respectively. Precise control over wall shear stress through the bifurcations of the microfluidic network is demonstrated in this work. Three multi-generation microfluidic network designs are considered. In these three designs, wall shear stress in the microfluidic network is successfully kept constant, increased in the daughter-branch direction, or decreased in the daughter-branch direction, respectively. For the multi-generation microfluidic network with constant wall shear stress, the design guidelines presented in this work result in identical profiles of wall shear stresses not only within a single generation but also through all the generations of the microfluidic network under investigation. The results obtained in this work are consistent with previously reported data and suitable for a wide range of lab-on-chip applications.
Bose and Fermi Gases of Ultracold Ytterbium in a Triangular Optical Lattice
NASA Astrophysics Data System (ADS)
Thobe, Alexander; Doerscher, Soeren; Hundt, Bastian; Kochanke, Andre; Becker, Christoph; Sengstock, Klaus
2013-05-01
Quantum gases of alkaline-earth like atoms such as Calcium, Strontium and Ytterbium (Yb) open up exciting new possibilities for the study of many body physics in optical lattices, ranging from SU(N) symmetric spin Hamiltonians to the Kondo Lattice Model. Here, we present experimental studies of ultracold bosonic and fermionic Yb quantum gases. Unlike other experiments studying ultracold alkaline earth-like atoms, we have implemented a 2D-MOT instead of a Zeeman slower as a source of cold atoms. From the 2D-MOT, operating on the broad 1S0 -->1P1 transtition, the atoms are directly loaded into the 3D-MOT operating on a narrow intercombination line. The atoms are then evaporatively cooled to quantum degeneracy in a crossed optical dipole trap. With this setup we routinely produce BECs and degenerate Fermi gases of different Yb isotopes. Moreover, we present first results on spectroscopy of an interacting fermi gas on the ultranarrow 1S0 -->3P0 clock transition in a magic wavelength optical lattice. In future experiments, this spectroscopy will serve as a versatile tool for interaction sensing and selective addressing of atoms in a wavelength tunable, state dependent, triangular optical lattice, which we are currently implementing. This work is supported by DFG within SFB 925 and GrK 1355, as well as EU FETOpen (iSense).
Quinn, Cristina L.
2012-01-01
Background: Body burdens of persistent bioaccumulative contaminants estimated from the cross-sectional biomonitoring of human populations are often plotted against age. Such relationships have previously been assumed to reflect the role of age in bioaccumulation. Objectives: We used a mechanistic modeling approach to reproduce concentration-versus-age relationships and investigate factors that influence them. Method: CoZMoMAN is an environmental fate and human food chain bioaccumulation model that estimates time trends in human body burdens in response to time-variant environmental emissions. Trends of polychlorinated biphenyl (PCB) congener 153 concentrations versus age for population cross sections were estimated using simulated longitudinal data for individual women born at different times. The model was also used to probe the influence of partitioning and degradation properties, length of emissions, and model assumptions regarding lipid content and liver metabolism on concentration–age trends of bioaccumulative and persistent contaminants. Results: Body burden–age relationships for population cross sections and individuals over time are not equivalent. The time lapse between the peak in emissions and sample collection for biomonitoring is the most influential factor controlling the shape of concentration–age trends for chemicals with human metabolic half-lives longer than 1 year. Differences in observed concentration–age trends for PCBs and polybrominated diphenyl ethers are consistent with differences in emission time trends and human metabolic half-lives. Conclusions: Bioaccumulation does not monotonically increase with age. Our model suggests that the main predictors of cross-sectional body burden trends with age are the amount of time elapsed after peak emissions and the human metabolic and environmental degradation rates. PMID:22472302
Proton-Nucleus Total Cross Sections in Coupled-Channel Approach
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.
2000-01-01
Recently, nucleon-nucleon (N-N) cross sections in the medium have been extracted directly from experiment. The in-medium N-N cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. In the present study the ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium N-N cross sections to calculate total proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.
Prediction of vortex shedding from circular and noncircular bodies in subsonic flow
NASA Technical Reports Server (NTRS)
Mendenhall, Michael R.; Lesieutre, Daniel J.
1987-01-01
An engineering prediction method and associated computer code VTXCLD are presented which predict nose vortex shedding from circular and noncircular bodies in subsonic flow at angles of attack and roll. The axisymmetric body is represented by point sources and doublets, and noncircular cross sections are transformed to a circle by either analytical or numerical conformal transformations. The leeward vortices are modeled by discrete vortices in crossflow planes along the body; thus, the three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flowfield surveys, and aerodynamic characteristics are presented for bodies with circular and noncircular cross sectional shapes.
NASA Astrophysics Data System (ADS)
Medgyesimitschang, L. N.; Putnam, J. M.
1982-05-01
A general analytical formulation, based on the method of moments (MM) is described for solving electromagnetic problems associated with off-surface (wire) and aperture radiators on finite-length cylinders of arbitrary cross section, denoted in this report as bodies of translation (BOT). This class of bodies can be used to model structures with noncircular cross sections such as wings, fins and aircraft fuselages.
Zhan, Hui-Li; Li, Wen-Ting; Bai, Rong-Jie; Wang, Nai-Li; Qian, Zhan-Hua; Ye, Wei; Yin, Yu-Ming
2017-04-05
The injury of the triangular fibrocartilage complex (TFCC) is a common cause of ulnar-sided wrist pain. The aim of this study was to investigate if the high-resolution 3T magnetic resonance imaging (MRI) could demonstrate the detailed complex anatomy of TFCC in Chinese. Fourteen Chinese cadaveric wrists (from four men and three women; age range at death from 30 to 60 years; mean age at 46 years) and forty healthy Chinese wrists (from 20 healthy volunteers, male/female: 10/10; age range from 21 to 53 years with a mean age of 32 years) in Beijing Jishuitan Hospital from March 2014 to March 2016 were included in this study. All cadavers and volunteers had magnetic resonance (MR) examination of the wrist with coronal T1-weighted and proton density-weighted imaging with fat suppression in three planes, respectively. MR arthrography (MRAr) was performed on one of the cadaveric wrists. Subsequently, all 14 cadaveric wrists were sliced into 2 mm thick slab with band saw (six in coronal plane, four in sagittal plane, and four in axial plane). The MRI features of normal TFCC were analyzed in these specimens and forty healthy wrists. Triangular fibrocartilage, the ulnar collateral ligament, and the meniscal homolog could be best observed on images in coronal plane. The palmar and dorsal radioulnar ligaments were best evaluated in transverse plane. The ulnotriquetral and ulnolunate ligaments were best visualized in sagittal plane. The latter two structures and the volar and dorsal capsules were better demonstrated on MRAr. High-resolution 3T MRI is capable to show the detailed complex anatomy of the TFCC and can provide valuable information for the clinical diagnosis in Chinese.
Zhan, Hui-Li; Li, Wen-Ting; Bai, Rong-Jie; Wang, Nai-Li; Qian, Zhan-Hua; Ye, Wei; Yin, Yu-Ming
2017-01-01
Background: The injury of the triangular fibrocartilage complex (TFCC) is a common cause of ulnar-sided wrist pain. The aim of this study was to investigate if the high-resolution 3T magnetic resonance imaging (MRI) could demonstrate the detailed complex anatomy of TFCC in Chinese. Methods: Fourteen Chinese cadaveric wrists (from four men and three women; age range at death from 30 to 60 years; mean age at 46 years) and forty healthy Chinese wrists (from 20 healthy volunteers, male/female: 10/10; age range from 21 to 53 years with a mean age of 32 years) in Beijing Jishuitan Hospital from March 2014 to March 2016 were included in this study. All cadavers and volunteers had magnetic resonance (MR) examination of the wrist with coronal T1-weighted and proton density-weighted imaging with fat suppression in three planes, respectively. MR arthrography (MRAr) was performed on one of the cadaveric wrists. Subsequently, all 14 cadaveric wrists were sliced into 2 mm thick slab with band saw (six in coronal plane, four in sagittal plane, and four in axial plane). The MRI features of normal TFCC were analyzed in these specimens and forty healthy wrists. Results: Triangular fibrocartilage, the ulnar collateral ligament, and the meniscal homolog could be best observed on images in coronal plane. The palmar and dorsal radioulnar ligaments were best evaluated in transverse plane. The ulnotriquetral and ulnolunate ligaments were best visualized in sagittal plane. The latter two structures and the volar and dorsal capsules were better demonstrated on MRAr. Conclusion: High-resolution 3T MRI is capable to show the detailed complex anatomy of the TFCC and can provide valuable information for the clinical diagnosis in Chinese. PMID:28345546
Electron-helium S-wave model benchmark calculations. I. Single ionization and single excitation
NASA Astrophysics Data System (ADS)
Bartlett, Philip L.; Stelbovics, Andris T.
2010-02-01
A full four-body implementation of the propagating exterior complex scaling (PECS) method [J. Phys. B 37, L69 (2004)] is developed and applied to the electron-impact of helium in an S-wave model. Time-independent solutions to the Schrödinger equation are found numerically in coordinate space over a wide range of energies and used to evaluate total and differential cross sections for a complete set of three- and four-body processes with benchmark precision. With this model we demonstrate the suitability of the PECS method for the complete solution of the full electron-helium system. Here we detail the theoretical and computational development of the four-body PECS method and present results for three-body channels: single excitation and single ionization. Four-body cross sections are presented in the sequel to this article [Phys. Rev. A 81, 022716 (2010)]. The calculations reveal structure in the total and energy-differential single-ionization cross sections for excited-state targets that is due to interference from autoionization channels and is evident over a wide range of incident electron energies.
NASA Astrophysics Data System (ADS)
Bartlett, P. L.; Stelbovics, A. T.; Rescigno, T. N.; McCurdy, C. W.
2007-11-01
Calculations are reported for four-body electron-helium collisions and positron-hydrogen collisions, in the S-wave model, using the time-independent propagating exterior complex scaling (PECS) method. The PECS S-wave calculations for three-body processes in electron-helium collisions compare favourably with previous convergent close-coupling (CCC) and time-dependent exterior complex scaling (ECS) calculations, and exhibit smooth cross section profiles. The PECS four-body double-excitation cross sections are significantly different from CCC calculations and highlight the need for an accurate representation of the resonant helium final-state wave functions when undertaking these calculations. Results are also presented for positron-hydrogen collisions in an S-wave model using an electron-positron potential of V12 = - (8 + (r1 - r2)2)-1/2. This model is representative of the full problem, and the results demonstrate that ECS-based methods can accurately calculate scattering, ionization and positronium formation cross sections in this three-body rearrangement collision.
Campbell, Kenneth S; Moss, Richard L
2000-01-01
Paired ramp stretches and releases (‘triangular length changes’, typically 0.04 ± 0.09L0 s−1; mean ±s.e.m.) were imposed on permeabilised rabbit psoas fibre segments under sarcomere length control. In actively contracting fibres, the tension response to stretch was biphasic; tension rose more rapidly during the first 0.005L0 of the imposed stretch than thereafter. Tension also dropped in a biphasic manner during shortening, and at the end of the length change was reduced below the steady state. If a second triangular length change was imposed shortly after the first, tension rose less sharply during the initial phase of lengthening, i.e. the stiffness of the muscle during the initial phase of the response was reduced in the second stretch. This is a thixotropic effect. If a third triangular length change was imposed on the muscle, the response was the same as that to the second. The time required to recover the original tension response was measured by varying the interval between triangular length changes. Recovery to steady state occurred at a rate of ∼1 s−1. The stiffness of the muscle during the initial phase of the response scaled with the developed tension in pCa (=−log10[Ca2+]) solutions ranging from 6.3 (minimal activation) to 4.5 (saturating effect). The relative thixotropic reduction in stiffness measured using paired length changes was independent of the pCa of the activating solution. The thixotropic behaviour of contracting skeletal muscle can be explained by a cross-bridge model of muscle contraction in which the number of attached cross-bridges is temporarily reduced following an imposed movement. PMID:10835052
Habitual Chocolate Consumption May Increase Body Weight in a Dose-Response Manner
Greenberg, James A.; Buijsse, Brian
2013-01-01
Objective Habitual chocolate intake was recently found to be associated with lower body weight in three cross-sectional epidemiological studies. Our objective was to assess whether these cross-sectional results hold up in a more rigorous prospective analysis. Methods We used data from the Atherosclerosis Risk in Communities cohort. Usual dietary intake was assessed by questionnaire at baseline (1987–98), and after six years. Participants reported usual chocolate intake as the frequency of eating a 1-oz (∼28 g) serving. Body weight and height were measured at the two visits. Missing data were replaced by multiple imputation. Linear mixed-effects models were used to evaluate cross-sectional and prospective associations between chocolate intake and adiposity. Results Data were from 15,732 and 12,830 participants at the first and second visit, respectively. More frequent chocolate consumption was associated with a significantly greater prospective weight gain over time, in a dose-response manner. For instance, compared to participants who ate a chocolate serving less often than monthly, those who ate it 1–4 times a month and at least weekly experienced an increase in Body Mass Index (kg/m2) of 0.26 (95% CI 0.08, 0.44) and 0.39 (0.23, 0.55), respectively, during the six-year study period. In cross-sectional analyses the frequency of chocolate consumption was inversely associated with body weight. This inverse association was attenuated after excluding participants with preexisting obesity-related illness. Compared to participants without such illness, those with it had higher BMI and reported less frequent chocolate intake, lower caloric intake, and diets richer in fruits and vegetables. They tended to make these dietary changes after becoming ill. Conclusions Our prospective analysis found that a chocolate habit was associated with long-term weight gain, in a dose-response manner. Our cross-sectional finding that chocolate intake was associated with lower body weight did not apply to participants without preexisting serious illness. PMID:23950919
Habitual chocolate consumption may increase body weight in a dose-response manner.
Greenberg, James A; Buijsse, Brian
2013-01-01
Habitual chocolate intake was recently found to be associated with lower body weight in three cross-sectional epidemiological studies. Our objective was to assess whether these cross-sectional results hold up in a more rigorous prospective analysis. We used data from the Atherosclerosis Risk in Communities cohort. Usual dietary intake was assessed by questionnaire at baseline (1987-98), and after six years. Participants reported usual chocolate intake as the frequency of eating a 1-oz (~28 g) serving. Body weight and height were measured at the two visits. Missing data were replaced by multiple imputation. Linear mixed-effects models were used to evaluate cross-sectional and prospective associations between chocolate intake and adiposity. Data were from 15,732 and 12,830 participants at the first and second visit, respectively. More frequent chocolate consumption was associated with a significantly greater prospective weight gain over time, in a dose-response manner. For instance, compared to participants who ate a chocolate serving less often than monthly, those who ate it 1-4 times a month and at least weekly experienced an increase in Body Mass Index (kg/m2) of 0.26 (95% CI 0.08, 0.44) and 0.39 (0.23, 0.55), respectively, during the six-year study period. In cross-sectional analyses the frequency of chocolate consumption was inversely associated with body weight. This inverse association was attenuated after excluding participants with preexisting obesity-related illness. Compared to participants without such illness, those with it had higher BMI and reported less frequent chocolate intake, lower caloric intake, and diets richer in fruits and vegetables. They tended to make these dietary changes after becoming ill. Our prospective analysis found that a chocolate habit was associated with long-term weight gain, in a dose-response manner. Our cross-sectional finding that chocolate intake was associated with lower body weight did not apply to participants without preexisting serious illness.
A theoretical approach to study the melting temperature of metallic nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Neha; Joshi, Deepika P.
2016-05-23
The physical properties of any material change with the change of its size from bulk range to nano range. A theoretical study to account for the size and shape effect on melting temperature of metallic nanowires has been done. We have studied zinc (Zn), indium (In), lead (Pb) and tin (Sn) nanowires with three different cross sectional shapes like regular triangular, square and regular hexagonal. Variation of melting temperature with the size and shape is graphically represented with the available experimental data. It was found that melting temperature of the nanowires decreases with decrement in the size of nanowire, duemore » to surface effect and at very small size the most probable shape also varies with material.« less
Pipe support for use in a nuclear system
Pollono, Louis P.; Mello, Raymond M.
1977-01-01
A pipe support for high temperature, thin-walled vertical piping runs used in a nuclear system. A cylindrical pipe transition member, having the same inside diameter as the thin-walled piping, replaces a portion of the piping where support is desired. The outside diameter of the pipe transition member varies axially along its vertical dimension. For a section of the axial length adjacent the upper and lower terminations of the pipe transition member, the outside diameter is the same as the outside diameter of the thin-walled piping to which it is affixed. Intermediate of the termination sections, the outside diameter increases from the top of the member to the bottom. Adjacent the lower termination section, the diameter abruptly becomes the same as the piping. Thus, the cylindrical transition member is formed to have a generally triangular shaped cross-section along the axial dimension. Load-bearing insulation is installed next to the periphery of the member and is kept in place by an outer ring clamp. The outer ring clamp is connected to pipe hangers, which provide the desired support for the vertical thin-walled piping runs.
NASA Astrophysics Data System (ADS)
Tamai, Isao; Hasegawa, Hideki
2007-04-01
As a combination of novel hardware architecture and novel system architecture for future ultrahigh-density III-V nanodevice LSIs, the authors' group has recently proposed a hexagonal binary decision diagram (BDD) quantum circuit approach where gate-controlled path switching BDD node devices for a single or few electrons are laid out on a hexagonal nanowire network to realize a logic function. In this paper, attempts are made to establish a method to grow highly dense hexagonal nanowire networks for future BDD circuits by selective molecular beam epitaxy (MBE) on (1 1 1)B substrates. The (1 1 1)B orientation is suitable for BDD architecture because of the basic three-fold symmetry of the BDD node device. The growth experiments showed complex evolution of the cross-sectional structures, and it was explained in terms of kinetics determining facet boundaries. Straight arrays of triangular nanowires with 60 nm base width as well as hexagonal arrays of trapezoidal nanowires with a node density of 7.5×10 6 cm -2 were successfully grown with the aid of computer simulation. The result shows feasibility of growing high-density hexagonal networks of GaAs nanowires with precise control of the shape and size.
Understanding the true shape of Au-catalyzed GaAs nanowires.
Jiang, Nian; Wong-Leung, Jennifer; Joyce, Hannah J; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati
2014-10-08
With increasing interest in nanowire-based devices, a thorough understanding of the nanowire shape is required to gain tight control of the quality of nanowire heterostructures and improve the performance of related devices. We present a systematic study of the sidewalls of Au-catalyzed GaAs nanowires by investigating the faceting process from the beginning with vapor-liquid-solid (VLS) nucleation, followed by the simultaneous radial growth on the sidewalls, and to the end with sidewall transformation during annealing. The VLS nucleation interface of our GaAs nanowires is revealed by examining cross sections of the nanowire, where the nanowire exhibits a Reuleaux triangular shape with three curved surfaces along {112}A. These curved surfaces are not thermodynamically stable and adopt {112}A facets during radial growth. We observe clear differences in radial growth rate between the ⟨112⟩A and ⟨112⟩B directions with {112}B facets forming due to the slower radial growth rate along ⟨112⟩B directions. These sidewalls transform to {110} facets after high temperature (>500 °C) annealing. A nucleation model is proposed to explain the origin of the Reuleaux triangular shape of the nanowires, and the sidewall evolution is explained by surface kinetic and thermodynamic limitations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nixon, B. Tracy; Mansouri, Katayoun; Singh, Abhishek
A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individualmore » lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In conclusion, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains.« less
Nixon, B. Tracy; Mansouri, Katayoun; Singh, Abhishek; ...
2016-06-27
A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individualmore » lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In conclusion, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains.« less
Nixon, B. Tracy; Mansouri, Katayoun; Singh, Abhishek; Du, Juan; Davis, Jonathan K.; Lee, Jung-Goo; Slabaugh, Erin; Vandavasi, Venu Gopal; O’Neill, Hugh; Roberts, Eric M.; Roberts, Alison W.; Yingling, Yaroslava G.; Haigler, Candace H.
2016-01-01
A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individual lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In summary, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains. PMID:27345599
Human body surface area database and estimation formula.
Yu, Chi-Yuang; Lin, Ching-Hua; Yang, Yi-Hsueh
2010-08-01
This study established human body surface area (BSA) database and estimation formula based on three-dimensional (3D) scanned data. For each gender, 135 subjects were drawn. The sampling was stratified in five stature heights and three body weights according to a previous survey. The 3D body surface shape was measured using an innovated 3D body scanner and a high resolution hand/foot scanner, the total body surface area (BSA) and segmental body surface area (SBSA) were computed based on the summation of every tiny triangular area of triangular meshes of the scanned surface; and the accuracy of BSA measurement is below 1%. The results of BSA and sixteen SBSAs were tabulated in fifteen strata for the Male, the Female and the Total (two genders combined). The %SBSA data was also used to revise new Lund and Browder Charts. The comparison of BSA shows that the BSA of this study is comparable with the Du Bois and Du Bois' but smaller than that of Tikuisis et al. The difference might be attributed to body size difference between the samples. The comparison of SBSA shows that the differences of SBSA between this study and the Lund and Browder Chart range between 0.00% and 2.30%. A new BSA estimation formula, BSA=71.3989 x H(.7437) x W(.4040), was obtained. An accuracy test showed that this formula has smaller estimation error than that of the Du Bois and Du Bois'; and significantly better than other BSA estimation formulae.
Religion and body weight: a review of quantitative studies.
Yeary, Karen Hye-Cheon Kim; Sobal, Jeffery; Wethington, Elaine
2017-10-01
Increasing interest in relationships between religion and health has encouraged research about religion and body weight, which has produced mixed findings. We systematically searched 11 bibliographic databases for quantitative studies of religion and weight, locating and coding 85 studies. We conducted a systematic review, analysing descriptive characteristics of the studies as well as relevant religion-body weight associations related to study characteristics. We summarized findings for two categories of religion variables: religious affiliation and religiosity. For religious affiliation, we found evidence for significant associations with body weight in both cross-sectional and longitudinal studies. In particular, Seventh-Day Adventists had lower body weight than other denominations in cross-sectional analyses. For religiosity, significant associations occurred between greater religiosity and higher body weight in both cross-sectional and longitudinal studies. In particular, greater religiosity was significantly associated with higher body weight in bivariate analyses but less so in multivariate analyses. A greater proportion of studies that used a representative sample, longitudinal analyses, and samples with only men reported significant associations between religiosity and weight. Evidence in seven studies suggested that health behaviours and psychosocial factors mediate religion-weight relationships. More longitudinal studies and analyses of mediators are needed to provide stronger evidence and further elucidate religion-weight relationships. © 2017 World Obesity Federation.
Application of NASTRAN for stress analysis of left ventricle of the heart
NASA Technical Reports Server (NTRS)
Pao, Y. C.; Ritman, E. L.; Wang, H. C.
1975-01-01
Knowing the stress and strain distributions in the left ventricular wall of the heart is a prerequisite for the determination of the muscle elasticity and contractility in the process of assessing the functional status of the heart. NASTRAN was applied for the calculation of these stresses and strains and to help in verifying the results obtained by the computer program FEAMPS which was specifically designed for the plane-strain finite-element analysis of the left ventricular cross sections. Adopted for the analysis are the true shape and dimensions of the cross sections reconstructed from multiplanar X-ray views of a left ventricle which was surgically isolated from a dog's heart but metabolically supported to sustain its beating. A preprocessor was prepared to accommodate both FEAMPS and NASTRAN, and it has also facilitated the application of both the triangular element and isoparameteric quadrilateral element versions of NASTRAN. The stresses in several crucial regions of the left ventricular wall calculated by these two independently developed computer programs are found to be in good agreement. Such confirmation of the results is essential in the development of a method which assesses the heart performance.
XPATCH: a high-frequency electromagnetic scattering prediction code using shooting and bouncing rays
NASA Astrophysics Data System (ADS)
Hazlett, Michael; Andersh, Dennis J.; Lee, Shung W.; Ling, Hao; Yu, C. L.
1995-06-01
This paper describes an electromagnetic computer prediction code for generating radar cross section (RCS), time domain signatures, and synthetic aperture radar (SAR) images of realistic 3-D vehicles. The vehicle, typically an airplane or a ground vehicle, is represented by a computer-aided design (CAD) file with triangular facets, curved surfaces, or solid geometries. The computer code, XPATCH, based on the shooting and bouncing ray technique, is used to calculate the polarimetric radar return from the vehicles represented by these different CAD files. XPATCH computes the first-bounce physical optics plus the physical theory of diffraction contributions and the multi-bounce ray contributions for complex vehicles with materials. It has been found that the multi-bounce contributions are crucial for many aspect angles of all classes of vehicles. Without the multi-bounce calculations, the radar return is typically 10 to 15 dB too low. Examples of predicted range profiles, SAR imagery, and radar cross sections (RCS) for several different geometries are compared with measured data to demonstrate the quality of the predictions. The comparisons are from the UHF through the Ka frequency ranges. Recent enhancements to XPATCH for MMW applications and target Doppler predictions are also presented.
NASA Technical Reports Server (NTRS)
Omidvar, K.
1972-01-01
Three charged particles 1, 2, 3 collide according to the reaction 1+(2+3) yields (1+3)+2, where (2+3) and (1+3) are hydrogenlike bound states. It is shown when (1+3) is in a highly excited state n, due to the repulsive potential, the cross section in the first Born approximation behaves as 1/n which makes the total cross section to diverge like ln n. The total cross sections in the higher orders of the Born approximation are similarly divergent logarithmically.
Simulation of multistatic and backscattering cross sections for airborne radar
NASA Astrophysics Data System (ADS)
Biggs, Albert W.
1986-07-01
In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.
Watt, Janet Tilden; Ponce, David A.; Graymer, Russell W.; Jachens, Robert C.; Simpson, Robert W.
2014-01-01
While an enormous amount of research has been focused on trying to understand the geologic history and neotectonics of the San Andreas-Calaveras fault (SAF-CF) junction, fundamental questions concerning fault geometry and mechanisms for slip transfer through the junction remain. We use potential-field, geologic, geodetic, and seismicity data to investigate the 3-D geologic framework of the SAF-CF junction and identify potential slip-transferring structures within the junction. Geophysical evidence suggests that the San Andreas and Calaveras fault zones dip away from each other within the northern portion of the junction, bounding a triangular-shaped wedge of crust in cross section. This wedge changes shape to the south as fault geometries change and fault activity shifts between fault strands, particularly along the Calaveras fault zone (CFZ). Potential-field modeling and relocated seismicity suggest that the Paicines and San Benito strands of the CFZ dip 65° to 70° NE and form the southwest boundary of a folded 1 to 3 km thick tabular body of Coast Range Ophiolite (CRO) within the Vallecitos syncline. We identify and characterize two steeply dipping, seismically active cross structures within the junction that are associated with serpentinite in the subsurface. The architecture of the SAF-CF junction presented in this study may help explain fault-normal motions currently observed in geodetic data and help constrain the seismic hazard. The abundance of serpentinite and related CRO in the subsurface is a significant discovery that not only helps constrain the geometry of structures but may also help explain fault behavior and the tectonic evolution of the SAF-CF junction.
Differential two-body compound nuclear cross section, including the width-fluctuation corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D.; Herman, M.
2014-09-02
We figure out the compound angular differential cross sections, following mainly Fröbrich and Lipperheide, but with the angular momentum couplings that make sense for optical model work. We include the width-fluctuation correction along with calculations.
Triangular Libration Points in the CR3BP with Radiation, Triaxiality and Potential from a Belt
NASA Astrophysics Data System (ADS)
Singh, Jagadish; Taura, Joel John
2017-07-01
In this paper the equations of motion of the circular restricted three body problem is modified to include radiation of the bigger primary, triaxiality of the smaller primary; and gravitational potential created by a belt. We have obtained that due to the perturbations, the locations of the triangular libration points and their linear stability are affected. The points move towards the bigger primary due to the resultant effect of the perturbations. Triangular libration points are stable for 0<μ<μc0<μ<μc and unstable for μc≤μ≤12μc≤μ≤12, where μcμc is the critical mass ratio affected by the perturbations. The radiation of the bigger primary and triaxiality of the smaller primary have destabilizing propensities, whereas the potential created by the belt has stabilizing propensity. This model could be applied in the study of the motion of a dust particle near radiating -triaxial binary system surrounded by a belt.
Miller, Jan D; Hupka, Jan; Aranowski, Robert
2012-11-20
A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.
Shuttle orbiter radar cross-sectional analysis
NASA Technical Reports Server (NTRS)
Cooper, D. W.; James, R.
1979-01-01
Theoretical and model simulation studies on signal to noise levels and shuttle radar cross section are described. Pre-mission system calibrations, system configuration, and postmission system calibration of the tracking radars are described. Conversion of target range, azimuth, and elevation into radar centered east north vertical position coordinates are evaluated. The location of the impinging rf energy with respect to the target vehicles body axis triad is calculated. Cross section correlation between the two radars is presented.
Savukov, I. M.; Filin, D. V.
2014-12-29
Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreementmore » with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions.« less
Fröberg, Andreas; Raustorp, Anders
2015-06-16
During recent decades there has been a rapidly growing interest in youths' sedentary behaviour and its association with cardio-metabolic health. Currently there is little-to-no evidence for a cross-sectional and longitudinal association between volume and pattern (bouts and breaks) of objectively measured sedentary behavior and body weight in youth. Likewise, there is little-to-no evidence for a cross-sectional association between volume and pattern of objectively measured sedentary behavior and other markers for cardio-metabolic risk in youth. However, there is sufficient evidence for a cross-sectional and longitudinal association between screen-time and body weight and blood pressure and blood lipids. Furthermore, there is evidence for a cross-sectional association between youths' screen-time and clustered metabolic risk and insulin resistance. Overall, the level of evidence was low and, therefore, caution is required when interpreting the results.
The linear stability of the post-Newtonian triangular equilibrium in the three-body problem
NASA Astrophysics Data System (ADS)
Yamada, Kei; Tsuchiya, Takuya
2017-12-01
Continuing a work initiated in an earlier publication (Yamada et al. in Phys Rev D 91:124016, 2015), we reexamine the linear stability of the triangular solution in the relativistic three-body problem for general masses by the standard linear algebraic analysis. In this paper, we start with the Einstein-Infeld-Hoffmann form of equations of motion for N-body systems in the uniformly rotating frame. As an extension of the previous work, we consider general perturbations to the equilibrium, i.e., we take account of perturbations orthogonal to the orbital plane, as well as perturbations lying on it. It is found that the orthogonal perturbations depend on each other by the first post-Newtonian (1PN) three-body interactions, though these are independent of the lying ones likewise the Newtonian case. We also show that the orthogonal perturbations do not affect the condition of stability. This is because these do not grow with time, but always precess with two frequency modes, namely, the same with the orbital frequency and the slightly different one due to the 1PN effect. The condition of stability, which is identical to that obtained by the previous work (Yamada et al. 2015) and is valid for the general perturbations, is obtained from the lying perturbations.
NASA Technical Reports Server (NTRS)
Peterson, Victor L.
1959-01-01
An investigation has been conducted on a triangular wing and body combination to determine the effects on the aerodynamic characteristics resulting from deflecting portions of the wing near the tips 900 to the wing surface about streamwise hinge lines. Experimental data were obtained for Mach numbers of 0.70, 1.30, 1.70, and 2.22 and for angles of attack ranging from -5 deg to +18 deg at sideslip angles of 0 deg and 5 deg. The results showed that the aerodynamic center shift experienced by the triangular wing and body combination as the Mach number was increased from subsonic to supersonic could be reduced by about 40 percent by deflecting the outboard 4 percent of the total area of each wing panel. Deflection about the same hinge line of additional inboard surfaces consisting of 2 percent of the total area of each wing panel resulted in a further reduction of the aerodynamic center travel of 10 percent. The resulting reductions in the stability were accompanied by increases in the drag due to lift and, for the case of the configuration with all surfaces deflected, in the minimum drag. The combined effects of reduced stability and increased drag of the untrimmed configuration on the trimmed lift-drag ratios were estimated from an analysis of the cases in which the wing-body combination with or without tips deflected was assumed to be controlled by a canard. The configurations with deflected surfaces had higher trimmed lift-drag ratios than the model with undeflected surfaces at Mach numbers up to about 1.70. Deflecting either the outboard surfaces or all of the surfaces caused the directional stability to be increased by increments that were approximately constant with increasing angle of attack at each Mach number. The effective dihedral was decreased at all angles of attack and Mach numbers when the surfaces were deflected.
Casting inorganic structures with DNA molds
Sun, Wei; Boulais, Etienne; Hakobyan, Yera; Wang, Wei Li; Guan, Amy; Bathe, Mark; Yin, Peng
2014-01-01
We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff “nano-mold” that contains a user-specified three-dimensional cavity and encloses a nucleating gold “seed”. Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with three nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo-/heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic properties consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics. PMID:25301973
Brostow, Diana P; Hirsch, Alan T; Pereira, Mark A; Bliss, Robin L; Kurzer, Mindy S
2016-01-01
Nutritional and body weight recommendations for cardiovascular diseases are well established, yet there are no equivalent guidelines for peripheral arterial disease (PAD). This cross-sectional study measured the prevalence of cardiovascular-related nutritional and body composition risk factors in sixty PAD patients and their association with PAD severity. A diet that exceeds daily recommended intake of fat and that falls short of recommended intakes of fiber, folate, and vitamin D was associated with increased leg pain and walking difficulty. Increased body fat and waist circumference were associated with diminished walking ability and poorer psychosocial quality of life. Future prospective investigations are merited to inform both PAD clinical care and disease management guidelines.
Electron-impact ionization of atomic hydrogen
NASA Astrophysics Data System (ADS)
Baertschy, Mark David
2000-10-01
Since the invention of quantum mechanics, even the simplest example of collisional breakup in a system of charged particles, e - + H --> H+ + e- + e-, has stood as one of the last unsolved fundamental problems in atomic physics. A complete solution requires calculating the energies and directions for a final state in which three charged particles are moving apart. Advances in the formal description of three-body breakup have yet to lead to a viable computational method. Traditional approaches, based on two-body formalisms, have been unable to produce differential cross sections for the three-body final state. Now, by using a mathematical transformation of the Schrödinger equation that makes the final state tractable, a complete solution has finally been achieved. Under this transformation, the scattering wave function can be calculated without imposing explicit scattering boundary conditions. This approach has produced the first triple differential cross sections that agree on an absolute scale with experiment as well as the first ab initio calculations of the single differential cross section [29].
Geometry effect on electrokinetic flow and ionic conductance in pH-regulated nanochannels
NASA Astrophysics Data System (ADS)
Sadeghi, Morteza; Saidi, Mohammad Hassan; Moosavi, Ali; Sadeghi, Arman
2017-12-01
Semi-analytical solutions are obtained for the electrical potential, electroosmotic velocity, ionic conductance, and surface physicochemical properties associated with long pH-regulated nanochannels of arbitrary but constant cross-sectional area. The effects of electric double layer overlap, multiple ionic species, and surface association/dissociation reactions are all taken into account, assuming low surface potentials. The method of analysis includes series solutions which the pertinent coefficients are obtained by applying the wall boundary conditions using either of the least-squares or point matching techniques. Although the procedure is general enough to be applied to almost any arbitrary cross section, nine nanogeometries including polygonal, trapezoidal, double-trapezoidal, rectangular, elliptical, semi-elliptical, isosceles triangular, rhombic, and isotropically etched profiles are selected for presentation. For the special case of an elliptic cross section, full analytical solutions are also obtained utilizing the Mathieu functions. We show that the geometrical configuration plays a key role in determination of the ionic conductance, surface charge density, electrical potential and velocity fields, and proton enhancement. In this respect, the net electric charge and convective ionic conductance are higher for channels of larger perimeter to area ratio, whereas the opposite is true for the average surface charge density and mean velocity; the geometry impact on the two latest ones, however, vanishes if the background salt concentration is high enough. Moreover, we demonstrate that considering a constant surface potential equal to the average charge-regulated potential provides sufficiently accurate results for smooth geometries such as an ellipse at medium-high aspect ratios but leads to significant errors for geometries having narrow corners such as a triangle.
Asymptotic form of the charge exchange cross section in the three body rearrangement collisions
NASA Technical Reports Server (NTRS)
Omidvar, K.
1975-01-01
A three body general rearrangement collision is considered where the initial and final bound states are described by the hydrogen-like wave functions. Mathematical models are developed to establish the relationships of quantum number, the reduced mass, and the nuclear charge of the final state. It is shown that for the low lying levels, the reciprocal of n cubed scaling law at all incident energies is only approximately satisfied. The case of the symmetric collisions is considered and it is shown that for high n and high incident energy, E, the cross section behaves as the reciprocal of E cubed. Zeros and minima in the differential cross sections in the limit of high n for protons on atomic hydrogen and positrons on atomic hydrogen are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penel-Nottaris, Emilie
2004-07-01
The Jefferson Lab Hall A experiment has measured the 3He(e,e'p) reaction cross sections. The separation of the longitudinal and transverse response functions for the two-body breakup reaction in parallel kinematics allows to study the bound proton electromagnetic properties in the 3He nucleus and the involved nuclear mechanisms beyond impulse approximation. Preliminary cross sections show some disagreement with theoretical predictions for the forward angles kinematics around 0 MeV/c missing momenta, and sensitivity to final state interactions and 3He wave functions for missing momenta of 300 MeV/c.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.
1977-01-01
An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. The angles of attack extend from 0 deg to 180 deg for M = 2.9 from 0 deg to 60 deg for M = 0.6 to 2.0. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 deg to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. Vapor-screen and oil-flow pictures are shown for many body, body-wing and body-wing-tail configurations. When spearation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).
NASA Technical Reports Server (NTRS)
Gandhi, O. P.; Hagmann, M. J.; Dandrea, J. A.
1979-01-01
Fine structure in the whole-body resonant curve for radio-frequency energy deposition in man can be attributed to part-body resonances. As for head resonance, which occurs near 350 MHz in man, the absorptive cross section is nearly three times the physical cross section of the head. The arm has a prominent resonance at 150 MHz. Numerical solutions, antenna theory, and experimental results on animals have shown that whole-body energy deposition may be increased by 50 percent or more because of multiple bodies that are strategically located in the field. Empirical equations for SARs are also presented along with test data for several species of laboratory animals. Barbiturate anesthesia is sufficiently disruptive of thermoregulation that delta Ts of colonic temperature yield energy dose values in several mammals that compare quite favorably with those based on whole-body calorimetry.
NASA Astrophysics Data System (ADS)
Tiutiunnyk, A.; Tulupenko, V.; Akimov, V.; Demediuk, R.; Morales, A. L.; Mora-Ramos, M. E.; Radu, A.; Duque, C. A.
2015-11-01
This work concerns theoretical study of confined electrons in a low-dimensional structure consisting of three coupled triangular GaAs/AlxGa1-xAs quantum wires. Calculations have been made in the effective mass and parabolic band approximations. In the calculations a diagonalization method to find the eigenfunctions and eigenvalues of the Hamiltonian was used. A comparative analysis of linear and nonlinear optical absorption coefficients and the relative change in the refractive index was made, which is tied to the intersubband electron transitions.
Vaccination and triploidy increase relative heart weight in farmed Atlantic salmon, Salmo salar L.
Fraser, T W K; Mayer, I; Hansen, T; Poppe, T T; Skjaeraasen, J E; Koppang, E O; Fjelldal, P G
2015-02-01
Heart morphology is particularly plastic in teleosts and differs between farmed and wild Atlantic salmon. However, little is known about how different culture practices and sex affect heart morphology. This study investigated how vaccination, triploidy and sex affected heart size and heart morphology (ventricle shape, angle of the bulbus arteriosus) in farmed Atlantic salmon for 18 months following vaccination (from c. 50-3000 g body weight). In addition, hearts were examined histologically after 7 months in sea water. All fish sampled were sexually immature. Vaccinated fish had significantly heavier hearts relative to body weight and a more triangular ventricle than unvaccinated fish, suggesting a greater cardiac workload. Irrespective of time, triploids had significantly heavier hearts relative to body weight, a more acute angle of the bulbus arteriosus and less fat deposition in the epicardium than diploids. The ventricle was also more triangular in triploids than diploids at seawater transfer. Sex had transient effects on the angle of the bulbus arteriosus, but no effect on relative heart weight or ventricle shape. From a morphological perspective, the results indicate that vaccination and triploidy increase cardiac workload in farmed Atlantic salmon. © 2014 John Wiley & Sons Ltd.
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
30 CFR 783.25 - Cross sections, maps, and plans.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Elevations and locations of monitoring stations used to gather data on water quality and quantity, fish and... aquifers on cross-sections and contour maps; (7) Location of surface water bodies such as streams, lakes... permit area; (9) Location and dimensions of existing areas of spoil, waste, coal development waste, and...
NASA Astrophysics Data System (ADS)
Rajak, Dipen Kumar; Kumaraswamidhas, L. A.; Das, S.
2018-02-01
This study has examined proposed structures with mild steel-reinforced LM30 aluminum (Al) alloy having diversely unfilled and 10 wt.% SiCp composite foam-filled tubes for improving axial compression performance. This class of material has novel physical, mechanical, and electrical properties along with low density. In the present experiment, Al alloy foams were prepared by the melt route technique using metal hydride powder as a foaming agent. Crash energy phenomena for diverse unfilled and foam-filled in mild steel thin-wall tubes (triangular, square and hexagonal) were studied as well. Compression deformation investigation was conducted at strain rates of 0.001-0.1/s for evaluating specific energy absorption (SEA) under axial loading conditions. The results were examined to measure plateau stress, maximum densification strain, and deformation mechanism of the materials. Specific energy absorption and total energy absorption capacities of the unfilled and filled sections were determined from the compressive stress-strain curves, which were then compared with each other.
NASA Astrophysics Data System (ADS)
Puybaret, Renaud; Patriarche, Gilles; Jordan, Matthew B.; Sundaram, Suresh; El Gmili, Youssef; Salvestrini, Jean-Paul; Voss, Paul L.; de Heer, Walt A.; Berger, Claire; Ougazzaden, Abdallah
2016-03-01
We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5-8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.
We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metalmore » organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.« less
SHAHBAZI, Mohammad; FARNIA, Marzieh; RAHMANI, Khaled; MORADI, Ghobad
2014-01-01
Abstract Background HIV/AIDS epidemic is concentrated among injecting drug users in Iran. Like many other countries with HIV/AIDS concentrated epidemic, prisons are high risk areas for spreading HIV/AIDS. The aim of this paper was to study the trend of HIV/AIDS prevalence and related interventions administered in prisons of Iran during a 13 years period Methods This cross sectional study was conducted using the data collected from the sentinel sites in all prisons in the country and it also used the data about Harm Reduction interventions which has been implemented by Iran Prisons Organization. To evaluate the correlation between the prevalence and each of administered interventions in prisons the Correlation Coefficient Test was used for the second half of the mentioned time period Results The prevalence of HIV/AIDS in prisons had increased rapidly in the early stages of epidemic, so that in 2002 the prevalence raised to 3.83%. Followed by the expansion of Methadone Maintenance Therapy and development of Triangular Clinics, HIV/AIDS prevalence in prisons declined. There was a relationship between interventions and the prevalence of HIV/AIDS. Conclusion In regions and countries where the epidemic is highly prevalent among injecting drug users and prisoners, Methadone Maintenance Therapy and development of Triangular Clinics can be utilized to control HIV/AIDS epidemic quickly. PMID:26005657
Krahnstoever Davison, Kirsten; Marshall, Simon J.; Birch, Leann L.
2008-01-01
Objective To assess cross-sectional and longitudinal relations between television (TV) viewing and girls’ body mass index (BMI), weight status, and percentage of body fat. Study design Participants included 169 girls who were measured at ages 7, 9, and 11 years. Height and weight were measured and used to calculate girls’ BMI and to classify their weight status. Girls’ percentage of body fat was assessed with the use of dual-energy x-ray absorptiometry. Mothers reported the hours per day that girls watched TV on a typical day. Results No significant cross-sectional associations were identified. Results from longitudinal analyses showed that in comparison to girls who never exceeded the American Academy of Pediatrics TV viewing recommendations (ie, watched ≤ 2 hours of TV per day), girls who exceeded recommendations at ages 7, 9, and 11 years were 13.2 times more likely be overweight at age 11, were 4.7 times more likely to become overweight between ages 7 and 11, had significantly higher BMI and percentage body fat at age 11, and exhibited significantly greater increases in BMI between ages 7 and 11. Conclusions Interventions that target reductions in TV viewing among 7- to 11-year-old girls may help to reduce their risk of weight gain during late childhood. PMID:16860123
NASA Astrophysics Data System (ADS)
Sahu, M. K.; Pandey, K. M.; Chatterjee, S.
