Sample records for triangular patch antenna

  1. Miniaturized dual band multislotted patch antenna on polytetrafluoroethylene glass microfiber reinforced for C/X band applications.

    PubMed

    Islam, M T; Samsuzzaman, M

    2014-01-01

    This paper introduces a new configuration of compact, triangular- and diamond-slotted, microstrip-fed, low-profile antenna for C/X band applications on polytetrafluoroethylene glass microfiber reinforced material substrate. The antenna is composed of a rectangular-shaped patch containing eight triangles and two diamond-shaped slots and an elliptical-slotted ground plane. The rectangular-shaped patch is obtained by cutting two diamond slots in the middle of the rectangular patch, six triangular slots on the left and right side of the patch, and two triangular slots on the up and down side of the patch. The slotted radiating patch, the elliptical-slotted ground plane, and the microstrip feed enable the matching bandwidth to be widened. A prototype of the optimized antenna was fabricated on polytetrafluoroethylene glass microfiber reinforced material substrate using LPKF prototyping machine and investigated to validate the proposed design. The simulated results are compared with the measured data, and good agreement is achieved. The proposed antenna offers fractional bandwidths of 13.69% (7.78-8.91 GHz) and 10.35% (9.16-10.19 GHz) where S11 < -10 dB at center frequencies of 8.25 GHz and 9.95 GHz, respectively, and relatively stable gain, good radiation efficiency, and omnidirectional radiation patterns in the matching band.

  2. Miniaturized Dual Band Multislotted Patch Antenna on Polytetrafluoroethylene Glass Microfiber Reinforced for C/X Band Applications

    PubMed Central

    Islam, M. T.; Samsuzzaman, M.

    2014-01-01

    This paper introduces a new configuration of compact, triangular- and diamond-slotted, microstrip-fed, low-profile antenna for C/X band applications on polytetrafluoroethylene glass microfiber reinforced material substrate. The antenna is composed of a rectangular-shaped patch containing eight triangles and two diamond-shaped slots and an elliptical-slotted ground plane. The rectangular-shaped patch is obtained by cutting two diamond slots in the middle of the rectangular patch, six triangular slots on the left and right side of the patch, and two triangular slots on the up and down side of the patch. The slotted radiating patch, the elliptical-slotted ground plane, and the microstrip feed enable the matching bandwidth to be widened. A prototype of the optimized antenna was fabricated on polytetrafluoroethylene glass microfiber reinforced material substrate using LPKF prototyping machine and investigated to validate the proposed design. The simulated results are compared with the measured data, and good agreement is achieved. The proposed antenna offers fractional bandwidths of 13.69% (7.78–8.91 GHz) and 10.35% (9.16–10.19 GHz) where S11 < −10 dB at center frequencies of 8.25 GHz and 9.95 GHz, respectively, and relatively stable gain, good radiation efficiency, and omnidirectional radiation patterns in the matching band. PMID:24987742

  3. Airborne Wireless Communication Modeling and Analysis with MATLAB

    DTIC Science & Technology

    2014-03-27

    research develops a physical layer model that combines antenna modeling using computational electromagnetics and the two-ray propagation model to...predict the received signal strength. The antenna is modeled with triangular patches and analyzed by extending the antenna modeling algorithm by Sergey...7  2.7. Propagation Modeling : Statistical Models ............................................................8  2.8. Antenna Modeling

  4. Resonant frequencies of irregularly shaped microstrip antennas using method of moments

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Shively, David G.; Cockrell, C. R.

    1993-01-01

    This paper describes an application of the method of moments to determine resonant frequencies of irregularly shaped microstrip patches embedded in a grounded dielectric slab. For analysis, the microstrip patch is assumed to be excited by a linearly polarized plane wave that is normal to the patch. The surface-current density that is induced on the patch because of the incident field is expressed in terms of subdomain functions by dividing the patch into identical rectangular subdomains. The amplitudes of the subdomain functions, as a function of frequency, are determined using the electric-field integral equation (EFIE) approach in conjunction with the method of moments. The resonant frequencies of the patch are then obtained by selecting the frequency at which the amplitude of the surface-current density is real. The resonant frequencies of the equilateral triangular and other nonrectangular patches are computed using the present technique, and these frequencies are compared with measurements and other independent calculations.

  5. A hybrid finite element-boundary integral for the analysis of cavity-backed antennas of arbitrary shape

    NASA Technical Reports Server (NTRS)

    Gong, Jian; Volakis, John L.; Woo, A. C.; Wang, H. T. G.

    1993-01-01

    This is the final report on this project which was concerned with the analysis of cavity-backed antennas and more specifically spiral antennas. The project was a continuation of a previous analysis, which employed rectangular brick elements, and was, thus, restricted to planar rectangular patch antennas. A total of five reports were submitted under this project and we expect that at least four journal papers will result from the research described in these reports. The abstracts of the four previous reports are included. The first of the reports (028918-1-T) is over 75 pages and describes the general formulation using tetrahedral elements and the computer program. Report 028918-2-T was written after the completion of the computer program and reviews the capability of the analysis and associated software for planar circular rectangular patches and for a rectangular planar spiral. Measurements were also done at the University of Michigan and at Mission Research Corp. for the purpose of validating the software. We are pleased to acknowledge a partial support from Mission Research Corp. in carrying out the work described in this report. The third report (028918-3-T) describes the formulation and partial validation (using 2D data) for patch antennas on a circular platform. The 3D validation and development of the formulation for patch antennas on circular platforms is still in progress. The fourth report (028918-4-T) is basically an invited journal paper which will appear in the 'J. Electromagnetic Waves and Applications' in early 1994. It describes the application of the finite element method in electromagnetics and is primarily based on our work here at U-M. This final report describes the culmination of our efforts in characterizing complex cavity-backed antennas on planar platforms. The report describes for the first time the analysis of non-planar spirals and non-rectangular slot antennas as well as traditional planar patch antennas. The comparisons between measurements and calculations are truly impressive. Another unique aspect of this work is the incorporation of the FFT as part of the BiCG solver by overlaying a structured triangular mesh over the unstructured mesh. The implementation of this BiCG-FFT solution algorithm is important in minimizing the CPU and storage requirements. This final report will be submitted for publication in a refereed journal.

  6. Apparatus and Method for Improving the Gain and Bandwidth of a Microstrip Patch Antenna

    DTIC Science & Technology

    2013-09-30

    improving both the gain and the bandwidth of a microstrip patch antenna . (2) Description of the Prior Art [0004] A patch antenna , also referred to as a...rectangular microstrip antenna , is a type of radio antenna with a low profile that can be mounted on a flat surface. The patch antenna includes a...patch antenna form a Attorney Docket No. 101925 2 of 11 resonant piece of microstrip transmission line. The patch is designed to have a length of

  7. Cusp repair in aortic valve reconstruction: does the technique affect stability?

    PubMed

    Aicher, Diana; Langer, Frank; Adam, Oliver; Tscholl, Dietmar; Lausberg, Henning; Schäfers, Hans-Joachim

    2007-12-01

    Cusp prolapse may be an isolated cause of aortic regurgitation or may exist in conjunction with dilatation of the proximal aorta. Prolapse can be corrected by central plication, triangular resection, or pericardial patch implantation. We retrospectively analyzed our results with these techniques. From October 1995 to December 2006, 604 patients (aged 3-86 years) underwent aortic valve repair. Cusp prolapse was found in 427 patients (246 tricuspid, 181 bicuspid). Prolapse was corrected by central plication (n = 275) or triangular resection (n = 80). A pericardial patch was implanted for pre-existing cusp defects or after excision of calcium (n = 72). One cusp was repaired in 198 patients; the remaining patients underwent repair of 2 (n = 189) or 3 cusps (n = 40). In 102 patients more than one technique was used, and the patients were allocated to the group of the assumedly more complex repair (central plication < triangular resection < pericardial patch plasty). Cumulative follow-up was 1238 patient-years (mean 35 +/- 27 months). Hospital mortality was 2.6% (11/427). Actuarial freedom from aortic regurgitation of grade II or more at 5 years was 92% (central plication), 90% (triangular resection), and 90% (pericardial patch plasty). Thirteen patients were reoperated on, with prolapse as the most common reason for failure (n = 7); 6 underwent re-repair. Freedom from reoperation at 5 years was 95% (central plication), 94% (triangular resection), and 94% (pericardial patch plasty). Freedom from valve replacement at 5 years was 97% (central plication), 99% (triangular resection), and 98% (pericardial patch plasty). In aortic valve repair, cusp prolapse can be treated reliably by central plication. In the presence of more complex disease, triangular resection or pericardial patch plasty may be used without compromising midterm durability.

  8. Reproducible, high performance patch antenna array apparatus and method of fabrication

    DOEpatents

    Strassner, II, Bernd H.

    2007-01-23

    A reproducible, high-performance patch antenna array apparatus includes a patch antenna array provided on a unitary dielectric substrate, and a feed network provided on the same unitary substrate and proximity coupled to the patch antenna array. The reproducibility is enhanced by using photolithographic patterning and etching to produce both the patch antenna array and the feed network.

  9. Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor)

    2005-01-01

    A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.

  10. Improved Gain Microstrip Patch Antenna

    DTIC Science & Technology

    2015-08-06

    08-2015 Publication Improved Gain Microstrip Patch Antenna David A. Tonn Naval Under Warfare Center Division, Newport 1176 Howell St., Code 00L...GAIN MICROSTRIP PATCH ANTENNA STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by or for the...patch antenna having increased gain, and an apparatus for increasing the gain and bandwidth of an existing microstrip patch antenna . (2) Description

  11. Implementation for wideband applications using UWB fractal patch antenna

    NASA Astrophysics Data System (ADS)

    Kumar, D. Naresh

    2018-04-01

    This paper defines in detail about the diverse fractal patch antenna. Microstrip patch antennas has evolved in the field of research and development extending its impact across wide range of applications. A combination of patch antenna with fractal patterns has become a tryout to outspread it further. Because of its low profile nature patch antennas have added to a lot of prominence. Apart from have this property it can also be renovated further for wide bandwidth (2929 MHz) applications, as it exhibits self-analogous property. This antenna is premeditated on a patch using Sierpinski(4.040 GHz, 6.566 GHz) and Koch fractal geometries respectively. The antenna is designed using HFSS software.

  12. Broadband Circularly Polarized Patch Antenna and Method

    DTIC Science & Technology

    2016-09-16

    300152 1 of 14 BROADBAND CIRCULARLY POLARIZED PATCH ANTENNA AND METHOD STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may...present invention provides a method and apparatus for a broadband circularly polarized patch antenna . (2) Description of the Prior Art [0004] A...patch antenna , also referred to as a microstrip antenna , is a type of radio antenna with a low profile that can be mounted on a flat surface. The

  13. Multilayer Patch Antenna Surrounded by a Metallic Wall

    NASA Technical Reports Server (NTRS)

    Zawadzki, Mark; Huang, John

    2003-01-01

    A multilayer patch antenna, similar to a Yagi antenna, surrounded by a metallic wall has been devised to satisfy requirements to fit within a specified size and shape and to generate a beam with a half-power angular width of <=40 deg. This antenna provides a gain of about 14 dB; in contrast, the gain of a typical single-patch antenna lies between 5 and 6 dB. This antenna can be considered an alternative to a two-dimensional array of patch antenna elements, or to a horn or helical antenna. Unlike a two-dimensional array of patches, this antenna can function without need for a power-division network (unless circular polarization is needed). The profile of this antenna is lower than that of a horn or a helical antenna designed for the same frequency. The primary disadvantage of this antenna, relative to a horn or a helical antenna, is that its footprint is slightly larger.

  14. Four-Element Composite Triangular Dielectric Resonator Antenna Using Li2O-1.94MgO-0.02Al2O3-P2O5 Ceramic for Wideband Applications

    NASA Astrophysics Data System (ADS)

    Kumari, Preeti; Tripathi, Pankaj; Sahu, B.; Singh, S. P.; Kumar, Devendra

    2018-05-01

    A simulation and fabrication study of a coaxial probe-fed four-element composite triangular dielectric resonator antenna (TDRA) using low loss Li2O-1.94MgO-0.02Al2O3-P2O5 (LMAP) ceramic and Teflon. LMAP ceramic was carried out and the ceramic was synthesized using a solid-state sintering route. The phase, microstructure and microwave dielectric properties of LMAP were investigated using x-ray diffraction pattern, scanning electron microscopy and a network analyzer. A coaxial probe-fed four-element composite TDRA was designed and fabricated using LMAP as one section of each composite element of the proposed antenna. Each triangular element of the proposed dielectric resonator antenna (DRA) consists of two sections of different dielectric constant materials. The inner triangular section touching the coaxial probe at one of its corners is made of the LMAP ceramic (ɛ r = 6.2) while othe uter section is made of Teflon (ɛ r = 2.1). Four triangular DRA elements are excited bya centrally located 50-Ω coaxial probe. The parametric study of the proposed antenna was performed through simulation using Ansys High Frequency Structure Simulator software by varying the dimensions and dielectric constants of both sections of each triangular element of the TDRA to optimize the results for obtaining a wideband antenna. The simulated resonant frequency of 9.30 GHz with a percentage bandwidth of 61.65% for the proposed antenna is obtained within its operating frequency range of 7.82-14.8 GHz. Monopole-like radiation patterns with low cross-polarization levels and a peak gain of 5.63 dB are obtained for the proposed antenna through simulation. The antenna prototype having optimized dimensions has also been fabricated. The experimental resonant frequency of 9.10 GHz with a percentage bandwidth of 66.09% is obtained within its operating frequency range of 7.70-15.30 GHz. It is found that the simulation results for the proposed antenna are in close agreement with the measured data. The proposed antenna can potentially be used in broadcast base stations, radar and satellite communications.

  15. Arbitrarily shaped dual-stacked patch antennas: A hybrid FEM simulation

    NASA Technical Reports Server (NTRS)

    Gong, Jian; Volakis, John L.

    1995-01-01

    A dual-stacked patch antenna is analyzed using a hybrid finite element - boundary integral (FE-BI) method. The metallic patches of the antenna are modeled as perfectly electric conducting (PEC) plates stacked on top of two different dielectric layers. The antenna patches may be of any shape and the lower patch is fed by a coaxial cable from underneath the ground plane or by an aperture coupled microstrip line. The ability of the hybrid FEM technique for the stacked patch antenna characterization will be stressed, and the EM coupling mechanism is also discussed with the aid of the computed near field patterns around the patches.

  16. Laterally Placed CDRA with Triangular Notches for Ultra Wideband Applications

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Dileep; Venkata Kiran, Duggirala; Mukherjee, Biswajeet

    2017-12-01

    In this paper, a Coaxial probe-fed Laterally placed Cylindrical Dielectric Resonator Antenna (LCDRA) with symmetrical triangular notches is presented. The lateral surface of the Cylindrical Dielectric Resonator Antenna (CDRA) is kept on the ground plane with its longitudinal axis parallel to the ground plane. LCDRA has a lower resonant frequency than the CDRA and it offers considerably wider impedance bandwidth than CDRA. Finally, two symmetrical triangular notches are introduced on the two edges of LCDRA which is perpendicular to the axis to further improve the impedance bandwidth. The proposed antenna offers a wide impedance bandwidth (S_{11} <-10 dB) of 76.7 % (4.5-10.1 GHz). The radiation pattern of the proposed antenna is stable and broadside throughout the impedance bandwidth of operation. The prototype of the proposed antenna is fabricated and measured results are found to be in good agreement with the simulated one.

  17. Suspended Patch Antenna Array With Electromagnetically Coupled Inverted Microstrip Feed

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2000-01-01

    The paper demonstrates a four-element suspended patch antenna array, with a parasitic patch layer and an electromagnetically coupled inverted microstrip feed, for linear polarization at K-Band frequencies. This antenna has the following advantages over conventional microstrip antennas: First, the inverted microstrip has lower attenuation than conventional microstrip; hence, conductor loss associated with the antenna corporate feed is lower resulting in higher gain and efficiency. Second, conventional proximity coupled patch antennas require a substrate for the feed and a superstrate for the patch. However, the inverted microstrip fed patch antenna makes use of a single substrate, and hence, is lightweight and low cost. Third, electromagnetic coupling results in wider bandwidth. Details regarding the design and fabrication will be presented as well as measured results including return loss, radiation patterns and cross-polarization levels.

  18. Probe-fed semi circular microstrip antenna vis-à-vis circular microstrip antenna: a necessary revisit

    NASA Astrophysics Data System (ADS)

    Ghosh, S. K.; Varshney, S. K.; Chakraborty, S.; Singh, L. L. K.; Chattopadhyay, S.

    2018-03-01

    Microstrip patch antenna of semicircular geometry has been investigated in view of miniaturization of conventional circular geometry. The precise operating frequency of the semicircular microstrip patch antenna is the most significant parameter to be determined in order to design such antenna system to achieve the optimum performance. In the present investigation an improved formulation is presented for accurate determination of the resonant frequency of semicircular patch. Also, the radiation property of such patch is thoroughly investigated. Through comparisons are documented amongst the circular and semicircular patches. It is revealed that, the semicircular patch offers more better radiation performance compared to circular.

  19. Mutual Elements and Substrate Effect Analysis on Patch Antenna Arrays

    NASA Astrophysics Data System (ADS)

    Wallace, Matthew J.

    There have been many different technology advancements with the invention of solid state electronics, leading to the digital era which has changed the way users employ electronic circuits. Antennas are no different; however, they are still analog devices. With the advancements in technology, antennas are being fabricated on much higher frequencies and with greater bandwidths, all while trying to keep size and weight to a minimum. Centimeter and millimeter wave technologies have evolved for many different radio frequency (RF) applications. Microstrip patch antennas have been developed, as wire and tubular antenna elements are difficult to fabricate with the tolerances required at micro-wavelengths. Microstrip patch antennas are continuously being improved. These types of antennas are great for embedded or conformal applications where size and weight are of the essence and the ease of manufacturing elements to tight tolerances is important. One of the greatest benefits of patch antennas is the ease in creating an array. Many simulation programs have been created to assist in the design of patch antennas and arrays. However, there are still discrepancies between simulated results and actual measurements. This research will focus on these differences. It begins with a literature research of patch antenna design, followed by an assessment of simulation programs used for patch antenna design. The resulting antenna design was realized by the fabrication of an antenna from the Genesys software. Laboratory measurements of the real-world antenna are then compared to the theoretical antenna characteristics. This process is used to illustrate deficiencies in the software models and likely improvements that need to be made.

  20. Optimization of a Circularly Polarized Patch Antenna for Two Frequency Bands

    DTIC Science & Technology

    2015-09-01

    the various techniques that can be used to improve the performance of a circularly polarized microstrip patch antenna . These adjustments include... microstrip antenna . 15. SUBJECT TERMS Patch Antenna , Circular Polarization 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...Frequency Structural Simulator (HFSS) has allowed engineers to create scalable multiband microstrip antennas . Several factors were taken into

  1. A Compact, Broadband Antenna for Planetary Surface-to-Surface Wireless Communications

    NASA Technical Reports Server (NTRS)

    Barr, Philip; Zaman, Afroz; Miranda, Felix

    2006-01-01

    The Compact Microstrip Monopole Antenna (CMMA) is a novel antenna design that combines a microstrip patch antenna with a three-dimensional structure to attain a highly directive, broadband, compact antenna. A Tri-Lobed Patch (TLP) was designed to minimize the patch's area while reducing the antenna's operating frequency. A Grounding Wall (GW) connects the patch to the ground plane and a Vertical Enclosure Wall (VEW) extends up away from portions of the patch's perimeter. This VEW supplies the antenna with a higher directivity in the radial direction as well as reduces the operating frequency. The CMMA was designed to operate at 2.23 GHz, but experimental results have shown this antenna resonates at 2.05 GHz which is on the order of approximately Lambda(sub o)/11.6 with respect to the antenna's largest dimension, with a directivity and bandwidth of 6.0 dBi, and 130 MHz (6.3 percent), respectively. This miniature, radially emitting antenna makes the CMMA attractive for planetary-based surface-to-surface communications.

  2. Effective side length formula for resonant frequency of equilateral triangular microstrip antenna

    NASA Astrophysics Data System (ADS)

    Guney, Kerim; Kurt, Erhan

    2016-02-01

    A novel and accurate expression is obtained by employing the differential evolution algorithm for the effective side length (ESL) of the equilateral triangular microstrip antenna (ETMA). This useful formula allows the antenna engineers to accurately calculate the ESL of the ETMA. The computed resonant frequencies (RFs) show very good agreement with the experimental RFs when this accurate ESL formula is utilised for the computation of the RFs for the first five modes.

  3. Design and Fabrication of Graphene Reinforced Polymer Conductive Patch-Based Inset Fed Microstrip Antenna

    NASA Astrophysics Data System (ADS)

    Deepak, A.; Kannan, P. Muthu; Shankar, P.

    This work explores the design and fabrication of graphene reinforced polyvinylidene fluoride (PVDF) patch-based microstrip antenna. Primarily, antenna was designed at 6GHz frequency and simulation results were obtained using Ansoft HFSS tool. Later fabrication of antenna was carried out with graphene-PVDF films as conducting patch deposited on bakelite substrate and copper as ground plane. Graphene-PVDF films were prepared using solvent casting process. The radiation efficiency of fabricated microstrip patch antenna was 48% entailing it to be adapted as a practically functional antenna. Both simulated and the practical results were compared and analyzed.

  4. Shear sensing based on a microstrip patch antenna

    NASA Astrophysics Data System (ADS)

    Mohammad, I.; Huang, H.

    2012-10-01

    A microstrip patch antenna sensor was studied for shear sensing with a targeted application of measuring plantar shear distribution on a diabetic foot. The antenna shear sensor consists of three components, namely an antenna patch, a soft foam substrate and a slotted ground plane. The resonant frequency of the antenna sensor is sensitive to the overlapping length between the slot in the ground plane and the antenna patch. A shear force applied along the direction of the slot deforms the foam substrate and causes a change in the overlapping length, which can be detected from the antenna frequency shift. The antenna shear sensor was designed based on simulated antenna frequency response and validated by experiments. Experimental results indicated that the antenna sensor exhibits high sensitivity to shear deformation and responds to the applied shear loads with excellent linearity and repeatability.

  5. Microstrip patch antenna receiving array operating in the Ku band

    NASA Technical Reports Server (NTRS)

    Walcher, Douglas A.

    1996-01-01

    Microstrip patch antennas were first investigated from the idea that it would be highly advantageous to fabricate radiating elements (antennas) on the same dielectric substrate as RF circuitry and transmission lines. Other advantages were soon discovered to be its lightweight, low profile, conformability to shaped surfaces, and low manufacturing costs. Unfortunately, these same patches continually exhibit narrow bandwidths, wide beamwidths, and low antenna gain. This thesis will present the design and experimental results of a microstrip patch antenna receiving array operating in the Ku band. An antenna array will be designed in an attempt to improve its performance over a single patch. Most Ku band information signals are either wide band television images or narrow band data and voice channels. An attempt to improve the gain of the array by introducing parasitic patches on top of the array will also be presented in this thesis.

  6. Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity

    NASA Technical Reports Server (NTRS)

    Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon

    2009-01-01

    This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.

  7. Investigation of fluorine-doped tin oxide based optically transparent E-shaped patch antenna for terahertz communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, S., E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu; Darak, Mayur Sudesh, E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu; Kumar, D. Sriram, E-mail: anand.s.krishna@gmail.com, E-mail: darak.mayur@gmail.com, E-mail: srk@nitt.edu

    2014-10-15

    In this paper, a fluorine-doped tin oxide based optically transparent E-shaped patch antenna is designed and its radiation performance is analyzed in the 705 – 804 GHz band. As optically transparent antennas can be mounted on optical display, they facilitate the reduction of overall system size. The proposed antenna design is simulated using electromagnetic solver - Ansys HFSS and its characteristics such as impedance bandwidth, directivity, radiation efficiency and gain are observed. Results show that the fluorine-doped tin oxide based optically transparent patch antenna overcomes the conventional patch antenna limitations and thus the same can be used for solar cellmore » antenna used in satellite systems.« less

  8. Microstrip Yagi Antenna with Dual Aperture-Coupled Feed

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald; Venkatesan, Jaikrishna

    2008-01-01

    A proposed microstrip Yagi antenna would operate at a frequency of 8.4 GHz (which is in the X band) and would feature a mechanically simpler, more elegant design, relative to a prior L-band microstrip Yagi antenna. In general, the purpose of designing a microstrip Yagi antenna is to combine features of a Yagi antenna with those of a microstrip patch to obtain an antenna that can be manufactured at low cost, has a low profile, and radiates a directive beam that, as plotted on an elevation plane perpendicular to the antenna plane, appears tilted away from the broadside. Such antennas are suitable for flush mounting on surfaces of diverse objects, including spacecraft, aircraft, land vehicles, and computers. Stated somewhat more precisely, what has been proposed is a microstrip antenna comprising an array of three Yagi elements. Each element would include four microstrip-patch Yagi subelements: one reflector patch, one driven patch, and two director patches. To obtain circular polarization, each driven patch would be fed by use of a dual offset aperture-coupled feed featuring bow-tie-shaped apertures. The selection of the dual offset bow-tie aperture geometry is supported by results found in published literature that show that this geometry would enable matching of the impedances of the driven patches to the 50-Omega impedance of the microstrip feedline while maintaining a desirably large front-to-back lobe ratio.

  9. Mechanical Development of a Very Non-Standard Patch Array Antenna for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Hughes, Richard; Chamberlain, Neil; Jakoboski, Julie; Petkov, Mihail

    2012-01-01

    This paper describes the mechanical development of patch antenna arrays for the Juno mission. The patch arrays are part of a six-frequency microwave radiometer instrument that will be used to measure thermal emissions from Jupiter. The very harsh environmental conditions in Jupiter orbit, as well as a demanding launch environment, resulted in a design that departs radically from conventional printed circuit patch antennas. The paper discusses the development and qualification of the Juno patch array antennas, with emphasis on the materials approach that was devised to mitigate the effects of electron charging in Jupiter orbit.

  10. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-03-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S11) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  11. Bandwidth enhancement of a microstrip patch antenna for ultra-wideband applications

    NASA Astrophysics Data System (ADS)

    Anum, Khanda; Singh, Milind Saurabh; Mishra, Rajan; Tripathi, G. S.

    2018-04-01

    The microstrip antennas are used where size, weight, cost, and performance are constraints. Microstrip antennas (MSA) are being used in many government and commercial applications among which it is mostly used in wireless communication. The proposed antenna is designed for Ultra-wideband (UWB), it is designed on FR4 substrate material with ɛr = 4.3 and 0.0025 loss tangent. The shape and size of patch in microstrip patch antenna plays an important role in its performance. In the proposed antenna design the respective changes have been introduced which includes slotting the feedline,adding a curved slot in patch and change in patch shape itself to improve the bandwidth of the conventional antenna. The simulated results of proposed antenna shows impedance bandwidth (defined by 10 dB return loss) of 2-11.1GHz, VSWR<2 for entire bandwidth of antenna and peak gain is 5.2 dB. Thus the antenna covers the UWB range and it can also be used for bands such as 2.4/3.6/5 -GHz WLAN bands, 2.5/3.5/5.5GHz WiMAX bands and X band satellite communication at 7.25-8.395 GHz.

  12. Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application

    PubMed Central

    Yang, Jiachen; Wang, Huanling; Lv, Zhihan; Wang, Huihui

    2016-01-01

    Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software—High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication. PMID:27355954

  13. Design of Miniaturized Dual-Band Microstrip Antenna for WLAN Application.

    PubMed

    Yang, Jiachen; Wang, Huanling; Lv, Zhihan; Wang, Huihui

    2016-06-27

    Wireless local area network (WLAN) is a technology that combines computer network with wireless communication technology. The 2.4 GHz and 5 GHz frequency bands in the Industrial Scientific Medical (ISM) band can be used in the WLAN environment. Because of the development of wireless communication technology and the use of the frequency bands without the need for authorization, the application of WLAN is becoming more and more extensive. As the key part of the WLAN system, the antenna must also be adapted to the development of WLAN communication technology. This paper designs two new dual-frequency microstrip antennas with the use of electromagnetic simulation software-High Frequency Structure Simulator (HFSS). The two antennas adopt ordinary FR4 material as a dielectric substrate, with the advantages of low cost and small size. The first antenna adopts microstrip line feeding, and the antenna radiation patch is composed of a folded T-shaped radiating dipole which reduces the antenna size, and two symmetrical rectangular patches located on both sides of the T-shaped radiating patch. The second antenna is a microstrip patch antenna fed by coaxial line, and the size of the antenna is diminished by opening a stepped groove on the two edges of the patch and a folded slot inside the patch. Simulation experiments prove that the two designed antennas have a higher gain and a favourable transmission characteristic in the working frequency range, which is in accordance with the requirements of WLAN communication.

  14. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, Dheeraj, E-mail: dbhardwaj.bit@gmail.com; Saraswat, Shriti, E-mail: saraswat.srishti@gmail.com; Gulati, Gitansh, E-mail: gitanshgulati@gmail.com

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S{sub 11}) have been investigated. The antenna design is primarily focused onmore » achieving a dual band operation.« less

  15. Microstrip patch antenna for simultaneous strain and temperature sensing

    NASA Astrophysics Data System (ADS)

    Mbanya Tchafa, F.; Huang, H.

    2018-06-01

    A patch antenna, consisting of a radiation patch, a dielectric substrate, and a ground plane, resonates at distinct fundamental frequencies that depend on the substrate dielectric constant and the dimensions of the radiation patch. Since these parameters change with the applied strain and temperature, this study investigates simultaneous strain and temperature sensing using a single antenna that has two fundamental resonant frequencies. The theoretical relationship between the antenna resonant frequency shifts, the temperature, and the applied strain was first established to guide the selection of the dielectric substrate, based on which an antenna sensor with a rectangular radiation patch was designed and fabricated. A tensile test specimen instrumented with the antenna sensor was subjected to thermo-mechanical tests. Experiment results validated the theoretical predictions that the normalized antenna resonant frequency shifts are linearly proportional to the applied strain and temperature changes. An inverse method was developed to determine the strain and temperature changes from the normalized antenna resonant frequency shifts, yielding measurement uncertainty of 0.4 °C and 17.22 μ \\varepsilon for temperature and strain measurement, respectively.

  16. Single-layer dual frequency patch antenna

    NASA Astrophysics Data System (ADS)

    Maci, S.; Gentili, G. B.; Avitabile, G.

    1993-08-01

    A configuration for a slotted patch antenna is introduced which allows two separate operating frequencies. Both of these frequencies are associated with a radiating mode almost identical to that of a standard patch. The two resonances are related to the patch width and the slot/patch length, respectively.

  17. Rectangular Microstrip Antenna with Slot Embedded Geometry

    NASA Astrophysics Data System (ADS)

    Ambresh, P. A.; Hadalgi, P. M.; Hunagund, P. V.; Sujata, A. A.

    2014-09-01

    In this paper, a novel design that improves the performance of conventional rectangular microstrip antenna is discussed. Design adopts basic techniques such as probe feeding technique with rectangular inverted patch structure as superstrate, air filled dielectric medium as substrate and slot embedded patch. Prototype of the proposed antenna has been fabricated and various antenna performance parameters such as impedance bandwidth, return loss, radiation pattern and antenna gain are considered for Electromagnetic-study. The antennas are designed for the wireless application operating in the frequency range of 3.3 GHz to 3.6 GHz, and UK based fixed satellite service application (3 GHz to 4 GHz), and are named as single inverted patch conventional rectangular microstrip antenna (SIP-CRMSA) and slots embedded inverted patch rectangular microstrip antenna (SEIP-RMSA), respectively. Measurement outcomes for SEIP-RMSA1 and SEIP-RMSA2 showed the satisfactory performance with an achievable impedance bandwidth of 260 MHz (7 %) and 250 MHz (6.72 %), with return loss (RL) of -11.06 dB and -17.98 dB, achieved gain of 8.17 dB and 5.17 dB with 10% and 8% size reduction in comparison with the conventional patch antenna.

  18. Purcell effect in triangular plasmonic nanopatch antennas with three-layer colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Eliseev, S. P.; Kurochkin, N. S.; Vergeles, S. S.; Sychev, V. V.; Chubich, D. A.; Argyrakis, P.; Kolymagin, D. A.; Vitukhnovskii, A. G.

    2017-05-01

    A model describing a plasmonic nanopatch antenna based on triangular silver nanoprisms and multilayer cadmium chalcogenide quantum dots is introduced. Electromagnetic-field distributions in nanopatch antennas with different orientations of the quantum-dot dipoles are calculated for the first time with the finite element method for numerical electrodynamics simulations. The energy flux through the surface of an emitting quantum dot is calculated for the configurations with the dot in free space, on an aluminum substrate, and in a nanopatch antenna. It is shown that the radiative part of the Purcell factor is as large as 1.7 × 102 The calculated photoluminescence lifetimes of a CdSe/CdS/ZnS colloidal quantum dot in a nanopatch antenna based on a silver nanoprism agree well with the experimental results.

  19. A Novel L-Probe Proximity Fed Patch Antenna With Parasitic Patch and Its Utilization in Antenna Arrays

    NASA Astrophysics Data System (ADS)

    Sláma, Libor; Dobeš, Josef; Boštík, Tomáš; Vejražka, František

    2018-03-01

    An analysis of the L-probe fed patch antenna with an extraordinary parasitic patch is described. The element of the antenna is fed by the L-probe partially implemented in PCB. An excellent impedance matching is obtained (< ‑26 dB in the design frequency band 4.4–5 GHz). The radiation characteristics are also very good (gain > 10 dBi). For the numerical analyses, the Full Wave—CST Microwave Studio software was used in both frequency and time domains, and a very good agreement between the Time Domain Solver (TDS) and Frequency Domain Solver (FDS) was obtained. Real antenna samples have been created and measured as well as eight-element antenna arrays designed by the Dolph-Chebyshev method.

  20. Design of broadband single polarized antenna

    NASA Astrophysics Data System (ADS)

    Shin, Phoo Kho; Aziz, Mohamad Zoinol Abidin Abd.; Ahmad, Badrul Hisham; Ramli, Mohamad Hafize Bin; Fauzi, Noor Azamiah Md; Malek, Mohd Fareq Abd

    2015-05-01

    In practical wireless communication application, bandwidth enhancement becomes one of the major design considerations. At the same time, circular polarized (CP) antenna received much attention for the applications of modern wireless communication system when compared to linear polarized (LP) antenna. This is because CP antenna can reduce the multipath effect. Hence, broadband antenna with operating frequency at 2.4GHz for WLAN application is proposed. The proposed antenna is done by using L-probe amendment with rectangular patch. The rectangular patch and copper ground plane is separated with 10mm air gap. This approach is used to enhance the bandwidth and the gain of the proposed antenna. The bandwidth of the designed antenna is more than 200MHz which meet broadband application. The return loss for the antenna is below -10dB to achieved 90% matching efficiency. The position of L-probe feed is altered in order to obtained different polarizations. The broadband antenna had been designed and simulated by using Computer Simulation Technology (CST) software. In this paper, the comparison for single polarized antenna with the design of non-inverted patch and inverted patch is discussed. The characteristics of the S-parameter, axial ratio, gain, surface current for each designed antenna are analyzed.

  1. Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array.

    PubMed

    Aguilar, Suzette M; Al-Joumayly, Mudar A; Burfeindt, Matthew J; Behdad, Nader; Hagness, Susan C

    2013-12-18

    We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems.

  2. Transparent solar antenna of 28 GHz using transparent conductive oxides (TCO) thin film

    NASA Astrophysics Data System (ADS)

    Ali, N. I. Mohd; Misran, N.; Mansor, M. F.; Jamlos, M. F.

    2017-05-01

    This paper presents the analysis of 28GHz solar patch antenna using the variations of transparent conductive oxides (TCO) thin film as the radiating patch. Solar antenna is basically combining the function of antenna and solar cell into one device and helps to maximize the usage of surface area. The main problem of the existing solar antenna is the radiating patch which made of nontransparent material, such as copper, shadowing the solar cell and degrades the total solar efficiency. Hence, by using the transparent conductive oxides (TCO) thin film as the radiating patch, this problem can be tackled. The TCO thin film used is varied to ITO, FTO, AgHT-4, and AgHT-8 along with glass as substrate. The simulation of the antenna executed by using Computer Simulation Technology (CST) Microwave Studio software demonstrated at 28 GHz operating frequency for 5G band applications. The performance of the transparent antennas is compared with each other and also with the nontransparent patch antenna that using Rogers RT5880 as substrate, operating at the same resonance frequency and then, the material that gives the best performance is identified.

  3. An improved broadband E patch microstrip antenna for wireless communications

    NASA Astrophysics Data System (ADS)

    Bzeih, Amer; Chahine, Soubhi Abou; Kabalan, Karim Y.; El-Hajj, Ali; Chehab, Ali

    2007-12-01

    A broadband probe-fed microstrip antenna with E-shaped patch on a single-layer air substrate is investigated. Bandwidth enhancement of the antenna is achieved by inserting two parallel slots into its radiating patch. The effects of the antenna parameters are analyzed, and their optimal values for broadband operation are obtained. The design parameters are formulated as a function of the center frequency, and the empirical equations are validated by simulation. A 51.5% enhanced E patch antenna for modern wireless communications (Personal Communications Service, Digital Cellular System, Universal Mobile Telecommunications System, Wireless Local Area Network 802.11 b/g, and Bluetooth) is designed, simulated, fabricated, and measured. A comparison between simulated and measured results is presented, and it showed satisfactory agreement. Moreover, the effect of incorporating more parallel slots into the radiating patch is investigated. The antenna is designed and simulated for different scenarios (four slots, six slots, and eight slots), where a bandwidth of 57% is achieved in the eight-slot design.

  4. Far field focusing for a microwave patch antenna with composite substrate

    NASA Astrophysics Data System (ADS)

    Wan, Jian; Rybin, Oleg; Shulga, Sergey

    2018-03-01

    Modeling for a compact microwave antenna structure on base of a miniaturized rectangular patch antenna with composite substrate and magnetic superstrates is made in this study by using FDTD simulations. The resonant frequency of the antenna structure is supposed to be 15 GHz. The design of the antenna with composite substrate and without superstrate is made up by using the microwave miniaturization concept for rectangular patch antennas created by first author of this study. The optimal distance between the superstrate and antenna surface is found by using Fabry-Perot cavity theory as maximum values of power directivity and efficiency of the antenna is achieved. The comparative analysis with regard to some far and near field parameters of the above antenna structures and the antenna with dielectric substrate having same value of the relative permittivity is performed.

  5. Design and fabrication of a microstrip patch antenna with a low radar cross section in the X-band

    NASA Astrophysics Data System (ADS)

    Jang, Hong-Kyu; Lee, Won-Jun; Kim, Chun-Gon

    2011-01-01

    In this study, the authors developed a radar absorbing method to reduce the antenna radar cross section (RCS) without any loss of antenna performance. The new method was based upon an electromagnetic bandgap (EBG) absorber using conducting polymer (CP). First, a microstrip patch antenna was made by using a copper film and glass/epoxy composite materials, which are typically used for load-bearing structures, such as aircraft and other vehicles. Then, CP EBG patterns were also designed that had a 90% electromagnetic (EM) wave absorbing performance within the X-band (8.2-12.4 GHz). Finally, the CP EBG patterns were printed on the top surface of the microstrip patch antenna. The measured radar absorbing performance of the fabricated patch antenna showed that the frontal RCS of the antenna declined by nearly 95% at 10 GHz frequency while the CP EBG patterns had almost no effect on the antenna's performance.

  6. Cylindrical Antenna Using Near Zero Index Metamaterial

    DTIC Science & Technology

    2012-07-24

    circularly polarized microstrip patch antenna (SFCP-MPA). Simultaneous enhancement on antenna gain, impedance bandwidth (ZBW) and axial-ratio...K. L. Chung, and P. Akkaraekthalin, "Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized microstrip patch antenna ...device for enhancing the directivity and port isolation of a dual-frequency dual- polarization (DFDP) microstrip antenna by using metamaterial

  7. Design of Dual Band Microstrip Patch Antenna using Metamaterial

    NASA Astrophysics Data System (ADS)

    Rafiqul Islam, Md; Alsaleh Adel, A. A.; Mimi, Aminah W. N.; Yasmin, M. Sarah; Norun, Farihah A. M.

    2017-11-01

    Metamaterial has received great attention due to their novel electromagnetic properties. It consists of artificial metallic structures with negative permittivity (ɛ) and permeability (µ). The average cell size of metamaterial must be less than a quarter of wavelength, hence, size reduction for the metamaterial antenna is possible. In addition, metamaterial can be used to enhance the low gain and efficiency in conventional patch antenna, which is important in wireless communication. In this paper, dual band microstrip patch antenna design using metamaterial for mobile GSM and WiMax application is introduced. The antenna structure consists of microstrip feed line connected to a rectangular patch. An array of five split ring resonators (SRRs) unit cells is inserted under the patch. The presented antenna resonates at 1.8 GHz for mobile GSM and 2.4 GHz for WIMAX applications. The return loss in the FR4 antenna at 1.8 GHz is -22.5 dB. Using metamaterial the return loss has improved to -25 dB at 2.4 GHz and -23.5 dB at 1.8 GHz. A conventional microstrip patch antenna using pair of slots is also designed which resonates at 1.8 GHz and 2.4 GHz. The return loss at 1.8 GHz and 2.4 GHz were -12.1 dB and -21.8 dB respectively. The metamaterial antenna achieved results with major size reduction of 45%, better bandwidth and better returns loss if it is compared to the pair of slots antenna. The software used to design, simulate and optimize is CST microwave studio.

  8. Wireless OAM transmission system based on elliptical microstrip patch antenna.

    PubMed

    Chen, Jia Jia; Lu, Qian Nan; Dong, Fei Fei; Yang, Jing Jing; Huang, Ming

    2016-05-30

    The multiplexing transmission has always been a focus of attention for communication technology. In this paper, the radiation characteristics of circular microstrip patch antenna was firstly analyzed based on cavity model theory, and then spiral beams carrying orbital angular momentum (OAM) were generated, using elliptical microstrip patch antenna, with a single feed probe instead of a standard circular patch with two feedpoints. Moreover, by combining the proposed elliptic microstrip patch antenna with Universal Software Radio Peripheral (USRP), a wireless OAM transmission system was established and the real-time transmission of text, image and video in a real channel environment was realized. Since the wireless OAM transmission has the advantage of good safety and high spectrum utilization efficiency, this work has theoretical significance and potential application.

  9. Analysis of Microstrip Line Fed Patch Antenna for Wireless Communications

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Aneesh, Mohammad; Kamakshi; Ansari, J. A.

    2017-11-01

    In this paper, theoretical analysis of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator is presented. The proposed antenna shows that the dualband operation depends on gap between parasitic element, split-ring resonator, length and width of microstrip line. It is found that antenna resonates at two distinct resonating modes i.e., 0.9 GHz and 1.8 GHz for lower and upper resonance frequencies respectively. The antenna shows dual frequency nature with frequency ratio 2.0. The characteristics of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator antenna is compared with other prototype microstrip line fed antennas. Further, the theoretical results are compared with simulated and reported experimental results, they are in close agreement.

  10. Stretchable and reversibly deformable radio frequency antennas based on silver nanowires.

    PubMed

    Song, Lingnan; Myers, Amanda C; Adams, Jacob J; Zhu, Yong

    2014-03-26

    We demonstrate a class of microstrip patch antennas that are stretchable, mechanically tunable, and reversibly deformable. The radiating element of the antenna consists of highly conductive and stretchable material with screen-printed silver nanowires embedded in the surface layer of an elastomeric substrate. A 3-GHz microstrip patch antenna and a 6-GHz 2-element patch array are fabricated. Radiating properties of the antennas are characterized under tensile strain and agree well with the simulation results. The antenna is reconfigurable because the resonant frequency is a function of the applied tensile strain. The antenna is thus well suited for applications like wireless strain sensing. The material and fabrication technique reported here could be extended to achieve other types of stretchable antennas with more complex patterns and multilayer structures.

  11. A compact microwave patch applicator for hyperthermia treatment of cancer.

    PubMed

    Chakaravarthi, Geetha; Arunachalam, Kavitha

    2014-01-01

    Design and development of a compact microstrip C-type patch applicator for hyperthermia treatment of cancer is presented. The patch antenna is optimized for resonance at 434 MHz, return loss (S11) better than -15dB and co-polarized electric field in tissue. Effect of water bolus thickness on power delivery is studied for improved power coupling. Numerical simulations for antenna design optimization carried out using EM simulation software, Ansys HFSS(®), USA were experimentally verified. The effective field coverage for the optimized patch antenna and experimental results indicate that the compact antenna resonates at ISM frequency 434 MHz with better than -15 dB power coupling.

  12. Radar Cross Section Prediction for Coated Perfect Conductors with Arbitrary Geometries.

    DTIC Science & Technology

    1986-01-01

    equivalent electric and magnetic surface currents as the desired unknowns. Triangular patch modelling is ap- plied to the boundary surfaces. The method of...matrix inversion for the unknown surface current coefficients. Huygens’ principle is again applied to calculate the scattered electric field produced...differential equations with the equivalent electric and magnetic surface currents as the desired unknowns. Triangular patch modelling is ap- plied to the

  13. A New Metasurface Superstrate Structure for Antenna Performance Enhancement.

    PubMed

    Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Faruque, Mohammad Rashed Iqbal

    2013-07-31

    A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS incorporated a slotted patch antenna that effectively increased the measured operating bandwidth from 13.3% to 18.8% and from 14.8% to 23.2% in the lower and upper bands, respectively. Moreover, the average gain of the proposed MSS-based antenna was enhanced from 2.12 dBi to 3.02 dBi in the lower band and from 4.10 dBi to 5.28 dBi in the upper band compared to the patch antenna alone. In addition to the bandwidth and gain improvements, more directive radiation characteristics were also observed from the MSS antenna compared to the patch itself. The effects of the MSS elements and the ground plane length on the reflection coefficient of the antenna were analyzed and optimized. The overall performance makes the proposed antenna appropriate for RFID and WLAN applications.

  14. A New Metasurface Superstrate Structure for Antenna Performance Enhancement

    PubMed Central

    Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Faruque, Mohammad Rashed Iqbal

    2013-01-01

    A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS incorporated a slotted patch antenna that effectively increased the measured operating bandwidth from 13.3% to 18.8% and from 14.8% to 23.2% in the lower and upper bands, respectively. Moreover, the average gain of the proposed MSS-based antenna was enhanced from 2.12 dBi to 3.02 dBi in the lower band and from 4.10 dBi to 5.28 dBi in the upper band compared to the patch antenna alone. In addition to the bandwidth and gain improvements, more directive radiation characteristics were also observed from the MSS antenna compared to the patch itself. The effects of the MSS elements and the ground plane length on the reflection coefficient of the antenna were analyzed and optimized. The overall performance makes the proposed antenna appropriate for RFID and WLAN applications. PMID:28811432

  15. Novel On-wafer Radiation Pattern Measurement Technique for MEMS Actuator Based Reconfigurable Patch Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2002-01-01

    The paper presents a novel on-wafer, antenna far field pattern measurement technique for microelectromechanical systems (MEMS) based reconfigurable patch antennas. The measurement technique significantly reduces the time and the cost associated with the characterization of printed antennas, fabricated on a semiconductor wafer or dielectric substrate. To measure the radiation patterns, the RF probe station is modified to accommodate an open-ended rectangular waveguide as the rotating linearly polarized sampling antenna. The open-ended waveguide is attached through a coaxial rotary joint to a Plexiglas(Trademark) arm and is driven along an arc by a stepper motor. Thus, the spinning open-ended waveguide can sample the relative field intensity of the patch as a function of the angle from bore sight. The experimental results include the measured linearly polarized and circularly polarized radiation patterns for MEMS-based frequency reconfigurable rectangular and polarization reconfigurable nearly square patch antennas, respectively.

  16. Design And Simulation Of Microstrip Antenna Of 2.4 GHz Using CST

    NASA Astrophysics Data System (ADS)

    Thakur, O. P.; Kushwaha, Alok K.

    2011-12-01

    This article describes the design, fabrication and testing of micro strip patch antennas operating at 2.4 GHz. Consideration is given on practical design technique, including substrate selection and antenna measurements. It is emphasised to the radiation properties of the antennas—the radiation pattern and polarization purity. A micro strip patch antenna consists of a very thin metallic patch placed a small fraction of a wavelength above a conducting ground-plane. The patch and ground-plane are separated by a dielectric. The patch conductor is normally copper and can assume any shape, but simple geometries generally are used, and this simplifies the analysis and performance prediction. The patches are usually photo etched on the dielectric substrate. The substrate is usually non-magnetic. The relative permittivity of the substrate is normally in the region between 1 and 4, which enhances the fringing fields that account for radiation, but higher values may be used in special circumstances. Due to its simple geometry, the half wave rectangular patch is the most commonly used micro strip antenna. It is characterized by its length L, width w and thickness h. The simplest method of feeding the patch is by a coplanar micro strip line, also photo etched on the substrate. Coaxial feeds are also widely used.

  17. Use of microstrip patch antennas in grain permittivity measurement

    USGS Publications Warehouse

    El Sabbagh, M.A.; Ramahi, O.M.; Trabelsi, S.; Nelson, S.O.; Khan, L.

    2003-01-01

    In this paper, a compact size free-space setup is proposed for the measurement of complex permittivity of granular materials. The horn antennas in the conventional setup are replaced by microstrip patch antennas which is a step toward system miniaturization. The experimental results obtained are in good agreement with those obtained with horn antennas.

  18. Wearable Inset-Fed FR4 Microstrip Patch Antenna Design

    NASA Astrophysics Data System (ADS)

    Zaini, S. R. Mohd; Rani, K. N. Abdul

    2018-03-01

    This project proposes the design of a wireless body area network (WBAN) microstrip patch antenna covered by the jeans fabric as the outer layer operating at the center frequency, fc of 2.40 GHz. Precisely, the microstrip patch antenna with the inset-fed edge technique is designed and simulated systematically by using the Keysight Advanced Design System (ADS) software where the FR4 board with the dielectric constant, ɛr of 4.70, dissipation factor or loss tangent, tan δ of 0.02 and height, h of 1.60 mm is the chosen dielectric substrate. The wearable microstrip patch antenna design is then fabricated using the FR4 printed circuit board (PCB) material, hidden inside the jeans fabric, and attached to clothing, such as a jacket accordingly. Simulation and fabrication measurement results show that the designed microstrip patch antenna characteristics can be applied significantly within the industrial, scientific, and medical (ISM) radio band, which is at fc = 2.40 GHz.

  19. Compact CPW-fed spiral-patch monopole antenna with tuneable frequency for multiband applications

    NASA Astrophysics Data System (ADS)

    Beigi, P.; Nourinia, J.; Zehforoosh, Y.

    2018-04-01

    A frequency reconfigurable monopole antenna with coplanar waveguide-fed with four switchable for multiband application is reported. The monopole antenna includes square-spiral patch and two L-shaped elements. The number of frequency resonances are increased by adding square spiral. In the reported antenna, two PIN diodes are used to achieve the multiband operation. PIN diodes embedded on the spiral patch can control the frequency resonance when they are forward-biased or in those off-state. The final designed antenna, with compact size of 20 × 20 ×1 mm3, has been fabricated on an inexpensive FR4 substrate. All experimental and simulation results are acceptable suggesting that the reported antenna is a good candidate for multiband applications.

  20. Single-Layer, All-Metal Patch Antenna Element with Wide Bandwidth

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil F.; Hodges, Richard E.; Zawardzki, Mark S.

    2012-01-01

    It is known that the impedance at the center of a patch antenna element is a short circuit, implying that a wire or post can be connected from the patch to the groundplane at this point without impacting radiation performance. In principle, this central post can be used to support the patch element, thus eliminating the need for dielectric. In spaceborne applications, this approach is problematic because a patch element supported by a single, thin post is highly susceptible to acoustic loads during launch. The technology reported here uses a large-diameter center post as its supporting structure. The supporting structure allows for the fabrication of a sufficiently rigid antenna element that can survive launch loads. The post may be either hollow or solid, depending on fabrication approach and/or mass constraints. The patch antenna element and support post are envisioned as being fabricated (milled) from a single piece of aluminum or other metal. Alternately, the patch plate and support column can be fabricated separately and then joined using fasteners, adhesive, or welding. Casting and electroforming are also viable techniques for manufacturing the metal patch part(s). The patch structure is then either bonded or fastened to the supporting groundplane. Arrays of patch elements can be fabricated by attaching several structures to a common groundplane/support structure.

  1. Broadbanding of circularly polarized patch antenna by waveguided magneto-dielectric metamaterial

    NASA Astrophysics Data System (ADS)

    Yang, Xin Mi; Wen, Juan; Liu, Chang Rong; Liu, Xue Guan; Cui, Tie Jun

    2015-12-01

    Design of bandwidth-enhanced circularly polarized (CP) patch antenna using artificial magneto-dielectric substrate was investigated. The artificial magneto-dielectric material adopted here takes the form of waveguided metamaterial (WG-MTM). In particular, the embedded meander line (EML) structure was employed as the building element of the WG-MTM. As verified by the retrieved effective medium parameters, the EML-based waveguided magneto-dielectric metamaterial (WG-MDM) exhibits two-dimensionally isotropic magneto-dielectric property with respect to TEM wave excitations applied in two orthogonal directions. A CP patch antenna loaded with the EML-based WG-MDM (WG-MDM antenna) has been proposed and its design procedure is described in detail. Simulation results show that the impedance and axial ratio bandwidths of the WG-MDM antenna have increased by 125% and 133%, respectively, compared with those obtained with pure dielectric substrate offering the same patch size. The design of the novel WG-MDM antenna was also validated by measurement results, which show good agreement with their simulated counterparts.

  2. Analysis of cylindrical wrap-around and doubly conformal patch antennas by way of the finite element-artificial absorber method

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Kempel, L. C.; Sliva, R.; Wang, H. T. G.; Woo, A. G.

    1994-01-01

    The goal of this project was to develop analysis codes for computing the scattering and radiation of antennas on cylindrically and doubly conformal platforms. The finite element-boundary integral (FE-BI) method has been shown to accurately model the scattering and radiation of cavity-backed patch antennas. Unfortunately extension of this rigorous technique to coated or doubly curved platforms is cumbersome and inefficient. An alternative approximate approach is to employ an absorbing boundary condition (ABC) for terminating the finite element mesh thus avoiding use of a Green's function. A FE-ABC method is used to calculate the radar cross section (RCS) and radiation pattern of a cavity-backed patch antenna which is recessed within a metallic surface. It is shown that this approach is accurate for RCS and antenna pattern calculations with an ABC surface displaced as little as 0.3 lambda from the cavity aperture. These patch antennas may have a dielectric overlay which may also be modeled with this technique.

  3. Performance enhanced miniaturized and electrically tunable patch antenna with patterned permalloy based magneto-dielectric substrate

    NASA Astrophysics Data System (ADS)

    Peng, Yujia; Farid Rahman, B. M.; Wang, Xuehe; Wang, Guoan

    2014-05-01

    Perspective magneto-dielectric materials with high permeability are potential substrates to miniaturize the patch antenna without deteriorating its performance. Besides its high permeability at high frequency, patterned Permalloy (Py) also presents tunable permeability by applying DC current. A performance enhanced miniaturized and electrically tunable patch antenna with patterned Py thin film is first presented and developed in this paper. To suppress the magnetic loss, the Py thin film layer is consisted of an array of 2 μm × 2 μm square Py patterns between the copper patch antenna and dielectric substrate. The DC current could be applied directly on Py patterns through the copper strip lines beneath the Py patterns along the length of patch antenna. The copper strip lines are specially designed with the same width of Py patterns and the thickness much less than the skin depth at the operating frequency, which can reduce their deteriorating effects to the performance of antenna. The structure of the antenna is presented and simulated with high frequency structure simulator. The results show that compared with non-magnetic antenna, the performance of Py thin film based antenna is improved with 50% bandwidth increase from 4 MHz to 8 MHz and 1.2 dB gain enhancement from 1.16 dB to 2.36 dB. The resonant frequency of the antenna could be continuously tuned from 937 MHz to 911 MHz with the permeability of Py thin film changing from 1750 to 1 900 by applying the DC current.

  4. A circularly polarized Ka-band stacked patch antenna with increased gain

    NASA Technical Reports Server (NTRS)

    Zawadzki, M.

    2002-01-01

    Stacking layers of microstrip patches is a technique often used to improve the bandwidth of a patch antenna, but rarely used to increase its gain. The work presented here scales the three-layer S-band work done in to Ka-band.

  5. Front-Side Microstrip Line Feeding a Raised Antenna Patch

    NASA Technical Reports Server (NTRS)

    Hodges, Richard; Hoppe, Daniel

    2005-01-01

    An improved design concept for a printed-circuit patch antenna and the transmission line that feeds the patch calls for (1) a microstrip transmission line on the front (radiative) side of a printed-circuit board based on a thin, high-permittivity dielectric substrate; (2) using the conductor covering the back side of the circuit board as a common ground plane for both the microstrip line and the antenna patch; (3) supporting the antenna patch in front of the circuit board on a much thicker, lower-permittivity dielectric spacer layer; and (4) connecting the microstrip transmission line to the patch by use of a thin wire or narrow ribbon that extends through the thickness of the spacer and is oriented perpendicularly to the circuit-board plane. The thickness of the substrate is typically chosen so that a microstrip transmission line of practical width has an impedance between 50 and 100 ohms. The advantages of this design concept are best understood in the context of the disadvantages of prior design concepts, as explained

  6. Investigation of a nanostrip patch antenna in optical frequencies

    NASA Astrophysics Data System (ADS)

    Kashyap, Nitesh; Wani, Zamir Ahmad; Jain, Rishi; Khusboo; Dinesh Kumar, V.

    2014-08-01

    This is the first report and investigation of a patch antenna in optical frequency range. Variety of plasmonic nanoantenna reported so far is good at enhancing the local field intensity of light by orders of magnitude. However, their far-field radiation efficiency is very poor. The proposed patch antenna emits a directional beam with high efficacy in addition to enhancing the intensity of near field. The nano-patch antenna (NPA) consists of a square patch of gold film of dimension 480 nm2, placed on a substrate of dielectric constant \\varepsilon_{{r}} = 3.9 and thickness 150 nm with a ground plane of gold film of dimension 1,080 nm2. The NPA resonates at 210 THz and has gain nearly 2 dB and radiation efficiency 45.18 %. The NPA might be useful in variety of applications such as optical communication, nano-photonics, biosensing, and spectroscopy.

  7. Compact filtering monopole patch antenna with dual-band rejection.

    PubMed

    Kim, Sun-Woong; Choi, Dong-You

    2016-01-01

    In this paper, a compact ultra-wideband patch antenna with dual-band rejection is proposed. The proposed antenna filters 3.3-3.8 GHz WiMAX and 5.15-5.85 GHz WLAN by respectively rejecting these bands through a C-shaped slit and a λg/4 resonator. The λg/4 resonator is positioned as a pair, centered around the microstrip line, and a C-type slit is inserted into an elliptical patch. The impedance bandwidth of the proposed antenna is 2.9-9.3 GHz, which satisfies the bandwidth for ultra-wideband communication systems. Further, the proposed antenna provides dual-band rejection at two bands: 3.2-3.85 and 4.7-6.03 GHz. The radiation pattern of the antenna is omnidirectional, and antenna gain is maintained constantly while showing -8.4 and -1.5 dBi at the two rejected bands, respectively.

  8. Dual-band microstrip patch antenna based on metamaterial refractive surface

    NASA Astrophysics Data System (ADS)

    Salhi, Ridha; Labidi, Mondher; Boujemaa, Mohamed Ali; Choubani, Fethi

    2017-06-01

    In this paper, we present a new design of microstrip patch antenna based on metamaterial refractive surface (MRS). By optimizing the air gap between the MRS layer and the patch antenna to be 7 mm, the band width and the gain of the proposed antenna are significantly enhanced. The proposed prototype presents a dual band antenna. The center frequency for the first band is 2.44 GHz and the generated bandwidth is 25 MHz. The second band has a center frequency of 2.8 GHz and with a bandwidth of 50 MHz. The simulation results are analyzed and discussed in terms of return loss, gain and radiation pattern using electromagnetic simulator software. Finally, the designed dual band antenna is fabricated and different measurement results are performed and compared with simulation results in order to validate its performances. The proposed antenna supports WiBro (wireless broadband), ISM, WiFi, Bluetooth, WiMAX and radars services.

  9. Simulation-based analysis of performance parameters of microstrip antennas with criss-cross metamaterial-based artificial substrate

    NASA Astrophysics Data System (ADS)

    Inamdar, Kirti; Kosta, Y. P.; Patnaik, S.

    2014-10-01

    In this paper, we present the design of a metamaterial-based microstrip patch antenna, optimized for bandwidth and multiple frequency operations. A criss-cross structure has been proposed, this shape has been inspired from the famous Jerusalem cross. The theory and design formulas to calculate various parameters of the proposed antenna have been presented. Design starts with the analysis of the proposed unit cell structure, and validating the response using software- HFSS Version 13, to obtain negative response of ε and μ- metamaterial. Following this, a metamaterial-based-microstrip-patch-antenna is designed. A detailed comparative study is conducted exploring the response of the designed patch made of metamaterial and that of the conventional patch. Finally, antenna parameters such as gain, bandwidth, radiation pattern, and multiple frequency responses are investigated and optimised for the same and present in table and response graphs. It is also observed that the physical dimension of the metamaterial-based patch antenna is smaller compared to its conventional counterpart operating at the same fundamental frequency. The challenging part was to develop metamaterial based on some signature structures and techniques that would offer advantage in terms of BW and multiple frequency operation, which is demonstrated in this paper. The unique shape proposed in this paper gives improvement in bandwidth without reducing the gain of the antenna.