2018-05-01
In this two dimensional numerical investigation, small rectangular channel with right angled triangular protrusions in the bottom wall of test section is considered. A slot nozzle is placed at the middle of top wall of channel which impinges air normal to the protruded surface. A duct flow and nozzle flow combined to form cross flow which is investigated for heat transfer enhancement of protruded channel. The governing equations for continuity, momentum, energy along with SST k-ω turbulence model are solved with finite volume based Computational fluid dynamics code ANSYS FLUENT 14.0. The range of duct Reynolds number considered for this analysis is 8357 to 51760. The ratios of pitch of protrusion to height of duct considered are 0.5, 0.64 and 0.82. The ratios of height of protrusion to height of duct considered are 0.14, 0.23 and 0.29. The effect of duct Reynolds number, pitch and height of protrusion on thermal-hydraulic performance is studied under cross flow condition. It is found that heat transfer rate is more at relatively larger pitch and small pressure drop is found in case of low height of protrusion.
A method for calculating proton-nucleus elastic cross-sections
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.
2002-01-01
Recently [Nucl. Instr. and Meth. B 145 (1998) 277; Extraction of in-medium nucleon-nucleon amplitude from experiment, NASA-TP, 1998], we developed a method of extracting nucleon-nucleon (N-N) cross-sections in the medium directly from experiment. The in-medium N-N cross-sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the NASA Langley Research Center. We investigated [Proton-nucleus total cross-sections in coupled-channel approach, NASA/TP, 2000; Nucl. Instr. and Meth. B 173-174 (2001) 391] the ratio of real to imaginary part of the two body scattering amplitude in the medium. These ratios are used in combination with the in-medium N-N cross-sections to calculate proton-nucleus elastic cross-sections. The agreement is excellent with the available experimental data. These cross-sections are needed for the radiation risk assessment of space missions. c2002 Elsevier Science B.V. All rights reserved.
Body Image Disturbance in Patients with Acne Vulgaris
Bowe, Whitney P.; Crerand, Canice E.; Margolis, David J.; Shalita, Alan R.
2011-01-01
Psychosocial outcome measures, which attempt to examine acne from the patient's perspective, have become increasingly important in dermatology research. One such measure is the Body Image Disturbance Questionnaire. The authors' primary aim was to determine the validity and internal consistency of the Body Image Disturbance Questionnaire in patients with acne vulgaris. The secondary aim was to investigate the relationship between body image disturbance and quality of life. This cross-sectional investigation included 52 consecutive acne patients presenting to an outpatient dermatology clinic. Subjects completed the Body Image Disturbance Questionnaire, Skindex-16, and other body image and psychosocial functioning measures. An objective assessment of acne was performed. The Body Image Disturbance Questionnaire was internally consistent and converged with other known body image indices. Body Image Disturbance Questionnaire scores also correlated with Skindex-16 scores, confirming that quality of life and body image are related psychosocial constructs. The Body Image Disturbance Questionnaire appears to be an accurate instrument that can assess appearance-related concern and impairment in patients with acne vulgaris. Limitations include a small sample size and the cross-sectional design. PMID:21779418
Modal Ring Method for the Scattering of Electromagnetic Waves
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1993-01-01
The modal ring method for electromagnetic scattering from perfectly electric conducting (PEC) symmetrical bodies is presented. The scattering body is represented by a line of finite elements (triangular) on its outer surface. The infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The modal ring method effectively reduces the two dimensional scattering problem to a one-dimensional problem similar to the method of moments. The modal element method is capable of handling very high frequency scattering because it has a highly banded solution matrix.
Many-Body Theory for Positronium-Atom Interactions
NASA Astrophysics Data System (ADS)
Green, D. G.; Swann, A. R.; Gribakin, G. F.
2018-05-01
A many-body-theory approach has been developed to study positronium-atom interactions. As first applications, we calculate the elastic scattering and momentum-transfer cross sections and the pickoff annihilation rate 1Zeff for Ps collisions with He and Ne. For He the cross section is in agreement with previous coupled-state calculations, while comparison with experiment for both atoms highlights discrepancies between various sets of measured data. In contrast, the calculated 1Zeff (0.13 and 0.26 for He and Ne, respectively) are in excellent agreement with the measured values.
Role of stag beetle jaw bending and torsion in grip on rivals.
Goyens, Jana; Dirckx, Joris; Piessen, Maxim; Aerts, Peter
2016-01-01
In aggressive battles, the extremely large male stag beetle jaws have to withstand strongly elevated bite forces. We found several adaptations of the male Cyclommatus metallifer jaw morphology for enhanced robustness that conspecific females lack. As a result, males improve their grip on opponents and they maintain their safety factor (5.2-7.2) at the same level as that of females (6.8), despite their strongly elevated bite muscle force (3.9 times stronger). Males have a higher second moment of area and torsion constant than females, owing to an enhanced cross-sectional area and shape. These parameters also increase faster with increasing bending moment towards the jaw base in males than in females. Male jaws are more bending resistant against the bite reaction force than against perpendicular forces (which remain lower in battles). Because of the triangular cross section of the male jaw base, it twists more easily than it bends. This torsional flexibility creates a safety system against overload that, at the same time, secures a firm grip on rivals. We found no structural mechanical function of the large teeth halfway along the male jaws. Therefore, it appears that the main purpose of these teeth is a further improvement of grip on rivals. © 2016 The Author(s).
Role of stag beetle jaw bending and torsion in grip on rivals
Goyens, Jana; Dirckx, Joris; Piessen, Maxim; Aerts, Peter
2016-01-01
In aggressive battles, the extremely large male stag beetle jaws have to withstand strongly elevated bite forces. We found several adaptations of the male Cyclommatus metallifer jaw morphology for enhanced robustness that conspecific females lack. As a result, males improve their grip on opponents and they maintain their safety factor (5.2–7.2) at the same level as that of females (6.8), despite their strongly elevated bite muscle force (3.9 times stronger). Males have a higher second moment of area and torsion constant than females, owing to an enhanced cross-sectional area and shape. These parameters also increase faster with increasing bending moment towards the jaw base in males than in females. Male jaws are more bending resistant against the bite reaction force than against perpendicular forces (which remain lower in battles). Because of the triangular cross section of the male jaw base, it twists more easily than it bends. This torsional flexibility creates a safety system against overload that, at the same time, secures a firm grip on rivals. We found no structural mechanical function of the large teeth halfway along the male jaws. Therefore, it appears that the main purpose of these teeth is a further improvement of grip on rivals. PMID:26763329
Excitons in Core-Shell Nanowires with Polygonal Cross Sections.
Sitek, Anna; Urbaneja Torres, Miguel; Torfason, Kristinn; Gudmundsson, Vidar; Bertoni, Andrea; Manolescu, Andrei
2018-04-11
The distinctive prismatic geometry of semiconductor core-shell nanowires leads to complex localization patterns of carriers. Here, we describe the formation of optically active in-gap excitonic states induced by the interplay between localization of carriers in the corners and their mutual Coulomb interaction. To compute the energy spectra and configurations of excitons created in the conductive shell, we use a multielectron numerical approach based on the exact solution of the multiparticle Hamiltonian for electrons in the valence and conduction bands, which includes the Coulomb interaction in a nonperturbative manner. We expose the formation of well-separated quasidegenerate levels, and focus on the implications of the electron localization in the corners or on the sides of triangular, square, and hexagonal cross sections. We obtain excitonic in-gap states associated with symmetrically distributed electrons in the spin singlet configuration. They acquire large contributions due to Coulomb interaction, and thus are shifted to much higher energies than other states corresponding to the conduction electron and the vacancy localized in the same corner. We compare the results of the multielectron method with those of an electron-hole model, and we show that the latter does not reproduce the singlet excitonic states. We also obtain the exciton lifetime and explain selection rules which govern the recombination process.
Domain decomposition by the advancing-partition method for parallel unstructured grid generation
NASA Technical Reports Server (NTRS)
Banihashemi, legal representative, Soheila (Inventor); Pirzadeh, Shahyar Z. (Inventor)
2012-01-01
In a method for domain decomposition for generating unstructured grids, a surface mesh is generated for a spatial domain. A location of a partition plane dividing the domain into two sections is determined. Triangular faces on the surface mesh that intersect the partition plane are identified. A partition grid of tetrahedral cells, dividing the domain into two sub-domains, is generated using a marching process in which a front comprises only faces of new cells which intersect the partition plane. The partition grid is generated until no active faces remain on the front. Triangular faces on each side of the partition plane are collected into two separate subsets. Each subset of triangular faces is renumbered locally and a local/global mapping is created for each sub-domain. A volume grid is generated for each sub-domain. The partition grid and volume grids are then merged using the local-global mapping.
Quantum Statistical Mechanics on a Quantum Computer
NASA Astrophysics Data System (ADS)
Raedt, H. D.; Hams, A. H.; Michielsen, K.; Miyashita, S.; Saito, K.
We describe a quantum algorithm to compute the density of states and thermal equilibrium properties of quantum many-body systems. We present results obtained by running this algorithm on a software implementation of a 21-qubit quantum computer for the case of an antiferromagnetic Heisenberg model on triangular lattices of different size.
ANSYS-based birefringence property analysis of side-hole fiber induced by pressure and temperature
NASA Astrophysics Data System (ADS)
Zhou, Xinbang; Gong, Zhenfeng
2018-03-01
In this paper, we theoretically investigate the influences of pressure and temperature on the birefringence property of side-hole fibers with different shapes of holes using the finite element analysis method. A physical mechanism of the birefringence of the side-hole fiber is discussed with the presence of different external pressures and temperatures. The strain field distribution and birefringence values of circular-core, rectangular-core, and triangular-core side-hole fibers are presented. Our analysis shows the triangular-core side-hole fiber has low temperature sensitivity which weakens the cross sensitivity of temperature and strain. Additionally, an optimized structure design of the side-hole fiber is presented which can be used for the sensing application.
A four-body model for the breakup of Borromean nucleus 22C
NASA Astrophysics Data System (ADS)
Miyamoto, Tomokazu
A Borromean system is a bound 3-body system where no 2-body subsystems are bound. In nuclear physics, a nucleus that can be modelled as a Borromean system is called a Borromean nucleus; 6 He and 11 Li are good examples of this. Recent research suggests that this Borromean nature should also be exhibited by 22 C, the heaviest-known carbon isotope. In this PhD thesis, a schematic approach is taken to study reactions involving Borromean nuclei. Hyperspherical formalism (HH) and coordinate space Faddeev (CSF) method are used for creating their 3-body bound state wave functions. We formulate the reactions of a Borromean nucleus with a stable target at incident energies ranging from tens of (MeV) to a few hundred (MeV); we adopt a 4-body reaction model to deepen our understanding of the reaction mechanism involving Borromean nuclei. The Glauber-WKB framework is used to describe these reactions, which is well-suited for these incident energies. Introducing Watson-Migdal final state interaction, we calculate the E1 strengths for Borromean nuclei so as to elucidate their breakup mechanism and we explore the possibility of the existence of a soft dipole mode. We also calculate the differential breakup cross sections to see how the post-collision interaction can have an impact on the cross sections. As far as 22 C is concerned, it is found that the reactions are mainly focused on the forward angle region, and the contributions from the higher order terms are not significant. This implies that the non-eikonal trajectories do not play a crucial role in the reaction mechanism. Also, both E1 distributions and breakup cross sections seem to sensitive to the 2n-separation energies of the bound state wave functions, but the E1 distributions and the cross sections to 1- continuum state seem not to be sensitive to the FSIs; cross sections to 0+ and 2+ continuum states seem to be sensitive to the FSIs. Our findings does not support the view that, if an soft dipole mode exists, it is induced by the FSIs.
NASA Astrophysics Data System (ADS)
Bello, Nakone; Umar, Aishetu
2018-06-01
In the framework of the relativistic R3BP, we examine the effects of oblateness of the primary body and radiation pressure of the secondary on the positions and stability of the triangular points L4,5. It is found that the parameters involved all affect the positions and increase in any of the parameters leads to a reduction in the size of the region of stability. Thus establishing their destabilizing tendencies. The presence of positive real roots or positive real part in complex roots affirms the instability of L4,5 of the problem when applied to Cen X-4.
NASA Technical Reports Server (NTRS)
Allen, J. M.; Hernandez, G.; Lamb, M.
1983-01-01
Tabulated body surface pressure data for two monoplane-wing missile configurations are presented and analyzed. Body pressure data are presented for body-alone, body-tail, and body-wing-tail combinations. For the lost combination, data are presented for tail-fin deflection angles of 0 deg and 30 deg to simulate pitch, yaw, and roll control for both configurations. The data cover angles of attack from -5 deg to 25 deg and angles of roll from 0 deg to 90 deg at a Mach number of 2.50 and a Reynolds number of 6.56 x 1,000,000 per meter. Very consistent, systematic trends with angle of attack and angle of roll were observed in the data, and very good symmetry was found at a roll angle of 0 deg. Body pressures depended strongly on the local body cross-section shape, with very little dependence on the upstream shape. Undeflected fins had only a small influence on the pressures on the aft end of the body; however, tail-fin deflections caused large changes in the pressures.
NASA Astrophysics Data System (ADS)
Adivi, E. Ghanbari; Brunger, M. J.; Bolorizadeh, M. A.; Campbell, L.
2007-02-01
The second-order Faddeev-Watson-Lovelace approximation in a modified form is applied to charge transfer from hydrogenlike target atoms by a fully stripped energetic projectile ion. The state-to-state, nlm→n'l'm' , partial transition amplitudes are calculated analytically. The method is specifically applied to the collision of protons with hydrogen atoms, where differential cross sections of different transitions are calculated for incident energies of 2.8 and 5.0MeV . It is shown that the Thomas peak is present in all transition cross sections. The partial cross sections are then summed and compared with the available forward-angle experimental data, showing good agreement.
Calculation of linearized supersonic flow over slender cones of arbitrary cross section
NASA Technical Reports Server (NTRS)
Mascitti, V. R.
1972-01-01
Supersonic linearized conical-flow theory is used to determine the flow over slender pointed cones having horizontal and vertical planes of symmetry. The geometry of the cone cross sections and surface velocities are expanded in Fourier series. The symmetry condition permits the uncoupling of lifting and nonlifting solutions. The present method reduces to Ward's theory for flow over a cone of elliptic cross section. Results are also presented for other shapes. Results by this method diverge for cross-sectional shapes where the maximum thickness is large compared with the minimum thickness. However, even for these slender-body shapes, lower order solutions are good approximations to the complete solution.
NASA Technical Reports Server (NTRS)
Goggans, Paul M.; Shumpert, Thomas H.
1991-01-01
Transverse electric (TE) and transverse magnetic (TM) scattering from dielectric-filled, cavity-backed apertures in two-dimensional bodies are treated using the method of moments technique to solve a set of combined-field integral equations for the equivalent induced electric and magnetic currents on the exterior of the scattering body and on the associated aperture. Results are presented for the backscatter radar cross section (RCS) versus the electrical size of the scatterer for two different dielectric-filled cavity-backed geometries. The first geometry is a circular cylinder of infinite length which has an infinite length slot aperture along one side. The cavity inside the cylinder is dielectric filled and is also of circular cross section. The two cylinders (external and internal) are of different radii and their respective longitudinal axes are parallel but not collocated. The second is a square cylinder of infinite length which has an infinite length slot aperture along one side. The cavity inside the square cylinder is dielectric-filled and is also of square cross section.
Compliance and stress intensity coefficients for short bar specimens with chevron notches
NASA Technical Reports Server (NTRS)
Munz, D.; Bubsey, R. T.; Srawley, J. E.
1980-01-01
For the determination of fracture toughness especially with brittle materials, a short bar specimen with rectangular cross section and chevron notch can be used. As the crack propagates from the tip of the triangular notch, the load increases to a maximum then decreases. To obtain the relation between the fracture toughness and maximum load, calculations of Srawley and Gross for specimens with a straight-through crack were applied to the specimens with chevron notches. For the specimens with a straight-through crack, an analytical expression was obtained. This expression was used for the calculation of the fracture toughness versus maximum load relation under the assumption that the change of the compliance with crack length for the specimen with a chevron notch is the same as for a specimen with a straight-through crack.
Casting inorganic structures with DNA molds
Sun, Wei; Boulais, Etienne; Hakobyan, Yera; ...
2014-10-09
Here we report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff “nano-mold” that contains a user-specified three-dimensional cavity and encloses a nucleating gold “seed”. Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with three nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo-/heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic propertiesmore » consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics.« less
Casting inorganic structures with DNA molds.
Sun, Wei; Boulais, Etienne; Hakobyan, Yera; Wang, Wei Li; Guan, Amy; Bathe, Mark; Yin, Peng
2014-11-07
We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff "nanomold" that contains a user-specified three-dimensional cavity and encloses a nucleating gold "seed." Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with 3-nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo- and heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic properties consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics. Copyright © 2014, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brummer, Gordie, E-mail: gbrummer@bu.edu; Photonics Center, Boston University, Boston, Massachusetts 02215; Nothern, Denis
Distributed Bragg reflectors (DBRs) with peak reflectivity at approximately 280 nm, based on compositionally graded Al{sub x}Ga{sub 1−x}N alloys, were grown on 6H-SiC substrates by plasma-assisted molecular beam epitaxy. DBRs with square, sinusoidal, triangular, and sawtooth composition profiles were designed with the transfer matrix method. The crystal structure of these DBRs was studied with high-resolution x-ray diffraction of the (1{sup ¯}015) reciprocal lattice point. The periodicity of the DBR profiles was confirmed with cross-sectional Z-contrast scanning transmission electron microscopy. The peak reflectance of these DBRs with 15.5 periods varies from 77% to 56% with corresponding full width at half maximum ofmore » 17–14 nm. Coupled mode analysis was used to explain the dependence of the reflectivity characteristics on the profile of the graded composition.« less
NASA Technical Reports Server (NTRS)
Love, Eugene S
1955-01-01
The results of tests of 22 triangular wings, representing two leading-edge shapes for each of 11 apex angles, at Mach numbers 1.62, 1.92, and 1.40 are presented and compared with theory. All wings have a common thickness ratio of 8 percent and a common maximum-thickness point at 18 percent chord. Lift, drag, and pitching moment are given for all wings at each Mach number. The relation of transition in the boundary layer, shocks on the wing surfaces, and characteristics of the pressure distributions is discussed for several wings.
Quezada, Amado D; Macías-Waldman, Nayeli; Salmerón, Jorge; Swigart, Tessa; Gallegos-Carrillo, Katia
2017-11-17
Depression is a foremost cause of morbidity throughout the world and the prevalence of depression in women is about twice as high as men. Additionally, overweight and obesity are major global health concerns. We explored the relationship between depression and body fat, and the role of physical activity and diet as mediators of this relationship in a sample of 456 adult female Mexican health workers. Longitudinal and cross-sectional analyses using data from adult women of the Health Workers Cohort Study (HWCS) Measures of body fat mass (kg from DEXA), dietary intake (kcal from FFQ), leisure time activity (METs/wk) and depression (CES-D) were determined in two waves (2004-2006 and 2010-2011). We explored the interrelation between body fat, diet, leisure time, physical activity, and depression using a cross-lagged effects model fitted to longitudinal data. We also fitted a structural equations model to cross-sectional data with body fat as the main outcome, and dietary intake and physical activity from leisure time as mediators between depression and body fat. Baseline depression was significantly related to higher depression, higher calorie intake, and lower leisure time physical activity at follow-up. From our cross-sectional model, each standard deviation increase in the depression score was associated with an average increase of 751 ± 259 g (± standard error) in body fat through the mediating effects of calorie intake and physical activity. The results of this study show how depression may influence energy imbalance between calories consumed and calories expended, resulting in higher body fat among those with a greater depression score. Evaluating the role of mental conditions like depression in dietary and physical activity behaviors should be positioned as a key research goal for better designed and targeted public health interventions. The HealthWorkers Cohort Study (HWCS) has been approved by the Institutional IRB. Number: 2005-785-012.
Studies on unsteady pressure fields in the region of separating and reattaching flows
NASA Astrophysics Data System (ADS)
Govinda Ram, H. S.; Arakeri, V. H.
1990-12-01
Experimental studies on the measurement of pressure fields in the region of separating and reattaching flows behind several two-dimensional fore-bodies and one axisymmetric body are reported. In particular, extensive measurements of mean pressure, surface pressure fluctuation, and pressure fluctuation within the flow were made for a series of two-dimensional fore-body shapes consisting of triangular nose with varying included angle. The measurements from different bodies are compared and one of the important findings is that the maximum values of rms pressure fluctuation levels in the shear layer approaching reattachment are almost equal to the maximum value of the surface fluctuation levels.
Quantitative flow visualization applied to wake flow studies
NASA Astrophysics Data System (ADS)
Rukweza, Godfrey
An experimental study of the flow past stationary cylinders of circular, triangular and rectangular cross-section in cross-flow has been made using three different techniques. These are hot-film anemometry, smoke-wire flow visualization, and particle image velocimetry. The point measurement technique of constant temperature hot-film anemometry was used to confirm the findings of earlier investigations on the performance of cylinders with rectangular and triangular cross-sections. The thesis presents distributions of the mean streamwise velocity, fluctuation levels and spectra in the Reynolds number range 200 < Re[D] < 2.2 x 10[4]. Variations of the vortex shedding frequency with Reynolds number within the near-wake region are shown and related to the flow patterns obtained using the technique of smoke-wire flow visualisation. Finally, PIV was applied in a water channel to determine wake flow properties created by a circular cylinder at three Reynolds numbers of 200, 300 and 2.2 x 10[4]. For the PIV investigation, a technique was developed which enables a continuous wave laser beam to be pulsed using a Bragg cell : this system can be used to produce pulses of light which are separated by a specified time interval which is typically in the range 10[-4] to 10[-2] s. This was successfully used in the implementation of PIV in the highest Reynolds number conditions for which standard video frame rates of 25 fps are inadequate. In this relatively high speed flow, a novel technique was also developed for sampling the image data of seeding particles at a fixed phase. This enabled the phase-averaging of data derived by analysis of PIV system output with a good degree of success. Analysis of the flow image data was then performed using a customized PIV software package developed in the Department, in conjunction with a special purpose software package QFV. Results are presented for both the instantaneous and the phase-averaged distributions of velocity, vorticity, and shear in the near-wake of a stationary, circular-section cylinder in cross-flow, the phase-averaging being applied only to the two low Reynolds number flows because hardware limitations precluded phase sampling at the highest Reynolds number. These results reveal the time evolution of the flow in the near-wake region and also permit estimates to be made of the vortex convection velocities in the near-wake flow field. The experimental results are in close agreement with those previously published in the literature, including those obtained using a variety of different techniques. Qualitative consideration is given to the general experimental errors which are encountered in PIV and the limitations on accuracy of PIV implementation in wake flow are reviewed. The overall outcome of the investigation is seen to be a better and systematic understanding of the flow in the near-wake of a cylinder in cross-flow. This improved understanding is coupled with a wealth of detailed data which shows how the large scale motion is superimposed on the wake flow region.
Park, In-Seok; Gil, Hyun Woo; Yoo, Gwang Yeol; Oh, Ji Su
2015-01-01
We assessed the effects of various dietary conditions on the growth, phenotypic traits, and morphometric dimensions of rock bream, Oplegnathus fasciatus and on the morphometric dimensions of sectioned olive flounder, Paralichthys olivaceus. Rock bream in the fed group increased in body weight, standard length, and condition factor, but these parameters decreased significantly for fish in the starved group (P < 0.05). The head connection dimensions of fish in the fed group decreased, while for starved fish there was increase in external morphometric dimensions (P < 0.05). In both species, sectioned morphometric analysis revealed that fish in the fed group had a larger body circumference and cross-cut sectional area, and greater cross-cut section height, relative to the starved group (P < 0.05). PMID:27004266
NASA Astrophysics Data System (ADS)
Bartlett, Philip L.; Stelbovics, Andris T.
2010-02-01
The propagating exterior complex scaling (PECS) method is extended to all four-body processes in electron impact on helium in an S-wave model. Total and energy-differential cross sections are presented with benchmark accuracy for double ionization, single ionization with excitation, and double excitation (to autoionizing states) for incident-electron energies from threshold to 500 eV. While the PECS three-body cross sections for this model given in the preceding article [Phys. Rev. A 81, 022715 (2010)] are in good agreement with other methods, there are considerable discrepancies for these four-body processes. With this model we demonstrate the suitability of the PECS method for the complete solution of the electron-helium system.
Body Image across the Life Span in Adult Women: The Role of Self-Objectification.
ERIC Educational Resources Information Center
Tiggemann, Marika; Lynch, Jessica E.
2001-01-01
Investigated body image across life span in cross-section of women ages 20-84 years. Found that although body dissatisfaction remained stable, self-objectification, habitual body monitoring, appearance anxiety, and disordered eating all significantly decreased with age. Self- objectification mediated the relationship between age and disordered…
Radar cross section of human cardiopulmonary activity for recumbent subject.
Kiriazi, John E; Boric-Lubecke, Olga; Lubecke, Victor M
2009-01-01
The radar cross section (RCS) corresponding to human cardio-respiratory motion is measured for a subject in two different recumbent positions. Lying face-up (supine), the subject showed an RCS of 0.326 m(2). But when lying face-down (prone), the RCS increased to 2.9 m(2). This is the first reported RCS measurement corresponding to human cardio-respiratory motion. The results obtained in this experiment suggest modeling the upper part of the human body as a half-cylinder where the front body corresponds to the cylindrical surface and the back corresponds to the rectangular one.
Nagasaka, Kei; Mizuno, Koji; Thomson, Robert
2018-03-26
For occupant protection, it is important to understand how a car's deceleration time history in crashes can be designed using efficient of energy absorption by a car body's structure. In a previous paper, the authors proposed an energy derivative method to determine each structural component's contribution to the longitudinal deceleration of a car passenger compartment in crashes. In this study, this method was extended to 2 dimensions in order to analyze various crash test conditions. The contribution of each structure estimated from the energy derivative method was compared to that from a conventional finite element (FE) analysis method using cross-sectional forces. A 2-dimensional energy derivative method was established. A simple FE model with a structural column connected to a rigid body was used to confirm the validity of this method and to compare with the result of cross-sectional forces determined using conventional analysis. Applying this method to a full-width frontal impact simulation of a car FE model, the contribution and the cross-sectional forces of the front rails were compared. In addition, this method was applied to a pedestrian headform FE simulation in order to determine the influence of the structural and inertia forces of the hood structures on the deceleration of the headform undergoing planar motion. In an oblique impact of the simple column and rigid body model, the sum of the contributions of each part agrees with the rigid body deceleration, which indicates the validity of the 2-dimensional energy derivative method. Using the energy derivative method, it was observed that each part of the column contributes to the deceleration of the rigid body by collapsing in the sequence from front to rear, whereas the cross-sectional force at the rear of the column cannot detect the continuous collapse. In the full-width impact of a car, the contributions of the front rails estimated in the energy derivative method was smaller than that using the cross-sectional forces at the rear end of the front rails due to the deformation of the passenger compartment. For a pedestrian headform impact, the inertial and structural forces of the hood contributed to peaks of the headform deceleration in the initial and latter phases, respectively. Using the 2-dimensional energy derivative method, it is possible to analyze an oblique impact or a pedestrian headform impact with large rotations. This method has advantages compared to the conventional approach using cross-sectional forces because the contribution of each component to system deceleration can be determined.
NASA Astrophysics Data System (ADS)
Lei, Hanlun; Xu, Bo; Circi, Christian
2018-05-01
In this work, the single-mode motions around the collinear and triangular libration points in the circular restricted three-body problem are studied. To describe these motions, we adopt an invariant manifold approach, which states that a suitable pair of independent variables are taken as modal coordinates and the remaining state variables are expressed as polynomial series of them. Based on the invariant manifold approach, the general procedure on constructing polynomial expansions up to a certain order is outlined. Taking the Earth-Moon system as the example dynamical model, we construct the polynomial expansions up to the tenth order for the single-mode motions around collinear libration points, and up to order eight and six for the planar and vertical-periodic motions around triangular libration point, respectively. The application of the polynomial expansions constructed lies in that they can be used to determine the initial states for the single-mode motions around equilibrium points. To check the validity, the accuracy of initial states determined by the polynomial expansions is evaluated.
NASA Astrophysics Data System (ADS)
Changlani, Hitesh; Kumar, Krishna; Kochkov, Dmitrii; Fradkin, Eduardo; Clark, Bryan
We report the existence of a quantum macroscopically degenerate ground state manifold on the nearest neighbor XXZ model on the kagome lattice at the point Jz /Jxy = - 1 / 2 . On many lattices with triangular motifs (including the kagome, sawtooth, icosidodecahedron and Shastry-Sutherland lattice for a certain choice of couplings) this Hamiltonian is found to be frustration-free with exact ground states which correspond to three-colorings of these lattices. Several results also generalize to the case of variable couplings and to other motifs (albeit with possibly more complex Hamiltonians). The degenerate manifold on the kagome lattice corresponds to a ''many-body flat band'' of interacting hard-core bosons; and for the one boson case our results also explain the well-known non-interacting flat band. On adding realistic perturbations, state selection in this manifold of quantum many-body states is discussed along with the implications for the phase diagram of the kagome lattice antiferromagnet. supported by DE-FG02-12ER46875, DMR 1408713, DE-FG02-08ER46544.
Triangular Quantum Loop Topography for Machine Learning
NASA Astrophysics Data System (ADS)
Zhang, Yi; Kim, Eun-Ah
Despite rapidly growing interest in harnessing machine learning in the study of quantum many-body systems there has been little success in training neural networks to identify topological phases. The key challenge is in efficiently extracting essential information from the many-body Hamiltonian or wave function and turning the information into an image that can be fed into a neural network. When targeting topological phases, this task becomes particularly challenging as topological phases are defined in terms of non-local properties. Here we introduce triangular quantum loop (TQL) topography: a procedure of constructing a multi-dimensional image from the ''sample'' Hamiltonian or wave function using two-point functions that form triangles. Feeding the TQL topography to a fully-connected neural network with a single hidden layer, we demonstrate that the architecture can be effectively trained to distinguish Chern insulator and fractional Chern insulator from trivial insulators with high fidelity. Given the versatility of the TQL topography procedure that can handle different lattice geometries, disorder, interaction and even degeneracy our work paves the route towards powerful applications of machine learning in the study of topological quantum matters.
Biostereometric Data Processing In ERGODATA: Choice Of Human Body Models
NASA Astrophysics Data System (ADS)
Pineau, J. C.; Mollard, R.; Sauvignon, M.; Amphoux, M.
1983-07-01
The definition of human body models was elaborated with anthropometric data from ERGODATA. The first model reduces the human body into a series of points and lines. The second model is well adapted to represent volumes of each segmentary element. The third is an original model built from the conventional anatomical points. Each segment is defined in space by a tri-angular plane located with its 3-D coordinates. This new model can answer all the processing possibilities in the field of computer-aided design (C.A.D.) in ergonomy but also biomechanics and orthopaedics.
Pinet, C; Scillia, P; Cassart, M; Lamotte, M; Knoop, C; Mélot, C; Estenne, M
2004-09-01
In the absence of complications, recipients of lung transplants for cystic fibrosis have normal pulmonary function but the impact of the procedure on the strength and bulk of respiratory and limb muscles has not been studied. Twelve stable patients who had undergone lung transplantation for cystic fibrosis 48 months earlier (range 8-95) and 12 normal subjects matched for age, height, and sex were studied. The following parameters were measured: standard lung function, peak oxygen uptake by cycle ergometry, diaphragm surface area by computed tomographic (CT) scanning, diaphragm and abdominal muscle thickness by ultrasonography, twitch transdiaphragmatic and gastric pressures, quadriceps isokinetic strength, and quadriceps cross section by CT scanning, and lean body mass. Diaphragm mass was computed from diaphragm surface area and thickness. Twitch transdiaphragmatic and gastric pressures, diaphragm mass, and abdominal muscle thickness were similar in the two groups but quadriceps strength and cross section were decreased by nearly 30% in the patients. Patients had preserved quadriceps strength per unit cross section but reduced quadriceps cross section per unit lean body mass. The cumulative dose of corticosteroids was an independent predictor of quadriceps atrophy. Peak oxygen uptake showed positive correlations with quadriceps strength and cross section in the two groups, but peak oxygen uptake per unit quadriceps strength or cross section was reduced in the patient group. The diaphragm and abdominal muscles have preserved strength and bulk in patients transplanted for cystic fibrosis but the quadriceps is weak due to muscle atrophy. This atrophy is caused in part by corticosteroid therapy and correlates with the reduction in exercise capacity.
Moore, Makeda; Masuda, Akihiko; Hill, Mary L; Goodnight, Bradley L
2014-12-01
Body image flexibility, a regulation process of openly and freely experiencing disordered eating thoughts and body dissatisfaction, has been found to be a buffering factor against disordered eating symptomatology. The present cross-sectional study investigates whether body image flexibility accounts for disordered eating behavior above and beyond disordered eating cognition, mindfulness, and psychological inflexibility in a sample of nonclinical women, and whether body image flexibility moderates the associations between these correlates and disordered eating behavior. Participants were 421 women, age 21±5.3 years old on average, who completed a web-based survey that included the self-report measures of interest. Results demonstrate the incremental effects of body image flexibility on disordered eating behavior above and beyond disordered eating cognition, mindfulness, and psychological inflexibility. Women with greater body image flexibility endorse disordered eating behavior less so than those with lower body image flexibility. Body image flexibility moderates the association between disordered eating cognition and disordered eating behavior; for women with greater body image flexibility, disordered eating cognition is not positively associated with disordered eating behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.
Elastic and transport cross sections for inert gases in a hydrogen plasma
NASA Astrophysics Data System (ADS)
Krstic, Predrag
2005-05-01
Accurate elastic differential and integral scattering and transport cross sections have been computed using a fully quantum-mechanical approach for hydrogen ions (H^+, D^+ and T^+) colliding with Neon, Krypton and Xenon, in the center of mass energy range 0.1 to 200 eV. The momentum transfer and viscosity cross sections have been extended to higher keV collision energies using a classical, three-body scattering method. The results were compared with previously calculated values for Argon and Helium, as well as with simple analytical models. The cross sections, tabulated and available through the world wide web (www-cfadc.phy.ornl.gov) are of significance in fusion plasma modeling, gaseous electronics and other plasma applications.
Chung, Beom Sun; Ahn, Young Hwan; Park, Jin Seo
2016-09-01
For the surgical approach to lesions around the cavernous sinus (CS), triangular spaces around CS have been devised. However, educational materials for learning the triangles were insufficient. The purpose of this study is to present educational materials about the triangles, consisting of a schematic diagram and 3-dimensional (3D) models with sectioned images. To achieve the purposes, other studies were analyzed to establish new definitions and names of the triangular spaces. Learning materials including schematic diagrams and 3D models with cadaver's sectioned images were manufactured. Our new definition was attested by observing the sectioned images and 3D models. The triangles and the four representative surgical approaches were stereoscopically indicated on the 3D models. All materials of this study were put into Portable Document Format file and were distributed freely at our homepage (anatomy.dongguk.ac.kr/triangles). By using our schematic diagram and the 3D models with sectioned images, ten triangles and the related structures could be understood and observed accurately. We expect that our data will contribute to anatomy education, surgery training, and radiologic understanding of the triangles and related structures.
Motion in a modified Chermnykh's restricted three-body problem with oblateness
NASA Astrophysics Data System (ADS)
Singh, Jagadish; Leke, Oni
2014-03-01
In this paper, the restricted problem of three bodies is generalized to include a case when the passively gravitating test particle is an oblate spheroid under effect of small perturbations in the Coriolis and centrifugal forces when the first primary is a source of radiation and the second one an oblate spheroid, coupled with the influence of the gravitational potential from the belt. The equilibrium points are found and it is seen that, in addition to the usual three collinear equilibrium points, there appear two new ones due to the potential from the belt and the mass ratio. Two triangular equilibrium points exist. These equilibria are affected by radiation of the first primary, small perturbation in the centrifugal force, oblateness of both the test particle and second primary and the effect arising from the mass of the belt. The linear stability of the equilibrium points is explored and the stability outcome of the collinear equilibrium points remains unstable. In the case of the triangular points, motion is stable with respect to some conditions which depend on the critical mass parameter; influenced by the small perturbations, radiating effect of the first primary, oblateness of the test body and second primary and the gravitational potential from the belt. The effects of each of the imposed free parameters are analyzed. The potential from the belt and small perturbation in the Coriolis force are stabilizing parameters while radiation, small perturbation in the centrifugal force and oblateness reduce the stable regions. The overall effect is that the region of stable motion increases under the combine action of these parameters. We have also found the frequencies of the long and short periodic motion around stable triangular points. Illustrative numerical exploration is rendered in the Sun-Jupiter and Sun-Earth systems where we show that in reality, for some values of the system parameters, the additional equilibrium points do not in general exist even when there is a belt to interact with.
Shape optimization of the modular press body
NASA Astrophysics Data System (ADS)
Pabiszczak, Stanisław
2016-12-01
A paper contains an optimization algorithm of cross-sectional dimensions of a modular press body for the minimum mass criterion. Parameters of the wall thickness and the angle of their inclination relative to the base of section are assumed as the decision variables. The overall dimensions are treated as a constant. The optimal values of parameters were calculated using numerical method of the tool Solver in the program Microsoft Excel. The results of the optimization procedure helped reduce body weight by 27% while maintaining the required rigidity of the body.
An upwind multigrid method for solving viscous flows on unstructured triangular meshes. M.S. Thesis
NASA Technical Reports Server (NTRS)
Bonhaus, Daryl Lawrence
1993-01-01
A multigrid algorithm is combined with an upwind scheme for solving the two dimensional Reynolds averaged Navier-Stokes equations on triangular meshes resulting in an efficient, accurate code for solving complex flows around multiple bodies. The relaxation scheme uses a backward-Euler time difference and relaxes the resulting linear system using a red-black procedure. Roe's flux-splitting scheme is used to discretize convective and pressure terms, while a central difference is used for the diffusive terms. The multigrid scheme is demonstrated for several flows around single and multi-element airfoils, including inviscid, laminar, and turbulent flows. The results show an appreciable speed up of the scheme for inviscid and laminar flows, and dramatic increases in efficiency for turbulent cases, especially those on increasingly refined grids.
Hyperbolic Prismatic Grid Generation and Solution of Euler Equations on Prismatic Grids
NASA Technical Reports Server (NTRS)
Pandya, S. A.; Chattot, JJ; Hafez, M. M.; Kutler, Paul (Technical Monitor)
1994-01-01
A hyperbolic grid generation method is used to generate prismatic grids and an approach using prismatic grids to solve the Euler equations is presented. The theory of the stability and feasibility of the hyperbolic grid generation method is presented. The hyperbolic grid generation method of Steger et al for structured grids is applied to a three dimensional triangularized surface definition to generate a grid that is unstructured on each successive layer. The grid, however, retains structure in the body-normal direction and has a computational cell shaped like a triangular prism. In order to take advantage of the structure in the normal direction, a finite-volume scheme that treats the unknowns along the normal direction implicitly is introduced and the flow over a sphere is simulated.
Self-Esteem and Body Image Perception in a Sample of University Students
ERIC Educational Resources Information Center
Pop, Cristiana
2016-01-01
Problem Statement: This cross-sectional study was conducted to determine the relationship established between self-esteem and body image dissatisfaction, as subjective variables among young, female Romanian university students. Purpose of Study: We hypothesize that young women's body dissatisfaction is related to their self-esteem level. The…
ERIC Educational Resources Information Center
Kichler, Jessica C.; Crowther, Janis H.
2009-01-01
The relationships among communication, modeling, body image dissatisfaction, and maladaptive eating attitudes and behaviors in preadolescent girls were investigated in a cross-sectional study of 69 girls in fourth through sixth grade and their mothers. Participants completed questionnaires assessing familial and peer influences, body image…
Initial clinical experience with computerized tomography of the body.
Stephens, D H; Sheedy, P F; Hattery, R R; Hartman, G W
1976-04-01
Computerized tomography of the body, now possible with an instrument that can complete a scan rapidly enough to permit patients to suspend respiration, adds an important new dimension to radiologic diagnosis. Cross-sectional antomy is uniquely reconstructed to provide accurate diagnostic information for various disorders throughout the body.
USDA-ARS?s Scientific Manuscript database
The impact of physical activity patterns and sleep duration on growth and body composition of preschool-aged children remains unresolved. Aims were (1) to delineate cross-sectional associations among physical activity components, sleep, total energy expenditure (TEE), and body size and composition; ...
Two-body loss rates for reactive collisions of cold atoms
NASA Astrophysics Data System (ADS)
Cop, C.; Walser, R.
2018-01-01
We present an effective two-channel model for reactive collisions of cold atoms. It augments elastic molecular channels with an irreversible, inelastic loss channel. Scattering is studied with the distorted-wave Born approximation and yields general expressions for angular momentum resolved cross sections as well as two-body loss rates. Explicit expressions are obtained for piecewise constant potentials. A pole expansion reveals simple universal shape functions for cross sections and two-body loss rates in agreement with the Wigner threshold laws. This is applied to collisions of metastable 20Ne and 21Ne atoms, which decay primarily through exothermic Penning or associative ionization processes. From a numerical solution of the multichannel Schrödinger equation using the best currently available molecular potentials, we have obtained synthetic scattering data. Using the two-body loss shape functions derived in this paper, we can match these scattering data very well.
Li, Junyi; Yuan, Yongsheng; Wang, Min; Zhang, Jiejin; Zhang, Li; Jiang, Siming; Ding, Jian; Zhang, Kezhong
2017-10-01
Fatigue is a common complaint in patients with Parkinson's disease (PD). However, the neural bases of fatigue in PD remain uncertain. In this cross-sectional study, our aim was to study the change of the local brain function in PD patients with fatigue. Among 49 patients with PD, 17 of them had fatigue and the remaining 32 patients without fatigue, and 25 age- and gender-matched healthy controls were enrolled. All subjects were evaluated with Fatigue Severity Scale (FSS) and had a resting-state functional magnetic resonance imaging (rs-fMRI) scan. The fMRI images were analyzed using regional homogeneity (ReHo) to study the change of the local brain function. ReHo analysis controlling for gray matter volume, age, gender, and education showed decreased ReHo in the left anterior cingulate cortex (ACC) and the right superior frontal gyrus (dorsolateral part), and increased ReHo in the left postcentral gyrus and the right inferior frontal gyrus (orbital and triangular part), compared PD-F with PD-NF; In PD patients, the regional activity in the left ACC and the right superior frontal gyrus (dorsolateral part) was negatively correlated with the FSS scores, while that in the left postcentral gyrus, the right inferior frontal gyrus (orbital and triangular part) was positively correlated with the FSS scores. This study demonstrates that brain areas including frontal, postcentral and ACC regions indicative of sensory, motor, and cognitive systems are involved in fatigue in PD patients.
Absolute cross sections for the ionization-excitation of helium by electron impact
NASA Astrophysics Data System (ADS)
Bellm, S.; Lower, J.; Weigold, E.; Bray, I.; Fursa, D. V.; Bartschat, K.; Harris, A. L.; Madison, D. H.
2008-09-01
In a recent publication we presented detailed experimental and theoretical results for the electron-impact-induced ionization of ground-state helium atoms. The purpose of that work was to refine theoretical approaches and provide further insight into the Coulomb four-body problem. Cross section ratios were presented for transitions leading to excited states, relative to those leading to the ground state, of the helium ion. We now build on that study by presenting individual relative triple-differential ionization cross sections (TDCSs) for an additional body of experimental data measured at lower values of scattered-electron energies. This has been facilitated through the development of new electron-gun optics which enables us to accurately characterize the spectrometer transmission at low energies. The experimental results are compared to calculations resulting from a number of different approaches. For ionization leading to He+(1s2)1S , cross sections are calculated by the highly accurate convergent close-coupling (CCC) method. The CCC data are used to place the relative experimental data on to an absolute scale. TDCSs describing transitions to the excited states are calculated through three different approaches, namely, through a hybrid distorted- wave+R -matrix (close-coupling) model, through the recently developed four-body distorted-wave model, and by a first Born approximation calculation. Comparison of the first- and second-order theories with experiment allows for the accuracy of the different theoretical approaches to be assessed and gives insight into which physical aspects of the problem are most important to accurately model.