  10. Microstrip Yagi array antenna for mobile satellite vehicle application

    NASA Technical Reports Server (NTRS)

    Huang, John; Densmore, Arthur C.

    1991-01-01

    A novel antenna structure formed by combining the Yagi-Uda array concept and the microstrip radiator technique is discussed. This antenna, called the microstrip Yagi array, has been developed for the mobile satellite (MSAT) system as a low-profile, low-cost, and mechanically steered medium-gain land-vehicle antenna. With the antenna's active patches (driven elements) and parasitic patches (reflector and director elements) located on the same horizontal plane, the main beam of the array can be tilted, by the effect of mutual coupling, in the elevation direction providing optimal coverage for users in the continental United States. Because the parasitic patches are not connected to any of the lossy RF power distributing circuit the antenna is an efficient radiating system. With the complete monopulse beamforming and power distributing circuits etched on a single thin stripline board underneath the microstrip Yagi array, the overall L-band antenna system has achieved a very low profile for vehicle's rooftop mounting, as well as a low manufacturing cost. Experimental results demonstrate the performance of this antenna.

  11. Impulse Testing of Corporate-Fed Patch Array Antennas

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil F.

    2011-01-01

    This paper discusses a novel method for detecting faults in antenna arrays. The method, termed Impulse Testing, was developed for corporate-fed patch arrays where the element is fed by a probe and is shorted at its center. Impulse Testing was devised to supplement conventional microwave measurements in order to quickly verify antenna integrity. The technique relies on exciting each antenna element in turn with a fast pulse (or impulse) that propagates through the feed network to the output port of the antenna. The resulting impulse response is characteristic of the path through the feed network. Using an oscilloscope, a simple amplitude measurement can be made to detect faults. A circuit model of the antenna elements and feed network was constructed to assess various fault scenarios and determine fault-detection thresholds. The experimental setup and impulse measurements for two patch array antennas are presented. Advantages and limitations of the technique are discussed along with applications to other antenna array topologies

  12. Impedance properties of circular microstrip antenna

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Bailey, M. C.

    1983-01-01

    A moment method solution to the input impedance of a circular microstrip antenna excited by either a microstrip feed or a coaxial probe is presented. Using the exact dyadic Green's function and the Fourier transform the problem is formulated in terms of Richmond's reaction integral equation from which the unknown patch current can be solved for. The patch current is expanded in terms of regular surface patch modes and an attachment mode (for probe excited case) which insures continuity of the current at probe/patch junction, proper polarization and p-dependance of patch current in the vicinity of the probe. The input impedance of a circular microstrip antenna is computed and compared with earlier results. Effect of attachment mode on the input impedance is also discussed.

  13. Terahertz emission from the intrinsic Josephson junctions of high-symmetry thermally-managed Bi2Sr2CaCu2O8+δ microstrip antennas

    NASA Astrophysics Data System (ADS)

    Klemm, Richard A.; Davis, Andrew E.; Wang, Qing X.; Yamamoto, Takashi; Cerkoney, Daniel P.; Reid, Candy; Koopman, Maximiliaan L.; Minami, Hidetoshi; Kashiwagi, Takanari; Rain, Joseph R.; Doty, Constance M.; Sedlack, Michael A.; Morales, Manuel A.; Watanabe, Chiharu; Tsujimoto, Manabu; Delfanazari, Kaveh; Kadowaki, Kazuo

    2017-12-01

    We show for high-symmetry disk, square, or equilateral triangular thin microstrip antennas of any composition respectively obeying C ∞v , C 4v , and C 3v point group symmetries, that the transverse magnetic electromagnetic cavity mode wave functions are restricted in form to those that are one-dimensional representations of those point groups. Plots of the common nodal points of the ten lowest-energy non-radiating two-dimensional representations of each of these three symmetries are presented. For comparison with symmetry-broken disk intrinsic Josephson junction microstrip antennas constructed from the highly anisotropic layered superconductor Bi2Sr2CaCu2O8+δ (BSCCO), we present plots of the ten lowest frequency orthonormal wave functions and of their emission power angular distributions. These results are compared with previous results for square and equilateral triangular thin microstrip antennas.

  14. Vehicle antenna for the mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Peng, Sheng Y.; Chung, H. H.; Leggiere, D.; Foy, W.; Schaffner, G.; Nelson, J.; Pagels, W.; Vayner, M.; Faller, H. L.; Messer, L.

    1988-01-01

    A low profile, low cost, printed circuit, electronically steered, right hand circularly polarized phase array antenna system has been developed for the Mobile Satellite Experiment (MSAT-X) Program. The success of this antenna is based upon the development of a crossed-slot element array and detailed trade-off analyses for both the phased array and pointing system design. The optimized system provides higher gain at low elevation angles (20 degrees above the horizon) and broader frequency coverage (approximately 8 1/2 percent bandwidth) than is possible with a patch array. Detailed analysis showed that optimum performance could be achieved with a 19 element array of a triangular lattice geometry of 3.9 inch element spacing. This configuration has the effect of minimizing grating lobes at large scan angles plus it improves the intersatellite isolation. The array has an aperture 20 inches in diameter and is 0.75 inch thick overall, exclusive of the RF and power connector. The pointing system employs a hybrid approach that operates with both an external rate sensor and an internal error signal as a means of fine tuning the beam acquisition and track. Steering the beam is done electronically via 18, 3-bit diode phase shifters. A nineteenth phase shifter is not required as the center element serves as a reference only. Measured patterns and gain show that the array meets the stipulated performance specifications everywhere except at some low elevation angles.

  15. Superconducting antennas for telecommunication applications based on dual mode cross slotted patches

    NASA Astrophysics Data System (ADS)

    Cassinese, A.; Barra, M.; Fragalà, I.; Kusunoki, M.; Malandrino, G.; Nakagawa, T.; Perdicaro, L. M. S.; Sato, K.; Ohshima, S.; Vaglio, R.

    2002-08-01

    Dual mode devices based on high temperature superconducting films represent an interesting class for telecommunication applications since they combine a miniaturized size with a good power handling. Here we report on a novel compact antenna obtained by crossing a square patch with two or more slots. The proposed design has an antenna size reduction of about 40% as compared to the conventional square patch microstrip antennas. Single patch antenna both with linear (LP) and circular (CP) polarization operating in the X-band have been designed and tested at prototype level. They are realized by using double sided (YBa 2Cu 3O 7- x) YBCO and Tl 2Ba 2Ca 1Cu 2O 8 (Tl-2212) superconducting films grown on MgO substrates and tested with a portable cryocooler. They showed at T=77 K a return loss <25 dB and a power handling of 23 dBm. Exemplary 16 elements arrays LP antennas operating in the X band have been also realized by using YBCO film grown on 2 ″ diameter MgO substrate.

  16. Optimization of Planar Monopole Wideband Antenna for Wireless Communication System

    PubMed Central

    Moghavvemi, Mahmoud; Mahadi, Wan Nor Liza

    2016-01-01

    In this paper, a new compact wideband monopole antenna is presented for wireless communication applications. This antenna comprises of a new radiating patch, a new arc-shaped strip, microstrip feed line, and a notched ground plane. The proposed radiating patch is combined with a rectangular and semi-circular patch and is integrated with a partial ground plane to provide a wide impedance bandwidth. The new arc-shaped strip between the radiating patch and microstrip feed line creates an extra surface on the patch, which helps further widen the bandwidth. Inserting one step notch on the ground plane further enhances the bandwidth. The antenna has a compact size of 16×20×1.6mm3. The measured result indicated that the antenna achieves a 127% bandwidth at VSWR≤2, ranging from 4.9GHz to 22.1GHz. Stable radiation patterns with acceptable gain are achieved. Also, a measured bandwidth of 107.7% at VSWR≤1.5 (5.1-17GHz) is obtained, which is suitable for UWB outdoor propagation. This antenna is compatible with a good number of wireless standards, including UWB band, Wimax 5.4 GHz band, MVDDS (12.2–12.7GHz), and close range radar and satellite communication in the X-band (8-12GHz), and Ku band (12-18GHz). PMID:27992466

  17. Optimization of Planar Monopole Wideband Antenna for Wireless Communication System.

    PubMed

    Shakib, Mohammed Nazmus; Moghavvemi, Mahmoud; Mahadi, Wan Nor Liza

    2016-01-01

    In this paper, a new compact wideband monopole antenna is presented for wireless communication applications. This antenna comprises of a new radiating patch, a new arc-shaped strip, microstrip feed line, and a notched ground plane. The proposed radiating patch is combined with a rectangular and semi-circular patch and is integrated with a partial ground plane to provide a wide impedance bandwidth. The new arc-shaped strip between the radiating patch and microstrip feed line creates an extra surface on the patch, which helps further widen the bandwidth. Inserting one step notch on the ground plane further enhances the bandwidth. The antenna has a compact size of 16×20×1.6mm3. The measured result indicated that the antenna achieves a 127% bandwidth at VSWR≤2, ranging from 4.9GHz to 22.1GHz. Stable radiation patterns with acceptable gain are achieved. Also, a measured bandwidth of 107.7% at VSWR≤1.5 (5.1-17GHz) is obtained, which is suitable for UWB outdoor propagation. This antenna is compatible with a good number of wireless standards, including UWB band, Wimax 5.4 GHz band, MVDDS (12.2-12.7GHz), and close range radar and satellite communication in the X-band (8-12GHz), and Ku band (12-18GHz).

  18. Demonstration of an X-Band Multilayer Yagi-Like Microstrip Patch Antenna With High Directivity and Large Bandwidth

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Zaman, Afroz; Lee, Richard Q.; Lambert, Kevin

    2005-01-01

    The feasibility of obtaining large bandwidth and high directivity from a multilayer Yagi-like microstrip patch antenna at 10 GHz is investigated. A measured 10-dB bandwidth of approximately 20 percent and directivity of approximately 11 dBi is demonstrated through the implementation of a vertically-stacked structure with three parasitic directors, above the driven patch, and a single reflector underneath the driven patch. Simulated and measured results are compared and show fairly close agreement. This antenna offers the advantages of large bandwidth, high directivity, and symmetrical broadside patterns, and could be applicable to satellite as well as terrestrial communications.

  19. FDTD Analysis of U-Slot Rectangular Patch Antenna

    NASA Technical Reports Server (NTRS)

    Luk, K. M.; Tong, K. F.; Shum, S. M.; Lee, K. F.; Lee, R. Q.

    1997-01-01

    The U-slot rectangular patch antenna (Figure I) has been found experimentally to provide impedance and gain bandwidths of about 300 without the need of stacked or coplanar parasitic elements [1,2]. In this paper, simulation results of the U-slot patch using FDTD analysis are presented. Comparison with measured results are given.

  20. Resistively Loaded Microstrip-Patch Antenna

    NASA Technical Reports Server (NTRS)

    Bailey, Marion C.

    1993-01-01

    Strips of thin resistive material added near two edges of conventional micro-strip-patch antenna. Bandwidth doubled by simple modification. Optimum bandwidth performance obtained by adjustment of shapes, resistances, and locations of resistive strips.

  1. EBG Based Microstrip Patch Antenna for Brain Tumor Detection via Scattering Parameters in Microwave Imaging System.

    PubMed

    Inum, Reefat; Rana, Md Masud; Shushama, Kamrun Nahar; Quader, Md Anwarul

    2018-01-01

    A microwave brain imaging system model is envisaged to detect and visualize tumor inside the human brain. A compact and efficient microstrip patch antenna is used in the imaging technique to transmit equivalent signal and receive backscattering signal from the stratified human head model. Electromagnetic band gap (EBG) structure is incorporated on the antenna ground plane to enhance the performance. Rectangular and circular EBG structures are proposed to investigate the antenna performance. Incorporation of circular EBG on the antenna ground plane provides an improvement of 22.77% in return loss, 5.84% in impedance bandwidth, and 16.53% in antenna gain with respect to the patch antenna with rectangular EBG. The simulation results obtained from CST are compared to those obtained from HFSS to validate the design. Specific absorption rate (SAR) of the modeled head tissue for the proposed antenna is determined. Different SAR values are compared with the established standard SAR limit to provide a safety regulation of the imaging system. A monostatic radar-based confocal microwave imaging algorithm is applied to generate the image of tumor inside a six-layer human head phantom model. S -parameter signals obtained from circular EBG loaded patch antenna in different scanning modes are utilized in the imaging algorithm to effectively produce a high-resolution image which reliably indicates the presence of tumor inside human brain.

  2. High-Performance Wireless Ammonia Gas Sensors Based on Reduced Graphene Oxide and Nano-Silver Ink Hybrid Material Loaded on a Patch Antenna.

    PubMed

    Wu, Bian; Zhang, Xingfei; Huang, Beiju; Zhao, Yutong; Cheng, Chuantong; Chen, Hongda

    2017-09-09

    Reduced graphene oxide (rGO) has been studied as a resistive ammonia gas sensor at room temperature. The sensitive hybrid material composed of rGO and nano-silver ink (Ag-ink) was loaded on a microstrip patch antenna to realize high-performance wireless ammonia sensors. The material was investigated using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Firstly, interdigital electrodes (IDEs) printed on the polyethylene terephthalate (PET) by direct printing were employed to measure the variation of resistance of the sensitive material with the ammonia concentration. The results indicated the response of sensor varied from 4.25% to 14.7% under 15-200 ppm ammonia concentrations. Furthermore, the hybrid material was loaded on a microstrip patch antenna fabricated by a conventional printed circuit board (PCB) process, and a 10 MHz frequency shift of the sensor antenna could be observed for 200 ppm ammonia gas. Finally, the wireless sensing property of the sensor antenna was successfully tested using the same emitted antenna outside the gas chamber with a high gain of 5.48 dBi, and an increased reflection magnitude of the emitted antenna due to the frequency mismatch of the sensor antenna was observed. Therefore, wireless ammonia gas sensors loaded on a patch antenna have significant application prospects in the field of Internet of Things (IoTs).

  3. EBG Based Microstrip Patch Antenna for Brain Tumor Detection via Scattering Parameters in Microwave Imaging System

    PubMed Central

    Rana, Md. Masud; Shushama, Kamrun Nahar; Quader, Md. Anwarul

    2018-01-01

    A microwave brain imaging system model is envisaged to detect and visualize tumor inside the human brain. A compact and efficient microstrip patch antenna is used in the imaging technique to transmit equivalent signal and receive backscattering signal from the stratified human head model. Electromagnetic band gap (EBG) structure is incorporated on the antenna ground plane to enhance the performance. Rectangular and circular EBG structures are proposed to investigate the antenna performance. Incorporation of circular EBG on the antenna ground plane provides an improvement of 22.77% in return loss, 5.84% in impedance bandwidth, and 16.53% in antenna gain with respect to the patch antenna with rectangular EBG. The simulation results obtained from CST are compared to those obtained from HFSS to validate the design. Specific absorption rate (SAR) of the modeled head tissue for the proposed antenna is determined. Different SAR values are compared with the established standard SAR limit to provide a safety regulation of the imaging system. A monostatic radar-based confocal microwave imaging algorithm is applied to generate the image of tumor inside a six-layer human head phantom model. S-parameter signals obtained from circular EBG loaded patch antenna in different scanning modes are utilized in the imaging algorithm to effectively produce a high-resolution image which reliably indicates the presence of tumor inside human brain. PMID:29623087

  4. High-Performance Wireless Ammonia Gas Sensors Based on Reduced Graphene Oxide and Nano-Silver Ink Hybrid Material Loaded on a Patch Antenna

    PubMed Central

    Zhang, Xingfei; Huang, Beiju; Zhao, Yutong; Cheng, Chuantong; Chen, Hongda

    2017-01-01

    Reduced graphene oxide (rGO) has been studied as a resistive ammonia gas sensor at room temperature. The sensitive hybrid material composed of rGO and nano-silver ink (Ag-ink) was loaded on a microstrip patch antenna to realize high-performance wireless ammonia sensors. The material was investigated using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Firstly, interdigital electrodes (IDEs) printed on the polyethylene terephthalate (PET) by direct printing were employed to measure the variation of resistance of the sensitive material with the ammonia concentration. The results indicated the response of sensor varied from 4.25% to 14.7% under 15–200 ppm ammonia concentrations. Furthermore, the hybrid material was loaded on a microstrip patch antenna fabricated by a conventional printed circuit board (PCB) process, and a 10 MHz frequency shift of the sensor antenna could be observed for 200 ppm ammonia gas. Finally, the wireless sensing property of the sensor antenna was successfully tested using the same emitted antenna outside the gas chamber with a high gain of 5.48 dBi, and an increased reflection magnitude of the emitted antenna due to the frequency mismatch of the sensor antenna was observed. Therefore, wireless ammonia gas sensors loaded on a patch antenna have significant application prospects in the field of Internet of Things (IoTs). PMID:28891928

  5. Metal Patch Antenna

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil F. (Inventor); Zawadzki, Mark S. (Inventor); Hodges, Richard E. (Inventor)

    2012-01-01

    Disclosed herein is a patch antenna comprises a planar conductive patch attached to a ground plane by a support member, and a probe connector in electrical communication with the conductive patch arranged to conduct electromagnetic energy to or from the conductive patch, wherein the conductive patch is disposed essentially parallel to the ground plane and is separated from the ground plane by a spacing distance; wherein the support member comprises a plurality of sides disposed about a central axis oriented perpendicular to the conductive patch and the ground plane; wherein the conductive patch is solely supported above the ground plane by the support member; and wherein the support member provides electrical communication between the planer conductive patch and the ground plane.

  6. Performance analysis and comparison of ITO- and FTO-based optically transparent terahertz U-shaped patch antennas

    NASA Astrophysics Data System (ADS)

    Thampy, Anand Sreekantan; Dhamodharan, Sriram Kumar

    2015-02-01

    An indium-doped tin oxide (ITO) and a fluorine-doped tin oxide (FTO)-based optically transparent U-shaped patch antennas are designed to resonate at 750 GHz and their performances are analyzed. Impedance bandwidth, radiation efficiency, directivity and gain of the proposed antennas are investigated. The proposed transparent antenna's characteristics are compared with the copper-based non-transparent U-shaped patch antenna, which is also designed to resonate at 750 GHz. Terahertz antennas are essential for inter-satellite communications systems to enable the adequate spatial resolution, broad bandwidth, higher data rates and highly directional beam with secured data transfer. The proposed ITO- and FTO-based transparent antennas have yielded impedance bandwidth of 9.54% and 11.49%, respectively, in the band 719-791 GHz and 714-801 GHz, respectively. The peak gain for ITO and FTO based transparent antennas is 3.35 dB and 2.26 dB at 732 GHz and 801 GHz, respectively. The proposed antennas are designed and simulated by using a finite element method based electromagnetic solver, Ansys - HFSS.

  7. A novel approach for the fine tuning of resonance frequency of patch antenna

    NASA Astrophysics Data System (ADS)

    Mathur, Monika; Singh, Ghanshyam; Bhatnagar, S. K.

    2013-01-01

    When a patch antenna is fabricated, dimensions of the patch may be slightly different from the designed values due to tolerances in the fabrication process. This alters the resonance frequency of the antenna. To overcome this problem this paper presents a new design approach for fine tuning the resonance frequency by dielectric constant engineering. This approach is especially suited to low temperature co-fired ceramic (LTCC) and similar processes where the antenna dielectric is composed of several layers. Composite dielectric constant of this multilayer structure is altered in such a way that the resonant frequency is set back to the designed value. It has been verified that for proposed micro strip antenna (MSA) design, the frequency-area curve follows a quadratic relation with a variable R (Ratio of cavity area to the patch area). This mathematical model is true up to R 1.27. After this saturation effects set in and the curve follows a straight line behavior.≡

  8. Cavity mode enhancement of terahertz emission from equilateral triangular microstrip antennas of the high-T c superconductor Bi2Sr2CaCu2O8 + δ.

    PubMed

    Cerkoney, Daniel P; Reid, Candy; Doty, Constance M; Gramajo, Ashley; Campbell, Tyler D; Morales, Manuel A; Delfanazari, Kaveh; Tsujimoto, Manabu; Kashiwagi, Takanari; Yamamoto, Takashi; Watanabe, Chiharu; Minami, Hidetoshi; Kadowaki, Kazuo; Klemm, Richard A

    2017-01-11

    We study the transverse magnetic (TM) electromagnetic cavity mode wave functions for an ideal equilateral triangular microstrip antenna (MSA) exhibiting C 3v point group symmetry. When the C 3v operations are imposed upon the antenna, the TM(m,n) modes with wave vectors [Formula: see text] are much less dense than commonly thought. The R 3 operations restrict the integral n and m to satisfy [Formula: see text], where [Formula: see text] and [Formula: see text] for the modes even and odd under reflections about the three mirror planes, respectively. We calculate the forms of representative wave functions and the angular dependence of the output power when these modes are excited by the uniform and non-uniform ac Josephson current sources in thin, ideally equilateral triangular MSAs employing the intrinsic Josephson junctions in the high transition temperature T c superconductor Bi 2 Sr 2 CaCu 2 [Formula: see text], and fit the emissions data from an earlier sample for which the C 3v symmetry was apparently broken.

  9. Bridging the Gap between RF and Optical Patch Antenna Analysis via the Cavity Model.

    PubMed

    Unal, G S; Aksun, M I

    2015-11-02

    Although optical antennas with a variety of shapes and for a variety of applications have been proposed and studied, they are still in their infancy compared to their radio frequency (rf) counterparts. Optical antennas have mainly utilized the geometrical attributes of rf antennas rather than the analysis tools that have been the source of intuition for antenna engineers in rf. This study intends to narrow the gap of experience and intuition in the design of optical patch antennas by introducing an easy-to-understand and easy-to-implement analysis tool in rf, namely, the cavity model, into the optical regime. The importance of this approach is not only its simplicity in understanding and implementation but also its applicability to a broad class of patch antennas and, more importantly, its ability to provide the intuition needed to predict the outcome without going through the trial-and-error simulations with no or little intuitive guidance by the user.

  10. A low profile rectangular patch microstrip antenna for dual-band operation of wireless communication system

    NASA Astrophysics Data System (ADS)

    Rambe, A. H.; Abdillah, K.

    2018-02-01

    This paper discussed a low profile rectangular patch microstrip antenna design working on dual-band 1.8 GHz and 2.4 GHz. Dual-band characteristic is achieved by using inset-feed point and slot size adjustment. The designed antenna was printed on a FR4 substrate with relative permittivity of 4.4 and a thickness of 1.6 mm with patch size 40 x 29 mm. The measurement results show that the realized antenna successfully working on dual-band, achieving bandwidth of 45 MHz and 95 MHz, gain of 4.08 dBi and 5.79 dBi for 1.8 GHz and 2.4 GHz subsequently.

  11. A 10 GHz Y-Ba-Cu-O/GaAs hybrid oscillator proximity coupled to a circular microstrip patch antenna

    NASA Technical Reports Server (NTRS)

    Rohrer, Norman J.; Richard, M. A.; Valco, George J.; Bhasin, Kul B.

    1993-01-01

    A 10 GHz hybrid YBCO/GaAs microwave oscillator proximity coupled to a circular microstrip antenna has been designed, fabricated, and characterized. The oscillator was a reflection mode type using a GaAs MESFET as the active element. The feedline, transmission lines, RF chokes, and bias lines were all fabricated from YBCO superconducting thin films on a 1 cm x 1 cm lanthanum aluminate substrate. The output feedline of the oscillator was wire bonded to a superconducting feedline on a second 1 cm x 1 cm lanthanum aluminate substrate, which was in turn proximity coupled to a circular microstrip patch antenna. Antenna patterns from this active patch antenna and the performance of the oscillator measured at 77 K are reported. The oscillator had a maximum output power of 11.5 dBm at 77 K, which corresponded to an efficiency of 10 percent. In addition, the efficiency of the microstrip patch antenna together with its high temperature superconducting feedline was measured from 85 K to 30 K and was found to be 71 percent at 77 K, increasing to a maximum of 87.4 percent at 30 K.

  12. A 10 GHz Y-Ba-Cu-O/GaAs hybrid oscillator proximity coupled to a circular microstrip patch antenna

    NASA Technical Reports Server (NTRS)

    Rohrer, Norman J.; Richard, M. A.; Valco, George J.; Bhasin, Kul B.

    1993-01-01

    A 10 GHz hybrid Y-Ba-Cu-O / GaAs microwave oscillator proximity coupled to a circular microstrip antenna was designed, fabricated and characterized. The oscillator was a reflection mode type using a GaAs MESFET as the active element. The feedline, transmission lines, RF chokes, and bias lines were all fabricated from YBa2Cu3O(7-x) superconducting thin films on a 1 cm x 1 cm lanthanum aluminate substrate. The output feedline of the oscillator was wire bonded to a superconducting feedline on a second 1 cm x 1 cm lanthanum aluminate substrate, which was in turn proximity coupled to a circular microstrip patch antenna. Antenna patterns from this active patch antenna and the performance of the oscillator measured at 77 K are reported. The oscillator had a maximum output power of 11.5 dBm at 77 K, which corresponded to an efficiency of 10 percent. In addition, the efficiency of the microstrip patch antenna together with its high temperature superconducting feedline was measured from 85 K to 30 K and was found to be 71 percent at 77 4 increasing to a maximum of 87.4 percent at 30 K.

  13. A wide-band dual-polarized VHF microstrip antenna for global sensing of sea ice thickness

    NASA Technical Reports Server (NTRS)

    Huang, John; Hussein, Ziad; Petros, Argy

    2005-01-01

    A VHF microstrip patch antenna was developed to achieve a bandwidth of 45 MHz (30%) from 127 MHz to 172 MHz with dual-linear-polarization capability. This microstrip antenna used foam substrates and dual stacked patches with capacitive probe feeds to achieve wide bandwidth. Four such capacitive feeds were used to achieve dual polarizations with less than -20 dB of cross-polarization level. Twenty-four shorting pins were used on the lower patch to achieve acceptable isolation between the four feed probes. This antenna has a measured gain of 8.5 dB at 137 MHz and 10 dB at 162 MHz. By using the Method of Moments technique, multipath scattering patterns were calculated when the antenna is mounted on the outside of a Twin Otter aircraft.

  14. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    NASA Astrophysics Data System (ADS)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields an improvement in gain, or range, and in the ability to be mounted on multiple metallic surfaces.

  15. Design of modified pentagonal patch antenna on defective ground for Wi-Max/WLAN application

    NASA Astrophysics Data System (ADS)

    Rawat, Sanyog; Sharma, K. K.

    2016-04-01

    This paper presents the design and performance of a modified pentagonal patch antenna with defective ground plane. A pentagonal slot is inserted in the pentagonal patch and slot loaded ground through optimized dimensions is used in the antenna to resonate it at dual frequency. The geometry operates at two resonant frequencies (2.5 GHz and 5.58 GHz) and offers impedance bandwidth of 864 MHz and 554 MHz in the two bands of interest. The proposed antenna covers the lower band (2.45 to 2.484/2.495 to 2.695 GHz) and upper band (5.15 to 5.825 GHz/5.25 to 5.85 GHz) allocated for Wi-Max and WLAN communication systems.

  16. Design, simulation and analysis a microstrip antenna using PU-EFB substrate

    NASA Astrophysics Data System (ADS)

    Mahmud, S. N. S.; Jusoh, M. A.; Jasim, S. E.; Zamani, A. H.; Abdullah, M. H.

    2018-04-01

    A low cost, light weight and easy to fabricate are the most important factor for future antennas. Microstrip patch antennas offer these advantages and suitable for communication and sensor application. This paper presents a design of simple microstrip patch antenna working on operating frequency of 2.4 GHz. The designed process has been carried out using MATLAB and HFSS software by entering 2.3 for the dielectric constant of PU-EFB. The results showed that high return loss, low bandwidth and good antenna radiation efficiency of which are -21.98 dB, 0.28 dB and 97.33%, respectively.

  17. Reducing Cross-Polarized Radiation From A Microstrip Antenna

    NASA Technical Reports Server (NTRS)

    Huang, John

    1991-01-01

    Change in configuration of feed of nominally linearly polarized microstrip-patch transmitting array antenna reduces cross-polarized component of its radiation. Patches fed on opposing sides, in opposite phases. Combination of spatial symmetry and temporal asymmetry causes copolarized components of radiation from fundamental modes of patches to reinforce each other and cross-polarized components of radiation from higher-order modes to cancel each other.

  18. Broadband Circularly Polarized Slot Antenna Loaded by a Multiple-Circular-Sector Patch

    PubMed Central

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon

    2018-01-01

    In this paper, a microstrip-fed broadband circularly polarized (CP) slot antenna is presented. CP operation can be attained simply by embedding an S-shaped strip. By loading with a multiple-circular-sector patch, which consists of 12 circular-sector patches with identical central angles of 30° and different radii, the 3 dB axial ratio (AR) bandwidth is significantly broadened. To validate the performance of the proposed antenna, an antenna prototype is fabricated and tested. The fabricated antenna is 54 mm × 54 mm × 0.8 mm in size. The measured −10 dB reflection and 3 dB AR bandwidths are 81.06% (1.68–3.97 GHz) and 70.55% (1.89–3.95 GHz), respectively. Within the 3 dB AR bandwidth, the measured peak gain is 3.81 dBic. Reasonable agreement is also obtained between the measured and simulated results. PMID:29762530

  19. Broadband Circularly Polarized Slot Antenna Loaded by a Multiple-Circular-Sector Patch.

    PubMed

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2018-05-15

    In this paper, a microstrip-fed broadband circularly polarized (CP) slot antenna is presented. CP operation can be attained simply by embedding an S-shaped strip. By loading with a multiple-circular-sector patch, which consists of 12 circular-sector patches with identical central angles of 30° and different radii, the 3 dB axial ratio (AR) bandwidth is significantly broadened. To validate the performance of the proposed antenna, an antenna prototype is fabricated and tested. The fabricated antenna is 54 mm × 54 mm × 0.8 mm in size. The measured -10 dB reflection and 3 dB AR bandwidths are 81.06% (1.68⁻3.97 GHz) and 70.55% (1.89⁻3.95 GHz), respectively. Within the 3 dB AR bandwidth, the measured peak gain is 3.81 dBic. Reasonable agreement is also obtained between the measured and simulated results.

  20. Cavity mode enhancement of terahertz emission from equilateral triangular microstrip antennas of the high-Tc superconductor Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Doty, Constance; Cerkoney, Daniel; Gramajo, Ashley; Campbell, Tyler; Reid, Candy; Morales, Manuel; Delfanazari, Kaveh; Yamamoto, Takashi; Tsujimoto, Manabu; Kashiwagi, Takanari; Watanabe, Chiharu; Minami, Hidetoshi; Kadowaki, Kazuo; Klemm, Richard

    We study the transverse magnetic (TM) electromagnetic cavity mode wave functions for an ideal equilateral triangular microstrip antenna exhibiting C3v point group symmetry, which restricts the number of TM(n,m) modes to | m - n | = 3 p , where the integer p > 0 for the modes odd and even about the three mirror planes, but p = 0 can also exist for the even modes. We calculate the wave functions and the power distribution forms from the uniform Josephson current source and from the excitation of one of these cavity modes, and fit data on an early equilateral triangular Bi2Sr2CaCu2O8+δ mesa, for which the C3v symmetry was apparently broken. Work supported in part by the UCF RAMP, JSPS Fellowship, CREST-JST, and WPI-MANA.

  1. Amalric sign: An augur of ophthalmic artery occlusion

    PubMed Central

    Hande, Prathibha; Sinha, Babi; Nayak, Shivani; Srinivasan, Srilakshmi; Shetty, Jyothi

    2017-01-01

    A 75-year-old man presented to us with sudden onset of profound vision loss in his right eye and was identified as suffering from an ophthalmic artery occlusion. Apart from the retinal whitening and box-carring of the retinal arteries, there were characteristic triangular patches of retinal whitening in the midperipheral temporal fundus indicating a previous lateral posterior choroidal artery occlusion. The patient was a chronic smoker and had dyslipidemia. The carotid Doppler study showed complete occlusion of the internal carotid artery. The presence of these triangular patches of retinal whitening or amalric sign can therefore herald a more proximal vessel occlusion. Hence such patients require evaluation on an emergency basis. The characteristic features of the patches on fluorescein angiography and indocyanine green angiography are discussed here. PMID:29044080

  2. Amalric sign: An augur of ophthalmic artery occlusion.

    PubMed

    Hande, Prathibha; Sinha, Babi; Nayak, Shivani; Srinivasan, Srilakshmi; Shetty, Jyothi

    2017-10-01

    A 75-year-old man presented to us with sudden onset of profound vision loss in his right eye and was identified as suffering from an ophthalmic artery occlusion. Apart from the retinal whitening and box-carring of the retinal arteries, there were characteristic triangular patches of retinal whitening in the midperipheral temporal fundus indicating a previous lateral posterior choroidal artery occlusion. The patient was a chronic smoker and had dyslipidemia. The carotid Doppler study showed complete occlusion of the internal carotid artery. The presence of these triangular patches of retinal whitening or amalric sign can therefore herald a more proximal vessel occlusion. Hence such patients require evaluation on an emergency basis. The characteristic features of the patches on fluorescein angiography and indocyanine green angiography are discussed here.

  3. Microstrip antenna array with parasitic elements

    NASA Technical Reports Server (NTRS)

    Lee, Kai F.; Acosta, Roberto J.; Lee, Richard Q.

    1987-01-01

    Discussed is the design of a large microstrip antenna array in terms of subarrays consisting of one fed patch and several parasitic patches. The potential advantages of this design are discussed. Theoretical radiation patterns of a subarray in the configuration of a cross are presented.

  4. Reconfigurable Wideband Circularly Polarized Stacked Square Patch Antenna for Cognitive Radios

    NASA Technical Reports Server (NTRS)

    Barbosa Kortright, Miguel A.; Waldstein, Seth W.; Simons, Rainee N.

    2017-01-01

    An almost square patch, a square patch and a stacked square patch with corner truncation for circular polarization (CP) are researched and developed at X-band for cognitive radios. Experimental results indicate, first, that the impedance bandwidth of a CP almost square patch fed from the edge by a 50 ohm line is 1.70% and second, that of a CP square patch fed from the ground plane side by a surface launch connector is 1.87%. Third, the impedance bandwidth of a CP stacked square patch fed by a surface launch connector is 2.22%. The measured center frequency for the CP square patch fed by a surface launch connector without and with an identical stacked patch is 8.45 and 8.1017 GHz, respectively. By stacking a patch, separated by a fixed air gap of 0.254 mm, the center frequency is observed to shift by as much as 348.3 MHz. The shift in center frequency, brought about by the reconfiguring of the physical layer antenna, can be exploited in a cognitive system since it expands the usable frequency spectrum for software reconfiguration in the presence of interference. In addition, varying the fixed air gap in the stacked antenna geometry by increments of 0.254 mm further expands the usable frequency spectrum.

  5. A finite element boundary integral formulation for radiation and scattering by cavity antennas using tetrahedral elements

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, J. L.; Chatterjee, A.; Jin, J. M.

    1992-01-01

    A hybrid finite element boundary integral formulation is developed using tetrahedral and/or triangular elements for discretizing the cavity and/or aperture of microstrip antenna arrays. The tetrahedral elements with edge based linear expansion functions are chosen for modeling the volume region and triangular elements are used for discretizing the aperture. The edge based expansion functions are divergenceless thus removing the requirement to introduce a penalty term and the tetrahedral elements permit greater geometrical adaptability than the rectangular bricks. The underlying theory and resulting expressions are discussed in detail together with some numerical scattering examples for comparison and demonstration.

  6. Cavity mode enhancement of terahertz emission from equilateral triangular microstrip antennas of the high-T c superconductor Bi2Sr2CaCu2O8 + δ

    NASA Astrophysics Data System (ADS)

    Cerkoney, Daniel P.; Reid, Candy; Doty, Constance M.; Gramajo, Ashley; Campbell, Tyler D.; Morales, Manuel A.; Delfanazari, Kaveh; Tsujimoto, Manabu; Kashiwagi, Takanari; Yamamoto, Takashi; Watanabe, Chiharu; Minami, Hidetoshi; Kadowaki, Kazuo; Klemm, Richard A.

    2017-01-01

    We study the transverse magnetic (TM) electromagnetic cavity mode wave functions for an ideal equilateral triangular microstrip antenna (MSA) exhibiting C 3v point group symmetry. When the C 3v operations are imposed upon the antenna, the TM(m,n) modes with wave vectors \\propto \\sqrt{{{m}2}+nm+{{n}2}} are much less dense than commonly thought. The R 3 operations restrict the integral n and m to satisfy |m-n| =3p , where p≥slant 0 and p≥slant 1 for the modes even and odd under reflections about the three mirror planes, respectively. We calculate the forms of representative wave functions and the angular dependence of the output power when these modes are excited by the uniform and non-uniform ac Josephson current sources in thin, ideally equilateral triangular MSAs employing the intrinsic Josephson junctions in the high transition temperature T c superconductor Bi2Sr2CaCu2 {{\\text{O}}8+δ} , and fit the emissions data from an earlier sample for which the C 3v symmetry was apparently broken.

  7. Multiport Circular Polarized RFID-Tag Antenna for UHF Sensor Applications.

    PubMed

    Zaid, Jamal; Abdulhadi, Abdulhadi; Kesavan, Arun; Belaizi, Yassin; Denidni, Tayeb A

    2017-07-05

    A circular polarized patch antenna for UHF RFID tag-based sensor applications is presented, with the circular polarization (CP) generated by a new antenna shape, an asymmetric stars shaped slotted microstrip patch antenna (CP-ASSSMP). Four stars etched on the patch allow the antenna's size to be reduced by close to 20%. The proposed antenna is matched with two RFID chips via inductive-loop matching. The first chip is connected to a resistive sensor and acts as a sensor node, and the second is used as a reference node. The proposed antenna is used for two targets, serving as both reference and sensor simultaneously, thereby eliminating the need for a second antenna. Its reader can read the RFID chips at any orientation of the tag due to the CP. The measured reading range is about 25 m with mismatch polarization. The operating frequency band is 902-929 MHz for the two ports, which is covered by the US RFID band, and the axial-ratio bandwidth is about 7 MHz. In addition, the reader can also detect temperature, based on the minimum difference in the power required by the reference and sensor.

  8. Miniaturized printed K shaped monopole antenna with truncated ground plane for 2.4/5.2/5.5/5.8 wireless lan applications

    NASA Astrophysics Data System (ADS)

    Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.

    2018-04-01

    A novel truncated ground plane monopole antenna is proposed for wide band wireless local area network (WLAN) applications. The antenna contains a rectangular patch with a rectangular ring, a circular slot and a truncated ground plane printed on opposite sides of a low cost substrate FR4. The operating frequency bands for the antenna are band1 (2.4-2.88 GHz) and band 2 (4.8-6.3 GHz) with ≤ - 10 dB return loss which covers 2.4/5.2/5.5/5.8 GHz WLAN bands. The antenna is compact with overall dimension 26×40×0.8 mmł and with the dimension of patch 16×16×0.8 mm3. The two bands of antenna is obtained by cutting a rectangular ring and a circular slot in the patch and return loss is improved by cutting two rectangular slot in the ground plane. Performance measures of the antenna are shown in terms of return loss, current distribution, radiation pattern and gain. To verify the simulated results, the antenna is also fabricated and tested. The simulated and fabricated results have been found in good agreement.

  9. Low dielectric polyimide aerogels as substrates for lightweight patch antennas.

    PubMed

    Meador, Mary Ann B; Wright, Sarah; Sandberg, Anna; Nguyen, Baochau N; Van Keuls, Frederick W; Mueller, Carl H; Rodríguez-Solís, Rafael; Miranda, Félix A

    2012-11-01

    The dielectric properties and loss tangents of low-density polyimide aerogels have been characterized at various frequencies. Relative dielectric constants as low as 1.16 were measured for polyimide aerogels made from 2,2'-dimethylbenzidine (DMBZ) and biphenyl 3,3',4,4'-tetracarbozylic dianhydride (BPDA) cross-linked with 1,3,5-triaminophenoxybenzene (TAB). This formulation was used as the substrate to fabricate and test prototype microstrip patch antennas and benchmark against state of practice commercial antenna substrates. The polyimide aerogel antennas exhibited broader bandwidth, higher gain, and lower mass than the antennas made using commercial substrates. These are very encouraging results, which support the potential advantages of the polyimide aerogel-based antennas for aerospace applications.

  10. Ferroelectric/Semiconductor Tunable Microstrip Patch Antenna Developed

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2001-01-01

    A lithographically printed microwave antenna that can be switched and tuned has been developed. The structure consists of a rectangular metallic "patch" radiator patterned on a thin ferroelectric film that was grown on high-resistivity silicon. Such an antenna may one day enable a single-phased array aperture to transmit and receive signals at different frequencies, or it may provide a simple way to reconfigure fractal arrays for communications and radar applications.

  11. An experimental investigation of high temperature superconducting microstrip antennas at K- and Ka-band frequencies. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Richard, Mark A.

    1993-01-01

    The recent discovery of high temperature superconductors (HTS) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS results in narrow bandwidths and high patch edge impedances of such antennas. To investigate the performance of superconducting microstrip antennas, three antenna architectures at K and Ka-band frequencies are examined. Superconducting microstrip antennas that are directly coupled, gap coupled, and electromagnetically coupled to a microstrip transmission line were designed and fabricated on lanthanum aluminate substrates using YBa2Cu3O7 superconducting thin films. For each architecture, a single patch antenna and a four element array were fabricated. Measurements from these antennas, including input impedance, bandwidth, patterns, efficiency, and gain are presented. The measured results show usable antennas can be constructed using any of the architectures. All architectures show excellent gain characteristics, with less than 2 dB of total loss in the four element arrays. Although the direct and gap coupled antennas are the simplest antennas to design and fabricate, they suffer from narrow bandwidths. The electromagnetically coupled antenna, on the other hand, allows the flexibility of using a low permittivity substrate for the patch radiator, while using HTS for the feed network, thus increasing the bandwidth while effectively utilizing the low loss properties of HTS. Each antenna investigated in this research is the first of its kind reported.

  12. WMSA for wireless communication applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vats, Monika; Agarwal, Alok, E-mail: alokagarwal26@yahoo.com; Kumar, Ravindra

    2016-03-09

    Modified rectangular compact microstrip patch antenna having finite ground plane is proposed in this paper. Wideband Microstrip Antenna (WMSA) is achieved by corner cut and inserting air gaps inside the edges of the radiating patch having finite ground plane. The obtained impedance bandwidth for 10 dB return loss for the operating frequency f{sub 0} = 2.09 GHz is 28.7 % (600 MHz), which is very high as compared to the bandwidth obtained for the conventional microstrip antenna. Compactness with wide bandwidth of this antenna is practically useful for the wireless communication systems.

  13. CPW fed UWB antenna with enhanced bandwidth & dual band notch characteristics

    NASA Astrophysics Data System (ADS)

    Jangid, K. G.; Jain, P. K.; Sharma, B. R.; Saxena, V. K.; Kulhar, V. S.; Bhatnagar, D.

    2018-05-01

    This paper reports the design and performance of CPW fed UWB antenna having two U-shaped slots etched in the radiating structure. UWB performance of proposed structure is obtained through the truncated shape of the patch and L-slits etched in ground plane. By applying two U- shaped slots in a radiating patch, we achieved dual notch band characteristics. The proposed antenna is simulated by applying CST Microwave Studio simulator. This antenna provides wide impedance bandwidth of 12.585 GHz (2.74GHz - 15.325 GHz) with dual notched band characteristics. This antenna may be proved as a useful structure for modern wireless communication systems including UWB band.

  14. Fire detection behind a wall by using microwave techniques

    NASA Astrophysics Data System (ADS)

    Alkurt, Fatih Özkan; Baǧmancı, Mehmet; Karaaslan, Muharrem; Bakır, Mehmet; Altıntaş, Olcay; Karadaǧ, Faruk; Akgöl, Oǧuzhan; Ünal, Emin

    2018-02-01

    In this work, detection of the fire location behind a wall by using microwave techniques is illustrated. According to Planck's Law, Blackbody emits electromagnetic radiation in the microwave region of the electromagnetic spectrum. This emitted waves penetrates all materials except that metals. These radiated waves can be detected by using directional and high gain antennas. The proposed antenna consists of a simple microstrip patch antenna and a 2×2 microstrip patch antenna array. FIT based simulation results show that 2×2 array antenna can absorb emitted power from a fire source which is located behind a wall. This contribution can be inspirational for further works.

  15. Compact Planar Ultrawideband Antennas with 3.5/5.2/5.8 GHz Triple Band-Notched Characteristics for Internet of Things Applications.

    PubMed

    Dong, Jian; Li, Qianqian; Deng, Lianwen

    2017-02-10

    Ultrawideband (UWB) antennas, as core devices in high-speed wireless communication, are widely applied to mobile handsets, wireless sensor networks, and Internet of Things (IoT). A compact printed monopole antenna for UWB applications with triple band-notched characteristics is proposed in this paper. The antenna has a very compact size of 10 x 16 mm2 and is composed of a square slotted radiation patch and a narrow rectangular ground plane on the back of the substrate. First, by etching a pair of inverted T-shaped slots at the bottom of the radiation patch, one notched band at 5-6 GHz for rejecting the Wireless Local Area Network (WLAN) is generated. Then, by cutting a comb-shaped slot on the top of the radiation patch, a second notched band for rejecting 3.5 GHz Worldwide Interoperability for Microwave Access (WiMAX) is obtained. Further, by cutting a pair of rectangular slots and a C-shaped slot as well as adding a pair of small square parasitic patches at the center of the radiating patch, two separate notched bands for rejecting 5.2 GHz lower WLAN and 5.8 GHz upper WLAN are realized, respectively. Additionally, by integrating the slotted radiation patch with the narrow rectangular ground plane, an enhanced impedance bandwidth can be achieved, especially at the higher band. The antenna consists of linear symmetrical sections only and is easy for fabrication and fine-tuning. The measured results show that the designed antenna provides a wide impedance bandwidth of 150% from 2.12 to 14.80 GHz for VSWR < 2, except for three notched bands of 3.36-4.16, 4.92-5.36, and 5.68-6.0 GHz. Additionally, the antenna exhibits nearly omnidirectional radiation characteristics, low gain at the stopbands, and flat group delay over the whole UWB except at the stopbands. Simulated and experimental results show that the proposed antenna can provide good frequency-domain and time-domain performances at desired UWB frequencies and be an attractive candidate for portable IoT applications.

  16. Compact Planar Ultrawideband Antennas with 3.5/5.2/5.8 GHz Triple Band-Notched Characteristics for Internet of Things Applications

    PubMed Central

    Dong, Jian; Li, Qianqian; Deng, Lianwen

    2017-01-01

    Ultrawideband (UWB) antennas, as core devices in high-speed wireless communication, are widely applied to mobile handsets, wireless sensor networks, and Internet of Things (IoT). A compact printed monopole antenna for UWB applications with triple band-notched characteristics is proposed in this paper. The antenna has a very compact size of 10 × 16 mm2 and is composed of a square slotted radiation patch and a narrow rectangular ground plane on the back of the substrate. First, by etching a pair of inverted T-shaped slots at the bottom of the radiation patch, one notched band at 5–6 GHz for rejecting the Wireless Local Area Network (WLAN) is generated. Then, by cutting a comb-shaped slot on the top of the radiation patch, a second notched band for rejecting 3.5 GHz Worldwide Interoperability for Microwave Access (WiMAX) is obtained. Further, by cutting a pair of rectangular slots and a C-shaped slot as well as adding a pair of small square parasitic patches at the center of the radiating patch, two separate notched bands for rejecting 5.2 GHz lower WLAN and 5.8 GHz upper WLAN are realized, respectively. Additionally, by integrating the slotted radiation patch with the narrow rectangular ground plane, an enhanced impedance bandwidth can be achieved, especially at the higher band. The antenna consists of linear symmetrical sections only and is easy for fabrication and fine-tuning. The measured results show that the designed antenna provides a wide impedance bandwidth of 150% from 2.12 to 14.80 GHz for VSWR < 2, except for three notched bands of 3.36–4.16, 4.92–5.36, and 5.68–6.0 GHz. Additionally, the antenna exhibits nearly omnidirectional radiation characteristics, low gain at the stopbands, and flat group delay over the whole UWB except at the stopbands. Simulated and experimental results show that the proposed antenna can provide good frequency-domain and time-domain performances at desired UWB frequencies and be an attractive candidate for portable IoT applications. PMID:28208633

  17. Circularly Polarized S Band Dual Frequency Square Patch Antenna Using Glass Microfiber Reinforced PTFE Composite

    PubMed Central

    Samsuzzaman, M.; Islam, M. T.; Arshad, Haslina; Mandeep, J. S.; Misran, N.

    2014-01-01

    Circularly polarized (CP) dual frequency cross-shaped slotted patch antenna on 1.575 mm thick glass microfiber reinforced polytetrafluoroethylene (PTFE) composite material substrate is designed and fabricated for satellite applications. Asymmetric cross-shaped slots are embedded in the middle of the square patch for CP radiation and four hexagonal slots are etched on the four sides of the square patch for desired dual frequency. Different substrate materials have been analysed to achieve the desired operating band. The experimental results show that the impedance bandwidth is approximately 30 MHz (2.16 GHz to 2.19 GHz) for lower band and 40 MHz (3.29 GHz to 3.33 GHz) for higher band with an average peak gain of 6.59 dBiC and 5.52 dBiC, respectively. Several optimizations are performed to obtain the values of the antenna physical parameters. Moreover, the proposed antenna possesses compactness, light weight, simplicity, low cost, and circularly polarized. It is an attractive candidate for dual band satellite antennas where lower band can be used for uplink and upper band can be used for downlink. PMID:24982943

  18. Analysis of single band and dual band graphene based patch antenna for terahertz region

    NASA Astrophysics Data System (ADS)

    George, Jemima Nissiyah; Madhan, M. Ganesh

    2017-10-01

    A microstrip patch antenna is designed using a very thin layer of graphene as the radiating patch, which is fed by a microstrip transmission line. The graphene based patch is designed on a silicon substrate having a dielectric constant of 11.9, to radiate at a single frequency of 2.6 THz. Further, this antenna is made to resonate at dual frequencies of 2.48 THz and 3.35 THz, by changing the substrate height, which is reported for the first time. Various antenna parameters such as return loss, VSWR, gain, efficiency and bandwidth are also determined for the single and dual band operation. For the single band operation, a bandwidth of 145.4 GHz and an efficiency of 92% was achieved. For dual band operation, a maximum bandwidth of 140.5 GHz was obtained at 3.35 THz and an efficiency of 87.3% was obtained at the first resonant frequency of 2.48 THz. The absorption cross section of the antenna is also analysed for various substrate heights and has maximum peaks at the corresponding resonating frequencies. The simulation has been carried out by using a full wave electromagnetic simulator based on FDTD method.

  19. Scattering from arbitrarily shaped microstrip patch antennas

    NASA Technical Reports Server (NTRS)

    Shively, David G.; Deshpande, Manohar D.; Cockrell, Capers R.

    1992-01-01

    The scattering properties of arbitrarily shaped microstrip patch antennas are examined. The electric field integral equation for a current element on a grounded dielectric slab is developed for a rectangular geometry based on Galerkin's technique with subdomain rooftop basis functions. A shape function is introduced that allows a rectangular grid approximation to the arbitrarily shaped patch. The incident field on the patch is expressed as a function of incidence angle theta(i), phi(i). The resulting system of equations is then solved for the unknown current modes on the patch, and the electromagnetic scattering is calculated for a given angle. Comparisons are made with other calculated results as well as with measurements.

  20. Recent activities in printed Antennas at LeRC

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1993-01-01

    This paper will report two recent R&D efforts in printed antennas at NASA Lewis Research Center. These efforts are: (1) to enhance the current antenna performance in gain, bandwidth and pattern characteristics, and (2) to develop coplanar waveguide/aperture coupled feeding technique for dual excitation of a patch antenna. Research in area (1) has led to the development of a nonplanar linearly tapered slot antenna (LTSA) which has exhibited over 10 dB gain with broad bandwidth and excellent radiation patterns. This endfire antenna element is most suitable for use in MMIC arrays of 'brick' construction. A space power amplifier composed of active LTSA has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. A single active LTSA has also been demonstrated and exhibited a power gain of 6.7 dB with the MMIC amplifier turned on. The aperture coupled feeding technique with coplanar waveguide feeds has demonstrated high coupling efficiency on both LTSA and patch antennas. Recent efforts have been focused on applying this technique for dual excitation (dual frequency and/or dual polarization) of a patch antenna. Preliminary results confirm the feasibility of this approach. Further development is required to improve the coupling efficiency and antenna radiation characteristics.

  1. A new metasurface reflective structure for simultaneous enhancement of antenna bandwidth and gain

    NASA Astrophysics Data System (ADS)

    Ullah, M. Habib; Islam, M. T.

    2014-08-01

    A new bi-layered metasurface reflective structure (MRS) on a high-permittivity, low-loss, ceramic-filled, bio-plastic, sandwich-structured, dielectric substrate is proposed for the simultaneous enhancement of the bandwidth and gain of a dual band patch antenna. By incorporating the MRS with a 4 mm air gap between the MRS and the antenna, the bandwidth and gain of the dual band patch antenna are significantly enhanced. The reflection coefficient (S11 < -10 dB) bandwidth of the proposed MRS-loaded antenna increased by 240% (178%), and the average peak gain improved by 595% (128%) compared to the antenna alone in the lower (upper) band. Incremental improvements of the magnitude and directional patterns have been observed from the measured radiation patterns at the three resonant frequencies of 0.9 GHz, 3.7 GHz and 4.5 GHz. The effects of different configurations of the radiating patch and the ground plane on the reflection coefficient have been analyzed. In addition, the voltage standing wave ratio and input impedance have also been validated using a Smith chart.

  2. Multiport Circular Polarized RFID-Tag Antenna for UHF Sensor Applications

    PubMed Central

    Zaid, Jamal; Abdulhadi, Abdulhadi; Kesavan, Arun; Belaizi, Yassin; Denidni, Tayeb A.

    2017-01-01

    A circular polarized patch antenna for UHF RFID tag-based sensor applications is presented, with the circular polarization (CP) generated by a new antenna shape, an asymmetric stars shaped slotted microstrip patch antenna (CP-ASSSMP). Four stars etched on the patch allow the antenna’s size to be reduced by close to 20%. The proposed antenna is matched with two RFID chips via inductive-loop matching. The first chip is connected to a resistive sensor and acts as a sensor node, and the second is used as a reference node. The proposed antenna is used for two targets, serving as both reference and sensor simultaneously, thereby eliminating the need for a second antenna. Its reader can read the RFID chips at any orientation of the tag due to the CP. The measured reading range is about 25 m with mismatch polarization. The operating frequency band is 902–929 MHz for the two ports, which is covered by the US RFID band, and the axial-ratio bandwidth is about 7 MHz. In addition, the reader can also detect temperature, based on the minimum difference in the power required by the reference and sensor. PMID:28678178

  3. Effects of finite ground plane on the radiation characteristics of a circular patch antenna

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Arun K.

    1990-02-01

    An analytical technique to determine the effects of finite ground plane on the radiation characteristics of a microstrip antenna is presented. The induced currents on the ground plane and on the upper surface of the patch are determined from the discontinuity of the near field produced by the equivalent magnetic current source on the physical aperture of the patch. The radiated fields contributed by the induced current on the ground plane and the equivalent sources on the physical aperture yield the radiation pattern of the antenna. Radiation patterns of the circular patch with finite ground plane size are computed and compared with the experimental data, and the agreement is found to be good. The radiation pattern, directive gain, and input impedance are found to vary widely with the ground plane size.

  4. Coupling single giant nanocrystal quantum dots to the fundamental mode of patch nanoantennas through fringe field

    DOE PAGES

    Wang, Feng; Karan, Niladri S.; Minh Nguyen, Hue; ...

    2015-09-23

    Through single dot spectroscopy and numerical simulation studies, we demonstrate that the fundamental mode of gold patch nanoantennas have fringe-field resonance capable of enhancing the nano-emitters coupled around the edge of the patch antenna. This fringe-field coupling is used to enhance the radiative rates of core/thick-shell nanocrystal quantum dots (g-NQDs) that cannot be embedded into the ultra-thin dielectric gap of patch nanoantennas due to their large sizes. We attain 14 and 3 times enhancements in single exciton radiative decay rate and bi-exciton emission efficiencies of g-NQDs respectively, with no detectable metal quenching. Our numerical studies confirmed our experimental results andmore » further reveal that patch nanoantennas can provide strong emission enhancement for dipoles lying not only in radial direction of the circular patches but also in the direction normal to the antennas surface. Finally, this provides a distinct advantage over the parallel gap-bar antennas that can provide enhancement only for the dipoles oriented across the gap.« less

  5. A Minimized MIMO-UWB Antenna with High Isolation and Triple Band-Notched Functions

    NASA Astrophysics Data System (ADS)

    Kong, Yuanyuan; Li, Yingsong; Yu, Kai

    2016-11-01

    A compact high isolation MIMO-UWB antenna with triple frequency rejection bands is proposed for UWB communication applications. The proposed MIMO-UWB antenna consists of two identical UWB antennas and each antenna element has a semicircle ring shaped radiation patch fed by a bend microstrip feeding line for covering the UWB band, which operates from 2.85 GHz to 11.79 GHz with an impedance bandwidth of 122.1 %. By etching a L-shaped slot on the ground plane, and embedding an "anchor" shaped stub into the patch and integrating an open ring under the semicircle shaped radiation patch, three notch bands are realized to suppress WiMAX (3.3-3.6 GHz), WLAN(5.725-5.825 GHz) and uplink of X-band satellite (7.9-8.4 GHz) signals. The high isolation with S21<-20 dB in most UWB band is obtained by adding a protruded decoupling structure. The design procedure of the MIMO-UWB antenna is given in detail. The proposed MIMO-UWB antenna is simulated, fabricated and measured. Experimental results demonstrate that the proposed MIMO-UWB antenna has a stable gain, good impedance match, high isolation, low envelope correlation coefficient and good radiation pattern at the UWB operating band and it can provide three designated notch bands.

  6. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ke; Yang, Zhongjie; Feng, Yijun, E-mail: yjfeng@nju.edu.cn

    Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezedmore » radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.« less

  7. Ka-Band Parabolic Deployable Antenna (KaPDA) Enabling High Speed Data Communication for CubeSats

    NASA Technical Reports Server (NTRS)

    Sauder, Jonathan F.; Chahat, Nacer; Hodges, Richard; Thomson, Mark W.; Rahmat-Samii, Yahya

    2015-01-01

    CubeSats are at a very exciting point as their mission capabilities and launch opportunities are increasing. But as instruments become more advanced and operational distances between CubeSats and earth increase communication data rate becomes a mission-limiting factor. Improving data rate has become critical enough for NASA to sponsor the Cube Quest Centennial Challenge when: one of the key metrics is transmitting as much data as possible from the moon and beyond Currently, many CubeSats communicate on UHF bands and those that have high data rate abilities use S-band or X-band patch antennas. The CubeSat Aneas, which was launched in September 2012, pushed the envelope with a half-meter S-band dish which could achieve 100x the data rate of patch antennas. A half-meter parabolic antenna operating at Ka-band would increase data rates by over 100x that of the AMOS antenM and 10,000 that of X-band patch antennas.

  8. Circularly polarized triple band glass shaped monopole patch antenna with metallic reflector for bluetooth & wireless applications

    NASA Astrophysics Data System (ADS)

    Jangid, K. G.; Choudhary, N.; Jain, P.; Sharma, B. R.; Saini, J. S.; Kulhar, V. S.; Bhatnagar, D.

    2016-03-01

    This paper presents the design and performance of strip line fed glass shaped monopole patch antenna having with overall size 30mm × 30 mm × 1.59 mm. In the patch; an eight shaped slot and in the ground plane an eight shaped ring are introduced. A metallic ground plane is also introduced at appropriate location beneath the ground plane. The proposed antenna is simulated by applying CST Microwave Studio simulator. Antenna provides circularly polarized radiations, triple broad impedance bandwidth of 203MHz (2.306GHz to 2.510GHz), 42MHz (2.685GHz to 2.757GHz) & GHz (3.63 GHz to 6.05 GHz), high flat gain (close to 5dBi) and good radiation properties in the desired frequency range. This antenna may be a very useful tool for 2.45GHz Bluetooth communication band as well as for 2.4GHz/5.2 GHz /5.8 GHz WLAN bands & 3.7GHz/5.5 GHz Wi-Max bands.

  9. Fluidic patch antenna based on liquid metal alloy/single-wall carbon-nanotubes operating at the S-band frequency

    NASA Astrophysics Data System (ADS)

    Aïssa, B.; Nedil, M.; Habib, M. A.; Haddad, E.; Jamroz, W.; Therriault, D.; Coulibaly, Y.; Rosei, F.

    2013-08-01

    This letter describes the fabrication and characterization of a fluidic patch antenna operating at the S-band frequency (4 GHz). The antenna prototype is composed of a nanocomposite material made by a liquid metal alloy (eutectic gallium indium) blended with single-wall carbon-nanotube (SWNTs). The nanocomposite is then enclosed in a polymeric substrate by employing the UV-assisted direct-writing technology. The fluidic antennas specimens feature excellent performances, in perfect agreement with simulations, showing an increase in the electrical conductivity and reflection coefficient with respect to the SWNTs concentration. The effect of the SWNTs on the long-term stability of antenna's mechanical properties is also demonstrated.