Weischer, Maren; Bojesen, Stig E; Nordestgaard, Børge G
2014-03-01
Cross-sectional studies have associated short telomere length with smoking, body weight, physical activity, and possibly alcohol intake; however, whether these associations are due to confounding is unknown. We tested these hypotheses in 4,576 individuals from the general population cross-sectionally, and with repeat measurement of relative telomere length 10 years apart. We also tested whether change in telomere length is associated with mortality and morbidity in the general population. Relative telomere length was measured with quantitative polymerase chain reaction. Cross-sectionally at the first examination, short telomere length was associated with increased age (P for trend across quartiles = 3 × 10(-77)), current smoking (P = 8 × 10(-3)), increased body mass index (P = 7 × 10(-14)), physical inactivity (P = 4 × 10(-17)), but not with increased alcohol intake (P = 0.10). At the second examination 10 years later, 56% of participants had lost and 44% gained telomere length with a mean loss of 193 basepairs. Change in leukocyte telomere length during 10 years was associated inversely with baseline telomere length (P<1 × 10(-300)) and age at baseline (P = 1 × 10(-27)), but not with baseline or 10-year inter-observational tobacco consumption, body weight, physical activity, or alcohol intake. Prospectively during a further 10 years follow-up after the second examination, quartiles of telomere length change did not associate with risk of all-cause mortality, cancer, chronic obstructive pulmonary disease, diabetes mellitus, ischemic cerebrovascular disease, or ischemic heart disease. In conclusion, smoking, increased body weight, and physical inactivity were associated with short telomere length cross-sectionally, but not with telomere length change during 10 years observation, and alcohol intake was associated with neither. Also, change in telomere length did not associate prospectively with mortality or morbidity in the general population.
Weischer, Maren; Bojesen, Stig E.; Nordestgaard, Børge G.
2014-01-01
Cross-sectional studies have associated short telomere length with smoking, body weight, physical activity, and possibly alcohol intake; however, whether these associations are due to confounding is unknown. We tested these hypotheses in 4,576 individuals from the general population cross-sectionally, and with repeat measurement of relative telomere length 10 years apart. We also tested whether change in telomere length is associated with mortality and morbidity in the general population. Relative telomere length was measured with quantitative polymerase chain reaction. Cross-sectionally at the first examination, short telomere length was associated with increased age (P for trend across quartiles = 3×10−77), current smoking (P = 8×10−3), increased body mass index (P = 7×10−14), physical inactivity (P = 4×10−17), but not with increased alcohol intake (P = 0.10). At the second examination 10 years later, 56% of participants had lost and 44% gained telomere length with a mean loss of 193 basepairs. Change in leukocyte telomere length during 10 years was associated inversely with baseline telomere length (P<1×10−300) and age at baseline (P = 1×10−27), but not with baseline or 10-year inter-observational tobacco consumption, body weight, physical activity, or alcohol intake. Prospectively during a further 10 years follow-up after the second examination, quartiles of telomere length change did not associate with risk of all-cause mortality, cancer, chronic obstructive pulmonary disease, diabetes mellitus, ischemic cerebrovascular disease, or ischemic heart disease. In conclusion, smoking, increased body weight, and physical inactivity were associated with short telomere length cross-sectionally, but not with telomere length change during 10 years observation, and alcohol intake was associated with neither. Also, change in telomere length did not associate prospectively with mortality or morbidity in the general population. PMID:24625632
Cardinal ligament surgical anatomy: cardinal points at hysterectomy.
Samaan, Andrew; Vu, Dzung; Haylen, Bernard T; Tse, Kelly
2014-02-01
The cardinal ligament (CL) still requires more precise anatomical mapping. We aim to elucidate the anatomy of the CL and the roles it plays in gynecological surgery. Studies employed sharp dissection of 28 formalin-fixed cadaveric hemipelves and 10 unembalmed cadaveric hemipelves. The CL (total length averaging 10.0 cm) can be subdivided into three sections: a distal (cervical) section, on average 2.1 cm long, attached to the lateral aspect of the cervix (posteriorly, it was confluent with the attachment of the uterosacral [USL] ligament to form the cardinal-uterosacral confluence [CUSC]); an intermediate section, on average 3.4 cm long, running laterally (slightly posteriorly) from the cervix; a proximal (pelvic) section, relatively thick, triangular-shaped on cross-section, averaging 4.6 cm long, attached to the lateral pelvic sidewall, with its apex at the first branching of the internal iliac artery. Only the distal section is free of any significant neural or vascular component (ureter is in the intermediate section) and therefore safe for surgical use. The CUSC (first pedicle of a vaginal hysterectomy and later pedicle of an abdominal hysterectomy), if attached to the vaginal vault at hysterectomy has the potential for both lateral (CL) and supero-posterior (USL) surgical support. This pedicle would not be subsequently accessible for other surgeries. Suggested cardinal points at hysterectomy are: know the CL anatomy; the distal section (as part of the CUSC) can provide vaginal vault support; the intermediate and proximal sections are surgically dangerous.
Exploiting the Spatio-Temporal Coherence of Ocean Ambient Noise for Passive Tomography
2012-09-30
ˆ kfCij and corresponds to the entry (i,j) of cross-covariance matrix for the selected horizontal triangular array, denoted );( ˆ kfC at the...diagonal elements );( ˆ kfCii (i=1..3) of the matrix );( ˆ kfC were set to zero to mitigate the bias due to electronic noise and the large
Extracting Cross-Sectional Clinical Images Based on Their Principal Axes of Inertia
Fan, Yuzhou; Djuric, Marija; Li, Zhiyu; Antonijevic, Djordje; Milenkovic, Petar; Sun, Yueyang; Li, Ruining
2017-01-01
Cross-sectional imaging is considered the gold standard in diagnosing a range of diseases. However, despite its widespread use in clinical practice and research, no widely accepted method is available to reliably match cross-sectional planes in several consecutive scans. This deficiency can impede comparison between cross-sectional images and ultimately lead to misdiagnosis. Here, we propose and demonstrate a method for finding the same imaging plane in images obtained during separate scanning sessions. Our method is based on the reconstruction of a “virtual organ” from which arbitrary cross-sectional images can be extracted, independent of the axis orientation in the original scan or cut; the key is to establish unique body coordinates of the organ from its principal axes of inertia. To verify our method a series of tests were performed, and the same cross-sectional plane was successfully extracted. This new approach offers clinicians access, after just a single scanning session, to the morphology and structure of a lesion through cross-sectional images reconstructed along arbitrary axes. It also aids comparable detection of morphological and structural changes in the same imaging plane from scans of the same patient taken at different times—thus potentially reducing the misdiagnosis rate when cross-sectional images are interpreted. PMID:29410714
Extracting Cross-Sectional Clinical Images Based on Their Principal Axes of Inertia.
Fan, Yuzhou; Luo, Liangping; Djuric, Marija; Li, Zhiyu; Antonijevic, Djordje; Milenkovic, Petar; Sun, Yueyang; Li, Ruining; Fan, Yifang
2017-01-01
Cross-sectional imaging is considered the gold standard in diagnosing a range of diseases. However, despite its widespread use in clinical practice and research, no widely accepted method is available to reliably match cross-sectional planes in several consecutive scans. This deficiency can impede comparison between cross-sectional images and ultimately lead to misdiagnosis. Here, we propose and demonstrate a method for finding the same imaging plane in images obtained during separate scanning sessions. Our method is based on the reconstruction of a "virtual organ" from which arbitrary cross-sectional images can be extracted, independent of the axis orientation in the original scan or cut; the key is to establish unique body coordinates of the organ from its principal axes of inertia. To verify our method a series of tests were performed, and the same cross-sectional plane was successfully extracted. This new approach offers clinicians access, after just a single scanning session, to the morphology and structure of a lesion through cross-sectional images reconstructed along arbitrary axes. It also aids comparable detection of morphological and structural changes in the same imaging plane from scans of the same patient taken at different times-thus potentially reducing the misdiagnosis rate when cross-sectional images are interpreted.
NASA Astrophysics Data System (ADS)
Kyrylova, O. I.; Popov, V. G.
2018-04-01
An effective analytical-numerical method for determining the dynamic stresses in a hollow cylindrical body of arbitrary cross-section with a tunnel crack under antiplane strain conditions is proposed. The method allows separately solving the integral equations on the crack faces and satisfying the boundary conditions on the body boundaries. It provides a convenient numerical scheme. Approximate formulas for calculating the dynamic stress intensity factors in a neighborhood of the crack are obtained and the influence of the crack geometry and wave number on these quantities is investigated, especially from the point of view of the resonance existence.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Nelson, E. R.
1976-01-01
An experimental investigation was conducted by wind tunnel to measure the static aerodynamic characteristics for bodies of circular and elliptic cross section with various thin flat plate wings and a thin tail consisting of horizontal and vertical parts. The wings had aspect ratios of 4 and taper ratios of about 0, 0.25, and 0.5. Two additional wings, which had taper ratios near 0.25 and aspect ratios of about 3 and 5, were also tested in combination with the bodies and tail. All wings had about the same planform area. The exposed area of the horizontal portion of the tail was about 33 to 36 percent of the exposed area of the wings. The exposed area of the vertical tail fin was about 22 to 24 percent of the exposed area of the wings. The elliptic body, with an a/b = 2 cross section, had the same length and axial distribution of cross sectional area as the circular body. The circular body had a cylindrical aftersection of fineness ratio 7, and it was tested with the wings and tail in combination with tangent ogive noses that had fineness ratios of 2.5, 3.0, 3.5, and 5.0. In addition, an ogive nose with a rounded tip and an ogive nose with two different nose strake arrangements were used. Nineteen configuration combinations were tested at Mach numbers of 0.6, 0.9, 1.5, and 2.0 at angles of attack from 0 to 58 deg. The Reynolds numbers, based on body base diameter, were about 4.3 X 100,000.
26 CFR 1.367(b)-13 - Special rules for determining basis and holding period.
Code of Federal Regulations, 2010 CFR
2010-04-01
... not have any section 1248 shareholders. FT has assets with a value of $100x, a basis of $50x, and no... section 1248 shareholder with respect to S, or P is a foreign corporation and a United States person is a section 1248 shareholder with respect to both P and S; and (B) In the case of a reverse triangular merger...
Tailorable advanced blanket insulation using aluminoborosilicate and alumina batting
NASA Technical Reports Server (NTRS)
Calamito, Dominic P.
1989-01-01
Two types of Tailorable Advanced Blanket Insulation (TABI) flat panels for Advanced Space Transportation Systems were produced. Both types consisted of integrally woven, 3-D fluted core having parallel faces and connecting ribs of Nicalon yarns. The triangular cross section flutes of one type was filled with mandrels of processed Ultrafiber (aluminoborosilicate) stitchbonded Nextel 440 fibrous felt, and the second type wall filled with Saffil alumina fibrous felt insulation. Weaving problems were minimal. Insertion of the fragile insulation mandrels into the fabric flutes was improved by using a special insertion tool. An attempt was made to weave fluted core fabrics from Nextel 440 yarns but was unsuccessful because of the yarn's fragility. A small sample was eventually produced by an unorthodox weaving process and then filled with Saffil insulation. The procedures for setting up and weaving the fabrics and preparing and inserting insulation mandrels are discussed. Characterizations of the panels produced are also presented.
Structural attachments for large space structures
NASA Technical Reports Server (NTRS)
Pruett, E. C.; Loughead, T. E.; Robertson, K. B., III
1980-01-01
The feasibility of fabricating beams in space and using them as components of a large, crew assembled structure, was investigated. Two projects were undertaken: (1) design and development of a ground version of an automated beam builder capable of producing triangular cross section aluminum beams; and (2) design and fabrication of lap joints to connect the beams orthogonally and centroidal end caps to connect beams end to end at any desired angle. The first project produced a beam building machine which fabricates aluminum beams suitable for neutral buoyancy evaluation. The second project produced concepts for the lap joint and end cap. However, neither of these joint concepts was suitable for use by a pressure suited crew member in a zero gravity environment. It is concluded that before the beams can be evaluated the joint designs need to be completed and sufficient joints produced to allow assembly of a complex structure.
Lewis, Richard A.
1980-01-01
A target for a proton beam which is capable of generating neutrons for absorption in a breeding blanket includes a plurality of solid pins formed of a neutron emissive target material disposed parallel to the path of the beam and which are arranged axially in a plurality of layers so that pins in each layer are offset with respect to pins in all other layers, enough layers being used so that each proton in the beam will strike at least one pin with means being provided to cool the pins. For a 300 mA, 1 GeV beam (300 MW), stainless steel pins, 12 inches long and 0.23 inches in diameter are arranged in triangular array in six layers with one sixth of the pins in each layer, the number of pins being such that the entire cross sectional area of the beam is covered by the pins with minimum overlap of pins.
User's manual for CBS3DS, version 1.0
NASA Astrophysics Data System (ADS)
Reddy, C. J.; Deshpande, M. D.
1995-10-01
CBS3DS is a computer code written in FORTRAN 77 to compute the backscattering radar cross section of cavity backed apertures in infinite ground plane and slots in thick infinite ground plane. CBS3DS implements the hybrid Finite Element Method (FEM) and Method of Moments (MoM) techniques. This code uses the tetrahedral elements, with vector edge basis functions for FEM in the volume of the cavity/slot and the triangular elements with the basis functions for MoM at the apertures. By virtue of FEM, this code can handle any arbitrarily shaped three-dimensional cavities filled with inhomogeneous lossy materials; due to MoM, the apertures can be of any arbitrary shape. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computer the code is intended to run.
Fabrication and characterization of GaN nanowire doubly clamped resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maliakkal, Carina B., E-mail: carina@tifr.res.in; Mathew, John P.; Hatui, Nirupam
2015-09-21
Gallium nitride (GaN) nanowires (NWs) have been intensely researched as building blocks for nanoscale electronic and photonic device applications; however, the mechanical properties of GaN nanostructures have not been explored in detail. The rigidity, thermal stability, and piezoelectric properties of GaN make it an interesting candidate for nano-electromechanical systems. We have fabricated doubly clamped GaN NW electromechanical resonators on sapphire using electron beam lithography and estimated the Young's modulus of GaN from resonance frequency measurements. For wires of triangular cross section with side ∼90 nm, we obtained values for the Young's modulus to be about 218 and 691 GPa, which are ofmore » the same order of magnitude as the values reported for bulk GaN. We also discuss the role of residual strain in the nanowire on the resonant frequency and the orientation dependence of the Young's modulus in wurtzite crystals.« less
Theoretical analysis of heat flow in horizontal ribbon growth from a melt. [silicon metal
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.
1978-01-01
A theoretical heat flow analysis for horizontalribbon growth is presented. Equations are derived relating pull speed, ribbon thickness, thermal gradient in the melt, and melt temperature for limiting cases of heat removal by radiation only and isothermal heat removal from the solid surface over the melt. Geometrical cross sections of the growth zone are shown to be triangular and nearly parabolic for the two respective cases. Theoretical pull speed for silicon ribbon 0.01 cm thick, where the loss of latent heat of fusion is by radiation to ambient temperature (300 K) only, is shown to be 1 cm/sec for horizontal growth extending 2 cm over the melt and with no heat conduction either to or from the melt. Further enhancement of ribbon growth rate by placing cooling blocks adjacent to the top surface is shown to be theoretically possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foo, M.L.; He, T.; Huang, Q.
The crystal structures, synthesis and physical properties of ruthenium hollandites ALi{sub 2}Ru{sub 6}O{sub 12} (A=Na, K) with a new pseudo-hexagonal structure type are described. Analogous to tetragonal hollandites, the framework is made of MO{sub 6} octahedra in double chains that share corner oxygens with each other to create interstitial tunnels. The tunnels are either hexagonal or triangular in cross-section. Magnetic susceptibilities, low temperature specific heat, and electrical resistivities are reported. The data indicate that these materials are normal, low density of states metals. This new structure type can be extended from A=Group I to A=Group II ions with the synthesismore » of CaLi{sub 2}Ru{sub 6}O{sub 12} and SrLi{sub 2}Ru{sub 6}O{sub 12}.« less
NASA Technical Reports Server (NTRS)
Bienart, W. B.
1973-01-01
The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.
NASA Astrophysics Data System (ADS)
Tiutiunnyk, Anton; Akimov, Volodymyr; Tulupenko, Viktor; Mora-Ramos, Miguel E.; Kasapoglu, Esin; Morales, Alvaro L.; Duque, Carlos Alberto
2016-04-01
The differential cross-section of electron Raman scattering and the Raman gain are calculated and analysed in the case of prismatic quantum dots with equilateral triangle base shape. The study takes into account their dependencies on the size of the triangle, the influence of externally applied electric field as well as the presence of an ionized donor center located at the triangle's orthocenter. The calculations are made within the effective mass and parabolic band approximations, with a diagonalization scheme being applied to obtain the eigenfunctions and eigenvalues of the x- y Hamiltonian. The incident and secondary (scattered) radiation have been considered linearly-polarized along the y-direction, coinciding with the direction of the applied electric field. For the case with an impurity center, Raman scattering with the intermediate state energy below the initial state one has been found to show maximum differential cross-section more than by an order of magnitude bigger than that resulting from the scheme with lower intermediate state energy. The Raman gain has maximum magnitude around 35 nm dot size and electric field of 40 kV/cm for the case without impurity and at maximum considered values of the input parameters for the case with impurity. Values of Raman gain of the order of up to 104cm-1 are predicted in both cases.
Diesel, Cristiano Valter; Ribeiro, Tiango Aguiar; Scheidt, Rodrigo Benedet; Macedo, Carlos Alberto de Souza; Galia, Carlos Roberto
2015-01-01
There is a lack of uniformity in the diagnostic criteria for femoroacetabular impingement (FAI), and few studies discuss the prevalence of radiographic changes in asymptomatic individuals. These factors make it difficult to establish a natural history of this disease. The aim of this study was to assess the prevalence of radiographic signs of CAM and Pincer FAI in an asymptomatic population. A cross-sectional study was performed from July 2013 to December 2013. A total of 185 subjects were analysed. no history of hip pain or orthopedic disease; and being 20-60 years old. athletically active; or patients who would not allow acquisition of appropriate radiographs for analysis. Radiographs were obtained in anteroposterior and Dünn 45° view to access: alpha angle (AA), triangular index (TI), crossover sign (CS), lateral-centre edge (LCE) angle and acetabular index (AI). Median age was 34 years (27-49.5) and FAI was present in 53% of all subjects. 32.44% (60) was the overall CAM-type prevalence and 42.7% (79) the overall Pincer-type prevalence. Only 2 subjects presented the 3 overcoverage signs (AI, LCE and CS). An association was noted between the presence of AI <0° and the LCE >40° (p = 0.05). Our study established a higher prevalence of radiographic markers of FAI in an asymptomatic population.
Nutritional Habits of Female University Students in Relation to Self-Perception of Body
ERIC Educational Resources Information Center
Suliga, Edyta; Wronka, Iwona; Pawlinska-Chmara, Romana
2012-01-01
Study aim: To determine whether the self-assessment of body mass has an impact on the nutritional behaviour of young women. Material and methods: The material was gathered in cross-sectional research of 1129 female university students. The measurements of body height, body mass, and waist and hip circumference were taken. Each person completed a…
NASA Astrophysics Data System (ADS)
Volpi, Giorgio; Riva, Federico; Frattini, Paolo; Battista Crosta, Giovanni; Magri, Fabien
2016-04-01
Thermal springs are widespread in the European Alps, where more than 80 geothermal sites are known and exploited. The quantitative assessment of those thermal flow systems is a challenging issue and requires accurate conceptual model and a thorough understanding of thermo-hydraulic properties of the aquifers. Accordingly in the last years, several qualitative studies were carried out to understand the heat and fluid transport processes driving deep fluids from the reservoir to the springs. Our work focused on thermal circulation and fluid outflows of the area around Bormio (Central Italian Alps), where nine geothermal springs discharge from dolomite bodies located close to a regional alpine thrust, called the Zebrù Line. At this site, water is heated in deep circulation systems and vigorously upwells at temperature of about 40°C. The aim of this paper is to explore the mechanisms of heat and fluid transport in the Bormio area by carrying out refined steady and transient three-dimensional finite element simulations of thermally-driven flow and to quantitatively assess the source area of the thermal waters. The full regional model (ca. 700 km2) is discretized with a highly refined triangular finite element planar grid obtained with Midas GTS NX software. The structural 3D features of the regional Zebrù thrust are built by interpolating series of geological cross sections using Fracman. A script was developed to convert and implement the thrust grid into FEFLOW mesh that comprises ca. 4 million elements. The numerical results support the observed discharge rates and temperature field within the simulated domain. Flow and temperature patterns suggest that thermal groundwater flows through a deep system crossing both sedimentary and metamorphic lithotypes, and a fracture network associated to the thrust system. Besides providing a numerical framework to simulate complex fractured systems, this example gives insights into the influence of deep alpine structures on groundwater circulation that underlies the development of many hydrothermal systems.
Electron-impact ionization of atomic hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baertschy, Mark D.
2000-02-01
Since the invention of quantum mechanics, even the simplest example of collisional breakup in a system of charged particles, e - + H → H + + e - + e +, has stood as one of the last unsolved fundamental problems in atomic physics. A complete solution requires calculating the energies and directions for a final state in which three charged particles are moving apart. Advances in the formal description of three-body breakup have yet to lead to a viable computational method. Traditional approaches, based on two-body formalisms, have been unable to produce differential cross sections for the three-bodymore » final state. Now, by using a mathematical transformation of the Schrodinger equation that makes the final state tractable, a complete solution has finally been achieved, Under this transformation, the scattering wave function can be calculated without imposing explicit scattering boundary conditions. This approach has produced the first triple differential cross sections that agree on an absolute scale with experiment as well as the first ab initio calculations of the single differential cross section.« less
NASA Technical Reports Server (NTRS)
Wilcox, Floyd J., Jr.; Birch, Trevor J.; Allen, Jerry M.
2004-01-01
A wind-tunnel investigation of a square cross-section missile configuration has been conducted to obtain force and moment measurements, surface pressure measurements, and vapor screen flow visualization photographs for comparison with computational fluid dynamics studies conducted under the auspices of The Technical Cooperation Program (TTCP). Tests were conducted on three configurations which included: (1) body alone, (2) body plus tail fins mounted on the missile corners, and (3) body plus tail fins mounted on the missile side. This test was conducted in test section #2 of the NASA Langley Unitary Plan Wind Tunnel at Mach numbers of 2.50 and 4.50 and at a Reynolds number of 4 million per ft. The data were obtained over an angle of attack range from -4 deg. to 24 deg. and roll angles from 0 deg. to 45 deg., i.e., from a diamond shape (as viewed from the rear) at a roll angle of 0 deg. to a square shape at 45 deg.
NASA Astrophysics Data System (ADS)
Gálisová, Lucia; Strečka, Jozef
2018-05-01
The ground state, zero-temperature magnetization process, critical behaviour and isothermal entropy change of the mixed-spin Ising model on a decorated triangular lattice in a magnetic field are exactly studied after performing the generalized decoration-iteration mapping transformation. It is shown that both the inverse and conventional magnetocaloric effect can be found near the absolute zero temperature. The former phenomenon can be found in a vicinity of the discontinuous phase transitions and their crossing points, while the latter one occurs in some paramagnetic phases due to a spin frustration to be present at zero magnetic field. The inverse magnetocaloric effect can also be detected slightly above continuous phase transitions following the power-law dependence | - ΔSisomin | ∝hn, where n depends basically on the ground-state spin ordering.
Entanglement and magnetism in high-spin graphene nanodisks
NASA Astrophysics Data System (ADS)
Hagymási, I.; Legeza, Ö.
2018-01-01
We investigate the ground-state properties of triangular graphene nanoflakes with zigzag edge configurations. The description of zero-dimensional nanostructures requires accurate many-body techniques since the widely used density-functional theory with local density approximation or Hartree-Fock methods cannot handle the strong quantum fluctuations. Applying the unbiased density-matrix renormalization group algorithm we calculate the magnetization and entanglement patterns with high accuracy for different interaction strengths and compare them to the mean-field results. With the help of quantum information analysis and subsystem density matrices we reveal that the edges are strongly entangled with each other. We also address the effect of electron and hole doping and demonstrate that the magnetic properties of triangular nanoflakes can be controlled by an electric field, which reveals features of flat-band ferromagnetism. This may open up new avenues in graphene based spintronics.
Topological color codes on Union Jack lattices: a stable implementation of the whole Clifford group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katzgraber, Helmut G.; Theoretische Physik, ETH Zurich, CH-8093 Zurich; Bombin, H.
We study the error threshold of topological color codes on Union Jack lattices that allow for the full implementation of the whole Clifford group of quantum gates. After mapping the error-correction process onto a statistical mechanical random three-body Ising model on a Union Jack lattice, we compute its phase diagram in the temperature-disorder plane using Monte Carlo simulations. Surprisingly, topological color codes on Union Jack lattices have a similar error stability to color codes on triangular lattices, as well as to the Kitaev toric code. The enhanced computational capabilities of the topological color codes on Union Jack lattices with respectmore » to triangular lattices and the toric code combined with the inherent robustness of this implementation show good prospects for future stable quantum computer implementations.« less
Improved-resolution real-time skin-dose mapping for interventional fluoroscopic procedures
NASA Astrophysics Data System (ADS)
Rana, Vijay K.; Rudin, Stephen; Bednarek, Daniel R.
2014-03-01
We have developed a dose-tracking system (DTS) that provides a real-time display of the skin-dose distribution on a 3D patient graphic during fluoroscopic procedures. Radiation dose to individual points on the skin is calculated using exposure and geometry parameters from the digital bus on a Toshiba C-arm unit. To accurately define the distribution of dose, it is necessary to use a high-resolution patient graphic consisting of a large number of elements. In the original DTS version, the patient graphics were obtained from a library of population body scans which consisted of larger-sized triangular elements resulting in poor congruence between the graphic points and the x-ray beam boundary. To improve the resolution without impacting real-time performance, the number of calculations must be reduced and so we created software-designed human models and modified the DTS to read the graphic as a list of vertices of the triangular elements such that common vertices of adjacent triangles are listed once. Dose is calculated for each vertex point once instead of the number of times that a given vertex appears in multiple triangles. By reformatting the graphic file, we were able to subdivide the triangular elements by a factor of 64 times with an increase in the file size of only 1.3 times. This allows a much greater number of smaller triangular elements and improves resolution of the patient graphic without compromising the real-time performance of the DTS and also gives a smoother graphic display for better visualization of the dose distribution.
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Menees, Gene P.
1961-01-01
Results of an investigation of the aerodynamic loads on a canard airplane model are presented without detailed analysis for the Mach number range of 0.70 t o 2.22. The model consisted of a triangular wing and canard of aspect ratio 2 mounted on a Sears-Haack body of fineness ratio 12.5 and either a single body-mounted vertical tail or twin wing mounted vertical tails of low aspect ratio and sweptback plan form. The body, right wing panel, single vertical tail, and left twin vertical tail were instrumented for measuring pressures. Data were obtained for angles of attack ranging from -4 degrees to +16 degrees, nominal canard deflection angles of 0 degrees and 10 degrees, and angles of sideslip of 0 degrees and 5.3 degrees. The Reynolds number was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. Selected portions of the data are presented in graphical form and attention is directed to some of the results of the investigation. All of the experimental results have been tabulated in the form of pressure coefficients and integrations of the pressure coefficients and are available as supplements to this paper. A brief summary of the contents of the tabular material is given.
Perspective view looking from the northeast to show east elevation ...
Perspective view looking from the northeast to show east elevation and north (front) elevation; note portico on east side tucked under the extended gable roof of the wing-much like a shed roof - whereas the front has a projecting porch capped by a triangular pediment and cross-gable roof - Fort Hill, Clemson University Campus, Clemson, Pickens County, SC
NASA Astrophysics Data System (ADS)
Xing, Yong-Zhong; Lu, Fei-Ping; Wei, Xiao-Ping; Zheng, Yu-Ming
2014-08-01
The nucleon-nucleon cross sections in the dense nuclear matter are microscopically calculated by using Dirac—Brueckner—Hartree—Fock (DBHF) approximation with different covariant representations of the T-matrix, i.e., complete pseudo-vector (CPV), pseudoscalar (PS) and pseudo-vector (PV) choices. Special attention is paid to the discrepancies among the cross sections calculated with these different T-matrix project choices. The results show that the medium suppression of the cross section given by DBHF in the CPV choice is not only smaller than those obtained in both PS and PV choices, but also smaller than the predictions with a nonrelativistic Brueckner—Hartree—Fock (BHF) method including three body force (3BF). The further analysis reveals that the influence of the different choices on the cross section in the DBHF approximation is mainly determined by the state of smaller total angular momentum due to the medium effect being strongly suppressed in the higher angular momentum.
ERIC Educational Resources Information Center
Morrison, Todd G.; Sheahan, Emer E.
2009-01-01
This study examined whether the gender-related discourses of self-objectification, self-silencing, and anger suppression mediated the association between internalization of the thin-body ideal and body dissatisfaction and eating pathology. We employed a cross-sectional design to study both university (n = 140) and community (n = 76) samples of…
Stabilizing geometry for hydrodynamic rotary seals
Dietle, Lannie L.; Schroeder, John E.
2010-08-10
A hydrodynamic sealing assembly including a first component having first and second walls and a peripheral wall defining a seal groove, a second component having a rotatable surface relative to said first component, and a hydrodynamic seal comprising a seal body of generally ring-shaped configuration having a circumference. The seal body includes hydrodynamic and static sealing lips each having a cross-sectional area that substantially vary in time with each other about the circumference. In an uninstalled condition, the seal body has a length defined between first and second seal body ends which varies in time with the hydrodynamic sealing lip cross-sectional area. The first and second ends generally face the first and second walls, respectively. In the uninstalled condition, the first end is angulated relative to the first wall and the second end is angulated relative to the second wall. The seal body has a twist-limiting surface adjacent the static sealing lip. In the uninstalled condition, the twist-limiting surface is angulated relative to the peripheral wall and varies along the circumference. A seal body discontinuity and a first component discontinuity mate to prevent rotation of the seal body relative to the first component.
Evidence of three-body correlation functions in Rb+ and Sr2+ acetonitrile solutions
NASA Astrophysics Data System (ADS)
D'Angelo, P.; Pavel, N. V.
1999-09-01
The local structure of Sr2+ and Rb+ ions in acetonitrile has been investigated by x-ray absorption spectroscopy (XAS) and molecular dynamics simulations. The extended x-ray absorption fine structure above the Sr and Rb K edges has been interpreted in the framework of multiple scattering (MS) formalism and, for the first time, clear evidence of MS contributions has been found in noncomplexing ion solutions. Molecular dynamics has been used to generate the partial pair and triangular distribution functions from which model χ(k) signals have been constructed. The Sr2+ and Rb+ acetonitrile pair distribution functions show very sharp and well-defined first peaks indicating the presence of a well organized first solvation shell. Most of the linear acetonitrile molecules have been found to be distributed like hedgehog spines around the Sr2+ and Rb+ ions. The presence of three-body correlations has been singled out by the existence of well-defined peaks in the triangular configurations. Excellent agreement has been found between the theoretical and experimental data enforcing the reliability of the interatomic potentials used in the simulations. These results demonstrate the ability of the XAS technique in probing the higher-order correlation functions in solution.
Body Mass Index in Rural First Grade Schoolchildren: Progressive Increase in Boys
ERIC Educational Resources Information Center
Smith, Derek T.; Vendela, Mandolyn Jade; Bartee, R. Todd; Carr, Lucas J.
2008-01-01
Context: Childhood overweight is a global health problem. Monitoring of childhood body mass index (BMI) may help identify critical time periods during which excess body weight is accumulated. Purpose: To examine changes in mean BMI and the prevalence of at-risk-for overweight in repeated cross-sectional samples of rural first grade schoolchildren…
Correlates of Body Mass Index, Weight Goals, and Weight-Management Practices among Adolescents
ERIC Educational Resources Information Center
Paxton, Raheem J.; Valois, Robert F.; Drane, J. Wanzer
2004-01-01
The study examined associations among physical activity, cigarette smoking, body mass index, perceptions of body weight, weight-management goals, and weight-management behaviors of public high school adolescents. The CDC Youth Risk Behavior Survey provided a cross-sectional sample (n = 3,089) of public high school students in South Carolina.…
ERIC Educational Resources Information Center
Crow, Scott; Eisenberg, Marla E.; Story, Mary; Neumark-Sztainer, Dianne
2008-01-01
Disordered eating, body dissatisfaction, and obesity have been associated cross sectionally with suicidal behavior in adolescents. To determine the extent to which these variables predicted suicidal ideation and attempts, the authors examined these relationships in a longitudinal design. The study population included 2,516 older adolescents and…
Body Image Concerns of Gay Men: The Roles of Minority Stress and Conformity to Masculine Norms
ERIC Educational Resources Information Center
Kimmel, Sara B.; Mahalik, James R.
2005-01-01
The authors hypothesized that gay men's experiences of minority stress and their conformity to masculine norms would be associated with increased body image dissatisfaction and masculine body ideal distress. For this cross-sectional study, 357 gay males completed a Web-based survey, and 2 multiple regression analyses indicated that minority stress…
NASA Astrophysics Data System (ADS)
Safarzade, Zohre; Akbarabadi, Farideh Shojaei; Fathi, Reza; Brunger, Michael J.; Bolorizadeh, Mohammad A.
2018-05-01
A fully quantum mechanical four-body treatment of charge transfer collisions between energetic protons and atomic helium is developed here. The Pauli exclusion principle is applied to both the wave function of the initial and final states as well as the operators involved in the interaction. Prior to the collision, the helium atom is assumed as a two-body system composed of the nucleus, He2+, and an electron cloud composed of two electrons. Nonetheless, four particles are assumed in the final state. As the double interactions contribute extensively in single charge transfer collisions, the Faddeev-Lovelace-Watson scattering formalism describes it best physically. The treatment of the charge transfer cross section, under this quasi-four-body treatment within the FWL formalism, showed that other mechanisms leading to an effect similar to the Thomas one occur at the same scattering angle. Here, we study the two-body interactions which are not classically described but which lead to an effect similar to the Thomas mechanism and finally we calculate the total singlet and triplet amplitudes as well as the angular distributions of the charge transfer cross sections. As the incoming projectiles are assumed to be plane waves, the present results are calculated for high energies; specifically a projectile energy of 7.42 MeV was assumed as this is where experimental results are available in the literature for comparison. Finally, when possible we compare the present results with the other available theoretical data.
NASA Astrophysics Data System (ADS)
Bordage, M. C.; Hagelaar, G. J. M.; Pitchford, L. C.; Biagi, S. F.; Puech, V.
2011-10-01
Xenon is used in a number of application areas ranging from light sources to x-ray detectors for imaging in medicine, border security and high-energy particle physics. There is a correspondingly large body of data available for electron scattering cross sections and swarm parameters in Xe, whereas data for Kr are more limited. In this communication we show intercomparisons of the cross section sets in Xe and Kr presently available on the LXCat site. Swarm parameters calculated using these cross sections sets are compared with experimental data, also available on the LXCat site. As was found for Ar, diffusion coefficients calculated using these cross section data in a 2-term Boltzmann solver are higher than Monte Carlo results by about 30% over a range of E/N from 1 to 100 Td. We find otherwise good agreement in Xe between 2-term and Monte Carlo results and between measured and calculated values of electron mobility, ionization rates and light emission (dimer) at atmospheric pressure. The available cross section data in Kr yield swarm parameters in agreement with the limited experimental data. The cross section compilations and measured swarm parameters used in this work are available on-line at www.lxcat.laplace. univ-tlse.fr.
GEOMETRIC CROSS SECTIONS OF DUST AGGREGATES AND A COMPRESSION MODEL FOR AGGREGATE COLLISIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suyama, Toru; Wada, Koji; Tanaka, Hidekazu
2012-07-10
Geometric cross sections of dust aggregates determine their coupling with disk gas, which governs their motions in protoplanetary disks. Collisional outcomes also depend on geometric cross sections of initial aggregates. In a previous paper, we performed three-dimensional N-body simulations of sequential collisions of aggregates composed of a number of sub-micron-sized icy particles and examined radii of gyration (and bulk densities) of the obtained aggregates. We showed that collisional compression of aggregates is not efficient and that aggregates remain fluffy. In the present study, we examine geometric cross sections of the aggregates. Their cross sections decrease due to compression as wellmore » as to their gyration radii. It is found that a relation between the cross section and the gyration radius proposed by Okuzumi et al. is valid for the compressed aggregates. We also refine the compression model proposed in our previous paper. The refined model enables us to calculate the evolution of both gyration radii and cross sections of growing aggregates and reproduces well our numerical results of sequential aggregate collisions. The refined model can describe non-equal-mass collisions as well as equal-mass cases. Although we do not take into account oblique collisions in the present study, oblique collisions would further hinder compression of aggregates.« less
Liu, T H; Chiou, W K; Lin, J D; Yu, C Y
2001-11-01
Body mass index (BMI) and waist-hip ratio (WHR) using 1-dimensional circumference data have been proven to be highly related to blood pressure and total cholesterol; these 2 indices have been widely used as health indicators in preventive diagnosis and health examination. Sophisticated software, which allows calculation of the triangular mesh related to the body surface in 3D space, is capable of computing the circumference, width, sectional surface, volume, and surface area of the body. Chang Gung Whole Body Scanner (CGWBS) was used to capture 3D whole body surface images. In this study, the human body was divided into 10 segments consisting of the head, breast, wrist, hip, upper arm, forearm, hand, thigh, calf, and foot. Five independent assessments were made on a total of 32 anthropometric sites, including 12 circumferences, 3 widths, 3 profile areas, 7 surface areas, and 7 volumes. In this study, the somatotype index (SI) was computed through anthropometric data after 1,323 subjects were investigated. Correlation analysis was used to describe the relationship between BMI, WHR, SI, and anthropometric data. One-way analysis of variance (ANOVA) and Duncan's multiple range tests were used to examine differences between examination variables across sex and SI groups. This study found 4 somatotypes from anthropometric data. SI determined by CGWBS has better correlation with anthropometry than WHR or BMI. Of the 644 male subjects, 155 were in the ectomorph group, 232 in the semi-mesomorph group, 136 in the full-mesomorph group, and 121 in the endomorph group. Of the 679 female subjects, 160 were in the ectomorph group, 235 in the semi-mesomorph group, 168 in the full-mesomorph group, and 116 in the endomorph group. The results show that SI has great potential to perform precise somatotype classification.
Ortega, Jason M.; Salari, Kambiz; McCallen, Rose
2010-11-09
A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.
Phillips, Jeffrey D.
2018-01-10
PDEPTH is an interactive, graphical computer program used to construct interpreted geological source models for observed potential-field geophysical profile data. The current version of PDEPTH has been adapted to the Windows platform from an earlier DOS-based version. The input total-field magnetic anomaly and vertical gravity anomaly profiles can be filtered to produce derivative products such as reduced-to-pole magnetic profiles, pseudogravity profiles, pseudomagnetic profiles, and upward-or-downward-continued profiles. A variety of source-location methods can be applied to the original and filtered profiles to estimate (and display on a cross section) the locations and physical properties of contacts, sheet edges, horizontal line sources, point sources, and interface surfaces. Two-and-a-half-dimensional source bodies having polygonal cross sections can be constructed using a mouse and keyboard. These bodies can then be adjusted until the calculated gravity and magnetic fields of the source bodies are close to the observed profiles. Auxiliary information such as the topographic surface, bathymetric surface, seismic basement, and geologic contact locations can be displayed on the cross section using optional input files. Test data files, used to demonstrate the source location methods in the report, and several utility programs are included.
NASA Technical Reports Server (NTRS)
Ashby, G. C., Jr.
1974-01-01
Experimental data have been obtained for two series of bodies at Mach 6 and Reynolds numbers, based on model length, from 1.4 million to 9.5 million. One series consisted of axisymmetric power-law bodies geometrically constrained for constant length and base diameter with values of the exponent n of 0.25, 0.5, 0.6, 0.667, 0.75, and 1.0. The other series consisted of positively and negatively cambered bodies of polygonal cross section, each having a constant longitudinal area distribution conforming to that required for minimizing zero-lift wave drag at hypersonic speeds under the geometric constraints of given length and volume. At the highest Reynolds number, the power-law body for minimum drag is blunter (exponent n lower) than predicted by inviscid theory (n approximately 0.6 instead of n = 0.667); however, the peak value of lift-drag ratio occurs at n = 0.667. Viscous effects were present on the bodies of polygonal cross section but were less pronounced than those on the power-law bodies. The trapezoidal bodies with maximum width at the bottom were found to have the highest maximum lift-drag ratio and the lowest mimimum drag.
New similarity of triangular fuzzy number and its application.
Zhang, Xixiang; Ma, Weimin; Chen, Liping
2014-01-01
The similarity of triangular fuzzy numbers is an important metric for application of it. There exist several approaches to measure similarity of triangular fuzzy numbers. However, some of them are opt to be large. To make the similarity well distributed, a new method SIAM (Shape's Indifferent Area and Midpoint) to measure triangular fuzzy number is put forward, which takes the shape's indifferent area and midpoint of two triangular fuzzy numbers into consideration. Comparison with other similarity measurements shows the effectiveness of the proposed method. Then, it is applied to collaborative filtering recommendation to measure users' similarity. A collaborative filtering case is used to illustrate users' similarity based on cloud model and triangular fuzzy number; the result indicates that users' similarity based on triangular fuzzy number can obtain better discrimination. Finally, a simulated collaborative filtering recommendation system is developed which uses cloud model and triangular fuzzy number to express users' comprehensive evaluation on items, and result shows that the accuracy of collaborative filtering recommendation based on triangular fuzzy number is higher.
Association Between Fear and Beauty Evaluation of Snakes: Cross-Cultural Findings.
Landová, Eva; Bakhshaliyeva, Natavan; Janovcová, Markéta; Peléšková, Šárka; Suleymanova, Mesma; Polák, Jakub; Guliev, Akif; Frynta, Daniel
2018-01-01
According to the fear module theory, humans are evolutionarily predisposed to perceive snakes as prioritized stimuli and exhibit a fast emotional and behavioral response toward them. In Europe, highly dangerous snake species are distributed almost exclusively in the Mediterranean and Caspian areas. While the risk of a snakebite is relatively low in Central Europe, Azerbaijan, on the other hand, has a high occurrence of the deadly venomous Levant viper ( Macrovipera lebetina ). We hypothesize that co-habitation with this dangerous snake has shaped the way in which humans evaluate snake species resembling it. For that purpose, we asked respondents from the Czech Republic and Azerbaijan to rank photographs depicting 36 snake species according to perceived fear and beauty. The results revealed a high cross-cultural agreement in both evaluations (fear r 2 = 0.683, p < 0.0001; beauty: r 2 = 0.816, p < 0.0001). Snakes species eliciting higher fear tend to be also perceived as more beautiful, yet people are able to clearly distinguish between these two dimensions. Deadly venomous snakes representing a serious risk are perceived as highly fearful. This is especially true for the vipers and allies (pit vipers) possessing a characteristic body shape with a distinct triangular head and thick body, which was found as the most fear evoking by respondents from both countries. Although the attitude toward snakes is more negative among the respondents from Azerbaijan, their fear evaluation is similar to the Czechs. For instance, despite co-habitation with the Levant viper, it was not rated by the Azerbaijanis as more fearful than other dangerous snakes. In conclusion, agreement in the evaluation of snake fear and beauty is cross-culturally high and relative fear attributed to selected snake species is not directly explainable by the current environmental and cultural differences. This may provide some support for the evolutionary hypothesis of preparedness to fear snakes.
Association Between Fear and Beauty Evaluation of Snakes: Cross-Cultural Findings
Landová, Eva; Bakhshaliyeva, Natavan; Janovcová, Markéta; Peléšková, Šárka; Suleymanova, Mesma; Polák, Jakub; Guliev, Akif; Frynta, Daniel
2018-01-01
According to the fear module theory, humans are evolutionarily predisposed to perceive snakes as prioritized stimuli and exhibit a fast emotional and behavioral response toward them. In Europe, highly dangerous snake species are distributed almost exclusively in the Mediterranean and Caspian areas. While the risk of a snakebite is relatively low in Central Europe, Azerbaijan, on the other hand, has a high occurrence of the deadly venomous Levant viper (Macrovipera lebetina). We hypothesize that co-habitation with this dangerous snake has shaped the way in which humans evaluate snake species resembling it. For that purpose, we asked respondents from the Czech Republic and Azerbaijan to rank photographs depicting 36 snake species according to perceived fear and beauty. The results revealed a high cross-cultural agreement in both evaluations (fear r2 = 0.683, p < 0.0001; beauty: r2 = 0.816, p < 0.0001). Snakes species eliciting higher fear tend to be also perceived as more beautiful, yet people are able to clearly distinguish between these two dimensions. Deadly venomous snakes representing a serious risk are perceived as highly fearful. This is especially true for the vipers and allies (pit vipers) possessing a characteristic body shape with a distinct triangular head and thick body, which was found as the most fear evoking by respondents from both countries. Although the attitude toward snakes is more negative among the respondents from Azerbaijan, their fear evaluation is similar to the Czechs. For instance, despite co-habitation with the Levant viper, it was not rated by the Azerbaijanis as more fearful than other dangerous snakes. In conclusion, agreement in the evaluation of snake fear and beauty is cross-culturally high and relative fear attributed to selected snake species is not directly explainable by the current environmental and cultural differences. This may provide some support for the evolutionary hypothesis of preparedness to fear snakes. PMID:29615942
NASA Astrophysics Data System (ADS)
Burdeinyi, D.; Brudvik, J.; Fissum, K.; Ganenko, V.; Hansen, K.; Isaksson, L.; Livingston, K.; Lundin, M.; Nilsson, B.; Schroder, B.
2017-01-01
The cross section asymmetry of 12C (γ ,p01)11B and 12C (γ ,p2-6)11B reactions has been studied at the energy range 40-55 MeV, using linearly polarized tagged photons of the MAX-lab facility. The asymmetry of the 12C (γ ,p01)11B processes, which assume the one-body mechanism of the reaction, is Σ ≈ 0.82 ± 0.05 for photon energies 45-50 MeV. The asymmetry for the 12C (γ ,p2-6)11B reactions, which produce a maximum at excitation energy ∼ 6 MeV, is Σ ≈ 0.53 ± 0.13 for a photon energy 49 MeV. It is close to the asymmetry of reaction of the free deuteron photodisintegration, and can be resulted from the two-body mechanism of the photon absorption.
Many-Body Effects in the Mesoscopic x-Ray Edge Problem
NASA Astrophysics Data System (ADS)
Hentschel, M.; R"Oder, G.; Ullmo, D.
Many-body phenomena, a key interest in the investigation ofbulk solid state systems, are studied here in the context of the x-ray edge problem for mesoscopic systems. We investigate the many-body effects associated with the sudden perturbation following the x-ray excition of a core electron into the conduction band. For small systems with dimensions at the nanoscale we find considerable deviations from the well-understood metallic case where Anderson orthogonality catastrophe and the Mahan-Nozières-DeDominicis response cause characteristic deviations of the photoabsorption cross section from the naive expectation. Whereas the K-edge is typically rounded in metallic systems, we find a slightly peaked K-edge in generic mesoscopic systems with chaotic-coherent electron dynamics. Thus the behavior of the photoabsorption cross section at threshold depends on the system size and is different for the metallic and the mesoscopic case.
ERIC Educational Resources Information Center
Ballala, Kirthinath; Shetty, Avinash; Malpe, Surekha Bhat
2011-01-01
Voluntary body donation has become an important source of cadavers for anatomical study and education. The objective of this study was to assess knowledge, attitude, and practice (KAP) regarding whole body donation among medical professionals in a medical institute in India. A cross sectional study was conducted at Kasturba Hospital, Manipal,…
An algorithm for propagating the square-root covariance matrix in triangular form
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Choe, C. Y.
1976-01-01
A method for propagating the square root of the state error covariance matrix in lower triangular form is described. The algorithm can be combined with any triangular square-root measurement update algorithm to obtain a triangular square-root sequential estimation algorithm. The triangular square-root algorithm compares favorably with the conventional sequential estimation algorithm with regard to computation time.
Two- and three-photon ionization in the noble gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, E.J.
1981-08-01
By using a characteristic Green's function for an exactly solvable Schroedinger equation with an approximation to the central potential of Hermann and Skillman, the cross section for nonresonant two- and three-photon ionization of Ne, Ar, Kr, and Xe were calculated in jl coupling. Expressions for cross sections in jl coupling are given. Comparison with the Ar two-photon cross section of Pindzola and Kelly, calculated using the many-body theory, the dipole-length approximation, and LS coupling shows a disagreement of as much as a factor of 2. The disagreement appears to arise from distortion introduced by shifting the Green's-function resonances to experimentalmore » values.« less
NASA Technical Reports Server (NTRS)
Grant, Frederick C.; Sevier, John R., Jr.
1960-01-01
Wind-tunnel force tests of a number of wing-body combinations designed for high lift-drag ratio at a Mach number of 1.41 are reported. Five wings and six bodies were used in making up the various wing-body combinations investigated. All the wings had the same highly swept dis- continuously tapered plan form with NACA 65A-series airfoil sections 4 percent thick at the root tapering linearly to 3 percent thick at the tip. The bodies were based on the area distribution of a Sears-Haack body of revolution for minimum drag with a given length and volume. These wings and bodies were used to determine the effects of wing twist., wing twist and camber, wing leading-edge droop, a change from circular to elliptical body cross-sectional shape, and body indentation by the area-rule and streamline methods. The supersonic test Mach numbers were 1.41 and 2.01. The transonic test Mach number range was from 0.6 to 1.2. For the transition-fixed condition and at a Reynolds number of 2.7 x 10(exp 6) based on the mean aerodynamic chord, the maximum value of lift- drag ratio at a Mach number of 1.41 was 9.6 for a combination with a twisted wing and an indented body of elliptical cross section. The tests indicated that the transonic rise in minimum drag was low and did not change appreciably up to the highest test Mach number of 2.01. The lower values of lift-drag ratio obtained at a Mach number of 2.01 can be attributed to the increase of drag due to lift with Mach number.
NASA Astrophysics Data System (ADS)
Suraj, Md Sanam; Asique, Md Chand; Prasad, Umakant; Hassan, M. R.; Shalini, Kumari
2017-11-01
The planar equilateral restricted four-body problem, formulated on the basis of Lagrange's triangular solutions is used to determine the existence and locations of libration points and the Newton-Raphson basins of convergence associated with these libration points. We have supposed that all the three primaries situated on the vertices of an equilateral triangle are triaxial rigid bodies. This paper also deals with the effect of these triaxiality parameters on the regions of motion where the test particle is free to move. Further, the regions on the configuration plane filled by the basins of attraction are determined by using the multivariate version of the Newton-Raphson iterative system. The numerical study reveals that the triaxiality of the primaries is one of the most influential parameters in the four-body problem.
The Computerized Anatomical Man (CAM) model
NASA Technical Reports Server (NTRS)
Billings, M. P.; Yucker, W. R.
1973-01-01
A computerized anatomical man (CAM) model, representing the most detailed and anatomically correct geometrical model of the human body yet prepared, has been developed for use in analyzing radiation dose distribution in man. This model of a 50-percentile standing USAF man comprises some 1100 unique geometric surfaces and some 2450 solid regions. Internal body geometry such as organs, voids, bones, and bone marrow are explicitly modeled. A computer program called CAMERA has also been developed for performing analyses with the model. Such analyses include tracing rays through the CAM geometry, placing results on magnetic tape in various forms, collapsing areal density data from ray tracing information to areal density distributions, preparing cross section views, etc. Numerous computer drawn cross sections through the CAM model are presented.
Criteria for applicability of the impulse approach to collisions
NASA Astrophysics Data System (ADS)
Sharma, Ramesh D.; Bakshi, Pradip M.; Sindoni, Joseph M.
1990-06-01
Using an exact formulation of impulse approach (IA) to atom-diatom collisions, we assess its internal consistency. By comparing the cross sections in the forward and reverse directions for the vibrational-rotational inelastic processes, using the half-on-the-shell (post and prior) models of the two-body t matrix, we show that in both cases the IA leads to a violation of the semidetailed balance (SDB) condition for small scattering angles. An off-shell model for the two-body t matrix, which preserves SDB, is shown to have other serious shortcomings. The cross sections are studied quantitatively as a function of the relative translational energy and the mass of the incident particle, and criteria discussed for the applicability of IA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, R.D.; Bakshi, P.M.; Sindoni, J.M.
Using an exact formulation of impulse approach (IA) to atom-diatom collisions, we assess its internal consistency. By comparing the cross sections in the forward and reverse directions for the vibrational-rotational inelastic processes, using the half-on-the-shell (post and prior) models of the two-body {ital t} matrix, we show that in both cases the IA leads to a violation of the semidetailed balance (SDB) condition for small scattering angles. An off-shell model for the two-body {ital t} matrix, which preserves SDB, is shown to have other serious shortcomings. The cross sections are studied quantitatively as a function of the relative translational energymore » and the mass of the incident particle, and criteria discussed for the applicability of IA.« less
Milk Intakes Are Not Associated with Percent Body Fat in Children from Ages 10 to 13 Years12
Noel, Sabrina E.; Ness, Andrew R.; Northstone, Kate; Emmett, Pauline; Newby, P. K.
2011-01-01
Epidemiologic studies report conflicting results for the relationship between milk intake and adiposity in children. We examined prospective and cross-sectional associations between milk intake and percent body fat among 2245 children from the Avon Longitudinal Study of Parents and Children. Cross-sectional analyses were performed at age 13 y between total, full-fat, and reduced-fat milk intake assessed using 3-d dietary records and body fat from DXA. Prospective analyses were conducted between milk intakes at age 10 y and body fat at 11 and 13 y. Models were adjusted for age, sex, height, physical activity, pubertal status, maternal BMI, maternal education, and intakes of total fat, sugar-sweetened beverages, 100% fruit juice, and ready-to-eat cereals; baseline BMI was added to prospective models. Subset analyses were performed for those with plausible dietary intakes. Mean milk consumption at 10 and 13 y was (mean ± SD) 0.90 ± 0.73 and 0.85 ± 0.78 servings/d [1 serving = 8 oz of milk (244 g of plain and 250 g flavored milk)], respectively. Cross-sectional results indicated an inverse association between full-fat milk intake and body fat [β = −0.47 (95% CI = −0.76, −0.19); P = 0.001]. Milk intake at age 10 y was inversely associated with body fat at 11 y [β = −0.16 g/d (95%CI = −0.28, −0.04); P = 0.01], but not among those with plausible dietary intakes, suggesting that this association was influenced by dietary measurement errors. Milk intake was not associated with body fat at age 13 y after adjustment. Although our prospective results corroborate other findings of a null associations between milk intake and adiposity, our inconsistent findings across analyses suggest further investigation is needed to clarify the relation, and accounting for dietary reporting errors is an important consideration. PMID:21940511
Weber, Thorsten; Foucar, Lutz; Jahnke, Till; ...
2017-07-07
In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Thorsten; Foucar, Lutz; Jahnke, Till
In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less
NASA Technical Reports Server (NTRS)
Nielsen, Jack N; Kaattari, George E; Drake, William C
1952-01-01
A simple method is presented for estimating lift, pitching-moment, and hinge-moment characteristics of all-movable wings in the presence of a body as well as the characteristics of wing-body combinations employing such wings. In general, good agreement between the method and experiment was obtained for the lift and pitching moment of the entire wing-body combination and for the lift of the wing in the presence of the body. The method is valid for moderate angles of attack, wing deflection angles, and width of gap between wing and body. The method of estimating hinge moment was not considered sufficiently accurate for triangular all-movable wings. An alternate procedure is proposed based on the experimental moment characteristics of the wing alone. Further theoretical and experimental work is required to substantiate fully the proposed procedure.
Triangular arbitrage in the foreign exchange market
NASA Astrophysics Data System (ADS)
Aiba, Yukihiro; Hatano, Naomichi
2004-12-01
We first review our previous work, showing what is the triangular arbitrage transaction and how to quantify the triangular arbitrage opportunity. Next we explain that the correlation of the foreign exchange rates can appear without actual triangular arbitrage transaction.
Computer simulation of ledge formation and ledge interaction for the silicon (111) free surface
NASA Technical Reports Server (NTRS)
Balamane, H.; Halicioglu, T.; Tiller, W. A.
1987-01-01
Both strip and triangular clusters, composed of 2 -1 -1 line ledges, have been simulated on the Si (111) surface. The long-range ledge-ledge interaction and the surface stress tensor distribution have been evaluated for these two pill-box geometries using a semiempirical potential-energy function that incorporates both two-body and three-body contributions. The consequences of the ledge-ledge interaction on two-dimensional nucleation for Si (111) has been evaluated as a function of Si adatom supersaturation and shown to differ significantly from conventional theory, where such interaction is neglected.
Pairing from strong repulsion in triangular lattice Hubbard model
NASA Astrophysics Data System (ADS)
Zhang, Shang-Shun; Zhu, Wei; Batista, Cristian D.
2018-04-01
We propose a pairing mechanism between holes in the dilute limit of doped frustrated Mott insulators. Hole pairing arises from a hole-hole-magnon three-body bound state. This pairing mechanism has its roots on single-hole kinetic energy frustration, which favors antiferromagnetic (AFM) correlations around the hole. We demonstrate that the AFM polaron (hole-magnon bound state) produced by a single hole propagating on a field-induced polarized background is strong enough to bind a second hole. The effective interaction between these three-body bound states is repulsive, implying that this pairing mechanism is relevant for superconductivity.
Structure and properties of silk from the African wild silkmoth Gonometa postica reared indoors
Teshome, Addis; Raina, S. K.; Vollrath, Fritz
2014-01-01
Abstract African wild silkmoth, Gonometa postica Walker (Lepidoptera: Lasiocampidae), were reared indoors in order to examine the influence of rearing conditions on the structure and properties of silk cocoon shells and degummed fibers by using a scanning electron microscope, an Instron tensile tester, and a thermogravimetric analyzer. The cocoons reared indoors showed inferior quality in weight, length, width, and cocoon shell ratio compared to cocoons reared outdoors. There were no differences in cocoon shell and fiber surfaces and cross sectional structures. Cocoon shells were covered with calcium oxalate crystals with few visible fibers on their surface. Degummed fibers were smooth with minimum unfractured surfaces and globular to triangular cross sections. Indoor-reared cocoon shells had a significantly higher breaking strain, while the breaking stress was higher for cocoons reared outdoors. Fibers from indoor cocoons had a significantly higher breaking stress while outdoor fibers had higher breaking strain. Thermogravimetric analysis curves showed two main thermal reactions revealing the dehydration of water molecules and ir-reversible decomposition of the crystallites in both cocoons and fibers reared indoors and outdoors. Cocoon shells underwent additional peaks of decomposition with increased temperature. The total weight loss was higher for cocoon shells and degummed fibers from indoors. Rearing conditions (temperature and relative humidity), feeding method used, changes in total life span, days to molting, and spinning might have influenced the variation in the properties observed.The ecological and commercial significances of indoor rearing of G. postica are discussed. PMID:25373183
NASA Technical Reports Server (NTRS)
Soderman, P. T.
1982-01-01
Acoustical performance and pressure drop were measured for two types of splitters designed to attenuate sound propagating in ducts - resonant-cavity baffles and fiberglass-filled baffles. Arrays of four baffles were evaluated in the 7- by 10-foot wind tunnel number 1 at Ames Research Center at flow speeds from 0 to 41 m/sec. The baffles were 2.1 m high, 305 to 406 mm thick, and 3.1 to 4.4 m long. Emphasis was on measurements of silencer insertion loss as affected by variations of such parameters as baffle length, baffle thickness, perforated skin geometry, cavity size and shape, cavity damping, wind speed, and acoustic field directivity. An analytical method for predicting silencer performance is described and compared with measurements. With the addition of cavity damping in the form of 25-mm foam linings, the insertion loss above 250 Hz of the resonant-cavity baffles was improved 2 to 7 db compared with the undamped baffles; the loss became equal to or greater than the insertion loss of comparable size fiberglass baffles at frequencies above 250 Hz. Variations of cavity size and shape showed that a series of cavities with triangular cross-sections (i.e., variable depth) were superior to cavities with rectangular cross sections (i.e., constant depth). In wind, the undamped, resonant-cavity baffles generated loud cavity-resonance tones; the tones could be eliminated by cavity damping.
NASA Astrophysics Data System (ADS)
Zaryankin, A. E.; Rogalev, N. D.; Rogalev, A. N.; Garanin, I. V.; Osipov, S. K.; Grigoriev, E. Yu.
2016-06-01
This paper considers the problems that will unavoidably be encountered in the creation of new-generation turbines operated at ultrasupercritical initial steam parameters, namely, the development of new control and shutoff valves, the reduction of end energy losses in blade cascades and steam leaks in high-pressure cylinders (HPCs), the elimination of effect produced by regenerative steam bleedoffs on the afterextraction stage, the cooling of a blade cascade, etc. Some possible solutions are given for the two first of the listed problems. The conclusion about the need for the transition to new-generation control valves in the development of new advanced steam turbines with ultrasupercritical initial steam parameters has been made. From the viewpoint of their design, the considered new-generation valves differ from the known contemporary constructions by a shaped axially symmetric confusor channel and perforated zones on the streamlined spool surface and the inlet diffuser saddle part. The analysis of the vibration behavior of new-generation valves has demonstrated a decrease in the dynamic loads acting on their stems. To reduce the end energy losses in nozzle or blade cascades with small aspect ratios, it is proposed to use finned shrouds in the interblade channels. The cross section of fins has a triangular profile, and their height must be comparable with the thickness of the boundary layer in the outlet cross section of a cascade and, provisionally, be smaller than 8% of the cascade chord.
Method for crystal growth control
Yates, Douglas A.; Hatch, Arthur E.; Goldsmith, Jeff M.
1981-01-01
The growth of a crystalline body of a selected material is controlled so that the body has a selected cross-sectional shape. The apparatus is of the type which includes the structure normally employed in known capillary die devices as well as means for observing at least the portion of the surfaces of the growing crystalline body and the meniscus (of melt material from which the body is being pulled) including the solid/liquid/vapor junction in a direction substantially perpendicular to the meniscus surface formed at the junction when the growth of the crystalline body is under steady state conditions. The cross-sectional size of the growing crystalline body can be controlled by determining which points exhibit a sharp change in the amount of reflected radiation of a preselected wavelength and controlling the speed at which the body is being pulled or the temperature of the growth pool of melt so as to maintain those points exhibiting a sharp change at a preselected spatial position relative to a predetermined reference position. The improvement comprises reference object means positioned near the solid/liquid/vapor junction and capable of being observed by the means for observing so as to define said reference position so that the problems associated with convection current jitter are overcome.
Elangovan, Satheesh; Brogden, Kim A; Dawson, Deborah V; Blanchette, Derek; Pagan-Rivera, Keyla; Stanford, Clark M; Johnson, Georgia K; Recker, Erica; Bowers, Rob; Haynes, William G; Avila-Ortiz, Gustavo
2014-01-01
To examine the relationships between three measures of body fat-body mass index (BMI), waist circumference (WC), and total body fat percent-and markers of inflammation around dental implants in stable periodontal maintenance patients. Seventy-three subjects were enrolled in this cross-sectional assessment. The study visit consisted of a physical examination that included anthropologic measurements of body composition (BMI, WC, body fat %); intraoral assessments were performed (full-mouth plaque index, periodontal and peri-implant comprehensive examinations) and peri-implant sulcular fluid (PISF) was collected on the study implants. Levels of interleukin (IL)-1α, IL-1β, IL-6, IL-8, IL-10, IL-12, IL-17, tumor necrosis factor-α, C-reactive protein, osteoprotegerin, leptin, and adiponectin in the PISF were measured using multiplex proteomic immunoassays. Correlation analysis with body fat measures was then performed using appropriate statistical methods. After adjustments for covariates, regression analyses revealed statistically significant correlation between IL-1β in PISF and WC (R = 0.33; P = .0047). In this study in stable periodontal maintenance patients, a modest but statistically significant positive correlation was observed between the levels of IL-1β, a major proinflammatory cytokine in PISF, and WC, a reliable measure of central obesity.
On some labelings of triangular snake and central graph of triangular snake graph
NASA Astrophysics Data System (ADS)
Agasthi, P.; Parvathi, N.
2018-04-01
A Triangular snake Tn is obtained from a path u 1 u 2 … u n by joining ui and u i+1 to a new vertex wi for 1≤i≤n‑1. A Central graph of Triangular snake C(T n ) is obtained by subdividing each edge of Tn exactly once and joining all the non adjacent vertices of Tn . In this paper the ways to construct square sum, square difference, Root Mean square, strongly Multiplicative, Even Mean and Odd Mean labeling for Triangular Snake and Central graph of Triangular Snake graphs are reported.
Correlations and currents in 3He studied with the (e, e'pp) reaction
NASA Astrophysics Data System (ADS)
Groep, David Leo
2000-01-01
Nucleon-nucleon correlations, especially those of short-range character, can be well studied with electron-induced two-nucleon knockout reactions at intermediate electron energies. However, these reactions are not only driven by one-body currents, i.e., coupling of the virtual photon to one of the nucleons of a correlated pair, a process that directly probes NN-correlations. Also two-body currents, resulting from intermediate Delta-excitation and coupling to exchanged mesons, as well as final state interactions, influence the experimental cross section. Exclusive measurements of the three-body breakup of 3He offer the opportunity to compare data to microscopic calculations. The relative importance of competing two-proton knockout mechanisms can be investigated by varying the energy and momentum of the virtual photon. The experiment was performed with the electron beam extracted from the Amsterdam Pulse Stretcher (AmPS) at NIKHEF; the incident electron energy was 564 MeV. A cryogenic, high-pressure 3He gas target was used with a thickness of 270 mg/cm^2. Scattered electrons were detected in the QDQ magnetic spectrometer and both emitted protons in the HADRON plastic scintillator arrays. Cross sections were determined for three values of the three-momentum transfer of the virtual photon (q=305, 375, and 445 MeV/c) at an energy transfer value omega of 220 MeV. At q=375 MeV/c, measurements were performed over a continuous range in energy transfer from 170 to 290 MeV. The data are compared to results of continuum-Faddeev calculations performed by Golak et al., that account for rescattering among the emitted nucleons. Various potential models were used in the calculations: Bonn-B, CD-Bonn, Nijmegen-93 and Argonne v18 . Presentation of the data as a function of the missing or neutron momentum, pm, shows that the cross section decreases exponentially as a function of pm. Calculations performed with only a one-body hadronic current operator show fair agreement with data obtained at pm < 100 MeV/c at omega = 220 MeV for all q-values. It can therefore be concluded that at omega = 220 MeV and pm < 100 MeV/c the cross section is dominated by direct knockout of two protons via a one-body hadronic current. At higher neutron momentum values, data and theoretical predictions differ up to a fac tor of five for all values of omega. Within the range of energy transfer values probed in this experiment, the high pm domain is expected to be strongly influenced by intermediate excitation in the proton-neutron pair. Within specific regions of phase space, where two nucleons are emitted with comparable momentum vectors, rescattering processes strongly influence the cross section. For a such a region, measured at q=445 MeV/c, good agreement was found between data and the continuum- Faddeev calculations as a function of the pn momentum difference in the final state. Information on the wave function of 3He may be obtained in the domain omega = 220 MeV and pm < 100 MeV/c by representing the cross section as a function of pdiff1, which can be related to the relative momentum of the constituents of the two-proton pair in the initial state. The observed decrease of the cross section reflects the behaviour of the wave function and is well reproduced by calculations. At present, the data do not permit to express preference for any one of the potential models considered.
Scaling maximal oxygen uptake to predict performance in elite-standard men cross-country skiers.
Carlsson, Tomas; Carlsson, Magnus; Felleki, Majbritt; Hammarström, Daniel; Heil, Daniel; Malm, Christer; Tonkonogi, Michail
2013-01-01
The purpose of this study was to: 1) establish the optimal body-mass exponent for maximal oxygen uptake (VO(2)max) to indicate performance in elite-standard men cross-country skiers; and 2) evaluate the influence of course inclination on the body-mass exponent. Twelve elite-standard men skiers completed an incremental treadmill roller-skiing test to determine VO(2)max and performance data came from the 2008 Swedish National Championship 15-km classic-technique race. Log-transformation of power-function models was used to predict skiing speeds. The optimal models were found to be: Race speed = 7.86 · VO(2)max · m(-0.48) and Section speed = 5.96 · [VO(2)max · m(-(0.38 + 0.03 · α)) · e(-0.003 · Δ) (where m is body mass, α is the section's inclination and Δ is the altitude difference of the previous section), that explained 68% and 84% of the variance in skiing speed, respectively. A body-mass exponent of 0.48 (95% confidence interval: 0.19 to 0.77) best described VO(2)max as an indicator of performance in elite-standard men skiers. The confidence interval did not support the use of either "1" (simple ratio-standard scaled) or "0" (absolute expression) as body-mass exponents for expressing VO(2)max as an indicator of performance. Moreover, results suggest that course inclination increases the body-mass exponent for VO(2)max.
Kim, Young Saing; Kim, Eun Young; Kang, Shin Myung; Ahn, Hee Kyung; Kim, Hyung Sik
2017-09-01
Skeletal muscle depletion is an important prognostic factor in patients with chronic obstructive pulmonary disease (COPD); a recent study demonstrated significant correlations between pectoralis muscle area on an axial CT image and COPD-related traits. The purpose of this study was to evaluate the relation between pectoralis muscle areas on CT scans and total body skeletal muscle mass (SMM) in healthy subjects. For 434 subjects that underwent a low-dose chest CT and bioelectrical impedance analysis (BIA) during health screening from January to June of 2014, cross-sectional area of pectoralis muscles were measured in CT scans. Pearson's correlation and multiple linear regression analysis were used to assess the relationship between cross-sectional CT areas of pectoralis muscles and BIA-assessed SMMs. Mean age was 50 ± 10 years (78·8% were male). The mean cross-sectional area of pectoralis muscles was 24·1 cm 2 ± 6·8. A moderate correlation was observed between pectoralis muscle area and BIA-based SMM (r = 0·665, P<0.001). Multivariable analysis showed CT determined pectoralis muscle area was significantly associated with BIA-assessed SMM after adjusting for gender, weight, height and age (β = 0·14 ± 0·02, P<0·001). Cross-sectional area of the pectoralis muscles on single axial CT images shows moderate correlation with total body SMM determined by BIA in healthy subjects. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Indoor air quality in an automotive assembly plant in Selangor, Malaysia.
Edimansyah, B A; Rusli, B N; Naing, L; Azwan, B A; Aziah, B D
2009-01-01
The purpose of this study was to determine the indoor air quality (IAQ) status of an automotive assembly plant in Rawang, Selangor, Malaysia using selected IAQ parameters, such as carbon dioxide (CO2), carbon monoxide (CO), temperature, relative humidity (RH) and respirable particulate matter (PM10). A cross-sectional study was conducted in the paint shop and body shop sections of the plant in March 2005. The Q-TRAK Plus IAQ Monitor was used to record the patterns of CO, CO2, RH and temperature; whilst PM10 was measured using DUSTTRAK Aerosol Monitor over an 8-hour time weight average (8-TWA). It was found that the average temperatures, RH and PM10 in the paint shop section and body shop sections exceeded the Department of Safety and Health (DOSH) standards. The average concentrations of RH and CO were slightly higher in the body shop section than in the paint shop section, while the average concentrations of temperature and CO2 were slightly higher in the paint shop section than in the body shop section. There was no difference in the average concentrations of PM10 between the two sections.
NASA Technical Reports Server (NTRS)
Hemsch, Michael J.
1990-01-01
The accuracy of high-alpha slender-body theory (HASBT) for bodies with elliptical cross-sections is presently demonstrated by means of a comparison with exact solutions for incompressible potential flow over a wide range of ellipsoid geometries and angles of attack and sideslip. The addition of the appropriate trigonometric coefficients to the classical slender-body theory decomposition yields the formally correct HASBT, and results in accuracies previously considered unattainable.
Axial-Current Matrix Elements in Light Nuclei from Lattice QCD
NASA Astrophysics Data System (ADS)
Savage, M.; Beane, S.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K.; Shanahan, P.; Tiburzi, B.; Wagman, M.; Winter, F.; Nplqcd Collaboration
I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.
NASA Technical Reports Server (NTRS)
Hong, Byungsik; Buck, Warren W.; Maung, Khin M.
1989-01-01
Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models, are used with the t-matrix that is taken from the scattering experiments to find a simple optical potential. The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown. The eikonal approximation was chosen as the solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.
Elastic scattering and total reaction cross section of {sup 6}He+{sup 120}Sn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faria, P. N. de; Lichtenthaeler, R.; Pires, K. C. C.
The elastic scattering of {sup 6}He on {sup 120}Sn has been measured at four energies above the Coulomb barrier using the {sup 6}He beam produced at the RIBRAS (Radioactive Ion Beams in Brasil) facility. The elastic angular distributions have been analyzed with the optical model and three- and four-body continuum-discretized coupled-channels calculations. The total reaction cross sections have been derived and compared with other systems of similar masses.
Assessing the foundation of the Trojan Horse Method
NASA Astrophysics Data System (ADS)
Bertulani, C. A.; Hussein, M. S.; Typel, S.
2018-01-01
We discuss the foundation of the Trojan Horse Method (THM) within the Inclusive Non-Elastic Breakup (INEB) theory. We demonstrate that the direct part of the INEB cross section, which is of two-step character, becomes, in the DWBA limit of the three-body theory with appropriate approximations and redefinitions, similar in structure to the one-step THM cross section. We also discuss the connection of the THM to the Surrogate Method (SM), which is a genuine two-step process.
Evaluation of the Willingness for Cadaveric Donation in Greece: A Population-Based Study
ERIC Educational Resources Information Center
Halou, Heidi; Chalkias, Athanasios; Mystrioti, Dimitra; Iacovidou, Nicoletta; Vasileiou, Panagiotis V.S.; Xanthos, Theodoros
2013-01-01
Despite the importance of body donation for medical education and the advancement of medical science, cadaveric donation remains suboptimal worldwide. The purpose of this study was to evaluate the willingness of body donation in Greece and determine the characteristics of donors. This cross-sectional questionnaire survey was conducted from January…
Comprehensive missile aerodynamics programs for preliminary design
NASA Technical Reports Server (NTRS)
Dillenius, M. F. E.; Hemsch, M. J.; Sawyer, W. C.; Allen, J. M.; Blair, A. B., Jr.
1982-01-01
Two different classes of missile aeroprediction programs have been recently developed. The first class of programs provides rapid engineering predictions and includes MISSILE1 and MISSILE2 applicable to missile configurations with axisymmetric bodies. The second class of programs consists of the DEMON series, including a simplified version NSWCDM, designed to calculate detailed loadings acting on supersonic missiles which may have non-circular body cross sections. Both classes account for high angles of attack and track vortices from canard or wing section to the tail section. Extensive comparisons with experimental data are presented including nonlinear effects of canard control.
Associations of self-esteem with body mass index and body image among Saudi college-age females.
ALAhmari, Tasneem; Alomar, Abdulaziz Z; ALBeeybe, Jumanah; Asiri, Nawal; ALAjaji, Reema; ALMasoud, Reem; Al-Hazzaa, Hazzaa M
2017-12-27
To examine the association of self-esteem with the body mass index (BMI), perceived body image (BI), and desired BI of college-age Saudi females. A cross-sectional study was conducted with 907 randomly selected females using a multistage stratified cluster sampling technique. Self-esteem and BI were assessed using the Rosenberg Self-Esteem Scale and Stunkard Figure Rating Scale, respectively. The prevalence of low self-esteem was only 6.1% among college females; however, this percentage was higher (9.8%) among overweight or obese participants. The total self-esteem scores showed significant negative correlations with actual BMI and perceived BI, but not with desired BI. Meanwhile, multivariate analyses revealed significant differences in total self-esteem scores according to obesity/overweight status and perceived BI group, but not desired BI group. Despite the high prevalence of overweight and obesity in Saudi Arabia, few Saudi college females have low self-esteem. In addition, body weight, BMI, perceived BI, and the BMI corresponding to the perceived BI all significantly differed between females with low self-esteem and those with normal self-esteem. Level V, cross-sectional descriptive study.
Harada, Kazuhiro; Shibata, Ai; Oka, Koichiro; Nakamura, Yoshio
2015-01-01
This study aimed to examine the association of muscle-strengthening activity with knee and low back pain, falls, and health-related quality of life among Japanese older adults. A cross-sectional survey targeted 3,000 people. The response rate was 52% and 208 respondents did not meet the inclusion criteria. Therefore, 1,351 individuals were analyzed. Muscle-strengthening activity (exercise using equipment and body weight, lifestyle activities), knee and low back pain, falls over the past year, health-related quality of life (SF-8), and potential confounders were assessed. Individuals engaging in exercise using body weight and lifestyle activity (≥ 2 days/week) were more likely to have knee pain. Engaging in exercise using equipment and body weight was associated with higher scores of general health. These results indicate that exercise using equipment and body weight might have a positive effect on health-related quality of life, but muscle-strengthening activities are associated with knee pain in older people.
Radiation and scattering from bodies of translation, volume 1
NASA Astrophysics Data System (ADS)
Medgyesi-Mitschang, L. N.
1980-04-01
An analytical formulation, based on the method of moments (MM) is described for solving electromagnetic problems associated with finite-length cylinders of arbitrary cross section, denoted in this report as bodies of translation (BOT). This class of bodies can be used to model structures with noncircular cross sections such as wings, fins, and aircraft fuselages. The theoretical development parallels in part the MM formulation developed earlier by Mautz and Harrington for bodies of revolution (BOR). Like the latter approach, a modal expansion is used to describe the unknown surface currents on the BOT. The present analysis has been developed to treat the far-field radiation and scattering from a BOT excited by active antennas or illuminated by a plane wave of arbitrary polarization and angle of incidence. In addition, the electric and magnetic near-field components are determined in the vicinity of active and passive apertures (slots). Using the Schelkunoff equivalence theorem, the aperture-coupled fields within a BOT are also obtained. The formulation has been implemented by a computer algorithm and validated using accepted data in the literature.
Weiss, Eric H.; Merchant, Faisal M.; d’Avila, Andre; Foley, Lori; Reddy, Vivek Y.; Singh, Jagmeet P.; Mela, Theofanie; Ruskin, Jeremy N.; Armoundas, Antonis A.
2011-01-01
Background Electrical alternans is a pattern of variation in the shape of electrocardiographic waveform that occurs every other beat. In humans, alternation in ventricular repolarization, known as repolarization alternans (RA), has been associated with increased vulnerability to ventricular tachycardia/fibrillation and sudden cardiac death. Methods and Results This study investigates the spatio-temporal variability of intracardiac RA and its relationship to body surface RA in an acute myocardial ischemia model in swine. We developed a real-time multi-channel repolarization signal acquisition, display and analysis system to record electrocardiographic signals from catheters in the right ventricle, coronary sinus, left ventricle, and epicardial surface prior to and following circumflex coronary artery balloon occlusion. We found that RA is detectable within 4 minutes following the onset ischemia, and is most prominently seen during the first half of the repolarization interval. Ischemia-induced RA was detectable on unipolar and bipolar leads (both in near- and far-field configurations) and on body surface leads. Far-field bipolar intracardiac leads were more sensitive for RA detection than body surface leads, with the probability of body surface RA detection increasing as the number of intracardiac leads detecting RA increased, approaching 100% when at least three intracardiac leads detected RA. We developed a novel, clinically-applicable intracardiac lead system based on a triangular arrangement of leads spanning the right ventricular (RV) and coronary sinus (CS) catheters which provided the highest sensitivity for intracardiac RA detection when compared to any other far-field bipolar sensing configurations (p < 0.0001). Conclusions In conclusion, intracardiac alternans, a complex spatio-temporal phenomenon associated with arrhythmia susceptibility and sudden cardiac death, can be reliably detected through a novel triangular RV-CS lead configuration. PMID:21430127
NASA Astrophysics Data System (ADS)
Monfared, S. K.; Oró, D. M.; Grover, M.; Hammerberg, J. E.; LaLone, B. M.; Pack, C. L.; Schauer, M. M.; Stevens, G. D.; Stone, J. B.; Turley, W. D.; Buttler, W. T.
2014-08-01
We have assembled together our ejecta measurements from explosively shocked tin acquired over a period of about ten years. The tin was cast at 0.99995 purity, and all of the tin targets or samples were shocked to loading pressures of about 27 GPa, allowing meaningful comparisons. The collected data are markedly consistent, and because the total ejected mass scales linearly with the perturbations amplitudes they can be used to estimate how much total Sn mass will be ejected from explosively shocked Sn, at similar loading pressures, based on the surface perturbation parameters of wavelength and amplitude. Most of the data were collected from periodic isosceles shapes that approximate sinusoidal perturbations. Importantly, however, we find that not all periodic perturbations behave similarly. For example, we observed that sawtooth (right triangular) perturbations eject more mass than an isosceles perturbation of similar depth and wavelength, demonstrating that masses ejected from irregular shaped perturbations cannot be normalized to the cross-sectional areas of the perturbations.
Ion temperatures in HIP-1 and SUMMA from charge-exchange neutral optical emission spectra
NASA Technical Reports Server (NTRS)
Patch, R. W.; Lauver, M. R.
1976-01-01
Ion temperatures were obtained from observations of the H sub alpha, D sub alpha, and He 587.6 nm lines emitted from hydrogen, deuterium, and helium plasmas in the SUMMA and HIP-1 mirror devices at Lewis Research Center. Steady state discharges were formed by applying a radially inward dc electric field between cylindrical or annular anodes and hollow cathodes located at the peaks of the mirrors. The ion temperatures were found from the Doppler broadening of the charge-exchange components of spectral lines. A statistical method was developed for obtaining scaling relations of ion temperature as a function of current, voltage, and magnetic flux density. Derivations are given that take into account triangular monochromator slit functions, loss cones, and superimposed charge-exchange processes. In addition, the Doppler broadening was found to be sensitive to the influence of drift on charge-exchange cross section. The effects of finite ion-cyclotron radius, cascading, and delayed emission are reviewed.
Two-dimensional explosion experiments examining the interaction between a blast wave and a sand hill
NASA Astrophysics Data System (ADS)
Sugiyama, Y.; Izumo, M.; Ando, H.; Matsuo, A.
2018-05-01
Two-dimensional explosion experiments were conducted to discuss the interaction between a blast wave and sand and show the mitigation effect of the sand on the blast wave. The explosive used was a detonating cord 1.0 m in length, which was initiated in a sand hill shaped like a triangular prism and whose cross section was an isosceles triangle with base angles of 30°. Sand-hill heights of 30 and 60 mm were used as parameters to discuss the effect of sand mass upon blast-wave strength. The interaction of the blast wave with the sand/air interface causes multiple peaks in the blast wave, which are induced by successive transmissions at the interface. The increase in the sand mass further mitigates the blast parameters of peak overpressure and positive impulse. The results of this experiment can be utilized to validate the numerical method of solving the problem of interaction between a compressible fluid and a particle layer.
Silver nanostructures synthesis via optically induced electrochemical deposition
NASA Astrophysics Data System (ADS)
Li, Pan; Liu, Na; Yu, Haibo; Wang, Feifei; Liu, Lianqing; Lee, Gwo-Bin; Wang, Yuechao; Li, Wen Jung
2016-06-01
We present a new digitally controlled, optically induced electrochemical deposition (OED) method for fabricating silver nanostructures. Projected light patterns were used to induce an electrochemical reaction in a specialized sandwich-like microfluidic device composed of one indium tin oxide (ITO) glass electrode and an optically sensitive-layer-covered ITO electrode. Silver polyhedral nanoparticles, triangular and hexagonal nanoplates, and nanobelts were controllably synthesized in specific positions at which projected light was illuminated. The silver nanobelts had rectangular cross-sections with an average width of 300 nm and an average thickness of 100 nm. By controlling the applied voltage, frequency, and time, different silver nanostructure morphologies were obtained. Based on the classic electric double-layer theory, a dynamic process of reduction and crystallization can be described in terms of three phases. Because it is template- and surfactant-free, the digitally controlled OED method facilitates the easy, low cost, efficient, and flexible synthesis of functional silver nanostructures, especially quasi-one-dimensional nanobelts.
Two-dimensional explosion experiments examining the interaction between a blast wave and a sand hill
NASA Astrophysics Data System (ADS)
Sugiyama, Y.; Izumo, M.; Ando, H.; Matsuo, A.
2018-02-01
Two-dimensional explosion experiments were conducted to discuss the interaction between a blast wave and sand and show the mitigation effect of the sand on the blast wave. The explosive used was a detonating cord 1.0 m in length, which was initiated in a sand hill shaped like a triangular prism and whose cross section was an isosceles triangle with base angles of 30°. Sand-hill heights of 30 and 60 mm were used as parameters to discuss the effect of sand mass upon blast-wave strength. The interaction of the blast wave with the sand/air interface causes multiple peaks in the blast wave, which are induced by successive transmissions at the interface. The increase in the sand mass further mitigates the blast parameters of peak overpressure and positive impulse. The results of this experiment can be utilized to validate the numerical method of solving the problem of interaction between a compressible fluid and a particle layer.
Space station preliminary design report
NASA Technical Reports Server (NTRS)
1982-01-01
The results of a 3 month preliminary design and analysis effort is presented. The configuration that emerged consists of a very stiff deployable truss structure with an overall triangular cross section having universal modules attached at the apexes. Sufficient analysis was performed to show feasibility of the configuration. An evaluation of the structure shows that desirable attributes of the configuration are: (1) the solar cells, radiators, and antennas will be mounted to stiff structure to minimize control problems during orbit maintenance and correction, docking, and attitude control; (2) large flat areas are available for mounting and servicing of equipment; (3) Large mass items can be mounted near the center of gravity of the system to minimize gravity gradient torques; (4) the trusses are lightweight structures and can be transported into orbit in one Shuttle flight; (5) the trusses are expandable and will require a minimum of EVA; and (6) the modules are anticipated to be structurally identical except for internal equipment to minimize cost.
A simple and efficient shear-flexible plate bending element
NASA Technical Reports Server (NTRS)
Chaudhuri, Reaz A.
1987-01-01
A shear-flexible triangular element formulation, which utilizes an assumed quadratic displacement potential energy approach and is numerically integrated using Gauss quadrature, is presented. The Reissner/Mindlin hypothesis of constant cross-sectional warping is directly applied to the three-dimensional elasticity theory to obtain a moderately thick-plate theory or constant shear-angle theory (CST), wherein the middle surface is no longer considered to be the reference surface and the two rotations are replaced by the two in-plane displacements as nodal variables. The resulting finite-element possesses 18 degrees of freedom (DOF). Numerical results are obtained for two different numerical integration schemes and a wide range of meshes and span-to-thickness ratios. These, when compared with available exact, series or finite-element solutions, demonstrate accuracy and rapid convergence characteristics of the present element. This is especially true in the case of thin to very thin plates, when the present element, used in conjunction with the reduced integration scheme, outperforms its counterpart, based on discrete Kirchhoff constraint theory (DKT).
Predicting Turbulent Convective Heat Transfer in Three-Dimensional Duct Flows
NASA Technical Reports Server (NTRS)
Rokni, M.; Gatski, T. B.
1999-01-01
The performance of an explicit algebraic stress model is assessed in predicting the turbulent flow and forced heat transfer in straight ducts, with square, rectangular, trapezoidal and triangular cross-sections, under fully developed conditions over a range of Reynolds numbers. Iso-thermal conditions are imposed on the duct walls and the turbulent heat fluxes are modeled by gradient-diffusion type models. At high Reynolds numbers (>/= 10(exp 5)), wall functions are used for the velocity and temperature fields; while at low Reynolds numbers damping functions are introduced into the models. Hydraulic parameters such as friction factor and Nusselt number are well predicted even when damping functions are used, and the present formulation imposes minimal demand on the number of grid points without any convergence or stability problems. Comparison between the models is presented in terms of the hydraulic parameters, friction factor and Nusselt number, as well as in terms of the secondary flow patterns occurring within the ducts.
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2008-01-01
In this work, we present an alternate set of basis functions, each defined over a pair of planar triangular patches, for the method of moments solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped, closed, conducting surfaces. The present basis functions are point-wise orthogonal to the pulse basis functions previously defined. The prime motivation to develop the present set of basis functions is to utilize them for the electromagnetic solution of dielectric bodies using a surface integral equation formulation which involves both electric and magnetic cur- rents. However, in the present work, only the conducting body solution is presented and compared with other data.
Skeletal muscle response to spaceflight, whole body suspension, and recovery in rats
NASA Technical Reports Server (NTRS)
Musacchia, X. J.; Steffen, J. M.; Fell, R. D.; Dombrowski, M. J.
1990-01-01
The effects of a 7-day spaceflight (SF), 7- and 14-day-long whole body suspension (WBS), and 7-day-long recovery on the muscle weight and the morphology of the soleus and the extensor digitorum longus (EDL) of rats were investigated. It was found that the effect of 7-day-long SF and WBS were highly comparable for both the soleus and the EDL, although the soleus muscle from SF rats showed greater cross-sectional area reduction than that from WBS rats. With a longer duration of WBS, there was a continued reduction in cross-sectional fast-twitch fiber area. Muscle plasticity, in terms of fiber and capillary responses, showed differences in responses of the two types of muscles, indicating that antigravity posture muscles are highly susceptible to unloading.
Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo.
Xia, Jun; Chatni, Muhammad R; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V
2012-05-01
We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.
Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo
NASA Astrophysics Data System (ADS)
Xia, Jun; Chatni, Muhammad R.; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V.
2012-05-01
We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.
ERIC Educational Resources Information Center
Rodgers, Rachel F.; Damiano, Stephanie R.; Wertheim, Eleanor H.; Paxton, Susan J.