  10. Compact, Lightweight Dual- Frequency Microstrip Antenna Feed for Future Soil Moisture and Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Wilson, William J.; Njoku, Eni; Hunter, Don; Dinardo, Steve; Kona, Keerti S.; Manteghi, Majid; Gies, Dennis; Rahmat-Samii, Yahya

    2004-01-01

    The development of a compact, lightweight, dual frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx. 1 GHz) passive and active sensing systems. The design features will also enable applications to airborne sensors operating on small aircrafts. This paper describes the design of stacked patch elements, 16-element array configuration and power-divider beam forming network The test results from the fabrication of stacked patches and power divider were also described.

  11. An X-band parabolic antenna based on gradient metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Wang; Yang, Helin, E-mail: emyang@mail.ccnu.edu.cn; Tian, Ying

    We present a novel parabolic antenna by employing reflection gradient metasurface which is composed of a series of circle patches on a grounded dielectric substrate. Similar to the traditional parabolic antenna, the proposed antenna take the metasurface as a “parabolic reflector” and a patch antenna was placed at the focal point of the metasurface as a feed source, then the quasi-spherical wave emitted by the source is reflected and transformed to plane wave with high efficiency. Due to the focus effect of reflection, the beam width of the antenna has been decreased from 85.9° to 13° and the gain hasmore » been increased from 6.5 dB to 20.8 dB. Simulation and measurement results of both near and far-field plots demonstrate good focusing properties of the proposed parabolic antenna.« less

  12. Inflatable Antenna for CubeSat: Extension of the Previously Developed S-Band Design to the X-Band

    NASA Technical Reports Server (NTRS)

    Babuscia, Alessandra; Choi, Thomas; Cheung, Kar-Ming; Thangavelautham, Jekan; Ravichandran, Mithun; Chandra, Aman

    2015-01-01

    The inflatable antenna for CubeSat is a 1 meter antenna reflector designed with one side reflective Mylar, another side clear Mylar with a patch antenna at the focus. The development of this technology responds to the increasing need for more capable communication systems to allow CubeSats to operate autonomously in interplanetary missions. An initial version of the antenna for the S-Band was developed and tested in both anechoic chamber and vacuum chamber. Recent developments in transceivers and amplifiers for CubeSat at X-band motivated the extension from the S-Band to the X-Band. This paper describes the process of extending the design of the antenna to the X-Band focusing on patch antenna redesign, new manufacturing challenges and initial results of experimental tests.

  13. Electrically Small Microstrip Quarter-Wave Monopole Antennas

    NASA Technical Reports Server (NTRS)

    Young, W. Robert

    2004-01-01

    Microstrip-patch-style antennas that generate monopole radiation patterns similar to those of quarter-wave whip antennas can be designed to have dimensions smaller than those needed heretofore for this purpose, by taking advantage of a feed configuration different from the conventional one. The large sizes necessitated by the conventional feed configuration have, until now, made such antennas impractical for frequencies below about 800 MHz: for example, at 200 MHz, the conventional feed configuration necessitates a patch diameter of about 8 ft (.2.4 m) . too large, for example, for mounting on the roof of an automobile or on a small or medium-size aircraft. By making it possible to reduce diameters to between a tenth and a third of that necessitated by the conventional feed configuration, the modified configuration makes it possible to install such antennas in places where they could not previously be installed and thereby helps to realize the potential advantages (concealment and/or reduction of aerodynamic drag) of microstrip versus whip antennas. In both the conventional approach and the innovative approach, a microstrip-patch (or microstrip-patch-style) antenna for generating a monopole radiation pattern includes an electrically conductive patch or plate separated from an electrically conductive ground plane by a layer of electrically insulating material. In the conventional approach, the electrically insulating layer is typically a printed-circuit board about 1/16 in. (.1.6 mm) thick. Ordinarily, a coaxial cable from a transmitter, receiver, or transceiver is attached at the center on the ground-plane side, the shield of the cable being electrically connected to the ground plane. In the conventional approach, the coaxial cable is mated with a connector mounted on the ground plane. The center pin of this connector connects to the center of the coaxial cable and passes through a hole in the ground plane and a small hole in the insulating layer and then connects with the patch above one-third of the radial distance from the center. The modified feed configuration of the innovative approach is an inductive-short-circuit configuration that provides impedance matching and that has been used for many years on other antennas but not on microstrip-style monopole antennas. In this configuration, the pin is connected to both the conductive patch and the ground plane. As before, the shield of the coaxial cable is connected to the ground plane, but now the central conductor is connected to a point on the pin between the ground plane and the conductive plate (see figure). The location of the connection point on the pin is chosen so that together, the inductive short circuit and the conductive plate or patch act as components of a lumped-element resonant circuit that radiates efficiently at the resonance frequency and, at the resonance frequency, has an impedance that matches that of the coaxial cable. It should be noted that the innovative design entails two significant disadvantages. One disadvantage is that the frequency bandwidth for efficient operation is only about 1/20 to 1/15 that of a whip antenna designed for the same nominal frequency. The other disadvantage is that the estimated gain is between 3-1/2 and 4-1/2 dB below that of the whip antenna. However, if an affected radio-communication system used only a few adjacent frequency channels and the design of the components of the system other than the antenna provided adequate power or gain margin, then these disadvantages could be overcome.

  14. Simulation of thin slot spirals and dual circular patch antennas using the finite element method with mixed elements

    NASA Technical Reports Server (NTRS)

    Gong, Jian; Volakis, John L.; Nurnberger, Michael W.

    1995-01-01

    This semi-annual report describes progress up to mid-January 1995. The report contains five sections all dealing with the modeling of spiral and patch antennas recessed in metallic platforms. Of significance is the development of decomposition schemes which separate the different regions of the antenna volume. Substantial effort was devoted to improving the feed model in the context of the finite element method (FEM). Finally, an innovative scheme for truncating finite element meshes is presented.

  15. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.

    PubMed

    Chakaravarthi, Geetha; Arunachalam, Kavitha

    2015-01-01

    The aim of this study was to describe the design and characterisation of a miniaturised 434 MHz patch antenna enclosed in a metal cavity for microwave hyperthermia treatment of cancer. Electromagnetic (EM) field distribution in the near field of a microstrip patch irradiating body tissue was studied using finite element method (FEM) simulations. Antenna miniaturisation was achieved through dielectric loading with very high permittivity, metal enclosure, patch folding and shorting post. Frequency dependent electrical properties of materials were incorporated wherever appropriate using dispersion model and measurements. Antenna return loss and specific absorption rate (SAR) at 434 MHz were measured on muscle phantoms for characterisation. The design was progressively optimised to yield a compact 434 MHz patch (22 mm × 8.8 mm × 10 mm) inside a metal cavity (40 mm × 12 mm) with integrated coupling water bolus (35 mm). The fabricated antenna with integrated water bolus was self resonant at 434 MHz without load, and has better than -10 dB return loss (S11) with 13-20 MHz bandwidth on two different phantoms. SAR at 434 MHz measured using an infrared (IR) thermal camera on split phantoms indicated penetration depth for -3 dB SAR as 8.25 mm compared to 8.87 mm for simulation. The simulated and measured SAR coverage along phantom depth was 3.09 cm(2) and 3.21 cm(2) respectively at -3 dB, and 6.42 cm(2) and 9.07 cm(2) respectively at -6 dB. SAR full width at half maximum (FWHM) at 5 mm and 20 mm depths were 54.68 mm and 51.18 mm respectively in simulation, and 49.47 mm and 43.75 mm respectively in experiments. Performance comparison of the cavity-backed patch indicates more than 89% co-polarisation and higher directivity which resulted in deeper penetration compared to the patch applicators of similar or larger size proposed for hyperthermia treatment of cancer. The fabricated cavity-backed applicator is self-resonant at 434 MHz with a negligible shift in resonance when coupled to different phantoms, Δf/f0 less than 1.16%. IR thermography-based SAR measurements indicated that the -3 dB SAR of the cavity-backed aperture antenna covered the radiating aperture surface at 5 mm and 20 mm depths. It can be concluded that the compact cavity-backed patch antenna has stable resonance, higher directivity and low cross polarisation, and is suitable for design of microwave hyperthermia array applicators with adjustable heating pattern for superficial and/or deep tissue heating.

  16. Bio-inspired sensor skins for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Tata, Uday; Deshmukh, S.; Chiao, J. C.; Carter, Ronald; Huang, H.

    2009-10-01

    This paper presents the simulation and experimental work that proved the feasibility of using a patch antenna for strain measurement. A patch antenna, besides serving as a data transmitting device, can function as a transducer that directly encodes the strain experienced into its resonant frequency. Printed on a flexible substrate, the antenna sensor is small in size, has a low profile and can be conformal to any attached surface. The technique for interrogating the antenna sensor using a wireless non-contact method is also demonstrated. Without needing electric wiring for power supply and data transmitting, the antenna sensor has a great potential for the realization of engineered sensor skins that imitate the sense of pain for structural health monitoring purposes.

  17. Quality Factor Effect on the Wireless Range of Microstrip Patch Antenna Strain Sensors

    PubMed Central

    Daliri, Ali; Galehdar, Amir; Rowe, Wayne S. T.; John, Sabu; Wang, Chun H.; Ghorbani, Kamran

    2014-01-01

    Recently introduced passive wireless strain sensors based on microstrip patch antennas have shown great potential for reliable health and usage monitoring in aerospace and civil industries. However, the wireless interrogation range of these sensors is limited to few centimeters, which restricts their practical application. This paper presents an investigation on the effect of circular microstrip patch antenna (CMPA) design on the quality factor and the maximum practical wireless reading range of the sensor. The results reveal that by using appropriate substrate materials the interrogation distance of the CMPA sensor can be increased four-fold, from the previously reported 5 to 20 cm, thus improving considerably the viability of this type of wireless sensors for strain measurement and damage detection. PMID:24451457

  18. Quality factor effect on the wireless range of microstrip patch antenna strain sensors.

    PubMed

    Daliri, Ali; Galehdar, Amir; Rowe, Wayne S T; John, Sabu; Wang, Chun H; Ghorbani, Kamran

    2014-01-02

    Recently introduced passive wireless strain sensors based on microstrip patch antennas have shown great potential for reliable health and usage monitoring in aerospace and civil industries. However, the wireless interrogation range of these sensors is limited to few centimeters, which restricts their practical application. This paper presents an investigation on the effect of circular microstrip patch antenna (CMPA) design on the quality factor and the maximum practical wireless reading range of the sensor. The results reveal that by using appropriate substrate materials the interrogation distance of the CMPA sensor can be increased four-fold, from the previously reported 5 to 20 cm, thus improving considerably the viability of this type of wireless sensors for strain measurement and damage detection.

  19. Rigorous analysis of thick microstrip antennas and wire antennas embedded in a substrate

    NASA Astrophysics Data System (ADS)

    Smolders, A. B.

    1992-07-01

    An efficient and rigorous method for the analysis of electrically thick rectangular microstrip antennas and wire antennas with a dielectric cover is presented. The method of moments is used in combination with the exact spectral domain Green's function in order to find the unknown currents on the antenna. The microstrip antenna is fed by a coaxial cable. A proper model of the feeding coaxial structure is used. In addition, a special attachment mode was applied to ensure continuity of current at the patch-coax transition. The efficiency of the method of moments is improved by using the so called source term extraction technique, where a great part of the infinite integrals involved with the method of moment formulation is calculated analytically. Computation time can be saved by selecting a set of basis functions that describes the current distribution on the patch and probe in an accurate way using only a few terms of this set. Thick microstrip antennas have broadband characteristics. However, a proper match to 50 Ohms is often difficult. This matching problem can be avoided by using a slightly different excitation structure. The patch is now electromagnetically coupled to the feeding probe. A bandwidth of more than 40 can easily be obtained for this type of microstrip antenna. The price to be paid is a degradation of the radiation characteristics.

  20. Inverted S-Shaped Compact Antenna for X-Band Applications

    PubMed Central

    Samsuzzaman, M.; Islam, M. T.

    2014-01-01

    A novel probe-fed compact inverted S-shaped multifrequency patch antenna is designed. By employing two rectangular slots that change the conventional rectangular patch into an inverted S-shaped patch, the antenna is able to operate in triple frequency in the X-band. The performance criteria of the proposed design have been experimentally verified by fabricating a printed prototype. The measured results show that the −10 dB impedance bandwidth of the proposed antenna at lower band is 5.02% (8.69–9.14 GHz), at middle band is 9.13% (10.47–11.48 GHz), and at upper band is 3.79% (11.53–11.98 GHz). Two elliptical slots are introduced in the ground plane to increase the peak gain. The antenna is excited by a simple probe feeding mechanism. The overall antenna dimension is  0.52λ × 0.60λ × 0.046λ at a lower resonance frequency of 9.08 GHz. The antenna configuration and parametric investigation are conducted with the help of the high frequency structural simulator, and a good agreement is achieved between the simulated and measured data. The stable gain, omnidirectional radiation pattern, and consistent radiation efficiency in the achieved operating band make the proposed antenna a suitable candidate for X-band applications. PMID:24895656

  1. Circularly polarized triple band glass shaped monopole patch antenna with metallic reflector for bluetooth & wireless applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jangid, K. G.; Kulhar, V. S.; Choudhary, N.

    This paper presents the design and performance of strip line fed glass shaped monopole patch antenna having with overall size 30mm × 30 mm × 1.59 mm. In the patch; an eight shaped slot and in the ground plane an eight shaped ring are introduced. A metallic ground plane is also introduced at appropriate location beneath the ground plane. The proposed antenna is simulated by applying CST Microwave Studio simulator. Antenna provides circularly polarized radiations, triple broad impedance bandwidth of 203MHz (2.306GHz to 2.510GHz), 42MHz (2.685GHz to 2.757GHz) & GHz (3.63 GHz to 6.05 GHz), high flat gain (close to 5dBi) and good radiationmore » properties in the desired frequency range. This antenna may be a very useful tool for 2.45GHz Bluetooth communication band as well as for 2.4GHz/5.2 GHz /5.8 GHz WLAN bands & 3.7GHz/5.5 GHz Wi-Max bands.« less

  2. Design and analysis of a conformal patch antenna for a wearable breast hyperthermia treatment system

    NASA Astrophysics Data System (ADS)

    Curto, Sergio; Ramasamy, Manoshika; Suh, Minyoung; Prakash, Punit

    2015-03-01

    To overcome the limitations of currently available clinical hyperthermia systems which are based on rigid waveguide antennas, a wearable microwave hyperthermia system is presented. A light wearable system can improve patient comfort and be located in close proximity to the breast, thereby enhancing energy deposition and reducing power requirements. The objective of this work was to design and assess the feasibility of a conformal patch antenna element of an array system to be integrated into a wearable hyperthermia bra. The feasibility of implementing antennas with silver printed ink technology on flexible substrates was evaluated. A coupled electromagnetic-bioheat transfer solver and a hemispheric heterogeneous numerical breast phantom were used to design and optimize a 915 MHz patch antenna. The optimization goals were device miniaturization, operating bandwidth, enhanced energy deposition pattern in targets, and reduced Efield back radiation. The antenna performance was evaluated for devices incorporating a hemispheric conformal groundplane and a rectangular groundplane configuration. Simulated results indicated a stable -10 dB return loss bandwidth of 88 MHz for both the conformal and rectangular groundplane configurations. Considering applied power levels restricted to 15 W, treatment volumes (T>410C) and depth from the skin surface were 11.32 cm3 and 27.94 mm, respectively, for the conformal groundplane configuration, and 2.79 cm3 and 19.72 mm, respectively, for the rectangular groundplane configuration. E-field back-radiation reduced by 85.06% for the conformal groundplane compared to the rectangular groundplane configuration. A prototype antenna with rectangular groundplane was fabricatd and experimentally evaluated. The groundplane was created by printing silver ink (Metalon JS-B25P) on polyethylene terephthalate (PET) film surface. Experiments revealed stable antenna performance for power levels up to 15.3 W. In conclusion, the proposed patch antenna with conformal groundplane and prined ink technology shows promising performance to be integrated in a clinical array system.

  3. Unidirectional Magneto-Electric Dipole Antenna for Base Station: A Review

    NASA Astrophysics Data System (ADS)

    Idayachandran, Govindanarayanan; Nakkeeran, Rangaswamy

    2018-04-01

    Unidirectional base station antenna design using Magneto-Electric Dipole (MED) has created enormous interest among the researchers due to its excellent radiation characteristics like low back radiation, symmetrical radiation at E-plane and H-plane compared to conventional patch antenna. Generally, dual polarized antennas are used to increase channel capacity and reliability of the communication systems. In order to serve the evolving mobile communication standards like long term evolution LTE and beyond, unidirectional dual polarized MED antenna are required to have broad impedance bandwidth, broad half power beamwidth, high port isolation, low cross polarization level, high front to back ratio and high gain. In this paper, the critical electrical requirements of the base station antenna and frequently used frequency bands for modern mobile communication have been presented. It is followed by brief review on broadband patch antenna and discussion on complementary antenna concepts. Finally, the performance of linearly polarized and dual polarized magneto-electric dipole antennas along with their feeding techniques are discussed and summarized. Also, design and modeling of developed MED antenna is presented.

  4. Digital communication constraints in prior space missions

    NASA Technical Reports Server (NTRS)

    Yassine, Nathan K.

    2004-01-01

    Digital communication is crucial for space endeavors. Jt transmits scientific and command data between earth stations and the spacecraft crew. It facilitates communications between astronauts, and provides live coverage during all phases of the mission. Digital communications provide ground stations and spacecraft crew precise data on the spacecraft position throughout the entire mission. Lessons learned from prior space missions are valuable for our new lunar and Mars missions set by our president s speech. These data will save our agency time and money, and set course our current developing technologies. Limitations on digital communications equipment pertaining mass, volume, data rate, frequency, antenna type and size, modulation, format, and power in the passed space missions are of particular interest. This activity is in support of ongoing communication architectural studies pertaining to robotic and human lunar exploration. The design capabilities and functionalities will depend on the space and power allocated for digital communication equipment. My contribution will be gathering these data, write a report, and present it to Communications Technology Division Staff. Antenna design is very carefully studied for each mission scenario. Currently, Phased array antennas are being developed for the lunar mission. Phased array antennas use little power, and electronically steer a beam instead of DC motors. There are 615 patches in the phased array antenna. These patches have to be modified to have high yield. 50 patches were created for testing. My part is to assist in the characterization of these patch antennas, and determine whether or not certain modifications to quartz micro-strip patch radiators result in a significant yield to warrant proceeding with repairs to the prototype 19 GHz ferroelectric reflect-array antenna. This work requires learning how to calibrate an automatic network, and mounting and testing antennas in coaxial fixtures. The purpose of this activity is to assist in the set-up of phase noise instrumentation, assist in the process of automated wire bonding, assist in the design and optimization of tunable microwave components, especially phase shifters, based on thin ferroelectric films, and learn how to use commercial electromagnetic simulation software.

  5. Reconfigurable Wideband Circularly Polarized Stacked Square Patch Antenna for Cognitive Radios

    NASA Technical Reports Server (NTRS)

    Barbosa Kortright, Miguel A.; Waldstein, Seth W.; Simons, Rainee N.

    2017-01-01

    An almost square patch and a square patch with corner truncation for circularly polarized (CP) and a stacked CP square patch are researched and developed at X-band for cognitive devices. A draft set of presentation charts are attached.

  6. Planar metamaterial based on hybridization for directive emission.

    PubMed

    Ourir, Abdelwaheb; Abdeddaim, Redha; de Rosny, Julien

    2012-07-30

    We present the first experimental demonstration of a high-directivity using a mu and epsilon near zero (MENZ) metamaterial. We use the hybridization principles to design a planar MENZ structure based on the fishnet unit cell. Resonant mode engineering achieves an effective permittivity and permeability that approaches zeros around 10.5 GHz simultaneously. We use this metamaterial as a superstrate of a microstrip patch antenna. We show that the directivity of the antenna is effectively enhanced compared to that of the patch antenna alone at the desired frequency.

  7. Compact, Lightweight Dual-Frequency Microstrip Antenna Feed for Future Soil Moisture and Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Yueh, Simon; Wilson, William J.; Njoku, Eni; Dinardo, Steve; Hunter, Don; Rahmat-Samii, Yahya; Kona, Keerti S.; Manteghi, Majid

    2006-01-01

    The development of a compact, lightweight, dual-frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx.1 GHz) passive and active sensing systems. The design features will also enable applications to airborne soil moisture and salinity remote sensing sensors operating on small aircrafts. This paper describes the design of stacked patch elements and 16-element array configuration. The results from the return loss, antenna pattern measurements and sky tests are also described.

  8. Compact Double-P Slotted Inset-Fed Microstrip Patch Antenna on High Dielectric Substrate

    PubMed Central

    Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Mahadi, W. N. L.; Latef, T. A.

    2014-01-01

    This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show −10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications. PMID:25165750

  9. Compact double-p slotted inset-fed microstrip patch antenna on high dielectric substrate.

    PubMed

    Ahsan, M R; Islam, M T; Habib Ullah, M; Mahadi, W N L; Latef, T A

    2014-01-01

    This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show -10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications.

  10. A Comparison Between Jerusalem Cross and Square Patch Frequency Selective Surfaces for Low Profile Antenna Applications

    NASA Technical Reports Server (NTRS)

    Cure, David; Weller, Thomas; Miranda, Felix A.

    2011-01-01

    In this paper, a comparison between Jerusalem Cross (JC) and Square Patch (SP) based Frequency Selected Surfaces (FSS) for low profile antenna applications is presented. The comparison is aimed at understanding the performance of low profile antennas backed by high impedance surfaces. In particular, an end loaded planar open sleeve dipole (ELPOSD) antenna is examined due to the various parameters within its configuration, offering significant design flexibility and a wide operating bandwidth. Measured data of the antennas demonstrate that increasing the number of unit cells improves the fractional bandwidth. The antenna bandwidth increased from 0.8% to 1.8% and from 0.8% to 2.7% for the JC and SP structures, respectively. The number of unit cells was increased from 48 to 80 for the JC-FSS and from 24 to 48 for the SP-FSS.

  11. Quadrature transmit array design using single-feed circularly polarized patch antenna for parallel transmission in MR imaging.

    PubMed

    Pang, Yong; Yu, Baiying; Vigneron, Daniel B; Zhang, Xiaoliang

    2014-02-01

    Quadrature coils are often desired in MR applications because they can improve MR sensitivity and also reduce excitation power. In this work, we propose, for the first time, a quadrature array design strategy for parallel transmission at 298 MHz using single-feed circularly polarized (CP) patch antenna technique. Each array element is a nearly square ring microstrip antenna and is fed at a point on the diagonal of the antenna to generate quadrature magnetic fields. Compared with conventional quadrature coils, the single-feed structure is much simple and compact, making the quadrature coil array design practical. Numerical simulations demonstrate that the decoupling between elements is better than -35 dB for all the elements and the RF fields are homogeneous with deep penetration and quadrature behavior in the area of interest. Bloch equation simulation is also performed to simulate the excitation procedure by using an 8-element quadrature planar patch array to demonstrate its feasibility in parallel transmission at the ultrahigh field of 7 Tesla.

  12. Bandwidth enhancement of electromagnetic coupled nonuniform H-shaped microstrip patch antenna for higher band of Wi-MAX applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, Dheeraj, E-mail: dbhardwaj.bit@gmail.com; Gulati, Gitansh, E-mail: gitanshgulati@gmail.com; Saraswat, Srishti, E-mail: saraswat.srishti@yahoo.in

    The bandwidth enhancement of a stacked non-uniform electromagnetically coupled H-shaped Microstrip Antenna (SNHMA) with tapered edges is analyzed and simulated using the IE3D simulator. The proposed antenna prototype is drafted on FR-4 material and stacked further with an air discontinuity of 0.3 mm to the next layer. The various parameters optimized to achieve the best performance from the modified SNHMA primarily include a)length b)width of the patch c)air gap thickness. The redesigned antenna serves at two distinct frequencies with an elevated bandwidth of 30.85 % at the central frequency 5.762 GHz, approximately four times the bandwidth of the standard patch having themore » same dimensions. The simulated radiation patterns (E-plane and H-plane) are exhibited within the range of frequencies where the broadband response is observed. The specifications of the proposed structure make it promising for the higher band of Wi-MAX applications.« less

  13. Design of a dual linear polarization antenna using split ring resonators at X-band

    NASA Astrophysics Data System (ADS)

    Ahmed, Sadiq; Chandra, Madhukar

    2017-11-01

    Dual linear polarization microstrip antenna configurations are very suitable for high-performance satellites, wireless communication and radar applications. This paper presents a new method to improve the co-cross polarization discrimination (XPD) for dual linear polarized microstrip antennas at 10 GHz. For this, three various configurations of a dual linear polarization antenna utilizing metamaterial unit cells are shown. In the first layout, the microstrip patch antenna is loaded with two pairs of spiral ring resonators, in the second model, a split ring resonator is placed between two microstrip feed lines, and in the third design, a complementary split ring resonators are etched in the ground plane. This work has two primary goals: the first is related to the addition of metamaterial unit cells to the antenna structure which permits compensation for an asymmetric current distribution flow on the microstrip antenna and thus yields a symmetrical current distribution on it. This compensation leads to an important enhancement in the XPD in comparison to a conventional dual linear polarized microstrip patch antenna. The simulation reveals an improvement of 7.9, 8.8, and 4 dB in the E and H planes for the three designs, respectively, in the XPD as compared to the conventional dual linear polarized patch antenna. The second objective of this paper is to present the characteristics and performances of the designs of the spiral ring resonator (S-RR), split ring resonator (SRR), and complementary split ring resonator (CSRR) metamaterial unit cells. The simulations are evaluated using the commercial full-wave simulator, Ansoft High-Frequency Structure Simulator (HFSS).

  14. Integrated patch and slot array antenna for terahertz quantum cascade lasers at 4.7 THz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonzon, C., E-mail: bonzonc@phys.ethz.ch; Benea Chelmus, I. C.; Ohtani, K.

    2014-04-21

    Our work presents a slot and a patch array antenna at the front facet of a 4.7 THz quantum cascade laser as extractor, decreasing the facet reflectivity down to 2.6%. The resulting output power increases by a factor 2 and the slope efficiency by a factor 4. The simulated and the measured far-fields are in good agreement.

  15. Performance of a Wideband Cadmium Ferrite Microstrip Patch Antenna in the X-Band Region

    NASA Astrophysics Data System (ADS)

    Bhongale, S. R.; Ingavale, H. R.; Shinde, T. J.; Vasambekar, P. N.

    2018-01-01

    Magnesium-substituted cadmium ferrites with the chemical composition Mg x Cd1- x Fe2O4 ( x = 0, 0.4 and 0.8) were prepared by an oxalate co-precipitation method under microwave sintering technique. The structural properties of ferrites were studied by x-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscope techniques. The scattering parameters such as reflection coefficient ( S 11) and transmission coefficient ( S 21) at microwave frequencies of palletized ferrites were measured by using a vector network analyzer. The software module 85071E followed by scattering parameters was used to determine the electromagnetic properties of the ferrites. The values determined for electromagnetic parameters such as the real part of permittivity ( ɛ'), permeability ( μ'), dielectric loss tangent (tan δ e) and magnetic loss tangent (tan δ m) of synthesized ferrites were used to design rectangular microstrip patch antennas. The performance of magnesium-substituted Cd ferrites as substrate for microstrip patch antennas was investigated. The antenna parameters such as return loss, bandwidth, voltage standing wave ratio, Smith chart and radiation pattern were studied. It is found that the Cd ferrite has applicability as a substrate for wideband antennas in the X-band region.

  16. Ultra-Wide Patch Antenna Array Design at 60 GHz Band for Remote Vital Sign Monitoring with Doppler Radar Principle

    NASA Astrophysics Data System (ADS)

    Rabbani, Muhammad Saqib; Ghafouri-Shiraz, Hooshang

    2017-05-01

    In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band (57.24-65.88 GHz) with improved gain and beam-width capabilities for remote detection of respiration and heart beat rate of a person with Doppler radar principle. The antennas measured and simulation results showed close agreement. The breathing rate (BR) and heart rate (HR) of a 31-year-old man have been accurately detected from various distances ranging from 5 to 200 cm with both single-antenna and dual-antenna operations. In the case of single-antenna operation, the signal is transmitted and received with the same antenna, whereas in dual-antenna operation, two identical antennas are employed, one for signal transmission and the other for reception. It has been found that in case of the single-antenna operation, the accuracy of the remote vital sign monitoring (RVSM) is good for short distance; however, in the case of the dual-antenna operations, the RVSM can be accurately carried out at relatively much longer distance. On the other hand, it has also been seen that the visual results are more obvious with higher gain antennas when the radar beam is confined just on the subject's body area.

  17. Design of a Compact Tuning Fork-Shaped Notched Ultrawideband Antenna for Wireless Communication Application

    PubMed Central

    Shakib, M. N.; Moghavvemi, M.; Mahadi, W. N. L.

    2014-01-01

    A new compact planar notched ultrawideband (UWB) antenna is designed for wireless communication application. The proposed antenna has a compact size of 0.182λ × 0.228λ × 0.018λ where λ is the wavelength of the lowest operating frequency. The antenna is comprised of rectangular radiating patch, ground plane, and an arc-shaped strip in between radiating patch and feed line. By introducing a new Tuning Fork-shaped notch in the radiating plane, a stopband is obtained. The antenna is tested and measured. The measured result indicated that fabricated antenna has achieved a wide bandwidth of 4.33–13.8 GHz (at −10 dB return loss) with a rejection frequency band of 5.28–6.97 GHz (WiMAX, WLAN, and C-band). The effects of the parameters of the antenna are discussed. The experiment results demonstrate that the proposed antenna can well meet the requirement for the UWB communication in spite of its compactness and small size. PMID:24723835

  18. Parallel traveling-wave MRI: a feasibility study.

    PubMed

    Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang

    2012-04-01

    Traveling-wave magnetic resonance imaging utilizes far fields of a single-piece patch antenna in the magnet bore to generate radio frequency fields for imaging large-size samples, such as the human body. In this work, the feasibility of applying the "traveling-wave" technique to parallel imaging is studied using microstrip patch antenna arrays with both the numerical analysis and experimental tests. A specific patch array model is built and each array element is a microstrip patch antenna. Bench tests show that decoupling between two adjacent elements is better than -26-dB while matching of each element reaches -36-dB, demonstrating excellent isolation performance and impedance match capability. The sensitivity patterns are simulated and g-factors are calculated for both unloaded and loaded cases. The results on B 1- sensitivity patterns and g-factors demonstrate the feasibility of the traveling-wave parallel imaging. Simulations also suggest that different array configuration such as patch shape, position and orientation leads to different sensitivity patterns and g-factor maps, which provides a way to manipulate B(1) fields and improve the parallel imaging performance. The proposed method is also validated by using 7T MR imaging experiments. Copyright © 2011 Wiley-Liss, Inc.

  19. Proceedings of the Antenna Applications Symposium (1988) Volume 1

    DTIC Science & Technology

    1989-06-01

    FIELD GROUP SUB-GROUP Antennas)p Microstrip, ,.Multibeam Antennas 6 Satellite Antennas. Reflector Array Antennas, ____________I____ Broadband Antennas...C. Sullivan and G. E. Evans 8. " Broadband MMIC T/R Module/Subarray Performance," D. Brubaker, 157 D. Scott, S. Ludvik, M. Lynch, H. II. Chung, W...34 S. Sanzgiri, 277 B. Powers, Jr., and J. Hart ib. " broadbanding Techniques for Microstrip Patch Antennas - A ’.93 kReview," K. C. Gupta * NUT INCLUDED

  20. Theoretical Studies of Microstrip Antennas : Volume II, Analysis and Synthesis of Multi-Frequency Elements

    DOT National Transportation Integrated Search

    1979-09-01

    Volume II of Theoretical Studies of Microstrip Antennas deals with the analysis and synthesis of several types of novel multi-resonant elements with emphasis on dual-frequency operation of rectangular microstrip patch antennas with or without externa...

  1. Design of a compact antenna with flared groundplane for a wearable breast hyperthermia system.

    PubMed

    Curto, Sergio; Prakash, Punit

    2015-01-01

    Currently available microwave hyperthermia systems for breast cancer treatment do not conform to the intact breast and provide limited control of heating patterns, thereby hindering an effective treatment. A compact patch antenna with a flared groundplane that may be integrated within a wearable hyperthermia system for the treatment of the intact breast disease is proposed. A 3D simulation-based approach was employed to optimise the antenna design with the objective of maximising the hyperthermia treatment volume (41 °C iso-therm) while maintaining good impedance matching. The optimised antenna design was fabricated and experimentally evaluated with ex vivo tissue measurements. The optimised compact antenna yielded a -10 dB bandwidth of 90 MHz centred at 915 MHz, and was capable of creating hyperthermia treatment volumes up to 14.4 cm(3) (31 mm × 28 mm × 32 mm) with an input power of 15 W. Experimentally measured reflection coefficient and transient temperature profiles were in good agreement with simulated profiles. Variations of + 50% in blood perfusion yielded variations in the treatment volume up to 11.5%. When compared to an antenna with a similar patch element employing a conventional rectangular groundplane, the antenna with flared groundplane afforded 22.3% reduction in required power levels to reach the same temperature, and yielded 2.4 times larger treatment volumes. The proposed patch antenna with a flared groundplane may be integrated within a wearable applicator for hyperthermia treatment of intact breast targets and has the potential to improve efficiency, increase patient comfort, and ultimately clinical outcomes.

  2. Radiation and scattering from cylindrically conformal printed antennas. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.

    1994-01-01

    Microstrip patch antennas offer considerable advantages in terms of weight, aerodynamic drag, cost, flexibility, and observables over more conventional protruding antennas. These flat patch antennas were first proposed over thirty years ago by Deschamps in the United States and Gutton and Baisinot in France. Such antennas have been analyzed and developed for planar as well as curved platforms. However, the methods used in these designs employ gross approximations, suffer from extreme computational burden, or require expensive physical experiments. The goal of this thesis is to develop accurate and efficient numerical modeling techniques which represent actual antenna structures mounted on curved surfaces with a high degree of fidelity. In this thesis, the finite element method is extended to cavity-backed conformal antenna arrays embedded in a circular, metallic, infinite cylinder. Both the boundary integral and absorbing boundary mesh closure conditions will be used for terminating the mesh. These two approaches will be contrasted and used to study the scattering and radiation behavior of several useful antenna configurations. An important feature of this study will be to examine the effect of curvature and cavity size on the scattering and radiation properties of wraparound conformal antenna arrays.

  3. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.

    1991-01-01

    The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.

  4. Small X-Band Oscillator Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Miranda, Felix A.; Clark, Eric B.; Wilt, David M.; Mueller, Carl H.; Kory, Carol L.; Lambert, Kevin M.

    2009-01-01

    A small, segmented microstrip patch antenna integrated with an X-band feedback oscillator on a high-permittivity substrate has been built and tested. This oscillator antenna is a prototype for demonstrating the feasibility of such devices as compact, low-power-consumption building blocks of advanced, lightweight, phased antenna arrays that would generate steerable beams for communication and remotesensing applications.

  5. Planar microstrip YAGI antenna array

    NASA Technical Reports Server (NTRS)

    Huang, John (Inventor)

    1993-01-01

    A directional microstrip antenna includes a driven patch surrounded by an isolated reflector and one or more coplanar directors, all separated from a ground plane on the order of 0.1 wavelength or less to provide end fire beam directivity without requiring power dividers or phase shifters. The antenna may be driven at a feed point a distance from the center of the driven patch in accordance with conventional microstrip antenna design practices for H-plane coupled or horizontally polarized signals. The feed point for E-plane coupled or vertically polarized signals is at a greater distance from the center than the first distance. This feed point is also used for one of the feed signals for circularly polarized signals. The phase shift between signals applied to feed points for circularly polarized signals must be greater than the conventionally required 90 degrees and depends upon the antenna configuration.

  6. Experimental validation of an ultra-thin metasurface cloak for hiding a metallic obstacle from an antenna radiation at low frequencies

    NASA Astrophysics Data System (ADS)

    Teperik, Tatiana V.; Burokur, Shah Nawaz; de Lustrac, André; Sabanowski, Guy; Piau, Gérard-Pascal

    2017-07-01

    We demonstrate numerically and experimentally an ultra-thin (≈ λ/240) metasurface-based invisibility cloak for low frequency antenna applications. We consider a monopole antenna mounted on a ground plane and a cylindrical metallic obstacle of diameter smaller than the wavelength located in its near-field. To restore the intrinsic radiation patterns of the antenna perturbed by this obstacle, a metasurface cloak consisting simply of a metallic patch printed on a dielectric substrate is wrapped around the obstacle. Using a finite element method based commercial electromagnetic solver, we show that the radiation patterns of the monopole antenna can be restored completely owing to electromagnetic modes of the resonant cavity formed between the patch and obstacle. The metasurface cloak is fabricated, and the concept is experimentally demonstrated at 125 MHz. Performed measurements are in good agreement with numerical simulations, verifying the efficiency of the proposed cloak.

  7. UHF Microstrip Antenna Array for Synthetic- Aperture Radar

    NASA Technical Reports Server (NTRS)

    Thomas, Robert F.; Huang, John

    2003-01-01

    An ultra-high-frequency microstrippatch antenna has been built for use in airborne synthetic-aperture radar (SAR). The antenna design satisfies requirements specific to the GeoSAR program, which is dedicated to the development of a terrain-mapping SAR system that can provide information on geology, seismicity, vegetation, and other terrain-related topics. One of the requirements is for ultra-wide-band performance: the antenna must be capable of operating with dual linear polarization in the frequency range of 350 plus or minus 80 MHz, with a peak gain of 10 dB at the middle frequency of 350 MHz and a gain of at least 8 dB at the upper and lower ends (270 and 430 MHz) of the band. Another requirement is compactness: the antenna must fit in the wingtip pod of a Gulfstream II airplane. The antenna includes a linear array of microstrip-patch radiating elements supported over square cavities. Each patch is square (except for small corner cuts) and has a small square hole at its center.

  8. Capsule Endoscopy

    MedlinePlus

    ... attached to your abdomen. Each patch contains an antenna with wires that connect to a recorder. Some ... your waist. The camera sends images to an antenna on your abdomen, which feeds the data to ...

  9. Wideband dual frequency modified ellipse shaped patch antenna for WLAN/Wi-MAX/UWB application

    NASA Astrophysics Data System (ADS)

    Jain, P. K.; Jangid, K. G.; R. Sharma, B.; Saxena, V. K.; Bhatnagar, D.

    2018-05-01

    This paper communicates the design and performance of microstrip line fed modified ellipses shaped radiating patch with defected ground structure. Wide impedance bandwidth performance is achieved by applying a pentagonal slot and T slot structure in ground plane. By inserting two semi ellipses shaped ring in ground, we obtained axial ratio bandwidth approx 600 MHz. The proposed antenna is simulated by utilizing CST Microwave Studio simulator 2014. This antenna furnishes wide impedance bandwidth approx. 4.23 GHz, which has spread into two bands 2.45 GHz - 5.73 GHz and 7.22 GHz - 8.17 GHz with nearly flat gain in operating frequency range. This antenna may be proved as a practicable structure for modern wireless communication systems including Wi-MAX, WLAN and lower band of UWB.

  10. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears.

    PubMed

    Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang

    2016-07-26

    In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor.

  11. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears

    PubMed Central

    Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang

    2016-01-01

    In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor. PMID:27472331

  12. A Novel Manufacturing Process for Compact, Low-Weight and Flexible Ultra-Wideband Cavity Backed Textile Antennas.

    PubMed

    Van Baelen, Dries; Lemey, Sam; Verhaevert, Jo; Rogier, Hendrik

    2018-01-03

    A novel manufacturing procedure for the fabrication of ultra-wideband cavity-backed substrate integrated waveguide antennas on textile substrates is proposed. The antenna cavity is constructed using a single laser-cut electrotextile patch, which is folded around the substrate. Electrotextile slabs protruding from the laser-cut patch are then vertically folded and glued to form the antenna cavity instead of rigid metal tubelets to implement the vertical cavity walls. This approach drastically improves mechanical flexibility, decreases the antenna weight to slightly more than 1 g and significantly reduces alignment errors. As a proof of concept, a cavity-backed substrate integrated waveguide antenna is designed and realized for ultra-wideband operation in the [5.15-5.85] GHz band. Antenna performance is validated in free space as well as in two on body measurement scenarios. Furthermore, the antenna's figures of merit are characterized when the prototype is bent at different curvature radii, as commonly encountered during deployment on the human body. Also the effect of humidity content on antenna performance is studied. In all scenarios, the realized antenna covers the entire operating frequency band, meanwhile retaining a stable radiation pattern with a broadside gain above 5 dBi, and a radiation efficiency of at least 70%.

  13. Large-Aperture Membrane Active Phased-Array Antennas

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for this article, an 8 16 passive array (not including T/R modules) and a 2 4 active array (including T/R modules) had been demonstrated, and it was planned to fabricate and test larger arrays.

  14. Passive monitoring using a combination of focused and phased array radiometry: a simulation study.

    PubMed

    Farantatos, Panagiotis; Karanasiou, Irene S; Uzunoglu, Nikolaos

    2011-01-01

    Aim of this simulation study is to use the focusing properties of a conductive ellipsoidal reflector in conjunction with directive phased microwave antenna configurations in order to achieve brain passive monitoring with microwave radiometry. One of the main modules of the proposed setup which ensures the necessary beamforming and focusing on the body and brain areas of interest is a symmetrical axis ellipsoidal conductive wall cavity. The proposed system operates in an entirely non-invasive contactless manner providing temperature and/or conductivity variations monitoring and is designed to also provide hyperthermia treatment. In the present paper, the effect of the use of patch antennas as receiving antennas on the system's focusing properties and specifically the use of phased array setups to achieve scanning of the areas under measurement is investigated. Extensive simulations to compute the electric field distributions inside the whole ellipsoidal reflector and inside two types of human head models were carried out using single and two element microstrip patch antennas. The results show that clear focusing (creation of "hot spots") inside the head models is achieved at 1.53GHz. In the case of the two element antennas, the "hot spot" performs a linear scan around the brain area of interest while the phase difference of the two microstrip patch antennas significantly affects the way the scanning inside the head model is achieved. In the near future, phased array antennas with multiband and more elements will be used in order to enhance the system scanning properties toward the acquisition of tomography images without the need of subject movement.

  15. Superluminal antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.

    A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.

  16. Superluminal antenna

    DOEpatents

    Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu

    2018-04-17

    A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.

  17. A Novel Manufacturing Process for Compact, Low-Weight and Flexible Ultra-Wideband Cavity Backed Textile Antennas

    PubMed Central

    Van Baelen, Dries

    2018-01-01

    A novel manufacturing procedure for the fabrication of ultra-wideband cavity-backed substrate integrated waveguide antennas on textile substrates is proposed. The antenna cavity is constructed using a single laser-cut electrotextile patch, which is folded around the substrate. Electrotextile slabs protruding from the laser-cut patch are then vertically folded and glued to form the antenna cavity instead of rigid metal tubelets to implement the vertical cavity walls. This approach drastically improves mechanical flexibility, decreases the antenna weight to slightly more than 1 g and significantly reduces alignment errors. As a proof of concept, a cavity-backed substrate integrated waveguide antenna is designed and realized for ultra-wideband operation in the [5.15–5.85] GHz band. Antenna performance is validated in free space as well as in two on body measurement scenarios. Furthermore, the antenna’s figures of merit are characterized when the prototype is bent at different curvature radii, as commonly encountered during deployment on the human body. Also the effect of humidity content on antenna performance is studied. In all scenarios, the realized antenna covers the entire operating frequency band, meanwhile retaining a stable radiation pattern with a broadside gain above 5 dBi, and a radiation efficiency of at least 70%. PMID:29301378

  18. Weighted optimization of irradiance for photodynamic therapy of port wine stains

    NASA Astrophysics Data System (ADS)

    He, Linhuan; Zhou, Ya; Hu, Xiaoming

    2016-10-01

    Planning of irradiance distribution (PID) is one of the foremost factors for on-demand treatment of port wine stains (PWS) with photodynamic therapy (PDT). A weighted optimization method for PID was proposed according to the grading of PWS with a three dimensional digital illumination instrument. Firstly, the point clouds of lesions were filtered to remove the error or redundant points, the triangulation was carried out and the lesion was divided into small triangular patches. Secondly, the parameters such as area, normal vector and orthocenter for optimization of each triangular patch were calculated, and the weighted coefficients were determined by the erythema indexes and areas of patches. Then, the optimization initial point was calculated based on the normal vectors and orthocenters to optimize the light direction. In the end, the irradiation can be optimized according to cosine values of irradiance angles and weighted coefficients. Comparing the irradiance distribution before and after optimization, the proposed weighted optimization method can make the irradiance distribution match better with the characteristics of lesions, and has the potential to improve the therapeutic efficacy.

  19. Surface sampling techniques for 3D object inspection

    NASA Astrophysics Data System (ADS)

    Shih, Chihhsiong S.; Gerhardt, Lester A.

    1995-03-01

    While the uniform sampling method is quite popular for pointwise measurement of manufactured parts, this paper proposes three novel sampling strategies which emphasize 3D non-uniform inspection capability. They are: (a) the adaptive sampling, (b) the local adjustment sampling, and (c) the finite element centroid sampling techniques. The adaptive sampling strategy is based on a recursive surface subdivision process. Two different approaches are described for this adaptive sampling strategy. One uses triangle patches while the other uses rectangle patches. Several real world objects were tested using these two algorithms. Preliminary results show that sample points are distributed more closely around edges, corners, and vertices as desired for many classes of objects. Adaptive sampling using triangle patches is shown to generally perform better than both uniform and adaptive sampling using rectangle patches. The local adjustment sampling strategy uses a set of predefined starting points and then finds the local optimum position of each nodal point. This method approximates the object by moving the points toward object edges and corners. In a hybrid approach, uniform points sets and non-uniform points sets, first preprocessed by the adaptive sampling algorithm on a real world object were then tested using the local adjustment sampling method. The results show that the initial point sets when preprocessed by adaptive sampling using triangle patches, are moved the least amount of distance by the subsequently applied local adjustment method, again showing the superiority of this method. The finite element sampling technique samples the centroids of the surface triangle meshes produced from the finite element method. The performance of this algorithm was compared to that of the adaptive sampling using triangular patches. The adaptive sampling with triangular patches was once again shown to be better on different classes of objects.

  20. Microelectromechanical Systems (MEMS) Actuators for Antenna Reconfigurability

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.

    2001-01-01

    A novel microelectromechanical systems (MEMS) actuator for patch antenna reconfiguration, is presented for the first time. A key feature is the capability of multi-band operation without greatly increasing the antenna element dimensions. Experimental results demonstrate that the center frequency can be reconfigured from few hundred MHz to few GHz away from the nominal operating frequency.

  1. Properties of Silica-Based Aerogel Substrates and Application to C-Band Circular Patch Antenna

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Mohamed; Haraz, Osama M.; Ashraf, Nadeem; Zia, Muhammad Fakhar; Khaled, Usama; Elsahfiey, Ibrahim; Alshebeili, Saleh; Sebak, Abdel Razik

    2018-03-01

    Silica aerogel is a lightweight and low-permittivity dielectric material that possesses attractive features for use as an antenna substrate. In this paper, we characterize the radio frequency and microwave dielectric permittivity properties of substrates composed of silica aerogel encapsulated in polymer aerogel in the frequency range from 10 MHz to 8.5 GHz. Characterized silica-based aerogel substrates show relative permittivity values varying between 1.055 and 1.25 and loss tangent values ranging from 5.08 × 10-4 to 0.0206. Silica-based aerogel substrates thus have the potential of use in designing antennas with high gain and large bandwidth. Validation is presented by characterizing the performance of a manufactured C-band circular patch antenna on silica-based aerogel substrate. The performance is also compared to a design that uses Rogers Duroid RT5880 substrate. The results reveal that the silica aerogel substrate antenna at 7.2 GHz provides 1.5 dB increase in gain, 88% enhancement in bandwidth and 68.5% reduction in mass, in comparison with the antenna on RT5880 substrate.

  2. A L-Band Superstrate Lens Enhanced Antenna and Array for Tactical Operations

    DTIC Science & Technology

    2013-07-01

    unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The design of a 1.2 GHz microstrip antenna utilizing a superstrate layer for gain enhancement is...CA, 92152-5001 sam.chieh@navy.mil Abstract—The design of a 1.2 GHz microstrip antenna utilizing a superstrate layer for gain enhancement is...realized. The microstrip patch antenna is a widely used antenna in this regime as it is light weight and is easily scalable for increased gains. It has

  3. A Circular Microstrip Antenna Sensor for Direction Sensitive Strain Evaluation.

    PubMed

    Lopato, Przemyslaw; Herbko, Michal

    2018-01-20

    In this paper, a circular microstrip antenna for stress evaluation is studied. This kind of microstrip sensor can be utilized in structural health monitoring systems. Reflection coefficient S 11 is measured to determine deformation/strain value. The proposed sensor is adhesively connected to the studied sample. Applied strain causes a change in patch geometry and influences current distribution both in patch and ground plane. Changing the current flow in patch influences the value of resonant frequency. In this paper, two different resonant frequencies were analysed because in each case, different current distributions in patch were obtained. The sensor was designed for operating frequency of 2.5 GHz (at fundamental mode), which results in a diameter less than 55 mm. Obtained sensitivity was up to 1 MHz/100 MPa, resolution depends on utilized vector network analyser. Moreover, the directional characteristics for both resonant frequencies were defined, studied using numerical model and verified by measurements. Thus far, microstrip antennas have been used in deformation measurement only if the direction of external force was well known. Obtained directional characteristics of the sensor allow the determination of direction and value of stress by one sensor. This method of measurement can be an alternative to the rosette strain gauge.

  4. Wideband Low Side Lobe Aperture Coupled Patch Phased Array Antennas

    NASA Astrophysics Data System (ADS)

    Poduval, Dhruva

    Low profile printed antenna arrays with wide bandwidth, high gain, and low Side Lobe Level (SLL) are in great demand for current and future commercial and military communication systems and radar. Aperture coupled patch antennas have been proposed to obtain wide impedance bandwidths in the past. Aperture coupling is preferred particularly for phased arrays because of their advantage of integration to other active devices and circuits, e.g. phase shifters, power amplifiers, low noise amplifiers, mixers etc. However, when designing such arrays, the interplay between array performance characteristics, such as gain, side lobe level, back lobe level, mutual coupling etc. must be understood and optimized under multiple design constraints, e.g. substrate material properties and thicknesses, element to element spacing, and feed lines and their orientation and arrangements with respect to the antenna elements. The focus of this thesis is to investigate, design, and develop an aperture coupled patch array with wide operating bandwidth (30%), high gain (17.5 dBi), low side lobe level (20 dB), and high Forward to Backward (F/B) ratio (21.8 dB). The target frequency range is 2.4 to 3 GHz given its wide application in WLAN, LTE (Long Term Evolution) and other communication systems. Notwithstanding that the design concept can very well be adapted at other frequencies. Specifically, a 16 element, 4 by 4 planar microstrip patch array is designed using HFSS and experimentally developed and tested. Starting from mutual coupling minimization a corporate feeding scheme is designed to achieve the needed performance. To reduce the SLL the corporate feeding network is redesigned to obtain a specific amplitude taper. Studies are conducted to determine the optimum location for a metallic reflector under the feed line to improve the F/B. An experimental prototype of the antenna was built and tested validating and demonstrating the performance levels expected from simulation predictions. Finally, simulated beam scanning in several angles of the array is shown considering specific phases for each antenna element in the array.

  5. Microstrip Antenna Arrays on Multilayer LCP Substrates

    NASA Technical Reports Server (NTRS)

    Thompson, Dane; Bairavasubramanian, Ramanan; Wang, Guoan; Kingsley, Nickolas D.; Papapolymerou, Ioannis; Tenteris, Emmanouil M.; DeJean, Gerald; Li, RonglLin

    2007-01-01

    A research and development effort now underway is directed toward satisfying requirements for a new type of relatively inexpensive, lightweight, microwave antenna array and associated circuitry packaged in a thin, flexible sheet that can readily be mounted on a curved or flat rigid or semi-rigid surface. A representative package of this type consists of microwave antenna circuitry embedded in and/or on a multilayer liquid- crystal polymer (LCP) substrate. The circuitry typically includes an array of printed metal microstrip patch antenna elements and their feedlines on one or more of the LCP layer(s). The circuitry can also include such components as electrostatically actuated microelectromechanical systems (MEMS) switches for connecting and disconnecting antenna elements and feedlines. In addition, the circuitry can include switchable phase shifters described below. LCPs were chosen over other flexible substrate materials because they have properties that are especially attractive for high-performance microwave applications. These properties include low permittivity, low loss tangent, low water-absorption coefficient, and low cost. By means of heat treatments, their coefficients of thermal expansion can be tailored to make them more amenable to integration into packages that include other materials. The nature of the flexibility of LCPs is such that large LCP sheets containing antenna arrays can be rolled up, then later easily unrolled and deployed. Figure 1 depicts a prototype three- LCP-layer package containing two four-element, dual-polarization microstrip-patch arrays: one for a frequency of 14 GHz, the other for a frequency of 35 GHz. The 35-GHz patches are embedded on top surface of the middle [15-mil (approx.0.13-mm)-thick] LCP layer; the 14- GHz patches are placed on the top surface of the upper [9-mil (approx. 0.23-mm)-thick] LCP layer. The particular choice of LCP layer thicknesses was made on the basis of extensive analysis of the effects of the thicknesses on cross-polarization levels, bandwidth, and efficiency at each frequency.

  6. Orbital Angular Momentum (OAM) Antennas via Mode Combining and Canceling in Near-field.

    PubMed

    Byun, Woo Jin; Do Choi, Hyung; Cho, Yong Heui

    2017-10-09

    Orbital angular momentum (OAM) mode combining and canceling in the near-field was investigated using a Cassegrain dual-reflectarray antenna composed of multiple microstrip patches on the main and sub-reflectarrays. Microstrip patches on dielectric substrates were designed to radiate the particular OAM modes for arithmetic mode combining, where two OAM wave-generating reflectarrays are very closely placed in the near-field. We conducted near-field antenna measurements at 18 [GHz] by manually replacing the sub-reflectarray substrates with different OAM mode numbers of 0, ±1, when the OAM mode number of the main reflectarray was fixed to +1. We subsequently checked the azimuthal phase distributions of the reflected total electromagnetic waves in the near-field, and verified that the OAM waves mutually reflected from the main and sub-reflectarrays are added or subtracted to each other according to their OAM mode numbers. Based on our proposal, an OAM mode-canceling reflectarray antenna was designed, and the following measurements indicate that the antenna has a better reflection bandwidth and antenna gain than a conventional reflectarray antenna. The concept of OAM mode canceling in the near-field can contribute widely to a new type of low-profile, broad-reflection bandwidth, and high-gain antenna.

  7. Dual-Band Operation of a Microstrip Patch Antenna on a Duroid 5870 Substrate for Ku- and K-Bands

    PubMed Central

    Islam, M. M.; Islam, M. T.; Faruque, M. R. I.

    2013-01-01

    The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz–14.86 GHz) on the lower band and 0.94 GHz (20.67–19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results. PMID:24385878

  8. Dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands.

    PubMed

    Islam, M M; Islam, M T; Faruque, M R I

    2013-01-01

    The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz-14.86 GHz) on the lower band and 0.94 GHz (20.67-19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results.

  9. Geometric Processing and Its Relational Graphics

    DTIC Science & Technology

    1976-10-01

    20, If different from Report) f3. SUPPLEMENTARY NOTES 9. KEY WORDS (Cbnttnue on reverse aide if neceaaary .mdldentlfy by bfock number) Graphics GIFT ...are typified by defining an object as a series of adjacent triangular or rectangular patches or surfaces (ruled surfaces may also be used). The GIFT ...code embodies the Patch code concept in one of its solids, the ARS; however, processing of a many-faceted GIFT solid takes longer to process than its

  10. The 20 GHz circularly polarized, high temperature superconducting microstrip antenna array

    NASA Technical Reports Server (NTRS)

    Morrow, Jarrett D.; Williams, Jeffery T.; Long, Stuart A.; Wolfe, John C.

    1994-01-01

    The primary goal was to design and characterize a four-element, 20 GHz, circularly polarized microstrip patch antenna fabricated from YBa2Cu3O(x) superconductor. The purpose is to support a high temperature superconductivity flight communications experiment between the space shuttle orbiter and the ACTS satellite. This study is intended to provide information into the design, construction, and feasibility of a circularly polarized superconducting 20 GHz downlink or cross-link antenna. We have demonstrated that significant gain improvements can be realized by using superconducting materials for large corporate fed array antennas. In addition, we have shown that when constructed from superconducting materials, the efficiency, and therefore the gain, of microstrip patches increases if the substrate is not so thick that the dominant loss mechanism for the patch is radiation into the surface waves of the conductor-backed substrate. We have considered two design configurations for a superconducting 20 GHz four-element circularly polarized microstrip antenna array. The first is the Huang array that uses properly oriented and phased linearly polarized microstrip patch elements to realize a circularly polarized pattern. The second is a gap-coupled array of circularly polarized elements. In this study we determined that although the Huang array operates well on low dielectric constant substrates, its performance becomes extremely sensitive to mismatches, interelement coupling, and design imperfections for substrates with high dielectric constants. For the gap-coupled microstrip array, we were able to fabricate and test circularly polarized elements and four-element arrays on LaAlO3 using sputtered copper films. These antennas were found to perform well, with relatively good circular polarization. In addition, we realized a four-element YBa2Cu3O(x) array of the same design and measured its pattern and gain relative to a room temperature copper array. The patterns were essentially the same as that for the copper array. The measured gain of the YBCO antenna was greater than that for the room temperature copper design at temperatures below 82K, reaching a value of 3.4 dB at the lowest temperatures.

  11. 'Invisible' antenna takes up less space

    NASA Astrophysics Data System (ADS)

    Shelley, M.; Bond, K.

    1986-06-01

    A compensated microstrip patch design is described that also uses grounded coplanar waveguide to permit a second, independent antenna to be mounted on any type of existing primary radar antenna aboard an aircraft without affecting its radiation. Successful integration of the IFF (identification friend or foe) antenna, which works at D-band, and the primary radar antenna is possible because of the diversity in frequency between the two antennas. Construction of a microstrip radiating element, electromagnetically invisible to the primary antenna, requires orthogonal grating elements and use of the primary antenna as the ground plane. Coplanar mounting of a stripline array with the primary antenna reduces the manufacturing costs and increases the functional performance of the IFF antenna.

  12. Particle systems for adaptive, isotropic meshing of CAD models

    PubMed Central

    Levine, Joshua A.; Whitaker, Ross T.

    2012-01-01

    We present a particle-based approach for generating adaptive triangular surface and tetrahedral volume meshes from computer-aided design models. Input shapes are treated as a collection of smooth, parametric surface patches that can meet non-smoothly on boundaries. Our approach uses a hierarchical sampling scheme that places particles on features in order of increasing dimensionality. These particles reach a good distribution by minimizing an energy computed in 3D world space, with movements occurring in the parametric space of each surface patch. Rather than using a pre-computed measure of feature size, our system automatically adapts to both curvature as well as a notion of topological separation. It also enforces a measure of smoothness on these constraints to construct a sizing field that acts as a proxy to piecewise-smooth feature size. We evaluate our technique with comparisons against other popular triangular meshing techniques for this domain. PMID:23162181

  13. Reconfigurable Array Antenna Using Microelectromechanical Systems (MEMS) Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.

    2001-01-01

    The paper demonstrates a patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the operating frequency. Experimental results demonstrate that the center frequency can be reconfigured by as much as 1.6 percent of the nominal operating frequency at K-Band In addition, a novel on-wafer antenna pattern measurement technique is demonstrated.

  14. Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications

    NASA Technical Reports Server (NTRS)

    Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.

    2004-01-01

    Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies Higher operating frequencies enable greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of GaAs solar cell MIMs (Monolithically Integrated Module) with a single patch antenna on the opposite side of the substrate. Subsequent work will involve the integration of MIMs and antennas on the same side of the substrate. Results from the phase one efforts will be presented.

  15. Use of microstrip patch antennas in grain and pulverized materials permittivity measurement

    USGS Publications Warehouse

    El Sabbagh, M.A.; Ramahi, O.M.; Trabelsi, S.; Nelson, S.O.; Khan, L.

    2003-01-01

    A free-space microwave system developed for the measurement of the relative complex permittivity of granular materials and of pulverized materials was reported. The system consists of a transmitting antenna and a receiving antenna separated by a space filled by the sample to be characterized and a network analyzer for transmission measurement. The receiving antenna was mounted on a movable plate, which gives the flexibility of having different sample thicknesses.

  16. Passive millimeter wave differential interference contrast polarimetry

    DOEpatents

    Bernacki, Bruce E; Kelly, James F; Sheen, David M; Tedeschi, Jonathan R; Hall, Thomas E; Hatchell, Brian K; Valdez, Patrick; McMakin, Douglas L

    2014-04-29

    Differential polarization imaging systems include an axicon configured to provide a displacement of ray bundles associated with different image patches. The displaced ray bundles are directed to antenna horns and orthomode transducers so as to provide outputs correspond to orthogonal linear states of polarization (SOPs). The outputs are directed to a differential radiometer so that Stokes parameter differences between image patches can be obtained. The ray bundle displacements can be selected to correspond to a mechanical spacing of antenna horns. In some examples, ray bundle displacement corresponds to a displacement less than the diffraction limit.

  17. Patch antenna terahertz photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaferri, D.; Todorov, Y., E-mail: yanko.todorov@univ-paris-diderot.fr; Chen, Y. N.

    2015-04-20

    We report on the implementation of 5 THz quantum well photodetector exploiting a patch antenna cavity array. The benefit of our plasmonic architecture on the detector performance is assessed by comparing it with detectors made using the same quantum well absorbing region, but processed into a standard 45° polished facet mesa. Our results demonstrate a clear improvement in responsivity, polarization insensitivity, and background limited performance. Peak detectivities in excess of 5 × 10{sup 12} cmHz{sup 1/2}/W have been obtained, a value comparable with that of the best cryogenic cooled bolometers.

  18. Simulation of patch and slot antennas using FEM with prismatic elements and investigations of artificial absorber mesh termination schemes

    NASA Technical Reports Server (NTRS)

    Gong, J.; Ozdemir, T.; Volakis, J; Nurnberger, M.

    1995-01-01

    Year 1 progress can be characterized with four major achievements which are crucial toward the development of robust, easy to use antenna analysis code on doubly conformal platforms. (1) A new FEM code was developed using prismatic meshes. This code is based on a new edge based distorted prism and is particularly attractive for growing meshes associated with printed slot and patch antennas on doubly conformal platforms. It is anticipated that this technology will lead to interactive, simple to use codes for a large class of antenna geometries. Moreover, the codes can be expanded to include modeling of the circuit characteristics. An attached report describes the theory and validation of the new prismatic code using reference calculations and measured data collected at the NASA Langley facilities. The agreement between the measured and calculated data is impressive even for the coated patch configuration. (2) A scheme was developed for improved feed modeling in the context of FEM. A new approach based on the voltage continuity condition was devised and successfully tested in modeling coax cables and aperture fed antennas. An important aspect of this new feed modeling approach is the ability to completely separate the feed and antenna mesh regions. In this manner, different elements can be used in each of the regions leading to substantially improved accuracy and meshing simplicity. (3) A most important development this year has been the introduction of the perfectly matched interface (PMI) layer for truncating finite element meshes. So far the robust boundary integral method has been used for truncating the finite element meshes. However, this approach is not suitable for antennas on nonplanar platforms. The PMI layer is a lossy anisotropic absorber with zero reflection at its interface. (4) We were able to interface our antenna code FEMA_CYL (for antennas on cylindrical platforms) with a standard high frequency code. This interface was achieved by first generating equivalent magnetic currents across the antenna aperture using the FEM code. These currents were employed as the sources in the high frequency code.

  19. Moment Method Solutions for Radiation and Scattering from Arbitrarily Shaped Surfaces.

    DTIC Science & Technology

    1981-02-01

    IBM -370/168. A. Monopole Antenna on a Disk The study of the monopole antenna on a circular disk is of inter- est since it leads to the understanding...34 . . ._"-", - CHAPTER V ANALYSIS OF MICRUSI- itP ANTL-NNAS This chapter will present an analysis of the microstrip antenna. Surface-patch dipole modes are used to

  20. Wavefront Correction for Large, Flexible Antenna Reflector

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Jammejad, Vahraz; Rajagopalan, Harish; Xu, Shenheng

    2010-01-01

    A wavefront-correction system has been proposed as part of an outer-space radio communication system that would include a large, somewhat flexible main reflector antenna, a smaller subreflector antenna, and a small array feed at the focal plane of these two reflector antennas. Part of the wavefront-correction system would reside in the subreflector, which would be a planar patch-element reflectarray antenna in which the phase shifts of the patch antenna elements would be controlled via microelectromechanical systems (MEMS) radio -frequency (RF) switches. The system would include the following sensing-and-computing subsystems: a) An optical photogrammetric subsystem built around two cameras would estimate geometric distortions of the main reflector; b) A second subsystem would estimate wavefront distortions from amplitudes and phases of signals received by the array feed elements; and c) A third subsystem, built around small probes on the subreflector plane, would estimate wavefront distortions from differences among phases of signals received by the probes. The distortion estimates from the three subsystems would be processed to generate control signals to be fed to the MEMS RF switches to correct for the distortions, thereby enabling collimation and aiming of the received or transmitted radio beam to the required precision.

  1. Electromagnetic scattering and radiation from microstrip patch antennas and spirals residing in a cavity

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Gong, J.; Alexanian, A.; Woo, A.

    1992-01-01

    A new hybrid method is presented for the analysis of the scattering and radiation by conformal antennas and arrays comprised of circular or rectangular elements. In addition, calculations for cavity-backed spiral antennas are given. The method employs a finite element formulation within the cavity and the boundary integral (exact boundary condition) for terminating the mesh. By virtue of the finite element discretization, the method has no restrictions on the geometry and composition of the cavity or its termination. Furthermore, because of the convolutional nature of the boundary integral and the inherent sparseness of the finite element matrix, the storage requirement is kept very low at O(n). These unique features of the method have already been exploited in other scattering applications and have permitted the analysis of large-size structures with remarkable efficiency. In this report, we describe the method's formulation and implementation for circular and rectangular patch antennas in different superstrate and substrate configurations which may also include the presence of lumped loads and resistive sheets/cards. Also, various modelling approaches are investigated and implemented for characterizing a variety of feed structures to permit the computation of the input impedance and radiation pattern. Many computational examples for rectangular and circular patch configurations are presented which demonstrate the method's versatility, modeling capability and accuracy.

  2. A Circular Microstrip Antenna Sensor for Direction Sensitive Strain Evaluation †

    PubMed Central

    Herbko, Michal

    2018-01-01

    In this paper, a circular microstrip antenna for stress evaluation is studied. This kind of microstrip sensor can be utilized in structural health monitoring systems. Reflection coefficient S11 is measured to determine deformation/strain value. The proposed sensor is adhesively connected to the studied sample. Applied strain causes a change in patch geometry and influences current distribution both in patch and ground plane. Changing the current flow in patch influences the value of resonant frequency. In this paper, two different resonant frequencies were analysed because in each case, different current distributions in patch were obtained. The sensor was designed for operating frequency of 2.5 GHz (at fundamental mode), which results in a diameter less than 55 mm. Obtained sensitivity was up to 1 MHz/100 MPa, resolution depends on utilized vector network analyser. Moreover, the directional characteristics for both resonant frequencies were defined, studied using numerical model and verified by measurements. Thus far, microstrip antennas have been used in deformation measurement only if the direction of external force was well known. Obtained directional characteristics of the sensor allow the determination of direction and value of stress by one sensor. This method of measurement can be an alternative to the rosette strain gauge. PMID:29361697

  3. A miniaturized micro strip antenna based on sinusoidal patch geometry for implantable biomedical applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, Omar A.; Elwi, Taha A.; Islam, Naz E.

    2012-11-01

    A miniaturized microstrip antenna is analyzed for implantable biomedical applications. The antenna is designed using two different commercial software packages, CST Microwave Studio and HFSS, to validate the results. The proposed design operates in the WMTS frequency band. The antenna performance is tested inside the human body, Hugo model. The antenna design is readjusted to get the desired resonant frequency. The resonant frequency, bandwidth, gain, and radiation pattern of the proposed antenna are provided in this paper. Furthermore, the effect of losses inside human body due to the fat layer is recognized.

  4. Porous textile antenna designs for improved wearability

    NASA Astrophysics Data System (ADS)

    Shahariar, Hasan; Soewardiman, Henry; Muchler, Clifford A.; Adams, Jacob J.; Jur, Jesse S.

    2018-04-01

    Textile antennas are an integral part of the next generation personalized wearable electronics system. However, the durability of textile antennas are rarely discussed in the literature. Typical textile antennas are prone to damage during normal wearable user scenarios, washing, and heat cycling over time. Fabricating a durable, washable, flexible, and breathable (like textile materials) antenna is challenging due to the incompatibility of the mechanical properties of conductive materials and soft textile materials. This paper describes a scalable screen printing process on an engineered nonwoven substrate to fabricate microstrip patch antennas with enhanced durability. This work used an Evolon® nonwoven substrate with low surface roughness (˜Ra = 18 μm) and high surface area (˜2.05 mm2 mm-2 of fabric area) compared to traditional textile materials, which allows the ink to penetrate evenly in the fiber bulk with its strong capillary wicking force and enhances print resolution. The composite layer of ink and fiber is conductive and enables the antennas to maintain high mechanical flexibility without varying its RF (Radio Frequency) properties. Additionally, the antennas are packaged by laminating porous polyurethane web to make the device durable and washable. The fully packaged antennas maintain the structural flexibility and RF functionality after 15 cycles of washing and drying. To improve the air permeability and enhance flexibility the antenna is also modified by incorporating holes in the both patch and ground layer of the antenna. The antennas were analyzed before and after submerging in water to observe the effect of wetting and drying with respect to frequency response. The porous antenna with holes recovered 3x times faster than the one without holes (solid) from fully wet state (saturated with water) to the dry state, demonstrating its potential use as a moisture sensor system.

  5. Meandered-line antenna with integrated high-impedance surface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forman, Michael A.

    2010-09-01

    A reduced-volume antenna composed of a meandered-line dipole antenna over a finite-width, high-impedance surface is presented. The structure is novel in that the high-impedance surface is implemented with four Sievenpiper via-mushroom unit cells, whose area is optimized to match the meandered-line dipole antenna. The result is an antenna similar in performance to patch antenna but one fourth the area that can be deployed directly on the surface of a conductor. Simulations demonstrate a 3.5 cm ({lambda}/4) square antenna with a bandwidth of 4% and a gain of 4.8 dBi at 2.5 GHz.

  6. Multifrequency synthetic aperture radar antenna comparison study. [for remote sensing

    NASA Technical Reports Server (NTRS)

    Blevins, B. A.

    1983-01-01

    Three multifrequency, dual polarization SAR antenna designs are reviewed. The SAR antenna design specifications were for a "straw man' SAR which would approximate the requirements for projected shuttle-based SAR's. Therefore, the physical dimensions were constrained to be compatible with the space shuttle. The electrical specifications were similar to those of SIR-A and SIR-B with the addition of dual polarization and the addition of C and X band operation. Early in the antenna design considerations, three candidate technologies emerged as having promise. They were: (1) microstrip patch planar array antennas, (2) slotted waveguide planar array antennas, and (3) open-ended waveguide planar array antennas.

  7. Dual Band Metamaterial Antenna For LTE/Bluetooth/WiMAX System.

    PubMed

    Hasan, Md Mehedi; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2018-01-19

    A compact metamaterial inspired antenna operate at LTE, Bluetooth and WiMAX frequency band is introduced in this paper. For the lower band, the design utilizes an outer square metallic strip forcing the patch to radiate as an equivalent magnetic-current loop. For the upper band, another magnetic current loop is created by adding metamaterial structure near the feed line on the patch. The metamaterial inspired antenna dimension of 42 × 32 mm 2 compatible to wireless devices. Finite integration technique based CST Microwave Studio simulator has been used to design and numerical investigation as well as lumped circuit model of the metamaterial antenna is explained with proper mathematical derivation. The achieved measured dual band operation of the conventional antenna are sequentially, 0.561~0.578 GHz, 2.346~2.906 GHz, and 2.91~3.49 GHz, whereas the metamaterial inspired antenna shows dual-band operation from 0.60~0.64 GHz, 2.67~3.40 GHz and 3.61~3.67 GHz, respectively. Therefore, the metamaterial antenna is applicable for LTE and WiMAX applications. Besides, the measured metamaterial antenna gains of 0.15~3.81 dBi and 3.47~3.75 dBi, respectively for the frequency band of 2.67~3.40 GHz and 3.61~3.67 GHz.

  8. A Frequency Reconfigurable MIMO Antenna System for Cognitive Radio Applications

    NASA Astrophysics Data System (ADS)

    Raza, A.; Khan, Muhammad U.; Tahir, Farooq A.

    2017-10-01

    In this paper, a two element frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system is presented. The proposed antenna consists of miniaturized patch antenna elements, loaded with varactor diodes to achieve frequency reconfigurability. The antenna has bandwidth of 30 MHz and provides a smooth frequency sweep from 2.12 GHz to 2.4 GHz by varying the reverse bias voltage of varactor diode. The antenna is designed on an FR4 substrate and occupies a space of 50×100 × 0.8 mm3. The antenna is analyzed for its far-field characteristics as well as for MIMO performance parameters. Designed antenna showed good performance and is suitable for cognitive radios (CR) applications.

  9. Multi-objective design optimization of antenna structures using sequential domain patching with automated patch size determination

    NASA Astrophysics Data System (ADS)

    Koziel, Slawomir; Bekasiewicz, Adrian

    2018-02-01

    In this article, a simple yet efficient and reliable technique for fully automated multi-objective design optimization of antenna structures using sequential domain patching (SDP) is discussed. The optimization procedure according to SDP is a two-step process: (i) obtaining the initial set of Pareto-optimal designs representing the best possible trade-offs between considered conflicting objectives, and (ii) Pareto set refinement for yielding the optimal designs at the high-fidelity electromagnetic (EM) simulation model level. For the sake of computational efficiency, the first step is realized at the level of a low-fidelity (coarse-discretization) EM model by sequential construction and relocation of small design space segments (patches) in order to create a path connecting the extreme Pareto front designs obtained beforehand. The second stage involves response correction techniques and local response surface approximation models constructed by reusing EM simulation data acquired in the first step. A major contribution of this work is an automated procedure for determining the patch dimensions. It allows for appropriate selection of the number of patches for each geometry variable so as to ensure reliability of the optimization process while maintaining its low cost. The importance of this procedure is demonstrated by comparing it with uniform patch dimensions.

  10. Small Patch Antennas for UWB Wireless Body Area Network

    NASA Astrophysics Data System (ADS)

    Klemm, M.; Tröster, G.

    This paper presents the transient characteristics of an aperture-stacked patch antenna (ASPA) and its miniaturized version. These antennas were designed for ultra-wideband (UWB) body area network (BAN) applications, to operate within the 3 to 6 GHz frequency band. The APSA with large ground plane size has a planar dimensions 70 × 70 mm2, the smaller version has dimensions 32 × 26 mm2. The latest yields 85% reduction of the antenna surface. Time- and frequency-domain characteristics of these antennas were calculated in a transmission mode (Tx) and also in a complete, two-antenna (Tx-Rx) system. We have used 3 different waveforms to drive the antenna: gaussian pulse (duration-250 ps), monocycle pulse (duration-300 ps) and defined wavelet (duration-650 ps). The received pulses have very similar shapes (fidelity >90%), but they differ in the voltage amplitudes. Results show that the highest received voltage (best transmission efficiency) is achieved for the pulse with the closest spectrum to the antenna's transfer function characteristic. In order to disclose the effects of the human body proximity, two body models were built and full-wave FDTD method was employed to carry out the simulations. Significant changes of the UWB antenna performance when close to the body were identified. The most important effects are the seriously decreased radiation efficiency (16 to 34%) and different (from that in a free space) shape of the antenna transfer function. The first one can have the impact on low power implementations of UWB wearable radios; the second one discloses possible influence on the UWB systems design (especially for template receivers). The impact of the human body on antenna characteristics was identified to be a key factor in UWB body-worn antenna design.

  11. Three Dimensional (3 D) Printed Sierpinski Patch Antenna

    DTIC Science & Technology

    2017-10-25

    of an equilateral triangle that is divided into smaller equilateral triangles. When this design is used in antenna theory, the antenna is compared to...REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS. TRADE...distribution is unlimited. 12b. DISTRIBUTION CODE A 13. ABSTRACT (Maximum 200 Words) This report details the design , simulation, print, and

  12. Utilization of Patch/Triangular Target Description Data in BRL Parallel Ray Vulnerability Assessment Codes

    DTIC Science & Technology

    1979-09-01

    KEY WORDS (Continue on revmrem elde It necmmemry and Identity by block number) Target Descriptions GIFT Code C0MGE0M Descriptions FASTGEN Code...which accepts the COMGEOM target description and 1 2 produces the shotline data is the GIFT ’ code. The GIFT code evolved 3 4 from and has...the COMGEOM/ GIFT methodology, while the Navy and Air Force use the PATCH/SHOTGEN-FASTGEN methodology. Lawrence W. Bain, Mathew J. Heisinger

  13. A K-Band Linear Phased Array Antenna Based on Ba(0.60)Sr(0.40)TiO3 Thin Film Phase Shifters

    NASA Technical Reports Server (NTRS)

    Romanofsky, R.; Bernhard, J.; Washington, G.; VanKeuls, F.; Miranda, F.; Cannedy, C.

    2000-01-01

    This paper summarizes the development of a 23.675 GHz linear 16-element scanning phased array antenna based on thin ferroelectric film coupled microstripline phase shifters and microstrip patch radiators.

  14. The Smallest Form Factor UWB Antenna with Quintuple Rejection Bands for IoT Applications Utilizing RSRR and RCSRR.

    PubMed

    Rahman, MuhibUr; Park, Jung-Dong

    2018-03-19

    In this paper, we present the smallest form factor microstrip-fed ultra-wideband antenna with quintuple rejection bands for use in wireless sensor networks, mobile handsets, and Internet of things (IoT). Five rejection bands have been achieved at the frequencies of 3.5, 4.5, 5.25, 5.7, and 8.2 GHz, inseminating four rectangular complementary split ring resonators (RCSRRs) on the radiating patch and placing two rectangular split-ring resonators (RSRR) near the feedline-patch junction of the conventional ultra-wideband (UWB) antenna. The design guidelines of the implemented notched bands are provided at the desired frequency bands and analyzed. The measured results demonstrate that the proposed antenna delivers a wide impedance bandwidth from 3 to 11 GHz with a nearly omnidirectional radiation pattern, high rejection in the multiple notched-bands, and good radiation efficiency over the entire frequency band except at the notched frequencies. Simulated and measured response match well specifically at the stop-bands.

  15. The Smallest Form Factor UWB Antenna with Quintuple Rejection Bands for IoT Applications Utilizing RSRR and RCSRR

    PubMed Central

    2018-01-01

    In this paper, we present the smallest form factor microstrip-fed ultra-wideband antenna with quintuple rejection bands for use in wireless sensor networks, mobile handsets, and Internet of things (IoT). Five rejection bands have been achieved at the frequencies of 3.5, 4.5, 5.25, 5.7, and 8.2 GHz, inseminating four rectangular complementary split ring resonators (RCSRRs) on the radiating patch and placing two rectangular split-ring resonators (RSRR) near the feedline-patch junction of the conventional ultra-wideband (UWB) antenna. The design guidelines of the implemented notched bands are provided at the desired frequency bands and analyzed. The measured results demonstrate that the proposed antenna delivers a wide impedance bandwidth from 3 to 11 GHz with a nearly omnidirectional radiation pattern, high rejection in the multiple notched-bands, and good radiation efficiency over the entire frequency band except at the notched frequencies. Simulated and measured response match well specifically at the stop-bands. PMID:29562714

  16. Design of UWB Monopole Antenna with Dual Notched Bands Using One Modified Electromagnetic-Bandgap Structure

    PubMed Central

    Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1–10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively. PMID:24170984

  17. A Ka-Band (26 GHz) Circularly Polarized 2x2 Microstrip Patch Sub-Array with Compact Feed

    NASA Technical Reports Server (NTRS)

    Chrysler, Andrew; Furse, Cynthia; Simons, Rainee N.; Miranda, Felix A.

    2017-01-01

    A Ka-band (26 GHz) 2x2 array consisting of square-shaped microstrip patch antenna elements with two truncated corners for circular polarization (CP) is presented. The array is being developed for satellite communications.

  18. Stripline feed for a microstrip array of patch elements with teardrop shaped probes

    NASA Technical Reports Server (NTRS)

    Huang, John (Inventor)

    1990-01-01

    A circularly polarized microstrip array antenna utilizing a honeycomb substrate made of dielectric material to support on one side the microstrip patch elements in an array, and on the other side a stripline circuit for feeding the patch elements in subarray groups of four with angular orientation and phase for producing circularly polarized radiation, preferably at a 0.degree., 90.degree., 180.degree. and 270.degree. relationship. The probe used for coupling each feed point in the stripline circuit to a microstrip patch element is teardrop shaped in order to introduce capacitance between the coupling probe and the metal sheet of the stripline circuit that serves as an antenna ground plane. The capacitance thus introduced tunes out inductance of the probe. The shape of the teardrop probe is not critical. The probe capacitance required is controlled by the maximum diameter for the teardrop shaped probe, which can be empirically determined for the operating frequency. An aluminum baffle around each subarray blocks out surface waves between subarrays.

  19. Compact Miniaturized Antenna for 210 MHz RFID

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Chun, Kue

    2008-01-01

    This paper describes the design and simulation of a miniaturized square-ring antenna. The miniaturized antenna, with overall dimensions of approximately one tenth of a wavelength (0.1 ), was designed to operate at around 210 MHz, and was intended for radio-frequency identification (RFID) application. One unique feature of the design is the use of a parasitic element to improve the performance and impedance matching of the antenna. The use of parasitic elements to enhance the gain and bandwidth of patch antennas has been demonstrated and reported in the literature, but such use has never been applied to miniaturized antennas. In this work, we will present simulation results and discuss design parameters and their impact on the antenna performance.

  20. Analysis of Spaceborne GPS Systems

    NASA Technical Reports Server (NTRS)

    Cosmo, Mario L.; Davis, James L.; Elosegui, Pedro; Hill, Michael; ScireScapuzzo, Francesca

    1998-01-01

    A reasonable amount of literature can be found on the general topic of GPS receiving antennas, but very little has been published on spaceborne GPS receiving antennas. This very new topic seems to be so far more of interest for the industrial world than for the academic community. For satellite applications, microstrip antennas are usually preferred over other types of antennas mainly because of their non-electrical characteristics, such as small size, relatively lightweight, shape, possibility of integration with microwave integrated circuits, and relatively low costs. Careful design of patch antennas could meet all the requirements (electrical and non-electrical) of GPS receiving antenna to be mounted on a tethered satellite.

  1. Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna

    NASA Technical Reports Server (NTRS)

    duToit, Cornelis

    2014-01-01

    A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each pair of elements: three apertures coupling to the patch elements were placed along the two symmetry lines of the antenna element pair. Two apertures were used in tandem to excite two of the stacked patch elements for one polarization; the other was used to excite one element from one side and the other element from the other side, opposite in phase, taking care of the remaining polarization. The apertures narrow down to a small gap where they are excited by a crossing microstrip line to prevent any asymmetrical excitation of the two sides of the aperture gap, minimizing port-to-port coupling. Using patches that are non-planar leads to higher mechanical rigidity and smaller patch sizes to fit into the available space. Aperture coupling minimizes direct metal-to-metal connections. Using an aperture coupling feed mechanism results in a feed network for two antenna elements with a total of three feed points, plus one simple in-phase combiner to reduce it to two ports. It greatly reduces the complexity of the alternative, but more conventional, way of feeding a pair of two dual-polarized elements with high port isolation.

  2. Quadratic polynomial interpolation on triangular domain

    NASA Astrophysics Data System (ADS)

    Li, Ying; Zhang, Congcong; Yu, Qian

    2018-04-01

    In the simulation of natural terrain, the continuity of sample points are not in consonance with each other always, traditional interpolation methods often can't faithfully reflect the shape information which lie in data points. So, a new method for constructing the polynomial interpolation surface on triangular domain is proposed. Firstly, projected the spatial scattered data points onto a plane and then triangulated them; Secondly, A C1 continuous piecewise quadric polynomial patch was constructed on each vertex, all patches were required to be closed to the line-interpolation one as far as possible. Lastly, the unknown quantities were gotten by minimizing the object functions, and the boundary points were treated specially. The result surfaces preserve as many properties of data points as possible under conditions of satisfying certain accuracy and continuity requirements, not too convex meantime. New method is simple to compute and has a good local property, applicable to shape fitting of mines and exploratory wells and so on. The result of new surface is given in experiments.

  3. The study of microstrip antenna arrays and related problems

    NASA Technical Reports Server (NTRS)

    Lo, R. Q.

    1984-01-01

    The work on rectangular microstrip antennas for dual frequency operation is reported on. The principle of this approach is based on the excitation of a patch for two or more different modes which correspond to different frequencies. However, for a given geometry, the modal frequencies have a fixed relationship; therefore, the usefulness of such a design is greatly limited. In this study three different methods have been contrived to control the frequency ratio over a wide range. First, as found prevously, if shorting pins are inserted at certain locations in the patch, the low frequency can be raised substantially. Second, if slots are cut in the patch, the high frequency can be lowered considerably. By using both techniques, the two frequency ratio can be varied approximately from 3 to 1.3. After that, the addition of more pins or slots becomes ineffective.

  4. Passive wireless antenna sensors for crack detection and shear/compression sensing

    NASA Astrophysics Data System (ADS)

    Mohammad, Irshad

    Despite the fact that engineering components and structures are carefully designed against fatigue failures, 50 to 90% of mechanical failures are due to fatigue crack development. The severity of the failure depends on both the crack length and its orientation. Many types of sensors are available that can detect fatigue crack propagation. However, crack orientation detection has been rarely reported in the literature. We evaluated a patch antenna sensor capable of detecting crack propagation as well as crack orientation changes. The aim of these sensors would be to evaluate the real-time health condition of metallic structures to avoid catastrophic failures. The proposed crack sensing system consists of a dielectric substrate with a ground plane on one side of the substrate and an antenna patch printed on the other side of the substrate. The ground plane and the antenna patch, both conductive in nature, form an electromagnetic resonant cavity that radiates at distinct frequencies. These frequencies are monitored to evaluate the condition of cracks. A wireless sensor array can be realized by implementing a wireless interrogation unit. The scientific merits of this research are: 1) high sensitivity: it was demonstrated that the antenna sensors can detect crack growth with a sub-millimeter resolution; 2) passive wireless operation: based on microstrip antennas, the antenna sensors encode the sensing information in the backscattered antenna signal and thus can transmit the information without needing a local battery; 3) thin and conformal: the entire sensor unit is less than a millimeter thick and highly conformal; 4) crack orientation detection: the crack orientation on the structure can be precisely evaluated based on a single parameter, which only few sensors can accomplish. In addition to crack detection, the patch antenna sensors are also investigated for measuring shear and pressure forces, with an aim to study the formation, diagnostics and prevention of foot ulcers in diabetic patients. These sensors were vertically integrated and embedded in the insole of shoes for measuring plantar pressure/shear distribution. The scientific merits of this proposed research are: 1) simultaneous shear/pressure measurement : current smart shoe technology can only measure shear and pressure separately due to the size of the shear sensor. The proposed sensor can measure shear and pressure deformation simultaneously; 2) high sensitivity and spatial resolution: these sensors are very sensitive and have compact size that enables measuring stress distribution with fine spatial resolution; 3) passive and un-tethered operation: the sensor transponder was mounted on the top surface of the shoe to facilitate wireless interrogation of the sensor array embedded in the insole of the shoe, eliminating external wiring completely.

  5. Novel Microstrip Patch Antennas with Frequency Agility, Polarization Reconfigurability, Dual Null Steering Capability and Phased Array Antenna with Beam Steering Performance

    NASA Astrophysics Data System (ADS)

    Babakhani, Behrouz

    Nowadays the wireless communication technology is playing an important role in our daily life. People use wireless devices not only as a conventional communication device but also as tracking and navigation tool, web browsing tool, data storage and transfer tool and so for many other reasons. Based on the user demand, wireless communication engineers try to accommodate as many as possible wireless systems and applications in a single device and therefore, creates a multifunctional device. Antenna, as an integral part of any wireless communication systems, should also be evolved and adjusted with development of wireless transceiver systems. Therefore multifunctional antennas have been introduced to support and enhance the functionality on modern wireless systems. The main focus and contribution of this thesis is design of novel multifunctional microstrip antennas with frequency agility, polarization reconfigurablity, dual null steering capability and phased array antenna with beam steering performance. In this thesis, first, a wide bandwidth(1.10 GHz to 1.60 GHz) right-handed circularly polarized (RHCP) directional antenna for global positioning system (GPS) satellite receive application has been introduced which covers all the GPS bands starting from L1 to L5. This design consists of two crossed bow-tie dipole antennas fed with sequentially phase rotated feed network backed with an artificial high impedance surface (HIS) structure to generate high gain directional radiation patterns. This design shows good CP gain and axial ratio (AR) and wide beamwidth performance. Although this design has good radiation quality, the size and the weight can be reduced as future study. In the second design, a frequency agile antenna was developed which also covers the L-band (L1 to L5) satellite communication frequencies. This frequency agile antenna was designed and realized by new implementation of varactor diodes in the geometry of a circular patch antenna. Beside wide frequency agility (1.17 GHz to 1.58 GHz), full polarization reconfiguration was added to the design by controlling ports excitation of circular patch using RF switches (vertical linear, horizontal linear, right-handed circular polarization (RHCP) and left-handed circular polarization (LHCP)). This deign maintains good gain and radiation efficiency over the tunable range as well as acceptable co-polarization and cross-polarization separation for different polarizations. Since many communications applications require beam steering ability, in our third design, we designed and developed a linear phased array antenna using a modified version of our frequency agile polarization reconfigurable antenna for beam steering applications. This design offers wide frequency agility (1.50 GHz to 2.40 GHz), full polarization reconfiguration (vertical linear, horizontal linear, LHCP and RHCP) as well as beam steering of +/-52° and +/-28° at 1.5 GHz and 2.4 GHz, respectively. In this 1x4 array, the excitation magnitude and phase of each element was controlled by an analog beamforming feed network (BFN) for beam steering purposes. The required excitation for each element to steer the beam toward a desired location was calculated using projection matrix method (PMM) which uses measured active element pattern (AEP) as its input. This array antenna performance for frequency agility, radiation quality for each polarization and beam steering capability was obtained in the acceptable range. In the last design, the full spherical dual null steering capability of a triple mode circular microstrip patch antenna was investigated. By combining the radiation patterns of three individual modes of microstrip circular patch antenna, two nulls have been generated. These nulls can be repositioned in the upper hemisphere by controlling excitation ratio of each mode. The modes excitation ratio to steer the nulls toward the desired positions was calculated using a derivative free hybrid optimization method. This optimization method uses particle swarm optimization (PSO) combined with pattern search (PS) to find the optimum modes excitation ratio which minimizes the received power at the null positions. The calculated coefficients were applied to the multimode antenna using an analog BFN. This design shows an independent dual null steering with null depth of around 20 dB. Discussion about the proposed antennas included detailed theoretical analysis, numerical simulation and optimizations, beam forming and null steering algorithms, fabrication of the antennas and its control/beamforming feed networks along with the associated bias networks, microcontroller units, and finally its characterization (impedance matching, gain and 2D and 3D radiation patterns). The research work was performed at the Antenna and Microwave Lab (AML) which has the required resources including full wave analysis tools, PCB milling machine, surface mount component soldering station, vector network analyzers, and far-field/spherical near-field radiation pattern measurement system.

  6. Linearly Tapered Slot Antenna Radiation Characteristics at Millimeter-Wave Frequencies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1998-01-01

    An endfire travelling wave antenna, such as, a linearly tapered slot antenna (LTSA) is a viable alternative to a patch antenna at millimeter-wave frequencies because of its simple design and ease of fabrication. This paper presents the radiation characteristics of LTSA at higher millimeter-wave frequencies. The measured radiation patterns are observed to be well behaved and symmetric with the main beam in the endfire direction. The measured gain is about 10 dB. The LTSAs have potential wireless applications at 50 GHz, 77 GHz, and 94 GHz.

  7. Improved Dual-Polarized Microstrip Antenna

    NASA Technical Reports Server (NTRS)

    Huang, John

    1993-01-01

    Dual-polarized microstrip antenna features microstrip transmission-line feeds arranged in such configuration that cross-polarized components of radiation relatively low and degree of isolation between feed ports relatively high. V and H feed ports offset from midpoints of feed lines to obtain required opposite phases at feed-point connections to microstrip patches. Two independent beams of same frequency with electric fields polarized orthogonally to each other transmitted or received via antenna. Improved design saves space.

  8. Analysis of Transient Electromagnetic Scattering from Three Dimensional Cavities

    DTIC Science & Technology

    2014-01-01

    New York, 2002. [24] J. Jin and J. L. Volakis, A hybrid finite element method for scattering and radiation by micro strip patch antennas and arrays...applications such as the design of cavity-backed conformal antennas and the deliberate control in the form of enhancement or reduction of radar cross...electromagnetic scattering analysis, IEEE Trans. Antennas Propagat., 50 (2002), pp. 1192–1202. [22] J. Jin, Electromagnetic scattering from large, deep, and

  9. Analysis of microstrip patch antennas using finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Reineix, Alain; Jecko, Bernard

    1989-11-01

    The study of microstrip patch antennas is directly treated in the time domain, using a modified finite-difference time-domain (FDTD) method. Assuming an appropriate choice of excitation, the frequency dependence of the relevant parameters can readily be found using the Fourier transform of the transient current. The FDTD method allows a rigorous treatment of one or several dielectric interfaces. Different types of excitation can be taken into consideration (coaxial, microstrip lines, etc.). Plotting the spatial distribution of the current density gives information about the resonance modes. The usual frequency-depedent parameters (input impedance, radiation pattern) are given for several examples.

  10. Specific absorption rate analysis of broadband mobile antenna with negative index metamaterial

    NASA Astrophysics Data System (ADS)

    Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2016-03-01

    This paper presents a negative index metamaterial-inspired printed mobile wireless antenna that can support most mobile applications such as GSM, UMTS, Bluetooth and WLAN frequency bands. The antenna consists of a semi-circular patch, a 50Ω microstrip feed line and metamaterial ground plane. The antenna occupies a very small space of 37 × 47 × 0.508 mm3, making it suitable for mobile wireless application. The perceptible novelty shown in this proposed antenna is that reduction of specific absorption rate using the negative index metamaterial ground plane. The proposed antenna reduced 72.11 and 75.53 % of specific absorption rate at 1.8 and 2.4 GHz, respectively.

  11. Deployable Fresnel Rings

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.; Lin, Gregory Y.

    2014-01-01

    Deployable Fresnel rings (DFRs) significantly enhance the realizable gain of an antenna. This innovation is intended to be used in combination with another antenna element, as the DFR itself acts as a focusing or microwave lens element for a primary antenna. This method is completely passive, and is also completely wireless in that it requires neither a cable, nor a connector from the antenna port of the primary antenna to the DFR. The technology improves upon the previous NASA technology called a Tri-Sector Deployable Array Antenna in at least three critical aspects. In contrast to the previous technology, this innovation requires no connector, cable, or other physical interface to the primary communication radio or sensor device. The achievable improvement in terms of antenna gain is significantly higher than has been achieved with the previous technology. Also, where previous embodiments of the Tri-Sector antenna have been constructed with combinations of conventional (e.g., printed circuit board) and conductive fabric materials, this innovation is realized using only conductive and non-conductive fabric (i.e., "e-textile") materials, with the possible exception of a spring-like deployment ring. Conceptually, a DFR operates by canceling the out-of-phase radiation at a plane by insertion of a conducting ring or rings of a specific size and distance from the source antenna, defined by Fresnel zones. Design of DFRs follow similar procedures to those outlined for conventional Fresnel zone rings. Gain enhancement using a single ring is verified experimentally and through computational simulation. The experimental test setup involves a microstrip patch antenna that is directly behind a single-ring DFR and is radiating towards a second microstrip patch antenna. The first patch antenna and DFR are shown. At 2.42 GHz, the DFR improves the transmit antenna gain by 8.6 dB, as shown in Figure 2, relative to the wireless link without the DFR. A figure illustrates the relative strength of power coupling between the first and second microstrip antennas with and without the DFR. Typically, a DFR is designed for use at a particular frequency; however, testing of a DFR indicated a relatively wide operational bandwidth of approximately 8.2%. Wider bandwidth operation and multi-band operation are anticipated by extending the known art of conventional Fresnel rings to the DFRs. Increasing the number of rings used to construct a DFR antenna increases the gain, with the upper bound limited often by the largest practical dimensions that can be tolerated for a given application. The maximum theoretical improvement in gain for a single ring is 9.5 dB. Experimental results are within 0.9 dB of this theoretical value. Adding rings increases gain, and theoretically, improvements of 10 to 13 dB above that of the primary antenna gain can be achieved with two- and three-ring versions.

  12. Electromagnetic Scattering From a Polygonal Thin Metallic Plate Using Quadrilateral Meshing

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.

    2003-01-01

    The problem of electromagnetic (EM) scattering from irregularly shaped, thin, metallic flat plates in free space is solved using the electric field integral equation (EFIE) approach in conjunction with the method of moments (MoM) with quadrilateral meshing. An irregularly shaped thin plate is discretized into quadrilateral patches and the unknown electric surface current over the plate is expressed in terms of proper basis functions over these patches. The basis functions for the electric surface current density that satisfy the proper boundary conditions on these quadrilateral patches are derived. The unknown surface current density on these quadrilateral patches is determined by setting up and solving the electric field integral equation by the application of the MoM. From the knowledge of the surface current density, the EM scattering from various irregularly shaped plates is determined and compared with the earlier published results. The novelty in the present approach is the use of quadrilateral patches instead of well known and often used triangular patches. The numerical results obtained using the quadrilateral patches compare favorably with measured results.

  13. Orthogonal feeding techniques for tapered slot antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1998-01-01

    For array of "brick" configuration there are electrical and mechanical advantages to feed the antenna with a feed on a substrate perpendicular to the antenna substrate. Different techniques have been proposed for exciting patch antennas using such a feed structure.Rncently, an aperture-coupled dielectric resonator antenna using a perpendicular feed substrate has been demonstrated to have very good power coupling efficiency. For a two-dimensional rectangular array with tapered slot antenna elements, a power combining network on perpendicular substrate is generally required to couple power to or from the array. In this paper, we will describe two aperture-coupled techniques for coupling microwave power from a linearly tapered slot antenna (LTSA) to a microstrip feed on a perpendicular substrate. In addition, we will present measured results for return losses and radiation patterns.

  14. A compact annular ring microstrip antenna for WSN applications.

    PubMed

    Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie

    2012-01-01

    A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and -2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  15. Printed Antennas Made Reconfigurable by Use of MEMS Switches

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2005-01-01

    A class of reconfigurable microwave antennas now undergoing development comprise fairly conventional printed-circuit feed elements and radiating patches integrated with novel switches containing actuators of the microelectromechanical systems (MEMS) type. In comparison with solid-state electronic control devices incorporated into some prior printed microwave antennas, the MEMS-based switches in these antennas impose lower insertion losses and consume less power. Because the radio-frequency responses of the MEMS switches are more nearly linear, they introduce less signal distortion. In addition, construction and operation are simplified because only a single DC bias line is needed to control each MEMS actuator.

  16. Microstrip Yagi array for MSAT vehicle antenna application

    NASA Technical Reports Server (NTRS)

    Huang, John; Densmore, Arthur; Pozar, David

    1990-01-01

    A microstrip Yagi array was developed for the MSAT system as a low-cost mechanically steered medium-gain vehicle antenna. Because its parasitic reflector and director patches are not connected to any of the RF power distributing circuit, while still contributing to achieve the MSAT required directional beam, the antenna becomes a very efficient radiating system. With the complete monopulse beamforming circuit etched on a thin stripline board, the planar microstrip Yagi array is capable of achieving a very low profile. A theoretical model using the Method of Moments was developed to facilitate the ease of design and understanding of this antenna.

  17. Wideband Microstrip Antenna-Feeding Array

    NASA Technical Reports Server (NTRS)

    Huang, John

    1990-01-01

    Special impedance-matching probes help reduce feed complexity. Lightweight array of microstrip antenna elements designed to transmit and illuminate reflector antenna with circularly polarized radiation at 1,545 to 1,550 MHz and to receive circularly polarized radiation at 1,646 to 1,660 MHz. Microstrip array is cluster of 7 subarrays containing total of 28 microstrip patches. Produces cicularly polarized beam with suitable edge taper to illuminate reflector antenna. Teardrop-shaped feed probe provides gradual change of field from coaxial transmission line into microstrip substrate. Intended to be part of larger overlapping-cluster array generating multiple contiguous beams.

  18. Miniaturized Pi (Π) - Slit monopole antenna for 2.4/5.2/5.8 applications

    NASA Astrophysics Data System (ADS)

    Chandan, Bharti, Gagandeep; Bharti, Pradutt Kumar; Rai, B. S.

    2018-04-01

    In present paper, two - shaped slots are inserted in a rectangular patch of a monopole antenna for dual band operation. The antenna design is very simple, compact and light weight with overall dimension 29×38×0.8 mm3. Prototype of the proposed antenna is constructed and tested to verify its usefulness for 2.4/5.2/5.8 ghz wlan/wimax applications. It has been observed that both simulated and measured results have good agreement and measured peak gain and radiation pattern are suitable as per the need of application.

  19. A Low-Profile Dual-Layer Patch Antenna with a Circular Polarizer Consisting of Dual Semicircular Resonators.

    PubMed

    Guo, Li; Tang, Ming-Chun; Li, Mei

    2018-06-01

    In this paper, a circular polarizer comprising dual semicircular split-rings (DSSRs) is presented. By placing it above an elliptical radiator that radiates linearly polarized (LP) waves, dual-layer patch antennas capable of radiating right-hand (RH) or left-hand (LH) circularly polarized (CP) waves are achieved in terms of the different offset direction of the bottom splits of the DSSRs. Because of both the capacitive coupling to the radiator and the degenerate modes existing in the excited DSSRs, the DSSRs collaboratively result in a circularly polarized radiation, successfully converting incident LP waves into CP ones. Simulated results show that the impedance, axial ratio (AR), and gain frequency response of both proposed CP antennas are identical, with a simulated 3-dB AR bandwidth of 72 MHz covering 2.402⁻2.474 GHz and a gain enhanced by 3.9 dB. The proposed antennas were fabricated and measured, revealing an operational bandwidth of 65 MHz (2.345⁻2.41 GHz) and a peak gain up to 9 dBi. Moreover, a low profile of 0.063λ₀ is maintained. The proposed CP antennas could be as a candidate for wireless target detection applications in terms of their identical frequency response property.

  20. Two-port active coupled microstrip antenna

    NASA Astrophysics Data System (ADS)

    Avitabile, G. F.; Maci, S.; Biffi Gentili, G.; Roselli, L.; Manes, G. F.

    1992-12-01

    A multilayer structure, based on a patch antenna coupled through a nonresonant slot to a pair of feeding microstrips is a versatile module which can be used as a radiating and resonating element in a number of different configurations. Direct connection to a low cost transistor in a feedback loop results in a very simple active antenna, as reported in the Letter. Different termination conditions at the four microstrip ports give rise to a number of alternative configurations for active generation/detection and multipatch arrays.

  1. Three-Dimensional Stable Nonorthogonal FDTD Algorithm with Adaptive Mesh Refinement for Solving Maxwell’s Equations

    DTIC Science & Technology

    2013-03-01

    Räisänen. An efficient FDTD algorithm for the analysis of microstrip patch antennas printed on a general anisotropic dielectric substrate. IEEE...applications [3, 21, 22], including antenna , microwave circuits, geophysics, optics, etc. The Ground Penetrating Radar (GPR) is a popular and...IEEE Trans. Antennas Propag., 41:994–999, 1993. 16 [6] S. G. Garcia, T. M. Hung-Bao, R. G. Martin, and B. G. Olmedo. On the application of finite

  2. Design of a K-Band Transmit Phased Array For Low Earth Orbit Satellite Communications

    NASA Technical Reports Server (NTRS)

    Watson, Thomas; Miller, Stephen; Kershner, Dennis; Anzic, Godfrey

    2000-01-01

    The design of a light weight, low cost phased array antenna is presented. Multilayer printed wiring board (PWB) technology is utilized for Radio Frequencies (RF) and DC/Logic manifold distribution. Transmit modules are soldered on one side and patch antenna elements are on the other, allowing the use of automated assembly processes. The 19 GHz antenna has two independently steerable beams, each capable of transferring data at 622 Mbps. A passive, self-contained phase change thermal management system is also presented.

  3. Experimental Investigation of 60 GHz Transmission Characteristics Between Computers on a Conference Table for WPAN Applications

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Amadjikpe, Arnaud L.; Choudhury, Debabani; Papapolymerou, John

    2011-01-01

    In this paper, the first measurements of the received radiated power between antennas located on a conference table to simulate the environment of antennas embedded in laptop computers for 60 GHz Wireless Personal Area Network (WPAN) applications is presented. A high gain horn antenna and a medium gain microstrip patch antenna for two linear polarizations are compared. It is shown that for a typical conference table arrangement with five computers, books, pens, and coffee cups, the antennas should be placed a minimum of 5 cm above the table, but that a height of greater than 20 cm may be required to maximize the received power in all cases.

  4. A multifunctional solar panel antenna for cube satellites

    NASA Astrophysics Data System (ADS)

    Fawole, Olutosin C.

    The basic cube satellite (CubeSat) is a modern small satellite that has a standard size of about one liter (the 1U CubeSat). Three 1U CubeSats could be stacked to form a 3U CubeSat. Their low-cost, short development time, and ease of deployment make CubeSats popular for space research, geographical information gathering, and communication applications. An antenna is a key part of the CubeSat communication subsystem. Traditionally, antennas used on CubeSats are wrapped-up wire dipole antennas, which are deployed after satellite launch. Another antenna type used on CubeSats is the patch antenna. In addition to their low gain and efficiency, deployable dipole antennas may also fail to deploy on satellite launch. On the other hand, a solid patch antenna will compete for space with solar cells when placed on a CubeSat face, interfering with satellite power generation. Slot antennas are promising alternatives to dipole and patch antennas on CubeSats. When excited, a thin slot aperture etched on a conductive sheet (ground plane) is an efficient bidirectional radiator. This open slot antenna can be backed by a reflector or cavity for unidirectional radiation, and solar cells can be placed in spaces on the ground plane not occupied by the slot. The large surface areas of 3U CubeSats can be exploited for a multifunctional antenna by integrating multiple thin slot radiators, which are backed by a thin cavity on the CubeSat surfaces. Solar cells can then be integrated on the antenna surface. Polarization diversity and frequency diversity improve the overall performance of a communication system. Having a single radiating structure that could provide these diversities is desired. It has been demonstrated that when a probe excites a square cavity with two unequal length crossed-slots, the differential radiation from the two slots combines in the far-field to yield circular polarization. In addition, it has been shown that two equal-length proximal slots, when both fed with a stripline, resonate at a frequency due to their original lengths, and also resonate at a lower frequency due to mutual coupling between the slots, leading to a dual-band operation. The multifunctional antenna designs presented are harmonizations and extensions of these two independent works. In the multifunctional antenna designs presented, multiple slots were etched on a 83 mm x 340 mm two-layer shallow cavity. The slots were laid out on the cavity such when the cavity was excited by a probe at a particular point, the differential radiation from the slots would combine in the far-field to yield Left-Handed Circular Polarization (LHCP). Furthermore, when the cavity was excited by another probe at an opposite point, the slots would produce Right-Handed Circular Polarization (RHCP). In addition, as forethought, these slots were laid out on the cavity such that some slots were close together enough to give Linearly Polarized (LP) dual-band operation when fed with a stripline. This antenna was designed and optimized via computer simulations, fabricated using Printed Circuit Board (PCB) technology, and characterized using a Vector Network Analyzer (VNA) and NSI Far Field Systems.

  5. Design of 4x1 microstrip patch antenna array for 5.8 GHz ISM band applications

    NASA Astrophysics Data System (ADS)

    Valjibhai, Gohil Jayesh; Bhatia, Deepak

    2013-01-01

    This paper describes the new design of four element antenna array using corporate feed technique. The proposed antenna array is developed on the Rogers 5880 dielectric material. The antenna array works on 5.8 GHz ISM band. The industrial, scientific and medical (ISM) radio bands are radio bands (portions of the radio spectrum) reserved internationally for the use of radio frequency (RF) energy for industrial, scientific and medical purposes other than communications. The array antennas have VSWR < 1.6 from 5.725 - 5.875 GHz. The simulated return loss characteristic of the antenna array is - 39.3 dB at 5.8 GHz. The gain of the antenna array is 12.3 dB achieved. The directivity of the broadside radiation pattern is 12.7 dBi at the 5.8 GHz operating frequency. The antenna array is simulated using High frequency structure simulation software.

  6. Fractal Based Triple Band High Gain Monopole Antenna

    NASA Astrophysics Data System (ADS)

    Pandey, Shashi Kant; Pandey, Ganga Prasad; Sarun, P. M.

    2017-10-01

    A novel triple-band microstrip fed planar monopole antenna is proposed and investigated. A fractal antenna is created by iterating a narrow pulse (NP) generator model at upper side of modified ground plane, which has a rhombic patch, for enhancing the bandwidth and gain. Three iterations are carried out to study the effects of fractal geometry on the antenna performance. The proposed antenna can operate over three frequency ranges viz, 3.34-4.8 GHz, 5.5-10.6 GHz and 13-14.96 GHz suitable for WLAN 5.2/5.8 GHz, WiMAX 3.5/5.5 GHz and X band applications respectively. Simulated and measured results are in good agreements with each others. Results show that antenna provides wide/ultra wide bandwidths, monopole like radiation patterns and very high antenna gains over the operating frequency bands.

  7. Study of Dual Band Wearable Antennas Using Commonly Worn Fabric Materials

    NASA Astrophysics Data System (ADS)

    Das, Dipen Kumar

    In recent years, body-centric communication has become one of the most attractive fields of study. The versatile applications of body-centric communication not only being used for health monitoring, but also for real-time communication purposes in special occupations. They are important for supporting a population with increasing life expectancy and increase the probability of survival for the people suffering from chronic illness. For both wearable and implantable form of body-centric communication, characterizing the system electromagnetically is very important. Given the constraints in power, size, weight and conformity, one of the most challenging parts become the designing antenna for such communication systems. Wearable antennas are the most popular option regarding these issues. Wearable antennas are easier and simpler to mount on clothing when they are made of textile materials. In the process of designing a textile antenna, the availability of the fabrics is pivotal to mount on regularly worn clothes. In this report, several designs of a co-planar waveguide microstrip patch antenna are presented. Instead of felt fabric, the antenna was modified using 100% polyester and cotton fabric for the substrate material. A parasitic patch slot was created on the co-planar ground plane to achieve the dual band resonance frequencies at 2.4 GHz and 5.15 GHz. The geometrical modifications of the antennas were described and their performances were analyzed. The antenna achieved resonating frequency with a thinner substrate as the dielectric constant went higher for the fabrics. The design with different fabric materials was first simulated in CST Microwave Studio, then fabricated and measured in a regular environment. They were also mounted on a 3-D printed human body model to analyze the bending effect. The design of the antennas shows satisfactory performance with a good -10dB bandwidth for both the lower and higher desired resonating frequency band.

  8. NPS-SCAT: A CubeSat Communications System Design, Test, and Integration

    DTIC Science & Technology

    2009-06-01

    used two patch antennas for the S-Band transceiver and a quad-canted turnstile antenna for the downlink in the 70-centimeter band ( Tuli , Orr, & Zee...Service. Retrieved March 08, 2009, from Cute-1.7 + APD II Project: http://lss.mes.titech.ac.jp/ssp/cute1.7/amateur_servic e_e.html Tuli , T.S., Orr

  9. Reduction of the spatially mutual coupling between dual-polarized patch antennas using coupled metamaterial slabs.

    PubMed

    Pan, Bai Cao; Tang, Wen Xuan; Qi, Mei Qing; Ma, Hui Feng; Tao, Zui; Cui, Tie Jun

    2016-07-22

    Mutual coupling inside antenna array is usually caused by two routes: signal leakage via conducting currents on the metallic background or surface wave along substrates; radio leakage received from space between antenna elements. The former one can be depressed by changing the distribution of surface currents, as reported in literatures. But when it comes to the latter one, the radiation-leakage-caused coupling, traditional approaches using circuit manipulation may be inefficient. In this article, we propose and design a new type of decoupling module, which is composed of coupled metamaterial (MTM) slabs. Two classes of MTM particles, the interdigital structure (IS) and the split-ring resonators (SRRs), are adopted to provide the first and second modulations of signal. We validate its function to reduce the radiation leakage between two dual-polarized patch antennas. A prototype is fabricated in a volume with subwavelength scale (0.6λ × 0.3λ × 0.053λ) to provide 7dB improvement for both co-polarization and cross-polarization isolations from 1.95 to 2.2 GHz. The design has good potential for wireless communication and radar systems.

  10. Reduction of the spatially mutual coupling between dual-polarized patch antennas using coupled metamaterial slabs

    PubMed Central

    Pan, Bai Cao; Tang, Wen Xuan; Qi, Mei Qing; Ma, Hui Feng; Tao, Zui; Cui, Tie Jun

    2016-01-01

    Mutual coupling inside antenna array is usually caused by two routes: signal leakage via conducting currents on the metallic background or surface wave along substrates; radio leakage received from space between antenna elements. The former one can be depressed by changing the distribution of surface currents, as reported in literatures. But when it comes to the latter one, the radiation-leakage-caused coupling, traditional approaches using circuit manipulation may be inefficient. In this article, we propose and design a new type of decoupling module, which is composed of coupled metamaterial (MTM) slabs. Two classes of MTM particles, the interdigital structure (IS) and the split-ring resonators (SRRs), are adopted to provide the first and second modulations of signal. We validate its function to reduce the radiation leakage between two dual-polarized patch antennas. A prototype is fabricated in a volume with subwavelength scale (0.6λ × 0.3λ × 0.053λ) to provide 7dB improvement for both co-polarization and cross-polarization isolations from 1.95 to 2.2 GHz. The design has good potential for wireless communication and radar systems. PMID:27444147

  11. Human brain imaging at 9.4 T using a tunable patch antenna for transmission.

    PubMed

    Hoffmann, Jens; Shajan, G; Budde, Juliane; Scheffler, Klaus; Pohmann, Rolf

    2013-05-01

    For human brain imaging at ultrahigh fields, the traveling wave concept can provide a more uniform B1+ field over a larger field of view with improved patient comfort compared to conventional volume coils. It suffers, however, from limited transmit efficiency and receive sensitivity and is not readily applicable in systems where the radiofrequency shield is too narrow to allow for unattenuated wave propagation. Here, the near field of a capacitively adjustable patch antenna for excitation is combined with a receive-only array at 9.4 T. The antenna is designed in compact size and placed in close proximity to the subject to improve the transmit efficiency in narrow bores. Experimental and numerical comparisons to conventional microstrip arrays reveal improved B1+ homogeneity and longitudinal coverage, but at the cost of elevated local specific absorption rate. High-resolution functional and anatomical images demonstrate the use of this setup for in vivo human brain imaging at 9.4 T. Copyright © 2012 Wiley Periodicals, Inc.

  12. The study of microstrip antenna arrays and related problems

    NASA Technical Reports Server (NTRS)

    Lo, Y. T.

    1984-01-01

    The physical layout of the array elements and the proximity of the microstrip feed network makes the input impedance and radiation pattern values dependent upon the effects of mutual coupling, feedline discontinuities and feed point location. The extent of these dependences was assessed and a number of single patch and module structures were constructed and measured at an operating frequency of approximately 4.0 GHz. The empirical results were compared with the ones which were theoretically predicted by the cavity model of thin microstrip antennas. Each element was modelled as an independent radiating patch and each microstrip feedline as an independent, quasi-TEM transmission line. The effects of the feedline discontinuities are approximated by lumped L-C circuit models.

  13. Design of a Class of Antennas Utilizing MEMS, EBG and Septum Polarizers including Near-field Coupling Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Ilkyu

    Recent developments in mobile communications have led to an increased appearance of short-range communications and high data-rate signal transmission. New technologies provides the need for an accurate near-field coupling analysis and novel antenna designs. An ability to effectively estimate the coupling within the near-field region is required to realize short-range communications. Currently, two common techniques that are applicable to the near-field coupling problem are 1) integral form of coupling formula and 2) generalized Friis formula. These formulas are investigated with an emphasis on straightforward calculation and accuracy for various distances between the two antennas. The coupling formulas are computed for a variety of antennas, and several antenna configurations are evaluated through full-wave simulation and indoor measurement in order to validate these techniques. In addition, this research aims to design multi-functional and high performance antennas based on MEMS (Microelectromechanical Systems) switches, EBG (Electromagnetic Bandgap) structures, and septum polarizers. A MEMS switch is incorporated into a slot loaded patch antenna to attain frequency reconfigurability. The resonant frequency of the patch antenna can be shifted using the MEM switch, which is actuated by the integrated bias networks. Furthermore, a high gain base-station antenna utilizing beam-tilting is designed to maximize gain for tilted beam applications. To realize this base-station antenna, an array of four dipole-EBG elements is constructed to implement a fixed down-tilt main beam with application in base station arrays. An improvement of the operating range with the EBG-dipole array is evaluated using a simple linkbudget analysis. The septum polarizer has been widely used in circularly polarized antenna systems due to its simple and compact design and high quality of circularity. In this research, the sigmoid function is used to smoothen the edge in the septum design, which makes it suitable for HPM systems. The PSO (Particle Swarm Optimization) technique is applied to the septum design to achieve a high performance antenna design. The electric field intensity above the septum is evaluated through the simulation and its properties are compared to simple half-plane scattering phenomena.

  14. Compact, low profile antennas for MSAT and mini-M and Std-M land mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Strickland, P. C.

    1995-01-01

    CAL Corporation has developed a new class of low profile radiating elements for use in planar phased array antennas. These new elements have been used in the design of a low cost, compact, low profile antenna unit for MSAT and INMARSAT Mini-M land mobile satellite communications. The antenna unit which measures roughly 32 cm in diameter by 5 cm deep incorporates a compact LNA and diplexer unit as well as a complete, low cost, beam steering system. CAL has also developed a low profile antenna unit for INMARSAT-M land mobile satellite communications. A number of these units, which utilize a microstrip patch array design, were put into service in 1994.

  15. Nanoantennas for enhancing and confining the magnetic optical field

    NASA Astrophysics Data System (ADS)

    Grosjean, Thierry; Mivelle, Mathieu; Baida, Fadi I.; Burr, Geoffrey W.; Fischer, Ulrich C.

    2011-05-01

    We propose different optical antenna structures for enhancing and confining the magnetic optical field. A common feature of these structures are concave corners in thin metal films as locations of the enhanced magnetic field. This proposal is inspired by Babinet's principle as the concave edges are the complementary structures to convex metal corners, which are known to be locations of a strongly enhanced electric field. Bowtie antennas and the bowtie apertures of appropriate size were shown to exhibit resonances in the infrared frequency range with an especially strong enhancement of the electrical field in the gap between 2 convex metal corners. We show by numerical calculations, that the complementary structures, the complementary bowtie aperture - the diabolo antenna - and the complementary bow tie antenna - two closely spaced triangular apertures in a metal film with a narrow gap between two opposing concave corners - exhibit resonances with a strongly enhanced magnetic field at the narrow metal constriction between the concave corners. We suggest sub-wavelength circuits of concave and convex corners as building blocks of planar metamaterials.

  16. A Compact Annular Ring Microstrip Antenna for WSN Applications

    PubMed Central

    Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie

    2012-01-01

    A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels. PMID:23012510

  17. A Double-Negative Metamaterial-Inspired Mobile Wireless Antenna for Electromagnetic Absorption Reduction.

    PubMed

    Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2015-07-29

    A double-negative metamaterial-inspired antenna is presented for mobile wireless applications. The antenna consists of a semi-circular radiating patch and a 3 × 4 hexagonal shaped metamaterial unit cell array in the ground plane. The antenna is fed with a 50 Ω microstrip feed line. The electric dimensions of the proposed antenna are 0.20λ × 0.26λ × 0.004λ, at the low-end frequency. The proposed antenna achieves a -10 dB impedance with a bandwidth of 2.29 GHz at the lower band and 1.28 GHz at the upper band and can operate for most of the mobile applications such as upper GSM bands, WiMAX, Bluetooth, and wireless local area network (WLAN) frequency bands. The focused novelties of the proposed antenna are its small size, multi-standard operating bands, and electromagnetic absorption reduction at all the operating frequencies using the double-negative metamaterial ground plane.

  18. Proceedings of the Antenna Applications Symposium Held on 23-25 September 1992. Volume 2

    DTIC Science & Technology

    1993-06-01

    Kahrizi, S. M. Rao, and A . R. Djordjevic, "Analysis of arbitrarily shaped microstrip patch anten- nas using the Sommerfeld formulation," Int. J...Trans. Antennas Propagat., vol. AP-34, pp. 905-911, July 1986. [231 W. C. Chew, Z. Nie, and Y. T. Lo, "The effect of feed on the input impedance of a ...microstrip antenna," Microwave & Opt. Technol. Lett., vol. 3, pp. 79-83, Mar. 1990. [24] W. C. Chew, " A quick way to approximate a Sommerfeld -Weyl-type

  19. Omnidirectional, circularly polarized, cylindrical microstrip antenna

    NASA Technical Reports Server (NTRS)

    Stanton, Philip H. (Inventor)

    1985-01-01

    A microstrip cylindrical antenna comprised of two concentric subelements on a ground cylinder, a vertically polarized (E-field parallel to the axis of the antenna cylinder) subelement on the inside and a horizontally polarized (E-field perpendicular to the axis) subelement on the outside. The vertical subelement is a wraparound microstrip radiator. A Y-shaped microstrip patch configuration is used for the horizontally polarized radiator that is wrapped 1.5 times to provide radiating edges on opposite sides of the cylindrical antenna for improved azimuthal pattern uniformity. When these subelements are so fed that their far fields are equal in amplitude and phased 90.degree. from each other, a circularly polarized EM wave results. By stacking a plurality of like antenna elements on the ground cylinder, a linear phased array antenna is provided that can be beam steered to the desired elevation angle.

  20. Electrically Tuneable EBG Integrated Circuits

    DTIC Science & Technology

    2013-12-01

    Surface Wave Propagation Along a Modulated Microstrip -Line-Based High Impedance Surface,‖ IEEE Trans. Antennas and Propagat., Vol. 56, No. 8, August...Heimlich, “Reconfigurable half- width microstrip leaky-wave antenna for fixed-frequency beam scanning”, Proceedings of 7th IEEE European Conference...patches, the structure would be an ideal microstrip configuration. Tuning is accomplished by using a pair of RF/microwave switches at opposite ends

  1. Microstrip monopulse antenna for land mobile communications

    NASA Technical Reports Server (NTRS)

    Garcia, Q.; Martin, C.; Delvalle, J. C.; Jongejans, A.; Rinous, P.; Travers, M. N.