2017-01-01
Media exposure among young children has been suggested to influence self-concept and the adoption of social stereotypes regarding body weight, as well as being associated with increased weight. The aim of this study was to examine the role of TV/DVD viewing in the development of positive stereotypes toward thinness, self-esteem and body mass index…
Association between obesity and reduced body temperature in dogs.
Piccione, G; Giudice, E; Fazio, F; Refinetti, R
2011-08-01
Industrialized nations are currently experiencing an obesity epidemic, the causes of which are not fully known. One possible mechanism of enhanced energy efficiency that has received almost no attention is a reduction in the metabolic cost of homeothermy, which could be achieved by a modest lowering of body core temperature. We evaluated the potential of this obesity-inducing mechanism in a canine model of the metabolic syndrome. We compared the rectal temperature of lean dogs and obese dogs by (a) conducting cross-sectional measurements in 287 dogs of many breeds varying greatly in body size, (b) conducting longitudinal measurements in individual dogs over 7-10 years and (c) tracking rectal temperature of lean and obese dogs at 3-h intervals for 48 consecutive hours in the laboratory. We found that larger dogs have lower rectal temperatures than smaller dogs and that, for the same body mass, obese dogs have lower rectal temperatures than lean dogs. The results were consistent in the cross-sectional, longitudinal and around-the-clock measurements. These findings document an association between obesity and reduced body temperature in dogs and support the hypothesis that obesity in this and other species of homeotherms may result from an increase in metabolic efficiency achieved by a regulated lowering of body temperature.
Water Displacement in Oil-Wet Tight Reservoirs by Dynamic Network Simulation
NASA Astrophysics Data System (ADS)
Wang, Y.; Li, M.; Chen, M.
2017-12-01
Pore network simulation is an effective tool for studying the multiphase flow in porous media. Based on the topological information and pore-throat size distribution obtained from the analysis of Scanning Electron Microscope (SEM) and constant-rate mercury injection (CRMI) for tight cores (composed by micro-nano scale throats and micro scale pores), a simple cubic (SC) pore-throat network was built with equilateral triangular cross-section throats and cubic bodies. Rules for oil and water movement and redistribution were devised in accordance with the physics process at pore-throat scale. Water flooding from oil-saturated under irreducible water were simulated by considering the changing displacement rate and viscosity ratio at the slightly oil-wet condition (the static contact angle ranges between π/2 to 2π/3). Different from the double pressure field algorithm, a single pressure field which solved by using successive over relaxation method was used with the flow of irreducible water in corners was ignored while its swilling was take into consideration. Dynamic of displacement fronts, relative permeability curves and residual oil saturation were obtained. It showed that there were obviously snap-off at low capillary number (Nc<10-5) and fingering at high capillary number (Nc<10-4) even at a favorable viscosity ratio (M=1). The magnitude of viscosity ratio effect on relative permeability depended largely on the capillary number, which the effect wasn't noticeable for a high capillary number. For residual oil saturation Sor, it showed that Sor decreased with the increase of capillary number at different viscosity ratio. Changing of residual oil saturation from simulation was in good agreement with the experimental results in a certain range, which indicated that this network model could be used to character the water flooding in tight reservoirs.
NASA Astrophysics Data System (ADS)
Kacimov, A. R.; Kayumov, I. R.; Al-Maktoumi, A.
2016-11-01
An analytical solution to the Poisson equation governing Strack's discharge potential (squared thickness of a saturated zone in an unconfined aquifer) is obtained in a wedge-shaped domain with given head boundary conditions on the wedge sides (specified water level in an open water body around a porous promontory). The discharge vector components, maximum elevation of the water table in promontory vertical cross-sections, quantity of groundwater seeping through segments of the wedge sides, the volume of fresh groundwater in the mound are found. For acute angles, the solution to the problem is non-unique and specification of the behaviour at infinity is needed. A ;basic; solution is distinguished, which minimizes the water table height above a horizontal bedrock. MODFLOW simulations are carried out in a finite triangular island and compare solutions with a constant-head, no-flow and ;basic; boundary condition on one side of the triangle. Far from the tip of an infinite-size promontory one has to be cautious with truncation of the simulated flow domains and imposing corresponding boundary conditions. For a right and obtuse wedge angles, there are no positive solutions for the case of constant accretion on the water table. In a particular case of a confined rigid wedge-shaped aquifer and incompressible fluid, from an explicit solution to the Laplace equation for the hydraulic head with arbitrary time-space varying boundary conditions along the promontory rays, essentially 2-D transient Darcian flows within the wedge are computed. They illustrate that surface water waves on the promontory boundaries can generate strong Darcian waves inside the porous wedge. Evaporation from the water table and sea-water intruded interface (rather than a horizontal bed) are straightforward generalizations for the Poissonian Strack potential.
The formation of ammonium cobalt (II) phosphate was utilized to synthesize unprecedented 3D structures of Co3O4, triangular prisms and trunk-like structures, via a self-supported and organics-free method. The length of a triangular side of the prepared 3D triangular prisms is ~1...
NASA Technical Reports Server (NTRS)
Love, Eugene S
1949-01-01
Data obtained from wind tunnel investigations of two series of 11 triangular wings conducted at Mach numbers of 1.62, 1.92, and 1.40 to determine the effect of leading-edge shape and to compare actual test values with the nonviscous linear theory are presented. The two series of wings had identical plan forms, a constant thickness ratio of 8 percent, a constant location of maximum-thickness point of 18 percent, and a range of apex half-angles from 10 degrees to forty-five degrees. The first series has an elliptical leading edge and the second series a wedge leading edge. Measurements were made of lift, drag, pitching moment, and pressure distribution, the latter being confined to three wings at one Mach number.
Revkova, Tatiana N
2017-11-07
Two new species of the family Microlaimidae Micoletzky, 1922 are described and illustrated from the Black Sea. Aponema pontica sp. n. is morphologically closest to A. torosum in the shape of the body and spicules, size of amphids, but differs in having small and triangular cardia, absence of constriction in head region, shape of gubernaculum apophyses, rounded and weakly sclerotised lumen of pharyngeal bulb and longer spicules. Microlaimus paraglobiceps sp. n. morphologically resembles M. globiceps de Man, 1880 in the shape of the body, structure of the male sexual organs and presence of precloacal pore, but the main difference is a shorter body, cuticle finely annulated all over the body and absence of sexual dimorphism in the size of amphideal fovea.
White, Nicholas A; Moreno, Daniel P; Gayzik, F Scott; Stitzel, Joel D
2015-01-01
Human body finite element (FE) models are beginning to play a more prevalent role in the advancement of automotive safety. A methodology has been developed to evaluate neck response at multiple levels in a human body FE model during simulated automotive impacts. Three different impact scenarios were simulated: a frontal impact of a belted driver with airbag deployment, a frontal impact of a belted passenger without airbag deployment and an unbelted side impact sled test. Cross sections were created at each vertebral level of the cervical spine to calculate the force and moment contributions of different anatomical components of the neck. Adjacent level axial force ratios varied between 0.74 and 1.11 and adjacent level bending moment ratios between 0.55 and 1.15. The present technique is ideal for comparing neck forces and moments to existing injury threshold values, calculating injury criteria and for better understanding the biomechanical mechanisms of neck injury and load sharing during sub-injurious and injurious loading.
Freitas, P M S S; Garcia Rosa, M L; Gomes, A M; Wahrlich, V; Di Luca, D G; da Cruz Filho, R A; da Silva Correia, D M; Faria, C A; Yokoo, E M
2016-04-01
This cross-sectional study involves randomly selected men aged 50 to 99 years and postmenopausal women. Either central fat mass or peripheral fat mass were associated to osteoporosis or osteopenia independently from fat-free body mass and other confounding factors. Obesity and osteoporosis are public health problems that probably share common pathophysiological mechanisms. The question if body fat mass, central or peripheral, is protective or harmful for osteoporosis or osteopenia is not completely resolved. This study aims to investigate the association between osteoporosis or osteopenia, and fat body mass (central and peripheral) independently from fat-free body mass, in men aged 50 to 99 years old and postmenopausal women randomly selected in the community. This is a cross-sectional investigation with a random sample of registered population in Niterói Family Doctor Program (FDP), State of Rio de Janeiro, Brazil. Bone mineral density (BMD) and fat-free mass were assessed by dual X-ray absorptiometry (DXA). There was statistically significant bivariate association between bone loss with gender, age, skin color, alcohol consumption at risk dose, use of thiazide, fat-free body mass, and fat body mass (central and peripheral). In the multiple analysis of fat-free body mass, central and peripheral fat body mass showed an independent and protective effect on the presence of osteoporosis or osteopenia (p value <0.001). Since both obesity and osteoporosis are public health problems worldwide, strategies aimed at preventing both conditions should be encouraged during aging.
Multinucleon pion absorption in the sup 4 He(. pi. sup + , ppp ) n reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, P.; McAlister, J.; Olszewski, R.
1991-04-01
Three-proton emission cross sections for the {sup 4}He({pi}{sup +},{ital ppp}){ital n} reaction were measured at an incident pion kinetic energy of {ital T}{sub {pi}}{sup +}=165 MeV over a wide angular range in a kinematically complete experiment. Angular correlations, missing momentum distributions, and energy spectra are compared with three- and four-body phase-space Monte Carlo calculations. The results provide strong evidence that most of the three-proton coincidences result from three-nucleon absorption. From phase-space integration the total three-nucleon absorption cross section is estimated to be {sigma}{sup 3{ital N}}=4.8{plus minus}1.0 mb. The cross section involving four nucleons is small and is estimated to bemore » {sigma}{sup 4{ital N}}{lt}2 mb. On the scale of the total absorption cross section in {sup 4}He, multinucleon pion absorption seems to represent only a small fraction.« less
McLean, Siân A; Paxton, Susan J; Wertheim, Eleanor H; Masters, Jennifer
2015-12-01
Social media engagement by adolescent girls is high. Despite its appeal, there are potential negative consequences for body dissatisfaction and disordered eating from social media use. This study aimed to examine, in a cross-sectional design, the relationship between social media use in general, and social media activities related to taking "selfies" and sharing specifically, with overvaluation of shape and weight, body dissatisfaction, and dietary restraint. Participants were 101 grade seven girls (M(age) = 13.1, SD = 0.3), who completed self-report questionnaires of social media use and body-related and eating concerns measures. Results showed that girls who regularly shared self-images on social media, relative to those who did not, reported significantly higher overvaluation of shape and weight, body dissatisfaction, dietary restraint, and internalization of the thin ideal. In addition, among girls who shared photos of themselves on social media, higher engagement in manipulation of and investment in these photos, but not higher media exposure, were associated with greater body-related and eating concerns, including after accounting for media use and internalization of the thin ideal. Although cross-sectional, these findings suggest the importance of social media activities for body-related and eating concerns as well as potential avenues for targeted social-media-based intervention. © 2015 Wiley Periodicals, Inc.
... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...
Theoretical aerodynamic characteristics of a family of slender wing-tail-body combinations
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Byrd, Paul F
1951-01-01
The aerodynamic characteristics of an airplane configuration composed of a swept-back, nearly constant chord wing and a triangular tail mounted on a cylindrical body are presented. The analysis is based on the assumption that the free-stream Mach number is near unity or that the configuration is slender. The calculations for the tail are made on the assumption that the vortex system trailing back from the wing is either a sheet lying entirely in the plane of the flat tail surface or has completely "rolled up" into two point vortices that lie either in, above, or below the plane of the tail surface.
Impact of chevron spacing and asymmetric distribution on supersonic jet acoustics and flow
NASA Astrophysics Data System (ADS)
Heeb, N.; Gutmark, E.; Kailasanath, K.
2016-05-01
An experimental investigation into the effect of chevron spacing and distribution on supersonic jets was performed. Cross-stream and streamwise particle imaging velocimetry measurements were used to relate flow field modification to sound field changes measured by far-field microphones in the overexpanded, ideally expanded, and underexpanded regimes. Drastic modification of the jet cross-section was achieved by the investigated configurations, with both elliptic and triangular shapes attained downstream. Consequently, screech was nearly eliminated with reductions in the range of 10-25 dB depending on the operating condition. Analysis of the streamwise velocity indicated that both the mean shock spacing and strength were reduced resulting in an increase in the broadband shock associated noise spectral peak frequency and a reduction in the amplitude, respectively. Maximum broadband shock associated noise amplitude reductions were in the 5-7 dB range. Chevron proximity was found to be the primary driver of peak vorticity production, though persistence followed the opposite trend. The integrated streamwise vorticity modulus was found to be correlated with peak large scale turbulent mixing noise reduction, though optimal overall sound pressure level reductions did not necessarily follow due to the shock/fine scale mixing noise sources. Optimal large scale mixing noise reductions were in the 5-6 dB range.
Body Satisfaction and Sexual Health Behaviors among New Zealand Secondary School Students
ERIC Educational Resources Information Center
Larson, Bridget K.; Clark, Terryann C.; Robinson, Elizabeth M.; Utter, Jennifer
2012-01-01
This population-based study of 2931 respondents to Youth07 (a cross-sectional survey of New Zealand secondary students' health) examines associations between weight-related variables and sexual risk-taking. It is hypothesized that girls who report poorer body satisfaction or previous weight-loss attempts will be: more likely to be currently…
ERIC Educational Resources Information Center
Dharod, Jigna M.; Croom, Jamar E.; Sady, Christine G.
2013-01-01
Objective: To examine the association between food insecurity, dietary intake, and body mass index among Somali refugee women living in the United States. Methods: Cross-sectional study utilizing the snowball sampling method. Results: Most (67%) participants experienced some level of food insecurity, which was common among recent arrivals and…
ERIC Educational Resources Information Center
Tamers, Sara L.; Allen, Jennifer; Yang, May; Stoddard, Anne; Harley, Amy; Sorensen, Glorian
2014-01-01
Objective: To explore relationships between concerns and physical activity and body mass index (BMI) among a racially/ethnically diverse low-income population. Method: A cross-sectional survey documented behavioral risks among racially/ethnically diverse low-income residents in the Boston area (2005-2009). Multivariable logistic regressions were…
ERIC Educational Resources Information Center
Chock, T. Makana
2011-01-01
Objective: To examine the influence of body mass index (BMI), sex, and race on college students' optimistic bias (OB) concerning the healthiness of their own lifestyles relative to the "average college student" and best friends. Design: Cross-sectional survey. Setting: Large university campus. Participants: College students recruited…
ERIC Educational Resources Information Center
Cairney, John; Kwan, Matthew Y. W.; Hay, John A.; Faught, Brent E.
2012-01-01
Background: To examine whether differences in participation in active play (PAP) can account for gender differences in the relationship between Developmental Coordination Disorder (DCD) and body weight/fat (BMI and percentage fat) in youth. Methods: A cross-sectional investigation of students in grades four through eight (n = 590). Height, weight…
Body composition from age 3 months to 6 years of children born to lean, overweight and obese mothers
USDA-ARS?s Scientific Manuscript database
The association between higher maternal pre-gravid body mass index and greater risk of later life obesity in the offspring has been hypothesized to be mediated in part via developmental programming. However, most studies have relied on cross-sectional analyses and anthropometric data thus far. We pr...
USDA-ARS?s Scientific Manuscript database
To investigate the relationships of cardiac structure and function with body composition and cardiorespiratory fitness (CRF) among adolescents with type 2 diabetes in the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) Study Group. Cross-sectional evaluation of 233 participant...
A Physics-Based Engineering Approach to Predict the Cross Section for Advanced SRAMs
NASA Astrophysics Data System (ADS)
Li, Lei; Zhou, Wanting; Liu, Huihua
2012-12-01
This paper presents a physics-based engineering approach to estimate the heavy ion induced upset cross section for 6T SRAM cells from layout and technology parameters. The new approach calculates the effects of radiation with junction photocurrent, which is derived based on device physics. The new and simple approach handles the problem by using simple SPICE simulations. At first, the approach uses a standard SPICE program on a typical PC to predict the SPICE-simulated curve of the collected charge vs. its affected distance from the drain-body junction with the derived junction photocurrent. And then, the SPICE-simulated curve is used to calculate the heavy ion induced upset cross section with a simple model, which considers that the SEU cross section of a SRAM cell is more related to a “radius of influence” around a heavy ion strike than to the physical size of a diffusion node in the layout for advanced SRAMs in nano-scale process technologies. The calculated upset cross section based on this method is in good agreement with the test results for 6T SRAM cells processed using 90 nm process technology.
Hard QCD rescattering in few nucleon systems
NASA Astrophysics Data System (ADS)
Maheswari, Dhiraj; Sargsian, Misak
2017-01-01
The theoretical framework of hard QCD rescattering mechanism (HRM) is extended to calculate the high energy γ3 He -> pd reaction at 900 center of mass angle. In HRM model , the incoming high energy photon strikes a quark from one of the nucleons in the target which subsequently undergoes hard rescattering with the quarks from the other nucleons generating hard two-body baryonic system in the final state of the reaction. Based on the HRM, a parameter free expression for the differential cross section for the reaction is derived, expressed through the 3 He -> pd transition spectral function, hard pd -> pd elastic scattering cross section and the effective charge of the quarks being interchanged in the hard rescattering process. The numerical estimates obtained from this expression for the differential cross section are in a good agreement with the data recently obtained at the Jefferson Lab experiment, showing the energy scaling of cross section with an exponent of s-17, also consistent with the quark counting rule. The angular and energy dependences of the cross section are also predicted within HRM which are in good agreement with the preliminary data of these distributions. Research is supported by the US Department of Energy.
76 FR 63852 - Proposed Establishment of the Wisconsin Ledge Viticultural Area
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
... Section 105(e) of the Federal Alcohol Administration Act (FAA Act), 27 U.S.C. 205(e), authorizes the... viticultural area is generally triangular- shaped, with the west leg of the triangle primarily bounded by Lake... adopting a modified or different name for the viticultural area. Submitting Comments You may submit...
26 CFR 1.368-2 - Definition of terms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... of a target corporation into a disregarded entity in exchange for stock of the owner. (i) Facts... a target S corporation that owns a QSub into a disregarded entity. (i) Facts. The facts are the same... or consolidation for purposes of section 368(a)(1)(A). Example 4. Triangular merger of a target...
Photocopy of War Department drawing (original located at Fort McCoy, ...
Photocopy of War Department drawing (original located at Fort McCoy, Wisconsin). PLANS, ELEVATIONS, SECTIONS & DETAILS, DRAWING NUMBER 800-1543 - Fort McCoy, Building No. T-10121, Within triangular piece of land formed by South Eighth Avenue, South "X" Street & South "X" Road, Block 10, Sparta, Monroe County, WI
Distance Determination by Gated Viewing Systems Taking into Account the Illuminating Pulse Shape
NASA Astrophysics Data System (ADS)
Gorobets, V. A.; Kuntsevich, B. F.; Shabrov, D. V.
2017-11-01
For gated viewing systems with triangular and trapezoidal illuminating pulses, we have obtained the range-intensity profiles (RIPs) of the signal as the time delay was varied between the leading edges of the gate pulse and the illuminating pulse. We have established that if the duration of the illuminating pulse Δtlas is less than or equal to the duration of the gate pulse ΔtIC, then the expressions for the characteristic distances are the same as for rectangular pulses and they can be used to determine the distance to objects. When Δtlas > ΔtIC, in the case of triangular illuminating pulses the RIP is bell-shaped. For trapezoidal pulses, the RIP is bell-shaped with or without a plateau section. We propose an empirical method for determining the characteristic distances to the RIP maximum and the boundary points for the plateau section, which we then use to calculate the distance to the object. Using calibration constants, we propose a method for determining the distance to an object and we have experimentally confirmed the feasibility of this method.
Zeeman relaxation of MnH (X7Σ+) in collisions with He3: Mechanism and comparison with experiment
NASA Astrophysics Data System (ADS)
Turpin, F.; Stoecklin, T.; Halvick, Ph.
2011-03-01
We present a theoretical study of the Zeeman relaxation of the magnetically trappable lowest field seeking state of MnH (7Σ) in collisions with He3. We analyze the collisional Zeeman transition mechanism as a function of the final diatomic state and its variation as a function of an applied magnetic field. We show that as a result of this mechanism the levels with ΔMj>2 give negligible contributions to the Zeemam relaxation cross section. We also compare our results to the experimental cross sections obtained from the buffer-gas cooling and magnetic trapping of this molecule and investigate the dependence of the Zeeman relaxation cross section on the accuracy of the three-body interaction at ultralow energies.
Characterizing the astrophysical S factor for 12C+12C fusion with wave-packet dynamics
NASA Astrophysics Data System (ADS)
Diaz-Torres, Alexis; Wiescher, Michael
2018-05-01
A quantitative study of the astrophysically important subbarrier fusion of 12C+12C is presented. Low-energy collisions are described in the body-fixed reference frame using wave-packet dynamics within a nuclear molecular picture. A collective Hamiltonian drives the time propagation of the wave packet through the collective potential-energy landscape. The fusion imaginary potential for specific dinuclear configurations is crucial for understanding the appearance of resonances in the fusion cross section. The theoretical subbarrier fusion cross sections explain some observed resonant structures in the astrophysical S factor. These cross sections monotonically decline towards stellar energies. The structures in the data that are not explained are possibly due to cluster effects in the nuclear molecule, which need to be included in the present approach.
Computed tomographic and cross-sectional anatomy of the normal pacu (Colossoma macroponum).
Carr, Alaina; Weber, E P Scott; Murphy, Chris J; Zwingenberger, Alison
2014-03-01
The purpose of this study was to compare and define the normal cross-sectional gross and computed tomographic (CT) anatomy for a species of boney fish to better gain insight into the use of advanced diagnostic imaging for future clinical cases. The pacu (Colossoma macropomum) was used because of its widespread presence in the aquarium trade, its relatively large body size, and its importance in the research and aquaculture settings. Transverse 0.6-mm CT images of three cadaver fish were obtained and compared to corresponding frozen cross sections of the fish. Relevant anatomic structures were identified and labeled at each level; the Hounsfield unit density of major organs was established. The images presented good anatomic detail and provide a reference for future research and clinical investigation.
Integrated Experimental and Numerical Research on the Aerodynamics of Unsteady Moving Aircraft
2007-06-01
blended wing body configuration were tested in different modes of oscillatory motions roll, pitch and yaw as well as delta wing geometries like X-31...airplane configurations (e.g. wide body, green aircraft, blended wing body) the approach up to now using semi-empirical methods as standard...cross section wing. In order to evaluate the influence of individual components of the tested airplane configuration, such as winglets , vertical or
Algorithm for Surface of Translation Attached Radiators (A-STAR). Volume 2. Users manual
NASA Astrophysics Data System (ADS)
Medgyesimitschang, L. N.; Putnam, J. M.
1982-05-01
A hierarchy of computer programs implementing the method of moments for bodies of translation (MM/BOT) is described. The algorithm treats the far-field radiation from off-surface and aperture antennas on finite-length open or closed bodies of arbitrary cross section. The near fields and antenna coupling on such bodies are computed. The theoretical development underlying the algorithm is described in Volume 1 of this report.
NASA Technical Reports Server (NTRS)
James, Carlton S.
1960-01-01
An aircraft configuration, previously conceived as a means to achieve favorable aerodynamic stability characteristics., high lift-drag ratio, and low heating rates at high supersonic speeds., was modified in an attempt to increase further the lift-drag ratio without adversely affecting the other desirable characteristics. The original configuration consisted of three identical triangular wing panels symmetrically disposed about an ogive-cylinder body equal in length to the root chord of the panels. This configuration was modified by altering the angular disposition of the wing panels, by reducing the area of the panel forming the vertical fin, and by reshaping the body to produce interference lift. Six-component force and moment tests of the modified configuration at combined angles of attack and sideslip were made at a Mach number of 3.3 and a Reynolds number of 5.46 million. A maximum lift-drag ratio of 6.65 (excluding base drag) was measured at a lift coefficient of 0.100 and an angle of attack of 3.60. The lift-drag ratio remained greater than 3 up to lift coefficient of 0.35. Performance estimates, which predicted a maximum lift-drag ratio for the modified configuration 27 percent greater than that of the original configuration, agreed well with experiment. The modified configuration exhibited favorable static stability characteristics within the test range. Longitudinal and directional centers of pressure were slightly aft of the respective centroids of projected plan-form and side area.
Martín-Merino, Elisa; Calderón-Larrañaga, Amaia; Hawley, Samuel; Poblador-Plou, Beatriz; Llorente-García, Ana; Petersen, Irene; Prieto-Alhambra, Daniel
2018-01-01
Background Missing data are often an issue in electronic medical records (EMRs) research. However, there are many ways that people deal with missing data in drug safety studies. Aim To compare the risk estimates resulting from different strategies for the handling of missing data in the study of venous thromboembolism (VTE) risk associated with antiosteoporotic medications (AOM). Methods New users of AOM (alendronic acid, other bisphosphonates, strontium ranelate, selective estrogen receptor modulators, teriparatide, or denosumab) aged ≥50 years during 1998–2014 were identified in two Spanish (the Base de datos para la Investigación Farmacoepidemiológica en Atención Primaria [BIFAP] and EpiChron cohort) and one UK (Clinical Practice Research Datalink [CPRD]) EMR. Hazard ratios (HRs) according to AOM (with alendronic acid as reference) were calculated adjusting for VTE risk factors, body mass index (that was missing in 61% of patients included in the three databases), and smoking (that was missing in 23% of patients) in the year of AOM therapy initiation. HRs and standard errors obtained using cross-sectional multiple imputation (MI) (reference method) were compared to complete case (CC) analysis – using only patients with complete data – and longitudinal MI – adding to the cross-sectional MI model the body mass index/smoking values as recorded in the year before and after therapy initiation. Results Overall, 422/95,057 (0.4%), 19/12,688 (0.1%), and 2,051/161,202 (1.3%) VTE cases/participants were seen in BIFAP, EpiChron, and CPRD, respectively. HRs moved from 100.00% underestimation to 40.31% overestimation in CC compared with cross-sectional MI, while longitudinal MI methods provided similar risk estimates compared with cross-sectional MI. Precision for HR improved in cross-sectional MI versus CC by up to 160.28%, while longitudinal MI improved precision (compared with cross-sectional) only minimally (up to 0.80%). Conclusion CC may substantially affect relative risk estimation in EMR-based drug safety studies, since missing data are not often completely at random. Little improvement was seen in these data in terms of power with the inclusion of longitudinal MI compared with cross-sectional MI. The strategy for handling missing data in drug safety studies can have a large impact on both risk estimates and precision.
Martín-Merino, Elisa; Calderón-Larrañaga, Amaia; Hawley, Samuel; Poblador-Plou, Beatriz; Llorente-García, Ana; Petersen, Irene; Prieto-Alhambra, Daniel
2018-01-01
Missing data are often an issue in electronic medical records (EMRs) research. However, there are many ways that people deal with missing data in drug safety studies. To compare the risk estimates resulting from different strategies for the handling of missing data in the study of venous thromboembolism (VTE) risk associated with antiosteoporotic medications (AOM). New users of AOM (alendronic acid, other bisphosphonates, strontium ranelate, selective estrogen receptor modulators, teriparatide, or denosumab) aged ≥50 years during 1998-2014 were identified in two Spanish (the Base de datos para la Investigación Farmacoepidemiológica en Atención Primaria [BIFAP] and EpiChron cohort) and one UK (Clinical Practice Research Datalink [CPRD]) EMR. Hazard ratios (HRs) according to AOM (with alendronic acid as reference) were calculated adjusting for VTE risk factors, body mass index (that was missing in 61% of patients included in the three databases), and smoking (that was missing in 23% of patients) in the year of AOM therapy initiation. HRs and standard errors obtained using cross-sectional multiple imputation (MI) (reference method) were compared to complete case (CC) analysis - using only patients with complete data - and longitudinal MI - adding to the cross-sectional MI model the body mass index/smoking values as recorded in the year before and after therapy initiation. Overall, 422/95,057 (0.4%), 19/12,688 (0.1%), and 2,051/161,202 (1.3%) VTE cases/participants were seen in BIFAP, EpiChron, and CPRD, respectively. HRs moved from 100.00% underestimation to 40.31% overestimation in CC compared with cross-sectional MI, while longitudinal MI methods provided similar risk estimates compared with cross-sectional MI. Precision for HR improved in cross-sectional MI versus CC by up to 160.28%, while longitudinal MI improved precision (compared with cross-sectional) only minimally (up to 0.80%). CC may substantially affect relative risk estimation in EMR-based drug safety studies, since missing data are not often completely at random. Little improvement was seen in these data in terms of power with the inclusion of longitudinal MI compared with cross-sectional MI. The strategy for handling missing data in drug safety studies can have a large impact on both risk estimates and precision.
Fall Down Detection Under Smart Home System.
Juang, Li-Hong; Wu, Ming-Ni
2015-10-01
Medical technology makes an inevitable trend for the elderly population, therefore the intelligent home care is an important direction for science and technology development, in particular, elderly in-home safety management issues become more and more important. In this research, a low of operation algorithm and using the triangular pattern rule are proposed, then can quickly detect fall-down movements of humanoid by the installation of a robot with camera vision at home that will be able to judge the fall-down movements of in-home elderly people in real time. In this paper, it will present a preliminary design and experimental results of fall-down movements from body posture that utilizes image pre-processing and three triangular-mass-central points to extract the characteristics. The result shows that the proposed method would adopt some characteristic value and the accuracy can reach up to 90 % for a single character posture. Furthermore the accuracy can be up to 100 % when a continuous-time sampling criterion and support vector machine (SVM) classifier are used.
Consistency between cross-sectional and longitudinal SNP: blood lipid associations.
Costanza, Michael C; Beer-Borst, Sigrid; James, Richard W; Gaspoz, Jean-Michel; Morabia, Alfredo
2012-02-01
Various studies have linked different genetic single nucleotide polymorphisms (SNPs) to different blood lipids (BL), but whether these "connections" were identified using cross-sectional or longitudinal (i.e., changes over time) designs has received little attention. Cross-sectional and longitudinal assessments of BL [total, high-, low-density lipoprotein cholesterol (TC, HDL, LDL), triglycerides (TG)] and non-genetic factors (body mass index, smoking, alcohol intake) were measured for 2,002 Geneva, Switzerland, adults during 1999-2008 (two measurements, median 6 years apart), and 20 SNPs in 13 BL metabolism-related genes. Fixed and mixed effects repeated measures linear regression models, respectively, were employed to identify cross-sectional and longitudinal SNP:BL associations among the 1,516 (76%) study participants who reported not being treated for hypercholesterolemia at either measurement time. One-third more (12 vs. 9) longitudinal than cross-sectional associations were found [Bonferroni-adjusted two-tailed p < 0.00125 (=0.05/2)/20) for each of the four ensembles of 20 SNP:individual BL associations tested under the two study designs]. There was moderate consistency between the cross-sectional and longitudinal findings, with eight SNP:BL associations consistently identified across both study designs: [APOE.2 and APOE.4 (rs7412 and rs429358)]:TC; HL/LIPC (rs2070895):HDL; [APOB (rs1367117), APOE.2 and APOE.4 (rs7412 and rs429358)]:LDL; [APOA5 (rs2072560) and APOC III (rs5128)]:TG. The results suggest that cross-sectional studies, which include most genome-wide association studies (GWAS), can assess the large majority of SNP:BL associations. In the present analysis, which was much less powered than a GWAS, the cross-sectional study was around 2/3 (67%) as efficient as the longitudinal study.
Kasapinova, K; Kamiloski, V
2016-06-01
Our purpose was to determine the correlation of initial radiographic parameters of a distal radius fracture with an injury of the triangular fibrocartilage complex. In a prospective study, 85 patients with surgically treated distal radius fractures were included. Wrist arthroscopy was used to identify and classify triangular fibrocartilage complex lesions. The initial radial length and angulation, dorsal angulation, ulnar variance and distal radioulnar distance were measured. Wrist arthroscopy identified a triangular fibrocartilage complex lesion in 45 patients. Statistical analysis did not identify a correlation with any single radiographic parameter of the distal radius fractures with the associated triangular fibrocartilage complex injuries. The initial radiograph of a distal radius fracture does not predict a triangular fibrocartilage complex injury. III. © The Author(s) 2016.
Association Between Mind-Body Practice and Cardiometabolic Risk Factors: The Rotterdam Study.
Younge, John O; Leening, Maarten J G; Tiemeier, Henning; Franco, Oscar H; Kiefte-de Jong, Jessica; Hofman, Albert; Roos-Hesselink, Jolien W; Hunink, M G Myriam
2015-09-01
The increased popularity of mind-body practices highlights the need to explore their potential effects. We determined the cross-sectional association between mind-body practices and cardiometabolic risk factors. We used data from 2579 participants free of cardiovascular disease from the Rotterdam Study (2009-2013). A structured home-based interview was used to evaluate engagement in mind-body practices including meditation, yoga, self-prayer, breathing exercises, or other forms of mind-body practice. We regressed engagement in mind-body practices on cardiometabolic risk factors (body mass index, blood pressure, and fasting blood levels of cholesterol, triglycerides, and glucose) and presence of metabolic syndrome. All analyses were adjusted for age, sex, educational level, smoking, alcohol consumption, (in)activities in daily living, grief, and depressive symptoms. Fifteen percent of the participants engaged in a form of mind-body practice. Those who did mind-body practices had significantly lower body mass index (β = -0.84 kg/m, 95% confidence interval [CI] = -1.30 to -0.38, p < .001), log-transformed triglyceride levels (β = -0.02, 95% CI = -0.04 to -0.001, p = .037), and log-transformed fasting glucose levels (β = -0.01, 95% CI = -0.02 to -0.004, p = .004). Metabolic syndrome was less common among individuals who engaged in mind-body practices (odds ratio = 0.71, 95% CI = 0.54-0.95, p = .019). Individuals who do mind-body practices have a favorable cardiometabolic risk profile compared with those who do not. However, the cross-sectional design of this study does not allow for causal inference and prospective, and intervention studies are needed to elucidate the association between mind-body practices and cardiometabolic processes.
Kerwin, Diana R.; Zhang, Yinghua; Kotchen, Jane Morley; Espeland, Mark A.; Van Horn, Linda; McTigue, Kathleen M.; Robinson, Jennifer G.; Powell, Lynda; Kooperberg, Charles; Coker, Laura H.; Hoffmann, Raymond
2010-01-01
OBJECTIVES To determine if body weight (BMI) is independently associated with cognitive function in postmenopausal women and the relationship between body fat distribution as estimated by waist-hip-ratio (WHR) and cognitive function. DESIGN Cross-sectional data analysis SETTING Baseline data from the Women's Health Initiative (WHI) hormone trials. PARTICIPANTS 8745 postmenopausal women aged 65–79 years, free of clinical evidence of dementia and completed baseline evaluation in the Women's Health Initiative (WHI) hormone trials. MEASUREMENTS Participants completed a Modified Mini-Mental State Examination (3MSE), health and lifestyle questionnaires, and standardized measurements of height, weight, body circumferences and blood pressure. Statistical analysis of associations between 3MSE scores, BMI and WHR after controlling for known confounders. RESULTS With the exception of smoking and exercise, vascular disease risk factors, including hypertension, waist measurement, heart disease and diabetes, were significantly associated with 3MSE score and were included as co-variables in subsequent analyses. BMI was inversely related to 3MSE scores, for every 1 unit increase in BMI, 3MSE decrease 0.988 (p=.0001) after adjusting for age, education and vascular disease risk factors. BMI had the most pronounced association with poorer cognitive functioning scores among women with smaller waist measurements. Among women with the highest WHR, cognitive scores increased with BMI. CONCLUSION Increasing BMI is associated with poorer cognitive function in women with smaller WHR. Higher WHR, estimating central fat mass, is associated with higher cognitive function in this cross-sectional study. Further research is needed to clarify the mechanism for this association. PMID:20646100
Kerwin, Diana R; Zhang, Yinghua; Kotchen, Jane Morley; Espeland, Mark A; Van Horn, Linda; McTigue, Kathleen M; Robinson, Jennifer G; Powell, Lynda; Kooperberg, Charles; Coker, Laura H; Hoffmann, Raymond
2010-08-01
To determine whether body mass index (BMI) is independently associated with cognitive function in postmenopausal women and the relationship between body fat distribution as estimated by waist-hip ratio (WHR). Cross-sectional data analysis. Baseline data from the Women's Health Initiative (WHI) hormone trials. Eight thousand seven hundred forty-five postmenopausal women aged 65 to 79 free of clinical evidence of dementia who completed the baseline evaluation in the WHI hormone trials. Participants completed a Modified Mini-Mental State Examination (3MSE), health and lifestyle questionnaires, and standardized measurements of height, weight, body circumference, and blood pressure. Statistical analysis was performed of associations between 3MSE score, BMI, and WHR after controlling for known confounders. With the exception of smoking and exercise, vascular disease risk factors, including hypertension, waist measurement, heart disease, and diabetes mellitus, were significantly associated with 3MSE score and were included as covariables in subsequent analyses. BMI was inversely related to 3MSE score; for every 1-unit increase in BMI, 3MSE score decreased 0.988 points (P<.001) after adjusting for age, education, and vascular disease risk factors. BMI had the most pronounced association with poorer cognitive functioning scores in women with smaller waist measurements. In women with the highest WHR, cognitive scores increased with BMI. Higher BMI was associated with poorer cognitive function in women with smaller WHR. Higher WHR, estimating central fat mass, was associated with higher cognitive function in this cross-sectional study. Further research is needed to clarify the mechanism for this association. © 2010, Copyright the Authors. Journal compilation © 2010, No claim to original US government works.
Ho, Kam Chun; Jalbert, Isabelle; Watt, Kathleen; Golebiowski, Blanka
2017-07-01
To examine the relationship between dry eye symptoms and adiposity in a population study. A prospective cross-sectional single-visit preliminary study was designed to sample ocular symptoms and indices of adiposity in the general adult population. Patients recruited from the UNSW optometry clinic, the university campus and surrounding community, and overseas were invited to complete a survey composed of the short form Dry Eye Questionnaire (SFDEQ) (Dry Eye Questionnaire-5 or Contact Lens Dry Eye Questionnaire-8) and the Ocular Comfort Index (OCI) via hardcopy or online. Participants self-measured their weight, height, waist circumference (WC), and body fat % (optional). Associations between measures of adiposity (Body mass index [BMI], WC, and body fat %) and ocular symptoms scores (SFDEQ and OCI) were determined using Spearman correlation coefficients. Group differences were compared using independent t test. Three hundred and five participants including 52 contact lens wearers completed the study and 78 of them measured body fat %. There was a moderate correlation between body fat % and dry eye symptoms (SFDEQ r=0.34, P=0.003; OCI r=0.32, P=0.004). The interaction between body fat % and gender, wear of contact lenses, and older age were shown to be significant predictors of less ocular comfort in multivariate analysis (F(3,74)=12.13, P<0.001). An association between adiposity measured by body fat % and symptoms of dry eye was demonstrated in the general adult population. Confirmation of these findings in a large study is required.
Surgical tool alignment guidance by drawing two cross-sectional laser-beam planes.
Nakajima, Yoshikazu; Dohi, Takeyoshi; Sasama, Toshihiko; Momoi, Yasuyuki; Sugano, Nobuhiko; Tamura, Yuichi; Lim, Sung-hwan; Sakuma, Ichiro; Mitsuishi, Mamoru; Koyama, Tsuyoshi; Yonenobu, Kazuo; Ohashi, Satoru; Bessho, Masahiko; Ohnishi, Isao
2013-06-01
Conventional surgical navigation requires for surgeons to move their sight and conscious off the surgical field when checking surgical tool's positions shown on the display panel. Since that takes high risks of surgical exposure possibilities to the patient's body, we propose a novel method for guiding surgical tool position and orientation directly in the surgical field by a laser beam. In our navigation procedure, two cross-sectional planar laser beams are emitted from the two laser devices attached onto both sides of an optical localizer, and show surgical tool's entry position on the patient's body surface and its orientation on the side face of the surgical tool. In the experiments, our method gave the surgeons precise and accurate surgical tool adjusting and showed the feasibility to apply to both of open and percutaneous surgeries.
He3 Spin-Dependent Cross Sections and Sum Rules
NASA Astrophysics Data System (ADS)
Slifer, K.; Amarian, M.; Auerbach, L.; Averett, T.; Berthot, J.; Bertin, P.; Bertozzi, B.; Black, T.; Brash, E.; Brown, D.; Burtin, E.; Calarco, J.; Cates, G.; Chai, Z.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Ciofi Degli Atti, C.; Cisbani, E.; de Jager, C. W.; Deur, A.; Disalvo, R.; Dieterich, S.; Djawotho, P.; Finn, M.; Fissum, K.; Fonvieille, H.; Frullani, S.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Glöckle, W.; Golak, J.; Goldberg, E.; Gomez, J.; Gorbenko, V.; Hansen, J.-O.; Hersman, B.; Holmes, R.; Huber, G. M.; Hughes, E.; Humensky, B.; Incerti, S.; Iodice, M.; Jensen, S.; Jiang, X.; Jones, C.; Jones, G.; Jones, M.; Jutier, C.; Kamada, H.; Ketikyan, A.; Kominis, I.; Korsch, W.; Kramer, K.; Kumar, K.; Kumbartzki, G.; Kuss, M.; Lakuriqi, E.; Laveissiere, G.; Lerose, J. J.; Liang, M.; Liyanage, N.; Lolos, G.; Malov, S.; Marroncle, J.; McCormick, K.; McKeown, R. D.; Meziani, Z.-E.; Michaels, R.; Mitchell, J.; Nogga, A.; Pace, E.; Papandreou, Z.; Pavlin, T.; Petratos, G. G.; Pripstein, D.; Prout, D.; Ransome, R.; Roblin, Y.; Rowntree, D.; Rvachev, M.; Sabatié, F.; Saha, A.; Salmè, G.; Scopetta, S.; Skibiński, R.; Souder, P.; Saito, T.; Strauch, S.; Suleiman, R.; Takahashi, K.; Teijiro, S.; Todor, L.; Tsubota, H.; Ueno, H.; Urciuoli, G.; van der Meer, R.; Vernin, P.; Voskanian, H.; Witała, H.; Wojtsekhowski, B.; Xiong, F.; Xu, W.; Yang, J.-C.; Zhang, B.; Zolnierczuk, P.
2008-07-01
We present a measurement of the spin-dependent cross sections for the He→3(e→,e')X reaction in the quasielastic and resonance regions at a four-momentum transfer 0.1≤Q2≤0.9GeV2. The spin-structure functions have been extracted and used to evaluate the nuclear Burkhardt-Cottingham and extended Gerasimov-Drell-Hearn sum rules for the first time. The data are also compared to an impulse approximation calculation and an exact three-body Faddeev calculation in the quasielastic region.
Axial-Current Matrix Elements in Light Nuclei from Lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Martin; Shanahan, Phiala E.; Tiburzi, Brian C.
2016-12-01
I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections andmore » $$\\beta\\beta$$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $$g_A$$ that is required in nuclear many-body calculations.« less
Wang, Chunyong; Li, Qingguo; Zhou, Xiaoqiang; Yang, Tian
2014-01-01
We investigate the multiple attribute decision-making (MADM) problems with hesitant triangular fuzzy information. Firstly, definition and some operational laws of hesitant triangular fuzzy elements are introduced. Then, we develop some hesitant triangular fuzzy aggregation operators based on Bonferroni means and discuss their basic properties. Some existing operators can be viewed as their special cases. Next, we apply the proposed operators to deal with multiple attribute decision-making problems under hesitant triangular fuzzy environment. Finally, an illustrative example is given to show the developed method and demonstrate its practicality and effectiveness.
Zhou, Xiaoqiang; Yang, Tian
2014-01-01
We investigate the multiple attribute decision-making (MADM) problems with hesitant triangular fuzzy information. Firstly, definition and some operational laws of hesitant triangular fuzzy elements are introduced. Then, we develop some hesitant triangular fuzzy aggregation operators based on Bonferroni means and discuss their basic properties. Some existing operators can be viewed as their special cases. Next, we apply the proposed operators to deal with multiple attribute decision-making problems under hesitant triangular fuzzy environment. Finally, an illustrative example is given to show the developed method and demonstrate its practicality and effectiveness. PMID:25140338
Attitudes of Australian chiropractic students toward whole body donation: a cross-sectional study.