    1993-01-01

    Low cost is one of the main requirements in a communication system suitable for mass production, as it is the case for satellite land mobile communications. Microstrip technology fulfills this requirement which must be supported by a low cost tracking system design. The tradeoff led us to a prototype antenna composed of microstrip patches based on electromechanical closed-loop principle; the design and the results obtained are described.

  2. Two microstrip arrays for interferometric SAR applications

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1993-01-01

    Two types of C-band aircraft interferometric Synthetic Aperture Radar (SAR) are being developed at JPL to measure the ocean wave characteristics. Each type requires two identical antennas with each having a long rectangular aperture to radiate fan-shaped beam(s). One type of these radars requires each of its antennas to radiate a broadside beam that will measure the target's cross-track velocity. The other type, having each of its antennas to radiate two off-broadside pointed beams, will allow the measurement of both the cross-track and the along-track velocities of the target. Because flush mounting of the antenna on the aircraft fuselage is desirable, microstrip patch array is selected for these interferometric SAR antennas. To meet the radar system requirement, each array needs a total of 76 microstrip patches which are arranged in a 38 x 2 rectangular aperture with a physical size of 1.6m x 16.5cm. To minimize the insertion loss and physical real estate of this relatively long array, a combined series/parallel feed technique is used. Techniques to suppress cross-pol radiation and to effectively utilize the RF power are also implemented. Cross-pol level of lower than -30 dB from the co-pol peak and low insertion loss of 0.36 dB have been achieved for both types of arrays. For the type of radar that requires two off-braodside pointed beams, a simple phasing technique is used to achieve this dual-beam capability with adequate antenna gain (20 dBi) and sidelobe level (-14 dB). Both radar arrays have been flight tested on aircraft with excellent antenna performance demonstrated.

  3. First calibration results and antenna placement studies of the RPW ANT instrument on Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Sampl, M.; Oswald, T. H.; Rucker, H. O.; Plettemeier, D.; Maksimovic, M.; Macher, W.

    2010-12-01

    We report our analyses of the Radio and Plasma Wave Analyzer (RPW ANT) onboard the Solar Orbiter spacecraft with a focus on the high-frequency electric antennas. The aim of the Solar Orbiter mission is to determine in-situ properties and dynamics of solarwind plasma, electric and magnetic fields in the near-Sun heliosphere. The mission is planned to be launched in 2017 with a spacecraft trajectory of, for the first time, partial co-rotation with the Sun, providing a full suite of in-situ and remote sensing instruments from as close as 0.25 AU. The RPW ANT high-frequency electric sensors, consist of three cylindrical antennas mounted on appendant booms extruded from the central body of the spacecraft. Due to the parasitic effects of the conducting spacecraft body and solar panels the true antenna properties (effective axes and length; capacitances) do not coincide with their physical representations. In order to analyze the antenna system we applied a numerical method. The current distribution on the spacecraft body and the effective length vector was calculated, by solving the underlying field equations using electromagnetic codes. In the applied method the spacecraft is modelled as a patch-grid. The numerical analysis of the reception properties, including several placement options of these antennas, is presented. Since the Solar Orbiter spacecraft body and antennas are not yet finally specified, the results can be used to evaluate the performance of the proposed sensors. In particular, goniopolarimetry techniques like polarization analysis, direction finding and ray tracing depend crucially on the effective axes and the therefore the corresponding data analysis significantly improves. Software model (patch-grid) of the Solar Orbiter spacecraft

  4. Lightweight Material Patches Allow for Quick Repairs

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Cornerstone Research Group Inc., of Dayton, Ohio, has been the recipient of 16 Small Business Innovation Research (SBIR) contracts with NASA with a variety of different focuses, including projects like creating inflatable structures for radio frequency antennas and, most recently, healable polymer matrix composites for future space vehicles. One of its earlier SBIR contracts, with Kennedy Space Center, led to the development of a new type of structural patch for a variety of consumer uses: Rubbn Repair, for automotive uses; and Rec Repair for the outdoors and adventure market. Both are flexible, heat-activated structural patches.

  5. Antenna analysis using properties of metamaterials

    NASA Astrophysics Data System (ADS)

    Mitra, Atindra K.; Hu, Colin; Maxwell, Kasandra

    2010-04-01

    As part of the Student Internship Programs at Wright-Patterson Air Force Base, including the AFRL Wright Scholar Program for High School Students and the AFRL STEP Program, sample results from preliminary investigation and analysis of integrated antenna structures are reported. Investigation of these novel integrated antenna geometries can be interpreted as a continuation of systems analysis under the general topic area of potential integrated apertures for future software radar/radio solutions [1] [2]. Specifically, the categories of novel integrated aperture geometries investigated in this paper include slotted-fractal structures on microstrip rectangular patch antenna models in tandem with the analysis of exotic substrate materials comprised of a type of synthesized electromagnetic structure known as metamaterials [8] - [10].

  6. Advanced Antennas Enabled by Electromagnetic Metamaterials

    DTIC Science & Technology

    2014-12-01

    radiation patterns of a conical horn antenna and three soft horns with various homogeneous metasurface liners. The maximum cross-polarization level was...inhomogencous metasurface liners covering both the flared horn section and the straight waveguide section. The mctahorn is fed by a circular waveguide...with a diameter of 20 mm. (b) The sizes of the metallic patches at each row of the metasurface in the flared horn section. Both the length and width

  7. 2D Electrically Tuneable EBG Integrated Circuits

    DTIC Science & Technology

    2014-04-01

    Controlling the Bandlimits of TE-Surface Wave Propagation Along a Modulated Microstrip -Line-Based High Impedance Surface,‖ IEEE Trans. Antennas and Propagat...Esselle, L. Matekovits, M. Heimlich, “Reconfigurable half- width microstrip leaky-wave antenna for fixed-frequency beam scanning”, Proceedings of 7th...EBG effect (Figure 1). In the absence of the patches, the structure would be an ideal microstrip configuration. Tuning is accomplished by using a

  8. The finite ground plane effect on the microstrip antenna radiation patterns

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1983-01-01

    The uniform geometrical theory of diffraction (GTD) is employed for calculating the edge diffracted fields from the finite ground plane of a microstrip antenna. The source field from the radiating patch is calculated by two different methods: the slot theory and the modal expansion theory. Many numerical and measured results are presented to demonstrate the accuracy of the calculations and the finite ground plane edge effect.

  9. Four-to-one power combiner for 20 GHz phased array antenna using RADC MMIC phase shifters

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The design and microwave simulation of two-to-one microstrip power combiners is described. The power combiners were designed for use in a four element phase array receive antenna subarray at 20 GHz. Four test circuits are described which were designed to enable testing of the power combiner and the four element phased array antenna. Test Circuit 1 enables measurement of the two-to-one power combiner. Test Circuit 2 enables measurement of the four-to-one power combiner. Test Circuit 3 enables measurement of a four element antenna array without phase shifting MMIC's in order to characterize the power combiner with the antenna patch-to-microstrip coaxial feedthroughs. Test circuit 4 is the four element phased array antenna including the RADC MMIC phase shifters and appropriate interconnects to provide bias voltages and control phase bits.

  10. A 1 GHz Oscillator-Type Active Antenna

    NASA Technical Reports Server (NTRS)

    Jordan, Jennifer L.; Scardelletti, Maximilian; Ponchak, George E.

    2008-01-01

    Wireless sensors are desired for monitoring aircraft engines, automotive engines, industrial machinery, and many other applications. The most important requirement of sensors is that they do not interfere with the environment that they are monitoring. Therefore, wireless sensors must be small, which demands a high level of integration. Sensors that modulate an oscillator active antenna have advantages of small size, high level of integration, and lower packaging cost. Several types of oscillator active antennas have been reported. Ip et al. demonstrated a CPW line fed patch antenna with a feedback loop [1]. No degradation in performance was noticed without a ground plane. A GaAs FET was used in an amplifier/oscillator-based active antenna [2]. An oscillator based on a Cree SiC transistor was designed and characterized in [3]. This paper reports the integration of the SiC Clapp oscillator to a slotline loop antenna.

  11. Rectangular microstrip antenna with corrugation like defects at radiating edge: A new approach to reduce cross polarization radiation

    NASA Astrophysics Data System (ADS)

    Pawar, U. A.; Mondal, D.; Nagaraju, A.; Chakraborty, S.; Singh, L. L. K.; Chattopadhyay, S.

    2018-03-01

    In this paper, single layer, simple and compact RMA, with corrugation like defects at the radiating edge, is studied thoroughly to reduce XP radiation from the patch. Unlike the earlier works reported on defected ground structure integrated patches and defect patch structures, in this work, corrugation like linear defects have been placed at the radiating edges of the patch to reduce cross polarisation radiation. Around 30-40 dB of CP-XP isolation is observed in H-plane with 7% impedance bandwidth and in E-plane also, more than 55 dB CP-XP isolation is found. The proposed structure is very simple to design and easy to fabricate.

  12. Microstrip Patch Antenna And Method

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor)

    2001-01-01

    Method and apparatus are provided for a microstrip feeder structure for supplying properly phased signals to each radiator element in a microstrip antenna array that may be utilized for radiating circularly polarized electromagnetic waves. In one disclosed embodiment. the microstrip feeder structure includes a plurality of microstrip sections many or all of which preferably have an electrical length substantially equal to one-quarter wavelength at the antenna operating frequency. The feeder structure provides a low loss feed structure that may be duplicated multiple times through a set of rotations and translations to provide a radiating array of the desired size.

  13. Microstrip antenna developments at JPL

    NASA Technical Reports Server (NTRS)

    Huang, John

    1991-01-01

    The in-house development of microstrip antennas, initiated in 1981, when a spaceborne lightweight and low-profile planar array was needed for a satellite communication system, is described. The work described covers the prediction of finite-ground-plane effects by the geometric theory of diffraction, higher-order-mode circularly polarized circular patch antennas, circularly polarized microstrip arrays with linearly polarized elements, an impedance-matching teardrop-shaped probe feed, a dual-polarized microstrip array with high isolation and low cross-polarization, a planar microstrip Yagi array, a microstrip reflectarray, a Ka-band MMIC array, and a series-fed linear arrays.

  14. Numerical evaluation of human exposure to WiMax patch antenna in tablet or laptop.

    PubMed

    Siervo, Beatrice; Morelli, Maria Sole; Landini, Luigi; Hartwig, Valentina

    2018-04-30

    The use of wireless communication devices, such as tablets or laptops, is increasing among children. Only a few studies assess specific energy absorption rate (SAR) due to exposure from wireless-enabled tablets and laptops, in particular with Worldwide Interoperability for Microwave Access (WiMax) technology. This paper reports the estimation of the interaction between an E-shaped patch antenna (3.5 GHz) and human models, by means of finite-difference time-domain (FDTD) method. Specifically, four different human models (young adult male, young adult female, pre-teenager female, male child) in different exposure conditions (antenna at different distances from the human model, in different positions, and orientations) were considered and whole-body, 10 and 1 g local SAR and magnetic field value (Bmax) were evaluated. From our results, in some worst-case scenarios involving male and female children's exposure, the maximum radiofrequency energy absorption (hot spots) is located in more sensitive organs such as eye, genitals, and breast. Bioelectromagnetics. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  15. A Double-Negative Metamaterial-Inspired Mobile Wireless Antenna for Electromagnetic Absorption Reduction

    PubMed Central

    Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2015-01-01

    A double-negative metamaterial-inspired antenna is presented for mobile wireless applications. The antenna consists of a semi-circular radiating patch and a 3 × 4 hexagonal shaped metamaterial unit cell array in the ground plane. The antenna is fed with a 50 Ω microstrip feed line. The electric dimensions of the proposed antenna are 0.20λ × 0.26λ × 0.004λ, at the low-end frequency. The proposed antenna achieves a −10 dB impedance with a bandwidth of 2.29 GHz at the lower band and 1.28 GHz at the upper band and can operate for most of the mobile applications such as upper GSM bands, WiMAX, Bluetooth, and wireless local area network (WLAN) frequency bands. The focused novelties of the proposed antenna are its small size, multi-standard operating bands, and electromagnetic absorption reduction at all the operating frequencies using the double-negative metamaterial ground plane. PMID:28793474

  16. Antennas for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Huang, John

    1991-01-01

    A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.

  17. Bandwidth enhancement of monopole antenna with DGS for SHF and reconfigurable structure for WiMAX, WLAN and C-band applications

    NASA Astrophysics Data System (ADS)

    Beigi, P.; Mohammadi, P.

    2017-11-01

    In this study a reconfigurable antenna for WiMAX, WLAN, C-bands and SHF applications has been presented. The main body of antenna includes rectangular and L-shaped slotted ground plane and a rectangular patch with slotted feed line, for impedance bandwidth enhancement. In the proposed antenna, a PIN diode is used to adjust the frequency band to SHF, WiMAX, WLAN and C-bands applications. When PIN diode is forward-biased, the antenna covers the 3.5-31 GHz frequency range (i.e. a 160% bandwidth) and when the PIN diode is in its off-state, it operates between 3.4-5.8 GHz. The designed antenna, with a very small size of 12 × 18 × 1.6 mm3, has been fabricated and tested. The radiation pattern is approximately omnidirectional. Simulations and experimental results are in a good agreement with each other and suggest good performance for the presented antenna.

  18. A Millimeter-Wave Cavity-Backed Suspended Substrate Stripline Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    1999-01-01

    Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency bands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency, and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz), cavity backed, circular aperture antenna with suspended substrate stripline (SSS) feed is presented.

  19. A highly directive graphene antenna embedded inside a Fabry-Perot cavity in terahertz regime

    NASA Astrophysics Data System (ADS)

    Roshanaei, Majid; Karami, Hamidreza; Dehkhoda, Parisa; Esfahani, Hamid; Dabir, Fatemeh

    2018-05-01

    In this paper, a highly directive nano-thickness graphene-based antenna is introduced in the terahertz frequency band. The antenna is a graphene patch dipole which is placed between two Bragg mirrors called Fabry-Perot cavity. Tunability of the graphene's conductivity makes it possible to excite the desired resonances of the cavity. Here, first, a single resonant antenna is introduced at 5 THz with an enhanced gain from 2.11 dBi to 12.8 dBi with a beamwidth of 22.7°. Then, a triple resonant antenna at 4.7, 5 and 5.3 THz is presented with respective gains of 7.97, 11.9 and 8.52 dBi. Finally, the effect of dimensions and number of the dielectric layers of the cavity are studied in order to further increase in directivity.

  20. Near- and Far-Field Characterization of Planar mm-Wave Antenna Arrays with Waveguide-to-Microstrip Transition

    NASA Astrophysics Data System (ADS)

    Salhi, Mohammed Adnan; Kazemipour, Alireza; Gentille, Gennaro; Spirito, Marco; Kleine-Ostmann, Thomas; Schrader, Thorsten

    2016-09-01

    We present the design and characterization of planar mm-wave patch antenna arrays with waveguide-to-microstrip transition using both near- and far-field methods. The arrays were designed for metrological assessment of error sources in antenna measurement. One antenna was designed for the automotive radar frequency range at 77 GHz, while another was designed for the frequency of 94 GHz, which is used, e.g., for imaging radar applications. In addition to the antennas, a simple transition from rectangular waveguide WR-10 to planar microstrip line on Rogers 3003™ substrate has been designed based on probe coupling. For determination of the far-field radiation pattern of the antennas, we compare results from two different measurement methods to simulations. Both a far-field antenna measurement system and a planar near-field scanner with near-to-far-field transformation were used to determine the antenna diagrams. The fabricated antennas achieve a good matching and a good agreement between measured and simulated antenna diagrams. The results also show that the far-field scanner achieves more accurate measurement results with regard to simulations than the near-field scanner. The far-field antenna scanning system is built for metrological assessment and antenna calibration. The antennas are the first which were designed to be tested with the measurement system.

  1. Dual-band reactively loaded microstrip antenna

    NASA Technical Reports Server (NTRS)

    Richards, W. F.; Long, S. A.; Davidson, S. E.

    1985-01-01

    A previously derived theory is applied to a microstrip antenna with a reactive load to produce a dual-band radiator. A model consisting of a rectangular patch radiator loaded with a variable length short-circuited coaxial stub was investigated experimentally. Comparisons of theoretical predictions and experimental data are made for the impedance and resonant frequencies as a function of the position of the load, the length of the stub, and the characteristic impedance of the stub.

  2. Focused Application Software for Ferrite Patch Antennas

    DTIC Science & Technology

    1999-10-01

    Trott Mr. Rene D. Guidry Mr. Christopher G. Repesh 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Mission Research Corporation 147 John Sims...July 99 Contract Number: F49620-97-C-0022 SBIR Topic: AF96-003 MRC Project: 97054 Prepared by: Dr. Keith D. Trott , Mr. Rene D. Guidry, and Mr...application of recent innovations in the finite element (FE) method to the problem of modeling conformal antennas embedded in or on (substrate or

  3. A compact 5.5 GHz band-rejected UWB antenna using complementary split ring resonators.

    PubMed

    Islam, M M; Faruque, M R I; Islam, M T

    2014-01-01

    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm(2), and VSWR < 2, observing band elimination of 5.5 GHz WLAN band.

  4. Hierarchical sinuous-antenna phased array for millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Cukierman, Ari; Lee, Adrian T.; Raum, Christopher; Suzuki, Aritoki; Westbrook, Benjamin

    2018-03-01

    We present the design, fabrication, and measured performance of a hierarchical sinuous-antenna phased array coupled to superconducting transition-edge-sensor (TES) bolometers for millimeter wavelengths. The architecture allows for dual-polarization wideband sensitivity with a beam width that is approximately frequency-independent. We report on measurements of a prototype device, which uses three levels of triangular phased arrays to synthesize beams that are approximately constant in width across three frequency bands covering a 3:1 bandwidth. The array element is a lens-coupled sinuous antenna. The device consists of an array of hemispherical lenses coupled to a lithographed wafer, which integrates TESs, planar sinuous antennas, and microwave circuitry including band-defining filters. The approximately frequency-independent beam widths improve coupling to telescope optics and keep the sensitivity of an experiment close to optimal across a broad frequency range. The design can be straightforwardly modified for use with non-TES lithographed cryogenic detectors such as kinetic inductance detectors. Additionally, we report on the design and measurements of a broadband 180° hybrid that can simplify the design of future multichroic focal planes including but not limited to hierarchical phased arrays.

  5. Extracting Information about the Rotator Cuff from Magnetic Resonance Images Using Deterministic and Random Techniques

    PubMed Central

    De Los Ríos, F. A.; Paluszny, M.

    2015-01-01

    We consider some methods to extract information about the rotator cuff based on magnetic resonance images; the study aims to define an alternative method of display that might facilitate the detection of partial tears in the supraspinatus tendon. Specifically, we are going to use families of ellipsoidal triangular patches to cover the humerus head near the affected area. These patches are going to be textured and displayed with the information of the magnetic resonance images using the trilinear interpolation technique. For the generation of points to texture each patch, we propose a new method that guarantees the uniform distribution of its points using a random statistical method. Its computational cost, defined as the average computing time to generate a fixed number of points, is significantly lower as compared with deterministic and other standard statistical techniques. PMID:25650281

  6. A Simple Ultra-Wideband Magneto-Electric Dipole Antenna With High Gain

    NASA Astrophysics Data System (ADS)

    Shuai, Chen-yang; Wang, Guang-ming

    2017-12-01

    A simple ultra-wideband magneto-electric dipole antenna utilizing a differential-fed structure is designed. The antenna mainly comprises three parts, including a novel circular horned reflector, two vertical semicircular shorted patches as a magnetic dipole, and a horizontal U-shaped semicircular electric dipole. A differential feeding structure working as a perfect balun excites the designed antenna. The results of simulation have a good match with the ones of measurement. Results indicate that the designed antenna achieves a wide frequency bandwidth of 107 % which is 3.19 10.61 GHz, when VSWR is below 2. Via introducing the circular horned reflector, the designed antenna attains a steady and high gain of 12±1.5dBi. Moreover, settled broadside direction main beam, high front-to-back ratio, low cross polarization, and the symmetrical and relatively stable radiation patterns in the E-and H-plane are gotten in the impedance bandwidth range. In the practical applications, the proposed antenna that is dc grounded and has a simple structure satisfies the requirement of many outdoor antennas.

  7. Circular Microstrip Antenna with Fractal Slots for Multiband Applications

    NASA Astrophysics Data System (ADS)

    Singh, Sivia Jagtar; Singh, Gurpreet; Bharti, Gurpreet

    2017-10-01

    In this paper, a multiband, fractal, slotted, Circular Microstrip Patch Antenna for GSM, WiMAX, C and X bands (satellite communication applications) is presented. A cantor set theory is used to make fractal slots for obtaining the desired multiband. The projected antenna is simulated using Ansys HFSS v13.0 software. Simulation test of this antenna has been carried out for a frequency range of 1 GHz-10 GHz and a peak gain of 9.19 dB at a resonance frequency of 1.9 GHz is obtained. The antenna also resonates at 3.7 GHz, 6.06 GHz and 7.9 GHz with gains of 3.04 dB, 5.19 dB and 5.39 dB respectively. Parameters like voltage standing wave ratio, return loss, and gain are used to compare the results of the projected antenna with conventional CMPA's of same dimensions with full and defective grounds. The projected antenna is fabricated on a glass epoxy material and is tested using Vector Network Analyzer. The performance parameters of the antenna are found to in good agreement with each both using simulated and measured data.

  8. Double-loop frequency selective surfaces for multi frequency division multiplexing in a dual reflector antenna

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao (Inventor)

    1994-01-01

    A multireflector antenna utilizes a frequency-selective surface (FSS) in a subreflector to allow signals in two different RF bands to be selectively reflected back into a main reflector and to allow signals in other RF bands to be transmitted through it to the main reflector for primary focus transmission. A first approach requires only one FSS at the subreflector which may be an array of double-square-loop conductive elements. A second approach uses two FSS's at the subreflector which may be an array of either double-square-loop (DSL) or double-ring (DR). In the case of DR elements, they may be advantageously arranged in a triangular array instead of the rectangular array for the DSL elements.

  9. Gain enhancement with near-zero-index metamaterial superstrate

    NASA Astrophysics Data System (ADS)

    Bouzouad, M.; Chaker, S. M.; Bensafielddine, D.; Laamari, E. M.

    2015-11-01

    The objective of this paper was to use a near-zero-index ( n) metamaterial as a single- or a double-layer superstrate suspended above a microstrip patch antenna, operating at 43 GHz, for the gain enhancement. The single metamaterial layer superstrate consists of a periodic arrangement of Jerusalem cross unit cells and behaves as an homogeneous medium characterized by a refractive index close to zero. This metamaterial property allows gathering radiated waves from the antenna and collimates them toward the superstrate normal direction. The proposed design improves the antenna gain by 5.1 dB with the single-layer superstrate and 7 dB with the double-layer superstrate.

  10. A Millimeter-wave Cavity-backed Suspended Substrate Stripline Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    1999-01-01

    Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency hands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz) 4 x 4 planar array of cavity backed circular aperture antennas with suspended substrate stripline (SSS) corporate feed is presented.

  11. Design and development of a unit element microstrip antenna for aircraft collision avoidance system

    NASA Astrophysics Data System (ADS)

    De, Debajit; Sahu, Prasanna Kumar

    2017-10-01

    Aircraft/traffic alert and collision avoidance system (ACAS/TCAS) is an airborne system which is designed to provide the service as a last defense equipment for avoiding mid-air collisions between the aircraft. In the existing system, four monopole stub-elements are used as ACAS directional antenna and one blade type element is used as ACAS omnidirectional antenna. The existing ACAS antenna has some drawbacks such as low gain, large beamwidth, frequency and beam tuning/scanning issues etc. Antenna issues like unwanted signals reception may create difficulties to identify the possible threats. In this paper, the focus is on the design and development of a unit element microstrip antenna which can be used for ACAS application and to overcome the possible limitations associated with the existing techniques. Two proposed antenna models are presented here, which are single feed and dual feed microstrip dual patch slotted antenna. These are designed and simulated in CST Microwave Studio tool. The performance and other antenna characteristics have been explored from the simulation results followed by the antenna fabrication and measurement. A good reflection coefficient, Voltage Standing Wave Ratio (VSWR), narrow beamwidth, perfect directional radiation pattern, high gain and directivity make this proposed antenna a good candidate for this application.

  12. Superficial heat reduction technique for a hybrid microwave-optical device.

    PubMed

    Al-Armaghany, A; Tong, K; Leung, T S

    2013-01-01

    Microwave applicator in the form of a circularly polarized microstrip patch antenna is proposed to provide localized deep heating in biological tissue, which causes blood vessels to dilate leading to changes in tissue oxygenation. These changes are monitored by an integrated optical system for studying thermoregulation in different parts of the human body. Using computer simulations, this paper compares circularly and linearly polarized antennas in terms of the efficiency of depositing electromagnetic (EM) energy and the heating patterns. The biological model composes of the skin, fat and muscle layers with appropriate dielectric and thermal properties. The results show that for the same specific absorption rate (SAR) in the muscle, the circularly polarized antenna results in a lower SAR in the skin-fat interface than the linearly polarized antenna. The thermal distribution is also presented based on the biological heat equation. The proposed circularly polarized antenna shows heat reduction in the superficial layers in comparison to the linearly polarized antenna.

  13. A new design of an S/X dual band circular slot antenna for radar applications.

    PubMed

    Ghnimi, Said; Wali, Rawia; Gharsallh, Ali; Razban, Tchanguiz

    2013-01-01

    A novel design of dual-band slot antenna with a circular patch for radar applications is presented and studied. It is fed by a micro-strip line and built on a FR-4 substrate with a whole size of 18 x 30 mm2. A dual band printed antenna is created by introducing slots on the radiating element. By this, two bandwidth, covering C and X band, are achieved. In order to obtain a good fundamental antenna design, the initial studies were carried out theoretically, using CST Microwave Studio simulation software. In this case, the frequency range at return loss < 10 dB is 5.24 - 6.16 GHz for low frequency and is 7.9 -11.7 GHz for high frequency. In addition, the proposed antenna has good radiation characteristics and stable gains over the whole operating bands. A prototype of antenna is fabricated and tested. Experimental data show good agreement between simulated and measured results.

  14. A linear-to-circular polarization converter based on a second-order band-pass frequency selective surface

    NASA Astrophysics Data System (ADS)

    Lin, Baoqin; Wu, Jia-liang; Da, Xin-yu; Li, Wei; Ma, Jia-jun

    2017-01-01

    In this work, we propose a linear-to-circular transmission polarization converter based on a second-order band-pass frequency selective surface (FSS). The FSS is composed of a three-layer aperture-coupled-patch structure, it can be interpreted as an array of antenna-filter-antenna modules, wherein the antenna is just a circularly polarized corner-truncated square microstrip antenna. A prototype of the proposed polarization converter is analyzed, fabricated and tested. Both simulation and experimental results show that the 3-dB axial ratio relative bandwidth of the polarization converter is over 30%, and the maximum insertion loss is only 1.87 dB; in addition, it can maintain good performance over a wide angular bandwidth at TE incidence.

  15. Ultra-Small Dualband Dualmode Microstrip Antenna Based on Novel Hybrid Resonator

    NASA Astrophysics Data System (ADS)

    Zhu, Ji-Xu; Bai, Peng; Zheng, Hao-Zhong

    2016-11-01

    A novel hybrid resonator consists of right handed patch+composite right and left handed transmission line (RH+CRLH) is proposed for the first time aiming at both compactness and frequency manipulation. A demonstration with theoretical dispersion relations and EM simulation is provided for the correctness and efficiency. According to the new method, an ultra-small and dualband antenna operating around 2.4 GHz (n=0, Bluetooth band) and 3.5 GHz (n=+1, Wimax band) is designed, fabricated and measured, whose occupied area is only of 0.158 λ_0. Numerical and experimental results indicate that the antenna exhibits a good impendence match, low cross-polarization and comparable radiation gains in both bands. Excellent performances of the antennas based on hybrid resonators predict promising applications in multifunction wireless communication systems.

  16. A Compact 5.5 GHz Band-Rejected UWB Antenna Using Complementary Split Ring Resonators

    PubMed Central

    Islam, M. M.; Faruque, M. R. I.; Islam, M. T.

    2014-01-01

    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm2, and VSWR < 2, observing band elimination of 5.5 GHz WLAN band. PMID:24971379

  17. Reconfigurable Wideband Circularly Polarized Stacked Square Patch Antenna for Cognitive Radios

    NASA Technical Reports Server (NTRS)

    Barbosa Kortright, Miguel A.; Waldstein, Seth W.; Simons, Rainee N.

    2017-01-01

    An almost square patch, a square patch and a stacked square patch with corner truncation for circular polarization (CP) are researched and developed at X-band for cognitive radios. Experimental results indicate, first, that the impedance bandwidth of a CP almost square patch fed from the edge by a 50 ohm line is 1.70 percent and second, that of a CP square patch fed from the ground plane side by a surface launch connector is 1.87 percent. Third, the impedance bandwidth of a CP stacked square patch fed by a surface launch connector is 2.22 percent. The measured center frequency for the CP square patch fed by a surface launch connector without and with an identical stacked patch is 8.45 and 8.1017 GHz, respectively. By stacking a patch, separated by a fixed air gap of 0.254 mm, the center frequency is observed to shift by as much as 348.3 MHz. The shift in the center frequency can be exploited to reconfigure the operating frequency by mechanically increasing the air gap. The results indicate that a tuning bandwidth of about 100 MHz can be achieved when the distance of separation between the driven patch and the stacked patch is increased from its initial setting of 0.254 to 1.016 mm.

  18. Directive and enhanced spontaneous emission using shifted cubes nanoantenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahari, B.; Tellez-Limon, R.; Kante, B., E-mail: bkante@ucsd.edu

    2016-09-07

    Recent studies have demonstrated that nano-patch antennas formed by metallic nanocubes placed on top of a metallic film largely enhance the spontaneous emission rate of quantum emitters due to the confinement of the electromagnetic field in the small nanogap cavity. The popularity of this architecture is, in part, due to the ease in fabrication. In this contribution, we theoretically demonstrate that a dimer formed by two metallic nanocubes embedded in a dielectric medium exhibits enhanced emission rate compared to the nano-patch antenna. Furthermore, we compare the directivity and radiation efficiency of both nanoantennas. From these characteristics, we obtained information aboutmore » the “material efficiency” and the coupling mismatch efficiency between a dipole emitter and the nanoantenna. These quantities provide a more intuitive insight than the Purcell factor or localized density of states, opening new perspectives in nanoantenna design for ultra-directive light emission.« less

  19. Microstrip reflectarray antenna for the SCANSCAT radar application

    NASA Technical Reports Server (NTRS)

    Huang, John

    1990-01-01

    This publication presents an antenna system that has been proposed as one of the candidates for the SCANSCAT (Scanned Scatterometer) radar application. It is the mechanically steered planar microstrip reflectarray. Due to its thin, lightweight structure, the antenna's mechanical rotation will impose minimum angular momentum for the spacecraft. Since no power-dividing circuitry is needed for its many radiating microstrip patches, this electrically large array antenna demonstrates excellent power efficiency. In addition, this fairly new antenna concept can provide many significant advantages over a conventional parabolic reflector. The basic formulation for the radiation fields of the microstrip reflectarray is presented. This formulation is based on the array theory augmented by the Uniform Geometrical Theory of Diffraction (UTD). A computer code for analyzing the microstrip reflectarray's performances, such as far-field patterns, efficiency, etc., is also listed in this report. It is proposed here that a breadboard unit of this microstrip reflectarray should be constructed and tested in the future to validate the calculated performance. The antenna concept presented here can also be applied in many other types of radars where a large array antenna is needed.

  20. Integrated amateur band and ultra-wide band monopole antenna with multiple band-notched

    NASA Astrophysics Data System (ADS)

    Srivastava, Kunal; Kumar, Ashwani; Kanaujia, B. K.; Dwari, Santanu

    2018-05-01

    This paper presents the integrated amateur band and ultra-wide band (UWB) monopole antenna with integrated multiple band-notched characteristics. It is designed for avoiding the potential interference of frequencies 3.99 GHz (3.83 GHz-4.34 GHz), 4.86 GHz (4.48 GHz-5.63 GHz), 7.20 GHz (6.10 GHz-7.55 GHz) and 8.0 GHz (7.62 GHz-8.47 GHz) with VSWR 4.9, 11.5, 6.4 and 5.3, respectively. Equivalent parallel resonant circuits have been presented for each band-notched frequencies of the antenna. Antenna operates in amateur band 1.2 GHz (1.05 GHz-1.3 GHz) and UWB band from 3.2 GHz-13.9 GHz. Different substrates are used to verify the working of the proposed antenna. Integrated GSM band from 0.6 GHz to 1.8 GHz can also be achieved by changing the radius of the radiating patch. Antenna gain varied from 1.4 dBi to 9.8 dBi. Measured results are presented to validate the antenna performances.

  1. Parallel and series FED microstrip array with high efficiency and low cross polarization

    NASA Technical Reports Server (NTRS)

    Huang, John (Inventor)

    1995-01-01

    A microstrip array antenna for vertically polarized fan beam (approximately 2 deg x 50 deg) for C-band SAR applications with a physical area of 1.7 m by 0.17 m comprises two rows of patch elements and employs a parallel feed to left- and right-half sections of the rows. Each section is divided into two segments that are fed in parallel with the elements in each segment fed in series through matched transmission lines for high efficiency. The inboard section has half the number of patch elements of the outboard section, and the outboard sections, which have tapered distribution with identical transmission line sections, terminated with half wavelength long open-circuit stubs so that the remaining energy is reflected and radiated in phase. The elements of the two inboard segments of the two left- and right-half sections are provided with tapered transmission lines from element to element for uniform power distribution over the central third of the entire array antenna. The two rows of array elements are excited at opposite patch feed locations with opposite (180 deg difference) phases for reduced cross-polarization.

  2. Multi-band Microwave Antennas and Devices based on Generalized Negative-Refractive-Index Transmission Lines

    NASA Astrophysics Data System (ADS)

    Ryan, Colan Graeme Matthew

    Focused on the quad-band generalized negative-refractive-index transmission line (G-NRI-TL), this thesis presents a variety of novel printed G-NRI-TL multi-band microwave device and antenna prototypes. A dual-band coupled-line coupler, an all-pass G-NRI-TL bridged-T circuit, a dual-band metamaterial leaky-wave antenna, and a multi-band G-NRI-TL resonant antenna are all new developments resulting from this research. In addition, to continue the theme of multi-band components, negative-refractive-index transmission lines are used to create a dual-band circularly polarized transparent patch antenna and a two-element wideband decoupled meander antenna system. High coupling over two independently-specified frequency bands is the hallmark of the G-NRI-TL coupler: it is 0.35lambda0 long but achieves approximately -3 dB coupling over both bands with a maximum insertion loss of 1 dB. This represents greater design flexibility than conventional coupled-line couplers and less loss than subsequent G-NRI-TL couplers. The single-ended bridged-T G-NRI-TL offers a metamaterial unit cell with an all-pass magnitude response up to 8 GHz, while still preserving the quad-band phase response of the original circuit. It is shown how the all-pass response leads to wider bandwidths and improved matching in quad-band inverters, power dividers, and hybrid couplers. The dual-band metamaterial leaky-wave antenna presented here was the first to be reported in the literature, and it allows broadside radiation at both 2 GHz and 6 GHz without experiencing the broadside stopband common to conventional periodic antennas. Likewise, the G-NRI-TL resonant antenna is the first reported instance of such a device, achieving quad-band operation between 2.5 GHz and 5.6 GHz, with a minimum radiation efficiency of 80%. Negative-refractive-index transmission line loading is applied to two devices: an NRI-TL meander antenna achieves a measured 52% impedance bandwidth, while a square patch antenna incorporates NRI-TL elements to achieve circular polarization at 2.3 GHz and 2.7 GHz, with radiation efficiencies of 70% and 78%, respectively. Optical transparency of 50% is then realized by cutting a grid through the antenna and substrate, making the device suitable for direct integration with solar panels. Therefore, this research provides several proof-of-concept devices to highlight the flexibility and multi-band properties of the G-NRI-TL which extend the capabilities of microwave transceiver systems.

  3. Input impedance of coaxially fed rectangular microstrip antenna on electrically thick substrate

    NASA Technical Reports Server (NTRS)

    Chen, Wei; Lee, Kai-Fong; Lee, R. Q.

    1993-01-01

    A full-wave spectral domain analysis has been used to obtain input-impedance results for a probe-fed rectangular-patch antenna, modeling the source as a magnetic-current frill. Multiple modes are used in the probe surface current to account for axial and azimuthal variations. It is established that maximum resistance is dependent on the substrate loss tangent. The axial variation of the probe current must be taken into account for substrate thicknesses greater than about 0.02 wavelengths.

  4. The study of microstrip antenna arrays and related problems

    NASA Technical Reports Server (NTRS)

    Lo, Y. T.

    1986-01-01

    In February, an initial computer program to be used in analyzing the four-element array module was completed. This program performs the analysis of modules composed of four rectangular patches which are corporately fed by a microstrip line network terminated in four identical load impedances. Currently, a rigorous full-wave analysis of various types of microstrip line feed structures and patches is being performed. These tests include the microstrip line feed between layers of different electrical parameters. A method of moments was implemented for the case of a single dielectric layer and microstrip line fed rectangular patches in which the primary source is assumed to be a magnetic current ribbon across the line some distance from the patch. Measured values are compared with those computed by the program.

  5. Design of one-kilometer-long antenna sticks and support structure for a geosynchronous satellite

    NASA Astrophysics Data System (ADS)

    Freeman, Janet Elizabeth

    This study develops a preliminary structural design for three one-kilometer-long antenna sticks and an antenna support structure for a geosynchronous earth-imaging satellite. On each of the antenna sticks is mounted a linear array of over 16,000 antenna elements. The antenna sticks are parallel to each other, and are spaced 1 km apart so that they form the corners of an imaginary triangular tube. This tube is spinning about its long axis. Antenna performance requires that the position of each antenna element be known to an accuracy of 0.5 cm, and that the spacecraft's spin axis be parallel to the earth's spin axis within one degree. Assuming that the position of each joint on each antenna stick is known, the antenna sticks are designed as beams under a uniformly distributed acceleration (due to spacecraft spin) to meet the displacement accuracy requirements for the antenna elements. Both a thin-walled round tube and a three-longeron double-laced truss are considered for the antenna stick structure. A spacecraft spinrate is chosen by considering the effects of environmental torques on the precession of a simplified spacecraft. A preliminary truss-like support structure configuration is chosen, and analyzed in quasi-static equilibrium with control thrusters firing to estimate the axial loads in the structural members. The compressive loads found by this analysis are used to design the support structure members to be buckling-critical three-longeron double-laced truss columns. Some tension-only members consisting of Kevlar cord are included in the design to eliminate the need for bulkier members. The lateral vibration modes of the individual structural members are found by conventional analysis -- the fundamental frequencies are as low as 0.0066 Hz. Finite element dynamic analyses of the structure in free vibration confirm that simplified models of the structure and members can be used to determine the structural modes and natural frequencies for design purposes.

  6. Assessment of compatibility of ICRF antenna operation with full W wall in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bobkov, Vl. V.; Braun, F.; Dux, R.; Herrmann, A.; Giannone, L.; Kallenbach, A.; Krivska, A.; Müller, H. W.; Neu, R.; Noterdaeme, J.-M.; Pütterich, T.; Rohde, V.; Schweinzer, J.; Sips, A.; Zammuto, I.; ASDEX Upgrade Team

    2010-03-01

    The compatibility of ICRF (ion cyclotron range of frequencies) antenna operation with high-Z plasma facing components is assessed in ASDEX Upgrade (AUG) with its tungsten (W) first wall. The mechanism of ICRF-related W sputtering was studied by various diagnostics including the local spectroscopic measurements of W sputtering yield YW on antenna limiters. Modification of one antenna with triangular shields, which cover the locations where long magnetic field lines pass only one out of two (0π)-phased antenna straps, did not influence the locally measured YW values markedly. In the experiments with antennas powered individually, poloidal profiles of YW on limiters of powered antennas show high YW close to the equatorial plane and at the very edge of the antenna top. The YW-profile on an unpowered antenna limiter peaks at the location projecting to the top of the powered antenna. An interpretation of the YW measurements is presented, assuming a direct link between the W sputtering and the sheath driving RF voltages deduced from parallel electric near-field (E||) calculations and this suggests a strong E|| at the antenna limiters. However, uncertainties are too large to describe the YW poloidal profiles. In order to reduce ICRF-related rise in W concentration CW, an operational approach and an approach based on calculations of parallel electric fields with new antenna designs are considered. In the operation, a noticeable reduction in YW and CW in the plasma during ICRF operation with W wall can be achieved by (a) increasing plasma-antenna clearance; (b) strong gas puffing; (c) decreasing the intrinsic light impurity content (mainly oxygen and carbon in AUG). In calculations, which take into account a realistic antenna geometry, the high E|| fields at the antenna limiters are reduced in several ways: (a) by extending the antenna box and the surrounding structures parallel to the magnetic field; (b) by increasing the average strap-box distance, e.g. by increasing the number of toroidally distributed straps; (c) by a better balance of (0π)-phased contributions to RF image currents.

  7. Matching Condition of Direct THz-Signal Detection from On-Chip Resonating Antennas with CMOS Transistors in Non-resonant Plasma Wave Mode

    NASA Astrophysics Data System (ADS)

    Chai, S.; Lim, S.; Kim, C.-Y.; Hong, S.

    2018-06-01

    This paper presents matching condition for detector at THz frequencies, which directly read signals from an integrated antenna. We use direct THz-signal detections with CMOS transistors in non-resonant plasma wave mode, which are embedded in on-chip resonating antennas. The detector detects THz envelope signals directly from the side edges of the on-chip patch antennas. The signal detection mechanism is studied in the view of the impedance conditions of the antenna and the detector. The detectors are implemented with stacked transistors structures to achieve high responsivity. The measured responsivities of the detectors with antenna impedances that were simulated to be 599.7, 912.3, 1565, and 3190.6 Ω agree well with the calculated values. Moreover, the responsivity dependence on the detector impedance is shown with two different input impedances of the detectors. Since CMOS circuit models from foundry are not accurate at frequencies higher than f t , the matching guideline between the antenna and the detector is very useful in designing high responsivity detectors. This study found that a detector has to have a large input impedance conjugately matched to the antenna's impedance to have high responsivity.

  8. Matching Condition of Direct THz-Signal Detection from On-Chip Resonating Antennas with CMOS Transistors in Non-resonant Plasma Wave Mode

    NASA Astrophysics Data System (ADS)

    Chai, S.; Lim, S.; Kim, C.-Y.; Hong, S.

    2018-04-01

    This paper presents matching condition for detector at THz frequencies, which directly read signals from an integrated antenna. We use direct THz-signal detections with CMOS transistors in non-resonant plasma wave mode, which are embedded in on-chip resonating antennas. The detector detects THz envelope signals directly from the side edges of the on-chip patch antennas. The signal detection mechanism is studied in the view of the impedance conditions of the antenna and the detector. The detectors are implemented with stacked transistors structures to achieve high responsivity. The measured responsivities of the detectors with antenna impedances that were simulated to be 599.7, 912.3, 1565, and 3190.6 Ω agree well with the calculated values. Moreover, the responsivity dependence on the detector impedance is shown with two different input impedances of the detectors. Since CMOS circuit models from foundry are not accurate at frequencies higher than f t , the matching guideline between the antenna and the detector is very useful in designing high responsivity detectors. This study found that a detector has to have a large input impedance conjugately matched to the antenna's impedance to have high responsivity.

  9. Smart Antenna UKM Testbed for Digital Beamforming System

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Tariqul; Misran, Norbahiah; Yatim, Baharudin

    2009-12-01

    A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH) array antenna and software reconfigurable digital beamforming system (DBS). The antenna is developed based on using the novel LIEH microstrip patch element design arranged into [InlineEquation not available: see fulltext.] uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance [InlineEquation not available: see fulltext.] floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88-2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated.

  10. Babinet's principle for optical frequency metamaterials and nanoantennas

    NASA Astrophysics Data System (ADS)

    Zentgraf, T.; Meyrath, T. P.; Seidel, A.; Kaiser, S.; Giessen, H.; Rockstuhl, C.; Lederer, F.

    2007-07-01

    We consider Babinet’s principle for metamaterials at optical frequencies and include realistic conditions which deviate from the theoretical assumptions of the classic principle such as an infinitely thin and perfectly conducting metal layer. It is shown that Babinet’s principle associates not only transmission and reflection between a structure and its complement but also the field modal profiles of the electromagnetic resonances as well as effective material parameters—a critical concept for metamaterials. Also playing an important role in antenna design, Babinet’s principle is particularly interesting to consider in this case where the metasurfaces and their complements can be regarded as variations on a folded dipole antenna array and patch antenna array, respectively.

  11. Input impedance of a probe-fed circular microstrip antenna with thick substrate

    NASA Technical Reports Server (NTRS)

    Davidovitz, M.; Lo, Y. T.

    1986-01-01

    A method of computing the input impedance for the probe fed circular microstrip antenna with thick dielectric substrate is presented. Utilizing the framework of the cavity model, the fields under the microstrip patch are expanded in a set of modes satisfying the boundary conditions on the eccentrically located probe, as well as on the cavity magnetic wall. A mode-matching technique is used to solve for the electric field at the junction between the cavity and the coaxial feed cable. The reflection coefficient of the transverse electromagnetic (TEM) mode incident in the coaxial cable is determined, from which the input impedance of the antenna is computed. Measured data are presented to verify the theoretical calculations. Results of the computation of various losses for the circular printed antenna as a function of substrate thickness are also included.

  12. The Use of Conductive Ink in Antenna Education and Design

    NASA Astrophysics Data System (ADS)

    Addison, David W.

    Conductive ink from a printer allows for the fabrication of conductive material with tight tolerances without the cost and time of chemical etching. This paper explores the use of AGIC printable conductive ink on a paper substrate as design tool for antennas as well as classroom use in antenna education. The antenna designs satisfy the requirements of a compact Global Navigation Satellite System (GNSS) antenna while showing a competitive performance within the current market. One best design is shown along with three other structures. These antennas consist of a bowtie cross-dipole over a reflective disc with conductive-ink grounded structures. In addition to the GNSS antennas, a linear elliptical dipole over a reflective disc with conductive grounded structures is presented. This elliptical antenna design attempts to find the maximum impedance bandwidth beyond the GNSS band. The inexpensive nature of conductive ink allows for its use in a classroom to demonstrate antenna behavior as part of antenna education. An inexpensive approach to the patch antenna using conductive ink is described and paired with a system made of off-the-shelf parts. The system is capable of measuring the power of the received signal. The received signal measurement is not as accurate as using a anechoic chamber but pattern details are visible. This is used to demonstrate aspects of the Friis transmission equation such as distance, polarization, radiation pattern shape, and loss.

  13. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film

    NASA Astrophysics Data System (ADS)

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-01

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance.

  14. Compact and broadband antenna based on a step-shaped metasurface.

    PubMed

    Li, Ximing; Yang, Jingjing; Feng, Yun; Yang, Meixia; Huang, Ming

    2017-08-07

    A metasurface (MS) is highly useful for improving the performance of patch antennae and reducing their size due to their inherent and unique electromagnetic properties. In this paper, a compact and broadband antenna based on a step-shaped metasurface (SMS) at an operating frequency of 4.3 GHz is presented, which is fed by a planar monopole and enabled by selecting an SMS with high selectivity. The SMS consists of an array of metallic step-shaped unit cells underneath the monopole, which provide footprint miniaturization and bandwidth expansion. Numerical results show that the SMS-based antenna with a maximum size of 0.42λ02 (where λ 0 is the operating wavelength in free space) exhibits a 22.3% impedance bandwidth (S11 < -10 dB) and a high gain of more than 7.15 dBi within the passband. Experimental results at microwave frequencies verify the performance of the proposed antenna, demonstrating substantial consistency with the simulation results. The compact and broadband antenna therefore predicts numerous potential applications within modern wireless communication systems.

  15. Design and Realization of a Planar Ultrawideband Antenna with Notch Band at 3.5 GHz

    PubMed Central

    2014-01-01

    A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31–3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band. PMID:25133245

  16. A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection.

    PubMed

    Syed, Avez; Aldhaheri, Rabah W

    2016-01-01

    A low-cost coplanar waveguide fed compact ultrawideband (UWB) antenna with band rejection characteristics for wireless local area network (WLAN) is proposed. The notch band characteristic is achieved by etching half wavelength C-shaped annular ring slot in the radiating patch. By properly choosing the radius and position of the slot, the notch band can be adjusted and controlled. With an overall size of 18.7 mm × 17.6 mm, the antenna turns out to be one of the smallest UWB antennas with band-notched characteristics. It has a wide fractional bandwidth of 130% (2.9-13.7 GHz) with VSWR < 2 and rejecting IEEE 802.11a and HIPERLAN/2 frequency band of 5.1-5.9 GHz. Stable omnidirectional radiation patterns in the H plane with an average gain of 4.4 dBi are obtained. The band-notch mechanism of the proposed antenna is examined by HFSS simulator. A good agreement is found between measured and simulated results indicating that the proposed antenna is well suited for integration into portable devices for UWB applications.

  17. A Compact Multiple Notched Ultra-Wide Band Antenna with an Analysis of the CSRR-TO-CSRR Coupling for Portable UWB Applications.

    PubMed

    Rahman, MuhibUr; Ko, Dong-Sik; Park, Jung-Dong

    2017-09-25

    We present a compact ultra-wideband (UWB) antenna integrated with sharp notches with a detailed analysis of the mutual coupling of the multiple notch resonators. By utilizing complementary split ring resonators (CSRR) on the radiating semi-circular patch, we achieve the sharp notch-filtering of various bands within the UWB band without increasing the antenna size. The notched frequency bands include WiMAX, INSAT, and lower and upper WLAN. In order to estimate the frequency shifts of the notch due to the coupling of the nearby CSRRs, an analysis of the coupling among the multiple notch resonators is carried out and we construct the lumped-circuit equivalent model. The time domain analysis of the proposed antenna is performed to show its validity on the UWB application. The measured frequency response of the input port corresponds quite well with the calculations and simulations. The radiation pattern of the implemented quad-notched UWB antenna is nearly omnidirectional in the passband.

  18. A Compact Multiple Notched Ultra-Wide Band Antenna with an Analysis of the CSRR-TO-CSRR Coupling for Portable UWB Applications

    PubMed Central

    Ko, Dong-Sik

    2017-01-01

    We present a compact ultra-wideband (UWB) antenna integrated with sharp notches with a detailed analysis of the mutual coupling of the multiple notch resonators. By utilizing complementary split ring resonators (CSRR) on the radiating semi-circular patch, we achieve the sharp notch-filtering of various bands within the UWB band without increasing the antenna size. The notched frequency bands include WiMAX, INSAT, and lower and upper WLAN. In order to estimate the frequency shifts of the notch due to the coupling of the nearby CSRRs, an analysis of the coupling among the multiple notch resonators is carried out and we construct the lumped-circuit equivalent model. The time domain analysis of the proposed antenna is performed to show its validity on the UWB application. The measured frequency response of the input port corresponds quite well with the calculations and simulations. The radiation pattern of the implemented quad-notched UWB antenna is nearly omnidirectional in the passband. PMID:28946658

  19. Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array.

    PubMed

    Xu, He-Xiu; Wang, Guang-Ming; Qi, Mei-Qing; Zeng, Hui-Yong

    2012-09-24

    We report initially the design, fabrication and measurement of using waveguided electric metamaterials (MTM) in the design of closely-spaced microtrip antenna arrays with mutual coupling reduction. The complementary spiral ring resonators (CSRs) which exhibit single negative resonant permittivity around 3.5GHz are used as the basic electric MTM element. For verification, two CSRs with two and three concentric rings are considered, respectively. By properly arranging these well engineered waveguided MTMs between two H-plane coupled patch antennas, both numerical and measured results indicate that more than 8.4 dB mutual coupling reduction is obtained. The mechanism has been studied from a physical insight. The electric MTM element is electrically small, enabling the resultant antenna array to exhibit a small separation (λo/8 at the operating wavelength) and thus a high directivity. The proposed strategy opens an avenue to new types of antenna with super performances and can be generalized for other electric resonators.

  20. High Rate User Ka-Band Phased Array Antenna Test Results

    NASA Technical Reports Server (NTRS)

    Caroglanian, Armen; Perko, Kenneth; Seufert, Steve; Dod, Tom; Warshowsky, Jay; Day, John H. (Technical Monitor)

    2001-01-01

    The High Rate User Phased Array Antenna (HRUPAA) is a Ka-Band planar phased array designed by the Harris Corporation for the NASA Goddard Space Flight Center. The HRUPAA permits a satellite to downlink data either to a ground station or through the Tracking and Data Relay Satellite System (TDRSS). The HRUPAA is scanned electronically by ground station / user satellite command over a 120 degree cone angle. The phased array has the advantage of not imparting attitude disturbances to the user spacecraft. The 288-element transmit-only array has distributed RF amplifiers integrated behind each of the printed patch antenna elements. The array has 33 dBW EIRP and is left-hand circularly polarized. An engineering model of a partially populated array has been developed and delivered to NASA Goddard Space Flight Center. This report deals with the testing of the engineering model at the Goddard Antenna Range near-field and compact range facilities. The antenna specifications are described first, followed by the test plan and test results.

  1. Radial microstrip slotline feed network for circular mobile communications array

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Kelly, Eron S.; Lee, Richard Q.; Taub, Susan R.

    1994-01-01

    In mobile and satellite communications there is a need for low cost and low profile antennas which have a toroidal pattern. Antennas that have been developed for mobile communications include a L-Band electronically steered stripline phased array, a Ka-Band mechanically steered elliptical reflector antenna and a Ka-Band printed dipole. In addition, a L-Band mechanically steered microstrip array, a L-Band microstrip phased array tracking antenna for mounting on a car roof and an X-Band radial line slotted waveguide antenna have been demonstrated. In the above electronically scanned printed arrays, the individual element radiates normally to the plane of the array and hence require a phase shifter to scan the beam towards the horizon. Scanning in the azimuth is by mechanical or electronic steering. An alternate approach is to mount microstrip patch radiators on the surface of a cone to achieve the required elevation angle. The array then scans in the azimuth by beam switching.

  2. Single-channel, box-shaped, monopole-type antenna for B1+ field manipulation in conjunction with the traveling-wave concept in 9.4 T MRI.

    PubMed

    Zivkovic, Irena; Scheffler, Klaus

    2015-08-01

    We have developed a single-channel, box-shaped, monopole-type antenna which, if used in two different configurations, excites complementary B1+ field distributions in the traveling-wave setup. A new monopole-type, single-channel antenna for RF excitation in 9.4 T magnetic resonance imaging is proposed. The antenna is entirely made of copper without lumped elements. Two complementary B1+ field distributions of two different antenna configurations were measured and combined as a root sum of squares. B1+ field inhomogeneity of the combined maps was calculated and compared with published results. By combining B1+ field distributions generated by two antenna configurations, a "no voids" pattern was achieved for the entire upper brain. B1+ inhomogeneity of approximately 20 % was achieved for sagittal and transverse slices; it was <24 % for coronal slices. The results were comparable with those from CP, with "no voids" in slice B1+ inhomogeneity of multichannel loop arrays. The efficiency of the proposed antenna was lower than that of a multichannel array but comparable with that of a patch antenna. The proposed single-channel antenna is a promising candidate for traveling-wave brain imaging. It can be combined with the time-interleaved acquisition of modes (TIAMO) concept if reconfigurability is obtained with a single-antenna element.

  3. Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment.

    PubMed

    Liu, Jingcun; Zhang, Guogang; Dong, Jinlong; Wang, Jianhua

    2015-11-20

    Detecting partial discharge (PD) is an effective way to evaluate the condition of high-voltage electrical equipment insulation. The UHF detection method has attracted attention due to its high sensitivity, strong interference resistance, and ability to locate PDs. In this paper, a miniaturized equiangular spiral antenna (ESA) for UHF detection that uses a printed circuit board is proposed. I-shaped, L-shaped, and C-shaped microstrip baluns were designed to match the impedance between the ESA and coaxial cable and were verified by a vector network analyzer. For comparison, three other types of UHF antenna were also designed: A microstrip patch antenna, a microstrip slot antenna, and a printed dipole antenna. Their antenna factors were calibrated in a uniform electric field of different frequencies modulated in a gigahertz transverse electromagnetic cell. We performed comparison experiments on PD signal detection using an artificial defect model based on the international IEC 60270 standard. We also conducted time-delay test experiments on the ESA sensor to locate a PD source. It was found that the proposed ESA sensor meets PD signal detection requirements. The sensor's compact size makes it suitable for internal installation in high-voltage electrical equipment.

  4. Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment

    PubMed Central

    Liu, Jingcun; Zhang, Guogang; Dong, Jinlong; Wang, Jianhua

    2015-01-01

    Detecting partial discharge (PD) is an effective way to evaluate the condition of high-voltage electrical equipment insulation. The UHF detection method has attracted attention due to its high sensitivity, strong interference resistance, and ability to locate PDs. In this paper, a miniaturized equiangular spiral antenna (ESA) for UHF detection that uses a printed circuit board is proposed. I-shaped, L-shaped, and C-shaped microstrip baluns were designed to match the impedance between the ESA and coaxial cable and were verified by a vector network analyzer. For comparison, three other types of UHF antenna were also designed: A microstrip patch antenna, a microstrip slot antenna, and a printed dipole antenna. Their antenna factors were calibrated in a uniform electric field of different frequencies modulated in a gigahertz transverse electromagnetic cell. We performed comparison experiments on PD signal detection using an artificial defect model based on the international IEC 60270 standard. We also conducted time-delay test experiments on the ESA sensor to locate a PD source. It was found that the proposed ESA sensor meets PD signal detection requirements. The sensor’s compact size makes it suitable for internal installation in high-voltage electrical equipment. PMID:26610506

  5. New species of Parotocinclus (Siluriformes: Loricariidae) from coastal drainages of Rio de Janeiro, southeastern Brazil.

    PubMed

    Roxo, Fábio F; Melo, Bruno F; Silva, Gabriel S C; Oliveira, Claudio

    2017-02-15

    A new species of Parotocinclus is described from tributaries of rio São João, an Atlantic coastal river of Rio de Janeiro, southeastern Brazil. The new species is distinguished from its congeners by the possession of a triangular patch of dark pigmentation on the anterior portion of the dorsal-fin base, a fully developed adipose fin, complete exposure of the ventral surface of the pectoral girdle, and a distinctive pigmentation pattern of the caudal fin. The caudal fin has a hyaline background with a large black blotch covering its anterior portion, tapering irregularly through distal portions of the ventral lobe with a hyaline rounded area, and a small patch of dark pigmentation on distal portions of the dorsal lobe.

  6. Calculation method for laser radar cross sections of rotationally symmetric targets.

    PubMed

    Cao, Yunhua; Du, Yongzhi; Bai, Lu; Wu, Zhensen; Li, Haiying; Li, Yanhui

    2017-07-01

    The laser radar cross section (LRCS) is a key parameter in the study of target scattering characteristics. In this paper, a practical method for calculating LRCSs of rotationally symmetric targets is presented. Monostatic LRCSs for four kinds of rotationally symmetric targets (cone, rotating ellipsoid, super ellipsoid, and blunt cone) are calculated, and the results verify the feasibility of the method. Compared with the results for the triangular patch method, the correctness of the method is verified, and several advantages of the method are highlighted. For instance, the method does not require geometric modeling and patch discretization. The method uses a generatrix model and double integral, and its calculation is concise and accurate. This work provides a theory analysis for the rapid calculation of LRCS for common basic targets.

  7. Passive Tracking System and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Chen, Henry A. (Inventor); Phan, Chau T. (Inventor); Bourgeois, Brian A. (Inventor); Dusl, Jon (Inventor); Hill, Brent W. (Inventor)

    2003-01-01

    Systems and methods are disclosed for passively determining the location of a moveable transmitter utilizing a pair of phase shifts at a receiver for extracting a direction vector from a receiver to the transmitter. In a preferred embodiment, a phase difference between the transmitter and receiver is extracted utilizing a noncoherent demodulator in the receiver. The receiver includes an antenna array with three antenna elements, which preferably are patch antenna elements spaced apart by one-half wavelength. Three receiver channels are preferably utilized for simultaneously processing the received signal from each of the three antenna elements. Multipath transmission paths for each of the three receiver channels are indexed so that comparisons of the same multipath component are made for each of the three receiver channels. The phase difference for each received signal is determined by comparing only the magnitudes of received and stored modulation signals to determine a winning modulation symbol.

  8. Feasibility study for future implantable neural-silicon interface devices.

    PubMed

    Al-Armaghany, Allann; Yu, Bo; Mak, Terrence; Tong, Kin-Fai; Sun, Yihe

    2011-01-01

    The emerging neural-silicon interface devices bridge nerve systems with artificial systems and play a key role in neuro-prostheses and neuro-rehabilitation applications. Integrating neural signal collection, processing and transmission on a single device will make clinical applications more practical and feasible. This paper focuses on the wireless antenna part and real-time neural signal analysis part of implantable brain-machine interface (BMI) devices. We propose to use millimeter-wave for wireless connections between different areas of a brain. Various antenna, including microstrip patch, monopole antenna and substrate integrated waveguide antenna are considered for the intra-cortical proximity communication. A Hebbian eigenfilter based method is proposed for multi-channel neuronal spike sorting. Folding and parallel design techniques are employed to explore various structures and make a trade-off between area and power consumption. Field programmable logic arrays (FPGAs) are used to evaluate various structures.

  9. Passive Tracking System and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Chen, Henry A. (Inventor); Phan, Chau T. (Inventor); Bourgeois, Brian A. (Inventor); Dusl, John (Inventor); Hill, Brent W. (Inventor)

    2005-01-01

    System and methods are disclosed for passively determining the location of a moveable transmitter utilizing a pair of phase shifts at a receiver for extracting a direction vector from a receiver to the transmitter. In a preferred embodiment, a phase difference between the transmitter and receiver is extracted utilizing a noncoherent demodulator in the receiver. The receiver includes antenna array with three antenna elements, which preferably are patch antenna elements placed apart by one-half wavelength. Three receiver channels are preferably utilized for simultaneously processing the received signal from each of the three antenna elements. Multipath transmission paths for each of the three receiver channels are indexed so that comparisons of the same multipath component are made for each of the three receiver channels. The phase difference for each received signal is determined by comparing only the magnitudes of received and stored modulation signals to determine a winning modulation symbol.

  10. GPS Multipath Fade Measurements to Determine L-Band Ground Reflectivity Properties

    NASA Technical Reports Server (NTRS)

    Kavak, Adnan; Xu, Guanghan; Vogel, W. J.

    1996-01-01

    In personal satellite communications, especially when the line-of-sight is clear, ground specular reflected signals along with direct signals are received by low gain, almost omni-directional subscriber antennas. A six-channel, C/A code processing, global positioning system (GPS) receiver with an almost omni-directional patch antenna was used to take measurements over three types of ground to characterize 1.575 GHz specular ground reflections and ground dielectric properties. Fade measurements were taken over grass, asphalt, and lake water surfaces by placing the antenna in a vertical position at a fixed height from the ground. Electrical characteristics (conductivity and dielectric constant) of these surfaces (grass, asphalt, lake water) were obtained by matching computer simulations to the experimental results.

  11. GPS Multipath Fade Measurements to Determine L-Band Ground Reflectivity Properties

    NASA Technical Reports Server (NTRS)

    Kavak, Adnan; Xu, Guang-Han; Vogel, Wolfhard J.

    1996-01-01

    In personal satellite communications, especially when the line-of-sight is clear, ground specular reflected signals along with direct signals are received by low gain, almost omni-directional subscriber antennas. A six-channel, C/A code processing, GPS receiver with an almost omni-directional patch antenna was used to take measurements over three types of ground to characterize 1.575 GHz specular ground reflections and ground dielectric properties. Fade measurements were taken over grass, asphalt, and lake water surfaces by placing the antenna in a vertical position at a fixed height from the ground. Electrical characteristics (conductivity and dielectric constant) of these surfaces (grass, asphalt, lake water) were obtained by matching computer simulations to the experimental results.

  12. Design of microstrip patch antennas using knowledge insertion through retraining

    NASA Astrophysics Data System (ADS)

    Divakar, T. V. S.; Sudhakar, A.

    2018-04-01

    The traditional way of analyzing/designing neural network is to collect experimental data and train neural network. Then, the trained neural network acts as global approximate function. The network is then used to calculate parameters for unknown configurations. The main drawback of this method is one does not have enough experimental data, cost of prototypes being a major factor [1-4]. Therefore, in this method the author collected training data from available approximate formulas with in full design range and trained the network with it. After successful training, the network is retrained with available measured results. This simple way inserts experimental knowledge into the network [5]. This method is tested for rectangular microstrip antenna and circular microstrip antenna.

  13. High-Isolation Low Cross-Polarization Phased-Array Antenna for MPAR Application

    NASA Astrophysics Data System (ADS)

    Saeidi-Manesh, Hadi; Karimkashi, Shaya; Zhang, Guifu; Doviak, Richard J.

    2017-12-01

    The design and analysis of 12 × 12-element planar array of a dual-polarized aperture-coupled microstrip patch antenna operating in the frequency band of 2.7 GHz to 3.0 GHz for multifunction applications are presented. High-isolation between horizontal and vertical polarization ports and low cross-polarization are achieved through an aperture-coupled feed. The reflection coefficient and the isolation of horizontal and vertical ports at different scan angles are examined. The array antenna is fabricated and its radiation patterns are measured in the far-field and near-field chambers. The embedded element pattern of designed element is measured in the near-field chamber and is used for calculating the array scanning radiation pattern.

  14. A Ka-Band (26 GHz) Circularly Polarized 2x2 Microstrip Patch Sub-Array with Compact Feed

    NASA Technical Reports Server (NTRS)

    Chrysler, Andrew; Furse, Cynthia; Simons, Rainee N.; Miranda, Felix A.

    2017-01-01

    A Ka-Band (26 gigahertz) 2 by 2 sub-array with square-shaped microstrip patch antenna elements having two truncated corners for circular polarization (CP) is presented. In addition, the layout for a new compact microstrip feed network for the sub-array is also presented. The compact feed network offers a footprint size reduction of near 60 percent over traditional sub-array at 26 gigahertz. Experimental data indicates that a truncation amount a equals 0.741 millimeters for an isolated patch element results in a return loss (S (sub II)) of minus 35 decibels at 26.3 gigahertz. Furthermore, the measured S (sub II) for the proof-of-concept sub-array with the above elements is better than minus 10.0 decibels at 27.7 gigahertz. However, the impedance match and the operating frequency can be fine-tuned to 26 gigahertz by adjusting the feed network dimensions. Lastly, good agreement is observed between the measured and simulated S (sub II) for the subarray for both right hand and left hand CP. The goal of this effort is utilize the above sub-array as a building block for a larger N by N element array, which would serve as a feed for a reflector antenna for satellite communications.

  15. A Microstrip Patch-Fed Short Backfire Antenna for the Tracking and Data Relay Satellite System-Continuation (TDRSS-C) Multiple Access (MA) Array

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Kory, Carol L.; Lambert, Kevin M.; Acosta, Roberto J.

    2006-01-01

    Short Backfire Antennas (SBAs) are widely utilized for mobile satellite communications, tracking, telemetry, and wireless local area network (WLAN) applications due to their compact structure and excellent radiation characteristics [1-3]. Typically, these SBA s consist of an excitation element (i.e., a half-wavelength dipole), a reflective bottom plane, a planar sub-reflector located above the "exciter", and an outer circular rim. This configuration is capable of achieving gains on the order of 13-15 dBi, but with relatively narrow bandwidths (approx.3%-5%), making it incompatible with the requirements of the next generation enhanced Tracking and Data Relay Satellite System-Continuation (TDRSS-C) Multiple Access (MA) array [1]. Several attempts have been made to enhance the bandwidth performance of the common dipole-fed SBA by employing various other feeding mechanisms (e.g., waveguide, slot) with moderate success [4-5]. In this paper, a novel method of using a microstrip patch is employed for the first time to excite an SBA. The patch element is fed via two H-shaped slots electromagnetically coupled to a broadband hybrid coupler to maintain a wide bandwidth, as well as provide for dual circular polarization capabilities.

  16. Design of High Impedance Electromagnetic Surfaces for Mutual Coupling Reduction in Patch Antenna Array

    PubMed Central

    Islam, Mohammad Tariqul; Alam, Md. Shahidul

    2013-01-01

    A compact planar meander-bridge high impedance electromagnetic structure (MBHIES) was designed and its bandgap characteristics, mutual coupling reduction abilities were studied and compared in detail. Several parametric analyses were performed to obtain optimized design values and the transmission responses were calculated through the suspended microstrip line and waveguide simulation methods. The achieved bandgap is 2.3 GHz (2.55–4.85 GHz) with −61 dB minimum transmission coefficient level at the center frequency of 3.6 GHz. To see the effectiveness, the proposed design was inserted between a microstrip patch antenna array which operates at 3.8 GHz and whose operating bandwidth falls within the MBHIES bandgap. The surface wave suppression phenomenon was analyzed and simulated results are verified by measuring the fabricated prototypes, both are in good agreement. The configuration reduced the mutual coupling by 20.69 dB in simulation and 19.18 dB in measurement, without affecting the radiation characteristics of the array but increasing the gain slightly. PMID:28809299

  17. Design of High Impedance Electromagnetic Surfaces for Mutual Coupling Reduction in Patch Antenna Array.

    PubMed

    Islam, Mohammad Tariqul; Alam, Md Shahidul

    2013-01-07

    A compact planar meander-bridge high impedance electromagnetic structure (MBHIES) was designed and its bandgap characteristics, mutual coupling reduction abilities were studied and compared in detail. Several parametric analyses were performed to obtain optimized design values and the transmission responses were calculated through the suspended microstrip line and waveguide simulation methods. The achieved bandgap is 2.3 GHz (2.55-4.85 GHz) with -61 dB minimum transmission coefficient level at the center frequency of 3.6 GHz. To see the effectiveness, the proposed design was inserted between a microstrip patch antenna array which operates at 3.8 GHz and whose operating bandwidth falls within the MBHIES bandgap. The surface wave suppression phenomenon was analyzed and simulated results are verified by measuring the fabricated prototypes, both are in good agreement. The configuration reduced the mutual coupling by 20.69 dB in simulation and 19.18 dB in measurement, without affecting the radiation characteristics of the array but increasing the gain slightly.

  18. Decentralized adaptive control designs and microstrip antennas for smart structures

    NASA Astrophysics Data System (ADS)

    Khorrami, Farshad; Jain, Sandeep; Das, Nirod K.

    1996-05-01

    Smart structures lend themselves naturally to a decentralized control design framework, especially with adaptation mechanisms. The main reason being that it is highly undesirable to connect all the sensors and actuators in a large structure to a central processor. It is rather desirable to have local decision-making at each smart patch. Furthermore, this local controllers should be easily `expandable' to `contractible.' This corresponds to the fact that addition/deletion of several smart patches should not require a total redesign of the control system. The decentralized control strategies advocated in this paper are of expandable/contractible type. On another front, we are considering utilization of micro-strip antennas for power transfer to and from smart structures. We have made preliminary contributions in this direction and further developments are underway. These approaches are being pursued for active vibration damping and noise cancellation via piezoelectric ceramics although the methodology is general enough to be applicable to other type of active structures.

  19. A revolutionary concept to improve the efficiency of IC antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milanesio, D.; Maggiora, R.

    2014-02-12

    The successful design of an Ion Cyclotron (IC) antenna mainly relies on the capability of coupling high power to the plasma (MW), feature that is currently reached by allowing rather high voltages (tens of kV) on the unavoidable unmatched part of the feeding lines. This requirement is often responsible of arcs along the transmission lines and other unwanted phenomena that considerably limit the usage of IC launchers. In this work, we suggest and describe a revolutionary approach based on high impedance surfaces, which allows to increase the antenna radiation efficiency and, hence, to highly reduce the imposed voltages to couplemore » the same level of power to the plasma. High-impedance surfaces are periodic metallic structures (patches) displaced usually on top of a dielectric substrate and grounded by means of vertical posts usually embedded inside a dielectric, in a mushroom-like shape. In terms of working properties, high impedance surfaces are electrically thin in-phase reflectors, i.e. they present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. While the usual design of a high impedance surface requires the presence of a dielectric layer, some alternative solutions can be realized in vacuum, taking advantage of double layers ofmetallic patches. After an introductory part on the properties of high impedance surfaces, this work documents both their design by means of numerical codes and their implementation on a scaled mock-up.« less

  20. A revolutionary concept to improve the efficiency of ion cyclotron antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milanesio, D., E-mail: daniele.milanesio@polito.it; Maggiora, R., E-mail: riccardo.maggiora@polito.it

    2014-06-15

    The successful design of an ion cyclotron (IC) antenna mainly relies on the capability of coupling high power to the plasma (MW), feature that is currently reached by allowing rather high voltages (tens of kV) on the unavoidable unmatched part of the feeding lines. This requirement is often responsible of arcs along the transmission lines and other unwanted phenomena, such as rectification discharges or hotspots, that considerably limit the usage of IC launchers. In this work, we suggest and describe a revolutionary approach based on high impedance surfaces, which allows to increase the antenna radiation efficiency and, hence, to highlymore » reduce the imposed voltages to couple the same level of power to the plasma. High-impedance surfaces are periodic metallic structures (patches) displaced usually on top of a dielectric substrate and grounded by means of vertical posts usually embedded inside a dielectric, in a mushroom-like shape. In terms of working properties, high impedance surfaces are electrically thin in-phase reflectors, i.e., they present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. While the usual design of a high impedance surface requires the presence of a dielectric layer, some alternative solutions can be realised in vacuum, taking advantage of double layers of metallic patches. After an introductory part on the properties of high impedance surfaces, this work documents both their design by means of numerical codes and their implementation on a scaled mock-up.« less

  1. Comparison of Electromagnetic Simulation Results with Experimental Data for an Aperture-Coupled C-Band Patch Antenna

    DTIC Science & Technology

    2006-11-01

    then adhesive bonded. The 5870 has a relative dielectric constant of approximately εr = 2.33 as measured with the split cavity method by Damaskos ...in figure 3. 4 Damaskos , Inc., Concordville, PA http://www.damaskosinc.com/. 5 Wiltron Company

  2. Designing of a small wearable conformal phased array antenna for wireless communications

    NASA Astrophysics Data System (ADS)

    Roy, Sayan

    In this thesis, a unique design of a self-adapting conformal phased-array antenna system for wireless communications is presented. The antenna system is comprised of one microstrip antenna array and a sensor circuit. A 1x4 printed microstrip patch antenna array was designed on a flexible substrate with a resonant frequency of 2.47 GHz. However, the performance of the antenna starts to degrade as the curvature of the surface of the substrate changes. To recover the performance of the system, a flexible sensor circuitry was designed. This sensor circuitry uses analog phase shifters, a flexible resistor and operational-amplifier circuitry to compensate the phase of each array element of the antenna. The proposed analytical method for phase compensation has been first verified by designing an RF test platform consisting of a microstrip antenna array, commercially available analog phase shifters, analog voltage attenuators, 4-port power dividers and amplifiers. The platform can be operated through a LabVIEW GUI interface using a 12-bit digital-to-analog converter. This test board was used to design and calibrate the sensor circuitry by observing the behavior of the antenna array system on surfaces with different curvatures. In particular, this phased array antenna system was designed to be used on the surface of a spacesuit or any other flexible prototype. This work was supported in part by the Defense Miroelectronics Activity (DMEA), NASA ND EPSCoR and DARPA/MTO.

  3. Low-cost dielectric substrate for designing low profile multiband monopole microstrip antenna.

    PubMed

    Ahsan, M R; Islam, M T; Habib Ullah, M; Arshad, H; Mansor, M F

    2014-01-01

    This paper proposes a small sized, low-cost multiband monopole antenna which can cover the WiMAX bands and C-band. The proposed antenna of 20 × 20 mm(2) radiating patch is printed on cost effective 1.6 mm thick fiberglass polymer resin dielectric material substrate and fed by 4 mm long microstrip line. The finite element method based, full wave electromagnetic simulator HFSS is efficiently utilized for designing and analyzing the proposed antenna and the antenna parameters are measured in a standard far-field anechoic chamber. The experimental results show that the prototype of the antenna has achieved operating bandwidths (voltage stand wave ratio (VSWR) less than 2) 360 MHz (2.53-2.89 GHz) and 440 MHz (3.47-3.91 GHz) for WiMAX and 1550 MHz (6.28-7.83 GHz) for C-band. The simulated and measured results for VSWR, radiation patterns, and gain are well matched. Nearly omnidirectional radiation patterns are achieved and the peak gains are of 3.62 dBi, 3.67 dBi, and 5.7 dBi at 2.66 GHz, 3.65 GHz, and 6.58 GHz, respectively.

  4. A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

    PubMed Central

    Syed, Avez; Aldhaheri, Rabah W.

    2016-01-01

    A low-cost coplanar waveguide fed compact ultrawideband (UWB) antenna with band rejection characteristics for wireless local area network (WLAN) is proposed. The notch band characteristic is achieved by etching half wavelength C-shaped annular ring slot in the radiating patch. By properly choosing the radius and position of the slot, the notch band can be adjusted and controlled. With an overall size of 18.7 mm × 17.6 mm, the antenna turns out to be one of the smallest UWB antennas with band-notched characteristics. It has a wide fractional bandwidth of 130% (2.9–13.7 GHz) with VSWR < 2 and rejecting IEEE 802.11a and HIPERLAN/2 frequency band of 5.1–5.9 GHz. Stable omnidirectional radiation patterns in the H plane with an average gain of 4.4 dBi are obtained. The band-notch mechanism of the proposed antenna is examined by HFSS simulator. A good agreement is found between measured and simulated results indicating that the proposed antenna is well suited for integration into portable devices for UWB applications. PMID:27088125

  5. A multi-layer circularly polarized microstrip patch antenna with proximity coupling and increased gain

    NASA Technical Reports Server (NTRS)

    Zawadzki, M.

    2001-01-01

    Presented is a description of the single stacked element, and measured and calculated results at 2.56 GHz. Also included are measured results for the array, and calculated results of a stacked element for the required frequency-scaled version at 32 GHz.

  6. Microwave sensing of moisture content and bulk density in flowing grain

    USDA-ARS?s Scientific Manuscript database

    Moisture content and bulk density were determined from measurement of the dielectric properties of flowing wheat kernels at a single microwave frequency (5.8 GHz). The measuring system consisted of two high-gain microwave patch antennas mounted on opposite sides of rectangular chute and connected to...

  7. Design and Experimental Investigation of a Compact Circularly Polarized Integrated Filtering Antenna for Wearable Biotelemetric Devices.

    PubMed

    Jiang, Zhi Hao; Gregory, Micah D; Werner, Douglas H

    2016-04-01

    A compact circularly polarized (CP) integrated filtering antenna is reported for wearable biotelemetric devices in the 2.4 GHz ISM band. The design is based on a mutual synthesis of a CP patch antenna connected to a bandpass filter composed of coupled stripline open-loop resonators, which provides an integrated low-profile radiating and filtering module with a compact form factor of 0.44λ(0)×0.44λ(0)×0.04λ(0). The optimized filtering antenna is fabricated and measured, achieving an S11 < -14 dB, an axial ratio of less than 3 dB and gain higher than 3.5 dBi in the targeted ISM band. With the integrated filtering functionality, the antenna exhibits good out-of-band rejection over an ultra-wide frequency range of 1-6 GHz. Further full-wave simulations and experiments were carried out, verifying that the proposed filtering antenna maintains these desirable properties even when mounted in close proximity to the human body at different positions. The stable impedance performance and the simultaneous wide axial ratio and radiated power beam widths make it an ideal candidate as a wearable antenna for off-body communications. The additional integrated filtering functionality further improves utility by greatly reducing interference and crosstalk with other existing wireless systems.

  8. Integrated Phase Array Antenna/Solar Cell System for Flexible Access Communication (IA/SAC)

    NASA Technical Reports Server (NTRS)

    Clark, E. B.; Lee, R. Q.; Pal, A. T.; Wilt, D. M.; McElroy, B. D.; Mueller, C. H.

    2005-01-01

    This paper describes recent efforts to integrate advanced solar cells with printed planar antennas. Several previous attempts have been reported in the literature, but this effort is unique in several ways. It uses Gallium Arsenide (GaAs) multi-junction solar cell technology. The solar cells and antennas will be integrated onto a common GaAs substrate. When fully implemented, IA/SAC will be capable of dynamic beam steering. In addition, this program targets the X-band (8 - 12 GHz) and higher frequencies, as compared to the 2.2 - 2.9 GHz arrays targeted by other organizations. These higher operating frequencies enable a greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of 2 x 2 cm GaAs Monolithically Integrated Modules (MIM) with integrated patch antennas on the opposite side of the substrate. Subsequent work will involve the design and development of devices having the GaAs MIMs and the antennas on the same side of the substrate. Results from the phase one efforts will be presented.

  9. Frequency Response Calculations of Input Characteristics of Cavity-Backed Aperture Antennas Using AWE with Hybrid FEM/MoM Technique

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.

    1997-01-01

    Application of Asymptotic Waveform Evaluation (AWE) is presented in conjunction with a hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique to calculate the input characteristics of cavity-backed aperture antennas over a frequency range. The hybrid FEM/MoM technique is used to form an integro-partial-differential equation to compute the electric field distribution of the cavity-backed aperture antenna. The electric field, thus obtained, is expanded in a Taylor series around the frequency of interest. The coefficients of 'Taylor series (called 'moments') are obtained using the frequency derivatives of the integro-partial-differential Equation formed by the hybrid FEM/MoM technique. Using the moments, the electric field in the cavity is obtained over a frequency range. Using the electric field at different frequencies, the input characteristics of the antenna are obtained over a wide frequency band. Numerical results for an open coaxial line, probe fed cavity, and cavity-backed microstrip patch antennas are presented. Good agreement between AWE and the exact solution over the frequency range is observed.

  10. Application of Model Based Parameter Estimation for Fast Frequency Response Calculations of Input Characteristics of Cavity-Backed Aperture Antennas Using Hybrid FEM/MoM Technique

    NASA Technical Reports Server (NTRS)

    Reddy C. J.

    1998-01-01

    Model Based Parameter Estimation (MBPE) is presented in conjunction with the hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique for fast computation of the input characteristics of cavity-backed aperture antennas over a frequency range. The hybrid FENI/MoM technique is used to form an integro-partial- differential equation to compute the electric field distribution of a cavity-backed aperture antenna. In MBPE, the electric field is expanded in a rational function of two polynomials. The coefficients of the rational function are obtained using the frequency derivatives of the integro-partial-differential equation formed by the hybrid FEM/ MoM technique. Using the rational function approximation, the electric field is obtained over a frequency range. Using the electric field at different frequencies, the input characteristics of the antenna are obtained over a wide frequency range. Numerical results for an open coaxial line, probe-fed coaxial cavity and cavity-backed microstrip patch antennas are presented. Good agreement between MBPE and the solutions over individual frequencies is observed.

  11. Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane.

    PubMed

    Kühler, Paul; Weber, Max; Lohmüller, Theobald

    2014-06-25

    We demonstrate a strategy for surface-enhanced Raman spectroscopy (SERS) of supported lipid membranes with arrays of plasmonic nanoantennas. Colloidal lithography refined with plasma etching is used to synthesize arrays of triangular shaped gold nanoparticles. Reducing the separation distance between the triangle tips leads to plasmonic coupling and to a strong enhancement of the electromagnetic field in the nanotriangle gap. As a result, the Raman scattering intensity of molecules that are located at this plasmonic "hot-spot" can be increased by several orders of magnitude. The nanoantenna array is then embedded with a supported phospholipid membrane which is fluid at room temperature and spans the antenna gap. This configuration offers the advantage that molecules that are mobile within the bilayer membrane can enter the "hot-spot" region via diffusion and can therefore be measured by SERS without static entrapment or adsorption of the molecules to the antenna itself.

  12. Lunar LIGO and gravitational wave astronomy on the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Lafave, Norman

    1994-01-01

    Gravitational wave astronomy continues to be one of the exploration concepts under consideration in NASA's strategy for conducting physics and astrophysics from the lunar surface. As with other proposals for new concepts in science and astronomy from the Moon, this one has a number of very interesting features which need to be developed further in order to assess them adequately. The possibility of robotic deployment of a gravitational wave antenna on the Moon in a triangular configuration and the question of closure on the third interferometer leg are discussed here.

  13. A new species of seagrass-boring Limnoria (Limnoriidae, Isopoda, Crustacea) from Japan.

    PubMed

    Yoshino, Hiroki; Watabe, Hikari; Ohsawa, Takeshi A

    2017-02-15

    The marine seagrass-boring isopod, Limnoria rhombipunctata sp. nov. (Limnoriidae) is described from the rhizome of Phyllospadix iwatensis seagrass, in shallow coastal waters off Chiba Prefecture, Japan. L. rhombipunctata sp. nov. is distinguished from other Limnoria species by the unique carinae of pleonite 5 and pleotelson, two branched lacinia mobilis of the right mandible, 3 flagellar articles of antenna 1, and triangular epipod of the maxilliped. Specimens of L. magadanensis, a species similar to L. rhombipunctata sp. nov., are re-examined and compared with L. rhombipunctata sp. nov.

  14. Application of GPS attitude determination to gravity gradient stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Lightsey, E. G.; Cohen, Clark E.; Parkinson, Bradford W.

    1993-01-01

    Recent advances in the Global Positioning System (GPS) technology have initiated a new era in aerospace navigation and control. GPS receivers have become increasingly compact and affordable, and new developments have made attitude determination using subcentimeter positioning among two or more antennas feasible for real-time applications. GPS-based attitude control systems will become highly portable packages which provide time, navigation, and attitude information of sufficient accuracy for many aerospace needs. A typical spacecraft application of GPS attitude determination is a gravity gradient stabilized satellite in low Earth orbit that employs a GPS receiver and four body mounted patch antennas. The coupled, linearized equations of motion enable complete position and attitude information to be extracted from only two antennas. A discussion of the various error sources for spaceborne GPS attitude measurement systems is included. Attitude determination of better than 0.3 degrees is possible for 1 meter antenna separation. Suggestions are provided to improve the accuracy of the attitude solution.

  15. Textile antenna integrated with compact AMC and parasitic elements for WLAN/WBAN applications

    NASA Astrophysics Data System (ADS)

    Lago, Herwansyah; Soh, Ping Jack; Jamlos, Mohd Faizal; Shohaimi, Nursuriati; Yan, Sen; Vandenbosch, Guy A. E.

    2016-12-01

    A wearable antenna fully designed and fabricated using textile is presented. Both antenna and artificial magnetic conductor plane are designed for operation in the wireless local area network (WLAN)/wireless body area network (WBAN) band from 2.4 to 2.5 GHz. The AMC unit element is designed based on the rectangular patch structure, which is then integrated using slots and slits for bandwidth broadening. Meanwhile, the combination of the slits and L-shaped parasitic elements applied at four edges of the rectangular antenna structure enabled unidirectional radiation outwards from the body. The structure is coaxially fed using a rectangular ring slot centered on the radiating element. Simulated and measured reflection and radiation performance indicate a satisfactory agreement, fulfilling the requirements for WLAN/WBAN applications both in free space and on body. The shielding effectiveness provided by the AMC plane is also evaluated numerically in terms of specific absorption rate, indicating levels below the European regulatory limit of 2 W/kg.

  16. Fractal-Inspired Subwavelength Geometric Inclusions for Improvement of High-Frequency Electromagnetic Devices

    NASA Astrophysics Data System (ADS)

    Smith, Kathryn Leigh

    This dissertation presents research results demonstrating the efficacy of fractal-inspired subwavelength geometric inclusions for improvement of high-frequency electromagnetic devices. It begins with a review of the open literature in the area of fractal applications in antennas and metamaterials. This is followed by a detailed discussion of three high-frequency electromagnetic devices that demonstrate performance improvement through incorporation of subwavelength geometric design elements. The first of these devices is a spherical spiral metamaterial unit cell that was developed as a three-dimensional fractal expansion of the traditional split ring resonator, and is shown to be capable of producing broadband negative permeability, negative permittivity, or both, depending solely on the orientation of the unit cells with respect to the incident electric field. The second device is a ringed rectangular patch antenna that has four resonant frequencies. All four of these operative frequencies are shown to produce similar radiation patterns, which also closely match the pattern of a traditional patch antenna. Several minor geometric modifications of the basic shape of the device are also presented, and are shown to enable modification of the number of resonances, as well as tuning of frequencies of resonance. The third and final topic is a modified horn antenna that incorporates a spiral metamaterial as a phase-shifting device in order to achieve circularly polarized radiation. The handedness of the radiated wave is shown to be tunable through simple reorientation of the loading unit cells. In each of these cases, electrically-small geometric modification of existing device geometries is shown to greatly affect performance, either by increasing bandwidth, by inducing multiband behavior, or by enabling exotic radiation characteristics.

  17. FDTD analysis of a noninvasive hyperthermia system for brain tumors.

    PubMed

    Yacoob, Sulafa M; Hassan, Noha S

    2012-08-14

    Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40-45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  18. The C-patch - A small microstrip element

    NASA Astrophysics Data System (ADS)

    Kossiavas, G.; Papiernik, A.; Boisset, J. P.; Sauvan, M.

    1989-02-01

    A radiating element operating in the UHF and L-bands is presented. The element has dimensions smaller than those of conventional square or circular elements. For this type of antenna, good matching is obtained with a coaxial feed, and the omnidirectional radiation pattern is achieved using linear polarization. The bandwidth, however, remains somewhat narrow.

  19. Prediction of Slot Shape and Slot Size for Improving the Performance of Microstrip Antennas Using Knowledge-Based Neural Networks.

    PubMed

    Khan, Taimoor; De, Asok

    2014-01-01

    In the last decade, artificial neural networks have become very popular techniques for computing different performance parameters of microstrip antennas. The proposed work illustrates a knowledge-based neural networks model for predicting the appropriate shape and accurate size of the slot introduced on the radiating patch for achieving desired level of resonance, gain, directivity, antenna efficiency, and radiation efficiency for dual-frequency operation. By incorporating prior knowledge in neural model, the number of required training patterns is drastically reduced. Further, the neural model incorporated with prior knowledge can be used for predicting response in extrapolation region beyond the training patterns region. For validation, a prototype is also fabricated and its performance parameters are measured. A very good agreement is attained between measured, simulated, and predicted results.

  20. Prediction of Slot Shape and Slot Size for Improving the Performance of Microstrip Antennas Using Knowledge-Based Neural Networks

    PubMed Central

    De, Asok

    2014-01-01

    In the last decade, artificial neural networks have become very popular techniques for computing different performance parameters of microstrip antennas. The proposed work illustrates a knowledge-based neural networks model for predicting the appropriate shape and accurate size of the slot introduced on the radiating patch for achieving desired level of resonance, gain, directivity, antenna efficiency, and radiation efficiency for dual-frequency operation. By incorporating prior knowledge in neural model, the number of required training patterns is drastically reduced. Further, the neural model incorporated with prior knowledge can be used for predicting response in extrapolation region beyond the training patterns region. For validation, a prototype is also fabricated and its performance parameters are measured. A very good agreement is attained between measured, simulated, and predicted results. PMID:27382616

  1. Design of Compact Flower Shape Dual Notched-Band Monopole Antenna for Extended UWB Wireless Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Manish; Awasthi, Y. K.; Singh, Himanshu; Kumar, Raj; Kumari, Sarita

    2016-11-01

    In this letter, a compact monopole antenna for ultra wideband (UWB) applications is proposed with small size of 18×20=360 mm2. Antenna consist of a flower shape radiating patch with a pair of C-shaped slots which offer two notch bands for WiMAX (3.04-3.68 GHz) & WLAN (4.73-5.76 GHz) and two rectangular shaped slots in the ground plane which provides a wide measured usable fractional extended bandwidth of 163 % (2.83-14.0 GHz) with improved VSWR. Moreover, it is also convenient for other wireless application as close range radar, 8-12 GHz in X-band. Measured radiation patterns exhibits nearly omnidirectional in H-plane and dipole like pattern in E-plane across the bandwidth and furthermore exhibits good time domain performance.

  2. Design and Development of Aerogel-Based Antennas for Aerospace Applications: A Final Report to the NARI Seedling

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Miranda, Felix A.

    2014-01-01

    As highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties, polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aircraft antenna systems. While they have been aggressively explored for thermal insulation, barely any effort has been made to leverage these materials for antennas or other applications that take advantage of their aforementioned attributes. In Phase I of the NARI Seedling Project, we fabricated PI aerogels with properties tailored to enable new antenna concepts with performance characteristics (wide bandwidth and high gain) and material properties (low density, environmental stability, and robustness) superior to the state of practice (SOP). We characterized electromagnetic properties, including permittivity, reflectivity, and propagation losses for the aerogels. Simple, prototype planar printed circuit patch antennas from down-selected aerogel formulations were fabricated by molding the aerogels to net shapes and by gold-metalizing the pattern onto the templates via electron beam evaporation in a clean room environment. These aerogel based antennas were benchmarked against current antenna SOP, and exhibited both broader bandwidth and comparable or higher gain performance at appreciably lower mass. Phase II focused on the success of the Phase I results pushing the PI aerogel based antenna technology further by exploring alternative antenna design (i.e., slot coupled antennas) and by examining other techniques for fabricating the antennas including ink jet printing with the goal of optimizing antenna performance and simplifying production. We also examined new aerogel formulations with better moisture and solvent resistance to survive processing conditions. In addition, we investigated more complex antenna designs including passive phased arrays such as 2x4 and 4x8 element arrays to assess the scalability of the aerogel antenna concept. Furthermore, we explored the possibility of developing these arrays in thin, flexible form to make conformable antennas.

  3. Prediction of plasma-facing ICRH antenna behavior via a Finite-Element solution of coupled Integral Equations

    NASA Astrophysics Data System (ADS)

    Lancellotti, V.; Milanesio, D.; Maggiora, R.; Vecchi, G.; Kyrytsya, V.

    2005-09-01

    The demand for a predictive tool to help designing ICRH antennas for fusion experiments has driven the development of codes like ICANT, RANT3D, and the early developments and further upgrades of TOPICA code. Currently, TOPICA handles the actual geometry of ICRH antennas (with their housing, etc.) as well as a realistic plasma model, including density and temperature profiles and FLR effects. Both goals have been attained by formally splitting the problem into two parts: the vacuum region around the antenna, and the plasma region inside the toroidal chamber. Field continuity and boundary conditions allow writing a set of coupled integral equations for the unknown equivalent (current) sources; finite elements are used on a triangular-cell mesh and a linear system is obtained on application of the weighted-residual solution scheme. In the vacuum region calculations are done in the spatial domain, whereas in the plasma region a spectral (wavenumber) representation of fields and currents is adopted, thus allowing a description of the plasma by a surface impedance matrix. Thanks to this approach, any plasma model can be used in principle, and at present Brambilla's FELICE code has been employed. The natural outputs of TOPICA are the induced currents on the conductors and the electric field in front of the plasma, whence the antenna circuit parameters (impedance/scattering matrices), the radiated power and the fields (at locations other than the chamber aperture) are then obtained. An accurate model of the feeding coaxial lines is also included. This paper is precisely devoted to the description of TOPICA, whereas examples of results for real-life antennas are reported in a companion paper [1] in this proceedings.

  4. Prediction of plasma-facing ICRH antenna behavior via a Finite-Element solution of coupled Integral Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancellotti, V.; Milanesio, D.; Maggiora, R.

    2005-09-26

    The demand for a predictive tool to help designing ICRH antennas for fusion experiments has driven the development of codes like ICANT, RANT3D, and the early developments and further upgrades of TOPICA code. Currently, TOPICA handles the actual geometry of ICRH antennas (with their housing, etc.) as well as a realistic plasma model, including density and temperature profiles and FLR effects. Both goals have been attained by formally splitting the problem into two parts: the vacuum region around the antenna, and the plasma region inside the toroidal chamber. Field continuity and boundary conditions allow writing a set of coupled integralmore » equations for the unknown equivalent (current) sources; finite elements are used on a triangular-cell mesh and a linear system is obtained on application of the weighted-residual solution scheme. In the vacuum region calculations are done in the spatial domain, whereas in the plasma region a spectral (wavenumber) representation of fields and currents is adopted, thus allowing a description of the plasma by a surface impedance matrix. Thanks to this approach, any plasma model can be used in principle, and at present Brambilla's FELICE code has been employed. The natural outputs of TOPICA are the induced currents on the conductors and the electric field in front of the plasma, whence the antenna circuit parameters (impedance/scattering matrices), the radiated power and the fields (at locations other than the chamber aperture) are then obtained. An accurate model of the feeding coaxial lines is also included. This paper is precisely devoted to the description of TOPICA, whereas examples of results for real-life antennas are reported in a companion paper in this proceedings.« less

  5. [Activities of the Department of Electrical Engineering, Howard University

    NASA Technical Reports Server (NTRS)

    Yalamanchili, Raj C.

    1997-01-01

    Theoretical derivations, computer analysis and test data are provided to demonstrate that the cavity model is a feasible one to analyze thin-substrate, rectangular-patch microstrip antennas. Seven separate antennas were tested. Most of the antennas were designed to resonate at L-band frequencies (1-2 GHz). One antenna was designed to resonate at an S-band (2-4 GHz) frequency of 2.025 GHz. All dielectric substrates were made of Duroid, and were of varying thicknesses and relative dielectric constant values. Theoretical derivations to calculate radiated free space electromagnetic fields and antenna input impedance were performed. MATHEMATICA 2.2 software was used to generate Smith Chart input impedance plots, normalized relative power radiation plots and to perform other numerical manipulations. Network Analyzer tests were used to verify the data from the computer programming (such as input impedance and VSWR). Finally, tests were performed in an anechoic chamber to measure receive-mode polar power patterns in the E and H planes. Agreement between computer analysis and test data is presented. The antenna with the thickest substrate (e(sub r) = 2.33,62 mils thick) showed the worst match to theoretical impedance data. This is anticipated due to the fact that the cavity model generally loses accuracy when the dielectric substrate thickness exceeds 5% of the antenna's free space wavelength. A method of reducing computer execution time for impedance calculations is also presented.

  6. Low-Cost Dielectric Substrate for Designing Low Profile Multiband Monopole Microstrip Antenna

    PubMed Central

    Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Arshad, H.; Mansor, M. F.

    2014-01-01

    This paper proposes a small sized, low-cost multiband monopole antenna which can cover the WiMAX bands and C-band. The proposed antenna of 20 × 20 mm2 radiating patch is printed on cost effective 1.6 mm thick fiberglass polymer resin dielectric material substrate and fed by 4 mm long microstrip line. The finite element method based, full wave electromagnetic simulator HFSS is efficiently utilized for designing and analyzing the proposed antenna and the antenna parameters are measured in a standard far-field anechoic chamber. The experimental results show that the prototype of the antenna has achieved operating bandwidths (voltage stand wave ratio (VSWR) less than 2) 360 MHz (2.53–2.89 GHz) and 440 MHz (3.47–3.91 GHz) for WiMAX and 1550 MHz (6.28–7.83 GHz) for C-band. The simulated and measured results for VSWR, radiation patterns, and gain are well matched. Nearly omnidirectional radiation patterns are achieved and the peak gains are of 3.62 dBi, 3.67 dBi, and 5.7 dBi at 2.66 GHz, 3.65 GHz, and 6.58 GHz, respectively. PMID:25136648

  7. The development of inflatable array antennas

    NASA Technical Reports Server (NTRS)

    Huang, J.

    2001-01-01

    Inflatable array antennas are being developed to significantly reduce the mass, the launch vehicle's stowage volume, and the cost of future spacecraft systems. Three inflatable array antennas, recently developed for spacecraft applications, are a 3.3 m x 1.0 m L-band synthetic-aperture radar (SAR) array, a 1.0 m-diameter X-band telecom reflectarray, and a 3 m-diameter Ka-band telecom reflectarray. All three antennas are similar in construction, and each consists of an inflatable tubular frame that supports and tensions a multi-layer thin-membrane RF radiating surface with printed microstrip patches. The L-band SAR array achieved a bandwidth of 80 MHz, an aperture efficiency of 74%, and a total mass of 15 kg. The X-band reflectarray achieved an aperture efficiency of 37%, good radiation patterns, and a total mass of 1.2 kg (excluding the inflation system). The 3 m Ka-band reflectarray achieved a surface flatness of 0.1 mm RMS, good radiation patterns, and a total mass of 12.8 kg (excluding the inflation system). These antennas demonstrated that inflatable arrays are feasible across the microwave and millimeter-wave spectrums. Further developments of these antennas are deemed necessary, in particular, in the area of qualifying the inflatable structures for space-environment usage.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindstrom, P; Cohen, J D

    We present a streaming geometry compression codec for multiresolution, uniformly-gridded, triangular terrain patches that supports very fast decompression. Our method is based on linear prediction and residual coding for lossless compression of the full-resolution data. As simplified patches on coarser levels in the hierarchy already incur some data loss, we optionally allow further quantization for more lossy compression. The quantization levels are adaptive on a per-patch basis, while still permitting seamless, adaptive tessellations of the terrain. Our geometry compression on such a hierarchy achieves compression ratios of 3:1 to 12:1. Our scheme is not only suitable for fast decompression onmore » the CPU, but also for parallel decoding on the GPU with peak throughput over 2 billion triangles per second. Each terrain patch is independently decompressed on the fly from a variable-rate bitstream by a GPU geometry program with no branches or conditionals. Thus we can store the geometry compressed on the GPU, reducing storage and bandwidth requirements throughout the system. In our rendering approach, only compressed bitstreams and the decoded height values in the view-dependent 'cut' are explicitly stored on the GPU. Normal vectors are computed in a streaming fashion, and remaining geometry and texture coordinates, as well as mesh connectivity, are shared and re-used for all patches. We demonstrate and evaluate our algorithms on a small prototype system in which all compressed geometry fits in the GPU memory and decompression occurs on the fly every rendering frame without any cache maintenance.« less

  9. Antenna Design Considerations for the Advanced Extravehicular Mobility Unit

    NASA Technical Reports Server (NTRS)

    Bakula, Casey J.; Theofylaktos, Onoufrios

    2015-01-01

    NASA is designing an Advanced Extravehicular Mobility Unit (AEMU)to support future manned missions beyond low-Earth orbit (LEO). A key component of the AEMU is the communications assembly that allows for the wireless transfer of voice, video, and suit telemetry. The Extravehicular Mobility Unit (EMU) currently used on the International Space Station (ISS) contains a radio system with a single omni-directional resonant cavity antenna operating slightly above 400 MHz capable of transmitting and receiving data at a rate of about 125 kbps. Recent wireless communications architectures are calling for the inclusion of commercial wireless standards such as 802.11 that operate in higher frequency bands at much higher data rates. The current AEMU radio design supports a 400 MHz band for low-rate mission-critical data and a high-rate band based on commercial wireless local area network (WLAN) technology to support video, communication with non-extravehicular activity (EVA) assets such as wireless sensors and robotic assistants, and a redundant path for mission-critical EVA data. This paper recommends the replacement of the existing EMU antenna with a new antenna that maintains the performance characteristics of the current antenna but with lower weight and volume footprints. NASA has funded several firms to develop such an antenna over the past few years, and the most promising designs are variations on the basic patch antenna. This antenna technology at UHF is considered by the authors to be mature and ready for infusion into NASA AEMU technology development programs.

  10. Analysis and synthesis of (SAR) waveguide phased array antennas

    NASA Astrophysics Data System (ADS)

    Visser, H. J.

    1994-02-01

    This report describes work performed due to ESA contract No. 101 34/93/NL/PB. Started is with a literature study on dual polarized waveguide radiators, resulting in the choice for the open ended square waveguide. After a thorough description of the mode matching infinite waveguide array analysis method - including finiteness effects - that forms the basis for all further described analysis and synthesis methods, the accuracy of the analysis software is validated by comparison with measurements on two realized antennas. These antennas have centered irises in the waveguide apertures and a dielectric wide angle impedance matching sheet in front of the antenna. A synthesis method, using simulated annealing and downhill simplex, is described next and different antenna designs, based on the analysis of a single element in an infinite array environment, are presented. Next, designs of subarrays are presented. Shown is the paramount importance of including the array environment in the design of a subarray. A microstrip patch waveguide exciter and subarray feeding network are discussed and the depth of the waveguide radiator is estimated. Chosen is a rectangular grid array with waveguides of 2.5 cm depth without irises and without dielectric sheet, grouped in linear 8 elements subarrays.

  11. Design and fabrication of an E-shaped wearable textile antenna on PVB-coated hydrophobic polyester fabric

    NASA Astrophysics Data System (ADS)

    Babu Roshni, Satheesh; Jayakrishnan, M. P.; Mohanan, P.; Peethambharan Surendran, Kuzhichalil

    2017-10-01

    In this paper, we investigated the simulation and fabrication of an E-shaped microstrip patch antenna realized on multilayered polyester fabric suitable for WiMAX (Worldwide Interoperability for Microwave Access) applications. The main challenges while designing a textile antenna were to provide adequate thickness, surface uniformity and water wettability to the textile substrate. Here, three layers of polyester fabric were stacked together in order to obtain sufficient thickness, and were subsequently dip coated with polyvinyl butyral (PVB) solution. The PVB-coated polyester fabric showed a hydrophobic nature with a contact angle of 91°. The RMS roughness of the uncoated and PVB-coated polyester fabric was about 341 nm and 15 nm respectively. The promising properties, such as their flexibility, light weight and cost effectiveness, enable effortless integration of the proposed antenna into clothes like polyester jackets. Simulated and measured results in terms of return loss as well as gain were showcased to confirm the usefulness of the fabricated prototype. The fabricated antenna successfully operates at 3.37 GHz with a return loss of 21 dB and a maximum measured gain of 3.6 dB.

  12. Highly efficient multifunctional metasurface for high-gain lens antenna application

    NASA Astrophysics Data System (ADS)

    Hou, Haisheng; Wang, Guangming; Li, Haipeng; Guo, Wenlong; Li, Tangjing

    2017-07-01

    In this paper, a novel multifunctional metasurface combining linear-to-circular polarization conversion and electromagnetic waves focusing has been proposed and applied to design a high-gain lens antenna working at Ku band. The multifunctional metasurface consists of 15 × 15 unit cells. Each unit cell is composed of four identical metallic layers and three intermediate dielectric layers. Due to well optimization, the multifunctional metasurface can convert the linearly polarized waves generated by the source to circularly polarized waves and focus the waves. By placing a patch antenna operating at 15 GHz at the focal point of the metasurface and setting the focal distance to diameter ratio ( F/ D) to 0.34, we obtain a multifunctional lens antenna. Simulated and measured results coincide well, indicating that the metasurface can convert linearly polarized waves to right-handed circularly polarized waves at 15 GHz with excellent performances in terms of the 3 dB axial ratio bandwidth of 5.3%, realized gain of 16.9 dB and aperture efficiency of 41.2%. Because of the advantages of high gain, competitive efficiency and easy fabrication, the proposed lens antenna has a great potential application in wireless and satellite communication.

  13. MAcro-Electro-Mechanical Systems (MÆMS) based concept for microwave beam steering in reflectarray antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momeni Hasan Abadi, Seyed Mohamad Amin, E-mail: momenihasana@wisc.edu; Booske, John H., E-mail: jhbooske@wisc.edu; Behdad, Nader, E-mail: behdad@wisc.edu

    2016-08-07

    We present a new approach to perform beam steering in reflecting type apertures such as reflectarray antennas. The proposed technique exploits macro-scale mechanical movements of parts of the structure to achieve two-dimensional microwave beam steering without using any solid-state devices or phase shifters integrated within the aperture of the antenna. The principles of operation of this microwave beam steering technique are demonstrated in an aperture occupied by ground-plane-backed, sub-wavelength capacitive patches with identical dimensions. We demonstrate that by tilting the ground plane underneath the entire patch array layer, a phase shift gradient can be created over the aperture of themore » reflectarray that determines the direction of the radiated beam. Changing the direction and slope of this phase shift gradient on the aperture allows for performing beam steering in two dimensions using only one control parameter (i.e., tilt vector of the ground plane). A proof-of-concept prototype of the structure operating at X-band is designed, fabricated, and experimentally characterized. Experiments demonstrate that small mechanical movements of the ground plane (in the order of 0.05λ{sub 0}) can be used to steer the beam direction in the ±10° in two dimensions. It is also demonstrated that this beam scanning range can be greatly enhanced to ±30° by applying this concept to the same structure when its ground plane is segmented.« less

  14. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.; Huang, John

    1999-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L-Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  15. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  16. Crawling Robots on Large Web in Rocket Experiment on Furoshiki Deployment

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Iwashita, M.; Nakasuka, S.; Summerer, L.; Mankins, J.

    It is one of the most important and critical issues to develop a technology to construct space huge transmitting antenna such as the Solar Power Satellite. The huge antenna have many useful applications in space, for example, telecommunication antennas for cellular phones, radars for remote sensing, navigation and observation, and so on. We are proposing to apply the Furoshiki satellite with robots to construct the huge structures. After a large web is deployed using the Furoshiki satellite in the same size of the huge antenna, all of the antenna elements crawl on the web with their own legs toward their allocated locations in order to realize a huge antenna. The micro-gravity experiment is planned using a sounding rocket of ISAS in order to demonstrate the feasibility of the deployment of the large web and the phased array performance. Three daughter satellites are being separated from the mother satellite with weak springs, and the daughter satellites deploy the Furoshiki web to a triangular shape at the size of about 20-40m. The dynamics of the daughter satellites and the web is observed by several cameras installed on the mother and daughter satellites during the deployment, while the performance of the phased array antenna using the retrodirective method will simultaneously be measured at the ground station. Finally two micro robots crawl from the mother satellite to the certain points on the web to demonstrate one promising way to construct RF transmitter panels. The robots are internationally being developed by NASA, ESTEC and Kobe University. There are many various ideas for the robots to crawl on the web in the micro-gravity. Each organization is independently developing a different type of the robots. Kobe University is trying to develop wheels to run on the web by pinching the strings of the web. It can successfully run on the web, though the issue is found to tangle the strings.

  17. Wrist Pulse Rate Monitor Using Self-Injection-Locked Radar Technology

    PubMed Central

    Wang, Fu-Kang; Tang, Mu-Cyun; Su, Sheng-Chao; Horng, Tzyy-Sheng

    2016-01-01

    To achieve sensitivity, comfort, and durability in vital sign monitoring, this study explores the use of radar technologies in wearable devices. The study first detected the respiratory rates and heart rates of a subject at a one-meter distance using a self-injection-locked (SIL) radar and a conventional continuous-wave (CW) radar to compare the sensitivity versus power consumption between the two radars. Then, a pulse rate monitor was constructed based on a bistatic SIL radar architecture. This monitor uses an active antenna that is composed of a SIL oscillator (SILO) and a patch antenna. When attached to a band worn on the subject’s wrist, the active antenna can monitor the pulse on the subject’s wrist by modulating the SILO with the associated Doppler signal. Subsequently, the SILO’s output signal is received and demodulated by a remote frequency discriminator to obtain the pulse rate information. PMID:27792176

  18. Novel 2D CRLH TL and Its ZOR and FOR Applied on Dual-Band Omnidirectional Radiation Antenna

    NASA Astrophysics Data System (ADS)

    Li, Tian-Peng; Wang, Guang-Ming; Duan, Feifei; Zhou, Cheng; Tan, Rui-Lian

    2015-11-01

    A new type of two-dimensional (2D) composite right/left-handed transmission lines (CRLH TL) which is composed of four one-dimensional (1D) CRLH TL is proposed in this letter. Each 1D CRLH TL consists of three metallic vias added for shunt inductance and an etched patch slot for series capacitance. Based on this structure, an antenna operating on zeroth-order resonance (ZOR) and first-order resonance (FOR) is designed and fabricated. By taking advantage of coaxially center feed and symmetric structure, a well omnidirectional radiation in XoY plane both in ZOR and FOR and a homogeneously suppressed cross-polarization is obtained. Also, the antenna has a gain value of 2.06 dB in ZOR f1 = 3.52 GHz and 2.94 dB in FOR f2 = 5.25 GHz, respectively.

  19. Conformal dual-band textile antenna with metasurface for WBAN application

    NASA Astrophysics Data System (ADS)

    Giman, Fatin Nabilah; Soh, Ping Jack; Jamlos, Mohd Faizal; Lago, Herwansyah; Al-Hadi, Azremi Abdullah; Abdulmalek, Mohamedfareq; Abdulaziz, Nidhal

    2017-01-01

    This paper presents the design of a dual-band wearable planar slotted dipole integrated with a metasurface. It operates in the 2.45 GHz (lower) and 5.8 GHz (upper) bands and made fully using textiles to suit wireless body area network applications. The metasurface in the form of an artificial magnetic conductor (AMC) plane is formed using a rectangular patch incorporated with a diamond-shaped slot to generate dual-phase response. This plane is then integrated with the planar slotted dipole antenna prior to its assessment in free space and bent configurations. Simulations and measurements indicated a good agreement, and the antenna featured an impedance bandwidth of 164 and 592 MHz in the lower and upper band, respectively. The presence of the AMC plane also minimized the backward radiation toward the human body and enhanced realized gains by up to 3.01 and 7.04 dB in the lower and upper band.

  20. Wrist Pulse Rate Monitor Using Self-Injection-Locked Radar Technology.

    PubMed

    Wang, Fu-Kang; Tang, Mu-Cyun; Su, Sheng-Chao; Horng, Tzyy-Sheng

    2016-10-26

    To achieve sensitivity, comfort, and durability in vital sign monitoring, this study explores the use of radar technologies in wearable devices. The study first detected the respiratory rates and heart rates of a subject at a one-meter distance using a self-injection-locked (SIL) radar and a conventional continuous-wave (CW) radar to compare the sensitivity versus power consumption between the two radars. Then, a pulse rate monitor was constructed based on a bistatic SIL radar architecture. This monitor uses an active antenna that is composed of a SIL oscillator (SILO) and a patch antenna. When attached to a band worn on the subject's wrist, the active antenna can monitor the pulse on the subject's wrist by modulating the SILO with the associated Doppler signal. Subsequently, the SILO's output signal is received and demodulated by a remote frequency discriminator to obtain the pulse rate information.

  1. A Combined FEM/MoM/GTD Technique To Analyze Elliptically Polarized Cavity-Backed Antennas With Finite Ground Plane

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.; Fralick, D. T.; Cockrell, C. R.; Beck, F. B.

    1996-01-01

    Radiation pattern prediction analysis of elliptically polarized cavity-backed aperture antennas in a finite ground plane is performed using a combined Finite Element Method/Method of Moments/Geometrical Theory of Diffraction (FEM/MoM/GTD) technique. The magnetic current on the cavity-backed aperture in an infinite ground plane is calculated using the combined FEM/MoM analysis. GTD, including the slope diffraction contribution, is used to calculate the diffracted fields caused by both soft and hard polarizations at the edges of the finite ground plane. Explicit expressions for regular diffraction coefficients and slope diffraction coefficients are presented. The slope of the incident magnetic field at the diffraction points is derived and analytical expressions are presented. Numerical results for the radiation patterns of a cavity-backed circular spiral microstrip patch antenna excited by a coaxial probe in a finite rectangular ground plane are computed and compared with experimental results.

  2. Electromagnetic absorption in the head of adults and children due to mobile phone operation close to the head.

    PubMed

    de Salles, Alvaro A; Bulla, Giovani; Rodriguez, Claudio E Fernández

    2006-01-01

    The Specific Absorption Rate (SAR) produced by mobile phones in the head of adults and children is simulated using an algorithm based on the Finite Difference Time Domain (FDTD) method. Realistic models of the child and adult head are used. The electromagnetic parameters are fitted to these models. Comparison also are made with the SAR calculated in the children model when using adult human electromagnetic parameters values. Microstrip (or patch) antennas and quarter wavelength monopole antennas are used in the simulations. The frequencies used to feed the antennas are 1850 MHz and 850 MHz. The SAR results are compared with the available international recommendations. It is shown that under similar conditions, the 1g-SAR calculated for children is higher than that for the adults. When using the 10-year old child model, SAR values higher than 60% than those for adults are obtained.

  3. Axisymmetric Optical Membrane Modeling Based on Experimental Results

    DTIC Science & Technology

    2004-03-01

    polymers; one such was NASA’s Inflatable Antenna Experiment (IAE), which is a pressurized lenticular about 14 meters in diameter. It was designed...2cos2θ Astigmatism with axis at +/- 45 deg 5 ρ 2sin2θ Astigmatism with axis at +/- 0 or 90 deg 6 (3 ρ 2-2) ρ cosθ Primary coma along y axis...7 (3 ρ 2-2) ρ sinθ Primary coma along x axis 51 8 6 ρ 4-6 ρ 2+1 Primary spherical aberration 9 ρ 3cos(3θ ) Triangular astigmatism , base on y axis

  4. Exp 36 Patch Final

    NASA Image and Video Library

    2012-08-10

    ISS036-S-001 (January 2012) --- The dynamic design of the Expedition 36 patch portrays the International Space Station?s (ISS) iconic solar arrays. The slanted angles denote a kinetic energy leading from the Earth in the lower right to the upper left tip of the triangular shape of the patch, representing the infinite scientific research, education, and long-duration spaceflight capabilities the ISS provides with each mission, as well as our goal for future exploration beyond the Space Station. The numbers 3 and 6 harmoniously intertwine to form expedition number 36 and its gray coloration signifies the unity and neutrality among all of the international partners of the ISS. The blue and gold color scheme of the patch represents the subtle way the central gold orbit wraps around the number 36 to form a trident at its lower right tip. The trident also symbolizes the sea, air, and land, all of which make up the Earth from where the trident originates in the design. The NASA insignia design for shuttle and space station flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, it will be publicly announced. Photo credit: NASA

  5. Beam Scanning Antenna with Wideband Broadside Radiation Based on Multilayered Substrate Integrated Waveguide Composite Right/Left-Handed Structure

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Wu, Guo-cheng; Wang, Guang-ming; Liang, Jian-gang; Gao, Xiang-jun

    2017-01-01

    In this paper, a novel multilayered substrate integrated waveguide (SIW) composite right/left-handed (CRLH) structure is proposed to design beam scanning antenna for wideband broadside radiation. The unit cell of the SIW-CRLH structure is formed by spiral interdigital fingers etched on the upper ground of SIW, and a parasitic patch beneath the slot, has a continuous change of phase constant from negative to positive value within its passband. The proposed beam scanning antenna, which consists of consists of 15 identical elementary cells of the SIW-CRLH, is simulated, fabricated and measured. According to the measured results, the proposed antenna not only realizes a continuous main beam scanning from backward -78° to forward +80° within the operating frequency range from 8.25 to 12.2 GHz, but also obtains the measured broadside gain of 11.5 dB with variation of 1.0 dB over the frequency range of 8.8-9.25 GHz (4.99 %). Besides, compared with the same works in the references, this one has the most wonderful performance.

  6. Design and implementation of low profile antenna for dual-band applications using rotated e-shaped conductor-backed plane.

    PubMed

    Jalali, Mahdi; Sedghi, Tohid; Shafei, Shahin

    2014-01-01

    A novel configuration of a printed monopole antenna with a very compact size for satisfying WLAN operations at the 5.2/5.8 GHz and also for X-band operations at the 10 GHz has been proposed. The antenna includes a simple square-shaped patch as the radiator, the rotated U-shaped conductor back plane element with embedded strip on it, and the partial rectangular ground surface. By using the rotated U-shaped conductor-backed plane with proper values, good impedance matching and improvement in bandwidth can be achieved, at the lower and upper bands. The impedance bandwidth for S11 < -10 dB is about 1.15 GHz for 5 GHz band and 5.3 GHz for X-band. The measured peak gains are about 1.9 dBi at WLAN-band and 4.2 dBi at X-band. The experimental results represent that the realized antenna with good omnidirectional radiation characteristics, enough impedance bandwidth, and reasonable gains can be appropriate for various applications of the future developed technologies and handheld devices.

  7. Dual band monopole antenna for WLAN 2.4/5.2/5.8 with truncated ground

    NASA Astrophysics Data System (ADS)

    Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.

    2018-04-01

    A dual-band mono-pole antenna is proposed for Wireless LAN applications. The WLAN band is obtained by cutting a rectangular ring and a circular slot in the radiating patch. The overall dimension of antenna is 17×16.5×0.8 mmł. The frequency bands obtained are 2.38-2.9 GHz and 4.7-6.1 GHz with ≤ - 10 dB return loss which covers WLAN 2.4/5.2/5.8 GHz bands. The behavior of the antenna is analyzed in terms of radiation pattern, peak realized gain, radiation efficiency and surface current density. It has dipole like radiation pattern with gain of 2.33 - 4.31 dBi for lower frequency band and 4.29 - 5.16 dBi for upper frequency band with radiation efficiency of 95-98% and 93-96% respectively. The parametric analysis is carried out to understand the consequence of the various shape parameters and to get an optimum design. The simulation and measurement gave the results having close agreement.

  8. Implantable ferrite antenna for biomedical applications

    NASA Astrophysics Data System (ADS)

    Fazeli, Maxwell L.

    We have developed an implantable microstrip patch antenna with dimensions of 10x10x1.28 mm, operating around the Industrial, Scientific and Medical (ISM) band (2.4-2.5 GHz). The antenna is characterized in skin-mimicking gels and compared with simulation results. The experimental measurements are in good agreement with simulations, having a -16 dB reflection coefficient and -18 dBi realized gain at resonance, with a 185 MHz -10 dB bandwidth. The simulated effects of ferrite film loading on antenna performance are investigated, with comparisons made for 5 and 10 microm thick films, as well as for 10 microm thick films with varying magnetic loss (tan delta micro = 0.05, 0.1 and 0.3). Our simulations reveal that the addition of 10 microm thick magnetic layers has effectively lowered the resonant frequency by 70 MHz, while improving return loss and -10 dB bandwidth by 3 dB and 40 MHz, respectively, over the uncoated antenna. Ferrite film coating also improved realized gain within the ISM band, with largest gain increases at resonance found for films having lower magnetic loss. Additionally, the gain (G) variance at ISM band limits, Delta Gf(2.5GHz)-f (2.4GHz), decreased from 1.97 to 0.44 dBi for the antenna with 10 microm films over the non-ferrite antenna. The measured dip-coated NiCo ferrite films effectively reduces the antenna resonance by 110 MHz, with a 4.2 dB reflection coefficient improvement as compared to an antenna without ferrite. The measured ferrite antenna also reveals a 6 dBi and 35 MHz improvement in realized gain and -10 dB bandwidth, respectively, at resonance. Additionally, the ferrite-coated antenna shows improved directivity, with wave propagation attenuated at the direction facing the body internal. These results indicate that implantable antenna miniaturization and reliable wireless communication in the operating frequency band can be realized with ferrite loading.