Alexander, Michelle; Marten, Mathew; Stewart, Ella; Serafin, Stanley; Štrkalj, Goran
2014-01-01
Cadavers play an important role in anatomy education. In Australia, bodies for anatomy education are acquired only through donations. To gain insight into educational dynamics in an anatomy laboratory as well as to facilitate body donation programs and thanksgiving ceremonies, it is important to understand students' attitudes toward body donation. In this cross-sectional study, the attitudes of Macquarie University's first, second, and fifth year chiropractic students toward body donation were investigated. Macquarie University chiropractic students have a four semester long anatomy program, which includes cadaver-based instruction on prosected specimens. A questionnaire was used to record respondents' demographics and attitudes toward body donation: personal, by a relative, and by a stranger. It was found that ethnicity and religion affect attitudes toward body donation, with Australian students being more willing to donate a stranger's body and atheists and agnostics being more willing to donate in general. Furthermore, willingness to donate one's own or a family member's body decreases as year of study increases, suggesting a possible negative impact of exposure to cadavers in the anatomy laboratory. This was only true, however, after controlling for age. Thus, the impact of viewing and handling prosected specimens, which is the norm in anatomy classes in Australia, may not be as strong as dissecting cadavers. It is suggested that anatomists and educators prepare students for cadaver-based instruction as well as exhibit sensitivity to cultural differences in how students approach working with cadavers, when informing different communities about body donation programs and in devising thanksgiving ceremonies. © 2013 American Association of Anatomists.
Evaluation of handle design characteristics in a maximum screwdriving torque task.
Kong, Y-K; Lowe, B D; Lee, S-J; Krieg, E F
2007-09-01
The purpose of this study was to evaluate the effects of screwdriver handle shape, surface material and workpiece orientation on torque performance, finger force distribution and muscle activity in a maximum screwdriving torque task. Twelve male subjects performed maximum screw-tightening exertions using screwdriver handles with three longitudinal shapes (circular, hexagonal and triangular), four lateral shapes (cylindrical, double frustum, cone and reversed double frustum) and two surfaces (rubber and plastic). The average finger force contributions to the total hand force were 28.1%, 39.3%, 26.5% and 6.2%, in order from index to little fingers; the average phalangeal segment force contributions were 47.3%, 14.0%, 20.5% and 18.1% for distal, middle, proximal and metacarpal phalanges, respectively. The plastic surface handles were associated with 15% less torque output (4.86 Nm) than the rubber coated handles (5.73 Nm). In general, the vertical workpiece orientation was associated with higher torque output (5.9 Nm) than the horizontal orientation (4.69 Nm). Analysis of handle shapes indicates that screwdrivers designed with a circular or hexagonal cross-sectional shape result in greater torque outputs (5.49 Nm, 5.57 Nm), with less total finger force (95 N, 105 N). In terms of lateral shape, reversed double frustum handles were associated with less torque output (5.23 Nm) than the double frustum (5.44 Nm) and cone (5.37 Nm) handles. Screwdriver handles designed with combinations of circular or hexagonal cross-sectional shapes with double frustum and cone lateral shapes were optimal in this study.
Fabrication et caracterisation d'hybrides optiques tout-fibre
NASA Astrophysics Data System (ADS)
Madore, Wendy Julie
In this thesis, we present the fabrication and characterization of optical hybrids made of all fibre 3 × 3 and 4 × 4 couplers. The three-fibre components are made with a triangular cross section, while the four-fibre components are made with a square cross section. All of these couplers have to exhibit equipartition of output amplitudes and specific relative phases of the output signals to be referred to as optical hybrids. These two types of couplers are first modelled to determine the appropriate set of experimental parameters to make hybrids out of them. The prototypes are made in standard telecommunication fibres and then characterized to quantify the performances in transmission and in phase. The objectives of this work is first to model the behaviour and physical properties of 3×3 and 4 × 4 couplers to make sure they can meet the requirements of optical hybrids with an appropriate set of fabrication parameters. The next step is to make prototypes of these 3×3 and 4 × 4 couplers and test their behaviour to check how they fulfill the requirements of optical hybrids. The experimental set-up selected is based on the fusion-tapering technique to make optical fibre components. The heat source is a micro-torch fuelled with a gas mix including propane and oxygen. This type of set-up gives the required freedom to adjust experimental parameters to suit both 3×3 and 4×4 couplers. The versatility of the set-up is also an advantage towards a repeatable and stable process to fuse and taper the different structures. The fabricated triangular-shape couplers have a total transmission of 85 % (-0,7 dB), the crossing is typically located around 1 550 nm with a transmission of around 33 % (-4 dB) per branch. In addition, the relative phases between the output signals are 120±9°. The fabricated square-shape couplers have a total transmission of 89 % (-0,5 dB) with a crossing around 1 550 nm and a transmission around 25 % (-6 dB) per branch. The relative phases between the output signals are 90±3°. As standard telecommunications fibres are used to make the couplers, the prototypes are compatible with all standard fibered set-ups and benches. The properties of optical hybrids are very interesting in coherent detection, where an unambiguous phase measurement is desired. For instance, some standard telecommunication systems use phase-shift keying (PSK), which means information is encoded in the phase of the electromagnetic wave. An all-optical decoding of signal is possible using optical hybrids. Another application is in biomedical imaging with techniques such as optical coherence tomography (OCT), or to a more general extend, profilometry systems. In state-of-the-art techniques, a conventional interferometer combined with Fourier analysis only gives absolute value of the phase. Therefore, the achievable imaging depth in the sample is decreased by a factor 2. Using optical hybrids would simply allow that unambiguous phase measurement, giving the sign and value of the phase at the same time.
NASA Astrophysics Data System (ADS)
Cucinotta, Francis A.; Yan, Congchong; Saganti, Premkumar B.
2018-01-01
Heavy ion absorption cross sections play an important role in radiation transport codes used in risk assessment and for shielding studies of galactic cosmic ray (GCR) exposures. Due to the GCR primary nuclei composition and nuclear fragmentation leading to secondary nuclei heavy ions of charge number, Z with 3 ≤ Z ≥ 28 and mass numbers, A with 6 ≤ A ≥ 60 representing about 190 isotopes occur in GCR transport calculations. In this report we describe methods for developing a data-base of isotopic dependent heavy ion absorption cross sections for interactions. Calculations of a 2nd-order optical model solution to coupled-channel solutions to the Eikonal form of the nucleus-nucleus scattering amplitude are compared to 1st-order optical model solutions. The 2nd-order model takes into account two-body correlations in the projectile and target ground-states, which are ignored in the 1st-order optical model. Parameter free predictions are described using one-body and two-body ground state form factors for the isotopes considered and the free nucleon-nucleon scattering amplitude. Root mean square (RMS) matter radii for protons and neutrons are taken from electron and muon scattering data and nuclear structure models. We report on extensive comparisons to experimental data for energy-dependent absorption cross sections for over 100 isotopes of elements from Li to Fe interacting with carbon and aluminum targets. Agreement between model and experiments are generally within 10% for the 1st-order optical model and improved to less than 5% in the 2nd-order optical model in the majority of comparisons. Overall the 2nd-order optical model leads to a reduction in absorption compared to the 1st-order optical model for heavy ion interactions, which influences estimates of nuclear matter radii.
Beck, T J; Ruff, C B; Mourtada, F A; Shaffer, R A; Maxwell-Williams, K; Kao, G L; Sartoris, D J; Brodine, S
1996-05-01
A total of 626 U.S. male Marine Corps recruits underwent anthropometric measurements and dual-energy X-ray absorptiometry (DXA) scans of the femoral midshaft and the distal third of the tibia prior to a 12 week physical training program. Conventionally obtained frontal plane DXA scan data were used to measure the bone mineral density (BMD) as well as to derive the cross-sectional area, moment of inertia, section modulus, and bone width in the femur, tibia, and fibula. During training, 23 recruits (3.7%) presented with a total of 27 radiologically confirmed stress fractures in various locations in the lower extremity. After excluding 16 cases of shin splints, periostitis, and other stress reactions that did not meet fracture definition criteria, we compared anthropometric and bone structural geometry measurements between fracture cases and the remaining 587 normals. There was no significant difference in age (p = 0.8), femur length (p = 0.2), pelvic width (p = 0.08), and knee width at the femoral condyles (p = 0.06), but fracture cases were shorter (p = 0.01), lighter (p = 0.0006), and smaller in most anthropometric girth dimensions (p < 0.04). Fracture case bone cross-sectional areas (p < 0.001), moments of inertia (p < 0.001), section moduli (p < 0.001), and widths (p < 0.001) as well as BMD (p < 0.03) were significantly smaller in the tibia and femur. After correcting for body weight differences, the tibia cross-sectional area (p = 0.03), section modulus (p = 0.05), and width (p = 0.03) remained significantly smaller in fracture subjects. We conclude that both small body weight and small diaphyseal dimensions relative to body weight are factors predisposing to the development of stress fractures in this population. These results suggest that bone structural geometry measurements derived from DXA data may provide a simple noninvasive methodology for assessing the risk of stress fracture.
Series of Reciprocal Triangular Numbers
ERIC Educational Resources Information Center
Bruckman, Paul; Dence, Joseph B.; Dence, Thomas P.; Young, Justin
2013-01-01
Reciprocal triangular numbers have appeared in series since the very first infinite series were summed. Here we attack a number of subseries of the reciprocal triangular numbers by methodically expressing them as integrals.
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2007-01-01
In this work, we present a new set of basis functions, de ned over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also de ned over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2008-01-01
In this work, we present a new set of basis functions, defined over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also defined over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.
A Generalization of the Formula for the Triangular Number of the Sum and Product of Natural Numbers
ERIC Educational Resources Information Center
Asiru, M. A.
2008-01-01
This note generalizes the formula for the triangular number of the sum and product of two natural numbers to similar results for the triangular number of the sum and product of "r" natural numbers. The formula is applied to derive formula for the sum of an odd and an even number of consecutive triangular numbers.
NASA Astrophysics Data System (ADS)
Narayan, J. P.; Kumar, Neeraj; Chauhan, Ranu
2018-03-01
This research work is inspired by the recently accepted concept that high frequency Rayleigh waves are generated in the epicentral zone of shallow earthquakes. Such high frequency Rayleigh waves with large amplitude may develop much of spatial variability in ground motion which in turn may cause unexpected damage to long-span structures like bridges, underground pipelines, dams, etc., in the hilly regions. Further, it has been reported that topography acts as an insulator for the Rayleigh waves (Ma et al. BSSA 97:2066-2079, 2007). The above mentioned scientific developments stimulated to quantify the role of shape and number of ridges and valleys falling in the path of Rayleigh wave in the insulating effect of topography on the Rayleigh waves. The simulated results reveals very large amplification of the horizontal component of Rayleigh wave near the top of a triangular ridge which may cause intensive landslides under favorable condition. The computed snapshots of the wave-field of Rayleigh wave reveals that the interaction of Rayleigh wave with the topography causes reflection, splitting, and diffraction of Rayleigh wave in the form of body waves which in turn provides the insulating capacity to the topography. Insulating effects of single valley is more than that of single ridge. Further this effect was more in case of elliptical ridge/valley than triangular ridge/valley. The insulating effect of topography was proportional to the frequency of Rayleigh wave and the number of ridges and valleys in the string. The obtained level of insulation effects of topography on the Rayleigh wave (energy of Rayleigh wave reduced to less than 4% after crossing a topography of span 4.5 km) calls for the consideration of role of hills and valleys in seismic hazard prediction, particularly in case of shallow earthquakes.
Giugliano, L G; Teixeira, R D; Colli, G R; Báo, S N
2002-09-01
A detailed description of sperm ultrastructure of the lizard Ameiva ameiva (Teiidae) is provided. Mature spermatozoa are characterized by: a depressed acrosome at the anterior portion; a unilateral ridge at the anterolateral portion; an acrosome vesicle divided into cortex and medulla; medulla divided into two regions with different electron-densities; paracrystalline subacrosomal material with radial organization in transverse section; a pointed prenuclear perforatorium; a stopper-like perforatorium base plate that appears embedded in the subacrosomal material; the presence of an epinuclear lucent zone surrounded by its own membrane; a large nuclear rostrum; round nuclear shoulders; a nuclear space at the nucleus tip; a bilateral stratified laminar structure; a central dense body within the proximal centriole; a short midpiece; an axonemal midpiece axial component; peripheral fibers 3 and 8 grossly enlarged at the anterior portion of axoneme; columnar mitochondria with linear cristae; solid dense bodies arranged as rings or spirals; a triangular-shaped annulus in transverse section; a fibrous sheath into the midpiece; a thin zone of cytoplasm at the anterior portion of the principal piece; and a slight decrease in diameter of the principal piece immediately after the annulus. Comparisons with Cnemidophorus sexlineatus and Micrablepharus maximiliani failed to identify unique sperm ultrastructure traits of Teiidae or Teiioidea (Teiidae + Gymnophthalmidae). High levels of polymorphism between Ameiva and Cnemidophorus, two closely related genera of the family Teiidae, were detected, suggesting that extensive sampling within squamate families is essential if sperm ultrastructure data are to be used in phylogenetic analyses at this taxonomic level. Copyright 2002 Wiley-Liss, Inc.
Poulsen, Lotte; Klassen, Anne; Rose, Michael; Roessler, Kirsten K; Juhl, Claus Bogh; Støving, René Klinkby; Sørensen, Jens Ahm
2017-09-01
Health-related quality of life and satisfaction with appearance are important outcomes in bariatric and body contouring surgery. To investigate these outcomes, scientifically sound and clinically meaningful patient-reported outcome instruments are needed. The authors measured health-related quality of life and appearance in a cohort of Danish patients at different phases in the weight loss journey: before bariatric surgery, after bariatric surgery, before body contouring surgery, and after body contouring surgery. From June of 2015 to June of 2016, a cross-sectional sample of 493 bariatric and body contouring patients were recruited from four different hospital departments. Patients were asked to fill out the BODY-Q, a new patient-reported outcomes instrument designed specifically to measure health-related quality of life and appearance over the entire patient journey, from obesity to the post-body contouring surgery period. Data were collected using REDCap, and analyzed using SPSS software. For all appearance and health-related quality-of-life scales, the mean score was significantly lower in the pre-bariatric surgery group compared with the post-body contouring group. Furthermore, the correlation between body mass index and mean scores was significant for all appearance and health-related quality-of-life scales, with higher scores associated with lower body mass index. The mean score for the group reporting no excess skin compared with the group reporting a lot of excess skin was significantly higher for five of seven appearance scales and four of five health-related quality-of-life scales. This study provides evidence to suggest that body contouring plays an important role in the weight loss patient's journey and that patients need access to treatments.
ERIC Educational Resources Information Center
Ritchie, Lorrene D.; Raman, Aarthi; Sharma, Sushma; Fitch, Mark D.; Fleming, Sharon E.
2011-01-01
Objective: To identify family and child nutrition and dietary attributes related to children's dietary intakes. Design: African American children (ages 8-11 years, n = 156), body mass index greater than 85th percentile, from urban, low-income neighborhoods. Baseline, cross-sectional data collected as part of an ongoing diabetes prevention…
ERIC Educational Resources Information Center
Okely, Anthony D.; Booth, Michael L.; Chey, Tien
2004-01-01
The purpose of this study was to examine associations of fundamental movement skills (FMS) with measures of body composition. among children and adolescents. Secondary analyses of cross-sectional data collected from 4,363 children and adolescents in Grades 4, 6, 8, and 10 as part of the 1997 New South Wales Schools Fitness and Physical Activity…
USDA-ARS?s Scientific Manuscript database
The relationship between body weight and self-esteem among underserved minority children is not well documented. We measured the self-esteem profile using the Self-Perception Profile for Children among 910 minority children at 17 Houston community centers. Weight status had no effect on any of the s...
ERIC Educational Resources Information Center
Chen, Duan-Rung; Truong, Khoa D.; Tsai, Meng-Ju
2013-01-01
Background: The linkage between sleep quality and weight status among teenagers has gained more attention in the recent literature and health policy but no consensus has been reached. Methods: Using both a propensity score method and multivariate linear regression for a cross-sectional sample of 2,113 teenagers, we analyzed their body mass index…
USDA-ARS?s Scientific Manuscript database
The objective of this research was to examine diet- and body size-related attitudes and behaviors associated with supplement use in a representative sample of fourth-grade students in Texas. The research design consisted of cross-sectional data from the School Physical Activity and Nutrition study, ...
ERIC Educational Resources Information Center
Hodselmans, Audy P.
2010-01-01
The aim of this cross-sectional study was to compare data on the level of aerobic capacity and body composition of nonspecific chronic low back pain (CLBP) patients with normative data matched for sex, age and level of sporting activity. The study population consisted of 101 outpatients with nonspecific CLBP who had entered a rehabilitation…
Gurinsky, D.H.
1958-08-26
A fuel element is presented for a neutronic reactor and is comprised of a uranium body, a non-fissionable jacket surrounding sald body, thu jacket including a portion sealed by a weld, and an inclusion in said sealed jacket at said weld of a fiux having a low neutron capture cross-section. The flux is provided by combining chlorine gas and hydrogen in the intense heat of-the arc, in a "Heliarc" welding muthod, to form dry hydrochloric acid gas.
NASA Technical Reports Server (NTRS)
Choi, B. H.; Poe, R. T.
1977-01-01
A detailed vibrational-rotational (V-R) close-coupling formulation of electron-diatomic-molecule scattering is developed in which the target molecular axis is chosen to be the z-axis and the resulting coupled differential equation is solved in the moving body-fixed frame throughout the entire interaction region. The coupled differential equation and asymptotic boundary conditions in the body-fixed frame are given for each parity, and procedures are outlined for evaluating V-R transition cross sections on the basis of the body-fixed transition and reactance matrix elements. Conditions are discussed for obtaining identical results from the space-fixed and body-fixed formulations in the case where a finite truncated basis set is used. The hybrid theory of Chandra and Temkin (1976) is then reformulated, relevant expressions and formulas for the simultaneous V-R transitions of the hybrid theory are obtained in the same forms as those of the V-R close-coupling theory, and distorted-wave Born-approximation expressions for the cross sections of the hybrid theory are presented. A close-coupling approximation that conserves the internuclear axis component of the incident electronic angular momentum (l subscript z-prime) is derived from the V-R close-coupling formulation in the moving body-fixed frame.
A new species of Scinax from the Purus-Madeira interfluve, Brazilian Amazonia (Anura, Hylidae).
Ferrão, Miquéias; Moravec, Jiří; de Fraga, Rafael; de Almeida, Alexandre Pinheiro; Kaefer, Igor Luis; Lima, Albertina Pimentel
2017-01-01
A new tree frog species of the genus Scinax from the interfluve between the Purus and Madeira rivers, Brazilian Amazonia, is described and illustrated. The new species is diagnosed by medium body size, snout truncate in dorsal view, ulnar and tarsal tubercles absent, nuptial pads poorly developed, skin on dorsum shagreen, dorsum light brown with dark brown spots and markings, white groin with black spots, anterior and posterior surfaces of thighs black, and iris bright orange. The advertisement call consists of a single short note, with 16-18 pulses and dominant frequency at 1572-1594 Hz. Tadpoles are characterized by body ovoid in dorsal view and triangular in lateral view, tail higher than body, oral disc located anteroventrally and laterally emarginated, dorsum of body uniformly grey-brown with dark brown eye-snout stripe in preservative, fins translucent with small to large irregular diffuse dark brown spots.
A new species of Scinax from the Purus-Madeira interfluve, Brazilian Amazonia (Anura, Hylidae)
Ferrão, Miquéias; Moravec, Jiří; de Fraga, Rafael; de Almeida, Alexandre Pinheiro; Kaefer, Igor Luis; Lima, Albertina Pimentel
2017-01-01
Abstract A new tree frog species of the genus Scinax from the interfluve between the Purus and Madeira rivers, Brazilian Amazonia, is described and illustrated. The new species is diagnosed by medium body size, snout truncate in dorsal view, ulnar and tarsal tubercles absent, nuptial pads poorly developed, skin on dorsum shagreen, dorsum light brown with dark brown spots and markings, white groin with black spots, anterior and posterior surfaces of thighs black, and iris bright orange. The advertisement call consists of a single short note, with 16−18 pulses and dominant frequency at 1572−1594 Hz. Tadpoles are characterized by body ovoid in dorsal view and triangular in lateral view, tail higher than body, oral disc located anteroventrally and laterally emarginated, dorsum of body uniformly grey-brown with dark brown eye-snout stripe in preservative, fins translucent with small to large irregular diffuse dark brown spots. PMID:29118625
Edge-defined contact heater apparatus and method for floating zone crystal growth
NASA Technical Reports Server (NTRS)
Kou, Sindo (Inventor)
1992-01-01
An apparatus for growing a monocrystalline body (30) from a polycrystalline feed rod (22) includes a heater (20) that is positioned to heat a short section of the polycrystalline rod (22) to create a molten zone (34). The heater (20) is formed to include a shaper (40) that contacts the polycrystalline rod (22) in the molten zone (34) and has a hole (46) to allow flow in the molten zone (34) between the polycrystalline rod (22) side and the monocrystalline body (30) side of the shaper. The shaper (40) has an edge (42) that defines the boundary of the cross-section of the monocrystalline body (30) that is formed as the molten material solidifies.
Dalskov, Stine-Mathilde; Ritz, Christian; Larnkjær, Anni; Damsgaard, Camilla T; Petersen, Rikke A; Sørensen, Louise B; Ong, Ken K; Astrup, Arne; Mølgaard, Christian; Michaelsen, Kim F
2015-03-01
Regulation of body composition during childhood is complex. Numerous hormones are potentially involved. Leptin has been proposed to restrain weight gain, but results are inconsistent. We examined whether baseline fasting levels of ghrelin, adiponectin, leptin, insulin, IGF-I, osteocalcin, and intact parathyroid hormone (iPTH) were associated with body composition cross sectionally and longitudinally in 633 8-11-year-olds. Data on hormones and body composition by dual-energy x-ray absorptiometry from the OPUS School Meal Study were used. We looked at baseline hormones as predictors of baseline fat mass index (FMI) or fat-free mass index (FFMI), and also subsequent changes (3 and 6 months) in FMI or FFMI using models with hormones individually or combined. Cross-sectionally, baseline leptin was positively associated with FMI in girls (0.211 kg/m(2) pr. μg/mL; 97.5% confidence interval [CI],0.186-0.236; P < .001) and boys (0.231 kg/m(2) pr. μg/mL; 97.5% CI, 0.200-0.261; P < .001). IGF-I in both sexes and iPTH in boys were positively associated with FMI. An inverse association between adiponectin and FFMI in boys and a positive association between IGF-I and FFMI were found in girls. In longitudinal models, baseline leptin was inversely associated with subsequent changes in FMI (-0.018 kg/m(2) pr. μg/mL; 97.5% CI, -0.034 - -0.002; P = .028) and FFMI (-0.014 kg/m(2) pr. μg/mL; 97.5% CI, -0.024 - -0.003; P = .006) in girls. Cross-sectional findings support that leptin is produced in proportion to body fat mass, but the longitudinal observations support that leptin inhibits gains in FMI and FFMI in girls, a finding that may reflect preserved leptin sensitivity in this predominantly normal weight population.
Berry, Patricia A; Teichtahl, Andrew J; Galevska-Dimitrovska, Ana; Hanna, Fahad S; Wluka, Anita E; Wang, Yuanyuan; Urquhart, Donna M; English, Dallas R; Giles, Graham G; Cicuttini, Flavia M
2008-01-01
Introduction Although vastus medialis and lateralis are important determinants of patellofemoral joint function, their relationship with patellofemoral joint structure is unknown. The aim of this study was to examine potential determinants of vastus medialis and lateralis cross-sectional areas and the relationship between the cross-sectional area and patella cartilage and bone volumes. Methods Two hundred ninety-seven healthy adult subjects had magnetic resonance imaging of their dominant knee. Vastus medialis and lateralis cross-sectional areas were measured 37.5 mm superior to the quadriceps tendon insertion at the proximal pole of the patella. Patella cartilage and bone volumes were measured from these images. Demographic data and participation in vigorous physical activity were assessed by questionnaire. Results The determinants of increased vastus medialis and lateralis cross-sectional areas were older age (P ≤ 0.002), male gender (P < 0.001), and greater body mass index (P ≤ 0.07). Participation in vigorous physical activity was positively associated with vastus medialis cross-sectional area (regression coefficient [beta] 90.0; 95% confidence interval [CI] 38.2, 141.7) (P < 0.001) but not with vastus lateralis cross-sectional area (beta 10.1; 95% CI -18.1, 38.3) (P = 0.48). The cross-sectional area of vastus medialis only was positively associated with patella cartilage volume (beta 0.6; 95% CI 0.23, 0.94) (P = 0.001) and bone volume (beta 3.0; 95% CI 1.40, 4.68) (P < 0.001) after adjustment for potential confounders. Conclusions Our results in a pain-free community-based population suggest that increased cross-sectional area of vastus medialis, which is associated with vigorous physical activity, and increased patella cartilage and bone volumes may benefit patellofemoral joint health and reduce the long-term risk of patellofemoral pathology. PMID:19077298
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-08-01
The multiple scattering effects occurring between two scatterers are described based upon the multipole expansion formalism as well as the addition theorem of cylindrical wave functions. An original approach is presented in which an effective incident acoustic field on a particular object, which includes both the primary and re-scattered waves from the other particle is determined first, and then used with the scattered field to derive closed-form analytical expressions for the inherent (i.e. intrinsic) cross-sections based on the far-field scattering. This method does not introduce any approximation in the calculation of the intrinsic cross-sections since the procedure is reduced to the one-body problem. The mathematical expressions for the intrinsic cross-sections are formulated in partial-wave series expansions (PWSEs) in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. Numerical examples illustrate the analysis for two rigid circular cylindrical cross-sections with different radii immersed in a non-viscous fluid. Computations for the dimensionless extrinsic and intrinsic extinction cross-section factors are evaluated with particular emphasis on varying the angle of incidence, the interparticle distance, as well as the sizes of the particles. A symmetric behavior is observed for the dimensionless extrinsic extinction cross-section, while asymmetry arises for the intrinsic extinction cross-section of each particle with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of the intrinsic (local) scattering, absorption and extinction cross-sections in the multiple acoustic scatterings of plane progressive waves of arbitrary incidence by a pair of scatterers. The results and computational analyses can be used as a priori information for future applications to guide the direct or inverse characterization of multiple scattering systems in acoustically-engineered metamaterials, cloaking devices, particle dynamics, levitation, manipulation and handling, and other areas.
Villarrasa-Sapiña, Israel; Álvarez-Pitti, Julio; Cabeza-Ruiz, Ruth; Redón, Pau; Lurbe, Empar; García-Massó, Xavier
2018-02-01
Excess body weight during childhood causes reduced motor functionality and problems in postural control, a negative influence which has been reported in the literature. Nevertheless, no information regarding the effect of body composition on the postural control of overweight and obese children is available. The objective of this study was therefore to establish these relationships. A cross-sectional design was used to establish relationships between body composition and postural control variables obtained in bipedal eyes-open and eyes-closed conditions in twenty-two children. Centre of pressure signals were analysed in the temporal and frequency domains. Pearson correlations were applied to establish relationships between variables. Principal component analysis was applied to the body composition variables to avoid potential multicollinearity in the regression models. These principal components were used to perform a multiple linear regression analysis, from which regression models were obtained to predict postural control. Height and leg mass were the body composition variables that showed the highest correlation with postural control. Multiple regression models were also obtained and several of these models showed a higher correlation coefficient in predicting postural control than simple correlations. These models revealed that leg and trunk mass were good predictors of postural control. More equations were found in the eyes-open than eyes-closed condition. Body weight and height are negatively correlated with postural control. However, leg and trunk mass are better postural control predictors than arm or body mass. Finally, body composition variables are more useful in predicting postural control when the eyes are open. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Dillenius, M. F. E.; Nielsen, J. N.
1979-01-01
Computer programs are presented which are capable of calculating detailed aerodynamic loadings and pressure distributions acting on pitched and rolled supersonic missile configurations which utilize bodies of circular or elliptical cross sections. The applicable range of angle of attack is up to 20 deg, and the Mach number range is 1.3 to about 2.5. Effects of body and fin vortices are included in the methods, as well as arbitrary deflections of canard or fin panels.
50 CFR 223.207 - Approved TEDs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... wet or dry. Any such measurement will be of the stretched mesh size. (a) Hard TEDs. Hard TEDs are TEDs... paragraph (d)(3)(ii) of this section. The resultant escape opening with a webbing flap must have a stretched... triangular piece of 8-inch (20.3 cm) stretched mesh webbing and two trapezoidal pieces of 4-inch (10.2-cm...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Station, Point Mugu, Small Arms Range, Ventura County, California; danger zone. 334.1125 Section 334.1125 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE... Arms Range, Ventura County, California; danger zone. (a) The area. A triangular area extending...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Station, Point Mugu, Small Arms Range, Ventura County, California; danger zone. 334.1125 Section 334.1125 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE... Arms Range, Ventura County, California; danger zone. (a) The area. A triangular area extending...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Station, Point Mugu, Small Arms Range, Ventura County, California; danger zone. 334.1125 Section 334.1125 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE... Arms Range, Ventura County, California; danger zone. (a) The area. A triangular area extending...
Motor stator using corner scraps for additional electrical components
Hsu, John S.; Su, Gui-Jia; Adams, Donald J.; Nagashima, James M.; Stancu, Constantin; Carlson, Douglas S.; Smith, Gregory S.
2004-03-16
A method for making a motor and auxiliary devices with a unified stator body comprises providing a piece of material (10) having an area larger than a cross section of the stator (11), removing material from the piece of material (10) to form a pattern for a cross section of a core (11) for the stator, and removing material from the piece of material (10) outside the cross section of the core of the stator (11) to allow positioning of cores (22, 23, 24) for supporting windings (25, 26, 27) of least one additional electromagnetic device, such as a transformer (62) in a dc-to-dc converter (61, 62) that provides a low. voltage dc output. An article of manufacture made according to the invention is also disclosed and apparatus made with the method and article of manufacture are also disclosed.
Does cortical bone thickness in the last sacral vertebra differ among tail types in primates?
Nishimura, Abigail C; Russo, Gabrielle A
2017-04-01
The external morphology of the sacrum is demonstrably informative regarding tail type (i.e., tail presence/absence, length, and prehensility) in living and extinct primates. However, little research has focused on the relationship between tail type and internal sacral morphology, a potentially important source of functional information when fossil sacra are incomplete. Here, we determine if cortical bone cross-sectional thickness of the last sacral vertebral body differs among tail types in extant primates and can be used to reconstruct tail types in extinct primates. Cortical bone cross-sectional thickness in the last sacral vertebral body was measured from high-resolution CT scans belonging to 20 extant primate species (N = 72) assigned to tail type categories ("tailless," "nonprehensile short-tailed," "nonprehensile long-tailed," and "prehensile-tailed"). The extant dataset was then used to reconstruct the tail types for four extinct primate species. Tailless primates had significantly thinner cortical bone than tail-bearing primates. Nonprehensile short-tailed primates had significantly thinner cortical bone than nonprehensile long-tailed primates. Cortical bone cross-sectional thickness did not distinguish between prehensile-tailed and nonprehensile long-tailed taxa. Results are strongly influenced by phylogeny. Corroborating previous studies, Epipliopithecus vindobonensis was reconstructed as tailless, Archaeolemur edwardsi as long-tailed, Megaladapis grandidieri as nonprehensile short-tailed, and Palaeopropithecus kelyus as nonprehensile short-tailed or tailless. Results indicate that, in the context of phylogenetic clade, measures of cortical bone cross-sectional thickness can be used to allocate extinct primate species to tail type categories. © 2017 Wiley Periodicals, Inc.
How to model a negligible probability under the WTO sanitary and phytosanitary agreement?
Powell, Mark R
2013-06-01
Since the 1997 EC--Hormones decision, World Trade Organization (WTO) Dispute Settlement Panels have wrestled with the question of what constitutes a negligible risk under the Sanitary and Phytosanitary Agreement. More recently, the 2010 WTO Australia--Apples Panel focused considerable attention on the appropriate quantitative model for a negligible probability in a risk assessment. The 2006 Australian Import Risk Analysis for Apples from New Zealand translated narrative probability statements into quantitative ranges. The uncertainty about a "negligible" probability was characterized as a uniform distribution with a minimum value of zero and a maximum value of 10(-6) . The Australia - Apples Panel found that the use of this distribution would tend to overestimate the likelihood of "negligible" events and indicated that a triangular distribution with a most probable value of zero and a maximum value of 10⁻⁶ would correct the bias. The Panel observed that the midpoint of the uniform distribution is 5 × 10⁻⁷ but did not consider that the triangular distribution has an expected value of 3.3 × 10⁻⁷. Therefore, if this triangular distribution is the appropriate correction, the magnitude of the bias found by the Panel appears modest. The Panel's detailed critique of the Australian risk assessment, and the conclusions of the WTO Appellate Body about the materiality of flaws found by the Panel, may have important implications for the standard of review for risk assessments under the WTO SPS Agreement. © 2012 Society for Risk Analysis.
DockTrina: docking triangular protein trimers.
Popov, Petr; Ritchie, David W; Grudinin, Sergei
2014-01-01
In spite of the abundance of oligomeric proteins within a cell, the structural characterization of protein-protein interactions is still a challenging task. In particular, many of these interactions involve heteromeric complexes, which are relatively difficult to determine experimentally. Hence there is growing interest in using computational techniques to model such complexes. However, assembling large heteromeric complexes computationally is a highly combinatorial problem. Nonetheless the problem can be simplified greatly by considering interactions between protein trimers. After dimers and monomers, triangular trimers (i.e. trimers with pair-wise contacts between all three pairs of proteins) are the most frequently observed quaternary structural motifs according to the three-dimensional (3D) complex database. This article presents DockTrina, a novel protein docking method for modeling the 3D structures of nonsymmetrical triangular trimers. The method takes as input pair-wise contact predictions from a rigid body docking program. It then scans and scores all possible combinations of pairs of monomers using a very fast root mean square deviation test. Finally, it ranks the predictions using a scoring function which combines triples of pair-wise contact terms and a geometric clash penalty term. The overall approach takes less than 2 min per complex on a modern desktop computer. The method is tested and validated using a benchmark set of 220 bound and seven unbound protein trimer structures. DockTrina will be made available at http://nano-d.inrialpes.fr/software/docktrina. Copyright © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Chapman, Rowe, Jr; Morrow, John D
1952-01-01
A modified triangular wing of aspect ratio 2.53 having an airfoil section 3.7 percent thick at the root and 5.98 percent thick at the tip was designed in an attempt to improve the lift and drag characteristics of triangular wings. Free-flight drag and stability tests were made using rocket-propelled models equipped with the modified wing. The Mach number range of the test was from 0.70 to 1.37. Test results indicated the following: The lift-curve slope of wing plus fuselage approaches the theoretical value of wing alone at supersonic Mach numbers. The drag coefficient, based on total wing area, for wing plus interference was approximately 0.0035 at subsonic Mach numbers and 0.0080 at supersonic Mach numbers. The maximum shift in aerodynamic center for the complete configuration was 14 percent in the rearward direction from the forward position of 51.5 percent of mean aerodynamic chord at subsonic Mach numbers. The variation of lift and moment with angle of attack was linear at supersonic Mach numbers for the range of coefficients covered in the test. The high value of lift-curve slope was considered to be a significant result attributable to the wing modifications.
Mathematical model of parking space unit for triangular parking area
NASA Astrophysics Data System (ADS)
Syahrini, Intan; Sundari, Teti; Iskandar, Taufiq; Halfiani, Vera; Munzir, Said; Ramli, Marwan
2018-01-01
Parking space unit (PSU) is an effective measure for the area size of a vehicle, including the free space and the width of the door opening of the vehicle (car). This article discusses a mathematical model for parking space of vehicles in triangular shape area. An optimization model for triangular parking lot is developed. Integer Linear Programming (ILP) method is used to determine the maximum number of the PSU. The triangular parking lot is in isosceles and equilateral triangles shape and implements four possible rows and five possible angles for each field. The vehicles which are considered are cars and motorcycles. The results show that the isosceles triangular parking area has 218 units of optimal PSU, which are 84 units of PSU for cars and 134 units of PSU for motorcycles. Equilateral triangular parking area has 688 units of optimal PSU, which are 175 units of PSU for cars and 513 units of PSU for motorcycles.
Odoux, E; Escoute, J; Verdeil, J-L; Brillouet, J-M
2003-09-01
The morphology, anatomy and histology of mature green vanilla beans were examined by light and transmission electron microscopy. Beans have a triangular cross-section with a central cavity containing seeds. Each angle is lined with tubular cells, or papillae, while the cavity sides consist of placental laminae. The epicarp and endocarp are formed by one or two layers of very small cells, while the mesocarp contains large, highly vacuolarized cells, the cytoplasm being restricted to a thin layer along the cell walls. The radial distributions of glucovanillin and beta-glucosidase activity, measured on p-nitrophenyl-beta-glucopyranoside and glucovanillin, are superimposable and show how beta-glucosidase activity increases from the epicarp towards the placental zone, whereas glucovanillin is exclusively located in the placentae and papillae. Subcellular localization of beta-glucosidase activity was achieved by incubating sections of vanilla beans in a buffer containing 5-bromo-4-chloro-3-indolyl-beta-d-glucopyranoside as a substrate. Activity was observed in the cytoplasm (and/or the periplasm) of mesocarp and endocarp cells, with a more diffuse pattern observed in the papillae. A possible mechanism for the hydrolysis of glucovanillin and release of the aromatic aglycon vanillin involves the decompartmentation of cytoplasmic (and/or periplasmic) beta-glucosidase and vacuolar glucovanillin.
ODOUX, E.; ESCOUTE, J.; VERDEIL, J. -L.; BRILLOUET, J. -M.
2003-01-01
The morphology, anatomy and histology of mature green vanilla beans were examined by light and transmission electron microscopy. Beans have a triangular cross-section with a central cavity containing seeds. Each angle is lined with tubular cells, or papillae, while the cavity sides consist of placental laminae. The epicarp and endocarp are formed by one or two layers of very small cells, while the mesocarp contains large, highly vacuolarized cells, the cytoplasm being restricted to a thin layer along the cell walls. The radial distributions of glucovanillin and β-glucosidase activity, measured on p-nitrophenyl-β-glucopyranoside and glucovanillin, are superimposable and show how β-glucosidase activity increases from the epicarp towards the placental zone, whereas glucovanillin is exclusively located in the placentae and papillae. Subcellular localization of β-glucosidase activity was achieved by incubating sections of vanilla beans in a buffer containing 5-bromo-4-chloro-3-indolyl-β-d-glucopyranoside as a substrate. Activity was observed in the cytoplasm (and/or the periplasm) of mesocarp and endocarp cells, with a more diffuse pattern observed in the papillae. A possible mechanism for the hydrolysis of glucovanillin and release of the aromatic aglycon vanillin involves the decompartmentation of cytoplasmic (and/or periplasmic) β-glucosidase and vacuolar glucovanillin. PMID:12871846
Changes in aerobic power of men, ages 25-70 yr
NASA Technical Reports Server (NTRS)
Jackson, A. S.; Beard, E. F.; Wier, L. T.; Ross, R. M.; Stuteville, J. E.; Blair, S. N.
1995-01-01
This study quantified and compared the cross-sectional and longitudinal influence of age, self-report physical activity (SR-PA), and body composition (%fat) on the decline of maximal aerobic power (VO2peak). The cross-sectional sample consisted of 1,499 healthy men ages 25-70 yr. The 156 men of the longitudinal sample were from the same population and examined twice, the mean time between tests was 4.1 (+/- 1.2) yr. Peak oxygen uptake was determined by indirect calorimetry during a maximal treadmill exercise test. The zero-order correlations between VO2peak and %fat (r = -0.62) and SR-PA (r = 0.58) were significantly (P < 0.05) higher that the age correlation (r = -0.45). Linear regression defined the cross-sectional age-related decline in VO2peak at 0.46 ml.kg-1.min-1.yr-1. Multiple regression analysis (R = 0.79) showed that nearly 50% of this cross-sectional decline was due to %fat and SR-PA, adding these lifestyle variables to the multiple regression model reduced the age regression weight to -0.26 ml.kg-1.min-1.yr-1. Statistically controlling for time differences between tests, general linear models analysis showed that longitudinal changes in aerobic power were due to independent changes in %fat and SR-PA, confirming the cross-sectional results.
Effect of nuclear shielding in collision of positive charged helium ions with helium atoms
NASA Astrophysics Data System (ADS)
Ghavaminia, Hoda; Ghavaminia, Shirin
2018-03-01
Differential in angle and absolute cross sections in energy of the scattered particles are obtained for single charge exchange in ^3He^+-^4He collisions by means of the four body boundary-corrected first Born approximation (CB1-4B). The quantum-mechanical post and prior transition amplitudes are derived in terms of two-dimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. The effect of the dynamic electron correlation through the complete perturbation potential and the nuclear-screening influence of the passive electrons on the electron capture process is investigated. The results obtained in the CB1-4B method are compared with the available experimental data. For differential cross sections, the present results are in better agreement with experimental data than other theoretical data at extreme forward scattering angles. The integral cross sections are in excellent agreement with the experiment. Also, total cross sections for single electron capture, has been investigated using the classical trajectory Monte Carlo method. The present calculated results are found to be in an excellent agreement with the experimental data.
Improvements to the missile aerodynamic prediction code DEMON3
NASA Technical Reports Server (NTRS)
Dillenius, Marnix F. E.; Johnson, David L.; Lesieutre, Daniel J.
1992-01-01
The computer program DEMON3 was developed for the aerodynamic analysis of nonconventional supersonic configurations comprising a body with noncircular cross section and up to two wing or fin sections. Within a wing or fin section, the lifting surfaces may be cruciform, triform, planar, or low profile layouts; the planforms of the lifting surfaces allow for breaks in sweep. The body and fin sections are modeled by triplet and constant u-velocity panels, respectively, accounting for mutual body-fin interference. Fin thickness effects are included for the use of supersonic planar source panels. One of the unique features of DEMON3 is the modeling of high angle of attack vortical effects associated with the lifting surfaces and the body. In addition, shock expansion and Newtonian pressure calculation methods can be optionally engaged. These two dimensional nonlinear methods are augmented by aerodynamic interference determined from the linear panel methods. Depending on the geometric details of the body, the DEMON3 program can be used to analyze nonconventional configurations at angles of attack up to 25 degrees for Mach numbers from 1.1 to 6. Calculative results and comparisons with experimental data demonstrate the capabilities of DEMON3. Limitations and deficiencies are listed.
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Menees, Gene P.
1961-01-01
Tabulated results of a wind-tunnel investigation of the aerodynamic loads on a canard airplane model with a single vertical tail are presented for Mach numbers from 0.70 to 2.22. The Reynolds number for the measurements was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. The results include local static pressure coefficients measured on the wing, body, and vertical tail for angles of attack from -4 deg to + 16 deg, angles of sideslip of 0 deg and 5.3 deg, vertical-tail settings of 0 deg and 5 deg, and nominal canard deflections of 0 deg and 10 deg. Also included are section force and moment coefficients obtained from integrations of the local pressures and model-component force and moment coefficients obtained from integrations of the section coefficients. Geometric details of the model and the locations of the pressure orifices are shown. An index to the data contained herein is presented and definitions of nomenclature are given.
Finniston, H.M.; Wyatt, L.M.; Plail, O.S.
1961-06-27
An aluminum-cased uranium fuel element is patented for use in nuclear reactors. A layer of a substance such as graphite or a metallic film, preferably of relatively low thermal-neutron capture cross section, between the uranium and aluminum prevents their interdiffusion.
Laskaris, G.; Yan, X.; Mueller, J. M.; ...
2015-10-01
We report new measurements of the double-polarized photodisintegration of 3He at an incident photon energy of 16.5 MeV, carried out at the High Intensity γ-ray Source (HIγS) facility located at Triangle Universities Nuclear Laboratory (TUNL). The spin-dependent double-differential cross sections and the contribution from the three-body channel to the Gerasimov–Drell–Hearn (GDH) integrand were extracted and compared with the state-of-the-art three-body calculations. The calculations, which include the Coulomb interaction and are in good agreement with the results of previous measurements at 12.8 and 14.7 MeV, deviate from the new cross section results at 16.5 MeV. Lastly, the GDH integrand was foundmore » to be about one standard deviation larger than the maximum value predicted by the theories.« less
Re-entry vehicle shape for enhanced performance
NASA Technical Reports Server (NTRS)
Brown, James L. (Inventor); Garcia, Joseph A. (Inventor); Prabhu, Dinesh K. (Inventor)
2008-01-01
A convex shell structure for enhanced aerodynamic performance and/or reduced heat transfer requirements for a space vehicle that re-enters an atmosphere. The structure has a fore-body, an aft-body, a longitudinal axis and a transverse cross sectional shape, projected on a plane containing the longitudinal axis, that includes: first and second linear segments, smoothly joined at a first end of each the first and second linear segments to an end of a third linear segment by respective first and second curvilinear segments; and a fourth linear segment, joined to a second end of each of the first and second segments by curvilinear segments, including first and second ellipses having unequal ellipse parameters. The cross sectional shape is non-symmetric about the longitudinal axis. The fourth linear segment can be replaced by a sum of one or more polynomials, trigonometric functions or other functions satisfying certain constraints.