  9. UAVSAR Phased Array Aperture

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Zawadzki, Mark; Sadowy, Greg; Oakes, Eric; Brown, Kyle; Hodges, Richard

    2009-01-01

    This paper describes the development of a patch antenna array for an L-band repeat-pass interferometric synthetic aperture radar (InSAR) instrument that is to be flown on an unmanned aerial vehicle (UAV). The antenna operates at a center frequency of 1.2575 GHz and with a bandwidth of 80 MHz, consistent with a number of radar instruments that JPL has previously flown. The antenna is designed to radiate orthogonal linear polarizations in order to facilitate fully-polarimetric measurements. Beam-pointing requirements for repeat-pass SAR interferometry necessitate electronic scanning in azimuth over a range of -20degrees in order to compensate for aircraft yaw. Beam-steering is accomplished by transmit/receive (T/R) modules and a beamforming network implemented in a stripline circuit board. This paper, while providing an overview of phased array architecture, focuses on the electromagnetic design of the antenna tiles and associated interconnects. An important aspect of the design of this antenna is that it has an amplitude taper of 10dB in the elevation direction. This is to reduce multipath reflections from the wing that would otherwise be detrimental to interferometric radar measurements. This taper is provided by coupling networks in the interconnect circuits as opposed to attenuating the output of the T/R modules. Details are given of material choices and fabrication techniques that meet the demanding environmental conditions that the antenna must operate in. Predicted array performance is reported in terms of co-polarized and crosspolarized far-field antenna patterns, and also in terms of active reflection coefficient.

  10. Design and characterisation of a phased antenna array for intact breast hyperthermia.

    PubMed

    Curto, Sergio; Garcia-Miquel, Aleix; Suh, Minyoung; Vidal, Neus; Lopez-Villegas, Jose M; Prakash, Punit

    2018-05-01

    Currently available hyperthermia technology is not well suited to treating cancer malignancies in the intact breast. This study investigates a microwave applicator incorporating multiple patch antennas, with the goal of facilitating controllable power deposition profiles for treating lesions at diverse locations within the intact breast. A 3D-computational model was implemented to assess power deposition profiles with 915 MHz applicators incorporating a hemispheric groundplane and configurations of 2, 4, 8, 12, 16 and 20 antennas. Hemispheric breast models of 90 mm and 150 mm diameter were considered, where cuboid target volumes of 10 mm edge length (1 cm 3 ) and 30 mm edge length (27 cm 3 ) were positioned at the centre of the breast, and also located 15 mm from the chest wall. The average power absorption (αPA) ratio expressed as the ratio of the PA in the target volume and in the full breast was evaluated. A 4-antenna proof-of-concept array was fabricated and experimentally evaluated. Computational models identified an optimal inter-antenna spacing of 22.5° along the applicator circumference. Applicators with 8 and 12 antennas excited with constant phase presented the highest αPA at centrally located and deep-seated targets, respectively. Experimental measurements with a 4-antenna proof-of-concept array illustrated the potential for electrically steering power deposition profiles by adjusting the relative phase of the signal at antenna inputs. Computational models and experimental results suggest that the proposed applicator may have potential for delivering conformal thermal therapy in the intact breast.

  11. Development of a microwave-type densimeter for slush hydrogen

    NASA Astrophysics Data System (ADS)

    Ohira, K.; Nakamichi, K.; Kihara, Y.

    2003-10-01

    Slush hydrogen is a two-phase solid-liquid cryogenic fluid consisting of solid hydrogen particles in liquid hydrogen, various applications for which are anticipated, including fuel for reusable space shuttles. The authors of the current study have measured the density of slush hydrogen by using the phase shift that takes place when microwaves are propagated through slush hydrogen, i.e., using the change in the specific dielectric constant. This new technique, unlike the conventional method using a waveguide and horn antenna, features a coaxial cable and patch antenna that can be used at cryogenic temperatures, leading to the development of a slush hydrogen densimeter with a high accuracy of within ±0.5%.

  12. Novel Metamaterial Blueprints and Elements for Electromagnetic Applications

    NASA Astrophysics Data System (ADS)

    Odabasi, Hayrettin

    In the first part of this dissertation, we explore the metric invariance of Maxwell's equations to design metamaterial blueprints for three novel electromagnetic devices. The metric invariance of Maxwell's equations here means that the effects of an (hypothetical) distortion of the background spatial domain on the electromagnetic fields can be mimicked by properly chosen material constitutive tensors. The exploitation of such feature of Maxwell's equations to derive metamaterial devices has been denoted as `transformation optics' (TO). The first device proposed here consists of metamaterial blueprints of waveguide claddings for (waveguide) miniaturization. These claddings provide a precise control of mode distribution and frequency cut-off. The proposed claddings are distinct from conventional dielectric loadings as the former do not support hybrid modes and are impedance-matched to free-space. We next derive a class of metamaterial blueprints designed for low-profile antenna applications, whereby a simple spatial transformation is used to yield uniaxial metamaterial substrate with electrical height higher than its physical height and surface waves are not supported, which is an advantage for patch antenna applications. We consider the radiation from horizontal wire and patch antennas in the presence of such substrates. Fundamental characteristics such as return loss and radiation pattern of the antennas are investigated in detail. Finally, transformation optics is also applied to design cylindrical impedance-matched absorbers. In this case, we employ a complex-valued transformation optics approach (in the Fourier domain) as opposed to the conventional real-valued approach. A connection of such structures with perfectly matched layers and recently proposed optical pseudo black-hole devices is made. In the second part of this dissertation, we move from the derivation of metamaterial blueprints to the application of pre-defined unit-cell metamaterial structures for miniaturization purposes. We first employ electric-field-coupled (ELC) resonators and complementary electric-field-coupled (CELC) resonators to design a new class of electrically small antennas. Since electric-field coupled resonators were recently proposed in the literature to obtain negative permittivity response, we next propose ELC resonators as a new type of waveguide loadings to provide mode control and waveguide miniaturization.

  13. Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature.

    PubMed

    Rodrigues, Dario B; Maccarini, Paolo F; Salahi, Sara; Oliveira, Tiago R; Pereira, Pedro J S; Limao-Vieira, Paulo; Snow, Brent W; Reudink, Doug; Stauffer, Paul R

    2014-07-01

    We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using noninvasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with the software HFSS is used to optimize antenna performance for deep brain temperature sensing. Radiometric antenna efficiency (η) is evaluated in terms of the ratio of power collected from brain to total power received by the antenna. Anatomical information extracted from several adult computed tomography scans is used to establish design parameters for constructing an accurate layered 3-D tissue phantom. This head phantom includes separate brain and scalp regions, with tissue equivalent liquids circulating at independent temperatures on either side of an intact skull. The optimized frequency band is 1.1-1.6 GHz producing an average antenna efficiency of 50.3% from a two turn log-spiral antenna. The entire sensor package is contained in a lightweight and low-profile 2.8 cm diameter by 1.5 cm high assembly that can be held in place over the skin with an electromagnetic interference shielding adhesive patch. The calculated radiometric equivalent brain temperature tracks within 0.4 °C of the measured brain phantom temperature when the brain phantom is lowered 10 °C and then returned to the original temperature (37 °C) over a 4.6-h experiment. The numerical and experimental results demonstrate that the optimized 2.5-cm log-spiral antenna is well suited for the noninvasive radiometric sensing of deep brain temperature.

  14. Early Wheel Train Damage Detection Using Wireless Sensor Network Antenna

    NASA Astrophysics Data System (ADS)

    Fazilah, A. F. M.; Azemi, S. N.; Azremi, A. A. H.; Soh, P. J.; Kamarudin, L. M.

    2018-03-01

    Antenna for a wireless sensor network for early wheel trains damage detection has successfully developed and fabricated with the aim to minimize the risk and increase the safety guaranty for train. Current antenna design is suffered in gain and big in size. For the sensor, current existing sensor only detect when the wheel malfunction. Thus, a compact microstrip patch antenna with operating frequency at 2.45GHz is design with high gain of 4.95dB will attach to the wireless sensor device. Simulation result shows that the antenna is working at frequency 2.45GHz and the return loss at -34.46dB are in a good agreement. The result also shows the good radiation pattern and almost ideal VSWR which is 1.04. The Arduino Nano, LM35DZ and ESP8266-07 Wi-Fi module is applied to the core system with capability to sense the temperature and send the data wirelessly to the cloud. An android application has been created to monitor the temperature reading based on the real time basis. The mainly focuses for the future improvement is by minimize the size of the antenna in order to make in more compact. In addition, upgrade an android application that can collect the raw data from cloud and make an alarm system to alert the loco pilot.

  15. Tunable Patch Antennas Using Microelectromechanical Systems

    DTIC Science & Technology

    2011-05-11

    Figure 28, was selected as most suitable to this application. MetalMUMPs is a surface micromachining process with polysilicon , silicon nitride, nickel...yields. MEMS Variable Capacitor Design The MEMS capacitors reported here were an original design that features nickel and polysilicon layers as...the movable plates of a variable parallel plate capacitor. The polysilicon layer was embedded in silicon nitride for electrical isolation and suspended

  16. TOPICA: an accurate and efficient numerical tool for analysis and design of ICRF antennas

    NASA Astrophysics Data System (ADS)

    Lancellotti, V.; Milanesio, D.; Maggiora, R.; Vecchi, G.; Kyrytsya, V.

    2006-07-01

    The demand for a predictive tool to help in designing ion-cyclotron radio frequency (ICRF) antenna systems for today's fusion experiments has driven the development of codes such as ICANT, RANT3D, and the early development of TOPICA (TOrino Polytechnic Ion Cyclotron Antenna) code. This paper describes the substantive evolution of TOPICA formulation and implementation that presently allow it to handle the actual geometry of ICRF antennas (with curved, solid straps, a general-shape housing, Faraday screen, etc) as well as an accurate plasma description, accounting for density and temperature profiles and finite Larmor radius effects. The antenna is assumed to be housed in a recess-like enclosure. Both goals have been attained by formally separating the problem into two parts: the vacuum region around the antenna and the plasma region inside the toroidal chamber. Field continuity and boundary conditions allow formulating of a set of two coupled integral equations for the unknown equivalent (current) sources; then the equations are reduced to a linear system by a method of moments solution scheme employing 2D finite elements defined over a 3D non-planar surface triangular-cell mesh. In the vacuum region calculations are done in the spatial (configuration) domain, whereas in the plasma region a spectral (wavenumber) representation of fields and currents is adopted, thus permitting a description of the plasma by a surface impedance matrix. Owing to this approach, any plasma model can be used in principle, and at present the FELICE code has been employed. The natural outcomes of TOPICA are the induced currents on the conductors (antenna, housing, etc) and the electric field in front of the plasma, whence the antenna circuit parameters (impedance/scattering matrices), the radiated power and the fields (at locations other than the chamber aperture) are then obtained. An accurate model of the feeding coaxial lines is also included. The theoretical model and its TOPICA implementation have been fully validated against measured data both in vacuo and in plasma-facing conditions for real-life structures.

  17. Green’s Functions for a Theoretical Model of an Aperture Fed Stacked-Patch Microstrip Antenna

    DTIC Science & Technology

    1989-12-01

    44 4 - 1 Normalized values of D bk3b on the real axis for (a) f = 4 GHz, bib = 1.6 mm, b2b = 4.8 mm, Flb = 5 o’ 2b = 2.5 Eo’ 3b = Co, P’lb = 2b...dielectric la. bIb Thickness of dielectric lb. b2b Total thickness of dielectrics lb and 2b. Cli Observer cell on the aperture, i is an index variable...interface 3b (patch 2). Sfj Source current cell on the feedline. tb Thickness of dielectric layer 2b ( b2b - bib). T lj Vector rooftop basis function

  18. Paired Pulse Basis Functions for the Method of Moments EFIE Solution of Electromagnetic Problems Involving Arbitrarily-shaped, Three-dimensional Dielectric Scatterers

    NASA Technical Reports Server (NTRS)

    MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.

    2007-01-01

    A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.

  19. Three new species of the genus Ripipteryx from Colombia (Orthoptera, Ripipterygidae).

    PubMed

    Baena-Bejarano, Nathalie; Heads, Sam W

    2015-01-01

    Three new species of Ripipteryx Newman (Orthoptera: Tridactyloidea: Ripipterygidae) are described from Colombia; namely Ripipteryxdiegoi sp. n. (Forceps Group) and Ripipteryxguacharoensis sp. n. (Marginipennis Group) from Parque Nacional Natural Cueva de los Guacharos in Huila, and Ripipteryxgorgonaensis sp. n. (Crassicornis Group) from Parque Nacional Natural Gorgona in Cauca. Ripipteryxdiegoi sp. n. is characterized by the antennae black with white spots on flagellomeres 3-7, male subgenital plate with median ridge forming a bilobed setose process, epiproct produced laterally near its base and phallic complex with virga thickened distally and not reaching beyond the membrane. Ripipteryxguacharoensis sp. n. is characterized by the antennae thick with white spots present dorsally on flagellomeres 1-4 and 8, epiproct narrow and triangular, uncus reduced and lacking a distal hook, phallic complex with a concave ventral plate and a dorsal elevation in the middle extended to the virga, and the virga itself with two small projections basally. Ripipteryxgorgonaensis sp. n. is characterized by the epiproct with a lateral notch, antennae with a white dorsal spot on flagellomere 1 and flagellomeres 4-7 entirely white. The antennal color pattern of Ripipteryxgorgonaensis sp. n. strongly resembles that of Ripipteryxatra but differs from the latter in the absence of any significant morphological modification of the flagellomeres.

  20. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    NASA Astrophysics Data System (ADS)

    Milanesio, D.; Maggiora, R.

    2015-12-01

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  1. Wireless hydrotherapy smart suit for monitoring handicapped people

    NASA Astrophysics Data System (ADS)

    Correia, Jose H.; Mendes, Paulo M.

    2005-02-01

    This paper presents a smart suit, water impermeable, containing sensors and electronics for monitoring handicapped people at hydrotherapy sessions in swimming-pools. For integration into textiles, electronic components should be designed in a functional, robust and inexpensive way. Therefore, small-size electronics microsystems are a promising approach. The smart suit allows the monitoring of individual biometric data, such as heart rate, temperature and movement of the body. Two solutions for transmitting the data wirelessly are presented: through a low-voltage (3.0 V), low-power, CMOS RF IC (1.6 mm x 1.5 mm size dimensions) operating at 433 MHz, with ASK modulation and a patch antenna built on lossy substrates compatible with integrated circuits fabrication. Two different substrates were used for antenna implementation: high-resistivity silicon (HRS) and Corning Pyrex #7740 glass. The antenna prototypes were built to operate close to the 5 GHz ISM band. They operate at a center frequency of 5.705 GHz (HRS) and 5.995 GHz (Pyrex). The studied parameters were: substrate thickness, substrate losses, oxide thickness, metal conductivity and thickness. The antenna on HRS uses an area of 8 mm2, providing a 90 MHz bandwidth and ~0.3 dBi of gain. On a glass substrate, the antenna uses 12 mm2, provides 100 MHz bandwidth and ~3 dBi of gain.

  2. High-Aperture-Efficiency Horn Antenna

    NASA Technical Reports Server (NTRS)

    Pickens, Wesley; Hoppe, Daniel; Epp, Larry; Kahn, Abdur

    2005-01-01

    A horn antenna (see Figure 1) has been developed to satisfy requirements specific to its use as an essential component of a high-efficiency Ka-band amplifier: The combination of the horn antenna and an associated microstrip-patch antenna array is required to function as a spatial power divider that feeds 25 monolithic microwave integrated-circuit (MMIC) power amplifiers. The foregoing requirement translates to, among other things, a further requirement that the horn produce a uniform, vertically polarized electromagnetic field in its patches identically so that the MMICs can operate at maximum efficiency. The horn is fed from a square waveguide of 5.9436-mm-square cross section via a transition piece. The horn features cosine-tapered, dielectric-filled longitudinal corrugations in its vertical walls to create a hard boundary condition: This aspect of the horn design causes the field in the horn aperture to be substantially vertically polarized and to be nearly uniform in amplitude and phase. As used here, cosine-tapered signifies that the depth of the corrugations is a cosine function of distance along the horn. Preliminary results of finite-element simulations of performance have shown that by virtue of the cosine taper the impedance response of this horn can be expected to be better than has been achieved previously in a similar horn having linearly tapered dielectric- filled longitudinal corrugations. It is possible to create a hard boundary condition by use of a single dielectric-filled corrugation in each affected wall, but better results can be obtained with more corrugations. Simulations were performed for a one- and a three-corrugation cosine-taper design. For comparison, a simulation was also performed for a linear- taper design (see Figure 2). The three-corrugation design was chosen to minimize the cost of fabrication while still affording acceptably high performance. Future designs using more corrugations per wavelength are expected to provide better field responses and, hence, greater aperture efficiencies.

  3. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    PubMed Central

    2012-01-01

    Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors. PMID:22891953

  4. A Fast MoM Solver (GIFFT) for Large Arrays of Microstrip and Cavity-Backed Antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasenfest, B J; Capolino, F; Wilton, D

    2005-02-02

    A straightforward numerical analysis of large arrays of arbitrary contour (and possibly missing elements) requires large memory storage and long computation times. Several techniques are currently under development to reduce this cost. One such technique is the GIFFT (Green's function interpolation and FFT) method discussed here that belongs to the class of fast solvers for large structures. This method uses a modification of the standard AIM approach [1] that takes into account the reusability properties of matrices that arise from identical array elements. If the array consists of planar conducting bodies, the array elements are meshed using standard subdomain basismore » functions, such as the RWG basis. The Green's function is then projected onto a sparse regular grid of separable interpolating polynomials. This grid can then be used in a 2D or 3D FFT to accelerate the matrix-vector product used in an iterative solver [2]. The method has been proven to greatly reduce solve time by speeding up the matrix-vector product computation. The GIFFT approach also reduces fill time and memory requirements, since only the near element interactions need to be calculated exactly. The present work extends GIFFT to layered material Green's functions and multiregion interactions via slots in ground planes. In addition, a preconditioner is implemented to greatly reduce the number of iterations required for a solution. The general scheme of the GIFFT method is reported in [2]; this contribution is limited to presenting new results for array antennas made of slot-excited patches and cavity-backed patch antennas.« less

  5. The contour-buildup algorithm to calculate the analytical molecular surface.

    PubMed

    Totrov, M; Abagyan, R

    1996-01-01

    A new algorithm is presented to calculate the analytical molecular surface defined as a smooth envelope traced out by the surface of a probe sphere rolled over the molecule. The core of the algorithm is the sequential build up of multi-arc contours on the van der Waals spheres. This algorithm yields substantial reduction in both memory and time requirements of surface calculations. Further, the contour-buildup principle is intrinsically "local", which makes calculations of the partial molecular surfaces even more efficient. Additionally, the algorithm is equally applicable not only to convex patches, but also to concave triangular patches which may have complex multiple intersections. The algorithm permits the rigorous calculation of the full analytical molecular surface for a 100-residue protein in about 2 seconds on an SGI indigo with R4400++ processor at 150 Mhz, with the performance scaling almost linearly with the protein size. The contour-buildup algorithm is faster than the original Connolly algorithm an order of magnitude.

  6. Development of Modal Test Techniques for Validation of a Solar Sail Design

    NASA Technical Reports Server (NTRS)

    Gaspar, James L.; Mann, Troy; Behun, Vaughn; Wilkie, W. Keats; Pappa, Richard

    2004-01-01

    This paper focuses on the development of modal test techniques for validation of a solar sail gossamer space structure design. The major focus is on validating and comparing the capabilities of various excitation techniques for modal testing solar sail components. One triangular shaped quadrant of a solar sail membrane was tested in a 1 Torr vacuum environment using various excitation techniques including, magnetic excitation, and surface-bonded piezoelectric patch actuators. Results from modal tests performed on the sail using piezoelectric patches at different positions are discussed. The excitation methods were evaluated for their applicability to in-vacuum ground testing and to the development of on orbit flight test techniques. The solar sail membrane was tested in the horizontal configuration at various tension levels to assess the variation in frequency with tension in a vacuum environment. A segment of a solar sail mast prototype was also tested in ambient atmospheric conditions using various excitation techniques, and these methods are also assessed for their ground test capabilities and on-orbit flight testing.

  7. LISA: Astrophysics Out to z Approximately 10 with Low-Frequency Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2008-01-01

    This viewgraph presentation reviews the Laser Interferometer Space Antenna (LISA). LISA os a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector. The 5 million Kilometer long detector will consist of three spacecraft orbiting the Sun in a triangular formation. Space-Time strains induced by gravitational waves are detected by measuring changes in the separation of fiducial masses with laser interferometry. LISA is expected to detect signals from merging massive black holes, compact stellar objects spiraling into super massive black holes in galactic nuclei, thousands of close binaries of compact objects in the Milky way and possible backgrounds of cosmological origin.

  8. Compact, Highly Efficient, and Fully Flexible Circularly Polarized Antenna Enabled by Silver Nanowires for Wireless Body-Area Networks.

    PubMed

    Jiang, Zhi Hao; Cui, Zheng; Yue, Taiwei; Zhu, Yong; Werner, Douglas H

    2017-08-01

    A compact and flexible circularly polarized (CP) wearable antenna is introduced for wireless body-area network systems at the 2.4 GHz industrial, scientific, and medical (ISM) band, which is implemented by employing a low-loss composite of polydimethylsiloxane (PDMS) and silver nanowires (AgNWs). The circularly polarized radiation is enabled by placing a planar linearly polarized loop monopole above a finite anisotropic artificial ground plane. By truncating the anisotropic artificial ground plane to contain only 2 by 2 unit cells, an integrated antenna with a compact form factor of 0.41λ 0 × 0.41λ 0 × 0.045λ 0 is obtained, all while possessing an improved angular coverage of CP radiation. A flexible prototype was fabricated and characterized, experimentally achieving S 11 <- 15 dB, an axial ratio of less than 3 dB, a gain of around 5.2 dBi, and a wide CP angular coverage in the targeted ISM band. Furthermore, this antenna is compared to a conventional CP patch antenna of the same physical size, which is also comprised of the same PDMS and AgNW composite. The results of this comparison reveal that the proposed antenna has much more stable performance under bending and human body loading, as well as a lower specific absorption rate. In all, the demonstrated wearable antenna offers a compact, flexible, and robust solution which makes it a strong candidate for future integration into body-area networks that require efficient off-body communications.

  9. Electromagnetic characterization of conformal antennas

    NASA Technical Reports Server (NTRS)

    Volakis, John L.; Kempel, Leo C.; Alexanian, Angelos; Jin, J. M.; Yu, C. L.; Woo, Alex C.

    1992-01-01

    The ultimate objective of this project is to develop a new technique which permits an accurate simulation of microstrip patch antennas or arrays with various feed, superstrate and/or substrate configurations residing in a recessed cavity whose aperture is planar, cylindrical or otherwise conformed to the substructure. The technique combines the finite element and boundary integral methods to formulate a system suitable for solution via the conjugate gradient method in conjunction with the fast Fourier transform. The final code is intended to compute both scattering and radiation patterns of the structure with an affordable memory demand. With upgraded capabilities, the four included papers examined the radar cross section (RCS), input impedance, gain, and resonant frequency of several rectangular configurations using different loading and substrate/superstrate configurations.

  10. Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures

    PubMed Central

    Dregely, Daniel; Neubrech, Frank; Duan, Huigao; Vogelgesang, Ralf; Giessen, Harald

    2013-01-01

    Nanoantennas confine electromagnetic fields at visible and infrared wavelengths to volumes of only a few cubic nanometres. Assessing their near-field distribution offers fundamental insight into light–matter coupling and is of special interest for applications such as radiation engineering, attomolar sensing and nonlinear optics. Most experimental approaches to measure near-fields employ either diffraction-limited far-field methods or intricate near-field scanning techniques. Here, using diffraction-unlimited far-field spectroscopy in the infrared, we directly map the intensity of the electric field close to plasmonic nanoantennas. We place a patch of probe molecules with 10 nm accuracy at different locations in the near-field of a resonant antenna and extract the molecular vibrational excitation. We map the field intensity along a dipole antenna and gap-type antennas. Moreover, this method is able to assess the near-field intensity of complex buried plasmonic structures. We demonstrate this by measuring for the first time the near-field intensity of a three-dimensional plasmonic electromagnetically induced transparency structure. PMID:23892519

  11. User manual for EXCALIBUR: A FE-BI numerical laboratory for cavity-backed antennas in a circular cylinder, version 1.2

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.

    1994-01-01

    The Finite Element-Boundary Integral (FE-BI) technique was used to analyze the scattering and radiation properties of cavity-backed patch antennas recessed in a metallic groundplane. A program, CAVITY3D, was written and found to yield accurate results for large arrays without the usual high memory and computational demand associated with competing formulations. Recently, the FE-BI approach was extended to cavity-backed antennas recessed in an infinite, metallic circular cylinder. EXCALIBUR is a computer program written in the Radiation Laboratory of the University of Michigan which implements this formulation. This user manual gives a brief introduction to EXCALIBUR and some hints as to its proper use. As with all computational electromagnetics programs (especially finite element programs), skilled use and best performance are only obtained through experience. However, several important aspects of the program such as portability, geometry generation, interpretation of results, and custom modification are addressed.

  12. A Low Loss Microstrip Antenna for Radiometric Applications

    NASA Technical Reports Server (NTRS)

    Wahid, Parveen

    2000-01-01

    The design and analysis of a series-fed, low-loss, inverted microstrip array antenna, operating at 1.413 GHz is presented. The antenna is composed of two subarrays. Each subarray consists of an equal number of microstrip patches all connected together with microstrip lines. In the first design microstrip array for linear polarization is presented which incorporated a series feeding technique. The next design, which is capable of dual linear polarization (V-polarization and H-polarization), utilizes a corporate feed network for the V-pol and series feed arrangement for the H-pol. The first element of each subarray for H-pol is coaxially fed with a 180 deg phase difference. This approach ensures a symmetric radiation pattern on broadside in H-pol. For the V-pol two feeds are in the same phase on the two subarrays ensuring a broadside beam in V-pol. The designs presented here are simulated using the IE3D code that utilizes the method of moments. Measured results are compared with simulated results and show good agreement.

  13. Analysis of dual-frequency MEMS antenna using H-MRTD method

    NASA Astrophysics Data System (ADS)

    Yu, Wenge; Zhong, Xianxin; Chen, Yu; Wu, Zhengzhong

    2004-10-01

    For applying micro/nano technologies and Micro-Electro-Mechanical System (MEMS) technologies in the Radio Frequency (RF) field to manufacture miniature microstrip antennas. A novel MEMS dual-band patch antenna designed using slot-loaded and short-circuited size-reduction techniques is presented in this paper. By controlling the short-plane width, the two resonant frequencies, f10 and f30, can be significantly reduced and the frequency ratio (f30/f10) is tunable in the range 1.7~2.3. The Haar-Wavelet-Based multiresolution time domain (H-MRTD) with compactly supported scaling function for a full three-dimensional (3-D) wave to Yee's staggered cell is used for modeling and analyzing the antenna for the first time. Associated with practical model, an uniaxial perfectly matched layer (UPML) absorbing boundary conditions was developed, In addition , extending the mathematical formulae to an inhomogenous media. Numerical simulation results are compared with those using the conventional 3-D finite-difference time-domain (FDTD) method and measured. It has been demonstrated that, with this technique, space discretization with only a few cells per wavelength gives accurate results, leading to a reduction of both memory requirement and computation time.

  14. A CPW-fed circular wide-slot UWB antenna with wide tunable and flexible reconfigurable dual notch bands.

    PubMed

    Li, Yingsong; Li, Wenxing; Ye, Qiubo

    2013-01-01

    A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8-5.9 GHz and 7.7-9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications.

  15. A CPW-Fed Circular Wide-Slot UWB Antenna with Wide Tunable and Flexible Reconfigurable Dual Notch Bands

    PubMed Central

    Li, Yingsong; Li, Wenxing; Ye, Qiubo

    2013-01-01

    A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8–5.9 GHz and 7.7–9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications. PMID:24222733

  16. Design and Implementation of Low Profile Antenna for Dual-Band Applications Using Rotated E-Shaped Conductor-Backed Plane

    PubMed Central

    Jalali, Mahdi; Sedghi, Tohid; Shafei, Shahin

    2014-01-01

    A novel configuration of a printed monopole antenna with a very compact size for satisfying WLAN operations at the 5.2/5.8 GHz and also for X-band operations at the 10 GHz has been proposed. The antenna includes a simple square-shaped patch as the radiator, the rotated U-shaped conductor back plane element with embedded strip on it, and the partial rectangular ground surface. By using the rotated U-shaped conductor-backed plane with proper values, good impedance matching and improvement in bandwidth can be achieved, at the lower and upper bands. The impedance bandwidth for S 11 < −10 dB is about 1.15 GHz for 5 GHz band and 5.3 GHz for X-band. The measured peak gains are about 1.9 dBi at WLAN-band and 4.2 dBi at X-band. The experimental results represent that the realized antenna with good omnidirectional radiation characteristics, enough impedance bandwidth, and reasonable gains can be appropriate for various applications of the future developed technologies and handheld devices. PMID:24711732

  17. MAARSY - The new MST radar on Andøya: System description and first results

    NASA Astrophysics Data System (ADS)

    Latteck, Ralph; Zecha, Marius; Rapp, Markus; Stober, Gunter; Singer, Werner; Renkwitz, Toralf

    2012-07-01

    In 2011 the Leibniz-Institute of Atmospheric Physics in Kühlungsborn completed the installation of the Middle Atmosphere Alomar Radar System ({MAARSY}) on the North-Norwegian island Andøya. MAARSY is a 53.5 MHz monostatic radar with an active phased array antenna consisting of 433 Yagi antennas. The 3-element Yagi antennas are arranged in an equilateral triangular grid forming a circular aperture of approximately 6300 m^2. Each individual antenna is connected to its own transceiver with independent phase control and a scalable power output of up to 2 kW. This arrangement provides very high flexibility of beam forming and beam steering with a symmetric radar beam of a minimum beam width of 3.6°. The system allows classical beam swinging operation as well as experiments with simultaneous multiple beams and the use of interferometric applications for improved studies of the Arctic atmosphere from the troposphere up to the lower thermosphere with high spatio-temporal resolution. Standard observations of tropospheric winds and polar mesosphere summer echoes started immediately with an initial stage of expansion in spring 2010. Meteor head echo experiments and 3D observations of polar mesospheric winter echoes were conducted after an upgrade of the system in December 2010. Multi-beam experiments using up to 97 beams quasi-simultaneously in the mesosphere have been carried out during campaigns in summer 2011 with the completed system. We present a system description of MAARSY including beam pattern validation and show initial results from various campaigns obtained during the first 2 years of operation.

  18. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milanesio, D., E-mail: daniele.milanesio@polito.it; Maggiora, R.

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna,more » based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.« less

  19. An efficient hexagonal switched beam antenna structure based on Fabry-Perot cavity leaky-wave antenna

    NASA Astrophysics Data System (ADS)

    Aymen El Cafsi, Mohamed; Nedil, Mourad; Osman, Lotfi; Gharsallah, Ali

    2015-11-01

    A novel design of switched beam antenna (SBA) system based on Fabry-Perot cavity leaky-wave antenna (FPC LWA) is designed and fabricated for base station operating in the unlicensed ISM central frequency band at 5.8 GHz of the wireless local area network (WLAN) standard. The proposed SBA is designed with hexagonal shape of FPC LWA Arrays in order to get 360° of coverage. The single element of FPC LWA array is composed of a patch antenna and covered by a Partially Reflective Surface (PRS), which is composed of a Metal Strip Grating and printed on a high permittivity Superstrate. First, the Transmission Line Model of FPC LWA is introduced to analyse and calculate the far-field components in E- and H planes by using the Transverse Equivalent Network. This approach is then compared with other full wave's commercial software such as Ansoft HFSS and CST Microwave Studio. Second, a parametric study is performed to evaluate the effect of the angle formed by the two successive FPC LWA on the radiation efficiency of the activate sector. To examine the performance of the proposed SBA, experimental prototype was fabricated and measured. As a result, multiple orthogonal beams (six beams) of 10 dBi of gain with low Side Lobes Level and 360° of coverage are produced. This SBA structure is suitable for WLAN communication systems.

  20. Microwave Radiometers from 0.6 to 22 GHz for Juno, a Polar Orbiter around Jupiter

    NASA Technical Reports Server (NTRS)

    P. Pingree; Janssen, M.; Oswald, J.; Brown, S.; Chen, J.; Hurst, K.; Kitiyakara, A.; Maiwald, F.; Smith, S.

    2008-01-01

    A compact radiometer instrument is under development at JPL for Juno, the next NASA New Frontiers mission, scheduled to launch in 2011. This instrument is called the MWR (MicroWave Radiometer), and its purpose is to measure the thermal emission from Jupiter's atmosphere at selected frequencies from 0.6 to 22 GHz. The objective is to measure the distributions and abundances of water and ammonia in Jupiter's atmosphere, with the goal of understanding the previously unobserved dynamics of the subcloud atmosphere, and to discriminate among models for planetary formation in our solar system. The MWR instrument is currently being developed to address these science questions for the Juno mission. As part of a deep space mission aboard a solar-powered spacecraft, MWR is designed to be compact, lightweight, and low power. The entire MWR instrument consists of six individual radiometer channels with approximately 4% bandwidth at 0.6, 1.25,2.6,5.2, 10,22 GHz operating in direct detection mode. Each radiometer channel has up to 80 dB of gain with a noise figure of several dB. The highest frequency channel uses a corrugated feedhorn and waveguide transmission lines, whereas all other channels use highly phase stable coaxial cables and either patch array or waveguide slot array antennas. Slot waveguide array antennas were chosen for the low loss at the next three highest frequencies and patch array antennas were implemented due to the mass constraint at the two lowest frequencies. The six radiometer channels receive their voltage supplies and control lines from an electronics unit that also provides the instrument communication interface to the Juno spacecraft. For calibration purposes each receiver has integrated noise diodes, a Dicke switch, and temperature sensors near each component that contributes to the noise figure. In addition, multiple sensors will be placed along the RF transmission lines and the antennas in order to measure temperature gradients. All antennas and RF transmission lines must withstand low temperatures and the harsh radiation environment surrounding Jupiter; the receivers and control electronics are protected by a radiation-shielding enclosure on the Juno spacecraft that also provides for a benign and stable operating temperature environment. This paper will focus on the concept of the MWR instrument and will present results of one breadboard receiver channel.

  1. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design

    PubMed Central

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (ε r = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications. PMID:26018795

  2. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design.

    PubMed

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications.

  3. Dual-band LTCC antenna based on 0.95Zn2SiO4-0.05CaTiO3 ceramics for GPS/UMTS applications

    NASA Astrophysics Data System (ADS)

    Dou, Gang; Li, Yu-Xia; Guo, Mei

    2015-10-01

    In this paper, we present a compact low-temperature co-fired ceramic (LTCC) dual-band antenna by using the electromagnetic coupling effect concept for global positioning system (GPS) and universal mobile telecommunication system (UMTS) applications. The overall dimension of the antenna is 8.6 mm × 13.0 mm × 1.1 mm. It consists of double meander lines and a via hole line. The top meander line operates at the upper band, and the bottom radiating patch is designed for the lower band. The via-hole line is employed to connect the double meander lines. Because of the effect of the coupled line, total dimension of the proposed antenna is greatly reduced. With the 2.5: voltage standing wave ratio (VSWR) impedance bandwidth definition, the lower and upper bands have the bandwidths of 110 MHz and 150 MHz, respectively. The proposed antenna is successfully designed, simulated, and analyzed by a high frequency structure simulator (HFSS). And the antenna is manufactured by using the 0.95Zn2SiO4-0.05CaTiO3 ceramics (εr = 7.1, tanδ = 0.00038) that is prepared by ourselves. The results show that the antenna is compact, efficient, and of near omnidirectional radiation pattern. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20133718120009), the Natural Science Foundation of Shandong Provence, China (Grant Nos. ZR2013FQ002 and ZR2014FQ006), the China Postdoctoral Science Foundation (Grant No. 2014M551935), the Qingdao Municipality Postdoctoral Science Foundation, China, and the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents, China (Grant Nos. 2013RCJJ042 and 2014RCJJ052).

  4. Three new species of the genus Ripipteryx from Colombia (Orthoptera, Ripipterygidae)

    PubMed Central

    Baena-Bejarano, Nathalie; Heads, Sam W.

    2015-01-01

    Abstract Three new species of Ripipteryx Newman (Orthoptera: Tridactyloidea: Ripipterygidae) are described from Colombia; namely Ripipteryx diegoi sp. n. (Forceps Group) and Ripipteryx guacharoensis sp. n. (Marginipennis Group) from Parque Nacional Natural Cueva de los Guacharos in Huila, and Ripipteryx gorgonaensis sp. n. (Crassicornis Group) from Parque Nacional Natural Gorgona in Cauca. Ripipteryx diegoi sp. n. is characterized by the antennae black with white spots on flagellomeres 3–7, male subgenital plate with median ridge forming a bilobed setose process, epiproct produced laterally near its base and phallic complex with virga thickened distally and not reaching beyond the membrane. Ripipteryx guacharoensis sp. n. is characterized by the antennae thick with white spots present dorsally on flagellomeres 1–4 and 8, epiproct narrow and triangular, uncus reduced and lacking a distal hook, phallic complex with a concave ventral plate and a dorsal elevation in the middle extended to the virga, and the virga itself with two small projections basally. Ripipteryx gorgonaensis sp. n. is characterized by the epiproct with a lateral notch, antennae with a white dorsal spot on flagellomere 1 and flagellomeres 4–7 entirely white. The antennal color pattern of Ripipteryx gorgonaensis sp. n. strongly resembles that of Ripipteryx atra but differs from the latter in the absence of any significant morphological modification of the flagellomeres. PMID:26019667

  5. Terahertz carpet cloak based on ultrathin metasurface

    NASA Astrophysics Data System (ADS)

    Wei, Minggui; Yang, Quanlong; Zhang, Xueqian; Li, Yanfeng; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2018-01-01

    Ultrathin metasurfaces with local phase compensation deliver new schemes to cloaking devices. We demonstrate a remarkable large size carpet cloak realized by an ultrathin metasurface at terahertz frequencies. The metasurface cloak is constructed by periodically arranging 12 different elements. The reflected wave front is perfectly reconstructed by an ultrathin metasurface cloak, which perform well under both intensity-sensitive and phase-sensitive detectors. The invisibility is verified when the cloak is placed on a reflecting triangular surface (bump). The multi-step discrete phase design method would greatly simplify the design process and is probable to achieve large-dimension cloaks, for applications in radar and antenna systems as a thin and easy-to-fabricate solution for radio and terahertz frequencies.

  6. Oil Spill Response Technology Initiation Decision Report to the Pollution Abatement Ashore Program

    DTIC Science & Technology

    2007-12-01

    Canada, Mexico ITAC – International Boats/Helos – VHF Trailers /Tracks – Internet, phones, 800 mHz Handhelds, VHF Patching – connect to other...EPA Trailer w/ com antenna Lisa, START (Superfund Tech Assessment + Response Team) Contractor, Emerg Response Team Bob, Fields unit, using...NMCI access – can’t work for response + satellite comms tested VOIP & internet + participation by City of Chicago – Trailer brought to get comms to

  7. Dielectric, thermal and mechanical properties of zirconium silicate reinforced high density polyethylene composites for antenna applications.

    PubMed

    Varghese, Jobin; Nair, Dinesh Raghavan; Mohanan, Pezholil; Sebastian, Mailadil Thomas

    2015-06-14

    A low cost and low dielectric loss zirconium silicate (ZrSiO4) reinforced HDPE (high-density polyethylene) composite has been developed for antenna applications. The 0-3 type composite is prepared by dispersing ZrSiO4 fillers for various volume fractions (0.1 to 0.5) in the HDPE matrix by the melt mixing process. The composite shows good microwave dielectric properties with a relative permittivity of 5.6 and a dielectric loss of 0.003 at 5 GHz at the maximum filler loading of 0.5 volume fraction. The composite exhibits low water absorption, excellent thermal and mechanical properties. It shows a water absorption of 0.03 wt%, a coefficient of thermal expansion of 70 ppm per °C and a room temperature thermal conductivity of 2.4 W mK(-1). The composite shows a tensile strength of 22 MPa and a microhardness of 13.9 kg mm(-2) for the filler loading of 0.5 volume fraction. The HDPE-ZrSiO4 composites show good dielectric, thermal and mechanical properties suitable for microwave soft substrate applications. A microstrip patch antenna is designed and fabricated using the HDPE-0.5 volume fraction ZrSiO4 substrate and the antenna parameters are investigated.

  8. Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression.

    PubMed

    Zheng, Yuejun; Zhou, Yulong; Gao, Jun; Cao, Xiangyu; Yang, Huanhuan; Li, Sijia; Xu, Liming; Lan, Junxiang; Jidi, Liaori

    2017-11-23

    A double-layer complementary metasurface (MS) with ultra-wideband polarization conversion is presented. Then, we propose two application cases by applying the polarization conversion structures to aperture coupling patch antenna (ACPA). Due to the existence of air-filled gap of ACPA, air substrate and dielectric substrate are used to construct the double-layer MS. The polarization conversion bandwidth is broadened toward low-frequency range. Subsequently, two application cases of antenna are proposed and investigated. The simultaneous improvement of radiation and scattering performance of antenna is normally considered as a contradiction. Gratifyingly, the contradiction is addressed in these two application cases. According to different mechanism of scattering suppression (i.e., polarization conversion and phase cancellation), the polarization conversion structures are utilized to construct uniform and orthogonal arrangement configurations. And then, the configurations are integrated into ACPA and two different kinds of metasurface-based (MS-based) ACPA are formed. Radiation properties of the two MS-based ACPAs are improved by optimizing the uniform and orthogonal arrangement configurations. The measured results suggest that ultra-wideband polarization conversion properties of the MS are achieved and radiation enhancement and scattering suppression of the two MS-based ACPAs are obtained. These results demonstrate that we provide novel approach to design high-performance polarization conversion MS and MS-based devices.

  9. A Novel Approach to Beam Steering Using Arrays Composed of Multiple Unique Radiating Modes

    NASA Astrophysics Data System (ADS)

    Labadie, Nathan Richard

    Phased array antennas have found wide application in both radar and wireless communications systems particularly as implementation costs continue to decrease. The primary advantages of electronically scanned arrays are speed of beam scan and versatility of beamforming compared to mechanically scanned fixed beam antennas. These benefits come at the cost of a few well known design issues including element pattern rolloff and mutual coupling between elements. Our primary contribution to the field of research is the demonstration of significant improvement in phased array scan performance using multiple unique radiating modes. In short, orthogonal radiating modes have minimal coupling by definition and can also be generated with reduced rolloff at wide scan angles. In this dissertation, we present a combination of analysis, full-wave electromagnetic simulation and measured data to support our claims. The novel folded ring resonator (FRR) antenna is introduced as a wideband and multi-band element embedded in a grounded dielectric substrate. Multiple radiating modes of a small ground plane excited by a four element FRR array were also investigated. A novel hemispherical null steering antenna composed of two collocated radiating elements, each supporting a unique radiating mode, is presented in the context of an anti-jam GPS receiver application. Both the antenna aperture and active feed network were fabricated and measured showing excellent agreement with analytical and simulated data. The concept of using an antenna supporting multiple radiating modes for beam steering is also explored. A 16 element hybrid linear phased array was fabricated and measured demonstrating significantly improved scan range and scanned gain compared to a conventional phased array. This idea is expanded to 2 dimensional scanning arrays by analysis and simulation of a hybrid phased array composed of novel multiple mode monopole on patch antenna sub-arrays. Finally, we fabricated and characterized the 2D scanning hybrid phased array demonstrating wide angle scanning with high antenna efficiency.

  10. Hybrid method to predict the resonant frequencies and to characterise dual band proximity coupled microstrip antennas

    NASA Astrophysics Data System (ADS)

    Varma, Ruchi; Ghosh, Jayanta

    2018-06-01

    A new hybrid technique, which is a combination of neural network (NN) and support vector machine, is proposed for designing of different slotted dual band proximity coupled microstrip antennas. Slots on the patch are employed to produce the second resonance along with size reduction. The proposed hybrid model provides flexibility to design the dual band antennas in the frequency range from 1 to 6 GHz. This includes DCS (1.71-1.88 GHz), PCS (1.88-1.99 GHz), UMTS (1.92-2.17 GHz), LTE2300 (2.3-2.4 GHz), Bluetooth (2.4-2.485 GHz), WiMAX (3.3-3.7 GHz), and WLAN (5.15-5.35 GHz, 5.725-5.825 GHz) bands applications. Also, the comparative study of this proposed technique is done with the existing methods like knowledge based NN and support vector machine. The proposed method is found to be more accurate in terms of % error and root mean square % error and the results are in good accord with the measured values.

  11. Aerogel Poly(butylene succinate) Biomaterial Substrate for RF and Microwave Applications.

    PubMed

    Habib Ullah, M; Mahadi, W N L; Latef, T A

    2015-08-04

    Polybutylene succinate (PBS) has become a potential candidate, similar to polypropylene (PP) and acrylonitrile butadiene styrene (ABS), for use as an organic plastic material due to its outstanding mechanical properties as well as high thermal deformation characteristics. A new composition of silica aerogel nanoparticles extracted from rice waste with PBS is proposed for use as a dielectric (εr = 4.5) substrate for microwave applications. A microstrip patch antenna was fabricated on the proposed dielectric substrate for multi-resonant ultra-wideband (UWB) applications. The performance characteristics of the proposed biomaterial-based antenna were investigated in a far-field measurement environment. The results indicate that the proposed biocompatible material-based antenna covered a bandwidth of 9.4 (2.3-11.7) GHz with stop bands from 5.5 GHz to 5.8 GHz and 7.0 GHz to 8.3 GHz. Peak gains of 9.82 dBi, 7.59 dBi, 8.0 dBi and 7.68 dBi were measured at resonant frequencies of 2.7 GHz, 4.6 GHz, 6.3 GHz and 9.5 GHz, respectively.

  12. STS-34 ATLANTIS - ORBITER VEHICLE (OV)-104 - CREW INSIGNIA

    NASA Image and Video Library

    1989-06-20

    S89-20077 (17 July 1989) --- The triangular shape of the STS-34 crew patch represents forward motion and the entering into new frontiers of science, engineering and technology. The Galileo spacecraft overlaying the orbiter symbolizes the joining together of both manned and unmanned space programs in order to maximize the capabilities of each. The crew members, who designed the patch, use a sunrise stretching across Earth's horizon to depict expansion of our knowledge of the solar system and other worlds, leading to a better understanding of our own planet. In the distance, Jupiter, a unique world with many unknowns, awaits the arrival of Galileo to help unlock its secrets. Meanwhile, the space shuttle remains in Earth orbit, continuing to explore the near-Earth environment. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  13. Novel method to control antenna currents based on theory of characteristic modes

    NASA Astrophysics Data System (ADS)

    Elghannai, Ezdeen Ahmed

    Characteristic Mode Theory is one of the very few numerical methods that provide a great deal of physical insight because it allows us to determine the natural modes of the radiating structure. The key feature of these modes is that the total induced antenna current, input impedance/admittance and radiation pattern can be expressed as a linear weighted combination of individual modes. Using this decomposition method, it is possible to study the behavior of the individual modes, understand them and therefore control the antennas behavior; in other words, control the currents induced on the antenna structure. This dissertation advances the topic of antenna design by carefully controlling the antenna currents over the desired frequency band to achieve the desired performance specifications for a set of constraints. Here, a systematic method based on the Theory of Characteristic Modes (CM) and lumped reactive loading to achieve the goal of current control is developed. The lumped reactive loads are determined based on the desired behavior of the antenna currents. This technique can also be used to impedance match the antenna to the source/generator connected to it. The technique is much more general than the traditional impedance matching. Generally, the reactive loads that properly control the currents exhibit a combination of Foster and non-Foster behavior. The former can be implemented with lumped passive reactive components, while the latter can be implemented with lumped non-Foster circuits (NFC). The concept of current control is applied to design antennas with a wide band (impedance/pattern) behavior using reactive loads. We successfully applied this novel technique to design multi band and wide band antennas for wireless applications. The technique was developed to match the antenna to resistive and/or complex source impedance and control the radiation pattern at these frequency bands, considering size and volume constraints. A wide band patch antenna was achieved using the developed technique. In addition, the technique was applied to multi band wire less Universal Serial Bus (USB) dongle antenna that serves for WLAN IEEE 802.11 a/b/g/n band applications and Radio Frequency Identification (RFID) tag antenna for 915MHz band applications with superior performance compared to previous published results. This dissertation also discusses the total Q of an antenna from the CM standpoint. A new expression as well as additional physical information about each mode's individual contribution to the total antenna Q are provided. Finally, the theory is used to an analyze the antenna in both radiation and/or scattering modes. In the antenna scattering mode, the field scattered by an antenna contains a component that is the short circuit scattered field, and a second component that is proportional to the radiation field. In this dissertation, an analytical study of this phenomena from the CM standpoint is performed aiming to shed some light on antenna scattering phenomenon where additional physical insight is obtained and thus used to reach desire results.

  14. Synthesis of bismuth titanate (BTO) nanopowder and fabrication of microstrip rectangular patch antenna

    NASA Astrophysics Data System (ADS)

    Thiruramanathan, P.; Sharma, Sanjeev K.; Sankar, S.; Sankar Ganesh, R.; Marikani, A.; Kim, Deuk Young

    2016-12-01

    The bismuth titanate (Bi4Ti3O12) or BTO nanopowder was synthesized from the combustion method and fabricated a microstrip rectangular patch antenna (MPA). The crystal structure and lattice spacing of BTO were evaluated from XRD, TEM, and SAED analysis. The crystal structure of BTO (annealed at 900 °C) was observed to be the orthorhombic phase with fcc lattice. The microstructure of BTO nanoparticles was confirmed the spherical and hexagonal shapes, which were slightly agglomerated due to the lack of stabilizing surfactants. The presence of weak and wide bands in Raman spectrum quantified the mechanical compressions to the uniform directions of elongated lattice constants and tensions to the lattice constriction of crystalline bismuth titanate. To fabricate the MPA, pellets of BTO nanopowder were prepared by applying the uniaxial pressure in the dimension of 1.5 mm thickness and 8 mm diameter. These pellets were formed a densely packed structure close to the theoretical density. The coercivity and remanence polarization of BTO ceramics increased as the applied field increased. The inexpensive combustion synthesis method of BTO nanopowder showed the high dielectric constant (ɛ' = 450) and low dielectric loss (tan δ = 0.98), which has a potential implication of the cost-effectiveness in the field of miniaturized microelectronics. The synthesis and measurements of BTO ceramics are found to be suitable for wireless communication systems.

  15. Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances

    PubMed Central

    Sabran, Mursyidul Idzam; Leow, Chee Yen; Soh, Ping Jack; Chew, Beng Wah; Vandenbosch, Guy A. E.

    2017-01-01

    This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz– 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations. PMID:28192504

  16. Impact of the coupling effect and the configuration on a compact rectenna array

    NASA Astrophysics Data System (ADS)

    Rivière, J.; Douyere, A.; Luk, J. D. Lan Sun

    2014-10-01

    This paper proposes an experimental study of the coupling effect of a rectenna array. The rectifying antenna consists of a compact and efficient rectifying circuit in a series topology, coupled with a small metamaterial-inspired antenna. The measurements are investigated in the X plane on the rectenna array's behavior, with series and parallel DC- combining configuration of two and three spaced rectennas from 3 cm to 10 cm. This study shows that the maximum efficiency is reached for the series configuration, with a resistive load of 10 kQ. The optimal distance is not significant for series or parallel configuration. Then, a comparison between a rectenna array with non-optimal mutual coupling and a more traditional patch rectenna is performed. Finally, a practical application is tested to demonstrate the effectiveness of such small rectenna array.

  17. Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances.

    PubMed

    Sabran, Mursyidul Idzam; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Soh, Ping Jack; Chew, Beng Wah; Vandenbosch, Guy A E

    2017-01-01

    This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz- 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations.

  18. Future mobile satellite communication concepts at 20/30 GHz

    NASA Technical Reports Server (NTRS)

    Barton, S. K.; Norbury, J. R.

    1990-01-01

    The outline of a design of a system using ultra small earth stations (picoterminals) for data traffic at 20/30 GHz is discussed. The picoterminals would be battery powered, have an RF transmitter power of 0.5 W, use a 10 cm square patch antenna, and have a receiver G/T of about -8 dB/K. Spread spectrum modulation would be required (due to interference consideration) to allow a telex type data link (less than 200 bit/s data rate) from the picoterminal to the hub station of the network and about 40 kbit/s on the outbound patch. An Olympus type transponder at 20/30 GHz could maintain several thousand simultaneous picoterminal circuits. The possibility of demonstrating a picoterminal network with voice traffic using Olympus is discussed together with fully mobile systems based on this concept.

  19. Simulation of Conformal Spiral Slot Antennas on Composite Platforms

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Nurnberger, M. W.; Ozdemir,T.

    1998-01-01

    During the course of the grant, we wrote and distributed about 12 reports and an equal number of journal papers supported fully or in part by this grant. The list of reports (title & abstract) and papers are given in Appendices A and B. This grant has indeed been instrumental in developing a robust hybrid finite element method for the analysis of complex broadband antennas on doubly curved platforms. Previous to the grant, our capability was limited to simple printed patch antennas on mostly planar platforms. More specifically: (1) mixed element formulations were developed and new edge-based prisms were introduced; (2) these elements were important in permitting flexibility in geometry gridding for most antennas of interest; (3) new perfectly matched absorbers were introduced for mesh truncations associated with highly curved surfaces; (4) fast integral algorithms were introduced for boundary integral truncations reducing CPU time from O(N-2) down to O(N-1.5) or less; (5) frequency extrapolation schemes were developed for efficient broadband performance evaluations. This activity has been successfully continued by NASA researchers; (6) computer codes were developed and extensively tested for several broadband configurations. These include FEMA-CYL, FEMA-PRISM and FEMA-TETRA written by L. Kempel, T. Ozdemir and J. Gong, respectively; (7) a new infinite balun feed was designed nearly constant impedance over the 800-3000 MHz operational band; (8) a complete slot spiral antenna was developed, fabricated and tested at NASA Langley. This new design is a culmination of the projects goals and integrates the computational and experimental efforts. this antenna design resulted in a U.S. patent and was revised three times to achieve the desired bandwidth and gain requirements from 800-3000 MHz.

  20. Extravehicular activity translation arm (EVATA) study

    NASA Technical Reports Server (NTRS)

    Preiswerk, P. R.; Stammreich, J. R.

    1978-01-01

    The preliminary design of a deployable Extravehicular Activity Translation Arm (EVATA) assembly which will allow an EVA crewman to perform tasks in the vicinity of the External TNK (ET) umbilical doors and to inspect most of the underside of the shuttle spacecraft is reported. The concept chosen for the boom structure was the Astro Extendable Support Structure (ESS) which formed the main structure for the Synthetic Aperture Radar (SAR) Antenna System on the SEASAT A spacecraft. This structure is a deployable triangular truss. A comparison of the EVATA and the SEASAT A ESS is shown. The development of status of the ESS is shown. The satellite configuration, the stowed truss load path, and the envelope deployment sequence for the ESS are also shown.

  1. Plasmon Mapping in Au@Ag Nanocube Assemblies

    PubMed Central

    2014-01-01

    Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag core–shell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles. PMID:25067991

  2. Rupture parameters of the 2003 Zemmouri (Mw 6.8), Algeria, earthquake from joint inversion of interferometric synthetic aperture radar, coastal uplift, and GPS

    USGS Publications Warehouse

    Belabbes, S.; Wicks, Charles; Cakir, Z.; Meghraoui, M.

    2009-01-01

    We study the surface deformation associated with the 21 May 2003 (M w = 6.8) Zemmouri (Algeria) earthquake, the strongest seismic event felt in the Algiers region since 1716. The thrust earthquake mechanism and related surface deformation revealed an average 0.50 m coastal uplift along ??55-km-long coastline. We obtain coseismic interferograms using Envisat advanced synthetic aperture radar (ASAR) (IS2) and RADARSAT standard beam (ST4) data from both the ascending and descending orbits of Envisat satellite, whereas the RADARSAT data proved useful only in the descending mode. While the two RADARSAT interferograms cover the earthquake area, Envisat data cover only the western half of the rupture zone. Although the interferometric synthetic aperture radar (InSAR) coherence in the epicenter area is poor, deformation fringes are observed along the coast in different patches. In the Boumerdes area, the maximum coseismic deformation is indicated by the high gradient of fringes visible in all interferograms in agreement with field measurements (tape, differential GPS, leveling, and GPS). To constrain the earthquake rupture parameters, we model the interferograms and uplift measurements using elastic dislocations on triangular fault patches in an elastic and homogeneous half-space. We invert the coseismic slip using first, a planar surface and second, a curved fault, both constructed from triangular elements using Poly3Dinv program that uses a damped least square minimization. The best fit of InSAR, coastal uplift, and GPS data corresponds to a 65-km-long fault rupture dipping 40?? to 50?? SE, located at 8 to 13 km offshore with a change in strike west of Boumerdes from N60??-65?? to N95??-105??. The inferred rupture geometry at depth correlates well with the seismological results and may have critical implications for the seismic hazard assessment of the Algiers region. Copyright 2009 by the American Geophysical Union.

  3. Electromagnetic Scattering from Realistic Targets

    NASA Technical Reports Server (NTRS)

    Lee, Shung- Wu; Jin, Jian-Ming

    1997-01-01

    The general goal of the project is to develop computational tools for calculating radar signature of realistic targets. A hybrid technique that combines the shooting-and-bouncing-ray (SBR) method and the finite-element method (FEM) for the radiation characterization of microstrip patch antennas in a complex geometry was developed. In addition, a hybridization procedure to combine moment method (MoM) solution and the SBR method to treat the scattering of waveguide slot arrays on an aircraft was developed. A list of journal articles and conference papers is included.

  4. A Study of Microwave and Millimeter-Wave Quasi-Optical Planar Mixers.

    DTIC Science & Technology

    1983-08-31

    reasons of symmetry a mode is not excited at all, N goes to infinity and the series impedance at the primary vanishes. Determining the impedance...taken from Araki and Itoh (1]. The primary aim of their work was to calculate the resonanc frequency of a -, circular microstrip patch antenna. They...T11 ALLEVIATE THIS# A TRAO IS PLACED TO SIIUNTITUTE * THE SMALL-ARGUNENT APPftVINATIfI% To THE FUCTION 0WHeW * ARP.I’PRIATE. THE FPLLfljI IF STATENENT

  5. Design of a wearable bio-patch for monitoring patient's temperature.

    PubMed

    Vicente, Jose M; Avila-Navarro, Ernesto; Juan, Carlos G; Garcia, Nicolas; Sabater-Navarro, Jose M

    2016-08-01

    New communication technologies allow us developing useful and more practical medical applications, in particular for ambulatory monitoring. NFC communication has the advantages of low powering and low influence range area, what makes this technology suitable for health applications. This work presents an explanation of the design process of planar NFC antennas in a wearable biopatch. The problem of optimizing the communication distance is addressed. Design of a biopatch for continuous temperature monitoring and experimental results obtained wearing this biopatch during daily activities are presented.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorente-Crespo, M.; Mateo-Segura, C., E-mail: C.Mateo-Segura@hw.ac.uk

    Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.

  7. Quasi-Optical Techniques for Millimeter and Submillimeter-Wave Circuits.

    DTIC Science & Technology

    1981-03-25

    permits non-destructive measurement. The cross section of the IS guide is shown in Fig. 4. We create a notch -type grating in the dielectric strip (rl). Then...the e-igenvalue equation is solved. 1he method was modified to minAlyze .a circular patch radiatlng st ructulre. l’ht, prote dtlrc i s essentIalIv...34Hankel transform domain analysis of open circular microstrip radiating structures," IEEE Trans. Antennas and Propagation, Vol. AP-29, Jan. 1981. 19. T

  8. Parallel CARLOS-3D code development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putnam, J.M.; Kotulski, J.D.

    1996-02-01

    CARLOS-3D is a three-dimensional scattering code which was developed under the sponsorship of the Electromagnetic Code Consortium, and is currently used by over 80 aerospace companies and government agencies. The code has been extensively validated and runs on both serial workstations and parallel super computers such as the Intel Paragon. CARLOS-3D is a three-dimensional surface integral equation scattering code based on a Galerkin method of moments formulation employing Rao- Wilton-Glisson roof-top basis for triangular faceted surfaces. Fully arbitrary 3D geometries composed of multiple conducting and homogeneous bulk dielectric materials can be modeled. This presentation describes some of the extensions tomore » the CARLOS-3D code, and how the operator structure of the code facilitated these improvements. Body of revolution (BOR) and two-dimensional geometries were incorporated by simply including new input routines, and the appropriate Galerkin matrix operator routines. Some additional modifications were required in the combined field integral equation matrix generation routine due to the symmetric nature of the BOR and 2D operators. Quadrilateral patched surfaces with linear roof-top basis functions were also implemented in the same manner. Quadrilateral facets and triangular facets can be used in combination to more efficiently model geometries with both large smooth surfaces and surfaces with fine detail such as gaps and cracks. Since the parallel implementation in CARLOS-3D is at high level, these changes were independent of the computer platform being used. This approach minimizes code maintenance, while providing capabilities with little additional effort. Results are presented showing the performance and accuracy of the code for some large scattering problems. Comparisons between triangular faceted and quadrilateral faceted geometry representations will be shown for some complex scatterers.« less

  9. Attitude determination for small satellites using GPS signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Peters, Daniel

    An embedded system for GPS-based attitude determination (AD) using signal-to-noise (SNR) measurements was developed for CubeSat applications. The design serves as an evaluation testbed for conducting ground based experiments using various computational methods and antenna types to determine the optimum AD accuracy. Raw GPS data is also stored to non-volatile memory for downloading and post analysis. Two low-power microcontrollers are used for processing and to display information on a graphic screen for real-time performance evaluations. A new parallel inter-processor communication protocol was developed that is faster and uses less power than existing standard protocols. A shorted annular patch (SAP) antenna was fabricated for the initial ground-based AD experiments with the testbed. Static AD estimations with RMS errors in the range of 2.5° to 4.8° were achieved over a range of off-zenith attitudes.