Ramírez-Vélez, Robinson; García-Hermoso, Antonio; Agostinis-Sobrinho, Cesar; Mota, Jorge; Santos, Rute; Correa-Bautista, Jorge Enrique; Peña-Guzmán, Carlos Andrés; Domínguez-Sánchez, María Andrea; Schmidt-RioValle, Jacqueline; González-Jiménez, Emilio
2017-01-01
This study explored the association between pubertal stage and anthropometric and cardiometabolic risk factors in youth. A cross-sectional study was conducted in 2877 Colombian children and adolescents (9–17.9 years of age). Weight, height, and waist circumference were measured and body mass index (BMI) was calculated. A biochemical study was performed to determine the cardiometabolic risk index (CMRI). Blood pressure was evaluated and pubertal stage was assessed with the Tanner criteria. Hierarchical multiple regression analyses were performed. The most significant variable (p < 0.05) in the prognosis of cardiometabolic risk was found to be the BMI in both boys and girls. In the case of girls, the pubertal stage was also a CMRI predictive factor. In conclusion, BMI was an important indicator of cardiovascular risk in both sexes. Pubertal stage was associated with cardiovascular risk only in the girls. PMID:28640231
NASA Technical Reports Server (NTRS)
Thibault, Franck; Boulet, Christian; Ma, Qiancheng
2014-01-01
We present quantum calculations of the relaxation matrix for the Q branch of N2 at room temperature using a recently proposed N2-N2 rigid rotor potential. Close coupling calculations were complemented by coupled states studies at high energies and provide about 10200 two-body state-to state cross sections from which the needed one-body cross-sections may be obtained. For such temperatures, convergence has to be thoroughly analyzed since such conditions are close to the limit of current computational feasibility. This has been done using complementary calculations based on the energy corrected sudden formalism. Agreement of these quantum predictions with experimental data is good, but the main goal of this work is to provide a benchmark relaxation matrix for testing more approximate methods which remain of a great utility for complex molecular systems at room (and higher) temperatures.
Ramírez-Vélez, Robinson; García-Hermoso, Antonio; Agostinis-Sobrinho, Cesar; Mota, Jorge; Santos, Rute; Correa-Bautista, Jorge Enrique; Peña-Guzmán, Carlos Andrés; Domínguez-Sánchez, María Andrea; Schmidt-RioValle, Jacqueline; González-Jiménez, Emilio
2017-06-22
This study explored the association between pubertal stage and anthropometric and cardiometabolic risk factors in youth. A cross-sectional study was conducted in 2877 Colombian children and adolescents (9-17.9 years of age). Weight, height, and waist circumference were measured and body mass index (BMI) was calculated. A biochemical study was performed to determine the cardiometabolic risk index (CMRI). Blood pressure was evaluated and pubertal stage was assessed with the Tanner criteria. Hierarchical multiple regression analyses were performed. The most significant variable ( p < 0.05) in the prognosis of cardiometabolic risk was found to be the BMI in both boys and girls. In the case of girls, the pubertal stage was also a CMRI predictive factor. In conclusion, BMI was an important indicator of cardiovascular risk in both sexes. Pubertal stage was associated with cardiovascular risk only in the girls.
ERIC Educational Resources Information Center
Jilcott, Stephanie B.; Liu, Haiyong; DuBose, Katrina D.; Chen, Susan; Kranz, Sibylle
2011-01-01
Objective: To examine associations between Food Stamp (FS) participation, meals away from home (MAFH), body mass index (BMI), and waist circumference (WC). Design: Cross-sectional study. Setting: Nationally representative. Participants: Data from low-income, FS-eligible individuals (N = 945) ages 20-65 years, responding to the 2005-2006 National…
ERIC Educational Resources Information Center
George, Goldy C.; Hoelscher, Deanna M.; Nicklas, Theresa A.; Kelder, Steven H.
2009-01-01
Objective: To examine diet- and body size-related attitudes and behaviors associated with supplement use in a representative sample of fourth-grade students in Texas. Design: Cross-sectional data from the School Physical Activity and Nutrition study, a probability-based sample of schoolchildren. Children completed a questionnaire that assessed…
The triangular kagomé lattices revisited
NASA Astrophysics Data System (ADS)
Liu, Xiaoyun; Yan, Weigen
2013-11-01
The dimer problem, Ising spins and bond percolation on the triangular kagomé lattice have been studied extensively by physicists. In this paper, based on the fact the triangular kagomé lattice with toroidal boundary condition can be regarded as the line graph of 3.12.12 lattice with toroidal boundary condition, we derive the formulae of the number of spanning trees, the energy, and the Kirchhoff index of the triangular kagomé lattice with toroidal boundary condition.
Atzei, A; Luchetti, R; Garagnani, L
2017-05-01
The classical definition of 'Palmer Type IB' triangular fibrocartilage complex tear, includes a spectrum of clinical conditions. This review highlights the clinical and arthroscopic criteria that enable us to categorize five classes on a treatment-oriented classification system of triangular fibrocartilage complex peripheral tears. Class 1 lesions represent isolated tears of the distal triangular fibrocartilage complex without distal radio-ulnar joint instability and are amenable to arthroscopic suture. Class 2 tears include rupture of both the distal triangular fibrocartilage complex and proximal attachments of the triangular fibrocartilage complex to the fovea. Class 3 tears constitute isolated ruptures of the proximal attachment of the triangular fibrocartilage complex to the fovea; they are not visible at radio-carpal arthroscopy. Both Class 2 and Class 3 tears are diagnosed with a positive hook test and are typically associated with distal radio-ulnar joint instability. If required, treatment is through reattachment of the distal radio-ulnar ligament insertions to the fovea. Class 4 lesions are irreparable tears due to the size of the defect or to poor tissue quality and, if required, treatment is through distal radio-ulnar ligament reconstruction with tendon graft. Class 5 tears are associated with distal radio-ulnar joint arthritis and can only be treated with salvage procedures. This subdivision of type IB triangular fibrocartilage complex tear provides more insights in the pathomechanics and treatment strategies. II.
A novel method of the image processing on irregular triangular meshes
NASA Astrophysics Data System (ADS)
Vishnyakov, Sergey; Pekhterev, Vitaliy; Sokolova, Elizaveta
2018-04-01
The paper describes a novel method of the image processing based on irregular triangular meshes implementation. The triangular mesh is adaptive to the image content, least mean square linear approximation is proposed for the basic interpolation within the triangle. It is proposed to use triangular numbers to simplify using of the local (barycentric) coordinates for the further analysis - triangular element of the initial irregular mesh is to be represented through the set of the four equilateral triangles. This allows to use fast and simple pixels indexing in local coordinates, e.g. "for" or "while" loops for access to the pixels. Moreover, representation proposed allows to use discrete cosine transform of the simple "rectangular" symmetric form without additional pixels reordering (as it is used for shape-adaptive DCT forms). Furthermore, this approach leads to the simple form of the wavelet transform on triangular mesh. The results of the method application are presented. It is shown that advantage of the method proposed is a combination of the flexibility of the image-adaptive irregular meshes with the simple form of the pixel indexing in local triangular coordinates and the using of the common forms of the discrete transforms for triangular meshes. Method described is proposed for the image compression, pattern recognition, image quality improvement, image search and indexing. It also may be used as a part of video coding (intra-frame or inter-frame coding, motion detection).
Neonatal period: body composition changes in breast-fed full-term newborns.
Roggero, Paola; Giannì, Maria L; Orsi, Anna; Piemontese, Pasqua; Amato, Orsola; Moioli, Claudia; Mosca, Fabio
2010-01-01
Weight loss during initial days of life in healthy infants is known to consist of loss of both body solids and total body water. However, the nature of these body composition changes needs further investigation. To investigate the nature of changes in body composition that accompany weight loss during the first days of life in healthy term newborns. Body composition of healthy full-term newborns was assessed using air-displacement plethysmography. Cross-sectional (n = 262) and longitudinal samples (n = 28) were assessed during the first 4 and 5 days after delivery, respectively. In the cross-sectional sample, mean body weight decreased significantly through day 4 (p < 0.001), mean fat mass (FM) and %FM decreased significantly (p = 0.005 and p = 0.031, respectively) by day 3. There was a significant decrease in mean fat-free mass on days 3 and 4 (p = 0.01 and p < 0.001, respectively). In the longitudinal sample, there was a significant decrease in mean body weight, FM and %FM (p < 0.001, p = 0.001, p = 0.013, respectively) by day 4. On day 5 there was a significant increase in mean body weight, FM and %FM (p < 0.001, p = 0.024, p = 0.036, respectively) when compared to day 4. There was no significant difference in mean FM and %FM values between day 1 and day 5. These results indicate that body composition changes are constituted by a reduction in both fat and fat free mass. However, a greater %FM is lost and consequently regained by day 5 when compared to fat-free mass. Copyright 2009 S. Karger AG, Basel.
Al-Bayyari, Nahla; Hamadneh, Jehan; Hailat, Rae'd; Hamadneh, Shereen
2017-12-01
Conflicting associations between total homocysteine (tHcy), body mass index (BMI) lean body mass, and fat mass in the general population have been reported. We investigated the hypothesis that elevated tHcy levels are associated with increased BMI, waist-to-hip ratio (WHR), and body fat mass percent. In Jordan, obesity and overweight are prevalent among reproductive women and hyperhomocysteinemia, along with obesity and overweight, are independent risk factors for cardiovascular diseases. The participants used in this cross-sectional study were 325 overweight Jordanian women aged between 18 and 49 years old. The main outcome measures were tHcy, BMI, WHR, fat mass, fat-free mass, and total body water. Serum tHcy was analyzed using a liquid chromatography tandem mass spectrophotometry (LC-MS/MS) complete kit. The body compositions were measured using a bioelectrical impedance analyzer. Study participants were stratified according to their tHcy level into two groups, ≤10 μmol/L and >10 μmol/L, and the difference between mean values of body compositions was evaluated. The tHcy was significantly and negatively correlated with age, fat-free mass, and total body water, and significantly and positively correlated with BMI, hip circumference, WHR, fat mass, and dry lean weight. The chi-square and the independent sample t-tests showed statistically significant (P ≤ .05) differences between tHcy and BMI, WHR, fat and fat-free mass, and total body water percentages. In conclusion, BMI, WHR and body fat mass were found to be associated with elevated tHcy levels among overweight reproductive women, and they might be used as independent predictors of the tHcy level. Copyright © 2017 Elsevier Inc. All rights reserved.
Walther, Andreas; Philipp, Michel; Lozza, Niclà; Ehlert, Ulrike
2017-01-01
More depressive symptoms and low emotional support have been related to worse body composition. Body composition significantly deteriorates in aging men. Therefore, we aimed to examine whether high emotional support and low depressive symptoms are associated with better body composition and a decelerated age-related deterioration of body composition in aging men. A cross-sectional analysis including 269 self-reporting healthy men aged between 40 and 75 years living in the German-speaking part of Switzerland was conducted. Participants completed questionnaires on emotional support and depressive symptoms. The depression screening instrument was used to form a group with low (N = 225) and moderate (N = 44) depressive symptoms. Body mass index (BMI) and waist-to-hip ratio (WHR) were measured, and cell proportion (CP), fat mass (FM), and water balance (WB) were obtained using bioelectrical impedance analysis. Age-related associations emerged for WHR, CP, FM, and WB, but not for BMI. Emotional support was negatively associated with BMI, WHR, and WB, and only trend-wise with CP and FM. Group comparisons revealed that more depressive symptoms were associated with lower levels of CP and higher levels of WB. Both emotional support and depressive symptoms were significant moderators of the association between age and specific measures of body composition such as CP, FM, and WB. However, after correction for multiple testing for moderation analyses only the moderation effects of depressive symptoms on the association between age and WB and CP remained significant. Low depressive symptoms were associated with a better body composition as well as a decelerated decline in body composition and the role of emotional support acting as a buffer against age-related deterioration of body composition merits further investigation. PMID:28706495
Dong, Yanhui; Zou, Zhiyong; Yang, Zhaogeng; Wang, Zhenghe; Yang, Yide; Ma, Jun; Dong, Bin; Ma, Yinghua; Arnold, Luke
2018-04-27
Little is known regarding the nutritional burden in Chinese ethnic minority children. This study aimed to investigate the epidemiological characteristics of excess body weight and underweight for 26 ethnic groups. Data on 80,821 participants aged 7-18 years across 26 minorities, with completed records from a large national cross-sectional survey, were obtained from Chinese National Survey on Students' Constitution and Health (CNSSCH) in 2014. Excess body weight, underweight and their components were classified according to Chinese national BMI references. The overall prevalence of excess body weight and underweight among ethnic groups were 12.0% and 14.5%, in which 4.4% and 4.1% of the participants were classified as obese and severe wasting, respectively. Compared with girls, boys showed a higher prevalence of underweight, severe wasting and obesity, but a lower prevalence of excess body weight (P < 0.05). Among 26 ethnic groups, Koreans had the highest prevalence of excess body weight (30.4%), while Bouyeis showed the highest prevalence of underweight (25.7%). The ethnic minority groups with high prevalence of excess body weight and underweight were more likely to show high burden of obesity and severe wasting, respectively. However, it is not the case for some groups, such as Miaos and Shuis. A worrying dual burden of excess body weight and underweight was recognized in Chinese ethnic minority children. Since various characteristics were found among different minorities, the ethnic-specific effort is warranted to improve their nutritional status.
Body image dissatisfaction, physical activity and screen-time in Spanish adolescents.
Añez, Elizabeth; Fornieles-Deu, Albert; Fauquet-Ars, Jordi; López-Guimerà, Gemma; Puntí-Vidal, Joaquim; Sánchez-Carracedo, David
2018-01-01
This cross-sectional study contributes to the literature on whether body dissatisfaction is a barrier/facilitator to engaging in physical activity and to investigate the impact of mass-media messages via computer-time on body dissatisfaction. High-school students ( N = 1501) reported their physical activity, computer-time (homework/leisure) and body dissatisfaction. Researchers measured students' weight and height. Analyses revealed that body dissatisfaction was negatively associated with physical activity on both genders, whereas computer-time was associated only with girls' body dissatisfaction. Specifically, as computer-homework increased, body dissatisfaction decreased; as computer-leisure increased, body dissatisfaction increased. Weight-related interventions should improve body image and physical activity simultaneously, while critical consumption of mass-media interventions should include a computer component.
NASA Technical Reports Server (NTRS)
Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.
1989-01-01
The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.
Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; ...
2015-05-08
Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component)more » using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.« less
Dowthwaite, Jodi N.; Rosenbaum, Paula F.; Scerpella, Tamara A.
2012-01-01
Purpose We evaluated site-specific skeletal adaptation to loading during growth,comparing radius (RAD) and femoral neck (FN) DXA scans in young female gymnasts (GYM) and non-gymnasts (NON). Methods Subjects from an ongoing longitudinal study (8-26 yrs old) underwent annual DXA scans (proximal femur, forearm, total body) and anthropometry, completing maturity and physical activity questionnaires. This cross-sectional analysis used the most recent data meeting the following criteria: gynecological age ≤2.5 yrs post-menarche; GYM annual mean gymnastic exposure ≥5.0 h/wk in the prior year. Bone geometric and strength indices were derived from scans for 173 subjects (8-17 yrs old) via hip structural analysis (femoral narrow neck, NN) and similar radius formulae (1/3 and Ultradistal (UD)). Maturity was coded as M1 (Tanner I breast), M2 (pre-menarche, ≥Tanner II breast) or M3 (post-menarche). ANOVA and chi square compared descriptive data. Two factor ANCOVA adjusted for age, height, total body non-bone lean mass and percent body fat; significance was tested for main effects and interactions between gymnastic exposure and maturity. Results At the distal radius, GYM means were significantly greater than NON means for all variables (p<0.05). At the proximal femur, GYM exhibited narrower periosteal and endosteal dimensions, but greater indices of cortical thickness, BMC, aBMD and section modulus, with lower buckling ratio (p <0.05). However, significant interactions between maturity and loading were detected for the following: 1) FN bone mineral content (BMC), NN buckling ratio (GYM BMC advantages only in M1 and M3; for BMC and buckling ratio, M1 advantages were greatest; 2) 1/3 radius BMC, width, endosteal diameter, cortical cross-sectional area, section modulus (GYM advantages primarily post-menarche); 3) UD radius BMC and axial compressive strength (GYM advantages were larger with greater maturity, greatest post-menarche). Conclusions Maturity-specific comparisons suggested site-specific skeletal adaptation to loading during growth, with greater advantages at the radius versus the proximal femur. At the radius, GYM advantages included greater bone width, cortical cross-sectional area and cortical thickness; in contrast, at the femoral neck, GYM bone tissue cross-sectional area and cortical thickness were greater, but bone width was narrower than in NON. Future longitudinal analyses will evaluate putative maturity-specific differences. PMID:22342799
Simulation of the Boltzmann Process: An Energy Space Model.
ERIC Educational Resources Information Center
Eger, Martin; Kress, Michael
1982-01-01
A model is introduced for the simulation of Boltzmann-like binary interactions which may be extended to exhibit the effect of angular dependence in the scattering cross section and other dynamical aspects of two-body interactions. (Author/SK)
Characterization of Martian Rock Shape for MER Airbag Drop Tests
NASA Astrophysics Data System (ADS)
Dimaggio, E. N.; Schroeder, R.; Castle, N.; Golombek, M.
2002-12-01
Rock distributions for the final platforms used in airbag drop tests are currently being designed for the Mars Exploration Rovers (MER) scheduled to launch in 2003. Like Mars Pathfinder (MPF), launched in 1996, MER will use a series of airbags to cushion its landing on the surface of Mars. Previous MER airbag drop tests have shown that sharp, angular (triangular) rocks >20 cm high may be hazardous. To aid in defining the rock distributions for the final airbag tests, images from the Viking Landers 1 and 2 and MPF were used to identify rocks that are >20 cm high, and characterize them as triangular, square or round. Approximately 33% of all rocks analyzed are triangular. Of the rocks analyzed that are ~20-60 cm high, ~14% are triangular. Most of these triangular rocks are small, ~20-30 cm high. Rock distributions of previous airbag platforms were similarly classified and show a greater percentage of triangular and square rocks that are ~20-60 cm high than at the landing sites. The burial of a rock (perched, partially buried or buried) was also considered because perched rocks may pose less of a threat to the airbags than those buried because perched rocks can be dislodged and roll during impact. Approximately 19% of all rocks analyzed, and ~19% of rocks that are ~20-60 cm high, are triangular and partially buried or buried. These data suggest that the platform rock distributions appropriately represented the risks to the airbags associated with triangular rocks. A similar percentage of >20 cm high triangular rocks will be added to the drop test platforms to represent landing site rock distributions.
33 CFR 334.1330 - Bering Strait, Alaska; naval restricted area off Cape Prince of Wales.
Code of Federal Regulations, 2010 CFR
2010-07-01
... restricted area off Cape Prince of Wales. 334.1330 Section 334.1330 Navigation and Navigable Waters CORPS OF....1330 Bering Strait, Alaska; naval restricted area off Cape Prince of Wales. (a) The area. An area 2,000 feet wide extending from a point on Cape Prince of Wales marked by a triangular cable marker located...
Magnetoresistance measurement of permalloy thin film rings with triangular fins
NASA Astrophysics Data System (ADS)
Lai, Mei-Feng; Hsu, Chia-Jung; Liao, Chun-Neng; Chen, Ying-Jiun; Wei, Zung-Hang
2010-01-01
Magnetization reversals in permalloy rings controlled by nucleation sites using triangular fins at the same side and diagonal with respect to the field direction are demonstrated by magnetoresistance measurement and micromagnetic simulation. In the ring with triangular fins at the same side, there exists two-step reversal from onion to flux-closure state (or vortex state) and then from flux-closure (or vortex state) to reverse onion state; in the ring with diagonal triangular fins, one-step reversal occurs directly from onion to reverse onion state. The reversal processes are repeatable and controllable in contrast to an ideal ring without triangular fins where one-step and two-step reversals occur randomly in sweep-up and sweep-down processes.
NASA Technical Reports Server (NTRS)
Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.; Nguyen, T. X.
1993-01-01
The validation of low-frequency measurements and electromagnetic (EM) scattering computations for several simple, generic shapes, such as an equilateral-triangular plate, an equilateral-triangular plate with a concentric equilateral-triangular hole, and diamond- and hexagonal-shaped plates, is discussed. The plates were constructed from a thin aluminum sheet with a thickness of 0.08 cm. EM scattering by the planar plates was measured in the experimental test range (ETR) facility of NASA Langley Research Center. The dimensions of the plates were selected such that, over the frequency range of interest, the dimensions were in the range of lambda0 to 3(lambda0). In addition, the triangular plate with a triangular hole was selected to study internal-hole resonances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vriens, L.; Smeets, A.H.M.
1980-09-01
For electron-induced ionization, excitation, and de-excitation, mainly from excited atomic states, a detailed analysis is presented of the dependence of the cross sections and rate coefficients on electron energy and temperature, and on atomic parameters. A wide energy range is covered, including sudden as well as adiabatic collisions. By combining the available experimental and theoretical information, a set of simple analytical formulas is constructed for the cross sections and rate coefficients of the processes mentioned, for the total depopulation, and for three-body recombination. The formulas account for large deviations from classical and semiclassical scaling, as found for excitation. They agreemore » with experimental data and with the theories in their respective ranges of validity, but have a wider range of validity than the separate theories. The simple analytical form further facilitates the application in plasma modeling.« less
NASA Astrophysics Data System (ADS)
Rahmanian, M.; Fathi, R.; Shojaei, F.
2017-11-01
The single-charge transfer process in collision of protons with helium atoms in their ground states is investigated. The model utilizes the second-order three-body Born distorted-wave approximation (BDW-3B) with correct Coulomb boundary conditions to calculate the differential and total cross sections at intermediate and high energies. The role of the passive electrons and electron-electron correlations are studied by comparing our results and the BDW-4B calculations with the complete perturbation potential. The present results are also compared with other theories, and the Thomas scattering mechanism is investigated. The obtained results are also compared with the recent experimental measurements. For the prior differential cross sections, the comparisons show better agreement with the experiments at smaller scattering angles. The agreement between the total cross sections and the BDW-4B results as well as the experimental data is good at higher impact energies.
Electromagnetic retroreflection augmented by spherical and conical metasurfaces
NASA Astrophysics Data System (ADS)
Shang, Yuping; Shen, Zhongxiang
2017-11-01
The focus of this paper is on phase gradient metasurfaces conformal to spherical and conical bodies of revolution, with an aim of engineering retroreflections and therefore augmenting backscattering cross-sections of those three-dimensional geometries under the illumination of a plane electromagnetic wave. Based on the conducting sphere and cone, the effect of the geometric revolution property on the selection of the unit inclusion of metasurfaces is considered. The procedure for using the selected unit inclusion to implement the proper reflection phase gradient onto the illuminated surfaces of those objects is formulated in detail. Retroreflections resembling conducting plates under normal incidence are observed for both the conducting sphere and cone coated with conformal metasurfaces. As a result, the redirection-induced retroreflection effectively contributes to the backscattering cross-section enhancement. A good agreement between full-wave simulations and measurements demonstrates the validity and effectiveness of backscattering cross-section enhancement using spherical and conical metasurfaces.
Extinction cross-section suppression and active acoustic invisibility cloaking
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-10-01
Invisibility in its canonical form requires rendering a zero extinction cross-section (or energy efficiency) from an active or a passive object. This work demonstrates the successful theoretical realization of this physical effect for an active cylindrically radiating acoustic body, undergoing periodic axisymmetric harmonic vibrations near a flat rigid boundary. Radiating, amplification and extinction cross-sections of the active source are defined. Assuming monopole and dipole modal oscillations of the circular source, conditions are found where the extinction energy efficiency factor of the active source vanishes, achieving total invisibility with minimal influence of the source size. It also takes positive or negative values, depending on its size and distance from the boundary. Moreover, the amplification energy efficiency factor is negative for the acoustically-active source. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility.
Røren Nordén, Kristine; Dagfinrud, Hanne; Løvstad, Amund; Raastad, Truls
Introduction . The purpose of this study was to investigate body composition, muscle function, and muscle morphology in patients with spondyloarthritis (SpA). Methods . Ten male SpA patients (mean ± SD age 39 ± 4.1 years) were compared with ten healthy controls matched for sex, age, body mass index, and self-reported level of physical exercise. Body composition was measured by dual energy X-ray absorptiometry. Musculus quadriceps femoris (QF) strength was assessed by maximal isometric contractions prior to test of muscular endurance. Magnetic resonance imaging of QF was used to measure muscle size and calculate specific muscle strength. Percutaneous needle biopsy samples were taken from m. vastus lateralis . Results . SpA patients presented with significantly lower appendicular lean body mass (LBM) ( p = 0.02), but there was no difference in bone mineral density, fat mass, or total LBM. Absolute QF strength was significantly lower in SpA patients ( p = 0.03) with a parallel trend for specific strength ( p = 0.08). Biopsy samples from the SpA patients revealed significantly smaller cross-sectional area (CSA) of type II muscle fibers ( p = 0.04), but no difference in CSA type I fibers. Conclusions . Results indicate that the presence of SpA disease is associated with reduced appendicular LBM, muscle strength, and type II fiber CSA.
Wirt, Tamara; Schreiber, Anja; Kesztyüs, Dorothea; Steinacker, Jürgen M.
2015-01-01
The objective of this study was to investigate the association of different cognitive abilities with children's body weight adjusted for further weight influencing sociodemographic, family, and lifestyle factors. Cross-sectional data of 498 primary school children (7.0 ± 0.6 years; 49.8% boys) participating in a health promotion programme in southwest Germany were used. Children performed a computer-based test battery (KiTAP) including an inhibitory control task (Go-Nogo paradigm), a cognitive flexibility task, and a sustained attention task. Height and weight were measured in a standardized manner and converted to BMI percentiles based on national standards. Sociodemographic features (migration background and parental education), family characteristics (parental body weight), and children's lifestyle (TV consumption, physical activity, consumption of sugar-sweetened beverages and breakfast habits) were assessed via parental questionnaire. A hierarchical regression analysis revealed inhibitory control and cognitive flexibility to be significant cognitive predictors for children's body weight. There was no association concerning sustained attention. The findings suggest that especially cognitive abilities known as executive functions (inhibitory control and cognitive flexibility) are associated with children's body weight. Future longitudinal and intervention studies are necessary to investigate the directionality of the association and the potential of integrating cognitive training in obesity prevention strategies. This trial is registered with ClinicalTrials.gov DRKS00000494. PMID:25874122
Non-uniqueness of the point of application of the buoyancy force
NASA Astrophysics Data System (ADS)
Kliava, Janis; Mégel, Jacques
2010-07-01
Even though the buoyancy force (also known as the Archimedes force) has always been an important topic of academic studies in physics, its point of application has not been explicitly identified yet. We present a quantitative approach to this problem based on the concept of the hydrostatic energy, considered here for a general shape of the cross-section of a floating body and for an arbitrary angle of heel. We show that the location of the point of application of the buoyancy force essentially depends (i) on the type of motion experienced by the floating body and (ii) on the definition of this point. In a rolling/pitching motion, considerations involving the rotational moment lead to a particular dynamical point of application of the buoyancy force, and for some simple shapes of the floating body this point coincides with the well-known metacentre. On the other hand, from the work-energy relation it follows that in the rolling/pitching motion the energetical point of application of this force is rigidly connected to the centre of buoyancy; in contrast, in a vertical translation this point is rigidly connected to the centre of gravity of the body. Finally, we consider the location of the characteristic points of the floating bodies for some particular shapes of immersed cross-sections. The paper is intended for higher education level physics teachers and students.
Relation Between Iliopsoas Cross-sectional Area and Kicked Ball Speed in Soccer Players.
Wakahara, Taku; Chiba, Manabu
2018-05-14
This study aimed to investigate the relationship between the maximal anatomical cross-sectional area (ACSA) of the iliopsoas muscle and ball speed in side-foot and instep kicks. The ACSA of the psoas major and iliacus was measured in 29 male collegiate soccer players by using magnetic resonance imaging. They performed maximal side-foot and instep kicks to a stationary ball. The kicked ball speed was measured with a high-speed camera. Ball speed in the side-foot and instep kicks was significantly correlated with body height (side-foot kick: r=0.650, P<0.001; instep kick: r=0.583, P<0.001). After adjustment for body height, the maximal ACSA of the psoas major was significantly correlated with ball speed in the side-foot kick (r=0.441, P=0.017), but not in the instep kick. The maximal ACSA of the iliacus was not correlated with ball speed in side-foot or instep kicks, even after adjustment for body height. Our results suggest that: 1) body height is a significant determinant of the ball speed in side-foot and instep kicks, and 2) for a given body height, the maximal ACSA of the dominant psoas major is a factor that affects the ball speed in side-foot kick. © Georg Thieme Verlag KG Stuttgart · New York.
Wirt, Tamara; Schreiber, Anja; Kesztyüs, Dorothea; Steinacker, Jürgen M
2015-01-01
The objective of this study was to investigate the association of different cognitive abilities with children's body weight adjusted for further weight influencing sociodemographic, family, and lifestyle factors. Cross-sectional data of 498 primary school children (7.0 ± 0.6 years; 49.8% boys) participating in a health promotion programme in southwest Germany were used. Children performed a computer-based test battery (KiTAP) including an inhibitory control task (Go-Nogo paradigm), a cognitive flexibility task, and a sustained attention task. Height and weight were measured in a standardized manner and converted to BMI percentiles based on national standards. Sociodemographic features (migration background and parental education), family characteristics (parental body weight), and children's lifestyle (TV consumption, physical activity, consumption of sugar-sweetened beverages and breakfast habits) were assessed via parental questionnaire. A hierarchical regression analysis revealed inhibitory control and cognitive flexibility to be significant cognitive predictors for children's body weight. There was no association concerning sustained attention. The findings suggest that especially cognitive abilities known as executive functions (inhibitory control and cognitive flexibility) are associated with children's body weight. Future longitudinal and intervention studies are necessary to investigate the directionality of the association and the potential of integrating cognitive training in obesity prevention strategies. This trial is registered with ClinicalTrials.gov DRKS00000494.
Association of Leptin with Body Pain in Women
Kapphahn, Kristopher; Brennan, Kathleen; Sullivan, Shannon D.; Stefanick, Marcia L.
2016-01-01
Abstract Leptin, an appetite-regulatory hormone, is also known to act as a proinflammatory adipokine. One of the effects of increased systemic leptin concentrations may be greater sensitivity to pain. We report the results of two studies examining the association between leptin and pain: a small pilot longitudinal study, followed by a large cross-sectional study. In Study 1, three women with physician-diagnosed fibromyalgia provided blood draws daily for 25 consecutive days, as well as daily self-reported musculoskeletal pain. Daily fluctuations in serum leptin were positively associated with pain across all three participants (F (1,63) = 12.8, p < 0.001), with leptin predicting ∼49% of the pain variance. In Study 2, the relationship between leptin and body pain was examined in a retrospective cross-sectional analysis of 5676 generally healthy postmenopausal women from the Women's Health Initiative. Leptin levels obtained from single blood draws were tested for a relationship with self-reported body pain. Body mass index (BMI) was also included as a predictor of pain. Both leptin and BMI were found to be independently associated with self-reported pain (p = 0.001 and p < 0.001, respectively), with higher leptin levels and greater BMI each being associated with greater pain. Leptin appears to be a predictor of body pain both within- and between-individuals and may be a driver of generalized pain states such as fibromyalgia. PMID:27028709
Association of Leptin with Body Pain in Women.
Younger, Jarred; Kapphahn, Kristopher; Brennan, Kathleen; Sullivan, Shannon D; Stefanick, Marcia L
2016-07-01
Leptin, an appetite-regulatory hormone, is also known to act as a proinflammatory adipokine. One of the effects of increased systemic leptin concentrations may be greater sensitivity to pain. We report the results of two studies examining the association between leptin and pain: a small pilot longitudinal study, followed by a large cross-sectional study. In Study 1, three women with physician-diagnosed fibromyalgia provided blood draws daily for 25 consecutive days, as well as daily self-reported musculoskeletal pain. Daily fluctuations in serum leptin were positively associated with pain across all three participants (F (1,63) = 12.8, p < 0.001), with leptin predicting ∼49% of the pain variance. In Study 2, the relationship between leptin and body pain was examined in a retrospective cross-sectional analysis of 5676 generally healthy postmenopausal women from the Women's Health Initiative. Leptin levels obtained from single blood draws were tested for a relationship with self-reported body pain. Body mass index (BMI) was also included as a predictor of pain. Both leptin and BMI were found to be independently associated with self-reported pain (p = 0.001 and p < 0.001, respectively), with higher leptin levels and greater BMI each being associated with greater pain. Leptin appears to be a predictor of body pain both within- and between-individuals and may be a driver of generalized pain states such as fibromyalgia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortes, Adriano M.; Dalcin, Lisandro; Sarmiento, Adel F.
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf–sup stable and pointwise divergence-free. When applied to the discretized Stokes problem, these spaces generate a symmetric and indefinite saddle-point linear system. The iterative method of choice to solve such system is the Generalized Minimum Residual Method. This method lacks robustness, and one remedy is to use preconditioners. For linear systems of saddle-point type, a large family of preconditioners can be obtained by using a block factorization of the system. In this paper, we show howmore » the nesting of “black-box” solvers and preconditioners can be put together in a block triangular strategy to build a scalable block preconditioner for the Stokes system discretized by divergence-conforming B-splines. Lastly, besides the known cavity flow problem, we used for benchmark flows defined on complex geometries: an eccentric annulus and hollow torus of an eccentric annular cross-section.« less
Effectively Transparent Front Contacts for Optoelectronic Devices
Saive, Rebecca; Borsuk, Aleca M.; Emmer, Hal S.; ...
2016-06-10
Effectively transparent front contacts for optoelectronic devices achieve a measured transparency of up to 99.9% and a measured sheet resistance of 4.8 Ω sq-1. These 3D microscale triangular cross-section grid fingers redirect incoming photons efficiently to the active semiconductor area and can replace standard grid fingers as well as transparent conductive oxide layers in optoelectronic devices. Optoelectronic devices such as light emitting diodes, photodiodes, and solar cells play an important and expanding role in modern technology. Photovoltaics is one of the largest optoelectronic industry sectors and an ever-increasing component of the world's rapidly growing renewable carbon-free electricity generation infrastructure. Inmore » recent years, the photovoltaics field has dramatically expanded owing to the large-scale manufacture of inexpensive crystalline Si and thin film cells and modules. The current record efficiency (η = 25.6%) Si solar cell utilizes a heterostructure intrinsic thin layer (HIT) design[1] to enable increased open circuit voltage, while more mass-manufacturable solar cell architectures feature front contacts.[2, 3] Thus improved solar cell front contact designs are important for future large-scale photovoltaics with even higher efficiency.« less
Surface analyses of composites exposed to the space environment on LDEF
NASA Technical Reports Server (NTRS)
Mallon, Joseph J.; Uht, Joseph C.; Hemminger, Carol S.
1993-01-01
A series of surface analyses on carbon fiber/poly(arylacetylene) (PAA) matrix composites that were exposed to the space environment on the Long Duration Exposure Facility (LDEF) satellite were conducted. These composite panels were arranged in pairs on both the leading edge and trailing edge of LDEF. None of the composites were catastrophically damaged by nearly six years of exposure to the space environment. Composites on the leading edge exhibited from 25 to 125 microns of surface erosion, but trailing edge panels exhibited no physical appearance changes due to exposure. Scanning electron microscopy (SEM) was used to show that the erosion morphology on the leading edge samples was dominated by crevasses parallel to the fibers with triangular cross sections 10 to 100 microns in depth. The edges of the crevasses were well defined and penetrated through both matrix and fiber. The data suggest that the carbon fibers are playing an important role in crevasse initiation and/or enlargement, and in the overall erosion rate of the composite. X-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDS) results showed contamination from in-flight sources of silicone.
Cortes, Adriano M.; Dalcin, Lisandro; Sarmiento, Adel F.; ...
2016-10-19
The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf–sup stable and pointwise divergence-free. When applied to the discretized Stokes problem, these spaces generate a symmetric and indefinite saddle-point linear system. The iterative method of choice to solve such system is the Generalized Minimum Residual Method. This method lacks robustness, and one remedy is to use preconditioners. For linear systems of saddle-point type, a large family of preconditioners can be obtained by using a block factorization of the system. In this paper, we show howmore » the nesting of “black-box” solvers and preconditioners can be put together in a block triangular strategy to build a scalable block preconditioner for the Stokes system discretized by divergence-conforming B-splines. Lastly, besides the known cavity flow problem, we used for benchmark flows defined on complex geometries: an eccentric annulus and hollow torus of an eccentric annular cross-section.« less
Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes.
Qian, Fang; Gradecak, Silvija; Li, Yat; Wen, Cheng-Yen; Lieber, Charles M
2005-11-01
We report the growth and characterization of core/multishell nanowire radial heterostructures, and their implementation as efficient and synthetically tunable multicolor nanophotonic sources. Core/multishell nanowires were prepared by metal-organic chemical vapor deposition with an n-GaN core and InxGa1-xN/GaN/p-AlGaN/p-GaN shells, where variation of indium mole fraction is used to tune emission wavelength. Cross-sectional transmission electron microscopy studies reveal that the core/multishell nanowires are dislocation-free single crystals with a triangular morphology. Energy-dispersive X-ray spectroscopy clearly shows shells with distinct chemical compositions, and quantitatively confirms that the thickness and composition of individual shells can be well controlled during synthesis. Electrical measurements show that the p-AlGaN/p-GaN shell structure yields reproducible hole conduction, and electroluminescence measurements demonstrate that in forward bias the core/multishell nanowires function as light-emitting diodes, with tunable emission from 365 to 600 nm and high quantum efficiencies. The ability to synthesize rationally III-nitride core/multishell nanowire heterostructures opens up significant potential for integrated nanoscale photonic systems, including multicolor lasers.
Spin chirality and polarised neutron scattering
NASA Astrophysics Data System (ADS)
Plakhty, V. P.; Maleyev, S. V.; Kulda, J.; Visser, E. D.; Wosnitza, J.; Moskvin, E. V.; Brückel, Th.; Kremer, R. K.
2001-03-01
Possibilities of polarised neutrons in studies of chiral criticality are discussed. The critical exponents β C of the average chirality below TN, as well as φ C=β C+γ C and, therefore, γ C of the chiral susceptibility above TN are determined for a XY triangular lattice antiferromagnet (TLA) CsMnBr3: β C=0.44(2) , γ C=0.84(7) . The critical behaviour of the chirality that orders at TN with a relative precision of 5×10 -4 proves that the phase transition belongs to a new chiral universality class. For the TLA CsNiCl 3 ( S=1) we found in the XY region ( B=3 T) φ C=1.24(7) in agreement with the Monte-Carlo value φ C=1.22(6) for the chiral universality class. In the easy-axis region at B=1 T, φ C=0.54(4) , and the Haldane excitations are observed in the polarisation-dependent inelastic cross section above TN. The helimagnet holmium exhibits a different chiral criticality with φ C=1.56(5) , essentially higher than for TLAs.
Position sensitivity by light splitting in scintillator arrays
NASA Astrophysics Data System (ADS)
Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Dohrmann, F.; Dorner, G.; Drüke, V.; Ernst, J.; Eversheim, P. D.; Filges, D.; Gasthuber, M.; Gebel, R.; Groβ, A.; Groβ-Hardt, R.; Hinterberger, F.; Jahn, R.; Kühl, L.; Lahr, U.; Langkau, R.; Lippert, G.; Mayer-Kuckuk, T.; Maschuw, R.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; Przewoski, B. v.; Rohdjeβ, H.; Rosendaal, D.; Rossen, P. v.; Scheid, H.; Schirm, N.; Schwandt, F.; Scobel, W.; Sprute, L.; Stein, H.; Theis, D.; Weber, J.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA Collaboration
1993-05-01
A novel detector design of overlapping plastic scintillator elements in cylindrical geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles: each particle traversing the detector from the axis outwards will produce light in several elements. The relative amounts of energy deposited in those elements allow one to interpolate on the particle trajectory beyond the resolution given by the granularity. The detector covers the angular range 10° ≤ Θlab ≤ 72° and 0° ≤ ϕ ≤ 360° with an inner layer of scintillator bars of triangular cross section and an outer layer of rings. The material is BC408. Tests with minimum ionizing electron beams show that spatial resolutions of ΔΘlab ≈ 1.5° and Δϕ12 ≈ 1.5° (FWHM) can be obtained for electrons or proton pairs with energies in the GeV range. In the EDDA experiment the ultimate spatial resolution is then determined by the size of the interaction area rather than by the intrinsic pulse height resolution of the detector.
NASA Astrophysics Data System (ADS)
Dimitriadis, Panayiotis; Tegos, Aristoteles; Oikonomou, Athanasios; Pagana, Vassiliki; Koukouvinos, Antonios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas
2016-03-01
One-dimensional and quasi-two-dimensional hydraulic freeware models (HEC-RAS, LISFLOOD-FP and FLO-2d) are widely used for flood inundation mapping. These models are tested on a benchmark test with a mixed rectangular-triangular channel cross section. Using a Monte-Carlo approach, we employ extended sensitivity analysis by simultaneously varying the input discharge, longitudinal and lateral gradients and roughness coefficients, as well as the grid cell size. Based on statistical analysis of three output variables of interest, i.e. water depths at the inflow and outflow locations and total flood volume, we investigate the uncertainty enclosed in different model configurations and flow conditions, without the influence of errors and other assumptions on topography, channel geometry and boundary conditions. Moreover, we estimate the uncertainty associated to each input variable and we compare it to the overall one. The outcomes of the benchmark analysis are further highlighted by applying the three models to real-world flood propagation problems, in the context of two challenging case studies in Greece.
NASA Astrophysics Data System (ADS)
López, O. E.; Guazzotto, L.
2017-03-01
The Grad-Shafranov-Bernoulli system of equations is a single fluid magnetohydrodynamical description of axisymmetric equilibria with mass flows. Using a variational perturbative approach [E. Hameiri, Phys. Plasmas 20, 024504 (2013)], analytic approximations for high-beta equilibria in circular, elliptical, and D-shaped cross sections in the high aspect ratio approximation are found, which include finite toroidal and poloidal flows. Assuming a polynomial dependence of the free functions on the poloidal flux, the equilibrium problem is reduced to an inhomogeneous Helmholtz partial differential equation (PDE) subject to homogeneous Dirichlet conditions. An application of the Green's function method leads to a closed form for the circular solution and to a series solution in terms of Mathieu functions for the elliptical case, which is valid for arbitrary elongations. To extend the elliptical solution to a D-shaped domain, a boundary perturbation in terms of the triangularity is used. A comparison with the code FLOW [L. Guazzotto et al., Phys. Plasmas 11(2), 604-614 (2004)] is presented for relevant scenarios.
Close encounters of the third-body kind. [intruding bodies in binary star systems
NASA Technical Reports Server (NTRS)
Davies, M. B.; Benz, W.; Hills, J. G.
1994-01-01
We simulated encounters involving binaries of two eccentricities: e = 0 (i.e., circular binaries) and e = 0.5. In both cases the binary contained a point mass of 1.4 solar masses (i.e., a neutron star) and a 0.8 solar masses main-sequence star modeled as a polytrope. The semimajor axes of both binaries were set to 60 solar radii (0.28 AU). We considered intruders of three masses: 1.4 solar masses (a neutron star), 0.8 solar masses (a main-sequence star or a higher mass white dwarf), and 0.64 solar masses (a more typical mass white dwarf). Our strategy was to perform a large number (40,000) of encounters using a three-body code, then to rerun a small number of cases with a three-dimensional smoothed particle hydrodynamics (SPH) code to determine the importance of hydrodynamical effects. Using the results of the three-body runs, we computed the exchange across sections, sigma(sub ex). From the results of the SPH runs, we computed the cross sections for clean exchange, denoted by sigma(sub cx); the formation of a triple system, denoted by sigma(sub trp); and the formation of a merged binary with an object formed from the merger of two of the stars left in orbit around the third star, denoted by sigma(sub mb). For encounters between either binary and a 1.4 solar masses neutron star, sigma(sub cx) approx. 0.7 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 0.3 sigma(sub ex). For encounters between either binary and the 0.8 solar masses main-sequence star, sigma(sub cx) approx. 0.50 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.0 sigma(sub ex). If the main sequence star is replaced by a main-sequence star of the same mass, we have sigma(sub cx) approx. 0.5 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.6 sigma(sub ex). Although the exchange cross section is a sensitive function of intruder mass, we see that the cross section to produce merged binaries is roughly independent of intruder mass. The merged binaries produced have semi-major axes much larger than either those of the original binaries or those of binaries produced in clean exchanges. Coupled with their lower kick velocities, received from the encounters, their larger size will enhance their cross section, shortening the waiting time to a subsequent encounter with another single star.
Ruiz, Jonatan R; Labayen, Idoia; Ortega, Francisco B; Legry, Vanessa; Moreno, Luis A; Dallongeville, Jean; Martínez-Gómez, David; Bokor, Szilvia; Manios, Yannis; Ciarapica, Donatella; Gottrand, Frederic; De Henauw, Stefaan; Molnár, Denes; Sjöström, Michael; Meirhaeghe, Aline
2010-04-01
To examine whether physical activity attenuates the effect of the FTO rs9939609 polymorphism on body fat estimates in adolescents. Cross-sectional study. Athens, Greece; Dortmund, Germany; Ghent, Belgium; Heraklion, Greece; Lille, France; Pécs, Hungary; Rome, Italy; Stockholm, Sweden; Vienna, Austria; and Zaragoza, Spain, from October 2006 to December 2007. Adolescents from the Healthy Lifestyle in Europe by Nutrition in Adolescence Cross-Sectional Study (n = 752). Physical activity. The FTO rs9939609 polymorphism was genotyped. Physical activity was assessed by accelerometry. We measured weight, height, waist circumference, and triceps and subscapular skinfolds; body mass index (BMI [calculated as weight in kilograms divided by height in meters squared]) and body fat percentage were calculated. The A allele of the FTO polymorphism was significantly associated with higher BMI (+0.42 per risk allele), higher body fat percentage (+1.03% per risk allele), and higher waist circumference (+0.85 cm per risk allele). We detected significant or borderline gene x physical activity interactions for the studied body fat estimates (for interaction, P = .02, .06, and .10 for BMI, body fat percentage, and waist circumference, respectively). Indeed, the effect of the FTO rs9939609 polymorphism on these body fat parameters was much lower in adolescents who met the daily physical activity recommendations (ie, >/=60 min/d of moderate to vigorous physical activity) compared with those who did not: +0.17 vs +0.65 per risk allele in BMI, respectively; +0.40% vs +1.70% per risk allele in body fat percentage, respectively; and +0.60 vs +1.15 cm per risk allele in waist circumference, respectively. Adolescents meeting the daily physical activity recommendations may overcome the effect of the FTO rs9939609 polymorphism on obesity-related traits.
7 CFR 810.1002 - Definition of other terms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... seeds. All matter that passes through a 5/64 triangular-hole sieve after sieving according to procedures..., rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, and wheat. (e) Sieves—(1) 5/64 triangular-hole sieve. A metal sieve 0.032 inch thick with equilateral triangular...
7 CFR 810.1002 - Definition of other terms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... seeds. All matter that passes through a 5/64 triangular-hole sieve after sieving according to procedures..., rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, and wheat. (e) Sieves—(1) 5/64 triangular-hole sieve. A metal sieve 0.032 inch thick with equilateral triangular...
7 CFR 810.1002 - Definition of other terms.
Code of Federal Regulations, 2013 CFR
2013-01-01
... seeds. All matter that passes through a 5/64 triangular-hole sieve after sieving according to procedures..., rye, safflower, sorghum, soybeans, spelt, sunflower seed, sweet corn, triticale, and wheat. (e) Sieves—(1) 5/64 triangular-hole sieve. A metal sieve 0.032 inch thick with equilateral triangular...
Villa-González, Emilio; Ruiz, Jonatan R.; Chillón, Palma
2015-01-01
Active commuting (walking or cycling) to school has been positively associated with improved fitness among adolescents. However, current evidence lacks information on whether this association persists in children. The aim of this study was to examine the association of active commuting to school with different fitness parameters in Spanish school-aged children. A total of 494 children (229 girls) from five primary schools in Granada and Jaén (Spain), aged between eight and 11 years, participated in this cross-sectional study. Participants completed the Assessing Levels of Physical Activity (ALPHA) fitness test battery and answered a self-reported questionnaire regarding the weekly travel mode to school. Active commuting to school was significantly associated with higher levels of speed-agility in boys (p = 0.048) and muscle strength of the lower body muscular fitness in girls (p = 0.016). However, there were no significant associations between active commuting to school and cardiorespiratory fitness and upper body muscular fitness. Our findings suggest that active commuting to school was associated with higher levels of both speed-agility and lower body muscular fitness in boys and girls, respectively. Future studies should confirm whether increasing active commuting to school increases speed-agility and muscle strength of the lower body. PMID:26322487
Supersonic full-potential methods for missile body analysis
NASA Technical Reports Server (NTRS)
Pittman, James L.
1992-01-01
Accounts are presented of representative applications to missile bodies of arbitrary shape of methods based on the steady form of the full potential equation. The NCOREL and SIMP full-potential codes are compared, and their results are evaluated for the cases of an arrow wing and a wing-body configuration. Attention is given to the effect of cross-sectional and longitudinal geometries. Comparisons of surface pressure and longitudinal force and moment data for circular and elliptic bodies have shown that the full-potential methods yielded excellent results in attached-flow conditions. Results are presented for a conical star body, waveriders, the Shuttle Orbiter, and a highly swept wing-body cruising at Mach 4.
The Achilles Tendon in Healthy Subjects: An Anthropometric and Ultrasound Mapping Study.
Patel, Nick N; Labib, Sameh A
Ultrasonography is an inexpensive, fast, and reliable imaging technique widely used to assess the Achilles tendon. Although significant data exists regarding pathologic tendon changes, ultrasound data from healthy individuals are more limited. We aimed to better characterize ultrasound Achilles tendon measurements in healthy individuals and identify important correlating factors. The information collected included patient demographics, body habitus, activity level, foot dominance, and resting ankle angle. Ultrasound analysis was performed bilaterally on the Achilles tendons of 50 subjects using a high-frequency transducer to measure tendon width, thickness, cross-sectional area, and length. Males had a significantly larger mean tendon length, width, thickness, and cross-sectional area. No statistically significant difference was found in any tendon dimension between the white and black participants. Similarly, no difference was found in any tendon parameter when comparing right versus left leg dominance. Healthy subjects had a mean ankle resting angle of 45.1° ± 24° with no statistically significant difference between right and left ankles. Considering all individuals, each tendon parameter (tendon length, width, thickness, and cross-sectional area) correlated positively with subject height, weight, tibia length, and foot size. Only the Achilles cross-sectional area correlated significantly with the activity level. The resting angle of the ankle correlated positively with both tendon length and thickness. In conclusion, we found significant variations in Achilles tendon anatomy in the healthy adult population. We have thoroughly characterized significant correlations between healthy tendon dimensions and various body habitus, activity levels, and ankle parameters. Greater knowledge of the normal Achilles tendon anatomy and characterization of its variations in the healthy population will potentially allow for better pathologic diagnosis and surgical repair. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Barnes, Timothy L; French, Simone A; Mitchell, Nathan R; Wolfson, Julian
2016-04-01
To examine the association between fast-food consumption, diet quality and body weight in a community sample of working adults. Cross-sectional and prospective analysis of anthropometric, survey and dietary data from adults recruited to participate in a worksite nutrition intervention. Participants self-reported frequency of fast-food consumption per week. Nutrient intakes and diet quality, using the Healthy Eating Index-2010 (HEI-2010), were computed from dietary recalls collected at baseline and 6 months. Metropolitan medical complex, Minneapolis, MN, USA. Two hundred adults, aged 18-60 years. Cross-sectionally, fast-food consumption was significantly associated with higher daily total energy intake (β=72·5, P=0·005), empty calories (β=0·40, P=0·006) and BMI (β=0·73, P=0·011), and lower HEI-2010 score (β=-1·23, P=0·012), total vegetables (β=-0·14, P=0·004), whole grains (β=-0·39, P=0·005), fibre (β=-0·83, P=0·002), Mg (β=-6·99, P=0·019) and K (β=-57·5, P=0·016). Over 6 months, change in fast-food consumption was not significantly associated with changes in energy intake or BMI, but was significantly inversely associated with total intake of vegetables (β=-0·14, P=0·034). Frequency of fast-food consumption was significantly associated with higher energy intake and poorer diet quality cross-sectionally. Six-month change in fast-food intake was small, and not significantly associated with overall diet quality or BMI.
Barnes, Timothy L; French, Simone A; Mitchell, Nathan R; Wolfson, Julian
2018-01-01
Objective To examine the association between fast-food consumption, diet quality and body weight in a community sample of working adults. Design Cross-sectional and prospective analysis of anthropometric, survey and dietary data from adults recruited to participate in a worksite nutrition intervention. Participants self-reported frequency of fast-food consumption per week. Nutrient intakes and diet quality, using the Healthy Eating Index-2010 (HEI-2010), were computed from dietary recalls collected at baseline and 6 months. Setting Metropolitan medical complex, Minneapolis, MN, USA. Subjects Two hundred adults, aged 18–60 years. Results Cross-sectionally, fast-food consumption was significantly associated with higher daily total energy intake (β = 72·5, P = 0·005), empty calories (β = 0·40, P = 0·006) and BMI (β = 0·73, P =0·011), and lower HEI-2010 score (β = −1·23, P =0·012), total vegetables (β = −0·14, P =0·004), whole grains (β = −0·39, P =0·005), fibre (β = −0·83, P =0·002), Mg (β = −6·99, P =0·019) and K (β = −57·5, P =0·016). Over 6 months, change in fast-food consumption was not significantly associated with changes in energy intake or BMI, but was significantly inversely associated with total intake of vegetables (β = −0·14, P =0·034). Conclusions Frequency of fast-food consumption was significantly associated with higher energy intake and poorer diet quality cross-sectionally. Six-month change in fast-food intake was small, and not significantly associated with overall diet quality or BMI. PMID:26074150
Javvaji, Brahmanandam; He, Bo; Zhuang, Xiaoying
2018-06-01
Graphene is a non-piezoelectric material. Engineering the piezoelectricity in graphene is possible with the help of impurities, defects and structural modifications. This study reports the mechanism of strain induced polarization and the estimation of piezoelectric and flexoelectric coefficients for graphene system. The combination of charge-dipole potential and the strong many-body potential is employed for describing the inter-atomic interactions. The breaking of symmetry in graphene material is utilized to generate the polarization. Pristine graphene, graphene with circular defect, graphene with triangular defect and trapezium-shaped graphene are considered. Molecular dynamics simulations are performed for straining the graphene atomic systems. The optimization of charge-dipole potential functions measure the polarization for these systems. Pristine and circular defect graphene systems show a constant polarization with strain. The polarization is varying with strain for a triangular defected and trapezium-shaped graphene system. The local atomic deformation produces a change in polarization with respect to the strain gradient. Estimated piezo and flexo coefficients motivate the usage of graphene in electro-mechanical devices.
The motion near L{sub 4} equilibrium point under non-point mass primaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huda, I. N., E-mail: ibnu.nurul@students.itb.ac.id; Utama, J. A.; Madley, D.
2015-09-30
The Circular Restricted Three-Body Problem (CRTBP) possesses five equilibrium points, that comprise three collinear (L{sub 1}, L{sub 2}, and L{sub 3}) and two triangular points (L{sub 4} and L{sub 5}). The classical study (with the primaries are point mass) suggests that the equilibrium points may cause the velocity of infinitesimal object relatively becomes zero and reveals the zero velocity curve. We study the motion of infinitesimal object near triangular equilibrium point (L{sub 4}) and determine its zero velocity curve. We extend the study by taking into account the effects of radiation of the bigger primary (q{sub 1} ≠ 1, q{submore » 2} = 1) and oblateness of the smaller primary (A{sub 1} = 0, A{sub 2} ≠ 0). The location of L{sub 4} is analytically derived then the stability of L{sub 4} and its zero velocity curves are studied numerically. Our study suggests that the oblateness and the radiation of primaries may affect the stability and zero velocity curve around L{sub 4}.« less
NASA Astrophysics Data System (ADS)
Javvaji, Brahmanandam; He, Bo; Zhuang, Xiaoying
2018-06-01
Graphene is a non-piezoelectric material. Engineering the piezoelectricity in graphene is possible with the help of impurities, defects and structural modifications. This study reports the mechanism of strain induced polarization and the estimation of piezoelectric and flexoelectric coefficients for graphene system. The combination of charge-dipole potential and the strong many-body potential is employed for describing the inter-atomic interactions. The breaking of symmetry in graphene material is utilized to generate the polarization. Pristine graphene, graphene with circular defect, graphene with triangular defect and trapezium-shaped graphene are considered. Molecular dynamics simulations are performed for straining the graphene atomic systems. The optimization of charge-dipole potential functions measure the polarization for these systems. Pristine and circular defect graphene systems show a constant polarization with strain. The polarization is varying with strain for a triangular defected and trapezium-shaped graphene system. The local atomic deformation produces a change in polarization with respect to the strain gradient. Estimated piezo and flexo coefficients motivate the usage of graphene in electro-mechanical devices.
Structure and properties of silk from the African wild silkmoth Gonometa postica reared indoors.
Teshome, Addis; Raina, S K; Vollrath, Fritz
2014-03-07
African wild silkmoth, Gonometa postica Walker (Lepidoptera: Lasiocampidae), were reared indoors in order to examine the influence of rearing conditions on the structure and properties of silk cocoon shells and degummed fibers by using a scanning electron microscope, an Instron tensile tester, and a thermogravimetric analyzer. The cocoons reared indoors showed inferior quality in weight, length, width, and cocoon shell ratio compared to cocoons reared outdoors. There were no differences in cocoon shell and fiber surfaces and cross sectional structures. Cocoon shells were covered with calcium oxalate crystals with few visible fibers on their surface. Degummed fibers were smooth with minimum unfractured surfaces and globular to triangular cross sections. Indoor-reared cocoon shells had a significantly higher breaking strain, while the breaking stress was higher for cocoons reared outdoors. Fibers from indoor cocoons had a significantly higher breaking stress while outdoor fibers had higher breaking strain. Thermogravimetric analysis curves showed two main thermal reactions revealing the dehydration of water molecules and ir-reversible decomposition of the crystallites in both cocoons and fibers reared indoors and outdoors. Cocoon shells underwent additional peaks of decomposition with increased temperature. The total weight loss was higher for cocoon shells and degummed fibers from indoors. Rearing conditions (temperature and relative humidity), feeding method used, changes in total life span, days to molting, and spinning might have influenced the variation in the properties observed.The ecological and commercial significances of indoor rearing of G. posticaare discussed. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
Kim, Hyeon-Cheol; Lee, Min-Ho; Yum, Jiwan; Versluis, Antheunis; Lee, Chan-Joo; Kim, Byung-Min
2010-07-01
Nickel-titanium (NiTi) rotary files can produce cleanly tapered canal shapes with low tendency of transporting the canal lumen. Because NiTi instruments are generally perceived to have high fracture risk during use, new designs have been marketed to lower fracture risks. However, these design variations may also alter the forces on a root during instrumentation and increase dentinal defects that predispose a root to fracture. This study compared the stress conditions during rotary instrumentation in a curved root for three NiTi file designs. Stresses were calculated using finite element (FE) analysis. FE models of ProFile (Dentsply Maillefer, Ballaigues, Switzerland; U-shaped cross-section and constant 6% tapered shaft), ProTaper Universal (Dentsply; convex triangular cross-section with notch and progressive taper shaft), and LightSpeed LSX (Lightspeed Technology, Inc, San Antonio, TX; noncutting round shaft) were rotated within a curved root canal. The stress and strain conditions resulting from the simulated shaping action were evaluated in the apical root dentin. ProTaper Universal induced the highest von Mises stress concentration in the root dentin and had the highest tensile and compressive principal strain components at the external root surface. The calculated stress values from ProTaper Universal, which had the biggest taper shaft, approached the strength properties of dentin. LightSpeed generated the lowest stresses. The stiffer file designs generated higher stress concentrations in the apical root dentin during shaping of the curved canal, which raises the risk of dentinal defects that may lead to apical root cracking. Thus, stress levels during shaping and fracture susceptibility after shaping vary with instrument design. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Supercell Depletion Studies for Prismatic High Temperature Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Ortensi
2012-10-01
The traditional two-step method of analysis is not accurate enough to represent the neutronic effects present in the prismatic high temperature reactor concept. The long range coupling of the various regions in high temperature reactors poses a set of challenges that are not seen in either LWRs or fast reactors. Unlike LWRs, which exhibit large, localized effects, the dominant effects in PMRs are, for the most part, distributed over larger regions, but with lower magnitude. The 1-D in-line treatment currently used in pebble bed reactor analysis is not sufficient because of the 2-D nature of the prismatic blocks. Considerable challengesmore » exist in the modeling of blocks in the vicinity of reflectors, which, for current small modular reactor designs with thin annular cores, include the majority of the blocks. Additional challenges involve the treatment of burnable poisons, operational and shutdown control rods. The use of a large domain for cross section preparation provides a better representation of the neutron spectrum, enables the proper modeling of BPs and CRs, allows the calculation of generalized equivalence theory parameters, and generates a relative power distribution that can be used in compact power reconstruction. The purpose of this paper is to quantify the effects of the reflector, burnable poison, and operational control rods on an LEU design and to delineate an analysis approach for the Idaho National Laboratory. This work concludes that the use of supercells should capture these long-range effects in the preparation of cross sections and along with a set of triangular meshes to treat BPs, and CRs a high fidelity neutronics computation is attainable.« less
Triangular Diagrams Teach Steady and Dynamic Behaviour of Catalytic Reactions.
ERIC Educational Resources Information Center
Klusacek, K.; And Others
1989-01-01
Illustrates how triangular diagrams can aid in presenting some of the rather complex transient interactions that occur among gas and surface species during heterogeneous catalytic reactions. The basic equations and numerical examples are described. Classroom use of the triangular diagram is discussed. Several diagrams and graphs are provided. (YP)
On Certain Topological Indices of Boron Triangular Nanotubes
NASA Astrophysics Data System (ADS)
Aslam, Adnan; Ahmad, Safyan; Gao, Wei
2017-08-01
The topological index gives information about the whole structure of a chemical graph, especially degree-based topological indices that are very useful. Boron triangular nanotubes are now replacing usual carbon nanotubes due to their excellent properties. We have computed general Randić (Rα), first Zagreb (M1) and second Zagreb (M2), atom-bond connectivity (ABC), and geometric-arithmetic (GA) indices of boron triangular nanotubes. Also, we have computed the fourth version of atom-bond connectivity (ABC4) and the fifth version of geometric-arithmetic (GA5) indices of boron triangular nanotubes.
NASA Astrophysics Data System (ADS)
Koo, Min-Sung; Choi, Ho-Lim
2018-01-01
In this paper, we consider a control problem for a class of uncertain nonlinear systems in which there exists an unknown time-varying delay in the input and lower triangular nonlinearities. Usually, in the existing results, input delays have been coupled with feedforward (or upper triangular) nonlinearities; in other words, the combination of lower triangular nonlinearities and input delay has been rare. Motivated by the existing controller for input-delayed chain of integrators with nonlinearity, we show that the control of input-delayed nonlinear systems with two particular types of lower triangular nonlinearities can be done. As a control solution, we propose a newly designed feedback controller whose main features are its dynamic gain and non-predictor approach. Three examples are given for illustration.
Ohdaira, Takeshi; Tsutsumi, Norifumi; Xu, Hao; Mori, Megumu; Uemura, Munenori; Ieiri, Satoshi; Hashizume, Makoto
2011-07-01
We have invented multi-piercing surgery (MPS) which could potentially solve the triangular formation loss and device clashing which occur in single-port surgery (SPS), as well as restricted visual field, organ damage by needle-type instruments, and impaired removal of a resected organ from the body which occur in needlescopic surgery (NS). MPS is natural orifice translumenal endoscopic surgery (NOTES)-assisted NS. We used 3-mm diameter robots as needle-type instruments for MPS to examine the possibility of local immune cell therapy and regenerative therapy using stem cells for pancreatic cancer. In MPS using two robots, the therapeutic cell suspension was injected into a target region of pancreas in two pigs. Both retention of a capsule of liquid cell suspension and invasive level were evaluated. Triangular formation could be ensured. The use of small-diameter robots allowed (1) the surgical separation of the pancreas and the retroperitoneum, and (2) the formation of the capsule containing the immune cell and stem cell suspension. The endoscope for NOTES provided a clear visual field and also assisted the removal of a resected organ from the body. The visual field of the endoscope could be oriented well by using an electromagnetic navigation system. MPS using small-diameter robots could potentially solve the issues inherent in SPS and NS and could allow minimally invasive local immune cell and stem cell therapy.
Robbins, Lorraine B; Ling, Jiying; Resnicow, Kenneth
2017-12-06
Understanding factors related to girls' body image discrepancy, which is the difference between self-perceived current or actual and ideal body size, is important for addressing body-related issues and preventing adverse sequelae. Two aims were to: 1) examine demographic differences in body image discrepancy; and 2) determine the association of body image discrepancy with weight status, percent body fat, physical activity, sedentary behavior, and cardiovascular (CV) fitness among young adolescent girls. The cross-sectional study included a secondary analysis of baseline data from a group randomized controlled trial including 1519 5th-8th grade girls in 24 U.S. schools. Girls completed physical activity and sedentary behavior surveys. To indicate perceived current/actual and ideal body image, girls selected from nine body figures the one that represented how they look now and another showing how they want to look. Girls wore accelerometers measuring physical activity. Height, weight, and percent body fat were assessed. The Progressive Aerobic CV Endurance Run was used to estimate CV fitness. Independent t-test, one- and two-way ANOVA, correlational analyses, and hierarchical linear regressions were performed. The majority (67.5%; n = 1023) chose a smaller ideal than current/actual figure. White girls had higher body image discrepancy than Black girls (p = .035). Body image discrepancy increased with increasing weight status (F 3,1506 = 171.32, p < .001). Moderate-to-vigorous physical activity (MVPA) and vigorous physical activity were negatively correlated with body image discrepancy (r = -.10, p < .001; r = -.14, p < .001, respectively), but correlations were not significant after adjusting for race and body mass index (BMI), respectively. Body image discrepancy was moderately correlated with CV fitness (r = -.55, p < .001). After adjusting for demographics, percent body fat, but not CV fitness or MVPA, influenced body image discrepancy. Girls with higher percent body fat had higher body image discrepancy (p < .001). This study provided important information to guide interventions for promoting a positive body image among girls. ClinicalTrials.gov Identifier NCT01503333 , registration date: January 4, 2012.
NASA Technical Reports Server (NTRS)
Perkins, Edward W; Kuehn, Donald M
1953-01-01
Pressure distributions and force characteristics have been determined for a body of revolution consisting of a fineness ratio 5.75, circular-arc, ogival nose tangent to a cylindrical afterbody for an angle-of-attack range of 0 degrees to 35.5 degrees. The free-stream Mach number was 1.98 and the free-stream Reynolds number was approximately 0.5 x 10 sup 6, based on body diameter. Comparison of the theoretical and experimental pressure distributions shows that for zero lift, either slender-body theory or higher-order theories yield results which are in good agreement with experiment. For the lifting case, good agreement with theory is found only for low angles of attack and for the region in which the body cross-sectional area is increasing in the downstream direction. Because of the effects of cross-flow separation and the effects of compressibility due to the high cross-flow Mach numbers at large angles of attack, the experimental pressure distributions differ from those predicted by potential theory. Although the flow about the inclined body was, in general, similar to that assumed as the basis for Allen's method of estimating the forces resulting from viscous effects (NACA RM A91I26), the distribution of the forces was significantly different from that assumed. Nevertheless, the lift and pitching-moment characteristics were in fair agreement with the estimated value.
A new beam theory using first-order warping functions
NASA Technical Reports Server (NTRS)
Ie, C. A.; Kosmatka, J. B.
1990-01-01
Due to a certain type of loading and geometrical boundary conditions, each beam will respond differently depending on its geometrical form of the cross section and its material definition. As an example, consider an isotropic rectangular beam under pure bending. Plane sections perpendicular to the longitudinal axis of the beam will remain plane and perpendicular to the deformed axis after deformation. However, due to the Poisson effect, particles in the planes will move relative to each other resulting in a form of anticlastic deformation. In other words, even in pure bending of an isotropic beam, each cross section will deform in the plane. If the material of the beam above is replaced by a generally anisotropic material, then the cross sections will not only deform in the plane, but also out of plane. Hence, in general, both in-plane deformation and out-of-plane warping will exist and depend on the geometrical form and material definition of the cross sections and also on the loadings. For the purpose of explanation, an analogy is made. The geometrical forms of the bodies of each individual are unique. Hence, different sizes of clothes are needed. Finding the sizes of clothes for individuals is like determining the warping functions in beams. A new beam theory using first-order warping functions is introduced. Numerical examples will be presented for an isotropic beam with rectangular cross section. The theory can be extended for composite beams.
NASA Astrophysics Data System (ADS)
Kong, Xiangjing; P, L. Li; J, J. Kolata; A, Morsad; L, Goetting; R, A. Kryger; S, Dixit; R, Tighe; W, Chune
1990-05-01
There is a peak in the excitation function of total cross section of low energy α-particles in the reaction 12C+16O at Ec.m approx33.5MeV. The experimental distribution of α-particle emitted event has been obtained. The result of theoretical calculation roughly agrees with experimental data, gives an orientation where three-body resonances can be expected, and the information on internal structure of three-body linear chain molecule.
Mourad, Ghassan; Strömberg, Anna; Johansson, Peter; Jaarsma, Tiny
2016-02-01
Patients with non-cardiac chest pain (NCCP) suffer from recurrent chest pain and make substantial use of healthcare resources. To explore the prevalence of depressive symptoms, cardiac anxiety, and fear of body sensations in patients discharged with a NCCP diagnosis; and to describe how depressive symptoms, cardiac anxiety, and fear of body sensations are related to each other and to healthcare-seeking behavior. Cross-sectional design. Data were collected between late October 2013 and early January 2014 in 552 patients with NCCP from four hospitals in southeast Sweden, using the Patient Health Questionnaire-9, Cardiac Anxiety Questionnaire, and Body Sensations Questionnaire. About 26 % (n = 141) of the study participants reported at least moderate depressive symptoms, 42 % (n = 229) reported at least moderate cardiac anxiety, and 62 % (n = 337) reported some degree of fear of body sensations. We found strong positive relationships between depressive symptoms and cardiac anxiety (r s = 0.49; P < 0.01), depressive symptoms and fear of body sensations (r s = 0.50; P < 0.01), and cardiac anxiety and fear of body sensations (r s = 0.56; P < 0.01). About 60 % of the participants sought care because of chest pain once, 26 % two or three times, and the rest more than three times. In a multivariable regression analysis, and after adjustment for multimorbidity, cardiac anxiety was the only variable independently associated with healthcare-seeking behavior. Patients with NCCP and many healthcare consultations had high levels of depressive symptoms and cardiac anxiety, and moderate levels of fear of body sensations. Cardiac anxiety had the strongest relationship with healthcare-seeking behavior and may therefore be an important target for intervention to alleviate suffering and to reduce healthcare use and costs.
2014-01-01
Background The purpose of this study was to investigate how physical activity (PA), cardiorespiratory fitness (CRF), and body composition are associated with heart rate variability (HRV)-based indicators of stress and recovery on workdays. Additionally, we evaluated the association of objectively measured stress with self-reported burnout symptoms. Methods Participants of this cross-sectional study were 81 healthy males (age range 26–40 y). Stress and recovery on workdays were measured objectively based on HRV recordings. CRF and anthropometry were assessed in laboratory conditions. The level of PA was based on a detailed PA interview (MET index [MET-h/d]) and self-reported activity class. Results PA, CRF, and body composition were significantly associated with levels of stress and recovery on workdays. MET index (P < 0.001), activity class (P = 0.001), and CRF (P = 0.019) were negatively associated with stress during working hours whereas body fat percentage (P = 0.005) was positively associated. Overall, 27.5% of the variance of total stress on workdays (P = 0.001) was accounted for by PA, CRF, and body composition. Body fat percentage and body mass index were negatively associated with night-time recovery whereas CRF was positively associated. Objective work stress was associated (P = 0.003) with subjective burnout symptoms. Conclusions PA, CRF, and body composition are associated with HRV-based stress and recovery levels, which needs to be taken into account in the measurement, prevention, and treatment of work-related stress. The HRV-based method used to determine work-related stress and recovery was associated with self-reported burnout symptoms, but more research on the clinical importance of the methodology is needed. PMID:24742265
Juvenile body mass estimation: A methodological evaluation.
Cowgill, Libby
2018-02-01
Two attempts have been made to develop body mass prediction formulae specifically for immature remains: Ruff (Ruff, C.C., 2007, Body size prediction from juvenile skeletal remains. American Journal Physical Anthropology 133, 698-716) and Robbins et al. (Robbins, G., Sciulli, P.W., Blatt, S.H., 2010. Estimating body mass in subadult human skeletons. American Journal Physical Anthropology 143, 146-150). While both were developed from the same reference population, they differ in their independent variable selection: Ruff (2008) used measures of metaphyseal and articular surface size to predict body mass in immature remains, whereas Robbins et al. (2010) relied on cross-sectional properties. Both methods perform well on independent testing samples; however, differences between the two methods exist in the predicted values. This research evaluates the differences in the body mass estimates from these two methods in seven geographically diverse skeletal samples under the age of 18 (n = 461). The purpose of this analysis is not to assess which method performs with greater accuracy or precision; instead, differences between the two methods are used as a heuristic device to focus attention on the unique challenges affecting the prediction of immature body mass estimates in particular. The two methods differ by population only in some cases, which may be a reflection of activity variation or nutritional status. In addition, cross-sectional properties almost always produce higher estimates than metaphyseal surface size across all age categories. This highlights the difficulty in teasing apart information related to body mass from that relevant to loading, particularly when the original reference population is urban/industrial. Copyright © 2017 Elsevier Ltd. All rights reserved.
Craig, Eva; Reilly, John; Bland, Ruth
2013-11-01
A variety of methods are available for defining undernutrition (thinness/underweight/under-fat) and overnutrition (overweight/obesity/over-fat). The extent to which these definitions agree is unclear. The present cross-sectional study aimed to assess agreement between widely used methods of assessing nutritional status in children and adolescents, and to examine the benefit of body composition estimates. The main objective of the cross-sectional study was to assess underweight, overweight and obesity using four methods: (i) BMI-for-age using WHO (2007) reference data; (ii) BMI-for-age using Cole et al. and International Obesity Taskforce cut-offs; (iii) weight-for-age using the National Centre for Health Statistics/WHO growth reference 1977; and (iv) body fat percentage estimated by bio-impedance (body fat reference curves for children of McCarthy et al., 2006). Comparisons were made between methods using weighted kappa analyses. Rural South Africa. Individuals (n 1519) in three age groups (school grade 1, mean age 7 years; grade 5, mean age 11 years; grade 9, mean age 15 years). In boys, prevalence of unhealthy weight status (both under- and overnutrition) was much higher at all ages with body fatness measures than with simple anthropometric proxies for body fatness; agreement between fatness and weight-based measures was fair or slight using Landis and Koch categories. In girls, prevalence of unhealthy weight status was also higher with body fatness than with proxies, although agreement between measures ranged from fair to substantial. Methods for defining under- and overnutrition should not be considered equivalent. Weight-based measures provide highly conservative estimates of unhealthy weight status, possibly more conservative in boys. Simple body composition measures may be more informative than anthropometry for nutritional surveillance of children and adolescents.
Graphite composite truss welding and cap section forming subsystems. Volume 2: Program results
NASA Technical Reports Server (NTRS)
1980-01-01
The technology required to develop a beam builder which automatically fabricates long, continuous, lightweight, triangular truss members in space from graphite/thermoplastics composite materials is described. Objectives are: (1) continue the development of forming and welding methods for graphite/thermoplastic (GR/TP) composite material; (2) continue GR/TP materials technology development; and (3) fabricate and structurally test a lightweight truss segment.
7 CFR 810.802 - Definition of other terms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... and fines. All matter other than whole flaxseed that passes through a 5/64 triangular-hole sieve, and... established under the Act, that are materially discolored and damaged by heat. (e) Sieve— 5/64 triangular-hole sieve. A metal sieve 0.032 inch thick with equilateral triangular perforations the inscribed circles of...
7 CFR 810.802 - Definition of other terms.
Code of Federal Regulations, 2013 CFR
2013-01-01
... and fines. All matter other than whole flaxseed that passes through a 5/64 triangular-hole sieve, and... established under the Act, that are materially discolored and damaged by heat. (e) Sieve— 5/64 triangular-hole sieve. A metal sieve 0.032 inch thick with equilateral triangular perforations the inscribed circles of...
7 CFR 810.802 - Definition of other terms.
Code of Federal Regulations, 2011 CFR
2011-01-01
... and fines. All matter other than whole flaxseed that passes through a 5/64 triangular-hole sieve, and... established under the Act, that are materially discolored and damaged by heat. (e) Sieve— 5/64 triangular-hole sieve. A metal sieve 0.032 inch thick with equilateral triangular perforations the inscribed circles of...
7 CFR 810.802 - Definition of other terms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... and fines. All matter other than whole flaxseed that passes through a 5/64 triangular-hole sieve, and... established under the Act, that are materially discolored and damaged by heat. (e) Sieve— 5/64 triangular-hole sieve. A metal sieve 0.032 inch thick with equilateral triangular perforations the inscribed circles of...
Sorption of Triangular Silver Nanoplates on Polyurethane Foam
NASA Astrophysics Data System (ADS)
Furletov, A. A.; Apyari, V. V.; Garshev, A. V.; Volkov, P. A.; Tolmacheva, V. V.; Dmitrienko, S. G.
2018-02-01
The sorption of triangular silver nanoplates on polyurethane foam is investigated as a procedure for creating a nanocomposite sensing material for subsequent use in optical means of chemical analysis. Triangular silver nanoplates are synthesized and characterized, and a simple sorption technique for the formation of a composite material based on these nanoplates is proposed.
3D Measurement of Anatomical Cross-sections of Foot while Walking
NASA Astrophysics Data System (ADS)
Kimura, Makoto; Mochimaru, Masaaki; Kanade, Takeo
Recently, techniques for measuring and modeling of human body are taking attention, because human models are useful for ergonomic design in manufacturing. We aim to measure accurate shape of human foot that will be useful for the design of shoes. For such purpose, shape measurement of foot in motion is obviously important, because foot shape in the shoe is deformed while walking or running. In this paper, we propose a method to measure anatomical cross-sections of foot while walking. No one had ever measured dynamic shape of anatomical cross-sections, though they are very basic and popular in the field of biomechanics. Our proposed method is based on multi-view stereo method. The target cross-sections are painted in individual colors (red, green, yellow and blue), and the proposed method utilizes the characteristic of target shape in the camera captured images. Several nonlinear conditions are introduced in the process to find the consistent correspondence in all images. Our desired accuracy is less than 1mm error, which is similar to the existing 3D scanners for static foot measurement. In our experiments, the proposed method achieved the desired accuracy.
Off-energy-shell p-p scattering at sub-Coulomb energies via the Trojan horse method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumino, A.; Dipartimento di Metodologie Fisiche e Chimiche per l'Ingegneria, Universita di Catania, Catania; Universita Kore di Enna, Enna
2008-12-15
Two-proton scattering at sub-Coulomb energies has been measured indirectly via the Trojan horse method applied to the p + d{yields}p + p + n reaction to investigate off-energy shell effects for scattering processes. The three-body experiment was performed at 5 and 4.7 MeV corresponding to a p-p relative energy ranging from 80 to 670 keV. The free p-p cross section exhibits a deep minimum right within this relative energy region due to Coulomb plus nuclear destructive interference. No minimum occurs instead in the Trojan horse p-p cross section, which was extracted by employing a simple plane-wave impulse approximation. A detailedmore » formalism was developed to build up the expression of the theoretical half-off-shell p-p cross section. Its behavior agrees with the Trojan horse data and in turn formally fits the n-n, n-p, and nuclear p-p cross sections given the fact that in its expression the Coulomb amplitude is negligible with respect to the nuclear one. These results confirm the Trojan horse suppression of the Coulomb amplitude for scattering due to the off-shell character of the process.« less
NASA Technical Reports Server (NTRS)
Ishihara, A.; Ohira, Y.; Roy, R. R.; Nagaoka, S.; Sekiguchi, C.; Hinds, W. E.; Edgerton, V. R.
1997-01-01
The cross-sectional areas and succinate dehydrogenase activities of L5 dorsal root ganglion neurons in rats were determined after 14 days of spaceflight and after nine days of recovery. The mean and distribution of the cross-sectional areas were similar to age-matched, ground-based controls for both the spaceflight and for the spaceflight plus recovery groups. The mean succinate dehydrogenase activity was significantly lower in spaceflight compared to aged-matched control rats, whereas the mean succinate dehydrogenase activity was similar in age-matched control and spaceflight plus recovery rats. The mean succinate dehydrogenase activity of neurons with cross-sectional areas between 1000 and 2000 microns2 was lower (between 7 and 10%) in both the spaceflight and the spaceflight plus recovery groups compared to the appropriate control groups. The reduction in the oxidative capacity of a subpopulation of sensory neurons having relatively large cross-sectional areas immediately following spaceflight and the sustained depression for nine days after returning to 1 g suggest that the 0 g environment induced significant alterations in proprioceptive function.
NASA Astrophysics Data System (ADS)
Korobov, A.
2011-08-01
Discrete uniform Poisson-Voronoi tessellations of two-dimensional triangular tilings resulting from the Kolmogorov-Johnson-Mehl-Avrami (KJMA) growth of triangular islands have been studied. This shape of tiles and islands, rarely considered in the field of random tessellations, is prompted by the birth-growth process of Ir(210) faceting. The growth mode determines a triangular metric different from the Euclidean metric. Kinetic characteristics of tessellations appear to be metric sensitive, in contrast to area distributions. The latter have been studied for the variant of nuclei growth to the first impingement in addition to the conventional case of complete growth. Kiang conjecture works in both cases. The averaged number of neighbors is six for all studied densities of random tessellations, but neighbors appear to be mainly different in triangular and Euclidean metrics. Also, the applicability of the obtained results for simulating birth-growth processes when the 2D nucleation and impingements are combined with the 3D growth in the particular case of similar shape and the same orientation of growing nuclei is briefly discussed.
Korobov, A
2011-08-01
Discrete uniform Poisson-Voronoi tessellations of two-dimensional triangular tilings resulting from the Kolmogorov-Johnson-Mehl-Avrami (KJMA) growth of triangular islands have been studied. This shape of tiles and islands, rarely considered in the field of random tessellations, is prompted by the birth-growth process of Ir(210) faceting. The growth mode determines a triangular metric different from the Euclidean metric. Kinetic characteristics of tessellations appear to be metric sensitive, in contrast to area distributions. The latter have been studied for the variant of nuclei growth to the first impingement in addition to the conventional case of complete growth. Kiang conjecture works in both cases. The averaged number of neighbors is six for all studied densities of random tessellations, but neighbors appear to be mainly different in triangular and Euclidean metrics. Also, the applicability of the obtained results for simulating birth-growth processes when the 2D nucleation and impingements are combined with the 3D growth in the particular case of similar shape and the same orientation of growing nuclei is briefly discussed.
Frequency and Perceptions of Herbal Medicine use Among Hmong Americans: a Cross Sectional Survey.
Lor, Kajua B; Moua, Sakura; Ip, Eric J
2016-04-01
To determine the frequency and perceptions of herbal medicine use among Hmong Americans. Cross-sectional telephone survey. Sacramento, California Hmong community. Out of 118 subjects reached, 77 (65.3 %) reported lifetime use of herbal medicines. A majority of respondents agreed that herbal medicines were able to treat the body as a whole. Respondents felt that a leaflet of information indicating uses/side effects would be important to include for herbal medicines. Herbal medicine use was commonly reported among Hmong Americans. Thus, health care providers should be encouraged to discuss these alternative medicines with their Hmong American patients.
Cochlear mechanics: Analysis for a pure tone
NASA Astrophysics Data System (ADS)
Holmes, M. H.; Cole, J. D.
1983-11-01
The dynamical response of a three-dimensional hydroelastic model of the cochlea is studied for a pure tone forcing. The basilar membrane is modeled as an inhomogenous, orthotropic elastic plate and the fluid is assumed to be Newtonian. The resulting mathematical problem is reduced using viscous boundary layer theory and slender body approximations. This leads to a nonlinear eigenvalue problem in the transverse cross-section. The solutions for the case of a rectangular and semi-circular cross-section are computed and comparison is made with experiment. The role of the place principle in determining the difference limen is presented and it is shown how the theory agrees with the experimental measurements.
NASA Astrophysics Data System (ADS)
Hashimoto, Osamu; Mizokami, Osamu
The method for measuring radar cross section (RCS) based on Range-Doppler Imaging is discussed. In this method, the measured targets are rotated and the Doppler frequencies caused by each scattering element along the targets are analyzed by FFT. Using this method, each scattered power peak along the flying model is measured. It is found that each part of the RCS of a flying model can be measured and its RCS of a main wing (about 46 dB/sq cm) is greater than of its body (about 20-30 dB/sq cm).
Ebrahimian, Mehran; Yekehzare, Mohammad; Ejtehadi, Mohammad Reza
2015-12-01
To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular activator substances in the environment, causing the whole body to translate and rotate. The concentration of the chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the body for diffusive movements; also the variation of activator substance's concentration in the environment breaks the symmetry of linkers' preferred state, resulting in the drift of the random walker along the gradient of the density of activators. External food or danger sources may attract or repel the body by producing or consuming the chemical activators of the organism's enzymes, inducing chemotaxis behavior. Generalization of the model to three dimensions is straightforward.
NASA Astrophysics Data System (ADS)
Ebrahimian, Mehran; Yekehzare, Mohammad; Ejtehadi, Mohammad Reza
2015-12-01
To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular activator substances in the environment, causing the whole body to translate and rotate. The concentration of the chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the body for diffusive movements; also the variation of activator substance's concentration in the environment breaks the symmetry of linkers' preferred state, resulting in the drift of the random walker along the gradient of the density of activators. External food or danger sources may attract or repel the body by producing or consuming the chemical activators of the organism's enzymes, inducing chemotaxis behavior. Generalization of the model to three dimensions is straightforward.
NASA Astrophysics Data System (ADS)
Chen, Li-Chieh; Huang, Mei-Jiau
2017-02-01
A 2D simulation method for a rigid body moving in an incompressible viscous fluid is proposed. It combines one of the immersed-boundary methods, the DFFD (direct forcing fictitious domain) method with the spectral element method; the former is employed for efficiently capturing the two-way FSI (fluid-structure interaction) and the geometric flexibility of the latter is utilized for any possibly co-existing stationary and complicated solid or flow boundary. A pseudo body force is imposed within the solid domain to enforce the rigid body motion and a Lagrangian mesh composed of triangular elements is employed for tracing the rigid body. In particular, a so called sub-cell scheme is proposed to smooth the discontinuity at the fluid-solid interface and to execute integrations involving Eulerian variables over the moving-solid domain. The accuracy of the proposed method is verified through an observed agreement of the simulation results of some typical flows with analytical solutions or existing literatures.
[Quantitative and qualitative changes in the sex chromatin of diabetic women of different ages].
Kaiumov, E G; Dmitrieva, E N
1975-01-01
There was revealed a statistically significant reduction in the frequency of occurrence of sex chromatine (SC) in the patients (female) suffering from diabetes mellitus aged from 15 to 65 years before the treatment in comparison with the healthy women. After the compensation of the carbohydrate metabolism there was noted its further reduction in the patients aged from 25 to 65 years. In 15-65-year women who contracted diabetes mellitus there was an increase in the circular form of the SC bodies looking like thickenings of the nuclear membrane; SC bodies of round shape enlarged as well in women aged from 25 to 65 years. Oval, triangular and semicircular forms decreased in all the age groups. After the compensation of the carbohydrate metabolism the content of the SC bodies of various shapes remained the same as at the beginning of the disease without returning to the normal level. The area of the SC bodies enlargement was statistically significant in women who fell ill with diabetes mellitus.
Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.M.; Vargas, A.; von Loebbecke, A.
2010-01-01
A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described. The method employs a multi-dimensional ghost-cell methodology to satisfy the boundary conditions on the immersed boundary and the method is designed to handle highly complex three-dimensional, stationary, moving and/or deforming bodies. The complex immersed surfaces are represented by grids consisting of unstructured triangular elements; while the flow is computed on non-uniform Cartesian grids. The paper describes the salient features of the methodology with special emphasis on the immersed boundary treatment for stationary and moving boundaries. Simulations of a number of canonical two- and three-dimensional flows are used to verify the accuracy and fidelity of the solver over a range of Reynolds numbers. Flow past suddenly accelerated bodies are used to validate the solver for moving boundary problems. Finally two cases inspired from biology with highly complex three-dimensional bodies are simulated in order to demonstrate the versatility of the method. PMID:20216919