  10. Ka-Band Phased Array System Characterization

    NASA Technical Reports Server (NTRS)

    Acosta, R.; Johnson, S.; Sands, O.; Lambert, K.

    2001-01-01

    Phased Array Antennas (PAAs) using patch-radiating elements are projected to transmit data at rates several orders of magnitude higher than currently offered with reflector-based systems. However, there are a number of potential sources of degradation in the Bit Error Rate (BER) performance of the communications link that are unique to PAA-based links. Short spacing of radiating elements can induce mutual coupling between radiating elements, long spacing can induce grating lobes, modulo 2 pi phase errors can add to Inter Symbol Interference (ISI), phase shifters and power divider network introduce losses into the system. This paper describes efforts underway to test and evaluate the effects of the performance degrading features of phased-array antennas when used in a high data rate modulation link. The tests and evaluations described here uncover the interaction between the electrical characteristics of a PAA and the BER performance of a communication link.

  11. Reconfigurable phased antenna array for extending cubesat operations to Ka-band: Design and feasibility

    NASA Astrophysics Data System (ADS)

    Buttazzoni, G.; Comisso, M.; Cuttin, A.; Fragiacomo, M.; Vescovo, R.; Vincenti Gatti, R.

    2017-08-01

    Started as educational tools, CubeSats have immediately encountered the favor of the scientific community, subsequently becoming viable platforms for research and commercial applications. To ensure competitive data rates, some pioneers have started to explore the usage of the Ka-band beside the conventional amateur radio frequencies. In this context, this study proposes a phased antenna array design for Ka-band downlink operations consisting of 8×8 circularly polarized subarrays of microstrip patches filling one face of a single CubeSat unit. The conceived structure is developed to support 1.5 GHz bandwidth and dual-task missions, whose feasibility is verified by proper link budgets. The dual-task operations are enabled by a low-complexity phase-only control algorithm that provides pattern reconfigurability in order to satisfy both orbiting and intersatellite missions, while remaining adherent to the cost-effective CubeSat paradigm.

  12. Wide modulation bandwidth terahertz detection in 130 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Nahar, Shamsun; Shafee, Marwah; Blin, Stéphane; Pénarier, Annick; Nouvel, Philippe; Coquillat, Dominique; Safwa, Amr M. E.; Knap, Wojciech; Hella, Mona M.

    2016-11-01

    Design, manufacturing and measurements results for silicon plasma wave transistors based wireless communication wideband receivers operating at 300 GHz carrier frequency are presented. We show the possibility of Si-CMOS based integrated circuits, in which by: (i) specific physics based plasma wave transistor design allowing impedance matching to the antenna and the amplifier, (ii) engineering the shape of the patch antenna through a stacked resonator approach and (iii) applying bandwidth enhancement strategies to the design of integrated broadband amplifier, we achieve an integrated circuit of the 300 GHz carrier frequency receiver for wireless wideband operation up to/over 10 GHz. This is, to the best of our knowledge, the first demonstration of low cost 130 nm Si-CMOS technology, plasma wave transistors based fast/wideband integrated receiver operating at 300 GHz atmospheric window. These results pave the way towards future large scale (cost effective) silicon technology based terahertz wireless communication receivers.

  13. Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Little, John

    2013-01-01

    Advancements in common aperture antenna technology were employed to utilize its proprietary genetic algorithmbased modeling tools in an effort to develop, build, and test a dual-polarization array for Hurricane Imaging Radiometer (HIRAD) applications. Final program results demonstrate the ability to achieve a lightweight, thin, higher-gain aperture that covers the desired spectral band. NASA employs various passive microwave and millimeter-wave instruments, such as spectral radiometers, for a range of remote sensing applications, from measurements of the Earth's surface and atmosphere, to cosmic background emission. These instruments such as the HIRAD, SFMR (Stepped Frequency Microwave Radiometer), and LRR (Lightweight Rainfall Radiometer), provide unique data accumulation capabilities for observing sea surface wind, temperature, and rainfall, and significantly enhance the understanding and predictability of hurricane intensity. These microwave instruments require extremely efficient wideband or multiband antennas in order to conserve space on the airborne platform. In addition, the thickness and weight of the antenna arrays is of paramount importance in reducing platform drag, permitting greater time on station. Current sensors are often heavy, single- polarization, or limited in frequency coverage. The ideal wideband antenna will have reduced size, weight, and profile (a conformal construct) without sacrificing optimum performance. The technology applied to this new HIRAD array will allow NASA, NOAA, and other users to gather information related to hurricanes and other tropical storms more cost effectively without sacrificing sensor performance or the aircraft time on station. The results of the initial analysis and numerical design indicated strong potential for an antenna array that would satisfy all of the design requirements for a replacement HIRAD array. Multiple common aperture antenna methodologies were employed to achieve exceptional gain over the entire spectral frequency band while exhibiting superb VSWR (voltage standing wave ratio) values. Element size and spacing requirements were addressed for a direct replacement of the thicker, lower-performance, stack ed patch antenna array currently employed for the HIRAD application. Several variants to the multiband arrays were developed that exhibited four, equally spaced, high efficiency, "sweet spot" frequency bands, as well as the option for a high-performance wideband array. The 0.25-in. (˜6.4- mm) thickness of the antenna stack-up itself was achieved through the application of specialized antenna techniques and meta-materials to accomplish all design objectives.

  14. An Alternate Set of Basis Functions for the Electromagnetic Solution of Arbitrarily-Shaped, Three-Dimensional, Closed, Conducting Bodies Using Method of Moments

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.

    2008-01-01

    In this work, we present an alternate set of basis functions, each defined over a pair of planar triangular patches, for the method of moments solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped, closed, conducting surfaces. The present basis functions are point-wise orthogonal to the pulse basis functions previously defined. The prime motivation to develop the present set of basis functions is to utilize them for the electromagnetic solution of dielectric bodies using a surface integral equation formulation which involves both electric and magnetic cur- rents. However, in the present work, only the conducting body solution is presented and compared with other data.

  15. Aerogel Poly(butylene succinate) Biomaterial Substrate for RF and Microwave Applications

    PubMed Central

    Habib Ullah, M.; Mahadi, W. N. L.; Latef, T. A.

    2015-01-01

    Polybutylene succinate (PBS) has become a potential candidate, similar to polypropylene (PP) and acrylonitrile butadiene styrene (ABS), for use as an organic plastic material due to its outstanding mechanical properties as well as high thermal deformation characteristics. A new composition of silica aerogel nanoparticles extracted from rice waste with PBS is proposed for use as a dielectric (εr = 4.5) substrate for microwave applications. A microstrip patch antenna was fabricated on the proposed dielectric substrate for multi-resonant ultra-wideband (UWB) applications. The performance characteristics of the proposed biomaterial-based antenna were investigated in a far-field measurement environment. The results indicate that the proposed biocompatible material-based antenna covered a bandwidth of 9.4 (2.3–11.7) GHz with stop bands from 5.5 GHz to 5.8 GHz and 7.0 GHz to 8.3 GHz. Peak gains of 9.82 dBi, 7.59 dBi, 8.0 dBi and 7.68 dBi were measured at resonant frequencies of 2.7 GHz, 4.6 GHz, 6.3 GHz and 9.5 GHz, respectively. PMID:26238975

  16. CHEM-Based Self-Deploying Spacecraft Radar Antennas

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold; Huang, John; Ghaffarian, Reza

    2004-01-01

    A document proposes self-deploying spacecraft radar antennas based on cold hibernated elastic memory (CHEM) structures. Described in a number of prior NASA Tech Briefs articles, the CHEM concept is one of utilizing open-cell shape-memory-polymer (SMP) foams to make lightweight structures that can be compressed for storage and can later be expanded, then rigidified for use. A CHEM-based antenna according to the proposal would comprise three layers of microstrip patches and transmission lines interspersed with two flat layers of SMP foam, which would serve as both dielectric spacers and as means of deployment. The SMP foam layers would be fabricated at full size at a temperature below the SMP glass-transition temperature (Tg). The layers would be assembled into a unitary structure, which, at temperature above Tg, would be compacted to much smaller thickness, then rolled up for storage. Next, the structure would be cooled to below Tg and kept there during launch. Upon reaching the assigned position in outer space, the structure would be heated above Tg to make it rebound to its original size and shape. The structure as thus deployed would then be rigidified by natural cooling to below Tg

  17. Optically Transparent Split-Ring Antennas for 1 to 10 GHz

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    2007-01-01

    Split-ring antennas made from optically transparent, electrically conductive films have been invented for applications in which there are requirements for compact antennas capable of operation over much or all of the frequency band from 1 to 10 GHz. Primary examples of such applications include wireless local-area networks and industrial, scientific, and medical (ISM) applications. These antennas can be conveniently located on such surfaces as those of automobile windows and display screens of diverse hand-held electronic units. They are fabricated by conventional printed-circuit techniques and can easily be integrated with solid-state amplifier circuits to enhance gain. The structure of an antenna of this type includes an antenna/feed layer supported on the top or outer face of a dielectric (e.g., glass) and, optionally, a ground layer on the bottom or inner face of the substrate. The ring can be in the form of either a conductive strip or a slot in the antenna/feed layer. The ring can be of rectangular, square, circular, elliptical, or other suitable shape and can be excited by means of a microstrip, slot line, or coplanar waveguide. For example, the antenna shown in the figure features a square conductive-strip split ring with a microstrip feed. In general, an antenna fed at its external boundary in the manner of this invention presents very high impedance, thereby creating an impedance-matching problem. Splitting the ring . that is, cutting a notch through the ring . offers a solution to the problem in that the notch fixes the location of maximum electric field, which location is directly related to the impedance. Thus, an excellent impedance match can be achieved through proper choice of the location of the notch. In geometric layout, such a ring antenna structure is typically between 1.4 and 1.3 the size of a patch antenna capable of operating in the same frequency range. This miniaturization of the antenna is desirable, not only because it contributes to overall miniaturization of equipment, but also because minimization of the extent of the optically transparent, electrically conductive film helps to minimize the electrical loss associated with the surface resistance ( 5 ohms per square) of the transparent, electrically conductive film material. Incidentally, even at 5 ohms per square, this surface resistance is significantly less than that of indium tin oxide film (typically > 25 ohms per square), which, heretofore has been the transparent, electrically conductive film material of choice. At the time of writing this article, information on the composition of the lower-resistance film used in the antennas of this invention was not available.

  18. Final results of the Resonance spacecraft calibration effort

    NASA Astrophysics Data System (ADS)

    Sampl, Manfred; Macher, Wolfgang; Gruber, Christian; Oswald, Thomas; Rucker, Helmut O.

    2010-05-01

    We report our dedicated analyses of electrical field sensors onboard the Resonance spacecraft with a focus on the high-frequency electric antennas. The aim of the Resonance mission is to investigate wave-particle interactions and plasma dynamics in the inner magnetosphere of the Earth, with a focus on phenomena occurring along the same field line and within the same flux tube of the Earth's magnetic field. Four spacecraft will be launched, in the middle of the next decade, to perform these observations and measurements. Amongst a variety of instruments and probes several low- and high-frequency electric sensors will be carried which can be used for simultaneous remote sensing and in-situ measurements. The high-frequency electric sensors consist of cylindrical antennas mounted on four booms extruded from the central body of the spacecraft. In addition, the boom rods themselves are used together with the these sensors for mutual impedance measurements. Due to the parasitic effects of the conducting spacecraft body the electrical antenna representations (effective length vector, capacitances) do not coincide with their physical representations. The analysis of the reception properties of these antennas is presented, along with a contribution to the understanding of their impairment by other objects; in particular the influence of large magnetic loop sensors is studied. In order to analyse the antenna system, we applied experimental and numerical methods. The experimental method, called rheometry, is essentially an electrolytic tank measurement, where a scaled-down spacecraft model is immersed into an electrolytic medium (water) with corresponding measurements of voltages at the antennas. The numerical method consists of a numerical solution of the underlying field equations by means of computer programs, which are based on wire-grid and patch-grid models. The experimental and numerical results show that parasitic effects of the antenna-spacecraft assembly alter the antenna properties significantly. The antenna directions and lengths, represented by the "effective length vector" are altered by up to 4 degree in direction and 50% in length, for the quasi-static range. High frequency analyses (up to 40 MHz) illustrate massive antenna pattern changes beyond the quasi-static frequency limit of approximately 1.5 MHz. In addition we found that the magnetic loop sensors tremendously increase the effective lengths and capacitances, depending on their placement on the booms. The antenna calibration results and loop placement findings are of great benefit to the Resonance mission. In particular, goniopolarimetry techniques like polarization analysis and direction finding depend crucially on the effective axes.

  19. New head exposure system for use in human provocation studies with EEG recording during GSM900- and UMTS-like exposure.

    PubMed

    Schmid, Gernot; Cecil, Stefan; Goger, Christoph; Trimmel, Michael; Kuster, Niels; Molla-Djafari, Hamid

    2007-12-01

    A new head exposure system for double blinded human provocation studies, which requires EEG recording during exposure with GSM900- and UMTS-like signals has been developed and dosimetrically evaluated. The system uses planar patch antennas fixed at 65 mm distance from the subject's head by a special headset, which provides minimum impairment of the test subjects and ensures an almost constant position of the antennas with respect to the head, even in case of head movements. Compared to exposure concepts operating small antennas in close proximity to the head, the concept of planar antennas at a certain distance from the head produces a much more homogeneous SAR distribution in the temporal and parietal lobe of the brain. At the same time the resulting uncertainty of exposure due to variations in head size, variations of the dielectric properties of tissues and unavoidable small changes of the antenna's position with respect to the head, is reduced to the order of approximately 3 dB, which is a significant improvement to comparable head exposure systems reported in literature in the past. To avoid electromagnetic interference on the EEG recording caused by the incident RF-field an appropriate double-shielded filter circuit has been developed. Furthermore, the effect of the presence of the sintered Ag/AgCl EEG electrodes and electrode wires on the SAR distribution inside the head has been investigated and was found to be minimal if the electrode wires are arranged orthogonal to the incident electric field vector. EEG electrode arrangement parallel to the incident field vector, however, might cause drastic changes in the SAR distribution inside the head. (c) 2007 Wiley-Liss, Inc.

  20. Micro-Coplanar Striplines: New Transmission Media for Microwave Applications

    NASA Technical Reports Server (NTRS)

    Goverdhanam, Kavita; Simons, Rainee N.; Katehi, Linda P. B.

    1998-01-01

    In this paper a new transmission line for microwave applications, referred to here as the Micro-Coplanar Stripline (MCPS), is introduced. The propagation characteristics, such as, characteristic impedance (Z(sub 0) and effective dielectric constant (epsilon eff) for a range of MCPS geometries have been modeled using the Finite Difference Time Domain (FDTD) Technique and presented here. Also, preliminary experimental results on the performance of an MCP-Microstrip transition and an MCPS-fed patch antenna are presented. The results indicate several potential applications of the MCPS line in microwave integrated circuit technology.

  1. A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields. I - An extended DKT element for thick-plate bending analysis. II - An extended DKQ element for thick-plate bending analysis

    NASA Astrophysics Data System (ADS)

    Katili, Irwan

    1993-06-01

    A new three-node nine-degree-of-freedom triangular plate bending element is proposed which is valid for the analysis of both thick and thin plates. The element, called the discrete Kirchhoff-Mindlin triangle (DKMT), has a proper rank, passes the patch test for thin and thick plates in an arbitrary mesh, and is free of shear locking. As an extension of the DKMT element, a four-node element with 3 degrees of freedom per node is developed. The element, referred to as DKMQ (discrete Kirchhoff-Mindlin quadrilateral) is found to provide good results for both thin and thick plates without any compatibility problems.

  2. New Basis Functions for the Electromagnetic Solution of Arbitrarily-shaped, Three Dimensional Conducting Bodies Using Method of Moments

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.

    2007-01-01

    In this work, we present a new set of basis functions, de ned over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also de ned over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.

  3. New Basis Functions for the Electromagnetic Solution of Arbitrarily-shaped, Three Dimensional Conducting Bodies using Method of Moments

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.

    2008-01-01

    In this work, we present a new set of basis functions, defined over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also defined over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.

  4. Satellite Broadcast of Graphical Weather Data Flight Tested

    NASA Technical Reports Server (NTRS)

    Mallasch, Paul G.

    2000-01-01

    NASA Glenn Research Center at Lewis Field's aviation Weather Information Communications (WINCOMM) and NASA Langley Research Center's Aviation Weather Information (AWIN) programs collaborated in a flight test and evaluation of a worldwide weather data-link capability using satellites. This successful flight testing moves NASA closer to its goal of developing advanced communications and information technologies to enable high-quality and timely dissemination of aviation weather information to all relevant users on the aviation information network. Recognized as a major contributing factor in aviation accidents and incidents, weather contributes directly or indirectly to nearly 80 percent of fatal general aviation (small private aircraft) accidents. In 1997, the Aeronautics Safety Investment Strategy Team s weather team produced a prioritized list of investment areas under weather accident prevention. Weather data dissemination is the most critical and highest ranked priority on the list. NASA's Aviation Safety Program founded the Aviation Weather Information initiative to focus efforts on significantly reducing the number of weather-related aviation fatalities. Access to accurate and timely weather data could contribute to a major reduction of weather-related incidents and accidents. However, a cost-effective solution has eluded most general aviation pilots because of the high cost of onboard weather radar equipment. Rockwell Collins, through a contract with NASA and in cooperation with WorldSpace Corporation, successfully completed ground and flight testing of a receiver and antenna in Johannesburg, South Africa. This NASA/Rockwell Collins project is an evaluation of worldwide weather data-link capability using transmissions from the Satellite Digital Audio Radio Services (S DARS) AfriStar satellite. Owned and operated by WorldSpace, AfriStar is a geostationary satellite that broadcasts commercial digital audio services to stationary and mobile platforms. S DARS satellites are the most powerful communications satellites produced to date, allowing users to receive signals using simple, low-cost patch antennas instead of more expensive, beam-steered antenna arrays. Engineers connected an inexpensive, commercially available radio receiver to a laptop computer and an antenna designed and built by Rockwell Collins, enabling them to receive WorldSpace signals from the AfriStar satellite during flight tests. WorldSpace broadcast their composite color graphical weather data files, which were multiplexed with normal audio streams, to the flat patch antenna mounted on a single-engine aircraft. The aircraft was equipped with a modified commercial S-DARS receiver, a Global Positioning Satellite (GPS) receiver, and a laptop computer with color display. Continuous data reception occurred during normal aircraft maneuvers performed throughout takeoff, cruise, and landing operations. In addition, engineers monitored receiver power levels during steep turns and banks. In most instances, the receiver was able to maintain acceptable power levels during all phases of flight and to obtain weather data with little or with the successful completion of ground and flight testing of a receiver and antenna in Johannesburg, South Africa, the team has started to prepare for experiments using highspeed aircraft in areas of the world with limited access to timely weather data. NASA plans to provide a more advanced antenna design and consultation support. This successful test of real-time aviation-related weather data is a positive step toward solving communications-specific issues associated with the dissemination of weather data directly to the cockpit.

  5. Indoor radio channel modeling and mitigation of fading effects using linear and circular polarized antennas in combination for smart home system at 868 MHz

    NASA Astrophysics Data System (ADS)

    Wunderlich, S.; Welpot, M.; Gaspard, I.

    2014-11-01

    The markets for smart home products and services are expected to grow over the next years, driven by the increasing demands of homeowners considering energy monitoring, management, environmental controls and security. Many of these new systems will be installed in existing homes and offices and therefore using radio based systems for cost reduction. A drawback of radio based systems in indoor environments are fading effects which lead to a high variance of the received signal strength and thereby to a difficult predictability of the encountered path loss of the various communication links. For that reason it is necessary to derive a statistical path loss model which can be used to plan a reliable and cost effective radio network. This paper presents the results of a measurement campaign, which was performed in six buildings to deduce realistic radio channel models for a high variety of indoor radio propagation scenarios in the short range devices (SRD) band at 868 MHz. Furthermore, a potential concept to reduce the variance of the received signal strength using a circular polarized (CP) patch antenna in combination with a linear polarized antenna in an one-to-one communication link is presented.

  6. The role of geometry in nanoscale rectennas for rectification and energy conversion

    NASA Astrophysics Data System (ADS)

    Miskovsky, N. M.; Cutler, P. H.; Mayer, A.; Willis, B. G.; Zimmerman, D. T.; Weisel, G. J.; Chen, James M.; Sullivan, T. E.; Lerner, P. B.

    2013-09-01

    We have previously presented a method for optical rectification that has been demonstrated both theoretically and experimentally and can be used for the development of a practical rectification and energy conversion device for the electromagnetic spectrum including the visible portion. This technique for optical frequency rectification is based, not on conventional material or temperature asymmetry as used in MIM or Schottky diodes, but on a purely geometric property of the antenna tip or other sharp edges that may be incorporated on patch antennas. This "tip" or edge in conjunction with a collector anode providing connection to the external circuit constitutes a tunnel junction. Because such devices act as both the absorber of the incident radiation and the rectifier, they are referred to as "rectennas." Using current nanofabrication techniques and the selective Atomic Layer Deposition (ALD) process, junctions of 1 nm can be fabricated, which allow for rectification of frequencies up to the blue portion of the spectrum (see Section 2).

  7. Fast switching wideband rectifying circuit for future RF energy harvesting

    NASA Astrophysics Data System (ADS)

    Asmeida, Akrem; Mustam, Saizalmursidi Md; Abidin, Z. Z.; Ashyap, A. Y. I.

    2017-09-01

    This paper presents the design and simulation of fast switching microwave rectifying circuit for ultra wideband patch antenna over a dual-frequency band (1.8 GHz for GSM and 2.4 GHz for ISM band). This band was chosen due to its high signal availability in the surrounding environment. New rectifying circuit topology with pair-matching trunks is designed using Advanced Design System (ADS) software. These trunks are interfaced with power divider to achieve good bandwidth, fast switching and high efficiency. The power divider acts as a good isolator between the trunks and its straightforward design structure makes it a good choice for a single feed UWB antenna. The simulated results demonstrate that the maximum output voltage is 2.13 V with an input power of -5 dBm. Moreover, the rectifier offers maximum efficiency of 86% for the input power of -5 dBm at given band, which could easily power up wireless sensor networks (WSN) and other small devices sufficiently.

  8. Dielectric Covered Planar Antennas at Submillimeter Wavelengths for Terahertz Imaging

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Gill, John J.; Skalare, Anders; Lee, Choonsup; Llombart, Nuria; Siegel, Peter H.

    2011-01-01

    Most optical systems require antennas with directive patterns. This means that the physical area of the antenna will be large in terms of the wavelength. When non-cooled systems are used, the losses of microstrip or coplanar waveguide lines impede the use of standard patch or slot antennas for a large number of elements in a phased array format. Traditionally, this problem has been solved by using silicon lenses. However, if an array of such highly directive antennas is to be used for imaging applications, the fabrication of many closely spaced lenses becomes a problem. Moreover, planar antennas are usually fed by microstrip or coplanar waveguides while the mixer or the detector elements (usually Schottky diodes) are coupled in a waveguide environment. The coupling between the antenna and the detector/ mixer can be a fabrication challenge in an imaging array at submillimeter wavelengths. Antennas excited by a waveguide (TE10) mode makes use of dielectric superlayers to increase the directivity. These antennas create a kind of Fabry- Perot cavity between the ground plane and the first layer of dielectric. In reality, the antenna operates as a leaky wave mode where a leaky wave pole propagates along the cavity while it radiates. Thanks to this pole, the directivity of a small antenna is considerably enhanced. The antenna consists of a waveguide feed, which can be coupled to a mixer or detector such as a Schottky diode via a standard probe design. The waveguide is loaded with a double-slot iris to perform an impedance match and to suppress undesired modes that can propagate on the cavity. On top of the slot there is an air cavity and on top, a small portion of a hemispherical lens. The fractional bandwidth of such antennas is around 10 percent, which is good enough for heterodyne imaging applications.The new geometry makes use of a silicon lens instead of dielectric quarter wavelength substrates. This design presents several advantages when used in the submillimeter-wave and terahertz bands: a) Antenna fabrication compatible with lithographic techniques. b) Much simpler fabrication of the lens. c) A simple quarter-wavelength matching layer of the lens will be more efficient if a smaller portion of the lens is used. d) The directivity is given by the lens diameter instead of the leaky pole (the bandwidth will not depend anymore on the directivity but just on the initial cavity). The feed is a standard waveguide, which is compatible with proven Schottky diode mixer/detector technologies. The development of such technology will benefit applications where submillimeter- wave heterodyne array designs are required. The main fields are national security, planetary exploration, and biomedicine. For national security, wideband submillimeter radars could be an effective tool for the standoff detection of hidden weapons or bombs concealed by clothing or packaging. In the field of planetary exploration, wideband submillimeter radars can be used as a spectrometer to detect trace concentrations of chemicals in atmospheres that are too cold to rely on thermal imaging techniques. In biomedicine, an imaging heterodyne system could be helpful in detecting skin diseases.

  9. Recent technical advances in general purpose mobile Satcom aviation terminals

    NASA Technical Reports Server (NTRS)

    Sydor, John T.

    1990-01-01

    A second general aviation amplitude companded single sideband (ACSSB) aeronautical terminal was developed for use with the Ontario Air Ambulance Service (OAAS). This terminal is designed to have automatic call set up and take down and to interface with the Public Service Telephone Network (PSTN) through a ground earth station hub controller. The terminal has integrated RF and microprocessor hardware which allows such functions as beam steering and automatic frequency control to be software controlled. The terminal uses a conformal patch array system to provide almost full azimuthal coverage. Antenna beam steering is executed without relying on aircraft supplied orientation information.

  10. The nature of the ionised nebula surrounding the red supergiant W26

    NASA Astrophysics Data System (ADS)

    Wesson, Roger

    2015-08-01

    The red supergiant W26 in the massive star cluster Westerlund 1 is surrounded by a compact ionised nebula. This is unique among RSGs, and the excitation mechanism of the nebula is not yet known - it may be ionised by an unseen compact companion, or by a nearby blue supergiant. We present new observations of the nebula: high resolution spatially resolved spectra taken with FLAMES at the VLT show that the nebula is a ring, with velocities consistent with that expected for red supergiant ejecta, and ruling out the possibility of a Luminous Blue Variable-type eruption preceding the RSG phase as the origin of the nebula. A triangular patch of nebulosity outside the ring appears to be associated with W26, and may be material stripped from the expanding ring by the cumulative cluster wind and radiation field.

  11. User's Manual for FEMOM3DR. Version 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.

    1998-01-01

    FEMoM3DR is a computer code written in FORTRAN 77 to compute radiation characteristics of antennas on 3D body using combined Finite Element Method (FEM)/Method of Moments (MoM) technique. The code is written to handle different feeding structures like coaxial line, rectangular waveguide, and circular waveguide. This code uses the tetrahedral elements, with vector edge basis functions for FEM and triangular elements with roof-top basis functions for MoM. By virtue of FEM, this code can handle any arbitrary shaped three dimensional bodies with inhomogeneous lossy materials; and due to MoM the computational domain can be terminated in any arbitrary shape. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computers on which the code is intended to run.

  12. Time Domain Simulations of Arm Locking in LISA

    NASA Technical Reports Server (NTRS)

    Thorpe, J. I.; Maghami, P.; Livas, Jeff

    2011-01-01

    Arm locking is a technique that has been proposed for reducing laser frequency fluctuations in the Laser Interferometer Space Antenna (LISA). a gravitational-wave observatory sensitive' in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that comprise LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of arm locking including the expected limiting noise sources (shot noise, clock noise. spacecraft jitter noise. and residual laser frequency noise). The effect of imperfect a priori knowledge of the LISA heterodyne frequencies and associated "pulling" of an arm locked laser is included. We find that our implementation meets requirements both on the noise and dynamic range of the laser frequency.

  13. Fabrication of three-dimensional millimeter-height structures using direct ultraviolet lithography on liquid-state photoresist for simple and fast manufacturing

    NASA Astrophysics Data System (ADS)

    Kim, Jungkwun; Yoon, Yong-Kyu

    2015-07-01

    A rapid three-dimensional (3-D) ultraviolet (UV) lithography process for the fabrication of millimeter-tall high aspect ratio complex structures is presented. The liquid-state negative-tone photosensitive polyurethane, LF55GN, has been directly photopatterned using multidirectionally projected UV light for 3-D micropattern formation. The proposed lithographic scheme enabled us to overcome the maximum height obtained with a photopatternable epoxy, SU8, which has been conventionally most commonly used for the fabrication of tall and high aspect ratio microstructures. Also, the fabrication process time has been significantly reduced by eliminating photoresist-baking steps. Computer-controlled multidirectional UV lithography has been employed to fabricate 3-D structures, where the UV-exposure substrate is dynamically tilt-rotating during UV exposure to create various 3-D ray traces in the polyurethane layer. LF55GN has been characterized to provide feasible fabrication conditions for the multidirectional UV lithography. Very tall structures including a 6-mm tall triangular slab and a 5-mm tall hexablaze have been successfully fabricated. A 4.5-mm tall air-lifted polymer-core bowtie monopole antenna, which is the tallest monopole structure fabricated by photolithography and subsequent metallization, has been successfully demonstrated. The antenna shows a resonant radiation frequency of 12.34 GHz, a return loss of 36 dB, and a 10 dB bandwidth of 7%.

  14. NASA Tech Briefs, June 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics covered include: Apparatus Characterizes Transient Voltages in Real Time; Measuring Humidity in Sealed Glass Encasements; Adaptable System for Vehicle Health and Usage Monitoring; Miniature Focusing Time-of-Flight Mass Spectrometer; Cryogenic High-Sensitivity Magnetometer; Wheel Electrometer System; Carbon-Nanotube Conductive Layers for Thin-Film Solar Cells; Patch Antenna Fed via Unequal-Crossed-Arm Aperture; LC Circuits for Diagnosing Embedded Piezoelectric Devices; Nanowire Thermoelectric Devices; Code for Analyzing and Designing Spacecraft Power System Radiators; Decision Support for Emergency Operations Centers; NASA Records Database; Real-Time Principal- Component Analysis; Fuzzy/Neural Software Estimates Costs of Rocket- Engine Tests; Multicomponent, Rare-Earth-Doped Thermal-Barrier Coatings; Reactive Additives for Phenylethynyl-Containing Resins; Improved Gear Shapes for Face Worm Gear Drives; Alternative Way of Shifting Mass to Move a Spherical Robot; Parylene C as a Sacrificial Material for Microfabrication; In Situ Electrochemical Deposition of Microscopic Wires; Improved Method of Manufacturing SiC Devices; Microwave Treatment of Prostate Cancer and Hyperplasia; Ferroelectric Devices Emit Charged Particles and Radiation; Dusty-Plasma Particle Accelerator; Frozen-Plug Technique for Liquid-Oxygen Plumbing; Shock Waves in a Bose-Einstein Condensate; Progress on a Multichannel, Dual-Mixer Stability Analyzer; Development of Carbon- Nanotube/Polymer Composites; Thermal Imaging of Earth for Accurate Pointing of Deep-Space Antennas; Modifications of a Composite-Material Combustion Chamber; Modeling and Diagnostic Software for Liquefying- Fuel Rockets; and Spacecraft Antenna Clusters for High EIRP.

  15. A Micro Satellite Communication System Architecture

    NASA Astrophysics Data System (ADS)

    Fragale, Francesco; Boccia, Luigi

    2002-01-01

    In 2000 the European Space Agency's (ESA) Office for Educational Project Outreach Activities has started the Student Space Exploration &Technology Initiative (SSETI). The main objective of this project is to construct and to launch a microsatellite developed by a network of European students. The microsatellite will be mainly used to transmit pictures of the space to earth, to perform plasma experiments and to test all the subsystems for further missions. The data transfer from on-board the satellite to the ground station will be ensued through an innovative communication system composed of two different channels alternatively used to built a connection with the earth. A low data rate channel has to be activated to download telemetry and upload telecommand during the stabilisation mode or when the satellite is not visible from the earth. During the microsatellite nominal operation mode, pictures and data of scientific interest have to be sent from space to the ground station through an additional high data rate channel. As the satellite operation mode changes, a switching system optimizes the onboard power budget selecting the most convenient option between a directive and an omnidirectional antenna, designed to implement the high and low data rate channels respectively. The low gain channel uses two circular polarised patches while a 2x2 microstrip array has been chosen for realising the high rate communication link. Both the antennas are low profile radiators and they have been designed to be conformally mounted onto the microsatellite surface. Prototypes of the two antennas have been realised and tested. A description of the antenna's design process will be given together with a review of the entire system architecture rationale.

  16. Multi-band reflector antenna with double-ring element frequency selective subreflector

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao; Lee, S. W.

    1993-01-01

    Frequency selective subreflectors (FSS) are often employed in the reflector antenna system of a communication satellite or a deep space exploration vehicle for multi-frequency operations. In the past, FSS's have been designed for diplexing two frequency bands. For example, the Voyager FSS was designed to diplex S and X bands and the TDRSS FSS was designed to diplex S and Ku bands. Recently, NASA's CASSINI project requires an FSS to multiplex four frequency (S/X/Ku/Ka) bands. Theoretical analysis and experimental verifications are presented for a multi-band flat pannel FSS with double-ring elements. Both the exact formulation and the thin-ring approximation are described for analyzing and designing this multi-ring patch element FSS. It is found that the thin-ring approximation fails to predict the electrically wide ring element FSS's performance. A single screen double-ring element FSS is demonstrated for the tri-band system that reflects the X-band signal while transmitting through the S- and Ku-band signals. In addition, a double screen FSS with non-similar double-ring elements is presented for the Cassini's four-band system which reflects the X- and Ka-band signals while passing the S- and Ku-band signals. To accurately predict the FSS effects on a dual reflector antenna's radiation pattern, the FSS subreflector's transmitted/reflected field variation as functions of the polarization and incident angles with respect to the local coordinates was taken into account. An FSS transmission/reflection coefficient table is computed for TE and TM polarizations at various incident angles based on the planar FSS model. Next, the hybrid Geometric Optics (GO) and Physical Optics (PO) technique is implemented with linearly interpolating the FSS table to efficiently determine the FSS effects in a dual reflector antenna.

  17. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-12-01

    This Chandra image shows the central regions of two colliding galaxies known collectively as the Antennae (NGC-4038/4039). The dozens of bright pointy-like sources are neutron stars or black holes pulling gas off nearby stars. The bright fuzzy patches are multimillion degree gas superbubbles, thousands of light years in diameter that were produced by the accumulated power of thousands of supernovae. The remaining glow of x-ray emission could be due to many faint x-ray sources or to clouds of hot gas in the galaxies. About 60 million light years from Earth in the constellation Corvus, the Antennae Galaxies got their nickname from the wispy anntennae-like streams of gas as seen by optical telescopes. These ongoing wisps are believed to have been produced approximately 100 million years ago by the collision between the galaxies. Although it is rare for stars to hit each other during a galactic collision, clouds of dust and gas do collide. Compression of these clouds can lead to the rebirth of millions of stars, and a few million years later, to thousands of supernovae.

  18. Electric-field distribution near rectangular microstrip radiators for hyperthermia heating: theory versus experiment in water.

    PubMed

    Underwood, H R; Peterson, A F; Magin, R L

    1992-02-01

    A rectangular microstrip antenna radiator is investigated for its near-zone radiation characteristics in water. Calculations of a cavity model theory are compared with the electric-field measurements of a miniature nonperturbing diode-dipole E-field probe whose 3 mm tip was positioned by an automatic three-axis scanning system. These comparisons have implications for the use of microstrip antennas in a multielement microwave hyperthermia applicator. Half-wavelength rectangular microstrip patches were designed to radiate in water at 915 MHz. Both low (epsilon r = 10) and high (epsilon r = 85) dielectric constant substrates were tested. Normal and tangential components of the near-zone radiated electric field were discriminated by appropriate orientation of the E-field probe. Low normal to transverse electric-field ratios at 3.0 cm depth indicate that the radiators may be useful for hyperthermia heating with an intervening water bolus. Electric-field pattern addition from a three-element linear array of these elements in water indicates that phase and amplitude adjustment can achieve some limited control over the distribution of radiated power.

  19. A compact dual band MIMO PIFA for 5G applications

    NASA Astrophysics Data System (ADS)

    Rachakonda, A.; Bang, P.; Mudiganti, J.

    2017-11-01

    5G applications support operations in 28, 37, 60 and 73GHz bands and is expected to support 1GHz bandwidth. In the present paper, planar inverted F antenna for 28GHz operation has been proposed for 5G applications for which a return loss of -17.46dB and a gain of 9.30dB have been observed. In addition, the design has been extended for dual band operation at 28 and 37GHz by implementing an L slot in the patch. An excellent return loss of -32.54dB and -18.57dB with a gain of 8.62dB has been observed. Moreover, a feasible bandwidth of 1.02GHz has been obtained in former design, while an enhanced bandwidth of 1.3GHz has been obtained at both bands in case of latter design. However, for better gain & data rate considerations, the previous design has been extended as a MIMO configuration with 2 antenna elements (2x1) and corresponding performance parameters have been evaluated.

  20. Electrostatic Evaluation of the ARES I FTS Antenna Materials

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Calle, Carlos I.

    2010-01-01

    Surface resistivity and volume resistivity data show all the tested non-metallic materials of the Ares I FTS antenna assembly to be insulative. The external materials (White foam, phenolic) should be able to develop a large surface charge density upon tribocharging with ice crystal impingement. Dielectric breakdown tests on the FTS antenna housing materials show that each of the insulative materials are very resistive to electrical breakdown. The thicknesses of these materials in a nominal housing should protect the antenna from direct breakdown from external triboelectric charging potentials. Per data from the Air Force study, a maximum external electric potential in the range of 100kV can be developed on surfaces tribocharged by ice crystal impingement. Testing showed that under operational pressure ranges, this level of exterior voltage can result in a potential of about 6 kV induced on the electrically floating interior antenna vanes. Testing the vanes up to this voltage level showed that electrostatic discharges can occur between the electrically floating vanes and the center, grounded screw heads. Repeated tests with multiple invisible and visible discharges caused only superficial physical damage to the vanes. Fourier analysis of the discharge signals showed that the frequency range of credible discharges would not interfere with the nominal operation of the FTS antenna. However, due to the limited scope, short timetable, and limited funding of this study, a direct measurement of the triboelectric charge that could be generated on the Ares I antenna housing when the rocket traverses an ice cloud at supersonic speeds was not performed. Instead, data for the limited Air Force study [3] was used as input for our experiments. The Air Force data used was not collected with a sensor located to provide us with the best approximation at the geometry of the Ares I rocket, namely that of the windshield electrometer, because brush discharges to the metal frame of the windshield periodically depleted any charge accumulated. The configuration of the Ares I antenna assembly does not include any exposed metals in the vicinity and the windshield data could not be used. Since the windshield sensor data was unusable, we decided that the Patch 2 location would provide us with a rough approximation to the Ares I antenna configuration and would give us an indication of the possible charging levels that would develop. This was the data that we used in this study. Whether these charging levels would be of the same order of magnitude as the actual charges developed by the Ares I traversing a cloud with ice particles is at this point unknown. An actual experimental test, requiring the acquisition of additional instrumentation, is strongly advised before a final recommendation can be formulated regarding the safe levels of electrostatic charging on the antenna housing. Thus the results of this study should be considered to be preliminary.

  1. Electromagnetic interference reduction using electromagnetic bandgap structures in packages, enclosures, cavities, and antennas

    NASA Astrophysics Data System (ADS)

    Mohajer Iravani, Baharak

    Electromagnetic interference (EMI) is a source of noise problems in electronic devices. The EMI is attributed to coupling between sources of radiation and components placed in the same media such as package or chassis. This coupling can be either through conducting currents or through radiation. The radiation of electromagnetic (EM) fields is supported by surface currents. Thus, minimizing these surface currents is considered a major and critical step to suppress EMI. In this work, we present novel strategies to confine surface currents in different applications including packages, enclosures, cavities, and antennas. The efficiency of present methods of EM noise suppression is limited due to different drawbacks. For example, the traditional use of lossy materials and absorbers suffers from considerable disadvantages including mechanical and thermal reliability leading to limited life time, cost, volume, and weight. In this work, we consider the use of Electromagnetic Band Gap (EBG) structures. These structures are suitable for suppressing surface currents within a frequency band denoted as the bandgap. Their design is straight forward, they are inexpensive to implement, and they do not suffer from the limitations of the previous methods. A new method of EM noise suppression in enclosures and cavity-backed antennas using mushroom-type EBG structures is introduced. The effectiveness of the EBG as an EMI suppresser is demonstrated using numerical simulations and experimental measurements. To allow integration of EBGs in printed circuit boards and packages, novel miniaturized simple planar EBG structures based on use of high-k dielectric material (epsilonr > 100) are proposed. The design consists of meander lines and patches. The inductive meander lines serve to provide current continuity bridges between the capacitive patches. The high-k dielectric material increases the effective capacitive load substantially in comparison to commonly used material with much lower dielectric constant. Meander lines can increase the effective inductive load which pushes down the lower edge of bandgap, thus resulting in a wider bandgap. Simulation results are included to show that the proposed EBG structures provide very wide bandgap (˜10GHz) covering the multiple harmonics of of currently available microprocessors and its harmonics. To speed up the design procedure, a model based on combination of lumped elements and transmission lines is proposed. The derived model predicts accurately the starting edge of bandgap. This result is verified with full-wave analysis. Finally, another novel compact wide band mushroom-type EBG structure using magneto-dielectric materials is designed. Numerical simulations show that the proposed EBG structure provides in-phase reflection bandgap which is several times greater than the one obtained from a conventional EBG operating at the same frequency while its cell size is smaller. This type of EBG structure can be used efficiently as a ground plane for low-profile wideband antennas.

  2. New similarity of triangular fuzzy number and its application.

    PubMed

    Zhang, Xixiang; Ma, Weimin; Chen, Liping

    2014-01-01

    The similarity of triangular fuzzy numbers is an important metric for application of it. There exist several approaches to measure similarity of triangular fuzzy numbers. However, some of them are opt to be large. To make the similarity well distributed, a new method SIAM (Shape's Indifferent Area and Midpoint) to measure triangular fuzzy number is put forward, which takes the shape's indifferent area and midpoint of two triangular fuzzy numbers into consideration. Comparison with other similarity measurements shows the effectiveness of the proposed method. Then, it is applied to collaborative filtering recommendation to measure users' similarity. A collaborative filtering case is used to illustrate users' similarity based on cloud model and triangular fuzzy number; the result indicates that users' similarity based on triangular fuzzy number can obtain better discrimination. Finally, a simulated collaborative filtering recommendation system is developed which uses cloud model and triangular fuzzy number to express users' comprehensive evaluation on items, and result shows that the accuracy of collaborative filtering recommendation based on triangular fuzzy number is higher.

  3. A 24-GHz portable FMCW radar with continuous beam steering phased array (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Peng, Zhengyu; Li, Changzhi

    2017-05-01

    A portable 24-GHz frequency-modulated continuous-wave (FMCW) radar with continuous beam steering phased array is presented. This board-level integrated radar system consists of a phased array antenna, a radar transceiver and a baseband. The phased array used by the receiver is a 4-element linear array. The beam of the phased array can be continuously steered with a range of ±30° on the H-plane through an array of vector controllers. The vector controller is based on the concept of vector sum with binary-phase-shift attenuators. Each vector controller is capable of independently controlling the phase and the amplitude of each element of the linear array. The radar transceiver is based on the six-port technique. A free-running voltage controlled oscillator (VCO) is controlled by an analog "sawtooth" voltage generator to produce frequency-modulated chirp signal. This chirp signal is used as the transmitter signal, as well as the local oscillator (LO) signal to drive the six-port circuit. The transmitter antenna is a single patch antenna. In the baseband, the beat signal of the FMCW radar is detected by the six-port circuit and then processed by a laptop in real time. Experiments have been performed to reveal the capabilities of the proposed radar system for applications including indoor inverse synthetic aperture radar (ISAR) imaging, vital sign detection, and short-range navigation, etc. (This abstract is for the profiles session.)

  4. Implementation of a Novel Low-Cost Low-Profile Ku-Band Antenna Array for Single Beam Steering from Space

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2013-01-01

    Phased array antennas afford many advantages over traditional reflector antennas due to their conformality, high aperture efficiency, and unfettered beam steering capability at the price of increased cost and complexity. This paper eliminates the complex and costly array backend via the implementation of a series fed array employing a propagation constant reconfigurable transmission line connecting each element in series. Scanning can then be accomplished through one small (less than or equal to 100mil) linear motion that controls propagation constant. Specifically, each element is fed via a reconfigurable coplanar stripline transmission line with a tapered dielectric insert positioned between the transmission line traces. The dielectric insert is allowed to move up and down to control propagation constant and therefore induce scanning. We present a 20 element patch array design, scanning from -25 deg. less than or equal to theta less than or equal to 21 deg. at 13GHz. Measurements achieve only10.5 deg. less than or equal to theta less than or equal to 22 deg. scanning due to a faulty, yet correctable, manufacturing process. Beam squint is measured to be plus or minus 3 deg. for a 600MHz bandwidth. This prototype was improved to give scanning of 3.5 deg. less than or equal to theta less than or equal to 22 deg. Cross-pol patterns were shown to be -15dB below the main beam. Simulations accounting for fabrication errors match measured patterns, thus validating the designs.

  5. An algorithm for propagating the square-root covariance matrix in triangular form

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Choe, C. Y.

    1976-01-01

    A method for propagating the square root of the state error covariance matrix in lower triangular form is described. The algorithm can be combined with any triangular square-root measurement update algorithm to obtain a triangular square-root sequential estimation algorithm. The triangular square-root algorithm compares favorably with the conventional sequential estimation algorithm with regard to computation time.

  6. Antenna analysis using neural networks

    NASA Technical Reports Server (NTRS)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern shaping. The interesting thing about D-C synthesis is that the side lobes have the same amplitude. Five-element arrays were used. Again, 41 pattern samples were used for the input. Nine actual D-C patterns ranging from -10 dB to -30 dB side lobe levels were used to train the network. A comparison between simulated and actual D-C techniques for a pattern with -22 dB side lobe level is shown. The goal for this research was to evaluate the performance of neural network computing with antennas. Future applications will employ the backpropagation training algorithm to drastically reduce the computational complexity involved in performing EM compensation for surface errors in large space reflector antennas.

  7. Antenna analysis using neural networks

    NASA Astrophysics Data System (ADS)

    Smith, William T.

    1992-09-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary).

  8. Triangular arbitrage in the foreign exchange market

    NASA Astrophysics Data System (ADS)

    Aiba, Yukihiro; Hatano, Naomichi

    2004-12-01

    We first review our previous work, showing what is the triangular arbitrage transaction and how to quantify the triangular arbitrage opportunity. Next we explain that the correlation of the foreign exchange rates can appear without actual triangular arbitrage transaction.

  9. NASA Hubble Sees Sparring Antennae Galaxies

    NASA Image and Video Library

    2013-11-15

    The NASA/ESA Hubble Space Telescope has snapped the best ever image of the Antennae Galaxies. Hubble has released images of these stunning galaxies twice before, once using observations from its Wide Field and Planetary Camera 2 (WFPC2) in 1997, and again in 2006 from the Advanced Camera for Surveys (ACS). Each of Hubble’s images of the Antennae Galaxies has been better than the last, due to upgrades made during the famous servicing missions, the last of which took place in 2009. The galaxies — also known as NGC 4038 and NGC 4039 — are locked in a deadly embrace. Once normal, sedate spiral galaxies like the Milky Way, the pair have spent the past few hundred million years sparring with one another. This clash is so violent that stars have been ripped from their host galaxies to form a streaming arc between the two. In wide-field images of the pair the reason for their name becomes clear — far-flung stars and streamers of gas stretch out into space, creating long tidal tails reminiscent of antennae. This new image of the Antennae Galaxies shows obvious signs of chaos. Clouds of gas are seen in bright pink and red, surrounding the bright flashes of blue star-forming regions — some of which are partially obscured by dark patches of dust. The rate of star formation is so high that the Antennae Galaxies are said to be in a state of starburst, a period in which all of the gas within the galaxies is being used to form stars. This cannot last forever and neither can the separate galaxies; eventually the nuclei will coalesce, and the galaxies will begin their retirement together as one large elliptical galaxy. This image uses visible and near-infrared observations from Hubble’s Wide Field Camera 3 (WFC3), along with some of the previously-released observations from Hubble’s Advanced Camera for Surveys (ACS). Credit: NASA/European Space Agency NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Triangular prismatic solid-shell element with generalised deformation description

    NASA Astrophysics Data System (ADS)

    Mataix, Vicente; Flores, Fernando G.; Rossi, Riccardo; Oñate, Eugenio

    2018-01-01

    The solid-shells are an attractive kind of element for the simulation of f orming processes, due to the fact that any kind of generic 3D constitutive law can be employed without any kind of additional modification, besides the thermomechanic problem is formulated without additional assumptions. Additionally, this type of element allows the three-dimensional description of the deformable body, thus contact on both sides of the element can be treated easily. The present work consists in the development of a triangular prism element as a solid-shell, for the analysis of thin/thick shell, undergoing large deformations. The element is formulated in total Lagrangian formulation, and employs the neighbour (adjacent) elements to perform a local patch to enrich the displacement field. In the original formulation by Flores, a modified right Cauchy-Green deformation tensor (?) is obtained; in the present work a modified deformation gradient (?) is obtained, which allows to generalise the methodology and allows to employ a wide range of constitutive laws. The element is based in three modifications: (a) a classical assumed strain approach for transverse shear strains (b) an assumed strain approach for the in-plane components using information from neighbour elements and (c) an averaging of the volumetric strain over the element. The objective is to use this type of elements for the simulation of shells avoiding transverse shear locking, improving the membrane behaviour of the in-plane triangle and to handle quasi-incompressible materials or materials with isochoric plastic flow. Some examples have been evaluated to show the good performance of the element and results.

  11. On some labelings of triangular snake and central graph of triangular snake graph

    NASA Astrophysics Data System (ADS)

    Agasthi, P.; Parvathi, N.

    2018-04-01

    A Triangular snake Tn is obtained from a path u 1 u 2 … u n by joining ui and u i+1 to a new vertex wi for 1≤i≤n‑1. A Central graph of Triangular snake C(T n ) is obtained by subdividing each edge of Tn exactly once and joining all the non adjacent vertices of Tn . In this paper the ways to construct square sum, square difference, Root Mean square, strongly Multiplicative, Even Mean and Odd Mean labeling for Triangular Snake and Central graph of Triangular Snake graphs are reported.

  12. A far-field radio-frequency experimental exposure system with unrestrained mice.

    PubMed

    Hansen, Jared W; Asif, Sajid; Singelmann, Lauren; Khan, Muhammad Saeed; Ghosh, Sumit; Gustad, Tom; Doetkott, Curt; Braaten, Benjamin D; Ewert, Daniel L

    2015-01-01

    Many studies have been performed on exploring the effects of radio-frequency (RF) energy on biological function in vivo. In particular, gene expression results have been inconclusive due, in part, to a lack of a standardized experimental procedure. This research describes a new far field RF exposure system for unrestrained murine models that reduces experimental error. The experimental procedure includes the materials used, the creation of a patch antenna, the uncertainty analysis of the equipment, characterization of the test room, experimental equipment used and setup, power density and specific absorption rate experiment, and discussion. The result of this research is an experimental exposure system to be applied to future biological studies.

  13. Tactically Extensible and Modular Communications X-Band TEMCOM-X

    NASA Technical Reports Server (NTRS)

    Sims, William H.

    2015-01-01

    This paper will discuss a CubeSat size (3U) telemetry system concept being developed at Marshall Space Flight Center (MSFC) in cooperation with the U.S. Department of the Army and Dynetics Corporation. This telemetry system incorporates efficient, high-bandwidth communications by developing flight-ready, low-cost, Proto-flight software defined radio (SDR) and Electronically Steerable Patch Array (ESPA) antenna subsystems for use on platforms as small as CubeSats and unmanned aircraft systems (UASs). Higher bandwidth capacity will enable high-volume, low error-rate data transfer to and from tactical forces or sensors operating in austere locations (e.g., direct imagery download, unattended ground sensor data exfiltration, interlink communications).

  14. Ultra-high field MRI for primate imaging using the travelling-wave concept.

    PubMed

    Mallow, Johannes; Herrmann, Tim; Kim, Kyoung-Nam; Stadler, Joerg; Mylius, Judith; Brosch, Michael; Bernarding, Johannes

    2013-08-01

    Ultra-high field (UHF) neuroimaging is usually conducted with volume transmit (Tx) and phased array receive (Rx) coils, both tightly enclosing the object. The travelling-wave (TW) concept allows a remote excitation offering more flexible experimental setups. To investigate the feasibility of primate MRI in horizontal UHF MRI, we first compared the distribution of the electromagnetic fields in an oil phantom and then verified the concept with an in vivo experiment. In the phantom experiments an in-house circularly polarized hybrid birdcage coil and a self-developed patch antenna were used for Tx and an eight-element phased array antenna for Rx. B1+ fields were calculated and measured for both approaches. For in vivo experiments the Rx part was replaced with an optimized three-element phased array head coil. The SAR was calculated using field simulation. In the phantom the field distribution was homogenous in a central volume of interest of about 10 cm diameter. The TW concept showed a slightly better homogeneity. Examination of a female crab-eating macaque led to homogeneous high-contrast images with a good delineation of anatomical details. The TW concept opens up a new approach for MRI of medium-sized animals in horizontal UHF scanners.

  15. NASA Tech Briefs, October 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics include: Relative-Motion Sensors and Actuators for Two Optical Tables; Improved Position Sensor for Feedback Control of Levitation; Compact Tactile Sensors for Robot Fingers; Improved Ion-Channel Biosensors; Suspended-Patch Antenna With Inverted, EM-Coupled Feed; System Would Predictively Preempt Traffic Lights for Emergency Vehicles; Optical Position Encoders for High or Low Temperatures; Inter-Valence-Subband/Conduction-Band-Transport IR Detectors; Additional Drive Circuitry for Piezoelectric Screw Motors; Software for Use with Optoelectronic Measuring Tool; Coordinating Shared Activities; Software Reduces Radio-Interference Effects in Radar Data; Using Iron to Treat Chlorohydrocarbon-Contaminated Soil; Thermally Insulating, Kinematic Tensioned-Fiber Suspension; Back Actuators for Segmented Mirrors and Other Applications; Mechanism for Self-Reacted Friction Stir Welding; Lightweight Exoskeletons with Controllable Actuators; Miniature Robotic Submarine for Exploring Harsh Environments; Electron-Spin Filters Based on the Rashba Effect; Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers; Tunable Optical True-Time Delay Devices Would Exploit EIT; Fast Query-Optimized Kernel-Machine Classification; Indentured Parts List Maintenance and Part Assembly Capture Tool - IMPACT; An Architecture for Controlling Multiple Robots; Progress in Fabrication of Rocket Combustion Chambers by VPS; CHEM-Based Self-Deploying Spacecraft Radar Antennas; Scalable Multiprocessor for High-Speed Computing in Space; and Simple Systems for Detecting Spacecraft Meteoroid Punctures.

  16. Field-effect transistors as electrically controllable nonlinear rectifiers for the characterization of terahertz pulses

    NASA Astrophysics Data System (ADS)

    Lisauskas, Alvydas; Ikamas, Kestutis; Massabeau, Sylvain; Bauer, Maris; ČibiraitÄ--, DovilÄ--; Matukas, Jonas; Mangeney, Juliette; Mittendorff, Martin; Winnerl, Stephan; Krozer, Viktor; Roskos, Hartmut G.

    2018-05-01

    We propose to exploit rectification in field-effect transistors as an electrically controllable higher-order nonlinear phenomenon for the convenient monitoring of the temporal characteristics of THz pulses, for example, by autocorrelation measurements. This option arises because of the existence of a gate-bias-controlled super-linear response at sub-threshold operation conditions when the devices are subjected to THz radiation. We present measurements for different antenna-coupled transistor-based THz detectors (TeraFETs) employing (i) AlGaN/GaN high-electron-mobility and (ii) silicon CMOS field-effect transistors and show that the super-linear behavior in the sub-threshold bias regime is a universal phenomenon to be expected if the amplitude of the high-frequency voltage oscillations exceeds the thermal voltage. The effect is also employed as a tool for the direct determination of the speed of the intrinsic TeraFET response which allows us to avoid limitations set by the read-out circuitry. In particular, we show that the build-up time of the intrinsic rectification signal of a patch-antenna-coupled CMOS detector changes from 20 ps in the deep sub-threshold voltage regime to below 12 ps in the vicinity of the threshold voltage.

  17. Space station preliminary design report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The results of a 3 month preliminary design and analysis effort is presented. The configuration that emerged consists of a very stiff deployable truss structure with an overall triangular cross section having universal modules attached at the apexes. Sufficient analysis was performed to show feasibility of the configuration. An evaluation of the structure shows that desirable attributes of the configuration are: (1) the solar cells, radiators, and antennas will be mounted to stiff structure to minimize control problems during orbit maintenance and correction, docking, and attitude control; (2) large flat areas are available for mounting and servicing of equipment; (3) Large mass items can be mounted near the center of gravity of the system to minimize gravity gradient torques; (4) the trusses are lightweight structures and can be transported into orbit in one Shuttle flight; (5) the trusses are expandable and will require a minimum of EVA; and (6) the modules are anticipated to be structurally identical except for internal equipment to minimize cost.

  18. An elegant Breadboard of the optical bench for eLISA/NGO

    NASA Astrophysics Data System (ADS)

    d'Arcio, Luigi; Bogenstahl, Johanna; Diekmann, Christian; Fitzsimons, Ewan D.; Heinzel, Gerhard; Hogenhuis, Harm; Killow, Christian J.; Lieser, Maike; Nikolov, Susanne; Perreur-Lloyd, Michael; Pijnenburg, Joep; Robertson, David I.; Taylor, Alasdair; Tröbs, Michael; Ward, Harry; Weise, Dennis

    2017-11-01

    The Laser Interferometer Space Antenna, as well as its reformulated European-only evolution, the New Gravitational-Wave Observatory, both employ heterodyne laser interferometry on million kilometer scale arm lengths in a triangular spacecraft formation, to observe gravitational waves at frequencies between 3 × 10-5 Hz and 1 Hz. The Optical Bench as central payload element realizes both the inter-spacecraft as well as local laser metrology with respect to inertial proof masses, and provides further functions, such as point-ahead accommodation, acquisition sensing, transmit beam conditioning, optical power monitoring, and laser redundancy switching. These functions have been combined in a detailed design of an Optical Bench Elegant Breadboard, which is currently under assembly and integration. We present an overview of the realization and current performances of the Optical Bench subsystems, which employ ultraprecise piezo mechanism, ultrastable assembly techniques, and shot noise limited RF detection to achieve translation and tilt metrology at Picometer and Nanoradian noise levels.

  19. Photolithographic-stereolithographic-tandem fabrication of 4D smart scaffolds for improved stem cell cardiomyogenic differentiation.

    PubMed

    Miao, Shida; Cui, Haitao; Nowicki, Margaret; Lee, Se-Jun; Almeida, José; Zhou, Xuan; Zhu, Wei; Yao, Xiaoliang; Masood, Fahed; Plesniak, Michael W; Mohiuddin, Muhammad; Zhang, Lijie Grace

    2018-05-02

    4D printing is a highly innovative additive manufacturing process for fabricating smart structures with the ability to transform over time. Significantly different from regular 4D printing techniques, this study focuses on creating novel 4D hierarchical micropatterns using a unique photolithographic-stereolithographic-tandem strategy (PSTS) with smart soybean oil epoxidized acrylate (SOEA) inks for effectively regulating human bone marrow mesenchymal stem cell (hMSC) cardiomyogenic behaviors. The 4D effect refers to autonomous conversion of the surficial-patterned scaffold into a predesigned construct through an external stimulus delivered immediately after printing. Our results show that hMSCs actively grew and were highly aligned along the micropatterns, forming an uninterrupted cellular sheet. The generation of complex patterns was evident by triangular and circular outlines appearing in the scaffolds. This simple, yet efficient, technique was validated by rapid printing of scaffolds with well-defined and consistent micro-surface features. A 4D dynamic shape change transforming a 2-D design into flower-like structures was observed. The printed scaffolds possessed a shape memory effect beyond the 4D features. The advanced 4D dynamic feature may provide seamless integration with damaged tissues or organs, and a proof of concept 4D patch for cardiac regeneration was demonstrated for the first time. The 4D-fabricated cardiac patch showed significant cardiomyogenesis confirmed by immunofluorescence staining and qRT-PCR analysis, indicating its promising potential in future tissue and organ regeneration applications.

  20. Hierarchically triangular prism structured Co3O4: Self-supported fabrication and photocatalytic property

    EPA Science Inventory

    The formation of ammonium cobalt (II) phosphate was utilized to synthesize unprecedented 3D structures of Co3O4, triangular prisms and trunk-like structures, via a self-supported and organics-free method. The length of a triangular side of the prepared 3D triangular prisms is ~1...

Top